INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be
from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bieedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced
form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Implementation of Nested Relations in a
Database Programming Language

Hongbo HE

School of Computer Science
McGill University, Montreal

September 1997

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science.

Copyright © Hongbo HE 1997

i~

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et i
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Waellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your ke Voire reldrence
Our Ne Natre reiérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-37126-3

Abstract

This thesis discusses the design and implementation of nested relations
in Relix, a relational database programming language. The purpose of this
thesis is to integrate nested relations into Relix.

While a flat relation is defined over a set of atomic attributes, a nested
relation is defined over attributes which can include non-atomic ones, i.e.
a data item itself can be a relation. To show the power of relational
database systems, it is desirable to have nested relations in Relix. Our
implementation was done using existing relational functionalities of Relix,
without any modification of the physical data representation. Instead
of focusing on nesting and unnesting as the major research direction of
nested relations, we built nested relations on top of flat relations and
we built nested queries by allowing the domain algebra to subsume the
relational algebra.

Users are able to take advantage of nested relations in Relix with only

minimal new syntax being added to the system.

Résumé

Cette these a pour objectif la spécification et 'impiémentation des
relations imbriquées dans Relix, un langage de programmation de base de
données relationnelles. Le but de cette these est d’intégrer les relations
imbriquées dans Relix.

Une relation plate est definie sur un ensemble d’attributs atomiques,
alors qu’une relation imbriquée est définie sur des attributs qui sont non
atomiques,i.e., une donnée pourrait étre une relation. Pour montrer la
puissance des systems de base de données relationnelles, il est desirable
d’avoir des relations imbriquées dans Relix. Notre implémentation est
basée sur les fonctionalités relationnelles déja existantes dans Relix, au-
cune modification au niveau de la représentation physique des données
n’a été apportée. Au lieu de focaliser notre axe de recherche sur les pro-
priétés d'imbrication et de non-imbrication des relations imbriquées, nous
avons construit des requétes imbriquées permettant a 1’algebre relation-
nelle d’étre une composante du domaine algébrique.

Les utilisateurs peuvent tirer profit des relations imbriquées dans Relix

a ’aide d’une nouvelle syntaxe minimale qui a été ajoutée au systeme.

Acknowledgements

[would like to express my gratitude to my thesis supervisor, Professor
T. H. Merrett, for his attentive guidance, invaluable advice, and endless
patience throughout the research and preparation of this thesis. I would
also like to thank him for his financial support.

[would like to thank my colleagues in the ALDAT lab, especially Xi-
aoyan Zhao and Rebecca Lui for their assistance on the usage of facilities
in the lab and their consultation on the existing Relix system. Special
thanks goes to Abdelkrim Hebbar who translated the abstract of this
thesis to French and Anne Vogt who proofread this thesis.

[would also like to thank all the secretaries of the School of Computer
Science for their kind help, especially Ms. Josie Vallelonga and Ms. Franca
Cianci.

I wish to thank all my friends during my years at McGill, Pung Hay,
Xinan Tang, Shaohua Han and Marcia Cavalcante for their endless en-
couragement.

Thanks must also go to my father, my brothers for their love and
constant support.

Finally, [would like to dedicate this thesis to my mother, for her bless

in my life to date and forever.

Contents

Abstract

Résumé

Acknowledgements

1 Introduction

1.1 Relational Model
1.1.1 Operations on Relations .
1.1.2 Operations on Domains .

1.2 Object Oriented Model

1.3 Object Relational Model

1.4 Nested Relation Model
1.4.1 Nested Relations
1.4.2 Nesting and Unnesting . .
1.4.3 Our Approach

1.5 Thesis Aim and Outline

2 Relix

21 Overview.

2.1.1 Domains and Relations . .

2.1.2 Basic Commands in Relix

iv

....................

....................

....................

....................

....................

....................

i

iii

N = =

bt I = > T < | B - IC S VL

....................

2.2 Relational Algebra Lo L.

2.3

2.4

22,1 Projection
222 Selection. e
223 Joins e e e e e e e e e e e
Domain Algebra Lo,
2.3.1 Horizontal Operations
2.3.2 Reduction {Vertical Operations)
233 Nested Relations
ijoin, ujoin, sjoin are Associative and Commutative
24.1 Definition e
242 Commutative it
243 Associative e e
2.44 Anpother Approach

User’s Manual on Nested Relations

3.1

3.2

The Nested Relations and Relation Data Type
Operations on Nested Relations
3.2.1 Vertical Operations

3.2.2 Horizontal Operations

Implementation of Nested Relations

4.1

Implementationof Relix
4.1.1 System Relations
4.1.2 Parser and Interpreter
4.1.3 Implementation of Domain Operations
Declaration and Initialization of Nested Relations
4.2.1 Declaration of Relation Data Type
4.2.2 Initialization.

31
31
34
34
40

4.3 Operations o . i it e e e e e e e e e e e e e e 58

4.3.1 Implementation of Reduction 59

4.3.2 Horizontal Operation 67

5 Conclusion 74
51 Summary e e e e e e e 74
52 FutureWork 75
Bibliography 7

Chapter 1

Introduction

This thesis discusses the implementation of nested relations in Relix, a relational
database system developed at McGill.

The relational model for representing data was proposed by Codd [Cod70] in
the early seventies. Since then, it has gained an undisputable key position in the
commercial database industry. The nested relational model [Mak77] was developed
as an extension of the relational model and has gained significant importance in non-
traditional database applications (such as CAD/CAM databases, text and pictorial
databases).

1.1 Relational Model

In the relational model, information is represented in a table format with the following

properties:
e All rows are distinct from each other.
o The ordering of the rows is unimportant.

o Each column is unique and the ordering of the columns is immaterial.

CHAPTER I. INTRODUCTION 2

e The value in each row under a given column is atomic, i.e., it is nondecompos-

able.

Each row is called a tuple and a column is referred to as a domain, A name is
given to the domain of a relation to release the users from remembering the domain
ordering of the relation. They are called attributes. From a mathematical perspective,

a relation is a subset of the Cartesian product of its domains.

1.1.1 Operations on Relations

Operations on relations form the relational algebre, and can be thought of as a
collection of methods for building new tables that constitute answers to queries.
Codd defined a set of relational operations and proved that they are “relationally
complete™ [Cod72].

Relations are considered atomic objects in the relational algebra, and access to
tuples within a relation is precluded. Thus the notation and manipulations that must

be done are greatly simplified [Mer84]. The operations are defined as following:
e unary operations

— projection

— selection
e binary operations

— p-joins: applied to relations that are union compatible

— o-joins: support set operations on relations

'An algebra or calculus is relationally complete if, given any finite collection of relations
Ri, Ra, ..., R, in simple normal form, the expressions of the algebra or calculus permit definition of
any relation from R;, R, ..., R. by using a set of N range predicates in one-to-one correspondence

with Ry, Ry, ..., Ry.

CHAPTER I. INTRODUCTION 3

1.1.2 Operations on Domains

The need for arithmetic and similar processing of the values of attributes in individual
tuples is apparent. The domain algebra was proposed [Mer76] entirely to avoid tuple-
at-a-time operations for processing attributes in individual tuples. It allows the user
to create new domains from existing ones, and allows the generation of new values
from many values within a tuple or from values along an attribute. The domain

algebra operations are defined as:

e horizontal operations

— Constant
— Rename
— Function

— [f-then-else
e vertical operations

— Reduction

— Equivalence Reduction

Functional Mapping

Partial Functional Mapping

1.2 Object Oriented Model

Object-oriented techniques are becoming popular for designing and implementing user
interfaces, applications and systems. ODBMS (Object-oriented Database Manage-
ment System) is the result of objected-oriented techniques implemented in database

management systems.

CHAPTER 1. INTRODUCTION 4
Object-oriented techniques include the following key points:

e Encapsulation: combining data and functions in a single unit, the object.

e Polymorphism: the ability to treat different objects the same way by sending
them the same message, which elicits a semantically similar function in each

object.

e Class instantiation: creating different objects of the same general description

from the same class.

o [nheritance: extending one or more existing objects to create new objects that

share data, behavior, and methods in terms of OO terminology.

Generally, ODBMSs are the database systems that allow data to be stored beyond
the tabular format of the relational model. They can deal with complex data struc-
tures as in programming languages. Another possible way of thinking of ODBMSs is
as an object-oriented programming language with persistent data, in the sense that
data in the programs lives beyond the life of the programs. The ability to manipulate
data and perform computations within one single system is the strong point that
has been claimed to solve the problem of the mismatch between data manipulation

languages (e.g. SQL) in the relational model and ordinary programming languages.

1.3 Object Relational Model

Another database model is the object-relational database management system, which
was proposed by Stonebraker et. al. [Stone96].

[t has four major features:

e Support for base data type extension. These include dynamic linking of user-

defined functions, client/server activation of user-defined functions, secure user-

CHAPTER 1. INTRODUCTION 5

defined functions, callback in user-defined functions, user-defined access meth-

ods, and arbitrary-length data types.

e Support for complex objects. Three basic type constructors are available: com-
posites, sets and references. Full featured user-defined functions can be imposed
on complex objects. Complex data types can be of arbitrary-length and have

SQL support.

e Support for inheritance. Both data and function inheritance are supported.

Overloading is also available, as well as multiple inheritance.

e Support for a production rule system. Events and actions are retrieved as well
as updates. Rules are integrated with inheritance and type extension. There

are rich execution semantics for rules and no infinite loops.

Stonebraker predicted “object-relational DBMS to be the next great wave in
database technology” [Stone96).

1.4 Nested Relation Model

Most work on the relational model of Codd [Cod70] involved the first normal form
(1INF) assumption, i.e., that all elements of a tuple of a relation are atomic values
(undecomposable). This has the advantage of simplifying the data model. However,
from the programming language point of view, this is an arbitrary restriction. Ways
of relaxing INF have been investigated which retain much of the advantages of the
relational model. The need to introduce complex objects into relations to make them
more qualified to handle non-business data processing applications such as picture
and map processing, computer aided design and scientific applications was realized
in the late 1970’s, thus leading to the introduction of nested relations [Mak77] and
the non-first-normal-form (N F?) [Jae82].

CHAPTER 1. INTRODUCTION 6

Project
Manager Detail
P_Name | Budget(K)
Joe P1 40
P2 30
Sue P2 30
P3 20
P4 30

Figure 1.1: Nesting

1.4.1 Nested Relations

The relation Project in Figure 1.1 gives an example of nesting. Relation Project

consists of 2 tuples each having two attributes:

e Manager: The name of the manager who is in charge. The data is of type string

(atomic).

e Detail: A nested relation containing the projects of which the manager is in
charge. Each tuple in relation Detail contains a whole relation as an attribute
value. The first tuple contains a relation with 2 tuples. The second tuple

contains a relation with 3 tuples.

In [Sch82][Pis86][Lev92], the authors claim that N F? relations have some advan-

tages over LNF relations, such as:

e Nested relations minimize redundancy of data. Related information can be
stored in one relation only without redundancy. For example, if relation Project

in Figure 1.1 were to be represented by 1NF, it would be either have had to

CHAPTER 1. INTRODUCTION 7

have redundant values for attribute Manager, or it would have had to be split

into two different relations (Project and Detail), with a foreign key, P_Name.

e Nested relations allow efficient query processing since some of the joins are
realized within the nested relations themselves. In our example in figure 1.1,
if information about the manager’s budget needs to be retrieved in the INF
representation a join must be performed between Manager and Detail, while no

join is needed in the N F? representation.

e Low level implementation techniques such as clustering and repeating fields can

be represented using the formalism defined by the nested relation model {Kor89).

1.4.2 Nesting and Unnesting

[n the literature, defining a nested relational model was done by extending relational
operators to nested relations, and adding two restructuring operators, NEST and
UNNEST [Jae82][Fis85]. The NEST operator creates partitions which are based
on the formation of equivalence classes [Kor89]. Tuples are equivalent if the values
of the same attributes which are not nested are the same in the different tuples.
All equivalent tuples are replaced with a single tuple in the resulting relation; the
attributes of this tuple consists of all the attributes that are not nested, having the
common value in the original tuples, as well as a nested relation whose tuples are the
values of the attribute to be nested. Figure 1.2 shows an example of the use of the
NEST operator. Relation Project is nested on attribute Member.

The UNNEST operator undoes the result of the NEST operator. It creates a new
relation whose tuples are the concatenation of all the tuples in the relation being
unnested to the other attributes in the relation [Kor89)]. Thus:

UN NESTrember(N ESTMember(Project)) = Project [Jae82]

But, the reverse does not hold, i.e.:

CHAPTER 1. INTRODUCTION 8

Project N ESThremser (Project)
Proj_Name | Member Proj_Name | Member
Pl Joe P1 Joe
P1 Sue Sue
P1 Sam Sam
P2 Joe P2 Joe
P2 Mary Mary
P3 Sue P3 Sue
P3 Mary Mary
Figure 1.2: Nesting on Member
R R =UNNESTsR R" = NESTgR
AlB A B A B
Xja X a X a
b X b b
x|a X c c
c

Figure 1.3: NESTg(UNNEST(R)) <> R

“NESTattribute(UN N EST gterivute(Relation)) = Relation” is not always true.

The case in Figure 1.3 gives an example.

As the price of the advantages over INF relations, nested relations pose a non-
trivial problem of data representation [Tak89]. There are generally alternative rep-
resentations of data in a nested relation, while the data is uniquely represented by a
LNF relation. This is illustrated by the following example:

In left side of Figure 1.2, we have a simple INF relation Project on Proj_Name

and Member. This relation is a unique representation of a set of 7 tuples.

CHAPTER I. INTRODUCTION 9

NESTp,oj_Name(Project)
Proj_Name Member

P1 Joe

P2

P2 Mary

P3

P1 Sue

P3

P1 Sam

Figure 1.4: Relation: NESTpro; Name(Project)

We can nest Project on attribute Member as shown in the right side of Figure 1.2.
We can also nest Project on attribute Proj_Neme, as illustrated in Figure 1.4.
Thus, it might be controversial whether or not these two relations are regarded

as the same relation. There are two different assumptions with respect to the inter-

pretation [Tak89]:

1. To consider each tuple in the relation to be meaningful. Hence, the relation
in the right side of Figure® 1.2 gives a list of projects and their members,
while the relation in Figure® 1.4 gives the list of members and the projects
they participate. They carry different meanings, therefore, each nested relation
should be recognized as distinct. Thus, it would be difficult to identify a nested
relation with a I1NF relation. It “poses a semantic gap between INF and nested
form relations although it enables us to represent complex objects in a natural

way by using nested relations” [Tak89).

(V]

. Conversely, to assume that each tuple is just a union of single values rather

than a specific object, which allows the identification of the two nested relations

. CHAPTER 1. INTRODUCTION 10

in the right side of Figures 1.2 and 1.4 and the identification of them with the
original INF relation. Many research papers implicitly use this assumption such

as those proposing transformation operators [Jae82][Fis85], and those designing

nested relations [Ozy87][Ozy89].

Significant progress has been made in the field of nested relations during the past
decade. A generalization of the ordinary relational model, allowing relations with
set-valued attributes and adding two restructuring operators, nest and unnest, was
introduced [Jae82][0OMS87). Fisher and Van Gucht [Fis85] discussed one-level nested
relations and their characterization by a new family of dependencies, and furthermore,
they developed a polynomial-time algorithm to test if a structure is a one-level nested
relation. Thomas and Fischer generalized their work on the one-level model and al-
lowed nested relations of arbitrary, but fixed depth [Tho86]. In [RKS86], Roth, Korth
and Silberschatz defined a normal form called “Partitioned Normal Form(PNF)” for
nested relation, and also defined algebra and calculus query languages for them; how-
ever, their proofs and method were later questioned by Tansel and Garnett {Tag92).
Numerous query languages have been introduced for the nested model [RKS86}, and
extensions have been proposed to practical query languages such as SQL to accom-
modate nesting [Pis86][Kor89]. Implementation of databases based on the nested
relation model are also available such as of in [Sps87][Des88}[Sab89]. These are either

built on top of existing relational databases, or from scratch.

1.4.3 Owur Approach

We view nested relations in a different light. We do not restrict our approach to
nesting and unnesting. We build nested relations to facilitate nested queries. We do
this by extending domain operations to include relational operations.

In our approach, we observe that:

. CHAPTER 1. INTRODUCTION 11

o Using flat relations, we can model nested relations. We can use a set of surro-

gates to keep links between parent relations and their nested child relations.

e We can build a nested relation query facility in the context of flat relations.
Since an attribute itself can be a relation, relational operations can be included

in domain operations.

1.5 Thesis Aim and Outline

The purpose of this thesis is to extend Relix with nested relations and to integrate

the relational algebra into the domain algebra.

e Chapter 1 contains a literature review of the relational model, the object ori-

ented model, object-relational model and nested relations.

e Chapter 2 provides a general overview of the Relix database programming
language—the relational database programming language developed at McGill
University. The syntax and internal operation of Relix that are relevant to the

work done in this thesis are discussed in this chapter.

o Chapter 3 is the user’s manual on nested relations. It shows the semantics and

syntax for nested relation definitions and operations.

e Chapter 4 gives a detailed description of the implementation of nested relations

in Relix.

e Chapter 5 concludes the thesis with a summary and proposals for future work.

Chapter 2

Relix

Relix is briefly described in this Chapter. The purpose of this Chapter is to provide
readers with enough background to understand the rest of the thesis. Since all the
design and implementation work in this thesis follows the conceptual framework of
the existing Relix system, we will present only the subset of Relix related to this
thesis. The theoretical foundation on which the development of Relix is based can

be found in [Mer84], while the basic reference of Relix can be found in [Lal86}.

2.1 Overview

Relix is a RElational database programming Language in UNIX. It is an interpreted
language written in C. It can accept and execute commands or statements from the
command line. It can also accept Relix commands and statements batch files.

Relix deals primarily with two kinds of data models: domains and relations. There

are two categories of operations: domain algebra and relational algebra.

12

CHAPTER 2. RELIX 13

2.1.1 Domains and Relations

A relation is defined on one or more attributes, and the data for a given attribute is
from a particular domain of values. The domain of a given attribute determines its
data type.

For example the Student relation in Figure 2.1 is defined on four attributes: Stu_id,
Enter.year, Name, Canadian. The domains of Stu_id and Enter.year attributes are
integer. The domain of Name attribute is string. And the domain of Canadian

attribute is boolean.

Student

Stu_id Enter_year Name Canadian
9546300 1995 Joe true
9602324 1996 Sue true
9701087 19937 Jin false
9702340 1997 Jin false

Figure 2.1: Student relation

There are six atomic data types in Relix as shown in Figure 2.2. Note that we
also have a special data type, relation, which will be introduced in Chapter 3.

In Relix, we can declare the domains of relation Student as follows:

> domain Stu_id integer;

> domain Enter_year integer;
> domain Name string;
>

domain Canadian boolean ;

The relation Student can then be declared and initialized:

. CHAPTER 2. RELIX

>

Data Tvpe
integer
long
short
real

string

boolean

Shorxrt Form

int
long
short
real

strg

bool

Domain

singed integer
signed long integer
sighed short integer
sighed floating point

sequence of characters
(with limitations)

true or false

Figure 2.2: Atomic Data Type in Relix

relation Student(Stu_id, Enter_year, Name, Canadian) < —
{(9546900, 1995, "Joe ", true),
(9602324, 1996, "Sue ", true),
(9701087, 1997, "Jin ", false),
(9702340, 1997, “Jin v, false)} ;

14

We can also declare a relation without initialization, i.e., a relation without any

data :

>

relation Student (Stu_id, Enter_year, Name, Canadian)

2.1.2 Basic Commands in Relix

In Relix, there are basic commands to show, print and delete domains and relations

declared in the database.

The grammar for the commands is:

CHAPTER 2. RELIX 15

<command.name> (! or !!<parameters>).
Where <command.name> includes reserved words which will be introduced in
the following paragraphs and ! means that the programmer is prompted for the

parameters, while !! requires command line parameters.

Show Commands

e sd! or sd!!'<domain_name>

Relix will show the name, type and other information associated with all do-

mains in the database or the specified domain. For example:
> sd!! Stu_id
will show the information of domain Stu_id.
e sr! or sr!!<relation_name>

Relix will show the name, degree and other information of all relations in the

database or the specified relation. For instance:
> sr!! Student
will show the information of relation Student.
e srd! or srd!!<relation_name>

Relix will show all relations and their domains in the database or the specified

relation and its domains. For example:
> srd!! Student
will show relation Student and its domains.
e pr!l<relation_name>
Relix will print all data in the specified relation. For instance:

> pr!! Student
will print all data in relation Student.

CHAPTER 2. RELIX 16

e dd!'<domain_name>

Relix will delete the specified domain. If it is still in use, Relix will give an

error message and the domain will not be deleted.

> dd!! Year

will delete domain Year, if it is not in use.

e dr!'<domain_name>
Relix will delete the specified relation.

> dd!! Student

will delete relation Student.

e q!

This command can be used to quit the Relix system.

2.2 Relational Algebra

The relational algebra consists of a set of operations on relations. Both operands and
results are relations.

In Relational Algebra operations, we have unary operations and binary operations.
As the names indicate, unary operators take one relation as an operand, and binary
operators take two relations as operands. In unary operations, there are projection

and selection; in binary operations, there are joins.

2.2.1 Projection

Projection is an operation on the attributes of a given relation. The results of a
projection is a relation whose attributes are the specified attributes in the projection
list. Duplicate tuples in the resulting relation are removed. For example, we can

project the Name of Student relation as follows:

CHAPTER 2. RELIX 17

> Stuname < — [Name] in Student;

Stu_name

2.2.2 Selection

Selection is an operation on arelation to select tuples that meet the condition specified
in the selection clause, which is called T-selector({tuple selector). We can do the

following selection to extract the student information about who is a Canadian.

> Castu < — where Canadian = true in Student;

or

> Castu < — where Canadian in Student;

Ca_Stu

Stu_id Enter_year Name Canadian
9546900 1995 Joe true
9602324 1996 Sue true

We can combine projection and selection in a single statement. First Relix will
do selection on the input relation based on the selection clause, then do projection
on the output of the selection. We can extract the Stu_id numbers of students who

are Canadian using the following statement:

CHAPTER 2. RELIX 18

> Castu.id < — [Stu.id] where Canadian in Student;

- e s - - -

9546900
9602324

2.2.3 Joins

There are two classes of join operations in Relix: u-joins, the family of set-valued set
operations; and o-joins, the family of logical-valued set operations [Mer84].

u-joins

p-joins are derived from the set operators such as intersection, union, difference, etc.

The u-joins on two relations, R(X,Y) and S(Y,Z), are based on three parts:

o center 2 {(z,y,2) | {z,y) € Rand (y,=) € S}
o left wing £ {(z,y,DC) | (z,y) € Rand V z(y,2) ¢ S}

o right wing £ {(DC,y,2)|(y,2) € $ and V z(z,y) & R}

We will explain these three basic u-joins in detail in this section. The two relations

in Figure 2.3 are used to illustrate the operations:

e The most used p-join is the natural join (ijoin or natjoin), which gives us the
center part of the operand relations. It combines tuples of the two relations
that have equal values on the join attributes. Thus, it is the intersection of the

two relations on the join attributes, which gives us ijoin.

CHAPTER 2. RELIX

Student

[S

-—m. - - o o -

9546900
9602324
9701087
9702340

9576701
9546900
9602324
9602324

19

Math
Physics
History
Math

Figure 2.3: Student and Courses relations

The natural join of relations R and S is defined as {Cod70]:

Rnatjoin S £ {(a,b,c) | R(a,b) and S(b,c)}

where (a,b,c) is a tuple in the new relation, of which (a,b) is a tuple of R and

(b,c) is a tuple of S.

The following Relix statement performs a natjoin between relation Student and

relation Courses.

> SiyoinC < — Student ijoin Courses ;

- Am e A e e G - G e a— ww e -

9546900
9602324
9602324

Physics
History
Math

- e e m wm m e am e m— o Em e - - -

¢ The union join (ujoin) is an operation that is a union of the set of tuples from

the natural join, together with the tuples from the relations of both sides that

are not equal to each other in the join attributes, and the missing attributes

CHAPTER 2. RELIX 20

are filled up with DC! null value. It gives us the union of the left, center, right

parts of the operand relations.

> SwyjoinC < — Student ujoin Courses;

SujoinC

Stu_id Name C_Name
9—‘5:16—90-0 ----- J ;e- - -Piy—s;c;
9576701 DC Math
9602324 Sue History
9602324 Sue Math
9701087 Jin DC
9702340 Jin DC

- emm o mm - e o e e - e e ww S e =

e The symmetric difference join (sjoin) is the set of tuples from the relations of
both sides that are not equal to each other in the join attributes, the missing
attributes are filled up with DC null value. It gives us the union of the left,

right parts of the operand relations.

> SsjoinC < — Student sjoin Courses;

SsjoinC

Stu_id Name C_Name
9576701 I DC Math
9701087 Jin DC
9702340 Jin BC

The overall g-join operations are shown in Figure 2.4.

1DC, Don’t Care, describes irrelevant values.

. CHAPTER 2. RELIX
y=joins u—join-operator Resuiting Relation
Natural Join ‘natjoin’ or ‘ijoin’ centre
Union Join ‘ujoin’ left U centre U right
Left Join ‘ljoin’ left U centre
Right Join ‘rjoin’ right U centre
Left Difference Join ‘djoin’ or ‘dljoin’ left
Right Difference Join ‘drjoin’ right
Symmetric Difference Join ‘sjoin’ left U right

Figure 2.4: u-join operations

21

. CHAPTER 2. RELIX 22
o-joins

The family of o-joins are based on set comparison operators. In operations, the tuples
in each of the operand relations are grouped such that for each group, all the non-join
attributes on both sides are identical. The set comparison operator is then applied
to the Cartesian product of the groups. The values of the non-join attributes of the
comparing groups are accepted if the specified set comparison on the join attributes
is satisfied.

There are five o-joins:

sup or div or gejoin, the superset operator, a generalization of 2. ‘div’ stands

for ‘division’, which extends Codd’s definition of relational division [Cod72].

sub or lejoin, subset, a generalization of C.

eqjoin, equal set, a generalization of =.

sep, intersection empty, a generalization of @.

icomp, intersection not empty, a generalization of @.

Considering the two relations Student and Class in Figure 2.5.

Student Class

Name Course Course Room
Joe Math Math 286
Joe Physics Physics 286
Sue Physics Chemistry 302
Jin Math Physics 312

- e e = am em aw - e - - P e

Figure 2.5: Student and Class relations

To answer following query: Find students and the classrooms such that the courses

. the student has taken is a subset of the courses which are given in this classroom.

CHAPTER 2. RELIX 23

> StuRoom < — Student sub Class;

Joe 286
Jin 286
Sue 286

The overall o-join operations are shown in Figure 2.6.

2.3 Domain Algebra

Relational algebra considers relations to be data primitives [Mer84] and therefore
does not give the user the power to manipulate attributes. To overcome this problem,
Merrett proposed domain algebra [Mer77].

Besides creating a domain by declaring its type as in section 2.1.1, one can build
a new domain by expressing the domain as operation on existing domains. It allows
operations over a single tuple (horizontal operations) and operations over sets of
tuples (vertical operations). Domains defined in this way are ‘virtual’ in the sense
that they are expressions and no actual values are associated with them. The values
of the virtual domains are actualized in a Relix statement, notably, projection or

selection.

2.3.1 Horizontal Operations

Horizontal operations work on a single tuple of relation. We can define constants,

perform renaming and arithmetic functions, as well as if-then-else expressions.

. CHAPTER 2. RELIX

R RHE O U DN IUE:

Set Comparison
Superset

Equal Set
Subset

Intersection Empty
Proper Superset
Proper Subset

Not Superset

Not Equal Set

Not Subset
Intersection Not Empty
Not Proper Superset

Not Proper Subset

o-join Operator

‘div’ or ‘sup’ or ‘gejoin’
‘egjoin’

‘sub’ or ‘lejoin’
‘sep’

‘gtjoin’

‘tjoin’

‘~sup’
‘~egjoin’
‘~sub’

‘icomp’
‘~gtjoin’

‘~ltjoin’

Figure 2.6: o-join operations

24

CHAPTER 2. RELIX 25

o constants
let two be 2;

let myname be "marc";

e renaming

let stuname be name;

e arithmetic functions
let Sin be sin(angle);

let area be sqrt(a**2 + b**2 + c**%2) / 2;

o if-then-else

let Grade be if Mark > 60 then "Pass" else "Fail";

All above domains defined are virtual domains. For example, we can actualize

("rade as following:

> ('RADES < — [Student, Crade] in MARKS

MARKS GRADES

Name Mark Name Grade
Joe 50 Joe Fail _
Jin 80 Jin Pass
Sue 90 Sue Pass

2.3.2 Reduction (Vertical Operations)

Reduction are domain algebra operations which combine values from more than one

tuple — the ‘vertical’ operation [Mer84].

e Simple Reduction

CHAPTER 2. RELIX 26

Simple reduction produces a single result from the values from all tuples of a
single attribute in the relation {Mer84]. The operator in simple reduction must
be both commautative and essociative, such as plus (<), multiplication (*). For

example:

let Total be red + of Grade;

Transcript

Name Dept Grade (Total)
Joe cS 85 330
Jin Cs 90 330
Sue EE 80 330
Weny ME 75 330

Equivalence Reduction

Equivalence reduction is like simple reduction but produces a different result
from different sets of tuples in the relation. Each set is characterized by all
tuples having the same value for some specified attributes - an “equivalence

class” in mathematical terminology [Mer84]:

let Subtotal be equiv + of Grade by Dept;

Transcript

Name Dept Grade {Subtotal)
Joe CS 85 175

Jin cs 90 175

Sue EE 80 80

Weny ME 75 75

- e . - o o e — - -

2.3.3 Nested Relations

In this thesis, we extend Relix to support nested relations. In chapter 3 and chapter 4,

we will discuss nested relations in detail, including a user manual and implementation

CHAPTER 2. RELIX 27

techniques.

2.4 ijoin, ujoin, sjoin are Associative and Commu-
tative

From Section 2.3.2, we know that in simple and equivalence reduction, the operator
needs to satisfy the commutative and associative criteria. In the following sections,

we prove that ujoin, ijoin, and sjoin all have these two characteristics .

2.4.1 Definition

For relations, R(X, Y) and S(Y,Z), these three sets of tuples are each defined on the
attributes(or attribute groups) X, Y, Z.

We first define three disjoint sets of tuples which are set operations between R

and S [Mer84]:

—

. center 2 {(z,y,2)| (z,y) € Rand (y,z) € S}

[EV]

. left wing £ {(z,y,DC)|(r,y) € Rand V z(y,2) & S}

. right wing 2 {(DC,y,2) | (y,2) € S and ¥ z(z,y) € R}

[5)

The joins’ definitions are based on these 3 sets:

. Rijoin § £ center

[y

(3]

. Rujoin S = left wing U center U right wing

3. Rsjoin § £ left wing U right wing

CHAPTER 2. RELIX 28

2.4.2 Commutative

By definition, an binary operator 6 is commutative iff A0 B = B A.

Remnark 1: R ijoin S = S ijoin R.

Proof:

R ijoin S = {(z,y,2) | (z,y) € Rand (y,z) € S} (from definition)

=

R ijoin S = {(z,y,2) | (2,y) € S and (y,z) € R} (from the commutativity of
and)

=

R ijoin S = S ijoin R

Remark 2: R sjoin S = S sjoin R.

Proof:

R sjoin S = {(z,y,DC) | (z,y) € Rand V z(y,z) € S} U {(DC,y,2) | (y,2) €
S and V z(z,y) € R} (from definition)

=

R sjoin S = {(z,y,DC) | (z,y) € S and YV z(y,z) € S} U {(DC,y,z) | (y,z) €
Rand V z(z,y) € S} (from symmetry and the commutativity of U)

=

R sjoin S = S sjoin R

Remark 3: R ujoin S = S ujoin R.

Since R ujoin S = (R ijoin S) U (R sjoin S) (from the definition)

And from Remark 1 and Remark 2, the proof is trivial.

2.4.3 Associative

By definition , an binary operator § is associative iff (A9 B)§C = A0 (B9 C)
Suppose we have 3 relations, R(X,Y), S(Y,Z), T(Z,W)
Remark 4: (R ijoin S) ijoin T = R ijoin (S ijoin T)

CHAPTER 2. RELIX 29

Proof:

(R ijoin S) ijoin T = {(z,y,2) | (z,y) € R and (y, z) € S} ijoin T (from the
definition)

=

(R ijoin S) ijoin T = {(z,y,2,w) | (z,y) € R and (y,z) € S and (z,w) € T}
(from the definition)

=

(R ijoin S) ijoin T = {(z,y,z,w) | (z,y) € R and ((y,z) € S and (2,w) € T)}
(from the associativity of and)

=

(R ijoin S) ijoin T = R ijoin {(y,z,w) | (y,2) € S and (z,w) € T} (from
definition)

=

R ijoin S) ijoin T = R ijoin (S ijoin T) (from definition)

Remark 5: (R sjein S) sjoin T = R sjoin (S sjoin T)

Proof:

(R sjoin S) sjoin T = (leftwing(r,s) U rightwing(r,s)) sjoin T (from definition)

=

(R sjoin S) sjoin T = ({(z,y,DC) | (z,y) € Rand Vz(y,z) € S} U {(DC,y,z) |
(y,2) € Sand V z(z,y) € R}) sjoin T (from definition)

=

(R sjoin S) sjoin T = {(x,y,DC,DC) | (z,y) € R and Vz(y,z) € S and Vw(DC,w) €
T} U {(DC,y,2,DC) | (y,z) € S and Vz(z,y) ¢ R and Vuw(z,w) ¢ T} U
{(DC,DC,z,w) | (z,w) € T and Y y(y,z) € S and V z(z, DC) € R} (from def-
inition)

In the same way, we can get:

R sjoin (S sjoin T) = {(z,y, DC,DC) | (z,y) € R and Yz(y,2) € S and Vw(DC,w) €
T} U {(DC,y,2,DC) | (y,z) € S and V z(z,y) ¢ R and V w(2,w) € T} U

CHAPTER 2. RELIX 30

{(DC,DC,z,w) | (z,w) € T and Vy(y,z) € S and Vz(z, DC) ¢ R}
Thus
(R sjoin S) sjoin T = R sjoin (S sjoin T)
Remark 6: (R ujoin S) ujoin T = R ujoin (S ujoin T)
Proof: From Remark 4 and Remark 5, the proof of Remark 6 is trivial.

2.4.4 Another Approach

Let x be a tuple, and let X be a binary variable such that if x € some relation R,

then X has value 1, otherwise 0.

l. for R = Ry ujoin R;... R, and for some tuple x,if X; + Xo +... + X, = 1,
= x € R.2

)

for R = R, ijoin R;... R, and for some tuple x, if X; * X; » ... x X, =1,

= x € R.3
3. for R = Ry sjoin R, ... R, and for some tuple x,if X, X; @ ... 9 X, § =
0,—=>x€R.?

From characteristics of @, we can conclude that if x appears odd times in

relations K, ... R, then x € R.

2Here + means logical operation OR, which is commutative and associative
3Here *+ means logical operation AND, which is commutative and associative

“Here @ means logical operation XOR, which is commutative and associative

Chapter 3

User’s Manual on Nested

Relations

This chapter describes how to define and manipulate nested relations in Relix. Sec-
tion 3.1 explains the basic concept of nested relations in Relix and presents the
initialization of nested relations. Section 3.2 illustrates the operations that can be

imposed on nested relations.

3.1 The Nested Relations and Relation Data Type

To introduce nested relations, we add a relation data type to Relix. The opera-
tions imposed on it are those relational operations on regular relations with some
limitations.

We will show an example first, then we will explain how to declare and initialize

nested relations, and finally we explain the internal data representations.

31

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 32

> domain A intg;
> domain B intg;
> domain C intg;
> domain S (4,8);

> relation TEST (C, S) <- {(3.{(1,2),(8&)N (7,{(6.5),(4.9)D}:

The above Relix commands are used to initialize the sample nested relation in

Figure 3.1.

TEST TEST

/\ C ASB
C S 3

[\

8 7
A/\B 7 6 5
4 9

Figure 3.1: Sample nested relation: schema tree and value table

We have three regular domains A, B and C, which are defined as integers, and a
nested domain S, which is defined upon A and B. When we declare TEST, it includes
the nested domain S. Relix will consider S as a domain as well as a relation.

The data in S is stored in another relation outside the parent relation TEST,
which has the same name as S. References to the data (called RELATION .id) are
stored in attribute S of relation TEST. However, this method of implementation is

largely transparent to users, who manipulate the attributes of nested domains as if

’ CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 33

the data were stored directly in the parent relations.

> pri!TEST

C S
3 0
7 1

relation: "TEST" has "2" tuple(s)

.id A B
0 1 2
0 8 7
l 4 9
1 6 5

relation: "S" has "4" tuple(s)

Figure 3.2: What is shown in Relix

Any Relix operation that displays an attribute of type RELATION will display
the attribute as a number. The actual data of the attribute is printed below it as
a separate relation whose .id field links it to its parent. In above print command,
TEST and its nested domain S are printed out. In child relation S, .id is mapped to
attribute S of TEST.

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 34

The formal syntax of declaration and initialization is as follows:

<declaration> := ‘domain’ <domain_name> ‘(’ <attributelist> ‘)’
<initialization> := ‘relation’ <relation.name> ‘(’ <attribute_list> ‘)’

= < — <tuplelist>

Note in the following sections, we will use the conceptual format as shown in
Figure 3.1 to show the example, while in Relix, the actual format will be as in pr//,
i.e. as shown in Figure 3.2.

So far, we have only implemented two levels of nesting. Future work is needed to

gain multiple level nesting.

3.2 Operations on Nested Relations

In this section, we will show by example how to conduct operations on nested rela-
tions. We will show vertical operations, followed by horizontal operations.

The schema of nested relation is represented by the schema tree [Qzy87], as shown
in Figure 3.3. The nested relation schema of the Faculty of Engineering database is:
Dept, Building, Professor and Secretary, in which Dept and Building are regular
simple domains, and Professor and Secretary are nesied domains, which are further
defined by Name, Salary and Commit.

The nested relation, FactEng, over the schema tree of Figure 3.3, is shown in

Figure 3.4.

3.2.1 Vertical Operations

This section is for the purpose of extending reductions (vertical operations) from

scalar attributes to nested relation attributes.

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS

Faculty of Engineering

(FactEng)

AN

Name

Building

(Depr)

(Building)

Professor

35

Secretary

(Profe.% (Secretary)

Name Salary Committee Name Committee
(Name) (Salary) (Commit) (Name) (Salary) (Commit)
Figure 3.3: The schema tree of the sample
FactEng
Dept Building Professor Secretary
Name | Salary | Commit | Name | Salary | Commit
CS MC Pat 65 PADS Sal 35 PODS
Paul 55 PODS Sue 38 PODS
Pully 50 SIGM
EE MC Pat 65 PADS Sandy 36 [EEE
Paul 55 PODS Sharon 35 PODS
Piree 54 I[EE Sam 40 PODS
ME MD Pat 65 PADS Sandra 35 MEE
Ping 57 MEE Syl 37 MDS

Figure 3.4: The nested relation, Fngineering Department, over the schema in Fig.3.3

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 36

Simple Reduction

Recall that we already proved that ijoin, ujoin and sjoin are all commutative and
associative (see Section 2.4), we can now extend the reduction operations to #join,
ujoin, and sjoin.

We start with the following example: Suppose we want to find all the professors

in the faculty of engineering, we can do the following query:
> let EngProf be red ujoin of Professor

> AllEngProf < — [EngProf] in FactEng
> pr!! AllEngProf

AllEngProf
EngProf
Name | Salary | Commit

Pat 65 PADS
Paul 55 PODS
Piree 54 IEE
Ping 57 MEE
Pully 50 SIGM

Figure 3.5: All Professors of Faculty of Engineering

The formal syntax of simple reduction is as follows:

<simple_reduction_statement> := ‘let’ <new_nested_domain_name> ‘be red’
<binary_operator> ‘of’
<nested_domain_name>

<binary_operator> := ‘jjoin’ | "ujoin’ | ‘sjoin’

Now we introduce the universal professor, who works in every unit of an education

organization.

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 37

Query: Find all the universal engineering professors.

> let UnivEngProf be red ijoin of Professor
> UEP < — [UnivEngProf]in FactEng
> pr!! UEP

UEP
UnivEngProf
Name | Salary | Commit
Pat 65 PADS

Figure 3.6: All universal engineering professors

[f we do sjoin on the attribute Professor, we obtain professors who are assigned
an odd number of positions (see Section 2.4.4 for explanation). Thus we have the
following query:

Find all the engineering professors who are assigned an odd number of positions.

> let OddProf be red sjoin of Professor
> OProf < — [OddProf]in ED

> pr!! OProf

OProf
OddProf
Name | Salary | Commit
Pat 65 PADS
Ping 57 MEE
Piree 54 IEE
Pully 50 SIGM

Figure 3.7: Professors with an odd number of positions

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 38
Equivalence Reduction

Like simple reduction, equivalence reduction is extended to ujoin, ijoin and sjoin as

well.

Query: Find the professors by each building.

> let ProfbyBuild be equiv ujoin of Professor by Building
PbB < — [Building, ProfbyBuild)] in FactEng
> pr!! PbB

PbB
Building ProfbyBuild
Name | Salary | Commit
MC Pat 65 PADS

Paul 55 PODS
Piree 54 IEE
Pully 50 SIGM

MD Pat 65 PADS
Ping 57 MEE

Figure 3.8: Professors in each building

Query: Find the universal professors by building. (we introduced the idea of a
universal professor in the last section. Here a universal professor in each building

works in each department of the building)

> let UnivBuilProf be equiv ijoin of Professor by Building
> UBP < — [Building, UnivBuilProf] in FactEng
> pr!! UBP

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 39

UBP
Building UnivBuildProf
Name | Salary | Commit
MC Pat 65 PADS
Paul 55 PODS
MD Pat 65 PADS
Ping 57 MEE

Figure 3.9: Universal Professors in each Building

Query: Find the professors in each building who are assigned odd department

positions in that building.

> let OddBuilProf be equiv sjoin of Professor by Building
> OBP < — [Building, PureBuilProf] in FactEng
> pr!! OBP

OBP
Building PureBuilProf
Name | Salary | Commit
MC Piree 54 IEE
Pully 50 SIGM
MD Pat 65 PADS
Ping 57 MEE

Figure 3.10: Professors who are assigned odd positions in the building

Syntax:

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 40

<equiv_reduction_statement> := ‘let’ <new_nested_domain_name> ‘be’ ‘equiv’
<binary_operator> ‘of’ <nested.domain_name>
‘by’ <attributelist>

<binary.operator> = ‘ijoin’ | ‘ujoin’ | ‘sjoin’

3.2.2 Horizontal Operations

Horizontal operations consists of binary operations and general operations.

Binary Operations

Binary relational operations take two relations as operands and produce a relation as
a result. We extend those operations to nested domains, and take two nested domains
as operands and produce a nested domain as a result, which itself is a relation data
type.

Query: Find all the staff of the faculty of engineering.
> let Staff be Professor ujoin Secretary

> FactEngStaff < — [Dept, Building, Staff] in FactEng
> pr!! FactEngStaff

The result is in Figure 3.11.

The formal syntax is as follows:

<binary statement> := ‘let’ <new_nested_domain_name> ‘be’
<nested_domain_name> <binary_operator>
<nested_domain_name>

<binary_operator> := ‘ijoin’ | ‘ujoin’ | ‘sjoin’

CHAPTER 3.

USER’S MANUAL ON NESTED RELATIONS

FactEﬁsmﬁ‘
Dept Building Staff
Name | Salary | Commit
CS MC Pat 65 PADS
Paul 55 PODS
Pully 50 SIGM
Sal 35 PODS
Sue 38 PODS
EE MC Pat 65 PADS
Piree 54 [EE
Sandy 36 [EEE
Sharon 35 PODS
Sam 40 PODS
ME MD Pat 65 PADS
Ping 57 MEE
Sandra 35 MEE
Syl 37 MDS

Figure 3.11: Staff of the Faculty of Engineering

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 42

General Operation

We can also embed general relational expressions into domain algebra. This is called
general operation. “General” here means more general than the operation we intro-
duced before in this Chapter. However, it is not arbitrarily general. We will show
the limitations imposed on it at the end of this Chapter.

In the Faculty of Engineering, rich professors are professors whose yearly salary
equals or exceeds 55 K. We have the query: Find the rich engineering professors
together with their salary and department. The following expression will answer the
query:

> let RichProfbe "< [Name, Salary] where Salary>=55 in Professor >";
> RP < — [Dept, RichProf] in FactEng;
> pr!! RP;

The result is shown in Figure 3.12.

RP

Dept RichProf
Name | Salary

CS Pat 65

Paul 55

EE Pat 65

ME Pat 65

Ping 57

Figure 3.12: Rich Professors of Engineering Departments

We can make more complicated general operations. For example, we can do sjoin

on different domain names in two nested domain_relations.

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 43

Query: Find professors and secretaries such that the secretary works for all the

committees to which the professor belongs.
> let Pname be Name

> let Sname be Name

> let ProfSecr be
"< ([Pname, Commit] in Professor) sub ([Sname, Commit] in Secretary) >"
PSC < — [Dept, ProfSecr] in ED
pr!! PSC

PSC
Dept ProfSecr
Pname | Sname

CS Paul Sal
Paul Sue

EE Pirre Sandy

ME Ping Sandra

Figure 3.13: Professors and Secretary in Committes

The formal syntax:

<domain_relational statement> := ‘let’ <nest.domain_name> ‘be’

¢ "<’ <relational.expression> ¢ >"’

<relational_expression> is an expression of relational algebra operations with
some limits. The T-selector in the following paragraph illustrates this. Note that we
quote <relational expression> using “'< >"” and during declaration, it is treated

as string, yet during the actualization, the Relix statement included in the string will
be evaluated.

CHAPTER 3. USER’S MANUAL ON NESTED RELATIONS 44

<T-selector> := ‘[’ <attributelist> ‘]’ ‘where’

<selection_clause> ‘in’ <nested_domain>

<selection_clause> is a comma-separated list of simple logic domain expression
that can be evaluated horizontally to true or false on each tuple of the operand
<nested_domain> (which is a relation as well).

We have not been able to implement vertical domain operations within the syntax

of general operations (in <relational_expression>).

Chapter 4

Implementation of Nested

Relations

This chapter deals with the implementation of nested relations. Section 4.1 gives an
overview of the implementation of Relix. Section 4.2 describes how nested relations
are represented and declared. Section 4.3 illustrates the implementation of nested

relation operations.

4.1 Implementation of Relix

Relix is an interactive multi-user system written in C, and is portable across different
platforms running the UNIX operating system. Extensions in Relix require that the
modules to be added are compatible with the existing code. Therefore, in this section
we overview the implementation of Relix that is related to the work of this thesis. A

complete documentation for its first implementation can be found in [Lal86].

45

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 46

4.1.1 System Relations

A relation is stored in a UNIX file whose name corresponds to the name of the
relation. A database, which is a collections of relations, is equivalent to a UNIX
directory. Every Relix database maintains a set of system relations which represents
the data dictionary of the database and are stored permanently as UNIX hidden
files.! Three basic system relations are used to store information about domains and

relations in the database.

1. .rel (.rel_name, .sort_status, .rank, .ntuples)?
The .rel system relation stores information about all the relations in the database.
e .rel_name is the name of the relation

e .sort_status specifies the type of sorting for the relation, such as sorted,

non-sorted and partly sorted
e .rank is the number of sorted attributes in the relation
e .ntuples is the number of tuples in the relation
2. .dom (.dom_name, .type)
The .dom system relation stores information about all the domains in the
database.
e .dom_name is the name of the domain

e .type is the data type of the domain. There are 6 atomic data types (see
Figure 2.2)

IFile names beginning with a period (.) are UNIX hidden files which are not normally listed
under the UNIX list directory command.

?In Relix convention, the names which begin with a period (.) are system names.

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 47

3. .rd (.rel_.name, .dom_name, .dom_pos, .dom_count)
The .rd system relation stores information that links the relations with the
domains on which they are defined.
e .rel_name is the name of the relation
e .dom_name is the name of the domain
o .dom_pos is the byte position of the domain in the relation
e .dom_count is the number of domains in the relation

In our implementation of nested relations, we use two system relations to store

the interface information for the nested relations declared in the database.

l. .nst (.sup_name, .sub_name)

The .nst system relation contains information about parent relations and their

child relations.

e .sup_name is the name of the parent relation

e .sub_name is the name of the child relation

2. .nest.dom (.domain_name, .domain_ref)

The .nest.dom system relation contains information about the nested domains.

¢ .domain_name is the name of the nested domain (child relation)

e .domain_ref is the number of reference times of this domain

4.1.2 Parser and Interpreter

Relix consists of two main modules: a parser and an interpreter. The parser, which
is generated by Lex [Les75] and Yacc [Joh75],performs syntax analysis and gener-

ates intermediate codes. The interpreter is written in C, it reads instructions from

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 48

the intermediate code and calls particular C functions to perform the operations.

Figure 4.1 summarizes the main flow of Relix.

| Load system relations into RAM |

e o Wait for input from the user]

r
T p— MPUL = = = = = m m - = = = = -~
| v Lexical Analvzer Module |
| Scan input linto tokens | :
I
__________________________ i
: tok:ns Parser Module I
Do Parse tokens and generate |-code | :
I |
- 1008 = = = = = = = = — —— = ——— -
vy Interoreter Module i
: | Interpret I-code | !

yes
A J

| Write system relations back to disk |

Figure 4.1: Relix Execution Flowchart

We will show an example from an implementation point of view to exemplify how
Relix operates.

Suppose we have:

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 49

> domain «intg ;

The parser performs syntax analysis and finds that the above statement fits the

following grammar rules.

domain_declaration:
DOMAIN_DEC identifer
{ translator(DOMAIN_DEC);}
TYPE
{ translator(IDENTIFIER); translator(TYPE); }

Actions in Yacc are C codes enclosed in a pair of curly brackets. The transla-
tor function is a C function which performs various tasks according to the actual

parameters. The tasks of the translator function include:

e maintaining a scalar stack for storing and retrieving identifiers
e maintaining a set of flags and counters

e generating I-code

For instance, the call ‘translator(IDENTIFIER)’ pushes the value of the identifier
onto the scalar stack.

Some of the parameters produce I-code. For example:

parameter [-code
DOMAINDEC global-dom
TYPE push-name a domain

*a’ is a string obtained by popping an item from the scalar stack. The I-code for

the example statement is shown below:

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 50

global-dom /*set the flag notifying that the following

declared domain is a global domain. */

a

push~name /* Push the next string onto the stack.*/

long

push-name

a

domain /* Pop a from the stack, and actually declare
a as an integer domain. */

halt /* Update system relations and return. */

The comments on the right hand side describe the interpreter actions for the
corresponding [-codes. The interpreter maintains a stack for storing and retrieving
operands. The ‘push-name’ pushes an operand onto the stack. The ‘domain’ is a
collection of C functions that the interpreter needs to call with predefined arguments,
which are obtained by popping the operands from the stack. Note that ‘halt’ is

required at the end of the I-code for the interpreter to stop execution.

4.1.3 Implementation of Domain Operations

Suppose we define a virtual domain D as a function of other domains (see Section
2.3). In the implementation, we have routines which will locate these domains in
relation R, calculate the corresponding values of D from these operands and append
these values of D to the appropraite tuples of the original relation.

The following example will show how domain operations work in Relix:

We declare a constant atrribute as follows:

> let abe 3;

After the declaration, domain ‘a’ is recored in the system as:

. CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 51

Actual Visited Label Type

FALSE TRUE 1 short
Operator: constant
Value: "+00005"

Note that the ‘ Actual value of domain a is false, which means that ais a virtual

domain, and the following Relix statement requires it to be actualized.

> ACT < —[a]in TEST;

The I-code for the example statement is shown below.

push-name
ACT

name

/* Push the next string onto the stack. */

constant-relation /* Call function constant_relation to

push-name
TEST
push-name
a
push-count
1

project

assign-scalar

create a new relation using the name

on the stack */

/* Push a counter onto the stack. */

/* Call function project to
create a new relation according to
the attributes required */

/* Pop item A and B from the stack, and
call function assign_scalar to
assign item A to item B. */

/* Update system relations and return. */

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 92

In above [-code, when the intepreter reads project, it will call a C function
‘project()’ to perform the actual projection. In turn, porject() will call yet another
function ‘actionize.if_any_virtual()’ to actualize the virtual domains (‘d’ in this case).

The algorithm for routine project() is as follows:

project(list_R, r.name)

where list R is a linked list which contains the domains to be projected and

r_name is the name of the relation on which the domains are to be projected.

1. Check list.R, make sure no duplicates are included.

Actualize list_R from r.name to R (a temporary file). Sort R on list_R. Call the

to

routine actualize_if_any().
3. Do actual projection according to list_R.

Return the file name of the results of projection.

-

The algorithm for routine actualize_if any_virtual() is :

actualize_if .any_virtual(R_name, E_list)

where R_name is the name of the relation being processed and Elist is a list of
attributes of the relation in R_name, including both the original attributes and virtual

attributes which are defined as a function of the original attributes.

. Traverse the attribute list and find if there are any virtual domains.

P

(5

. If there are no virtual domains, return the original relation.

o

. If there ezist virtual domains.

(a) Traverse each tuple of the orginal relation.

(b) Actualize the virtual domain value according to the definition of the virtual

. domain.

. CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 53

(c) Put all the tuples in a temporary relation.

(d) Return the temporary relation.

In our example, the program flow is as follows:

1.

When project() is called, the values in the two parameters are:

' 2

(a) list R, which points to a list which includes only one item, ‘a’.

(b) rname, which is ‘TEST".
Then actualize_if.any() is called with the parameters’ values as:

(a) E_list, which points to a list which is the same as list R in project(), i.e.,

r

‘a .

(b) r_name, which is the same as r_name in project(), i.e., ‘TEST".

In actualize_if_.any(), the sytem finds that ‘a’ is a virtual attribute, and there-
after, domain a is actualized by assigning the value of 5 to the attribute ‘a’ of

every tuple in TEST.

Actualize_if any() returns the name of the temporary relation to project(), which

in turn projects the ‘a’ domain and returns the result to system.

Update system tables.

4.2 Declaration and Initialization of Nested Re-

lations

4.2.1 Declaration of Relation Data Type

We can declare a regular integer domain S and a regular relation § with domains a

and b as follows:

. CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 54

> domain Sintg ;

> relation S(a, b);

We have already explained the I-codes of domain declaration (see Section 4.1.2). The

[-codes of the relation declaration is as follows:

push-name

no-cp-ln

push-name

push-name
a
push-name
b
push-count
2
push-name
S

relation

halt

/* Set the flag that only declare,
no data input=/

/* Push the next string onto the stack.*/

/* number of domains */

/* Pop domain list (a and b) from the stack,
pop S from the stack, and declare S as a
relation */

/* Update system relations and return. */

To declare a relation data type, we combine the above two cases and add the

following grammar to yacc:

<nested_domain_declaration> := ‘domain’ <identifier> <domain list>

For instance:

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

>

domain S(a, b);

push-name
no-cp-ln

push-name

push-name

.id

push-name
a
push-name
b
push-count
3

relation
global-dom
S
push-name
relation
push-name
S

domain
end-dom-code

halt

The [-code are also combined from above:

/* Add a system domain .id to refer to

the parent relation */

The comparison of the above three cases is shown in Figure 4.2.

55

. CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 56

domain S intg; relation S (a,b); domain S (a,b);
global-dom push-name push-name
S no-cp-In no-cp-in
push-name push-name push-name
long
push-name push-name push-name
S a id
domain push-name push-name
end-dom-code b a

push-count push-name

2 b

push-name push-count

S 3

relation relation
global-dom
S
push-name
relation
push-name
S
domain
end-dom-code

Figure 4.2: Comparison of the nested domain declaration with the regular domain

declaration and the regular relation declaration

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 57

Each nested domain has its declaration entry in both .dom system table and .rel
system table. The .type in table .dom of any nested_domain, i.e., relation data type, is
set to a constant ‘RELATION’, which equals 11 in the current version. The following
entry in .dom table is for the nested domain S:

.dom (.dom-name, .type)

S 11
The following entry in .rel table is also for the nested domain S:
.rel (.rel.name, .sort_status, .rank, .ntuples)
S 0 0 0
Because nested domain S is a relation itself, its information and that of its domains
are stored in another system table .rd. The following entry is for S:

.rd (.relname, .dom_name, .dom_pos, .dom_count)

S .id 0 -3
S a 1 -3
S b 2 -3

Note that S has three domains, among which .id is added by the system in order to
refer it to the parent relation.

S also has an entry in the system table .nest_dom.

.nest. dom (.domain_name, .domain.ref)

S 0

4.2.2 Initialization

Initialization of relations can be achieved by supplying the initialization data directly

on the command line:

> relation Simple (a,b) <- {(1,2),(3,9)};

For flat relations, the algorithm of initialization is:

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 58

L. Parse the relation identifier and parse the domain identifiers. In the above case,

‘Sample’, ‘a’, and ‘b’, then create a file named ‘Simple’.

9. Parse the constants, and save the constants to file ‘Simple’.

Recall that we declare the nested domain:

> domain S(a, b);

For nested relations, we can initialize as follows:

> relation TEST (c, S) <- {(3.{(/,2).(8, NN.(7{(6,5),(4.9D};

since we include a nested domain S here, we need to revise the algorithm to achieve

the desired effects.

I. Parse the relation identifier and the domain identifiers, and record the nested
subrelations (nested domains). Then create a file named ‘Test’, also create files

according to subrelations, in this case we have ‘S’.

to

Parse the constants. When we meet a curly brace {’, we create a surrogate
lo the parent attribute, and put the corresponding real constants into the cor-
responding subrelations. For ezample, for {(1,2),(8,7)}, the surrogate is 0 and
for {(6,5),(4,9)}, the surrogate is 1. Thus,

(a) In file TEST, we have (3,0}, (7,1);

(b) In file S, we have (0,1,2),(0,8,7),(1,6,5),(1,4,9);

4.3 Operations

In this section, we present the implementation for operations on nested child relations

. (nested domains).

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 59

4.3.1 Implementation of Reduction

We will show by example how reduction operates on nested relations in Relix. Since
we based our implementation on the existing implementation of reduction on scalar

attributes, we will first present the implementation of reduction on scalar attributes.

Reduction on scalar attributes

Scalar attributes’ data types are atomic as summarized in Figure 2.2. Recall that
in Chapter 2, we already listed that what scalar operations can be conducted on
both simple reductions and equivlant reduction. Now we will show how they are
implemented by using an example of ‘+’, the add operator.

Suppose we have a database order as in Figure 4.3.

Order

Customer Product Amount
Ann W 10

Ann X 40
Ping M 20

Sam Y 30

Figure 4.3: Order table

In order to gain the total order Amount of all the customers, we can use our ‘red
+’ operator, and impose it on the domain Amount.

> let Total be red + of Amount ;

Domain Total is kept in the system as:

. CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 60

Name Actual Visited Label Type

Total FALSE TRUE 51 long
Operator: red-plus
Operand-1: Amount

Whenever a Relix statement wants to include Total, the system will call Actual-
ize_if_.any() to actualize it.
As we can see, Total is defined on Amount.

The algorithm is as follows:

1. Initialize an accumulator according to Amount (In this case, its data type is

long).

to

Scan through each tuple of the relation Order. Extract the value of Amount,
add it to the accumulator (Recall that operator of Total is *+’).

3. Assign the value in the accumulator to the Total attribute of each tuple.

Thus we can actualize Total and the result is shown in Figure 4.4.

Oxrder

Customer Product Amount (Total)
Ann W 10 100
Ann X 40 100
Ping M 20 100

Sam Y 30 100

Figure 4.4: Values of Total after actualization

Furthermore, we would like to know the total amount of the products each cus-

. tomer ordered. The follwing Relix statement can help us to perform this task:

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 61

> let CusTotal be equiv + of Amount by Customer ;

[t is stored in the system as:

Name Actual Visited Label Type

CusTotal FALSE TRUE 52 long
Operator: equiv-plus
Operand-~1l: Amount
By-list: Customer

We can see in the system data structure that CusTotal actually has an item called
by-list, which includes Customer, and that the resulting CusTotal will be based on
this list.

With following steps we can actualize CusTotal:

e~

. Sort original relation Order on by-list (i.e., ‘Customer’).

o

. Initialize an accumulator storage according to CusTotal

3. Scan through tuples of Order, if the tuple’s value is kept the same in altribute
Customer, add it to the accumulator, otherwise append the value of the accu-

mulator to the previous tuples, and reset the accumulator.

This way we can actualize CusTotal as shown in Figure 4.5.

Reduction on Nested Attributes

In this section, we will present the general algorithms of reduction on nested attributes
first and then show some examples.

The operator of reductions on nested attributes falls in one of the following groups:

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS

Order

Customer Product Amount (CusTotal)
Ann W 10 50

Ann X 40 50

Ping M 20 20

Sam Y 30 30

Figure 4.5: Value of CusTotal after actualization

(simple_reduction equivalence_reduction)

red_ijoin equiv.join
red_ujoin equiv.ujoin
red _sjoin equiv.sjoin

General Algorithm

e Simple Reduction

In this case, the operator belongs to the first group.

62

1. In the parent relation level, we assign each tuple in the position of the

operand domain a constant 0. For simple reduction, the value of this at-

tribute should have the same value for all tuples in the relation.

2. In the nested relation level, according to the operator, do ujoin, ijoin and

sjoin with the subrelations (which are actually stored in the same physical

table).

(a) ujoin: Project all the attributes ezcept .id. The obtained result is the

required ujoin operations on those sub-relations. Then, append a new

.id to it, in order to keep links with the parental relation. The value

ts a constant 0.

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 63

(b) ijoin: Sort the table according to the number of tuples in each sub-
relation, select the sub-relations one by one according to the value
of .id and do ijoin on them. [n this way, we can improve the join
efficiency, since during the join procedure, the result might be empty
before we reach the last subrelation.

(c) sjoin: The algorithm is the same as ijoin, ezxcept we do not need to

sort the table.

e Equivalence Reduction

In this case, the operator belongs to the second group.

1. Sort the original relation on by_list.

2. Determine equivalence classes, for each class, do inside reduction, which

will be presented nexzt.
Inside Reduction

L. Initialize an accumulator, which is an empty temporary relation.

2. For each tuple:
Eztract the value of the nested domain, i.e., the pointer to the underlying
subrelation;
Eztract tuples of subrelation according to the mapping between the parent
nested domain and .id, store them in a temporary file.

Perform the appropriate join (ijoin, ujoin, sjoin) with the accumulator.

Examples

In Figure 4.6, we have a relation Order.book with domains Customer and Order,

which is a subrelation with domain Product.

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 64

Order_Book Order
Customer Order id Product
Ann U 1)
Ann 1 -o_"=-0 X
Ping 2 e : ~-1 W
Sam i~ ~ =~ : =2 M
“““““““ TSl 2 W
~J 3 W
© 3 Y

Figure 4.6: Relation Order_Book and its subrelation Order

We have three Relix statements:

I. > let AllProduct be red ujoin of Order ;

~

. > let [Product be red ijoin of Order ;
3. > let CustProduct be equiv ijoin of Order by Customer ;

The first Relix statement above finds all the products ordered by the customers.
The second one finds products which are ordered in each individual order. The third
one finds all the products ordered in every order by each customer.

To actualize AllProduct , we can run the Relix statement:

> Order_Bookl < — [Customer, AllProduct] in Order_Book ;

System running flow:

—~

. Operator red ujoin belongs to the first group

o

. In Order Book, we assign AllProduct e constant 0

3. In the nested relation level, i.e., AllProduct, the operator is red ujoin and the

. operand is Order. We project [Product] from Order, and append e new .id to

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 65

each tuple of the new obtained relation, in order to keep links with AllProduct

in Order Book. Thus we have a new subrelation AllProduct.

{. Update system tables.

The actualized AllProduct is shown in Figure 4.7.

Order_Bookl AllProduct

Customer AllProduct id Product

Ann 0 0 M

Ping 0 /— === _ _ < 0 w

Sam 0o V0 X
----------- ¢ 0 Y

AllProduct: red ujoin of Order

Figure 4.7: AllProduct in relation Order_bookl

To actualize [Product , we can run the Relix statement:

> Order_Book2 < — [Customer, [Product]in Order_Book ;

System running flow:

P~

. Operator red ijoin belongs to the first group

to

In Order_Book, we assign to [Product e constant 0

3. In the nested relation level (i.e., IProduct) the operator is red ijoin and the
operand is Order. We do ijoin between the different set of Product values ac-
cording to .td. They are {(W), (X}}, {(W)}, {(M),(W)} and {(Y),(W)} respec-
tively. The result is {{W)}. In order to keep links with [Product in Order_Book,

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 66

we append a new .id to each tuple of the new obtained relation. Thus we have

a new subrelation [Product.

4. Update system tables.

The actualize [Product is shown in Figure 4.8.

Order_Book2 IProduct
Customer AllProduct id Product
Ann 0 ‘ _______ 0 W

Ping 0)~ 77 e e e m - - ——
Sam 0 i

- e e o o - -

IProduct: red ijoin of Order

Figure 4.8: [Product in relation Order_book2

To actualize CustProduct, the following Relix statement can satisfy the require-

ment:

> Order_Book3 < — [Customer, CustProduct] in Order_Book ;

System running flow:

1. Operator equiv ijoin belongs to the second group

to

Sort Order_book on Customer

3. For each Customer: determine equivalence classes, and conduct ijoin within
each class. For ezample, for customer Ann, we first extract {(W),(X)}, then
{(W)}. After doing tjoin between them, we get {(W)};

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 67
4. Update system tables.

The actualized CustProduct is shown in Figure 4.9.

Order_Book2 CustProduct
Customer CustProduct id Product
Ann 0 -=-=-=-=- 0 W

Ping l - === - 1 M

Sam 2 =«-= - == 2 W
------------- 2 Y

CustProduct: equiv ujoin of Order

Figure 4.9: CustProduct in relation Order_book3

4.3.2 Horizontal Operation
Binary Operation

The operators of binary operation are: ujoin, ijoin, and sjoin.

General Algorithm

[. In the parent relation level, copy the value from one of the operands’ to the new

domain.

to

In the subrelation level, call Reliz again to obtain the new subrelation.

3. Join back the obtained subrelation to the parent relation on subrelation’s .id

attribute with parental relation’s attribute.

4. Update system table.

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 68

Example
In Figure 4.10, we have relation Order_Book with domains OldOrd, Customer and
NewOrd. OldOrd and NewOQld are nested domains.

0ldord Order_Book NewOrd
Product .id 01d0rd Customer NewOrd . iC_1 _P_rg_dl_J.C_t
W O ====- 0 Ann 0 ==z--—-0 w

Y I--=--==1 Ann 1 -~~~ 0 X

2 T _-=2 Ping 2 ~-__7"1 z

x ? - - - 2 —_———mmem s S - : "3 w

W 3- - ~3 Y

Figure 4.10: Relation Order_Book with subrelations OldOrd and NewOld

Suppose we have:

> let Order be 0ldOrd ujoin NewOQOld ;

and we can actualize Order using the following statement:

> Order_Bookf{ < — [Customer, Order] in Order_Book ;

The procedure of actualizing Order:

1. Copy O1dOrd to Order. This way, we can keep a set of surrogates of Order in
parent relation Order Book.

2. Call Reliz again to get Order, i.e., run “Order < — OldOrd ujoin NewOrd” in
Reliz. Since both OldOrd and NewOrd have same attributes, .id and Product,

we do ujoin on them to get Order.

3. Join back the obtained subrelation to the parent relation on subrelation’s .id at-

tribute with the parent relation’s atiribute Order. “Order_Book < — Order_Book

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 69

[Order tjoin .id] Order”

The final result is shown in Figure 4.11.

Order_Book5 Order

Customer Order id Product

Ann 0 ez==--0 W

Ann l < = - : - -0 X

Ping 25.°~211 Y

Sam 3.3~ =1 Z

~ -~

__________ SN~ D 2 M

\\\\ ~2 X

O3 W

3 Y

- e am am e wn am e -

Order: OldOrd ujoin NewOrd

Figure 4.11: Actualized result of Order in relation Order_Book

General Operation

General Operations are stored as strings when they are declared. Suppose we have
the relation as shown in Figure 4.12 and the following query:

> let BigOrd be "< [Product] where Amount > 8 in Order >";

Domain BigOrd is stored as:

Name Actual Visited Label Type
Bigord FALSE TRUE 52 relation
Operator: t-dom
Operand: [Product] where Amount > 8 in Order

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 70

Ordexr_Book Order
Customer Order .id Product Amount
Ann 0 «azxz-—-~- -0 w 9
Ann 1 ~w_"=-0 X 6
Ping 2-~-_._"-1 z 10
Sam 3=~ _ "2 M 12
"""""" =~ =3 Y 10
~3 W 7

Figure 4.12: Relation Order Book

And the following statement will actualize BigOrd:
> Order_Book3 < — [Customer, BigOrder] in Order_Book ;

The procedure of actualizing BigOrd is as follows:

L

. In the parent level, copy Order to BigOrd.

S

Eztract the relational statement from the string, parse it (the parser will be de-
scribed in nezt section); the string will be altered from “[Product] where Amount

> 8 in Order” to “[.id, Product] where Amount > 8 in Order”.

3. Call Reliz to get the resulting subrelation, “BigOrd < — [.id, Product,] where

Amount > 8 in Order”.

4. Join back the resulting subrelation with the parent relation on .id. “Order_Book

< — Order_Book [BigOrd ijoin .id] BigOrd”.
5. Update system tables.

The result is shown in Figure 4.13

. CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 71

Order_Book BigOrd

Customer Biggrd .id Product Amount
Ann 0 -—=-~==—- 0 1) 9
Ann 1 —=-===- 1 Z 10
Ping 2 T === 2 M 12
Sam 3 TT == 3 Y 10

- - e e - = e — — -— e o e ww m = am = -

Figure 1.13: Actualized BigOrd
Parser

In general domain algebra operations, we can write regular relational expressions with
some limitations, i.e., we can not include vertical operations in the quoted relational
expression.

Since we call Relix again to get the resulting relation, we need to preprocess the
statement. We build a small parser to preprocess the expression.

For example. *[Product] where Amount > 8 in Order’ will become *[.id. Product]
where Amount > 8 in Order’. The automaton of the parser is shown in Figure 4.14.

Suppose we have “A {a ijoin b] B”. The flow of its automaton is:

1. The automaton reads ‘A’. It stays at the start. The output is “A”.

o

. The automaton reads ‘[’. It goes to state 1. The outputs is “A [".

3. The automaton reads *a’. It stays at state 1. The output is *A [a”

4. The automaton reads ‘ijoin’. It stays at state 1. The output is A [a, .id ijoin”
5. The automaton reads ‘b’. It stays at state 1. The output is A [a, .id ijon b”

6. The automaton reads ‘]’. It goes back to the start. The output is “A [a, .id

. ijoin b, .id]”

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 72

7. The automaton reads ‘B’. It stays at the start. The output is “A [a, .id ijoin
b, .id] B”

8. The automaton reads EQF. It stops and returns the obtained output.

CHAPTER 4. IMPLEMENTATION OF NESTED RELATIONS 73

other than ‘[’ other than ‘J’

Algorithm:

For state start:
if next token is ‘[’, go to state 1, else stay at state start

For state 1:
if next token is "]"
add .id before "]*, i.e. ".id I"
go to state start
else if next token is any join token
add .id before the join token, for example, ".id ijoin"
stay at state 1

join token: ijoin, djoin, ujoin, sjoin, ljoin, rjoin,
drjoin, natjoin dljoin, natjoin, dljein,
gtjoin, sup, egjoin, sub, ltjoin, sep,
gejoin , lejoin, iejoin, div, ~gejoin, =~sup,
~egqjoin, ~sub, ~ltjoin, icomp, natcomp

Figure 4.14: The parser to parse the embedded general relational expression

Chapter 5

Conclusion

Nested relations have been explored thoroughly in past decades, with the major re-
search direction focused on nesting and unnesting [Jae82][Fis85][Kor89][Tak89]. In
our approach, we build nested relations upon flat relations. We show that flat rela-
tions are powerful enough to model nested relations and to facilitate nested relation
queries. The purpose of this thesis is to begin to integrate nested relations into a re-
lational database programming language (Relix)by integrating the relational algebra

into the domain algebra.

5.1 Summary

We built our nested relation model upon the original Relix database model. Relix is
powerful enough to support nested relations. No modifications have been made to
the original database engine itself. However some extensions were made to facilitate

the process of integration and to provide new features.

e A new system attribute .id has been added to Relix , which provides a way of

linking the parent relation to its included nested relations.

e One level of nesting has been integrated into Relix.

4

CHAPTER 5. CONCLUSION 75

e A part of the relational operator can be added to the domain algebra. This

partially eliminates the difference between domains and relations.

Our implementation showed that Relix is powerful enough to include nested rela-
tions, and that it is convenient to add nested relations to the system. The relational
operations, such as ujoin, sjoin, ijoin, which are added to domain operations, function
well.

However, the surrogate mechanism we used is a bit simple, and we have not been
able to include more information in the surrogates except to use it to keep links
between nested child relations and the parent relation. No large-scale tests have been

done, since it is beyond the scope of this M.Sc. thesis.

5.2 Future Work

So far, we have only implemented one level of nesting in Relix, which is the first
step towards fully implementing the features of nested relations. There are still more

features that can be added such as:

e Implementing multiple nesting and recursive nesting. To date, we have only im-
plemented one level of nesting, which provides a prototype for multiple nesting.

Theoretically, it is possible to build infinite levels of nested relations.

o Fully integrating the relational algebra into the domain algebra. Only a part
of relational algebra has been integrated into domain algebra to date. Further
work can be done on functional mapping and partial function mapping on nested

relations.

e Combining nested relations with procedure abstraction and to implement com-
plex objects. A procedure facility has been recently added to the Relix sys-

tem [Lui96]. We could extend certain procedures to nested relations. Those

. CHAPTER 5. CONCLUSION 76

procedures can be viewed as methods to manipulate a certain nested relation,

which can then be treated as a complex object.

Bibliography

[Cod70]

[Cod72]

[Des33]

[Fis35]

[Jae82|

[JohT5]

[Kor39]

[Lal36]

[LesT5]

[Lev92]

E. F. Codd. A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), Oct. 1970, pp.337-387

E. F Codd. A Data Base Sublanguage Founded on the Relational Calcu-
lus. Proceedings of 1971 ACM SIGFIDET Workshop on Data Descrip-
tion, Access and Control.

A. Deshpande. D. Van Gucht. An implementation for Nested Relational
Database. Proceedings of the l4th International Conference on Very
Large Data Bases, April 1988, pp. 266-274

P. C. Fischer, D. Van Gucht. Determining when a Structure is a Nested
Relation. Proceedings of the 11th International Conference on Very Large
Data Baes. August 1985, pp. 171-180

G. Jaeschke, H-J. Schek. Remarks on the Algebra of Non-First-Normal-
Form Relations. Proceedings of the First ACM SIGACT-SIGMOD Sym-
postum on Principles of Database Systems. March 1982, pp.124-13%

S. C. Johnson. Yacc: Yet another compiler-compiler. Technical Report 32,
AT&T Bell Laboratories, Murray Hill, N.J., 1975.

H. F. Korth, M. A. Roth. Query Languages for Nested Relational
Databases. Nested Relations and Complex Objects in Database. Lecture
Notes in Computer Science, Springer-Verlag, New York 1939.

N. Laliberté. Design and [mplementation of a Primary Memory Version
of Aldat. Master’s thesis, McGill University, Montreal, Canada, 1986.

M. E. Lesk. Lex: a lexical analyzer generator. Technical Report 39.
AT&T Bell Laboratories, Murray Hill, N.J., 1975.

M. Levene. The Nested Universal Relational Database Model. Lecture
Notes in Computer Science. Springer-Verlag, New York, 1992

(4

BIBLIOGRAPHY 78

[Lui96)

[Mak77]

[Mer76]

[Mer77]

[Mer84]

[OOMS7]

[Ozy87]

[Ozy89)

(Pis86]

[Pvg92]

[RKSS6)

[Sch82]

R. Lui. Implementation of Procedure in a Database Programming Lan-
guage. Master’s thesis, McGill University, Montreal, Canada, 1996.

A. Makinouchi. A consideration on normal form of not-necessarily-
normalized relation in the relational data model. Proceedings of 3rd In-
ternational Conference on VLDB, Tokyo, pp. 447-453, 1977.

T. H. Merrett. MRDS: An Algebraic Relational Database System. In
Canadian Computer Conference, Montreal, pp.102-124, May 1976

T. H. Merrett. Relations as programming language elements. Information
Processing Letters, 6(1):29-33, Feb. 1977.

T. H. Merrett. Relational Information Systems. Reston Publishing Com-
pany, Reston, Virginia, 1984.

G. Ozsoyoglu, Z. M. Ozsoyoglu, V. Matos. Extending relational algebra
and relational calculus with set-valued attributes and aggregate functions.
ACM Transaction on Database Systems, 12(4) Dec. 1987, pp. 566-593

Z. M. Ozsoyoglu & L. Y Yuan. A design method for nested relational

databases. Proceedings of 3rd IEEE conference on Data Engineering,
Los Angeles, pp. 599-608, 1987

Z. M. Ozsoyoglu & L. Y Yuan. On Normalization in Nested Relatonal
Databases. Nested Relations and Complex Objects in Database. Lecture
Notes in Computer Science, Springer-Verlag, New York, 1989.

P. Pistor, F. Anderson. Designing a Generalized NV F* Model With An
SQL_Type language Interface. Proceedings of the 12th International Con-
ference on Very Large Data Bases, August 1986, pp. 278-285.

J. Paredaens, D. Van Gucht. Converting Nested Algebra Expressions
into Flat Algebra Expressions. ACM Transactions on Database Systems
17(1), March 1992, pp. 65-93.

M. A. Roth, H. F. Korth, A. Silberschatz. Extended algebra and calculus
for nested relational databases. ACM Transactions on Database Systems
13(4), Dec. 1988, pp. 390-417.

H. J. Schek, P. Pistor. Data Structure for an Integrated Data Base
Management and Information Retrieve System. Proceedings of the 8th
International Conference on Very Large Data Bases, Sep. 1982, pp. 197-
207.

BIBLIOGRAPHY 79

[Sps87]

[Sab89]

[Stone96]

[Taks9]

[Tag92]

[Tho86]

M. H. Scholl, H. B. Paul, H. J Scholl. Supporting Flat Relations by a
Nested Relational Kernel. Proceedings of the 13th International Confer-
ence on Very Large Data Bases, Sep. 1987, pp. 137-147.

M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidoit, S. Gamerman,
D. Plateau, P. Richard, A. Verroust. VERSO: A Database Machine Based
on Nested Relations. Nested Relations and Complex Objects in Database,
Lecture Notes in Computer Science, Springer-Verlag, NY, 1989.

M. Stonebraker. Object-Relational DBMSs. Morgan Kaufmann Publish-
ers Inc., San Francisco, California, 1996.

K. Takeda. On the Uniqueness of Nested Relations. Nested Relations
and Complex Objects in Databases, Lecture notes in Computer Science,
Springer-Verlag, New York, 1989.

A. U. Tansel, L. Garnett. On Roth, Korth, and Silberschatz’s Extended
Algebra and Calculus for Nested Relational Databases. ACM Transac-
tions on Database Systems, 17(2), June 1992, pp. 374-383.

S. Thomas, P. Fischer. Nested relational structures. In Advances in
Computing Research III, The Theory of Databases, P.C.Kanellakis, Ed.
JAI Press, Greenwich, Conn., 1986.

S LA TI AN

IMAGE CVALUATION
TEST TARGET (QA-3)

[1) A I\

14

 ——
 ——
 ——
me——

I

i

125

HEEN
2
41
il
- il |
2 A__u_________"““ |
E
X
Y N
AR
Y ly %% e, \\V
N %ﬁ %\M&@. ©
0/ sov A % »o,\mt

