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ABSTRACT

There are many parallels between the behaviour of
gas or vapour bubbles, solid particles, and liquid drops. It
has been found only recently that under certain circumstances
liquid drops may take up shapes very much like spherical-
capped bubbles. This area has received little attention in
the past. It may be important as a limiting case for drops
in liquid-liquid extractors and for separators used with dis-
tillation columns.

The motion of drops of four grades of silicone oil,
paraffin oil, o-diethyl phthalate, o-dichlorobenzene, 1.2 -
dichloroethane, and 1,1,1- trichloroethane through a 70% by
wei ght aqueous sugér solution has been studied. Three theo-
retical and one semi -~empirical approach have been presented
for quantitatively determining the terminal velocity of these
drops. The first two approachés assume creeping flow outside
and inside a drop. The third approach uses semi<-empirical
relations, and the fourth assumes potential flow outside and
inviscid motion inside a drop. The theoretical predictions
are compared with the experimental results. The results show
that the creeping flow analysis predicts too strong a depen-
dence of velocity ©On equivalent diameter, while the poten-
tial flow approach leads to results which agree very well with
the experimental data. The semi-empirical approach turns out

to be unfrui tful.



Several different shapes have been distinguished.
it has been noted that a change in drag is always preceded
by a change in shape. The ana]ysis is further complicated
by the occurrence of skirts for larger drops. Waves and
skirt instability have been observed under certain conditions.
A crude model to predict the length of a skirt has been given.
The predicted and the measured length of skirt show poor
agreement., However, it appears that the crude model contains
the main physical features consistent with the actual case.
Conditions for the bnset of skirt formation are presented
graphically and a qualitative model has been proposed to

account for the formation and growth of skirts.



Figure

o w
—_N—O

3.4.2

F

N y‘l viow B R S s

AV ]
.
N
.
N

~iij-

LIST OF FIGURES

Page
Experimental Equipment, Overal!l Plan.......... 11
Experimental Equipment, Side View.......... e 11
Dimensions of Interest in Drop.......... Ceeaes 13

Variation of Viscosity with Temperature

for Aqueous Sugar Solution and Silicone

O O N 16
Variation of Viscosity with Temperature

for o-Cly Benzene, 1,2- Cl, Ethane and

1,1,1- CI3 Ethane..o.vve i, PR 17
Variation” of Viscosity with Temperature

for Silicone 0ils A and ABI, and Paraffin o
Ol ettt iee it taeesaraononsnnnns ceenes |
Var|atlon of V|scosuty wi th Temperature

for Silicone 0il A and o- Diethyl Phthalate... 19
Definition Sketch for Determining the

Principal Radii of Curvature from any Point

on the Profile of the Drop........c.ovvin.. 23
Internal Circulation. ..o neeennenennnnns 25
Typical Shapes of Large Dimpled Drops......... 29
Variation of Drag Coefficient with Reynolds®

NUM DT s s ittt it it ettt eir et enannaanenenas 31
Large DrOp in Silicone Oil A (Unbalanced

ST L) vttt e e ieeenerennasanecnononneonoanens 32
Variation of Edtvos "Number wi th Reynolds

T 11T P 34
Definition Sketch for Complete Boundary

Condi tions on Surfaces Sy and So.....vuuuvann. Ls
Definition Sketch for El 1psoxdal Coor -

dinate Method......viviiiiieiineniann, cees.. U8
Definition Sketch for Spherncal Coordi -

nate Method. ... iiiiiiiiiiiiiiiiiinneiinennnns 54
Displacement — time "Curves Deduced from
Photographs of Rising DropS...eeeeeeeeeeenenn. 60
Comparison Between Measured and Calculated
Velocities for o- Diethyl Phthalate Drops..... 61
Definition Sketch for Semi-Empirical

Method. . iiuiviiiiiiiiiineiieanennonennnnn coene 71
Definition Sketch for Oblate Spheroud
Method.....oovvevinnnnn. Ceteoeeeenes Y £
A Comparison Between the Measured and the
Calculated Velocities for Eight Systems....... 52

Typical Shapes of Large Drops of
o- Diethyl Phthalate Rising through
Aqueous Sugar SolUtion......ceeeveenvnennnnnnn 86



O\ ONON
O\

‘Fiqure.
6.

2

-lv-

Stages in Drop Shape Development in

Viscous quulds .......................... ceen
Variation of Dimensionless Gr0up, Sk,

wi th Reynolds Number and the Onset of

Skirt Formation....veiveeeesvoeonsneonconns cee
Streamlines for Dimpled Drop....cvveveennenens
Streamlines for Skirted Drop......vvvvvuuennn.
Sketch of the ldealised Sklrt/Eddy

Interface Used in the Model...................



LIST OF TABLES

Table Page
A Systems Studied and Physical Properties ' 20
B1-B9 Full Data on the Shapes of Drops and Their
Velocities
Bl- Silicone O0il A 35
B2- Silicone Oil ABI ' 36
B3- Paraffin Oil . 37
B4- o-Diethy! Phthalate : 38
B5- Silicone 0il ACI 39
B6- Silicone Oil B . Lo
B7- o-Dichiorobenzene 4]
B8- 1,2 -Dichloroethane 42
BS- 1,1,1 -Trichloroethane L3
Cl1-C9 Experimental and Calculated Drop Terminal
Velocities
Ci- 1,1,1- Trichloroethane 62
C2- o- Dichlorobenzene 63
C3- 1,2- Dichloroethane 6L
Ch- o- Diethyl Phthalate 65
C5- Paraffin 0il 66
Cé- Silicone Oil B 67
C7- Silicone 0il ACI 68
C8- Silicone Oil ABI 69
C9- Silicone 0il A 70
D1-D8 Experimental Results on Skirts for Rising
Drops
Dl- Paraffin Oil ' 101
D2- o- Diethyl Phthalate® 102
D3- Silicone Oil A 103
D4- Silicone Oil ABI 104
D5- o- Dichlorobenzene 105
D6- 1,2- Dichloroethane 106
D7- Silicone Oil B 107
D8- 1,1,1- Trichloroethane 108

E Variation of kg and Kb with Eccentricity, e 133
3 3 4



)

ABSTRACT

.TVi-

CONTENTS

LIST OF FIGURES

LIST OF TABLES

CONTENTS
CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER &4

W W W
e o & .

www

3
3.
.3,
3.
3.
3.

Introduction

1.0. General
1.1. Short Review of Some Early Work
on Liquid Drops

Previous Work on Dimpled Drops

2.0. The Occurrence of Dimpled Drops

2.1, Internal Circulation and Dimple
Formation

2.2. Interaction and Coalescence
Between Dimpled Drops

Experimental Equipment and Procedure

3.0. Experimental Equipment

3. ] Large Tank

1.1. Dispersion Tank

1.2, Drop Injection Pipes

1.3. Leakage-control Gate

1.4, System Connecting the Dispersion
Tank to the Large Tank

.2, Technique for Photographing Liquid
Drops

3. Measuring Techniques

1. Measuring of Drop Volume

2. Measuring of Drop Velocities

3. Measuring of Drop Shape

L, Measurement of the Liquid Physical
Properties

3.5. Procedure

Shapes of Dimpled Drops

L,0. Previous Hypotheses

L 1. Present Approach

1.1 Interfacial Tension

1.2. Internal Hydrostatic Pressure

1.3. Hydrodynamic Pressure Distribution
1.4, Internal Circulation

2.0. Experimental Results; Shapes of

Dimpled Drops

O \O\O OO0 (oo TN | \S) ] Nl = N

WP NO

A 2 I ol

N

N RO RN NN
VI N —

()
~



N
(i

CHAPTER 5

CHAPTER 6

CHAPTER 7

NOTATION
REFERENCES

viutu

VARV RV, |

>
5.
5

ONONOY

o OV N N OY
= W —~N

-vii-

investigation of Terminal Velocity
and Experimental Results

5.
5.

. . « o o . .
uutuui v i VIip NN Ul — s
. . . 0 - - - . - - - . .

0.
t.

NW N —

W N —

Ul o WW N —

Basic Problems

Method (i), Ellipsoidal Coor-
dinate Approach (Creeping Flow)
Assumptions

Boundary Condi tions

Solution

Method (ii), Spherical Coor-
dinate Approach (Creeping Flow)
Assumptions

Boundary Condi tions

Solutions

Experimental Results; Methods
(i? and (ii

Method (iii), Semi-empirical
Approach

Oblate Spheroid Method (Poten-
tial Flow)

Assumptions

Solution

Experimental Results; Method (iv)

Dimpie Formation and the Development of
Skirts

6.
6.

0.
I.

Earlier Speculations
Qualitative Explanation for the
Difference in Shape Between Cases

Where p'«e y and p'sy
" The Case Where p'«w u

Spherical or Almost Spherical Dr0ps
Drops with Flattened Rear

Onset of Skirt Formation

A Simple Description of Flow in

the Skirt

Skirt Length: Experimental
Measurements

Conclusions and Suggestion for Future

Research

7.0. Terminal Velocity

7.1. Shape of Dimpled Drops

7.2. Skirts

7.3. Suggestions for Future Research



N

N

APPENDICES

A,

O w
P

-viii-

Calculation of Stream Function:
for Method (i)

Evaluation of Limits

Evaluation of Stream Function for
Method (ii)

Derivation of the Equations for
Determining the Surface Area and
Volume of Drop

(a) Evaluation of Limits

(b) Evaluation of Limits
Derivation of Equation for Tangen-
tial Velocity, UF’ used in Section

Page

119
122
123
126

131
132

i35



)

CHAPTER 1
INTRODUCTION

1.0 General

Two phase flows are of great importance in many

branches of Engineering and Physics. For example, in liquid-

liquid extraction, boiling, sedimentation, distillation and
in meteorology two distinct phases, a continuous and a-dis-

persed phase, are always present. The dispersed phase may

be in the form of gas or vapour bubbles, solid particles, or

liquid drops. A common aim is to increase the interfacial

area in order to maximize the rate of heat or mass transfer,

The flow patterns in both phases are important in all these

cases for two reasons, Firstly, the capacity of the equip-

ment depends on the terminal velocity of the dispersed phase,

Secondly, the convective rate of heat or mass transfer between

the dispersed and continuous phases is determined by the fluid

flow inside and around the dispersed particles.

The analysis of the nature of flow for dispersed
flows of bubbles, drops and particles is a hydrodynamical

problem which has been under investigation since the time of

Stokes (1850). The problem is complex and many assumptions

have to be made in order to devise analytical solutions. In

the case of solid particles, sufficient assumptions havc been

established to bring solutions valid at sufficiently low

Reynolds numbers for certain shapes. However, the problem




G

becomes more complicated with bubbles and with drops. This
is due to the fact that there is internal circulation and
deformability for bubbles and drops. Moreover, for liquid
drops the dispersed phase fluid generally has appreciable

density and viscosity which affect the flow patterns,

1.1 Short Review of Some Early Work on Liguid Drops

When the size of a liquid drop rising or falling
in another liquid is sufficiently small, interfacial tension
forces predominate and both the hydrostatic and hydrodynamic
forces are negligible in the determination of the shape of
the drop. In such cases, the drop assumes a spherical shape
or it is distorted to such a small degree that its accentri-
city is not observable, Drops of this shape have been inves-
tigated quite thoroughly. Analytical solutions were developed
by Rybczinski (1911) and independently by Hadamard (1911) for
creeping flow in both phases and a perfectly mobile interface,
Boussinesq (1913) extended this treatment by postulating that
a thin layer of higher viscosity exists near a liquid inter-
face. This assumption of the existence of surface viscosity
has generally been accepted, although its importance for liquid
drops and gas bubbles is slight, Harper, Moore and Pearson
(1967). 1in most systemé of practical importance, mobility of
the interface is impeded to a greater or lesser extent by
surface tension gradients due to the presence of surface

active impurities and the shear stress at the interface.



)

in many cases, the interface is then totelly rigid and the
fluid particle acts like a solid sphere. Intermediate cases
where the interface is partially immobilized have been treated
by Savic (1953).

As the size of the drop is increased, the dynamic
forces due to the flow of the external and internal liquids
begin to affect the shape of the drop. The shape changes from
spherical to nearly oblate ellipsoidal, w{th the amount of
deformation depending on the physical properties of the two
liquids. Drops of this particular shape have also been
studied. Their original treatment was due to Oberbeck (1876).
Sai to (1913) showed that a prolate shape is possible if 6“(’
and p«ep', e.g. for liquid metal drops falling through air,
Hughes and Gilliland (1952).

In some cases, again depending on the physical
properties of the two liquids, the shape does not change from
spherical to e]lipsoidal;. Instead, as the drop size is
increased above some critical value, a dimple begins to form
at the rear df the drop. So far as we know, this type of drop
has received little attentién up to the present time. How-
ever, it may be important as a limiting case for drops in
industrial processes mentioned earlier, This study would also
help to resolve certain problems associated with the behaviour
of spherical-cap bubbles in liquids and in fluidized beas.

For éxamp]e, it is very difficult to visualize the internal
flow patterns for bubbles, but flow visualization in large

liquid drops is feasible.
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CHAPTER 2
PREVIOUS WORK ON DIMPLED DROPS

2.0 The Occurrence of Dimpled Drops

Dimpled drops have received very little study by
other workers. Garner et al. (1957) reported this shape for
chloroform drops descending through a continuous phase of
glycerine., It was observed that as the size of the drop was
increased, the drop remained spherical until a Reynolds number
of about 0.1 was reached. After this, the rear of the drop
began to flatten, For still higher Reynolds numbers, the
rear surface was found to fold inwards causing an indentation
or cavity at the upper surface of the drop. It was concluded
that the distortion of drops at relatively low Reynolds
Qumbers (of order 1) depends on the relative changes in the
outside hydrodynamic pressure and the inside pressure due to
circulation,

While carrying out investigations of the nature of
flow and shape of drops in non-Newtonian liquids, Fararoui
and Kintner (1961) found it desirable to compare the shapes
of large drops moving through non-Newtonian liquids with drops
of similar size moving in comparable Newtonian liquids. In
the latter systems with a nitrobenzene-tetrachloroethane
mixture as the dispersed phase and corn syrup as the contin-
uous liquid, they obtained a series of phetographs of dimpled

drops. These drops had sphere equivalent diameters ranging



from 0.46 c¢cm to 5.22 cm. For drops falling through non-
Newtonian liquids, they noted that as the drop size was
increased to some critical value, the shape might change
from tear-drop shape to one with a concave upper surface.
Dimpled drops have also been reported by Shoemaker

and Chazal (1969) for 2-butanone, acetone, hexane, 2-ethyl-

1-hexanol, and 145 cP paraffin oil drops dispersed in glycerol.

Using paraffin oil as the continuous phase, dimples were
observed also with two dispersed liquids: glycerol and water.
A chamber 71.6 cm high and 26.5 cm in diameter was used in
order to avoid end and wall effects. Published photographs
of the drops show the dimples, stable skirts attached at the
edge of the concave region, and ragged skirts (not axially
symmetrical).. The assymmetry was said to have been due to

vortex shedding.

2.1 Internal Circulation and Dimple Formation

Garner et al. (1957) also investigated the onset
of internal circulation and its effect on dimple formation
for small drops falling through Newtonian liquids. With
carbon tetrachloride dispersed in glycerol, it was found that
internal circulation begins at Reynolds numbers as low as

3% 107% to 1073 ¢

diameters ranging from 107! em to 3 x 1073
cm). However, the dimple at the upper surface of .the drop
did not form until the Reynolds number was greater than about

0.1. Their explanation for this was that for smaller drops,

the “"Hydrodynamic suction" is very low and there is no dis-
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tortion. With increasing drop size, the outside hydrodynamic
suction and the inside circulation pressure change in accord-
ance with the Hadamard (1911) solution so that the excess
pressure (pressure inside less pressure outside) remains equal
to 26/R,, i.e. Phg - Phg = 25/R,. Here g is the interfacial
tension, Ry is the local radius of curvature at the rear of
the drop, Phs is the hydrostatic pressure, and Phd is the
hydrodynamic suction,

At Reynolds number greater than 0.1, the hydrody-
namic pressure progressively increases over that indicated by
the excess pressure Zg/RO. Hence, the radius of curvature at
the rear stagnation point must increase to maintain the pres-
sure balance as the drop becomes increasingly flattened at the
rear surface, As the Reynolds number is increased even more,
the excess pressure becomes negative and the drop starts to
Become concave. To back up their explanation, Garner et al.
(1957) plotted Reynolds number against ZO/RO for each drop
of carbon tetrachloride falling through glycerol. The results
are consistent with their proposed explanation.

Shoemaker and Chazal (1969) suggested that the
formation of dimples and skirts was due to stable vortices
in the wake of the drop and to internal circulation. Their
reasoning~was based on the twc-dimensional bubble wake studies
of Collins (1966) and Crabtree and Bridgwater (1967), and the

three-dimensional spherical drop wake studies of Magarvey and
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Maclatchey (1968). Shoemaker and Chazal also postulated that
the toroidal circulation in the wake of a large drop can
increase the stability of the dimple or skirt, significantly
delaying the onset of vortex shedding. Skirt formation has

only been observed with a continuous phase of high viscosity.

2.2 Interaction and Coalescence Between Dimpled Drops

The interaction between dimpled drops has been
observed to be different from the behaviour of spherical
drops by Shoemaker and Chazal (1969). If two drops are formed
a fraction of a second apart with the second drop slightly
larger, they will rise independently until the second drop
reacheswfhe circulation region below the first drop. The
lower drop then begins to lengthen as it is accelerated into
the expanding dimple of the upper drop. This is clearly shown
in their photographs of 2-butanone drops rising through gly-
cerol. Some of the photographs also indicate that the over-
taking drop elongates considerably as it enters the skirted -
region of the leading drop. Coalescence of two such drops
was also demonstrated in their photographs. This process of
coalescence is similar to that shown by bubblesbin fluidized

beds as noted by Clift and Grace (1970).
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CHAPTER 3
EXPERIMENTAL EQUIPMENT AND PROCEDURE

3.0 Experimental Eguipment

The equipment is shown schematically in Figs., 3.0
and 3.1, It includes a large tank, A, a dispersion tank, B,
and a. leakage control gate, F. The system of drop injection
pipes, P, valves, V, and a compressed air cylinder, C, are

also shown,

3.1 Large Tank

The tank of height 200 cm and cross-section 122 x
122 cm, constructed of cast iroﬁ framework with plexiglass
windows, permits visual and photographic observation. The
gupporting framework is necessary in view of the capacity of
fhe tank and the hydrostatic head of the liquid filling the
tank. With such a large tank, experiments can be conducted
with wall effects negligible, In the inside of the tank, the

metal framework has safety-green paint applied in order to

prevent rusting or reaction with liquids filling the tank.

3.1.1 Dispersion Tank

Situated beside the large tank is a cylindrical
dispersing vessel of capacity 25.450 cmB, made of stain-
less steel and with cast iron legs. The vessel can withstand
pressures of at least 60 psig. On the upper part of the

vessel there are three pipes, each fitted with a valve. One



is used to introduce the liquid into the vessel; the second
allows compressed air into the vessel, while the third serves
to release the compressed air at the completion of the experi-

ment,

3.1.2 Drop Injection Pipes

Six short pipes of inside diameter 3/8", 5/8",
/4, 1", 1 1/2" and 2" are fitted at the bottom of the large
tank in order to produce drops of varying sizes. Three of
these pipes are fixed at an angle of 135° to the vertical by
means of elbows in order to minimize leakage due to the dis-
placement of the light discontinuous Tiquid by the more dense
continuous liquid. These pipes are also protected with safety-

green paint.

3.1.3 Leakage-Control Gate

The leakage-control gate was constructed of plexi-
glass. A sliding plexiglass gate (%" thick)was attached to the
upper surface of a rectangular frame. The gate is controlled
by a bimba air cylinder and energised through a double-stroke

solenoid valve.

3.1.4 System Connecting the Dispersion Tank to the Large Tank

This consists of a pipe of 3/8" 1.D. leading from
the bottom of the dispersion tank. The pipe is made of cast

iron. Fitted onto it are a relief valve, a check valve, and
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a length of transparent plastic tubing. The release valve

is made of cast iron and requires a maximum pressure of 50

" psig before opening automatically. With judicious setting

of this valve, it is possible to generate reproducible drops
of a desired size. The check valve serves to prevent the
continuous liquid from running out of the tank; the trans-
parent plastic tubing enables visualization of the dispérsed
liquid during drop generation, The 3/8" pipe is made so that
it can easily be connected to any of the six injection pipes
at the base of the large tank.

-

3.2 Technique for Photographing Liguid Drops

The photographic technique is based upon backlighting
of the field of interest through the plexiglass window., A
white translucent sheet of paper flush with the outer back
Furface of the column diffuses light from a pair of flood
lights., This gives each drop a dark outline sharply silhouetted
against the bright background. The flood lamps were kept far
enough away to minimize heating of the liquid in the tank.

Motion pictures of the risirg drops were taken using
16 mm Tri-X or Plus-X reversal film with a Bolex reflex cine
camera. Various lens and filming speeds were emb]oyed. In
order to minimize distorted images caused by shadows and

reflections, the camera was aligned at right angles to the

face of the tank, and at a distance of 20 feet.
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3.3 Measuring Technigues

The various methods employed in the measurement of
volume, velocity, shape.of the liquid drops, and the physical
properties of the liquids are discussed in the following sec-

tions,

3.3.1 Measurement of Drop Volume

The volume of each drop was measured by trapping it
as it rose to the top of the large tank in a calibrated glass
funnel, Two sizes of glass funnels were available with stems
of internal cross-sectional area 19,64 cm2 and 3.14 cmz. The
former was found convenient for large drops while the latter
proved more accurate with smaller drops. The level of the
liquid in the funnel was recorded before and after coliecting
the drop. From these two levels, the displacement, and hence
the volume of the drop, was calculated. The level of liquid
in the collecting funnel could be controlled by sucking liquid
off with a press-ball vacuum pump. In this way, the dispersed
liquid was recovered for re-use. The liquids were mutually
saturated and their physical properties are given in Table A,

A 70% by weight aqueous sugar solution was used as the contin-

uous phase in all the experiments reported here,

3.3.2 Measurement of Drop Velocities

Twe methods of determining drop velocities were
employed, One was to measure the time taken by the drop to

move through a height of k5.7 cm with a stopwatch with a ten
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second sweep. To avoid end effects, the drops were allowed

to rise nearly 100 cm before the 0.1 sec stopwatch was started.
The upper extreme of the timing section was about 30 cm below
the top surface of the continuous liquid in the test tank.

The second method of measuring velocity was to count the number
of frames from the cine-film for a known filming rate for the

drop to traverse a known distance.

3.3.3 Measurement of Drop Shape

The outline of the drop as seen in the films was
drawn on trénsparent paper where the film had been projected
onto a horizontal surface using mirrors. For liquids of high
viscoéity moving through liquids of low viscosity, a different

system* comprised of mirrors was employed. From

.-L-';/’E;) b
(‘ Cu)f \'.H)

Fig.3.2. Dimensions of Interest

"This consisted of a set of two adjustable mirrors and spot-
lights., These were introduced into the tank. In this way, it
is possible to photograph the same drop from two viewpoints
simultaneously as it moves through the continuous liquid.
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each trace, the shape and dimensions of the drop were deter-
mined, The dimensions of interest (Fig. 3.2), included the
semi -major and -minor axes, the length of the skirt, the

radius of curvature at the skirt interface, and the coordin-

ates of different points on the projected boundary of the drop.

3.4 Measurement of the Ligquid Physical Properties

The experiments were carried out at temperatures
varying from 24°C to 30°C. Measurements of density, viscosity,
interfacial tension, and refractive index were performed as
a function of temperature over the range 18°C — 40°C. The
results for the jiquids used are plotted in Figs. 3.4, 1 - 3.4 4,
for viscosity, The density, interfacial tension, and refrac-
tive indices were found to be very weak functions of temper-
ature.

‘ The density was determined with calibrated hydro-
meters, and the interfacial tension was measured by means of
a ring tensiomat. The two phases were completely saturated
before the measurements were taken, A Brookfield synchro-
electric rotational viscometer and a constant temperature
bath with cannon-fenske capillary viscometers were used to
measure the viscosity of the liquids. The refractive index
was determined by using a Zeiss Refractometer with a temper-
ature controlling device consisting of a thermometer and a

Haake water-jacket.
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3.5 Procedure

The experimental procedure was as follows:

The Large tank was filled with about 8000 1b of aqueous sugar
solution which contained 70% sugar by weight. 200 gm of
hyamine (Dodecylmethylbenzyl-trimethylammoniumchloride) were
dispersed in the solution in order to prevent bacterial
growth.

The dispersion vessel was half-filled with the
liquid to be dispersed. This liquid had already been satu-
rated with the continuous liquid by stirring a 50:50 mixture
of the two liquids and then leaving it to settle for 24 hours,
A nressure of 10-15 psig was then apélied from the compressed
air cylinder to the diépersion vessel., The stationary photo-
graphic équipment, the lighting system, the stopwatch, and
the calibrated collecting funnel (supported from the top of
fhe tank) were then positioned and prepared for use. After
an altuminum block had-been photographed to provide a frame
of reference, drops of the required size were injected by a
controlled opening of the relief valve. After the drop had
been filmed, its volume was read from the collecting funnel
and recorded., The above procedure was repeated for various
sizes of drops, each time making sure that the accumulation
of the dispersed liquid in the collecting funnél was not

excessive,
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TABLE A,

Systems Studied and Physical

Properties

Viscosity Viscosity Densi ty Density Inter-
continuous dispersed continuous dispersed facial
phase phafe phase phase tension Re f .
: W o efractive
Sysg?m Dazﬁ:;:ed (cp) (cp) (g/c.c.) (g/c.c.) (gﬁﬁg) index

1 Silicone oil A

at 27.5°C 1160 5.45 1.385 0.92 53.49 1.403
2 Silicone oil B ) .

at 25,40C 1460 LT 1.385 0.958 53.90 1.4Lo4
3 Silicone oil ABI

at 27.80C 1120 23.20 1.385 0.944 53.50 1.403
L Silicone oil ACI

at 27.80C 1120 190 1.385 0.936 50.63 1.405
5 Paraffin oil A

at 26.5 © 1300 38.5 1.385 0.860 53.4] 1.471
6 o-diethyl phthalate -

at 27.80C .- 1120 8.9 1.385 1.115 29.40 - s
7 o-dichlorobenzene 2 @

at 27.89C 1120 1.37 1.385 1,288 36.75 -
8 l1,2~Dichloroethane N

at 27.50C 1160 1.04 1.385 1.247 34,55 ialalndt
9 1,1,1—- Trichloroethaie )

at 27.59C 1160 0.96 1.385 1.316 57.98 -




-21-

CHAPTER L
SHAPES OF DIMPLED DROPS

L.0 Previous Hypotheses

I't has been known for some time that large liquid
drops do not possess symmetry about a horizontal plane, As
already stated, Garner et al. (1957), Fararoui and Kintner
(1961), and Shoemaker and Chazal (1969) revealed, instead,
that a large liquid drop of low viscosity rising or falling
through a high viscosity mdiun exhibits a marked cavity at its
rear and smooth rounded curvature at its front. This lack of
fore and aft symmetry has never been adequately explained,

and only a few attempts to elucidate this matter have been

undertaken,

4,1 Present Approach

~In the present study an attempt has been made to
gain a better understanding of the role of interfacial tension,
hydrodyhamic pressure, hydrostatic pressure, internal circu-
lation and the wake region. Furthermore, the possible signi-
ficance of the internal hydrostatic pressure gradients, boundary
layer separation, and steady eddies in the wake region has been
considered,

Surface forces at the liquid-liquid interface con-

tinually try to minimize the interfacial area. When inter-

facial tension forces are predominant, as for very small liquid
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drops, the drop assumes the shape of a sphere. Deformation
begins to occur when other forces (e.g. inertial forces) are
no longer negligible with respect to interfacial tension forces.
In general, the problem of finding the shape of a free boun-
dary is a very difficult one.

However, here it is felt that by using a semi-
empirical approach, it might be possible to compute the pressure
distribution with acceptable accuracy and hence deduct the

shape.

4.1.1 Interfacial Tension

As a result of the net inward attraction exerted on
the surface moleculés by the molecules lying deeper within
the drop, the interfacial tension of the dispersed liquid
produces an increase of pressure within the drop over and
above that prevailing in the field liquid adjacent to the
interface, This increment in pressure, P, at a given point
on the drop is given by Ey =<T(I/R] + l/RZ). This inter-
facial pressure increment can be positive or negative. Here
we will adopt the convention that f is positive for a case
where the interface is convex as viewed from the field liquid
and negative if the interface is concave, At the rear or
frontal stagnation point, R] = R2 = RO assuming axial symmetry,
i.e. the drop surface can locally be considered a portion of
=2WRW

a sphere of radius RO at these points. Hence, F_

The technique for determining the two principle radii of
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.curvature of a volute has been well established, Adam (1949).

One of these radii, say R](x), turns out to be simply the
radius of curvature of a meridional profile at the height x,

(Fig. 4, 1), To measure this,

—

Fig.4.1. Definition sketch for determining the
principal radii of curvature from any
point P on the profile of the drop.

one constructs normals to the profile curve at each of a
fairly dense series of points spaced regularly along the
profile, and from there, the value of R](g) can be determined
by measuring the distance along the normal at P to the point
of intersection with the normal drawn from the next adjoining
point on the profile. In Fig. 4.1, R](x) is shown as PC,.
Rz(x) is even more easily determined, since this
second principal radius of curvature, for a surface of revo-
quion, can be shown to be simply the distance from the profile

at x to the axis of revolution measured along the local normal
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‘to the profile at x. In Fig., 4.1, Rz(x) is shown as PCZ'
The normals already constructed in the process of finding

Ri(x) facilitate rapid determination of Rz(x).

4,1.2 Internal Hydrostatic Pressure

For a drop moving at its terminal velocity, there
exists a vertical pressure gradient as for any mass of liquid
in a gravitational field. This hydrostatfc pressure gradient

plays a major role in determining the shape of the drop.

4,1.3 Hydrodynamic Pressure Distribution

To evaluate the hydrodynamic pressure distribution
on the exterior of a deformed liquid drop is an extremely
difficult task. The hydrodynamic pressure distribution over
a surface depends on the shape of the surface as well as on
fhe Reynolds number and rigidity of the surface. Thus, it is
impossibie to calculate the pressure distribution unless we
know the drop shape, which is, of course, what we wish to
determine, .One could only proceed here, in principle, by some
method of successive approximations. For example, each hydro-
dynamic pressure calculation (based on the previous iterative
approximation to the equilibrium shape) would be used to
deduce a modified shape consistent with the surface tension,
internal circulation and hydrostatic pressure requirements.
Then this new shape would have to be used in the next itera-

tion to recalculate the hydrodynamic pressure, and so on,
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Unfortunately, there exists no general method for calculating
analytically the pressure pattern about a surface of arbitrary
shape., Superposition of a suitable array of sources and sinks,
which is sometimes useful in treating potential flow around
revolutes, is only sufficiently convergent to be practicabie

in the limit of very elongated bodies.

4,1.4 Internal Circulation

At an interface between'two fluids, the condition
of no slip implies that the surface layers of liquid on eithér
side of the interface are moving with the same velocity. Since
the outer fluid tends to be in motion at the interfa;e of a
drop, Fé thereby tries to induce axisymmetric circulation within

the drop, Figure 4,2,

4
X

Fig.4.2. Internal Circulation



-26-

The existence of such internal motions has been observed for
drops which are sufficiently large or uncontaminated by sur-
face active molecules and, as we shall see, the internal

motion contributes to the occurrence of dimpled shapes. In

any analysis that will follow, it will be necessary to know
whether the pressure at a point on the vertical axis of a

drop is equal to that at the same height below the nose of the
drop but lying just inside the drop surface. Consequently, it
becomes necessary here to obtain some estimate of the intensity
of internal circulation.

It is well known that the internal circulation does
not depend simply on the external Reynolds numbers, but also
on the viscosity ratio, X, Bond (1927), and on the degree of
contamination of the interface. I[f K is very small, the effect
qf the internal viscosity can be neglected.

For the drops studied in this work the Reynolds
number was typically of order 10. Thus the drops were such
that inertial forces and viscous forces are of comparable
magni tude and neither of the extremes cases (creeping flow
where inertia forces are neglected nor inviscid flow) is
expected to give good results, Nevertheless, these two cases
can  be regarded as limiting cases for certain purposes,

For the time being we may neglect the droplet deform-
ation and any contamination of the interface. For the inviscid
flow extreme, the flow pattern is then potential flow outside

the spherical drop and Hill's spherical vortex inside. The
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maximum velocity is then 3/2 Ug (at r = R and 8 =T/2) rela-
tive to the drop. For the creeping flow case, the Hadamard-
R%&zinski result holds with the result that the maximum cir-
culation velocity (for X = y'/u#l) is Uy/2 (again at r = R
and 8 =W/2), To the extent that surface active impurities
are present, this will cause a damping of the internal circu-
lation; however, for the large drops considered here, this is
not expected to be a significant factor. While droplet defor-
mation no doubt causesdistortion of the internal flow pattern,
it seems unlikely that the actual range of internal velocity
will change greatly from the corresponding spherical case,
Thus, the internal velocity for the distorted drops studied
here are expected to be of order Ud relative to the drop. Thus
the internal circulation is clearly important in establishing
the internal pressure and hence the shape of the drop. This
case may be contrasted with the case of a liquid drop falling
through air where y'/yu¥1 and internal circulation is negli-
gible. In the latter case, Pruppacher (1972) has had some
success in predicting droplet shapes by simply considering the
hydrostatic pressure, surface tension pressure increment and
the hydrodynamic pressure due to the external flow. It is

clear that no such procedure is possible in our case.

L,2.0 Experimental Results, Shapes of Dimpled Drops

" As noted in the previous section, the determination

of drop shape, analytically or even empirically, is virtually



-28-

impossible. This is due to several reasons:

i We are dealing with a range of Reynolds numbers
where neither creeping flow nor potential flow
models can be applied correctly.

ii In liquid drops tﬁe effect of viscoéity and density
for the internal liquid cannot, in general, be
ignored. Compare the case of gas bubbles where
both may be ignored, in general.

i A complete understanding of the internal vortical
circulation is necessary to be able to predict shapes
for deformed drops.

iv An expression to predict the hydrodynamic pressure
distributfon at every point along the interface must
be available. Since the shape changes as the size
of the drop varies, general relationships are required.

v . The nature of the wake, the dimple at the rear surface

| and the effects of the skirts formed at the edge of
the concave region must be clearly understood.
Despite all these problems, an attempt was made to
derive an equation for pressure distribution by solving the
equations of motion in creeping flow. Needless to say, this

did not prove fruitful, Firstly, we know that creeping flow

equations are only valid for Re £ 0(1). Secondly, we know

that for cases where inertial terms can be neglected, there

is no tendency for deformation to occur, no matter how small

the surface tension,Batchelor (1967). Typical drop shapes

observed in our experiments are shown in Fig, 4,3,
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Fig.4.3. Typical Shapes of Large Dimpled Drops.
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In view of the formidable analytical problems dis-
cussed above and the extent of the deformations (whi;h make
perturbation analyses useless), it is not féasib]e to arrive
at quantitative predictions of drop shape. The best that can
be Hoped for is a consistent qualitative explanation for the
phenomena observed.

It is clear from the above that the drop shape, flow
patterns, drag coefficient, etc. are all interrelated. A plot
of drag coefficient, CDj against Reynolds number, Re**, fs
shown in Fig. 4.4, The corresponding shapes are included on
each line. From the graph, we can see that CD firgst decreases
with increasing Re, This corresponds to the region where the
shape of the drop changes little. At some critical value,
depending on the physical properties of the system, CD reaches
a minimum and then begins to increase. This minimum point
corresponds to the region where the skirts straighten doWn-
wards and waves are observed to travel down the skirts rela-
tive to the drops. Taylor (1960) has distinguished two types
of wave motion (“symmetric" and "antisymmetric") for waves
travelling along thin sheets of one fluid in another. The
waves observed in the liquid skirts in our investigation

appeared to be of the symmetric type. The fact that the wave

- CD = —éigl——i where V is the volume of the drop
%onfTa
foul R _dU
e =_0
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motion was symmetric, however, does not imply that the skirts
themselves were always axisymmetric. For very large drops
(e.g. for d =4 cm for silicone oil A), the skirts were unbal-

anced as shown in Figure 4.5,

Fig.4.5. Large drop in silicone oil A
(unbalanced skirt)

d = 6.39 cm, U, = 20.0 cm/sec

The skirt then widens out and becomes asymmetric and unstable,
growing in length as the drop rises. This corresponds to the
region where Cy increases with increasing Re.

This increase in drag coefficient is probably due
to the increase in the length and 'roughness" of the skirt
which is bound to increase the form and frictional drag and

lead to induced drag.
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The variation of Eotvos number, Eb*, wi th Reynolds

number, Re, is plotted in Figure 4.6. As we can see from the

graph, the points for o-diethyl phthalate, paraffin oil A,

and silicone oil B fall on the same line. Immediately below

them are those for silicone oil A and 1, 2= dichloroethane, on

another common line. Separate curves for o-dichlorobenzene

and 1,1, 1 -trichloroethane fall at lower EStvos number.

Efforts were made to correlate these results using the physfcal

ad ol
3 K

property groups, M]AA and M K, (Morton numbers, commonly

3% PO

alautaots

WHRR

used in bubble studies) and P (commonly used in correlating
data for small drops). These efforts were unsuccessful. The
full data on the shapes of drops and their velocities are

given in Tables Bl - B8 at the end of this chapter.

. . ead?
e 0 7
M] = gy /QO3
B L{_ 3
M, = / ¢
2~ %3
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TABLE B,

Full Data on_the Shapes of Drops and Their Velocities

Silicone 0it A = 27.5°C

Eauivalent | Semi-major | Semi-minor Aspect | Terminal Reynolds | Edtvos Skirt [Jeffrey's | Drag Skirt Angle
Diamoter axis axis Eccentricity | Ratio Veloci ty Number Number | Number Number Coeff.| Length Max

un d,cm a,cm b,cm e=c/a b/a UQ,cm/sec Re Eo Sk Je Cp Cz,cm
1 2,35 1.66 ot 0.7k 0.67 13.86 3.89 47.05 3.03 15.65 2.68 0.0 k5.0
2 3.08 2,16 1.25 0.82 0.58 17.32 6.37 80.82 3.07 | 20.52 2,28 0.0 50.0
3 h,32 3.42 1.78 0.85 0.52 22,00 11.35 158.99 L4.76 33.33 1.57 4.90 55.0
4 L, 38 3.57 1.91 0.84 0.54 22.34 11.68 163.44 4,76 33.74 1.45 5.30 56.0
S L, 74 3.78 2,03 0.84 0.54 23.18 13.12 191. 41 5.00 38.08 1.53 7.10 56.0
6 4,79 3.94 2.12 0‘.81} 0.54 24,09 13.78 195.97 5.26 37.42 1.34 7.10 56.0
7 5.02 4.06 1.54 0.93 0.38 24,69 14,80 214,69 5.26 L0.10 1.38 8.50 56.0
% 5. 06 4,62 2,52 0.84 0.55 26.29 17.77 272.92 5.56 47.87 1.35 8.00 59.0
2 5.95 4,68 2,46 0.85 0.53 26,29 18,68 301.61 5.56 52.90 1.52 9.30 56.0
10 50 4,98 2.34 0.88 0.47 20.78 359.94 5.88 61.98 1.70 11.00 60.C

26.78

_SE_



TABLE B2. qul;Data on_the Shapes of Drops and Their Velocities

Silicone 0jl.ABl - 27.8°C.

Scmi-major

Semi -minor

Aspect

Terminal

Ectvos

’ Reynolds Skirt | Jeffrey's | Drag Skirt | Angle
et axis axis Eccentricity | Ratio Melocity Number Number | Number Number Coeff, {lLength Max
n o a,cm b,cm e=c/a b/a 0,cm/sec Re Eo Sk Je Co z,cm
1 3.68 1.85 1.35, 0.68 0.73 13.99 5.43 76.63 2.86 26.64 4,52 0.00 55.0
2 L.10 3.20 1.72 0.84 0.54 20.45 10,56 135.79 417 32230 1.57 4,40
3 “hL,32 3.13 1.97 0.78 0.63 18. 48 10.05 150.76 3.85 39.68 2,51 3.20 40.0
4 4,38 2}954 1.72 0.81 0.58 18.73 10.33 154,97 3.85 Lo.24 2.87 3.40 52.0
5 4.84 3.13 1.48 0.88 0.47 19.75 12.04 189.24 L,00 L46.60 3.08 5.50 55.0
5 5.10 3.39 - 1,78 0.85 0.53 20.87 13.40 210,11 4,35 48,97 2.76 0.00 e
7 5.34 3.20 1.66 0.85 0.52 20.45 13.75 230.35 Lo17 | 54,79 0.55 7.00 52,0
8 6.10 3.08 1.54 0.87 0.50. 20,14 15.47 300.59 L.o17 72.59 6.12 6.80 {52.0
9 6.21 3.57 1.97 0.83 0.55 21,66 16.94 }311.53 L, 35 67.95 L6 0.00 55.0-

_95_



‘TABLE B3. Full Data on the Shapes of Drops and Their Velocities
Paraffin 0i1 A ~ 26.5°C

Semi -major | Semi -minor ) Aspect | Terminal Reynolds [ Eotvos Skirt [Jeffrey's | Drag Skirt Angle
axis axis Eccentricity | Ratio Velocity Number Number [Number Number Coeff, |Length Max
a,cm b,cm e=c/a b/a 0,cm/sec Re Eo Sk Je Cp z,cm

1 2,53 .40 1.22, 0.49 0.87 13,12 3.54 61.66 3.23 19.31 5.94 0.00 40
2 3.08 1.92 (N . 0.68 0.73 16.48 5.41 91.38 4,00 | 22.78 3.60 0.18 Lg
3 3.78 2.52 1.43 0.82 0.57 19.26 7.65 134,02 L.76 28.59 2,72 1.90 50
[ 5.58 2.62 1.64 0.78 0.63 19.L9 8.06 145,02 4.76 30.57 2.71 2.20 50
5 ) 2.77 1.57 0.82 0.57 21.03 10.06 194,20 5.00 37.94 3.31 3.90 54
6 4,60 2,86 1.29 0.89 0.45 21.35 10,46 203.84 5.26 39,23 3,22 4,80 55
7 5.06 2,68 1.33 " 0.87 0.50 | 21.80 11.75  |246.64 5.26 | 46.48 L, 69 5.30 | 50
5 S. 14 2,65 1.23 0.89 0.46 21.80 11.94 254,50 5.26 L7.96 5.04 8.80 55
2 5.19 2.80 1.4 0.86 0.50 21.80 12.03 258,48 ‘5.26 | u8.71 L, 62 3.00 55
] 5.22 2.83 1. b 0.87 0.50 | 21.80 12,12 262,48 5.26 L9 .47 4,63 6.60 55
il 5.66 2,68 1.35 0.86 0.50 21.80 13,15 |308.60 5.26 58.16 6.57 9.80 55
12 6H.21 3.26 1.75 0.84 0.54 23.02 15.23 371.49 5.56 66,30 5.26 55
13 6.12 3.08 1.35 0.90 0.4t 22.16 14,45 1360.79 5.26{ 66.89 6.11 4,30 55

-LE_




TABLE B4, Full Data on_the Shapes of Drops and Theilr Velocities N

o-Diethyl Phthalate - 27.8°C

Lavivolent | Semi-major | Semi-minor : Aspect | Terminal Reynolds | E6tvos Skirt | Jeffrey's | Drag Skirt Angle

Uiawflcr axis axis Eccenfricity Ratio Melocity Number Number | Number Number Cgeff. Length | Max
un d,om a,cm b,cm e=c/a b/a 0,cm/sec Re Eo Sk Je D z,cm
1 1.36 I.16 1.03 0.46 0.89 7_.143 1.71 13.14 2.86 11.00 5.55 0.00 —
2 | .2.13 1.33 1.28 0.26 0.96 8.54 2.25 | 40.83 | 3.23 | 12.55 4.79 | 0.00 | —.
3 2.35 1.35 1.06 0.62 0.79 9.65 2.80 49.70 3.70 13.52 L. 86 0.60 —_
L 2.96 1.63 1.37 0.54 0.84 10.37 3.80 .78.85 4,00 19.96 5.77 0.00 —_—
5 3.39 2.05 1.69 0.57 - 0.82 13.49 5.66 103.43 5.00 20,13 3.23 0.50 Ly
6 L 63 2.95 2.02 0.73 0.68 16.30 8.22 159.82 6.25 | 24,13 1.87 2.10 52
7 L.o27 3.04 1.92 0.78 0.63 16.09 8.50 164,10 6.25 26.77 2.07 2.70 50
8 L 22 3.34 1.88 0.83 0.56 17.43 9.31 167.96 6.67 25.30 1.52 3.80 52
5 Iy, 23 3.06 1.88 0.79 . 0.61 16.30 8.83 172.66 6.25 27.81 . 2.15 2.90 50
10 L. 5k 3.41 1.92 0.83 0.56 16.96 9.52 185.51 6.25 28.7IA 1.79 L.1o €2
il b, 83 3.73 1.92 0.86 » 0.51 18.73 11.30 214,33 7.14 30.04 1.52 ‘7.la0 55
12 5.3h 3.66 2.05 0.83 0.56 19,02 12.56 256.64 7.14 | 35,42 2.00 7.20 55
i3 6.01 3.94 2.36 0.80 0.60 20,24 15,04 325.08 7.69 L2.16 2,17 7.70 53
1 6.73 4. 35 2.48 0.82 0.57 | 20.92 17. 41 407.64 | 7.69 | 51.15 2.34 | 5.60 | —
15 6.79 . b.62 2.57 0.83 0.56 22.02 18.49 ik 9k 8.33 | hL9.47 1.93 9.20 55

.
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TABLE B5, Full Data on the Shapves of Drops and Their Veldcities

Silicone 0il ACl - 27.8°C

Semi~major | Semi-minor Aspect | Terminal Reynolds | Edtvos Skirt | Jeffrey's | Drag Skirt Angle
axis axis Eccenfricity Ratio Melocity Number Number {Number Number Cgeff. Length Max
a,cm b,cm e=c/a b/a 0,cm/sec . Re Eo Sk Je D z,cm

1 1.02 0.92 0.43 0.90 7.85 1.81 30,07 1.72 | 17.32 10.69 —
2 1.96 1.30 0.75 0.66 13.16 5.01 82,45 2,94 | 28:32 4,62 —_— _—
2 2.09 1.29 0.79 0.62 13.65 5.38 88,44 3.03 | 29.29 4,21 —_— —_—
L 3.11 1.29 0.91 0.41 15.37 7.79 146,09 3.45 | 42.97 3.00 [ —— | ——
5 3.39 1.29 0.92 0.38 15.80 8.99 183.90 3.45 52.62 3.58 —_— —_—
[ 2.71 1.35 0.87 0.50 16.05 10.52" 244,13 3.57 68.76 8.33 —_ —_—
7 3.08 1.4 0.89 0.46 16.05 11.29 281.38 3.57 79.25 7.99 _ _—

_62-



TABLE B6,

Full Data on the Shapes of Drops and Their Velocities

Silicone 0il B - 25,4°C

Equivalent |Semi-major | Semi-minor Aspect | Terminal Reynolds | Eotvos Skirt [Jeffrey's rag Skirt Angle
Dizmeter axis axis Eccenfriclty Ratio Melocity Number Number {|Number Number Cgeff. Length Max
Run d,cm a,cm b,cm e=c/a b/a 0,cm/sec . Re Eo Sk Je D z,cm

! 3 .1.08 , 1:63 23.86 | 2.50 10.75 6.57 — 50
2 2.13 1.05 0.92 0.48 0.88 9.30 1.88 35.22 | 2.50 13.98 10.25 0.00 43
3 2.53 1.36 1.23 0.43 0.90 11.62 2.79 49,69 3.13 15.79 6.52 0.00 —
k 2.96 1.85 1.50 0.59 0.81 14,57 4,09 | 68.02 | 4,00 17.24 3.59 | 0.10 | 40
5 3.13 1.85 1.32 0.70 0.71 14,91 L bob3 76.06 | 4.00 18.83 4,07 0.00 Lo
& 3.29 1,85 1,48 0.60 0.80 14,91 L, 65 84.03 | 4.00 20.81 L, 71 0.00 L2
7 3.80 2,52 1.85 0.68 0,73 18.03 6.50 84,03 4,76 21.95 2.68 0.40 Lo
3 L, 0l 2.65 1.99 0.66 0.75 18.89 7.18 124,84 5.00 24 .42 2.61 1.00 L2
J L. 27 2.95 1.85 0.78 0.63 19.79 8.02 141,55 | 5.26 26. 41 2.30 1.80 54
1 ho il 2.83 1.81 0.77 0.64 | 19.79 8.33 [153.50 | 5.26 25.51 2.80 | 0.00 | 50
i .88 3.20 1.89 0.81 0.58 21,10 9.77 184.89 5.56 32.35 2.57 0. 40 50
12 5.01 3.17 1.60 0.86 0.50 21,92 11.25° |227.23 | 8.88 38.27 3.31 8.30 52
13 5.73 3.32 1.78 0.84 - 0.54 22.81 12,40 254,90 | 6.25 Li,27 3.30 7.10 50
4 6.18 . 3.59 1.72 0.88 0.48 23.66 13.87 396.51 6.25- L46.27 3.33 10.20 55
15 6.75 3.14 1.59 10.86 0.51 24,17 15.48 353,73 | 6.67 54,03 2,61 6.70 50

,
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TABLE B7. Full Data on the Shapes of Drops and Their Velocities

o-Dichlorobenzene - 27.8°C

tquivalent |Semi-major |Semi-minor Aspect |Terminal Reynoids | Edtvos Skirt lJeffrey's | Drag Skirt Angle
Uiarueter axis axis Eccentricity | Ratio Melocity Number Number Numper Number Cgeff. Length Max
o, cm a,cm b,cm e=c/a b/a 0,cm/sec Re Eo Sk Je o] z,cm
—_— —_— —_— e —_— — 1.54 17.62 | 0.08 0.69 27.27 | — _—
3.72 2.18 1.88 0.51 0.86 7.21 3.33 35.99 | 2.17 16.38 k.79 0.060 Lo -
4.2l 2.57 1.90 0.67 | 0.74 7.95 L1y 45.85 { 2.44 - | 18,92 4.08 0.00 L0
4,38 2.61 2.3h 0.k 0.90 8.31 L. 50 ~ 49,62 2.50 19.59 L.09 0.00 38
—_— —_— — —_— 6.05 68.34 2.86 23.58 3.38 —_— L3
5.25 3.29 - 2.57 0.62 0.78 10,46 6.79 71.30 3.23 22.37 2.81 0.60 Lo
5.56 3.68 2.91 0.61 0.79 10.29 7.08 79.96 | 3.13 25.50 2.74 0.09 L5
2.59 3.59 2.65 0.67 0.74 10.20 7.05 80.83 3,13 26.00 2.98 0,00 L3
6.17 L, 28 3.04 0.70 . 0,71 1,11 8.48 - 98,47 3.03 29.08 2,37 0.10 Ls
6.31 L, 19 3.0k 0.69 0.73 11,21 8.75 102,99 | 3.45 30,15 2.60 0.00 s
6.33 L. 49 3.59 0.60 0.80 1,21 8.78 103.65 3.4L5 30.34 2.29 0.3 Sy
6.74 L,92 2.82 0.82 0.57 11.73 9.98 117.51 3.57 32,87 2.10 0.G60 57
6.90 5.18 3.08 0.80 0.59 12.30 10.50. 123,15 3.70 32,85 1.85 2.50 52
6.93 5.13 3.39 0.75 0.66 11.95 10, 24 124,22 3.57 34,01 2.03 0.70 52
7.1 5.65 3.76 0.75 "0.67 12,55 11.03 130.76 | 3.85% 34,719 1.63 2.40 X

_[-{7_




TABLE BS. .Full—Data on_the Shapes of Drops and Their Veldcities

1,2 ~Dichloroethane - 27.5°¢C

Scewmi-major | Semi-minor Aspect | Terminal Reynolds | Eotvos Skirt JJeffrey's | Drag Skirt Angle
et axis axis Eccenfricity Ratio Melocity Number Number [Number Number Cgeff, Length HMax
Run i, a,cm b,cm e=c/a b/a 0,cm/sec Re Eo Sk Je D z,cm

i 1,69 0.94 0.86 0.40 0.91 3.39 0.68 11,18 | 1,14 9.82 15.55 | 0.00 ——
2 2.13 1. 41 1.20 0.53 0.85 6.00 1.45 17.76 2,00 \8.82 4. 4) 0.00 40
3 », 08 1,67 1.37 0.57 0.82 7.02 2.58 37.13 2,38 15.76 6.90 0.00 40

i 3.19 1.80 1.37 0.65 0.76 8.31 3.17 .39.83 2.78 14,28 4,71 0.00 38 |
5 3.43 2.10 1.71 0.58 0.81 8.60 3.57 L7.40 | 2.86 16.42 4,20 | 0.00 40
6 ol 2,44 1.88 0.64L 0.77 9.80 4,69 62.94 | 3.03 19.13 .3.68 0.00 Lo
7 Golh 2.57 2.05 0.60 0.80 10.37 5.13 67.09 3.45 19.27 3.26 0.00 42
3 S 2.82 2,22 0.62 0.79 10.63 5.64 77.17 | 3.57 21.62 3.16 | 0.00 40
9 4,70 3,08 .2.26 0.68 0.73 11,51 6,46 86.47 3.85 22.38 2.68 0.00 41
10 5.59 4,02 2.85 0.71 0.71 12,94 8.64 122,32 | 4.35 28.15 2.10 1.50 50
' L&D 4,15 2,43 - 0.81 0.59 13.21 9.29 135.80 | 4.35 30.62 2.21 | 1.70 | ko
12 6,00 4,88 2.82 0.82 0.58 14,77 11.29 160.33 5.00 32.33 l.64 L.30 54
13 6.63 5.35 3.93 0.68 0,73 14.94 11,83 172.06 5.00 34.30 1.48 3.40 50
14 7.15 5.73 3.06 0.85 0.53 15,69 13.39 200.11 5.26 37.99 1. 47 6.00 55

_Z-}Y-



TABLE B9.

Full Data on the Shapes of Drops and Their Velocities

1,1,1 -Trichloroethane - 27.5°C

Equivalent | Semi-major |Semi-minor Aspect | Terminal Reynolds | Eotvos Skirt JeffreY's' Drag Skirt Angle
Diometzr axis axis Eccentricity| Ratio Veloci ty Number Number | Number Number Coeff. | Length Max
Run d,em a,cm b,cm e=c/a b/a 0,cm/sec Re Eo Sk Je Co z,cm
I 2.4y 1.20 1,03 0.51 0.86 3.59 1.05 6.94 0.72 ?.67 12.77 0.00 —
2 2.96 1. 44 1.20 0.55 0.83 4,10 J. L5 10,22 0.82 12,46 12,08 0.00 36
3 — —_— 3.03 16,84 1.33 12,62 4,05 — 36
b L, 2.65 2,14 0.59 0.81 4,70 2.49 22.99 0.94 2L, 4L 9.16 0.00 33
5 .79 2.83 2,48 0.48 0.88 7.79 L. L6 26,76 1.56 17.17 3.68 0.00 Ls
& 5.18 3.15 2.57 0.58 0.82 8.77 5.52 31.29 1.75 17.84 2.97 0.00 42
7 4.0h 3.94 2.91 0.67 0.74 9.88 7.13 L2.55 1.96 21.53 2.36 0.50 Ls
3 412 4,17 2,14 0.75 0.66 9.80 7.16 43,68 1.96 22,28 2.24 | 0.00 50
o 621 L, 19 2.70 0.76 0.64 10.0hL 7.44 44,98 2.00 22,39 2,20 2.10 50
10 6,3 4, 45 3.0k 0.73 0,68 |, 10.37 7.89 47.32 2.08 22.81 1.98 | 2.20 50
il 6.56 L, 62 2.87 0.78 0.62 10.37 8.11 50.04 2.08 2hL.12 2.00 2.20 50
12 6.65 L,72 3.10 0.75 0.66 10.73 8.52 51,58 2.13 24,03 1.87 1.70 50
13 7.00 5.13 3.39 0.75 0.66 11.10 9.40 58,63 2,22 26.540 1.79 | 2.4o 52

..217-
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CHAPTER 5

INVESTIGATION OF TERMINAL VELOCITY
AND EXPERIMENTAL RESULTS

5.0 Basic Problems

The investigation of the motion of a dimpled drop
in a quufd presents theoretical problems of such remarkable
complexity, that rigorous solutions for the equations of motion
are almost impossible. Some of these complexities include;

i As we have seen in the previous chapter, the shape of
the drop can not be predicted reliably. Experiments
have shown that small drops in viscous liquids are almost
spherical in shape with a dimple at the rear while larger
sized drops have an oblate-capped shape. At larger sizes
still, the shapes take complex forms as shown on page 89,

'ii Internal circulation occurs.
iii The nature of the flow patterns are difficult to establish.

iv The complete interfacial conditions are not easily char-
acter.ized,

v The nature of the wake, the concavity at the rear surface,
and the effect of the skirts formed at the edge of the
concave region, are not easily characterized.

With the hope of establishing the form of an éxpres—
sion suitable for the calculation of drop terminal velocities,
the following four limiting cases have been examined;

i Ellipsoidal coordinate approach with specific assumptions
including creeping flow in the continuous phase,

ii Spherical coordinate approach with specific assumptions

as in (i).
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‘iii  Semi-empirical method by combining the results obtained
in (ii) with the knowledge of flow past a spherical body.
in the Reynolds number range of interest.

iv Oblate spheroid method assuming potential flow.
Me thods (i), (ii) and (iii) all involve the assump-
tion of creeping flow., A complete solution to the creeping
equation would be of the form;

2 n+2 1
Cn cos G[Anr + Bn

]
rn-l * Cnr * Dn n-3]

Nj-

¥(r,0) =

oM 8

where the use of the stream function automatically satisfieév
the Continuity equation. A set of boundary conditions which
accounts for the indented base of the drop (without, however,
including the effect of skirts) (see Figure 5.0) is the

following: ax

v
gl

Fig.5.0. Definition sketch for complete
boundary condi tions on surfaces

S] and S2
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Far from the drop at r = »
v, = -U cos 8
r o
and Vg = Uo sin 8.

On surface S], where r = R], e s(Q: the boundary conditions are;

= I =
Ve vr 0

- 1
Vg VQ#O

i\ 3V v 3v! v} v
1 r, 28 _8 _ gl r, ~8_718
(r 36 * Jr r ) = K(r 3 Y r ).

On surface 82, where r cos 8 = d], 8 S@:

Il
o

vr cos 68 - v, sin 8

v; cos 8 - vé sin 8 = 0,

v, sin 8 - v, cos 8 v; sin 8 + vé cos 8, and

r 8
.8__ . - S (1 : 1
ax(vr sin 8 + Vg cos 8) K ax(vr sin 8 + vy cos 8)
where 2 = cos 9 & - sin 8 3_

OX Jr r 38
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However, it must be borne in mind that for a liquid
drop (or for a bubble), the assumption of creeping flow is
not consistent with the deformed shapes implied by the boun-
dary conditions (and observed in practice). As shown by
Taylor and Acrivos (1964), a spherical (undeformed) shape is
consistent with the complete neglect of the inertia terms in
the equation of motion. Therefore, it seemed to us advisable
to adopt simpler conditions (methods (i) to (ii)) than the
above purely to allow us to test whether any useful result
might follow from the low Reynolds number extreme. The actual
range of Reynolds number investigated here is 2 ¢ Re < 20,

Although the equations obtained using methods (i),
(ii) and (iii) fail to predict the terminal velocity correctly,
the equation derived by using potential flow assumptions leads
to results which agree very well with the experimental results
as shown later. This is somewhat surprising in view of the
relatively low Reynolds numbers (2 < Re < 20) encountered in

this study.
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5.1 Method (i), Ellipsoidal Coordinate Approach (Creeping Flow)

1

)

s

Fig.5.1. Definition sketch for
ellipsoidal coordinate
me thod

5.1.1 Assumptions
i The liquids are incompressible.
ii The liquids are Newtonian.
iti Inertia terms are negligible.
iv Axial symmetry is assumed.
v The surface of the drop is ellipsoidal and ié
given by X = Ay 0 < nsT.
vi Relative to coorainates fixed on the drop, the
System is at steady state.

The coordinates (A,q) are shown in Figure 5.1,



“g-

5.1.2 Boundary Conditions

q, = K"l = 0 at A = XO (])
at . _

3\ 3 at Mo (2)
v _ N

3 0

at A = XO and

art _ )

3N 0 gl = Tm (3)
Hm @) = 1 u 2021 (1-12), (4)
A - o 2 70

These boundary conditions correspond physically to no flow
across the drop surface, no slip at the interface, no singular

point at the corner, and uniform stream filow at infinity.

5.1.3 Solution
The shape of the drop has been approximated by an

oblate ellipsoid, Figure 5.1.

let z = c coshg ; (5)
where z = x+iw
J o= gin
Then X = ¢ cosh € cos 7 (6)
w = c sinh g sin g (7)
® This boundary condition is discussed in more detail in 5.2.2.,

0<Mg 2,
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From (6) and (7), since sinzn + coszn = 1, we obtain,

i %
+ = ] (8)
czsinhzg czcoshzg

Hence, for constant g, we get a confocal family of oblate
spheroids whose centre is at the origin. For simplicity, we
will write sinhg = A and cosn = t.

Now we wish to solve the equation of motion for steady creeping

flow, i.e.

% = 0 (9)
where

2 - d ;1 3 3 1 >

E = —(= 2 —(= ]

wh { aﬁ(w ag) an(w an)} (10)

with

h = h_. = h

being the usual scaling factors.
It may be shown that a more useful form of Equation (10) is
az

2
2 1 2 3 2
E = e———— 1)S— 1- o _ 11
Cz(}\2+ tz) {()\ + )a)\z + ( t. )atz} ( )

From boundary condition (4), it is reasonable to assume a

solution of the following form,
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o= (1-t2)f(x) (12)

Substituting this in (9), we obtain,

I (1 & DA - Y 2. 2ven
Ety = IB(F-yF )+ 5+t2)F 1 (13)
R P A L j
where
Fooo= (W3 D)f - of

After a lengthy but elementary calculation (Appendix A) we
get for the external and internal stream functions the fol-

lowing relations,

e
|

= -(I-tz){%c]x - %cz[x - (xz+l)cot—]x]- c3(x2+1)}

and

b= -(1-t2){%cik - %Cé[A - (x2+1)cot-]A]’ Cé(k2+1)}

-G
|

Applying boundary conditions (1), (2), (3), and (4), we can
determine the coefficients Cys Cos and Cj- The final expres-
sion for the external stream function, y, becomes

| x(l-xé) (l-xé)(kz+l)cot']x(l-xz)}

2 2y 12
| = - —U c (]_t ) ——l- - +
¥ 2°0 {KO Kg Ko
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, 2 2 -1
_ } -]-U .L_D.Z]*- ZX } X(}_Xo) (]'Ko)cot N _]J\
zom Ko(l+x2) Ko(mz) “o
where
K. = - z—l)cot—]
0 AR A0

The corresponding stream function for an oblated spheroid
translating with velocity UO in the positive x-direction may
be obtained by subtracting the stream function for a uniform

] —_
Stream, iuow ,
2 2 -1
x(l'ko) (1-)nglcot™ 'y

1 2 N .
Ko

i.e. g o= - sUqw -
? 2°0% {K(I+2) K (14.2)
ot A oA

el (16)

This solution is similar to that obtained by Payne and Pell
(1960) for a rigid ellipsoid. Note that the internal fluid
properties do not appear in Equation (16). This is due to
boundary condition (3) which imposes zero velocity.at a point
on the surface; because of the form of solution (Equation 12),
zero velocity results over the entire surface as from the "no
slip" condition for a rigid body,
The drag force exerted on a complete oblate drop

in the fluid, Payne and Pell (1960), is then given by

lin Ag

F o= 8%uc pa S Sl (7
: x—.oou) KO
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When the velocity of the drop has reached its steady state
value, the only forces acting on the drop are the above drag

forces and gravity (buoyancy-weight) forces. Thus, we get

for UO’
Ae gabK
= ]
2
] 1-2 .=
where Ky = ;7[ 1-e“ - (——EE—)SIn e]
since osh = L sinhe = 1-e” nd
inc ; g = g sinhg = B a
-1 _ e -1
cot 'sinhgy = sin ‘e,

where e = ,/ 1-(b/a)”.

In the limiting case for a sphere,

Tim K. = L

e—»O] §-

as shown in Appendix B. In addition, a = b = sphere radius
for e = 0 so that Equation (18) gives the Stoke's rise velo-

city as a limiting case,
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5.2 Method (ii), Spherical Coordinate Approach (Creeping Flow)

11

Fig.5.2. Definition sketch for
spherical coordinate
me thod

-

5.2.1 Assumptions

~ .
.

i The liquids are incompressible.

ii The liquids are Newtonian,

iii lﬁértia terms are peg]igible.

iv The system has axial symmetry.

' v The surféce of the drop is-given by r = R,
0 <8¢ @7

vf .Relative to coordinates fixed.to the risfng
drop, the system is at steady state.

vii Interfacial tension effects are negligible.



_55-

)

‘5.2.2 Boundary Conditionsx

v = =-Uycos8 and vy = Ujsingat r=o (n
v, = v;‘ = 0 at r = R (2)
Vg = Vg # 0 at r = R and 0 «8 A.@ (3)
Ter = Trp! at r = R (L)
"o = Trg' at r = R ' (5
vp = 0 ...

81 - } at r = R and 8 = @ (6)

5.2.3 Solution

Let ué assume that gravity is the driving force.
The drop is rising vertically in the positive x-direction.
To hold the drop stationary, let us apply a force in the
negative x-direction to counterbalance the net gravity force.

(This is Batchelor's use of a "modified pressure™.)

F o= -AgV (7)

We take the coordinates to move with the centre of the
rising drop.

"" We require the absolute magnitude of the velocity components
in the vertical direction at the base (assumed horizontal) to
vanish. This then requires that v_Sin©+vg cos8 = 6 at
every point on the base surface. Therefore, at the singu-
larity point 9==@, r = R, where V. = 0 and v, = 0, we must
also have vg = 0'and vg = 0.
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For the outside fluid, the creeping flow equation is

vp = uvzx - beg (8)

For the inside fluid,

W' = ulvly! (9)

The equation of continuity is satisfied for both fluids, i.e.

(10a)

<]

<
I

o

gv! = 0 (10b)

It is convenient to write

where x is a vertical length coordinate, so that

o “beg
and

v(p-®) = uo'v (r



_57_

Here we can see that the similarity of (11) and (9) simpli-
fies the computation. Now v, vi, p, and p' in Equations (9),
(10) and (11) must be solved subject to the appropriate boun-
dary conditions.

In spherical coordinates, (11) becomes

2 2

d7v 37V v v 2v 2cot8v
S_(.w) = “{—_7£ n 17 2r £ 21, co;e ro_ 2r ) - 9}
or ar r- a6 r r og r r

..... (12)

82 2 A% Vv Y
la(-¢r=H{Ve+1_3"e+_z_ave+cot9 8,2 °Vr . e}
r ae arz r2 392 r ar r2 og r2 ae rzsinze

..... (13)
while Equation (10a) becomes
dv I\ 2v v
S—I-+ % —gg + —?L + Fg cot 8 = 0 (14)
p

The equations of motion and continuity for the inner fluids
have the same form.
We try a solution of the following form,

Ve = x{r) cose (15a)

Vg Xz(r) sin® (15b)

P~ = UX3(r) cos8 (15¢)
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v.' = x;,'(r) cos® (15d)
vg' = xp'lr) sing (15e)
Pr = u‘Xg‘(r) cosB (15f)

Substituting these equations into equations (12), (13), and

(14), and with a few assumptions (Appendix C), we obtain

S T 2 162)
v, = (:§— t—f-tcy tepr ) cos8 (16a
c c
vg = (;l— - 7%— - C3 - 2c, r2) sin® (16b)
r
€2
pP-T = “(—i_ + UOcq r) cos8 (16c)
r
¢! <!
v = (:l + ?l + cé + chz) cos8 (]§d)
c! c!
vy = (Elg - —% - cé - 2ch2) sin® (16e)
r
pr = u'(IOcL r) cos8 (16f)

Equation (16) contains eight unknown constants
whereas we have nine boundary conditions from Equations (11)
to (6), so that one boundary condition is superfluous. If
(6) is applied; then because of the form of (15b) and (15e),
then Vg and vel must be 0 for all 8 at r = R, Then, if the

normal stress boundary condition, Equation (4), is left aside

as being the superfluous one, - it is obvious that we
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obtain Stoke's solution for a solid sphere.

2
AtaR (17)

)

(o]

il
olro
t F

If, on the other hand, Equation (4) is used and Equation (5)

is left aside, the terminal .uiocity turns out to be
Uu. = é;:éigﬁz - (18)
0 19 '

5.3 Experimental Results, Methods (i) and (ii)

. The uniformity of the velocity of rise of the
liquid drops may be judged from Figure 5.2.1 where the ver-
tical displacement, X, Qf the nose of seven drops is plotted
against frame number. It is clear that the points for each
Caflafe well fitted by straight lines so that any accelera-
tion or deceleration of the drops (eg. caused by unsteady
growth of the wake) is negligible. Thus, the velocity of
ri;e, UO’ for all seven drops is rea;onably constant over ths
intervals measured. .

The velocities calculated using methods (i) and (ii) *
and the cérresponding measured velocities are compared in
Figure 5.2.2 for diethyl phthalate as the dispersed phase.
The results obtained show too steep a slope. This applies
also to all the other systems. All the data is tabulated in

Tables C1 - €9. From the'graph, it appears as if for high Ufﬂ?c

* From equation & above
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TABLE Cl. Experimental and Calculated Drop Terminal Velocities

1,1, 1-Trichloroethane - 27.5°C

Calculated|{Calculated{Calculated
Equivalent | Measured Veloci t Velocit Veloci t
Diameter | Velocity Meth(ig Meth(iig Meth(iv

Run d,cm Uo,cm/sec U,cm/sec | U,cm/sec | U,cm/sec
] 2,44 3.59 1.65 2.74 5.16
2 2.96 k.10 2.31 2.36 5.67
3 — — — —
4 L, LhL L.70 7.6k 7.33 7.70
5 L 7.79 9.32 10.58 7.92
6 5.18 8.77 . 10.88 12.35 8.39
7 6.0k 9.88 15,65 12.40 9.1

8 6.12 9.80 15.86 22.06 9.68
9 6.21 10.0k 15,74 17.72 9.70
10 6.37 10.37 18.68 18.64 10.01!
11 6.55 10.37 18.53 19.77 10,18
12 6.65 10.37 20.31 20,32 10.30
13 7.09 10.10 2L, 12 23,10 10.74
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Experimental and Calculated Drop Terminal Velocities

o-Dichlorobenzene - 27.80C

Calculated|Calculated|Calculated
Equivalent | Measured Velocit Velocit Veloci t
Diameter | Velocity Meth(ig Meth(iig Meth(ivg
Run d,cm UO:CW(SGC U,cm/sec | U ,ecm/sec | U,cm/sec
]
2 3.72 7.21 7.95 9.30 8.25
3 L 21 7.95 9.71 11.90 9.01
4 L 38 8.31 11.76 12,86 9.01
5 | —— ———
6 5.25 10. 46 . 16.67 18.50 10.18
7 5.56 10.29 21,07 20.71 10,76
8 |- 2.59 10.20 18.91 9.7k 10.65
*9 6.17 1.1 26.01 25.55 11.63
10 6.31 11.21 25.39 26.72 11.51
1 6.33 11,21 21.65 26.89 11.89
12 6.7k 11.73 28.50 30. Lk 12.40
13 6.90 12.30 32.64 31.90 12,75
14 6.93 11.95 35.11 32.22 12.73
15 7.11 12,55 42,85 33.92 13.36
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TABLE C3. Experimental and Calculated Drop Terminal Velocities

1,2-Dichloroethane - 27.5°C

Calculated|{Calculated|Calculated
Equivalent | Measured Veloci t Veloci t Velocit
Diameter | Velocity Meth(ig Meth(iig Meth(ivg
Run d.cm UO,CW SecC U,cm/sec | U,cm/sec U,cm/sec
1 .69 3.39 2.13 2.65 6.4k
2 2.13 6.00 L.52 L, 20 7.92
3 3.08 7.02 6.15 8.73 8.6L4
ki 3.19 8.31 6.70 9.3k 8.99
5 3.48 8.60 9.66 1,14 9.69
6 4 0l 9.80- 12,45 14,84 10.46
7-- L 14 10.37 14,22 16.08 10.73
8 Lo1h 10.63 16.93 18. 14 11.24
"9 4.70 11.51 19.03 20.33 11.77
10 5.59 12.94 31.47 28.82 13,45
11 5.89 13.21 28.39 31.99 13.61
12 6.40 13.77 38.80 37.70 14.75
13 6.63 14,94 57.L46 39.67 15.51
14 7.15 15.69 L9.85 47.12 15.90
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Experimental and Calculated Drop Terminal Velocities

o-Diethy! Phthalate - 27.8°C

Calculated|Calculated|Calculated
Eggivalent Measuyed VelqcipY Ve{ocfyg Ve}ocftg
iameter | Velocity Meth(i) | Meth(ii Meth(iv
Run d.cm Up,cm/sec | U cm/sec | U.cm/sec U,cm/sec
1 1.86 7.43 6.42 6.6 10,02
2 2,13 8.5k 9.01 8.50 10.67
3 2.35 9.65 7.84 10.34 10,88
4 2.96 10.37 12,11 16,34 11.92
5 3.39 13.49 18.8L4 21.50 13.38
6 L, 08 i6.30- 33.33 31.04 16.11
7 L. 27 16.09 0 32.99 34,08 16,34
8 L, 32 17.43 35.98 34.81 47,04
*9 4,38 16.30 32.63 35.79 16.38
10 L 5k 16.96 32.51 38.45 17.22
11 L 88 18.73 Ly, 4 Ly 42 17.89
12 5.34 19.02 43,01 53.19 17.83
13 6.31 20. 24 52.90 67.48 18.56
W 6.73 20.92 61.72 8L. 60 19.46
15 6.79 22,02 68.12 86.09 20.02-
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Experimental and Calculated Drop Terminal Velocities

Paraffin 0il A - 26.5°C

Calculated {Calculated {Calculated
| Equivalent | Measured Velocit Velocit Veloci ty
Diameter | Velocity Mcth(ig Meth(Iig Meth(ivs
Run d.cm UO:CT(SGC U,cm/sec | U,cm/sec | U,cm/sec
1 2.53 13.12 15. 4] 20.08 15.37
2 3.08 16.48 25.12 29.64 18.12
3 3.73 19.26 34,56 43,59 20.65
L 3.88 19.49 40,73 L5 8L 21,14
5 L Lo 21.03 41,71 62.05 21.65
6 L. 60 21.35 - 36.17 66.11 21.56
7 5.06 21.80 . 34,65 79.66 21.08
.8 5.1k 21.80 31.88 82.55 20.82
K 5.18 21.80 38.33 77.36 21.58
10 5.22 21.80 38.78 85.13 21.67
11 5.66 21.80 35.12 100.10 21.11
12 6.21 23.02 55.03 120.69 23.40
13 6.12 22,16 40,86 117.03 22.30
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TABLE C6. Experimental and Calculated Drop Terminal Velocities

Silicone 0i] B - 25.4°¢C

Calculated|(Calculated {Calculated
Equivalent | Measured Veloci t Velocit Velocit
Diameter | Velocity Meth(ig Meth(iig Meth(ivg
Run d,cm UO,CT(SGC U,cm/sec | U,cm/sec | U,cm/sec
1 1.86
2 2.13 9.30 6.31 10.32 12.00
3 2.53 11.62 10.86 14,54 13.63
b 2.96 14,59 18.36 19.82 16.00°
5 3.13 14,91 16,48 22,24 . 16.05
6 3.29 14,91 . 18.15 24,57 16.01
7 3.80 18.03 31.32 32.67 18.72
‘8 L, 01 18.89 35.31 36.47 19.19
9 L, 27 19.79 37.46 L1, 35 20.23
10 L L 19.79 35.07 LL 61 19.83
11 4,88 21.10 L1, 42 53.32 21.02
12 5.41 21.92 35.65 66.34 20,71
13 5.73 22.81 L1,21 74,17 21.30
i 6.18 23.66 . —_—
15 6.75 24,17 35.08 94,07 20.62.
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Experimental and Calculated Drop Terminal Velocities

Silicone 071 ACI - 27.8°C

Calculated

Calculated

Calculated

Equivalent |Measured Velocity | Velocity | Velocit
Diameter |Velocity Meth(i% Meth(iig Meth(ivg
Run d.cm UO:CW/SGC U,cm/sec U,cm/sec | U,cm/sec
] 1,86 7.85 8.36 10.74 12,11
2 3.08 13.16 23.80 35.16 16.93
3 - 3.19 13.65 25.42 31.67 - 17.46
L 4,10 15.37 39.30 52.90 20.57
5 L, 60 15.80 43,10 66.63 . 21.21
6 L, 30 16.05 35.29 71.01 19.61
27 5.69 16.05 42.2] 100.60 | 20.73
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Experimental and Calculated Drop Terminal Velocities

Silicone 0il ABI - 27.8°C

Calculated{Calculated |Calculated

Equivalent | Measured Velocit Velocity | Velocit

Diameter | Velocity Meth(i Meth(iig Meth(ivg

Run d.cm UO>CW/SGC U,cm/scc U,cm/sec | U ,cm/sec
] 3.08 13.99 23.02 29.42 16.30
VA 4,10 20.45 £52.70 52,14 21.25
3 4,32 18.48 57.99 57.88 21.18
4 4 38 18.73 48.16 59.51 20.50
5 L 84 19.75 4L, 90 72.67 20.78
6 5.10 20.87 57.92 80.68 21.84
~7 5.34 20.45 51.05 88.45 21.20
8. 6.10 20, 14 457k 115,42 20.73
9 6.21 21.66 67.16 119.42 22.49
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TABLE C9. Experimental and Calculated Drop Terminal Velocitjes

Silicone 0il A - 27.5°C

Calculated|Calculated|Calculated
Equivalent |Measured Velocit Velocit Velocit
Diameter | Velocity Meth(i Meth(ifg Meth(ivg
Run d,cm Ug,cm/sec | U cm/sec | U,cm/sec | U,cm/sec
1 2.35 13.86 17.19 17.20 15.86
2 3.08 17.32 25.64 29.42 18.01
3 L.32 22.00 58.47 57.88 22.51
L 4,38 22.34 65.31 59.50 23.04
5 L.74 23,18 73.47 69.68 23.72
6 4.79 24,09 . 79.96 74,28 24,22
7 5.02 24,69 61,63 78.15 23.61
8 5.66 26.29 111,30 88.82 26.25
9 5.95 26.29 110. 48 109.98 26.35
10 6.50 26.78 113.01 131.03 26.90
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“the measured velocities begin to veer upwards while

for small U the velocities differ only slightly. This

calc.™’
suggests that for drops of small diameter, these equations

may be used to estimate the rising velocity; however, as the drop
diameter increases, agreement becomes poor. This agrees

with the earlier warning that our assumptions are only valid

for spherical drops at low Reynolds numbers. These conditicns

do-not apply in our systems.

5.4 Method (iii). Semi-Empirical Approach

- '

o>

e
a

- AN ’

Fig.5.3. Definition sketch for
semi -empirical method

Using spherical coordinates and oblate coordinates,
for creeping flow, we have obtained expressions for the terminal

velocity of the following forms;
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2
Ae gR
Uy =< M (n
U, = 22K ab (2)
v
where K] was defined in Section 5.1.3, |t may be noted that

the Hadamard solution is also of the form of (1).
In view of the above, it is reasonable to assume
a general expression (for creeping flow) of the following

form;

UOOCAiHLZ (3)
where L is a characteristic length. We can assume that the
constant of proportionality is a function of shape. With the
hope of establishing a relationship between the constant of
proportionality and expression (2), the following three

approaches have been considered;

Area of spherical drop of equi-

i s _ valent volume
(i) Sphericity, ws ~ Actual surface area of drop
3
(ii) Drop shape parameter, by (Q;Q)
" B

A
where B is as shown 1in Figure 5.3,

Sphere equivalent diameter
Diameter of a drop with same
cross-sectional area as that
of the particle projected in
the direction of motion.

{iii) Circularity, be
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Each of these parameters can be calculated from
the photographs, although calculations of the drop surface
area are rather tedious and require coordinates of a series

of points. In each case, (3) leads to

HUO
BegL?

= F(y) (4)

where ¥ is the relevant shape parameter®,

In view of the discrepancy between the experimental
results and methods (i) and (ii), and the fact that it is
clear that no single parameter adequately represents the
range of shapes observed in this work, this approach was not
pursued any further.

Before applying either the sphericity of circularity
method, the surface area and the volume of the drop must be
obtained. One method of achieving this is by using a simple
but suitable technique, the trapezoidal rule, (McCracken &
Dorn, p.l61).

The expressions for the surface area and the volume
of the drop have been derived, Appendix D. They are;

R-1
— 2
Ag = 3 Wlrgr rdUzim 207+ (- )

* U

sl
02 is the reciprocal of the Jeffrey number which is a
A(‘gL ratio of gravity to viscous flow.
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w neb, 2
7 E (e T TinE)

and vV, =
A simple computer pfogram has been written to perform these
calculations. Only pairs of values of the position coordin-
atés, z. and i are required as input data. From the diagraﬁ
given in the appendix, it is seen that g =7y = 0.

In order to achieve a higher degree of accuracy, a

correction for the truncation underestimates has also been

derived and is given in Appendix D(c).

5.5 Oblate Spheroid Method (Potential Flow) -

B AR
.’ 1 l uq

% —

v
£l

Fig.5.4, Definition sketch for
oblate spheroid method
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5.5.1 Assumptions
i The flow of the external liquid is irrotational.
ii The variation of pressure near the drop noseis
negligible.
iii Surface tension forces are negligible.
iv The effect of the wake and the skirts at the
concave region are negligible.
v Axial symmetry is assumed.
vi The system is assumed to be at steady state
relative to an origin fixed on the drop.
vii The shape of the drop is assumed to be approxi-

mated by an oblate spheroid.

5.5.2 Solution

let Z = f(f) = c sinh?f (1)

where z = x+iyg and T= g+ in (2)
Then, x = c sinh g cosq (3)
w = c cosh g sinm - (L)

An oblate ellipsoidal surface is then given by g = g

from where we find the semi-axes to be
a = ccosh g, and b = ¢ sinh g0
The stream function for an oblate ellipsoid moving

with a velocity U0 along the x-axis relative to stagnant fluid

(Miine-Thomson, p.499) is given by,
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~3 Uocz(sinh g - coshzg cot™! sinh g)sinzn
§ = 7 (5)
3

where K3 = e l-e2 - sin ‘e

Mi Ine-Thomson has derived an equation to enable the calcu-

lation of the tangential velocity, q1f

- (1 av
" (JE 55)@
1 3y
or = (— =) (6)

since the velocity normal to the drop surface is O.

J is defined by;

fF1(z)F'(z)

.
1

[S1e

Hence J c(coshzg coszn + sinhzg sinzn) (8)

By superimposing a uniform stream of velocity U0 in the

negative x-direction, we obtain for streaming past an oblate
ellipsoid,
2
U.c -
y o= - i%—— {KB coshzg - (sinh g - coshzg cot ]sinhg)}
3 N
X sinzn (9)
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1
Now %% = -jX{ZKBCOShgsinhg - coshg + 2coshg sinhg
cot 'sinhg - sinhg} - (10)
2_. 2
4 U cTsin™n
where 4?& = —ELTﬂ(—*__
3
But & (cot-lsinhg) = (—=L— coshg
EE l+sinh“g
3 : . -1_.
Therefore s Zf\coshg{Kssnnhg -1+ sinhegcot sxnhg}
....... (11)

which, on substituting into (6) gives,

- 2 \sinhg [K,sinhg -1+ sinhggot”'sinhgg)

q = T
0 c (coshzgccoszn + sinhzgosinzn)zc coshgpysin g
....... (12)
] . _ l-e2
But cosh gy = o, sinh gy = 2 and
-1 . PR
cot 'sinh gy = sin ‘e
Therefore ¢
26 .2
2 -
Q= i Ug e s;n M i (13)
(K3) {(I—e Ysin“n + cos n}
Application of Bernoulli's equation to the outside

fluid between the stagnation point at the nose and another

point on the surface yields,
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2
q
P = pg ¥ Cgb(] - cosq) - i—%— (1h)

where Ps is the pressure at the stagnation point., For

K = u'/u <1, the Reynolds number for the internal motion

is much greater than that for the external motion, Re' =
p'UOde/u' » 1, Thus, it is reasonable to think in terms of

a thin interior boundary layer (see Harper and Moore, 1968)
upon which the pressure is imposed by the interfor fluid which
is moving slowly. As a reasonable approximation then, we may
take the pressure distribution on the inside surface of the
drop as corresponding to the hydrostatic pressure variation

of the interior fluid., Thus, we may write
p = pg* e'gb(l - cosn) (15)

Combining (14) and (15), we may write

A \
qo2 = 2 ?C gb(1 - cosn) (16)
where be = ¢ -¢'. It may be noted that Harrison et al

(1961) arrived at a similar result by assuming the dispersed
phase fluid to be stagnant, a condition which would violate
continuity of fluid velocity at the interface. Here we assume
that the interior pressure is the same as for a stagnant fluid

without implying that the dispersed fluid is actually stationary
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relative to axes moving with the drop.

We may now combine (14) and (16) and require that
the resulting equation be satisfied in the limit as 1 - 0
(analogous to the well-known Davies and Taylor, 1951, treat-
ment for spherical-cap bubbles and to the Grace and Harrison,

1967, solution for prolate ellipsoidal-cap bubbles). Thus,

so that Uy = Kgb(gb %i)% (17)
or Uy = KBa(ga %Q)% (18)
where K3b = ig(sin-]e - ev/;jgi ] (19)
and AR (20)

In the limiting case as e » 0 (or b - a), then K3b = K,% = 2/3

as shown in Appendix E,

5.5.3 Experimental Results, Method (iv)

A comparison of the velocities calculated from
method (iv) and the measured velocities is shown in Figure
5.4.1 for eight dispersed fluids: silicone oils A, B, and
AB1, paraffin oil A, o-diethyl phthalate, 1,2 -dichloroethane,

o-dichlorobenzene, and 1,1,1 - trichloroethane.



-80-

It is clear that the calculated velocities show
remarkably good agreement with the measured values despite
the arbitrary assumption that the flow can be described as
irrotational and despite the fact that the stream function
was calculated for a complete oblate spheroid. Furthermore,
no allowance has been made for the presence of dimples and
skirts at the rear of the drop.

For large drops where surface tension forces are
negligible and where the internal fluid viscosity is much
less than the field fluid viscosity, the external fluid
encounters little resistance at the interface. Thus there
is non-zero velocity at the drop surface(as for potential
flow past a body) and vorticity generation is relatively
small. This no doubt accounts for the fact that the poten-
tial flow mode | applies down to such relatively low Reynolds
numbers, just as the Davies and Taylor model applies for
bubbles down to similar Reynolds numbers, Davenport et al
(1967).

Also, it will be noted in Figure 5.4;# that agree-
ment is most favourable for larger liquid drops. For the
smaller drops, the equation, Uy = K3b(%fgb)%, overestimates
the velocities. We would expect the potential flow assump-
tion to be more valid at higher Reynolds numbers and this

is borne out by the results shown in the figure,
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Finally, it must be pointed out that the character-
istic lengths a and b were not weli-defined in some cases, and
hence the eccentricity e is subject to considerable experi-
mental error, Nevertheless, the final agreement for U0 is
so favourable that Equation (17) can be accepted for large
drops rising in systems where K = y'/py4«l.. For the systems
- covered in this investigation, EO > 7, 1<Re<20, K<0,03 and
Y = ('/¢€0.94. Finally, it should be noted that Equation (17)
allows calculation of the drop terminal risfng velocity, but
only if one already knows the shape. In this sense, again it
is similar to results for large spherical-cap bubbles rising
in liquids. The full results, including the measured shape
parametérs, are presented in Tables Bi - B3.¥

It is also possible to fit results of Fararoui and
Kintner (1961) using Equation (17). However, a certain amount
gf guesswork is involved in interpreting their data. In par-
ticular, they have not given the scale of their photographs.

_ In addition, the results of Shoemaker and Chazal (1969) are
at higher Reynolds numbers than ours _and the physical prope%-
ties of the liquids are not clearly specified so that a direct

comparison is impossible.

* The data in Tabie C7 exhibited the poorest agreement. As
shown in Table A, silicone oi1 AC1 which has the highest
viscosity produced unsteady drops. These drops were uns-
uitabte for measuring a and b and hence were not piotted
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Physicol Properties

Fig, 5.4.1.

A comparison between the measured and the

calculated velocities for elvht systems,

~.

Given in  Toble A
8 ¢ )
o ¥ O« seee Silicone oil A&
Ty x reve 1,1,1~ Cl Zthane.
x ° viee 0 — 71, 2znzZene
s veee o - Ethyl,Phthalate
L] co e Paraffin oll A
o ) Sillcone oil B
¢ -toc. '1.92" Clzithane .
K cene, Silicone oil ABl
1 t | IO I N N B l 1 E N B I B
10 100
Upeags Heasured veloclty, cu/sec,
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CHAPTER 6
DIMPLE FORMATION AND THE DEVELOPMENT OF SKIRTS

6.0 Earlier Speculations

In an attempt to explain the causes of flattening
and dimpling at the rear of a liquid drop moving through
another liquid of higher viscosity, Garner et al. (1957) based
their argument on the pressure balance between interfacial
tension, hydrostatic pressure, and the hydrodynamic pressure
due to the external liquid. They did not mention the effect
of the wake region behind the drop which may well play an
important part in the dimple formation and the development
of skirts at the rear of the drop. Furthermore, they only
considered Reynolds numbers ranging from 0.0001 to 1.6 which
is too small a range for any generalizations on dimpled drops
to be made.

On the other hand, Shoemaker and Chazal (1969)
believed that dimples and skirts found at the trailing end of
large drops moving in high viscosity media were due to stable
vortices in the wake of the drop and to internal circulation
within the drop. Neither Garner et al. nor Shoemaker and
Chazal attempted to offer any explanation of why liquid drops
moving through a fluid of lower viscosity (e.g. raindrops
falling through air) have a flattened surface at their nose
instead of at their rear. This interesting question does not

appear to have received any attention,
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6.1 Qualitative Explanation for the Difference in Shape

Between Cases Where uw'¢c u and u's>u

The main difference here is the Reynolds number
for the two cases. In our system where y's«y, the typical
range of Reynolds numbers was between 2 and 20. On the
other hand, a raindrop falling through air attains Reynolds
number of about 7,000. In addition, the Edtvos number for
falling drops never exceeds about 20,Merrington and Richardson
(1947) , whereas for our case, the Edtvos number was always
greater than 7 and commonly greater than 40.  Thus surface
tension forces continue to play a significant role for deformed
drops falling through a gas whereas interfacial tension forces
are negligible for the dimpled drops encountered here in
liquid-liquid systems. In view of the large difference in
Reynolds numbers, we would expect large differences in flow
patterns and hydrodynamic pressure distributions even if the
shapes were identical, LeClair (1970). For example, it is
reasonable to expect boundary layer separation for the high
Re case but not at Reynolds numbers of the order of 20 or
smaller. Hence, it is not surprising that the equilibrium

shapes differ widely in the two cases.

6.2 The Case where ;'wy

Here, as we have already mentioned, it has been
extremely difficult to conceive what factors are controlling
the formation of dimples and skirts, Firstly, the range of

Reynolds number is too low to think in terms of boundary layer
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separation. Secondly, the appearance of dimples is observed

at such Jow Reynolds numbers that the development of a wake
cannot be attributed to it. For example, as stated above,

a standing eddy for flow past a solid sphere does not occur
until a Reynolds number of about 20. In addition, as the drop
size is increased, thé shape of the rear changes from spherical
(1) to one with aflattened rear (2). The curvature then
becomes negative (3) and skirts begin to form. This is then
followed by concave surfaces with smooth curved skirts (4),

The waves then set in as the downward skirts straighten (5),
and finally the drop motion becomes unsteady and the skirts
wobbly (6), Figure 6.1, Bearing these factors in mind, we
hope to explain the course of these shape changes in a simple
but reasonable qualitative manner. Although the shapes exhi-
bited by a drop can be categorised by some convenient dimension-
]éss groups, it is rather difficult to devise groups for liquid
drops, Grace (1972), and we have chosen to classify them
éccording to the nature of the shape observed from the experi-

ments, Figures 6.1. and 6.2.

6.2.1 Spherical or Almost Spherical Drops

This is the case where the interfacial tension forces
or viscous forces predominate. The drop assumes a spherical
shape or it is distorted to such a small degree that non-zero
eccentricity is not observable, As stated before, drops of
this shape have been thoroughly examined analytically and

experimentally.
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Spherical (2) Flattened Rear

(3)

fndented Drop : (4) Smooth Curved Skirt

Skirt Straightened (6) Unsteady and Wobbly
Downwards Skirt

Typical shape of large drops of o-diethyl phthalate
rising through aqueous sugar solution.
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(1) Spherical (2) Flattened Rear

(3) Indented Drop (L) Smooth Curved Skirt

(5) Skirt Straightencd (6) Unstcady and Wobbly
Downwards Skirt

Fig.6.1. Typical shape of large drops of o-diethyl phthalate
rising through aqueous sugar solution.
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6.2.2 Drops with Flattened Rear

Saito (1913) was the first person to predict that
a drop moving through viscous fluid will deform into an oblate
or prolate spheroid. He used the Hadamard-Rybczinski (1911)
appreach for low Reynolds numbers and took into account the
non-linear inertia terms in the equation of motion and the

capillary action, He obtained the following equation:

/ Uy’ ! K 3, 37,2, 319 10
S T Taollar)33 () - klgg) # KT gp K 5

The drop will deform into an oblate or prolate spheroid
depending on whetherzﬂ;<-0 or14;>0 wherezﬂ; is the term in

the square brackets. This same problem was revised by Taylor
and Acrivos (1964) who found a fundamental error in Saito's
work., In their'approach, Taylor and Acrivos showed that as

the Weber number increases, the drop will deform first into

an oblate spheroid (which qua]itétfvely but not quantitatively
agfees with Saito's work) and then with a further increase in
Weber number, into a geometry having a rounded top-and flattened
rear. They used a singular-perturbation solution of the axi-

symmetric equation of motion and arrived at a final solution;

2

_ v _ 3q(11K+10) We _
ATA = - aWePy(g) - %o( k) ke 13(8) T
_ 1 81,3 . 5742 , 103 . 3y _ =1/
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In our opinion, Taylor and Acrivos' explanation
for the flattening of drops at the rear seems more convincing
than the oversimplified one by Garner et al,. However, the
solution is limited to small deviations from the spherical

and to low Re and We so that it is unable to cope with the

radical deformations observed in this study.

6.2.3 Onset of Skirt Formation

Seven'distinct stages can be distinguished in the
development of the shape of drops in the viscous liquid
employed here, ~These stages are shown on the following
page in Figure 6,2,

Figure 6,2 - Stages in drop shape development
in viscous liquid:

(a) Spherical drop

(b) Nearly spherical but with flattening at rear pole.

(c) Dimpled drop

(d) Onset of skirt formation

(e) Fully developed skirt pinched inwards

“(f) Skirt straightened downwards

(g) Unsteady skirt, growing with time and asymmetric.

fn this section, a qualitative explanation for this
evolution of drop shape is provided which is consistent with
what evidence is availabfe on the flow patterns and skirt for-
mation. Further experimental work is required to confirm this

qualitative picture and to allow quantitative predictions.
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(g) .

Fig. 6.2. Stages in drop shape development in viscous liquids.
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Fig. 6.2. Stages in drop shape development in viscous liquids.
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Results have been plotted in Figure 6.3 for drops
and bubbles (K&« 1, v«l) to delineate the region where skirt
formation occurs. The results are plotted as Sk vs Re. The
open symbols correspond to drops or bubbles where no skirt
formation was observed. The blocked-in symbols correspond
to drops or bubbles with trailing skirts., Where a vertical
line has been drawn through an open symbol, this denotes the
critical condition corresponding to the onset of skirt forma-
tion. It will be recognized that the definition of this cri-
tical condition is rather arbitrary. Wegener et al, (1971)

did not specify how they defined the critical condition for
their bubble studies. In the present work, the onset was
defined as shown in section 3.3.3 where Z in Figure 3.2 exceeds
0. For the Guthrie (1967) bubbles in a 6.1% PVA solution and
for Shoemaker and Chazal (1969), photographs were reproduced

énd enough information was given to allow us to determine Sk

and Re and whether or not there were skirts. Angelino (1966)
also showed photographs of bubbles with skirts but did not

give the dimensions of the bubbles. In the case of the Davenport
et al. (1967) and Jones (1965) studies, conditions for the onset
of skirt formation were quoted in the respective texts.

Figure 6.3 shows clearly that skirts do not form for
drops having Reynolds numbers less than about 6 or skirt
numbers (Sk) less than about 2. An approximate boundary
separating the region of skirt formation from that of no skirt
formation for drops is shown on the figure, The results for

air bubbles are in qualitative agreement but the transition
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O . Paraffin oil 4
13 4 .. Silicone oil A
Lo o-Diethyl phthalate
< .. Silicone o1l A3l
12 H .. o-Dichlorobenzene
S . Silicone oil 3
2o 1,2+ Dichlorocthane
11 4 .. 1,1,1~ Trichloroethane
a .. Shoemaker & Chazal
& oo ‘Jones (PhD Thesis) Camb,
10 X .. Davenport et al. §
§ ...  Guthrle (PhD Thesis) §
I r — w—__Mhpproximate boundary separating f%;
the region of skirt from that of .
8 L no skirt for liquid.drops. é'<’
(Here, B and D refer to bubble %
and drop respectively at the
7 - transition region) <& Z
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Fiz, £.3. Variation of dimensionless group,S¥, with Reynolds numbcg

and tne onsct of skirt Tornation,
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seems to take place for different values of Re and Sk. How-
ever, more data is certainly required to be able to make firm
conclusions on this point. {n addition, it is not clear from
the data presented here how high the Re can be before skirts
break down. Also, different size columns were used in the
different experimental studies and, therefore, wall effects may
account for some of the scatter in Figure 6, 3.

As we have already seen, spherical drops have internal
circulation if the accumulation of surface active contaminants
at the interface is not excessive. For rigid spheres, a standing
eddy develops at the rear for Re of the order of 20. For drops
it is not clear when such a standing eddy should form, but it
seems likely that the mobility of the interface will tend to
delay the onset of a standing eddy, whereas the indentation at
the base will tend to promote its formation. A qualitative
sketch of the streamlines (relative to the drop) is shown in

Figure 6.4 for an indented drop with a recirculating closed wake.

N
N

Fig.6.4. Streamlines for dimpled drop
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Note that there must be three stable vortices (or at least
an odd number). The second internal vortex (Vortex 2) is
necessary in order to provide continuity of“ve]ocity every-
where, Such a second internal vortex has been observed by
Pruppacher (1972) for water drops falling through air and has
been predicted numerically by Hamielec and Johnson (1962),

The reason for the onset of skirts now becomes
apparent, The viscous external liquid tends to pull the drop
liquid at S] downward due to shear mainly from the external
flow aided to some extent by Vortex 3. This tendency is
resisted by interfacial tension forces trying to minimize the
interfacial area and, to a much lesser extent for K&I, by
shear due to the internal circulation. The shearing force
tending to extend the drop at S] would then be proportional
to ”UO’ while the resisting force is proportional to the
interfacial tension, g. Thus, we would expect skirt formation
to depend on the dimensionless group qu/g (which we have giQen the
symbol, Sk). In addition, we would expect Re to be important
siﬁce at too low a Reynolds number, no standing eddy would be
formed, while at too high a Reynolds number, the wake would be
turbulent.

Once the onset of skirt formation has been achieved
(Figure 6.2(d)), it appears likely that the flow pattern is
modified so that for fully developed skirts, two vortices now
appear in the external fluid and only one inside. This situ-

ation is sketched in Figure 6.5.
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)

Fig.6.5. Streamlines for skirted drop

In the present work, 90% mesh aluminum particles were dis-
persed in silicone oil B before drop formation in a few cases
to allow flow visualization. Observations confirmed that the
motion inside the skirted drop was as shown in Figure 6.5 with
the aluminum particles carried on the outside down to the
bottom of the skirt and then upwards on the inside and finally
back through the interior of the drop. |t was also possible
to distinguish a vortex with the direction of Vortex 2 pro-
tected by the skirt by observing tiny air bubbles trappéd in
the viscous sugar solution. It was not possible to confirm
the existence of Vortex 3 by this means. No attempts have
been made so far to photograph streaks due to tracer particles.
Thus, the picture given above is plausible and consistent with
observation, but further confirmation is required. One ques-

tion that remains unanswered is how the transformation occurs
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from a situation where there are two vortices inside and one
outside to the reverse situation where there are two outside
and only one inside.

This qualitative picture of flow in the skirt helps
to clarify the flow pattern postulated by Guthrie (1967, 1969)
for bubble skirts, Guthrie proposed that the flow in the skirt
could be either symmetric or asymmetrical (with respect to the
centre line of the skirt). |t would appear from the observa-
tions noted above that the actual flow pattern in the skirt
is closer to the latter, but with non-zero velocity at the
skirt/wake intefface (relative to thé skirt) since, at least
for liquid drops, the enclosed wake is not stagnant as assumed
by Guthrie. |

With a further increase in drop size, the skirt
straightens downwards and eventually becomes unstable as shown
in Figure 6,2, These phenomena are no doubt complex and related
to increased vorticity generation by the drop and to the sta-
bility of the thin trailing skirts. Further experimental
and theoretical work is required in order to describe these

later stages of skirt development.

6.3 Analytical Description of Flow in the Skirt

In order to arrive at analytical expressions for the
prediction of skirt length, onset of wave formation, etc., it
would be very useful to have an analytical description of the
flow pattern. One-such description that has been considered
in some &etail in this work follows from a solution of the

creeping flow equations mentioned in passing by Batchelor, p.226.
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This approach, though it leads to no directly useful results,
is of some interest and is described briefly below.

A two-dimensional section through the skirt and
enclosed vortex is considered as shown below. Point 0 is the
tip of the skirt as shown in Figure 6.6. The skirt is con-
sidered to fill the entire wedge AOB in Figure 6.6, while the

external liquid fills AOC. Motion below COB is not considered.

Vortex in
the wake

Fig.6.6. Sketch of the idealised skirt/eddy
interface used in the model

Assumptions
i 0 is a stagnation point,
il The tangential velocity at the interface, UF,
is finite;, see Appendix F.
iii The skirt is very thin so that %%53%’§§R-

iv The fluids are Newtonian.

v Both liquids are incompressible.
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vi U = 0; ie. the filow can be treated as two-

z
dimensional.

vii Steady flow exists relative to the frame of
reference.
viii Creeping flow is assumed in the skirt region,

Assume a solution of the form,

§ = r3f(e)

(1)

A solution of this form is adopted because it gives

flow patterns which resemble our physical situation at the

wake/skirt interface. Now (1) must satisfy the equation of

motion in creeping flow,
vhw = vz(v2¢) = 0

where the operator

N

Vz = _L.;._]_@_.;.]__
r 2
dF r

o

|

NI

df 36

(2)

(3)

3

On substituting (1) and (3) into (2), and differentiating,

‘we obtain

v4¢ = %(fiv £ 106 4 of) =

ie. FVa4l0fl+9f = 0

(&)
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‘The roots are then;

mo= *j, 3]

So that the solution becomes

f = aosin e + bocos e + s sin 38 + dO cos 38
..... (5)
Boundary Condi tions
(i) f(o) = 0 (6)

since the line 8 = 0 is a streamline.

¥ o= - B R T A
(ii1) At r = Z, V. = UF' UBut V. =73 3refr(e),
therefore, f'(0) = —57 (7)

: 3z

_oyea Vo a3

where UF = Z( a s.nﬁg)
where this expression is derived from an empirical
result for thin liquid sheets in steady flow, Dombrowski

and Fraser (1954)., See Appendix F.

(iii) f‘(-@) = 0, (8)
This forces the normal velocity to vanish at 8 = “6-
(iv) (-g) = o. - (9) |

It is assumed that there is no transfer of momentum

at the line 8 = —@ . |
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After lengthy algebraic manipulation, the values

of a_, b s and do can be calculated. For the special case

o’ o’
of = T/3 (within the observed values), we get the simple
solution,
U r3
b = £ sin 30 (10)
9Z

The above solution contains some of the principle
features of the actual flow situation. Af the same time,
however, we have had to adopt several assumptions which are
not strictly valid.(e.g. boundary condition (iv), the empi-
rical expression for UF and the wedge shape approximation
shown in Figure 6.6). This model provides a first approach
to the description of the flow patterns, but further work is

necessary before a completely satisfying model can be achieved.

6.4 Skirt Length: Experimental Measurements

For the drops where skirt formation occurred, skirt
lengths (Z) were determined as shown in Figure 3.2, These
results are in Tables DI to D8. While various methods of

plotting the data were tried in an effort to determine the
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-dependence of Z on Re and Sk (or We = ReSk), there was very
wide scatter. This was often because the skirts themselves
were unsteady and asymmetric, especially for the systems with
a large density difference,Aﬁ. Thus, additional work is
required to define the onset of skirt instability before
meaningful plots of skirt length can be presented for those

systems where steady skirts are formed.
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TABLE D1. Experimental Results on Skirts
For Rising Drops
Paraffin 0i1 - 26.5°C
Dimension- |
less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Number Number [ Number |. of
No. z/d z,cm Re We Sk Skirt
1 a— —_— 3.54 11.29 3.23
2 0.06 0.18 5.01 21.69 L.00 X
3 0.51 1.90 7.65 35.88 L, 76 +
L 0.57 2.20 8.06 31.22 L.76 +
5 0.87 3.90 10.06 51.09 | 5.00 +
6 1.04 L. 80 10.46 54,37 5.26 +
7 1,05 5.30 11.75 62.36 5.26 +
8 1.71 8.80 11.94 63.34 5.26 +
9 0.58 3.00 12,03 63.84 5.26 +
10 1.26 6.60 12,12 64.33 5.26 +
N 1.73 9.80 13,15 | 79.75 5.26 +
12 —_— —_— 15.23 85.33 5.26 +
13 0.7 . 4,30 14, 45 77.93 5.26 +
0 = no skirt
X = onset of skirt
+ = presence of skirt
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TABLE D2, Experimental Results on Skirts
for Rising Drops
o-Diethyl Phthalate - 27.8°C
Dimension-
less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Number Number | Number of
No z/d z,cm Re We Sk Skirt
1 —_ —_— 1.71 < L, 8L 2.86 0
2 —_— —_— 2.25 7.34 3.23 0
3 — —_— 2.80 10.31 3.70 0
L, E— —_— 3.80 15.00 4,00 0
5 0.15 0.50 5.66 29.06 5.00 X
6 0.51 2,10 8.22 51.07 6.25 +
7 0.63 2.70 8.50 52.08 6.25 +
8 0.88 3.80 9.31 61.83 6.67 +
9 0.66 2.90 8.83 54,82 6.25 +
10 0.90 L.10 9.52 61.52 6.25 +
1 1.52 7.40 11.30 | 80.65 | 7.1k +
12 1.35 7.20 12.56 91.00 7.4 +
13 1.22 7.70 15.04 115.98 7.69 +
14 0.83 5.60 17. 41 131.75 7.69 +
15 1.35 9.20 18.49 155.10 8.33 +
= no skirt

x = onset of skirt
+ = presence of skirt
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TABLE D3, Experimental Results on Skirts
for Rising Drops

Silicone 0il A - 27.5°C

" Dimension-
less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Number Number | Number of
No. z/d z,cm Re We Sk Skirt
] 3.87 11.69 | 3.03 0
2 — — 6.37 23.92 | 3.70 X
3 1.13 4.90 11.35 5L 14 L. 76 +
4 1.21 5.30 11.68 56.60 4. 76 +
5 I.50 “7.10 | 13012 65.95 | 5.00 +
6 1. 48 7.10 13.78 71.98 5.26 +
7 1.69 8.50 14,80 79.24 5.26 +
8 1.4 §.00 17.79 101.29 5.56 +
9 1.56 9.30 17.68 106.48 5.56 +
10 1.69 11.00 20.78 120.70 5.88 +
no skirt

onset of skirt
presence of skirt
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TABLE D4, Experimental Results on Skirts
for Rising Drops
Silicone 07l ABI - 27.8°C
Dimension-
less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Numbe r Number | Number of
No. z/d z,cm Re We Sk Skirt
1 —_— 5.43 15.60 2.86 X
2 1.07 Lok 10 56 L 37 L, 17 +
3 0.74 3.20 10.05 38.19 3.85 +
b 0.78 3.40 10.33 37.78 3.85 +
5 1.17 5.40 12.04 68.87 L, 00 +
6 _— —_— 13.04 57.50 k.35 E——
7 1.31 7.80 13.75 57.81 4,17 +
8 1,11 6.80 15. 47 64,05 L. 17 +
9 E— 16.94 75.02 k.35 —
= no skirt
X = onset of skirt
+ = presence of skirt
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for Rising Drops

o-Dichlorobenzene - 27.8°C

1 Dimension-
Less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Number Number | Number of
No. z/d z.cm Re We Sk Skirt
] 1.54 2.24 0.08 0
2 _— — 3.33 7.31 2.17 0
3 —_ — Lok 10.03 2. 44 0
k —_— -_— L.50 11.40 2.50 0
5 — — 6.05 | 17.52 2.86 0
6 e ———e 6.79 21.45 3.23 X
7 —_ —_— 7.08 22.19 3.13 —_—
8 —_— — 7.05 21.41 3.13 —
S 0.02 0.10 8.48 28.70 3.03 X
10 —_— —_— 8.75 29.88 3.45 X
11 0.05 0.30 8.78 29.88 3.45 +
12 —_— —_— 9.98 34.95 3.57 —
13 0.38 2.60 10.50 37.34 3.70 +
14 0.10 0.70 10.24 37.30 3.57 +
15 0.34 2.40 11.03 42,20 3.85 +
= no skirt
x = onset of skirt
+ = presence of skirt
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TABLE D6. Experimental Results on Skirts
for Rising Drops
l,2-Dichloroethane - 27.5°¢C
Dimension-
Less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length | Number Number | Number of
No. z/d z.cm Re We Sk Skirt
] 0.68 0.87 1.14 0
2 —_— -_— 1.45 3.07 2.00 0
3 E— —_— 2.58 6.09 2.38 0
L — —_— 3.17 8.83 2.78 —
5 — Ea— 3.57 10.32 2.86 —_—
6 _— —_— L 69 15. 44 3.03 —
7 5.13 17.85 3.45 X
8 —_— —_ 5.64 20,11 3.57 X
S —_— —_— 6.46 24,96 3.85 X
10 0.27 1.50 8.64 37.57 L, 35 +
11 0.29 1.70 9.29 41,20 L, 35 +
12 0.67 L, 30 11.29 55.97 5.00 +
13 0.51 3.40 11.83 57.32 5.00 +
14 0.84 6.00 13.39 70.56 5.26 +
= no skirt
x = onset of skirt
+ = presence of skirt
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TABLE D7. Experimental Results on Skirts
for Rising Drops
Silicone 0il B - 25.4°C
Dimension-
Less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Number Number | Number of
No. z/d z.cm Re We Sk Skirt
] 1.63 4,06 2.50 0
2 — — 1.88 4,73 2.50 0
3 —_— — 2.79 1 8.78 | 3.13 0
L —_— —_— L, 09 16.15 k.00 0
5 — —— L 43 17.88 4,00 0
6 —_— —_— L, 65 18.77 4,00 0
7 0.11 0.40 6.50 31.74 L.76 X
8 0.25 1.00 7.18 36.69 5.00 +
9 0.42 1.80 8.02 L2.79 5.26 +
10 —_— —_— 8.33 LL 68 5.26 —_—
11 —_— — 8.77 55.83 5.56 —
12 1.53 8.30 11.25 66.79 5.88 +
13 1.2k 7.10 12,40 76.61 6.25 +
14 1.65 10.20 13.87 88.90 6.25 +
15 0.99 6.70 15.48 101.33 6.67 +
= no skirt
x = onset of skirt

presence of skirt
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TABLE D8. Experimental Results on Skirts
for Rising Drops
1,1,1-Trichloroethane - 27.5°C
Dimension-
Less Skirt | Skirt Reynolds | Weber Skirt Presence
Length Length Number Number | Number of
No. z/d z,cm Re We Sk Skirt
1 1.05 0.75 0.72 0
2 —_— — 1.45 1.19 0.82 0
3 — S 3.03 L, ok 1.33 0
L —_— e 2.49 2.3L4 0.94 0
5 -_— — L L6 6.94 1.56 0
6 —_— — 5.52 9.52 1.75 0
7 0.08 0.50 7.13 14,08 1.96 X
8 —_ —_— 7.16 14,04 1.96 —
9 0.34 2.10 7. L4 14,95 2.00 +
10 0.35 2.20 7.89 16.36 | 2.08 +
11 0.34 2.20 8.11 16.83 2.08 +
12 0.26 1.70 8.52 18.29 2,13 +
13 0.34 2.40 9.40 20.87 2,22 +
0 = no skirt
x = onset of skirt
+ = presence of skirt
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

7.0 Terminal Veloci ty

The results obtained using three different approaches,
Section 5.0, have been compared with experimental results in
Figures 5.4.3 and 5.4.4, The results of the semi-empirical
analysis have not been included since this approach proved to
be fruitless, In contrast, the creeping flow analyses, methods
(i) and (ii), produced results which show too steep a slope in
the variation of the calculated velocities with the measured
ones., For high measured velocities these analyses greatly
overestimate the calculated velocities. For small measured
velocities, the calculated velocities differ only slightly.
This leads us to the following conclusions:v analyses (i) and
(ii) may be used to predict the terminal velocities for drops
smaller than about 2 cm. sphere equivalent diameter. However,
for larger drops, these analyses cease to conform. This result
vis expected in that it is physically inconsistent to disregard
the inertial terms for a drop where Re > 1 and yet hope to
deal with deformed drops.

On the contrary, the results obtained by the poten-
tial flow analysis (method iv), seem. to give results which
agree well wi th the experimental results, except for the

small drops. This is shown in Figure 5.4.4, For smaller drops,
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d<k cm, this theory slightly overestimates the true terminal
velocity of a drop. Three possible reasons why this approach
fails for drops with d<hcmAare evident. Firstly, this analysis
assumes an oblate spheroid which is not strictly true for
smaller drops. Secondly, in smaller drops, the Reynolds
number is too small for potential flow to be valid. Lastly,
while the experimental technique, using cine photographs, made
it possible to determine a, b, and UO’ the technique was not
accurate enough for small drops and the eccentricity, e = f(a,b),
mi ght contain considerable error.

However, agreement between our theoretically deter-
mined velocities and the measured values is so good that we
can conclude that the potential flow technique using ellip-
soidal coordinates predicts the terminal velocity of dimpled

drops very accurately over the range of variables investigated.

7.1 Shape of Dimpled Drops

As stated in Section 4.2.0, we are unable to deter-
mine drop shape analytically or empirically.

However,other areas have produced interesting infor-
mation. For example, a graph of Cj versus Re’ (Fig.4.k), indi-
cates that the drag force acting on the surface of the drop is
a very strong function of the shape of the drop. Observations
revealed that the drop first develops a skirt. Waves then set
in and, finally, the whole drop becomes unstable. Correspondingly,

CD first decreases, reaches a minimum, and then continues to



increase. Further work is necessary to explain these phenomena
more fully.

Another interesting case is the variation of E with
Re, Figure 4.6, Here, efforts to correlate these groups
along with the physical property groups M, My, and P failed

to provide valuable information.

7.2 Skirts

For all the systems employed in this work, "skirts"
were observed for drops beyond a certain size. The onset of
skirt formation is a function of Re and of the skirt number
Sk = uUO/a, and a graphical correlation, Figure 6.4, delineates
the region whe re skirt formation occurs, A qualitative argu-
ment is presented to explain the onset and development of skirts
and this argument is consistent with flow visualization experi-
ments. For systems with a large density difference,Af , skirts
tended to be growing with time, to be asymmetric and to have
waves travelling down them. Some photographs and sketches of

these unsteady skirts are included.

7.3 Suggestions for Future Research

The present study is only a first step towards the
more signfficant objective of a full understanding of the
behaviour of dimpled drops. More work is certainly required
in this field., The striking questions raised during our work,

and the light that could potentially be shed on the dynamics
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of drop coalescence, break-up, and the mechanics of skirts,
by further studies of this sort, make a continuation of the
research most desirable, 1In this connection, attention is

called to;

1. Comprehensive study of the internal circula-
tion, the vortices in the wake, and the dimple
formaﬁion in liquid drops.

2. Detailed analysis of the shape of large liquid
drops for a wide range of values of K = '/y;
Development of either an empirical or analy-
‘tical correlation which will enable one to
predict the shape of a dimpled drop from the
liquid physical properties.

3. The development of waves and the instability
observed in skirts for large liquid drops rising
through viscous media.

L, The interaction, coalescence, and break-up of

large liquid drops moving through viscous media.
13
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NCTATION

a cm . semi-major axis.

ao,bo,co,do A constant coefficients used in
Section 6.4, '

A cm? projected area in a horizontal
plane at the waist of the drop.

An’Bn’Cn’Dn constants in spherical coordinate
solution.

AP cm? area of segment i of the drop
(see Appendix D).

As cm? total surface area of the drop.

b cm semi-minor axis

A

B cm height of drop (see Fig.5.3 in

_ Section 5.4).

c cm focal length of an ellipse,

C...., C.'... constant coefficients used in

J J Section 5.2.3 (j=1,...4).

Nt

Cn 2 Gegenbauer polynomical, order n,
degree -3.

d ‘ cm sphere equivalent diameter.

1

e - eccentricity, (I-(b/a)z)z.

Eg Eotvos number, Aggdz/g

f,f1,f" coefficients as defined in Sec-

N tion 5.1.3.

F,EY,FY coefficients as defined in Sec-
tion 5.1.3.

h : cm half width of skirt.

: - 1
J (f'(z)f'(z))* (Milne-Thompson,

p. 473y,



KooKy Ky, K

P, P ,P

Ry Ry Ry

3

hs? hd’ c

-1 1k-

cm

m
s

cm/sec

cm

cm

cm/sec

cm/sec

3

cm

cm

parameters defined in Sections
5.1.3 and 5.5.2,

coefficients relating UO to a
and b in Section 5.5.2.

characteristic length dimension
arbitrary constant
positive constant, 0 < M ¢ 2.

integer number in Section 6.5,

pressure; outside drop, increment
due to interfacial tension, hydro-
static, hydrodynamic, and due to

internal circulation, respectively.

local velocity of the external
liquid at the surface of the drop.

sphere equivalent radius,

two principal radii of curvature,
and the radius of curvature at
the stagnation point of a drop.

Reynolds number, dUO/q.

symbols denoting rounded and con-
cave surface of the drop in Section

5.0.
defined in Section 5.1.3.

velocity components in the x,vy,
and z directions.

terminal velocity of drop.
total volume of drop.

2
Weber number, QdUO /o.
skirt number, qu/g.
complex variable, x + iy.

length of skirt,
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Greek Letters

(', e gm/cc density of dispersed and contin-
uous phases.,

A¢ gm/sec density difference, |¢-¢'].

UM dm/cm, sec viscosity of dispersed and con-
tinuous phases.

o dynes/cm interfacial tension.

X viscosity ratio, u'/u.

Y density ratio, Q'/C'

M E° elliptical coordinate, n away
from vertical.

ws’¢e’¢¢ functions of shape as defined
Sections 5.4.1, 5.4,2 and 5, 4 3

b stream function,

A function defined in Section 5.2.3.

XI’XZ’XB functions defined in Section 5.2.3.

4, 4 functions derived by Sarto and

TA

Taylor and Acrivos given in Sec-
tion 6.3.2.

i cylindrical coordinate.
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APPENDIX A. Calculation of Stream Function for Method (1)

From equations in Section 5.1, we have

L (WZ+1)(1-t2) 7 2.2 .
A [WFaf) + 2P ()

Cl+()\2+t2) L } |
where F = (x2+1)f” - 2f (i)
and Fo= ]ftz (i)

is a function only of A,

In order for this equation to be satisfied for all
t and ), the second term in the bracket in Equation (i) must
vanish,

i.e. L(F-AF') + (x2+t2)F" = 0 (iv)

We choose our solution such that F is a function of XA only.
Thus, (iv) can occur only if the following relations are

simultaneously satisfied;

F''m' = 0 (v)
FaaFt = 0 (vi)
Frem (v), F = c)d + ¢ where c, is an arbitrary constant

which we can set equal to zero. Substitution of this expres-

sion into (ii) gives
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W2y - 2f = A (vii)
The particular integral of solution of this equation is,
fo= -3¢ (viii)

The remaining part of the solution of equation (vii), corres-

ponds to the solution of the homogeneous equation,
2 " _ -
(A\#1)F" - 2f = 0 (ix)

This equation can be written as,

d

(aZiver - ovel o
d)\‘L(K +1)1 ZH} 0

which on integrating gives

(WZ1E - nf = (x)
Again, Equation (x) can be written in the form,
c
L) = —35 (xi)
1+ (1+27)
Integration of (xi) gives
2 k dx 2
o ..
f = cz()\ +1) ——-—2—)§+ CB()\ +1) (xii)

50 (1+A



=121~

' A
Integrating g _91_7_7 by parts we obtain
o (1+29)
A -
S——.dLZ_—Z.z 32' Kz)-COt IX)
o0 (1+125) 1+X

0
and the solution of the homogeneous equation becomes

I

Fo= e, - 0%eot™h} - 0% (xiii)

J

Hence, the general equation becomes,

- )
fo= -fcp+i cz{x - (1+2%)cot lk} - (W)

which gives the stream functions ¢ and y' used in Section 5.1.3,



lim
e—.OK
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APPENDIX B. Evaluation of Limits

. 2
Vim 1/ 20 1=2e” o -1
e-0 e 2

e

. 2 L 5
lim 1., e e 17,2 e’ . 3e’
e-0 e(]—Z -8 ) - 82(] 2e )(e+6 Lo

e

: 3 3 3 5

lim e.e _1_e _ 3 e . e’

0 E-5-F -t et
e

lim 1 _1_33_%[_1_3_93+2+§3+§§f

e-.Oez 2 8 e2 6 0 3 2

Wi
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-APPENDIX C. Evaluation of Stream Function for Method {ii)

From Equation (15) of Section 5.2 we set,

v, = x](r) cos8

Vg = x,(r) sin®
P-Ti = uxz(r) cos@

v.' = X'](r) cosb

vg' = x',{r) sins

p' = u'XB‘(r) cos8

(ia)
(ib)

Substituting these expressions into Equations (12)-(14) of

Section 5.2 we obtain;

21 94 d
d™x, L2 oy BX+X%,) ] X3
er r dr r2 dr
a2y dx.  2(%.+X.) X

2,272 1 ™2 _ 3

2 r dr 2 - r
dr r
dXx
gt OgTX) =0

The equations for the inner fluid take a similar form.

(iv),

a.
e

>
N
1l
1
poj-
[a R
-~
1
>

(i)

(iii)

(iv)

From
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Substituting for these in (iii), we get

X, 2 a¥% dX dXx
3 . dn r 771 2d,r 71 S Ay |
ro er(Z ar T Xl) i dr(Z a Xl) r dr
..... (vi)
. o | 2 4 ; ay, , &4 i)
i.e, = =T + 5r + Vil
3 2 dr3 er dr
Now substituting for X3 in (ii), we obtain
3 dL}Xl . &y, ] d’y, g M i)
r + 6r7 —5— + dr - 0 (viii
ar” dr> dr? dr

This is the well-known Euler Equation, We choose a solution

of the form,

Then

n(n-1)(n-2)(n-3) + 8n (n-1)(n-2) + 8n (n-1) - 8n =
..... (x)

which, on simplifying, gives
n{n-2)(n+1){(n+3) = 0 (xi)

so that the roots are

0
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n, = O,n2 = 2,n3 = -1, and n, = -3

Therefore, for X5 %3 and Xy, we have the following expressions;

c c
S A 2 ii
Xy = r3 Tt Cy +ocyr (xii)
c c
XZ = —2—:—3- - '% - C3 - 2C1+r2 (Xiii)
Cy: .
Xy = :7 + IOchr (xiv)

On substituting these back into equations for Vi, Vg PV,

<V9l’ and P', we obtain the general solutions for Equations

(9), (10) and (11) as given in Section 5.2.3.
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_APPENDIX D. Derivation of the Equations for Determining
the Surface Area and Volume of Drop

The evaluation of surface area and volume of an

axisymmetric drop given points on the boundary as Feos 2Zio

Zo >V
(V"“ };)
(r’-'.-&\sz.g.t)
£
Jl x

‘Referring to the above figure,

A, = g 27 rds.
Vg

2.3
2 2 _ dr\> 42
But ds“ = dz" + dr”, ... ds = {l +(EE) }

z
_ AN dry2
and A_ = ZuS r(]+(32) Ydz

20

V., = 8 TTerz, giving
z



_]27_

Here both integrals must be evaluated by going right round the

boundary.

Simple Approach - Trapezoidal Rule

(a) In the Interval Z; $25 2y, take r as a linear

function of z, then

(rizien = MinZ) 2 v

r = —
Zi+1 i
dr el T Ty
and - — = —
dz Zipy 7
oZi+]
Thus A, = ZTVC.Q (a. + b.z)dz
[ iy i [
§
.., - r. 2 %
where ¢, = (1 +(=HL_—iy7)
| Zivl T %
8 = (rizi ) - ri7)
! Zie1 T %
(r. r.)
b, = i+l i
' Zi+] " Zj
Therefore

~ 2,%i+1
A. = 2||ci|aiz + %biz in
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= el oz - 2z))

Now the total surface area, As’ becomes
n-1
= 7 . _ o y2yz
A ) Ty #rd Uz - 207 (- )9

> =0

where we take |z - Zil to ensure that the re-entrant points

i+1
of the surface are handied properly.

(b) For volume, we take r2 as a linear function of z.

- riz z -z
i.e _

ri+12' r,z Zi+17%
Since 2, -z = z-7

2 ) 5 -
Therefore r2 = (ri Zi+] Fis] Z|) + Z(ri+] - ri)
Zi+1 T %
%+l 2
But V. = “Q dz , therefore,
, z,
= T 2, ]

Vi = o U iz - )

Then the total volume of the drop is given by,

n-1
E (r

i=0

2, 2
e Tz - 7)

Nl:{

Vd =
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Similarly, this equation takes care of the re-entrant part.

To write it in a different form,

n-1
_ w2 2 2 i 2
Vg = 3{rzn - 0% *20 (ri%zi4y - ria1' 7))
n-1
T Y (2 2
H.e. Vo = 3 -Z:(rl Zivl T Tie Zi)
i=0
Since fg = 'y = 0
(c) The trapezoidal rule will underestimate the surface area

slightly due to the truncations. The error can be estimated
by assuming the surface is spherical in each interval. In
this case,

2

- ci)2 = a,

2 2
) i

+lz

where the spherical element has radius a; and centre ;.

Therefore,

- .
c. = —— hence, a..
(z,- z:, ) ’ i

The trapezoidal rule can be reworked if required.

(d) The attached program will do these calculations. First

input data with z; and r should be printed on each card.
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Nothing should be printed on the first and last cards, and

then everything will take care of itself.
C SURFACE AREA AND VOLUME OF DROP
C GIVEN POINTS ON BOUNDARY
100 FORMAT (2F 10.5)
110 FORMAT (///5X, 'AREA OF DROP = ',
E 15.5/5X, 'VOLUME OF DROP = ', E 15.5)

] READ (5,100) ZI
IF (z1 . LT 0.0001) STOP

A = 0
RI = 0
‘ V = 0
2 READ (5,100) Z2, R2
A = A+ (RI + R2)* SQRT((Z2 - ZI)#%2

+ (R2 - RI1)**2)

v V + RI * Rl * Z2 - R2 * R2 * Z|

IF (R2 . GT . 0.0001) GO TO 2
c OUTPUT ANSWER

A 3.14159265 * A

v 1.57079632 * V

WRITE (6,110) A,V

G TO I

END
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APPENDIX E(a). Evaluation of Limits

lim b _ limgdl_ . -1 1 2
0 K3 = eqo{e3 sin e ez 1-e }
. 3 5
_ limjl_ e 1 3 e’
~e—-*0e3(e+-6—+2 E 5+ .....
2 4
] e e
-7(]--2—---8— ..... )}
e
2
. ] ] 3e
_lim Tt s+ ...
-e—oO{ZLZ 6 40
2
] ] e
-ZLZ"*'—Z"“'Q— ..... J»
R -
= 57%

|
wlno
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APPENDIX E(b). Evaluation of Limits

lim K3 _ lim {W ;-ez sin-]e ?J]-ez}
e

er‘ 3 e-0 eZ .
: 2 L 3 5
_ limgl _e” e e 3e

= e_’Oe3(1 ST T T e e+ =+ 35~ +..... )

5
N e e e
_ limi—=(e + 7=+ 557 - =— - 55 - +
- edo{eg 6 40. 2 12 80 g—

7 9
e 3e oL
+m+30+ ..... ) ez'*']}
2 2
o limed o1 36T 1 et

’e..o{Zé*e”” 0o "7 Tt e

- éé + 1}
- L1 _
= 7 2+1.— 2/3

The values of K? and k? for. various values of e are
tabulated in Table E. The graphical representation is also

included.



TABLE E. Variation of K§ and K?

with Eccentricity, e

o | e & S
] 0.01 0.667 0.667
2 0.1 0.669 - 0,665
3 0.2 0.675 0.661
4 0.3 0.686 0.654
5 0.4 0.702 0.643
6 0.5 0.725 0.628
7 0.6 0.757 0.606
8 0.7 0.803 0.574
9 0.8 0.874 0.524
10 0.9 0.998 0.435
11 1.0 1.571 0.000 {.
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APPENDIX F, Derivation of Equation for Tangential
Velocity, Up, used in Section 6.3

Fig. A Fig. B

The formation of a skirt is an interesting casec
where both the surface tension and the viscosity play an
impor tant part. As it is shown above, Figure A and B, a skirt
can be considered to behave like a thin liquid film flowing
with velocity Ux at the interface. é is the angle of incli-
nation to the horizontal. Three differént‘regimes have been

observed experimentally;

i At low Reynolds numbers for a given system,
the skirt is curved.
ii At intermediate Reynolds numbers for a given
system, the wave regime appears.
iii Turbulent regime where the motion becomes

unsteady;
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We will restrict ourselves to case (i) where creeping
flow assumptions can be applied. Also, we will assume that
the skirt is so thin that the rate of change of velocity

across half the skirt js much larger compared to that along it.

3u, U X
Thus Syﬁﬁ$>5§5 and can be neglected with respect to
2 oX
2 .
dY

The Navier-Stokes equations in Cartesian coordinates:

X-component:

2
Ju du au p o u
X 4 —X 4 .__>$__..]_§_+V X 4+ 1
ot uxax uy dy € ax 3 2 (1)
y .
where ¥ is the body force per unit mass in the x-direction.
y-component:
3P
S - 2
Sy (2)
Continuity Equation:
U,
x Tay -0 . (3)
Boundary conditions:
u, = uy = 0 at y = 0 (L)
P = P +F at y = h(x) (5)
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u=—= = F, at y = h(x) (6)

In addition, we will assume that the difference between the
normal and shear stress, F] and F2 is small so that F] - F, = F.
This assumption is arbitrary but is adopted for want of any
better approach. Putting (5) into (1), we obtain

BUX Bux . aux

]
_— A —-
dt Ux Bx uy dy € 3x" o

For a thin skirt (Levich p.376), Py can be approximated by

2
-5 i_% neglecting the second radii of curvature. Then (7)

0X " takes the form,

azu

3
e EaT (8)
ox dy

aux. aux aux _

—2 =2

dt X OX uy dY

where h is the surface’ coordinate related to uy:by,

- oh
Yy T 3t *

=§b-+u—a-—h-=
3 X X

Qs
o g
41}
X

lo}
pu 2

-~

\O

~—

I
|

o
X
[}
t
o
rt

and to u, by,

a—*l=-9—<gud) (10)
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On substituting (9) and (10) into (8), we obtain,

2
du du . du du 3 ¢ u
X X _ (0 __x y _ ¢ 3’h X .7
5t 7 Yx 3% (S X dy) dy € 5x3 * ay2 i (1)

Equation (11) is a general equation of motion of
liquid at the interface of a thin skirt, For a slow steady

motion on which a constant normal stress,

N
w

Nl

Fo= 23 sing)

)

Dombrowski (1954), is acting on the skirt/wake interface, and

there are no body forces, Equation (11) reduces to,

2" = 0 (12)

Integrating with boundary conditions (4) and (6) we obtain for

UF’

[N

% (Ai % shw?)

e g (13)

UF =

>

This is an empirical correlation based on an equation
given by Dombrowski (1954). No theoretical derivation
of this equation has been given, but it has been found
to work, at least in Dombrowski's case,



