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ABSTRACT

Radiation induced lung disease (RILD) is a side effect of radiotherapy for treat-

ing thoracic cancers, limiting radiation dose to tumours and in turn the chance of

treatment success. A current scheme for predicting and managing RILD risk is based

on a population-based normal tissue complication probability (NTCP) model assum-

ing the same response to given radiation dose in lung. However, recent research sug-

gests that dose response can be modified by biological and clinical factors pertinent

to pathogenesis of RILD. In this work, we explore systems radiobiology approaches

to model RILD as a result of interactions between these factors. Clinical, dosimetric,

and biological data on lung cancer patients were analyzed to identify markers asso-

ciated with high RILD risk. Then, we applied machine learning methods to combine

such markers into models that calculate patient-specific RILD risk. We investigated

two RILD endpoints: radiation fibrosis (RF) and radiation pneumonitis (RP). RF

is formation of scar tissues in lung and can be quantitatively measured from com-

puted tomography (CT) images. We extended a classical NTCP model to explicitly

model time-dependent dose response of RF risk. Our modelling results have shown

significant change in dose-RF correlation after 3 months post-treatment as well as

higher RF risk when tumour was in lower lung. We extended the dose modelling

to intra-treatment CT images. However, we did not find association between early

CT changes and biological states or clinical outcomes. Subsequent investigations on

radiation pneumonitis (RP) also suggest that dose response is modified by factors

not related to lung dose distribution, such as dose to heart or production of proteins
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that are responsible for inflammatory reactions. We built an ensemble of Bayesian

Networks (BN) to represent inter-relationships between such variables. The BN was

trained by fusing the observed data with prior knowledge on causal relations. In

order to account for a fractionation effect on RILD, we modelled the conventional

(2 Gy per fraction) and stereotactic body radiotherapy groups separately. Utility

of the BN ensemble models for both groups was demonstrated in two ways: 1) ro-

bust prediction that can handle uncertainties in data, and 2) hypothesis-generating

potential of the network topology that were derived from data. In conclusion, we

created mathematical models for both early and late RILD that could be used for

patient-specific RILD risk adaptive planning. We propose that clinical and biological

risk factors should be considered in addition to dosimetry information. Finally, we

advocate a use of Bayesian network as a systems radiobiology approach to combine

these factors.
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ABRÉGÉ

La maladie pulmonaire radio-induite (MPRI) est un effet secondaire de la ra-

diothérapie pour le traitement des cancers thoraciques, qui limite la dose de radi-

ations aux tumeurs et affecte les chances d’un traitement réussi. Actuellement, la

prediction et la gérance du risque de MPRI est basée sur des études de population

utilisant un model de probabilité de complication des tissus sains (PCTS) qui sup-

pose que la réponse pulmonaire est la méme pour une dose de radiation donnée.

Cependant, des recherches récentes suggèrent que la réponse à la dose peut être

modifiée par des facteurs biologiques et cliniques pertinents à la pathogenèse de la

MPRI. Ici, nous explorons une approche de biologie des systèmes pour modéliser

la MPRI résultant des interactions entres ces différents facteurs. Des données clin-

iques, dosimétriques et biologiques de patients souffrant d’un cancer du poumon ont

êtê analysées pour identifier des marqueurs associés a un risque élevé de MPRI. Puis,

nous avons appliqué des méthodes d’apprentissage statistique pour combiner ces mar-

queurs en models qui calculent le risque de MPRI de manière spécifique pour chaque

patient. Nous avons investigué deux critères d’evaluation de MPRI: la fibrose-induite

par rayonnement (FR) et la pneumonite-induite par rayonnement (PR). FR est la

formation de tissus cicatriciel dans les poumons et peut être mesurée de manière

quantitative avec des images de tomodensitométrie. Nous avons étendu le model

classique de PCTS pour modéliser explicitement le risque de FR en réponse à la dose

dépendamment du temps. Nos résultats de modélisation démontrent un changement

significatif de la corrélation FR-dose trois mois après la fin du traitement ainsi qu’un
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risque plus élevé de FR lorsque la tumeur est située dans la region inférieure des

poumons. Des recherches ultérieures sur PR suggèrent aussi que la réponse à la dose

est modifiée par des facteurs qui ne sont pas reliés à la distribution de la dose dans

les poumons, comme la dose donnée au coeur ou la production de protéines respon-

sables des réactions inflammatoires. Nous avons construit un ensemble de réseaux

Bayesian (RB) pour représenter les relations entre ces variables. Le RB a êtê en-

trainé en fusionnant les données observées avec les connaissances préalables sur les

relations de causalité. Afin d’incorporer les effets de la fractionation sur MPRI, nous

avons modélisé la radiothérapie conventionnelle (fraction de 2 Gy) et la radiothérapie

stéréotaxique en deux groupes séparés. L’utilité des ensembles de models de RB a

êtê démontrée de deux faons: 1) une prédiction robuste capable de gérer les incer-

titudes dans les données, et 2) le potentiel de générer des nouvelles hypothèses avec

la topologie du réseau obtenu avec les données. En conclusion, nous avons crée des

models mathématiques des effets précoces et tardif de la MPRI qui peut être utilisé

dans la planification adaptative des risques de MPRI de manière spécifique à chaque

patient. Nous proposons que les facteurs cliniques et biologiques de risques soit con-

sidérés en plus des informations dosimétriques. Finalement, nous prnons l’utilisation

des réseaux Bayesian comme une approche de biologie des systèmes pour combiner

ces facteurs.
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1.1 Radiotherapy for lung cancer

Lung cancer is currently a leading cause of cancer-related death in Canada [1].

It is also the most challenging cancer site to cure, 5-year survival rate being the

lowest (17%) and far below that (63%) of average cancer patients [1]. Radiotherapy

(RT), the use of high-energy ionizing radiation to kill tumour cells, is one of the

3



main modalities in treating cancer and considered a standard care for a subset of

lung cancer patients that are not eligible for surgery [2]. RT is intended to kill tu-

mour cells by breaking down their deoxyribonucleic acid (DNA) strands, which leads

to apoptosis (spontaneous death of cells) as well as by damaging tumour microenvi-

ronment (e.g. vasculature). Depending on the location of a radiation source, RT can

be classified into external beam radiotherapy (radiation is given in beams that are

generated externally and penetrate through a body and a tumour) and brachyther-

apy (the radiation source is seeded inside a tumour). EBRT has an advantage over

surgery or brachytherapy for its non-invasiveness. However, irradiation of healthy

tissues along beams’ path is almost unavoidable and often leads to side effects that

compromise patients’ quality of life. As detailed in later sections in this chapter, lung

is a complex radiosensitive organ. Thus, success of treating lung cancer with EBRT

hinges on finding the right balance between the benefit of delivering tumoricidal dose

of radiation and the cost of side effects that it might cause.

1.2 Basic EBRT workflow

After a patient is diagnosed with a malignant cancer and need for radiotherapy

is determined, a CT image around the expected treatment site is taken (simulation

CT ). Patient positioning during the scan is set up to “simulate” the position during

the treatment, which bears the name of this procedure. On the CT image, a targeted

tumour volume and surrounding organs/tissues at potential risk of RT side effects

(organs at risk) are contoured into structures. There are four types of target volumes

with different extents as defined in International Commission on Radiation Units and

Measurements (ICRU) report no. 62 [3]:
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• Gross tumor volume (GTV): gross demonstrable extent and location of the

tumor.

• Clinical target volume (CTV): GTV + subclinical malignant disease (e.g. mi-

croscopic tumor)

• Internal target volume (ITV): CTV + internal margin factoring into uncertain-

ties in the position of the CTV (e.g. breathing-induced tumor motion)

• Planning target volume (PTV): ITV + set-up margin to account for uncer-

tainties in patient positioning and the behaviour of a treatment machine. It is

used in treatment planning as a target volume to which the prescribed dose is

conformed as well as reporting of tumour dose.

The contoured CT image is sent to a treatment planning system (TPS) which de-

termines the optimal treatment beam types, shapes and positions that would deliver

the prescribed dose uniformly to the target while minimizing dose spills to organs at

risks (OARs). Modern TPS is equipped with dose calculation engines that estimate

the expected dose distribution under a given beam setup and patient anatomy. The

dose distribution is summarized into dose-volumetric histograms (DVHs) for tumour

volumes and organs of interests. A DVH of a given structure represents distribution

of its subvolumes in dose levels (figure 1.1). A DVH can be expressed either in dif-

ferential or cumulative distribution. For example, one point of a cumulative DVH

at dose D denotes how much percentage volume of the structure receives more than

dose D (written as VD or V D). Several metrics like VD are extracted from DVHs for

quality assurance of a treatment plan. For example, sharp falloff of the cumulative
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Figure 1.1: Example of a treatment plan for lung cancer. Left: an axial slice of simulation
CT with superimposed PTV contour (red) and 4 treatment fields (light blue).
Right: Cumulative dose volume histograms for this plan. Red: PTV, green:
heart, and blue: lungs with PTV subtracted.

DVH of a PTV around a prescription dose denotes the degree of dose conformity to

a tumour.

The finished treatment plan is then sent as a set of instructions to a linear

accelerator (linac), a machine that generates high-energy X-ray treatment beams

(fields). Success of RT depends crucially on how accurate the planned treatment is

delivered to the patient. Efforts are made to match patient position and anatomy

during the treatment to those at simulation as close as possible so that the planned

dose distribution is reproduced during the treatment. Traditionally, this has been

done by the use of marks or “tattoos” on patients’ skin at the simulation: at the

treatment session, these marks would be aligned with the optical light projections

of treatment fields from a linac. Nowadays, dedicated on-board imaging modalities

enabled image-guided radiotherapy (IGRT) where the patient images acquired at the

treatment guide the fields to the desired positions. Cone-beam CT (CBCT), a widely

used modality for modern IGRT, is acquired using an arm of X-ray source and a flat

6



panel detector that is mounted perpendicularly to a beam line. The CBCT image

is then registered (spatially matched) to a planning CT, from which beam positions

are calculated.

In case of lung cancer, breathing-induced target motion is taken into account

when defining target volumes: simulation CT is taken at different breathing phases

(4-dimensional CT or 4D-CT) from which the maximum extent of a target is delin-

eated as an ITV. Prescription dose is then conformed to a PTV which contains a

motion margin from the ITV. A gated delivery is an alternative to making a wide

margin to handle motion: using real-time imaging, tumor position is constantly

tracked during treatment and a beam is delivered when the target falls onto the des-

ignated location. For example, Cyberknife (Accuray Inc, Sunnyvale, CA) is a novel

type of linac which is dedicated to treating small targets that are subject to motion.

It is equipped with a robotic arm that can follow the movement of a target using

real-time X-ray imaging.

1.3 Radiobiological models in radiotherapy

1.3.1 Basic principles

When designing radiotherapy, dose to a tumour or normal tissues is based on

an empirical radiobiological model that relates planned dose distribution with ex-

pected outcomes of the therapy. There are two outcome metrics that constitute the

model: tumour control probability (TCP) and normal tissue complication probability

(NTCP). TCP relates the probability of complete kill of tumour cells (tumour con-

trol) as a function of dose delivered to the tumour volume. Similarly, NTCP models

dose-response of expected probability of a certain toxicity symptom (endpoint). The
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Figure 1.2: A typical sigmoid pattern shown in a hypothetical tumor control (TCP) and
a normal tissue control probability (NTCP) function. The therapeutic ratio
is defined as a ratio a/b.

shape of both curves is known to follow a sigmoidal function (figure 1.2). The most

suitable radiotherapy maximizes the ratio of TCP to NTCP which is also known as

the therapeutic ratio. TCP of 0.5 or higher and NTCP less than 0.05 is considered a

good treatment [4].

1.3.2 Linear-quadratic model

Various patient specific and non-specific factors influence TCP, NTCP, and the

therapeutic ratio. One of the most important factors is scheduling of dose delivery

timing. Typically, radiotherapy is given with small fractions over a period of time

(fractionation). The rationale behind this practice stems from an analytical model

of a radiation effect on cell killing, so called the linear-quadratic (LQ) model [5].

This long-standing model in radiobiology was derived by fitting a linear-quadratic
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Figure 1.3: A hypothetical linear-quadratic (LQ) cell survival curve showing linear and
quadratic components of cell kill.

equation to experimental data on survival of in-vitro cell lines to a single fraction

of radiation. The model describes the log of a cell survival fraction (S) as sum of a

linear and quadratic components with coefficients α and β respectively (figure 1.3,

equation 1.3.2):

log(S) = −(αD + βD2)

S = e−αD−βD
2

If the dose D is fractionated into n sessions so that D = nd, the LQ-predicted

survival (Sn) becomes:
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log(Sn) = −n(αd+ βd2)

Sn = en(−αd−βd
2)

= e(−αnd−βnd
2)

= e(−αD−β
D2

n
)

> e−αD−βD
2

The non-linearity of the curve means that the cell survival as described by the

LQ model would be higher when dose is more fractionated (figure 1.4). This is a

prominent behaviour for normal tissues where cells are given more time to repopulate

and repair sublethal damages between fractions. A ratio of the linear to quadratic

parameters, α/β, determines the curvedness of the LQ curve and thus sensitivity of

a tissue to fractionation (figure 1.4). It is also equal to the dose where linear and

quadratic components of cell kill are equal (figure 1.3). Values of α/β vary among

cell types. Normal tissues with lower α/β demonstrate a stronger fractionation effect

and usually show slow radiation response later than a few months (e.g. lung, kidney).

In contrast, other normal tissues with acute response (e.g. skin) and a majority of

tumours tend to have higher α/β.

In contrast to normal tissues, fractionation could enhance damage to tumour

cells by two mechanisms that are not accounted for by the classical LQ model: First,

it allows more oxygen supplies to a tumour, which in turn creates more free radicals

and thus enhances the biological effect in cell killing. Secondly, given sufficient
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Figure 1.4: Factors that affect cell survival as explained by the linear quadratic (LQ)
model. Left: Effect of an alpha-beta ratio on the shape of LQ cell survival
curves. Right: Effect of fractionation on cell survival. A single dose of 15 Gy
was compared to 3 fractions of 5 Gy.

time between fractionations, cancer cells are phased to the most radiosensitive cycle

(reassortment). Therefore, it is generally a good strategy to increase fractionation

to enhance the therapeutic ratio. Fractionation is more favourable when the value of

α/β for a tumour is higher than normal tissues so that loss of TCP due to damage

repair in tumour cells is outweighed by reduced toxicity risk. This is the case for

lung cancer where tumour α/β is around 8-10 Gy [6] which is higher than that

of radiation pneumonitis (4 Gy [7]) and fibrosis (2-3 Gy [7]). The Conventional

fractionated radiotherapy (CFRT) for lung cancer prescribes 60-66 Gy in 2 Gy per

fractions over 6 weeks.

Due to its simplicity, the LQ model has been widely used in preclinical research

as well as clinical study design, especially for stereotactic radiotherapy (see section
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1.4), for comparing dose between two different fractionation schemes. A quantity

called biologically effective dose (BED) converts a nominal prescription dose to the

equivalent that represents cell killing potential as predicted by the LQ model (equa-

tion 1.1):

BED = nd[1 + d/(α/β)] (1.1)

with n: number of fractions, d: nominal dose to a target per fraction.

Equivalent dose in 2 Gy fraction (EQD2), or normalized total dose (NTD) in old

literatures, can be used instead of BED to estimate the equivalent biological effect if

the fraction size were 2 Gy:

EQD2 = nd(
d+ α/β

2 + α/β
) (1.2)

Despite its widespread use, the LQ model is under several criticisms for its

over-simplistic assumptions and inaccuracy at high dose per fraction. The main

limitation comes from the fact that it was derived from in-vitro cell survival data

without modelling of other mechanisms that affect cell killing such as damage to

microvasculature [8] or stroma (connective tissues providing mechanical support to

a tumour) [9]. This could account for underestimation of survival by the LQ model

in a high dose area (above 10-12 Gy) [10] where these mechanisms are triggered [11].

This inaccuracy might have ramifications in designing and evaluating SBRT regimen

where a fraction size often exceeds 10 Gy. There has been alternative models that

attempted to extend the LQ model to the high dose region. For example, Guerrero

and Li [10] introduced into the LQ formula an additional term that bends the curve
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linearly instead of quadratically at high dose in order to improve the fitting with

empirical data.

1.4 Stereotactic body radiotherapy

Despite the therapeutic advantages of fractionation as explained in section 1.3,

prescription of the smaller number of fractions (5 or less) with larger dose per frac-

tion has been practiced to treat early stage (I and II) cancers. This regimen, called

stereotactic body radiotherapy (SBRT), was inspired by clinical success of stereotac-

tic radiosurgery (SRS) on brain tumours where a dose of 15-25 Gy is given in a single

or 2 fractions. In recent years, SBRT has become a standard care for non-operable

early stage NSCLC, demonstrating a local control rate close to 90% and limited tox-

icity rate [12]. Damage to tumour vasculature is an important mechanism of tumour

killing by SBRT, which is not accounted by the LQ model. It has been shown that

a single fraction of dose more than 10 Gy induces damage to blood vessels, leading

to starvation and secondary killing of downstream tumour cells [13].

SBRT increases BED for both tumours and normal tissues due to the reduced

number of fractions (equation 1.1). However, increased BED for lung does not raise

a serious concern for RILD as long as treatment field sizes are reduced to match that

of the tumours that are usually small in volume (typically less than 100 cc). Lung is

thought to possess a physiological reserve capacity that compensates for a partial loss

of its tissues [7]. As a result, lung displays a strong volume effect, meaning that RILD

severity strongly depends on the irradiated volume (detailed in chapter 2). Rather,

lung SBRT poses risks for potentially lethal side effects on other thoracic organs,
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especially central structures such as great vessels (e.g. aorta) or central bronchus

[14].

In order to restrict the volume effect on RILD risk, it is important to focus

radiation to the small target while minimizing dose spills to normal tissues. Here are

3 most widely used delivery techniques for lung SBRT:

• 3-dimensional conformal radiotherapy (3D-CRT): Treatment consists of 7-10

coplanar fields aiming at a target from different angles. Each field is con-

formed to the cross-section of the PTV at the angle of the field using multi-leaf

collimators (MLC) which are high atomic number materials on a linac head

that blocks the radiation to shape the beam.

• Volumetric Arc Therapy (VMAT): A linac head rotates in an arc with a tumour

at its focal point, and radiation is delivered during the rotation. It does away

with the dead time that would be consumed by 3D-CRT while switching a linac

head position.

• CyberKnife: A robotic non-coplanar delivery system that is dedicated to irra-

diating small targets.

1.5 Basic lung anatomy and histology

Human lung has two parts, left and right lung, connected by a main airway

(figure 1.5). Each lung is divided into lobes: right lung into three (superior or

upper, middle, inferior or lower) and left lung into two (upper, lower). An airway

or a respiratory tract is a passage conducting air from the nose or mouth to lungs.

An airway first branches at the end of trachea, also known as the carina, into two

primary bronchi which enter left and right lung. The bronchi further branch into
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finer tubes called bronchioles in several stages. The endings of the bronchioles join

lung parenchyma which are structural units in lung tissues where air exchange occurs.

Lung parenchyma consist of alveoli (singular: alveolus), alveolar ducts, and capillary

beds. Alveoli are air sacs that correspond to the terminal ends of the respiratory

tree. A thin membrane of the alveoli (∼0.2 μm) enables gas diffusion from alveoli

atrium into the bloodstream in the capillary bed surrounding the alveoli. An empty

space between parenchyma, intra-alveolar septum, is filled with stromal cells such as

extracellular matrix (ECM) that provide a mechanical support to the alveoli.

Alveoli are composed of two types of cells: type I and II pneumocytes (figure

1.6). Type I pneumocytes are epithelial cells that cover a vast majority (90-95%) of

the surface of an alveolar sac, which is a main site for gas exchange. Type II cells take

up a small fraction of alveolar surface (≤5%) but have several important functions:

they produce pulmonary surfactants which decrease surface tension within alveoli.

They can also differentiate into type I pneumocytes in case of structural damage

to alveoli. Alveoli also home some macrophages (dust cells) which help neutralize

pathogenic particles entering alveoli.

1.6 Radiation induced lung disease

External radiotherapy inevitably irradiates healthy tissues surrounding a tu-

mour. In cases where treatment sites are located in thorax such as lung, esophagus,

breast, or thyroid, lung is subject to the non-negligible risk of radiation induced

side effects. Since lung functions heavily affect patients’ survival and quality of life,

minimizing dose to lung is a one of the major objectives for thoracic RT planning

and delivery.
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Figure 1.5: Basic anatomy of the respiratory system (with permission from Terese
Winslow).
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Figure 1.6: Histology of lung parenchyma (with permission from Zhang [15]).

Radiation induced lung disease (RILD) is a broad range of symptoms and mani-

festations that are caused by microscopic changes in lung (figure 1.8). Radiotherapy-

related lung diseases develop in two phases - acute (radiation pneumonitis) and

late/chronic (radiation fibrosis) - with different clinical presentations:

• Radiation pneumonitis (RP) is an acute inflammatory lung disease that accom-

panies fever, cough and dyspnea (difficulty in breathing). It typically occurs

1-3 months or before 10 months after RT [16] with a few weeks of latency period

following irradiation [17]. RP is potentially life threatening and often requires

administration of steroids to appease the symptoms. Non-symptomatic RP

can be observed radiographically as a diffuse change in the irradiated region,

also referred to as ground glass opacity [18] (figure 1.7).

• Radiation fibrosis (RF) refers to formation of fibrotic tissues in the area of

high radiation dose regions. Fibrosis tends to develop later than RP (months

17



Figure 1.7: Ground-glass opacity from radiation pneumonitis. Left: pre-RT chest radio-
graph with a tumour mass (arrow), B: Chest radiograph obtained 2 months
after completion of RT shows ground-glass opacity adjacent to the tumour
site. With permission from [23]

to years after the treatment) and leaves permanent scars in lung, which is seen

in CT or radiographs as high-density areas. Although occurrence of RF is

known to correlate with RP [19], a majority of RT-treated lung cancer patients

show some degree of radiological changes without symptoms [20]. Still, severe

loss of air exchange space by fibrotic tissues impairs gas exchange and can be

clinically observable as a low oxygen level in blood (hypoxemia). Moreover,

fibrosis tends to develop in a high dose region near a tumour [18] [21] which

can be confused with tumour relapse and thus poses a challenge to accurate

diagnosis of local control [22]. Examples for different patterns of RF can be

seen in figure 1.9.

1.6.1 Clinical grading of RILD

There are a number of standards for grading treatment-induced side effects. This

study follows a widely-used Common Toxicity Criteria for Adverse Events (CTCAE)
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Figure 1.8: Continuum of clinical and subclinical manifestations of RILD. With permis-
sion from Rubin et al. [24].

Figure 1.9: Three distinct patterns of radiation fibrosis in computed tomography images.
Left: modified conventional pattern, 5 months post-RT. Also shown are vol-
ume loss, consolidation, and air bronchograms (air-filled bronchi made visible
by increased density in adjacent alveoli. Middle: masslike pattern in right
lung, 14 months post RT. Right: scarlike pattern, 5 years post-RT. Band-like
consolidation can be seen across left lung. Reproduced with permission from
[23].
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Table 1.1: CTC scoring criteria for RP and fibrosis (version 4)

grade Pneumonitis Fibrosis
1 Asymptomatic; clinical or diag-

nostic observation only; interven-
tion not indicated

Mild hypoxemia; radiologic pul-
monary fibrosis <25% of lung vol-
ume

2 Symptomatic; medical interven-
tion indicated; limiting instru-
mental activities of daily living

Moderate hypoxemia; evidence of
pulmonary hypertension; radio-
graphic pulmonary fibrosis 25 -
50%

3 Severe symptoms; limiting self
care daily life; oxygen indicated

Severe hypoxemia; evidence of
right-sided heart failure; radio-
graphic pulmonary fibrosis > 50-
75%

4 Life-threatening respiratory com-
promise; urgent intervention indi-
cated (e.g. tracheotomy or intu-
bation)

Life threatening consequence; in-
tubation with ventilation support
indicated; radiographic fibrosis >
75%

5 Death Death

version 4 which stratifies the severity of RP and RF (table 1.1). Clinical definition of

toxicity events and reported event rates vary amongst clinical studies depending on

the usage of different toxicity criteria or cutoff grade. Rates of grade 2 or higher RP

requiring therapeutic intervention from conventional fractionation RT range from 5

to 50% [16]. SBRT is known to decrease the risk of symptomatic RP (see section 1.4):

reported rates are between 9% and 28% . Compared to symptomatic pneumonitis,

episodes of radiographic change are common: incidence rate of grade 1 or higher RF

is approximately 50% from conventional [25] and 60-80% from SBRT [26].

1.7 Paradigm of personalized radiotherapy and RILD

RILD may not always threaten patients’ survival by its symptoms, but it does

so indirectly by limiting prescribed dose to tumour and thereby limiting the chance
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of the success of RT. A trial from the University of Michigan on dose escalation, an

increase in a tumour dose over a conventional level, showed a promising result of

improved survival [27]. In this trial, dose was escalated in different amounts for each

patient according to their predicted NTCP [28]; The patients with lower expected

toxicity received more tumour dose in order to enhance the chance of survival. Thus,

it is very important to have accurate and quantitative NTCP prediction to design a

trial that might establish a new treatment without additional morbidity.

However, the NTCP model that they used was derived from a population-based

study, which assumes the same expected toxicity if dose were the same across all the

patients. So, when it comes to designing a radiotherapy plan, we have not realized

“personalization” in its authentic sense. As seen in later chapters, a population-

based RILD risk model has its limit in accuracy due to other patient-specific factors

that influence the vulnerability of patients. Challenges remain in discovering those

factors, testing their robustness and incorporating them into a mathematical model

that could be served as one element for RT plan optimization.

1.8 Thesis objectives and organization

Our main hypothesis is that prediction of RILD risk can be improved if we take

into account and model patient-specific factors that modify dose-response relation-

ships. The efforts to test this hypothesis can be summarized into the two specific

objectives:

1. Exploration of a large amount of patient data to identify relevant variables that

can capture biological and physical characteristics of RILD.
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2. Combination of such variables into a mathematical model that calculates patient-

specific RILD risk.

The thesis is organized into the following chapters: the next chapter will summa-

rize radiobiological NTCP models in the literature and their applications to RILD.

The chapter will also discuss patient specific factors that can extend the classical

dosimetric NTCP models. Chapter 3 will elaborate on biological RILD risk factors

and also biological mechanism of RILD which provides a rationale for the biomark-

ers. In chapter 4, applicability of a classical NTCP approach will be tested in the

case of the dose response of radiation fibrosis measured by CT imaging. Chapter 5

will then attempt to explain patient heterogeneity in the dose response of the CT

change. Then we will switch attention from describing the response to predicting the

response, with a specific goal of predicting symptomatic radiation pneumonitis from

patient specific factors. Chapter 6 will go over computational approaches used in

the later chapters to build RILD prediction models from multitudes of factors. The

following 2 chapters will illustrate the clinical application of such multivariate mod-

elling approach to two different fractionation groups: CFRT (chapter 7) and SBRT

(chapter 8). Chapter 9 will summarize and discuss the limitations of this work as

well as potential future directions.
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2.1 Introduction

This chapter will review a brief history and current status of modelling normal

tissue probability (NTCP) and application of the NTCP principle to RILD.

NTCP models, like other disease models in general, can be divided into two cat-

egories which have a major philosophical difference in where models should originate

from:

Phenomenological models. A model is designed and fitted in a way that it

best describes empirical data, independent of theories or assumptions. Phenomeno-

logical models are generally simple and easy to implement. On the other hand, it

is risky to extrapolate the model outside the empirical data from which the model

parameters were derived from. Inaccuracy of the linear-quadratic model (section

1.3.2) in large fraction dose serves as a good example.

Mechanistic models. A model is built by fitting data to pre-specified under-

lying processes. Parameters of the model have biological/physical representations.

Compared to phenomenological models, it takes more effort to design and implement.

Especially, it is the case for any model that has to do with biological phenomena with

high complexity and incomplete knowledge. Nevertheless, the model tends to be more

general and robust to extrapolation due to its solid theoretical underpinnings.

Otherwise, NTCP models can be classified in terms of the scope of risk factors:

Dosimetric models. Historically, NTCP has been perceived as a population-

averaged relationship between dose to an organ of interest and risk of complication

to the organ. As dose calculation is part of treatment planning processes, NTCP
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can readily be computed using the calculated 3D dose distribution or DVHs. Mod-

ern radiotherapy generates highly heterogeneous dose distribution thanks to inverse

plan optimization and conformal delivery techniques such as multi-leaf collimators.

Dosimetric NTCP models differ on how to convert this heterogeneity into a surro-

gate index that correlates best with outcomes. Most clinical NTCP models, such

as the ones for biological based treatment planning system (BBTPS), are designed

phenomenologically, while there are efforts to adopt a more mechanistic approach

[1]. Dosimetric NTCP models have been incorporated into treatment planning and

protocol design, often in the form of dose constraints that serve as an upper limit on

planned dose to the organ.

Non-dosimetric models. Recently, researchers are beginning to extend con-

ventional NTCP models with non-dosimetric parameters to identify more radiosensi-

tive subpopulation. However, most of these extended models remain in research and

have yet to make clinical application. The biggest obstacle would be availability of

data for such non-dosimetric markers, as they may not be collected as routinely as

dosimetric data. Hopefully, advances in functional imaging and biological assays are

expected to facilitate external validation of these models, which is a necessary (but

not sufficient) step for research translation.

This chapter is organized as follows: first, perspectives on general dosimetric

NTCP modelling approaches, either phenomenological or mechanistic, will be dis-

cussed. Then, past results on modelling radiation pneumonitis (RP) and fibrosis

(RF) using the dosimetric NTCP approaches will be presented. In addition, non-

dosimetric RILD factors and recently developed models will be mentioned.
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2.2 NTCP modelling approaches

This section will review two most commonly used dosimetric NTCP models.

2.2.1 Lyman-Kutcher-Burman (LKB) model

The LKB model [2] [3] [4] is a phenomenological model that relates 3D dose

distribution to NTCP via a multi-parameter sigmoid function. It was initiated by

a collective effort by Emami et al. [5] to create a compilation of toxicity reports in

the literature that could serve as a guideline for treatment planning. Normal tissue

toxicity risk was expressed in terms of TD50/5 (tolerance dose at 50% chances of

complication within 5 years) and TD5/5 (tolerance dose at 5% chances of complica-

tion within 5 years). The toxicity data compilation included 28 critical organs in

adult irradiated to conventionally fractionated (180-200 cGy per day/5 days a week)

radiotherapy. The two tolerance dose values were assigned to each organ and each

one of the three partially irradiated volumes (one-third, two-thirds, and the whole or-

gan). Burman et al. [4] fitted the three-parameter model that was initially conceived

by Lyman [2] to the toxicity data by Emami et al, where complication probability

(NTCP) is expressed as a function of a single dose (D) that is given uniformly to a

partial volume (v) (equation 2.1, 2.2, 2.3):

NTCP =
1√
2π

∫ t

−∞
e(−x

2/2)dx (2.1)

t =
D − TD50(v)

m · TD50(v)
(2.2)

TD50(v) = TD50(1)v
−n (2.3)
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The model has 3 free parameters to be determined from observed data using

maximum likelihood fitting: TD50(1) represents a tolerance dose at which compli-

cation rate reaches 50% when it is given uniformly to the entire organ/tissue. m

indicates how steep the NTCP rises with increasing dose. n governs sensitivity of

the NTCP to irradiated partial volume. Later, it was adapted to heterogeneous dose

distribution via a histogram reduction technique by Kutcher et al. [3]. It converts

a non-uniform dose volume histogram into the uniform equivalent of a single dose

D to a volume v which then can be used as input parameters for the LKB model

(equation 2.2 and 2.3). There are two different reduction schemes: first, a DVH

can be expressed as a maximum dose in the distribution D to a effective volume v

(equation 2.4):

v =
∑
i

(
Di

D
)

1
n vi (2.4)

where vi is a partial volume in a differential DVH dose bin Di.

Another choice is to find an equivalent dose Deff to the whole organ (v = 1)

(equation 2.5):

Deff = [
∑
i

vi(Di)
1
n ]n (2.5)

The generalized equivalent uniform dose (gEUD) [6] is a single-parameter model

that has the same functional form as the equation 2.5, except that the volume param-

eter n is replaced by its reciprocal a = 1/n (equation 2.6). The gEUD was proposed

as a metric that summarizes non-uniform dose distribution into a uniform equivalent

that could be used for optimizing treatment plans.
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gEUD = (
N∑
i=1

viD
a
i )

1
a (2.6)

The value of a governs which region of a DVH is weighted more to the gEUD:

for negative a, a low dose part of the DVH counts more; for large positive value of

a, the gEUD is correlated more to a high dose region in the DVH; when a is close

to 1, every DVH bin is weighted the same and the gEUD approaches an arithmetic

average dose. Figure 2.1 demonstrates the influence of a on sensitivity to toxicity

(tolerance dose) to irradiated volume. The value of a found for lung in literatures

is close to unity (1.03) [7], indicating strong volume dependence of RILD. This also

means that MLD and gEUD are fairly close and exchangeable.

The gEUD is considered a parameter that is more clinically relevant than tra-

ditional DVH parameters. Some commercial TP softwares incorporated the gEUD

into dose constraints for inverse planning. It was suggested that gEUD-optimized

treatment plans improved normal tissue sparing in the optimized plan [9]. However,

the International Commission on Radiation Units and Measurements (ICRU) report

guarded against using gEUD for treatment optimization parameter without accurate

knowledge on the parameter a [10].

2.2.2 Critical element and volume model

The critical element and volume model [11] [12] [13] is a mechanistic model that

explains an onset of complication based on two main assumptions:

• An organ is composed of functional subunits (FSUs) which are the smallest

unit of tissue elements that are structurally or functionally discrete.
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Figure 2.1: Dependence of relative tolerance dose on fractional volume irradiated and
the parameter a of the gEUD model. It can be seen that the toxicity risk
increases rapidly with volume when a close to 1, whereas the risk is rather
insensitive to volume at larger a. Permission from Moiseenko et al. [8]
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• The organ develops complication after it loses more than a critical number of

FSUs.

The concept of FSUs was developed by Withers et al. [11] who created two

different definitions depending on tissue types:

• Structurally defined FSUs: An FSU can be defined as a structural element that

makes up an organ such as nephrons for a kidney and acini for lung.

• Structurally undefined FSUs: An FSU is defined as the maximum area or

volume that can be repopulated by one clonogen rather than visible structures.

This definition of FSUs is used for describing the organization of tissues such

as skins, mucosa, or glial tissues.

Modelling NTCP using the critical volume approach is a two-step process: First,

probability of a single FSU damage (PFSU) is related to a local dose (d) using a

phenomenological sigmoidal model (equation 2.7)

PFSU(d) = 1/[1 + (d1/2/d)
k] (2.7)

where d1/2 is the dose at which 50% of the FSUs are damaged and k is a param-

eter for the steepness of the sigmoidal curve. It is assumed that one FSU is small

enough and dose distribution to a unit is nearly uniform.

The next step relates NTCP to the number of damaged FSUs. This relationship

depends on arrangement of FSUs in an organ or whether they are connected in series

(e.g. a spinal cord, optic nerves) or parallel (e.g. kidney, lung). The NTCP model

for serial FSU arrangement is specifically called the critical element model [12]. It
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assumes that complication arises when at least one FSU is damaged. When an organ

receives a heterogeneous dose distribution with dose values {di} to fractional volumes

{vi}, the NTCP for that organ is then expressed as follows (equation 2.8):

NTCP = 1−
∏
i

[1− PFSU(di)]
vi (2.8)

For the organs where FSUs are connected in parallel (the critical volume model),

complication is assumed to occur when more than a certain fraction of FSUs, or the

functional reserve, are damaged [14]. This model first calculates the damaged fraction

of FSUs, fdam, by integrating PFSU over an organ:

fdam =
∑
i

viPFSU(di) (2.9)

When deriving NTCP as a function of fdam, it is considered that every patient

has different functional reserves, which is modelled as a gaussian distribution with a

mean v50 and standard deviation σ2
v . Then, the NTCP is expressed as a cumulative

probability distribution of a functional reserve: in other words, NTCP is the prob-

ability that a patient’s functional reserve is smaller than a damaged fraction fdam

(2.10):

NTCP (fdam) =
1√
2πσ2

v

∫ fdam

0

exp[−(v − v50)
2

2σ2
v

]dv (2.10)

The biggest difference between critical element and critical volume NTCP lies

in a response to volume at fixed dose. The critical element NTCP shows linear in-

crease with volume. This can be explained in a pure probabilistic view: a chain-like
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Figure 2.2: Comparison in volume response between critical element and critical volume
NTCP models. An effect of population spread in model parameters were
tested. Permission from [15].

structure is more likely to break if larger number of links are covered by radiation.

In contrast, the critical volume response exhibits a threshold behaviour, which orig-

inates from a concept of a function reserve (figure 2.2).

The other category of tissue, such as skin or mucosa, is organized by a clump of

independent FSUs aligned in a 3-dimensional array. This category called a graded

response displays a continuous scale of response rather than binary-type events.

Unlike the critical volume or element models, the graded response NTCP is known
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Type Description Examples Model
Critical Element (CE) A complication is

caused by irrepara-
ble damage to any
of FSUs

spinal cord,
nerves, peri-
toneum

Chain made up of
many friable links

Critical Volume (CV) Damage to the
fraction of FSUs
above functional
reserve leads to a
complication

kidney, liver,
lung

Rope made of
of many strands
which will hold
until many are
broken

Graded Response (GR) Response occurs on
a continuous scale

skin, mucosa Granula clump of
”dosimeters”

Table 2.1: Three main types of tissue architectures described in the critical volume model.
Reproduced with permission from [15]

to be independent of irradiated volume [15]. Table 2.1 summarizes the modelling of

tissue organization and radiation response for each tissue type.

2.3 DVH-based RILD models

2.3.1 RP models

When it comes to RP for an endpoint, it is consensus that lung is a parallel

organ: the earliest estimate by Burman et al. [4] on the volume parameter n for the

LKB model was 0.87. A more recent pooled analysis by Marks et al. in 2010 [7]

points to a value that is closer to 1 (mean: 1.03, 95% confidence interval: 0.67-1.39).

This has two implications: first, an arithmetic average dose to lung or mean lung

dose (MLD) is close to gEUD and thus serves as a fair average for non-uniform dose

distributions. Second, as explained by the critical volume model (section 2.2.2), a

parallel organ is expected to exhibit a threshold behaviour, where NTCP sharply in-

crease beyond a certain fractional volume. Such volume is defined using a threshold
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dose, in other words, as a percentage of volume of lung receiving more than a thresh-

old dose (VDth). These two types of parameters, MLD along with VDth at various

threshold dose, were investigated for their predictive power by numerous studies.

In 2010, a collective effort was made by the American Society for Radiation

Oncology (ASTRO) to compile the published dose-volume studies on various organs.

This work, called the Quantitative Analysis of Normal Tissue Effects in the Clinic

(QUANTEC) [17], was aimed at updating the toxicity guidelines by Emami et al. [5]

in wake of evolving dose delivery techniques that create more complex dose distri-

butions. The QUANTEC report for lung reviewed more than 70 published clinical

studies on “standard” radiotherapy - conventionally fractionated 3D-conformal pho-

ton treatments - excluding special techniques such as SBRT or IMRT (figure 2.3).

The MLD models turned out to be fairly consistent across the studies, showing strong

correlation with RP risk. This agreed with a preceding multi-institutional study by

Kwa et al. [18]. However, it can be seen from figure 2.3 that RP risk increases slowly

with MLD. As a result, it would be difficult to define a safe threshold for MLD,

although the metric is still useful for relative toxicity assessment. Moreover, with

regards to the VDth studies, the QUANTEC found inconsistency in which threshold

dose correlates best with RP. These VDth parameters are highly correlated to each

other [19], and the best predictive parameter depends on delivery techniques or beam

arrangement [7]. The main cause of this inconsistency would be that any VDth is

a single point in a DVH and thus cannot reflect the entire dose distribution, unlike

the MLD which uses all the dose bins for its calculation. A study by Seppenwoolde
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et al. [20] also supports the claim that dose response of RP is best fit by the MLD-

based linear model rather than the threshold model such as VDth. Nevertheless, the

QUANTEC report proposed the recommendation that V20 and MLD are limited to

30-35% and 20-23 Gy respectively.

The dose-RILD relationships for SBRT are not as well established. Dose toler-

ance for SBRT is expected to be considerably different from CFRT due to different

dose distribution and fractionation [21]. Previous RTOG trials for lung SBRT (0236,

0813, 0915) used lung dose constraints of V20 <10% and D1000cc < 2.7Gy per frac-

tion. These limits were derived from toxicity results from preclinical and clinical data

for CFRT using linear-quadratic model based conversion with an additional conser-

vative margin [22]. The most predictive dose-volumetric metrics vary across studies.

According to a literature survey by Yamashita et al. [23], MLD was most frequently

reported as a significant factor for grade 2 or higher RP, while V5, V20, V25 were

found significant by a single study. Different use of fractionation schedules convo-

lutes dosimetric modeling from SBRT patients. Some studies use EQD2 to bring

dose distributions with different fractionation into a common scale [20] (equation

1.2), but it is not always enforced.

2.3.2 Fibrosis models

It has been suggested that radiation fibrosis (RF) exhibits more serial response

than RP: Moiseenko et al. [24] fitted the LKB model to thymoma patient data with

an endpoint defined as absence/presence of radiographic changes. They found the

best-fit volume parameter n = 0.5, which was lower than that (∼1) for RP. This was
supported by V̊agane et al. [25] who demonstrated that n = 0.5 led to less fitting
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Figure 2.3: The QUANTEC compilation of mean lung dose (left) or VDth (rights) models
for radiation pneumonitis. The dashed line on the top graph is logistic fit to
the compiled data. Permission from Marks et al. [7]
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error than Burman et al.’s value n = 0.87. Lower n implies that dose response

depends more on maximum dose and a volume effect is less apparent when fibrosis

is defined in a binary fashion.

Whereas RP is a systemic response, RF tends to display non-uniformity in irradi-

ated regions. CT densitometry is a widely used non-invasive technique to investigate

the extent of the disease. Collagen deposition in affected lung tissues increases phys-

ical tissue density, which is indirectly measured by CT imaging in terms of X-ray

attenuating property. In general, there is linear relationship between the physical

density of biological tissues and an attenuation coefficient, with the exception of bone

which has higher atomic numbers and thus drastically changes attenuation proper-

ties. CT calibration is performed by fitting a linear function to CT attenuation

measurement of materials with known physical density.

A Hounsfield unit (HU) is a unit for X-ray attenuation at every image voxel. It

is scaled in a way that air (lowest density material) is assigned to -1000 and water is

given 0. Any other tissues are assigned to a HU value depending on CT measurement

of a linear attenuation coefficient (μ) which is energy loss of X-ray photons per length

(equation 2.11):

HU = 1000
μ− μwater

μwater − μair

(2.11)

Fibrotic response from radiotherapy was characterized using CT densitometry

in different ways. Increase in average lung HU or density after RT was reported

[26] [27] [28] albeit with low sensitivity [26]. An alternative method is to measure

correlation between regional CT density and local dose deposition. Strong correlation
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was demonstrated by studies on both CFRT [29], [30] and SBRT [31] [32] cohorts.

These studies evaluated the correlation via a dose response curve (DRC) which is

obtained by dividing contoured lung into several isodose subvolumes and evaluate

average CT change within the volumes. Rosen et al. [30] measured HU changes

from baseline in the regions that were delineated by radiologists. From the range

of density changes for the fibrotic regions, they established threshold density values

for each grade of fibrosis. Probability of fibrosis was defined as a fraction of lung

voxels that were classified as fibrosis by applying these threshold values. This DRC

approach was also adopted by Stroian et al. [33]. Ghobadi et al. [34] found that

local spread of CT numbers, as well as an average, is correlated to other independent

endpoints such as histology and breathing rate.

The DRC could be a useful dose sensitivity indicator since it decouples a volume

from a dose effect. Furthermore, unlike DVH parameters, spatial information can be

preserved via the subregion analysis.

2.4 Non-DVH RILD factors and models

2.4.1 Irradiation to lower lung

One major limitation in any DVH-derived NTCP models, including MLD, VDth,

and the LKB model, is that spatial dose information (e.g. location of a high dose gra-

dient region) is lost while constructing a DVH. Several studies report that lower lung

is more sensitive to radiation and thus contributes more to RILD. One of the earliest

findings was a series of animal experiments by Liao [35], Travis [36], and colleagues.

They irradiated different subregions of mice lung and found that a breathing rate

(a surrogate for RILD) and a mortality rate was higher when the subregions were
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Figure 2.4: Distribution of tumour centroid locations (points) projected to a coronal
plane from two datasets: RTOG 9311 [41] (left), Washington University [40]
(WU, right). Circled points represent RP events. From the WU dataset,
significant difference in RP frequency was found between lower 50% and upper
25% of lung. With permission from [40].

located in lower lung. Similar findings followed from clinical studies [37] [38] [39]

[40]. Hope et al. [39] and Bradley et al. [40] incorporated this effect into their mul-

tivariate models by introducing a factor for a centre-of-mass of tumour location in

superior-inferior direction (COMSI) which was associated with grade ≥ 2 RP (figure

2.4).

As a possible explanation of the location effect, Travis et al. [36] suggested that

a lower lobe could have higher density of alveoli while an upper lung contains more

dead space from conducting airways.

2.4.2 Irradiation of heart

Another related risk factor is irradiation of heart which often falls in treatment

beams’ paths when a tumour is located in a lower lobe. Dose to heart was found

to be the most significant univariate predictor of RP in one clinical study [42]. The
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heart irradiation effect was independently tested with a rat model by van Luijk et al

[43] where an increase in breathing rate was observed when a field covered the heart.

They fit to this data the modified critical volume model where a functional reserve

is modified as a function of heart dose. Another animal study by Ghobadi et al.

[44] suggested a synergistic effect of lung and heart irradiation on cardiopulmonary

functions; In their experiment, diastolic dysfunction in the left ventricle of a heart

was enhanced when both lung and heart were irradiated, contributing to dyspnea

and RILD.

2.4.3 Smoking status

Interestingly, in contrast to its harmful carcinogenic role, smoking was found to

decrease RILD risk by several clinical studies [45] [46] as well as a pooled analysis

[47]. Tucker et al. [45] found in their cohort that a rate of RP (≥ 3) was lower

among the patients that smoked during radiotherapy. A meta-analysis by Vogelius

and Bentzen [47] obtained an odds ratio (OR) of 0.6 (p=0.008) for ongoing smoking

during radiotherapy and OR of 0.7 for history of smoking (p=0.06). Mechanisms of

the protective property of smoking are not clearly known. One possible cause would

be smoking-induced suppression of immune response, which was shown by reduced

fibrogenic markers in bronchoalveolar lavage fluid from smokers [48]. Nevertheless,

relevance of smoking on RILD is still being debated. Jin et al. [46] suggested

ambiguity in outcome scoring as a potential reason that the correlation is sporadically

reported; Smokers are more likely to have baseline respiratory symptoms such as

cough or COPD and their post-RT syndromes may not be as noticeable as for the

patients with healthy baseline lung functions.
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2.4.4 Chemotherapy

Use of chemotherapy is another disputable risk factor for RILD. Schedules and

agents used for chemotherapy vary across institutions, which convolutes a large-scale

risk analysis. There are two types of chemotherapy scheduling:

• Induction chemotherapy: For bulky tumours, chemotherapy can be given be-

fore radiotherapy to help shrink the tumour to a manageable size.

• Concurrent chemotherapy: Chemotherapy is given at the same time as radio-

therapy, which was shown to improve overall survival for stage III NSCLC

patients [49].

Study results on the effect of induction chemotherapy on RILD are inconclusive

[50]. However, concurrent chemotherapy is considered to be add extra toxicity to

patients. According to a meta-analysis by Palma et al. [51], concurrent chemotherapy

with carboplatin-paclitaxel was shown to increase RP risk by more than threefold

(OR = 3.33, p< .001). The chemotherapy agent paclitaxel has a radio-sensitizing

effect, which might be beneficial for tumour control but not normal tissue toxicity

[52].

2.4.5 Other factors

Older patients were thought to be more susceptible to RILD [53], especially

when paclitaxel was used for chemotherapy [52] [51]. Baseline pulmonary comorbidi-

ties such as interstitial pneumonitis [54] or chronic obstructive pulmonary disease

(COPD) [55] were shown to increase RP risk for SBRT regimen. However, impor-

tance of baseline lung disease is debated in CFRT cases [56].
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Figure 2.5: Illustration of the ”no-fly zone”: the anatomical region that is defined by
Radiation Therapy Oncology Group protocols as a central tumour region
(within the dashed area). With permission from Timmerman et al. [57]

For SBRT treatments, the patients with a tumour near central structures (e.g.

hilum, central airways, primary bronchus, pericardium: see figure 2.5 for definition)

are treated with special caution due to increased severe toxicity risk [57]. These

tumours are treated with more fractions than peripheral tumours to reduce the BED

to organs at risk. Due to this risk-adaptive dose prescription, it would be difficult

to isolate from current clinical data the extra RILD risk due to a central tumour

location.

46



There are numerous biological factors, proteins and genes, that have been pro-

posed as a potential RILD risk modifier. Understanding the rationales behind these

markers requires some background knowledge on RILD pathogenesis; A special at-

tention will be given to the biomarkers in a chapter 3.

2.5 Lung NTCP models: sources of uncertainties

As the QUANTEC review revealed, results on dose-RILD correlation as well as

non-dosimetric factors don’t often agree between studies [7] [50]. There is also a large

spread in the values of best-fit NTCP parameters in the literatures [58]. Besides

the nature of heterogeneous response due to non-dosimetric factors, inconsistent

study design and data acquisition contribute to the large uncertainty and need to be

mentioned.

There is variation in the defined extent of lung, especially in which target volume

(PTV, GTV, CTV) should be subtracted. Since PTV contains a margin that receives

close to prescription dose, excluding PTV is expected to yield lower lung dose and

thus might impact the dosimetric correlation of RILD.

Uncertainty in scoring and defining toxicity outcomes is another important fac-

tor. Building NTCP models involves conversion of toxicity grades into a binary

toxicity event. However, using different toxicity grade cutoffs could lead to different

dose-volume relationships [59] and significant predictors [47]. Inconsistency could

also arise from choosing different toxicity grading schemes and the length of follow-

up [60] [59]. Differential diagnosis of RP is not trivial because similar respiratory

symptoms can be caused by other medical conditions such as viral infection, chronic

obstructive pulmonary disease (COPD) and cardiac disease [61].
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Dosimetric parameters are typically obtained from planning dose calculation

which is performed on a free-breathing planning CT image. However, an actual dose

distribution is subject to accuracy and reproducibility in patient positioning and plan

delivery. This deviance from the planning dose is not always taken into account. Dose

calculation algorithms could also affect the accuracy of RILD-dose relationship. The

calculation algorithms have evolved over the history of computerized treatment plan-

ning from crude approximation to accurate simulation of particle transport using the

Monte Carlo approach. Summary of modern dose calculation algorithms is provided

in the appendix. Nielsen et al. [62] found that Burman et al.’s NTCP values could

vary up to 0.23 when switching between 6 different dose algorithms from 4 commer-

cial TPSs. Stroian et al. [33] suggested that the Monte-Carlo calculation yielded

stronger correlation between local dose and probability of radiation fibrosis. Dose

correction for tissue heterogeneity is an important dose calculation parameter; Lung

is composed of and surround by various tissues with different density, and calculation

results can change significantly if the tissue heterogeneity is not taken into account

[63]. This might be a source of discrepancy between the studies before and after

heterogeneity correction became commonplace in treatment planning systems.

In case of RF modelling, a post-treatment CT image have to be compared to a

baseline image to assess density change. The matching between two images is made

possible by a technique called the image registration which determines spatial trans-

formation from one image to another. However, uncertainty in the image comparison

arises from spatial inaccuracy of a registration process, which is more severe in the
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presence of radiation-induced changes such as tumour regression or fibrotic changes

[64].

2.6 Summary

Dose-volumetric relationships for RILD, both radiation pneumonitis and fibrosis,

have been extensively studied by many researchers. The critical volume model, a

semi-mechanistic model with the assumption that lung is organized with parallel

architecture, is widely accepted in a clinical society; This model predicts that RILD

risk is sensitive to the change in mean lung dose and irradiated volume. However,

compilation of past published results shows a gradual increase in RILD risk as a

function of dose or volume, without a clear threshold value below which the risk is

kept minimal. There are however factors other than lung dose that were shown to

modify RILD risks. Upcoming challenges are in: 1) validating these non-dosimetric

factors in independent datasets, and 2) incorporating all the relevant factors into a

unified NTCP model that is expected to sharpen risk stratification by the dosimetric

risk models.

49



REFERENCES

[1] X. Allen Li, M. Alber, J. O. Deasy, et al., The use and QA of biologically re-

lated models for treatment planning: Short report of the TG-166 of the therapy

physics committee of the AAPM, Medical Physics 39 (3) (2012) 1386–1409.

[2] J. T. Lyman, Complication probability as assessed from dose-volume histograms,

Radiation Research Supplement 8 (1985) pp. S13–S19.

[3] G. J. Kutcher, C. Burman, Calculation of complication probability factors for

non-uniform normal tissue irradiation: the effective volume method, Interna-

tional Journal of Radiation Oncology*Biology*Physics 16 (6) (1989) 1623–1630.

[4] C. Burman, G. Kutcher, B. Emami, M. Goitein, Fitting of normal tissue tol-

erance data to an analytic function, International Journal of Radiation Oncol-

ogy*Biology*Physics 21 (1) (1991) 123 – 135, three-Dimensional Photon Treat-

ment Planning Report of the Collaborative Working Group on the Evaluation

of Treatment Planning for External Photon Beam Radiotherapy.

[5] B. Emami, J. Lyman, A. Brown, et al., Tolerance of normal tissue to therapeu-

tic irradiation, International Journal of Radiation Oncology*Biology*Physics

21 (1) (1991) 109 – 122, three-Dimensional Photon Treatment Planning Report

of the Collaborative Working Group on the Evaluation of Treatment Planning

for External Photon Beam Radiotherapy.

50



[6] A. Niemierko, A generalized concept of equivalent uniform dose (EUD), Medical

Physics 26 (1999) 1100.

[7] L. B. Marks, S. M. Bentzen, J. O. Deasy, et al., Radiation dose-volume effects in

the lung, International Journal of Radiation Oncology*Biology*Physics 76 (3,

Supplement 1) (2010) S70 – S76.

[8] V. Moiseenko, D. J., J. Van Dyk, Radiobiological modeling for treatment plan-

ning the modern technology of radiation oncology, in: J. Van Dyk (Ed.), A

Compendium for Medical Physicists and Radiation Oncologists, Medical Physics

Publishing, Madison, WI, 2005, pp. 185–220.

[9] Q. Wu, R. Mohan, A. Niemierko, R. Schmidt-Ullrich, Optimization of intensity-

modulated radiotherapy plans based on the equivalent uniform dose, Int J Ra-

diat Oncol Biol Phys 52 (1) (2002) 224–35.

[10] ICRU report 83, Special considerations regarding absorbed-dose and dose-

volume prescribing and reporting in IMRT, Journal of the ICRU 10 (1) (2010)

27–40.

[11] H. R. Withers, J. M. Taylor, B. Maciejewski, Treatment volume and tissue

tolerance, International Journal of Radiation Oncology*Biology*Physics 14 (4)

(1988) 751 – 759.

[12] A. Niemierko, M. Goitein, Modeling of normal tissue response to radia-

tion: The critical volume model, International Journal of Radiation Oncol-

ogy*Biology*Physics 25 (1) (1993) 135 – 145.

[13] A. Jackson, G. J. Kutcher, E. D. Yorke, Probability of radiation-induced com-

plications for normal tissues with parallel architecture subject to non-uniform

51



irradiation, Medical Physics 20 (3) (1993) 613–625.

[14] A. Jackson, R. Ten Haken, J. Robertson, M. Kessler, G. Kutcher, T. Lawrence,

Analysis of clinical complication data for radiation hepatitis using a parallel ar-

chitecture model, International Journal of Radiation Oncology*Biology*Physics

31 (4) (1995) 883 – 891.

[15] T. Bortfeld, R. Schmidt-Ullrichm, W. De Neve, D. Wazer, Image-guided IMRT,

Springer Verlag, Heidelberg, 2005.

[16] P. Kallman, A. Agren, A. Brahme, Tumour and normal tissue responses to frac-

tionated non-uniform dose delivery, International Journal of Radiation Biology

62 (2) (1992) 249–262.

[17] L. B. Marks, E. D. Yorke, A. Jackson, et al., Use of normal tissue complica-

tion probability models in the clinic, International Journal of Radiation Oncol-

ogy*Biology*Physics 76 (3, Supplement) (2010) S10 – S19.

[18] S. L. Kwa, J. V. Lebesque, J. C. Theuws, et al., Radiation pneumonitis as a

function of mean lung dose: an analysis of pooled data of 540 patients, In-

ternational Journal of Radiation Oncology*Biology*Physics 42 (1) (1998) 1 –

9.

[19] M. V. Graham, J. A. Purdy, B. Emami, et al., Clinical dose volume his-

togram analysis for pneumonitis after 3d treatment for non-small cell lung cancer

(NSCLC), International Journal of Radiation Oncology*Biology*Physics 45 (2)

(1999) 323 – 329.

[20] Y. Seppenwoolde, J. V. Lebesque, K. de Jaeger, et al., Comparing different

NTCP models that predict the incidence of radiation pneumonitis, International

52



Journal of Radiation Oncology*Biology*Physics 55 (3) (2003) 724 – 735.

[21] S. H. Benedict, K. M. Yenice, D. Followill, et al., Stereotactic body radiation

therapy: the report of aapm task group 101, Med Phys 37 (8) (2010) 4078–101.

[22] R. Timmerman, J. Galvin, J. Michalski, et al., Accreditation and quality as-

surance for radiation therapy oncology group: Multicenter clinical trials us-

ing stereotactic body radiation therapy in lung cancer, Acta Oncologica 45 (7)

(2006) 779–786.

[23] H. Yamashita, W. Takahashi, A. Haga, K. Nakagawa, Radiation pneumonitis

after stereotactic radiation therapy for lung cancer, World J Radiol 6 (9) (2014)

708–15.

[24] V. Moiseenko, T. Craig, A. Bezjak, J. V. Dyk, Dose-volume analysis of lung

complications in the radiation treatment of malignant thymoma: a retrospective

review, Radiotherapy and Oncology 67 (3) (2003) 265 – 274.

[25] R. V̊agane, Ø. S. Bruland, S. D. Foss̊a, D. R. Olsen, Radiological and functional

assessment of radiation-induced pulmonary damage following breast irradiation,

Acta Oncologica 47 (2) (2008) 248–254.

[26] E. el Khatib, S. Lehnert, Lung density change observed in vivo in rat lungs

after irradiation: variations among and within individual lungs, International

Journal of Radiation Oncology*Biology*Physics 16 (1989) 745–754.

[27] S. Lehnert, E. El-Khatib, The use of ct densitometry in the assessment of

radiation-induced damage to the rat lung: A comparison with other endpoints,

International Journal of Radiation Oncology*Biology*Physics 16 (1) (1989) 117

– 124.

53



[28] M. I. Koukourakis, P. G. Tsoutsou, I. Abatzoglou, Computed tomography as-

sessment of lung density in patients with lung cancer treated with accelerated hy-

pofractionated radio-chemotherapy supported with amifostine, Americal Jour-

nal of Clinical Oncology 32 (2009) 258–261.

[29] J. Ma, J. Zhang, S. Zhou, et al., Regional lung density changes after radiation

therapy for tumors in and around thorax, International Journal of Radiation

Oncology*Biology*Physics 76 (1) (2010) 116 – 122.

[30] I. I. Rosen, T. A. Fischer, J. A. Antolak, et al., Correlation between Lung

Fibrosis and Radiation Therapy Dose after Concurrent Radiation Therapy and

Chemotherapy for Limited Small Cell Lung Cancer, Radiology 221 (3) (2001)

614–622.

[31] D. A. Palma, J. van Srnsen de Koste, W. F. Verbakel, A. Vincent, S. Senan,

Lung density changes after stereotactic radiotherapy: A quantitative analysis

in 50 patients, International Journal of Radiation Oncology*Biology*Physics

81 (4) (2011) 974 – 978.

[32] Q. Diot, B. Kavanagh, T. Schefter, L. Gaspar, K. Stuhr, M. Miften, Regional

normal lung tissue density changes in patients treated with stereotactic body

radiation therapy for lung tumors, International Journal of Radiation Oncol-

ogy*Biology*Physics 84 (4) (2012) 1024 – 1030.

[33] G. Stroian, C. Martens, L. Souhami, D. L. Collins, J. Seuntjens, Local corre-

lation between monte-carlo dose and radiation-induced fibrosis in lung cancer

patients, International Journal of Radiation Oncology*Biology*Physics 70 (3)

(2008) 921 – 930.

54



[34] G. Ghobadi, L. E. Hogeweg, H. Faber, et al., Quantifying local radiation-induced

lung damage from computed tomography, International Journal of Radiation

Oncology*Biology*Physics 76 (2) (2010) 548 – 556.

[35] Z.-X. Liao, E. L. Travis, S. L. Tucker, Damage and morbidity from pneumoni-

tis after irradiation of partial volumes of mouse lung, International Journal of

Radiation Oncology*Biology*Physics 32 (5) (1995) 1359 – 1370.

[36] E. L. Travis, Z.-X. Liao, S. L. Tucker, Spatial heterogeneity of the volume effect

for radiation pneumonitis in mouse lung, International Journal of Radiation

Oncology*Biology*Physics 38 (5) (1997) 1045 – 1054.

[37] Y. Seppenwoolde, K. D. Jaeger, L. J. Boersma, J. S. Belderbos, J. V. Lebesque,

Regional differences in lung radiosensitivity after radiotherapy for non small-

cell lung cancer, International Journal of Radiation Oncology*Biology*Physics

60 (3) (2004) 748 – 758.

[38] E. D. Yorke, A. Jackson, K. E. Rosenzweig, L. Braban, S. A. Leibel, C. C. Ling,

Correlation of dosimetric factors and radiation pneumonitis for non-small-cell

lung cancer patients in a recently completed dose escalation study, International

journal of radiation oncology, biology, physics 63 (3) (2005) 672682.

[39] A. J. Hope, P. E. Lindsay, I. E. Naqa, et al., Modeling radiation pneumonitis

risk with clinical, dosimetric, and spatial parameters, International Journal of

Radiation Oncology*Biology*Physics 65 (1) (2006) 112 – 124.

[40] J. D. Bradley, A. Hope, I. E. Naqa, et al., A nomogram to predict radiation pneu-

monitis, derived from a combined analysis of RTOG 9311 and institutional data,

International Journal of Radiation Oncology*Biology*Physics 69 (4) (2007) 985

55



– 992.

[41] J. Bradley, M. V. Graham, K. Winter, et al., Toxicity and outcome results of

RTOG 9311: A phase I-II dose-escalation study using three-dimensional con-

formal radiotherapy in patients with inoperable non-small-cell lung carcinoma,

International Journal of Radiation Oncology*Biology*Physics 61 (2) (2005) 318

– 328.

[42] E. X. Huang, A. J. Hope, P. E. Lindsay, et al., Heart irradiation as a risk factor

for radiation pneumonitis, Acta Oncologica 50 (1) (2011) 51–60.

[43] P. van Luijk, H. Faber, H. Meertens, et al., The impact of heart irradiation on

dose-volume effects in the rat lung, International Journal of Radiation Oncol-

ogy*Biology*Physics 69 (2) (2007) 552 – 559.

[44] G. Ghobadi, S. van der Veen, B. Bartelds, et al., Physiological interaction of

heart and lung in thoracic irradiation, International Journal of Radiation On-

cology*Biology*Physics 84 (5) (2012) e639 – e646.

[45] S. L. Tucker, H. H. Liu, Z. Liao, et al., Analysis of radiation pneumonitis risk

using a generalized lyman model, International Journal of Radiation Oncol-

ogy*Biology*Physics 72 (2) (2008) 568 – 574.

[46] H. Jin, S. L. Tucker, H. H. Liu, et al., Dose-volume thresholds and smoking

status for the risk of treatment-related pneumonitis in inoperable non-small cell

lung cancer treated with definitive radiotherapy, Radiotherapy and Oncology

91 (3) (2009) 427 – 432.

[47] I. R. Vogelius, S. M. Bentzen, A literature-based meta-analysis of clinical risk

factors for development of radiation induced pneumonitis, Acta Oncologica

56



51 (8) (2012) 975–983.

[48] L. Bjermer, R. Hallgren, K. Nilsson, et al., Radiation-induced increase in

hyaluronan and fibronectin in bronchoalveolar lavage fluid from breast cancer

patients is suppressed by smoking, European Respiratory Journal 5 (7) (1992)

785–790.

[49] W. J. Curran, R. Paulus, C. J. Langer, et al., Sequential vs concurrent chemora-

diation for stage III non-small cell lung cancer: Randomized phase iii trial rtog

9410, Journal of the National Cancer Institute 103 (19) (2011) 1452–1460.

[50] F.-M. Kong, S. Wang, Nondosimetric risk factors for radiation-induced lung

toxicity, Seminars in Radiation Oncology 25 (2) (2015) 100 – 109.

[51] D. A. Palma, S. Senan, K. Tsujino, et al., Predicting radiation pneumoni-

tis after chemoradiation therapy for lung cancer: An international individ-

ual patient data meta-analysis, International Journal of Radiation Oncol-

ogy*Biology*Physics 85 (2) (2013) 444 – 450.

[52] B. Parashar, A. Edwards, R. Mehta, et al., Chemotherapy significantly increases

the risk of radiation pneumonitis in radiation therapy of advanced lung cancer,

Am J Clin Oncol 34 (2) (2011) 160–4.

[53] J. Dang, G. Li, S. Zang, S. Zhang, L. Yao, Risk and predictors for early radiation

pneumonitis in patients with stage iii non-small cell lung cancer treated with

concurrent or sequential chemoradiotherapy, Radiation Oncology 9 (1).

[54] A. Takeda, E. Kunieda, T. Ohashi, et al., Severe copd is correlated with mild

radiation pneumonitis following stereotactic body radiotherapy, Chest 141 (4)

(2012) 858–66.

57



[55] H. Yamashita, S. Kobayashi-Shibata, A. Terahara, et al., Prescreening based

on the presence of CT-scan abnormalities and biomarkers (KL-6 and SP-D)

may reduce severe radiation pneumonitis after stereotactic radiotherapy, Radiat

Oncol 5 (2010) 32.

[56] J. Wang, J. Cao, S. Yuan, et al., Poor baseline pulmonary function may not

increase the risk of radiation-induced lung toxicity, International Journal of

Radiation Oncology*Biology*Physics 85 (3) (2013) 798 – 804.

[57] R. Timmerman, R. McGarry, C. Yiannoutsos, et al., Excessive toxicity when

treating central tumors in a phase ii study of stereotactic body radiation therapy

for medically inoperable early-stage lung cancer, J Clin Oncol 24 (30) (2006)

4833–9.

[58] J. B. S. M. Bentzen, J. Z. Skoczylas, Quantitative clinical radiobiology of early

and late lung reactions, International Journal of Radiation Biology 76 (4) (2000)

453–462.

[59] S. L. Tucker, H. Jin, X. Wei, et al., Impact of toxicity grade and scoring system

on the relationship between mean lung dose and risk of radiation pneumonitis in

a large cohort of patients with non-small cell lung cancer, International Journal

of Radiation Oncology*Biology*Physics 77 (3) (2010) 691 – 698.

[60] S. Faria, M. Aslani, F. Tafazoli, L. Souhami, C. Freeman, The challenge of

scoring radiation-induced lung toxicity, Clinical Oncology 21 (5) (2009) 371 –

375.

[61] Z. Kocak, E. S. Evans, S.-M. Zhou, et al., Challenges in defining radiation

pneumonitis in patients with lung cancer, International Journal of Radiation

58



Oncology*Biology*Physics 62 (3) (2005) 635 – 638.

[62] T. B. Nielsen, E. Wieslander, A. Fogliata, M. Nielsen, O. Hansen, C. Brink,

Influence of dose calculation algorithms on the predicted dose distributions and

NTCP values for NSCLC patients, Medical Physics 38 (5) (2011) 2412–2418.

[63] N. Papanikolaou, J. Battista, A. Boyer, et al., Tissue inhomogeneity corrections

for megavoltage photon beams., in: AAPM Report No. 85., Medical Physics

Publishing, 2004.

[64] M. Guckenberger, K. Baier, A. Richter, J. Wilbert, M. Flentje, Evalution of

surface-based deformable image registration for adaptive radiotherapy of non-

small cell lung cancer (NSCLC), Radiation Oncology 4 (1) (2009) 1–3.

59



CHAPTER 3
Biomarkers for RILD
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3.1 Introduction

As seen in chapter 2, dosimetric NTCP models - especially for radiation pneu-

monitis - lack accuracy in an individual level due to heterogeneity in dose response.

Chapter 4 demonstrated the dynamic nature of dose response for fibrosis, which does

not fit the current NTCP framework with fixed parameter values for one endpoint.

The next step is to move beyond the static assumption of dose response and inves-

tigate the factors behind the dynamic response, which eventually allows for more

patient-specific modelling. Chapter 2 introduced some of the patient-specific RILD

factors that are unrelated to lung DVH. However, biological mechanisms that link

these factors to the disease are not always clear while some being debated. Mean-

while, as biological assays and functional imaging are becoming more accessible,

there is a growing interest in direct measurement of patients’ biological status for

predicting treatment response [1].

This chapter will move on to biological factors or biomarkers that might help

better identify the patient subgroup with higher RILD risk. Before all, it will intro-

duce theories about RILD pathology that provide a theoretical basis for the putative

biomarkers. Then, biomarkers that are responsible for different biological processes

after radiation will be reviewed for their potential role as a RILD biomarker.

3.2 Pathophysiology of RILD

Detailed cellular and molecular mechanisms of RILD are complex and have not

been fully established. Its complexity is beyond the target cell hypothesis which

relates the intensity of the complication directly to the proportion of cells damaged

by radiation. Several animal experiments have shown that injury is mediated by
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a network of communications between inflammatory, endothelial, and parenchymal

cells [2]. It is general consensus that there are two distinct phases in the progression

of the injury: an early inflammatory phase leading to RP and a late fibrotic phase

responsible for RF.

3.2.1 Early phase

Ionizing radiation interacts with water, creating reactive oxygen species (ROS)

which damages different constituents of lung parenchyma and stroma with different

consequences. One of the earliest changes is release of surfactant by type II pneumo-

cytes into alveolar lumen, which occurs from 1 hour to 7 days after irradiation [3]. On

the other hand, loss of type I pneumocytes induces proliferation and differentiation

of type II pneumocytes in order to repair structural damage to alveoli. Damage to

endothelium of alveolar capillaries increases the permeability of the vessels, causing

accumulation of body fluids (edema) in alveolar walls and subsequent decrease in

perfusion.

Release of cytokines by the irradiated cells, named as the “perpetual cytokine

cascade” [4], initiates inflammatory response and persists throughout the course of

RILD. Cytokines refer to small proteins that transmit signals to other cells through

membrane receptors. The cytokine release is a defence mechanism that allows the

affected cells to cooperatively resolve the injury as well as spreading “danger signals”

to neighbouring cells [5]. A type of the released cytokines depends on producing cells

and time after irradiation. Macrophages are known as a main production cite of the

cytokines [6].
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Also, reactive oxygen species (ROS), which is a direct product of interaction be-

tween ionizing radiation and water, takes part in radiation-induced signalling path-

ways. ROS inhibits protein tyrosine phosphatase (PTPase) activities, which acti-

vates many downstream signalling pathways through the actions of tyrosine kinases

[7]. ROS are also involved in regulating expression of several cytokines and growth

factors [4].

3.2.2 Late phase

The most prominent feature of late phase is fibrogenesis, proliferation of extracel-

lular matrix and collagen. Radiation-induced fibrogenesis is thought as deregulated

tissue remodelling that follows inflammation and new tissue formation as a normal

wound healing process [8]. A key molecule in this process is transforming growth

factor β1 (TGFβ). This molecule is activated from its latent form by direct action

of ionizing radiation or inflammatory cytokines that are released by damaged alve-

olar endothelial cells [2]. The active TGFβ turns on the TGFβ signalling pathway,

promoting proliferation of fibroblasts and transformation of fibroblasts to myofibrob-

lasts which is a main ingredient of fibrotic tissues. Fibrogenesis is further reinforced

by epithelial-mesenchymal transition (EMT) which converts alveolar epithelium to

myofibroblasts [9].

Prolonged hypoxia and oxidative stress in lung tissues are thought to be an im-

portant factor that perpetuates the fibrotic reaction [4]. A number of mechanisms

induce and sustain hypoxia after irradiation: Lack of perfusion due to damaged

vasculature and increased alveolar wall thickness, and increased oxygen consump-

tion by active inflammatory cells [4]. Hypoxia stimulates macrophages to increase
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the production of TGFβ [10] thereby reinforcing fibrogenic pathways. Hypoxia also

promotes development of new blood vessels (angiogenesis), which attempts to com-

pensate for reduced oxygen supply [11]. This is realized by increased production of

vascular endothelial growth factor (VEGF) [10] and angiotensin II [12].

Figure 3.1 summarizes the proposed theories of interactions between biological

processes and signalling molecules in the RILD pathogenesis.

3.3 What is a biomarker?

A biomarker is formally defined as “a characteristic that is objectively measured

and evaluated as an indicator on normal biological processes, pathologic processes,

or biological responses to a therapeutic intervention” [13]. In the context of radio-

therapy, Okunieff et al. made four categories of biomarkers depending on when the

signal is relevant to a phenomenon of interest [14]:

• Predictive biomarkers: They are measurable before irradiation and are asso-

ciated with an event after irradiation. Depending on test results on those

markers, patients could be started with different treatment arms or clinical

trials.

• Prognostic biomarkers: Likewise, these markers can predict a toxicity event be-

fore it occurs, but they are available at any time after the exposure. They may

not be observable at baseline and thus not useful at the treatment planning

stage. However, in case of prolonged treatments such as 30-fraction radiother-

apy, the markers could be measured at mid-treatment and can still open a

window for plan adaptation.
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Figure 3.1: A simplified model by Fleckenstein [4] summarizing interactions between bio-
logical processes and signalling molecules following irradiation to normal lung
tissues, beginning at an initial creation of reactive oxygen species (ROS)
and ending at late fibrosis development. PA: plasminogen activator; PG:
prostaglandin, Ang2: angiotensin II; CA IX: carboanhydrase IX.
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• Diagnostic biomarkers: They are measured at the time of diagnosis of the event

of interest and used to establish causality of the symptoms to irradiation.

• Dosimetric biomarkers: They are measured after irradiation and serve as a

biological surrogate endpoint for dose deposition.

Among those, only predictive and prognostic biomarkers will be discussed here

because they have a predictive value and thus are relevant to the context of this

thesis.

3.4 RILD biomarkers

The remainder of the section will overview currently known predictive and prog-

nostic RILD biomarkers. A list of biomarkers will consist of predominantly protein

biomarkers that can be measured from patient blood (plasma or serum), which is

the most relevant to this study.

3.4.1 Interleukins

Interleukin (IL) is a group of cytokines that are mainly produced by leukocytes.

It plays an important role in modulating immune reactions, including immune cell

migration, proliferation, and differentiation. There are several IL subtypes with dif-

ferent functions. IL-1α and IL-6 are known to promote inflammatory reactions, while

other types such as IL-10 and IL-13 are anti-inflammatory [15]. IL-8 functions as

a chemokine that attracts neutrophils to an inflammatory cite [16]. A mice study

by Rubin et al. [17] suggests that an early surge in IL-1α and IL-1β right after RT

might be responsible for initiation of an acute phase of RILD. In clinical investiga-

tions, IL-6 has appeared as a potential RP risk factor. Chen et al. [18] found that
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plasma IL-6 level was higher for RP patients at baseline and remained high through-

out the course of treatment. According to Arpin et al. [19], a decrease in serum

IL-10 level combined with increasing IL-6 was the best RP predictor. However, this

was not reproduced in a multi-cytokine study by Hart et al. [20], where IL-8 was

the only significant factor for RP. In this study, controversially, low pre-treatment

IL-8 increased RP risk, which was in contrary to the expectation that IL-8 would be

pro-inflammatory.

3.4.2 Transforming growth factor β1

Transforming growth factor β1, (denoted here as TGFβ), belongs to a family

of polypeptide growth factors that operates as a signalling molecule. The TGFβ

signalling pathway has many downstream effects on cell growth, apoptosis, and dif-

ferentiation [21]. In the context of RILD, TGFβ acts as a pro-inflammatory cytokine

that promotes growth of fibroblasts and extracellular matrix as well as modulating

immune reactions [4]. TGFβ is one of the most frequently studied RILD biomark-

ers; Its potential role as a RP risk factor was first discovered by Anscher et al.

[22] where patients with RP showed an increase in plasma TGFβ from baseline to

end-treatment. This result was repeatedly reproduced by the same group (Anscher

and colleagues), which are summarized in table 1 of Kong et al. [23]. However,

studies from other groups [24] [25] did not confirm the predictive significance of end-

treatment TGFβ. Factors that might be responsible for the conflicting results are

sample preparation methods [23], such as removal of platelets, and TGFβ production

by tumour [21].
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3.4.3 Angiotensin converting enzyme

Angiotensin converting enzyme (ACE) plays an important role in the renin-

angiotensin system, a hormonal blood-pressure regulating system. It catalyzes con-

version of angiotensin I to angiotensin II which acts as a vasoconstrictor, increasing

blood pressure in effect. Its main production sites are vascular endothelial cells in

lung and kidney epithelium. Thus, serum concentration of ACE could decrease when

lung epithelium is damaged by chemo- or radiotherapy [26]. ACE could indirectly

promote RILD by increasing the level of angiotensin II which enhances inflamma-

tory and fibrotic actions via the angiotensin type 1 (AT1) receptor. This theory is

supported by several studies reporting ACE-related biomarkers as a predictive factor

for RILD. Lower plasma ACE level, either pre- or post- radiotherapy, was reported

for patients with RP [27]. Also, the patients who were taking ACE inhibitors before

RT for treating heart diseases or hypertension reportedly suffer less from RILD [28]

[29]. This is consistent with findings from animal experiments [12] [30].

3.4.4 Alpha-2-macroglobulin

Alpha-2-macroglobulin (α2M) is a plasma protein that inhibits the action of

proteases (enzymes that catabolize proteins). It is hypothesized to be a regulator of

inflammatory activities due to its ability to bind non-specifically to many cytokines

such as TGFβ1 and interleukins 1, 4, and 6 and reduce their activities [31]. Its

potential as a radioprotector was shown in rats by Mihailovic et al. [32] where DNA

damage was reduced by administration of α2M before radiation. Later, α2M was

re-discovered as a potential biomarker for RP by a bioinformatics-based research by

Oh et al. [33]. Using the mass-spectroscopy technique to detect peptides in patient
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blood samples, they identified α2M as a protein that was most associated a-priori

with previously known RP biomarkers amongst the proteins that were consistently

up-regulated in RP patients. In the same study, mid- to pre-RT ratio of α2M was

validated as a RP predictor in an independent cohort.

3.4.5 Osteopontin

Osteopontin (OPN) is commonly known as a linkage glycoprotein that provides

mechanical support to extracellular matrix. As its prefix (osteo-) suggests, it is

mainly produced in bone. Outside fibroblasts, it acts as a cytokine that influences

tumour progression and immune reactions [34]. There are several evidences that

an elevated OPN level in plasma indicates negative prognosis for various types of

cancer albeit with a poorly understood mechanism [35]. In lung tissues, OPN is

produced in epithelium or macrophages in response to stress and plays a role as a

pro-inflammatory and pro-fibrotic cytokine [34]: its expression was shown to increase

during bleomycin-induced fibrosis in rats [36]. OPN is also a potential endogeneous

marker for hypoxia: hypoxic condition in head and neck cancer was shown in-vivo to

correlate with increase OPN expression in the tumour [37]. A link between ionizing

radiation and OPN has not been firmly established: a recent study by Wohlleben

did not find a notable radiation effect on OPN expression in glioblastoma cell lines

[38]. Unfortunately, no in-vivo study exists to date on correlating OPN plasma level

to radiotherapy outcomes.

3.4.6 Other protein biomarkers

Krebs von den Lungen-6 (KL-6) is a mucin-like protein that is mainly secreted

by type II pneumocytes and bronchiolar epithelium, and it has been suggested that
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its serum level after radiotherapy might indicate an inflammatory state [39]. Hara et

al. showed that increase in KL-6 at 2 months after single-fraction SBRT predicted

grade 3 or higher RP [40]. Surfactant proteins (SP) type A and D, are another

potential RILD biomarkers; These are two types of surfactant proteins that are both

involved in a immune reaction by binding to pathogens and mobilizing phagocyte

uptake [41]. Takahashi et al. reported high specificity of serum SP-A (83%) and SP-

D (85%) increase in early diagnosis of radiation-induced fibrosis [42]. These findings

inspired pre-screening of the patients with high serum level of SP-A and SP-D in the

university of Tokyo hospital, which managed to decrease incidence of severe RP [43].

3.4.7 Genetic markers

Some of the variations in genotypes, especially the genes that are responsible

for DNA repair, inflammation, and oxidative stress pathways, might indicate inher-

ent radiosensitivity [23]. Single-nucleotide polymorphism (SNP), alteration of one

nucleotide in a minor group of population, is a frequently studied genetic pattern.

For example, SNPs in 2 base excision repair genes XRCC1 and APEX1 [44] and a

TGFβ1 gene [45] were found to be associated with radiation pneumonitis. According

to a study by Pu et al. [46] which involved external validation, 45 SNPs on three

inflammation-related genes (PRKCE, DDX58, and TNFSF7) were predictive of RP.

Although there is a growing interest in using genetic profiles for personalizing

radiotherapy, the reported predictive values of SNPs have to be taken with caution.

A large scale (1613 patients) radiogenomic study called RAPPER (Radiogenomics:

Assessment of Polymorphisms for Predicting the Effects of Radiotherapy) failed to

validate any of the previously reported associations between SNPs and late breast
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toxicity [47]. This study attributed this negative result to a trade-off between allele

frequency and an effect size for SNPs: low frequency SNPs are more likely to be a

false positive in a small sample size, whereas high frequency SNPs tend to have low

odds ratio and thus hard to detect.

3.5 RILD biomarkers: possible pitfalls

Use of biological markers to identify the risky subgroup is potentially a powerful

way to improve the accuracy of population-based dose model. However, similarly

to dosimetric and clinical factors, reproducibility of the RILD biomarkers are often

under question. As mentioned in section 2.5, inconsistent outcome reporting could be

one potential cause of the discrepancies. Another obstacle in comparing biomarker

studies is difference in biological assay methodology. Communication between two

research groups over significance of TGFβ serves as a good example [48] [49]. The

dispute was on the difference in sample processing methods to minimize platelet

degranulation affecting the TGFβ plasma level [50]. The communication also touched

on the difficulty in setting a universal cutoff for a normal biomarker level; A range

of TGFβ concentration from healthy patients vary widely [51], and even that is not

necessarily applicable to patients with lung cancer which is known to produce TGFβ

[21]. Lastly, false discovery resulting from weak statistical power is a pervasive issue

in the biomarker studies with a small sample size.

A number of measures need to be taken before translating the biomarker dis-

coveries into the clinic. Outcomes need to be scored consistently across studies while

minimizing ambiguity in interpretation of symptoms. Protocols need to be estab-

lished and adhered with regards to biological sample handling and assay techniques.
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Finally, a novel discovery of biomarkers need to be followed by other independent

investigations to replicate the finding.

3.6 Systems radiobiology approach

In biology, there is a tradition of reductionism: reducing a system into its con-

stituents and studying the effect of individual parts on the system [52]. Under

reductionism, a single molecule, gene, or a pathway is tested for its association with

a phenomenon in isolation from other factors. However, this perspective is reaching

its limit in explaining complex phenomenon such as radiation biology [53]. Sys-

tems biology is a paradigm shift from studying one factor individually to multiple

components simultaneously and how these components interact [52]. There are two

essential components to study systems biology: 1) high dimensional biological data

obtained by high throughput assays, and 2) computational modelling that detects

reliable patterns from the biological data.

Complexity of RILD pathogenesis suggests that it is unlikely to find a single

biological factor that predicts all the disease cases, which also explains conflicting

reports for many biomarkers. What adds to this complexity is strong presence of a

external physical factor - radiation - which is given with varying strength and quality.

Thus, unlike the previous biomarker studies, this study will consider a system that

consists of physical, biological and clinical factors. Then, we model RILD as a

result of interactions between such factors. Chapter 6 will discuss the computational

methods that enables such modelling from high dimensional data.
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3.7 Summary

Pathogenesis of radiation-induced lung disease involves many interactions and

crosstalks between different signalling molecules and biological processes. In short,

irradiation first triggers inflammatory and immune reactions, which evolves into a

late fibrotic phase by the actions of TGFβ and prolonged hypoxia. Several proteins

were proposed as predictive and prognostic biomarkers for RILD. Most of them are

produced in lung tissues or macrophages and act as a cytokine during the inflamma-

tory phase. However, discrepancies between studies exist on the predictive power of

the biomarkers. The limitation of a single biomarker study leads to an alternative

using systems biology where the actions/ interactions of multiple components are

studied simultaneously. The presented study will investigate the possibilities that

the dose-volume RILD models can be improved by combining the previously found

markers.
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Analytical modelling of regional radiotherapy dose response of lung
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4.1 Introduction

The current NTCP models, such as the Lyman-Kutcher-Burman (LKB) model,

are static in design; Temporal change in dose-response relationship is neglected in

model design. As explained in the previous chapter, radiation fibrosis modelling with

a dose-response curve could be a useful method to gauge patient-specific dose sensi-

tivity while preserving spatial information. This study is aimed at investigating an

effect of the follow-up length on NTCP model parameters, enabling time-dependent

prediction of RILD. Impacts of regional sensitivity and a dose calculation algorithm

on the NTCP model were also investigated.

The study presented in this chapter was published as the following paper:

”Analytical modeling of regional radiotherapy dose response of lung” authored by:

Sangkyu Lee, Gabriela Stroian, Neil Kopek, Mahmood AlBahhar, Jan Seuntjens and

Issam El Naqa. Phys. Med. Biol. 57(11): 3309-21, 2012.

4.2 Background

Radiation-induced lung disease (RILD) is a major constraint to radiotherapy

(RT) dose escalation in the treatment of non-small cell lung cancer (NSCLC): a

benefit to tumour control by dose escalation is often offset by an increased risk for

RILD. In order to achieve an optimal treatment outcome, RT treatment plans have

to be evaluated in terms of the patient-specific risk-benefit relationship, which is

derived from accurate outcome prediction.

Three-dimensional (3D) planned dosimetric information is considered to be a

primary determinant for the prediction of the risk for RILD. The 3D dose distribution

is often reduced to a number of dose-volumetric parameters such as mean lung dose
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(MLD) or percent lung volume receiving more than a certain dose D (VD). Several

studies indicated the correlation between these dosimetric surrogates and the degree

of RILD which is often measured by the frequency of symptomatic or asymptomatic

radiation pneumonitis or fibrosis [1] [2] [3] [4] [5] [6].

Alternatively, radiographic endpoints such as local change in tissue density [7] [8]

[9] [10] [11] [12], perfusion and ventilation [13] [14] have been used to establish local

dose-response relationships. RILD results in the replacement of lung parenchyma

within radiation fields by relatively dense material (exudates or fibrotic tissues),

which is visible on radiographic imaging modalities such as chest X-rays or com-

puted tomography (CT) imaging. Radiation pneumonitis, an early phase of the

RILD, radiographically manifests itself by forming ground-glass opacity in an area

immediately around the tumour [15]. Six to nine months after completion of RT, this

pattern can evolve into radiation fibrosis which features the deposition of collagenous

scar tissue [15].

Radiography-derived RILD risk modelling has several advantages over symptom-

based risk modelling. First, radiographic change tends to occur more frequently than

symptomatic manifestation [16], which provides larger sample size. Secondly, the

benefit of investigating local dose-response by image analysis is illustrated by the

variation in results in the literature on the optimal dose-volumetric parameter that

predicts RP risk most accurately [5]. Although many cases of radiographic change

are subclinical [17], there are several studies reporting strong correlation between

increase in radiographic lung density and lung functions such as breathing rates
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[18], perfusion and ventilation [13]. The listed characteristics of radiographic RILD

encourage its use as a surrogate to the degree of radiation-induced lung toxicity.

A number of authors investigated local dose-response relationships from changes

in CT density [7] [8] [9] [10] [11] [12]. However, analytical generalization of the lo-

cal dose-response relationships based on proper radiobiological modelling has not

been attempted. Furthermore, despite the temporal dynamics of RILD shown both

radiographically and symptomatically, the time-dependency of RILD risk is often

overlooked. Considering that RILD-related symptoms are diagnosed within a year

post-treatment, we believe that long-term follow-up of the radiographic RILD over

its time course may pave the way to better quantitatively assess its complication

and monitor its progression allowing for better intervention instead of using arbi-

trarily selected time points. This work extends the methods developed by Stroian

et al. [8] to quantitatively analyze follow-up CT images and model dose- and time-

response of lung parenchyma using the Lyman-Kutcher-Burman (LKB) normal tis-

sue complication probabilities (NTCP) model [19] [20] [21]. The impact of dose

calculation algorithm on RILD risk models is investigated by comparing the derived

dose-response obtained from Monte-Carlo (MC) dose with convolution-superposition

based algorithms. In particular, we investigated the time dependency of the extracted

LKB parameters with the possibility to generalize the model to account for temporal

variations.

85



4.3 Materials and Methods

4.3.1 Patient characteristics

Twenty-one patients with stage III non-small-cell lung cancer (NSCLC) were

selected for the study. The patients were treated at the Montreal General Hospital

(MGH) between 2002 and 2007. The patient group consisted of 15 males and 6

females (median age: 68). 15 patients received conventionally fractionated (60 Gy

in 30 fractions) 3D-conformal RT (3D-CRT) combined with chemotherapy, while 6

patients were scheduled for hypofractionation (52.5 Gy in 15 fractions) and were

not eligible for chemotherapy. The RT was planned using Eclipse (Varian Medical

Systems, Palo Alto, CA) treatment planning system (pencil beam convolution, no

heterogeneity correction). The treatment plan consisted of coplanar 6 MV and 18

MV beams delivered by the Varian Clinac 21X linear accelerator.

The patients underwent a pre-treatment planning CT and multiple post-treatment

follow-up CT or PET/CT scans. The follow-up imaging was performed at 57 different

post-RT times ranging from 0 day to 626 days. The median length of the follow-up

was 352 days. A total of 58 follow-up CT images were acquired from all the patients.

The interval between the follow-up studies was not regular as long-term follow-up

was subject to patient health or death. Planning CT scan was performed (140 kVp,

mAs vary over scans) using Phillips AcQSim CT scanner. During the planning CT

scan, patients were lying on a flat table in a supine and overhead arm position and

allowed to breathe freely. Follow-up imaging included chest CT scans and whole-

body PET/CT scans. The chest CT scan was performed while patients on a curved

bed were holding their breath at maximum inhalation. Contrast agents were applied
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in some cases of the chest CT scans. The whole-body PET/CT scan was taken with-

out contrast agents under the free breathing condition. The CT component of the

PET/CT scan for attenuation correction was used for the image analysis.

4.3.2 RILD scoring

Follow-up CT images were registered to the corresponding planning CT image

using a 12-parameter affine (non-deformable) iterative optimization technique im-

plemented by the registration software ANIMAL [22]. Pixel values in the registered

follow-up and planning CT images were converted to physical density using a calibra-

tion curve specific to the used scanner model. The calibration curve for the particular

scanner model was created by matching the average CT density values of anatomi-

cal structures in the 20 images produced by the model to reference physical density

values for the corresponding sites [23]. The registered follow-up images were then

subtracted from the planning CT image to obtain the change in physical density at

each voxel of the planning CT image. The region of interest (ROI) for RILD scoring

was confined within the lung volume outlined by the contours which were previously

drawn on the planning CT to be used in treatment planning. The planning target

volume (PTV) was excluded from the ROI to prevent the segmentation of any pos-

sible tumour recurrence. The CT voxels that their changes in physical density fall

within a pathologically relevant range (0.123-0.799 g/cm3) [10] were segmented as

RILD distribution, which was later corrected manually by an experienced radiologist

(M.B.) for artefacts that could result from registration inaccuracy such as mismatch-

ing lung contours, for instance. Severity of RILD was measured by the integrated

volume of the corrected RILD distribution normalized to the lung volume. RILD
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was also scored by a radiation oncologist (N.K.) according to three radiation toxic-

ity criteria: 1) late effects in normal tissues subjective, objective, management and

analytic scales (LENT-SOMA), 2) Common Toxicity Criteria for Adverse Effect ver-

sion 4.0 (CTCv4), 3) toxicity criteria of the Radiation Therapy Oncology Group and

the European Organization for Research and Treatment of Cancer (RTOG/EORTC)

[24].

4.3.3 Dose calculation

Radiation dose distribution in the thoracic region was recalculated using the

two algorithms: the Analytical Anisotropic Algorithm (AAA) with heterogeneous

correction and an MC method. AAA dose calculations were performed using the

Eclipse Treatment Planning Software from VarianTM. MC dose calculation was per-

formed on the McGill Monte Carlo Treatment Planning (MMTCP) platform [25]

which was used to create input files for the EGSnrc-based simulation codes based

on the imported RT plans (BEAMnrc and DOSXYZnrc) and control the simula-

tion. BEAMnrc created a phase space file at 30 cm away from the isocenter using a

commissioned beam model and a given accelerator head configuration. DOSXYZnrc

code simulated the interaction of the particles from the phase-space file in the patient

body to calculate patient dose from the delivery of a given monitor unit (MU). The

dose was initially scored on a 0.5 X 0.5 X 0.5 cm2 grid for the both algorithms, which

was resampled to the same grid dimension as planning CT. In order to account for

the variability in dose fractionation, the resampled voxel dose was converted to the

normalized total dose (NTD) (equation 4.1):
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NTD =
ndf (α/β + df )

α/β + 2
(4.1)

where n: number of fractions, df : dose-per-fraction and α and β are radiobio-

logical sensitivity parameters according to the linear-quadratic (LQ) model [26]. The

value of α/β was chosen to be 3 Gy [27].

4.3.4 Dose-RILD correlation

The calculated dose distribution and RILD distribution were superimposed onto

the planning CT image. Differential dose-volume histograms were created for the

segmented RILD volume and the lung volume in which the RILD was scored. The

RILD segmentation and lung volume were divided into ipsilateral and contralateral

sides. A dose-response curve at the j-th follow-up study was represented by the

probability of RILD as a function of dose bin Di following the definition by Rosen

[10] (equation 4.2):

Pj(Di) = N(injrj, Di)/N(lungj, Di) (4.2)

where N(injrj, Di) and N(lungj, Di) are the number of voxels in the RILD and

lung segmentation, respectively, corresponding to the dose bin Di. Uncertainty on

the value of was estimated as independent combination of four sources of error that

impact the measurement of : 1) dose calculation uncertainty, 2) matching uncertainty

between planning and follow-up CT images, 3) CT number-to-density calibration.

4) Poissonian voxel counting errors [28].
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4.3.5 Analytical modeling of RILD risk

The collected dose-response curves from the 21 patients were grouped into 6

follow-up periods according to the time elapsed since the completion of the radio-

therapy. The time interval was 3 months except for the sixth period which included

all the follow-up studies after 15 months. The Probit-like function of the LKB [19]

was fit to the collection of measured complication probability data Pj(Di) given by

equation 4.2, as follows:

P̄ (D) =
1√
2π

∫ t(D)

−∞
exp(−x2

2
)dx (4.3)

where:

t(D) =
D − TD50

mTD50

(4.4)

The P (D) and P̄ (D) stand for the measured RILD probability data and the

fitted function, respectively. The two parameters characterizing the model, TD50

(tolerance dose at 50% probability of complication) and m (governs the slope of

the dose-response curve), were determined for each follow-up period based on maxi-

mum likelihood estimation [29]. The log-likelihood function associated with the LKB

model was created with each data point weighted by the inverse-square of the un-

certainty value associated with P (Di). In addition, the threshold dose for RILD was

determined from the shape of the best-fit function by finding the x-intercept of the

tangent line to the curve at D = TD50 as shown in figure 4.1.
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Figure 4.1: Illustration of deriving a threshold dose from the shape of the LKB function
drawn for two different slope parameter values (m). Tangent line (dotted
line) to the curve is drawn at dose = TD50.
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4.4 Results

4.4.1 RILD scoring

Radiographic changes were confirmed in 49 out of 58 follow-up images by the

radiologists who examined the images at the time of follow-up. 10 follow-up images

showed the RILD both on the ipsilateral and contralateral lung and 38 follow-ups on

the ipsilateral side only. Time dependency of the severity of RILD is illustrated in

figure 4.2, where a significant decrease after 3 months was followed a slowly decreasing

period after 12 month.

The follow-up studies were reviewed and graded for clinical toxicity by a ra-

diation oncologist (N.K). Correlations between the normalized RILD volume and

the toxicity levels graded by the 3 different scoring schemes were analyzed by Pear-

sons chi-square test. Due to the lack of symptomatic information at late follow-ups,

only the radiological criteria was considered. Pearsons correlation (r) coefficients for

the CTCv4, RTOG/EORTC, and SOMA/LENT scoring scheme were respectively

0.623, 0.406, and 0.426, which were all statistically significant (p<0.05), demonstrat-

ing that the quantitative CT analysis had good agreement with manual assessment

by a physician.

4.4.2 Dose-RILD correlation

96% (48/49) of the follow-up studies showed the p-values for Pearsons test less

than 0.05 between ipsilateral RILD probability and local dose calculated by MC. The

same ratio (96%) of studies with significant correlation was shown when the MC dose

was replaced by AAA dose. The dose correlation for contralateral RILD probability

was weaker: 70% (7/10) of the cases showed significant correlation with MC or AAA
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Figure 4.2: Histogram showing the population change in the scored RILD volume over
time binned into 3 months periods. Error bars represent 1 standard deviation.

dose. When the contralateral and ipsilateral lung volumes are combined, the strength

of correlation was slightly higher for MC (r=0.740) than AAA (r=0.735) although

the differences were not statistically significant as revealed by the Student t-test (p

= 0.656).

The maximum likelihood method determined optimal fit of the LKB model to

the measured RILD-dose relationship for each follow-up period. Figure 4.3 illustrates

the association of the fitted LKB model to the measured RILD probability data. The

two best-fit parameters (TD50 and m) and the derived threshold dose for the 6 follow-

up periods and the 2 dose calculation algorithms are illustrated in figure 4.4. TD50

reached its peak (AAA: 128 Gy/MC: 132 Gy), which occurred coincidently with the

decrease in the segmented RILD volume. After 15 months, TD50 fell closely to its
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initial level (AAA: 89 Gy/MC: 89 Gy). The value of m showed significant decrease

(0.041/0.041 for AAA/MC doses, respectively) from 0.47/0.50 for the first follow-

up period to 0.33/0.33 for the second follow-up period (3-6 months) after which no

significant change was found. Time-change in the derived threshold dose illustrated

again that 0-3 months follow-up period was statistically different from the other

periods: The threshold dose (AAA: 28 Gy/MC: 27 Gy) was significantly lower than

the other time periods regardless of dose calculation algorithm. The time variation

in the threshold dose was not significant after 3 month post-RT.

4.4.3 Dependency on tumour position

We also investigated the influence of geographical parameters, specifically, the

superior-inferior tumour position on RILD risk [30]. Tumour position was represented

by the coordinates of the center-of-mass (COM) of a PTV volume. The superior-

inferior position of the PTV COM (COMSI) was normalized to the extent of total

lung volume on the planning CT with 0 and 1 assigned for the superior and inferior

end respectively. Patient median for COMSI was 0.682. The patients with their

COMSI above this value were separated from the rest of the patients to form two

subgroups each of which represented superior and inferior tumour position. For each

subgroup, curve fitting was performed on the dose response curve averaged over all

follow-up periods. Figure 4.5 demonstrates that local RILD probability was generally

higher for the patients with inferior tumour position. This difference between the two

subgroups was also illustrated in best-fit parameters (table 4.1). The inferior tumour

position subgroup showed significantly higher value for m (p=0.004) and slightly

lower TD50 (p=0.191) and threshold dose (p=0.058) than the superior counterpart.
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Figure 4.3: Probability of RILD as a function of MC dose for 6 follow-up periods (a)-(f).
x symbols represent patient average of individual data points weighted by
uncertainty values from measurements. Overlaid curves are the fitted LKB
model. Error bars are showing 1 standard deviation.

Table 4.1: Best-fit parameters of the LKB models, averaged over all follow-up periods,
from two patient subgroups as shown in figure 4.5. Confidence intervals are
shown in parentheses.

Parameters
Patient subgroup

COMSI>median COMSI<median
m 0.43 (0.39,0.46) 0.33 (0.30,0.36)

TD50 (Gy) 99.3 (86,7,112.0) 89.3 (81.2,97.4)
Threshold dose (Gy) 47.8 (43.2,52,4) 54.1 (50.3,58.0)
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Figure 4.4: Time variation in the 3 best-fit parameters: (a) m, (b) TD50, and (c) thresh-
old dose resulting from AAA and MC dose calculation algorithms. Error bars
represent 95% confidence intervals.
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Figure 4.5: Two different dose responses for the patient subgroup with superior tu-
mour position (COMSI>median, open circles) and inferior tumour position
(COMSI<median, filled circles). Weighted average probability values for each
subgroup are shown as scattered symbols which are overlaid with best-fit LKB
model in each case. Error bars are symmetric (only one half is shown) with
the magnitude of 1 standard error. Dose was calculated with the Monte-Carlo
method.
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4.5 Discussion

Fitting of analytical function to dose response has been employed by many

studies which were initiated by Burman [21]. Sigmoid-type functions are widely

accepted as the empirical relationship between dose and dose-induced toxicity. It

is generally known that local dose positively correlates with change in lung density

measured by CT imaging. To the best of our knowledge, however, application of the

analytical NTCP models such as the LKB model to radiographic dose-response has

not been performed explicitly so far. The proposed analytical NTCP model can be

used for weighting 3D dose distribution to project the overall radiographic change

associated with a designed treatment plan. Also, the time-dependent characteristics

of the model can extend the model to monitor changes and better predict the long-

term effects of radiation therapy on lung tissues as well as acute toxicity. However,

patient-specific correlations between the degree of CT change and risk of whole-organ

complication should be provided to promote clinical use of the proposed model. If

future studies can reveal the clinical significance of RILD severity scored using our

methods, the proposed model might be used for treatment planning optimization as

a cost function for regulating lung dose.

We compared the time change in the severity of RILD with the results from other

studies [7] [8] [9] [10] [11] [12]. The overall damage was most severe at the first (0-3

months) follow-up period and its partial recovery towards the baseline apparently

begun at the second follow-up period (3-6 months) and continued till the last follow-

up period. This result is inline with the study by Theuws et al.[31] who reported that

local pulmonary injury assessed by both CT and SPECT imaging recovered between
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3 and 18 months followed by a stabilization period after 18 months. Similarly, Hof

et al. [12] reported that significant CT changes after stereotactic body radiotherapy

(SBRT) peaked at 4 months post-RT followed by its gradual decrease. Due to the

coarse binning scheme we used, we were unable to pinpoint the exact time for such

a peak.

Curve fitting of dose-response curves obtained at different time points revealed

that the first follow-up period (0-3 months) was significantly different from later

follow-up periods, which might reflect the distinct temporal dynamics of dose-RILD

correlation during the first three months. TD50 and m represent the horizontal

location and the steepness of the curve, respectively. It can be inferred from the time-

change of the best-fit parameters that there is an increase in TD50 and threshold

dose coinciding with decrease in m. This implies that the curve shifts to higher doses

while it becomes steeper. This might suggest the transition from acute damage for

which the radiographic change is linear with dose to late damage for which the change

is rather confined to high dose region.

It is of clinical interest to identify the minimal dose above which radiation in-

duces change in clinical lung function. This study systematically derived correspond-

ing threshold doses from dose-response functions at different post-RT time periods.

A threshold dose could be more pertinent to the decision making in treatment plan-

ning than TD50, which in many instances exceeded the investigated dose range.

The derived threshold value (PBC: 28 Gy/AAA: 28 Gy/MC: 27 Gy) at the earliest

time period (0-3 months) coincides with the results from other investigations [10] [8]
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where it varies around 30 Gy. The threshold was significantly elevated at later peri-

ods, again underlining possibly the distinction between early and late radiographic

changes.

Impact of the accuracy of dose calculation algorithm on dose-response mod-

eling has often been overlooked. Although the MC method is considered to be a

gold standard for tissue dose calculation [32], its use for normal tissue dose response

has been limited. Stroian et al [8] suggested better dose-RILD correlation with MC

method than pencil-beam calculation without heterogeneity correction. In recent

lung toxicity studies, however, pencil beam algorithm has broadly been replaced by

more advanced algorithms such as AAA which is shown to improve accuracy in het-

erogeneity [33]. Thus, we extended Stroian et al.s work to include AAA algorithm

in comparison with MC calculation. We found a few follow-up studies where usage

of MC yielded stronger dose-RILD probability correlation than AAA, which can be

seen by the higher average correlation coefficient by using MC. However, we found

only a slight increase in the coefficient for MC when it was averaged over the entire

population. Furthermore, replacing AAA by MC resulted in no significant differ-

ence in the shape of the best-fit dose-response functions. This is possibly because

of inherent patient heterogeneity in dose response that could have washed out the

difference in dose distributions. The patient-dependent discrepancy between these

algorithms and MC suggests that MC should still be considered as a primary choice

for dose calculation algorithms when patient-specific prediction is to be made. More-

over, steeper dose-response relationships of RILD for late follow-up periods stress the

importance of the accuracy of local dose calculation.
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Among the recognized factors that affect RILD risk are the superior-inferior

tumour volume location and chemotherapy agents. We investigated the impact of

chemotherapy on RILD risk by performing separate fitting for the subgroup which

received chemotherapy (n=15) and the subgroup which did not (n=6). Although

we found significantly higher TD50 and threshold dose from the chemotherapy-less

subgroup, the fitting error was too high for that subgroup due to its small sample size.

Moreover, it could not be ruled out that different fractionation schemes might have

contributed to the differences between the subgroups despite NTD normalization.

There are studies showing increased risk for radiation pneumonitis for patients who

have tumours located in the base of the lung [6] [3]. Our results indicate that

irradiation of lower lung is associated with increased incidence for radiographic RILD.

Difference between subgroup means was not significant at 95% confidence level due

to high patient heterogeneity. However, we found that dose response was more

linear when the tumour was inferiorly located, giving rise to increased risk in the

intermediate dose region (10-40 Gy). This might be another supporting result for

the argument that there exists regional variation in radiosensitivity in lung. We still

have to investigate the impact of respiratory motion on patient dose distribution and

the resulting RILD-dose correlation, which is expected to be more pronounced in the

inferior lung. Differences between the superior and inferior tumour position groups

in the intermediate dose region might be attributed to the fact that dose calculation

based on a static planning CT set underestimates the lung volume receiving a mid-

range dose compared to the dose accumulated through the entire breathing cycle

[34].
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Clinical importance of the presented RILD dose-response model is mainly lim-

ited by the relatively small size of patients group (n=21). Scarcity of late follow-up

imaging resulting from small sample size as well as limited survival of the NSCLC

patients was an obstacle to keep the 3-months time resolution after 15 months post-

RT. Limited availability of homogeneous patients accounts for high uncertainty on

likelihood fitting, which is specifically clear in the 12-15 months follow-up period.

The major factor contributing to the heterogeneous response might be inclusion of

the hypofractionated patient group. Although the LQ model was used to correct

for difference in fractionation, the alpha-beta ratio we used was not precisely deter-

mined. Apart from expanding the patient dataset, we are planning to apply this

method to other imaging modalities such as single-photon emission computed to-

mography (SPECT) or hyperpolarized magnetic resonance imagimg (MRI) [35] to

complement the limitation of CT to anatomical representation. We have not tested

the applicability of the model to SBRT-induced toxicity. Analysis of follow-up CT

images from SBRT-treated patients for the verification of the model is underway.

4.6 Conclusion

In summary, the presented work characterized local dose response of lung tis-

sue after radiotherapy by fitting the LKB model to complication probability data

derived from quantitative CT image analysis and Monte-Carlo dose calculation. De-

pendency of the extent of RILD on local dose, post-treatment time, and tumour SI

position was indicated. Time-variability in the best-fit parameters indicated a clear

distinction between early- (0-3 months) and late- (3 months-) responding behaviors
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of RILD. After validation on an expanded patient dataset, the proposed analyti-

cal dose-response can potentially be used as a dose-constraining function for inverse

treatment planning optimization schemes.
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CHAPTER 5
Texture analysis on intra-treatment CT images and and its implication

on RILD heterogeneity
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5.1 Background

Chapter 4 modelled patients’ radiation response from post-treatment CT density

changes. However, predictive potential of such model is limited because the images

were acquired after completion of RT delivery. Also, the DRCs from individual

patients showed a high degree of heterogeneity, which was partially explained by

tumour position. Research in this chapter is intended to address two questions:

• Can the radiologic response heterogeneity be further explained by biological

factors?

• Can the heterogeneity be captured early on, before completion of RT, to predict

treatment outcome?

In addition, this work explores an emerging area in radiotherapy outcome mod-

elling: Radiomics. Radiomics refers to extraction of a large number of medical imag-

ing features for quantifying and monitoring tumour characteristics [1]. It involves

not only intensity of each pixels in images, but also how these intensity values are

spatially distributed and correlated which is specifically named as textures. Refer to

the appendix of this text or a paper by Haralick et al. [2] for mathematical methods

of quantifying such patterns.

The presented work is considered preliminary. Preparation of a manuscript for

publication is underway while methodology is being refined and more patient data is

being added. The participating authors are: N. Ybarra, K. Jeyaseelan, M. AlBahaar,

S. Faria, N. Kopek, P. Brisebois, and I. El Naqa.
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5.2 Introduction

Radiation induced lung disease (RILD) is a dose-limiting side effect from ra-

diotherapy on thoracic sites. It accompanies clinical symptoms such as radiation

pneumonitis (RP) and subclinical radiographic changes. [3]: For years, prediction of

RP has been challenged by many researchers using lung dose volumetric histogram

(DVH) parameters such as mean lung dose (MLD) or Vx (percentage lung volume

receiving x Gy or higher). However, these dosimetric models show inconsistency with

regards to the best metric [4] and their prediction accuracy is limited [5].

In order to improve prediction accuracy of the conventional RILD models, vari-

ous clinical and biological factors have been suggested as a patient specific radiosen-

sitivity factor [6]. Among those, serum/plasma measurements of the proteins playing

a role in early inflammatory phase of RILD were suggested to have predictive val-

ues. Examples of such proteins include transforming growth factor(TGF)-β1 [7]

[8], Interleukin(IL)-6 [9], alpha-2-macroglobulin(α2M) [10], angiotensin converting

enzyme(ACE) [11] [12]).

High-throughput imaging modalities are another emerging biomarkers for pre-

dicting treatment outcomes. Among all, computed tomography (CT) imaging, the

most ubiquitous diagnostic tool in radiation oncology, can deliver a high amount of

quantitative data extracted from spatial arrangement of grey levels also known as

“textures” [2]. CT image features, including textures, can be used for outcome model-

ing in two ways: First, they can provide a quantitative and objective method of mea-

suring patient-specific toxicity response to compensate for ambiguity of symptom-

based scoring [13] [14]. Secondly, CT features acquired before RT completion could

111



have predictive potential, which is of a prime interest for prediction of lung cancer

prognosis [15] [16] [1].

In the context of RILD, a series of works by Cunliffe and colleagues intended

to establish a set of the CT features that can faithfully detect clinically significant

radiation induced changes in lung tissues [17] [18] and also possesses predictive value

for RP [19]. However, the imaging information was acquired after RT completion,

which limits its practical value as a predictive factor. Bertelsen et al. [20] investigated

intra-fraction CT density change from daily cone-beam CT images and detected a

high degree of patient specificity in the magnitude of the change. This result suggests

early CT change as an implication of radio-sensitivity which might be related to

treatment outcome. In order to establish CT features as a true “biomarker”, however,

a causal link between CT and biological changes needs to be investigated. Correlation

between CT features and direct measurement of biological states, in terms of protein

or gene expression, would be a useful exploratory study for this purpose.

This work was conducted to further characterize early CT changes before RT

completion using texture analysis. Patient specific patterns in the early texture

changes were studied for possible indication of subclinical biological changes and

clinical symptomatic outcomes.

5.3 Materials and Methods

5.3.1 Patient characteristics

22 stage III non-small cell lung cancer (NSCLC) patients were prospectively re-

cruited in the period of 2011-2014 according to a data collection protocol approved
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by institutional review boards. Patients were considered for this study under the con-

ditions of: 1) survival of at least 6 months, 2) no history of previous lung irradiation,

and 3) baseline Karnofsky performance status (KPS) of equal to or greater than 70.

All the patients were treated with 60 Gy/ 30 fractions radiotherapy with induction

and concomitant chemotherapy. A 3-dimensional (3D) conformal technique was used

for RT delivery except one patient treated with Tomotherapy. The data collection

protocol involved CT scanning and blood sample collection at 3 time points: day

of CT simulation, the 16th and the last fraction. The patients were scored for RP

using the Common Toxicity Criteria for adverse events (CTCAE) version 4. Detailed

cohort characteristics are shown in table 5.1.

5.3.2 Imaging and biomarker data acquisition

All the CT scans at the 3 time points were performed without contrast on a CT

simulator (Philips BrillianceTM, Amsterdam, The Netherlands). During the scan,

the patients were positioned on a flat bed without breathing control. The images

were acquired in a 4-dimensional mode, but an average image was used for further

analysis. Image acquisition protocol was fixed at a routine chest protocol for CT

simulation (120 kVp, 275 mA, 3 mm axial resolution). There was slight variation in

in-plane resolution between the images due to different field of view: median (range)

of a pixel size was 0.98 (0.82,1.17), 0.96 (0.79,1.17) and 0.98 (0.84,1.17) for baseline,

mid- and end-RT images.

The collected patient blood samples were analyzed for concentration of pro-

tein biomarkers using enzyme-linked immunosorbent assay (ELISA). The follow-

ing biomarkers were chosen due to their proposed roles in RILD progression [21]:
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interleukin(IL)-6, IL-8, angiotensin converting enzyme (ACE), alpha-2-macroglobulin

(α2M), and transforming growth factor (TGF)-β1 and plasma concentration of os-

teopontin (OPN). The former 5 biomarkers were measured from serum while plasma

was used for OPN.

5.3.3 Image pre-processing and texture analysis

The baseline, mid- and end-RT images were pre-processed to produce 2-dimensional

regions of interests (ROIs) in lung tissues at anatomically matching locations in each

image. The selected ROIs were analyzed for the changes in textures with reference to

the corresponding ROI in the baseline. The study closely followed the methodology

by Cunliffe et al. [19]. To summarize the described procedures:

1. Image registration and adaptive contouring of lung regions: Mid- and end-

RT images were registered to the planning CT using the Plastimatch software

with the deformable fast symmetric forces demons algorithm [22]. Using the

resulting registration, Contours for lung volumes minus planning target volume

(PTV), drawn in the baseline image for treatment planning, was deformed to

adaptively contour the lungs in the mid- and end-RT images.

2. Determination of ROI locations: Candidate locations for the ROIs in the base-

line image were set as a grid of points with a uniform grid spacing of 32x32

pixels. Forty 32x32 pixel ROIs in the baseline image were formed at the subset

of candidate points that satisfy the following conditions: i) at least 85% of the

ROI pixels are located within contoured lung for every time points, ii) Distri-

bution of the locations in the baseline CT are uniform in all 3 directions, and

iii) There is no overlap between the ROIs at the transformed locations in the
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Table 5.1: Patient cohort characteristics. *: heterogeneity-corrected, PTV excluded

Patient count (%)
Cohort size 22
RP grade
0 11 (50)
1 1 (5)
2 6 (27)
3 4 (18)
4 or 5 0 (0)
2 and above 10 (45)

Mean lung dose*
median 15.0
range 4.8-20.9

V20 (%)*
median 25.3
range 9.5-35

Smoking status
current 16 (73)
previous 6 (27)

mid- and end-RT images. The deformation vector field from step 1 was used

to determine the matching locations of the 40 ROIs in the mid- and end-RT

images.

3. Texture analysis: Twenty CT texture features with reported stability in the

absence of pathologic change [23], were calculated at the ROI regions. The

texture features consisted of 8 first order, 5 grey level co-ocurrence matrix, 4

Laws’ filter features, and 3 fractal features (table 5.2). Mathematical definitions

and details are shown in the appendix The pixels that fell outside the lung

contours were not included for calculation of the textures.
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Table 5.2: Twenty candidate RILD features introduced in [23]. See appendix for more
explanation.

Name Abbreviation Note
First order features

Statistics from the
histogram of
Hounsfield unit
distribution in the
ROIs.

Mean HU mean
Median HU median
70% quantile HU Q70
30% quantile HU Q30
5% quantile HU Q5
Minimum HU min
Binned entropy entropy binned
Unbinned entropy entropy unbinned

Fractal features
Self-similarity of
image patterns and
its scale dependence.

Brownian motion frac brownian
Box counting frac coarse
Fine box counting frac fine

GLCM features

Spatial dependence of
co-ocurrence of gray
levels [2]

Sum average GLCM SM
Sum of squares var. GLCM Var
Sum entropy GLCM SE
Difference entropy GLCM DE
Entropy GLCM E

Laws’ filter features Output of 4 filters
that detects 4 distinct
patterns: level (L),
edge (E), spot (S),
ripple (W) [24]

R5L5 entropy R5L5
S5L5 entropy S5L5
E5L5 entropy E5L5
W5L5 entropy W5L5
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Figure 5.1: Longitudinal radiographic changes in 3 regions of interests (rows) and cor-
responding radiologist’s grading at end-RT. Column 1: baseline, column 2:
mid-RT, column 3: end-RT.

5.3.4 Damage scoring and correction of locations for ROIs

The ROI sets were reviewed by an experienced radiologist who compared pairs

of ROIs between baseline and mid-/end-RT images and: i) corrected for any mis-

alignment of ROI locations in the mid-/end-RT images, and ii) graded the severity

of a radiographic change from baseline into 4 levels (0: no change, 1: mild change,

2: moderate change, 3: severe change) (figure 5.1).

5.3.5 Statistical analysis

Importance of the 20 CT features were measured in terms of the correlation of

the feature signals to the radiologist’s grading results. The feature signal was defined
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as difference from the baseline as a percentage of the baseline level. The area under

the receiver operating curve (AUC) was used for measuring how well the feature

scores can separate the ROIs that were graded as no change and those that received

a grade 1 or higher. The number of features were reduced to a smaller subset that

showed consistently high AUC with respect to the radiologist’s grades.

Each of the selected features was further modelled for their dose response using

linear mixed model. For an ROI from a patient i at location x and a given time point

t (mid- or end-RT), change in a feature T from baseline (ΔT (t,x)) was modelled as

a linear function of average dose with a slope αi,t and an intercept Ii,t:

ΔT (x, i, t) ∼ αi,tD(x) + Ii,t (5.1)

The mixed model uses a fixed component to describe patient average relation-

ship, and adds a random component to take into account patient-specific variabil-

ity in the relationship. In order to test patient heterogeneity in dose response, we

compared three following nested models (difference between the three approaches is

illustrated in figure 5.2):

• Random intercept, fixed dose effect: The intercept was allowed to vary between

patients, but the slope was assumed to the same for every patients. Thus, αi,t

in equation 5.1 was reduced to αt.

• Random intercept, random dose effect: Both the intercept and slope were

allowed to vary between patients.

• Random intercept, random dose effect with an interaction term between them.

A choice between the models were made using the likelihood ratio test [25].
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Figure 5.2: Illustration of varying relationships assumed by 3 types of nested mixed mod-
els. Patient average relationship is shown in bold and patient-specific rela-
tionships in three thinner lines. Left: Random intercept & fixed slope - every
patient is assumed to have a same slope with varying intercepts. Middle:
Random intercept & random slope - each patient is allowed to have an in-
dividual slope and an intercept. Right: Random intercept & random slope
with an interaction term - Distribution of patient-specific slopes is correlated
with intercepts (in this case, patients with a lower intercept has a lower slope
as well).

5.4 Results

5.4.1 Agreement of the CT features to visual grading

At mid-RT, 2% (18/879) of the ROIs were classified by the radiologist as grade

1 injury, while no ROI was graded beyond 1. At end-RT, 6% (53/879) of the ROIs

received a grade 1 or higher, while 0.8% (7/879) were grade 2. No grade 3 was

observed at both time points.

Signals from the 20 features were used for classifying the ROI with an injury

grade 1 or higher. AUC of the classification showed variability between features,

while it generally improved at end-RT. Figure 5.3 shows that the features can be

clustered for their patterns of AUC values at two time points: The first cluster

occupying the top half of the heatmap, consists mainly of first-order and GLCM

features. This group of features showed higher AUC at both time points than the
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cluster at the bottom which are mostly fractal and Laws’ filter features. Among

all, 30% quantile (HU Q30) and median (HU median) of the HU histogram recorded

the highest AUC at both time points. These two features were highly correlated

(r2 = 0.93); In order to reduce redundancy, HU median was dropped in favour of

HU Q30 on the ground of lower r2 value with the radiologist’s score (0.30 vs. 0.31

for HU Q30).

5.4.2 Dose response modelling of the features

Dose response of the feature HU Q30 at mid treatment was best described by

a fixed slope and random intercept. The identified fixed slope, 0.21 HU/Gy (95%

confidence interval: 0.07, 0.32) indicated a significant (p = 0.001) dose effect from

the population average response (table 5.3). The random intercepts varied from -

24 to 26 HU (figure 5.4). The patient-specific intercept did not correlate with RP

(Pearson’s test r = 0.15, p = 0.51).

At end-treatment, the best dose model for HU Q30 was a random intercept/

random slope model without interaction. The patient average (fixed) slope was 0.25

HU/ Gy (95% confidence interval: -0.05, 0.55) which was not significant (p=0.11)

(table 5.3). However, unlike mid-treatment, the patients showed significant (p <

0.001) heterogeneity in the slope of the response. The random slope showed negative

but non-significant (r= -0.42, p = 0.05) relationship with RP, while the intercept

was positively correlated with RP (r = 0.40, p=0.06).

The fitted dose response functions for both time points, along with raw data

points, can be shown in figure 5.6.
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Figure 5.3: Heatmap of AUC for the 20 CT features, shown in rows, for classifying ROIs
of injury grade 1 or higher assigned by the radiologist. Results of hierarchical
clustering of the 20 features are shown on the left and side as a dendogram.

Table 5.3: Patient average (fixed component) dose response for HU Q30 at mid- and
end-RT. Numbers in parentheses: 95% confidence invervals.

Time points
mid-RT end-RT

Slope (HU/ Gy) 0.21 (0.07,0.32) 0.25 (-0.05,0.55)
Intercept (HU) -0.33 (-7.25,6.59) 10.13 (-3.71,24.0)
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Figure 5.4: Random intercepts of dose response of the CT feature HU Q30 at mid-
treatment. Error bars: 95% confidence intervals.

Table 5.4: Pearson’s r between biomarkers and the patient-specific parameters of the
mixed models for HU Q30. P-values in parentheses.

Intercept (midRT) Intercept (endRT) Slope (endRT)
OPN -0.26 (0.25) 0.09 (0.68) 0.01 (0.95)
IL8 0.12 (0.60) 0.03 (0.89) 0.20 (0.38)
ACE -0.11 (0.64) 0.30 (0.18) 0.24 (0.28)
IL6 -0.36 (0.10) 0.52 (0.01) -0.09 (0.68)
a2M 0.06 (0.80) -0.09 (0.69) -0.03 (0.88)
TGFb 0.20 (0.38) -0.09 (0.69) 0.11 (0.64)

5.4.3 Correlation of dose response model parameters with biomarkers

The three parameters that characterize patient specific dose response - random

slope at mid-RT, random slope and intercept at end-RT - was further investigated fur-

ther for their biological relevance. No relationship stood significant after Bonferroni

correction on the significance level (α = 2.7∗10−3). However, table 5.4 demonstrated

notable correlation between IL6 and the random intercept at mid- and end-RT.
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Figure 5.5: Random intercepts and slopes of dose response of HU Q30 at end-treatment.
Error bars: 95% confidence intervals.
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Figure 5.6: Intra-treatment changes in HU Q30 from baseline for all ROIs as a function
of dose. The fitted mixed effect models (red and blue lines) are superposed.
Panels for each patients were divided into grade ≥ 2 symptomatic (top) and
asymptomatic (bottom) RP groups.

124



5.5 Discussion

We investigated textural changes in CT images before completion of radiother-

apy to search for their value as biological surrogates or predictors for clinical out-

comes. Using linear mixed models, we specifically studied dose or patient dependence

on such changes and their longitudinal patterns. Dose dependence on radiographic

changes after radiotherapy is strongly established by many studies [26] [27]. The re-

maining question is in explaining patient heterogeneity in such radiographic response

[28] [29]. If such heterogeneity can be captured before RT completion, it could open

an avenue towards biological adaptive RP using CT biomarkers.

Previously, Bertelsen et al. [20] detected CT density increase during the course

of radiotherapy from the analysis of daily CBCT images. They also reported devel-

opment of dose response towards the end of radiotherapy. Our study refines their

methods in many aspects: First, all the images were obtained helically and suffered

less image degradation due to scatter than cone beam acquisition. Secondly, raw

mid- and end-RT images were used for texture analysis without deformation which

might affect robustness of the textures [17]. Lastly, noise in textures due to registra-

tion error was reduced due to an extra correction of ROI location by an experienced

radiologist.

At mid-treatment, we observed significant dose dependency in the CT change

represented by 30% quantile of the Hounsfield unit histogram. However, the slopes

of the dose response did yet to vary significantly between patients. Patient hetero-

geneity was more observable at the end of radiotherapy where we found significant

random effects on both a slope and an intercept. This is thought to be a result of
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dose accumulation and resulting increase in CT signals as confirmed by increased

fraction of the ROIs classified as abnormal from 2% at mid-RT to 6% at end-RT.

However, we do not rule out other pathological changes that might influence the CT

analysis results. For example, 4 out of the 10 patients with RP (study ID 1, 6, 11,

and 19) were marked as a possible case of pneumonia by a referring physician. This

might be responsible for the observed increase in intercept for some of these patients

(figure 5.5), which indicates the CT change that is not caused by dose deposition.

However, differential diagnosis was not performed objectively for every patients, and

thus this hypothesis could not be tested in this study.

We performed rudimentary variable selection on the 20 candidate CT features

based on correlation with the radiologist’s assessment. This choice could be biased

by assessment of only one person. In the future, inter-observer variability in visually

grading ROIs needs to be taken into account. Nevertheless, the pattern we found in

the AUC across the 20 features (figure 5.3) agrees with the findings by Cunliffe et al

[18]. They also reported higher AUC from first order and GLCM features when the

lowest injury grade was used as a cutoff. Thus, it demonstrates that those two types

of textures could be used as a surrogate for the radiologists’ grading scheme.

We failed to identify predictive value or biologically relevance of the dose-

response model parameters. This study is in progress and awaits addition of more

patient data to confirm the discussed findings. The study methods, especially in the

selection of CT features, need to be further refined. The results are limited to one

of the first order features, HU Q30. Such histogram based features discard spatial
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distribution of grey levels and thus limits the quantitative potential of texture anal-

ysis. Nevertheless, the number of features in models have to be tightly regulated in

awareness of false positive probability due to multiple comparison. Future direction

lies in investigation of different feature selection techniques on this data, which was

previously explored by Parmar et al. for their lung cancer study [1]. Another chal-

lenge remains in including into this analysis framework post-treatment scans taken at

a different scanner and protocols some of which includes contrast agents. Sensitivity

of textures to such changes, as already addressed by [30] [31], needs to be address

before extending this modelling framework to the post-treatment scans.

5.6 Conclusion

We analyzed texture changes in CT images during RT delivery by comparing

the matching anatomical regions with a baseline image. In our cohort, we found that

30% quantile of Hounsfield unit histogram agreed most with visual assessment by a

radiologist. This feature showed significant dose dependency at mid-treatment. Pa-

tient heterogeneity on the dose response relationship, in terms of slope and intercept,

was stronger at end-treatment. The presented method for patient-specific modelling

of dose response of intra-treatment CT changes could identify potential biomarkers

for biological plan adaptation.
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Building the RILD model: computational methodology
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6.1 Introduction

Radiation oncologic data is highly complex and heterogeneous; Patients are

treated with different radiotherapy plans tailored to their anatomy. The complexity

inflates when patient-specific clinical and biological information are added. When

building a model to predict radiotherapy outcomes, we are often left without enough

prior knowledge that allows us to design the specifics of the model. For example,

we do not know how many variables to include in our model. Thus, a classical way

of fitting an analytical function with a pre-determined form is no longer relevant in

this modern era of “big data” [32]. We have already seen this from the application of

the LKB model in chapter 4 where the number of model parameters grew rapidly as

more factors (e.g. time progression, tumour position) are included. Machine learning

is an emerging discipline that focuses on finding useful patterns from complex data.

Instead of fitting a function with a pre-determined form to data, machine learning

techniques try to establish which form of function can describe the observed patterns

in data. Another important aspect of machine learning is to ensure that the learned

pattern is also applicable to the world outside the data upon which the pattern is

learned.

This chapter will provide brief introduction to machine learning and specific

techniques that will be used in the later chapters. Then, it will describe a computa-

tional pipeline that was devised for building and validating a RILD model from dosi-

metric, clinical and biological data. Some materials in this chapter were published

in: supplementary material for Lee et al., Bayesian network ensemble as a multivari-

ate strategy to predict radiation pneumonitis risk. Medical Physics, 42(5):2421-2430
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and: Lee, S. and El Naqa, I. (2015). Machine learning methodology. In El Naqa, I.,

Li, R., and Murphy, M. J., editors, Machine Learning in Radiation Oncology, pages

21-39. Springer International Publishing.

6.2 Brief introduction to machine learning

6.2.1 Basic terminology

Each example, or a patient in our case, can be characterized by a vector x that

consists of p variables (x1, x2, ..., xp). Each variable in the vector, xi, is called a

feature1 , and a vector x is called a feature vector. Data as a collection of n examples

can be written as a matrix X where examples are arranged in rows and features are

organized column-wise.

X = (x1,x2, ...,xn)
T (6.1)

Machine learning techniques can be broadly classified into the following two:

• Supervised learning: Data X is given with a target vector y where each element

yi is matched with a feature vector xi. A learning problem is to train a function

f that relates the features to the target y = f(X) using training data {Xt,yt}.
Once the training is done, the function f can be applied to a new set of data

called a test set. Intuitively, it can be seen as learning with a “teacher” that

provides the answers (target vectors) to a problem.

1 In this text, the terms ”feature” and ”variable” will be used interchangeably.
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• Unsupervised learning: Training data is given without a target y. Instead, the

function f unveils hidden structures in data. An example of this learning is

clustering or estimation of probability distribution.

Supervised learning is again classified into two types of learning:

• Classification: A target vector y takes discrete values or labels. Radiotherapy

outcome modelling with endpoints in a discrete (e.g. toxicity grade 1-5) or

binary format (e.g.toxicity grade 2 or higher) falls into this category.

• Regression: A target vector is in a continuous value. One example in radio-

therapy would be xerostomia (dry mouth due to damage to salivary gland from

radiotherapy) which can be measured by saliva flow.

6.2.2 Bias-variance tradeoff

Bias and variance are two important components of the performance of super-

vised machine learning models. Mathematical expressions for bias and variance are

derived by decomposing a generalization error which is defined as the deviation of

trained function h from a true target value y (equation 6.2). Note that the expec-

tation value is taken to average the error over the distribution of testing examples

{x∗, y∗}

e = E[(y∗ − h(x∗))2] (6.2)

Then, we assume that there is a true function f(x) that describes y∗ with a

noise σ such that y∗ = f(x∗) + ε. The error can be decomposed into the following

components (see [1] for derivation):
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E[(y∗ − h(x∗))2] = E[(h(x∗)− h(x∗))2]

+ (h(x∗)− f(x∗))2

+ E[(y∗ − f(x∗))2]

The first component, E[(h(x∗) − h(x∗))2], is called variance; It measures the

deviation of the trained functions around its mean h(x∗) resulting from different

training examples. In other words, it measures sensitivity of the learned function

to changes in the training data. The second term (h(x∗)
2 − f(x∗))2, bias, indicates

how well the trained function h(x) fits the true function f(x) on average. The last

component E[(y∗ − f(x∗))2] represents the deviation from the true function due to

noise inherent in observation of y.

The bias and variance are both closely related to model complexity. In general,

the bias can be reduced by increasing model complexity (e.g. adding more param-

eters). However, this typically leads to increasing variance or so called overfitting

where the model fits well in the training set but performs worse in unseen examples.

This relationship, called bias-variance tradeoff is very important consideration when

designing a model. Efforts should made during training to fit the data reasonably

well but at a right level of complexity where bias and variance are in a good balance

(figure 6.1). An approach called model selection advocates the choice of a single

model from candidate models that is expected to have the least generalization error.

This approach has an old historical root, dating from the 14th century principle
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Figure 6.1: Illustration of the bias-variance tradeoff in machine learning. As model com-
plexity increases, With permission from Deasy and El Naqa [2]

”Occam’s razor”: It states that amongst several hypotheses, the one that makes the

least assumptions is the most plausible.

There are two ways of finding the bias-variance balance. The first way is to

control model complexity in a form of a regularization parameter which imposes

a penalty for higher model complexity. Then, we repeat the model training with

different values of the regularization parameters, and evaluates the generalization

error of the resulting functions in the subset of the training set reserved for tuning

the parameter values i.e. not used during the training process (cross validation:

section 6.2.3). An alternative way, based on Bayesian statistics, controls the model

complexity in a more implicit way, which will be introduced in section 6.3
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6.2.3 Model validation

Validation of a classifier on the examples unseen during a training phase is

important for evaluating its generalizability. A testing set can be collected inde-

pendently from a training set and reserved solely for a validation purpose. In the

absence of such disjoint data, a single dataset needs to be used both for training and

testing a classifier. Various resampling techniques, such as K-fold cross-validation

and bootstrapping, are in practice to divide data into training and testing sets. In

a K-fold cross-validation setting, data is partitioned into K folds of equal size and a

classifier is trained using K-1 folds and validated on the 1 remaining fold. This step

is repeated K times so that every fold (and thus every example) is used only once

for validation (figure 6.2).

Bootstrapping, devised by Efron and Tibshirani [4], randomly samples from the

original dataset with replacement in order to generate a“new” dataset of the same

size. Allowing replacement results in the samples that are not chosen into the boot-

strap replicate (out-of-bag(OOB) samples). One way of evaluating a classifier using

bootstrapping is to train it on a bootstrap replicate and test it on the OOB samples.

However, this leads to overly pessimistic result due to the fact that OOB samples

does not fairly represent a random sample drawn from the true population [5]. The

0.632+ bootstrap [6], one of the variants of bootstrap methods, takes as a bootstrap

performance (f̂) a weighted average of the following two components: fitting perfor-

mance on the entire dataset f(x,x) and the performance of the model trained in a

bootstrap replicate (x∗b) and tested on the OOB samples (f(xb∗
,xb∗

(0))).
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Figure 6.2: Illustration of 5-fold cross validation. Data is divided into 5 disjoint sets, and
at each fold one of the sets is reserved for validation while the rest is used for
training.
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f̂ =
1

B

B∑
i=1

[α(b)f(xb∗
,xb∗

(0)) + (1− α(b))f(x,x)] (6.3)

Where α(b) is a weighting factor defined as a following:

α(b) =
0.632

1− 0.368 ·R(b)
(6.4)

R(b), a relative overfitting rate, is defined as the ratio of difference between

R(b) =
f(xb∗

,xb∗
(0))− f(x,x)

f(xb∗ ,xb∗(0))− γ
(6.5)

Where γ denotes a no-information error rate that applies when a true class label

is independent of predictions by a model. For example, when f = AUC, γ = 0.5.

Introducing R(b) effectively gives more weight to the OOB performance for the

bootstrap replicates that a model overfits.

At the expense of of heavier computation, Bootstrapping has several advantages

over cross validation as a classifier testing method. First, it can reduce variability

in prediction error estimates that is prominent in cross-validation based methods

[7]. This property, especially the one of 0.632+ bootstrap, was demonstrated in

small datasets [8]. Moreover, it allows us to assess variability not only in prediction

performances but also the parameters that constitute the model.

6.3 Bayesian approach to machine learning

Bayesian statistics emphasizes subjectivity in interpreting probability of an

event. According to Bayesian philosophy, our understanding on an event a lies in the

combination of two components: what we already understand about a, and gathered
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observation D on a. This principle is epitomized by the following equation known

as the Bayes’ law (equation 6.6):

p(a|D) =
p(D|a)p(a)

P (D)

∝ p(D|a)p(a)

The first component of the right hand side, p(D|a) is called likelihood. The

second component, p(a) is prior probability, or simply prior, and represents our belief

on the event a before we observe the data D. Product of the two is proportional to

p(a|D), called posterior probability, with a normalization factor P (D) that is constant

with respect to a.

When applied to machine learning, the Bayesian approach finds the model m∗

that maximizes the posterior p(m|D), called maximum a-posteriori(MAP), given

data D and a prior distribution on parameters p(m). Choice of the prior can be sub-

jective and beyond the scope of this text (see Kass and Wasserman [9] for more de-

tails). In the absence of strong prior beliefs, it is common to use the non-informative

prior which gives equal weights to every models (uniform p(θ)) [10]. In that case, the

model selection is about maximizing the likelihood obtained by marginalizing over

all the possible parameter values that specify the model:

p(m|D) ∝ p(D|m) =

∫
p(D|θ)p(θ|m)dθ (6.6)

This quantity, p(D|m), is called marginal likelihood or evidence, and serves as

an important criterion for Bayesian model selection. A choice between a model m1
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and m2 is made based on the Bayes factor (K) which is defined as a ratio of marginal

likelihood between the two models:

K =
P (D|m1)

P (D|m2)
=

p(D|m1, θ)p(θ|m1)dθ

p(D|m2, θ)p(θ|m2)dθ
(6.7)

Information criteria, another Bayesian metric for model selection, was suggested

as an alternative to maximum likelihood estimation (MLE) to handle its overfittng

tendency [1], Bayesian information criteria (BIC) [3] is one variant of this quantity,

defined as:

ln p(D) ∼ ln p(D|θ∗)− 1

2
M lnN (6.8)

where N is the number of examples in the training set, M is the number of

parameters in θ, and θ∗ is the optimal parameter set. As seen in the second term,

the log likelihood in BIC linearly decreases with the number of parameters, which

regularizes against larger model order.

The Bayesian model selection is different from the cross-validation based selec-

tion where parameter values are explicitly tuned in a reserved dataset to minimize

the cross validation error. Marginalizing over parameters does away with having to

set aside a part of data for the tuning. Complex models with more parameters in

the model generally have lower marginal likelihood for model, providing protection

against overfitting [11]. The rationale behind this is illustrated in the figure 6.3.

Complex models (H2) can explain a wide variety of data, compared to the simpler

one (H1) which is focused on the limited range of data (C1). However, marginal

likelihood needs to be normalized (e.g. the area under the curve for P (D|H) should
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Figure 6.3: Illustration of how Bayesian model selection prefers a simpler model.
Marginal likelihoods (evidences) of two models H1 and H2 are plotted in
a space of possible data sets D. In the observed region C1, a simpler model
H1 has a higher likelihood. With permission from [11]

be 1) and thus the curve for H2 is spread out, which makes it a less powerful model

than H1 in terms of predicting C1.

6.3.1 Bayesian model averaging

The Bayesian approach provides an alternative to model selection: Instead of

selecting one model, we consider a batch of models with different posterior proba-

bilities. Then, when it comes to making a decision, we obtain a composite result

by averaging out the results from all the models in the batch weight by respective

posterior. This inference method, referred to as Bayesian model averaging (BMA)

[12], can be formulated in terms of n models {m1,m2, ...,mK}, a quantity of interest

c, and data D as the following:

p(c|D) =
K∑
k

p(c|Mk, D)p(Mk|D) (6.9)
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BMA can overcome the uncertainty in model selection in case there are multiple

models that fit the data almost equally well. Madigan and Raftery [13] provided

empirical evidences that averaging over models can improve prediction accuracy.

They addressed the issue with exhaustive summation in equation 6.9 by considering

only the models with sufficient parsimony and prediction accuracy. Note that BMA

should be distinguished from bagging or boosting where an ensemble of models are

trained from different training sets, usually obtained by bootstrapping from the

original training data.

6.3.2 Monte-Carlo posterior sampling

Bayesian inference requires knowledge of a posterior p(D|m). One way is to

approximate the distribution as superposition of gaussians (Laplace approximation)

centred around the values determined from observations. Another popular method

of approximation is Markov Chain Monte Carlo (MCMC) sampling [14]. MCMC

is a class of stochastic algorithms that draw samples from a multivariate probabil-

ity distribution by generating a trajectory of random walks (chain) across different

states in a probability space. A random walk is carried out based on Markov chain

mechanism which can be stated as: probability of a current state depends only on

the previous state. Mathematically, a length-i chain of states {x(1), x(2), ..., x(i)} is

called a Markov chain when:

p(x(i)|x(i−1), ..., x2, x1) = p(x(i)|x(i−1)) = T (x(i); x(i−1)) (6.10)

The function T, called a transition matrix, governs the probabilities for different

possible transitions. The chain is said to be at a stationary state when a transition
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probability is independent of a chain length i. When the chain converges to a sta-

tionary state, the sample distribution in a chain loses its dependence on the initial

state and can be used as a fair approximation of the target probability distribution.

See the work by Cowles and Carlin [15] that reviewed different convergence tests.

MCMC can be well integrated into Bayesian statistics because a converged Markov

chain can be approximated as an actual joint posterior distribution [15].

There is a variety of sampling techniques for generating Markov chains. Among

those, the Metropolis-Hastings algorithm is one of the most elementary methods

that has created many derivatives. The algorithm introduces a proposal density to

draw a candidate sample, and accept or reject it as a Markov chain depending on

the magnitude of the proposal density and posterior probability relative to the last

sample in the chain. The algorithm can be summarized by the following steps:

1. Start at the last sample of the chain xold.

2. Draw a candidate sample xnew from the proposal density Q(xnew; xold)

3. Compute an acceptance ratio A which is a product of the ratio of the posterior

probability (A1) and proposal the density(A2):

A = A1A2, A1 =
P (xnew|D)

P (xold|D)
, A2 =

Q(xold; xnew)

Q(xnew; xold)
(6.11)

4. xnew is accepted as a valid sample with probability min(1, A)

The proposal density is customizable to a specific application, but its choice

might affect the speed of convergence. For detailed explanation on Metropolis-

Hastings as well as other sampling algorithms, consult the handbook by Brooks

et al.[16]
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6.4 Supervised machine learning techniques

6.4.1 Logistic regression

Multivariate logistic regression maps a real-valued input vector into a probability

value in [0, 1] via a logistic sigmoid function. Logistic regression belongs to a family

of generalized linear model which relates a target value with linear combination of

input variables via a link function σ(a) (equation 6.12)

p(y|x) = σ(wTx)) (6.12)

Where x = (1, x1, x2, ..., xn), a feature vector with a constant element for de-

termining the model offset, and a vector w = (w0, w1, w2, ..., wn) has regression

coefficients for input variables as well as an intercept (w0).

Logistic regression is characterized by an inverse logit (logistic) link function

(equation 6.13):

σ(a) =
1

1 + exp(−a) (6.13)

Dimensionality of the logistic model is equal to the number of variables in x

+ 1 (including the intercept), as each variable has one adjustable parameter in w.

The weights w can be determined by maximum likelihood fitting; Although there is

no closed solution, w can be computed by an iterative method called the Newton’s

method [17]. However, maximum likelihood method generally has low-bias and large

variance, which is more prone to overfitting [1]. In logistic regression fitting, the size

of the weight vector w, called a p-norm, is introduced as a regularization method.

The p-norm of w, ‖w‖p, is defined as the following:
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‖w‖p = (
N∑
i=1

‖wi‖p)1/p (6.14)

This form of regularization implies that the model with larger magnitudes of

coefficients is considered more complex and subject to higher penalty.

An objective function O(w|x, y) is now redefined as:

O(w|x, y) = LL(x, y,w) + λ‖w‖p

where a hyperparameter λ governs the strength of regularization. Regularization

effectively reduces the absolute values of the coefficients w. Preventing large values

in w can control over-fitting by making the best-fit function “smoother”, which

increases the bias in effect; Without regularization, the maximum likelihood method

tends to prefer a solution with large variations in an effort to fit every points in the

data. The hyperparameter λ is typically optimized in a cross-validation setting: The

best value λ is chosen so that the resulting model f(x|w, λ) gives the best average

performance in the validation sets.

Choice of the norm of regularization, p, also has a great impact on the fitted

function. For example, L2 regularization or ridge regression [18], prefers a solution

that minimizes the squared sum of the coefficients. On the other hand, L1 norm

imposes a penalty to the sum of the absolute values of the coefficients. Solutions

under L1 regularization tend to be sparse; many parameters in the optimized w are

set to zero. This property can be used as a variable selection strategy (see 6.5).
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Figure 6.4: Demonstration of how L1 and L2 regularization determines the optimal so-
lution in a two-dimensional parameter space (w1,w2). Blue and red contours
represent iso-likelihood and iso-regularization surfaces, respectively. The op-
timum parameters w∗ are given by the intersection between the two surfaces.
Due to its shape in the parameter space, L1 regularization is more like to
produce sparse solution where w1 = 0. With permission from Bishop et al.
[1]
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6.4.2 Bayesian Network

Bayesian Belief Network, or Bayesian Network, is designed to model proba-

bilistic relationships amongst a set of random variables. A key feature of Bayesian

Network is graphical representation of the relationships via a directed acyclic graph

(DAG) which encodes the presence and direction of influence between variables. In

a DAG, each variable is assigned to a node and connected to each other via an edge

(vertex) which originates from a variable (parent) that influences the probability of

the variable it’s connected to (child). Thus, probability of a random variable is set to

be conditional upon its parent variable(s). The connectivity information in a DAG

derives conditional independence relationships that can be stated as: random vari-

ables X and Y are conditionally independent given another variable set Z1, Z2, ..., Zn

if and only if:

P (X|Y, Z1, Z2, ..., Zn) = P (X|Z1, Z2, ..., Zn) (6.15)

A set of conditional independence relationships specified in a DAG greatly sim-

plifies computation of probability distributions by use of this convenient property:

joint probability distribution between the entire variable set, X = X1, X2, ..., Xn,

can be obtained by taking the product of all the conditional probabilities for each

parents-child set (the chain rule for Bayesian Networks [19]). Figure 6.5 demon-

strates a network of local control of non-small-cell lung cancer (LC) in relation to the

following clinical and dosimetric variables: age(A), GTV volume (G), PTV coverage

(V75, V60), pre-treatment chemo (P) [20]. Using the chain rule, a joint probability

can be factorized into:
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Figure 6.5: A Bayesian Network DAG for predicting local control of NSCLC using radio-
therapy and clinical variables. The DAG was trained from clinical data by
Oh et al. [20]. (With permission from Oh et al. [20])

P (LC,A,G, V 75, V 60, C)

= P (A)P (G)P (V 75)P (C|A,G)P (V 60|G)P (LC|A,G,C, V 75, V 60)

Conditional probability values are often referred to as the “parameters” of

Bayesian Network. The parameters can be trained from data as a maximum likeli-

hood estimate or maximum a posteriori (MAP) which incorporates a prior probability

with the likelihood obtained from observations.

A DAG can be constructed using prior knowledge on the study domain. When

the domain knowledge is not sufficient, observational data can be used to search
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for the DAG that can best describe the data. DAG searching can be solved as

an optimization problem where a predefined a scoring function is maximized over

a space of possible DAG configurations. Searching algorithms can vary according

to a choice of the scoring function and searching procedures. Widely used scoring

functions include a marginal likelihood (Bayesian) score and a Bayesian Information

Criteria (BIC) score. Both scores aim at achieving a balance between the fitness

to data (an edge is more likely to be formed between the variables with stronger

correlation in data) and complexity of a graph (quantified by the number of edges or

parameters), although difference exists in a degree to which complexity is penalized.

Mathematical details can be consulted in a primer by Koller and Friedman [19].

Since the number of possible DAGs grows super-exponentially with the number

of variables, it is impractical to search exhaustively over the entire graph space

for the highest-scoring DAG. Various heuristic approaches have been suggested to

reduce a computational cost. For example, a greedy search algorithm begins with the

empty graph and keeps adding on edges only when it leads to a higher graph score.

Also, constraints on graph topology can be imposed to the search algorithm in order

to confine a search domain. For example, the search can be restricted to tree-like

structures (Chow-Liu trees) [21] or a certain variable ordering that permits only the

edges between the variables in descending order (K2 algorithm) [22]. High-scoring

DAGs can be discovered by a sampling method such as Markov Chain Monte Carlo

(MCMC) [23]. The MCMC algorithm generates samples of DAGs encountered during

a random walk over the graph space (Markov chain), which can be approximated as

a posterior distribution of DAGs upon convergence of a chain.
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The Probabilistic approach of BN makes it suitable for handling uncertainties.

Especially in a medical domain, missing records or test results could have a nega-

tive impact on prediction performance. Bayesian Network does not require the full

observation on its features for prediction, as it is capable of building and marginal-

izing joint probability using the conditional dependence relationships between the

features. This advantage, in comparison to non-probabilistic classifiers such as the

support vector machine (SVM), was shown in survival prediction of lung cancer pa-

tients by Jayasurya et al. [24]. Other applications of the BN in radiation oncology

include a prognostic network for prostate cancer [25] and lung cancer [20].

6.5 Variable selection

It is often necessary to reduce data dimension in machine learning for three

purposes: First, it helps interpretability; It is easier to describe or visualize the data

with fewer variables. Second, it is more difficult to train optimal classifiers with

the number of variables far exceeding the number of examples due to overfitting.

Third, computation and data storing could be hampered by too many variables.

Dimensionality reduction can be performed in two ways:

• Feature transformation: A new set of features are created as a result of trans-

forming the data into lower dimensions. Principal component analysis (PCA),

projection of data into principal component vectors, is one example.

• Feature selection: A subset of variable is chosen for the purpose of building a

data model such as classifiers.

Feature selection methods can be roughly cast into the three categories (while

other variants are not mentioned here):

153



• Filter: Each variable is “scored” individually, independently of a method of

inference (e.g. linear regression, graphical models...) and variables above a

threshold score are chosen. One simple example would be to rank features

in terms of their correlation coefficients to a target variable and choose the

significant ones.

• Wrapper: Variables are “wrapped” in a target modelling method for which its

predictive performance (cross validation error or bayesian criteria) is obtained.

Different combinations of variables are explored until the performance of the

resulting model reaches its optimum. When data dimensionality is large, re-

peating model training with different variable subsets could be computationally

demanding; This issue can be solved by the greedy search algorithm which ar-

rives at the optimal subset over iterations by making an incremental change on

the subset from the previous iteration. Forward selection starts at an empty

set and progressively add variables, while backward elimination starts at a full

variable set and keeps removing variables that contribute less to the prediction.

• Direct objective optimization: The number of variables is included in an op-

timization function as a parameter. The optimizer then tries to improve the

goodness of fit while keeping the variable space the smallest.

This section will cover two methods of feature selection that will be used for

later chapters. Description of the other feature selection methods can be seen in a

review paper by Guyon and Elisseeff [26].

154



6.5.1 LASSO

Least absolute shrinkage and selection operator (LASSO) [27] is a type of direct

objective optimization method that uses regularized logistic regression as an objective

function (section 6.4.1). It capitalizes on the property of L1 regularization in inducing

sparsity (variables with zero coefficients). Compared to ridge regression, LASSO has

a parsimonious advantage, which can improve prediction accuracy in the presence

of irrelevant features [28]. Moreover, compared to stepwise (greedy search) or best

subset selection, LASSO provides a more smooth form of solution [29]. However,

LASSO requires tuning of a regularization parameter λ (equation) which is typically

optimized in a cross-validation setting.

6.5.2 Koller-Sahami filtering

The Koller-Sahami (KS) variable filter [30] is an archetype of the family of

Markov-blanket based variable filtering methods. A Markov blanket with respect to

a class variable (C) refers to a set of variables (M) that makes all the other variables

(B) independent of the class conditioned on the variables in the blanket:

P (C|M,B) = P (C|M) (6.16)

In other words, once the values of the blanket are all known, the variables outside

the blanket become superfluous when it comes to classifying a target variable. This

concept of the Markov blanket is applied to finding the smallest subset of the variables

that can reconstruct the probability distribution for a class variable. Information

theory based metrics such as entropy or mutual information are used as criteria

for determining which variables should be added to a blanket. Information theory,
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conceived by Claude Shannon in his seminal paper in 1948 [31], measures information

of a random variable as the minimum number of bits required to encode it. This

property is called entropy and mathematically defined with respect to a probability

distribution p(x) as:

H(x) = −
∑
x

p(x) log2 p(x) (6.17)

A goal of supervised learning is to approximate the probability distribution of

a class variable. Kullback-Leibler (KL) divergence, a measure of difference between

two distinct distributions, can be used to indicate the goodness of approximation.

Let us say that we use another distribution q(x) as an approximation for the class

p(x). KL divergence of q(x) to p(x), denoted as D(p||q), is defined as:

D(p||q) =
∑
x

p(x) log2(p(x)/q(x)) (6.18)

The value of the KL divergence is smaller when q(x) approximates p(x) better.

The quantity of interest for variable selection is difference between P (c|G) and

P (c|G∗) where G and G∗ are respectively an original and reduced feature set. The

difference between P (c|G) and P (c|G∗), measured in terms of the KL divergence

D(P (c|G)||P (c|G∗)), indicates how well the class can be approximated by reduced

features. The KS filter performs a greedy search for the best feature set G∗; It starts

at a full variable set and iteratively eliminates the least scoring variables until the

optimal model order is reached (backward elimination). At each round of elimination,

the following steps are taken:
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1. For each variable Fi, a Markov blanket Mi of size n is formed; It consists of n

variables {Fj} in the remaining variable list with the smallest KL divergence

D(P (c|Fi)||P (c|Fj))

2. Compute the information gain of Fi which is defined as: D(P (c|Mi∪Fi)||P (c|Mi)).

In other words, it measures how much information it contributes to the class

given a Markov blanket Mi.

3. Remove from the feature list the variable Fi with the least information gain.

The size of the blanket Mi can be tuned and smaller size is preferred for modest

size datasets in order to prevent inaccurate conditional probability values. Accord-

ing to the original paper, there is no firmly quantitative criteria for stopping the

elimination rounds although a sudden increase in information gain might be used as

an indication.

The advantage of Markov blanket based methods, including the KS filter, is that

selection of variables is not biased to a certain classification algorithm that ensues

due to its information theoretic approach [26].

6.6 Computational approach for RILD modelling

Ever since the LKB model, logistic regression has been a popular choice of a mul-

tivariate method for many radiotherapy outcome modelling problems; This choice

roots from the observation that dose response usually follows an S-shaped curve

[32]. Moreover, logistic regression is an intuitive way of investigating the effects of

multiple factors on an outcome; The fitted coefficients and p-values from the like-

lihood ratio test2 indicates the relative importance of each variable to prediction
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[33]. The logistic regression based computational framework for radiotherapy out-

come modelling was implemented by El Naqa and colleagues in a software package

Dose Response Explorer System (DREES) [34]. The software also has features for

model order determination and variable selection based on information criteria and

forward selection. The DREES was applied to prediction of pneumonitis by Bradley

et al. [35] and Hope et al. [36]. The former investigators created a two-parameter

RP model (P(RP)) which was selected from bootstrap retraining:

P (RP ) = σ(−1.5 + 0.11MLD− 2.8GTV SIposition) (6.19)

where σ is a logistic function.

However, logistic regression is limited by its simplistic assumption that every

predictor contributes to a dependent variable independently to each other. It is still

possible to assign interaction terms, but such modification needs to be determined

a-priori. Bayesian network is a desirable alternative to logistic regression, not only

for modelling of RILD but also other medical conditions, in a number of ways:

• Interpretability and hypotheses generation: Combining covariates in a graph-

ical way gains not only in prediction but also in subject-matter knowledge.

The trained graph might point to the relationships that were not previously

known but potentially important in understanding disease onset. This explicit

2 The likelihood ratio test derives a p-value from the ratio of the likelihood of the
model that contains the variable of interest to the model without it.

158



modelling of interaction blends well with the paradigm of systems radiobiology

(section 3.6).

• Probabilistic property: Practically, it is often difficult to collect all the infor-

mation on predictive features; Missing data is not uncommon in medical data

collection (e.g. patients missing a blood test). Probabilistic inference by BN

provides flexibility of the model to operate without complete information.

• Intrinsic variable selection: Unlike logistic regression, not all the variables are

used for classification. Topology of a DAG determines the most important

variables for prediction (Markov blanket). This property reduces effective di-

mensionality of the model with regards to a class variable.

The remainder of the study will use this concept of Bayesian network to create a

data model that explains RP onset using biological, clinical and dosimetric variables.

Predictive potential of the BN approach will be tested in reference to the logistic

regression model. However, choice of variables might favour one method over another.

For example, the variables selected by the LASSO filter are already optimized for

the best predictive performance with a logistic function. We hypothesize that the

Koller-Sahami method provides a selection of features independent of a particular

machine learning method due to its information theoretic approach.

The Bayesian ensemble approach will attempt to overcome the difficulty in find-

ing the optimal Bayesian network structure; Posterior distribution of BN models

will be approximated form graph samples obtained by the Markov-Chain Monte

Carlo method. Prediction of RP will be made by averaging the prediction results

from individual models weighted by posterior. I implemented this computational
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Figure 6.6: Schematic diagram of the modules constituting the MCMCBNE package. M:
number of graphs in one ensemble, N: number of bootstrap/CV datasets

strategy into a MATLAB-based code package Markov Chain Monte Carlo sam-

pling for Bayesian Network Ensemble (MCMCBNE) which is released in: https:

//github.com/meson200/MCMCBNE. Figure 6.6 summarizes the modules consisting

the code system and data flow.
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CHAPTER 7
Bayesian Network ensemble as a multivariate strategy to predict

radiation pneumonitis risk
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7.1 Introduction

Chapter 2 and 3 introduced different RILD factors from dosimetric, clinical and

biological domains. These factors are often studied in isolation from other factors

i.e. their individual odds ratio on RILD risk. There is a practical need for creating

a multivariate RILD model that considers the proposed factors from all the domains

to exploit their predictive potential.

However, practical concerns arise from creating a RILD model that spans mul-

tiple knowledge domains. Chapter 6 discussed the bias-variance tradeoff, where

predictive performance in unseen data can decrease with the complexity of a model.

Moreover, too many variables in a model can compromise its interpretability. The

same chapter also introduced the basic principles of Bayesian network and why it

is a good candidate multivariate method for prediction of medical conditions. In

this chapter, radiation pneumonitis was modelled using Bayesian network in which

interactions between RP risk factors were detected and used for prediction of RP.

The study presented in this chapter was published as the following paper:

“Bayesian network ensemble as a multivariate strategy to predict radiation pneu-

monitis risk” authored by: Lee, S., Ybarra, N., Jeyaseelan, K., Faria, S., Kopek,

N., Brisebois, P., Bradley, J. D., Robinson, C., Seuntjens, J., and El Naqa, I. Med.

Phys. 42(5): 2421-30, 2015.
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7.2 Background

Radiotherapy (RT) is considered a standard of care for medically inoperable

locally-advanced non-small-cell lung cancer (NSCLC) [1]. Despite rapid advances

in radiation delivery techniques during the last two decades, prognosis of NSCLC

remains poor, with 5-year survival stalled at 18.2% [2]. RT dose escalation can pos-

sibly benefit marginal survival outcome with chemoradiation [3]. However, the main

clinical obstacle to dose escalation is excessive normal tissue toxicity and especially

the risk of radiation pneumonitis (RP). In this regard, accurate prediction of RP

risk may be useful for cancer cure as well as enhancing the quality of life for patients

receiving radiation treatment [4].

Current RP prediction models in clinical use rely almost entirely on dosimetric

parameters such as average dose to lung or percentage of irradiated lung volume

[5]. However, it has been reported that patients display heterogeneity in normal

tissue radiosensitivity given identical radiotherapy regimen [6]. Identifying over- or

under-responding patients has been attempted on the basis of underlying biological

reactions responsible for the endpoint of interest. Fleckenstein et al. [7] describes

the pathogenesis of radiation-induced lung disease as multiple inter-reacting cellu-

lar activities such as hypoxia, fibrogenesis, inflammation, and angiogenesis. This

theory has been corroborated by several independent studies that reported associ-

ation between RP risk and biomarkers for those processes (Transforming growth

factor(TGF)-β1 [8] [9], Interleukin(IL)-6 [10], alpha-2-macroglobulin(α2M) [11], An-

giotensin converting enzyme(ACE) [12] [13]). However, significance of those proteins
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as an individual predictive biomarker is still debating, and multivariate analysis on

those biomarkers for prediction has yet to be investigated.

Some investigators combined dosimetric and clinical RP risk factors through

multivariate logistic modelling to enhance the predictive performance of univariate

models [14] [15]. However, logistic regression is limited in its flexibility to embrace de-

pendence among multiple features. There is growing emphasis from systems biology

perspective, as proposed by a few authors, [16] [4] to better understand structures of

dependence between biophysical variables such as hierarchy or modulation. We pro-

pose Bayesian Network (BN) as a framework to render such arrangements possible.

BN is a graphical model designed for modelling joint probability distribution among

random variables. Calculation of joint probability is greatly facilitated by conditional

independence relationships encoded in a directed acyclic graph (DAG). In this way,

we can derive a probabilistic classifier from BN by estimating the probability of a

class conditional on the covariates with known values. A DAG also provides visual

representation of causal relationships, which is appealing to end-users who wish to

interpret inference results intuitively.

A DAG can either be specified by experts or learned from observational data.

Learning DAGs from data is known to be computationally complex due to super-

exponentially growing possibilities of possible graphs with the number of variables

[17]. Such complexity of the model poses a big challenge to many model selection

schemes which select the single best-fitting model based on a predefined score func-

tion. However, the schemes do not always lead to an optimal classification on unseen

data due to the way that the score function is designed [18]. An alternative to model
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selection is retaining multiple models in an ensemble and taking the average of pre-

diction results by the ensemble members weighted by their posterior probabilities.

This approach, called Bayesian model averaging [19], has been shown experimen-

tally to improve performance of complex models [20], including the multivariate RP

prediction models by Das et al. [21].

Bayesian Network has been in use for radiotherapy outcome prediction, mainly

for tumour control [22] [23] [24]. To our knowledge, it has not been applied to radia-

tion induced toxicity and especially RP where univariate predictors achieved limited

success. In this paper, we intended to elaborate on the methods of BN ensemble

learning as a proof of concept that could in the future improve risk prediction and

also generate hypotheses on the pathophysiology of radiation-induced diseases.

7.3 Materials and Methods

7.3.1 Patient cohort

Fifty four stage III NSCLC patients were included in this study according to the

following criteria: 1) received standard 2-Gy-per-fraction 3D conformal radiotherapy

with curative intent, 2) have no history of previous lung irradiation, and 3) baseline

Karnofsky performance status (KPS) of equal to or greater than 70. Chemotherapy

was also given neoadjuvantly or concurrently except 2 patients. Blood samples for

biomarkers were first acquired on the CT simulation day (pre-treatment) for baseline

and the 15th fraction (mid-treatment). Post-radiotherapy toxicity was quantified

using Common Toxicity Criteria for adverse events (CTCAE) version 3. Incidence

of RP, classified as CTCAE toxicity grade 2 or higher, was reported for 35% (19/54)

of the patients. Detailed cohort characteristics can be seen in the table 7.1.
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Table 7.1: Patient cohort characteristics. *: heterogeneity-corrected, PTV excluded

Patient count (%)
Cohort size 32
RP grade
0 34 (63)
1 1 (2)
2 11 (20)
3 6 (11)
5 2 (4)
2 and above 19 (35)

Gender
male 23 (43)
female 31 (57)

Prescription dose (Gy)
median 60.0
range 56.0-70.0

Mean lung dose*
median 15.0
range 4.8-24.0

Chemotherapy
No 2 (4)
Concurrent 20 (37)
Neoadjuvant 1 (2)
Neoadjuvant+Concurrent 29 (54)
Adjuvant 2 (4)
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7.3.2 Candidate variable list

We collected from blood samples and archived radiation oncology database all

the information on candidate RP covariates with reported association in the literature

(see table 7.2 for references). From each blood sample, serum concentration of the

following candidate RP biomarkers were measured by enzyme-linked immunosorbent

assay (ELISA): transforming growth factor (TGF)-β1, interleukin(IL)-6, angiotensin

converting enzyme (ACE), and α2M. In addition, the following dose-volumetric pa-

rameters were extracted from RT treatment plans based on Anisotropic Analytical

Algorithm (AAA) heterogeneity correction: mean lung dose (MLD), mean heart dose

(MHD), percentage volume of lung receiving 20 Gy/30 Gy or less (V20/V30), PTV

volume, and superior-inferior position of PTV normalized to apical-basal extent of

lung (PTVCOMSI) [25]. In order to account for dosimetric uncertainty due to tu-

mour motion, PTV volume was excluded from lung dose calculation. In summary,

the raw dataset contained the RP incidence and 16 RP covariates in the four main

categories shown below:

• Baseline concentration ( pre) of TGF-β1, IL-6, ACE, and α2M.

• Mid-treatment concentration ( ratio) of TGF-β1, IL-6, ACE, and α2M, taken

as a percentile increase from baseline.

• RT plan parameters: MLD, MHD, V20, V30, PTV volume, PTVCOMSI.

• Clinical patient information: age, smoking status.
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7.3.3 Data pre-processing

For Bayesian Network modelling, all the covariates were discretized into 2 bins

(high/low) because finer discretization led to sparsity in conditional probability es-

timation. The binning was performed using the K nearest neighbour clustering

algorithm [26] which grouped the data points into two clusters based on a distance

(figure 7.1). The Koller-Sahami (KS) variable filter [27] was used for reducing the

number of covariates. The KS filter iteratively removes the variables that give little

or no additional information (entropy) to a class in the presence of other variables

(blankets). For our application, a blanket size of 1 was chosen because larger size

resulted in inaccurate entropy values in our data. The filtering was implemented in

the following three sequential st.: the KS filter shrunk the data down to 2 variables

(the smallest number allowed with a blanket size = 1) and the change in the en-

tropy of the removed along the 14 elimination rounds was recorded. The optimal

dimensionality of data was defined as the number of variables with the cross-entropy

higher than the value of a dummy variable filled with random values. Then, the KS

filter was reapplied to the full dataset down to the determined dimensionality. This

was repeated in 1000 bootstrap samples and the variables that were selected most

frequently were retained for the next steps.

7.3.4 Bayesian Network learning

The Metropolis-Hastings MCMC sampling for Bayesian Network graphs [20],

implemented in the Bayesian Network Toolbox (BNT) [28], was chosen as a graph

searching algorithm. An acceptance ratio for drawing a Markov chain sample was

determined by the ratio of a marginal likelihood graph score, P (G|D), and a proposal
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Figure 7.1: KNN clustering discretization of the 16 candidate covariates into high (red)
and low (blue) bins. The raw values were binned into a histogram with 7
equally spaced intervals ranging ±2 standard deviation (except smoking).
The high-to-low bin boundaries were shown on the x-axis.

distribution Q(Gnew;Gold) between the new graph sample Gnew and the last sample

in the chain Gold:

A = A1A2, A1 =
P (Gnew|D)

P (Gold|D)
, A2 =

Q(Gold;Gnew)

Q(Gnew;Gold)
=

N(Gold)

N(Gnew)
(7.1)

A uniform distributionQ(Gnew;Gold) =
1

N(Gold)
was used for the proposal density,

where N(Gold) is the number of the valid graphs that can be created from Gold

satisfying the conditions given below:

• Should be able to be created from Gold by modification on a single edge (addi-

tion of a new edge or deletion/reversal of an existing edge)

• The graph after modification has to satisfy the following constraints:

1. No loop is formed by edges (acyclicity)
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Figure 7.2: Diagram of allowed causal links between variable categories used for accept-
ing/rejecting graph samples during MCMC simulation.

2. The number of parents for any node is no more than 3 (maximum fan-in)

3. Every edge is in a causal direction (causality prior)

A causality prior imposes categorical restrictions on the presence or the direction

of edges between nodes in order to reduce the search space. The allowed connections

between the four categories of RP covariates (see the methods section) and an RP

node (figure 7.2) are compatible with temporal order (e.g. baseline biomarkers →
mid-treatment biomarkers→ RP) or cause-effect relationship (e.g. radiation→ mid-

treatment biomarkers).

Twenty-five Markov chains were created with random initial graphs and grown

until convergence. Convergence of the chains was checked at every 10000 MCMC

samples. At each checkpoint, the samples were histogrammed into a graph posterior

distribution which consist of distinct graphs in the chains and the frequencies of
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their occurrence. Convergence was judged by sufficient consistency in the posterior

distribution over time. After the convergence, the first 10000 samples in the chains

were discarded due to strong correlation with arbitrary initial condition (burn-in

period) and did not contribute to estimating posterior distribution. For every graphs

in the posterior, Maximum a Posteriori (MAP) CPTs for parent-child pairs in the

DAG were learned from data with equivalent sample size α = 1. The expectation-

maximization (EM) algorithm was applied in conjunction with MAP in order to

handle missing data which constituted 9.8% of the data.

7.3.5 Ensemble Bayesian Network classifier

A Bayesian Network structure with a complete graph and CPTs is capable of

making inference on the probability of RP. The inference was performed by the junc-

tion tree algorithm implemented in the BNT toolbox [28] which is capable of dealing

with variables with an unknown value in a query. Probability of RP was computed

for each Bayesian Network graph in an ensemble which consisted of the MCMC graph

samples with N highest posterior probability P (i|D). These probability estimates

were averaged over the ensemble weighted by the posterior probability of the graphs

to yield the final estimate of the RP probability:

P (RP ) =

N∑
i=1

Pi(RP )P (i|D)

N∑
i=1

P (i|D)

(7.2)

Predictive performance of the BN ensemble model was quantified by and receiver

operating characteristics (ROC) and a reliability plot . An ROC curve plots true

positive rates against false positive rates while varying classification threshold on the

176



estimated P (RP ). The measured ROC metrics include the area under the ROC curve

(AUC), sensitivity, specificity and accuracy at the optimal operating threshold that

maximizes the sum of sensitivity and specificity according to Youden’s J statistics.

While ROC measures discriminative ability of a model as a classifier, a reliability

plot shows accuracy of probability estimates. In order to create a reliability plot, the

patients were distributed into 5 risk groups based on the P (RP ) computed by the

BN models and their actual risk (an event rate in each group) was plotted against

the modelled risk (an average P (RP ) in each group).

7.3.6 Bootstrap validation of the Bayesian Network model

Graphical features and prediction power of the BN ensemble were validated in

200 non-parametric bootstrap datasets, which was intended to test robustness of the

BN learning methods to limited size of data. Confidence in the presence of a certain

link in a graph (f), denoted as P (f), was estimated from M bootstrap replicates

according to the following formula (equation 7.3) [29]:

P (f) =
M∑
i=1

Pr(f |Di) (7.3)

Where Pr(f |Di) denotes the probability of detecting f from Bayesian Network

graph training on a bootstrap replicateDi, and can be approximated by the posterior-

weighted average occurrence of the link in the ensemble (G) [30]:

Pr(f |Di) ∼

∑
G∈G

Pr(G|Di)f(G)

∑
G∈G

Pr(G|Di)
(7.4)
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Classification accuracy of the BN model was also validated using the same 200

bootstrap replicates with the 0.632+ bootstrap error calculation method [31].

7.3.7 Comparison with other RP predictors

Predictive performance of the BN ensemble model was compared with univari-

ate predictors in the dataset and a multivariate logistic regression predictor which

was built on the covariates selected by the KS filter. For these predictors, unlike

for the BN modelling, the input data retained its continuous scale after standard

normalization. Missing data was filled in by K nearest neighbour imputation prior

to the training. In order to minimize overfitting, a L2 regularizing term was added

to a mean-square error for the objective function. The coefficient of the regulariza-

tion term was tuned by 10-fold cross validation repeated 100 times with randomly

assigned folds. ROC metrics using these predictors on the 200 bootstrap replicates

were compared with the results from the BN model in a pairwise fashion by the

Wilcoxon’s signed rank test with α = 0.05.

7.4 Results

7.4.1 Variable selection

The KS filtering on the full dataset resulted in the optimal dimensionality of 6

(figure 7.3) and the following chosen variables: mid-treatment α2M, 2) pre-treatment

IL-6, 3) mid-treatment ACE, 4) MHD, 5) V20, and 6) PTVCOMSI (table 7.2). The

selected variables displayed a varying degree of univariate correlation with RP, with

V20 at the weakest (odds ratio = 1.32) and MHD at the strongest (odds ratio =

2.46).
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Table 7.2: Candidate RP covariates. The underlined variables were included into the BN
model via KS filtering.
† Bootstrap frequency of 16 RP covariates selected by the KS variable filtering
at a model order 6.

variable odds ratio selection frequency†
α2M pre [11] 0.58 (0.30, 1.10) 0.321
α2M ratio [11] 1.68 (0.93, 3.01) 0.545
IL6 pre [10] 1.89 (0.81, 4.40) 0.404
IL6 ratio [10] 1.33 (0.76, 2.34) 0.3
ACE pre [12] 0.76 (0.42, 1.38) 0.205
ACE ratio [12] 2.17 (1.01, 4.67) 0.382
TGFβ pre [8] 0.92 (0.52, 1.63) 0.357
TGFβ ratio [8] 0.99 (0.56, 1.74) 0.204
MLD [32] 1.35 (0.75, 2.44) 0.254
MHD [33] 2.46 (1.26, 4.83) 0.696
V20 [34] 1.32 (0.74, 2.36) 0.647
V30 [34] 1.60 (0.88, 2.93) 0.207
PTV volume [34] 0.99 (0.56, 1.74) 0.21
PTVCOMSI [25] 0.63 (0.35, 1.14) 0.613
age [35] 0.95 (0.54, 1.67) 0.366
smoking [35] 1.21 (0.68, 2.13) 0.289
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Figure 7.3: Cross entropy of the variables removed at each round of KS backward elimina-
tion. A red area indicates the range of cross entropy from a dummy variable.
Error bars: 95% confidence interval from bootstrapping.

7.4.2 Bayesian Network learning with MCMC

Figure 7.4 demonstrates that likelihood of the sampled graphs rose from the ini-

tial suboptimal locations to reach an oscillatory equilibrium shortly after 1000 runs.

However, equilibrium on estimating posterior distribution of graphs did not occur

until at least 50000 runs (figure 7.5). The convergence of the posterior distribution

was attributed to a restricted search space imposed by the causality prior, as the

chain failed to converge within reasonable time in the absence of such conditions.

7.4.3 Confidence in BN graphical features

When the ensemble size of 200 was used, a median confidence level of the 23

possible connections allowed by the causal prior was 0.27. 10 out of 23 achieved the
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Figure 7.6: Variables connected by directed edges with a confidence level higher than
random. Edge thickness is proportional to its confidence level which is also
written on the edge (table 7.3). Arrow-headed and bar-headed edges are
assigned to positive and negative correlation, respectively.

confidence level higher than chance (0.29) [36] (table 7.3, figure 8.2). The highest

value was recorded for the connection from ACE ratio to RP (0.93).

7.4.4 Prediction of RP risk

Predictive power of the Bayesian Network method was compared with that of in-

dividual biomarkers and dosimetric RP models in the literature [37] citeNiemierko97

[38]. As seen by changes in AUC and specificity (figure 7.8), prediction with the
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Table 7.3: Bootstrap estimated confidence of the connections shown in the figure 8.2.

parent child confidence
ACE ratio RP 0.93
MHD RP 0.90
α2M ratio RP 0.70
IL6 pre V20 0.58
PTVCOMSI MHD 0.53
IL6 pre ACE ratio 0.43
MHD ACE ratio 0.40
MHD α2M ratio 0.37
ACE ratio α2M ratio 0.36
IL6 pre PTVCOMSI 0.32

BN method greatly improved as the ensemble size grew up to 200 beyond which the

increase tailed off. For any size of the ensemble, the AUC for the BN was larger than

any univariate classifiers (figure 7.7). The highest AUC from univariate biomarkers

and dosimetric models was recorded by mid-treatment ACE (0.66) and MHD (0.69),

which was significantly lower than the BN model at an ensemble size N=200 (0.83).

Given the same set of variables, multivariate logistic regression was shown to be less

effective in classification than BN at any ensemble size, as seen from significantly

lower AUC and specificity at the optimal operating threshold (figure 7.7, table 7.4).

Accuracy of probability estimates of the multivariate models was evaluated via

a reliability plot (figure 7.9). The accuracy was measured as a goodness of fit to a

perfect probability estimate which corresponds to a diagonal line in the plot. Sim-

ilarly to ROC metrics, the Bayesian Network model with larger ensemble size was

shown to give more accurate estimates of RP risks.
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Table 7.4: Comparison of RP prediction performance in ROC metrics. (Parenthesis: 95%
confidence interval) *: ensemble size 200, **: at the probability cutoff at the
maximum Youden index.

AUC SE** SP** AUC SE SP
BayesNet* 0.83 0.80 0.81 Biomarkers

(0.82,0.85) (0.78,0.83) (0.78,0.83) α2M pre 0.63 0.74 0.66
Logistic 0.77 0.81 0.73 (0.62,0.65) (0.71,0.77) (0.65,0.67)

(0.76,0.78) (0.78,0.83) (0.70,0.75) α2M ratio 0.63 0.67 0.75
Dosimetry (0.61,0.64) (0.65,0.70) (0.74,0.76)

MLD 0.62 0.75 0.62 IL6 pre 0.57 0.59 0.77
(0.61, 0.63) (0.72, 0.79) (0.61,0.64) (0.57,0.61) (0.56,0.62) (0.74,0.79)

V20 0.58 0.76 0.57 IL6 ratio 0.51 0.63 0.65
(0.59,0.62) (0.71,0.79) (0.55,0.61) (0.50,0.53) (0.59,0.67) (0.63,0.67)

V30 0.60 0.60 0.78 ACE pre 0.57 0.72 0.61
(0.59,0.62) (0.57,0.62) (0.77,0.80) (0.56,0.58) (0.70,0.76) (0.59,0.62)

gEUD [39] 0.63 0.76 0.62 ACE ratio 0.66 0.70 0.74
(0.61, 0.64) (0.73, 0.80) (0.60,0.64) (0.65,0.67) (0.68,0.73) (0.72,0.75)

Bradley et al. [38] 0.64 0.81 0.63 TGF pre 0.50 0.82 0.43
(0.63,0.65) (0.78, 0.83) (0.62,0.64) (0.49,0.51) (0.79,0.85) (0.42,0.45)

MHD 0.69 0.72 0.78 TGF ratio 0.51 0.65 0.58
(0.68,0.70) (0.70,0.74) (0.76,0.79) (0.51,0.53) (0.62,0.70) (0.56,0.60)

Clinical
age 0.53 0.48 0.76

(0.51, 0.54) (0.44, 0.52) (0.74,0.78)
smoking 0.54 0.41 0.66

(0.53, 0.55) (0.37, 0.46) (0.65,0.68)

In order to examine the ability of the Bayesian Network ensemble to perform

probabilistic inference under missing data, the probability of RP was estimated in the

absence of intra-treatment biomarker data. AUC values decreased significantly as a

result, but with varying degrees depending on ensemble sizes. For larger ensemble

sizes above 200, the reduction in AUC was smaller (0.03) than for sizes less than 50

(0.05) (figure 7.8).

7.5 Discussion

High input dimensionality is certainly one of the biggest challenges in multivari-

ate disease modelling, especially in radiotherapy induced sequelae where dosimetric,

biological and patient specific clinical parameters all contribute to extra complexity.

Dependence between risk factors is inevitable in radiotherapy informatics and has

been neglected by many multivariate methods such as logistic regression in the name

of the “black box” approach. Naive independence assumption of such models may
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Figure 7.7: ROC curves for RP prediction using Bayesian Network at ensemble size 200,
logistic regression and 2 best univariate (mid-treatment ACE, MHD) models.
Shaded regions: bootstrap estimated 95% confidence bands.

1 100 200 300 400 500 600
0.74

0.76

0.78

0.8

0.82

0.84

0.86

Ensemble size

A
U

C

1 100 200 300 400 500 600
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

Ensemble size

S
e
n
s
it
iv

it
y

1 100 200 300 400 500 600
0.74

0.76

0.78

0.8

0.82

0.84

0.86

Ensemble size

S
p
e
c
if
ic

it
y

Figure 7.8: ROC metrics using the Bayesian Network model ensemble with a varying size
from 1 to 600. Black: prediction with a complete dataset, Grey: prediction
without intra-treatment biomarker measurements. Error bars: bootstrap-
estimated 95% confidence intervals.
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Figure 7.9: Reliability plot of 3 probabilistic classifiers. Numbers in parentheses indicate
the r2 value with respect to an ideal probability estimator (dashed red line).
Standard errors, shown in error bars, were computed from binomial distribu-
tion (actual risk) or quadrature summation of variance of probability scores
in a group and bootstrap-estimated model uncertainty (predicted risk).
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lead to increased bias in probability estimation and consequently poor inference with

unseen data. Alternatively, this variety of factors could be structured into systems

of different hierarchical levels between which connections could be established by

fusing observation with prior knowledge. Bayesian Network provides the statistical

platform in which this idea of systems biology can be implemented and applied for

disease prediction. However, the amount of current expert knowledge in this area

does not fully cover all the putative RP risk factors. Thus, feasibility of learning BN

structures from radiation oncology data needs to be addressed.

Bayesian Network is intrinsically a complex modelling technique with a mul-

titude of parameters. Several measures were taken in training and testing the BN

prediction model to address the issue of overfitting: a causality prior and a fan-in

bound imposed restrictions on the number of possible graphs to narrow down the

search space. In addition, marginal likelihood as a graph scoring function penalizes

larger number of edges and helps find a balance between the complexity and fitness

of data [40]. Generalizability of the BN classifier was validated in a 0.632+ bootstrap

setting which was shown to be the closest to the true population estimate in small

training sample size and high model orders [41]. However, even these efforts do not

remove the uncertainty of a single BN model learned from a modest size dataset. We

observed from MCMC simulation the presence of multiple high-scoring graphs also

known as likelihood equivalence [42]. We addressed this issue by adopting a Bayesian

approach which embraces an ensemble of models rather than a single one. Having a

bag of models compromises graphical interpretation of a single model but overcomes
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the uncertainty in model selection and improves the performance on unseen data

[19], which was shown in our cohort by larger AUC with increasing ensemble size.

We observed superiority of the Bayesian Network method over logistic regression

in classifying RP events (figure 7.7). The difference could be attributed to a prob-

abilistic approach of Bayesian Network. It models a joint probability distribution

p(x, y) for covariates x and a class y and for classification computes p(y|x) using the

Bayes’ rule, in contrary to logistic regression which is limited to computing p(y|x).
The advantage of the former, already reported by Ng and Jordan [43] in several

datasets with a modest size, might explain more accurate RP probability estimates

by BN models in our data (figure 7.9). Also, the probabilistic nature of BN enables

inference under incomplete data. For non-probabilistic models such as logistic regres-

sion, missing data have to be filled in by imputation, which inevitably corrupts the

integrity of data. Furthermore, we were looking into capitalizing on this feature to

attempt “hastened” prediction before receiving mid-treatment biomarkers. Although

some reduction in AUC was observed, the model to a certain degree compensated

for the missing information by using graphical relationships and parameters obtained

with complete training data. This is due to the role that ensemble plays (figure 7.8)

and its resulting high AUC values (0.76-0.81) compared to MHD (0.70) which was

the only variable connected to RP other than mid-treatment biomarkers (figure 8.2).

A Markov-Chain Monte Carlo method was used for exploring a model space

and approximating posterior probability. As seen from figure 7.5, the graph samples

from MCMC showed power law-like distribution which consists of a small number of

high-posterior graphs and a long tail of low posterior. It turned out that only the
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graphs around 200, constituting the peak and a small part of the “tail” at cumulative

probability less than 30%, is necessary for the optimal RP classification. This re-

sult agrees well with previous studies showing that high posterior models are indeed

beneficial for classification tasks as well [30]. We also derived from those graphs the

confidence levels of graph features through repeated training in bootstrap replicates.

Edges with high confidence might imply existence of novel causal relationships. Al-

though we did not conduct any independent bench experiment to validate the links,

this feature of the BN model is definitely an advantage in generating new hypotheses

compared to many “black-box” type multivariate models.

Precautions need to be taken, however, in interpreting the results of this study

for clinical application of the presented Bayesian Network methodology. Small num-

ber of RP events due to modest dataset size and low-risk nature implies higher un-

certainty in predicting positive instances than the negatives. This was demonstrated

in figure 7.9 showing worse precision of probability estimates for higher risk patients.

Another limitation, inherent to BN structure learning, is that the connections be-

tween variables that we identified from BN graphs may not always indicate direct

causality. Although non-causal links were ruled out during the structure learning, it

is possible that a pair of variables without any direct causality are seemingly corre-

lated through any confounding factor hidden from the model. Due to computational

burden from MCMC and a hazard of overfitting under a limited sample size, input

dimension had to be tightly constrained by use of variable selection. The KS filtering

scheme was shown to be effective in removing redundant variables [27]. In this study,
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it was useful in reducing the dimensionality of a dose volumetric domain that con-

tained highly correlated variables. However, this type of filtering might have dropped

the variables that could have been more useful in encoding causal relationships.

Future development of this study will address the effect of different fractionation

schemes on variable selection, types of biophysical interactions identified by BN, and

RP prediction by applying the described method on a SBRT cohort. We are also

developing a method for systematically encoding domain knowledge in radiobiology

into the graph learning. In addition to the causality constraints, this is expected

to identify true biological relationships with high confidence and thus improve the

generalizability of the model. Lastly, although the model was validated internally

using 0.632+ bootstrap, an external source of data with matching characteristics

would be necessary to add more clinical relevance to our findings.

7.6 Conclusion

We applied a Bayesian Network framework in conjunction with Bayesian statis-

tics for constructing interaction graphs of biological, dosimetric and clinical covariates

for radiation pneumonitis. Markov Chain Monte Carlo sampled high posterior graphs

which were used as an ensemble to estimate radiation pneumonitis risk. We have

shown that a certain size of the ensemble was sufficient to perform optimal classifi-

cation. Bootstrap-validated predictive power of the Bayesian Network ensemble was

superior to any univariate predictors or multivariate logistic regression. Statistical

confidence in graph features in the ensemble obtained by bootstrapping can poten-

tially identify novel biophysical relationships. After validation on larger dataset, the
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presented modelling strategy could be useful for estimating normal tissue complica-

tion probability (NTCP) for various endpoints.
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CHAPTER 8
Modeling of radiation pneumonitis after lung stereotactic body

radiotherapy: a Bayesian network approach
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8.1 Introduction

Chapter 7 elaborated on the methodology of applying the Bayesian network

framework to the problem of radiation pneumonitis. The study was however lim-

ited to conventionally fractionated radiotherapy. It is expected that dosimetric and

biological relationships with toxicity are different for SBRT regimen (see section

1.4, 2.3.1). It would be of great clinical interest to observe how the Bayesian net-

work descriptions of RP depend on the fractionation schemes. This chapter intends

to identify important dosimetric, clinical and biological RP risk factors after lung

SBRT and test the feasibility of the BN method as a prediction tool that integrates

the identified factors.

The study presented in this chapter was submitted in March 2016 as the follow-

ing paper: “Modeling of radiation pneumonitis after lung stereotactic body radio-

therapy: a Bayesian network approach” authored by: Lee, S., Ybarra, N., Jeyaseelan,

K., Faria, S., Kopek, N., Brisebois, P., Vu, T., Filion, E., Campeau, M.-P., Lambert,

L., Del Vecchio, P., Trudel, D., El-Sokhn, N., Roach, M., Robinson, C., and El Naqa,

I.

8.2 Background

In recent years, stereotactic body radiotherapy (SBRT) has become a standard

choice of a radiotherapy technique for non-operable early stage non small cell lung

cancer (NSCLC), demonstrating a local control rate close to 90% [1]. Incidence of
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pulmonary toxicity, usually defined as symptomatic radiation pneumonitis (RP), is

reported to be less than 10% [2] due to focused radiation to a small target which

spares large volume of healthy lung [3]. However, several non-dosimetric factors re-

portedly increase or decrease the RP risk, such as central tumor location [4], baseline

interstitial pneumonitis [5] and chronic obstructive pulmonary disease (COPD) [6].

Ignoring these factors could underestimate RP risk for certain patients. Thus, there

is a clinical need to augment dosimetric RP models with patient-specific biological

and clinical risk modifiers for more patient-specific prediction.

We propose Bayesian network (BN) as a multivariate modeling platform to ac-

commodate such high-dimensional data. BN can be characterized as graphical rep-

resentation of relationships between input variables called a directed acyclic graph

(DAG). Variables in a DAG are connected along the direction of influence. Compared

to conventional multivariate modeling methods such as logistic regression, BN has a

number of advantages; First, BN can be designed by combining domain knowledge

and observed data. This concept was applied to radiotherapy outcome prediction in

prostate cancer [7] and radiation pneumonitis [8]. Second, its probabilistic charac-

teristics allows prediction with incomplete data without relying on imputation to fill

them in. Predictive benefit of this feature was demonstrated by Jarasurya et al. [9]

in prediction of lung cancer outcome. Finally, from users’ perspective, its graphical

feature provides more transparency in its inference paths.

Radiation pneumonitis was modeled using the BN concept for conventional frac-

tionation [8] where finding a consensus of prediction results from several BN models
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(ensemble approach) was shown to improve RP prediction. However, the BN ap-

proach hasn’t been applied to SBRT cases where dose-volumetric relationships and

biological damage mechanisms haven’t been as well established. The aim of this

study is to develop a Bayesian Network RP model from an SBRT cohort. While a

primary objective is to assess its predictive potential, we will also address its ability

to generate new hypotheses.

8.3 Methods

8.3.1 Patient cohort

Forty three stage I and II NSCLC patients were prospectively recruited for

this study from the following 3 institutions upon approval of respective institutional

review boards: McGill University Health Centre (MUHC), Centre Hospitalier de

l’Université de Montréal (CHUM), and Washington University in St. Louis (WashU),

32 patients from MUHC and CHUM formed a training cohort for BN modeling. 11

patients from WashU was reserved for model validation. Every patient met the fol-

lowing eligibility criteria: 1) received SBRT of equal or less than 5 fractions with

curative intent, 2) no history of previous lung irradiation, and 3) baseline Karnof-

sky performance status ≥ 70. Detailed cohort characteristics are shown in table 8.1.

The patients were treated with radiotherapy (RT) without any adjuvant therapy. De-

pending on institutions, three different delivery techniques were used: 3-dimensional

(3D) conformal radiotherapy, RapidArcTM(Varian Medical Systems, Palo Alto, CA)

Volumetric Arc Therapy (VMAT), and CyberKnife (Accuray Inc, Sunnyvale, CA).

Detailed RT procedures are summarized in the table 8.2 and 8.3.
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Table 8.1: Characteristics of the training and validation cohorts. *Calculated for whole
lung subtracted by planning target volume and converted to equivalent dose
in 2 Gy fraction.

Patient count (%)
Training Validation

Cohort size 32 11
Tumor stage
I 32 (100) 9 (81)
II 0 (0) 2 (19)

RP grades
0 17 (53) 0 (0)
1 11 (34) 10 (91)
2 2 (6) 0 (0)
3 2 (6) 1 (9)
≥ 4 0 (0) 0 (0)
≥ 2 4 (13) 1 (9)

Mean lung dose*
median 4.9 6.3
range 2.4-10.9 1.2-9.9

RT modality
3D conformal 19 (59) 11 (100)
VMAT 5 (16) 0 (0)
CyberKnife 8 (25) 0 (0)

RT prescription
60 Gy in 3 fractions 8 (25) 0 (0)
60 Gy in 5 fractions 5 (16) 1 (9)
50 Gy in 5 fractions 4 (13) 4 (36)
48 Gy in 3 fractions 12 (38) 0 (0)
34 Gy in 1 fractions 3 (9) 0 (0)
54 Gy in 3 fractions 0 (0) 5 (45)
55 Gy in 5 fractions 0 (0) 1 (9)
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Table 8.2: Detailed radiotherapy procedures used for the training cohort. GTV: gross tumour volume, ITV: internal target volume, IGTV: internal
gross tumour volume, PTV: planning target volume, Tx: prescription dose, 4DCT: 4-dimensional computed tomography, IGRT: image-guided
radiotherapy, fx: fraction, MU: monitoring unit.

Institution MUHC CHUM
Technique 3D-CRT VMAT CyberKnife

Dose prescription Dose normalized to 100 % at Tx, 95%
of PTV receives Tx or higher (D95%
≥ Tx)

Dose normalized to 100 % at Tx which covers 95% or more of the PTV

Dose plan-
ning procedure/
calculation algorithm

Forward planning using Eclipse
(Varian, USA)/ superposition-
convolution algorithm with hetero-
geneity correction

Inverse planning with RapidArc
(Varian, USA)/ superposition-
convolution algorithm with hetero-
geneity correction

Inverse planning with Multiplan (Ac-
curay, USA) / Monte Carlo calcula-
tion

Beam type 6 MV photon 6 MV photon 6 MV photon
Target volume defini-
tion

ITV: drawn from 4DCT using maxi-
mum intensity projection
PTV: ITV + 5 mm margin

IGTV: drawn on extreme phases of
4DCT to represent its full extent
PTV: IGTV + 5 mm margin

GTV: drawn on breath hold,
corrected if needed for deforma-
tion/rotation using extreme phases
PTV: GTV + 5 mm margin

Dose fractionation 50 Gy in 5 fx: tumor at central lo-
cation and/or close to critical organs
(chest wall/large vessels/spinal cord)
34 Gy in 1 fx: otherwise, upon pa-
tients’ request for shorter treatment
48 Gy in 3 fx: otherwise

50 Gy in 5 fx: tumour at central location
60 Gy in 5 fx: peripheral tumour close to OARs

60 Gy in 3 fx: otherwise

Dose constraints to
OARs

50 Gy in 5 fx: RTOG 0915
48 Gy in 3 fx: RTOG 0915
34 Gy in 1 fx: RTOG 0813

Timmerman et al. [10]

Immobilization BodyFix (Elekta Oncology, Norcross,
GA)

BodyFix (Elekta Oncology) Vac-Lok (Civco Medical Solutions,
Orange City, IA)

IGRT CBCT at every fraction Pre- and mid-treatment CBCT at ev-
ery fraction

Real-time target tracking

Plan verification Independent MU check Independent MU check, daily dyna-
log verification

Independent MU check
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Table 8.3: Detailed radiotherapy procedures used for the validation SBRT cohort.

Institution WashU
Technique 3D-CRT
Dose prescription Dose generally prescribed to 80% isodose line

(range 60-90%) and covers ¿95% of PTV
Dose plan-
ning procedure/
calculation algorithm

Forward planning with 7-11 non-coplanar
beams using Pinnacle (Philips, Netherlands)/
superposition-convolution algorithm with hetero-
geneity corrections

Beam type 6 MV photons
Target volume definition ITV: drawn from 4DCT using maximum intensity

projection
PTV: ITV + 5 mm margin

Dose fractionation 50-60 Gy in 5 fx: central location or close to critical
organs
54 Gy in 3 fx: all others

Dose constraints to
OARs

50-60 Gy in 5 fx: RTOG 0813
54 Gy in 3 fx: RTOG 0618

Immobilization Abdominal compression (CDR systems, Canada)
IGRT CBCT at every fraction with KV fluoroscopy
Plan verification Independent MU check

8.3.2 Data collection

Blood samples from the patients were first acquired on the CT simulation day

as a baseline and 6 weeks post-treatment. Enzyme-linked immunosorbent assay

(ELISA) was used for measuring biomarker concentrations in the samples. Incidence

rate of symptomatic RP, classified as Common Toxicity Criteria for adverse events

(CTCAE) toxicity (version 4) grade 2 or higher, was 13% (4/32) from the training

and 9% (1/11) from the validation cohorts. Median follow-up was 12 months for

training and 34 months for the validation cohort.
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8.3.3 Candidate variables

Candidate variables for the BN pneumonitis model were chosen from 3 main

categories: biological, dosimetric and clinical variables. Candidate biological vari-

ables consisted of serum concentration of interleukin(IL)-6, IL-8, angiotensin convert-

ing enzyme (ACE), alpha-2-macroglobulin (α2M) , and transforming growth factor

(TGF)-β1 and plasma concentration of osteopontin (OPN). As summarized in [11],

these markers represent different biological processes involved in pathogenesis of

radiation-induced lung injury, such as pro-(IL-6 [12], OPN [13]) and anti-(IL-8 [14])

inflammatory reactions, fibrogenesis (TGFβ [15]), vascular damage (ACE [16]) and

modulation of inflammatory reactions (α2M [17]). 12 features in total were extracted

(6 markers x 2 time points) from the biomarker data. The biomarker features at 6-

weeks were taken as a percentage difference from the respective baseline level. The

following 7 clinical RP risk factors were chosen by literature survey: superoinferior

PTV location (PTVCOMSI) [18], age [19], smoking status [20], COPD [6], ACE in-

hibitor [21], baseline interstitial lung disease [5], and centrally located tumours [4].

Dosimetric factors were derived from planned dose converted to equivalent dose in

2 Gy fraction (EQD2) using an alpha-beta ratio of 4 Gy for lung [22] and 2 Gy

for heart [23]. For lung dose calculation, PTV was subtracted from contoured lung.

Mean lung dose (MLD) and various Vx values (lung volume receiving > x Gy) for

ipsilateral and whole lung were considered. Due to high correlation between these

parameters [2], exploratory analysis was performed to find smaller number of features

that capture dose heterogeneity relevant to RP. In this analysis, Vx was computed at

various threshold dose x in three different ways: 1) x as an absolute dose or relative
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to a prescription dose, 2) Vx normalized to lung volume or as a absolute volume,

and 3) ipsilateral or whole lung. In addition to lung dose, we also considered mean

heart dose (MHD) [24], fraction size [25], and PTV volume [26].

8.3.4 Bayesian Network training

A Bayesian network ensemble model was trained from the candidate variables

following the methods in [8]. Computation was performed using the MATLAB-

based code package released in: https://github.com/meson200/MCMCBNE. In brief,

the training was done in 4 steps:

1. Data discretization: every continuous variable was discretized into 2 bins at a

boundary that maximizes mutual information with respect to RP, as shown in

table 8.4.

2. Feature selection with the Koller-Sahami (KS) filter: The number of candi-

date variables were reduced to the smallest subset that maximized explanatory

power measured by cross-entropy with respect to RP. This particular filter-

ing technique was chosen due to its information theoretic approach, which is

independent of prediction schemes [27].

3. DAG training: Posterior distribution of Bayesian network graphs was obtained

by Markov-Chain Monte Carlo (MCMC) sampling under causality constraints

between variables.

4. Parameter learning: Every variable in a BN is treated as a probabilistic distri-

bution which is conditioned upon its upstream variables (“parents”). BN pa-

rameters, referred to as conditional probability values for every pair of a node
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and its parents, were learned from data using the expectation-maximization

algorithm.

5. RP prediction: Probability of RP is computed by each fully trained BN graph

using known input variables. Then, a composite (ensemble) prediction was

made P(RP) by averaging the results from BN graphs (Pi(RP )) with N highest

posterior probability from the MCMC simulation (equation 8.1). Prediction

from individual BN models in the ensemble was weighted by the posterior

probability of the BN graph (P (i|D)). Ensemble size (N) was varied from 1 to

200.

P (RP ) =

N∑
i=1

Pi(RP )P (i|D)

N∑
i=1

P (i|D)

(8.1)

8.3.5 Logistic regression training

As an alternative prediction model, multivariate logistic regression function was

trained with the same variable set used for Bayesian network. Probability of pneu-

monitis was derived using the logistic models from variable values {xi} which were

standardized prior to fitting using means (mi) and standard deviations (σi)in the

training set (equation 8.2, 8.3)

p(RP ) =
1

1 + exp(−a) (8.2)

a = w0 +
N∑
i

wi
(xi −mi)

σi

(8.3)
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The model coefficients {w0, ..., wN} were trained under the L1 regularization

method which effectively decreases the magnitude of the coefficients to mitigate

overfitting. Missing data in the dataset, taking 0% in the training and 6% in the

validation set, was imputed using the K nearest neighbor method.

8.3.6 Evaluation of predictive performance

Classification of RP events was made by thresholding on the RP probabilities

from BN and logistic regression models. Classification performance was measured

using three receiver operating characteristics (ROC) metrics: area under the curve

(AUC), sensitivity, and specificity at the optimal operating threshold maximizing a

sum of sensitivity and specificity. Model testing was carried out in two ways:

• Internal validation using the .632+ bootstrap method [28]: the training was

repeated in 200 replicates which was resampled from the original data with

replacement, and the instances that were not sampled into the replicates were

used for testing. At this stage, confidence levels on the connections between

variables in the BN graphs were defined as the frequency of its appearance

throughout the bootstrapping.

• External validation: The BN structure and parameters were trained on the

original training dataset and applied to the external validation dataset. We also

investigated the impact of uncertainty in the BN parameter values on validation

performance. This was implemented by repeating parameter learning in the

200 bootstrap replicates under the same structure (see supplementary material)

and testing a bag of BN models with varying parameters on the validation set.

The logistic regression model was validated in the same fashion.
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95% confidence intervals for all the performance metrics were evaluated by taking

97.5% and 2.5% percentile of the bootstrap samples. Comparisons of performance

between different models were made using the paired t-test on the bootstrap results

at the 95% confidence level.

8.4 Results

8.4.1 Exploratory analysis on lung DVH parameters

Correlation between lung Vx and RP was examined by the change in odds

ratios, computed by a logistic fit on raw data, at various threshold dose (x) (figure

8.1). When x was used as absolute dose, highest odds ratio (5.685) was marked

at 5 Gy for ipsilateral lung. When the percentage of a prescription dose was used

as x, increase in correlation was observed in a high dose region beyond 50% of

the prescription dose. Guided by this analysis, we chose two Vx parameters that

represent low dose and high dose spillage respectively: percentage of ipsilateral lung

volume receiving 5 Gy or more (V5) and absolute lung volume receiving more than

105% of prescription dose (V105%). In a similar fashion, ipsilateral MLD (odds ratio:

2.400) was preferred over MLD for the whole lung (odds ratio: 2.365).

8.4.2 Variable selection and the Bayesian Network ensemble model

The KS variable filter was applied to 25 candidate variables from 3 categories

(dosimetric, biological, and clinical) which was reduced to the following 6: 1) pre-

treatment OPN, 2) 6 weeks ACE, 3) pre-treatment TGFβ, 4) ipsilateral V5, 5)

V105%, and 6) PTVCOMSI. The KS filtering results are summarized in table 8.4.

Causal connections between these variables and RP were established in BN graphs.

Bootstrap test on BN graph learning detected 11 significant links out of possible 19
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Figure 8.1: Odds ratios of lung Vx measured at various threshold dose values (x), nor-
malization schemes, and lung volume definition.

from an ensemble of 50 graphs where bootstrapped RP prediction performance was

optimal (figure 8.3). A mean confidence level of the significant links was 0.57, while

an upper bound of random variation was 0.29 [29].

8.4.3 Prediction performance of the BN model

When bootstrap validation was used, RP prediction improved upon increasing

number of graphs in an ensemble (figure 8.3). AUC, sensitivity and specificity in-

creased respectively from 0.96, 0.93, and 0.92 at size 1 to 0.99, 1, and 0.98 at size

50 where the performance reached optimum. At the optimal classification thresh-

old, sensitivity was consistently higher than specificity. In external validation, AUC

increased from 0.65 at size 1 to 0.8 at ensemble sizes 5-30 beyond which a slight

decrease to 0.75 was observed. The BN model was subsequently tested using only

the information available at baseline i.e. without ACE at 6 weeks. As a result, AUC

210



Table 8.4: Odds ratios of candidate variables, bin boundary used for discretization, and
frequency of selection obtained by bootstrapping the KS variable filtering. P-
values were adjusted for multiple comparison using a method by Benjamini
and Hochberg [30]. *variables selected for the BN modeling stage. † taken as
a percentage change from baseline.

Odds ratio (p-value) Bin boundary Selection frequency
Biological variables
OPN (baseline)* 0.887 (0.886) 54.2 ng/ml 0.394
OPN (6 weeks†) 1.150 (0.886) 80.9 % 0.133
IL8 (baseline) 2.862 (0.210) 31.0 pg/ml 0.228
IL8 (6 weeks) 0.404 (0.637) -60.4 % 0.264
ACE (baseline) 1.999 (0.529) 141.1 ng/ml 0.308
ACE (6 weeks)* 0.002 (0.010) -15.8 % 0.782
IL6 (baseline) 0.070 (0.657) 7.0 pg/ml 0.2
IL6 (6 weeks) 1.106 (0.886) -7.0 (%) 0.058
a2M (baseline) 0.553 (0.638) 5.3 mg/ml 0.328
a2M (6 weeks) 0.848 (0.886) -7.6 % 0.142
TGFb (baseline)* 1.866 (0.540) 42.2 ng/ml 0.504
TGFb (6 weeks) 0.493 (0.610) 1.4 % 0.053

Dosimetric variables
MLD (ipsilateral) 2.400 (0.391) 13.8 Gy 0.107
V5 (ipsilateral)* 5.685 (0.060) 42.4 % 0.454
V105%* 5.848 (0.023) 1.4 cc 0.668
Fraction size 0.752 (0.886) 20 Gy per fraction 0.142
PTV volume 1.932 (0.518) 20.5 cc 0.064
MHD 1.945 (0.529) 9.0 Gy 0.153

Clinical variables
PTVCOMSI* 0.379 (0.391) 0.5 0.448
Age 1.172 (0.886) 69 0.121
Smoking 1.077 (0.945) 0.146
IP 1.300 (0.768) 0.061
Central tumour 1.800 (0.854) 0.068
COPD 0.750 (0.886) 0.120
ACE inhibitor 0.800 (0.638) 0.054
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Figure 8.2: Variables connected by significant associations detected in an ensemble of
50 graphs. Edge thickness was drawn proportionally to bootstrap estimated
confidence level. Arrow-headed and bar-headed edges are assigned to positive
and negative correlation, respectively. ipsi: ipsilateral lung, pre: baseline
biomarker levels
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Table 8.5: Parameters for the trained logistic regression model as used in equation 8.3.
bl.: baseline, ipsi.: ipsilateral.

Variables
OPN (bl.) ACE (6

weeks)
TGF (bl.) V5 (ipsi.) V105% COMSI w0

mean (mi) 110
ng/ml

3.23 % 41.2
ng/ml

27.4% 1.34 cc 0.59

standard
deviation
(σi)

55.9
ng/ml

29.5 % 11.7
ng/ml

12.1 % 2.00 cc 0.20

coefficients
(wi)

0 -0.044 0.014 0.004 0.148 -0.040 0.125

Table 8.6: Comparison of the Bayesian network model with size 5 (BN5) and logistic
regression in predictive performance. Numbers in parentheses are 95% confi-
dence intervals from bootstrapping.

632+ bootstrap External validation
AUC Sensitivity Specificity AUC Sensitivity Specificity

BN5 0.99 (0.90,1) 1 (1,1) 0.97 (0.76,1) 0.8 (0.35,0.85) 1 (1,1) 0.7 (0.3,0.8)
logistic 0.93 (0.62,1) 0.99 (0.75,1) 0.87 (0.59,1) 0.7 (0,0.9) 1 (0,1) 0.7 (0.1,1)

and sensitivity from the 632+ bootstrap test decreased significantly at all ensemble

sizes (figure 8.3). Reduction in AUC ranged from 0.02 at largest ensemble size to

0.06 at ensemble size 1. In the validation cohort, however, better performance was

observed with only baseline information.

The ensemble size 5 BN model (see supplementary material for specification),

the smallest model that performed best in external validation, was compared with the

multivariate logistic model. The best-fit parameters for the logistic model are shown

in table 8.5. The logistic model was less effective in predicting RP than Bayesian

network, recording significantly lower AUC both in internal 632+ and external vali-

dation (table 8.6).
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Figure 8.3: Classification performance of the Bayesian network model in two cohorts
with varying ensemble size. Error bars: bootstrap-estimated 95% confidence
intervals.

8.5 Discussion

Events of RP from lung SBRT are rare and identifying the susceptible patients

before radiotherapy remains a difficult task, with conflicting results between studies.

This study intended to objectively select and combine RP risk factors into a Bayesian

network and test its predictive potentials. Two factors account for good bootstrap

performance of the resulting model in the training cohort. First, the main driving

force was strong individual predictive power of the key variables in the model. Uni-

variate AUC values of ACE at 6 weeks, V5, and V105%, 3 variables connected to

RP with high confidence, was respectively 0.94, 0.85 and 0.96 in the training cohort.

Another factor was the use of an ensemble instead of a single model; Learning a

Bayesian network structure from limited data involves high degree of uncertainty

due to large number of permutations in connecting the nodes [31]. Bayesian model

averaging helps overcoming the model selection uncertainty and thus improves out-

of-sample performance [32]. In our results, better performance of an ensemble model
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with a size larger than 1 was seen both in training and validation cohorts. Predictive

benefit of the ensemble approach was already shown by other outcome studies [8]

[33].

Amongst the biomarkers we studied, we found lower concentration of ACE at

6 weeks was the most strongly associated with RP events. This result is in line

with investigation by Zhao et al. [15] who reported lower ACE level at baseline and

mid-treatment for patients with RP grade ≥ 2. In the Bayesian network ensemble

the ACE was connected to dosimetric variables with high confidence. Causality of

this relationship can be justified by the knowledge that main production site of ACE

is in lung epithelium and external stress to vasculature such as ionizing radiation

or bleomycin decreases serum ACE [16]. We also gathered information on use of

ACE inhibitors at baseline but it was not a significant predictor of RP (p = 0.64),

suggesting direct measurement of ACE as a more sensitive way to predict RP.

Choice of 6 weeks as a time point to gauge post-treatment biomarker response

was adequate to predict late toxicity before it happened, as the earliest occurrence of

RP was 94 days post-RT. However, biomarker response to RT would not be observ-

able at a treatment planning stage where RP prediction is most relevant in clinical

decision making. We tested this scenario by attempting prediction without 6-weeks

ACE. BN is capable of handling missing information by marginalizing probability

distribution over unknown variables. Prediction with less information was less ac-

curate in the 632+ bootstrap test. However, this was not clearly reproduced in our

external validation cohort where the ACE decrease at 6 weeks was not as specific

to RP as in the training set, although one patient with RP showed 10% decrease in
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ACE. Nevertheless, our BN model is still capable of making baseline prediction due

to its probabilistic property, which is absent in the multivariate logistic model. Fur-

thermore, the BN model with post-RT response biomarkers might still be valuable

as a semi-mechanistic model that elucidates mechanisms to RP.

We also observed that the size of high dose spillage, represented by lung volume

outside PTV receiving dose ≥ 105%, was predictive of RP in univariate analysis and

also one of the key variables in the BN model. This “high dose effect” on RP has

been previously reported by a number of studies [18] [34]. Our results on exploratory

analysis on Vx point out that both low-dose (V5) and high dose components might

be relevant to RP. Previous lung SBRT protocols including RTOG 0236 and 0813

stipulate this volume as one of the quality assurance metrics to be regulated, setting

its upper limit on 15% of the PTV volume. Further studies are needed to clarify the

mechanism of a smaller volume of high dose irradiation to lung causing RP.

Multivariate logistic regression is a popular method in predictive modeling and

has been applied to prediction of radiation pneumonitis [18] [35]. In our cohorts,

it was less successful in predicting RP than the BN model given the same set of

variables. In addition, logistic regression recorded higher variance (sensitivity of

prediction performance to variation in training example); The variance was measured

by perturbing training data by bootstrapping, repeating the model training in the

perturbed training data, and taking the distribution of the resulting AUC values

in the external validation set. Figure 8.4 shows that although both models showed

considerable variance, contributing to large confidence intervals in figure 8.3, the

Bayesian network approach managed to reduce the sensitivity. This result advocates
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Figure 8.4: Variance of the BN and logistic models represented by cumulative distribution
of the areas under the curve for external validation resulting from random
training dataset change. Numbers in parentheses are variance of a model
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BN as a more robust choice for a multi-dimensional data model, while more aggressive

feature selection might be needed prior to training logistic regression.

The main limitation of this study is the low number of toxicity events in the

cohorts, which led to relatively low specificity of the optimized model. Nevertheless,

our computational approach reduced the data dimensionality to the key variables in

order to mitigate the impact of a low event rate on overfitting. In the future, the

methodology could be extended to better handle class imbalance. For example, a

model can be trained with different weights to misclassification of RP or non-RP
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events (also known as cost-sensitive learning [36]). Also, the links that we discovered

in the BN graphs do not always imply direct causality although non-causal rela-

tionships were ruled out during graph searching. Ultimately, further validation on

larger datasets is required to confirm the observations learned from the developed

BN model.

8.6 Conclusion

We developed a Bayesian Network ensemble model for radiation pneumonitis

after lung SBRT. The process of building the model and the resulting model structure

identified potential key players in predicting RP from SBRT, such as high dose

spillage in lung and dose response of post-treatment ACE level. The model can be

used as a prediction tool that can operate under varying availability of information.

8.7 Acknowledgements
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8.8 Supplementary materials

This supplementary material provides specifications on the structures and pa-

rameters of the best-performing BN model for any interested readers who wish to

apply it to their cohorts. This ensemble model was chosen based on its performance
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in external validation. The model consists of 5 graphs {g1, ..., g5} from which prob-

ability of RP of grade 2 or higher is computed using the following Bayesian model

averaging formula:

P (RP ) =
0.0033Pg1(RP ) + 0.0027Pg2(RP ) + 0.0027Pg3(RP ) + 0.0023Pg4(RP ) + 0.0023Pg5(RP )

0.0133

(8.4)

where Pg1(RP ), ..., Pg5(RP ) are RP probabilities predicted by each individual

graphs. Figure 1-5 shows the structures and parameters for the models {g1, ..., g5}.
The parameters consist of prior probabilities and conditional probability tables for

each node. Note that variables have to be discretized using the boundaries shown in

the table 4 in the main text.
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Figure 8.5: A structure and parameters for the model g1.
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Figure 8.6: A structure and parameters for the model g2.
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Figure 8.7: A structure and parameters for the model g3.
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Figure 8.8: A structure and parameters for the model g4.
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P(RP|A=1,L=2,H=2) = 0.96
P(RP|A=1,L=2,H=1) = 0.50
P(RP|A=1,L=1,H=2) = 0.90
P(RP|A=1,L=1,H=1) = 0.04

Figure 8.9: A structure and parameters for the model g5.
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CHAPTER 9
Conclusions and Outlook
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9.3 Future outlook . . . . . . . . . . . . . . . . . . . . . . . 236

9.1 Summary and conclusions

Prediction and understanding of radiation induced lung disease (RILD) is an

important element in lung cancer treatment with radiotherapy. The patients who

are less vulnerable to RILD can be salvaged by an intensified radiotherapy plan,

thus contributing to better overall survival. As well, expanded understanding of

radiobiological mechanisms for RILD can be applied to other radiation induced tox-

icities for better prediction and management. However, the clinical RILD models

are static and population-based, assuming the same expected toxicity for any given

time if dose were the same across all the patients. These models are not adequate

for explaining heterogeneous response despite its convenience as a clinical guideline.

This thesis was intended to extend the RILD models to its dynamic behaviour and

patient specificity. The extended RILD models were aimed at giving more accurate

disease prediction and also contributing to biophysical domain knowledge for RILD

using the fitted model parameters.
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We first examined the dynamic behaviour of radiation fibrosis from longitudinal

analysis of computed tomography (CT) images after radiotherapy. Regional CT

density changes were modelled as a function of dose distribution and time. The

sigmoidal Lyman-Kutcher-Burman (LKB) model, a widely-used analytical model for

radiation-induced toxicity, was fit to the dose-CT change relationships. By observing

the fitted LKB parameters, we noticed the dose response was sensitive to post-

treatment time and tumour position in superior-inferior direction, but not to dose

calculation algorithms. We also observed transition from linear-non-threshold to a

nonlinear threshold dose response at 3 months post-RT, suggesting the biological

influence that triggers the fibrotic process.

Inspired by these results, we investigated the impacts of non-dosimetric - biolog-

ical and clinical - factors on RILD risk by exploring a large amount of patient data.

After comprehensive literature review (chapter 3), 6 proteins were chosen as candi-

date RILD biomarkers so that they represent different biological processes involved

in RILD pathogenesis. We first attempted to relate these biomarkers to heterogene-

ity in radiologic response that we previously observed, and capture the onset of such

heterogeneity before RT completion. Dose response in CT change during radiother-

apy was characterized using a linear mixed model. Although we detected significant

patient heterogeneity in model parameters, no significant correlation was found be-

tween the biomarkers and CT change in the studied cohort. This study is in progress

and we will study more deeply into image texture changes other than HU histogram

statistics.
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The latter half of the thesis studied how to combine variables from biological,

dosimetric and clinical domains to build a prediction model for radiation pneumonitis

(RP), an early phase of RILD where response heterogeneity is high. These non-

dosimetric variables, along with mean lung dose and irradiated volume at different

threshold dose, were first studied individually for their univariate correlations with

the disease. Then, High dimensionality of data required a careful model design

that regulates model complexity and incorporates uncertainty in model selection.

The candidate variables were boiled down to a smaller subset using a information

theory based filtering method. The selected variables were connected to each other

via a Bayesian network (BN), a probabilistic model that can make inference about

probability of RP based on observed variables. In order to account for uncertainty in

a single BN graph, Bayesian-style RP prediction was made by averaging the results

from an ensemble of BN graphs.

The Bayesian network modelling approach was applied separately to two treat-

ment cohorts - conventionally fractionated (CFRT) and stereotactic body radiother-

apy (SBRT) - which are expected to show different toxicity patterns due to fraction

size difference. For both cohorts, post-RT change in angiotensin converting enzyme

(ACE) was a significant univariate predictor of RP. Mean dose to heart was significant

for the CFRT patients, while SBRT cohort revealed volume of high dose (≥ 105% of

prescription dose) spillage outside a target volume as the most important dosimetric

predictor. The BN ensemble model predicted the incidence of RP using the connec-

tions between the filtered variables, first after observing biomarker response to RP
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and again at the treatment planning stage with unknown biomarker response. Al-

though prediction accuracy decreased with less information (missing mid-treatment

biomarkers) for both cohorts, the BN model was flexible enough to make inference

under varying information availability. The BN model achieved better predictive

performance than conventional risk models such as multivariate logistic regression

and generalized equivalent uniform dose (gEUD).

9.2 Limitations

Conclusions from this thesis have to be taken with precaution due to a few

limitations in data and studies’ methodology.

First of all, statistical power of all the presented studies is limited by a small

sample size which was never larger than 100. Moreover, each patient group was

heterogeneous in treatment modalities, fractionations, or comorbidities. This made

it difficult to isolate the effect of one risk factor due to possible confounders. One

of the purposes of Bayesian network was to explicitly model this confounder effect.

With modest sample size, however, it was difficult to isolate a small number of

“concensus” networks, as we observed a large spread of graph posterior.

Scoring outcomes is an important source of uncertainty in RILD modelling (sec-

tion 2.5). In this work, therapeutic intervention was used as a cutoff severity for

defining RP events. Some cases with the presence of intervention were not classified

as RP based on suspicion of different etiology such as viral and bacterial infection.

This ambiguity in differential diagnosis might translate into uncertainties in our mod-

elling results. If this issue can be resolved, the proposed BN model could be used for

assisting differential diagnosis using the predicted RP probability.
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Another source of uncertainty is possible discrepancy from planned to delivered

dose distribution. SBRT dose with fewer fractions are more likely to suffer from this

uncertainty due to higher impact of patient misalignment to summed dose. In BN

modelling, however, dosimetric values are discretized and thus small deviation is less

likely to affect model integrity than other models that uses continuous values. In

the future, accuracy of the dosimetric variables can be improved by correcting for

displacement and deformation of patient anatomy using daily cone-beam CT.

9.3 Future outlook

Before translating the presented RILD models to clinical practice, a few obstacles

need to be overcome.

First of all, both of the fibrosis or RP models gave a continuous risk score for

the tested patients. Prediction performance was measured based on these scores by

applying different decision thresholds to the scores and then either: 1) averaging the

thresholds (AUC) or 2) taking the classification accuracy at the optimal threshold.

However, determination of a decision threshold is should not be based solely on

prediction of toxicity. Rather, it should lie in a equation that balances costs (toxicity)

and benefits (tumour control) of increasing dose. Adapting decision thresholds to

patient preferences for outcomes could be one possible future direction [1].

Secondly, although the model performance and network features were validated

using bootstrapping which simulates data distributions different than the training,

large-scale external validation is nevertheless the most direct and ultimate test of the

utility of the presented RILD models. As seen in Kwa et al.’s DVH analysis from the

pooled datasets from 5 institutions [2], studies involving external datasets can help
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isolate predictive patterns that are robust to institutional variations in patient and

treatment characteristics. However, consistent ways of collecting data and reporting

outcomes need to be implemented across centres, as well as adopting a better data

sharing or pooling culture [3].

Moreover, Bayesian network graph searching can be assisted by introducing

more expert knowledge to the search algorithm. Currently, constraints are used for

blocking non-causal links and also for maintaining hierarchical arrangement of vari-

ables (e.g. baseline biomarkers cannot directly influence RP risk). In the future,

allowed links could be assigned to different prior probabilities according to the de-

gree of confidence that we have on the interactions. For example, a link between

biomarkers α2M and TGFβ could be assigned to higher prior probability because

α2M is known to bind to TGFβ to regulate its activity [4]. The Bayesian approach

with Monte-Carlo sampling provides the opportunity to allow this fusion between

prior knowledge with data [5].
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APPENDIX A
Texture analysis

A.1 Overview

This chapter of the appendix provides introduction and mathematical details on

computed tomography (CT) features used in chapter 5.

A.2 First order features

First order features [1], the most basic types of textures, pertains to distribution

of grey levels without consideration of their spatial distribution. To obtain such

features, distribution of HUs in a region of interest is evaluated as a histogram (P (b))

of equally spaced 16 (= L) bins from minimum to maximum HU. The following

metrics are calculated from the histogram:

• Mean HU :
∑L

b=1 bP (b)

• Quantile metrics: HUs at 70%, 50% (median), 30%, and minimum HU.

• Binned entropy:

S = −
L∑

b=1

P (b)log2P (b) (A.1)

• Unbinned entropy: For this metric, histogram was recreated with the smallest

bin width (1 HU) and the number of bins (L) equal to difference between

maximum and minimum HU. Then, the same formula as A.1 was applied to

recalculate the entropy in the new histogram.
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A.3 Grey level co-ocurrence matrix

Grey level co-occurrence matrix (GLCM) features [2] concern how grey levels are

spatially correlated. Specifically, they identify co-ocurrence of a pair of grey levels

in neighbouring pixels. In order to calculate GLCM features, a joint probability

distribution of a pair of grey levels 1 ≤ a, b ≤ L is calculated from every pair of

pixels {p1, p2} separated by a distance d and an angle θ:

P (a, b; d, θ) = P (p1 = a, p2 = b) (A.2)

This 2D joint distribution or histogram is called a grey level co-ocurrence matrix.

Characteristics of this matrix are known to be related to a type of textures. For

example, an image with fine textures tends to have a uniform GLCM, while a course

texture increases the skewness of the matrix towards a diagonal [1].

In this study, a single GLCM matrix was evaluated for a separation of d = 1

marginalized over the 4 angles (0◦, 45◦, 90◦, and 135◦). These four angles cover

all possible directions of neighbourhood searching under the assumption of angular

symmetry. From the resulting GLCM matrix P (a, b), five metrics were derived:

sum average, sum of square variance, sum entropy, difference entropy, and entropy.

Mathematical definitions of these features can be found in Haralick et al. [2].

A.4 Fractal features

Fractal refers to self-similar patterns in curves or surfaces. A fractal object can

be created by superposition of its downscaled version. This degree of self-similarity
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can be quantified by a fractal dimension which was first conceptualized by Mandel-

brot [3]. He claimed that any geometrical shapes (curve,surface,...) can be approx-

imated as superposition of N segments of a size r. From this, he defined a fractal

dimension as:

D = − logN

log r(N)
(A.3)

Measurement of the fractal dimension involves finding the number of small seg-

ments (N) that reconstructs the original image while varying its size r. This study

used three methods: the Brownian motion method [4], fine and coarse box counting

methods [5].

A.5 Laws’ filter features

The Laws’ filter [6] emphasizes a certain patterns in images into a form of as

“energy map”. First, an image is convoluted by 4 different 5 x 5 2 dimensional filters,

and each pixel of the filtered image is averaged with its neighbours to create a energy

map. Entropy of the 4 resulting energy maps from each filter (equation A.1) is taken

as a feature value.

The 2D filters are created by multiplying a pair of 1D masks. There are 5 kinds

of 1D masks which are designed to emphasize different patterns:

• L5 (level) = [1 4 6 4 1]

• E5 (edge) = [-1 -2 0 2 1]

• S5 (spot) = [-1 0 2 0 -1]

• R5 (ripple) = [1 -4 6 -4 1]

• W5(wave) = [-1 2 0 -2 -1]
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For example, a filter E5L5 is created by:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−2
0

2

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

[
1 4 6 4 1

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −4 −6 −4 −1
−2 −8 −12 −8 −1
0 0 0 0 0

2 8 12 8 2

1 4 6 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)

This filter, by construction, emphasizes a horizontal edged pattern line. Follow-

ing the results by Cunliffe et al. [7], four types of 2D filters - R5L5, S5L5, E5L5,

W5L5 - were used by this study.
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APPENDIX B
Dose calculation algorithms

B.1 Overview

This chapter of the appendix will introduce the two main dose calculation algo-

rithms used in the literatures on lung RILD models.

B.2 Convolution-superposition algorithm

Convolution-superposition algorithm calculates 3D dose deposition by convolv-

ing released energy with an energy deposition kernel [8]. The released energy element,

total energy released in the mass (TERMA), or T (
r), represents energy released by

a primary beam at a point 
r in a medium, and can be written as following:

T (
r) =
μ

ρ
Φ(
r) (B.1)

where μ/ρ is mass attenuation coefficient and Φ(
r) is a primary fluence at point


r.

The kernel is a 3D exponential function which models energy deposition by

scattered beams, and is pre-calculated using the Monte-Carlo method. The final

dose D at point 
r is computed as:

D(
r) =

∫
T (
r)A(
r − 
r′)d3
r′

= (T ∗ A)(
r)

242



As seen from the use of integral, dose deposition is modelled as linear super-

position of scattered dose originating from points over patient body. Heterogeneity

correction is possible by scaling the vectors 
r and 
r − 
r′ by the density along the

paths (radiological path length).

The pencil-beam kernel is one of the earliest implementation of the convolution-

superposition in clinic. However, the pencil beam kernel is forward-peaked, which

does not adequately model lateral electron transport [9]. Moreover, assumption of

charged particle equilibrium results in large underestimation of dose in presence of

low density materials where the equilibrium is lost by electrons travelling further

(e.g. lung) [9].

The analytical anisotropic algorithm (AAA) has been implemented for the EclipseTM

TPS to enhance the accuracy of pencil beam convolution in heterogeneous media

while maintaining reasonable computation time (around a few seconds per beam).

AAA improved an accuracy of the pencil beam kernel by separate modelling for pri-

mary photons, scattered extra-focal photons, and contaminant electrons [10]. Hetero-

geneity handling was also improved by correcting the kernel for density in multiple

directions [10]. Substantial improvement in accuracy was shown in heterogeneous

materials as well as low dose and penumbra region [11].

B.3 Monte-Carlo method

The Monte-Carlo (MC) method refers to a use of repeated random sampling

to simulate a process. When applied to dose calculation, it explicitly simulates

transport of electrons and photons of a energy range kV∼MV and resulting dose

deposition in media. Particle transport in a medium is modelled as a random process;
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A random number generator in the MC code samples an interaction cross-section for

a given medium to determine the type of interaction and the distance to the next

interaction point. Cross-section data is obtained from measurement and important in

determining the accuracy of MC code systems. Particle transport is repeated many

times (called histories) to acquire sufficient statistics, which can be parallelized to

improve computation speed.

Unlike the previous two model-based methods, the MC method enables accurate

scatter dose and heterogeneity handling, and thus considered as a gold standard [12].

There are multiple Monte Carlo code systems in medical physics with differences in

the used language, geometry definition, and a use of approximation. This section

will introduce one of the systems that was chosen for this study - the electron gamma

shower code system (EGSnrc) developed in the National Research Council in Canada

[13]. The name “shower” stems from its unique way of generating particle tracks:

while an initial “primary”) particle interacts with matters in a medium, it spawns

secondary, tertiary, and etc. particle tracks which are appended to the primary

particle’s history. The tracks are terminated when they reach a certain predefined

minimum energy (ECUT for electrons, PCUT for photons) or cross the boundaries

of a defined geometry. Figure B.1 summarizes how photon transport is simulated by

the EGSnrc.

MC dose calculation with the EGSnrc system consists of two parts: simulation

of particle transport in a linear accelerator head, and transport/dose deposition in a

patient body.
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Figure B.1: Flowchart of a MC simulation of photon transport. DETERMINE means
that the parameter of the event is found by sampling from an relevant prob-
ability distribution. Reproduced with permission from [13].
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Linac head simulation. BEAMnrc [14] is a part of the EGSnrc code system

that is dedicated to modelling radiation sources and simulating particle transport

in a linac head. BEAMnrc requires a geometric model or a ”beam model” of the

accelerator. A beam model consists of component modules (CMs) that are ordered

along beam direction. Each CM specifies the geometric shape of an actual accel-

erator component (e.g. target, monitoring unit chamber, primary and secondary

collimators). Although the CMs are designed based on the actual schematic for a

linac, some CM parameters are to be determined via ”commissioning”: the matching

of MC-simulated dose distribution to actual measurement. The complete simulation

generates a phase-space file which contains information about particle position, direc-

tion, charge, etc. for every particle crossing a plane in the air gap between the linac

head and a patient body. In this work, the beam model for the Varian ClinacTM21X

machine was commissioned by testing the accuracy of calculated dose profiles and

central-axis percent depth dose (PDD) curves in a water phantom. The simula-

tion was run using a cutoff energy for electrons (ECUT) of 0.700 MeV and photons

(PCUT) of 0.010 MeV cross-section data corresponding to the cutoff energies from

the photon cross section database (XCOM) from the National Institute of Standards

and Technology (NIST). Typical simulation time for creating one phase-space file for

50 million particles was between 2 to 3 hours with 8 x 2.26 GHz processors.

Patient dose calculation. DOSXYZnrc is an EGSnrc component that sim-

ulates particle interactions in patient body and scores dose using information on

incident particles from the BEAMnrc simulation. Patient geometry is represented

in a voxelised phantom derived from an CT image. The phantom is created by
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segmenting the CT image into several materials (e.g. air, lung, tissue, bone) based

on CT voxel values. Each material is assigned to its unique electron density and

cross-section data, which explicitly handles heterogeneity. A dose is scored in the

DOSXYZ voxel if a particle entering the voxel has an energy smaller than a threshold

(ECUT for electrons, PCUT for photons) . In this work, a free-breathing planning

CT was converted to a DOSXYZ phantom with 4 materials (air, lung, tissue, bone)

and a voxel size of 5 mm x 5 mm x 5 mm. ECUT of 0.521 MeV and PCUT of

0.010 MeV were used. Dose at each voxel was scored first in units of Gy/particle

and later scaled to Gy by multiplying a calibration factor acquired from standard

open-beam simulation 1 . Calculation was carried out with the sufficient number of

particle histories to achieve clinically acceptable dose uncertainty (under 2% within

the target). The required simulation time per beam was 2 to 3 hours on average.

1 Standard open-beam setup refers to a 10 cm × 10 cm square field to a water
phantom at 100 cm distance from a radiation source to a patient (phantom) surface.
The MC dose was sampled at 5 cm depth in phantom and scaled to the dose at dmax,
depth at dose maximum, using a known PDD. A calibration factor was obtained as
a ratio of a known beam output value to the scored dose at dmax.
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