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ABSTRACT  
The Platform for Ambulating Wheels (PAW) is a hybrid quadruped wheeled-legged 

robot that can bound, gallop, roll and brake at high speeds, and perform inclined turning. 

In previous work, the PAW‟s controller used fixed touchdown and liftoff angles to 

achieve a stable bounding gait, and these angles were predetermined through an extensive 

trial and error process.  

In this work, an intelligent velocity controller is developed to allow the robot to 

autonomously find the touchdown and liftoff angles to bound at a desired velocity. This 

enables the robot to track desired velocities between 0.9 and 1.3 m/s, as shown in a 

Matlab-Adams co-simulation model of bounding. The controller also demonstrates 

tracking capabilities in the presence of minor terrain changes. 

To implement this controller on the physical platform, an Extended Kalman Filter (EKF) 

is developed to estimate the forward velocity of the robot required as a controller input. 

The EKF combines the data from an Inertial Measurement Unit and an estimate of 

forward velocity found kinematically using measurements from motor encoders and leg 

potentiometers. The accuracy of the EKF estimate of the forward velocity is validated in 

simulation and using high speed camera experiments. 

Finally, the intelligent controller is implemented and tested on the physical platform 

demonstrating adequate velocity tracking for set points between 0.9 m/s and 1.3 m/s, as 

well as transitions between set points in this range. 
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ABRÉGÉ 
Le « Platform for Ambulating Wheels » (PAW) est un robot quadrupède qui possède des 

roues au bout de ses quatre jambes. Sa combinaison de roues et jambes lui permet de 

rouler, d‟effectuer des virages en inclinant son corps, de sauter, de bondir et de galloper. 

Dans les travaux précédents, le robot utilisait des angles fixes, trouvés par essais et 

erreurs, pour pouvoir bondir à une certaine vitesse. Un contrôleur intelligent capable de 

trouver les angles de façon autonome afin de suivre une vitesse prédéterminée est 

développé dans ce mémoire.  

Premièrement, la performance du contrôleur est évaluée dans une simulation MSC 

Adams et MATLAB démontrant les capacités à suivre des vitesses entre 0.9 et 1.3 m/s. 

Le contrôleur démontre une capacité à suivre la vitesse désirée même en présence de 

changement de terrain mineur. 

Ensuite, un filtre Kalman pour système non-linéaire est développé pour estimer la vitesse 

du robot, un paramètre nécessaire pour introduire le système de contrôle intelligent sur le 

robot. Les données d‟une unité de mesure inertielle et une estimation de la vitesse par des 

équations cinématiques sont combinés dans le filtre pour estimer plus précisément la 

vitesse du robot. La précision du filtre est validée en comparant ses résultats contre ceux 

acquis en simulation et par une caméra à haute vitesse. 

Finalement, le contrôleur intelligent est évalué sur le robot en utilisant la vitesse estimée 

par le filtre Kalman. Les résultats expérimentaux du contrôleur démontre qu‟il est 

capable de bien suivre des vitesses entre 0.9 et 1.3 m/s. 
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CHAPTER 1: INTRODUCTION 
 

 

Traversing rough terrain is one of the main reasons for developing dynamically stable 

running robots. While wheeled and tracked robots can overcome obstacles and soft soil, 

few offer the versatility that is seen in biological systems. Hence, more versatile 

autonomous legged robots are being developed to achieve the capabilities of animals or 

insects. New biologically inspired robots could prove useful for planetary surface 

exploration, military reconnaissance, and search and rescue missions. The Platform for 

Ambulating Wheels, or PAW, is a hybrid wheel-leg quadruped robot built to combine the 

advantages of both rolling and running robots. This thesis shall introduce an intelligent 

velocity controller that increases the locomotion capabilities of PAW and an extended 

Kalman filter (EKF) that allows for increased velocity sensing capabilities. Ultimately, 

the goal of this research is to enhance PAW‟s autonomy and adaptability to various 

terrains.  
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This chapter introduces dynamically stable running robots, provides a background of 

existing control methods for quadruped robots, describes the PAW platform, and explains 

why intelligent velocity control is necessary for increasing the capabilities of the robot. 

Chapter 2 describes the intelligent velocity controller for the bound gait and provides 

results from testing in a Matlab-Adams co-simulation environment, including an 

evaluation of its capabilities with changing terrain properties. Chapter 3 describes the 

sensing requirements and the extended Kalman filter used to estimate forward bounding 

velocity. Chapter 4 demonstrates the effectiveness of the intelligent controller on the 

PAW robot in an indoor test environment. Finally, Chapter 5 concludes this work by 

discussing the contributions of this thesis and suggesting avenues for future work. 

1.1 DYNAMICALLY STABLE RUNNING ROBOTS 

Legged robots can be classified as statically and dynamically stable robots. The former 

requires continuous ground support by the legs at all instants through the gait. The robot‟s 

center of mass (COM) projection onto the ground must be located within the support area 

provided by the legs at each instant to ensure the robot‟s static stability throughout the 

gait. They tend to be slow moving, with legs resembling traditional manipulator designs. 

Faster moving „running‟ legged robots that do not require the COM to be located within 

the area of support provided by the legs are described as dynamically stable legged 

robots. Dynamically stable legged robots can have phases in their gait during which no 

legs are in contact with the ground, termed „flight phases‟. These running robots also take 

advantage of the legs‟ passive dynamics to simplify their controllers. Marc Raibert‟s 

monopod hopper was the first dynamically stable running robot [1] and consisted of a hip 

motor combined with a prismatic actuator and spring to mimic a leg. The robot was 
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mounted on a pivoting boom and was capable of hopping at a speed of 1.2 m/s [1]. To 

produce stable hopping, the prismatic springs stored the potential energy in the first 

portion of the stride, and released it in the second portion to produce leg liftoff, similar to 

a pogo stick. The dynamics of the system was modeled as a spring-loaded inverted 

pendulum (SLIP). Figure 1.1 shows the 3D version of Raibert‟s monopod hopper in 

action, capable of hopping at 2.2 m/s [1], and Figure 1.2 provides a visual representation 

of the SLIP model. 

 
FIGURE 1.1 RAIBERT‟S MONOPOD HOPPER [2] 

 

 

 

 
FIGURE 1.2 SPRING-LOADED INVERTED PENDULUM MODEL (SLIP) 

Touchdown 

Compression  

Liftoff 
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This SLIP model was extended to achieve bipedal and quadrupedal locomotion as well. 

Figure 1.3 shows a two and a four legged running robot both developed by Raibert. 

Similar to the monopod, the bipedal and quadrupedal robots used a hip motor to control 

the leg position, and a prismatic actuator in the leg to control the energy injected in the 

system to maintain dynamic stability. His quadruped was capable of pacing, trotting, and 

bounding [3]; while the biped, mounted on a boom, was capable of step climbing [4] and 

running at up to 4.3 m/s [1]. Similar research on dynamically stable legged robots is 

being performed on the four legged KOLT robot, shown in Figure 1.4, which begun as a 

monopod called the OSU Dash-leg running on a treadmill [5]. The leg design differs from 

Raibert‟s as it uses pulleys to control hip and knee joints, offering one more degree of 

freedom per leg.  

            
     (A) RAIBERT‟S QUADRUPED TROTTING [2]   (B) RAIBERT‟S BIPED STEP CLIMBING [6] 

FIGURE 1.3 RAIBERT‟S ROBOT‟S 

 
FIGURE 1.4 STANFORD‟S KOLT ROBOT [7] 
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1.2 CONTROL OF QUADRUPED ROBOTS 

Several control strategies are available to quadruped robots. The traditional statically 

stable robots require precise foot placement to ensure stability at each moment in the 

robot‟s motion. These robots, considered walking robots, use a polygon support pattern to 

determine the feet positions. Conventional PID or PD laws are used at the motor position 

control level. Higher level controls optimize gait pattern generation and foot placement 

[8], and range from offline machine learning for parameter tuning [9] to online adaptive 

control methods [10]. In [11], the Sony AIBO robot‟s walking speed is increased by 

optimizing the gait‟s parameters offline using an evolutionary approach to a learning 

algorithm. Offline gait learning focuses on gait optimization for specific terrain types. 

Other researchers [12] [13] [14] focus on central pattern generators (CPG) for generating 

a locomotion gait in biologically inspired robots to adapt the gait according to the 

environment based on reward functions. The CPG is made up of coupled nonlinear 

oscillators to form a network capable of generating synchronization patterns used to 

coordinate actuation of the robot. Although approaches differ, the underlying objective is 

to optimize legged robots‟ performance in all terrain types. 

While dynamically stable robots rely primarily on the natural dynamics of the system 

[15], control laws are still required to ensure stable locomotion. The robot‟s gait 

parameters are optimized based on the desired controller set point. These set points can 

include the desired attitude [16] [17], direction [18], velocity and hopping height [19], 

specific maneuvers [20], and minimizing energy consumption [21]. As running robots 

dynamics are complex and non-linear in nature, fuzzy control [22], evolutionary searches 

[23], and learning algorithms [24] are often used to determine the required controller 
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outputs to achieve the desired set point. Raibert, on the other hand, simplified controllers 

by using virtual leg principles and relying on the dynamic stability of the system [1]. 

Ultimately, to make legged robots adaptable to their environment, they must be capable 

of sensing disturbances such as obstacles or terrain changes and decide which gait is best 

for completing the task. To do so, many robots often have state estimation or visual 

odometry feedback that alerts the controller of a change required in the outputs [25]. 

1.3 PLATFORM FOR AMBULATING WHEELS (PAW) 

At McGill University, two robots have been developed that use the principles of 

dynamically stable legged locomotion: Scout II [26] and PAW [27], shown in Figures 

1.5(a) and (b) respectively. SCOUT II became the world‟s first physical robot to achieve 

stable galloping [26] and did not use prismatic actuators in the legs. The robot uses un-

actuated compliant legs, controlled individually, that exploit the passive dynamics to 

store potential energy and release it to produce leg liftoff, leading to stable galloping at 

1.3 m/s.  

       
(A) SCOUT II [26]                                (B) PAW ROBOT [27] 

FIGURE 1.5 MCGILL QUADRUPEDS 

Based on the success of SCOUT II, a smaller version, termed hybrid due to the addition 

of wheels at the end of each compliant leg, was developed. The Platform for Ambulating 
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Wheels (PAW), an under-actuated robot with minimal sensing capabilities and simple 

controls, is able to achieve stable bounding and galloping at speeds over 1.0 m/s [28]. In 

addition, PAW can use the wheels to provide the forward motion while the actuated hips 

allow turning and braking at high speeds [27]. PAW‟s locomotion capabilities are 

illustrated in Figure 1.6. 

    
                               (A) BOUNDING     (B) GALLOPING 

     
(C) ROLLING          (D) SLOPE CLIMBING 

    
(E) INCLINED TURNING                       (F) BRAKING AT HIGH SPEEDS 

FIGURE 1.6 PAW‟S LOCOMOTION CAPABILITIES 

PAW‟s motors are located in the hip for rotating the leg, and in the toes for powering the 
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wheel, respectively. The galloping and bounding controllers require only linear 

potentiometers to measure spring compression in the legs, and encoders in the hip and 

wheel motors to measure angular position and velocity as inputs [29]. To achieve leg 

liftoff for the flight phase required for the gallop and bound gaits, potential energy must 

be stored in the leg springs during the stance phase. This limits the range of stability of 

the bound and gallop gaits as the robot relies on the un-actuated compliant nature of the 

legs to avoid toe dragging or stubbing, which can lead to a failure in the gait. An increase 

in maneuverability during running gaits will therefore require more intelligent control 

methods and sensing capabilities to take full advantage of the limited number of actuators 

[30]. A more detailed description of PAW‟s gaits, controls and important parameters is 

contained in Chapter 2. 

1.4 PURPOSE OF INTELLIGENT VELOCITY CONTROL ON PAW 

Intelligent control methods allow a system to track various set points and adapt to 

disturbances, thus increasing its autonomy. However, learning algorithms can 

significantly increase the complexity of the controllers, increase the computational time, 

and possibly require more information than is available on the robot‟s state. This section 

details the reasons for using intelligent control on PAW, the types of controls applicable 

to the platform, and why velocity control was implemented first. 

1.4.1 INTELLIGENT CONTROLLERS 

PAW‟s existing controller uses specific hip angles combinations for the leg touchdown 

and liftoff instants to achieve stable running gaits. For bounding, the front legs and rear 

legs are actuated in pairs to fixed hip angles for touchdown and liftoff, whereas for 
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galloping, there is a fixed angle phase difference between the pair‟s hip angles at 

touchdown and liftoff. The fixed values are predetermined through a trial and error 

process to achieve a stable gait. The control scheme for bounding is described in further 

detail in Chapter 2. Using an intelligent method for control allows the robot to modify 

these fixed values in order to adapt to the desired velocity, desired turning rates, and the 

terrain. As terrain properties change, the robot dynamics are affected. An intelligent 

controller can adapt to the change in robot states in order to maintain the desired set 

point. Increasing the robot‟s autonomy and versatility renders it applicable in more 

realistic situations where galloping and bounding would prove useful. 

A plethora of intelligent control methods have been developed to increase the autonomy 

of robotic systems. Ideally, mimicking biological models would lead to the best solutions; 

however these would require neural network controllers [31]. Sets of artificial neural 

networks can provide pattern generation for various gaits and gait control. Neural 

networks, however, rely on extensive sensing capabilities and actuator coupling to create 

rhythmic patterns [31]. For PAW, the gait patterns are generated based on the passive 

dynamics of the system with each leg controller decoupled. In addition, our platform 

provides limited actuation and sensing capabilities that would render neural controllers 

ineffective. Fuzzy controllers provide a solution that uses some heuristic knowledge of 

the system to increase the robots adaptability.  The fuzzy controller can be called at the 

apogee of the flight phase, or top-of-flight (TOF), to fuzzify the control parameters and 

find the optimal controller inputs based on a set of rules. Although Marhefka and Orin 

[22] demonstrate the capabilities of the fuzzy controller in a simulated galloping 

quadruped, the rule-base that specifies the membership function for each controller input 
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requires additional parameter storage and computations per stride relative to the 

controller developed by Raibert [1].  In [24], the fuzzy controller is compared to a 

Levenberg-Marquardt (LM) learning algorithm that modifies the Raibert controller [1] in 

a simulated leg for a galloping robot. While achieving similar results as the fuzzy 

controller, the LM-Raibert controller would entail fewer modifications to our platform, 

while still improving PAW‟s tracking abilities.  

1.4.2 VELOCITY CONTROL 

Dynamically stable legged robots have the advantage of not requiring continuous ground 

support throughout their running gait to ensure static stability. They are able to leap over 

obstacles, and traverse terrain that statically stable legged robots may not be able to. 

Although advantageous, these robots require precise foot positioning in “safe” locations 

in order to continue their stride. Thus, controlling foot placement is a key element in 

rough terrain traversal. Choosing the foot location can be based on visual odometry and 

other sensorial data. However, these foot locations greatly affect the stability, forward 

velocity, hopping height, and direction of travel of the system. Raibert‟s work in [4] 

addressed this issue by analyzing the parameters that define a running robot‟s step length. 

For steady state running, the step length is the sum of distance traveled during stance and 

flight. In his analysis, Raibert defines forward velocity as the key parameter in adjusting 

step length.  Other researchers discuss possibilities of adjusting hopping height [19] 

useful for overcoming obstacles, or turning rates during running [7]; however, velocity 

control is an appropriate starting point for a dynamically stable robot with the dimensions 

of PAW.  As will be discussed in Chapter 2, only minor modifications to the controller 

are needed to achieve bounding velocity control. 
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1.5 THESIS ORGANIZATION 

This thesis will focus on intelligent velocity control of the PAW robot during the bound 

gait. Chapter 2 will describe the existing control scheme on the robot, present the 

modifications necessary for PAW to achieve velocity tracking, and demonstrate the 

controller‟s performance in simulation. Chapter 3 will focus on the development and 

testing of an extended Kalman filter (EKF) used to estimate forward velocity during 

bounding on the robot, which is a necessary input to the intelligent controller. Chapter 4 

will describe the controller‟s performance on the robot, as well as discuss some important 

parameters and limitations. Finally, Chapter 5 discusses the contributions made by this 

thesis and addresses areas for future work. 
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CHAPTER 2: INTELLIGENT VELOCITY CONTROLLER 
 

 

This Chapter describes the existing bounding controller on PAW and outlines the 

modifications necessary to accomplish intelligent velocity control during bounding. To 

achieve intelligent velocity control, a Levenberg-Marquardt learning algorithm is called 

at the top-of-flight (TOF) instant of the bound stride to compute the necessary gains in a 

modified version of Raibert‟s controller [1], which in turn determines the hip angles 

required for achieving a particular forward bounding velocity. In order to verify the 

effectiveness of the controller, a model of the robot was created in the dynamics 

simulation software MSC Adams, which is used in conjunction with Matlab to control the 

robot in simulation. The results of this simulation include: a comparison with the existing 

controller, an evaluation of velocity tracking capabilities, an assessment of robustness to 

terrain changes, and the limitations of this method, which are presented in the final 

section of this chapter. 

2.1 EXISTING BOUND CONTROL STRATEGY  

The PAW robot‟s existing control strategy allows it to achieve two dynamically stable 

gaits: the bound and the gallop. Although this work focuses on the bound gait, an 
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extension could easily be made to the gallop. To fully understand how the intelligent 

controller is implemented, it is important to first describe the bound gait and the existing 

control scheme. 

2.1.1 RUNNING GAITS 

The footfall patterns for one stride of various quadruped running gaits are compared to 

the quadruped bound in Figure 2.1 below. The transverse and rotary gallop requiring the 

legs to touchdown individually, are considered as four beat gaits, whereas the bound and 

trot are two beat gaits as the legs touchdown in pairs. In biological systems, the bound 

gait is seen as a transition gait between trot and gallop; however some animals, like the 

squirrel, use the bound gait as a means of high speed locomotion [32]. 

 
FIGURE 2.1 FOOTFALL PATTERNS FOR VARIOUS GAITS 

Although the gallop gait is traditionally more efficient with respect to energy 

consumption in running animals at high speeds [33], it has been demonstrated that in the 

case for PAW, bounding is a more efficient means of dynamically stable locomotion [29]. 

     Leg flight 
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Bound 
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Trot  

1 
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1 1 
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This is likely due to the dimensions of the robot, whereas a robot with longer legs, like 

Scout II, has a more efficient gallop gait at high speeds [29]. Thus, in this work, the 

intelligent controller is implemented solely for the bound gait. It is possible to pursue the 

intelligent controller strategy during galloping, as the gallop gait in PAW consists simply 

of adding a fixed angular phase difference in the hip angles for the front and rear leg pairs 

causing a change in the footfall pattern. However, this is out of the scope of this thesis. 

2.1.2 DETECTING STATE CHANGES ON PAW 

In order to achieve dynamically stable bounding, the individual leg controllers require 

detection of two states: stance and flight. A simplified visual representation of PAW 

bounding is seen in Figure 2.2. 

 
FIGURE 2.2 PAW‟S BOUND SEQUENCE 

During bounding, the front legs are controlled symmetrically, as are the rear legs, 

creating virtual leg pairs at both the front and rear of the robot. The front and rear leg 

pairs are decoupled as they do not require knowledge of each other‟s states to provide 

appropriate leg actuation. Thus, once the state of a leg is detected, the controllers will 

servo the hip to the appropriate angle. During flight, the leg will want to achieve the 

correct touchdown angle for the stance phase while taking body pitch into account. 

During stance, the legs are actuated to the correct liftoff angle, at which point the energy 

stored in the springs is released, causing the legs to take flight. 

 
A: Top of Flight B: Front Stance C: Double Stance D: Rear Stance 
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Touchdown and liftoff detection is determined via potentiometers located on each robot 

leg. When the leg touches down, a predetermined compression threshold is achieved 

indicating to the robot controller that the leg has touched down. Similarly for takeoff, the 

leg extends beyond a predetermined threshold indicating that the leg is in flight. This 

method of determining leg states can be improved as vibration in the legs and 

inaccuracies in the potentiometer data may affect the performance of the state detection. 

As PAW has actuated wheels on the distal ends of the legs, it would be possible to 

determine the touchdown or liftoff instant using the wheel motor encoders. However, for 

the purpose of this work, the leg compression method for state determination is sufficient. 

2.1.3 MOTOR CONTROL 

PAW‟s leg actuators, located at the hips, are controlled by traditional PD law of Equation 

(2.1) which is used during the gait cycle to servo the robot‟s legs to the desired angles: 

 
DDPhip kk  )(     (2.1)  

where: hip  is required motor torque, 

             is the actual hip angle with respect to the body, 

           D  is the desired leg angle with respect to the ground, 

             is the body pitch, 

             is the actual leg angular rate, and 

            kP and kD are the controller gains. 

The desired hip angular rate, D
 , is zero in this case, allowing the derivative error of the 

traditional PD law of Equation (2.1) to be simplified to contain only the   term. Equation 

(2.1) is used during the leg flight phase, whereas during stance, the hip torque is 
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commanded to the motor saturation limit. Once the hip‟s desired liftoff angle is reached 

in the stance phase, a stance brake state is detected and the control law in Equation (2.1) 

ensures that the hip is commanded to stay at the required angle, D , until liftoff occurs. 

The hybrid nature of PAW requires the wheel motors to be either actively controlled or 

mechanically blocked during dynamic legged locomotion. For active wheel control, the 

wheels are controlled to remain at rest via a PD position control law, reducing the wheel 

torque equation to: 

      wheelDwheelPwheel kk          (2.2) 

where: wheel  is required wheel motor torque, 

           wheel is the wheel angle, 

           wheel is the wheel angular rate, and 

kP and kD are the controller gains tuned via trial and error. 

2.1.4 TOUCHDOWN AND LIFTOFF ANGLES 

From the previous subsections, it can be deduced that the critical parameters for PAW‟s 

bound gait are the touchdown and liftoff angles of the legs, which are controlled from the 

hip actuators. Due to the passive nature of the prismatic joint in PAW‟s legs, the hip 

angles will determine the amount of spring compression and extension to ensure liftoff 

and maintain dynamic stability. Specific combinations of these result in dynamically 

stable gaits at particular forward velocities and hopping heights. However, the manual 

tuning to find these values is time consuming; moreover, achieving alternate forward 

velocity set points requires re-tuning for both the leg touchdown and liftoff angles. 
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PAW‟s existing controller uses fixed leg touchdown and liftoff angles during the 

bounding gait developed by Smith in [29].  Table 2.1 demonstrates experimental results 

of combinations of hip angles resulting in various forward bounding velocities. The 

center of mass (COM) speed shown in Table 2.1 is calculated by dividing the distance 

traversed by the robot during the experiment, over the elapsed time. 

Test Front touchdown 

angle (deg) 

Rear touchdown 

angle (deg) 

Front liftoff 

angle (deg) 

Rear liftoff 

angle (deg) 

COM speed 

(m/s) 

1 -20 -22 4 12 0.75 

2 -20 -22 6 14 0.83 

3 -20 -22 6 16 0.83 

4 -20 -22 8 16 0.91 

5 -20 -22 10 18 1.00 
 TABLE 2.1 PREDEFINED PAW BOUNDING TOUCHDOWN AND LIFTOFF ANGLES 

2.2 INTELLIGENT VELOCITY CONTROLLER 

As running robots have a flight phase in their gait, this allows them to overcome 

obstacles and difficult terrain. As discussed in section 1.4.2, foot placement plays a key 

role in the robot‟s locomotion. Moreover, in the case of a bounding robot that relies on 

the passive dynamics such as PAW, the desired foot placements must ensure that a 

sufficient amount of energy is injected into the system to maintain stable running. The 

foot location is determined from the leg kinematics relations between the hip angles and 

leg length as shown in Figure 2.3.  

 

Raibert [4], as introduced in section 1.4.2, analyzed step length in steady state running. 

He defines step length as the sum of distance traveled during stance and flight between 

foot touchdown instants. This is shown in Equation (2.3). 

ffssstep TxTxL                      (2.3) 
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In this equation: Lstep is step length, 

  sx and fx is COM velocity during stance and flight phases respectively, 

  Ts and Tf is the time of stance and of flight respectively. 

Although the duration of flight, the duration of stance, and forward velocity play a role in 

the step length, Raibert identifies forward velocity as the key parameter in adjusting step 

length [4]. From step length, it is possible to determine the foot touchdown locations, 

which are directly related to the hip angles.  

2.2.1 RAIBERT‟S VELOCITY CONTROLLER 

Raibert‟s controller, developed in [1] for velocity control of a monopod hopper and 

presented in Equation (2.4), finds the necessary foot placement at touchdown and liftoff 

instants for achieving a desired velocity set point. The desired velocity, in this case, is 

taken as the robot‟s center of mass (COM) forward velocity at the top-of-flight (TOF) 

during the hopping sequence. The first term in Equation (2.4) estimates the required foot 

placement for keeping constant running velocity. The second term corrects the velocity 

error by adding to the desired foot position.  

)(
2 21

d
s

foot vvKv
T

Kx                    (2.4) 

In the above, Ts is the time of the previous stance period, v is the COM velocity at TOF, 

vd is the desired TOF velocity, K1 and K2 are the gains.  

This strategy can be translated to a quadruped robot as the legs are controlled 

independently during bound, as described in section 2.1.2. Thus, the controller is called at 

the TOF instant in the bound sequence to compute the desired foot placement at 

touchdown and liftoff for the front and rear leg pair, indicating that Equation (2.4) must 
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be used four times, once for each desired foot placement, to track the desired velocity set 

point. Knowing the desired foot placement xfoot, the required hip angles are found 

kinematically using Equation (2.5) for the front and rear leg pairs. PAW‟s kinematic 

parameters are described in Figure 2.3. Subscripts f and r are used for front and rear leg 

pairs respectively.  
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 FIGURE 2.3 PAW PARAMETERS  

Note that the body pitch is taken into account in the hip motor control of Equation (2.1) 

as foot position is found with respect to the local vertical axis. 

2.2.2 MODIFICATIONS TO RAIBERT‟S CONTROLLER  

Raibert developed Equation (2.4) to control foot touchdown position for a monopod with 

a prismatic and a rotational actuator. In this case, the rotational actuator, i.e. the hip 

motor, servos the leg to the desired position, while the prismatic actuator ensures that 

enough energy is injected back into the system to avoid toe dragging or stubbing. Thus, 
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this method relies on controlling the energy injected during the stance phase, whereas for 

PAW, this is determined by the passive dynamics of the system. To ensure that the foot 

placement equation takes the passive nature of PAW‟s legs into account, a third term, α3, 

is added to Equation (2.4). Additionally, as the bound sequence in PAW is periodic in 

nature, we can assume constant stance time and simplify the first term of the equation, to 

give: 

     321 )( αvvαvαx d
foot

        (2.6) 

For PAW‟s bound gait, Equation (2.6) is used to compute front and rear leg pair foot 

placement at touchdown and liftoff. This means the gains α1, α2, and offset α3 must be 

tuned four times; for front and rear leg touchdown and liftoff combinations.  

2.2.3 LEVENBERG-MARQUARDT LEARNING 

To enable traversal of terrains with various physical properties, PAW must be adaptable 

to a range of velocity set points while maintaining dynamic stability. To avoid toe 

stubbing or dragging failures, the α gain tuning requires an extensive trial and error 

process for each desired forward velocity due to the compliant nature of PAW‟s prismatic 

legs. The approach developed in [24] and shown in Equation (2.7), which uses a 

Levenberg-Marquardt (LM) learning algorithm, is implemented on PAW allowing the 

gains in Equation (2.6) to be adjusted adaptively at each stride. This reduces the manual 

gain tuning process, requiring simply an initial value for each gain. 

The LM intelligent algorithm solves the least squares problem to tune gains α1 and α2 of 

Equation (2.6) according to the following update law [24].  

2 1     
21
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       (2.7) 
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 where ej is the system velocity error: ej = vd,j - vj, 

 λm is the step size control variable, 

 p1 is actual velocity v, 

 p2 is the negative of the system velocity error, and 

 j is the stride index updated at each TOF instant. 

At each TOF, Equation (2.7) is used to update the gains α1 and α2 for each leg pair for 

both touchdown and liftoff. According to [34], the α3 term aids in compensating for the 

loss in energy that could lead to instability; this term remains constant for small velocity 

changes. The foot placement law of Equation (2.6) employs the newly tuned gains to 

compute the foot position, which is then employed in Equation (2.5) to find the 

appropriate hip angle as the hip motor controller input parameter. 

2.3 SIMULATION RESULTS 

To verify the validity of the proposed intelligent velocity controller, a simplified model of 

the PAW robot was created in the dynamics simulator MSC Adams. This program allows 

a Matlab interface where the robot controller is embedded. In the following subsections, 

we describe the simulation model, present a comparison between the intelligent velocity 

controller and the existing controller, demonstrate the ability of the intelligent controller 

to track varying set points, investigate its robustness to terrain modifications, and discuss 

some limitations. 

2.3.1 MSC ADAMS MODEL 

The dynamics model, described in [29] and developed in MSC ADAMS, is geometrically 

and inertially consistent with the actual robot; the main difference is that the foot wheels 
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are modeled as toes without actuated wheels. This is an important discrepancy between 

the physical robot and dynamics model, as wheels cause some energy loss upon 

touchdown and liftoff. This will become apparent in Chapter 4 where we consider the 

physical bounding tests. Table 2.2 displays the robot‟s physical parameters and Figure 2.4 

displays the MSC Adams PAW model [29].  

Parameter Value 

Front body width 0.336m 

Rear body width 0.240m 

Body length 0.494m 

Body height 0.170m 

Body mass 15.7kg 

Leg length 0.212m 

Leg spring constant 3500N/m 
TABLE 2.2 SIMULATION PARAMETERS  

 
FIGURE 2.4 MSC ADAMS PAW MODEL 

The robot‟s legs are controlled throughout the bound cycle, and the controller inputs for 

leg angles are found as discussed in Section 2.2, once per cycle at the top-of-flight. 

Figure 2.5 displays the block diagram of the controller developed in MATLAB for the 

MSC Adams dynamics model. 
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FIGURE 2.5 BLOCK DIAGRAM OF INTELLIGENT CONTROLLER IN SIMULATION 

2.3.2 CONTROLLER COMPARISON 

To demonstrate the intelligent controller‟s performance, we first compare it to the 

existing fixed-angle controller [29] for rate of convergence to a particular velocity set-

point. The simulation is started by allowing the robot to fall from a fixed height above the 

ground. PAW is given an initial forward velocity of 0 m/s, with an initial forward pitch of 

60º. The robot touches down and lifts off using known fixed hip angles to initiate stable 

bounding. The start up routine is used for both the intelligent and previously developed 

controller. For the intelligent controller, a fixed forward velocity of 1.3 m/s is 

commanded when the robot reaches its first top-of-flight after the start up sequence. The 

existing controller is commanded, throughout the bound cycle, to predefined forward and 

rear touchdown and liftoff angles that yield a forward velocity of 1.3m/s. These 

predetermined angles were found via trial and error in [29]. 

Figure 2.6 displays the COM forward velocity of the simulated bounding gait where 

PAW starts from rest and accelerates to the desired velocity of 1.3 m/s. The „plateau‟ 

sections of the bound profile indicate the flight phase of the bound gait (phase A from 

Figure 2.2). The small spike and deceleration is explained by the front leg touchdown 
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(phase B from Figure 2.2), followed by the double stance phase (phase C from Figure 

2.2). The robot then accelerates as the rear legs are actuated prior to liftoff (phase D from 

Figure 2.2), after which the „plateau‟ sections appear to indicate flight has occurred. The 

responses from the two controllers demonstrate the faster convergence of the intelligent 

controller. The phases for one bound stride are indicated in Figure 2.6. 

 
FIGURE 2.6 INTELLIGENT VS. EXISITING (FIXED-ANGLE) CONTROL 

The intelligent controller allows the hip angles to adapt quickly to the desired velocity set 

point while the existing controller does not achieve the desired velocity after 3.5s 

(approximately 10 strides). The intelligent controller is able to adjust the hip angles to 

accelerate to the set point in 2.5s (approximately 6 strides). 

2.3.3 VELOCITY VARIATION 

The real benefits of the intelligent controller, however, can be gleaned from Figure 2.7 

where adaptation to the variable velocity set-point is demonstrated. Unlike the existing 
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Rear leg lift off 
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bounding controller, the intelligent controller is able to track quite accurately the 

velocities between 0.9 m/s and 1.3 m/s and furthermore, to seamlessly transition between 

the different set-points. Near the end of the test, a desired velocity of 0 m/s was used to 

successfully stop the robot without losing stability. 

 
FIGURE 2.7 TRACKING VELOCITY VARIATIONS 

In this simulation, the velocity set point was varied 8 times during a 30 second bound 

trial. The velocity intervals in this test varied between 3 and 5 seconds in length, yielding 

7 to 16 bound strides per interval. Within five strides of each change in set point, the 

robot reached the new velocity set point. Once the convergence to the new set point 

occurred for each interval, the robot continued to maintain the bound velocity with errors 

less than 0.1 m/s. 

The effects on the desired hip angles of the adaptation with the intelligent controller can 

be seen in Figures 2.8 and 2.9. In Figure 2.8, the robot is commanded to accelerate from 

1.0m/s to 1.3m/s. The intelligent controller achieves these results by increasing the 

        Intelligent Controller 

        Velocity set point 
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magnitudes of both the desired touchdown and liftoff angles. In these experiments, the 

negative hip angle indicates that the leg is forward from the hip joint thus preparing for 

touchdown; whereas a positive hip angle indicates that the leg is behind the hip position, 

preparing for liftoff. At higher speeds, the „plateau‟ portion of the velocity plot is longer, 

indicating an increase in flight time.  

 
FIGURE 2.8 PAW ACCELERATING FROM 1.0 TO 1.3M/S 

An example of the effects of deceleration using the intelligent controller is shown in 

Figure 2.9. Here, the robot‟s desired velocity is varied from 1.3m/s to 1.0m/s, causing the 

hip angle fluctuations to shrink and the flight time to decrease. 
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FIGURE 2.9 PAW DECELERATING FROM 1.3 TO 1.0M/S 

Although there are upper and lower limits to the allowable bounding speed, as it will be 

discussed in section 2.3.4, commanding a desired velocity of 0 m/s successfully stops the 

bound sequence while maintaining stability. A more detailed plot of a stopping test is 

shown in Figure 2.10. From this plot, it is clear how the gradual reduction of hip angles 

occurs, allowing the robot to come to rest without failing. Unfortunately, due to the 

passive nature of the system, it is not possible to reinitiate bounding without a predefined 

start up sequence. 
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FIGURE 2.10 PAW STOPPING SEQUENCE 

2.3.4 ROBUSTNESS TO DISTURBANCES 

As the intelligent controller uses velocity feedback in the control loop, the controller 

corrects for changes in the robot's forward speed. So if the error in velocity is caused by a 

disturbance to the system instead of a change in the set point, it may be possible for the 

robot to compensate for this change. Therefore, it is worthwhile to verify the controller‟s 

robustness to disturbances. These changes to the robot‟s performance are primarily 

caused by changes in the robot-ground interaction. In the context of the MSC Adams 

simulation, we investigate the effects of changes in robot-ground interaction by varying 

the critical parameters of the contact model for leg-ground contact. Table 2.2 summarizes 



Intelligent Velocity Control of a Bounding Quadruped Robot 

29 

the robot-ground property changes considered, and the following subsections describe a 

performance analysis of the controllers with varying terrain properties. 

Test Stiffness Force 

Exponent 

Damping Penetration 

Depth (m) 

Static 

friction 

coefficient 

Dynamic 

friction 

coefficient 

Stiction 

tran. 

Vel. 

Friction 

tran. 

Vel. 

Original 10
7
 2.2 20 10

-4
 0.8 0.76 2.0 3.0 

Friction 

change 
10

7
 2.2 20 10

-4
 0.4 0.38 2.0 3.0 

Stiffness 

change 
10

6
 2.2 20 10

-4
 0.8 0.76 2.0 3.0 

TABLE 2.2 ROBOT-TERRAIN INTERACTION PROPERTIES 

2.3.3.1 TERRAIN FRICTION COEFFICIENT CHANGE 

A terrain friction coefficient reduction by 50% reduces the robot‟s ability to track a 

desired velocity as seen in Figure 2.11. 

 
FIGURE 2.11 FRICTION TERRAIN CHANGE WITH INTELLIGENT CONTROLLER 

Terrain change 
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The reduction of the friction coefficient causes some slip in the stance phase of the bound 

stride. Although the hip actuators are able to achieve the desired set points, the slip 

between the toe and the ground negates the SLIP assumption shown in Figure 1.2, 

causing some loss of energy in the stance phase. This has the negative effect of reducing 

the forward bounding velocity after the change in friction has occurred. In Figure 2.11, 

the actual robot forward bounding velocity has been reduced by over 20%, 5 seconds 

after the change in terrain.  In Figure 2.12, a simulation was conducted to verify the 

response of the controller over a longer test area. The controller appears to compensate 

for the loss in velocity by slightly modifying the desired hip angles, however after over 

30 s, the velocity error is still above 0.2 m/s. The LM learning algorithm modifies gains 

α1 and α2 in attempt to compensate for the increasing velocity error at the top of flight of 

each bound stride, but only small adjustments to these gains at each top of flight in the 

bound are possible. As described previously, gains α1 and α2 are found by reducing the 

error between the desired and actual top of flight forward velocities, whereas gain α3 was 

determined experimentally to compensate for the passive nature of PAW's legs. The 

value of α3 is decidedly a function of the leg-terrain interaction. Therefore, a change in 

terrain properties should be reflected by a change in the value of α3. Ultimately, to 

increase the robot's ability to overcome varying terrain properties, a relationship between 

α3 and terrain properties should be determined. 
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FIGURE 2.12 FRICTION TERRAIN CHANGE WITH INTELLIGENT CONTROLLER (LONG)  

The terrain change simulation was tested for the fixed angles controller. This experiment 

is shown in Figure 2.13. The friction change causes a gradual loss of energy in the system 

at each stride. Without modifications to the touchdown and liftoff angles, the springs can 

no longer store the required energy to achieve liftoff after approximately 4.5 seconds, 

when failure occurs. 

Terrain change 
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FIGURE 2.13 FRICTION TERRAIN CHANGE WITH FIXED-ANGLE CONTROLLER 

 

2.3.3.2 TERRAIN STIFFNESS CHANGE 

The intelligent controller was tested over a terrain with reduced stiffness (factor of 10 

reduction) in Figure 2.14. Unlike the friction change simulations, the controller was 

unable to overcome the softer terrain. The lower stiffness caused a reduced height and 

length of the flight phase, leading to smaller bound lengths. This can be gleaned from 

Figure 2.14 after 2.5 s as the flight phases become shorter. The reduced flight phase 

causes a reduction in the ability of the hip actuators to achieve their desired angles, 

leading to failure by rear leg dragging at approximately 4 s. 

Terrain change 
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FIGURE 2.14 STIFFNESS TERRAIN CHANGE WITH INTELLIGENT CONTROLLER 

The terrain stiffness is identified as a more critical parameter to the success of the bound 

gait than the ground friction. The stiffness directly affects the flight phase of the bound 

due to the passive nature of the robot‟s compliant legs. The failure occurs approximately 

5 strides after the terrain change, and the intelligent controller is not able to overcome this 

stiffness change. The ground friction change, on the other hand, affects the SLIP model 

assumption. In this case, the intelligent controller is able to continue a stable bound gait, 

albeit with reduced velocity tracking capabilities. Nonetheless, this is an improvement to 

the previous fixed-angle controller that was unable to withstand the ground friction 

change. 

Terrain change 
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Ultimately, the intelligent controller has limited success in withstanding significant 

terrain changes due to the nature of PAW‟s design. A reduction in ground stiffness 

directly affects the passive nature of the robot‟s compliant legs, quickly leading to failure. 

This failure is not specific to the proposed controller, and an increase in robustness to a 

change of ground stiffness would require alternative adaptation mechanisms, such as a 

change in the robot gait. For a change in friction, the intelligent controller proved more 

robust than the pre-existing non-intelligent controller. 

2.3.5 LIMITATIONS 

The results point to limitations at high and low speeds for stable bounding. The high and 

low limits were found to be 1.3m/s and 0.9m/s respectively. These limitations, however, 

are inherent to the robot‟s configuration and design parameters, and not the fault of the 

intelligent controller per se. If the desired velocity is set higher to 1.4 m/s the rear legs 

will start to drag instead of lifting off. This is a consequence of the larger liftoff angles 

required at higher speeds, which in turn cause lower bounding height for an already rather 

short-legged PAW. Figure 2.15 shows the result of accelerating from 1.0m/s to 1.4m/s. 

At 6 seconds, the forward pitch of the robot, prior to the front legs touching down, is 

diminished due to the high liftoff angles required to achieve the desired velocity. Failure 

occurs at 8 seconds where the rear legs do not liftoff, causing the robot to slow to a halt. 
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FIGURE 2.15 ACCELERATION FAILURE AT 1.4M/S 

At desired velocities below 0.9 m/s, the front legs drag instead of lifting off. This occurs 

as PAW‟s rear legs take longer to touch down, and the front legs “wait” for them to land, 

thus dragging and creating instability. This “waiting” is due to the forward pitching 

motion caused by the low touchdown and liftoff angles. Figure 2.16 demonstrates the 

failure by decelerating from 1.3m/s to 0.8m/s. Front leg dragging can be seen by the front 

hip angles continuing into the positive direction instead of initiating flight when the liftoff 

angle is achieved. Figure 2.17 shows the robot‟s position at front leg touchdown, 

demonstrating the high forward pitch motion causing failure. 
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FIGURE 2.16 DECELERATION FAILURE AT 0.8M/S 

 
FIGURE 2.17 PAW SIMULATION IMAGE 

PAW‟s natural dynamics limit the range of possible forward bounding velocity. By 

controlling PAW‟s leg lengths using prismatic actuators, it would be possible to inject the 

required energy into the system to achieve higher and lower bounding speeds. The 

intelligent velocity controller, however, is capable of velocity tracking within the 

operational range of the robot. 
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CHAPTER 3: VELOCITY ESTIMATION 
 

 

One major advantage of the PAW platform over other robots is the simple controller and 

actuator design that require minimal sensing for dynamically stable locomotion. 

However, implementing intelligent control on the robot increases both the capabilities 

and requirements of the control system. In the existing non-intelligent controller 

described in Chapter 2, it is clear that robot touchdown detection, liftoff detection, hip 

and wheel position and velocity are required in the control loop. Additionally, the 

intelligent controller requires accurate measurement of the center of mass velocity. This 

chapter will describe the existing sensing capabilities of the robot, an extended Kalman 

filter (EKF) for estimating the forward velocity of the robot, and a validation of the 

proposed estimation method.  
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3.1 AVAILABLE SENSORS 

The robot has 2000 count-per-revolution encoders for the hip and wheel motors, 

potentiometers with a precision of 1 mm to measure the compression in the leg springs, 

and a BAE SiIMU-01 inertial measurement unit (IMU). The IMU packages three 

gyroscopes and three accelerometers and can generate the body attitude and acceleration 

information. The specifications of the IMU are displayed in Table 3.1. Current and 

voltage sensors for the battery and a current sensor on each hip motor amplifier are also 

available but not used for robot control [27].   

Parameter Angular Value Linear Value 

Measurement Range 600-1000 deg/sec 50 g 

Scale Factor 500 ppm 1 σ 2000 ppm 1 σ 

Bias Instability 5 deg/hr 1 σ - 

Bias Repeatability 100 deg/hr 1 σ 10 mg 1σ 

Random Walk 1.0 deg/ √hr 1.0 m/s/ √hr 

Bandwidth 75 Hz 75 Hz 

Update Rate 200 Hz 200 Hz 
 TABLE 3.1 BAE SIIMU-01 SPECIFICATIONS 

In the existing configuration, only a poor estimate of forward velocity is possible from 

integrating the IMU‟s linear acceleration data – a process well-known to be prone to drift.   

A commonly attempted solution to this problem is to use an Extended Kalman Filter 

(EKF) to combine the IMU data with another available estimate to produce an optimal 

estimate of forward velocity [35]. In our case, the additional velocity estimate can be 

obtained from the measured leg angles and leg lengths, through the kinematics relations 

for the robot. 
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3.2 KINEMATICS ESTIMATE OF FORWARD VELOCITY  

During various phases in the robot stride illustrated in Figure 2.2 of Chapter 2, the center 

of mass (COM) velocity can be estimated using the sensors available on the platform. To 

achieve accurate velocity estimation, velocity equations must be developed for each 

phase of the robot‟s gait. 

For the single-leg stance phases (B and D of Figure 2.2), the COM position can be 

expressed relative to the toe‟s position on the ground. We designate the frame with the 

origin at the toe's position the toe fixed reference frame. For the planar robot shown in 

Figure (2.3), the toe fixed reference frame has an orientation identical to the inertial 

frame of reference. The general 3D case for the toe fixed frame can be seen in Figure 

(3.6). Equations (3.1) and (3.2) describe the COM position relative to the front and rear 

contact points respectively. In Equations (3.1) to (3.4), an average between the two front 

and two rear legs is used for the front and rear calculations respectively. Note that for 

actively controlled wheels on the physical robot, the fixed toe assumption used in 

simulation is no longer valid, and the wheel angular position and radius must be taken 

into account. [36]:  

fwheelwheel
fffCOM rlLx   )sin(cos           (3.1) 

 
r

rrr wheelwheel
COM rlLx   )sin(cos             (3.2) 

The corresponding body velocity can be found, at both single-leg stance phases, by 

differentiating Equations (3.1) and (3.2) with respect to time, yielding Equations (3.3) 

and (3.4):   
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fwheel
wheelffffffCOM rllLx   )cos()()sin(sin       (3.3)    

rr wheel
wheelrrrrrCOM rllLx   )cos()()sin(sin        (3.4) 

Equations (3.3) and (3.4) express the COM velocity during front and rear leg stance 

respectively. During the double stance phase C, velocity is taken as the average of the 

two estimates from Equations (3.3) and (3.4), while during the flight phase A, forward 

velocity is assumed to remain constant from the liftoff of the rear leg at phase D. The 

assumption of constant flight velocity coincides with the simulation results presented in 

Chapter 2. Sections 3.2.1 and 3.2.2 will show the effectiveness of these equations during 

a Matlab/Adam co-simulation, and on the PAW platform. 

3.2.1 KINEMATICS ESTIMATION RESULTS AND VALIDATION 

The kinematics velocity estimation Equations (3.3) and (3.4) were evaluated in both the 

PAW‟s Matlab-Adams co-simulation model, and on the physical platform. 

In the simulation, the bound sequence is initiated by setting an initial pitch of 60 degrees, 

a zero initial forward velocity, and letting the robot drop from a predefined height. It 

should be noted that touchdown/liftoff detection in simulation is detected when a leg 

length compression threshold is met. This threshold is identical to that used on the PAW 

robot. The value is 0.02m less than the uncompressed leg length.  

In the simulation shown in Figure 3.1, the robot is set to bound at 1.0 m/s using the 

intelligent controller described in Chapter 2. Figure 3.1 compares the estimated forward 

velocity from the kinematics equations (3.3) and (3.4) to the true forward velocity of the 

robot in simulation. Note that in simulation, the wheels at the ends of the legs are not 
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modeled, thus the wheel portions of Equations (3.3) and (3.4) are neglected in the 

following tests. 

 

 
FIGURE 3.1 KINEMATICS ESTIMATE OF FORWARD VELOCITY ON SIMULATED DATA 

The two velocity profiles are quite close to one another during the flight phase of the 

bound. The flight phase in the velocity plot is identified by the „plateau‟ portion of the 

profile, which indicates a near constant velocity during flight. This is promising as the 

input to the learning controller is simply the top-of-flight bounding velocity. The major 

difference between the profiles is seen during the stance phase of the legs. Figure 3.2 

provides a detailed comparison of the two profiles. 

 

Flight Phases 
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FIGURE 3.2 DETAIL OF KINEMATICS ESTIMATE OF VELOCITY ON SIMULATED DATA 

The spikes in the profile occur at the touchdown of the front and rear leg pairs. At the end 

of the flight phase, the front legs touchdown causing a sudden change in leg lengths 

followed by a change in hip angular rates, causing the spikes seen in Figure 3.2. The 

second set of spikes occurs as the rear leg pair touchdown causes the robot to decelerate 

to its lowest speed in the bound stride. The rear touchdown is followed by an acceleration 

of the robot as the rear hips are actuated to their desired liftoff angle and the front leg pair 

takeoff. The change in hip angular rate and pitch, as well as the rapid rear leg extension 

causes Equation (3.4) to overshoot the actual forward velocity of the robot prior to 

settling to the flight velocity. 

Phase A: Flight Phase A: Flight Phase A: Flight 
Phase A: Flight 

Front leg 

touchdown 

Rear leg 

touchdown 

Rear leg liftoff 

Front leg liftoff 

Time 
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The kinematics estimate equations were also implemented on real PAW bounding data. 

That is, the velocity profiles seen in Figures 3.3 and 3.4 used data collected from the 

robot‟s sensors during a 9 second bound test conducted in the laboratory. On the real 

robot, the wheel portion of Equations (3.3) and (3.4) are being used. 

 
FIGURE 3.3 KINEMATICS ESTIMATE OF FORWARD VELOCITY ON ROBOT DATA 

The kinematics estimate of velocity is compared to the velocity generated with the IMU 

measurements; the latter is corrected using an error model, which will be described in 

Section 3.3.1. Figure 3.4 provides a more detailed view of the bound segment of the test. 
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FIGURE 3.4 DETAIL OF KINEMATICS ESTIMATE OF ROBOT DATA 

Similarly to the simulation results in Figure 3.2, the robot's kinematics velocity during 

stance is characterized by large spikes overshooting the actual robot velocity. It is clear 

that the kinematics velocity estimate performs rather poorly on the real robot data, with 

errors of up to 0.7 m/s during flight phases. It is believed that this occurs because the 

inputs to the kinematics estimator are generated by real sensors, which have noise and 

vibrations, which are multiplied in Equations (3.3) and (3.4). However, since the 

kinematics estimate is simply used to correct the IMU data primarily during the flight 

phase, we suggest these equations may be of use in the EKF, as during some flight 

sequences, the kinematics estimate is comparable to the IMU estimate. 

 

Phase A: Flight 

Front leg 

touchdown 

Rear leg 

touchdown 

Rear leg liftoff 

Front leg liftoff 
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3.3 IMU MEASUREMENTS  

We now discuss in detail the generation of velocity estimates with the IMU. As noted 

earlier, a BAE SiIMU-01 is mounted on PAW, near the center of mass of the robot. In 

previous work, this IMU was used solely for measuring robot pitch data. Thus, some 

modifications were necessary to use the data in the control loop. The following 

subsections describe how the IMU is mounted and how the measurements are processed 

to generate the COM velocity. Additionally, an error model was developed for the IMU 

in order to improve the accelerometer and gyroscope data prior to use in the EKF 

implementation. 

3.3.1 IMU DATA PROCESSING 

Figure 3.4 shows the mounted orientation of the IMU on the robot and the inertial 

reference frame.  

 

 (A) IMU MOUNTED ORIENTATION  (B) INERTIAL REFERENCE FRAME    

FIGURE 3.5 REFERENCE FRAMES 

The BAE SiIMU-01 measures the accelerations and angular rates in the body reference 

frame as shown in Figure 3.5(a) and it outputs incremental velocity and rotation angles in 

the same frame, at a rate of 200Hz. For the intelligent controller described in Chapter 2, it 

X (forward) 

Y (left) 

Z (up) 

Z  

Yaw 

Pitch 

Roll 
Y 

X 
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is necessary to obtain an estimate of center of mass forward velocity. In Equations (3.3) 

and (3.4), the kinematics estimate of COM is expressed in a toe fixed reference frame, 

which is identical to the inertial reference frame in the case of a planar robot as in Figure 

2.3. However, in the presence of some yaw motion during bounding, the toe fixed frame 

differs from the inertial frame, as illustrated in Figure 3.6. As PAW does have some 

unwanted yaw motion during bound caused by an uneven mass distribution [29], the toe 

fixed frame forward velocity should be used as the controller input. Thus, the IMU data 

must be integrated and converted to the toe fixed frame of reference prior to use in the 

EKF. 

 

 (A) PAW BOUNDING SIDE VIEW  (B) PAW BOUNDING TOP VIEW 

FIGURE 3.6 PAW REFERENCE FRAMES 

Quaternions are commonly used for converting acceleration and angular rate data in a 

body reference frame to velocity and position in an inertial frame [37]. The following 

presents the algorithm used on the robot to find the robot‟s attitude, velocity, and position 

in the inertial reference frame. 

Prior to transforming the reference frame, the IMU is initialized by averaging the first 

2000 time steps to find an offset value for each measurement. This offset value is 

subsequently subtracted from all measurements. As mentioned previously, the IMU 
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outputs incremental body velocity and incremental body rotations at a rate of 200Hz so 

that the linear acceleration and angular velocity of the robot in the body reference frame 

are found via Equation (3.5), where Δt is a time step of approximately 0.005 seconds. 
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To initialize the algorithm, the quaternion is set to: 
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In this convention [37], q3 represents the scalar part of the quaternion. In order to find the 

linear acceleration and angular velocity with respect to the inertial frame, we use the 

incremental quaternion equation as follows. 
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Then, the quaternion at the i
th

 time step can be found with: 

t  i1ii QQQ         (3.9) 

The quaternion is normalized at each time step to ensure it has a norm of one. 
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From the normalized quaternion, it is possible to convert to Euler angles to find roll, 

pitch, and yaw relative to the inertial reference frame via Equations (3.11) through (3.13) 

respectively. 
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Knowing the robot attitude in the inertial reference frame, it is possible to find robot 

velocity and acceleration in the inertial frame using the rotation matrix in Equation 

(3.14). 
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First, the gravity vector must be expressed in the robot body frame. According to: 
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The effects of gravity on the body frame velocity increments are accounted for in 

Equation (3.16). 

    t  measuredbody bodygVV         (3.16) 

The body frame velocity increments are transformed to inertial frame velocity increments 

using the rotation matrix 

       body

T

inertial VRXΔ        (3.17) 



Intelligent Velocity Control of a Bounding Quadruped Robot 

49 

and subsequently are added to find updated inertial robot velocity. These can be 

integrated to find position. 

inertialinertialinertial i1-ii
XΔXX

  ,, ,
       (3.18) 

           t 
inertialinertialinertial i1-ii

XΔXX
,,,

      (3.19) 

Finally, the inertial frame velocity is transformed to the toe fixed velocity using the yaw 

rotation matrix, Rψ. The x-component of toei,X  is the forward COM velocity of the robot 

at time i. 

          inertiali,ψtoei, XRX             (3.20) 

Note that the x and z axis velocities and accelerations must change signs to account for 

the nominal orientation of the IMU on the robot relative to the direction of motion, as 

shown in Figure 3.4. 

3.3.2 IMU ERROR MODEL 

Subsection 3.3.1 describes the method used for obtaining attitude, velocity, and position 

of the robot with respect to an inertial reference frame. However, there are noise and bias 

errors present in the measured data from the IMU, causing significant errors and apparent 

drift when adding the incremental measurements and integrating them at a rate of 200Hz 

in Equations (3.18) and (3.19). Stationary and linear motion tests were conducted on the 

IMU mounted on PAW in the laboratory. The purpose was to develop an error model to 

correct the IMU measurements prior to handling in the EKF. 

First, a 60 s stationary test was conducted to observe the drift in the measurements of the 

IMU. Figure 3.7 shows the inertial frame roll, pitch and yaw measurements. Figure 3.8 

shows the inertial frame x, y, and z velocities.  
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FIGURE 3.7 IMU ATTITUDE DRIFT TEST 
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FIGURE 3.8 IMU VELOCITY DRIFT TEST 

 

Inaccuracies and bias errors in the IMU cause incremental errors at each time step of 

measurements. The substantial drift in the velocity, as seen in Figure 3.8, is created by the 

numerical integration, which adds the incremental errors at each time step, creating a 

large drift of as much as 0.6m/s over 60 seconds. The attitude drift is much smaller as the 

quaternion method reduces the integration errors. From these data sets, a linear error 

model was developed to account for this drift. Equations (3.21) to (3.26) describe the 

models, where T represents the total elapsed time and Δt the measurement increment. 

Tduncorrectecorrected

5101     (3.21) 

Tduncorrectecorrected

51033.7     (3.22) 

Tduncorrectecorrected

5105     (3.23) 



 

52 

txx duncorrectecorrected   018.0     (3.24) 

tyy duncorrectecorrected   01.0    (3.25) 

tzz duncorrectecorrected   01.0    (3.26) 

A forward rolling test, where the robot was commanded to a fixed velocity using its 

wheels, was performed to test the effectiveness of the error model in the x-direction. 

Figure 3.9 demonstrates the performance of the linear error model compared to the 

velocity data provided by the wheel encoders. This test consists of the robot starting from 

rest and calibrating, then standing up and accelerating forward to a velocity of 0.48m/s, 

followed by a stop and sit down. The error model shows a significant improvement on the 

raw IMU data. 

 
FIGURE 3.9 IMU ERROR MODEL TEST: FORWARD VELOCITY IN ROLLING 
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Lastly, a test was performed to verify the effectiveness of the error models to estimate the 

forward velocity in the bound gait as shown in Figure 3.10. 

 
FIGURE 3.10 IMU ERROR MODEL TEST: FORWARD VELOCITY IN BOUND 

 

It can be observed that the error model is not perfect. This is partially due to the 

inconsistency of the errors present on the IMU and the non-linear nature of the drift. 

Extensive testing of the same IMU unit was performed at Defense Research and 

Development Canada (DRDC) and those results indicate some inconsistencies, as seen in 

Table 3.2 [38]. DRDC performed a 15.5 hour stationary test on the IMU and compiled 

the accelerometer drift errors at every 100 seconds into 4 parts, each part consisting of 

almost 4 hours each. The inconsistencies of the drift error in the DRDC tests are clear 

from table 3.2. The last row of the table is included to compare the 60 second stationary 
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test, shown in Figure 3.7, performed in our laboratory. The drift values found at McGill 

are smaller than those found during the DRDC tests. This is believed to be due to the 

much shorter time of McGill‟s stationary tests. 

Test X 

(mili-g/hr) 

Y 

(mili-g/hr) 

Z 

(mili-g/hr) 

DRDC Test Part 1 -0.037 -0.231 0.140 

DRDC Test Part 2 -0.530 0.713 0.094 

DRDC Test Part 3 0.016 -0.300 -0.178 

DRDC Test Part 4 -0.142 0.043 -0.307 

McGill stationary test -0.0733 -0.0122 0.022 
TABLE 3.2 ACCELEROMETER DRIFT ANALYSIS RESULTS 

Additional inconsistencies are introduced in the IMU measurements as a result of its 

mounting on the PAW robot and the nature of the robot‟s operation. PAW experiences 

significant ground impacts during bounding, causing vibration of its mechanical 

structure. Additionally, the IMU mounting plate was an afterthought in the design of the 

robot, which ideally should be further reinforced to reduce IMU vibrations and 

misalignments. However, the nature of the measurements will inevitably be noisy and 

inaccurate, and for the purposes of this research, the results shown for the x-direction 

bound in Figure 3.10 are deemed sufficiently accurate for use in the EKF. 

3.4 EKF ALGORITHM 

The Kalman Filter attempts to predict the current state of the system using the previous 

estimated states, combined with the noisy measurement data. The Extended Kalman 

Filter (EKF) enables the use of non-linear state equations to estimate the desired states 

[39]. In this work, the kinematics estimate of velocity is used for propagation of the 

robot‟s velocity, while the IMU measured velocity is used for the measurement update of 
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robot velocity. Presented here is a modification of the EKF to account for the various 

phases of the bound gait as discussed in Chapter 2. 

First the state vector of the system is defined as 

 Tvllll rfrfrfrf
 x      (3.27) 

These states are illustrated in Figure 2.3 and the dotted elements represent their time 

derivative. The last element in the state vector, v, denotes the COM forward velocity for 

the robot. The discrete update at time k of the state is defined as 

       11111 )(),(   kkkkkk f wxxAwxx       (3.28) 

where wk-1 is process noise assumed to be zero mean Gaussian white noise with 

covariance Qk estimated based on the accuracy of the state measurements, and  
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The Φ10x11 matrix is given by 
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where Iixj and 0ixj are the i-by-j identity and null matrices respectively and φ1x11 is defined 

as: 

     11109854111 00000 φ    (3.31) 

where )cos()(14   ffS             (3.32)  

 )cos()(25   rrS           (3.33) 

)sin()sin( 218  LSLS             (3.34)   

     )sin(19   fS           (3.35) 
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     )sin(210   rS           (3.36) 

     311 S            (3.37) 

The S-values in Equations (3.32) to (3.37) are defined based on the particular phase in the 

bound cycle as shown in Table 3.3. 

Phases S1 S2 S3 

A: Flight 0 0 1 

B: Front stance 1 0 0 

C: Double Stance 0.5 0.5 0 

D: Rear Stance 0 1 0 
TABLE 3.3 S-VALUES FOR EKF 

Therefore, the velocity element in state vector update xk is found using estimate for 

velocity kinematically. 

Then, the measurement equation can be defined as: 

kkkkkk vxHvxhz  ),(       (3.38) 

where vk is the observation noise assumed to be zero mean Gaussian white noise with 

covariance Rk  determined from the variance of measurements and 

1111 IHk         (3.39) 

The measurement equation for zk is updated directly from the sensor values and uses the 

IMU measurements for the velocity state update. 

Covariance matrices Qk and Rk represent the accuracy of the state estimates and 

measurements during each phase of the robot‟s bound sequence. An analysis of each 

sensor was performed to determine the uncertainty in the measurement. For the elements 

contained in state vector xk and the measurement vector zk, the leg lengths and the 

velocity estimates and measurements displayed some level of inaccuracy. The other 

sensors perform adequately and a very small value was used in the matrices Qk and Rk. 



Intelligent Velocity Control of a Bounding Quadruped Robot 

57 

The standard deviations for each state element contained in Table 3.4, were found by 

comparing measured values to some known value. In this case, the standard deviation is 

simply the square root of the covariance, which is used in Qk and Rk. 

State Estimate Standard Deviation 

Leg length front (m) 6.123x10
-5

 

Leg length rear (m) 1.84 x10
-4

 

Kinematics Velocity Phase A: 

Flight (m/s) 
0.45 

Kinematics Velocity Phase B: 

Front Stance (m/s) 
0.35 

Kinematics Velocity Phase C: 

Double Stance (m/s) 
0.47 

Kinematics Velocity Phase D: 

Rear Stance (m/s) 
0.8 

IMU Velocity (m/s) 1.67x10
-4

 
TABLE 3.4 STANDARD DEVIATION OF STATE ESTIMATES 

The standard deviation of the velocity estimate for each phase of the robot‟s bound was 

found by comparing the kinematics estimate to the true velocity value in simulation, as 

seen in Figure 3.2. For the IMU velocity covariance, ideally, this value would be found 

by comparing the IMU measured velocity to the true velocity at instants through the 

bound. However, the most accurate measure of velocity is only available from the IMU 

as there is no „true‟ velocity value available. Therefore, we rely on the error model 

described in Equations (3.21) to (3.26), in section 3.3.2, to improve the accuracy of the 

IMU measurement and use the covariance value shown in table 3.4 tuned via trial and 

error by comparing the IMU measurement to simulated values, in the EKF.  

The best estimate of the robot‟s state at time k, kx̂ , can now be found using the EKF 

algorithm presented in Equations (3.40) to (3.47). In these equations, the subscripts k|k-1 

and k|k denote the a priori and a posteriori values respectively for time k, where k-1|k-1 

denotes the a posteriori value for the previous time step, k-1. 



 

58 

1. Predicted state: 
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2. Predicted estimate of covariance: 
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3. Measurement residual: 
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5. Optimal Kalman gain: 
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6. Updated state estimate: 
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7. Updated estimate covariance: 
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The best estimate of forward velocity of the robot at time k is the last element in the state 

update kk |x̂ . The EKF algorithm was implemented on the PAW robot and the results are 

presented in section 3.5.  
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3.5 EKF RESULTS AND VALIDATION 

The EKF algorithm was tested on the robot commanded to bound over a distance of 4m 

in a laboratory environment, with fixed touchdown and liftoff angles. Figure 3.11 

compares the IMU measured velocity, combined with the error model developed in 3.3.2, 

and the EKF estimated velocity. 

 
FIGURE 3.11 FORWARD VELOCITY OF BOUND 

At a first glance, the EKF and the IMU estimates appear to be quite close. However, the 

point of interest is primarily the top-of-flight velocity, which is used as an input to the 

intelligent controller described in Chapter 2. Figure 3.12 displays a zoom-in of the bound 

sequence, and the flight velocity estimate. 
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FIGURE 3.12 DETAIL OF FORWARD VELOCITY OF BOUND 

The profile of the velocity estimate is characterized by large spikes during leg impacts 

and smoother profiles during flight. It is clear that the EKF reduces the magnitude and the 

number of spikes in the velocity estimate, most notably during the flight phase. Without 

the EKF, the flight phase velocity can vary by up to 0.3m/s, which would be unacceptable 

for intelligent velocity control between 0.9m/s – 1.3m/s. The EKF‟s flight phase velocity 

has a range of 0.1m/s.  

A true TOF velocity of the robot is difficult to determine, but an estimate of the average 

velocity during the bounding sequences of Figures 3.11 and 3.12 was obtained by using a 

high speed camera, the Casio EX-F1, which enables 300fps video imaging. According to 

the video analysis, the average robot speed throughout the bound cycle is 0.98m/s ± 

0.15m/s. This analysis was performed by setting markers 0.5m apart on the ground, and 
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Rear leg touchdown 

Front leg touchdown 

Front leg liftoff 

Phase A: Flight 
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estimating the frame number at which the robot crosses the markers. The stated mean 

velocity was found by averaging the velocities at each marker, whereas the range is 

simply the maximum and minimum velocities found. As the test was performed for a 

very limited range, and the camera was stationary throughout the test, some inaccuracies 

will result in the visual estimate of the exact frame at which the robot crossed the 

markers. However, the range of possible frame numbers at which the robot crosses the 

marker result in discrepancies smaller than the range calculated above.  

This method does not yield an estimate of the top-of-flight bound velocity but a mean 

velocity throughout the robot‟s bound. Nonetheless, the EKF estimated velocity falls in 

mid-range of the estimate provided by the high speed camera test. Figure 3.13 shows 

several still frame shots of the robot bounding across the markers during this test. 

 
FIGURE 3.13 STILL FRAMES OF BOUNDING TEST IN LABORATORY 
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A final validation of the EKF velocity estimate was performed by comparing the velocity 

profile with the bounding velocity of the robot in simulation, shown in Figure 3.14.  

 
FIGURE 3.14 FORWARD VELOCITY SIMULATION OF PAW BOUNDING 

The profile of the curves in Figure 3.12 and 3.14 are very similar to one another. In 

Figure 3.14, the spike that occurs just before the flight phase corresponds to the rear leg 

take off and is of the same order of magnitude for the EKF estimate as for the true 

simulated velocity. At the front leg touchdown instant, there is a brief acceleration where 

the velocity increases by approximately 0.5 m/s. This acceleration is not seen in the EKF 

results in Figure 3.12. The double stance phases in the EKF results; the portion of the 

curve contained between the rear leg touchdown and front leg liftoff, shows a larger 

deceleration, approximately 0.4 m/s below the flight velocity, whereas in simulation, the 

value is about 0.1m/s below the flight velocity. This is due to the kinematic estimate of 

the velocity and the covariance values used in the EKF at double stance phase. The flight 
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phase velocity estimate of the EKF profile resembles that of the simulated results, 

yielding velocity variations of below 0.1 m/s during the phase. 

There are inevitably more sensor errors, noise and vibration on the physical platform; as 

seen by the small oscillations in the velocity profile in Figure 3.12 that are not visible in 

Figure 3.14. Nonetheless the variability of under 0.1m/s during flight demonstrates 

sufficient accuracy to test the intelligent velocity control described in Chapter 2. Chapter 

4 shall demonstrate the effectiveness of the intelligent controller on the physical platform, 

while using the EKF described here for estimating COM TOF velocity in the control 

loop. 
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CHAPTER 4: CONTROLLER IMPLEMENTATION AND 

RESULTS  
 

 

The first section in this chapter describes the steps taken towards the implementation of 

the intelligent controller and the Extended Kalman filter on the PAW robot. The 

subsequent sections describe in detail the results of the controller testing on PAW. A 

detailed analysis is contained to provide the reader with a comparison to the simulation 

results shown in Chapter 2. Lastly, a discussion is presented of the various parameters 

that were identified as critical to the effectiveness of the intelligent velocity controller, 

including the velocity limits. 
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4.1 IMPLEMENTATION  

Chapter 2 described the MSC Adams model combined with MATLAB used to evaluate 

the performance of the intelligent velocity controller. Initial steps towards physical 

implementation were taken in Chapter 3 where the EKF, used for estimating top-of-flight 

forward bounding velocity as an input to the controller, was developed. Some additional 

modifications were required prior to testing the intelligent controller on the robot. These 

modifications are described in the following subsections. 

4.1.1 MECHANICALLY BLOCKED WHEELS 

The simulation results of Chapter 2 were obtained without actuated wheels modeled at 

the distal ends of the robot‟s legs.  However, as discussed previously, the PAW robot 

uses actuated wheels to combine the advantages of legged and wheeled locomotion. For 

the bound gait, the wheels can be actuated to prevent their rotation via the closed-loop 

controller, as described in Equation (2.2), or mechanically blocked.  

In the case where the wheels are actuated, the wheel position changes at the touchdown 

instant, however, this occurs before the leg reaches the threshold at which the leg state 

machines transitions between flight and stance. Figure 4.1 shows the effect of touchdown 

on the wheel velocity and the leg length, where the * represents the point at which the leg 

state machine changes from flight to stance. The first dotted vertical line represents the 

instant at which the wheel first displaces, while the second vertical dotted line represents 

the instant when the leg potentiometers reach the leg compression threshold. The time 

separating these two instances is approximately 0.015 seconds. 
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FIGURE 4.1 TOUCHDOWN DETECTION 

The touchdown is identified by a change in angular position of the wheel, which leads to 

a counteracting actuating motion to ensure the wheel remains at rest. This ultimately 

negates the SLIP model assumption, which affects the stability of the stance phase, as 

seen in Figure 4.2 (a) and (b). 

 
               (A) BLOCKED WHEELS     (B) ACTIVE WHEELS 

FIGURE 4.2 SLIP MODEL WITH WHEELS 
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The actuated wheels lead to variability in the hip actuation, which tends to destabilize the 

robot during the stance phase, the phase in which stability is normally gained for the next 

step in the bound gait [29]. It was noted during the present work on PAW and in [29], 

that this correlates to the level of repeatability between tests, as actively controlled 

wheels during bound lead to higher failure rates. Figures 4.3 and 4.4 compare results 

from bounding tests with actuated wheels vs. mechanically blocked wheels, respectively, 

to demonstrate the variability in the velocity and pitching motion during bound. The test 

shown in Figure 4.3 uses the same fixed touchdown and liftoff angles as in Figure 4.4. A 

visual comparison of the two tests clearly shows a more regular bounding motion with 

the mechanically blocked wheels. 

 
FIGURE 4.3 BOUND TEST WITH FIXED ANGLES AND ACTUATED WHEELS  
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FIGURE 4.4 BOUND TEST WITH FIXED ANGLES AND MECHANICALLY BLOCKED WHEELS 

In order to evaluate the intelligent controller under more favorable conditions, similar to 

the MATLAB/Adams co-simulation, the mechanically blocked wheels method was used 

to generate the results in Section 4.2. To block the wheels, hot glue is injected in the 

bevel gear between the wheel and the wheel motor. Additionally, electrical tape is used to 

reinforce the blocking mechanism, while the wheel motors are deactivated in the robot 

code. Figure 4.5 shows an image of the mechanically blocked wheels. 
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FIGURE 4.5 MECHANICALLY BLOCKED WHEEL 

4.1.3 ROBOT CONTROLLER BLOCK DIAGRAM  

Figure 4.6 represents the block diagram of the control scheme implemented on the robot. 

 
FIGURE 4.6 ROBOT CONTROLLER BLOCK DIAGRAM 
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4.2 CONTROLLER PERFORMANCE  

This section demonstrates the effectiveness of the intelligent controller to track a desired 

set point, and to transition between desired set points during the bound gait. 

4.2.1 CONVERGENCE 

The controller‟s tracking ability was evaluated by testing various set points. Figure 4.7 

demonstrates a test in which the desired TOF velocity was 1.0m/s. 

 
FIGURE 4.7 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.0 M/S 

In comparison with the simulation results in Figure 2.6, the robot requires additional 

strides to converge to the desired set point. This is due to the start-up routine for the 

bound gait. In simulation, the robot is simply dropped from a predefined height with an 

I.C. begins 
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initial pitch, whereas in physical testing, the robot has a kick-off routine to initiate the 

bound. Combined with changing hip angle set points from the intelligent controller, 

stable bounding takes longer to achieve and bound failure rates rise on the robot. To 

compensate for this reality, the first 4 strides in the bound on the physical robot are set 

with predefined touchdown and liftoff angles, so that stable pitching is achieved prior to 

the initialization of the intelligent controller. Intelligent controller starting instant is 

indicated by the vertical dashed line through the plot. 

An analysis of the tracking ability was performed for each bound test with a fixed set 

point, of which the results are shown in table 4.1. The values in Table 4.1 for each set 

point are computed from a single trial. These trials are also illustrated in Figures 4.7 to 

4.11. The repeatability between trials of the controller is high as failures only occur when 

there is an error reading data from the IMU to the robot‟s I/O board, which in turn affects 

the velocity estimate used in the control loop. 

Velocity set point 

(m/s) 

σ 

(at controller 

initialization) 

# of strides till 

convergence 
σ 

(after convergence) 

0.9 0.11 3 0.116 

1.0 0.12 1 0.0752 

1.1 0.065 3 0.0558 

1.2 0.134 3 0.0763 

1.3 0.136 4 0.0749 
TABLE 4.1 CONTROLLER TRACKING ABILITY 

The standard deviation is computed by taking the error between the desired COM 

velocity and the actual COM velocity at the top-of-flight instant (the value used in the 

controller), for each stride. The standard deviation calculation above begins at the start of 

the intelligent controller. As seen in Figure 4.7 and in the results in Chapter 2, several 

strides are required to achieve the desired velocity. Thus, the σ value in Table 4.1 is high 

in some cases. The column entitled „# of strides till convergence‟ indicates the number of 
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strides between the initialization of the intelligent controller to when the set point is 

achieved. The second calculation of the standard deviation serves as a measure of how 

well the intelligent controller maintains the desired set point after the required number of 

strides for convergence. In most cases, this is a significantly lower value. This simply 

means that although as the controller may take several strides to achieve the set point, 

mostly in the cases for high velocities, the velocity is maintained quite accurately. Figure 

4.8 is an example of this, where a velocity of 1.3m/s is desired. 

 

FIGURE 4.8 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.3 M/S 

The results in Table 4.1 indicate that as the desired velocity moves away from 1.0m/s, 

more strides are needed to converge towards the desired set point. This is because prior to 

I.C begins 
Convergence 
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the intelligent controller initialization, the fixed touchdown and liftoff angles used cause 

the robot to bound near 1.0 m/s. As the set point deviates from 1.0m/s, there is a larger 

error between the robot‟s actual velocity and the desired velocity at the start-up of the 

intelligent controller. 

Another interesting observation is that, at higher velocities, the robot maintains the 

velocity set point better than at low velocities. This is likely due to the relationship 

between stride length and velocity, as seen in Equation (2.3). As desired velocity 

increases, the robot‟s strides become longer, increasing both the stance time and the flight 

time. As indicated in [29], the stance phase of the bound allows the robot to maintain 

stability. At lower velocities, as stance time decreases, the robot has less time to achieve 

the desired hip angles, increasing the chances that hip angles are not achieved prior to 

lift-off. Ultimately, this leads to fluctuations in the bound velocity, hence the higher 

fluctuations about the set point at 0.9 m/s in Figure 4.9. As it will be discussed in section 

4.3, there is a minimum velocity where the gait is able to maintain stability. 

Figures 4.9 to 4.11 illustrate the controller‟s performance for the velocity set points of 0.9 

m/s, 1.1 m/s, and 1.2 m/s respectively. 
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FIGURE 4.9 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 0.9 M/S 

 
FIGURE 4.10 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.1 M/S 

I.C begins Convergence 

I.C begins Convergence 
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FIGURE 4.11 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.2 M/S 

4.2.2 ACCELERATION 

Although analyzing the ability of the controller to achieve a desired set-point is essential 

in evaluating its performance, the advantage of such a controller is to allow for the robot 

to accelerate and decelerate during the bound gait. As seen in Section 4.2.1, the controller 

can maintain a desired set point with a standard deviation of less than 0.1 after 

convergence. Thus, in the acceleration and deceleration tests shown in the following 

sections, it was deemed more appropriate to track large velocity transitions, as they are 

more statistically significant. 

Figure 4.12 demonstrates an acceleration test of the robot between 0.9m/s and 1.3 m/s. 

The acceleration in the robot occurs smoothly, as an increase in the stance and flight 

I.C begins Convergence 
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phase increases stability, which leads to improved velocity tracking at the higher velocity. 

The new set point is achieved after 3 bounds, due to the rapid transition in hip angles, as 

seen in Figure 4.12. 

 
FIGURE 4.12 INTELLIGENT VELOCITY CONTROLLER ACCELERATING 0.9 M/S TO 1.3 M/S 

4.2.3 DECELERATION 

The deceleration test in Figure 4.13 shows a velocity transition between 1.1 m/s and 0.9 

m/s. The deceleration takes 4 strides, although the shorter stance and flight times at lower 

velocities cause higher errors about desired set point as in Figure 4.13. Overall though, 

these results indicate that the intelligent controller is capable of transitioning between 

velocity set points. 

I.C. begins Set point change 
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FIGURE 4.13 INTELLIGENT VELOCITY CONTROLLER DECELERATING 1.1 M/S TO 0.9 M/S 

4.3 CRITICAL PARAMETERS AND LIMITATIONS  

Extensive testing of the controller was performed to achieve the results shown in Section 

4.2. Several parameters were identified during testing as critical to the success of the 

controller. Outlined in the subsequent subsections are these parameters and their effect on 

the robot‟s gait.  

4.3.1 IMPORTANCE OF α3 GAINS  

The intelligent controller, as described in Chapter 2, uses a gain α3 that must be tuned 

manually. As this gain is required for the front and rear leg pair controllers, for 

touchdown and liftoff angle computation, four values for α3 need to be specified. The α3 

I.C. begins Set point change 
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component in the controller equation acts as a correction factor when computing the 

required hip angle to achieve the desired bound velocity. The intelligently tuned gains α1 

and α2 in equation (2.6) will lead to adjustments at each stride of the required hip angles, 

based on the feedback error. As will be shown in Section 4.3.3, if the front or rear leg hip 

angles are too large or small, the bound gait can become irregular and lead to gait failure. 

Testing showed that, in tuning the α3 parameter, the hip angle changed up to 4º for each 

0.01 increment of α3. Thus, tuning the α3 parameter was an important process in 

achieving a robust controller. Table 4.2 shows the values for the α3 gains on both the 

robot and in simulation. 

α3 parameter Simulation Value Robot Value 

Front Touchdown 0.01 0.01 

Rear Touchdown 0.00 0.00 

Front Liftoff -0.01 -0.01 

Rear Liftoff -0.03 -0.02 
TABLE 4.2 CONTROLLER Α3  GAINS 

4.3.2 START-UP ROUTINE  

As mentioned in Section 4.2, the robot initiates the bound sequence differently from the 

simulation model. The robot‟s legs are actuated forward to a fixed angle, and then rapidly 

commanded back to a fixed take-off angle to inject energy into the springs to cause flight. 

Once the robot is in flight, the legs are then commanded to the bound gait touchdown 

angles. Prior to initiating the intelligent controller, it is important that the robot is in a 

regular bounding motion, or any instability in the gait may be enhanced by changes to the 

touchdown and liftoff angles. Therefore, in the tests presented in this chapter, the 

intelligent controller was commanded to begin after the fourth stride in the bound cycle, 

once a cyclical bound gait is achieved. 
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Additionally, the fixed angles used prior to starting the intelligent controller are important 

parameters, as they ultimately determine the actual bounding velocity in the first 

feedback loop of the controller. Setting the fixed angles to achieve a velocity of 

approximately 1.0m/s during the start-up routine allows the controller to transition well 

between any allowable desired velocities, without any instability. 

4.3.3 VELOCITY THRESHOLDS 

Similarly to what was observed in simulation, there is upper and lower limit velocity 

thresholds. At set points above of 1.3 m/s, the large desired front leg touchdown angles 

cause a decrease in the pitching motion of the robot during bound, as seen in Figure 4.14. 

This irregular pitching motion causes the touchdown sequence of the legs to change, so 

that the rear legs touchdown before the front legs. This touchdown sequence causes 

unpredictable robot behavior, leading to failure. In simulation, these failures consisted of 

the robot‟s rear legs‟ dragging until liftoff no longer occurs, as discussed in Section 2.3.4. 

On the robot, this dragging behavior is dangerous as it causes unpredictable output of the 

leg state machine. This in turn causes unpredictable hip motor actuation that could result 

in unpredictable motions of the robot and possible damage.  
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FIGURE 4.14 INTELLIGENT VELOCITY CONTROLLER ON PAW TRACKING 1.4 M/S 

For the PAW robot, the controller‟s lower limit was found to be approximately 0.9 m/s At 

low velocities, the robot‟s stance and flight time are shorter, and the desired hip angles 

are much smaller. With smaller required hip actuation, less compression occurs in the 

front leg pair, eventually leading to the pair not lifting-off. Thus, the front leg pair drags, 

as the rear legs continue to be actuated as there is no controller-coupling. This behavior 

occurs rapidly, where the robot pivots about the front leg pair to flip forward, landing 

upside down. An emergency power cut-off switch was created to stop any human or robot 

damage. Unfortunately, when this failure occurs, the power is cut before any data can be 

saved to the robot‟s computer. Thus, the evidence of this behavior is seen in the images in 

Figure 4.15, which resembles the failure occurring in simulation at low velocities, as seen 

in Figure 2.17. 
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FIGURE 4.15 ROBOT FAILING AT VELOCITIES BELOW 0.8M/S 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS  
 

 

 

The goal of the implementation of an intelligent velocity controller was to introduce an 

increased level of autonomy and robustness to the PAW robot. The simulation results in 

Chapter 2 demonstrated the controller‟s performance in tracking velocity, and discussed 

the controller‟s limited ability to maintain its set point in varying terrain types. To 

implement this controller on the physical platform, an extended Kalman filter was 

developed in Chapter 3 to estimate the forward bounding velocity of PAW. Finally, 

Chapter 4 evaluated the controller‟s performance on the robot, identified some limitations 

and discussed the critical parameters to the success of the bound gait. This chapter will 

present a discussion of the contributions made to the PAW robot, as well as present some 

recommendations for future work. 
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5.1 CONTRIBUTIONS TO PAW 

This research presents to the reader an intelligent controller developed and tested to allow 

the PAW robot to track a velocity set point. In doing so, the sensing abilities of the robot 

have been increased, as well as its versatility. The following subsections present an 

evaluation of the contributions made to the platform. 

5.1.1 INTELLIGENT VELOCITY CONTROLLER 

In simulation, the intelligent controller demonstrated velocity tracking between 0.9m/s to 

1.3m/s, with errors up to 0.1m/s. The controller adequately transitions between high and 

low velocity, demonstrating good acceleration and deceleration capacities.  The controller 

was then evaluated on the PAW platform to validate the simulation results. The results 

from physical testing correlate quite closely with the simulation results, where tracking 

errors range up to 0.1m/s once convergence is met. The allowable velocity tracking with 

the controller on the robot is the same as in simulation, between 0.9 m/s to 1.3 m/s. 

Ultimately, the controller found the upper and lower limits of velocity in bound for the 

PAW robot. 

5.1.2 ROBUSTNESS TO DISTURBANCES 

The controller was evaluated in simulation with changing terrain types, where the friction 

coefficient and stiffness of the ground was varied. It was seen that the intelligent 

controller attempted to adapt to the changing environment by changing the desired 

touchdown and liftoff angles required for tracking the velocity set point. It was shown, 

however, that the controller‟s robustness to the changing environment is limited on PAW. 

This is due to the passive nature of the robot‟s dynamics. As the stiffness or friction of 
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the ground is reduced, the robot‟s ability to inject energy into the passive legs during 

stance is reduced, causing a change in the bound gait. A reduction of ground stiffness had 

more detrimental effects, as the decrease in the leg compression directly affected the 

flight phase of the bound gait leading directly to failure. The friction coefficient change 

causes some slip at the point of contact between the leg and the ground. The effect is that 

the bound gait remains stable; however, the performance of the velocity tracking is 

reduced to up to 0.3m/s errors. 

Although the controller demonstrated adequate velocity tracking on the physical robot, 

the robustness to terrain changes was not tested. In an indoor environment, the controller 

performed well on both linoleum and concrete. The alternative terrains available were 

outdoor environment conditions, such as grass or gravel. The stiffness and friction of 

these outdoor conditions are uncontrolled and inconsistent, and ultimately, the controller 

robustness would not be evaluated, as failures under outdoor environments would not be 

isolated to the controller‟s performance but to the robot‟s general physical characteristics.  

5.1.3 EXTENDED KALMAN FILTER 

The extended Kalman filter, presented in Chapter 3, was necessary for estimating the top-

of-flight center of mass velocity during the bound gait. Prior to the EKF development, the 

inertial measurement unit provided a noisy estimate of velocity prone to drift. The 

accuracy of the measurement was evaluated against a high speed video analysis of the 

robot‟s motion and deemed accurate up to 0.1 m/s. In combining the IMU measurement 

with a kinematics‟ velocity estimate, the flight phase velocity of the bound was 

comparable to the simulation result‟s true velocity, confirming the accuracy of the 

proposed method. Ultimately, the EKF developed presents an accurate way to estimate 
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the forward velocity of the robot during dynamically stable gaits and has the potential to 

expand the onboard sensing capabilities. The potential for increasing sensing will be 

discussed in Section 5.2, which presents avenues for future control possibilities. 

5.2 RECOMMENDATIONS 

The present work presents the initial steps taken towards increasing the autonomy and 

versatility of the PAW robot. PAW is now capable of transitioning smoothly between 

various velocities, without extensive parameter tuning, and has the potential to withstand 

some limited varying terrain conditions. Additionally, the EKF developed presents an 

opportunity for an expansion on the sensing capabilities of the platform. The following 

subsection presents some possible avenues for future work on the robot. 

5.2.1 DIRECTIONAL CONTROLLER 

A directional controller for the bound gait is a logical expansion of the presented work. 

The work in [29] discusses fixed touchdown and liftoff angles that cause a yawing 

motion. Similarly to velocity control, the yaw could be controlled at each top-of-flight 

instant to determine the required touchdown and liftoff angles to achieve the desired 

lateral motion. Instead of a front and rear leg pair, the controller would use a lateral leg 

pair combination. To combine this controller with the existing intelligent velocity 

controller, the directional controller could output an angular phase difference between the 

right and left leg pairs. This phase difference could be added to the touchdown and liftoff 

angles determined from the intelligent velocity controller. A phase difference in the 

desired hip angles could cause a change in the touchdown sequence, resembling a 
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galloping gait, an interesting effect, as this gait would occur almost naturally, out of 

necessity to achieve a desired motion. 

5.2.2 HOPPING HEIGHT CONTROLLER 

As shown in [19], hopping height and forward velocity are directly related. An evaluation 

of the present work could be made to verify the correlation between the two states. An 

extension could be made based on the findings to evaluate the height at each top-of-flight 

instant, to achieve a desired height. Similarly to the intelligent velocity controller, there 

would be upper and lower limits to the desired set point. Nonetheless, the use of such a 

controller would be apparent if the robot would have to overcome a known obstacle. 

5.2.3 SENSING CAPABILITIES 

As mentioned in Section 5.1.3, the EKF performs quite well in estimating center of mass 

forward velocity. The state vector x used in the EKF is an 11x1 vector, but could be 

expanded to include additional states. These additional states could include, but are not 

limited to: the position in the inertial frame, attitude, and attitude rate of the robot. By 

filtering these additional states in the EKF, a more precise estimate becomes available, 

expanding the control possibilities. As it was demonstrated in this work, accurate velocity 

control requires an accurate estimate of velocity. Thus, the recommendations for future 

controllers will require additional sensing capacities. As the EKF has already been 

developed, an expansion on the existing framework would provide the required sensing 

capabilities necessary for alternate controllers. 
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5.2.4 INCREASED AUTONOMY 

The goal of dynamically stable running robots is to provide a platform with a high level 

of autonomy capable of rapidly traversing rough terrain. As discussed in Section 5.1.3, 

PAW‟s physical characteristics may limit its use in various terrains. Nonetheless, this 

work demonstrated that PAW can be used as a platform for developing and testing 

various intelligent control schemes and sensing algorithms. PAW also presents itself as 

an excellent platform for developing increased locomotion capabilities for hybrid robots 

such as jumping or step climbing [40].  

The recommendations made in this section, present solutions to build on the versatility of 

PAW. Ultimately, a higher level of control would decide on the most efficient gait for the 

robot to accomplish a desired task or traverse an unknown terrain. Efficiency may be 

evaluated by energy consumption or task completion time, via a reward function. Then, 

obstacles, terrain, and disturbances will determine the lower level controls: desired 

velocity, direction, and hopping height. 
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