
INFORMATION TO USERS

This manuscript bas been reproduced from the microfilm master. UMI

films the text directly ftom the original or copy submitted. ThuSy some

thesis and dissertation copies are in typewriter~ while others rnay be

trom any type ofcomputer printer.

The quality of tbis reproduction is dependent upoo tbe quality of tbe

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pageSy these will be noted. Also, if

unauthorized copyright rnaterial had ta be removed, a note will indicate

the deletioD.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning al the upper left-band corner and

continuing nom left ta right in equal sections with smaIl overlaps. Each

original is also photographed in one exposure and is included in reduced

fonn at the back ofthe book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographie prints are available for any photographs or illustrations

appearing in this eopy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell lDformaIion Company

300 North Zeeb~ ADn AdJor MI 48106-1346 USA
313n61-4700 8OOIS21.0600

•

•

Implementation of Nested Relations in a
Database Programming Language

Hongbo HE

School of Computer Science
NIcGill University, ~Iontreal

September 1997

A. thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

~1a.ster of Science in Computer Science.

Copyright © Hongbo HE 1997

1+1 National Ubrary
ofC8nada

Acquisitions and
Bibliographie services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A 0N4
canada

The author bas granted a non
exclusive licence allowing the
National Library ofCanada to
reproduce, loan, distnbute or sell
copies ofthis thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts from it
May he printed or othenvise
reproduced without the author's
penmSSlon.

0-612-37126-3

Canadl

L'autem a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distrIbuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sm papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

•

•

Abstract

This thesis discusses the design and implementation of nested relations

in Relix, a relational database programming language. The purpose of this

thesis is ta integrate nested relations into Relix.

White a fiat relation is defined over a set of atomic attributes, a nested

relation is defined over attributes which can include non-atomic ones, Le.

a data item itself can be a relation. Ta show the power of relational

database systems, it is desirable to have nested relations in Relix. Our

implementation was done using existing relational functionalities of Relix,

without any modification of the physical data representation. Instead

of focusing on nesting and unnesting as the major research direction of

nested relations. we built nested relations on top of fiat relations and

we built nested queries by allowing the domain algebra to subsume the

relational algebra.

Users are able ta take advantage of nested relations in Relix with ooly

minimal Dew syntax being added to the system.

•

•

Résumé

Cette thèse a pour objectif la spécification et l'implémentation des

relations imbriquées dans Relix, un langage de programmation de base de

données relationnelles. Le but de cette thèse est d'intégrer les relations

imbriquées dans Relix.

Une relation plate est definie sur un ensemble d'attributs atomiques,

alors qu'une relation imbriquée est définie sur des attributs qui sont non

atomiques,i.e., une donnée pourrait être une relation. Pour montrer la

puissance des systems de base de données relationnelles, il est desirable

d'avoir des relations imbriquées dans Relix. Notre implémentation est

basée sur les fonctionalités relationnelles déjà existantes dans Relix, au

cune modification au nivea.u de la représentation physique des données

n'a été apportée. Au lieu de focaliser notre axe de recherche sur les pro

priétés d'imbrication et de non-imbrication des relations imbriquées, nous

avons construit des requêtes imbriquées permettant à l'algèbre relation

nelle d'être une composante du domaine algébrique.

Les utilisateurs peuvent tirer profit des relations imbriquées dans Relix

à l'aide d'une nouvelle syntaxe minimale qui a été ajoutée au système.

11

•

•

Acknowledgements

l would like ta express my gratitude to my thesis supervisor, ProfessaI'

T. H. Merrett, for his attentive guidance, invaluable advice, and endless

patience throughout the research and preparation of this thesis. l would

also like to thank him for his financial support.

l would like to thank my coIleagues in the ALDAT lab, especially Xi

aoyan Zhao and Rebecca Lui for their assistance on the usage of facilities

in the lab and their consultation on the existing Relix system. Special

thanks goes to Abdelkrim Hebbar who translated the abstract of this

thesis to French and Anne Vogt who proofread this thesis.

l would also like to thank aIl the secretaries of the School of Computer

Science for their kind help, especiaIly Ms. Josie Vallelonga and Ms. Franca

Cianci.

l wish to thank aIl my friends during my years at McGill, Pung Hay,

Xinan Tang, Shaohua Han and Marcia Cava1cante for their endless en

couragement.

Thanks must aIso go to my father, my brothers for their love and

constant support.

Finally, l would like to dedicate this thesis to my mother, for her bless

in my life to date and forever .

ili

•

•

Contents

Abstract

Résumé

Acknowledgements

1 Introduction

1.1 Relational l\tlodel

1.1.1 Operations on Relations

1.1.2 Operations on Domains

1.2 Object Oriented Madel .

1.:3 Object Relationall\'lodel

lA Nested Relation ~lodel . .

1.4.1 Nested Relations

1.4.2 Nesting and Unnesting .

1.4.3 Our Approach . . .

1.5 Thesis Aim and Outline

2 Relix

2.1 Overview .

2.1.1 Domains and Relations.

2.1.2 Basic Commands in Relix

iv

i

ii

Hi

1

l

2

3

3

4

5

6

7

10

Il

12

12

13

14

•

4.1.3 Implementation of Domain Operations

4.2 Declaration and Initialization of Nested Relations

2.4.1 Definition

2.4.2 Commutative

2.4.3 Associative

2.4.4 Another Approach

3 User's Manual on Nested Relations

:3.1 The Nested Relations and Relation Data Type.

2.2 Relational Aigebra

2.2.1 Projection

2.2.2 Selection.

2.2.3 Joins.

2.3 Domain Aigebra .

16

16

17

18

23

23

25

26

27

.......... 27

.......... 28

28

30

31

31

34

:l4

40

45

45

46

47

50

53

53

57Initialization.

Declaration of Relation Data Type4.2.1

4.2.2

2.3.1 Horizontal Operations

2.3.2 Reduction (Vertical Operations) ..

2.3.3 Nested Relations

2.4 ijoin, ujoin, sjoin are Associative and Commutative.

:3.2 Operations on Nested Relations

3.2.1 Vertical Operations ..

3.2.2 Horizontal Operations

4 Implementation of Nested Relations

4.1 Implementation of Relix

4.1.1 System Relations

4.1.2 Parser and Interpreter

• v

•

•

4.3 Operations................

4.3.1 Implementation of Reduction

4.3.2 Horizontal Operation

5 Conclusion

.5.1 Summary

.5.2 Future WOl"k . .

Bibliography

vi

58

59

67

74

74

75

77

•

•

Chapter 1

Introduction

This thesis discusses the implementation of nested relations in Relix, a relational

database system developed at McGill.

The relational model for representing data was proposed by Codd [Cod70} in

the early seventies. Since then. it has gained an undisputable key position in the

commercial database industry. The nested relational model [Mak77] was developed

as an extension of the relational model and has gained significant importance in non

traditional database applications (such as CAD/CAM databases, text and pictorial

databases).

1.1 Relational Model

In the relational model, information is represented in a table format with the fol1owing

properties:

• AH rows are distinct from each other.

• The ordering of the rows is unimportant.

• Each column is unique and the ordering of the columns is immaterial.

1

• CHAPTER 1. INTRODUCTION 2

• The value in each row under a given column is atomic, i.e., it is nondecompos

able.

Each row is called a tuple and a column is referred to as a domain, A name is

given to the domain of a relation ta release the users from remembering the domain

ordering of the relation. They are called attributes. From a mathematical perspective,

a relation is a subset of the Cartesian product of its domains.

1.1.1 Operations on Relations

•

Operations on relations fonn the relational algebra, and can he thought of as a

collection of methods for building new tables that constitute answers to queries.

Codd defined a set of relational operations and proved that they are ~relationally

complete" 1 [Cod72].

Relations are considered atomic abjects in the relational algebra, and access to

tuples within a relation is precluded. Thus the notation and manipulations that must

be done are greatly simplified [Mer84]. The operations are defined as fol1owing:

• unaryoperations

- projection

- selection

• binary operations

- JL-joins: applied to relations that are union compatible

- a-joins: support set operations on relations

l An algebra or calculus is relationally complete if, given any finite collection of relations

Rl, R2 , ••• , Rn in simple normal forro, the expressions of the algebra or calculus permit definition of

any relation from Rl, R2~ . .. , Rn by using a set of N range predicates in one-tcrone correspondence

with R l , R2, ... ,Rn.

• CHAPTER 1. INTRODUCTION

1.1.2 Operations on Domains

3

•

The need for arithmetic and similar processing of the values of attributes in individual

tuples is apparent. The domain algebra was proposed [Mer76] entirely to avoid tuple

at-a-time operations for processing attributes in individual tuples. It allows the user

to create new domains from existing ones, and allows the generation of new values

from many values within a tuple or Crom values along an attribute. The domain

algebra operations are defined as:

• horizontal operations

- Constant

- Rename

- Function

- If-then-else

• vertical operations

- Reduction

- Equivalence Reduction

- Functional Mapping

- Partial Functional Mapping

1.2 Object Oriented Model

Object-oriented techniques are becoming popular for designing and implementinguser

interfaces, applications and systems. ODBMS (Object-oriented Database Manage

ment System) is the result of objected-oriented techniques implemented in database

management systems.

• CHAPTER 1. INTRODUCTION

Object-oriented techniques include the following key points:

• Encapsulation: combining data and functions in a single unit, the object.

4

•

• Polymorphism: the ability to treat different objects the same way by sending

them the same message, which elicits a semantically similar function in each

object.

• Class instantiation: creating different objects of the same general description

from the same class.

• Inheritance: extending one or more existing objects to create new objects that

share data, behavior, and methods in terms of 00 terminology.

Generally, ODBMSs are the database systems that allow data to be stored beyond

the tabular format of the relational model. They can deal with complex data struc

tures as in programming languages. Another possible way of thinking of ODBMSs is

as an object-oriented programming language with persistent data, in the sense that

data in the programs lives beyond the life of the programs. The ability to manipulate

data and perform computations within one single system is the strong point that

has been claimed to solve the problem of the mismatch between data manipulation

languages (e.g. SQL) in the relational model and ordinary programming languages.

1.3 Object Relational Model

Another database model is the object-relational database management system, which

was proposed by Stonebraker et. al. (Stone96].

It has four major features:

• Support for base data type extension. These include dynamic linking of user

defined functions, clientfserver activation of user-defined functions, secure user-

• CHAPTER 1. INTRODUCTION 5

•

defined functians, caliback in user-defined functions, user-defined access meth

ods, and arbitrary-Iength data types.

• Support far complex objects. Three basic type constructors are available: com

posites, sets and references. Full featured user-defined functions can be imposed

00 complex objects. Complex data types can be of arbitrary-Ieogth and have

SQL support.

• Support for inheritance. Both data and function inheritance are supported.

Overloading is aIso available, as weIl as multiple inheritance.

• Support for a production rule system. Events and actions are retrieved as well

as updates. Rules are integrated with inheritance and type extension. There

are rich execution semantics for rules and no infinite loops.

Stonebraker predicted ~object-relational DBMS to be the next great wave in

database technology" [Stone96].

1.4 Nested Relation Model

Most work on the relational model of Codd [Cod70] involved the first normal form

(1NF) assumption, i.e., that all elements of a tuple of a relation are atomic values

(undeconlposable). This has the advantage of simplifying the data mode!. However,

from the programming language point of view, this is an arbitrary restriction. Ways

of relaxing INF have been investigated which retain much of the advantages of the

relational model. The need to introduce complex objects into relations to make them

more qualified to handle non-business data processing applications such as picture

and map processing, computer aided design and scientific applications wa.s realized

in the late 1970's, thus leading to the introduction of nested relations [Mak77} and

the non-first-norma.l-form (NF2) [Jae82}.

• CHAPTER 1. INTRODUCTION

Project

Manager Detail

P-Name Budget(K)

Joe Pl 40

P2 30

Sue P2 30

P3 20

P'l 30

Figure 1.1: Nesting

1.4.1 Nested Relations

6

•

The relation Project in Figure 1.1 gives an example of nesting. Relation Project

consists of 2 tuples each having two attributes:

• Manager: The name of the manager who is in charge. The data is of type string

(atomic).

• Detail: A nested relation containing the projects of which the manager is in

charge. Each tuple in relation Detail contains a whole relation as an attribute

value. The first tuple contains a relation with 2 tuples. The second tuple

contains a relation with 3 tuples.

In [Sch82][Pis86][Lev92], the authors daim that N F2 relations have sorne advan

tages over INF relations, such as:

• Nested relations minimize redundancy of data. Related information can he

stored in one relation only without redundancy. For example, if relation Project

in Figure 1.1 were to he represented by INF, it woald he either have had to

• CHAPTER 1. INTRODUCTION 7

•

have re<lundant values for attribute Manager, or it would ha.ve had ta be split

into two different relations (Project and Detail), with a foreign key, P-Name.

• Nested relations allow efficient query processing since sorne of the joins are

realized within the nested relations themselves. In our example in figure 1.1,

if informa.tion about the manager's budget needs to he retrieved in the INF

representation a join must be perfonned between Manager and Detail, while no

join is needed in the N F 2 representation.

• Low level implementation techniques such as clustering a.nd repeating fields cao

be represented using the formalism defined by the nested relation model (Kor89].

1.4.2 Nesting and Unnesting

In the literature, defining a nested relational model was done by extending relational

operators to nested relations, and adding two restructuring operators, NEST and

UNNEST [Jae82][Fis85]. The NEST operator creates partitions which are based

on the formation of equivalence classes (KorS9]. Tuples are equivalent if the values

of the same attributes which are not nested are the same in the different tuples.

AU equivalent tuples are replaced with a single tuple in the resulting rela.tion; the

attrihutes of this tuple consists of all the attributes that are not nested, having the

common value in the original tuples, as well as a nested relation whose tuples are the

values of the attribute to he nested. Figure 1.2 shows an example of the use of the

NEST operator. Relation Project is nested on attribute Member.

The UNNEST operator undoes the result of the NEST operator. It creates a new

relation whose tuples are the concatenation of aIl the tuples in the relation heing

unnested ta the other attributes in the relation [Kor89]. Thus:

UN NESTMember(NESTMember(Projec:t)) = Project [Jae82]

But, the reverse does not hold, i.e.:

• CHAPTER 1. INTRODUCTION

Project

Proj-Name Member

Pl Joe

Pl Sue

Pl Sam

P2 Joe

P2 Mary

P3 Sue

P3 Mary

Figure 1.2: Nesting on Member

8

N ESTM ember (Project)

Proj..Name Member

Pl Joe

Sue

Sam

P2 Joe

lVIary

P3 Sue

Mary

R

A B

x a----
b

x a
-

R' = UNNESTBR

A B

x a

x b

x e

R" = N ESTBR'

A B

x a

b

e

•

1 c

Figure 1.3: NESTB(UNNE8TB(R)) <> R

~NESTAttTibute(UN N ESTAttTibute(Relation)) = Relation" is not always true.

The case in Figure 1.3 gives an example.

As the priee of the advantages over INF relations, nested relations pose a non

trivial problem of data representation [Ta.k89]. There are generally alternative rep

resentations of data in a nested relation, while the data is uniquely represented by a

INF relation. This is il1ustrated by the following example:

In left side of Figure 1.2, we have a simple INF relation Project on Projflame

and Member. This relation is a unique representation of a set of 7 tuples.

• CHAPTER 1. INTRODUCTION

N ESTProj-Name(Projeet)

Proj-.Name lVlember

Pl Joe

P2

P2 Mary

P3

Pl Sue

P3

Pl Sam

Figure 1.4: Relation: N ESTProj-Name(Projeet)

9

•

We can nest Project on attribute Nlember as shown in the right sicle of Figure 1.2.

We can also nest Project on attribute Proj-lVame, as il1ustrated in Figure 1.4.

Thus, it might be controversial whether or not these two relations are regarded

as the same relation. Tllere are two different assumptions with respect to the inter

pretation [Tak89]:

1. To consider each tuple in the relation to be meaningful. Hence, the relation

in the right side of Figuree) 1.2 gives a list of projects and their members,

while the relation in Figure~ lA gives the List of members and the projects

they participate. They carry different meanings, therefore, each nested relation

should be recognized as distinct. Thus, it would be difficult to identify a nested

relation with a INF relation. It ~poses a semantic gap between INF and nested

form relations although it enables us to represent complex objects in a natural

way by using nested relations" [Tak89).

2. Conversely, to assume that each tuple is just a union of single values rather

than a specifie object, which allows the identification of the two nested relations

• CHAPTER 1. INTRODUCTION 10

•

in the right sicle of Figures 1.2 and lA and the identification of them with the

original lNF relation. Many research papers implicitly use this assumption sucb

as those proposing transformation operators [Jae82J[Fis85], and those designing

nested relations [Ozy87][Ozy89].

Significant progress has been made in the field of nested relations during the past

decade. A generalization of the ordinary relational model, allowing relations with

set-valued attributes and adding two restructuring operators, nest a.nd unnest, was

introduced [Jae82] (OOM87]. Fisher and Van Gucht [Fis85] discussed one-Ievel nested

relations and their characterization by a new family of dependencies, and furthermore,

they developed a polynomial-time algorithm to test if a structure is a one-Ievel nested

relation. Thomas and Fischer generalized their work on the one-Ievel model and al

lowed nested relations of arbitrary, but fixed depth [Tho86]. In [RKS86], Roth, Korth

and Silberschatz defined a normal form called "Partitioned Normal Form(PNF)" for

nested relation, and aiso defined algebra and calculus query languages for them; how

ever, their proofs and method were later questioned by Tansel and Garnett [Tag92).

Numerous query languages have been introduced for the nested model [RKS86), and

pxtpnsions ha.v~ been proposed to practical query languages such as SQL to accom

modate nesting [Pis86][Kor89). Implementa.tion of databases based on the nested

relation model are aIso available snch as of in [Sps87][Des88J[Sab89). These are either

built on top of existing relational databases, or from scratch.

1.4.3 Our Approach

We view nested relations in a different light. We do not restrict our approach ta

nesting and unnesting. We build nested relations to facilitate nested queries. We do

this by extending domain operations ta include relational operations.

In our approach, we observe that:

• CHAPTER 1. INTRODUCTION Il

•

• Using fiat relations, we can model nested relations. We can use a set of surro

gates to keep links between parent relations and their nested child relations.

• We can build a nested relation query facility in the context of fiat relations.

Since an attribute itself can he a relation, relational operations cao be inc1uded

in domain operations.

1.5 Thesis Aim and Outline

The purpose of this thesis is to extend Relix with nested relations and ta integrate

the relational algebra into the domain algebra..

• Chapter l contains a literature review of the relational model~ the object ori

ented model, object-relational model and nested relations.

• Chapter 2 provides a generaI overview of the Relix database programming

language-the relational database programming language developed at McGill

University. The syntax and internai operation of Relix that are relevant to the

work done in this thesis are discussed in this chapter.

• Chapter 3 is the user's manual on nested rela.tions. It shows the semantics and

syntax for nested relation definitions and operations.

• Chapter 4 gives a detailed description of the implementation of nested relations

in Relix.

• Chapter 5 conc1udes the thesis with a summaryand proposais for future work.

•

•

Chapter 2

Relix

Relix is briefly described in this Chapter. The purpose of this Chapter is to provide

readers with enough background to understand the rest of the thesis. Since all the

design and implementation work in this thesis follows the conceptual framework of

the existing Relix system, we will present only the subset of Relix related to this

thesis. The theoretical foundation on which the development of Relix is based can

be found in [Mer84], while the basic reference of Relix can be found in [Lal86].

2.1 Overview

Relix is a RElational database programming Language in UNIX. It is an interpreted

language written in C. It can accept and execute commands or statements frOID the

command Line. 1t can also accept Relix commands and statements batch files.

Relix deals primarily with two kinds of data models: domains and relations. There

are two categories of operations: domain algebra and relational algebra.

12

• CHAPTER 2. HELIX

2.1.1 Domains and Relations

13

A rela.tion is defined on one or more attributes, and the data for a given attribute is

from a. particular domain of values. The damain of a given attribute determines its

data type.

For example the Student relation in Figure 2.1 is defined on four attributes: Stu_id,

Enter_year, Name, Canadian. The domains of Stu_id and Enter_year attributes are

integer. The domain of Name attribute is string. And the domain of Canadian

at tri bute is boolean.

Student

9546900
9602324
9701087
9702340

1995
1996
1997
1997

Name

Joe
Sue
Jin
Jin

Canadian

true
true
faise
faise

•

Figure 2.1: Student relation

There are six atomic data types in Relix as shown in Figure 2.2. Note that we

also have a special data type, relation, which will be introduced in Chapter 3.

In Relix, we can declare the domains of relation Student as follows:

> domain Stu_id integer ;

> domain Enter_year integer ;

> domain Name string;

> domain Canadian boolean;

The relation Student can then he declared and initialized:

• ClIAPTER 2. HELIX

Data Type Short Forro Domain

integer int singed integer

long long signed long integer

short short sighed short integer

real real sighed floating point

string strg sequence of characters
(with limitations)

boolean boal true or false

Figure 2.2: Atomic Data Type in Relix

> relation Student(Stu_id, Enter_year, Name, Canadian) <-
{(9546900, 1995, "Joe ", true),

(9602324, 1996, "Sue Il ~ true),

(9701087, 1997, IIJin ", faIse),

t9702340, 1997, IlJin ", faIse)} ;

14

•

We can aIso declare a relation without initialization, i.e., a relation without any

data:

> relation Student (Stu_id, Enter_year, Name, Canadian)

2.1.2 Basic Commands in Relix

In Relix, there are basic commands to show, print and delete domains and relations

decla.red in the database.

The grammar for the commands is:

• CHAPTER 2. RELLX 15

•

<command..name> (! or !!<parameters».

Where <command.name> includes reserved words which will be introduced in

the following paragraphs and! means that the programmer is prompted for the

parameters, while !! requires command Line parameters.

Show Commands

• sd! or sd!!<domain-Ilame>

Relix will show the name, type and other information associated with aH do

mains in the database or the specified domain. For example:

> sd!! Stu_id

will show the information of domain Stu_id.

• sr! or sr!!<relation-Ilame>

Relix will show the name, degree and other information of ail relations in the

database or the specified relation. For instance:

> sr!! Student

will show the information of relation Student.

• srd! or srd!!<relation..name>

Relix will show all relations and their domains in the database or the specified

relation and its domains. For example:

> srd!! Student

will show relation Student and its domains.

• pr!!<relation..name>

ReUx will print all data in the specified relation. For instance:

> pr!! Student

will print all data in relation Student.

• CHAPTER 2. HELIX 16

•

• dd!!<domain-name>

Relix will delete the specified domaine If it is still in use, Relix will give an

error message and the domain will not be deleted.

> dd!! Year

will delete domain Year, if it is not in use.

• dr!!<domain..name>

ReUx will delete the specified relation.

> dd!! Student

will delete relation Student.

• q!

This command can he used ta quit the Relix system.

2.2 Relational Algebra

The relational algebra consists of a set of operations on relations. Both operands and

results are relations.

In Relational Algebra operations, we have unary operations and binary operations.

As the names indicate, unary operators take one relation as an operand, and binary

operators take two relations as operands. In unary operations, there are projection

and selection; in binary operations, there are joins.

2.2.1 Projection

Projection is an operation on the attributes of a given relation. The results of a

projection is a relation whose attributes are the specified attributes in the projection

liste Duplicate tuples in the resulting relation are removed. For example, we can

project the Name of Student relation as follows:

• CHAPTER 2. RELIX 17

> < - [Name] in Studenl;

Name

Jin

Joe

Sue

2.2.2 Selection

Selection is an operation on a relation to select tuples that meet the condition spedfied

in the selection clause, wllich is called T-selector(tuple selector). We can do the

fol1owing selection ta extract the student information about who is a Canadian.

> Ca_stu < - where Canadian = true in Student ;

or

> < - where Canadian in Studenl;

Enter....Year Name Canadian

9546900
9602324

1995
1996

Joe
Sue

true
true

•

We can combine projection and selection in a single statement. First Relix will

do selection on the input rela.tion based on the selection clause, then do projection

on the output of the selection. We can extract the StuJd numbers of students who

are Canadian using the fol1owing statement:

• CHAPTER 2. RELIX 18

> < - [Stu_id] where Canadian in Studenl;

9546900
9602324

•

2.2.3 Joins

There are two classes of join operations in ReUx: p-joins, the family of set-valued set

operations; and O'-joins, the family of logical-valued set operations [Mer84}.

JL-joins

Jl-joins are derived from the set operators such as intersection, union, difference, etc.

The JL-joins on two relations, R(X,Y) and S(Y,Z), are based on three parts:

~

• center = {(x,y,=) 1 (x,y) E Rand (y,=) E S}

.leftwing~ {(x,y,DC)I(x,Y)ERand'v'z(y,z)ftS}

• righl wing ~ ((DC,y,z) 1 (y,z) ES and \lx(x,y) ft R}

We will expIain these three basic Jl-joins in detail in this section. The two relations

in Figure 2.3 are used to illustrate the operations:

• The most used p-join is the natura! join (ijoin or natjoin), which gives us the

center part of the operand relations. It combines tuples of the two relations

that have equal values on the join attributes. Thus, it is the intersection of the

two relations on the join attributes, which gives us ijoin.

• CHAPTER 2. RELIX

Student

9546900
9602324
9701087
9702340

Name

Joe
Sue
Jin
Jin

Courses

9576701
9546900
9602324
9602324

Math
Physics
History
Math

19

Figure 2.3: Student and Courses relations

The natural join of relations R and Sis defined as [Cod70}:

R natjoin S ~ ((a,b,c) 1 R(a,b) and S(b,c)}

where (a,b,c) is a tuple in the new relation, of which (a,b) is a tuple of Rand

(b,c) i5 a tuple of S.

The following Relix statement performs a natjoin between relation Student and

relation Courses.

> SijoinC < - Student ijoin Courses;

SijonC

Name
~-~~~~~-~-~------

9546900
9602324
9602324

Joe
Sue
Sue

Physics
History
Math

•
• The union join (ujoin) is an operation that is a union of the set of tuples from

the natural join, together with the tuples from the relations of bath sides that

are not equal to each other in the join attributes, and the missing attributes

• CHAPTER 2. HELIX 20

are filled up with DCI null value. It gives us the union of the leJt, center, right

parts of the operand relations.

> SujoinC < - Student ujoin Courses;

SujoinC

9546900
9576701
9602324
9602324
9701087
9702340

Name

Joe
DC
Sue
Sue
Jin
Jin

Physics
Math
History
Math
OC
OC

-------------~---

• The symmetric difference join (sjoin) is the set of tuples from the relations of

both sides that are oot equal to each other in the join attributes, the missing

attributes are filled up with De null value. It gives us the union of the [eJt,

riyht parts of the operand relations.

> SsjoinC < - Student sjoin Courses;

SsjoinC

9576701
9701087
9702340

Name

oc
Jin
Jin

Math
OC
OC

•
The overall J'-join operations are shown in Figure 2.4.

1De, Don't Care, describes irrelevant values.

•

•

CHAPTER 2. HELIX

"-joins u.-join-operator Resulting Relation

Natural Jaïn 'natjoin' or 'ijain' centre

Union Joïn 'ujoin' left U centre U right

Laft Jain 'Ijain' left U centre

Right Join 'rjain' right U centre

Laft Difference Jaïn 'djoin' or 'dljoin' left

Right Difference Joïn 'drjoin' right

Symmetric Difference Jain 'sjoin' left U right

Figure 2.4: p-join operations

21

• CHAPTER 2. RELIX

a-joins

22

The farnily of O'-joins are based on set comparison operators. [n operations, the tuples

in each of the operand relations are grouped such that for each group, aU the non~join

attributes on bath sides are identical. The set cornparison operator is then applied

to the Cartesian product of the groups. The values of the non-join attributes of the

comparing groups are accepted if the specified set comparison on the joio attributes

is satisfied.

There are five <Y-joins:

• sup or div or gejoin, the superset operator, a generalization of 2. ~div' stands

for "division', which extends Codd's definition of relational division [Cod72].

• sub or lejoin, subset, a generalization of ç.

• eqjoin, equal set, a generalization of =.

• sep, intersection empty, a generalization of ra.

• icomp, intersection not empty, a generalization of ~.

Considering the two relations Student and Cla.':I.~ in Figure 2.!;.

Student

Name

Joe
Joe
Sue
Jin

Course

Math
Physics
Physics
Math

Class

Course

Math
Physics
Chemistry
Physics

Room

286
286
302
312

•
Figure 2.5: Student and Class relations

To answer following query: Find students and the classrooms such that the courses

the student has taken is a subset of the courses which are given in this classroom.

• CHAPTER 2. HELIX 23

> StuRoom < - Sludent sub Glass;

StuRoom

Name Room

Joe 286
Jin 286
Sue 286

•

The overall O'-join operations are shown in Figure 2.6.

2.3 Domain Aigebra

Relational algebra considers relations to he data. primitives [Mer84] and therefore

does not give the user the power to manipulate attributes. To overcome this problem,

l\'[errett proposed domain algebra [Mer77].

Besides creating a domain by declaring its type as in section 2.1.1, one cao build

a new domain by expressing the domain as operation on existing domains. It allows

operations over a single tuple (horizontal operations) and operations over sets of

tuples (vertical operations). Domains defined in this way are 'virtual' in the sense

that they are expressions and no actual values are associated with them. The values

of the virtual domains are actualized in a Relix statement, notably, projection or

selection.

2.3.1 Horizontal Operations

Horizontal operations work on a single tuple of relation. We can define constants,

perform renaming and arithmetic functions, as weIl as if-then-eise expressions.

•

•

CHAPTER 2. HELIX

q-joins Set Compadson o--join Operator

:2 Superset 'div' or 'sup' or 'gejoin'

Equal Set 'eqjoin'

s: Subset 'sub' or 'Iejoin'

(è\ Intersection Empty 'sep'

J Proper Superset 'gtjoin'

C Proper Subset 'Itjoin'

~ Not Superset '-sup'

t- Not Equal Set '-eqjoin'

t Not Subset '-sub'

0 Intersection Not Empty 'icomp'

1; Not Proper Superset '-gtjoin'

st Not Proper Subset '-Itjoin'

Figure 2.6: cr-joïn operations

24

• CHAPTER 2. RELIX

• constants

let two be 2;

let myname be "marc Il ;

• renaming

let stu....name be name;

• arithmetic functions

let Sin be sin(angle);

let area be sqrt(a**2 + b**2 + c**2) 1 2;

• if-then-else

let Grade be if Mark> 60 then "Pass" else "Fail" j

25

AH above domains defined are virtual domains. For example, we can actualize

rrade as following:

> rRADES < - [Student, Crade] in MARKS

Joe 50
Jin 80
Sue 90

Joe Fail
Jin Pass
Sue Pass

MARKS

Name Mark

GRADES

Name Grade

•

2.3.2 Reduction (Vertical Operations)

Reduction are domain algebra operations which combine values from more than one

tuple - the ~vertical' operation [Mer84].

• Simple Reduction

• CHAPTER 2. RELIX 26

Simple reduction produces a single result from tbe values from aH tuples of a

single attribute in the relation [Mer84]. The operator in simple reduction must

be both commutati've and associative, sncb as plus (+), multiplication (*). For

example:

let Total be red + of Grade;

Transcript

Name

Joe
Jin
Sue
Weny

• Equivalence Reduction

Dept

CS
CS
EE
ME

Grade

85
90
80
75

(Total)

330
330
330
330

Equivalence reduction is like simple reduction but produces a different result

[rom different sets of tuples in the relation. Each set is characterized by all

tuples having the sarne value for sorne specified attributes - an ""equivalence

class" in mathematical terminology [Mer84):

let Subtotal be equiv + of Grade by Dept;

Transcript

Name

Joe
Jin
Sue
Weny

Dept

cs
CS
BE
ME

Grade

85
90
80
75

(Subtotal)

175
175
80
75

•
2.3.3 Nested Relations

In this thesis, we extend Relix to support nested relations. In chapter 3 and chapter 4,

we will discuss nested relations in detail, including a user manual and implementation

• CHAPTER 2. HELIX

techniques.

27

•

2.4 ~Jo~n, uJo~n, sjoin are Associative and Commu

tative

From Section 2.3.2, we know that in simple a.nd equiva.lence reduction, the operator

needs to satisfy the commutative and associative criteria. In the following sections,

we prove that ujoin, ijoin, and sjoin all have these two characteristics .

2.4.1 Definition

For relations, R(X, Y) and S(Y,Z), these three sets of tuples are each defined on the

attributes(or attribute groups) X, Y, Z.

We first define three disjoint sets of tuples which are set operations between R

and S [~ler84]:

1. center ~ {(x.y, z) 1 (x,y) E R and (y, z) E 5}

0) tefl wlng ~ {(T,y, De) 1 (T,y) E R and ri z(y~ z) ft H}

3. right wing l:J. ({DC,y,z) 1 (y,z) E 5 and 'Vx(x,y) fi. R}

The joins' definitions are based on these 3 sets:

1 R ··· S l:J.
o IJOID = center

2. R ujoin S ~ left wing U center U right wing

3. R sjoin S l:J. left winy U right wing

• CHAPTER 2. RELIX

2.4.2 Commutative

28

•

By definition, an binary operator 8 is commutative iff A 8 B = B 8 A.

Remark 1: R ijoin S = S ijoin R.

Proof:

R ijoin S = {(x,y,z) 1 (x,y) E Rand (y,z) E 5} (from definition)

==>

R ijoin S = {(z,y,x) 1 (z,y) E S and (y,x) E R} (from the commutativity of

and)

==>

R ijoin S = S ijoin R

Remark 2: R sjoin S = S sjoin R.

Proof:

R sjoin S = {(x,y, De) 1 (x,Y) E Rand \:1 z(y,z) ri. S} U {(DC,y,z) 1 (y, z) E

S and \:1 x(x, y) ri. R} (from definition)

==>

R sjoin S = ((z,y,DC) 1 (z,y) E Sand Tlx(y,x) ri. S} U {(DC,y,x) 1 (y,x) E

R and TI z(z, y) ri. S} (from symmetry and the commutativity of u)

=>

R sjoin S = S sjoin R

Remark 3: R ujoin S =S ujoin R.

Since R ujoin S = (R ijoin S) U (R sjoin S) (from the definition)

And from Remark 1 and Remark 2, the proof is trivial.

2.4.3 Associative

By definition , an binary operator 8 is associative iff (A 8 B) 8 C - A 8 (8 8 C)

Suppose we have 3 relations, R(X,Y), S(Y,Z), T(Z,W)

Remark 4: (R ijoin S) ijoin T = R ijoin (S ijoin T)

• CHAPTER 2. HELIX 29

•

Proof:

(R ijoin S) ijoin T = {(x,y,z) 1 (x,y) E Rand (y,z) E S} ijoin T (from the

definitian)

==>

(R ijoin S) ijoin T = {(x,y,z,w) 1 (x,y) E Rand (y,z) E Sand (z, w) E T}

(from the definition)

==>

(R ijoin S) ijoin T = {(x,y,z,w) 1 (x,y) E Rand «y,z) E Sand (z,w) ET)}

(from the associativity of and)

==>

(R ijoin S) ijoin T = R ijoin {(y,z,w) 1 (y,z) E Sand (z,w) E T} (from

definition)

==>

R ijoin S) ijoin T = R ijoin (S ijoin T) (from definition)

Remark 5: (R sjoin S) sjoin T = R sjoin (S sjoin T)

Proof:

(R sjoin S) sjoin T = (leftwing(R.S) U rightwing(R.S») sjoin T (from definition)

(R sjoin S) sjoin T = ({(x, y, DC) 1 (x, y) E R and Vz(y, z) ~ S} U {(DC,y, z) 1

(y, z) E S and 'V x(x, y) rt R}) sjoin T (from definition)

(Rsjoin S) sjoin T = ((x,y,DC,DC) 1 (x,y) E Rand Vz(y,z) ft Sand Vw(DC,w) ft
T} U {(DC,y,z,DC) 1 (y,z) E S and 'V x(x,y) fi. R and \:1 w(z,w) ft T} U

{(DC,DC,z,w) 1 (z,w) E T and \ly(y,z) ft Sand \lx(x,DC) ft R} (from def

inition)

In the same way, we can get:

Rsjoin(SsjoinT) = ((z,y,DC,DC) 1(x,y) E Rand Vz(y,z) ft S and Vw(DC,w) ft
T} U {(DC,y,z,DC) 1 (y,z) E S and fi x(x,y) ft R and \:1 w(z,w) ft T} U

• CHAPTER 2. RELIX

{(DG, nG, z, w) 1 (z, w) E T and TI y(y, z) ~ S and 'tI x(x, De) ~ R}

Thus

(R sjoin S) sjoin T = R sjoin (S sjoin T)

Remark 6: (R ujoin S) ujoin T = R ujoin (S ujoin T)

Proof: From Remark 4 and Rernark 5, the proof of Remark 6 is trivial.

2.4.4 Another Approach

30

•

Let x be a tuple, and let X be a binary variable snch that if x E sorne relation R,

then X has value 1, otherwise O.

1. for R = RI ujoin R2 ••• Rn and for sorne tuple x, if Xl + X2 + ... + Xn = 1,

==> x E R.2

2. for R = RI ijoin R2 ••. Rn and for sorne tuple x, if Xl * "~2 * ... * '\[n = 1,

==> x E R. 3

3. for R = RI sjoin R2 ••• Rn and for sorne tuple x, if Xl ffi .X~2 œ... Ef) '~n œ=
0, ==> :< E R. 4

From characteristics of $, we can condude that if x appears odd times ln

relations RI ... Rn, then x E R.

2Here + mea.ns logical operation OR, which is commutative and associative

3Here * means logicaI operation AND, which is commutative and associative

"Here œmeans logitaI operation XOR, which is commutative and associative

•

•

Chapter 3

User's Manual on Nested

Relations

This chapter describes how to define and manipulate nested relations in Relix. Sec

tion 3.1 explains the basic concept of nested relations in Relix and presents the

initialization of nested relations. Section 3.2 il1ustrates the operations that can be

imposed on nested relations.

3.1 The Nested Relations and Relation Data Type

Ta introduce nested relations, we add a relation data type to Relix. The opera.

tions imposed on it are those relational operations on regular relations with sorne

limitations.

We will show an example first, then we will explain how ta declare and initialize

nested relations, and fina.lly we explain the internai data representations.

31

• CHAPTER 3. USER'S AtIANUAL ON NE8TED RELATIONS

> domaiD A intg;

> domaiD B intg;

> domaiD C intg;

> domain S (A,B);

> relation TEST (C, S) <.. {(3,{(1,2),(B, 7)}),(7,{(6,5),(4,9)})};

32

The above Relix commands are used to initiaiize the sample nested relation in

Figure 3.1.

TEST
C S

A R
3 1 2

8 7

7 6 5
4 9

•

Figure 3.1: Sample nested relation: schema tree and value table

We have three regular domains A, Band C, which are defined as integers, and a

nested domain S, which is defined upon A and B. When we declare TEST, it includes

the nested domain S. Relix will consider S as a domain as weil as a relation.

The data in S is stored in another relation outside the parent relation TEST,

which has the same name as S. References to the data (called RELATION .id) are

stored in attribute S of relation TEST. However, this method of implementation is

largely transparent to users, who manipulate the attributes of nested domains as if

• CHAPTER 3. USER'S lvIANUAL ON NE8TED RELATIONS

the data were stored directIy in the parent relations.

> pr!!TEST

c s
--
3 0
7 1

relation: "TEST" has "2" tuple(s)

.id A B

0 1 2
0 8 7
1 4 9
1 6 5

relation: "S" has "4" tuple(s)

Figure 3.2: What is shown in Relix

33

•

Any Relix operation that displays an attribute of type RELATION will display

the attribute as a number. The actual data of the attribute is printed below it as

a separate relation whose .id field links it to its parent. In above print command,

TEST and its nested domain Sare printed out. In child relation 5, .id is mapped to

attribute S of TEST.

• CFIAPTER 3. USER'S MANUAL ON NESTED RELATIONS

The formaI syntax of declaration and initialization is as follows:

<dec1aration> .- ~domain' <domain..name> '(' <attributelist> ')'

<initiaIization> .- 'relation' <relation..name> '(' <attributelist> ')'

< - <tupleJist>

34

•

Note in the fol1owing sections, we will use the conceptual format as shawn in

Figure 3.1 to show the example, while in Relix, the actual format will he as in pr!!,

i.e. as shown in Figure 3.2.

50 far, we have only implemented two levels of nesting. Future work is needed to

gain multiple level nesting.

3.2 Operations on N ested Relations

In this section, we will show by example how ta conduct operations on nested rela

tions. We will show vertical operations, followed by horizontal operations.

The schema of nested relation is represented by the schema tree [Ozy87], as shown

in Figure 3.3. The nested rela.tion schema. of the Faculty of Engineering database is:

Dept, Building, Pro/essor and Secretary, in which Dept and Building are regular

simple domains, and Pro/essor and Secl'elaru are nested dornains, which are Curther

defined by Name, Sa/ary and Commit.

The nested rela.tion, FactEng, over the schema tree of Figure 3.3, is shown in

Figure 3.4.

3.2.1 Vertical Operations

This section is for the purpose of extending reductions (vertical operations) frOID

scalar attributes to nested relation attrihutes.

• CHAPTER 3. U5ER'S MANUAL ON NESTED RELATIONS 35

Name

(Name) (Sa/ary) (Commit) (Name)

(FactEng)

(Salary) (Commit)

•

Figure 3.3: The schema tree of the sample

FactEng
Dept Building Professor Secretary

Name 1 Sa/ary 1 Commit Name 1 Salary 1 Commit

CS MC Pat 65 PADS Sai 35 PODS
Paul 55 PODS Sue 38 PODS
Pully 50 SIGM

EE MC Pat 65 PADS Sandy 36 IEEE
Paul 55 PODS Sharon 35 PODS
Piree 54 IEE Sam 40 PODS

ME MD Pat 65 PADS Sandra 35 MEE
Ping 57 MEE 8yl 37 MOS

Figure 3.4: The nested relation, Engineering Department, over the schema in Fig.3.3

• CHAPTER 3. USER'5 MANUAL ON NESTED RELATIONS

Simple Reduction

36

Recall that we already proved tha.t ijoin, ujoin and sjoin are all commutative and

associative (see Section 2.4), we can now extend the reduction operations to ijoin,

ajoin, and sjoin.

We start with the following exa.mple: Suppose we want to find aIl the professors

in the faculty of engineering, we can do the following query:

> let EngPro/be red ujoin of Professor

> AllEngProf < - [EngProf] in FactEng

> pr!! AllEngProf

AllEngPror
EngProf

Name 1 Salary 1 Commit

Pat 6S PADS
Paul SS PODS
Piree 54 IEE
Ping 57 MEE
Pully 50 SIGM

Figure 3.5: AIl Professors of Faculty of Engineering

The formai syntax of simple reduction is as follows:

<simple.reduction..statement> := 'let' <new.-nested_domain...name> 'be red'

<binary_operator> 'of'

<nested_doma.in...name>

< binary_operator> .- 'ijoin' 1 'ujoin' l 'sjoin'

•
Now we introduce the universal pro/essor, who works in every unit of an education

orga.nization.

• CHAPTER 3. USER'S MANUAL ON NESTED RELATIONS

Query: Find all the universal engineering professors.

> let UnivEngProf be red ijoin of Professor

> UEP < - [UnivEngProf] in FactEng

> prIt UEP

UEP
UnivEngProf

Name 1 Salary 1 Commit

Pat 65 PADS

Figure 3.6: AH universal engineering professors

37

•

If we do sjoin on the attribute Pro/essor, we obtain professors who are assigned

an odd number of positions (see Section 2.4.4 for expla.nation). Thus we have the

fol1owing query:

Find all the engineering professors who are assigned an odd number of positions.

> let OddProfbe red sjoin of Pro/essor

> OPro! < - [OddProf] in ED

> pr!! OPro!

OProf

OddProf

Name 1 Salary 1 Commit

Pat 65 PADS
Ping 57 MEE
Piree 54 IEE
Pully 50 SIOM

Figure 3.7: Professors with an odd number of positions

• CHAPTER 3. USER'S MANUAL ON NESTED RELATIONS

Equivalence Reduction

38

•

Like simple reduction, equivalence reduction is extended to ujoin, ijoin and sjoin as

weiL

Query: Find the professors by each building.

> let ProfbyBuild be equiv ujoin of Professor by Building

> PbB < - [Building, ProfbyBuild] in FactEng

> pl"!! PbB

PbB
Building ProfbyBuild

Name 1 Salary 1 Commit

MC Pat 65 PADS
Paul 55 pons
Piree 54 IEE
Pully 50 SIGM

MD Pat 65 PADS
Ping 57 MEE

Figure 3.8: Professors in each building

Query: Find the universal professors by building. (we introduced the idea of a

universa! professor in the last section. Here a universal professor in each building

works in each department of the building)

> let UnivBuilProf be equiv ijoin of Professor by Building

> UBP < - [Building, UnivBuilProf] in FactEng

> pr!! UBP

• CHAPTER 3. USER'S MANUAL ON NESTED RELATIONS

UBP
Building UnivBuildProf

Name 1 Salary 1 Commit

MC Pat 65 PADS
Paul 55 PODS

MD Pat 65 PADS
Ping 57 MEE

Figure 3.9: Universal Professors in each Building

39

•

Query: Find the professors in each building who are assigned odd department

positions in that building.

> let OddBuilProf be equiv sjoin of Professor by Building

> OBP < - [Building, PureBuilProf] in FactEng

> prIt OBP

OBP

Building PureBuilProf

Name 1 Salary 1 Commit

MC Piree 54 IEE
Pully 50 SIGM

MD Pat 65 PADS
Ping 57 MEE

Figure 3.10: Professors who are assigned odd positions in the building

Syntax:

• CHAPTER 3. U5ER'S MANUAL ON NESTED RELATIONS 40

<equiv..reduction...statement>

<binary_operator>

3.2.2 Horizontal Operations

'let' <new.Jlested_domain..name> 'he' 'equiv'

<binary-Operator> 'of' <nested_domain-Dame>

'by' <attributelist>

'ijoin' l 'ujoin' l 'sjoin'

Horizonta.! operations consists of binary operations and general operations.

Binary Operations

Binary relational operations take two relations as operands and produce a relation as

a result. We extend those operations to nested domains, and take two nested domains

as operands and produce a nested domain as a result, which itself is a relation data

type.

Query: Find all the staff of the faculty of engineering.

> let Staff be Pro/essor ujoin Secretary

> FaetEngStaff < - [Dept, Building, Staff] in FactEng

> pr!! FaclE11,gStaff

The result is in Figure 3.11.

The forma! syntax is as follows:

<binary...statement> .- 'let' <new-Dested_domain.Jlame> 'be'

<nested_domain.Jlame> < binary_operator>

<nested_domain.Jlame>

•

< binary_operator> .- 'ijoin' l 'ujoin' l 'sjoin'

•

•

CHAPTER 3. USER'S MANUAL ON NESTED RELATIONS

FactEngStafT
Dept Building Staff

Name 1 Salary 1 Commit

CS MC Pat 65 PADS
Paul 55 PODS
Pully 50 SIGM
Sal 35 PODS
Sue 38 PODS

EE MC Pat 65 PADS
Piree 54 IEE
Sandy 36 IEEE
Sharon 35 PODS
Sam 40 PODS

ME MD Pat 65 PADS
Ping 57 MEE
Sandra 35 MEE
Syl 37 MDS

Figure 3.11: Staff of the Facultyof Engineering

41

• CHAPTER 3. USER'S l'IIANUAL ON NESTED RELATIONS

General Operation

42

•

We can aIso embed general relationaI expressions inta domain algebra. This is called

general operation. --General" here means more general than the operation we intro

duced before in this Chapter. However, it is not arbitrarily general. We will show

the limitations imposed on it at the end of this Chapter.

In the Faculty of Engineering, rich professors are professors whose yearly salary

equals or exceeds 55 K. We have the query: Find the rich engineering professors

together with their salary and department. The following expression will answer the

query:

> let RichProf be Il < [lVame, Salary] where Salary>=55 in Professor >";

> RP < - [Dept. RichProf] in FactEng;

> pr!! RP;

The result is shawn in Figure 3.12.

RP
Dept RichProf

Name 1 Salary

CS Pat 65
Paul 5S

EE Pat 6S

ME Pat 6S
Ping 57

Figure 3.12: Rich Professors of Engineering Departments

We cao make more complicated general operations. For example, we can do sjoin

on different domain names in two nested domain-relations.

• CHAPTER 3. USER'S MANUAL ON NESTED RELATIONS 43

•

Query: Find professors and secretaries such that the secretary works for all the

committees to which the professor helongs.

> let Pname be Name

> let Sname be Name

> let Pro/Secr be

Il < ([Pname, Commit 1in Pro/essor) sub ([Bname, Commit] in Secretary) >11

> PSC < - [Depi, Pro/Secr] in ED

> pr!! PSC

PSC
Dept ProfSecr

Pname 1 Sname

CS Paul Sal
Paul Sue

EE Pirre Sandy

ME Ping Sandra

Figure 3.13: Professors and Secretary in Committes

The formai synta,<:

<domain.-relationaL.statement> .- ~let' <nest_domain-Ilame> 'he'

, .. <' <relationaLexpression> ' > Il'

<relational_expression> is an expression of relational algebra operations with

sorne limits. The T-selector in the following paragraph il1ustrates this. Note that we

quote <relationaLexpression> using ~II < > Il'', and during dec1aration, it is treated

as string, yet during the actualization, the Relix statement included in the string will

he evaluated.

• CHAPTER 3. USER'S MANUAL ON NESTED RELATIONS

<T-selector> .- ~[' <attributelist> 'l' ~where'
<selection-elause> 'in' <nested_domain>

44

•

<selection_cla.use> is a comma-separated list of simple logic domain expression

that cau be evaluated horizontal1y to true or faIse on each tuple of the operand

<nested_domain> (which is a relation as weil).

We have not been able to implement vertical domain operations within the syntax

of general operations (in <relational_expression» .

•

•

Chapter 4

Implementation of N ested

Relations

This chapter deals with the implementation of nested relations. Section 4.1 gives an

overview of the implementation of Relbc. Section 4.2 describes how nested relations

are represented and declared. Section 4.3 illustrates the implementation of nested

relation operations.

4.1 Implementation of Relix

Relix is an interactive multi-user system written in C, and is porta.ble across different

platforms running the UNIX operating system. Extensions in Relix require that the

modules to be added are compatible with the existing code. Therefore, in this section

we overview the impLementation of ReUx that is related to the work of this thesis. A

complete documentation for its first implementation can be found in [Lal861 .

45

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

4.1.1 System Relations

46

•

A relation is stored in a UNIX file whose name corresponds to the name of the

relation. A database, which is a collections of relations, is equivalent to a UNIX

directory. Every Relix database maintains a set of system relations which represents

the data dictionary of the database and are stored permanently as UNIX hidden

fiIes. 1 Three basic system relations are used to store information about domains and

relations in the datahase.

1. .rel (. reLna'me..sorLstatus, .rank, .ntuples)2

The .rel system relation stores information about aU the relations in the database.

• .rel-name is the name of the relation

• .sorLstatus specifies the type of sorting for the relation, such as sorted,

non-sorted and partly sorted

• .rank is the number of sorted attributes in th.e relation

• .ntuples is the number of tuples in the relation

2. .dom (.dom_name, .type)

The .dom system relation stores information about all the domains in the

database.

• .dom-name is the name of the domain

• .type is the data type of the domain. There are 6 atomic data types (see

Figure 2.2)

1 File names beginning with a period (.) are UNIX hidden files which are not normally listed

under the UNIX list directory commando

:lIn Relix convention, the names which begin with a period (.) are system names.

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 47

•

3..rd (.reLname, .dom_name, .dom_pos, .dom_count)

The .rd system relation stores information that links the relations with the

domains on which they are defined.

• .reLname is the name of the relation

• .dom..name is the name of the domain

• .dom_pos is the byte position of the domain in the relation

• .dom_count is the nurnber of domains in the relation

In our implementation of nested rela.tions, we use two system relations to store

the interface information for the nested relations declared in the database.

1. .nst (.sup_name, .sub_name)

The .nst system relation cantains information about parent relations and their

child relations.

• .sup-name is the name of the parent relation

• .sub-name is the name of the child relation

2..nesLdom (.domain_name, .domain_rel)

The .nesLdom system relation contains information about the nested domains.

• .domain-name is the name of the nested domain (child relation)

• .domain...ref is the number of reference times of this domain

4.1.2 Parser and Interpreter

Relix consists of two main modules: a parser and an interpreter. The parser, which

is generated by Lex [Les75] and Yacc [Joh75],performs syntax analysis and gener

ates intermediate codes. The interpreter is written in C, it reads instructions from

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 48

•

the intermediate code and calls particular C functions to perform the operations.

Figure 4.1 summarizes the main flow of Relix.

Wait for input fram the user

r - - - - - - - - - input - - - - - - - - - - - - - - - - -
1 ~ Lexical AneJvzer Module 1

1 1 Scan inputjnto tokens 1 :
1 1
r--------~~~-----------------~ Perser Module 1

: Parsa tokens and"generate l-code 1 :

- - - - - - - - - l-code - - - - - - - - - - - - - - - - _1
1 Interoreter Module 1

1 Interpret l-code 1
1 1

~--------- ------------------
---- no ----<~

yes

Write system relations back to disk

Figure 4.1: Relix Execution Flowchart

We will show an example from an implementation point of view to exemplify how

ReUx operates.

Suppose we have:

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

> domain a intg

49

•

The parser performs syntax analysis and finds that the above statement fits the

following grarnmar rules.

domain_declaration:

DDMAIN_DEC identifer

{ translator(OOMAIN_DEC);}

TYPE

{ translator(IDENTIFIER); translator(TYPE); }

Actions in Yacc are C codes enclosed in a pair of curly brackets. The transla

tor function is a C function which performs various tasks according to the actual

parameters. The tasks of the translator function include:

• maintaining a scalar stack for storing and retrieving identifiers

• maintaining a set of flags and counters

• generating I-code

For instance, the calI "translator(IDENTIFIER)' pushes the value of the identifier

onto the scalar stack.

Sorne of the parameters produce I-code. For example:

parameter I-code

OOMAIN-DEC global-dom

TYPE push-name a domain

"a' is a string obtained by popping an item from the scalar stack. The I-code for

the example statement is shawn below:

• CHAPTER 4. IAtIPLEAtIENTATION OF NESTED RELATIONS 50

global-dom

a

push-name

long

push-name

a

domain

halt

I*set the flag notifying that the following

declared domain is a global domain. *1

1* Push the next string ante the stack.*1

1* Pop a from the stack, and actually declare

a as an integer domain. *1

1* Update system relations and return. *1

•

The comments on the right hand side describe the interpreter actions for the

corresponding I-codes. The interpreter maintains a stack for storing and retrieving

operands. The 'push-name' pushes an operand onto the stack. The 'domain' is a

collection of C functions that the interpreter needs to caU with predefined arguments,

which are obtained by popping the operands from the stack. Note that 'halt' is

required at the end of the [-code for the interpreter to stop execution.

4.1.3 Implementation of Domain Operations

Suppose we define a virtual domain D as a function of other domains (see Section

2.3). In the implementation, we have routines which will locate these domains in

relation R, calculate the corresponding values of D from these operands and append

these values of D to the appropraite tuples of the original relation.

The following example will show how domain operations work in Relix:

We declare a constant atrribute as follows:

> let a be 5;

After the declaration, domain 'a' is recored in the system as:

• CHAPTER 4. IMPLEMENTATION OF NE5TED RELATIONS 51

Name Actual Visited Label Type

a FALSE TRUE
Operator:
Value:

1 short
constant
"+00005·

Note that the •Actuaf value of domain a is fa/se, which means that a is a virtua!

domain, and the following Relix statement requires it to be actualized.

> ACT < - [a] in TEST;

The I-code for the exarnple statement is shown below.

push-name

ACT

name

1* Push the next string ante the stack. *1

constant-relation 1* Call function constant_relation to

create a new relation using the name

on the stack *1

push-name

TEST

push-name

a

•

push-count

1

project

assign-scalar

halt

1* Push a counter ante the stack. *1

1* Call function project to

create a new relation according to

the attributes required *1

1* Pop item A and B from the stack, and

call function assign_scalar ta

assign item A to item B. *1

1* Update system relations and return. *1

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 52

•

In above [-code, when the intepreter reads project, it will caU a C function

'project()' to perform the actual projection. In turn, porject() will caU yet another

function 4actionizeif-any_virtual()' to actualize the virtual domains (4 a' in this case).

The algorithm for routine project() is as follows:

project(lisLR, r_name)

where list..R is a linked list which contains the domains to be projected and

r -Dame is the name of the relation on which the domains are to be projected.

1. Check lisLR, make sure no duplicates are included.

2. Actualize lisLR from r_name to R (a te.mporary file). Sort R on list-R. Cali the

routine aetualize_if_any() .

.1. Do actual projection according to list-R.

4. Return the file name of the results of projection.

The algorithm for routine actualize_if_any_virtual() is :

actualize_if_any_virtual(R_name, E_list}

where R-Ilame is the name of the relation being processed and EJist is a list of

attributes of the relation in R..name, including both the original attributes and virtual

attributes which are defined as a Junetion of the original attri6utes.

1. Traverse the attri6ute list and find if there are any virtual domains.

2. If there are no virtual domains, return the original relation.

3. If there exist virtual domains.

(a) Traverse each tuple of the orginal relation.

(6) Actualize the virtual domain value aceording to the definition of the virtual

domain.

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

(c) Put ail the tuples in a temporary relation.

(d) Return the temporary relation.

In our example, the program flow is as follows:

1. JtVhen project() is called, the values in the two parameters are:

(a) list-R, which points to a list which includes only one item, 'a '.

(b) r-Ilame, which is 'TEST',

2. Then aetualize_if_any() is called with the parameters' values as:

53

•

(a) Elist, which points to a list which is the same as list-R in project(}, i.e"

'u '.

(b) r..name, which is the same as r-name in project(}, i.e., 'TEST'.

3. In actualize_if_any(), the sytem finds that 'a' is a viriual attribute, and there

after, domain a is actualized by assigning the value of 5 to the attribute "a' of

e:very tuple in TEST.

1- Act1tulizp;_if_any(} returns the name of the temporary relation to project(), which

in turn projects the 'a' domain and returns the result to system.

5. Update system tables.

4.2 Declaration and Initialization of N ested Re

lations

4.2.1 Declaration of Relation Data Type

We can declare a regular integer domain S and a. regular relation S with domains a

and b as fol1ows:

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

> domain S intg ;

54

> relation S (a , b);

We have already explained the I-codes of domain declaration (see Section 4.1.2). The

I-codes of the relation declaration is as follows:

push-name

no-cp-ln

push-name

push-name

a

push-name

b

push-count

2

push-name

S

relation

halt

1* Set the flag that only declare,

no data input*1

1* Push the next string onto the stack.*1

1* number of domains *1

1* Pop domain list (a and b) from the stack,

pop S from the stack, and declare S as a

relation *1

1* Update system relations and return. *1

•

To declare a relation data type, we combine the above two cases and add the

following grammar to yacc:

<nested_doma.in_declaration> .- "domain' <identifier> <domainlist>

For instance:

• CHAPTER 4. [lvIPLEMENTATI01V OF NE5TED RELATIONS

> domain S (a , b);

The I-code are also combined from above:

push-name

no-cp-ln

push-name

55

push-name

.id

push-name

a

push-name

b

push-count

3

relation

global-dom

S

push-name

relation

push-name

S

domain

end-dam-code

1* Add a system domain .id to refer to

the parent relation *1

•
halt

The comparison of the above three cases is shown in Figure 4.2.

• CHAPTER 4. I~IPLEMENTATION OF NESTED RELATIONS 56

domain S intg,.

global-dom
S
push-name
long
push-name
S
domain
end-dom-code

relation S (a,b);

push-name
no-cp-In
push-name

push-name
a
push-name
b
push-eount
2
push-name
S
relation

domain S (a,b);

push-name
no-cp-In
push-name

push-name
.id
push-name
a
push-name
b
push-count
3
relation
global-dom
S
push-name
relation
push-name
S
domain
end-dom-code

•

Figure 4.2: Comparison of the nested domain declaration with the regular domain

declaration and the regular relation declaration

• CHAPTER 4. IMPLEA-IENTATION OF NE8TED RELATIONS 57

Each nested domain bas its declaration entry in both .dom system table and .rel

system table. The .type in table .dom of any nested_domain, Le., relation data type, is

set to a constant 4RELATION', wbicb equals Il in the current version. The fol1owing

entry in .dom table is for the nested domain S:

.dom (.dom..name, .type)

S Il
The following entry in .rel table is aIso for the nested domain S:

.rel (.rel..name, .sorLstatus, .rank, .ntuples)

S 000
Because nested domain S is a relation itself, its information and that of its domains

are stored in another system table .rd. The following entry is for S:

.rd (.reLname, .dom.llame, .dom_pas, .dom_count)

S .id 0 -3

SaI -3

S b 2 -3
Note that S has three domains, arnong which .id is added by the system in order to

refer it to the parent relation.

Salsa has an entry in the system table .nesLdom.

.nest_dom (.ciomain.llame, .domain-ref)

s

4.2.2 Initialization

o

•

Initialization of relations can be achieved by supplying the initialization data directly

on the command line:

> relation Simple (a,b) <- {(1,2),(3,4)};

For fiat relations, the algorithm of initialization is:

• CHAPTER 4. IMPLEME1'lTATION OF NESTED RELATIONS 58

•

1. Parse the relation identifier and parse the domain identifiers. In the above case,

'Sample JJ "a JJ and 'b', then create a file named 'Simple '.

2. Parse the constants, and save the constants to file 'Simple '.

RecaIl that we declare the nested domain:

> domain S (a , b);

For nested relations, we can initialize as follows:

> relation TEST (c, S) <- {(3,{(l,2),(8,7)}),(7,{(6,5),(4,9)})};

since we include a nested domain S here, we need to revise the algorithm to achieve

the desired effects.

1. Parse the relation identifier and the domain identifiers, and record the nested

s-ubrelatioTUi (nested domains). Then create a file named 'Test', a/so create files

according to subrelations, in this case we have OS '.

2. Parse the constants. When we meet a curly brace '{', we create a surrogate

to the. parent attributc, and put the corresponding real constants into the cor

responding subrelations. For example, for {{1,2),{8, 7)}, the surrogate is °and

for {(6,5),{4,9)}, the surrogate is 1. Thus,

(a) In file TEST, we have (3,0), (7,1);

(b) In file S, we have (0,1,2),(0,8,7),(1,6,5),(1,4,9),.

4.3 Operations

In this section, we present the implementation for operations on nested child relations

(nested domains).

• CHAPTER 4. IMPLE~lENTATION OF NESTED RELATIONS

4.3.1 Implementation of Reduction

59

We will show by example how reduction operates on nested relations in Relix. Since

we based our implementation on the existing implementation of reduction on scalar

attributes, we will first present the implementation of reduction on scalar attributes.

Reduction on scalar attributes

Scalar attributes' data types are atomic as summarized in Figure 2.2. Recall that

in Chapter 2, we already listed that what scalar operations can be conducted on

both simple reductions and equivlant reduction. Now we will show how they are

implemented by using an example of "+', the add operator.

Suppose we have a database order as in Figure 4.3.

Order

Customer

Ann
Ann
Ping
Sam

Product

w
X
M
Y

Figure 4.3: Order table

Amount

10
40
20
30

•

In arder ta gain the total order Amount of all the customers, we cao use our ~red

+' operator, and impose it on the domain Amount.

> let Total be red + of Amount

Domain Total is kept in the system as:

• CHAPTER 4. nWPLEMENTATf01V OF NESTED RELATIONS 60

Name Actual Visited Label Type

Total FALSE TRUE 51
Operator: red-plus
Operand-1: Amount

long

Whenever a Relix statement wants to include Total, the system will cali Actual

i=e_if_any() to actualize it.

As we can see, Tolal is defined on A·mount.

The algorithm is as follows:

1. lnitialize an accumulator according to Amount (ln this case, its data type is

long).

2. Scan lhrough each tuple of the relation Order. Extracl the 'value of Amount,

add il to the accumulalor (Recall that operator of Total is '+') .

.'J. Assign the value in the accumuiator to the Total attribute of each tuple.

Thus we can actualize Total and the result is shown in Figure 4.4.

Order

Customer

Ann
Ann
Ping
Sam

Product

w
X
M
Y

Amount

10
40
20
30

(Total)

100
100
100
100

•
Figure 4.4: Values of Total after actualization

Furthermore, we would like to know the total amount of the products each cus

tomer ordered. The follwing Relix statement can help us to perform this task:

• CHAPTER 4. IMPLEMEN7:4.TION OF NESTED RELATIONS

> let Gus Total be equiv + of Amount by Customer ;

It is stored in the system as:

61

Name Actual Visited Label Type

CUsTotal FALSE TRUE 52
Operator: equiv-plus
Operand-l: Amount
By-list: Customer

long

•

We can see in the system data structure that CusTotal actually has an item called

by-List, which includes Custo'mer, and that the resulting CusTolal will be based on

this list.

With fol1owing steps we can actualize CusTotal:

1. Sort original relation Order on by-list (i.e., 'Customer').

2. !nitialize an accumulator storage according to CusTotal

.1. Scan through luples of Order, if the tuple 's value is kept the same in attribute

Customer, add il to the accu'mulator, otherwise append the value of the accu

mulator to the previous tuples, and reset the accumulator.

This way we cao actua1ize CusTotal as shown in Figure 4.5.

Reduction on Nested Attributes

In this section, we will present the general algorithms of reduction on nested attributes

first and then show sorne examples.

The operator of reductions on nested attributes faIls in one of the fol1owing groups:

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

Order

62

Customer

Ann
Ann
Ping
Sam

Product

w
X
M
Y

Amount

10
40
20
30

<CUsTotal)

50
50
20
30

Figure 4.5: Value of CusTotal after actualization

(simple.Ieduction equivalence-l'eduction)

redjjoin

red_ujoin

red..sjoin

General Algorithm

• Simple Reduction

equivjjoin

eqlilV_uJoln

equlv..sJoln

•

ln this case, the operator belongs to the first group.

1. In the parent relation level, we assign each tupie in the position of the

operand domain a constant O. For simple reduction, the value of this at

tribute should have the same value for ail tuples in the relation.

2. ln the nested relation level, according to the operator, do ujoin, ijoin and

sjoin with the subrelations (which are actually stored in the same physical

table).

(a) ujoin: Project aU the attributes except .id. The obtained result is the

required ujoin operations on those sub-relations. Then, append a new

.id to il, in order to keep links with the parental relation. The value

is a constant o.

• CHAPTER 4. IMPLEMENTATION OF NE8TED RELATIONS 63

•

(b) ijoin: Sort the table according to the number of tup/es zn each sub

relation, select the sub-relations one by one according to the value

of .id and do ijoin on them. ln this way, we can improve the join

efficiency, since during the join procedure, the result might be empty

before we reach the last subre/ation.

(c) sjoin: The algorithm is the same as ijoin, except we do not need to

sort the table .

• Equivalence Reduction

ln this case, the operator belongs to the second group.

1. Sort the original relation on by_list.

2. Determine equivalence classes, for each ciass, do inside reduction, which

will be presented nezt.

lnside Reduction

1. lnitialize an accumulator, which is an empty temporary relation.

2. For each tuple:

Extract the value of the nested domain, i.e., the pointer to the underlying

subrelation;

Extract tuples of subrelation according to the mapping between the parent

nested domain and .id, store them in a temporary file.

PerfoTm the appropriate join (ijoin, ujoin, sjoin) with the accumulator.

Examples

In Figure 4.6, we have a. relation Order_book with domains Customer and Order,

which is a subrelation with domain Product.

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 64

Customer Order

Order

.id Product

•

Ann 0 C'----. 0 W
Ann 1 -:-- 0 X
Ping 2 c:- _ - - - -. 1 W,,- -Sam 3.... - • 2 M- - - - - - - - - _...~....... '".... 2 W.... " ...

......... 3 W
3 y

Figure 4.6: Relation Order-Book and its subrelation Order

We have three Relix statements:

1. > let AliProduct be red ujoin of Order ;

2. > let 1Product be red ijoin of Order ;

3. > let CustProduct he equiv ijoin of Order by Customer ;

The first Relix statement above finds al1 the products ordered by the customers.

The second one finds products which are ordered in each. individual order. The third

one finds aIl the products ordered in every order by each customer.

Ta actualize AllProduet , we can run the Relix statement:

> Order-Bookl < - [Customer, AliProduct] in Order-Book ;

System running flow:

1. Operator red ujoin belongs to the jirst grou.p

2. ln Order-Book, we assign AllProduct a constant 0

3. ln the nested relation level, i.e., AllProduct, the operator is red ujoin and the

operand is Order. We project [Product] from Order, and append a new .id ta

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 65

each tuple of the new obtained relation, in arder ta keep links with AllProduct

in Order..Book. Thus we have a new subrelation AllProduct.

4. Update system tables.

The actualized AIlProduct is shown in Figure 4.7.

Order_Bookl AIIProduct

Customer AIIProduct .id Product

•

Ann 0: rO M
Ping 0 >- - - - __ ; 0 W
Sam 0 ; - - \ 0 X

J i

----------- lO Y

AIlProduct: red ujoin of Order

Figure 4.7: AllProduct in relation Order_book!

To actuaiize IProducl , we can run the Relix statement:

> Order-.Booki < - [Customer, IProducl] in Orde.,.J3ook ;

System running flow:

1. Operator red ijoin belongs ta the jirst group

2. ln Order-Book, we assign to IProduct a constant 0

3. In the nested relation leuel (i.e., IProduct) the operator is red ijoin and the

operand is Order. We do ijoin between the different set of Product values ac

cording to .id. They are {(W), (X)}, {(W)}, {(M),(W)} and {(Y),(W)} respec

tively. The result is {(W)}. ln order to keep links with IProduct in OrderJJook,

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 66

we append a new .id to each tuple of the new obtained relation. Thus we have

a new subrelation IProduct.

4. Update system tables.

The actualize 1Product is shown in Figure 4.8.

IProduct

Customer AIIProduct . id Product

ADn
Ping
Sam

o :_--------.0 Wo 1 _
o

1Product: rad ijoin of Order

Figure 4.8: IProduct in relation Order_book2

•

To actualize CustProducl, the following Relix statement can satisfy the require-

ment:

> OrderJJook3 < - [Customer, CustProduct] in Order-Book ;

System running fiow:

1. Operator equiv ijoin belongs to the second group

2. Sort Order_book on Customer

3. For each Customer: determine equivalence classes, and conduct ijoin within

each class. For example, for customer Ann, we first exiract {(W) , (X)}, then

{(W)}. After doing ijoin between them, we get {(W)},.

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

~. Update system tables.

The actua1ized CuslProduct is shown in Figure 4.9.

67

CustProduct

Customer CustProduct .id Product

•

Ann 0 ------0 W
Ping 1 - - - - - - 1 M
Sam 2 - - - - - - 2 W
----------. -----2 Y

CustProduct: equiv ujoin of Order

Figure 4.9: CustProduct in relation Order_book3

4.3.2 Horizontal Operation

Binary Operation

The operators of binary operation are: ujoin, ijoin, and sjoin.

General Algorithm

1. ln the parent relation Level, copy the vaLue from one of the operands' to the new

domain.

2. ln the subrelation Level, cali Relix again to obtain the new subrelation.

3. Jain back the obtained subrelation to the parent relation on subrelation's .id

attribute with parental relation's attribute.

4. Update system table.

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 68

Example

In Figure 4.10, we have relation Order..Book with domains OldOrd, Customer and

NewOrd. OldOrd and NewOld are nested domains.

OldOrd

Produc t: • id

Order_Book

OldOrd Customer NewOrd

NewOrd

.id Product

w
y
Z
W
X
W

0------0 Ann 0 -=-----0
1- - - - -.;8 1 Ann 1 - - - - - - 0
1_ .. .-'- 2 p. 2 -:----1
~- _-s mg -
~ - ; - - _3 Sam 3 ':::, - _ - - . 2
?" ..,..,""- - - - - - - - - - - - - ---. : -- -3
3" - - '3

w
X
Z
M
W
y

•

Figure 4.10: Relation Order-Book with subrelations OldOrd and NewOld

Suppose we have:

> let Order he OldOrd ujoin NewOld

and we can actualize Order using the following statement:

> Order_Book1 < - [ensfomer: Order] in Order_Book ;

The procedure of actualizing Order:

1. Copy OldOrd to Order. This way, we can keep a set of surrogates of Order in

parent relation Order..Book.

2. Cali Relix again to get Order, i.e., T'Un "Order < - OldOrd ujoin NetUOrd" in

ReUx. Binee both OldOrd and NewOrd have same attributes, .id and Produet,

we do ujoin on them to get Order.

9. Join baek the obtained subrelation to the parent relation on subrelation's .id at

tribute with the parent relation's attribute Order. "Order.J3ook < - Order.-Book

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

[Order ijoin .id] Order"

The fina.l result is shown in Figure 4.11.

69

Customer

Ann
Ann
Ping
Sam

Order

arder

.id Product

w
X
Y
Z
M
W
X
W
y

Order: OldOrd ujoin NewOrd

Figure 4.11: Actualized result of Order in relation Order-Book

General Operation

General Operations are stored as strings when they are declared. Suppose we have

the relation as shown in Figure 4.12 and the following query:

> let BigOrd he "< [Product] where Amount > 8 in Order >" ;

Domain BigOrd is stored as:

•
Name

BigOrd

Actual Visited Label Type

FALSE TRUE 52 relation
Operator: t-dom
Operand: [Product] where Amount > 8 in Order

• CHAPTER 4. IMPLE}.JIENTATION OF NESTED RELATIONS 70

Customer Order

arder

.id Product Amount

Ann 0.-----0
Ann 1 - - - - - .. 0
Ping 2 -::: - - .. 1
Sam 3 ::: - _ - - - 2
-----------· :::- t-.,3--3

w
X
Z
M
y
W

9
6
10
12
10
7

•

Figure 4.12: Relation Order...Book

And the following statement will actualize BigOrd:

> Order_Book5 < - [Customer, BigOrder] in Order-Book ;

The procedure of actualizing BigOrd is as follows:

1. ln the parent levei, copy Order to BigOrd.

2. Extract the re/alional statement [rom the string, parse it (the parser will be de

scribed innext section),. the string will he altered /rom "[Product] where A mount

> 8 in Order" la "[.id, Product] where Amount > 8 in Order".

3. Cali Relix to get the resuIting subrelation, "BigOrd < - [.id, Product,j where

Amount > 8 in Order".

4. Join back the resulting subrelation with the parent relation on .id. "Order-.Book

< - OrderJ3ook [BigOrd 'ijoin .id] BigOrd".

5. Update system tables.

The result is shawn in Figure 4.13

• CHAPTER 4. IAI[PLEAtlENTATION OF NESTED RELATIONS 71

Order_Book

Customer BigOrd

BigOrd

. id Product Amount

•

Ann 0 ------0 W 9
Ann 1 ------1 Z 10
Ping 2 ------2 M 12
Sam 3 ------3 Y 10

Figure ·1.13: Actualized BigOrd

Parser

In general domain algebra operations. we can write regular relational expressions with

sorne limitations. Le.. we can not include vertical operations in the quoted relational

expression.

Since we caU Relix again to get the resulting relation, we need to preprocess the

statement. "Ve build a small parser to preprocess the expression.

For example..[Prod-llct] where ...l mount > 8 in Order' will beconle •[. ici. Produet]

where Amotlnt > 8 in Order'. The automaton of the parser is shawn in Figure 4.14.

Suppose we have --:\ [a ijoin bl B". The flow of its automaton is:

1. The automaton reads •A'. It stays at the start. The output is "A".

2. The automaton reads 0['. It goes to state 1. The outputs is "A [".

:3. The automaton reads ·a'. It stays at state 1. The output is "'A [a"

4. The automaton reads ·ijoin'. It stays at state 1. The output is MA [a, .id ijoin"

.5. The automaton reads ob'. It stays at state 1. The output is MA [a, .id ijon b"

6. The automaton reads or. It goes back to the start. The output is {,(,A [a, .id

ijoin b, .id]"

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 72

•

7. The autornaton reads ~B'. It stays at the start. The output is "A [a, .id ijoin

b, .id] 8"

8. The autornaton reads EDF. It stops and returns the obtained output.

• CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

']'

73

Algorithm:

other than '['

state 1

other than ']'

For state start:
if next token is '[', go to state 1, eise stay at state start

For state 1:
if next token is "l"

add . id before .. 1", i . e . ". id 1Il

go to state start
else if next token is any J01n token

add .id before the join token , for example, ".id ijoin"
stay at state 1

join token: ijoin, djoin, uJo~n, sJo~n, ljoin, rJo~n,

drjoin, natjoin dljoin, natjoin, dljoin,
gtjoin, sup, eqjoin, sub, Itjoin, sep,
qejoin , lejoin, iejoin, div, -gejoin, -SUPt
-eqjoin, -sub, -ltjoin, icomp, natcomp

•
Figure 4.14: The parser to pa.rse the embedded general relational expression

•

•

Chapter 5

Conclusion

Nested relations have been explored thoroughly in past decades, with the major re

search direction focused on nesting and unnesting [Jae82][Fis85][Kor89][Tak89]. [n

our approach, we build nested relations upon fiat relations. We show that fiat rela

tions are powedul enough to model nested relations and to facilitate nested relation

queries. The purpose of this thesis is to begin to integrate nested relations into a re

fational database programming language (ReUx)by integrating the relational aIgebra

into the domain algebra.

5.1 Summary

We built our nested relation model upon the original Relix database mode!. Relix is

powerlul enough to support nested relations. No modifications have been made to

the original database engine itself. However sorne extensions were made to facilitate

the process of integration and to provide new features.

• A new system attribute .id has been added to Relix, which provides a way of

linking the parent relation to its included nested relations.

• One level of nesting has been integrated into Relix.

74

• CHAPTER 5. CONCLUSION 75

•

• A part of the relational operator can be added to the domain algebra. This

partially eliminates the difference between domains and relations.

Our implementation showed that Relix is powerful enough to include nested rela

tions, and that it is convenient to add nested relations to the system. The relational

operations, snch as ujoin, sjoin, ijoin, which are added to domain operations, function

well.

However, the surrogate mechanism we used is a bit simple, and we have not been

able to inc1ude more information in the surrogates except to use it to keep links

between nested child relations and the parent relation. No large-scale tests have been

done, since it is beyond the scope of this M.Sc. thesis.

5.2 Future Work

50 far, we have only implemented one level of nesting in Relix, which is the first

step towards fully implementing the features of nested relations. There are still more

features that can be added such as:

• Implementing multiple nesting and recnrsive nesting. To date, we have only im

plemented one level of nesting, which provides a prototype for multiple nesting.

Theoretically, it is possible to build infinite levels of nested relations.

• Fully integrating the relational algebra into the domain algebra. Only a part

of relational algebra has been integrated into domain algebra to date. Further

work cao be done on functional mapping and partial function mapping on nested

relations.

• Combining nested relations with procedure abstraction and to implement com

plex objects. A procedure facility has been recently added to the Relix sys

tem [Lui96]. We could extend certain procedures to nested relations. Those

• CHAPTER 5. CONCLUS/ON 76

•

procedures can be viewed as methods to manipulate a certain nested relation,

which can then be treated as a complex object.

•
Bibliography

•

[CodiO]

[Cod72]

[Des88]

[Fis85]

[.Jae82]

[.Joh7.)]

[Kor89]

[La186]

[Les75]

[Lev92]

E. F. Codd. A Relational rvlodel of Data for Large Shared Data Banks.
Communications of the AC1\1. 13(6)~ Oct. 19iO~ pp.:J:J7~387

E. F Codd. A Data Base Sublanguage Founded on the Relational Calcll~

lus. Proceedings of 1971 AClVl SIGFIDET ,,yorkshop on Data Descrip
tion, Access and Control.

A. Deshpande. D. Van Gucht. An implementation for Nested Relational
Database. Proceedings of the I-lth lntemational Conference on Very
Large Data Bases~ April 1988. pp. 266-274

P. C. Fischer, D. Van Gucht. Determining when a Structure is a Nested
Relation. Proceedings of the Il th International Conference on Very Large
Data Baes. August 1985, pp. 171-180

G. Jaeschke. H-J. Schek. Remarks on the Aigebra of Non-First-Normal
Form Relations. Proceedings of the Firsl AC'iVl SIGACT-SIGlvIOD Sy'm
posium on Princip/es of Database Systems. ~Iar('h 1982, pp.124-138

S. C . .Johnson. Yacc: Yet another compiler-compiler. Technical Report :32~

AT&T Bell Laboratories, Nlurray Hill. N.J., 1975.

H. F. Korth, ~l. A. Roth. Query Languages for Nested Relational
Databases. Nested Relations and Complex übjects in Database. Lecture
IVotes i.n Computer Science, Springer-Verlag, New York 1989.

N. Laliberté. Design and [mplementation of a Primary Nlemory Version
of Aldat. Nlaster's thesis, McGill University, wlontreal, Canada, 1986.

NI. E. Lesk. Lex: a lexical analyzer generator. Technical Report :39.
AT&T Bell Laboratories, Nlurray Hill, N.J., 1975.

NI. Levene. The Nested Universal Relational Database Nlodel. Lecture
lVotes in Co'mputer Science. Springer-Verlag~New York, 1992

77

• BIBLIOGRAPHY 78

•

[Lui96] R. Lui. Implementation of Procedure in a Database Programming Lan
guage. Master's thesis, McGill University, Montreal, Canada, 1996.

[Mak77] A. Makinouchi. A consideration on normal fonn of not-necessarily
nonnalized relation in the relational data mode!. Proceedings of 9rd In
ternational Conference on VLDB, Tokyo, pp. 447-453, 1977.

[~Ier76) T. H. Merrett. MRDS: An Algebraic Relational Database System. In
Canadian Computer Conference, Montreal, pp.l02-124, May 1976

[Mer77) T. H. Merrett. Relations as programming language elements. Information
Processing Letters, 6(1):29-33, Feb. 1977.

[~[er84) T. H. Merrett. Relational Information Systems. Reston Publishing Com
pa.ny, Reston, Virginia, 1984.

[00M87] G. Ozsoyoglu, Z. l'JI. Ozsoyoglu, V. Matos. Extending relational algebra
and relational calculus with set-valued attributes and aggregate functions.
ACM Transaction on Database Systems, 12(4) Dec. 1987, pp. 566-593

[Ozy87) Z. M. Ozsoyoglu & L. Y Yuan. A design method for nested relational
databases. Proceedings of 3rd IEEE conference on Data Engineering,
Los Angeles, pp. 599-608, 1987

[Ozy89] Z. ~I. Ozsoyoglu & L. Y Yuan. On Normalization in Nested Relatonal
Databases. Nested Relations and Complex Objects in Database. Lecture
l'lotes in Computer Science, Springer-Verlag, New York, 1989.

(Pis~6j P. Pistor, F. Anderson. Designing a Generalized j\,j F'1. Nlodel \Nitl1 An
SQL_Type language Interface. Proceedings of the l2th International Con
ference on Very Large Data Bases, August 1986, pp. 278-285.

[Pvg92) J. Paredaens, O. Van Gucht. Converting Nested Algebra Expressions
into Flat Aigebra Expressions. ACM Transactions on Database Systems
17(1), March 1992, pp. 65-93.

[RKS86) l\L A. Roth, H. F. Korth, A. Silberschatz. Extended algebra and calculus
for nested relational databases. ACM Transactions on Database Syste'm,s
13(4), Dec. 1988, pp. 390-417.

[Sch82] H. J. Schek, P. Pistor. Data Structure for an Integrated Data Base
Management and Information Retrieve System. Proceedings of the 8th
International Conference on Very Large Data Bases, Sep. 1982, pp. 197
207.

• BIBLIOGRAPHY 79

•

(Sps87] M. H. Scholl, H. B. Paul, H. J Scholl. Supporting Flat Relations by a
Nested Relational Kernel. Proceedings of the 13th International Confer
ence on Very Large Data Bases, Sep. 1987, pp. 137-147.

(Sab89] M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidait, S. Gamerman,
o. Plateau, P. Richard, A. Verroust. VERSO: A Database Machine Based
on Nested Relations. Nested Relations and Complex Objects in Database,
Lecture Notes in Computer Science, Springer-Verlag, NY, 1989.

(Stone96) M. Stonebraker. Object-Relational DBN/5s. Morgan Kaufmann Publish
ers Inc., San Francisco, California, 1996.

[Tak89] K. Takeda. On the Uniqueness of Nested Relations. Nested Relations
and Complex Objects in Databases, Lecture notes in Computer Science,
Springer-Verlag, New York, 1989.

[Tag92] A. U. Tansel, L. Garnett. On Roth, Korth, and Silberschatz's Extended
Aigebra and Calculus for Nested Relational Databases. ACM Transac
tions on Dalabase Systems, 17(2), June 1992, pp. 374-383.

[Tho86] S. Thomas, P. Fischer. Nested relational structures. In Advances in
Computing Research III, The Theory of Databases, P.C. Kanellakis, Ed.
J AI Press, Greenwich, Conn., 1986.

'~JA"'r-IIVIAu~ E' lA' • • A~'

TEST TARGETALu(AIIONQA-3)

11
1.0 :: Iii ~
I~ ~Iii1:= ~ 12.2

~W -

1111.1 L~ W
IIIII~

~1111.25 1~11.4 lM L6

1

l..&
1"

-.L
1

1L....

- lS0mm ------~-...,

6" ------~~--..,
1

APPLIECl .:S IMAGE 1.= . ne
~ 1653 East Main Street..=-.= Rochester. NY 14609-==-.= Phone: 7161482-0300 USA

_ 4:::: Fax: 716,1288.5989

C 1993 AppOed 1• mage. 1J1C.. AIt RIgtlIS Reeetved

