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ABSTRACT

This thesis presents a digital technique for automatically locating a reference
point in a noisy fingerprint. Also, a survey of the current literature on automatic

fingerprint processing is included.

Presently manual methods are used to classify Fing-erprints, but the time required
to match a set of 'suspect' prints with a set of filed prints is excessive. Further, extant
manual methods require all ten fingers for positive identification. However, since
scene-of-crime impresssions are rarely comprised of ten fingerprints, a method suitable for
dealing with large numbers of single fingerprints is indicated. Because the volume of
fingerprints is large and the time currently needed to match files of fingerprints is

excessive, automatic methods are being investigated.

Three methods of automatic fingerprint analysis are examined. One is based on
Blum's shape descriptors and attempts to classify a fingerprint by its gross shape character-
istics, much like the primary classification of the Henry system. The second method,

proposed by Paolantonio, uses random search techniques in order to identify a fingerprint.



However many researchers feel that the location of a reference point is of
prime importance in automatically classifying fingerprints. Therefore, the technique
primarily examined in this work is adapted from an analogue method suggested by
Rabinow Electronics which purports to locate a reference point. The proposed digital
method is essentially a gradient technique of hill climbing if the ridges are viewed as
elevation contours. Trajectories are forced to travel through the fingerprint such that
a trajectory always crosses a ridge orthogonally. The- common intersection of these

trajectories is called the reference point.

This technique was applied to 150 fingerprints. The method did locate reference
points, but it was found that these were not unique. Instead, experimental results
indicated that a line of maximum curvature was present. Such a line is defined by
Hankley and Tou in their work on automatic fingerprint analysis. However, Hankley
and Tou's method deals qnly with selected, partially prefiltered data. Therefore,
further investigation into the line generating properties of the digital method, in con-
iuncfion with Hankley and Tou's topological method, would perhaps be the next logical

step in the research into automatic fingerprint analysis techniques.



DIGITAL METHOD FOR GENERATING REFERENCE POINTS IN FINGERPRINTS

RICHARD P. KARASIK, B.S.E.E. (Tufts)




A DIGITAL METHOD FOR GENERATING
A REFERENCE POINT IN A FINGERPRINT

by

Richard P. Karasik, B.S.E.E. (Tufts Uriversity)
Department of Electrical Engineering



A DIGITAL METHOD FOR GENERATING
A REFERENCE POINT IN A FINGERPRINT - -;

Richard P. Karasik, B.S.E.E. (Tufts University)

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Engineering

Department of Electrical Engineering
McGill University

Montreai , Quebec

July 1969

| A~ o:-ard P. Karasik 1970 ‘



ABSTRACT

This thesis presents a digital technique for automatically locating a reference point
in a noisy fingerprint. Also, a survey of the current literature on automatic fingerprint

processing is included.

Presently manual methods are used to classify fingerprints, but the time required to
match a set of 'suspect* prints with a set of filed prints is excessive. Further, extant
manual methods require all ten fingers for positive identification. However, since scene-
of~crime impressions are rarely comprised of ten fingerprints, a method suitable for dealing
with large numbers of single fingerprints is indicated. Because the volume of fingerprints
is large and the time currently needed to match files of fingerprints is excessive, automatic

methods are b;ing investigated.

Three methods of automatic fingerprint analysis are examined. One is based on
Blum's shape descriptors and attempts to classify a fingerprint by its gross shape character-
istics, much like the primary classification of the Henry system. The second method,

proposed by Paolantonio, uses random search techniques in order to identify a fingerprint.

However many researchers feel that the location of a reference point is of prime
importance in automatically classifying fingerprints. Therefore, the technique primarily
examined in this work is adapted from an analogue method suggested by Rabinow
Electronics which purports to locate a reference point. The proposed digital method is
essentially a gradient technique of hill climbing if the ridges are viewed as elevation
contours. Trajectories are forced to travel through the fingerprint such that a trajectory
always crosses a ridge orthogonally. The common intersection of these trajectories is

called the reference point.



This technique was applied to 150 fingerprints. The method did locate reference
points, but it was found that these were not unique. Instead, experimental results indicated
that a line of maximum curvature was present. Such a line is defined by Hankley and
Tou in their work on automatic fingerprint analysis. However, Hankley and Tou's method
deals only with selected, partially prefiltered data. Therefore, further investigation into
the line generating properties of the digital method, in conjunction with Hankley and Tou's
topological method, would perhaps be the next logical step in the research into automatic

fingerprint analysis techniques.
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CHAPTER |

INTRODUCTION

No match has ever been fourd between two fingerprints, whether from the hands
of different persons or from different fingers of the same pair of hands. The fingerprint is

thus the unique descriptor of the individual.

No one knows when man first noticed the fine tracings on his fingers. Long before
they are used for identification of the individual they were used as signatures on works of

art, deeds, bills of sale, and other legal documents.

The first recorded use of fingerprints for identification purposes was in British
Colonial India, where Herschel - and later Henry, after whom a modern classification
system is named - registered prisoners by their fingerprints. Today, fingerprints are
routinely taken and classified not only for criminal identification but for a positive
identification of the general public. In the field of genetics, fingerprints are being studied

as indicators of genetic deficienciess'zo' 22 (see Appendix A).

The huge lot of fingerprints that must be handled in classification centres every
day is fast becoming an overwhelming problem. For example, the United States FBI
maintains 177,000,000 records and is requested to classify and/or identify approximately

26,000 records per day. At present this work is done manually.

This thesis investigates the work that is being done and that is to be done in
automatically classifying fingerprints by the use of those techniques that are encompassed

by the tem pattern recognition.

The second chapter presents some general concepts of pattern recognition in



relation to automatic fingerprint analysis.

The present, manual Henry system is discussed in Chapter lll. Also, some of the

problems that plague this system are examined.

Chapter V presents an in depth analysis of the most representative methods of those
discussed in the previous chapter. The techniques examined herein are analysed in a non-
machine context in order to determine the feasibility of designing a digital computer

program for one of them.

The digital method for generatitig a teference point in noisy fingerprints is presented
in Chapter VI. The method described was chosen because of the favourable results obtained

from the analysis of this technique in Chapter V.

In Chapter VII, the results and conclusions obtained from experiments carried out

using the digital method described in Chaptef VI are presented and discussed.

In conclusion, a digital method designed to generate a reference point in a noisy
fingerprint is presented. Also included is a survey of the current literature on automatic
fingerprint analyses. Finally, areas for further research into the problems associated with

automatic fingerprint analysis are proposed.



CHAPTER Il

PATTERN RECOGNITION

2.1 General Thoughts

The concept of pattern recognition is multifaceted. Some works in pattern-
grokking* see only its practical applications to a particular problem. These applications
generate 1001 different algorithms, yet entertain only a small part of the concept of
pattern-grokking. Each algorithm so generated is peculiar to one particular problem, and
is in general not interchangeable with another. Others in the field, noting that certain
tricks - heuristic "rules of thumb" - can be applied to certain problems, try to generalize
a heuristic to a gestalt philosophy in an attempt to encompass the concept of pattern-

grokking. To quote an authoritative work:]

Pattern recognition has been the subject of an extensive series of
papers by many authors who purport to set the problems into a general
framework. But the predictive value of current formulations of pattern
recognition theory is near zero, and the validation of some of the
claims by any objective criterion, has been meager. ..

In other words, in pattern-grokking there is a big space between the algorithmic and
gestalt limits. This space is not easily relegated to the realm of purely philosophical

discussion since the researcher's point of view is not totally philosophical.

Pattern-grokking is a field closely allied to many other disciplines yetisa ¢
distinct entity. Like psychology, it is neither an exact science, nor completely an art.

Both fields use scientific techniques and methods for data collection, but it is the inter-

pretation of this data - not so much the application of science to data collection - that

*

Grok, a Martian term used by Robert Heinlein, encompasses andagoes beyond the
English concepts recognize, identify, understand and cogprehend.]

.




is important.

The fallacy of assuming that using scientific methods implies the existence of an
exact science is partly illustrated by the story of an experimenter who placed a flea on a
table under a large magnifying glass, proceeded to remove its legs one at a time, and
after each operation commanded "Jump". Each time, the flea jumped. When the
experimenter removed the flea's last leg, however, and said "Jump", the flea did not

jump. The obvious conclusion is that a flea without legs cannot hear.

In the exact sciences we are used to ideas presented in terms of a preset theoretical
framework . In a pseudoscience such as psychology or pattern-grokking, however, no
prefabricated theoretical framework exists. Thus, it is up to the r  rcher to not only
apply scientific methods of observation and data collection but to try to draw ‘correct
conclusions' from his observations. In so doing, the researcher formms the theoretical

framework for his exact science-to-be.

So, with the reservation that pattern-grokking is not an exact science, we now
try to describe some aspects of it that are applicable to fingerprint classification and

identification.

2.2 Distinctions

Two important words to be noted in the previous section are algorithm and heuristic.

An algorithm is a general procedure for solving a given type of problem. A hauristic is a
rule of thumb, or trick - essentially a flash of insight - that makes it easier to solve any

particular problem.

Most of the fingerprint classification schemes discussed in this paper are essentially

algorithmic. A few, although basically algorithmic, are directed by heuristic considerations.



2.3 Definition of Descriptive. Terms

Two temms will be used to help explain various identification schemes. These are

the 'Tourist' syndrome and the 'Forest-for-the-Trees' syndrome.

2.3.1 The 'Tourist' Syndrome

It has been observed that many travelers arriving in a strange city tend to draw
such comparisons as: "My, isn't that blank just like the blonk we have back home{"

Or, in the restaurants: "You know, lux tastes just like lox."

Perhaps human beings experience life in terms of fuzzy sets, where in one
context blank definitely belongs to set A, and in a different context may belong to set A
but may just as likely belong to sets B,C, or D. The important thing is context. Consider
eating. Various countries have various rituals or ceremonies for the partaking of food.
The 'problem' is ingestion, but the context - country, rituals, people - detemines the

solution.

In terms of fingerprints, the idea of a contextual definition of the problem may be
a bit clearer. Fingerprints are currently classified manually, according to the Henry
Ten-Finger System. We want to classify fingerprints mechanically, so why not have the

machine use the Henry system?

There is no pat answer to the questions "Why/Why not use the Henry system?"

but a rationale dces exist.

The rationale for the "why not" is as follows. Man can classify fingerprints by
the Henry system; the logical starting place for machine classification schemes is thus

the coding of the Henry system into the Machine.

The rationale for the "why" is that the Henry system was developed in the context
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of the Human pattern recognition system. The Machine pattern recognition system is in a
different, if not totally alien, context; perhaps a deeper study of the problem is needed

before a logical starting place can be determined.

Thus, the problem - to identify and classify fingerprints = exists. Two contexts
for problem-solving exist - Human and Machine - and the problem is already solved in one

context.

The 'Tourist' syndrome typifies the researcher that applies one technique to solving
all similar problems, whether defined in one or in two different contexts, the solution

known in one context being the basis for the solution in the alien context.

. 2.3.2 The 'Forest-for-the-Trees' Syndrome

A forest is made up of trees, and trees are made up of molecules, and molecules are
made up of atoms. But to say that knowing the atom identifies the molecule, and that
knowing the molecule identifies the tree, and that knowing the tree identifies the forest,

is of course absurd.

The forest is made up of an arrangement of trees - a pattern = which in part
identifies the forest. An algorithmic approach io identifying the forest would be to
separately classify each tree - by a name - and perhaps measure the distances between the
trees. This would involve a lot of time and effort in classifying trees, when. a simpler
identifier for the forest ~ a heuristic - might be found. 1t is up to the researcher to see if
the simpler identifier can be found. The primary reason for 'tree classifying' is to allow

for a higher resolution of classification of forests.

In fingerprint classification, the final identification depends on the minutiae

(trees) of the fingerprint (forest), such as breaks in lines, joinings, endings, and bifur-
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cations. The initial identification, however, depends only on a gross descriptor of the

fingerprint.

The ‘Forest-for-the-Trees' syndrome typifies the researcher that requires too much

of the available information to reach a conclusion.



CHAPTER 1l

FINGERPRINT CLASSIFICATION METHODS

3.1 Manual Systems

The manual classification system used in most of the world today is the Henry
system, named after Sir Edward Richard Henry. This system is a topological algorithm,
invariant under rotation, translation, or distortion. The classification scheme is based
primarily on the pattern types found in each finger. The Henry system is a ten-finger
classification method, however, which means that classification cannot be effected

unless all ten fingerprints are available in a specific order.

Figure 1 shows an idealized set of basicpatterns and gives their frequency of
appearanceé. Figure 2 shows a good set of real fingerprints separated according to the

Henry system classiﬁcation32

In practice the fingerprints are first classified on the basis of whether or not a
whorl pattern appears in the finger. This gives 210 (=1024) primary classification cate-
gories. The secondary classification depends only on the pattern types found in the index

fingers of both hands.

More classification groups exist, such as the small letter subsecondary, and the

subsecondary, but since many intricate and involved rules apply to these classifications,

they will not be considered further.

The final.identification classification depends on the detailing of the minutiae and
ridge counts. Figure 3 illustrates the various minuﬁae,3 2, and Figure 4 illustrates a ridge
count32. In both figures the fingerprints are idealized. Note the line running almost

- diagonally from the lower left corner toward the centre in both figures. The two circles
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b, on these lines indicate the two most important reference points of the Henry system. The
circle at the lower left is a point of 'deltd, and the central circle is a point of 'core'.

* The formal definitions of delta: and core are quoted:32

“The point of delta: is the first island, ridge or ridge particle in front
of the divergence of the two innemmost ridges which runs parallel and
diverge. When a single ridge bifurcates, the point of Delia is located
directly upon the point of bifurcation,, provided that this single ridge
lies between the two innemost ridges which run parallel and diverge.

In the loop, the core. is on the innermost recurving ridge at a point
on the outer side of that ridge which is furthest from the delta and

where said ridge meets the recurve or on some ridge ending within
the recurving portion (cap area) of the innermost looping formation.™

These definitions are included, not to confuse the reader, but to show the typical

algorithm the human pattern-grokking system uses with respect to fingerprint classification.

Points of core (C) and of delta (D) are indicated in Figure 5 for a variety of

idealized cases32. Further classification considerations ¢:re:32

The arch pattern does not contain a point of delta. The tented
arch may or may not contain a point of delta. Radial and ulnar loops
each have one point of delta. Whorls, central pocket loops, twinned
loops, lateral pocket loops and accidentals contain two points of delta.
The composites may have from one to three points of delta.

The loop pattern is the only pattern in this ten finger system that
requires the locating of the point of core, as well as the delta, for
classlf'cahon purposes.
Since the arch is the only pattern that has neither core nor delta, it is uniquely
defined by those conditions. Thus, in general, the absence of a specific piece of
information may be just as important a classifying agent as the presence of a specific

. piece of information.
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3.2  Problems Associated with the Henry System

- . One problem, noted in Section 3.1, is that there are 1024 primary classification
divisions. The fingerprint types, however, are not evenly distributed among the 1024 |
divisions. Some of the primaries may occur in only a few hundred records, whereas other
primaries may occur in hundreds of thousands of records. Because of the unevenness in
distribution, it takes a relatively long time to fully identify prints from well-populated
primaries Furthemore, although fingerprints are manually classified in about 60 sec.
per print, manually matching newly classified prints with those in a master file may take

hours.

An automated Heniy system may not be able to decrease the classification time
but it can uniformly decrease the identification search time by orders of magnitude, depend-
ing on the reference or filing system used. The filing system can be made to accommodate

man-machine interchanges.

Another problem is that there are five types of fingerprint impressions. Two are
categorized as voluntary direct inked prints. The other three are secondary impressions

obtained, for example, from objects found at the gscene of a.crime.

Inked prints are of two types: the rolled impression and the dab impression.
These impressions are made on a fingerprint form, with special ink used as a medium.

Figure 6 illustrates rolled and dab impressions.

Offset impressions taken at the scene of a crime are of three types: (a) latent,
those requiring some type of developing to make them visible to the human eye;
(b) visible, those not requiring development (commonly found in blood, dust, or other
such media); (c) moulded or indented, also requiring development (found in putty,

plasticene, or semidry paint).
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Figure 7 illusfrate56 the difference between an inked impression and a latent

impression. Figures 8 and 9 show typical latent developed fingerpri ntsé.

An important point is that scene-of-crime impressions almost always yield only
one or two fingerprints, usually of poor-to~bad quality. The Henry system, being a ten-

finger system, is thus hopelessly inadequate for classifying single prints.

Single prints are sometimes classified by the 'Battley’ system, which depends on
minutiae but is in general not supported by large files of single prints. Thus, many
criminals may owe their liberty to the fact that the present fingerprint system cannot

effectively cope with scene~of-crime impressions.

A machine-oriented-classification scheme thot deals with single-fingerprint
identification methods would seem to be indicated. Because of the: memory available on
today's machines, the speed of positive identification of a single print would more than

make up for the small extro space needed to cross reference all prints of one person.

A third point in this enumeration of problems inherent in the Henry system is that
manual classification is highly dependent on the temperoment and experience of the
fingerprint technician. Figure 10 itlustrates how two technicians might classify the same

fi ngerprints6 .

It is apparent that identification search time could be shortened and human error
eliminated if automatic fingerprint~grokking could be used. A method applicable to
single fingerprints would be more desirable than one based on ten fingerprints. Man-

machine systems as well as pure machine systems should be investigated.

The work already done in automatic fingerprint-grokking is described in Chapter 1V.



18

LATENT FINGERPRINT INKED FINGERPRINT
7a : 7b

Figure 7  Comparison of o Latent Fingerprint with an Inked Fingerprim6
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Figure 7  Comparison of a Latent Fingerprint with an Inked Fingerpclm‘
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LATENT FINGERPRINT INKED FINGERPRINT
70 : 7b

Figure 7  Comparison of a Latent Fingerprint with an Inked Fingerprint6

18



19

e
¥,

-

fsé

ingerprin

Typical Latent F

Figure 8



>

Figure 8  Typical Latent f."ingerprints6



Figure 9 Typical Latent Fingerprinfs6




20

1'56

ingerprin

Typical Latent F

Figure 9




Plain Loop of Central 3 Plain Loop or Central Plain Loop or Tented
Pocket Loop Pocket Loop | Arch
100 I 10b Sl 10¢

......

: Double Loop or Plain
" Whorl

106 10f




22
CHAPTER IV

AUTOMATIC CLASSIFICATION METHODS

4.1 Input Methods

Since the fingerprint is in some way to be analysed by a computer, let us first
consider the problems of feeding a fingerprint into a computer. It is assumed that the

yH;ie imoge is required so that selective parts or the totality can be processed at will.

In most of the following methods, an optical scanning input technique is used.
This is perhaps the fastest for inputting the whole fingerprint image. All the outhors are,
however, vague about how the original image is inputted into the machine. All methods,
it seems, provide for getting the image into the machine but their authors present énly the
operations performed on the image once it is in the machine. The reasons for certain input
mechanisms are not explained, and the use of different scanning techniques for inputting

the image is discussed in only a few of the cases.

4.2  Problems in Optical Systems

An optical input device may appear as in Figure 11. In this input subsystem, it
is assumed that:

(1) The light source is capable of putting out an essentially collimated beam

of light.

(2) The image contains distinct boundaries, as well as high colour (black =

white) contrast.

(3) The photomultiplier reaches steady state quickly.
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trolled ight g ié : A/D
A cfir;i::s:urce l m M'thump"elp_"‘.’ converter

digital
computer

Figure 11 A Typical Optical Input System

The reasons for these assumptions may be tabulated as follows.

(1)  Consider that the light source is somehow to be digitally incremented across
the picture to be processed. First of all, if the beam is totally uncollimated and the
optical distance between the photomultiplier and light source is large, then the dispersion
of the light will take in more of the image than is desirable. These conditions will not -
yield information about a point on the picture, but about a finite tsmear'. For information
about points - not smears - a narrow beam of light is indicated. If the beam of light is
wider than the digital increment provided by the computer, then information about two
consecutive points will overlap, which may not be desirable. If the increment is too large,

small details essential to the processing may not be recorded.

(2)  The picture medium - film, drawing paper, etc. = should also be considered
when figuring the light dispersion that can be tolerated. If the code to be used by the
computer is a black-white code (0-1), it is essential that the blacks be as black as possible

and the whites be as transparent as possible, so as to generate a high-contrast machine
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image. Without a high-contrast picture, black and white can easily be merged. With
an eight-level gray code, high-conirast pictures are critical since the separation between

black and white must be such that the grays can be easily classified.

(3) The photomultiplier has to rise to steady state rapidly so that the input
operation can go fast. |t is also assumed that a blanking pulse during incrementation is
used so that the photomultiplier does not have to settle down from the light collected in

transit from one point to another.

It will be worthwhile to look into the problems associated with fingerprint images
a little more deeply since problems associated with the other pieces of equipment can
usually be kept within tolerable limits by knob-twisting or, in the extreme, by replacing

or redesigning the equipment.

Figures 12 to 16 illustrafe32 the various fingerprint types, taken under the best
.of working conditions. First of all, it can be seen that whether compared within a print
or between the prints, the dark areas are not uniformly black, nor are the light areas
uniformly white. Also, many of the prints are smudged and blurred. The important point
is that these defects, which amount to errors of exclusion or inclusion, are easily filtered
out as a matter of judgment by the human technician, whereas the machine has a hard

time of trying to determine how black, black is.

Figure 17 is a reprint of a photograph of a Fingerprinfza. There is a smudge in
the upper righthand section of the figure. If the machine had determined a standard
black by the first scan, then scanning through a lighter or a darker black area would foul
up the machi'ne's sense of absolute blackness and lead to spurious data-recording. To

make a cogent recording of the picture, the machine would need a.sense of relative
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. Figure 13 Arches32
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Figure 14  Radicl ond Uinar Loops32

(Right hand)
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blackness. 'l'hls sense’ could be supplied by nelghbourhood operahons using some type of ’
avemgmg or weightmg, but it must be remembered fhat every exira opemtion takes up

_ valuable tlme ;

. Brieﬂy, the main problem with f'ngerprmf images is their nonumfonmfy in terms of

-» ::‘f .mking dermty The machine has to be told explicitly how to interpret nonwniformities that

. a human techmcian filters out automaﬂcally.

e 4.3 - Autdmaﬂc Classifications

st There are basically two broad categories of automatic fingerprint classification.
. 7‘15 The .fAirst encompas;es those methods that require the recognition of ridge characteristics
and deriv;:tion of a mathematical algorithm of some sort to express the location qnd‘relaﬁon-
'- ship amongst those characteristics. The second includes those methods that tret;t the wl;olo
By image by such techniques as ridge-tracing or secondary pattern development by diffraction

processes.
o ‘...4.3.1 Category |

- 4.3.1.1 The NYSIIS Fingerprint Classification and Identification System

_ ’ The fundamental tenet of the New York State ldentification and Intelligence
| System (NYSIIIS)émethod is the same as in all current systems: the final identification of
'.a ﬁngérprint depends on the location and structure of the minutiae, the minute ridge
. characteristics. The rationale is that this level of detail has proved satisfactory in
.' e;toblishing the t;niquenes of individual prints on a manual/visual l?uiis and should there- .4 .
fqre be capable of doing the same on an automated/_electronic basis. This choice of :

- characterization scheme resulted by elimination from the following quoted»li;t:7’, i



(1)  Use a revised scheme based on current classification schemes.
(2) Use minute characteristics in a single fingerprint.

(3) Use pore structure data in a specified area of the print.

(4) Use chemical composition of pore secretions.

(5) Use a gestalt or whole-image process.

The first choice in this list is an example of the 'Tourist' syndrome. Choice 3 is an

excellent example of the 'Forest-for-the-Trees' syndrome.

The NYSIIS method optically enlarges the fingerprint on a special screen. The
coordinates of all minutiae are indicated by a technician using a light pen. The core
and delta are also located. Next, the picture is scanned and all the minutiae are
recorded in the machine. Finally, the positions of the minutiae are referred to the core-
delta reference axis, a line between the core and delta. Figure 18 illusfrt:ltes6 the core-

delta reference system, and Figure 19 shows the identified minutiae usedé.

4.3.1.2 Comments

(1) A man-machine interface (Rand tablet and light pens) has been mentioned.
Although not totally automatic, the man-machine exchange may provide

a better classification system than one that depends only on man or machine.

(2) The location of the minutiae are determined by coordinates, but' a fixed-

axis reference scheme may be hard to implement on a computer. In fact,
NYSIIS6 reports:

One of the leading problems for most 'automated' systems is that of
establishing precise pattern orientation with a high degree of consistency
time after time. Theoretically, this seems quite easy to do. In practice,
is altogether a different story. It is not only one of the leading problems;
it is one of the most difficult to solve.

NYSILS seems to solve this problem by circumventing it. A relative fixed axis is
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Figure 18  Core-Delta Coordinate System

A cartesian coordinate system with the origin
at the core of the fingerprint and the -x axis
passing through the delta
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defined, but since itis defined by a human technician ihere is roam for erlv"or.‘_l

Of the several problems mherent in NYSIIS,- the mosf mportanl' is that all of the

minutiae needed for classification are assumed readlly avallable.

Figure 196 presents amidealized ‘fingerprint:with nsome.premdéntlf‘ed mimﬂaa
Figure 20 shows the same fingerprint with other minutiace identified. These mmutlae were .
either disregarded or overlooked by the NYSIIS classifier. This brings up the queshon, .;

which minutiae should be chosen?

Using all the minutiae may prove inconvenient, but it is a delusion to assume that a
technician can consistently choose enough different minutiae to make a positive identifi- .~
cation. A solution would be to scan separately for different types of minutiae, but this

may also take up more time and storage than it is worth.

The identification of minutiae is a nontrivial problem. Appendix B contains
ﬁgures32 that are good high-contrast enlargements of prints in which the circled areas

indicate ridge characteristics that may be actual minutiae or may be noise.

Another problem is that fingerprint size is critically dependent on how much

pressure is applied to produce the print. An algorithm dependent on disfances that are =

nonconstant wnll not be able to idenhfy large numbers of pnnts. If error l|m|ts are set on ..
the distonces, a group of prmts rather than a smgle prmt w1|| be |denhl" ed, and the search

time will be much |°ﬂger, e

. The last, and perhaps most obvuous of the notable prablems s that pl’OVlSlOﬂs far

ldenﬂfymg prmts without a core or delta (such as an arch) do no’r exnst

caleulations sequired to convert to the core-delta sysitem may be too tedious for th







Figure 20 Minutiae Unidentified6 in Same Fingerprint as in Figure 19



: .a\-rel:ag'e‘ fingerpﬁnt feéﬁni_&:ian. The method should be looked upon as an clgorithnﬁakéd«» -

on a specific pattern rather than as a pattem-grokking technique based on an algorithm.

4.3.1.3 Advanced Computer-Based Fingerprint Automatic Classification Voo
Technique (FACT) )

In essence, the FACTY systen is.the.same a5’ NYSIIS in- thét. both. logatendrd idénfify
minutiae; however, FACT records all the minutiae according to the nufnber of ridges

between a given minutia and all others.

Figure 21 shows a typical print with the minutiae idenﬂfied37, and Figure 22 shows
a table of interminutiae ridge count537. A problem evident here is that of correctly
orienting the print so that a certain minutia is always number 00. [f this orientation were
not ensured, the permutation tables generated by the system in order to match a classifi-

cation print to an identification file would be excessive.

Since most of the information pertaining to FACT is of a proprietary nature, only
vague generalities can be discussed. For example, it is mentioned that FACT could use a -
flying=-spot scanner, searching helically or circularly to identify the minutiae. There is
also some mention of a scan method that would be useful for extracting minutiae information
- except that success of the method, like that of many another, patently depends on

simplicity-of the fingerprint, an assumption not corroborated in nature.

In FACT, three circular scans are made about each point of a rectangular grid
defined on the print, the grid being obtained by x, y increments of the scanner. As the
circular scan is made, all intersections of the circle with the print are recorded as

: . indicated in Figures 23 and 2437.

EAN This technique has two facts against it. The first is that ridges are never as
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Figure 23  Scan Detecting Line End Minufice37
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Figure 24  Scan Detecting Line Branch Minutiaes7
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- ‘c-on.tlmou.s ‘os o@med. The se;ond is that ridges uwolly oppear quite tegularly one Oﬁ;f “
f.-the ofher._ Mony factors, including pore size in the enlargement of the pnnf and narrow= -
,,_""‘V{nes of thel scanning beam, indicate that some sort of filtering is needed in order to deter-
tﬁme a ridge. Figures 23 and 24 seem to indicate no other ridges around the one of

L .Jinterest37. Figures 25 and 26 show the total classification when the other ridges are

. : | éomidereda 7.

If it is assumed that no other ridges are in the search area, then the fotlowing

argument should be considered.

The average distance between ridges, centre to centre, on the hand of an adult
male is about 1 mm. Assume the area to be scanned is 30 mm by 20 mm. Then in order to
assure that no two adjacent ridges are in the same scan area, the scan must be over a

radius of 0.5 mm. (Ridges have a finite width.) The total number of scan pattems needed

would be 600/(x/4) = 800.

Assuming it takes on the average 3 secands to totally scan; record,. and interpret
information from each scan pattern, it would take 40 minutes fo' identify each jprints This
is clearly nowhere near real-time identification - nor is it likely to be, unless some

extremely fast equipment is developed.

This method is in general only a little better than the NYSIIS technique in that it
.. eliminates the problems associated with ridge distortion due to uneven pressure during
. inking. This it does by using the number of ridges instead of the distance between them

" as a descriptor.

4.3.1 .4 General Comments

Both of the methods in Category | used algorithmic approaches to the problem, and
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Figure 25 Revised Scan Detecting Line End Minufiae37
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Figure 26  Revised Scan Detecting Line Branch Minutiae37
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actually suffer from both the 'Tourist' syndrome and the 'Forest-for-the-Trees' syndrome.

Both rely heavily on the existence of minutiae classifiers and other pieces of equipment.

It is of interest to note that the Computer Corporation of America38, in tackling
general scene analysis problems, has generated some methods suitable for identifying
fingerprint minutiae. Applied to a fingerprint, these methods have been highly successful
in locating minutiae. One drawback is that noise due to poor print quality is sometimes
identified as minutice. This problem is being worked on, however, and when it is solved

the CCA method will be totally suitable for minutiae identification.

Researchers in Category 1l (whole image) are perhaps more cognizant of the
different interpretation media available. (See Section 4.3.2.) Most of their methods are
divested of the 'Tourist' and the 'Forest-for-the-Trees' syndromes. The general tone of

their research is perhaps best summed up by the following quotaﬁon:28

"We feel that a classification based on the type of clues used in the
Henry system cannot be accomplished by automatic means, within the
present state of the electronic art.”

With this thought, these researchers looked for other descriptors of the fingerprint,
perhaps best termed ‘gross descriptors'. They investigated heuristics and defined categories,
categories not determined by the Henry system descriptors but just as effective if not more

so in classifying and identifying fingerprints.

4.3.2 Category |l

4.3.2.1 -Photoelectric Fingerprint Analysis and Processing: Rabinow Electronics

In this treatmen?,sexaminaﬁon of the problem begins with the scanning procedure.
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. The researchers realized from the start that the real fingerprint is of variable quality. The
scan pattem28 that was developed (Figure : 27) has the following distinct advantages:
(1) 1t provides filtering so that!the scanner sees the average line and is not
greatly influenced by bits of dirt or breaks in the lines.

(2) The slot, rather than a spot aperture, provides a higher light level at the

photodetector with improved signal-to-noise ratio.
The filtering provides a neighbourhood indication of relative black.
It has also been found that different slot lengths and vibration amplitudes are appropriate
for different parts of the print. The more rapidly varying the fingerprint, the shorter the

slot should be.

The most important information extracted is that of the angle of the pattern with
respect to a chosen reference axis. This angle-of-pattern information, together with a

reference axis system, is used to characterize the fingerprint.

The reference system is determined by two operations. The first operation is to
generate a point of 'core' by orthogonal trajectories. 'Core' here is not necessarily the
‘core’ of the Henry system. Figure 28 indicates the method28 of orthogonal trajections.
Starting as equally spaced lines at the top of the print and travelling through the print to
cross each ridge orthogonally, the trajectories intersect at a point called the 'core'. To
determine the reference axis, an expanding circular scan is carried out around the core

until two 30° pattern lines are found as indicoted28 in Figure 29.

The classification method is called the Octant-Slope: system. Here the reference
circle is divided into eight area octants, with the reference line placed on the junction
. between octants 1 and 8. Next, the average slope of the ridges in each octant is

determined. Finally, the print is classified by the octant-slope relationship. The whole
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I. SLOT. VlBRATES IN THIS MANNER
SPEED,

2. SIMULTANEOUSLY,
SLOT ROTATES '
ABOUT ITS
CENTER AT
SLOWER SPEED.

3. \NHEN VIBRATION OF SLOT IS
PERPENDICULAR TO RIDGE-
LINES, MAXIMUM BLACK-WHITE
CONTRAST S EXPERIENCED.
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Figure 27  Diagrams of the Motions Used in Slot-Scanning of Fingerprmts2
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. reference and classification scheme is illustrcuted28 in Figure 30.

The interesting points are that the reproducibility is very good and the resolution

into distinct classes is extremely high. To quote:

Using this method, the theoretical number of classes for a single print
would be somewhat over two hundred eighty trillion. However since the
ridge lines are generally continuous, the slopes in adjacent areas are
related. Also those at the top of the print are roughly circular. For
these reasons, better than 90% of all prints would be contained in about
200 classifications.

The maximum number of classes using all ten fingers of an individual
would be 10200, This figure is based on the estimate of 200 probable
classifications for each finger. IBecause therei.is: some. rélatianship between
the fingerprints of a given individual, the probable number of classes
would be léss. We do not have sufficient data at present to estimate this
ﬁguregs.

This system is derived from essentially heuristic considerations that try to answer
questions such as: Do we need a ieference system? If we need a reference system, can we

devise one that is better than those now existing? Can we effectively and efficiently

classify fingerprints using this reference system?

One problem with the system is that the fingerprint has to be presented to the
scanner in a certain rotational configuration. Figure 31 indicates the possible points

of core determined if other rotational configurations are used.

All in all, this method presents an attack on the problem that can best be described

as the beginning of the application of pattern recognition techniques.

The second method presented in this section is essentially a prospectus and

illustrates a highly heuristic technique.
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4.3.2.2 Avutomation of Fingerprint Identification: Anthony Paolantonio

Mr. Paolantonid®# suggests that the fingerprint be scanned:in nine:different patterns

and the number of ridges crossed in each scan be tallied. His basic argument is:

Because no two fingerprints are alike, the number of lines scanned
in each print would be different; hence a quasi-raridom nurmber. would
represent the fingerprint when scanned in this manner. In addition,
if the print were to be scanned in more than one pattern shape, it is
obvious that a series of quasi-raridom-numbers woild be recorded<“.

A counter argument is that although no two fingerprints are alike in detail, many
fingerprints are the same in terms of gross descriptors such as whorl or loop. Mr. Paolantonio
is apparently trying to define a high resolution of a gross descriptor. This in itself is not
a bad idea but the size of the fingertip as well as the size.of the ridges,. varies from .
individual to individual, and the narrow ridges-are ‘associated with the smalles fingertips:.
Thus, the total number of ridges intersected by a straight line varies little, either between
individuals or between prints of an individual. The number of intersections, though,

depends on how the print was made, and thus on how much of the print is present. Basic-

ally, there are enough ridges to fill a fingertip, and a fingertip is finite in size.

There may therefore be no justification for assuming that different scan patterns
will generate enough different quasirandom numbers to provide a high enough degree of
classification resolution. Further, finding an invariant place to start the scan patterns is

a nontrivial problem not apparently approached by Paolantonio.
This method requires further study for fair evaluation. (See Chapter V.)

The final method to be discussed is a heuristically directed topological algorithm.
The devisors of this method observed the invariance of the Henry system under rotation,

translation, or even degeneration of the print and were led to investigate some type of
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. topological coding. Their heuristic interpretation and use of the accumulated ‘data gives

this method advantages over the Henry system.

4.3.2.3 Automatic Fingerprint Interpretation and Classification Via Contextual

Analysis and Topological Coding

Figures 32 and 33 indicate the basic system and processing concepts of the automatic
fingerprint-processing sysfemlz. The input system performs three functions: spatial

quantization, amplitude quantization, and elementary noncontextual spatial filtering.

The spatial quantization determines how much detail can be observed. The ampli-
tude quantization generates a black-white digitized code such as the eight-level gray code
previously mentioned. Noncontexival filtering essentially generates a machine sense of

relative blackness.

The purpose of the input system is to form an idealized print (Figure 34) for the
interpretation systemu. In generating the idealized prints, however, such things as
contiguous or partial ridges are not seen. The interpretation system first generates the

classifying print by contextually filtering the idealized print, and then cifcssiﬁes the print.

Contextual filtering consists of heuristically determining whether or not a ridge
discontinuity is a gap or an ending, and whether or not a ridge fill is spuriously contiguous
or actually a detail of the print. Here gaps and contiguities are considered noise.

Figure 35 illustrates contextual ﬁlferinglz.

Next, top nodes are scanned downward until a point of 'core' is reached. A top
node is defined as a point about which the ridge has a locally maximum curvature. A

. typical scan is illustrc:ted]2 in Figure 36.

Finally, each ridge is traced and encoded topologically (Figure 37)12 starting
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from the innemmost top node and working outward.

One problem noted with this method is that certain types of ridge gaps might be
filtered out, thus reducing the amount of classification data. Another problem is that a
different rotation of the fingerprint will define a different top node and possibly a different
code sentence. This is so, because the concept of a top node is that of a local rather than
a global point of maximum curvature of a ridge. Nevertheless, this is the most promising

of any methods so far presented for automatically classifying fingerprints.

4.3.2.4 Other Methods

This section briefly outlines other Category Il attacks on the problem.

1
In his work on shape descriptors, Blum looks at the boundary of a shape as a wave-
front, reasoning that if the wavefront is allowed to propagate in time, the intersection of the
Huyghens wavefronts will generate a medial axis descriptor of the shape. One of his

examples of a medial axis descriptor is the stick figure of a man, as seen in Figure 38.

(a) (b)
Closed contour figure Medial axis descriptor of Figure 38a
of a man

Figure 38  Blum's Shape Descriptor



’

62

The some technique applied to a fingerprint pattern may produce a unique general

descriptor that can be coded by methods described by Freemans' 9,10 (see Figure 39). To

FINGERPRINT " MEDIAL AXIS TRANSFORM
(a) loop

A

(b) whorl

VR

Figure 39 Blum's Method Applied to Fingerprints

(c) arch

generate these simplified loops, whorls, and arches from real prints mechanically, however,
would require highly sophisticated engineering. How is the machine to determine an

average line representation of the print?

Investigation into the 'average line' generated by the Rabinow Electronics scanning
method indicates that representative.sets of lines can be formed. A fingerprint (Figure 40)
can be reduced to an average fingerprint (Figure 41) and then be dealt with by using medial
axis descriptors. The medial axis can then be coded for curvature or intersection or other

properties in order to sort the prints by these properties.
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Fingerprint®

Figure 40
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Fingerprint

40




Figure 41  Average Fingerprint Extracted from Fingerprint in Figure 40 (Heavy Lines)
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Figure 41  Average Fingerprint Extracted from Fingerprint in Figure 40 (Heavy Lines)
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In another method, similar to the dbpve but an adapta‘ﬁon of a méthod. 6,!" closs ;
separation proposed by Rosenfeld and Pfaltzsl,' the object being analyzed is fenced in by

a region of area (Figure 42). Ne'xt,' smaller regions are marked in the area, and the

figure under

/ > analysis
enclosing ‘

region

Figure 42 . The Rosenfeld and Pfaltz. Method Applied to an Arbitrary Figure

number of these regions that touch the contour of the specimen are:tallied (Figure 43).

figure under
analysis

smaller
regions .

Figure 43 Inlaying of Smaller Regions

This inlaying of regions continues until a previously determined size of region threshold
is reached. The information obtained along the way is plotted as a graph (Figure 44). It
is hopea that different types of fingerprints will génerate line graphs that can easily be

discriminated from one another, thus effectively classifying the fingerprint.



region size
increasing

number of regions touching contour ——p=

Figure 44 * Data Qbtained from Rosenfeld and Pfaltz Method

The major objection to these last two methods is that they deal with gross descriptors
of an object, and there is not enough classification resolution to distinguish one finger-
print amongst others of a generally similar type. The first of the two methods may be
looked upon as an initial separating, not a classifying, process. The resolution of
classification is extremely low, so it is used only to split fingerprints into such groups as
may be analyzed by different algorithms or heuristics. The full classification scheme will
have an inherent partitioning or hierarchy that will direct different fingerprints to different

algorithms, and the particular algorithm will then classify the fingerprint.

The lack of resolution is noticed more acutely in the second of the two methods.
In tests of this algorithm on four fingerprints, easily recognized as four different finger-
prints by even an inexperienced observer, the method indicated these four prints to be
essentially the same. The differences between the line graphs are so small as to be

attributed to noise and not actual differences in the fingerprints.

4.4 Conclusions

Of existing methods, Hankley's is perhaps the best for the following reasons:
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(1) 1t provides a high degree of resolution, generating over 10]4 classes while

using only a few ridges near the 'core’'.

(2) The interpretation time for each print is under 2 seconds.

None of the other methods combine both of these attributes. Noting, :however, that most
of the input subsystem indicated (Figures 32 and 33) was actually manually effected, and
that certain pertinent ridge characteristics might be filtered out by Hankley's contextual
filtering, it is the author's opinion that there is still a lot of work to be done before finger-
print analysis can be fully automated. Further progress might be made by rea;ranging
Hankley's method, generating a new classification scheme entirely, or developing man-

machine systems.

In summary, automatic fingerprint analysis was presented in the context of a
pattern recognition problem. Existing solutions, as well as the problems associated with
these solutions were explained. Finally, other methods were put forth as possible areas
of research in trying to fully solve the problems associated with automatic fingerprint

analysis.

The following chapters present the author's investigations into the problem of

automating fingerprint analyses.



CHAPTER V
EXAMINATION OF THREE TECHNIQUES

5.1 Introduction
In this chapter, the author examines three methods in a non-machine context,

and the results obtained from these analyses are presented. The three methods tested are:

(1) The method of Paolantonio,
(2) The method of Blum, and

(3) The method of Rabinow Electronics.

The reason for choosing these three is that they are perhaps the most representative of the

various techniques presented in the literature.

The method of Paolantonio, which has not heretofore been examined in the
literature, represents those treatments which purport to totally classify fingerprints by
using analyses which typically involve some f*pe of random search. This type of analysis
disregards both the gross shape characteristics of the fingerprint and the minutiae or
ridge characteristics.” Paolantonio originally suggested his technique as a prospectus, and
to the author's knowledge, no actual tests of the technique have to this writing been made

on fingerprints.

The method of Blum is typical of those techniques, including the manual Henry
system, which attempt to use the overall or gross characteristics of a fingerprint as the
unique classifying agent. |t must be noted that the method of Blum was developed by
this author using Blum's techniques of shape extraction, and that this approach has not
been previously considered in the literature. To this writing, none of Blum's techniques

have been applied to fingerprints.
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The method of Rabinow Electronics represents those approaches that seek to
classify fingerprints by selectively considering specific pieces of information in a finger-
print. This method does not solely consider the 'gestalt' or gross characteristics (as does
the method of Blum), but it does reject information about the ridge minutiae (as does the
method of Paolantonio). However, other infomation such as the average ridge slope in a

small region is used in liev of the minutiae.

5.2 The Method of Paolantonio

Paolantonio proposes the use of an optical scanning technique for the analysis of
ﬁngerprintSZ4. The method consists of scanning a given fingerprint usine nine different
scan patterns, and tallying the number of times a given scan pattern intersects the ridges
of the fingerprint. Paolantonio suggests that the resulting tallies should be nine ‘quasi-

random' numbers and that these numbers fully identify the fingerprint.

The author carried out an experiment using one scan pattern on fingerprints
B-2, B-5, B-6, B-7, B-8, and B-? of Appendix B. The scan pattern used was a series of
vertical parallel lines originating from the top of each fingerprint. In all cases, the
physical size of the fingerprints was very nearly equal. The number of intersections found
and tallied for each line of the scan pattern in each fingerprint i; presented in histogram
form in Figures 45 through 50. Also, the total number of intersections found in each

fingerprint for the full scan pattern is displayed in the respective histogram.

One should note the two types of error regions defined in the histograms. The
first type is indicated by the line shading and the second type is indicated by the stippled
shading. The line shading represents that error which arises in trying to repeat an

analysis of a fingerprint with the same scan pattern. This is an alignment error, and is
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important, since the quasi-random.number resulting from a scan depends on the .number of
ridges intersected and hence the alignment of the scan pattern. In essence, the line shaded
error is an indicator of the repeatability of the scan. The error limits as shown in the
histograms are based on an average + 2% error found by the author when working with

normal size fingerprints*.

The stipple shaded error is an indication of the irregularity in size and shape of the
fingerprint based on the average difference found in observing different impressions of the
same finger. Any one impression of a finger will exhibit either more or less total ridge
area than any other impression of the same finger. Since Paolantonio's method depends
heavily on the number of ridges interseéted, and hence on how much print area is present,
it is important to consider this error in the analysis. In effect, the amount of this
error indicates the difficulty one would have in comparing a scene-of-crime impression

with a good, filed impression of the same finger.

The amount of print area included or excluded depends on such things as: the
pressure used in taking the fingerprint; the tone of the skin when the fingerprint is taken;
the experience of the fingerprint technician; the type of ink and paper used; the surface
upon which the paper is placed; the inking density; and the amount of cooperation given

by the person who is being fingerprinted.

This impression error is estimated to be + 10% of the dimensions of the fingerprint
worked with, or on the average, about + 2 ridges in terms of the fingerprints presently

under investigation **

* A 2% error is +0.02 inches on the average 1" x 1" fingerprint.

** This estimation is based on talks with the RCMP and the author's own observahons
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Considering both types of errors, a worst case chi-squared test was made on the
datg, using the ulnar loop as the reference, or expected data. It was founci that when using
this test for the distributions of intersections (histograms), there was on the average only a
2% chance of all the fingerprints being different from an ulnar loop. Further, when a
chi-squared test was made on the total number of intersections found in the fingerprint,
rather than on the distribution of intersections, no difference amongst the fingerprints

could be detected.

It may be argued that Paolantonio's method specified nine different scan patterns
so that the results obtained are misleading. However, it is the author's contention that
there are several more pressing problems than that of choosing nine scan patterns, and that
these problems must be dealt with before the method of Paolantonio can be seriously con-

sidered as an automatic technique for classifying fingerprints.

For example, in the manual examination of this method, the scan pattern was
arbitrarily placed so that it would cover the total fingerprint area presented. Since
Paolantonio does not indicate otherwise, it may be considered that the placement of the
scan pattern is arbitrary, and hence that the actual alignment of the pattemn with respect
to the fingerprint is unimportant. However, in carrying out multiple examinations of a
single fingerprint using only one scan pattern, it was found that the major differences
between the resulting quasi~random numbers was due to the fact that there was no
reference with which the scan pattern could be aligned. Therefore this author feels that
a reliable reference within the fingerprint has to be defined before this method can be

used.

Another problem is that this method makes no distinctions as to which rotational

configuration of a fingerprint should be used when making the analysis. This author
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found that different rotations of a fingerprint did generate slightly different quasi-random
numbers, but that these numbers were insignificantly different if the errors.mentioned
before were considered. (See page 62.) Since the quasi-random numbers arising from the
rotated analyses of one fingerprint were statistically equivalent to the quasi-random numbers
generated by all the other unrotated fingerprints, it may be wise to confine the analysis to
only one rotational presentation of a fingerprint. If only one rotational aspect of a

fingerprint is to be used, then a two dimensional reference system has to be defined.

A further problem arises in trying to determine what a ridge is and how it is defined.’
If one uses noisy raw data, then the definition of a ridge is not simple. Time would have
to be taken from the scanning operations in order to analyse every assumed ridge in order
to see whether or not it is a ridge. Regardless of how one detemines if a ridge is present,

extra computer time is needed and this is costly.

Finally as mentioned previously (page 73, there:are differences in the total print
area between multiple impressions of any fingerprint. This fact alone renders the method
of Paolantonio unfeasible, since one cannot, with any degree of reliability or accuracy,
define an arbitrary area in two or more impressions of the same finger, which will contain
exactly the same information. To define such an area is a contradiction in terms: Therefore
the author feels fhat further. investigatian into Paolantonio's'method would be fruitless and

that this technique cannot be effectively.implemented on a computer.

5.3 The Method of Blum

Blum proposes a method of shape analysis] whereby a descriptor of a closed contour
figure is extracted by a series of operations on the contour of the figure. The descriptor

resulting from these operations is called the 'skeleton', or the 'medial axis transform'
p
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61 (MA'I')26 of the figure. This author devised a method to analyse fingerprints which employs
Blum's technique. It should be noted that the central theme of Blum's algorithm is the

extraction of the skeleton from a figure.

One can generate the skeleton by what may best be described as the 'grass fire'
method of wavefront propagation*. That is, consider the figure to be analysed to be made
out of a homogeneous burnable material. One then sets fire to the boundary of the figure
everywhere, simultaneously. As the fire burns through the figure, one notes that at some
places, the fire will reach parts of the figure that have already been burnt out by the -fire
started from some other points on the boundary. Of one tabulates these points where the

firetries to burn through itself, one obtains the skeleton of the figure. Figure 51 shows a

(b)

Extracted skeleton

Figure 51

a simple figure with Blum's method applied to it and the 'skeleton' extracted. Each

interior contour represents the boundary of the fire at given times, T, 2T, 3T, gnd 4T if

@

* See also page 61.



the fire is started at the boundary where t =0.

Since a fingerprint is made up of many ridges, and thus has no single descriptive
closed contour, one has to generate the most representative closed contour or 'super-
contour' in order to apply Blum's method. The author decided to generate this super-

contour, or average fingerprint by using the following rules:

(1)  Starting anywhere in the print, follow five ridges at a time, replacing the
five ridges by one ridge whose slope is the average slop of the five ridges,

except where this contradicts rule 2.

(2) If any ridge of the five ridges being followed deviates from the average
slope by more than a given minimum angle, eliminate those ridges from

further operations with this group of ridges.

The rules for picking the super-contour from amongst the replacement ridges

generated are:

(1)  The super=contour shall be closed.
(2) The super=contour may if necessary follow the boundaries of the fingerprint.

(8) If rule 2 is employed, the super-contour that varies most rapidly and

employs the least amount of boundary should be used.
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These rules were applied to fingerprints B-5, B-6, and B-7 of Appendix B to

generate the super contours in Figures 52 - 54 respectively. Blum's grass fire method was
then applied to the super contours generating the skeletons in Figures 55 - 57. As can be
seen, the arch and the tented arch skeletons have a marked similarity, whereas the radial

loop skeleton is different from both of the other skeletons.

Blum's method does separate fingerprints into classes, but the question arises as to

the resolution of the class structure. In using Blum's method, one has to generate an
o .

average fingerprint before one can begin analysis. This means one extra step of filtering
(pre~filtering) and necessarily eliminates all of the fine structure (minutiae) of the print.
Since a print is uniquely defined by these minutiae which Blum's method eliminates, one
can consider the information derived from Blum's method only as a gross descriptor. Note
however that the pre-filtering necessary would take a lot of effort and machine time

whereas a technician can visually identify a fingerprint by its average or gross characteristics

in under 10 seconds.

Since Blum's method generates only.gross descriptors of. a fingerprint,. it will not

be considered for computer implementation.

5.4 The Method of Rabinow Electronics

The Rabinow method for classifying fingerprint528 has already been discussed in
some detail age 45} and will not be entirely restated here. The most important aspect of
the Rabinow method is that it does make some attempt to define a reference point within a

fingerprint. Since many researchersé’zs’

consider the establishment of a reference
system or reference point to be of prime importance in automated fingerprint analysis, the

author chose to investigate that aspect of Rabinow's method which purports generating a



Figure 52 Average Arch
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Figure 53

Average Tented Arch
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Figure 54  Average Radial Loop

81



Figure 55 - Arch Skeleton

Figure 56  Tented Arch Skeleton
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Figu re 57

Radial Loop Sk.elet.on

83




reference (central) point.

Rabinow uses analog methods (page 48) to generate trajectories in a fingerprint.
A trajectory is any line that, starting from one point in the fingerprint moves to another
point in the fingerprint, and is orthogonal to the ridge that it crosses. The oithogonality

condition is the prime consideration in generating a trajectory. (Figure 58.) The portion

ridges

trajectory

non
trajectory

Figure 58 A Trajectory According to Rabinow

of the trajectory labelled 'a' in Figure 58 connects a point on one ridge to a point on the
next ridge immediately following. Any such portion of a trajectory is called a trajectory

segment.

In the actual analysis, an arbitrary number of trajectories (in the author's case,
six trajectories are used) are initialized as equally spaced lines at the top of the finger-
print, and are then made to travel throug. ae print in the manner just described. The

basis for using this trajectory analysis is Rabinow's observation that:

“In any classification method, a system of coordinates must be
established.... In a machine-oriented system is is more useful to define
a point and a direction. This point could be the core of the present
(Henry) system. However, all that is really required is that the point
be the same on all prints of a given finger, and that the point be defin-
able on a useful majority of fingerprints.
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One method of locating a point that satisfies the above require-
ments is to start a series of equally spaced vertical lines down from the
top of the print. ..... Each time one of these lines reaches a ridge,
the direction of the line is changed to make it perpendicular to the
ridge. ...... it will be seen that all the lines intersect at an adequately
definite (defined) point. ....." 28

This intersection is defined as the reference point.

It can be seen from Rabinow's discussion that the orthogonal trajectory method is
essentially a gradient technique for hill climbing. This is more evident if one considers the
ridges of fingerprint as elevation contours of a hill. Rabinow has investigated the total
method that it had proposed by testing it on fifty fingerprints. However, no indication

was given as to how much research went into the defining and generation of a reference

point.

The above mentioned trajectory analysis was applied manually to ten fingerprints
and the results appear in Appendix C. It can be seen that a reference point was generated
in each fingerprint. In some cases (for example, Figures C-2.1, C-2.2 and Figures C-9.1,
C-9.2, C-9.3 and C-9.4), it was necessary to reduce the initial spacing of the

trajectories in order to define a reference point. .

Since it has been demonstrated that the manual analysis can effectively generate
a reference point, the author has adapted this aspect of the method of Rabinow Electronics
for a digital computer. A discussion of this digital method is presented in the next

chapter.
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CHAPTER VI

THE DIGITAL METHOD

6.1 Introduction

In this chapter the author presents a digital method for generating a reference
point within a noise laden fingerprint. The digital method is a derivation from, rather
than a direct simulation of, Rabinow's analogue method. However, in contradistinction
to Rabinow's method, the digital algorithm does not employ any noise prefiltering teghniques
as part of the analysis, but rather attempts to analyse very noisy raw data. The digital
algorithm was designed with this thought in mind: " Every operation that is not absolutely
necessary to the final solution should be eliminated." To this end, the author attempted
to design an algorithm with enough flexibility to handle very noisy raw data,

economically.

The digital method consists of two major parts, the Trajectory Analysis and the
Intersection Analysis. The Trajectory Analysis is further split into the Slope Analysis and
the Inter-ridge Travelling Analysis. The Slope Analysis examines a ridge in order to
determine the average slope of that ridge in a small region. After analysing a ridge, the
Slope Analysis gives the information obtained to the Trajectory. Segment Generator (TSG) |
_which then extends the trajectories through the fingerprint. The final operation is the
Intersection Analysis which determines whether or not the trajectories have generated a

reference point.

It must be remembered that the primary goal of this method is to generate the
trajectories, since once the trajectories are generated, a common intersection (reference)

point can be detemined by visual examination of the analysis. At present the Intersection
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Analysis is used to automatically extract the reference point, but this analysis is

ineffec;iual as will be explained later. It is cénsidered that if the reference points that

are machine generated and extracted visually had been unique and repeatable, then a

more comprehensive intersection analysis would have been designed. However, since it was
found that the reference points are not unique, there is no:benefit in producing a better

intersection analysis.

6.2 A Digital Fingerprint

In order to clearly understand the algorithr;ls that will be discussed, a few prelimin-
ary definitions and explanations are necessary. A fingerprint as seen by the computer is
a 252 by 256 digitized array, four exc;mples of which appear in Figures 59-62. The
method and the equipment the author used for digitizing the fingerprints was developed by

Reisch29 for his research on the histology of the human lung.

As can be seen from Figures 59-62, the digitizing procedure converts all of the
analogue information contained in a fingerprint into an 8-level grey code. The digital
information is then converted from an 8-level grey code into a binary code, where every
level greater than 3 is assigned the binary value 1, and is defined as black, while any
level less than 4 is assigned the binary value 0 and is defined as white. In practice, any
reference to the black areas of a fingerprint applies to the ridges, while any reference to

the white areas of the fingerprint applies to the spaces between the ridges.

6.3 Reference System

In order to access various points within the binary fingerprint, the following

reference system is adopted. (Figure 63.)



Figure 59 Digitized Fingerprint



Figure 59 Digitized Fingerprint
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Figure &0 Digiﬁied Fingerprint

pov)




n
A

Figure 60 Digitized Fingeiprine
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Figure 63 Reference System

The x-axis is aligned with the top of the fingerprint array, while the y-axis is aligned-
with the left hand border in the manner shown (Figure‘63) . Here, the top of the finger-
print is defined as that part of the impression resulting from the extremal part of the

fingertip.

6.4  Initialization

The program's first duty is to initialize the trajectories in the fingerprint. This is
done by the Master Processor which directs control to all the major analyses. Here, all
six trajectories are initialized by equally spacing the starting points of the trajectories
along the x-axis of the fingerprint. The field of search is defined as the euclidean
distance between the starting points of trajectories 1 and 6. After the fi;ld is defined,
all of the trajectories are forced to travel in the +y direction until each one finds a

ridge (black) region within the fingerprint. (Figure 64.)
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Figure 64 Trajectory Segments Generated by the Initialization
Procedure

At this point the trajectory initialization is complete, and the Master Processor gives.
program control to the Slope Analysis. Figure 65 is an information flow chart illustrating

the basic interactions amongst the algorithms about to be discussed.

6.5  Slope Analysis (SA)

The SA is the first analysis encountered after the trajectories are initialized. This
analysis determines the average slope and the orthogonal slope of a ridge in a given
region of that ridge. To determine the average siope, a contour (ridge) following
algorithm is employed. In order to follow a contour, the program must have the ability
to make turns within the fingerprint. To this end, a Supervisor Program (SP) directs the
contour following by means of a Generalized Right and Left Turning Algorithm (GRLA),
and a Specialized Right and Left Turning Algorithm (SRLA). To understand the mechanics
of these turning algorithms, one must first investigate the meaning of making a right or

left turn with respect to moving within a digital fingerprint.
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6.5.1 Nonspecific Turning

A nonspecific tum is defined as that turn which hds a definite direction but an .
arbitrary magnitude. It is essentially a vector of undefined magnitude. The best way to
visualize the nonspecific turns that are used in defining specific turns (see Section 6.5.2)
for the contour following algorithms, is to imagine that you are walking along a trajectory

in its direction of travel. (See Figure 66.)

- direction of
travel

Figure 66 Nonspecific Right and Left Turns

Here a nonspecific right turn can be made to any point in the half plane on ones
right side (R in Figure 66), while a nonspecific left turn can be made to any point on ope's'
left side (L in Figure 66). Note that the nonspecific turns are allowed to be in the
forward direction as well as in the reverse direction of travel. This is so by virtue of the
fact that in defining a direction in a digital picture, one has only discrete points to
which one can move. Therefore, if the resolution of the digital grid is coarser than the
resolution used to define the analogue right and left turns, then both a right and left
turn may be to the same digital point. This can be seen more clearly in light of the

definition of specific turns.
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6.5.2 Specific Turning

Consider the typical 3 by 3 grid (Figure 67a), that represents the neighborhood of

the point A in a digital array. Now a specific turn from point A is defined as that turn

Direction of Travel

o P
=
A A A B
o (a) . (b) (c)
Neighborhood of Point A Nonspecific Right (R) Specific Right and Left
and Left (L) Tumns Turn from A to B
Figure 67

which is made to one of the points of the grid in the neighborhood of point A. Consider
that a nonspecific right and left turn has been determined to be in the R and L directions
(Figure 67b) respectively. In order to make such turns in a digital array (specific turns),

the closest digital approximation to each of these directions in the neighborhood of A

has to be determined.

'n this case, the turn to point B from point A (Figure 67¢c) is the closest digital
direction to both of the nonspecific turn directions. Hence, the specific right and left
turns from point A can be made to point B, which point is in the direction of travel.
Since specific turns are defined in relation to nonspecific turns in the above manner (for
the SRLA only), it is necessary th.at the direction defined for nonspecific ﬁ;ms be allowed

to overlap. A similar argument holds for specific turns made to a point directly opposite



97

to the direction of travel.

With the above in mind, one can now examine the algorithms that direct the

specific turns needed for the contour following.

6.5.2.1 Specialized Right and Left Turning Algorithm (SRLA)
The SRLA is only used immediately after a trajectory has arrived upon a ridge, and
as such is the first algorithm to be encountered after the trajectory initialization and upon

entering the:Slope Analysis. Consider the 3 x 3 grid shown in Figure 68.

L”;

Y ‘ l Trajectory direction

Figure 68 Ridge Region in Neighborhood of Trajectory End Point A

Points A,B,C and D are black or ridge points, while the unlabelled points in the neigh-
borhood of A are part of the inter-ridge spaces. Here, point A is the point on the ridge
that the trajectory has arrived at. Seen in a larger context, Figure 68 may appear as in
Figure 69. Now, since the Supervisar Program demands that contour following be
initiated, it is the job of the SRLA to pick the best initial right and left turns. In order
to determine what a specific right and left turn from point A is, the SRLA has to have
information about all of the points in the neighborhood of point A, and as well, know
the trajectory's direction of travel. Using the concept of a nonspecific right and left

turn, the SRLA examines the neighborhood of point A in order to determine specific
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right and left turns. In the case of Figures 68 or 69, the best right and left turns from
point A are determined to be to points C and B respectively. The term specialized Right
and Left Turning Algorithm comes from the facts that: first, the SRLA examines the
neighborhood of a point before deciding upon the best right and left turns; and second,
the SRLA is used only once each time the Slope Analysis is called to examine a trajectory.
In contrast to the SRLA, the GRLA is used for making all turns during the contour follow-

ing operations, and does not use information about the neighborhood properties of a point.

6.5.2.2 The Generalized Right and Left Turning Algorithm (GRLA)

After the SRLA has determined the best right and left turns, the Supervisor Program
passes this information to the GRLA which is the next algorithm to be used. The only
information that the GRLA needs in order to _defel;nine how to make a turn is the
coordinates of the present or new point, the coordinates of the previous or old point and

whether a right or left turn is desired. The information about the points is initially passed
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to the GRLA by the SRLA as in the case of Figures 68 or 69, where the coordinates of
point A (Figures 68, 69) are passeéd as the coordinates of .fhe previous point, and _the
coordinates of C or B are passed as the coordinates of the present point depending on which
points (AC or AB) the SUpervisor is working with. Thereafter the GRLA generates its own
information about the coordinates of the two points needed while the Supervisor Program

injects information about the type of turn desired - either right or left.

The tem Generalized Right and Left Turning Algorithm derives from the fact that
the algorithm does not use information about a neighborhood of a point to determine a
turning direction. Instead the GRLA uses an ordered set of two points, which is the least
amount of information needed to determine a direction in a euclidean two space. Finally

the GRLA is independent of the trajectory's direction of travel.

Figure 70 shows the various turns that the GRLA makes. Note the only

R NIR L
N|O O O |IN O
L R RINIL |}
(a) (b) (c) (d)

Legend:

=  old or previous point

N = new or present point
R = right turn as determined by the GRLA
L = left turn as determined by the GRLA

Figure 70 Right and Left Turns Made by the GRLA
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cases considered by the GRLA involve ri.ghf angle turns. By considering only these cases,
the GRLA can be directed by the supervisor to use the contour following algorithm devised
by Mason and Kleme’ns?éand odéptéd qu"a digital machine by the author. . Further

this definition of turns reduces the number of cases one has to otherwise consider, and

thus increases the efficiency of the GRLA in terms of machine execution time.

6.6 The Supervisor Program (SP)

The main job of the Supervisor is to carry out the contour following on the ridge
by directing the SRLA and the GRLA through a certain number of color crossings. A
color crossing occurs when either the SRLA or the GRLA makes a turn from an initial
point and finds a new point with a different color than the initial point. Figure 71

shows a black to white color crossing upon taking a right turn. In order to follow a ridge,

Legend:
O =old point

N = new point

= right turn made by GRLA

W black region

Figure 71 Black to White Color Crossing

the supervisor determines whether or not a crossing is made and then instructs the GRLA
to take the next turn in the appropriate direction. The way in which this directions is

chosen can best be understood in tems of Figure 72.
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Trajectory's direction of
travel

Left wing

Figure 72. Typical Digitized Ridge

Point ‘A" (Figure 72) lies on a ridge which has been found by either the trajectory
initialization procedure or by the Inter-ridge Travelling Analysis. The SRLA has chosen
.points B and ‘C to be, respectively, the best initial right and left turns from point ‘A",
At this point, the Supervisor Program chooses the right wing to work on, where the right
wing is that part of the ridge which is in the direction of the initial right tum chosen by

the SRLA. A similar definition follows for the left wing.

The SP then directs the GRLA to look at the points A and B as the old and new
points respectively (Figure 72) preparatory to making a turn. The procedure by which
the SP decides whether a right or left turn should be made when working in the right
wing is called the Right Wing Main Proposition of the contour follower (RWMP) which is
stated as follows: when working on the right wing, make a right turn each time the new
point is black and a left turn each time the new point is white. In Figure 72, A is taken

as the old point, B is taken as the new point and according to the GRLA and the RWMP,
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(Figure 70d) the right turn is made to point Q. Now preparatory to making the next turn,

the GRLA takes the last new point (B) and makes it the old point. Next the GRLA makes
the point just arrived at (Q) the new point. At this time, the Supervisor Program examines
the color of the new point (Q) and decides which way to make the next turn according to

the RWMP.

The Supervisor and GRLA continue to interact in this manner until a prescribed,
albeit arbitrary number of color crossings have been made. The author found that ten
color crossings in each wing was sufficient to determine the average slope of a ridge within
the region of point A for all the fingerprints examined even though no excessive care was
taken to ensure constancy of ridge detail, ridge noise, or magnification factor amongst the
prints. Further, the author used a range of 6 - 16 allowed color crossings per wing for

several fingerprints and found no appreciable difference in the total analysis.

By generating the desired number of color crossings, the Supervisor arrives at a
point such as point 1 in Figure 72. After noting the coordinates of this point, the Super-
visor proceeds to work on the left wing by using the Left Wing Main Proposition of the
contour follower (LWMP) which is: when working on the left wing, make aleft turn each time
the new point is black and a right turn each time the new point is white. The Supervisor
uses the LWMP as it used the RWMP and eventually arrives at point 2 (Figure 72) and
stores point 2's coordinates. When the Supervisor has the coordinates of both points

(1 and 2), it calculates the slope as

&Y _ Y, -Y2

m — b=
A x x| =%,

and the orthogonal slope as
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and stores them for use later on in the program. Finally, the Supervisor examines the other
trajectories in a similar manner, and upon completing this task passes control of the

analysis to the Scheduler of the Inter-Ridge Travelling Analysis.

6.7  Inter-Ridge Travelling Analysis (ITA)

The purpose of the ITA is to extend a given trajectory by one segment in a given
direction. This direction is determined by the Schedulesof’ the ITA and the Large Scale

Noise Algorithm in conjunction with the information derived from the Slope Analysis.

6.7.1 Large Scale Noise Algorithm (LSNA)

Upon receiving control from the Supervisor of the Slope Analysis, the Scheduler of
the ITA directs the LSNA to conduct its analysis. Basically, the LSNA tries to determine
whether or not the black regions the slope analysis has worked with are ridge fragments or

ridges.. (See Figure 73.)

Legend:
R = ridge
RF = rfdge fragment

Figure 73 ldealized Representation of Ridges and a Ridge Fragment
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It must be stressed that (Figure 73) is an idealized physical representgtion of ridges

and a ridge fragment. In practice a ridge fragment is operationally defined in a manner
to be given shortly. If the LSNA determines that the black area is a ridge fragment, then
the possibility exists that the slope detemmined by the SA is spurious. The reason for this

can be seen by considering Figure 74.

R = ridge .
RF = ridge fragment
Al2 = points defined in contour following
AP = "correct" orthogonal line
AF = "spurious” orthogonal line found from slope of 12

Figure 74 Ridge and Ridge Fragment
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In this case, the SA will determine the slope of the line defined by points 1 and 2.
Accordingly, the orthogonal slope is determined to be defined by the line AF, whereas if
" the ridge fragment were considered in the context of the ridges around it (R), the ortho-
gonal slope would be defined by the line AP. 1t is this latter orthogonal direction (AP)..
that one would like to find regardless of whether one lands on a ridge or a ridge fragment,
but in the interests of an economical use of computer time, one would like to find the line
AP without using a full contextual analysis of the region. In an attempt to detemine the
orthogonal slope by using only the SA, and as such, rejecting contextual analysis, the .
LSNA makes a simple threshold comparison between the number of color croésings made,
versus the euclidean distance ﬁl and"A_;g. Here the number of color crossings is used as a

crude approximation to the actual distance travelled dlong a wing.

Figure 75 presents a magnification of the idealized ridge fragment shown in

Figure 73 with the points A, 1 and 2 as initially determined by the Slope Analysis. Now

Left wing

L\

{

Figure 75 Idealized Ridge Fragment
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the LSNA makes the following two é'cxhporisons:

@ Moy color crosigs i gt ving ¢ 5 5
Al
and
(i) No. color crossings in left wing z 2.5
A2

?

where C < D means "is C < D?" These comparisons are used as indications of how much a
wing has curved back on itself. If either of the comparisons are true, the slope as
defermiqed by the SA is discarded since it is considered to be sputious. The number 2.5
as used in the comparisons is arbitrarily chosen. However, in actual-analyses, this valve
(2.5) is found to work rather well as a threshold value for the LSNA. Note it is this

threshold comparison that is used to operationally define a ridge fragment.

When a slope is discarded, the Sheduler informs the Supervisor Program of the
Slope Analysis, and then waits until the Supervisor signals that another Slope Analysis has
been made preparatory to reinitiating the LSNA. This further Slope Analysis'is made with
the number of required color crossings reduced by 2 for the wing or wings that failed to
meet the threshold criterion. If, for these further analyses, the required number of color
crossings is reduced past the value 6, then the Slope Analysisiis dborted and the Scheduler
uses the Pass Mode(see Section 6.7.2) of inter-ridge travelling for this segment of the
trajectory. The reason for aborting the Slope Analysisiis that, for values of 4 or. less:
required color crossings, there is on the average too much small scale ridge noise to allow

for a reliable estimation of the slope.

There are two ways for the interplay amongst the Scheduler, Supervisar, LSNA,

and SA to teminate. The first, which has already been mentioned, occurs when the
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number of required color crossings has been reduced to 6 or less. The second type of
termination occurs when the LSNA interprets the black area under examination as a ridge
rather than o ridge fragment. If this type of temination occurs, the LSNA advises the
Scheduler to use the Sensed Mode (see Section 6.7.1) of travel in order to generate the next
segment of this trajectory. The Scheduler notes this recommendation and then proceeds

with a similar LSNA analysis for the rest of the trajectories. When the complete LSNA
analysis of all trajectories is finished, the Schedulerdirects control to either the Sensed
Mode or Pass Mode of the Trajectory Segment Generator (TSG). The TSG then extends the

trajectory further into the fingerprint.

6.8 Trajectory Segment Generator (TSG)

6.8.1 Sensed Travel Mode (STM)

The term sensed mode of travel is derived from the ability of the algorithm to sense
the correct orthogonal travelling direction by considering past information about the
trajectory's direction of travel and other information generated by the Slope Analysis. ‘It
can be seen from Figure 76b that there are two directions (C and NC) one could move in
énd still be orthogonal to the slope detemined by the Slope Analysis. To determine which
of the orthogonal directions is best, the sensed mode uses the original meaning of rightness

and leftness as previously defined in Section 6.5.1.
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2
Left wing___' 2

right

wing /
1

1 C

(a) (b)

Travel Direction of Trajectory Orthogonal Directions (C and NC) to
to Point A a Given Line (12) in Figure 76a

Key: A,1,2, are the points defined by SA
Figure 76
With this definition implemented, the best orthogonal direction of travel, as
determined by the sensed mode, is chosen to be in that direction which keeps the right
wing on the right side of the trajectory and the left wing on the left side of the trajectory.

Figure 77 schematically presents this concept in terms of one trajectory. One important

Start

Key:
R = right wing

L = left wing

Figure 77 Trajectory Generation Using the Sensed Mode
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point is that the definition of rightness and leftness as used by the Sensed Mode is.not the .

sole arbitrator in determining the final direction of travel, for by using only the Sensed

Mode method of determining the direction, one could theoretically travel in circles

(Figure 78).

Key:
R = right wing

L = left wing

Figure 78  Circular Travelling Using Only the Sensed Mode of Travel

In order to make sure that the trajectory does not travel in circles, the Scheduler
examines the direction determined by the sensed mode in light of the travel direction
chosen n steps ago. Here n is a delay factor which in theory is arbitrary, but in practice
was chosen to be in the range from 1 to 5. This range allows one to consider such factors
as the ridge spacing and the magnification factor of the fingerprint. Although n is

arbitrary, the author found that n = 3 allowed for a cogent analysis of all the fingerprints

examined.

After the direction of travel is totally determinea, the Scheduler instructs the
Travelling Algorithm to generate the next segment of the trajectory. After the segment is

generated, the Scheduler commences analysis on the next trajectory.
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6.8.2 Pass Travel. Mode (PTM)

The PTM is used only when a Sensed Travel Mode cannot be determined. -The name
Pass Travel Mode detives from the fact that the Scheduler instructs the Travelling Algorithm
to use the last determined direction of travel for the trajectory in order to generate a new
trajectory segment. In this way, the PTM allows a trajectory to keep on travelling in the

correct general direction regardless of the ridge conditions encountered.

6.8.3 Travelling Algorithm (TA)

The Travelling Algorithm is the physical generator of the trajectories. The TA
digitally extends a trajectory by one segment, across the face of the fingerprint, using
information about ridge conditions and travel direction, that is fed to it by the Scheduler.
The travel direction as used by the TA.is the best digital approximation to the analogue
direction detemined by the Scheduler. The methods employed for detemining the digital

direction are.derived from Freeman's WOrk8'9' 10 on digital geometric line patterns.

Basically the technique consists of first detemining the analogue slbpe or direction
the trajectory should travel.in, which as mentioned, is carried out by the LSNA and the
scheduler. This slope is the incremental change in y for each unit incremental change in
x. For example, a slope of 3.2 means that for each unit step made in the x direction, 3.2 -
unit steps have to be made in the y direction. However, one cannot make 3.2 steps in a
digital picture. Therefore, for each step taken in-the x direction, an integer number of

steps which does not exceed the value of the slope is taken in the y direction and the
remaining fraction is tallied. In the example just stated, one would make one step in the
x direction, and three steps in the y direction, tallying the remaining distance to be
travelled in the y direction - (.2). Each time this tally exceeds an integer, the latter is

added to the number of y steps to be taken. Three examples of this technique are presented
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in Figure 79.
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Figure 79 Digital Approximatic;ns to Analogue Slopes

After the TA has generated a trajectory segment, the ‘Scheduler tdkes over and dives

control to either the Sensed Travel Mode or the Pass Travel Mode in order to generate the

next segment of the next trajectory. Finally, when all of the trajectories have been
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extended by one segment, the Scheduler passes control to the Intersection Analysis.

6.9 Intersection Analysis (1A)

The purpose of the IA is to tally all points where at least two trajectories cross.
This analysis is complete when either a total of five intersections is found, or at least two

trajectories have travelled completely through the fingerprint.

The number of intersections sought is chosen as five for two reasons. First, if it
is assumed that the trajectories which initially span the field arrive at a common inter-
section point, then the trajectories must travel closer together. Second, if it is
further assumed that adjacent trajectories will intersect each other before they intersect
more distant trajectories, then only five intersections (where each trajectory intersects its
nearest neighbor) need be considered. Further, only the first intersection between two
given trajectories is considered. This restriction is to ensure that intersections amongst the
trajectories, rather than five intersections of two trajectories with each other are used in
the final analysis. Hence, by choosing five intersections in the above manner, one can

stop the analysis when one is reasonably sure of finding a reference point.

The second type of temination-two trajectories travelling completely through the
fingerprint-is undesirable for two reasons. First, it may indicate that at least two
trajectories have not intersected any other tra iecfo;'ies, and therefore no common inter-
section point can be reasonably defined. Second, even if these two trajectories do
interest other trajectories, five intersections have not been found and again no common
intersection can be defined. Note that the trajectories are generated a segment at a time
so that they all proceed more or less at the same rate through the fingerprint. Therefore,

if two trajectories pass completely through the fingerprint, one can be reasonably sure that
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the other trajectories will also pass through the fingerprint within a few more segments.
Hence, since no_common intersectionican be defined, the-dpeibybisiis téminated for this i -
initial search field.

If fﬁe first type of termination occurs, the reference point is defined as the average -
of all the intersection points so long as any given intersection point is within a certain
maximum distance of the average point. This distance is chosen as the average distance

between two ridges in a fingerprint. In practice, this number is about 1 millimeter, but

has to be individually determined for each digital fingerprint.

If the second type of temination occurs, then the initial search field is reduced
and the Master Processor re-initializes the whole analysis starting with the Trajectory
Initialization. If several analyses with reduced field have failed and the final search
field used spans less than one-fifth of the whole print, the fingerprint is considered

unsolvable and further searches are aborted.

The heart of the 1A is the crossing algorithm, which is explained below.

6.9.1 Crossing Algorithm

There are basically two methods to determine whether any trajectory segment has
crossed any other trajectory segment. The first method is the rather unenlightened brute
force technique of analysing each segment of a trajectory with respect to all other
segments of all other trajectories. 1t is important to realize that if the number of segments
is large, then the number of analyses required by the brute force technique could be
prohibitive. For example, if one has six trajectories, each consisting of twenty segments,
then six thousand intersection analyses would have to be made. As the number of segments

increases, the number of analyses that would have to 'be made increases nonlinearly.
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If possible, one would anly like to make those ﬁmlyses which would guamn.tee an
intersection, or failing this, analyse those segments which show the most promise of
intersecting. Now, if one wants to guarantee that an intersection will occur, then one has
to use a brute force technique as mentioned. But, from a few basic consideration, one can
deduce another method which will find those segments that show the most promise of inter-
secting. Such a method ~ developed by the author -.is ¢alled. the Ruler method and is

explained below.

P R I S R ™

6.9.2:.;. ThesRulerMethod. n - - . n olw o o wlin . so Loa

Firdt; consider a euclidean space, anuvorthonomial coprdijnate’ system and two line
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(trdjectory)=segments A and B as shown in Figure 80. Here u, v, and w, z are the

4

Figure 80 Coordinate System

defining end points of the line segments A and B respectively, where

and Y. >y .
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Next, one can define the x and y regions of influence of the line segments A and -

B as follows (Figure 81),
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Figure 81 Regions of Influence
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Rl Ax s x region of influence of line segment A
Ri Bx a x region of influence of line segment B
Rl Ay 4 y region of influence of line segment A.
RIBy a y region of influence of line segment B
and
= <
RiA, x> x x<xv’9‘¥
Rle = x®x, <x: <szy
RlA)' AL >Y>YVV’:‘:
Rlgy = ¥y, <Y<y, V.
Now, the region of influence of line segments A and B are defined as
Ry, = Rl ' RIAY
and
Rlg = Rip ) Rl

respectively.(; (See Figure 82.)

Figure 82 Regions of Influence of Line Segments A and B
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Now, since AD RI A and BO RIB, the condition for a possible intersection between

line segments A and B is:

Ri An RlB £ o Relation 1
o =null set.
This is equivalent to saying that there may be an intersection if and only if
RILN R # Rélation 2
and
RIAyﬂ R|By Fo. | Rélation 3

These two relations are the core of the crossing algorithm and the key to the Ruler

method.

One can see that relation 1 does not guarantee an intersection, but merely states

that there is a high probability of an intersection existing (see figure 83). By using

RI RI, .
| A Rl y A D D A
] A
/ / f [ [/ //
Rip
P
D
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@ x O Ei
RIA/\ RID#q, RlAN’D;“o
No Intersection between A and D Intersection between A and D

Figure 83
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relations 2 and 3, one can determine which line segments have the greatest possibility of
intersecting and then fully analyse those line segments. However, one has to be wary that
when one uses relations 2 and 3, the time needed to make these tests does not exceed the

time it would have taken to analyse all the segments by a brute force technique.

The author used relation 3 in order to set up a simple ruler technique which can be
described as follows. Consider that one has six trajectories that have been partially

generated. (See Figure 82.). A line arbitrarily called ruler &is set upiin the fingerHit.

X
AN ’

PARTITION 1

P

RULER A

PARTITION 2

Figure 84 Schematic Representation of Relation 3

parallel to the x-axis. Now, by relation 3, any trajectory segment lying below ruler A
(y<y A) in Parti.fion 1 cannot intersect any trajectory segment lying above ruler A (y >y A)
in Partition, 2. Therefore, if the trajectory segments can be partitioned by using a ruler so
that only those segments lying in one partition are examined, then the number of inter-

section analyses needed to determine which segments intersect, is reduced.
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Appendix D explains how the ruler was géneruted for use in the digital method for
finding a reference point in a fingerprint so that the partition to be examined, contained
only the last few segments of each trajectory thus reducing the number of crossi-ng analyses
needed. One can make variations on the simple ruler method by introducing rulers for
relation 2, , and multiple rulers within a given partition, but the author found these too

time consuming to be considered for further use.
|

When any given |nfersecﬁoh Analysis is complete and neither of the termination
requirements have been met, the Master Processor directs control to the Supervisor
Program of the Slope Analysis so that more segments may be generated. Due to the
fact that the listing of this program is thirty~two pages long, it is not included in this

thesis. However copies of the program are available from the author.

The next chapter presents and discusses the results obtained by using these

algorithms on fingerprints.
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CHAPTER VII

RESULTS AND CONCLUSIONS

7.1 Introduction

The digital method explained in the last chapter was applied to a test group of 150
fingerprints. (See plates 1 - 13.) These prints are divided into three groups so as to make
the discussion of the results easier and more understandable. Where applicable, the
reference points generated in each group are presented as dots located in the fingerprints

of the respective groups. The plates are presented in Appendix F.

7.2 Group 1 Fingerprints

This group (plates 1,2) contains all the fingerprints for which the digital method
generated and recognized o reference point. The distinguishing feature of the Group 1
fingerprints is that the Intersection Analysis recognized that a central point had been

generated.

Note that no one type (Henry classification) of fingerprint predominates the Group

1 fingerprints.

7.3  Group 2 Fingerprints

This group contains other fingerprints (plates 3 = 11) for which a reference point
was generated. The characteristic feature of this group is that the 1A did not recognize
that a reference point was generated. However, all the trajectories of the Group 2
fingerprints did have a common intersection point which was visually extracted from the
analysis. Some of the fingerprints of this group have more than one reference point.

This non uniqueness of the reference point will be discussed in Section 7.5.
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The reason why the reference points for this group remained unrecognized is that
certain peculiarities in the trajectories foiléd the Intersection Analysis. It was initially
assumed that in travelling tﬁrough the fingerprint, the distance between all of the

trajectories would decrease until finally a common intersection occured. (Figure 85.)

e X

\
Y
Figure 85 Assumed Trajectory Travel
However the analysis indicated that this was not the case. For all of the fingerprints in
the second groupy trajectory crossings which were distant from the common intersection
point were generated. For the purposes of discussion these distant crossings will be called
false crossings. The false crossings occurred mainly because of the combination of large
quantities of ridge noise and a fraieétory's lack of inertia. The inertia of a trajectory
depends upon how many segments have been generated, and the delay factor which is
used by the Scheduler Program (page 109) to determine the next direction of travel. The
majority of false crossings occurred within the first four segments of a trajectory. This
~ is due to the combined fact that either the delay factor (n = 3) had not yet entered the
Scheduler Program's direction considerations, in which case the direction was solely
determined by the ridges-which were very noisy, or that the delay factor was just initiated
and as yet did not yet have much effect in determining the trajectory's direction. The
remainder of the false crossings were solely due to ridge noise. Two false crossings (A, B),

a common crossing (c), and typical trajectories for Group 2 fingerprints are presented in
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in Figure 86.

Yx

yY

Figure 86 Trajectories Generating False Crossings

As was mentioned previously (page 113), the Intersection Analysis takes the average
of the first five crossings as a possible reference point. Then, the distance between each
crossing and the possible reference point is calculated. |f this distance is greater than a
certain maximum allowable distance (see page 113), then the reference point is discarded
and another analysis is automatically made. In all the analyses of the Group 2 fingerprints,
one or more false crossings occurred. Due to the facts that an analysis was not teminated
until either five crossings were made or two trajectories travelled completely through the
fingerprint, and that only the first intersection between any two trajectories was recorded,
the trajectories did generate a reference point. However, because of the mavximum distance
criterion just mentioned, these reference points were not located by the machine, but

instead had to be identified visually.

A second type of false crossing arose solely because of ridge noise and occurred only
when the trajectories were very close together. Figure 87 illustrates this type of false

crossing (1,2,3,4) generated by trajectory f because of the large amount of noise in the
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ridge region near f.

i w0 Figure 87 False Crossings due to Ridge Noise

Since all of the trajectories are very close, one can be reasonably sure that a common
intersection point exists in a small region about this type of false crossing. (1,2,3,4).
Here, the only problem is to determine which trajectory is causing all the false crossings
and either eliminate it from further analysis, or force it to travel in the same general

direction as the other trajectories.

One way to eliminate the effects of the first type of false crossing that was
mentioned would be to allow all of the trajectories to travel completely through the finger-

print and log every intersection that occurs. Next, one would calculate a weighted
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average of the intersection points and then eliminate from further calculations those points
which lie farthest frbm the weighted average. Using the remaining points, another
weighted average could be calculated. This type of elimination and calculation would
continue until either all the re;maining intersections lie within the maximum allowable
distance needed to define a reference point or no intersection remained withiﬁ this
distance. Here, however one would have to consider how to weight each intersection

and what distance criterion should be used for the elimination of an intersecting point.

Another technique that could be helpful in eliminating the first type of false
crossings involves examining the intersection points that form clusters. Here one could
calculate the reference point from the most heavily populated cluster. However one would
have to define some cluster threshold values in order to detemine if a given intersection

is a member of one cluster or another.

After considering these problems and some of the ways:they could be handled, the
author found it impractical to change the digital method for three reasons. First, in all
of the fingerprints a reference point can be located by visual examination of the results.
Since the major emphasis in this project was to generate a reference point, it is of
secondary importance that a machine be able to recognize such a point. Second, in order
to be sure that.any algorithm would work on all of the Group 2 fingerprints, it would be
necessary to test each algorithm on the whole group. In view of the computer time (see
Appendix E) taken for the analysis of all the fingerprints, the continued testing was found
to be impractical in terms of the time and scope of this project. Third, after analysing the
results, it was concluded that a.line rather than a unique point was generated. Therefore,

there is no point in attempting to perfect the digital method with respect to recognizing

reference points.
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7.4  Group 3 Fingerprints

The fingerprints in Group 3 (plates 12, 13) are non-solvable by the digital
method. This is due to the fact that these prints are either very heavily damaged or
excessively noise laden. Here again, no one type of fingerprint (Henry system) pre-

dominates this group. ;Typical analyses for all groups are presented in Appendix E.

7.5 Uniqueness and Repeatability

It has been shown that a reference point can be generated for a majority of the
fingerprints examined. However two important questions remain to be answered. The
first is, ‘Is the reference point unique?' and the second is, 'ls the reference point
repeatable?'. The author found that the answer to the second question depended upon
the answer to the first. That is, if a reference point is unique, then it will be repeatable.

However, that a reference point is repeatable does not imply that it is unique.

In order to answer the first question, one must consider the various types of
uniqueness pertinent to the problem. The types that are discussed are: uniqueness under
rotation; uniqueness under field reduction, which includes uniqueness under random
initialization of the trajectories; and uniqueness under multiple impressions, which is a

measure of the absolute repeatability of the reference point.

7.5.1 Rotational Uniqueness

The problem of rotational uniqueness was first considered in the discussion of the
Rabinow Electronics method (page 45). It was demonstrated that a reference point is not
unique under large rotations of the print. However it was found that if a reference point
could be defined, then the same reference point was found if the analysis was carried

out for different but small rotations of the fingerprint. The definition of a small or large
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rotation depends entirely on the fingerprint being examined and as such has no typical
value. However the fact that a reference point is repeatable under small rotations does not
belie the fact that this reference point is not unique. The uniqueness (small scale rotations)
and non uniqueness (large scale rotations) of the reference point can be understood in
terms of the gradient technique of hill climbing used to generate the trajectories. For

example, consider a trajectory analysis of Figure 88. Here, the trajectories would remain

Figure 88 Ridges of Zero Curvature

parallel to one another and travel through these ridges without intersecting each other.
In order to generate a reference point and hence have the trajectories intersect, the
ridges must have some finite radius of curvature (Figure 89) which acts as a focussing agent

for the trajectories.
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Figure 89 Ridges of Non-Zero Curvature

The situation encountered by the digital method in examining Figure 88 is
analogous to a problem where the gradient technique is applied to a constantly increasing
or decn:easing function. Now, it can be seen that certain sections of Figure 89 appear as
parallel lines with almost O curvature. (See Figure 89.) These sections are highlighted

in Figure 90. It was found that any trajectories that were initialized along such sections

Figure 90 Approximately Parallel Ridges with Zero Curvature
Extracted from Figure 89 (highlighted)
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did not necessarily have a common intersection with each other, but might have had a
common intersection (within the maximum allowable error limits) with the trajectories that
were initialized on the more curved portion of the fingerprint. 1t was also found that if
all the trajectories were initialized in the region of maximum curvature of a ridge, then

a common intersection point was found. Further, if all trajectories weré initialized in a
region of minimum curvature, then either no reference point was found or a point

was generated that was different from the one that was found for 'maximum curvature'
trajectories. Therefore one can define the maximum rotation of a fingerprint for a repeat-
able reference point to be that rotation which ensures that no trajectory 'sees' a set of
ridges such as appear in Figure 88. For purposes of the following discussion, the common
intersection point resulting from initializing all trajectories in a region of maximum curva-

ture of a ridge will be called the ‘optimal' reference point or peak.

If one considers the optimal reference point as the peak of a mountain and the
ridges of a fingerprint as contour elevation lines, then the failure of the digital method to
generate a unique reference point can be understood in terms of the failures of a gradient
technique of hill climbing. Figure 91 shows the top and side elevation aspects of a
fingerprint viewed as a mountain. A gradient technique can fail for three reasons.

First, if the peak located is actually part of a plateau, then it is not unique. Second, if
a sharp ridge is encountered, the gradient method will result in trajectories which
oscillate about the ridge. Third, if two definite peaks are apparent, then the gradient
technique will locate the closest peak. The rotational non uniqueness (large rotations) is
related to the first and third types of failure of the gradient technique. Consider that
any two points on a plateau are at the same elevation. If one is looking for the maximum

elevation of a butte, then any point on the plateau will define the maximum elevation.
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. ' Hence even though the elevation may be unique, the point that defines the elevation is not
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Figure 91 Fingerprints Viewed as Mountains

the print is rotated so as to present some parallel ridges of approximately zero curvature to
a trajectory, then these trajectories will travel over the plateau. In doing so, these

. trajectories will intersect any other:trajectories that are tiavelling along the ridge line.
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This can be seen in Figure 92. Hence any fingerprint that hassa plateau (Figure 91 a, b, c)

cannot have a unique reference point in terms of the digital method.
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Figure 92 Generating a Plateau Reference Point

7.5.2 Field Reduction and Uniqueness

It was mentioned (page 113) that if the Intersection Analysis could not recognize
that the digital method had generated a reference point, then the field of search was

reduced and another analysis was automatically made. 1t was found that,in general, each
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reduced field analysis of a given fingerprint in the second group generated a reference
point and these reference points were different from one another. The reason for this can

be related to the second mode of failure of a gradient technique as mentioned previously

(page 128).

If. a gradient technique encounters a ridge line, it will tend to oscillate about
that ridge line. Further, the closer one starts; to a ridge line, the sooner the gradient
search will oscillate. In terms of the trajectory analysis, it was observed that each
trajectory tended to oscillate slightly about an assumed ridge line and that these oscillations
caused intersections between the trajectories. Also, it was observed that the closer that
these trajectories were to the assumed ridge line initially, the sooner this occurred. It
turned out that these intersections generated reference points upon the assumed ridge line.
Since each field reduction generated a different reference point, a.reference point:is not

unique under field reduction.

Upon further investigation it was observed that a line of globally. mdximum
curvature (GLOM) - that line whick connects the points of maximum curvature of all the
ridges of a fingerprint - could be generated by the digital method. Also, even though
the trajectories intersected one another as they oscillated about the GLOM, they all
tended to follow the ridge line and hence define the GLOM;dasiitidicatedhini Figure23.
One final test was made whereby the trajectories were given random starting points. |t
was observed that if a reference point was defined, it lay on the GLOM of that finger-

print, otherwise no reference point was found.
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Ridge line or GLOM
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Figure 93 Trajectaries Following:the Ridge Line (GLOM)

It is interesting to note that the GLOM is similar to the line that connects the 'top
nodes' as defined by Hankley and Toulz. However, the 'top nodes' are the local points
of maximum ridge curvature whereas the GLOM defines the global points of maximum

ridge curvature. The GLOM will be discussed further in the conclusions.
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7.5.3 Multiple Impressions and Uniqueness

If upon using the same fingerprint and the same analysis (including small rotations),
a given reference point can be generated more than once, the reference point is considered
to be relatively repeatable. If this same reference point can be generated in a different
impression of the finger, then the reference point is considered to be absolutely repeatable.
This means that the correct point was found regardless of the smudging, distortion or
absence of data which is evident in multiple impressions of the same finger. However,
since the reference points generated were not unique within a fingerprint, the author
considered that an examination of multiple impressions was not warranted and hence was

not made.

7.6  Conclusions

A digital method for generating a reference point in a noisy fingerprint has been
presented. It has been demonstrated that a reference point can be generated in a majority
of the fingerprints examined. It has also been shown fha¥ the ?eference poinfs so generated
are not unique . ‘Hence, the location of the reference points presented in Sec.ﬁons 7.2,
7.3, and 7 .4 are mec‘:ningless and are just quirks of the fingerprint being examined.
Because of this fact, the author feels that further work on this digital. method for generat-
ing reference points is unnecessary. In addition to the above, the literature on automatic

fingerprint analysis was reviewed.

| In consid.ering the future ;:af fingerprint analysis = ;:utomatic or otherwise - one
can considér two broad categories: ten finger systemz and single finger systems. In view
of the success of the Henry system (ten finger, topological, manual) and the Hankley and
Tou system (single finger, topological, automatic), the author feeis that only a

topological classification system could capably deal with the many ~ distortions that
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naturally appear in fingerprints.

7.6.1 Ten Finger Systems

It is considered that the time is long overdue for a serious reappraisal of the Henry
system. After all, Henry proposed a system based on observations made on a relatively
small sample of the total number of extant fingerprints. This author feels that the large
sample of ten finger files existing today (177,000,000 files for the FBl alone) would provide
ample grist for any stouthearted statistician's mill. Even a taxonomist would have a field

day with the chaotic classifications that presently exist.

It would be a large undertaking to regroup the extant ten finger files according
to a different topological code, but several advantages to this regrouping are evident.
If a set of primary classifications could be defined that contains a more even distribution of
files, then the search and identify time could be dramatically reduced. As it stands now,
some primaries are so heavily populated that it is a farce to call such a primary an
initial classification. This type of classification is equivalent to a classification which’
separates the human population of the world into 'male’ and 'female' and 'neuter'. The
regrouping of primaries would be efficient in terms of employee time, since essentially
only new header cards for the primary classifications would have to be supplied. That is,
all the secondary classifications would remain the same, yet the relative ease with which
one could locate a file by its primary classification would be increased. 1t must be
remembered that the above is only a prospectus and may be more laborious than envisioned,

but the author feels that this approach should not be neglected.

It is interesting to note that certain similar genetic characteristics result in

similar fingerprint pattern527 (gross descriptors). Therefore one region of a country may
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have certain primaries (in the Henry system) full of files while other regions may have the
same primaries nearly empty. Thus in making a study such as the one proposed, care.would
have to be taken so that a ‘regional' system of primaries (such as the Henry system) is not
developed. This means that in the least one would have to work with many state or

provincial files, but preferably with national files.

7.6.2 Single Finger Systems

The only thing that detracts from ten finger systems is that it is useful only for
identifying the victim, not the murderer. That is, all ten fingers are needed for a
classification. Therefore any ten finger system that is used can be considered a victiin's
system. However what is needed is a murderer's system - one that can identify people

from single fingerprints.

The author feels that the classification of single fingerprints is the rightful realm
of an automatic (digital computer) method even though a manual (Battley) system does
exist. The problem with the manual system is that it is time consuming and requires at
least ten times as much effort and storage space as the Henry system. In this light, the
author advocates further research into the GLOM as defined by the digital method in
conjunction with the topological single fingerprint machine method developed by Hankley
and Tou]2. The reason for this is that at present Hankley and Tou's method works only on
selected, partially noise filtered data. Further, by virtue of the way in which the search for
the top nodes is made, only points of locally maximum curvature are found. Therefore,
depending on which rotational configuration is analysed, different classifications may
result. The digital method provides a way to generate the top nodes in extrer;lely noisy

data such that the line of globally maximum curvature is extracted (GLOM). The
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extraction of the GLOM occurs by virtue: of the fact that six trajectories are used in
conjunction with each other. Essentially each trajectory follows a line of locally maximum
curvature until the trajectories find a common intersection. Thereafter the trajectories
walk along the GLOM. This can be seen in terms of a gradient technique whereby the
trajectories reach a ridge line and then proceed to walk along the ridge line. Further
areas for research into the GLOM are indicated. For example, how could one best
initialize the trajectories so that they will reach the ridge line quickly? Also, can

special types of field reduction be employed so that the trajectories will approach the

ridge line rapidly?

In fine,: the author considers it of importance to be able to automatically classify
and identify fingerprints, and that the use of the digital method in conjunction with ..

Hankley and Tou's method would perhaps be the next most logical step in this endeavour.
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APPENDIX A

The following three quotations are presented as indications of both the usefulness
of fingerprints for identification purposes, and the other users researchers have for

dematoglyphs or skin carvings in general .

"1 beg the indulgence of the court while | make a few remarks
in explanation of some evidence which | am about to introduce,
and which | shall presently ask to be allowed to verify under oath
in the witness stand. Every human being carries with him from his
cradle to his grave certain physical marks which do not change their
chatacter, and by which he can always be identified - and that
without a shade of doubt or question. These marks are his signature,
his physiological authograph, so to speak, and this autograph
cannot be counterfeited, nor can he disguise it or hide it away, nor

can it become illegible by the wear and mutations of time."

"This signature is not his face - age can change that beyond
recognition; it is not his hair, for that can fall out; it is not his
height, for duplicates of that exist; it is not his form, for dupli-
cates of that exist also, whereas this signature is each man's very
own - there is no duplicate of it among the swarming populations of
the globe!..."

"This autograph consists.of the 'delicate ilines or.carrugations with
which Nature marks the insides of the hands and the soles of the

feet..."

Mark Twclin35
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“In medical works, haematoma of the ear has long been
recognized. This consists in the upper portion of the ear assuming
a peculiar shape, either by the formation of a blood tumor, or by
the thickening of the upper portion, which is found in the ears of
lunatics, generally those who inherit madness; but in Paris lately
it has been more closely studied, with the result that in August
1893 tests were given before the Académie des Sciences, proving
that madness could be predicted years in advance by a proper
study of the ear alone. Now my argument is, that if, as has been .
proved, accurafe. prediction can be made by a study of the ear, is
.there then anything impossible in prediction being far more
accurately made by a study of the hand, which has been pronounced
to be, both in nerves and mechanism the most wonderful organ in
the entire system, and to have the most intimate connection with
the brain." '

Chei ro3

"A point which deserves some comment is that the occurrence of
a radial- loop. on the ring and small fingers, hds been cited'as having

particular sighi ficance as an indicator of;mangofism." .. .. . ...

I_u20

Mark Twain's quotation eloquently describes the prime use of fingerprints - that
of identifying the individual. The second and third quotations, although separated by
“some sevenfy years, indicate the direction that the study of dactylography is taking.
Cheiro's statement is part of a defense of palm reading as a .science'. The fact that .fhere
are thousands of recorded readings with close to one hundred per cent accurdcy backing
up this 'science' should lead us to think rather than to laugh. Lu's sentence comes from
a modern biomedical paper that describes the research being done to determine the

fingerprint types that are indicators of Down's syndrome .
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It is fascinating to contemplate thot we may be applying mechanical techniques
of pattern-grokking to the occult or sciéntific endeavours mentioned and be able to
help prove, disprove, or formulate new theories:dealing with dermatoglyphics. If
something can indeed be read from the palms and fingerprints by human observers, then the
field of automatic pattern-grokking or scene analysis has much more new material to work

with in codifying identity descriptors.



APPENDIX B

This appendix contains examples of ridge

noise that could be mistaken asminutiae
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Figure B-6
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APPENDIX C

This appendix contains the results of the manual

examination of the Rabinow Electronics method
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~ APPENDIX D |

The way one generates a ‘ruler' and a partition for the purposes of intersection
analysis depends on the way one generates the segmented trajectories. The author

generated one segment of each trajectory sequentially, as pictured in Figure D.1.

a b c d x
' 4 —’-
] 1 1 1
2 2 2 2
p
3 3 3 3

1

Figure D.1 Sequential Generation of Trajectories

That is, the segment labelled 1 is generated first on trajectories A through F.
[
Then segment 2 is generated, and so on. The method the author used for setting up a ruler

and partition for this type of trajectory generation is as follows:
e ———e
(1) Initially set the ruler parallel to the x-axis at the origins of the trajectories
and then generate segment 1 of the trajectories. (Figure D.2.) The points
labelled G on trajectories A through F are the defining end points of the
segments just generated and will be considered the generating points of

the next segments.
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">

o—1"

Ruler

O_—-n

QO

y 1

Figure D.2  Generation of First Segments

(2) Examine all segements of the trajectories.that lie in the partitian above the
ruler (y > y ruler) for intersectiors. After the analysis, move the
ruler to the generating point having the smallest y value; in this case point

G of trajectory B. (Figure D.3.)

A o D .
s G Rul
G er
G
G
G

A

Figure D.3 Moving the Ruler

The reason for this placement of the ruler is that further comparisons (according to

rule 2) of other segments as they are generated will be sure to find any intersections that



" )
occur. For example, (see Figufe D.4) if the ruler was pl;:ced at position z instead of |
position v, and segment 2 of trajectory B was generated as shown, no intersection would
be found, since one only searches in the partition above the ruler (y > y ruler). Therefore,

the ruler is advanced only as fast as the smallest value of the generating points of the

trajectories.

Figure D.4 Unlocated Crossing Between Trajectories B and C
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" APPENDIX E
MACHINE AND PROGRAM STATISTICS

MACHINE:  IBM 360/75

System MVT release 16 and 17

PROGRAM: /
Language _FORTRAN v
Length 43 K Bytes ‘
Runnihg time 30 secot.ds for one complete analysis
Average trajectory length 20 segments
Group 1 fingerprints \ 18/150 12%
Group 2 fingerprints 108/150 72%
Group 3 fingerprints 24/150 16%
Total number of fingerprints 136/150 84%

with reference points

The following pictures represent typical trajectofies from the various groups of

fingerprints.
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Figure E.2 Group 1 Trajectories
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Figure E.3 Group 2 Trajectories
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Figure E.4 Group 2 Trajectories
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Figure E.6 Group 3 Trajectories
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APPENDIX F

This appendix contains the results of the

experiments carried out using the digital method
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Plate 1
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Plate 2
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Plate 3
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Plate 4
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Plate 5
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Plate 7
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Plate 8
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Plate 9
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