

INTELLIGENT VELOCITY CONTROL OF A BOUNDING

QUADRUPED ROBOT

MICHELE FARAGALLI

MASTER OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

MCGILL UNIVERSITY

MONTREAL, QUEBEC

MAY 2009

A thesis submitted to McGill University in partial fulfilment of the requirements of the

degree of Master of Engineering

©Michele Faragalli, 2009

i

ACKNOWLEDGEMENTS
I would like to thank my supervisor Inna Sharf for her patience, guidance, and discipline

throughout the course of my research, without her, none of this would have been possible.

I‟d like to thank Adam Harmat who was a great sounding board for ideas, both good and

bad, and who was always there with me late at night debugging the robot. I‟d also like to

thank Chris Prahacs whose knowledge of electro-mechanical hardware was always a big

help. To Philippe Giguère, who spent many hours helping me debug IMU issues, un gros

merci! I must also thank Dr James Smith for keeping in touch and answering my

questions. Of course, I have to thank all of those who have given me advice and company

throughout the course of my masters‟: Nicolas Plamondon, David Cowan, Olivia Chiu,

and Marco Masciola. Finally, I must thank my girlfriend Ashley: thanks for being there

for me!

ii

ABSTRACT
The Platform for Ambulating Wheels (PAW) is a hybrid quadruped wheeled-legged

robot that can bound, gallop, roll and brake at high speeds, and perform inclined turning.

In previous work, the PAW‟s controller used fixed touchdown and liftoff angles to

achieve a stable bounding gait, and these angles were predetermined through an extensive

trial and error process.

In this work, an intelligent velocity controller is developed to allow the robot to

autonomously find the touchdown and liftoff angles to bound at a desired velocity. This

enables the robot to track desired velocities between 0.9 and 1.3 m/s, as shown in a

Matlab-Adams co-simulation model of bounding. The controller also demonstrates

tracking capabilities in the presence of minor terrain changes.

To implement this controller on the physical platform, an Extended Kalman Filter (EKF)

is developed to estimate the forward velocity of the robot required as a controller input.

The EKF combines the data from an Inertial Measurement Unit and an estimate of

forward velocity found kinematically using measurements from motor encoders and leg

potentiometers. The accuracy of the EKF estimate of the forward velocity is validated in

simulation and using high speed camera experiments.

Finally, the intelligent controller is implemented and tested on the physical platform

demonstrating adequate velocity tracking for set points between 0.9 m/s and 1.3 m/s, as

well as transitions between set points in this range.

iii

ABRÉGÉ
Le « Platform for Ambulating Wheels » (PAW) est un robot quadrupède qui possède des

roues au bout de ses quatre jambes. Sa combinaison de roues et jambes lui permet de

rouler, d‟effectuer des virages en inclinant son corps, de sauter, de bondir et de galloper.

Dans les travaux précédents, le robot utilisait des angles fixes, trouvés par essais et

erreurs, pour pouvoir bondir à une certaine vitesse. Un contrôleur intelligent capable de

trouver les angles de façon autonome afin de suivre une vitesse prédéterminée est

développé dans ce mémoire.

Premièrement, la performance du contrôleur est évaluée dans une simulation MSC

Adams et MATLAB démontrant les capacités à suivre des vitesses entre 0.9 et 1.3 m/s.

Le contrôleur démontre une capacité à suivre la vitesse désirée même en présence de

changement de terrain mineur.

Ensuite, un filtre Kalman pour système non-linéaire est développé pour estimer la vitesse

du robot, un paramètre nécessaire pour introduire le système de contrôle intelligent sur le

robot. Les données d‟une unité de mesure inertielle et une estimation de la vitesse par des

équations cinématiques sont combinés dans le filtre pour estimer plus précisément la

vitesse du robot. La précision du filtre est validée en comparant ses résultats contre ceux

acquis en simulation et par une caméra à haute vitesse.

Finalement, le contrôleur intelligent est évalué sur le robot en utilisant la vitesse estimée

par le filtre Kalman. Les résultats expérimentaux du contrôleur démontre qu‟il est

capable de bien suivre des vitesses entre 0.9 et 1.3 m/s.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS I

ABSTRACT II

ABRÉGÉ III

LIST OF FIGURES VII

LIST OF TABLES X

CHAPTER 1: INTRODUCTION 1

1.1 DYNAMICALLY STABLE RUNNING ROBOTS 2

1.2 CONTROL OF QUADRUPED ROBOTS 5

1.3 PLATFORM FOR AMBULATING WHEELS (PAW) 6

1.4 PURPOSE OF INTELLIGENT VELOCITY CONTROL ON PAW 8

1.4.1 INTELLIGENT CONTROLLERS 8

1.4.2 VELOCITY CONTROL 10

1.5 THESIS ORGANIZATION 11

CHAPTER 2: INTELLIGENT VELOCITY CONTROLLER 12

2.1 EXISTING BOUND CONTROL STRATEGY 12

2.1.1 RUNNING GAITS 13

2.1.2 DETECTING STATE CHANGES ON PAW 14

2.1.3 MOTOR CONTROL 15

2.1.4 TOUCHDOWN AND LIFTOFF ANGLES 16

2.2 INTELLIGENT VELOCITY CONTROLLER 17

2.2.1 RAIBERT‟S VELOCITY CONTROLLER 18

2.2.2 MODIFICATIONS TO RAIBERT‟S CONTROLLER 19

2.2.3 LEVENBERG-MARQUARDT LEARNING 20

2.3 SIMULATION RESULTS 21

2.3.1 MSC ADAMS MODEL 21

2.3.2 CONTROLLER COMPARISON 23

v

2.3.3 VELOCITY VARIATION 24

2.3.4 ROBUSTNESS TO DISTURBANCES 28

2.3.5 LIMITATIONS 34

CHAPTER 3: VELOCITY ESTIMATION 37

3.1 AVAILABLE SENSORS 38

3.2 KINEMATICS ESTIMATE OF FORWARD VELOCITY 39

3.2.1 KINEMATICS ESTIMATION RESULTS AND VALIDATION 40

3.3 IMU MEASUREMENTS 45

3.3.1 IMU DATA PROCESSING 45

3.3.2 IMU ERROR MODEL 49

3.4 EKF ALGORITHM 54

3.5 EKF RESULTS AND VALIDATION 59

CHAPTER 4: CONTROLLER IMPLEMENTATION AND RESULTS 64

4.1 IMPLEMENTATION 65

4.1.1 MECHANICALLY BLOCKED WHEELS 65

4.1.3 ROBOT CONTROLLER BLOCK DIAGRAM 69

4.2 CONTROLLER PERFORMANCE 70

4.2.1 CONVERGENCE 70

4.2.2 ACCELERATION 75

4.2.3 DECELERATION 76

4.3 CRITICAL PARAMETERS AND LIMITATIONS 77

4.3.1 IMPORTANCE OF Α3 GAINS 77

4.3.2 START-UP ROUTINE 78

4.3.3 VELOCITY THRESHOLDS 79

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 82

5.1 CONTRIBUTIONS TO PAW 83

5.1.1 INTELLIGENT VELOCITY CONTROLLER 83

vi

5.1.2 ROBUSTNESS TO DISTURBANCES 83

5.1.3 EXTENDED KALMAN FILTER 84

5.2 RECOMMENDATIONS 85

5.2.1 DIRECTIONAL CONTROLLER 85

5.2.2 HOPPING HEIGHT CONTROLLER 86

5.2.3 SENSING CAPABILITIES 86

5.2.4 INCREASED AUTONOMY 87

vii

LIST OF FIGURES

FIGURE 1.1 RAIBERT‟S MONOPOD HOPPER 3

FIGURE 1.2 SPRING-LOADED INVERTED PENDULUM MODEL (SLIP) 3

FIGURE 1.3 RAIBERT‟S ROBOT‟S 4

FIGURE 1.4 STANFORD‟S KOLT ROBOT 4

FIGURE 1.5 MCGILL QUADRUPEDS 6

FIGURE 2.1 FOOTFALL PATTERNS FOR VARIOUS GAITS 13

FIGURE 2.2 PAW‟S BOUND SEQUENCE 14

FIGURE 2.3 PAW PARAMETERS 19

FIGURE 2.4 MSC ADAMS PAW MODEL 22

FIGURE 2.5 BLOCK DIAGRAM OF INTELLIGENT CONTROLLER IN SIMULATION 23

FIGURE 2.6 INTELLIGENT VS. EXISITING (FIXED-ANGLE) CONTROL 24

FIGURE 2.7 TRACKING VELOCITY VARIATIONS 25

FIGURE 2.8 PAW ACCELERATING FROM 1.0 TO 1.3M/S 26

FIGURE 2.9 PAW DECELERATING FROM 1.3 TO 1.0M/S 27

FIGURE 2.10 PAW STOPPING SEQUENCE 28

FIGURE 2.11 FRICTION TERRAIN CHANGE WITH INTELLIGENT CONTROLLER 29

FIGURE 2.12 FRICTION TERRAIN CHANGE WITH INTELLIGENT CONTROLLER (LONG) 31

FIGURE 2.13 FRICTION TERRAIN CHANGE WITH FIXED-ANGLECONTROLLER 32

FIGURE 2.14 STIFFNESS TERRAIN CHANGE WITH INTELLIGENT CONTROLLER 33

FIGURE 2.15 ACCELERATION FAILURE AT 1.4M/S 35

FIGURE 2.16 DECELERATION FAILURE AT 0.8M/S 36

FIGURE 2.17 PAW SIMULATION IMAGE 36

FIGURE 3.1 KINEMATICS ESTIMATE OF FORWARD VELOCITY ON SIMULATED DATA 41

viii

FIGURE 3.2 DETAIL OF KINEMATICS ESTIMATE OF VELOCITY ON SIMULATED DATA 42

FIGURE 3.3 KINEMATICS ESTIMATE OF FORWARD VELOCITY ON ROBOT DATA 43

FIGURE 3.4 DETAIL OF KINEMATICS ESTIMATE OF ROBOT DATA 44

FIGURE 3.5 REFERENCE FRAMES 45

FIGURE 3.6 PAW REFERENCE FRAMES 46

FIGURE 3.7 IMU ATTITUDE DRIFT TEST 50

FIGURE 3.8 IMU VELOCITY DRIFT TEST 51

FIGURE 3.9 IMU ERROR MODEL TEST: FORWARD VELOCITY IN ROLLING 52

FIGURE 3.10 IMU ERROR MODEL TEST: FORWARD VELOCITY IN BOUND 53

FIGURE 3.11 FORWARD VELOCITY OF BOUND 59

FIGURE 3.12 DETAIL OF FORWARD VELOCITY OF BOUND 60

FIGURE 3.13 STILL FRAMES OF BOUNDING TEST IN LABORATORY 61

FIGURE 3.14 FORWARD VELOCITY SIMULATION OF PAW BOUNDING 62

FIGURE 4.1 TOUCHDOWN DETECTION 66

FIGURE 4.2 SLIP MODEL WITH WHEELS 66

FIGURE 4.3 BOUND TEST WITH FIXED ANGLES AND ACTUATED WHEELS 67

FIGURE 4.4 BOUND TEST WITH FIXED ANGLES AND MECHANICALLY BLOCK WHEELS 68

FIGURE 4.5 MECHANICALLY BLOCKED WHEEL 69

FIGURE 4.6 ROBOT CONTROLLER BLOCK DIAGRAM 69

FIGURE 4.7 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.0 M/S 70

FIGURE 4.8 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.3 M/S 72

FIGURE 4.9 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 0.9 M/S 74

FIGURE 4.10 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.1 M/S 74

FIGURE 4.11 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.2 M/S 75

FIGURE 4.12 INTELLIGENT VELOCITY CONTROLLER ACCELERATING 0.9 M/S TO 1.3 M/S 76

ix

FIGURE 4.13 INTELLIGENT VELOCITY CONTROLLER DECELERATING 1.1 M/S TO 0.9 M/S 77

FIGURE 4.14 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.4 M/S 80

FIGURE 4.15 ROBOT FAILING AT VELOCITIES BELOW 0.8M/S 81

x

LIST OF TABLES

TABLE 2.1 PREDEFINED PAW BOUNDING TOUCHDOWN AND LIFTOFF ANGLES 17

TABLE 2.2 SIMULATION PARAMETERS 22

TABLE 2.2 ROBOT-TERRAIN INTERACTION PROPERTIES 29

TABLE 3.1 BAE SIIMU-01 SPECIFICATIONS 38

TABLE 3.2 ACCELEROMETER DRIFT ANALYSIS RESULTS 54

TABLE 3.3 S-VALUES FOR EKF 56

TABLE 3.4 STANDARD DEVIATION OF STATE ESTIMATES 57

TABLE 4.1 CONTROLLER TRACKING ABILITY 71

TABLE 4.2 CONTROLLER Α3 GAINS 78

Intelligent Velocity Control of a Bounding Quadruped Robot

1

CHAPTER 1: INTRODUCTION

Traversing rough terrain is one of the main reasons for developing dynamically stable

running robots. While wheeled and tracked robots can overcome obstacles and soft soil,

few offer the versatility that is seen in biological systems. Hence, more versatile

autonomous legged robots are being developed to achieve the capabilities of animals or

insects. New biologically inspired robots could prove useful for planetary surface

exploration, military reconnaissance, and search and rescue missions. The Platform for

Ambulating Wheels, or PAW, is a hybrid wheel-leg quadruped robot built to combine the

advantages of both rolling and running robots. This thesis shall introduce an intelligent

velocity controller that increases the locomotion capabilities of PAW and an extended

Kalman filter (EKF) that allows for increased velocity sensing capabilities. Ultimately,

the goal of this research is to enhance PAW‟s autonomy and adaptability to various

terrains.

2

This chapter introduces dynamically stable running robots, provides a background of

existing control methods for quadruped robots, describes the PAW platform, and explains

why intelligent velocity control is necessary for increasing the capabilities of the robot.

Chapter 2 describes the intelligent velocity controller for the bound gait and provides

results from testing in a Matlab-Adams co-simulation environment, including an

evaluation of its capabilities with changing terrain properties. Chapter 3 describes the

sensing requirements and the extended Kalman filter used to estimate forward bounding

velocity. Chapter 4 demonstrates the effectiveness of the intelligent controller on the

PAW robot in an indoor test environment. Finally, Chapter 5 concludes this work by

discussing the contributions of this thesis and suggesting avenues for future work.

1.1 DYNAMICALLY STABLE RUNNING ROBOTS

Legged robots can be classified as statically and dynamically stable robots. The former

requires continuous ground support by the legs at all instants through the gait. The robot‟s

center of mass (COM) projection onto the ground must be located within the support area

provided by the legs at each instant to ensure the robot‟s static stability throughout the

gait. They tend to be slow moving, with legs resembling traditional manipulator designs.

Faster moving „running‟ legged robots that do not require the COM to be located within

the area of support provided by the legs are described as dynamically stable legged

robots. Dynamically stable legged robots can have phases in their gait during which no

legs are in contact with the ground, termed „flight phases‟. These running robots also take

advantage of the legs‟ passive dynamics to simplify their controllers. Marc Raibert‟s

monopod hopper was the first dynamically stable running robot [1] and consisted of a hip

motor combined with a prismatic actuator and spring to mimic a leg. The robot was

Intelligent Velocity Control of a Bounding Quadruped Robot

3

mounted on a pivoting boom and was capable of hopping at a speed of 1.2 m/s [1]. To

produce stable hopping, the prismatic springs stored the potential energy in the first

portion of the stride, and released it in the second portion to produce leg liftoff, similar to

a pogo stick. The dynamics of the system was modeled as a spring-loaded inverted

pendulum (SLIP). Figure 1.1 shows the 3D version of Raibert‟s monopod hopper in

action, capable of hopping at 2.2 m/s [1], and Figure 1.2 provides a visual representation

of the SLIP model.

FIGURE 1.1 RAIBERT‟S MONOPOD HOPPER [2]

FIGURE 1.2 SPRING-LOADED INVERTED PENDULUM MODEL (SLIP)

Touchdown

Compression

Liftoff

4

This SLIP model was extended to achieve bipedal and quadrupedal locomotion as well.

Figure 1.3 shows a two and a four legged running robot both developed by Raibert.

Similar to the monopod, the bipedal and quadrupedal robots used a hip motor to control

the leg position, and a prismatic actuator in the leg to control the energy injected in the

system to maintain dynamic stability. His quadruped was capable of pacing, trotting, and

bounding [3]; while the biped, mounted on a boom, was capable of step climbing [4] and

running at up to 4.3 m/s [1]. Similar research on dynamically stable legged robots is

being performed on the four legged KOLT robot, shown in Figure 1.4, which begun as a

monopod called the OSU Dash-leg running on a treadmill [5]. The leg design differs from

Raibert‟s as it uses pulleys to control hip and knee joints, offering one more degree of

freedom per leg.

 (A) RAIBERT‟S QUADRUPED TROTTING [2] (B) RAIBERT‟S BIPED STEP CLIMBING [6]

FIGURE 1.3 RAIBERT‟S ROBOT‟S

FIGURE 1.4 STANFORD‟S KOLT ROBOT [7]

Intelligent Velocity Control of a Bounding Quadruped Robot

5

1.2 CONTROL OF QUADRUPED ROBOTS

Several control strategies are available to quadruped robots. The traditional statically

stable robots require precise foot placement to ensure stability at each moment in the

robot‟s motion. These robots, considered walking robots, use a polygon support pattern to

determine the feet positions. Conventional PID or PD laws are used at the motor position

control level. Higher level controls optimize gait pattern generation and foot placement

[8], and range from offline machine learning for parameter tuning [9] to online adaptive

control methods [10]. In [11], the Sony AIBO robot‟s walking speed is increased by

optimizing the gait‟s parameters offline using an evolutionary approach to a learning

algorithm. Offline gait learning focuses on gait optimization for specific terrain types.

Other researchers [12] [13] [14] focus on central pattern generators (CPG) for generating

a locomotion gait in biologically inspired robots to adapt the gait according to the

environment based on reward functions. The CPG is made up of coupled nonlinear

oscillators to form a network capable of generating synchronization patterns used to

coordinate actuation of the robot. Although approaches differ, the underlying objective is

to optimize legged robots‟ performance in all terrain types.

While dynamically stable robots rely primarily on the natural dynamics of the system

[15], control laws are still required to ensure stable locomotion. The robot‟s gait

parameters are optimized based on the desired controller set point. These set points can

include the desired attitude [16] [17], direction [18], velocity and hopping height [19],

specific maneuvers [20], and minimizing energy consumption [21]. As running robots

dynamics are complex and non-linear in nature, fuzzy control [22], evolutionary searches

[23], and learning algorithms [24] are often used to determine the required controller

6

outputs to achieve the desired set point. Raibert, on the other hand, simplified controllers

by using virtual leg principles and relying on the dynamic stability of the system [1].

Ultimately, to make legged robots adaptable to their environment, they must be capable

of sensing disturbances such as obstacles or terrain changes and decide which gait is best

for completing the task. To do so, many robots often have state estimation or visual

odometry feedback that alerts the controller of a change required in the outputs [25].

1.3 PLATFORM FOR AMBULATING WHEELS (PAW)

At McGill University, two robots have been developed that use the principles of

dynamically stable legged locomotion: Scout II [26] and PAW [27], shown in Figures

1.5(a) and (b) respectively. SCOUT II became the world‟s first physical robot to achieve

stable galloping [26] and did not use prismatic actuators in the legs. The robot uses un-

actuated compliant legs, controlled individually, that exploit the passive dynamics to

store potential energy and release it to produce leg liftoff, leading to stable galloping at

1.3 m/s.

(A) SCOUT II [26] (B) PAW ROBOT [27]

FIGURE 1.5 MCGILL QUADRUPEDS

Based on the success of SCOUT II, a smaller version, termed hybrid due to the addition

of wheels at the end of each compliant leg, was developed. The Platform for Ambulating

Intelligent Velocity Control of a Bounding Quadruped Robot

7

Wheels (PAW), an under-actuated robot with minimal sensing capabilities and simple

controls, is able to achieve stable bounding and galloping at speeds over 1.0 m/s [28]. In

addition, PAW can use the wheels to provide the forward motion while the actuated hips

allow turning and braking at high speeds [27]. PAW‟s locomotion capabilities are

illustrated in Figure 1.6.

 (A) BOUNDING (B) GALLOPING

(C) ROLLING (D) SLOPE CLIMBING

(E) INCLINED TURNING (F) BRAKING AT HIGH SPEEDS

FIGURE 1.6 PAW‟S LOCOMOTION CAPABILITIES

PAW‟s motors are located in the hip for rotating the leg, and in the toes for powering the

8

wheel, respectively. The galloping and bounding controllers require only linear

potentiometers to measure spring compression in the legs, and encoders in the hip and

wheel motors to measure angular position and velocity as inputs [29]. To achieve leg

liftoff for the flight phase required for the gallop and bound gaits, potential energy must

be stored in the leg springs during the stance phase. This limits the range of stability of

the bound and gallop gaits as the robot relies on the un-actuated compliant nature of the

legs to avoid toe dragging or stubbing, which can lead to a failure in the gait. An increase

in maneuverability during running gaits will therefore require more intelligent control

methods and sensing capabilities to take full advantage of the limited number of actuators

[30]. A more detailed description of PAW‟s gaits, controls and important parameters is

contained in Chapter 2.

1.4 PURPOSE OF INTELLIGENT VELOCITY CONTROL ON PAW

Intelligent control methods allow a system to track various set points and adapt to

disturbances, thus increasing its autonomy. However, learning algorithms can

significantly increase the complexity of the controllers, increase the computational time,

and possibly require more information than is available on the robot‟s state. This section

details the reasons for using intelligent control on PAW, the types of controls applicable

to the platform, and why velocity control was implemented first.

1.4.1 INTELLIGENT CONTROLLERS

PAW‟s existing controller uses specific hip angles combinations for the leg touchdown

and liftoff instants to achieve stable running gaits. For bounding, the front legs and rear

legs are actuated in pairs to fixed hip angles for touchdown and liftoff, whereas for

Intelligent Velocity Control of a Bounding Quadruped Robot

9

galloping, there is a fixed angle phase difference between the pair‟s hip angles at

touchdown and liftoff. The fixed values are predetermined through a trial and error

process to achieve a stable gait. The control scheme for bounding is described in further

detail in Chapter 2. Using an intelligent method for control allows the robot to modify

these fixed values in order to adapt to the desired velocity, desired turning rates, and the

terrain. As terrain properties change, the robot dynamics are affected. An intelligent

controller can adapt to the change in robot states in order to maintain the desired set

point. Increasing the robot‟s autonomy and versatility renders it applicable in more

realistic situations where galloping and bounding would prove useful.

A plethora of intelligent control methods have been developed to increase the autonomy

of robotic systems. Ideally, mimicking biological models would lead to the best solutions;

however these would require neural network controllers [31]. Sets of artificial neural

networks can provide pattern generation for various gaits and gait control. Neural

networks, however, rely on extensive sensing capabilities and actuator coupling to create

rhythmic patterns [31]. For PAW, the gait patterns are generated based on the passive

dynamics of the system with each leg controller decoupled. In addition, our platform

provides limited actuation and sensing capabilities that would render neural controllers

ineffective. Fuzzy controllers provide a solution that uses some heuristic knowledge of

the system to increase the robots adaptability. The fuzzy controller can be called at the

apogee of the flight phase, or top-of-flight (TOF), to fuzzify the control parameters and

find the optimal controller inputs based on a set of rules. Although Marhefka and Orin

[22] demonstrate the capabilities of the fuzzy controller in a simulated galloping

quadruped, the rule-base that specifies the membership function for each controller input

10

requires additional parameter storage and computations per stride relative to the

controller developed by Raibert [1]. In [24], the fuzzy controller is compared to a

Levenberg-Marquardt (LM) learning algorithm that modifies the Raibert controller [1] in

a simulated leg for a galloping robot. While achieving similar results as the fuzzy

controller, the LM-Raibert controller would entail fewer modifications to our platform,

while still improving PAW‟s tracking abilities.

1.4.2 VELOCITY CONTROL

Dynamically stable legged robots have the advantage of not requiring continuous ground

support throughout their running gait to ensure static stability. They are able to leap over

obstacles, and traverse terrain that statically stable legged robots may not be able to.

Although advantageous, these robots require precise foot positioning in “safe” locations

in order to continue their stride. Thus, controlling foot placement is a key element in

rough terrain traversal. Choosing the foot location can be based on visual odometry and

other sensorial data. However, these foot locations greatly affect the stability, forward

velocity, hopping height, and direction of travel of the system. Raibert‟s work in [4]

addressed this issue by analyzing the parameters that define a running robot‟s step length.

For steady state running, the step length is the sum of distance traveled during stance and

flight. In his analysis, Raibert defines forward velocity as the key parameter in adjusting

step length. Other researchers discuss possibilities of adjusting hopping height [19]

useful for overcoming obstacles, or turning rates during running [7]; however, velocity

control is an appropriate starting point for a dynamically stable robot with the dimensions

of PAW. As will be discussed in Chapter 2, only minor modifications to the controller

are needed to achieve bounding velocity control.

Intelligent Velocity Control of a Bounding Quadruped Robot

11

1.5 THESIS ORGANIZATION

This thesis will focus on intelligent velocity control of the PAW robot during the bound

gait. Chapter 2 will describe the existing control scheme on the robot, present the

modifications necessary for PAW to achieve velocity tracking, and demonstrate the

controller‟s performance in simulation. Chapter 3 will focus on the development and

testing of an extended Kalman filter (EKF) used to estimate forward velocity during

bounding on the robot, which is a necessary input to the intelligent controller. Chapter 4

will describe the controller‟s performance on the robot, as well as discuss some important

parameters and limitations. Finally, Chapter 5 discusses the contributions made by this

thesis and addresses areas for future work.

12

CHAPTER 2: INTELLIGENT VELOCITY CONTROLLER

This Chapter describes the existing bounding controller on PAW and outlines the

modifications necessary to accomplish intelligent velocity control during bounding. To

achieve intelligent velocity control, a Levenberg-Marquardt learning algorithm is called

at the top-of-flight (TOF) instant of the bound stride to compute the necessary gains in a

modified version of Raibert‟s controller [1], which in turn determines the hip angles

required for achieving a particular forward bounding velocity. In order to verify the

effectiveness of the controller, a model of the robot was created in the dynamics

simulation software MSC Adams, which is used in conjunction with Matlab to control the

robot in simulation. The results of this simulation include: a comparison with the existing

controller, an evaluation of velocity tracking capabilities, an assessment of robustness to

terrain changes, and the limitations of this method, which are presented in the final

section of this chapter.

2.1 EXISTING BOUND CONTROL STRATEGY

The PAW robot‟s existing control strategy allows it to achieve two dynamically stable

gaits: the bound and the gallop. Although this work focuses on the bound gait, an

Intelligent Velocity Control of a Bounding Quadruped Robot

13

extension could easily be made to the gallop. To fully understand how the intelligent

controller is implemented, it is important to first describe the bound gait and the existing

control scheme.

2.1.1 RUNNING GAITS

The footfall patterns for one stride of various quadruped running gaits are compared to

the quadruped bound in Figure 2.1 below. The transverse and rotary gallop requiring the

legs to touchdown individually, are considered as four beat gaits, whereas the bound and

trot are two beat gaits as the legs touchdown in pairs. In biological systems, the bound

gait is seen as a transition gait between trot and gallop; however some animals, like the

squirrel, use the bound gait as a means of high speed locomotion [32].

FIGURE 2.1 FOOTFALL PATTERNS FOR VARIOUS GAITS

Although the gallop gait is traditionally more efficient with respect to energy

consumption in running animals at high speeds [33], it has been demonstrated that in the

case for PAW, bounding is a more efficient means of dynamically stable locomotion [29].

 Leg flight

Leg stance

Bound

Transverse Gallop

Rotary Gallop

Trot

1

1

1

1 1

1 2

2

2

2

3

3

3

3

4

4

4

4

5

5

14

This is likely due to the dimensions of the robot, whereas a robot with longer legs, like

Scout II, has a more efficient gallop gait at high speeds [29]. Thus, in this work, the

intelligent controller is implemented solely for the bound gait. It is possible to pursue the

intelligent controller strategy during galloping, as the gallop gait in PAW consists simply

of adding a fixed angular phase difference in the hip angles for the front and rear leg pairs

causing a change in the footfall pattern. However, this is out of the scope of this thesis.

2.1.2 DETECTING STATE CHANGES ON PAW

In order to achieve dynamically stable bounding, the individual leg controllers require

detection of two states: stance and flight. A simplified visual representation of PAW

bounding is seen in Figure 2.2.

FIGURE 2.2 PAW‟S BOUND SEQUENCE

During bounding, the front legs are controlled symmetrically, as are the rear legs,

creating virtual leg pairs at both the front and rear of the robot. The front and rear leg

pairs are decoupled as they do not require knowledge of each other‟s states to provide

appropriate leg actuation. Thus, once the state of a leg is detected, the controllers will

servo the hip to the appropriate angle. During flight, the leg will want to achieve the

correct touchdown angle for the stance phase while taking body pitch into account.

During stance, the legs are actuated to the correct liftoff angle, at which point the energy

stored in the springs is released, causing the legs to take flight.

A: Top of Flight B: Front Stance C: Double Stance D: Rear Stance

Intelligent Velocity Control of a Bounding Quadruped Robot

15

Touchdown and liftoff detection is determined via potentiometers located on each robot

leg. When the leg touches down, a predetermined compression threshold is achieved

indicating to the robot controller that the leg has touched down. Similarly for takeoff, the

leg extends beyond a predetermined threshold indicating that the leg is in flight. This

method of determining leg states can be improved as vibration in the legs and

inaccuracies in the potentiometer data may affect the performance of the state detection.

As PAW has actuated wheels on the distal ends of the legs, it would be possible to

determine the touchdown or liftoff instant using the wheel motor encoders. However, for

the purpose of this work, the leg compression method for state determination is sufficient.

2.1.3 MOTOR CONTROL

PAW‟s leg actuators, located at the hips, are controlled by traditional PD law of Equation

(2.1) which is used during the gait cycle to servo the robot‟s legs to the desired angles:

 
DDPhip kk )((2.1)

where: hip is required motor torque,

  is the actual hip angle with respect to the body,

 D is the desired leg angle with respect to the ground,

  is the body pitch,

  is the actual leg angular rate, and

 kP and kD are the controller gains.

The desired hip angular rate, D
 , is zero in this case, allowing the derivative error of the

traditional PD law of Equation (2.1) to be simplified to contain only the  term. Equation

(2.1) is used during the leg flight phase, whereas during stance, the hip torque is

16

commanded to the motor saturation limit. Once the hip‟s desired liftoff angle is reached

in the stance phase, a stance brake state is detected and the control law in Equation (2.1)

ensures that the hip is commanded to stay at the required angle, D , until liftoff occurs.

The hybrid nature of PAW requires the wheel motors to be either actively controlled or

mechanically blocked during dynamic legged locomotion. For active wheel control, the

wheels are controlled to remain at rest via a PD position control law, reducing the wheel

torque equation to:

 wheelDwheelPwheel kk   (2.2)

where: wheel is required wheel motor torque,

 wheel is the wheel angle,

 wheel is the wheel angular rate, and

kP and kD are the controller gains tuned via trial and error.

2.1.4 TOUCHDOWN AND LIFTOFF ANGLES

From the previous subsections, it can be deduced that the critical parameters for PAW‟s

bound gait are the touchdown and liftoff angles of the legs, which are controlled from the

hip actuators. Due to the passive nature of the prismatic joint in PAW‟s legs, the hip

angles will determine the amount of spring compression and extension to ensure liftoff

and maintain dynamic stability. Specific combinations of these result in dynamically

stable gaits at particular forward velocities and hopping heights. However, the manual

tuning to find these values is time consuming; moreover, achieving alternate forward

velocity set points requires re-tuning for both the leg touchdown and liftoff angles.

Intelligent Velocity Control of a Bounding Quadruped Robot

17

PAW‟s existing controller uses fixed leg touchdown and liftoff angles during the

bounding gait developed by Smith in [29]. Table 2.1 demonstrates experimental results

of combinations of hip angles resulting in various forward bounding velocities. The

center of mass (COM) speed shown in Table 2.1 is calculated by dividing the distance

traversed by the robot during the experiment, over the elapsed time.

Test Front touchdown

angle (deg)

Rear touchdown

angle (deg)

Front liftoff

angle (deg)

Rear liftoff

angle (deg)

COM speed

(m/s)

1 -20 -22 4 12 0.75

2 -20 -22 6 14 0.83

3 -20 -22 6 16 0.83

4 -20 -22 8 16 0.91

5 -20 -22 10 18 1.00
 TABLE 2.1 PREDEFINED PAW BOUNDING TOUCHDOWN AND LIFTOFF ANGLES

2.2 INTELLIGENT VELOCITY CONTROLLER

As running robots have a flight phase in their gait, this allows them to overcome

obstacles and difficult terrain. As discussed in section 1.4.2, foot placement plays a key

role in the robot‟s locomotion. Moreover, in the case of a bounding robot that relies on

the passive dynamics such as PAW, the desired foot placements must ensure that a

sufficient amount of energy is injected into the system to maintain stable running. The

foot location is determined from the leg kinematics relations between the hip angles and

leg length as shown in Figure 2.3.

Raibert [4], as introduced in section 1.4.2, analyzed step length in steady state running.

He defines step length as the sum of distance traveled during stance and flight between

foot touchdown instants. This is shown in Equation (2.3).

ffssstep TxTxL   (2.3)

18

In this equation: Lstep is step length,

 sx and fx is COM velocity during stance and flight phases respectively,

 Ts and Tf is the time of stance and of flight respectively.

Although the duration of flight, the duration of stance, and forward velocity play a role in

the step length, Raibert identifies forward velocity as the key parameter in adjusting step

length [4]. From step length, it is possible to determine the foot touchdown locations,

which are directly related to the hip angles.

2.2.1 RAIBERT‟S VELOCITY CONTROLLER

Raibert‟s controller, developed in [1] for velocity control of a monopod hopper and

presented in Equation (2.4), finds the necessary foot placement at touchdown and liftoff

instants for achieving a desired velocity set point. The desired velocity, in this case, is

taken as the robot‟s center of mass (COM) forward velocity at the top-of-flight (TOF)

during the hopping sequence. The first term in Equation (2.4) estimates the required foot

placement for keeping constant running velocity. The second term corrects the velocity

error by adding to the desired foot position.

)(
2 21

d
s

foot vvKv
T

Kx  (2.4)

In the above, Ts is the time of the previous stance period, v is the COM velocity at TOF,

vd is the desired TOF velocity, K1 and K2 are the gains.

This strategy can be translated to a quadruped robot as the legs are controlled

independently during bound, as described in section 2.1.2. Thus, the controller is called at

the TOF instant in the bound sequence to compute the desired foot placement at

touchdown and liftoff for the front and rear leg pair, indicating that Equation (2.4) must

Intelligent Velocity Control of a Bounding Quadruped Robot

19

be used four times, once for each desired foot placement, to track the desired velocity set

point. Knowing the desired foot placement xfoot, the required hip angles are found

kinematically using Equation (2.5) for the front and rear leg pairs. PAW‟s kinematic

parameters are described in Figure 2.3. Subscripts f and r are used for front and rear leg

pairs respectively.

















 

rf

rf
foot

rf l

x

 ,

 ,1

 ,
sin (2.5)

 FIGURE 2.3 PAW PARAMETERS

Note that the body pitch is taken into account in the hip motor control of Equation (2.1)

as foot position is found with respect to the local vertical axis.

2.2.2 MODIFICATIONS TO RAIBERT‟S CONTROLLER

Raibert developed Equation (2.4) to control foot touchdown position for a monopod with

a prismatic and a rotational actuator. In this case, the rotational actuator, i.e. the hip

motor, servos the leg to the desired position, while the prismatic actuator ensures that

enough energy is injected back into the system to avoid toe dragging or stubbing. Thus,

r

rfootx ,
ffootx ,

lf

lr

L

θ
θ

γr
γf

f

20

this method relies on controlling the energy injected during the stance phase, whereas for

PAW, this is determined by the passive dynamics of the system. To ensure that the foot

placement equation takes the passive nature of PAW‟s legs into account, a third term, α3,

is added to Equation (2.4). Additionally, as the bound sequence in PAW is periodic in

nature, we can assume constant stance time and simplify the first term of the equation, to

give:

 321)(αvvαvαx d
foot

 (2.6)

For PAW‟s bound gait, Equation (2.6) is used to compute front and rear leg pair foot

placement at touchdown and liftoff. This means the gains α1, α2, and offset α3 must be

tuned four times; for front and rear leg touchdown and liftoff combinations.

2.2.3 LEVENBERG-MARQUARDT LEARNING

To enable traversal of terrains with various physical properties, PAW must be adaptable

to a range of velocity set points while maintaining dynamic stability. To avoid toe

stubbing or dragging failures, the α gain tuning requires an extensive trial and error

process for each desired forward velocity due to the compliant nature of PAW‟s prismatic

legs. The approach developed in [24] and shown in Equation (2.7), which uses a

Levenberg-Marquardt (LM) learning algorithm, is implemented on PAW allowing the

gains in Equation (2.6) to be adjusted adaptively at each stride. This reduces the manual

gain tuning process, requiring simply an initial value for each gain.

The LM intelligent algorithm solves the least squares problem to tune gains α1 and α2 of

Equation (2.6) according to the following update law [24].

2 1
21

,me
p

p
j

mm

m

jmjm 



 

 (2.7)

Intelligent Velocity Control of a Bounding Quadruped Robot

21

 where ej is the system velocity error: ej = vd,j - vj,

 λm is the step size control variable,

 p1 is actual velocity v,

 p2 is the negative of the system velocity error, and

 j is the stride index updated at each TOF instant.

At each TOF, Equation (2.7) is used to update the gains α1 and α2 for each leg pair for

both touchdown and liftoff. According to [34], the α3 term aids in compensating for the

loss in energy that could lead to instability; this term remains constant for small velocity

changes. The foot placement law of Equation (2.6) employs the newly tuned gains to

compute the foot position, which is then employed in Equation (2.5) to find the

appropriate hip angle as the hip motor controller input parameter.

2.3 SIMULATION RESULTS

To verify the validity of the proposed intelligent velocity controller, a simplified model of

the PAW robot was created in the dynamics simulator MSC Adams. This program allows

a Matlab interface where the robot controller is embedded. In the following subsections,

we describe the simulation model, present a comparison between the intelligent velocity

controller and the existing controller, demonstrate the ability of the intelligent controller

to track varying set points, investigate its robustness to terrain modifications, and discuss

some limitations.

2.3.1 MSC ADAMS MODEL

The dynamics model, described in [29] and developed in MSC ADAMS, is geometrically

and inertially consistent with the actual robot; the main difference is that the foot wheels

22

are modeled as toes without actuated wheels. This is an important discrepancy between

the physical robot and dynamics model, as wheels cause some energy loss upon

touchdown and liftoff. This will become apparent in Chapter 4 where we consider the

physical bounding tests. Table 2.2 displays the robot‟s physical parameters and Figure 2.4

displays the MSC Adams PAW model [29].

Parameter Value

Front body width 0.336m

Rear body width 0.240m

Body length 0.494m

Body height 0.170m

Body mass 15.7kg

Leg length 0.212m

Leg spring constant 3500N/m
TABLE 2.2 SIMULATION PARAMETERS

FIGURE 2.4 MSC ADAMS PAW MODEL

The robot‟s legs are controlled throughout the bound cycle, and the controller inputs for

leg angles are found as discussed in Section 2.2, once per cycle at the top-of-flight.

Figure 2.5 displays the block diagram of the controller developed in MATLAB for the

MSC Adams dynamics model.

Intelligent Velocity Control of a Bounding Quadruped Robot

23

FIGURE 2.5 BLOCK DIAGRAM OF INTELLIGENT CONTROLLER IN SIMULATION

2.3.2 CONTROLLER COMPARISON

To demonstrate the intelligent controller‟s performance, we first compare it to the

existing fixed-angle controller [29] for rate of convergence to a particular velocity set-

point. The simulation is started by allowing the robot to fall from a fixed height above the

ground. PAW is given an initial forward velocity of 0 m/s, with an initial forward pitch of

60º. The robot touches down and lifts off using known fixed hip angles to initiate stable

bounding. The start up routine is used for both the intelligent and previously developed

controller. For the intelligent controller, a fixed forward velocity of 1.3 m/s is

commanded when the robot reaches its first top-of-flight after the start up sequence. The

existing controller is commanded, throughout the bound cycle, to predefined forward and

rear touchdown and liftoff angles that yield a forward velocity of 1.3m/s. These

predetermined angles were found via trial and error in [29].

Figure 2.6 displays the COM forward velocity of the simulated bounding gait where

PAW starts from rest and accelerates to the desired velocity of 1.3 m/s. The „plateau‟

sections of the bound profile indicate the flight phase of the bound gait (phase A from

Figure 2.2). The small spike and deceleration is explained by the front leg touchdown

Intelligent

Controller

Called at

TOF

Hip motor

PD Controller
MSC Adams

Dynamics Model

Robot State

Desired

Hip angles

TOF Velocity

Hip

Torque

Desired

Velocity

24

(phase B from Figure 2.2), followed by the double stance phase (phase C from Figure

2.2). The robot then accelerates as the rear legs are actuated prior to liftoff (phase D from

Figure 2.2), after which the „plateau‟ sections appear to indicate flight has occurred. The

responses from the two controllers demonstrate the faster convergence of the intelligent

controller. The phases for one bound stride are indicated in Figure 2.6.

FIGURE 2.6 INTELLIGENT VS. EXISITING (FIXED-ANGLE) CONTROL

The intelligent controller allows the hip angles to adapt quickly to the desired velocity set

point while the existing controller does not achieve the desired velocity after 3.5s

(approximately 10 strides). The intelligent controller is able to adjust the hip angles to

accelerate to the set point in 2.5s (approximately 6 strides).

2.3.3 VELOCITY VARIATION

The real benefits of the intelligent controller, however, can be gleaned from Figure 2.7

where adaptation to the variable velocity set-point is demonstrated. Unlike the existing

Rear leg touchdown

Front leg touchdown

Rear leg lift off

A

B

C
D

Front leg lift off

 Intelligent Controller
 Existing Controller

 Velocity set point

Intelligent Velocity Control of a Bounding Quadruped Robot

25

bounding controller, the intelligent controller is able to track quite accurately the

velocities between 0.9 m/s and 1.3 m/s and furthermore, to seamlessly transition between

the different set-points. Near the end of the test, a desired velocity of 0 m/s was used to

successfully stop the robot without losing stability.

FIGURE 2.7 TRACKING VELOCITY VARIATIONS

In this simulation, the velocity set point was varied 8 times during a 30 second bound

trial. The velocity intervals in this test varied between 3 and 5 seconds in length, yielding

7 to 16 bound strides per interval. Within five strides of each change in set point, the

robot reached the new velocity set point. Once the convergence to the new set point

occurred for each interval, the robot continued to maintain the bound velocity with errors

less than 0.1 m/s.

The effects on the desired hip angles of the adaptation with the intelligent controller can

be seen in Figures 2.8 and 2.9. In Figure 2.8, the robot is commanded to accelerate from

1.0m/s to 1.3m/s. The intelligent controller achieves these results by increasing the

 Intelligent Controller

 Velocity set point

26

magnitudes of both the desired touchdown and liftoff angles. In these experiments, the

negative hip angle indicates that the leg is forward from the hip joint thus preparing for

touchdown; whereas a positive hip angle indicates that the leg is behind the hip position,

preparing for liftoff. At higher speeds, the „plateau‟ portion of the velocity plot is longer,

indicating an increase in flight time.

FIGURE 2.8 PAW ACCELERATING FROM 1.0 TO 1.3M/S

An example of the effects of deceleration using the intelligent controller is shown in

Figure 2.9. Here, the robot‟s desired velocity is varied from 1.3m/s to 1.0m/s, causing the

hip angle fluctuations to shrink and the flight time to decrease.

Intelligent Velocity Control of a Bounding Quadruped Robot

27

FIGURE 2.9 PAW DECELERATING FROM 1.3 TO 1.0M/S

Although there are upper and lower limits to the allowable bounding speed, as it will be

discussed in section 2.3.4, commanding a desired velocity of 0 m/s successfully stops the

bound sequence while maintaining stability. A more detailed plot of a stopping test is

shown in Figure 2.10. From this plot, it is clear how the gradual reduction of hip angles

occurs, allowing the robot to come to rest without failing. Unfortunately, due to the

passive nature of the system, it is not possible to reinitiate bounding without a predefined

start up sequence.

28

FIGURE 2.10 PAW STOPPING SEQUENCE

2.3.4 ROBUSTNESS TO DISTURBANCES

As the intelligent controller uses velocity feedback in the control loop, the controller

corrects for changes in the robot's forward speed. So if the error in velocity is caused by a

disturbance to the system instead of a change in the set point, it may be possible for the

robot to compensate for this change. Therefore, it is worthwhile to verify the controller‟s

robustness to disturbances. These changes to the robot‟s performance are primarily

caused by changes in the robot-ground interaction. In the context of the MSC Adams

simulation, we investigate the effects of changes in robot-ground interaction by varying

the critical parameters of the contact model for leg-ground contact. Table 2.2 summarizes

Intelligent Velocity Control of a Bounding Quadruped Robot

29

the robot-ground property changes considered, and the following subsections describe a

performance analysis of the controllers with varying terrain properties.

Test Stiffness Force

Exponent

Damping Penetration

Depth (m)

Static

friction

coefficient

Dynamic

friction

coefficient

Stiction

tran.

Vel.

Friction

tran.

Vel.

Original 10
7
 2.2 20 10

-4
 0.8 0.76 2.0 3.0

Friction

change
10

7
 2.2 20 10

-4
 0.4 0.38 2.0 3.0

Stiffness

change
10

6
 2.2 20 10

-4
 0.8 0.76 2.0 3.0

TABLE 2.2 ROBOT-TERRAIN INTERACTION PROPERTIES

2.3.3.1 TERRAIN FRICTION COEFFICIENT CHANGE

A terrain friction coefficient reduction by 50% reduces the robot‟s ability to track a

desired velocity as seen in Figure 2.11.

FIGURE 2.11 FRICTION TERRAIN CHANGE WITH INTELLIGENT CONTROLLER

Terrain change

30

The reduction of the friction coefficient causes some slip in the stance phase of the bound

stride. Although the hip actuators are able to achieve the desired set points, the slip

between the toe and the ground negates the SLIP assumption shown in Figure 1.2,

causing some loss of energy in the stance phase. This has the negative effect of reducing

the forward bounding velocity after the change in friction has occurred. In Figure 2.11,

the actual robot forward bounding velocity has been reduced by over 20%, 5 seconds

after the change in terrain. In Figure 2.12, a simulation was conducted to verify the

response of the controller over a longer test area. The controller appears to compensate

for the loss in velocity by slightly modifying the desired hip angles, however after over

30 s, the velocity error is still above 0.2 m/s. The LM learning algorithm modifies gains

α1 and α2 in attempt to compensate for the increasing velocity error at the top of flight of

each bound stride, but only small adjustments to these gains at each top of flight in the

bound are possible. As described previously, gains α1 and α2 are found by reducing the

error between the desired and actual top of flight forward velocities, whereas gain α3 was

determined experimentally to compensate for the passive nature of PAW's legs. The

value of α3 is decidedly a function of the leg-terrain interaction. Therefore, a change in

terrain properties should be reflected by a change in the value of α3. Ultimately, to

increase the robot's ability to overcome varying terrain properties, a relationship between

α3 and terrain properties should be determined.

Intelligent Velocity Control of a Bounding Quadruped Robot

31

FIGURE 2.12 FRICTION TERRAIN CHANGE WITH INTELLIGENT CONTROLLER (LONG)

The terrain change simulation was tested for the fixed angles controller. This experiment

is shown in Figure 2.13. The friction change causes a gradual loss of energy in the system

at each stride. Without modifications to the touchdown and liftoff angles, the springs can

no longer store the required energy to achieve liftoff after approximately 4.5 seconds,

when failure occurs.

Terrain change

32

FIGURE 2.13 FRICTION TERRAIN CHANGE WITH FIXED-ANGLE CONTROLLER

2.3.3.2 TERRAIN STIFFNESS CHANGE

The intelligent controller was tested over a terrain with reduced stiffness (factor of 10

reduction) in Figure 2.14. Unlike the friction change simulations, the controller was

unable to overcome the softer terrain. The lower stiffness caused a reduced height and

length of the flight phase, leading to smaller bound lengths. This can be gleaned from

Figure 2.14 after 2.5 s as the flight phases become shorter. The reduced flight phase

causes a reduction in the ability of the hip actuators to achieve their desired angles,

leading to failure by rear leg dragging at approximately 4 s.

Terrain change

Intelligent Velocity Control of a Bounding Quadruped Robot

33

FIGURE 2.14 STIFFNESS TERRAIN CHANGE WITH INTELLIGENT CONTROLLER

The terrain stiffness is identified as a more critical parameter to the success of the bound

gait than the ground friction. The stiffness directly affects the flight phase of the bound

due to the passive nature of the robot‟s compliant legs. The failure occurs approximately

5 strides after the terrain change, and the intelligent controller is not able to overcome this

stiffness change. The ground friction change, on the other hand, affects the SLIP model

assumption. In this case, the intelligent controller is able to continue a stable bound gait,

albeit with reduced velocity tracking capabilities. Nonetheless, this is an improvement to

the previous fixed-angle controller that was unable to withstand the ground friction

change.

Terrain change

34

Ultimately, the intelligent controller has limited success in withstanding significant

terrain changes due to the nature of PAW‟s design. A reduction in ground stiffness

directly affects the passive nature of the robot‟s compliant legs, quickly leading to failure.

This failure is not specific to the proposed controller, and an increase in robustness to a

change of ground stiffness would require alternative adaptation mechanisms, such as a

change in the robot gait. For a change in friction, the intelligent controller proved more

robust than the pre-existing non-intelligent controller.

2.3.5 LIMITATIONS

The results point to limitations at high and low speeds for stable bounding. The high and

low limits were found to be 1.3m/s and 0.9m/s respectively. These limitations, however,

are inherent to the robot‟s configuration and design parameters, and not the fault of the

intelligent controller per se. If the desired velocity is set higher to 1.4 m/s the rear legs

will start to drag instead of lifting off. This is a consequence of the larger liftoff angles

required at higher speeds, which in turn cause lower bounding height for an already rather

short-legged PAW. Figure 2.15 shows the result of accelerating from 1.0m/s to 1.4m/s.

At 6 seconds, the forward pitch of the robot, prior to the front legs touching down, is

diminished due to the high liftoff angles required to achieve the desired velocity. Failure

occurs at 8 seconds where the rear legs do not liftoff, causing the robot to slow to a halt.

Intelligent Velocity Control of a Bounding Quadruped Robot

35

FIGURE 2.15 ACCELERATION FAILURE AT 1.4M/S

At desired velocities below 0.9 m/s, the front legs drag instead of lifting off. This occurs

as PAW‟s rear legs take longer to touch down, and the front legs “wait” for them to land,

thus dragging and creating instability. This “waiting” is due to the forward pitching

motion caused by the low touchdown and liftoff angles. Figure 2.16 demonstrates the

failure by decelerating from 1.3m/s to 0.8m/s. Front leg dragging can be seen by the front

hip angles continuing into the positive direction instead of initiating flight when the liftoff

angle is achieved. Figure 2.17 shows the robot‟s position at front leg touchdown,

demonstrating the high forward pitch motion causing failure.

36

FIGURE 2.16 DECELERATION FAILURE AT 0.8M/S

FIGURE 2.17 PAW SIMULATION IMAGE

PAW‟s natural dynamics limit the range of possible forward bounding velocity. By

controlling PAW‟s leg lengths using prismatic actuators, it would be possible to inject the

required energy into the system to achieve higher and lower bounding speeds. The

intelligent velocity controller, however, is capable of velocity tracking within the

operational range of the robot.

Intelligent Velocity Control of a Bounding Quadruped Robot

37

CHAPTER 3: VELOCITY ESTIMATION

One major advantage of the PAW platform over other robots is the simple controller and

actuator design that require minimal sensing for dynamically stable locomotion.

However, implementing intelligent control on the robot increases both the capabilities

and requirements of the control system. In the existing non-intelligent controller

described in Chapter 2, it is clear that robot touchdown detection, liftoff detection, hip

and wheel position and velocity are required in the control loop. Additionally, the

intelligent controller requires accurate measurement of the center of mass velocity. This

chapter will describe the existing sensing capabilities of the robot, an extended Kalman

filter (EKF) for estimating the forward velocity of the robot, and a validation of the

proposed estimation method.

38

3.1 AVAILABLE SENSORS

The robot has 2000 count-per-revolution encoders for the hip and wheel motors,

potentiometers with a precision of 1 mm to measure the compression in the leg springs,

and a BAE SiIMU-01 inertial measurement unit (IMU). The IMU packages three

gyroscopes and three accelerometers and can generate the body attitude and acceleration

information. The specifications of the IMU are displayed in Table 3.1. Current and

voltage sensors for the battery and a current sensor on each hip motor amplifier are also

available but not used for robot control [27].

Parameter Angular Value Linear Value

Measurement Range 600-1000 deg/sec 50 g

Scale Factor 500 ppm 1 σ 2000 ppm 1 σ

Bias Instability 5 deg/hr 1 σ -

Bias Repeatability 100 deg/hr 1 σ 10 mg 1σ

Random Walk 1.0 deg/ √hr 1.0 m/s/ √hr

Bandwidth 75 Hz 75 Hz

Update Rate 200 Hz 200 Hz
 TABLE 3.1 BAE SIIMU-01 SPECIFICATIONS

In the existing configuration, only a poor estimate of forward velocity is possible from

integrating the IMU‟s linear acceleration data – a process well-known to be prone to drift.

A commonly attempted solution to this problem is to use an Extended Kalman Filter

(EKF) to combine the IMU data with another available estimate to produce an optimal

estimate of forward velocity [35]. In our case, the additional velocity estimate can be

obtained from the measured leg angles and leg lengths, through the kinematics relations

for the robot.

Intelligent Velocity Control of a Bounding Quadruped Robot

39

3.2 KINEMATICS ESTIMATE OF FORWARD VELOCITY

During various phases in the robot stride illustrated in Figure 2.2 of Chapter 2, the center

of mass (COM) velocity can be estimated using the sensors available on the platform. To

achieve accurate velocity estimation, velocity equations must be developed for each

phase of the robot‟s gait.

For the single-leg stance phases (B and D of Figure 2.2), the COM position can be

expressed relative to the toe‟s position on the ground. We designate the frame with the

origin at the toe's position the toe fixed reference frame. For the planar robot shown in

Figure (2.3), the toe fixed reference frame has an orientation identical to the inertial

frame of reference. The general 3D case for the toe fixed frame can be seen in Figure

(3.6). Equations (3.1) and (3.2) describe the COM position relative to the front and rear

contact points respectively. In Equations (3.1) to (3.4), an average between the two front

and two rear legs is used for the front and rear calculations respectively. Note that for

actively controlled wheels on the physical robot, the fixed toe assumption used in

simulation is no longer valid, and the wheel angular position and radius must be taken

into account. [36]:

fwheelwheel
fffCOM rlLx  )sin(cos (3.1)

r

rrr wheelwheel
COM rlLx  )sin(cos (3.2)

The corresponding body velocity can be found, at both single-leg stance phases, by

differentiating Equations (3.1) and (3.2) with respect to time, yielding Equations (3.3)

and (3.4):

40

fwheel
wheelffffffCOM rllLx  )cos()()sin(sin  (3.3)

rr wheel
wheelrrrrrCOM rllLx  )cos()()sin(sin  (3.4)

Equations (3.3) and (3.4) express the COM velocity during front and rear leg stance

respectively. During the double stance phase C, velocity is taken as the average of the

two estimates from Equations (3.3) and (3.4), while during the flight phase A, forward

velocity is assumed to remain constant from the liftoff of the rear leg at phase D. The

assumption of constant flight velocity coincides with the simulation results presented in

Chapter 2. Sections 3.2.1 and 3.2.2 will show the effectiveness of these equations during

a Matlab/Adam co-simulation, and on the PAW platform.

3.2.1 KINEMATICS ESTIMATION RESULTS AND VALIDATION

The kinematics velocity estimation Equations (3.3) and (3.4) were evaluated in both the

PAW‟s Matlab-Adams co-simulation model, and on the physical platform.

In the simulation, the bound sequence is initiated by setting an initial pitch of 60 degrees,

a zero initial forward velocity, and letting the robot drop from a predefined height. It

should be noted that touchdown/liftoff detection in simulation is detected when a leg

length compression threshold is met. This threshold is identical to that used on the PAW

robot. The value is 0.02m less than the uncompressed leg length.

In the simulation shown in Figure 3.1, the robot is set to bound at 1.0 m/s using the

intelligent controller described in Chapter 2. Figure 3.1 compares the estimated forward

velocity from the kinematics equations (3.3) and (3.4) to the true forward velocity of the

robot in simulation. Note that in simulation, the wheels at the ends of the legs are not

Intelligent Velocity Control of a Bounding Quadruped Robot

41

modeled, thus the wheel portions of Equations (3.3) and (3.4) are neglected in the

following tests.

FIGURE 3.1 KINEMATICS ESTIMATE OF FORWARD VELOCITY ON SIMULATED DATA

The two velocity profiles are quite close to one another during the flight phase of the

bound. The flight phase in the velocity plot is identified by the „plateau‟ portion of the

profile, which indicates a near constant velocity during flight. This is promising as the

input to the learning controller is simply the top-of-flight bounding velocity. The major

difference between the profiles is seen during the stance phase of the legs. Figure 3.2

provides a detailed comparison of the two profiles.

Flight Phases

42

FIGURE 3.2 DETAIL OF KINEMATICS ESTIMATE OF VELOCITY ON SIMULATED DATA

The spikes in the profile occur at the touchdown of the front and rear leg pairs. At the end

of the flight phase, the front legs touchdown causing a sudden change in leg lengths

followed by a change in hip angular rates, causing the spikes seen in Figure 3.2. The

second set of spikes occurs as the rear leg pair touchdown causes the robot to decelerate

to its lowest speed in the bound stride. The rear touchdown is followed by an acceleration

of the robot as the rear hips are actuated to their desired liftoff angle and the front leg pair

takeoff. The change in hip angular rate and pitch, as well as the rapid rear leg extension

causes Equation (3.4) to overshoot the actual forward velocity of the robot prior to

settling to the flight velocity.

Phase A: Flight Phase A: Flight Phase A: Flight
Phase A: Flight

Front leg

touchdown

Rear leg

touchdown

Rear leg liftoff

Front leg liftoff

Time

Intelligent Velocity Control of a Bounding Quadruped Robot

43

The kinematics estimate equations were also implemented on real PAW bounding data.

That is, the velocity profiles seen in Figures 3.3 and 3.4 used data collected from the

robot‟s sensors during a 9 second bound test conducted in the laboratory. On the real

robot, the wheel portion of Equations (3.3) and (3.4) are being used.

FIGURE 3.3 KINEMATICS ESTIMATE OF FORWARD VELOCITY ON ROBOT DATA

The kinematics estimate of velocity is compared to the velocity generated with the IMU

measurements; the latter is corrected using an error model, which will be described in

Section 3.3.1. Figure 3.4 provides a more detailed view of the bound segment of the test.

44

FIGURE 3.4 DETAIL OF KINEMATICS ESTIMATE OF ROBOT DATA

Similarly to the simulation results in Figure 3.2, the robot's kinematics velocity during

stance is characterized by large spikes overshooting the actual robot velocity. It is clear

that the kinematics velocity estimate performs rather poorly on the real robot data, with

errors of up to 0.7 m/s during flight phases. It is believed that this occurs because the

inputs to the kinematics estimator are generated by real sensors, which have noise and

vibrations, which are multiplied in Equations (3.3) and (3.4). However, since the

kinematics estimate is simply used to correct the IMU data primarily during the flight

phase, we suggest these equations may be of use in the EKF, as during some flight

sequences, the kinematics estimate is comparable to the IMU estimate.

Phase A: Flight

Front leg

touchdown

Rear leg

touchdown

Rear leg liftoff

Front leg liftoff

Intelligent Velocity Control of a Bounding Quadruped Robot

45

3.3 IMU MEASUREMENTS

We now discuss in detail the generation of velocity estimates with the IMU. As noted

earlier, a BAE SiIMU-01 is mounted on PAW, near the center of mass of the robot. In

previous work, this IMU was used solely for measuring robot pitch data. Thus, some

modifications were necessary to use the data in the control loop. The following

subsections describe how the IMU is mounted and how the measurements are processed

to generate the COM velocity. Additionally, an error model was developed for the IMU

in order to improve the accelerometer and gyroscope data prior to use in the EKF

implementation.

3.3.1 IMU DATA PROCESSING

Figure 3.4 shows the mounted orientation of the IMU on the robot and the inertial

reference frame.

 (A) IMU MOUNTED ORIENTATION (B) INERTIAL REFERENCE FRAME

FIGURE 3.5 REFERENCE FRAMES

The BAE SiIMU-01 measures the accelerations and angular rates in the body reference

frame as shown in Figure 3.5(a) and it outputs incremental velocity and rotation angles in

the same frame, at a rate of 200Hz. For the intelligent controller described in Chapter 2, it

X (forward)

Y (left)

Z (up)

Z

Yaw

Pitch

Roll
Y

X

46

is necessary to obtain an estimate of center of mass forward velocity. In Equations (3.3)

and (3.4), the kinematics estimate of COM is expressed in a toe fixed reference frame,

which is identical to the inertial reference frame in the case of a planar robot as in Figure

2.3. However, in the presence of some yaw motion during bounding, the toe fixed frame

differs from the inertial frame, as illustrated in Figure 3.6. As PAW does have some

unwanted yaw motion during bound caused by an uneven mass distribution [29], the toe

fixed frame forward velocity should be used as the controller input. Thus, the IMU data

must be integrated and converted to the toe fixed frame of reference prior to use in the

EKF.

 (A) PAW BOUNDING SIDE VIEW (B) PAW BOUNDING TOP VIEW

FIGURE 3.6 PAW REFERENCE FRAMES

Quaternions are commonly used for converting acceleration and angular rate data in a

body reference frame to velocity and position in an inertial frame [37]. The following

presents the algorithm used on the robot to find the robot‟s attitude, velocity, and position

in the inertial reference frame.

Prior to transforming the reference frame, the IMU is initialized by averaging the first

2000 time steps to find an offset value for each measurement. This offset value is

subsequently subtracted from all measurements. As mentioned previously, the IMU

Zbody

Ztoe

Xtoe

Xbody

Xinertial

Zinertial

Xinertial

Xtoe

Ytoe

Yinertial

Xbody

Ybody

ψ

Intelligent Velocity Control of a Bounding Quadruped Robot

47

outputs incremental body velocity and incremental body rotations at a rate of 200Hz so

that the linear acceleration and angular velocity of the robot in the body reference frame

are found via Equation (3.5), where Δt is a time step of approximately 0.005 seconds.























bodyz

bodyy

bodyx

a

a

a

t

body

body

V
A (3.5)





























bodyz

bodyy

bodyx

t

body

body

θ
Ω (3.6)

To initialize the algorithm, the quaternion is set to:









































1

0

0

0

3

2

1

0

q

q

q

q

Q (3.7)

In this convention [37], q3 represents the scalar part of the quaternion. In order to find the

linear acceleration and angular velocity with respect to the inertial frame, we use the

incremental quaternion equation as follows.



















































bodyz

bodyy

bodyx

qqq

qqq

qqq

qqq

210

301

032

123

5.0Q (3.8)

Then, the quaternion at the i
th

 time step can be found with:

t  i1ii QQQ (3.9)

The quaternion is normalized at each time step to ensure it has a norm of one.

2

3

2

2

2

1

2

0 qqqq 
 i

i

Q
Q (3.10)

48

From the normalized quaternion, it is possible to convert to Euler angles to find roll,

pitch, and yaw relative to the inertial reference frame via Equations (3.11) through (3.13)

respectively.


















 

2

2

2

1

2

0

2

3

21031 2
tan

qqqq

qqqq
 (3.11)

  1320

1 2sin qqqq   (3.12)






















2

2

2

1

2

0

2

3

23102
tan

1

qqqq

qqqq
 (3.13)

Knowing the robot attitude in the inertial reference frame, it is possible to find robot

velocity and acceleration in the inertial frame using the rotation matrix in Equation

(3.14).































coscossincoscossinsinsinsincossincos

sincoscoscossinsinsincossinsinsincos

sincossincoscos

R (3.14)

First, the gravity vector must be expressed in the robot body frame. According to:





















g

0

0

Rgbody (3.15)

The effects of gravity on the body frame velocity increments are accounted for in

Equation (3.16).

 t measuredbody bodygVV (3.16)

The body frame velocity increments are transformed to inertial frame velocity increments

using the rotation matrix

 body

T

inertial VRXΔ  (3.17)

Intelligent Velocity Control of a Bounding Quadruped Robot

49

and subsequently are added to find updated inertial robot velocity. These can be

integrated to find position.

inertialinertialinertial i1-ii
XΔXX

 ,, ,
  (3.18)

 t 
inertialinertialinertial i1-ii

XΔXX
,,,

 (3.19)

Finally, the inertial frame velocity is transformed to the toe fixed velocity using the yaw

rotation matrix, Rψ. The x-component of toei,X is the forward COM velocity of the robot

at time i.

 inertiali,ψtoei, XRX   (3.20)

Note that the x and z axis velocities and accelerations must change signs to account for

the nominal orientation of the IMU on the robot relative to the direction of motion, as

shown in Figure 3.4.

3.3.2 IMU ERROR MODEL

Subsection 3.3.1 describes the method used for obtaining attitude, velocity, and position

of the robot with respect to an inertial reference frame. However, there are noise and bias

errors present in the measured data from the IMU, causing significant errors and apparent

drift when adding the incremental measurements and integrating them at a rate of 200Hz

in Equations (3.18) and (3.19). Stationary and linear motion tests were conducted on the

IMU mounted on PAW in the laboratory. The purpose was to develop an error model to

correct the IMU measurements prior to handling in the EKF.

First, a 60 s stationary test was conducted to observe the drift in the measurements of the

IMU. Figure 3.7 shows the inertial frame roll, pitch and yaw measurements. Figure 3.8

shows the inertial frame x, y, and z velocities.

50

FIGURE 3.7 IMU ATTITUDE DRIFT TEST

Intelligent Velocity Control of a Bounding Quadruped Robot

51

FIGURE 3.8 IMU VELOCITY DRIFT TEST

Inaccuracies and bias errors in the IMU cause incremental errors at each time step of

measurements. The substantial drift in the velocity, as seen in Figure 3.8, is created by the

numerical integration, which adds the incremental errors at each time step, creating a

large drift of as much as 0.6m/s over 60 seconds. The attitude drift is much smaller as the

quaternion method reduces the integration errors. From these data sets, a linear error

model was developed to account for this drift. Equations (3.21) to (3.26) describe the

models, where T represents the total elapsed time and Δt the measurement increment.

Tduncorrectecorrected

5101  (3.21)

Tduncorrectecorrected

51033.7  (3.22)

Tduncorrectecorrected

5105  (3.23)

52

txx duncorrectecorrected  018.0 (3.24)

tyy duncorrectecorrected  01.0 (3.25)

tzz duncorrectecorrected  01.0 (3.26)

A forward rolling test, where the robot was commanded to a fixed velocity using its

wheels, was performed to test the effectiveness of the error model in the x-direction.

Figure 3.9 demonstrates the performance of the linear error model compared to the

velocity data provided by the wheel encoders. This test consists of the robot starting from

rest and calibrating, then standing up and accelerating forward to a velocity of 0.48m/s,

followed by a stop and sit down. The error model shows a significant improvement on the

raw IMU data.

FIGURE 3.9 IMU ERROR MODEL TEST: FORWARD VELOCITY IN ROLLING

Intelligent Velocity Control of a Bounding Quadruped Robot

53

Lastly, a test was performed to verify the effectiveness of the error models to estimate the

forward velocity in the bound gait as shown in Figure 3.10.

FIGURE 3.10 IMU ERROR MODEL TEST: FORWARD VELOCITY IN BOUND

It can be observed that the error model is not perfect. This is partially due to the

inconsistency of the errors present on the IMU and the non-linear nature of the drift.

Extensive testing of the same IMU unit was performed at Defense Research and

Development Canada (DRDC) and those results indicate some inconsistencies, as seen in

Table 3.2 [38]. DRDC performed a 15.5 hour stationary test on the IMU and compiled

the accelerometer drift errors at every 100 seconds into 4 parts, each part consisting of

almost 4 hours each. The inconsistencies of the drift error in the DRDC tests are clear

from table 3.2. The last row of the table is included to compare the 60 second stationary

54

test, shown in Figure 3.7, performed in our laboratory. The drift values found at McGill

are smaller than those found during the DRDC tests. This is believed to be due to the

much shorter time of McGill‟s stationary tests.

Test X

(mili-g/hr)

Y

(mili-g/hr)

Z

(mili-g/hr)

DRDC Test Part 1 -0.037 -0.231 0.140

DRDC Test Part 2 -0.530 0.713 0.094

DRDC Test Part 3 0.016 -0.300 -0.178

DRDC Test Part 4 -0.142 0.043 -0.307

McGill stationary test -0.0733 -0.0122 0.022
TABLE 3.2 ACCELEROMETER DRIFT ANALYSIS RESULTS

Additional inconsistencies are introduced in the IMU measurements as a result of its

mounting on the PAW robot and the nature of the robot‟s operation. PAW experiences

significant ground impacts during bounding, causing vibration of its mechanical

structure. Additionally, the IMU mounting plate was an afterthought in the design of the

robot, which ideally should be further reinforced to reduce IMU vibrations and

misalignments. However, the nature of the measurements will inevitably be noisy and

inaccurate, and for the purposes of this research, the results shown for the x-direction

bound in Figure 3.10 are deemed sufficiently accurate for use in the EKF.

3.4 EKF ALGORITHM

The Kalman Filter attempts to predict the current state of the system using the previous

estimated states, combined with the noisy measurement data. The Extended Kalman

Filter (EKF) enables the use of non-linear state equations to estimate the desired states

[39]. In this work, the kinematics estimate of velocity is used for propagation of the

robot‟s velocity, while the IMU measured velocity is used for the measurement update of

Intelligent Velocity Control of a Bounding Quadruped Robot

55

robot velocity. Presented here is a modification of the EKF to account for the various

phases of the bound gait as discussed in Chapter 2.

First the state vector of the system is defined as

 Tvllll rfrfrfrf
 x (3.27)

These states are illustrated in Figure 2.3 and the dotted elements represent their time

derivative. The last element in the state vector, v, denotes the COM forward velocity for

the robot. The discrete update at time k of the state is defined as

 11111)(),(  kkkkkk f wxxAwxx (3.28)

where wk-1 is process noise assumed to be zero mean Gaussian white noise with

covariance Qk estimated based on the accuracy of the state measurements, and

 















111

1110

1)(
φ

Φ
xA k (3.29)

The Φ10x11 matrix is given by

 5555

155515

155555

1110
 * , 



 











 IΦ

0I0

0ΦI
Φ T

*

x
 (3.30)

where Iixj and 0ixj are the i-by-j identity and null matrices respectively and φ1x11 is defined

as:

  11109854111 00000 φ (3.31)

where)cos()(14   ffS  (3.32)

)cos()(25   rrS  (3.33)

)sin()sin(218  LSLS  (3.34)

)sin(19   fS (3.35)

56

)sin(210   rS (3.36)

 311 S (3.37)

The S-values in Equations (3.32) to (3.37) are defined based on the particular phase in the

bound cycle as shown in Table 3.3.

Phases S1 S2 S3

A: Flight 0 0 1

B: Front stance 1 0 0

C: Double Stance 0.5 0.5 0

D: Rear Stance 0 1 0
TABLE 3.3 S-VALUES FOR EKF

Therefore, the velocity element in state vector update xk is found using estimate for

velocity kinematically.

Then, the measurement equation can be defined as:

kkkkkk vxHvxhz ),((3.38)

where vk is the observation noise assumed to be zero mean Gaussian white noise with

covariance Rk determined from the variance of measurements and

1111 IHk (3.39)

The measurement equation for zk is updated directly from the sensor values and uses the

IMU measurements for the velocity state update.

Covariance matrices Qk and Rk represent the accuracy of the state estimates and

measurements during each phase of the robot‟s bound sequence. An analysis of each

sensor was performed to determine the uncertainty in the measurement. For the elements

contained in state vector xk and the measurement vector zk, the leg lengths and the

velocity estimates and measurements displayed some level of inaccuracy. The other

sensors perform adequately and a very small value was used in the matrices Qk and Rk.

Intelligent Velocity Control of a Bounding Quadruped Robot

57

The standard deviations for each state element contained in Table 3.4, were found by

comparing measured values to some known value. In this case, the standard deviation is

simply the square root of the covariance, which is used in Qk and Rk.

State Estimate Standard Deviation

Leg length front (m) 6.123x10
-5

Leg length rear (m) 1.84 x10
-4

Kinematics Velocity Phase A:

Flight (m/s)
0.45

Kinematics Velocity Phase B:

Front Stance (m/s)
0.35

Kinematics Velocity Phase C:

Double Stance (m/s)
0.47

Kinematics Velocity Phase D:

Rear Stance (m/s)
0.8

IMU Velocity (m/s) 1.67x10
-4

TABLE 3.4 STANDARD DEVIATION OF STATE ESTIMATES

The standard deviation of the velocity estimate for each phase of the robot‟s bound was

found by comparing the kinematics estimate to the true velocity value in simulation, as

seen in Figure 3.2. For the IMU velocity covariance, ideally, this value would be found

by comparing the IMU measured velocity to the true velocity at instants through the

bound. However, the most accurate measure of velocity is only available from the IMU

as there is no „true‟ velocity value available. Therefore, we rely on the error model

described in Equations (3.21) to (3.26), in section 3.3.2, to improve the accuracy of the

IMU measurement and use the covariance value shown in table 3.4 tuned via trial and

error by comparing the IMU measurement to simulated values, in the EKF.

The best estimate of the robot‟s state at time k, kx̂ , can now be found using the EKF

algorithm presented in Equations (3.40) to (3.47). In these equations, the subscripts k|k-1

and k|k denote the a priori and a posteriori values respectively for time k, where k-1|k-1

denotes the a posteriori value for the previous time step, k-1.

58

1. Predicted state:

111111
ˆ)ˆ(ˆ


 kkkkkkk

wxxAx (3.40)

2. Predicted estimate of covariance:

 1111 
 k

T

kkkkkk
QFPFP (3.41)

where,

1
,

11
ˆ







kkk

k

wxx

A
F (3.42)

3. Measurement residual:

)0,ˆ(~
1


kkkk xhzy (3.43)

4. Residual covariance:

k

T

kkkkk RHPHS 
1

 (3.44)

5. Optimal Kalman gain:

 1

1




 k

T

kkkk SHPK (3.45)

6. Updated state estimate:

 kkkkkk
yKxx ~ˆˆ

1



 (3.46)

7. Updated estimate covariance:

1

)(



kkkkkk

PHKIP (3.47)

The best estimate of forward velocity of the robot at time k is the last element in the state

update kk |x̂ . The EKF algorithm was implemented on the PAW robot and the results are

presented in section 3.5.

Intelligent Velocity Control of a Bounding Quadruped Robot

59

3.5 EKF RESULTS AND VALIDATION

The EKF algorithm was tested on the robot commanded to bound over a distance of 4m

in a laboratory environment, with fixed touchdown and liftoff angles. Figure 3.11

compares the IMU measured velocity, combined with the error model developed in 3.3.2,

and the EKF estimated velocity.

FIGURE 3.11 FORWARD VELOCITY OF BOUND

At a first glance, the EKF and the IMU estimates appear to be quite close. However, the

point of interest is primarily the top-of-flight velocity, which is used as an input to the

intelligent controller described in Chapter 2. Figure 3.12 displays a zoom-in of the bound

sequence, and the flight velocity estimate.

60

FIGURE 3.12 DETAIL OF FORWARD VELOCITY OF BOUND

The profile of the velocity estimate is characterized by large spikes during leg impacts

and smoother profiles during flight. It is clear that the EKF reduces the magnitude and the

number of spikes in the velocity estimate, most notably during the flight phase. Without

the EKF, the flight phase velocity can vary by up to 0.3m/s, which would be unacceptable

for intelligent velocity control between 0.9m/s – 1.3m/s. The EKF‟s flight phase velocity

has a range of 0.1m/s.

A true TOF velocity of the robot is difficult to determine, but an estimate of the average

velocity during the bounding sequences of Figures 3.11 and 3.12 was obtained by using a

high speed camera, the Casio EX-F1, which enables 300fps video imaging. According to

the video analysis, the average robot speed throughout the bound cycle is 0.98m/s ±

0.15m/s. This analysis was performed by setting markers 0.5m apart on the ground, and

Rear leg liftoff

Rear leg touchdown

Front leg touchdown

Front leg liftoff

Phase A: Flight

Intelligent Velocity Control of a Bounding Quadruped Robot

61

estimating the frame number at which the robot crosses the markers. The stated mean

velocity was found by averaging the velocities at each marker, whereas the range is

simply the maximum and minimum velocities found. As the test was performed for a

very limited range, and the camera was stationary throughout the test, some inaccuracies

will result in the visual estimate of the exact frame at which the robot crossed the

markers. However, the range of possible frame numbers at which the robot crosses the

marker result in discrepancies smaller than the range calculated above.

This method does not yield an estimate of the top-of-flight bound velocity but a mean

velocity throughout the robot‟s bound. Nonetheless, the EKF estimated velocity falls in

mid-range of the estimate provided by the high speed camera test. Figure 3.13 shows

several still frame shots of the robot bounding across the markers during this test.

FIGURE 3.13 STILL FRAMES OF BOUNDING TEST IN LABORATORY

1 2

3 4

5 6

marker

62

A final validation of the EKF velocity estimate was performed by comparing the velocity

profile with the bounding velocity of the robot in simulation, shown in Figure 3.14.

FIGURE 3.14 FORWARD VELOCITY SIMULATION OF PAW BOUNDING

The profile of the curves in Figure 3.12 and 3.14 are very similar to one another. In

Figure 3.14, the spike that occurs just before the flight phase corresponds to the rear leg

take off and is of the same order of magnitude for the EKF estimate as for the true

simulated velocity. At the front leg touchdown instant, there is a brief acceleration where

the velocity increases by approximately 0.5 m/s. This acceleration is not seen in the EKF

results in Figure 3.12. The double stance phases in the EKF results; the portion of the

curve contained between the rear leg touchdown and front leg liftoff, shows a larger

deceleration, approximately 0.4 m/s below the flight velocity, whereas in simulation, the

value is about 0.1m/s below the flight velocity. This is due to the kinematic estimate of

the velocity and the covariance values used in the EKF at double stance phase. The flight

Rear leg liftoff

Rear leg touchdown

Front leg touchdown

Front leg liftoff

Phase A: Flight

Intelligent Velocity Control of a Bounding Quadruped Robot

63

phase velocity estimate of the EKF profile resembles that of the simulated results,

yielding velocity variations of below 0.1 m/s during the phase.

There are inevitably more sensor errors, noise and vibration on the physical platform; as

seen by the small oscillations in the velocity profile in Figure 3.12 that are not visible in

Figure 3.14. Nonetheless the variability of under 0.1m/s during flight demonstrates

sufficient accuracy to test the intelligent velocity control described in Chapter 2. Chapter

4 shall demonstrate the effectiveness of the intelligent controller on the physical platform,

while using the EKF described here for estimating COM TOF velocity in the control

loop.

64

CHAPTER 4: CONTROLLER IMPLEMENTATION AND

RESULTS

The first section in this chapter describes the steps taken towards the implementation of

the intelligent controller and the Extended Kalman filter on the PAW robot. The

subsequent sections describe in detail the results of the controller testing on PAW. A

detailed analysis is contained to provide the reader with a comparison to the simulation

results shown in Chapter 2. Lastly, a discussion is presented of the various parameters

that were identified as critical to the effectiveness of the intelligent velocity controller,

including the velocity limits.

Intelligent Velocity Control of a Bounding Quadruped Robot

65

4.1 IMPLEMENTATION

Chapter 2 described the MSC Adams model combined with MATLAB used to evaluate

the performance of the intelligent velocity controller. Initial steps towards physical

implementation were taken in Chapter 3 where the EKF, used for estimating top-of-flight

forward bounding velocity as an input to the controller, was developed. Some additional

modifications were required prior to testing the intelligent controller on the robot. These

modifications are described in the following subsections.

4.1.1 MECHANICALLY BLOCKED WHEELS

The simulation results of Chapter 2 were obtained without actuated wheels modeled at

the distal ends of the robot‟s legs. However, as discussed previously, the PAW robot

uses actuated wheels to combine the advantages of legged and wheeled locomotion. For

the bound gait, the wheels can be actuated to prevent their rotation via the closed-loop

controller, as described in Equation (2.2), or mechanically blocked.

In the case where the wheels are actuated, the wheel position changes at the touchdown

instant, however, this occurs before the leg reaches the threshold at which the leg state

machines transitions between flight and stance. Figure 4.1 shows the effect of touchdown

on the wheel velocity and the leg length, where the * represents the point at which the leg

state machine changes from flight to stance. The first dotted vertical line represents the

instant at which the wheel first displaces, while the second vertical dotted line represents

the instant when the leg potentiometers reach the leg compression threshold. The time

separating these two instances is approximately 0.015 seconds.

66

FIGURE 4.1 TOUCHDOWN DETECTION

The touchdown is identified by a change in angular position of the wheel, which leads to

a counteracting actuating motion to ensure the wheel remains at rest. This ultimately

negates the SLIP model assumption, which affects the stability of the stance phase, as

seen in Figure 4.2 (a) and (b).

 (A) BLOCKED WHEELS (B) ACTIVE WHEELS

FIGURE 4.2 SLIP MODEL WITH WHEELS

Intelligent Velocity Control of a Bounding Quadruped Robot

67

The actuated wheels lead to variability in the hip actuation, which tends to destabilize the

robot during the stance phase, the phase in which stability is normally gained for the next

step in the bound gait [29]. It was noted during the present work on PAW and in [29],

that this correlates to the level of repeatability between tests, as actively controlled

wheels during bound lead to higher failure rates. Figures 4.3 and 4.4 compare results

from bounding tests with actuated wheels vs. mechanically blocked wheels, respectively,

to demonstrate the variability in the velocity and pitching motion during bound. The test

shown in Figure 4.3 uses the same fixed touchdown and liftoff angles as in Figure 4.4. A

visual comparison of the two tests clearly shows a more regular bounding motion with

the mechanically blocked wheels.

FIGURE 4.3 BOUND TEST WITH FIXED ANGLES AND ACTUATED WHEELS

68

FIGURE 4.4 BOUND TEST WITH FIXED ANGLES AND MECHANICALLY BLOCKED WHEELS

In order to evaluate the intelligent controller under more favorable conditions, similar to

the MATLAB/Adams co-simulation, the mechanically blocked wheels method was used

to generate the results in Section 4.2. To block the wheels, hot glue is injected in the

bevel gear between the wheel and the wheel motor. Additionally, electrical tape is used to

reinforce the blocking mechanism, while the wheel motors are deactivated in the robot

code. Figure 4.5 shows an image of the mechanically blocked wheels.

Intelligent Velocity Control of a Bounding Quadruped Robot

69

FIGURE 4.5 MECHANICALLY BLOCKED WHEEL

4.1.3 ROBOT CONTROLLER BLOCK DIAGRAM

Figure 4.6 represents the block diagram of the control scheme implemented on the robot.

FIGURE 4.6 ROBOT CONTROLLER BLOCK DIAGRAM

Intelligent

Controller,

called at

TOF

Hip motor

PD Controller
PAW

 d τhip Dx

Leg state

Machine

EKF
x̂

Sensors

70

4.2 CONTROLLER PERFORMANCE

This section demonstrates the effectiveness of the intelligent controller to track a desired

set point, and to transition between desired set points during the bound gait.

4.2.1 CONVERGENCE

The controller‟s tracking ability was evaluated by testing various set points. Figure 4.7

demonstrates a test in which the desired TOF velocity was 1.0m/s.

FIGURE 4.7 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.0 M/S

In comparison with the simulation results in Figure 2.6, the robot requires additional

strides to converge to the desired set point. This is due to the start-up routine for the

bound gait. In simulation, the robot is simply dropped from a predefined height with an

I.C. begins

Intelligent Velocity Control of a Bounding Quadruped Robot

71

initial pitch, whereas in physical testing, the robot has a kick-off routine to initiate the

bound. Combined with changing hip angle set points from the intelligent controller,

stable bounding takes longer to achieve and bound failure rates rise on the robot. To

compensate for this reality, the first 4 strides in the bound on the physical robot are set

with predefined touchdown and liftoff angles, so that stable pitching is achieved prior to

the initialization of the intelligent controller. Intelligent controller starting instant is

indicated by the vertical dashed line through the plot.

An analysis of the tracking ability was performed for each bound test with a fixed set

point, of which the results are shown in table 4.1. The values in Table 4.1 for each set

point are computed from a single trial. These trials are also illustrated in Figures 4.7 to

4.11. The repeatability between trials of the controller is high as failures only occur when

there is an error reading data from the IMU to the robot‟s I/O board, which in turn affects

the velocity estimate used in the control loop.

Velocity set point

(m/s)

σ

(at controller

initialization)

of strides till

convergence
σ

(after convergence)

0.9 0.11 3 0.116

1.0 0.12 1 0.0752

1.1 0.065 3 0.0558

1.2 0.134 3 0.0763

1.3 0.136 4 0.0749
TABLE 4.1 CONTROLLER TRACKING ABILITY

The standard deviation is computed by taking the error between the desired COM

velocity and the actual COM velocity at the top-of-flight instant (the value used in the

controller), for each stride. The standard deviation calculation above begins at the start of

the intelligent controller. As seen in Figure 4.7 and in the results in Chapter 2, several

strides are required to achieve the desired velocity. Thus, the σ value in Table 4.1 is high

in some cases. The column entitled „# of strides till convergence‟ indicates the number of

72

strides between the initialization of the intelligent controller to when the set point is

achieved. The second calculation of the standard deviation serves as a measure of how

well the intelligent controller maintains the desired set point after the required number of

strides for convergence. In most cases, this is a significantly lower value. This simply

means that although as the controller may take several strides to achieve the set point,

mostly in the cases for high velocities, the velocity is maintained quite accurately. Figure

4.8 is an example of this, where a velocity of 1.3m/s is desired.

FIGURE 4.8 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.3 M/S

The results in Table 4.1 indicate that as the desired velocity moves away from 1.0m/s,

more strides are needed to converge towards the desired set point. This is because prior to

I.C begins
Convergence

Intelligent Velocity Control of a Bounding Quadruped Robot

73

the intelligent controller initialization, the fixed touchdown and liftoff angles used cause

the robot to bound near 1.0 m/s. As the set point deviates from 1.0m/s, there is a larger

error between the robot‟s actual velocity and the desired velocity at the start-up of the

intelligent controller.

Another interesting observation is that, at higher velocities, the robot maintains the

velocity set point better than at low velocities. This is likely due to the relationship

between stride length and velocity, as seen in Equation (2.3). As desired velocity

increases, the robot‟s strides become longer, increasing both the stance time and the flight

time. As indicated in [29], the stance phase of the bound allows the robot to maintain

stability. At lower velocities, as stance time decreases, the robot has less time to achieve

the desired hip angles, increasing the chances that hip angles are not achieved prior to

lift-off. Ultimately, this leads to fluctuations in the bound velocity, hence the higher

fluctuations about the set point at 0.9 m/s in Figure 4.9. As it will be discussed in section

4.3, there is a minimum velocity where the gait is able to maintain stability.

Figures 4.9 to 4.11 illustrate the controller‟s performance for the velocity set points of 0.9

m/s, 1.1 m/s, and 1.2 m/s respectively.

74

FIGURE 4.9 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 0.9 M/S

FIGURE 4.10 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.1 M/S

I.C begins Convergence

I.C begins Convergence

Intelligent Velocity Control of a Bounding Quadruped Robot

75

FIGURE 4.11 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.2 M/S

4.2.2 ACCELERATION

Although analyzing the ability of the controller to achieve a desired set-point is essential

in evaluating its performance, the advantage of such a controller is to allow for the robot

to accelerate and decelerate during the bound gait. As seen in Section 4.2.1, the controller

can maintain a desired set point with a standard deviation of less than 0.1 after

convergence. Thus, in the acceleration and deceleration tests shown in the following

sections, it was deemed more appropriate to track large velocity transitions, as they are

more statistically significant.

Figure 4.12 demonstrates an acceleration test of the robot between 0.9m/s and 1.3 m/s.

The acceleration in the robot occurs smoothly, as an increase in the stance and flight

I.C begins Convergence

76

phase increases stability, which leads to improved velocity tracking at the higher velocity.

The new set point is achieved after 3 bounds, due to the rapid transition in hip angles, as

seen in Figure 4.12.

FIGURE 4.12 INTELLIGENT VELOCITY CONTROLLER ACCELERATING 0.9 M/S TO 1.3 M/S

4.2.3 DECELERATION

The deceleration test in Figure 4.13 shows a velocity transition between 1.1 m/s and 0.9

m/s. The deceleration takes 4 strides, although the shorter stance and flight times at lower

velocities cause higher errors about desired set point as in Figure 4.13. Overall though,

these results indicate that the intelligent controller is capable of transitioning between

velocity set points.

I.C. begins Set point change

Intelligent Velocity Control of a Bounding Quadruped Robot

77

FIGURE 4.13 INTELLIGENT VELOCITY CONTROLLER DECELERATING 1.1 M/S TO 0.9 M/S

4.3 CRITICAL PARAMETERS AND LIMITATIONS

Extensive testing of the controller was performed to achieve the results shown in Section

4.2. Several parameters were identified during testing as critical to the success of the

controller. Outlined in the subsequent subsections are these parameters and their effect on

the robot‟s gait.

4.3.1 IMPORTANCE OF α3 GAINS

The intelligent controller, as described in Chapter 2, uses a gain α3 that must be tuned

manually. As this gain is required for the front and rear leg pair controllers, for

touchdown and liftoff angle computation, four values for α3 need to be specified. The α3

I.C. begins Set point change

78

component in the controller equation acts as a correction factor when computing the

required hip angle to achieve the desired bound velocity. The intelligently tuned gains α1

and α2 in equation (2.6) will lead to adjustments at each stride of the required hip angles,

based on the feedback error. As will be shown in Section 4.3.3, if the front or rear leg hip

angles are too large or small, the bound gait can become irregular and lead to gait failure.

Testing showed that, in tuning the α3 parameter, the hip angle changed up to 4º for each

0.01 increment of α3. Thus, tuning the α3 parameter was an important process in

achieving a robust controller. Table 4.2 shows the values for the α3 gains on both the

robot and in simulation.

α3 parameter Simulation Value Robot Value

Front Touchdown 0.01 0.01

Rear Touchdown 0.00 0.00

Front Liftoff -0.01 -0.01

Rear Liftoff -0.03 -0.02
TABLE 4.2 CONTROLLER Α3 GAINS

4.3.2 START-UP ROUTINE

As mentioned in Section 4.2, the robot initiates the bound sequence differently from the

simulation model. The robot‟s legs are actuated forward to a fixed angle, and then rapidly

commanded back to a fixed take-off angle to inject energy into the springs to cause flight.

Once the robot is in flight, the legs are then commanded to the bound gait touchdown

angles. Prior to initiating the intelligent controller, it is important that the robot is in a

regular bounding motion, or any instability in the gait may be enhanced by changes to the

touchdown and liftoff angles. Therefore, in the tests presented in this chapter, the

intelligent controller was commanded to begin after the fourth stride in the bound cycle,

once a cyclical bound gait is achieved.

Intelligent Velocity Control of a Bounding Quadruped Robot

79

Additionally, the fixed angles used prior to starting the intelligent controller are important

parameters, as they ultimately determine the actual bounding velocity in the first

feedback loop of the controller. Setting the fixed angles to achieve a velocity of

approximately 1.0m/s during the start-up routine allows the controller to transition well

between any allowable desired velocities, without any instability.

4.3.3 VELOCITY THRESHOLDS

Similarly to what was observed in simulation, there is upper and lower limit velocity

thresholds. At set points above of 1.3 m/s, the large desired front leg touchdown angles

cause a decrease in the pitching motion of the robot during bound, as seen in Figure 4.14.

This irregular pitching motion causes the touchdown sequence of the legs to change, so

that the rear legs touchdown before the front legs. This touchdown sequence causes

unpredictable robot behavior, leading to failure. In simulation, these failures consisted of

the robot‟s rear legs‟ dragging until liftoff no longer occurs, as discussed in Section 2.3.4.

On the robot, this dragging behavior is dangerous as it causes unpredictable output of the

leg state machine. This in turn causes unpredictable hip motor actuation that could result

in unpredictable motions of the robot and possible damage.

80

FIGURE 4.14 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.4 M/S

For the PAW robot, the controller‟s lower limit was found to be approximately 0.9 m/s At

low velocities, the robot‟s stance and flight time are shorter, and the desired hip angles

are much smaller. With smaller required hip actuation, less compression occurs in the

front leg pair, eventually leading to the pair not lifting-off. Thus, the front leg pair drags,

as the rear legs continue to be actuated as there is no controller-coupling. This behavior

occurs rapidly, where the robot pivots about the front leg pair to flip forward, landing

upside down. An emergency power cut-off switch was created to stop any human or robot

damage. Unfortunately, when this failure occurs, the power is cut before any data can be

saved to the robot‟s computer. Thus, the evidence of this behavior is seen in the images in

Figure 4.15, which resembles the failure occurring in simulation at low velocities, as seen

in Figure 2.17.

Intelligent Velocity Control of a Bounding Quadruped Robot

81

FIGURE 4.15 ROBOT FAILING AT VELOCITIES BELOW 0.8M/S

1 2 3

4 5 6

7 8

9

10 11

82

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

The goal of the implementation of an intelligent velocity controller was to introduce an

increased level of autonomy and robustness to the PAW robot. The simulation results in

Chapter 2 demonstrated the controller‟s performance in tracking velocity, and discussed

the controller‟s limited ability to maintain its set point in varying terrain types. To

implement this controller on the physical platform, an extended Kalman filter was

developed in Chapter 3 to estimate the forward bounding velocity of PAW. Finally,

Chapter 4 evaluated the controller‟s performance on the robot, identified some limitations

and discussed the critical parameters to the success of the bound gait. This chapter will

present a discussion of the contributions made to the PAW robot, as well as present some

recommendations for future work.

Intelligent Velocity Control of a Bounding Quadruped Robot

83

5.1 CONTRIBUTIONS TO PAW

This research presents to the reader an intelligent controller developed and tested to allow

the PAW robot to track a velocity set point. In doing so, the sensing abilities of the robot

have been increased, as well as its versatility. The following subsections present an

evaluation of the contributions made to the platform.

5.1.1 INTELLIGENT VELOCITY CONTROLLER

In simulation, the intelligent controller demonstrated velocity tracking between 0.9m/s to

1.3m/s, with errors up to 0.1m/s. The controller adequately transitions between high and

low velocity, demonstrating good acceleration and deceleration capacities. The controller

was then evaluated on the PAW platform to validate the simulation results. The results

from physical testing correlate quite closely with the simulation results, where tracking

errors range up to 0.1m/s once convergence is met. The allowable velocity tracking with

the controller on the robot is the same as in simulation, between 0.9 m/s to 1.3 m/s.

Ultimately, the controller found the upper and lower limits of velocity in bound for the

PAW robot.

5.1.2 ROBUSTNESS TO DISTURBANCES

The controller was evaluated in simulation with changing terrain types, where the friction

coefficient and stiffness of the ground was varied. It was seen that the intelligent

controller attempted to adapt to the changing environment by changing the desired

touchdown and liftoff angles required for tracking the velocity set point. It was shown,

however, that the controller‟s robustness to the changing environment is limited on PAW.

This is due to the passive nature of the robot‟s dynamics. As the stiffness or friction of

84

the ground is reduced, the robot‟s ability to inject energy into the passive legs during

stance is reduced, causing a change in the bound gait. A reduction of ground stiffness had

more detrimental effects, as the decrease in the leg compression directly affected the

flight phase of the bound gait leading directly to failure. The friction coefficient change

causes some slip at the point of contact between the leg and the ground. The effect is that

the bound gait remains stable; however, the performance of the velocity tracking is

reduced to up to 0.3m/s errors.

Although the controller demonstrated adequate velocity tracking on the physical robot,

the robustness to terrain changes was not tested. In an indoor environment, the controller

performed well on both linoleum and concrete. The alternative terrains available were

outdoor environment conditions, such as grass or gravel. The stiffness and friction of

these outdoor conditions are uncontrolled and inconsistent, and ultimately, the controller

robustness would not be evaluated, as failures under outdoor environments would not be

isolated to the controller‟s performance but to the robot‟s general physical characteristics.

5.1.3 EXTENDED KALMAN FILTER

The extended Kalman filter, presented in Chapter 3, was necessary for estimating the top-

of-flight center of mass velocity during the bound gait. Prior to the EKF development, the

inertial measurement unit provided a noisy estimate of velocity prone to drift. The

accuracy of the measurement was evaluated against a high speed video analysis of the

robot‟s motion and deemed accurate up to 0.1 m/s. In combining the IMU measurement

with a kinematics‟ velocity estimate, the flight phase velocity of the bound was

comparable to the simulation result‟s true velocity, confirming the accuracy of the

proposed method. Ultimately, the EKF developed presents an accurate way to estimate

Intelligent Velocity Control of a Bounding Quadruped Robot

85

the forward velocity of the robot during dynamically stable gaits and has the potential to

expand the onboard sensing capabilities. The potential for increasing sensing will be

discussed in Section 5.2, which presents avenues for future control possibilities.

5.2 RECOMMENDATIONS

The present work presents the initial steps taken towards increasing the autonomy and

versatility of the PAW robot. PAW is now capable of transitioning smoothly between

various velocities, without extensive parameter tuning, and has the potential to withstand

some limited varying terrain conditions. Additionally, the EKF developed presents an

opportunity for an expansion on the sensing capabilities of the platform. The following

subsection presents some possible avenues for future work on the robot.

5.2.1 DIRECTIONAL CONTROLLER

A directional controller for the bound gait is a logical expansion of the presented work.

The work in [29] discusses fixed touchdown and liftoff angles that cause a yawing

motion. Similarly to velocity control, the yaw could be controlled at each top-of-flight

instant to determine the required touchdown and liftoff angles to achieve the desired

lateral motion. Instead of a front and rear leg pair, the controller would use a lateral leg

pair combination. To combine this controller with the existing intelligent velocity

controller, the directional controller could output an angular phase difference between the

right and left leg pairs. This phase difference could be added to the touchdown and liftoff

angles determined from the intelligent velocity controller. A phase difference in the

desired hip angles could cause a change in the touchdown sequence, resembling a

86

galloping gait, an interesting effect, as this gait would occur almost naturally, out of

necessity to achieve a desired motion.

5.2.2 HOPPING HEIGHT CONTROLLER

As shown in [19], hopping height and forward velocity are directly related. An evaluation

of the present work could be made to verify the correlation between the two states. An

extension could be made based on the findings to evaluate the height at each top-of-flight

instant, to achieve a desired height. Similarly to the intelligent velocity controller, there

would be upper and lower limits to the desired set point. Nonetheless, the use of such a

controller would be apparent if the robot would have to overcome a known obstacle.

5.2.3 SENSING CAPABILITIES

As mentioned in Section 5.1.3, the EKF performs quite well in estimating center of mass

forward velocity. The state vector x used in the EKF is an 11x1 vector, but could be

expanded to include additional states. These additional states could include, but are not

limited to: the position in the inertial frame, attitude, and attitude rate of the robot. By

filtering these additional states in the EKF, a more precise estimate becomes available,

expanding the control possibilities. As it was demonstrated in this work, accurate velocity

control requires an accurate estimate of velocity. Thus, the recommendations for future

controllers will require additional sensing capacities. As the EKF has already been

developed, an expansion on the existing framework would provide the required sensing

capabilities necessary for alternate controllers.

Intelligent Velocity Control of a Bounding Quadruped Robot

87

5.2.4 INCREASED AUTONOMY

The goal of dynamically stable running robots is to provide a platform with a high level

of autonomy capable of rapidly traversing rough terrain. As discussed in Section 5.1.3,

PAW‟s physical characteristics may limit its use in various terrains. Nonetheless, this

work demonstrated that PAW can be used as a platform for developing and testing

various intelligent control schemes and sensing algorithms. PAW also presents itself as

an excellent platform for developing increased locomotion capabilities for hybrid robots

such as jumping or step climbing [40].

The recommendations made in this section, present solutions to build on the versatility of

PAW. Ultimately, a higher level of control would decide on the most efficient gait for the

robot to accomplish a desired task or traverse an unknown terrain. Efficiency may be

evaluated by energy consumption or task completion time, via a reward function. Then,

obstacles, terrain, and disturbances will determine the lower level controls: desired

velocity, direction, and hopping height.

88

REFERENCES

[1] M.H. Raibert, “Legged Robots That Balance”. The MIT press, Cambridge,

Massachusetts, 1986.

[2] Massachusetts Institute of Technology Leg Laboratory (online), Available:

“http://www.ai.mit.edu/projects/leglab/robots/robots.html”, 2008.

[3] M.H. Raibert, “Trotting, Pacing, and Bounding by a Quadruped Robot”. Journal of

Biomechanics, Vol. 23, pp. 79-98, 1990.

[4] J.K. Hodgins, M.H. Raibert, “Adjusting Step Length for Rough Terrain Locomotion”.

IEEE Transactions on Robotics and Automation, Vol.7, No.3, pp.289-298, June 1991.

[5] J.G. Nichol, S.P.N. Singh, K.J. Waldron, L.R. Palmer III, D.E. Orin, “System Design

of a Quadrupedal Galloping Machine”. The International Journal of Robotics

Research, Vol. 23, No. 10-11, pp. 1013-1027, October-November 2004,.

[6] J. Hodgins, “Legged Robots on Rough Terrain: Experiments in Adjusting Step

Length”. Proceedings of the 1988 IEEE International Conference on Robotics and

Automation, Vol. 2, pp. 824-82, 24-29 April, 1988.

[7] L.R. Palmer III, D.E. Orin, “3D Control of a High-Speed Quadruped Trot”. Industrial

Robot, Vol. 33, No. 4, pp. 298-3023, 2006.

http://www.ai.mit.edu/projects/leglab/robots/robots.html

Intelligent Velocity Control of a Bounding Quadruped Robot

89

[8] D.J. Pack, A.C. Kak, “A Simplified Forward Gait Control for a Quadruped Walking

Robot”. Proceedings of the 1994 IEEE/RSJ/GI International Conference on

Intelligent Robots and Systems, Munich, Germany, Vol.2, pp. 1011-1018,

Septemeber, 1994.

[9] D.P. Krasny, D.E. Orin, “Achieving Periodic Leg Trajectories to Evolve a Quadruped

Gallop”. Proceedings of the 2003 IEEE International Conference on Robotics and

Automation, Taipei, Taiwan, pp. 3842-3848, September, 2003.

[10] Z.G. Zhang, H. Kimura, K. Takase, “Adaptive Running of a Quadruped Robot

Using Forced Vibration and Synchronization”. Journal of Vibration and Control, Vol.

12, pp 1361-1383, 2006.

[11] S. Chernova, M. Veloso, “An Evolutionary Approach to Gait Learning for Four-

Legged Robots”. Proceedings of the 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Sendai, Japan, September 28 – October 2, 2004.

[12] P. Arena, L. Fortuna, M. Frasca, G. Sicurella. “An Adaptive, Self-Organizing

Dynamical System for Hierarchical Control of Bio-Inspired Locomotion”. IEEE

Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics, Vol. 34, No.

4, pp. 1823- 1837, August, 2004.

[13] Y. Fukuoka, H. Kimura, A.H. Cohen, “Adaptive Dynamic Walking of a

Quadruped Robot on Irregular Terrain Based on Biological Concepts”. The

International Journal of Robotics Research, Vol. 22, No. 3-4, pp. 187-202, March-

April 2003.

[14] M. A. Lewis, G. A. Bekey, “Gait Adaptation in a Quadruped Robot”. The Journal

of Autonomous Robots, Vol. 12, No. 3, pp. 301-312, 2, May, 2002.

[15] I. Poulakakis, E. Papadopoulos, M. Buehler, “On the Stability of the Passive

Dynamics of Quadrupedal Running with a Bounding Gait”. The International Journal

of Robotics Research, Vol. 25, No. 7, pp. 669-687, July 2006.

[16] L.R. Palmer III, D.E. Orin, “Attitude Control of a Quadruped Trot While

Turning”. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Beijing, China, October 9-15, 2006.

[17] L.R. Palmer III, D.E. Orin, “Force Redistribution in a Quadruped Running Trot”.

Proceedings of 2007 IEEE International Conference on Robotics and Automation,

Roma, Italy, April 10-14, 2007.

[18] L.R. Palmer III, D.E. Orin, “3D Control of a High-Speed Quadruped Trot”.

Industrial Robot, Vol. 33, No. 4, pp. 298-3023, 2006.

90

[19] D.W. Marhefka, D.E. Orin, J.P. Scmiedeler, K.J. Waldron, “Intelligent Control of

Quadruped Gallops”. IEEE/ASME Transactions on Mechatronics, Vol. 8, No. 4,

December, 2003.

[20] D. P. Krasny, D. E. Orin, “Evolution of Dynamic Maneuvers in a 3D Galloping

Quadruped Robot”. Proceedings of the 2006 IEEE International Conference on

Robotics and Automation, Florida, May, 2006.

[21] A. Muraro, C. Chevallereau, Y. Aoustin, “Optimal Trajectories for a Quadruped

Robot with Trot, Amble, and Curvet Gaits for two Energetic Criteria”. Multibody

System Dynamics, Vol. 9, pp 39-62, 2003.

[22] D.W. Marhefka and D.E. Orin, "Fuzzy Control of Quadrupedal Running".

Proceedings of the 2000 IEEE International Conference on Robotics and Automation,

San Francisco, CA, pp. 3063-3069, April, 2000.

[23] D. P. Krasny, D.E. Orin, “Generating High-Speed Dynamic Running Gaits in a

Quadruped Robot Using an Evolutionary Search”. IEEE Transactions on Systems,

Man, and Cybernetics – Part B: Cybernetics, Vol. 34, No. 4, August, 2004.

[24] L.R. Palmer, D.E. Orin, D.W. Marhefka, J.P. Schmiedeler, K.J. Waldron,

“Intelligent Control of an Experimental Articulated Leg for a Galloping Machine”.

Proceedings of the 2003 IEEE International Conference on Robotics & Automation,

Taipei, Taiwan, September 14-19, 2003.

[25] S. Skaff, G. Kantor, D. Maiwand, A.A. Rizzi, “Inertial Navigation and Visual

Line Following for a Dynamical Hexapod Robot”. Proceedings of the 2003 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Las Vegas, Nevada,

October, 2003.

[26] I. Poulakakis, J.A. Smith, M. Buehler, “On the Dynamics of Bounding and

Extensions: Towards the Half-Bound and Gallop Gaits”. Adaptive Motion of Animals

and Machines, pp 79-88, Springer Tokyo, 2006.

[27] J.A. Smith, I. Sharf, M. Trentini, “PAW: a Hybrid Wheeled-Leg Robot”.

Proceedings of the 2006 International Conference on Robotics and Automation,

Orlando, FL, USA, May 2006

[28] J.A. Smith, I. Sharf, M. Trentini, “Bounding Gait in a Hybrid Wheeled-Leg

Robot”. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Beijing, China, October 2006.

Intelligent Velocity Control of a Bounding Quadruped Robot

91

[29] J.A. Smith, “Galloping, Bounding and Wheeled-Leg Modes of Locomotion on

Underactuated Quadrupedal Robots”. Phd Thesis, McGill University, November

2006.

[30] I. Poulakakis, J. Smith, E. Papadopoulos, M. Buehler, “Opportunities for

Adaptation and Learning in Dynamically Stable Legged Robots”. Yale Workshop on

Adaptive and Learning Systems, Center for Systems Science, Yale University, New

Haven, CT, pp. 129-134, June, 2001.

[31] A. Billard, A.J. Ijspeert, “Biologically inspired neural controllers for motor

control in a quadruped robot”. Proceedings of the IEEE-INNS-ENNS Joint

Conference on Neural Networks, Vol. 6, pp. 637-641, 2000.

[32] R. McNeill Alexander, “Principles of Animal Locomotion”. Princeton University

Press, 2003.

[33] T.A. McMahon, “The Role of Compliance in Mammalian Running Gaits”.

Journal of Experimental Biology, Vol. 115, Issue 1, pp. 263-282, 1985.

[34] D. Papadopoulos, M. Buehler, “Stable Running in a Quadruped Robot with

Compliant Legs”. Proceedings of the 2000 IEEE International Conference on

Robotics & Automation, San Francisco, CA, April 2000.

[35] B. Barshan, H.F. Durrant-Whyte, “Inertial Navigation Systems for Mobile

Robots”. IEEE Transactions on Robotics and Automation, Vol.11, No. 3, June 1995.

[36] D. Papadopoulos, “Stable Running for a Quadruped Robot with Compliant Legs”,

M. Eng Thesis, McGill University, April 2000.

[37] Kuipers, J.B., “Quaternions and Rotation Sequences”, Princeton University Press,

Princeton, N.J., 1999.

[38] Arden, D., “Analysis of MEMS IMU Motion Table Testing”, Contract Report,

Defence R&D Canada, Ottawa, Canada, 2007.

[39] S.P.N. Singh, K.J. Waldron, “Motion Estimation by Optical Flow and Inertial

Measurements for Dynamic Legged Locomotion”. Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, Edmonton, Canada, 2005.

[40] S. Talebi, M. Buehler, E. Papadopoulos, “Towards Dynamic Step Climbing for a

Quadruped Robot with Compliant Legs”. Compliant Legs, 3
rd

 International

Conference on Climbing and Walking Robots, 2000.

