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Abst.ract 

This thesis deals with the problem of applying computer vision techniques in an under­

ground mine environ ment. In particular, the problem of the localization and identification 

of oversized rock fragments prior to secondary breakage, following the initial drilling and 

blasting operation i!i addressed. The strategy employed is based cn the methodologies 

developed for reconstruction and interpretation of range image data. Discrete rock pile 

images acquired using the NRCC/McGili laser rangefinder were used in this study. The 

main contribution of this thesis is the complete study of the paradigm which involves: 

range data acquisition, surface reconstruction, segmentation, and fitting of parametric 

shape models The final representation obtained from the model, describing the spatial 

and geometric properties of each rock fragment and can be used to control an automated 

rock-breaking mechanism. To support the strategy developed, a number of experimental 

results at different processing stages are presented. 
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Résumé 

Cette thèse s'attelle au problème de l'application des techniques de visionique en mi­

lieu minier souterrain. En particulier, nous attâquons le problème de la localisation et de 

l'identification de fragments rocheux surdimensionnés, à la suite des opérations initiales de 

forage et d'expicsion. La stratégie employée est fondée sur les méthodes developpées pour 

la reconstruction et l'interprétation d'images télémétriques. Des images d'empilement de 

roches, obtenLles à l'aide du télémètre à laser NRCCjMcGili ont été utilisées pour cette 

étude. La contribution principale de cette thèse est l'étude complète du paradigme qui 

comprend: l'acquisition de données télémétriques, la reconstruction de surface, la segmen­

tation, et le choix et l'ajustement de modèles de forme paramétriques. La représentation 

finale obtenue à partir du modèle décrit les propriétés spatiales et géometriques de chaque 

fragment rocheux et peut être utilisée pour contrôler un mécanisme automatisé de frag­

mentation des roches. Afin de valider notre approche, un certain nombre de résultats 

experimentaux des différentes étapes sont présentés dans la thèse. 
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Chapter 1 Introduction 

Machine vision has been successfully applied to industrial problems, assisting or even 

replacing human operators in tasks involving visual perception. Examples of su ch 

successful applications include, inspection of printed circuit boards [Hara et al., 1982, 

Mandeville, 1985], finger-prin~ recognition [Hrechak and McHugh, 1990). letter sorting 

(Mitchell and Gillies, 1989]. and automatic welding [Beranek et al., 1986). However, very 

litt le has been done in transferring the existing computer vision technology to hostile envi­

ronments like the ones enccuntered in mining. Recent advances in computer architecture, 

improved software reliability, and the availability of sophisticated image acquisition de­

vices have opened up a new frontier f~r such novel computer vision applications. Clearly, 

mining tasks that require human supervision, é:lnd that are dangerous and/or tedious, are 

worthwhile candidates for cor~lputer vision-based automation. 

This thesis deals with such an application of computer vision in mining and 10 particular 

to the problem of rock fragment identification and localization for secondary rockbreaking 

operations. Currently, a human operator determines the position and the geometry of 

each rock to be broken, and then positions and controls the breaking tool accordingly. In 

an automated system, spatial information and the geometry of the scene m~ '. be acquired 

at high rates. The "tradition al" contact sensing met:lods, such as tactile p.nsing have 

failed in this respect, while the non-contact sensing methods, including the computer 

vision-based approach, provide a natural and viable framework for such a system. 

Th~ basic approach used here is quiie àifferent from those proposed in the past for 

use in mining, and is based on the use of a laser rangefinder rather than a standard T.V. 

camera, to reduce the complexity of image interpretation. Rarlge images have a number 

of advantages over intensity images for inferring the 3-D structure of ubjects in a scene. 

Ideally, r\\nl' e information is not subjected to the changes in lighting conditions, surface 

reflectance .lOd camera position. This is achieved by ma king the scene geometry explicit. 

Nevertheles5. the "Iow-Iever vision problems. su ch as feature detection and segmentation 
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1. Introduction 

remain [Jain and Jain, 1990]. 

The strategy is based on the methodologies developed for 3-D object recognition by 

(Pentland, 1987, Ferrie et al., 1989]. It involves the reconstruction and interpretation of 

range image data; stable surfàce properties estimation, feature recovery, part decompo­

sition and solid modelling of three-dimenslonal objects. Experience gained from previous 

work in solid shape modelling of man-made objects, supports the applic.ai:on of these 

ideas in the rockbrE:clking problem [Fe:-rie et al., 1990]. The final representation of the 

mine scene obtained from the modelling will be utilized to control the rockbreaking mech­

anism as already mentioned. 

1.1 Mining automation 

The mining industry is currently undergoing an extensive technological revolution. A con­

siderable amount of research and development has recently been carried out on automat­

ing the mechanization and instrumentation of mining equipment. On the other hand, the 

manufacturing industry has long been experiencing the prosperity and profitability which 

fully or semi-automated machinery can generate. Mining industries in devp.loped coun­

tries that are not blessed with abundant resources and cheap labour, must automate their 

mining operations in order to remain competitive. 

One can easily identify the four main objectives of mining automation: (:) reduce 

production costs, (ii) increase productivity, (iii) enhance the working environ ment, and 

(iv) improve the safety of the wo:kers. In order to achieve ail these objectives, automation 

in mining requires intelligent machines, capable of 

• carrying out actions, 

• perceiving and understanding the surrounding environ ment, 

• making intelligent decisions. 

Furthermore, their behavior should adapt to changes in the environment and be based 

on a priori knowledge. Such a priori knowledge may ine/ude, the information about 
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1. Introduction 

the surrounding environment, the characteristics of the machinery, and their established 

operating procedures. 

ln one of the early pa pers on mining automation, Salamon reviewed a general frame­

work for mine automatic control systems, and correctly predicted the slow progress in the 

introduction of automation into the mining indusby [Salamon, 1976]. One expia nation 

(Kassler, 1985], is that the direct transfer of technology developed for other industries into 

mining has proven ineffective. A number of factors inherent in the mining machinery and 

environment, which may affect the automation process, should also be seriously considered 

during the early stages of su ch projects if any degree of success is to be achieved. 

ln generai, there are two classes of machinery that can be automated, viz: (i) station­

ary, and (ii) mobile. A machine is considered to be stationary, if it is flxed to a designated 

location, and its work-space is weil defined and restricted. A machine is said to be mobile, 

if it is capable of moving or changing its entire position without being attached to any 

specified location. Thereby, the workspace of a mobile machine may change according to 

its new location/position. The problem of automating a stationary machine is relatively 

straightforward wh en compared to that of a mobile rr.achine. The additional mobility 

complicates the automation process. 

Most of the robots employed in the manufacturing industry fall in the first category, 

with their bases fixed to the floor, performing routine "pick and place" operations. Unlike 

the structured robot environments that are typical in the manufacturing industry, mine 

environments continuously evolve over the entire production cycle, in a manner highly 

dependent upon the geological irregularities inherent in the randomness of nature. 

Typical tasks that the mining machinery has to perform, ine/ude rock-attack, sec­

ondary breakage, ore handling and transportation. A large number of mining machines 

are therefore essential/y mobile. For the purposes of automation, they are closely re­

lated to autonomous vehicles rather than industrial robots. The required payloads and 

control strategies are Quite different for manufacturing automation and mining automa­

tion. Additionally, mining machinery is subjected to various abuses from their surrounding 

environment (e.g., dust, heai, humidity and vibration). Thus, it rnakes th~ design and 

development of mining automation particularly chal/enging. 

3 
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1. Introduction 

1.1.1 Machine vision in mining 

The following describes sorne of the mining computer vision applic~tions discussed in the 

literature. Most of these applications share a common theme; the use of standard T.V. 

cameras as sensing devices, and registering the direct illuminance emitted fron. tf. • scene. 

ln interpreting these images, a priori knowledge about the characteristics of each feature 

to be detected is often required. 

Ore deprsit evaluation 

Tne distribution of lithologie facies from an exploitation wall can be considered as an 

indicator for the ore deposit structure evaluation. It has been shown that, with the help 

of computer vision, it is possible to make a rough estimation of the minerai content in the 

ores, by analysing ;mages ofthe exploitation wall [Bonifazi and Massacci, 1989]. Given the 

relationship between the chemical characteristics and the colour (spectrum) information 

of each ore deposit, the litho-type was determined from the differences in the grey level 

distribution of the images. If the exploitation is advanced according to an alignment 

whose coordinates are known, and the images are taken from the walls perpendicular to 

the feeding direction, then the ore body volumes ean be computed by means of a simple 

geometrical calculation. This information can also be used for the geostatistical evaluation 

of the mine production. 

Rock slope analysis 

ln geological surveys, one of the most eommon problems is the determination of the 

joint pardmeters that can be used to predict the behavi~'ur (stability) of the rock mass. 

Often, direct measurements of the slope are very difficult to perform; e.g., where the 

joints' outcropping on rock walls is high and steep. Photogrammetrie techniques have 

been developed as a tool for rock slope characterization and monitoring in difficult ground 

cur.ditions [Baratin et al., 1990]. 

The proposed method is based on reconstructing the three-dimensional terrain model 

of the rock slope. At least two stereoscopie pietures of the slope are required for the 
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1. Introduction 

reconstruction of the digital terrain model. The latter is used to derive the geometrical 

parameters of the joints. Good agreement between both the calculated and the direct 

measured values has been reported [Baratin et al., 1990]. 

Ore sorting 

The separation of useful minerais from gangue is a classical problem thal appears in 

every mining exploitation. This sorting process is often carried out: manually depending 

on visual information. Vision systems have been proposed and developed in the past 

to help maintain the minerai content above the minimal level required for high quality 

industrial parts [Maenpaa et al., 1983, Manana et al., 1985]. These systems proceeded 

by identifying different rock and ore types on a moving conveyor belt based on their surface 

reflecta nce spectru ms. 

Experience has shown that the minerai quality achieved by the vision-based sorting 

system failed to surpass the quality achieved by skillful workers [Maenpaa et al., 1983]. 

Problems occur when the rock surface is covered with dirt or the rock consists of about 

one-half of waste. Washing may weil be required before the sorting process. A problem, 

however, is that washing cannot be employed in sub-zero temperatures (e.g , during the 

winter period). 

Measurement of blast fragmentation 

The knowledge of fragment size distribution is very crucial to the success of a mine 

production. For maximum productivity and efficiency, it is important to optimize the 

fragment size distribution thL'oughout the cntire production cycle; from the initial blasting 

to smelting. The subject of fragment size estimation via image analysis techniques. has 

attracted a considerable amount of interest from researchers ail over the world. 

Most of the proposed techniques are edge-ba.<:ed; i.e., they proceed by detecting fea­

tures corresponding to discontinuities in intensity changes. Studies have shown that the 

size estimation can be derived, by using the edge information and the assumption that 

blasted fragments are spherical in shape [Carlsson and Nyberg, 1983, Hunter et al., 1990). 

Others include more sophisticated algorithms such as overlapping correction functions de-
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rived empirically from experiments [Maerz et al., 1987J and stereo techniques to compute 

more reliable size distribution estimates using 3-D information [Cheung and Ord, 19901. 

Attempts have also been made in the past to model rock fragments with convex poly­

gons [Gao and Wong, 1989]. An intel"l~ity image of a rock pil,., obtained from a standard 

T.V. camera, was pre-segmented by thresholding. The resulting binary image was th en 

treated as a rough segmentation of the muckpile which might contain a lot of broken 

(weak) boundaries. The image was then passed to a second stage of segmentation in 

an attempt to reconstruct the missing boundaries of the rock lumps. The boundary 

reconstruction was based on approximating each 2-D rock profile with a convex poly­

gon. The final segmented image shared some resemblances to that obtained by manual 

segmentation. Although this was judged to be adequate for computing the size and/or 

volume distribution [Gao and Wong, 1989], its lack of precision in localizing the "true" 

rock boundanes, makes it insufficient for tasks su ch as rock fragment localization and 

identification. 

Roadheader automation 

The outline of the orebody boundary and its geological features are essential in se­

lecting the cutting trajectories for a roadheader machine during the excavation process 

[Orteu and Devy, 1991, Fuen i s-Cantillana et al., 1991]. This is due to the fact that the 

cutting sequence must change according to the geometrical distribution of the minerai 

deposits, especially when +hese deposits are highly irregular. Orteu and Devy proposed 

the use of a computer vision-based system to discriminate the ore types present on the 

cutting face [Orteu and Devy, 1991]. 

ln the study, two colour cameras were mounted on the roadheader at different loca­

tion;, in such a way that the covered areas are complementary to each other. Knowing the 

geometrical setup of the instruments and the roadheader, the two images were combined 

together to form a single image of the complete cutting face. The resulting image was 

then separated into different regions that corresponded to the colour spectrum of each 

ore type. From this segmented and labelled image, a so-called "face map" of the ore dis­

tribution is IJroduced, which can be used to control ~he cutting boom of the roadl!eader 
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1. Introduction 

machine. 

Guidance of LHD vehicles 

load-Haul-Dump (lHD) vehicles are in widespread use for the loading and tran'iport 

operations in underground mine environments. Considerable emphasis has been put both 

on better path control and on more efficient usage of these vehicles. A monitoring system 

has been developed to collect data from various sensors mounted on lHD vehicles, and 

this information is used to assist the mine staff in problem diagnosis and maintenance 

service [Baiden, 1988]. 

More recently, the development of automatic guided lHD vehicles based on ma­

chine vision has been reported. A prototype of su ch a system [St-Amant et al, 1991, 

Hurteau et al., 1991] has been built and was tested in an underground mine. The results 

demonstrated the feasibility of employing automatic guided lHD vehicles in an under­

ground mine, equipped with optical lines fitted on the ceiling just above the vehicle's 

guide-path. The basic idea is very simple; the prototype vehicle is equipped with two 

specially designed opticalline detectors for tracking the veh.cle movement with respect to 

the guide-path' one for the forward direction and one for the reverse direction A similar 

practice in Sweden is also reported [Vagenas et al., 1991]. however, a white-painted line 

was used as the optical guide-path rather than a retro-reflective ribbon. 

Secondary rock breakage 

It is very difficult, if not impossible, to achieve perfect blasting results, due to both techni­

cal and economic reasons. The drilling of straight blast holes that remain parallel over the 

long distances demanded by min;ng economists is difficult to achieve [Chabot et al., 1989]. 

After bla!:ting therefore, the resulting fragment sizes are often badly distributed, making 

the processing and transportmg of minerais very difficult. In cases where the rock frag­

ments are too large, a secondary breakage is usually required to prevent oversized material 

from being transported. It is very common to find that in a mine machine, breakdown 

results from the frequent loading of oversized fragments. 

Initial studies demonstrated the potential of machine vision for the automation of the 
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1. Introduction 

3 0 

Figure 1.1: A typical plan-view of an underground hardrClck mine. 

secondary rockbreaking process (Hurteau et al., 1989, Cheung et al., 1990]. This appli­

cation is the primary focus of this thesis and will be examined in more detail in the next 

section. 

1.2 Rockbreaker automation problem 

ln a typical underground hardrock mining operation, after the initial drilling and blasting, 

the broken material, also known as muckpile, is loaded onto an LHO vehicle. The LHO 

vehicle carries the muckpile from the drawpoint and empties its load on top of a vertical 

orepass - a gateway in underground mines for transporting minerais. Despite attempts 

to avoid the transport of oversized rock lumps, a considerable proportion do arrive at the 

top of the orepass. Since th.? orepass can be easily blocked by large rocks (Fig. 1.1), a 

metal sieve structure, of perhaps 1 m2 in mesh size and 4 m x 5 m in dimensions, known 

as a grizzly is placed on top of it to prevent oversizeG' lumps from ente ring the ore transfer 

system. It is essential to keep the grizzly clear and free from the accumulation of rock 

lumps throughout the entire production cycle. A large mechanical device equipped with a 

jack hammer, commonly referred to as the rockbreaker (Fig. 1.2), is employed for clearing 
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1. Introduction 

Figure 1.2: Schematic of an automated rockbreaker, consists of both sensing 
and processing components. 

the grizzly and breaking up the remaining oversized rocks. The role of the rockbreaker is 

to ensure that the production is free from interruption due to blockage of the grizzly. 

During a typical, manually controlled rockbreaking operation, a human operator pro­

tected inside the control cabin of the rockbreaker, manoeuvres the jack hammer of the 

rockbreaker directly above the muckpile to be cleared by sieving and hammering. Theo­

retically, using the mechanical device the operator can reach any location on the grizzly 

with restrictions on the orientation of the hammer. In practice, it is found to be more 

difficult to break rocks that are close to the near corners than those located in the middle 

of the grizzly because of a bad viewing angle and the geometrical configuration of the 

rockbrea ker. 

A typical rockbreaking process, starts by cleaning the front of the grizzly and then 

continues to the back in a sweeping fashion. Sometimes, the operator will go through 

each hole systematically if he/she is unable to make a decision; e.g., if the muckpile and 
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the small fragmer!~ obstruct the view. The size of the target rock is also a very important 

factor for the breakage. If the rock is large, ils sides will be atla<..I<ed r;rst until it is reduced 

to a more manageable size. If it is small, th~ hammer will be aimed àirect!y at its centre. 

Before applying the hammering, care must be taken to ensure that the tip of the hammer 

is in good contact with the surface of the rock. Moreover, an appropriate amount of 

pressure has to be exerted by the hydraulic system during the breaking. Ideally, the 

operator will position the hammer perpendicular to the rock face. Any other orientation 

will increase the risk of breaking the hammer's tip, producing uncontrollable flying chips 

and undesirable movement of the rock. 

ln positioning the hammer, skill, experience, attention, knowledge of rock mechanics 

and the location of the grizzly are required on the part of the human operator, making 

this process an extremely slow and costlyone. It may take up to 45 minutes1 to complete 

the clearance of one muckpilc. Furthermore, the operation of the hammer is based on 

the operator's vision and perception of the given rock configuration, as weil as on his/her 

experiencE" Thus, it makes the performance of the rockbreaker very much dependent 

upon each individual operator. 

The rockbreaker resembles an industrial robot in a number of ways; it is composed of 

articulated Joints with four degrees of freedom and has a fixed base. It seems obvious that 

the knowledge gained from previous robotic and machine vision research can be applied 

to the rockbreaker automation problem. 

The strategy for the rockbreaker problem used here is very similar to the work reported 

in (Choi et al., 1990] and (Ikeuchi and Hebert, 1990], in the development of a vision-based 

rock sampling system for a planetary exploration mission that collects terrain samples. 

More will be said about their work la ter as the strategy closely resembles that of the 

present project. However, it differs significantly in the computational methodology used 

to perform image segmentation. 

_.'-----
1 The breaking time can vary substantially from mine to mine 
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1. Introduction 

1.3 Objectives and contributions 

This thesis concentrates on the computer vision aspect of the rockbreaker automation 

project. Although, other issues such as trajectory planning and control are also important 

for the success of the rockbreaker automation, they are considered to be secondary when 

compared to the problem of identifying and modelling target rock lumps in the muckplle. 

The main objective of this research is to investigate, study and select the existing 

algorithms developed in computer vision, and apply them to the problem of rock fragment 

localization and identification. 

The main contribution of this thesis, is the successful demonstration of computer vision 

techniques applied to characterizing the rock shapes on a laboratory scale. MOf~ impor­

tantly, the complete image processing framework is studied; i.e., range data acqui~ition, 

data reconstruction, image segmentation, and fitting of volumetric models. 

1.4 -organization of the thesis 

The next chapter describes how the measurement of the scene is acquired usmg the 

NRCCjMcGililaser rangefinder. In additioll. alternative range imaging techniques are also 

briefly discussed. Chapter 3 reviews the basic framework for range data reconstruction 

and interpretation. Sorne of the methodologies developed based on standard difTerential 

geometry for surface dnalysis are also discussed. Chapter 4 describes the all)orithms 

involved in our computing strategy. Chapter 5 presents muckpile images at difTerent 

stages of the processing, and the final validation of the image analysis strategy proposed 

in this thesis. Finally, Chapter 6 summarizes the results of the research and recommends 

future research directions. 

11 



( 

Chapt ~r 2 Sensor measurements 

2.1 Introduction 

The ultimate objective of this research is to provide the rockbreaker with the ability to 

automatically Identify, locat~ and break the oversized rocks remaining on the grizzly. It 

is obvious that special attention has to be given to the measurement and analysis of the 

environ ment if any degree of autonomy is to be delegated to the machine. In particular, 

vision has been regarded as the most important channel of perception. This chapter is 

devoted to the Imaging aspect of the rockbreaker research. 

Light Source Viewer 

4. Normal 

Figure 2.1: A typical image formation - a function of four variables: the 
position of the light source, the viewing position, the reflectance of the surface, 

and the geometry of the object. 

Different imaging sens\.,1'S have been developed to acquire various type!! of measure­

ments. Therefore. one has to begin by understanding how these measurements are cre­

ated. The visual images perceive in our everyday life are complex functions of four vari­

ables [Marr, 1982, levine, 1985, Horn, 1986] (see Fig. 2.1): (i) the position of the light 
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2. Sensor measurements 

source(s) used to iIIuminate the scene, (ii) the position of the viewer. (iii) the reflectance 

of the surface(s), and (iv) the geomt>try of the objects in the scene Although, humans 

and animais do not seem to have any problem inferring the world's structure from visuai 

information, the compiexity of the image formation process makes the problem of scene 

reconstruction a very difficult one. However, researchers have shown that by exploiting 

additional constraints inherent in the image(s), the geometry and stn/cture of the scene 

can be recovered [Ullman, 1979, Witkin, 1983, Horn, 1986]. This gives rise to the 50-

ca lied "Shape from X" paradigm in computer vision. where X could be, shading, texture, 

motion. focus, stereo disparity, etc. 

An important aspect of any automation-related research is the study of how special 

sensors can be used to advantage. As far as the rockbre<lker automation problem is 

concerned, only the geornetrical properties of the rocks are required for performing the 

breaking task. Three-dimensional imaging sensors have been developed. and can be used 

to obtain descriptions of the scene geometry through direct surface measurements. The 

majority of the so-catled "range images" are created i'., this manner. 

2.2 Range images 

To understand the term "range image", one needs to understand the term "image". An 

n x m digital image l is defined in [Levine, 1985], as a function ,g(i,j) of two discrete 

variables i = 1,"', n and j = 1,"', m, where 9(t,j) is a grey-scale measurement. 

Therefore, an image can be thought of as sorne function of two indices i and j. 

When dealing with range data one must consider the need to cover a three-dimensional 

surface by collecting data from several different camera positions. Therefore. the notion 

of an image can be extended and a range image R defined as a function of r( ë; i, j), 

follows 

R = r(ë; i,j); i = 1,' .. ,n, j = 1, ... ,m (2.1) 

where ë describes the camera's position and attitude in the scene. The camera position 

is specified by a translation vector (XC! 1';;, Zc) from the scene coordinate origin, and the 
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camera's attitude by Euler angles of rotation (Oz, 0", 0%) about the scene X, Y, and Z 

axes respectively, and r is a distance measurement from the camera to a point on the 

object's surface. 

A special case where the image is obtained by ma king only one distance measurement 

at each camera position, and where the camera is always pointing in the same direction 

will now be considered. In this case it is the camera position that is a function of the 

indices 

Xc = h1(i,j), (2.2a) 

Yc = h2(i,j), (2.2b) 

Zc = h3( i, :i) (2.2c) 

where h .. h2 , h3 are functions that constrain the camera to lie on a surface, for example 

a plane, in the scene. 

However, the range measurement is not always taken along the direction in which the 

camera is pointing, and often needs to be transformed into local camera coordinates x, 

y, and z. For distance measurements that are taken at different camera positions, one 

must project each measurement from the camera coordinate syst~m xyz to the scene 

coordinate system XY Z, 

x 
y 

Z 

(2.3) 

where ëc = (Xc, 1-'::, Zc)T, and the rotational matrix R(ëc ) from the (x, y, z) coordinates 

to the (X, Y, Z) coordinates. 

For the sake of simplicity, assume that the scene and camera coordinates are chosen 

to align 50 that the camera is always positioned in the scene's XY plane, and hence 

x = z, y =}, z = r(i,j) (2.4) 
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2. Sensor measurements 

then 

z=r(x,y). (2.5) 

Eq. 2.5 is also known as the graph surface representation. As a consequence of the 

indexing scheme, one can define the neighbouring sample points for each measurement. 

For example, the measurement of 7'(i,j + 1) is a neighbour10f r(i,j). 

ln practice, the two indices i and j are often used to represent the original sampling grid 

of the image, and depend on the geometry of the measuring device. Range measurements 

in the form of Eq. 2.1 can be converted directly into the (X, Y, Z) (oordinates by means 

of a calibration look·up table or correction function. The converse is not always true, due 

to the fad that it is not possible to map (X, Y, Z) from a three-dimensional parameter 

space back to a six·dimensional parameter space such as the one in Eq. 2.1. 

Range images are also loosely referred to by many other ter ms depending on the 

context: range map, depth map, depth image, range picture, rangepic, 3-D image, 2~D 

image, digital tenain map (DTM), topographie map, xyz point list, contour map, and 

surface height map. 

2.3 Range imaging techniques 

Range imaging techniques can be grouped into two classes, passive or active, depending 

on the sensing method. Passive techniques make use of ambient or unstructured light­

ing conditions and l:io not involve any special projections. However, the imaging process 

often requires a priori models of the objects and/or the properties of illumination of the 

scene. Active techniques perform range finding by projecting onto the scene structured 

or patterned signais such as light stripes, dots, pulses, special patterns or colour. An inde­

pendent description of the object surface is derived without additional a priori knowledge 

about the scene. 

From a practical point of view, active techniques seem to be more appropriate for 

the rockbreaker project. The mining environment provides an additional set of obstacles 

and limitations, such as dirt and lighting problems, in the use of the usual passive tech-

1 The term "neighbour" do es not necessarily correspond to the closest sample 
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niques, like shape from texture or shape from shading. In this section, a number of ?'ctive 

techniques are introduced from an engineering standpoint. 

2.3.1 Active techniques 

Most active range imaging techniques are based on one of the following six principles 

[Besl, 198~): (i) radar, (ii) moiré, (iii) lens focus, (iv) triangulation, (v) Fresnel diffraction, 

and (vi) holographie interferometry. Since principlec (II) and (vi) demand set-ups that 

cannot be realistically obtained in a real-mine environ ment (see [Besl, 1988] for details), 

they are excluded from the following discussion. 

Imaging radars 

Animais such as bats and porpoises are equipped by nature with ultrasonic "radars" to 

sense their surroundings even under unfavourable lighting conditions. The underlying 

principle of a radar system is that the distance between the transmitter, the object, and 

the receiver cal' be expressed as a function of time. Suppose that the transmitter and the 

receiver are located in close proximity, and can be treated as a single transducer. Then 

the distance to the object can be derived from the basic time/range equation: 

vt = 2z (2.6) 

where v is the speed of signal propagation and z is the distance from the transducer to 

the reflecting surface of the object. By calculating the time t taken for the signal to travel 

from the transmitter to the surface of the object, and from the object back to the receiver, 

the distance z can be recovered. Of course, Eq. 2.6 can only be true when atmospheric 

attenuation and other relevant physical properties of the retler.ting surface are ignored. 

Based on this concept, Jarvis [Jarvis, 1983] built a laser time of flight range scan­

ner, capable of ta king one range measurement at a time. A high speed, galvanometer 

controlled, scanning mirror system was employed to deflect a laser beam at a point in 

the scene. The operating distance for the rangefinder was between 1 and 4 meters, and 

2.5 mm accuracy was achieved with 100 samples per point in the ideal situation. With 
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the laser pulse frequency set at 10 kHz and an output power of 2.5 W, a 10 samplesjpoint 

average, over a 64 x 64 size range image, was acquired in 4 s. Constant fraction discrim­

ination was used to detect the return time of the pulse, independent of the pulse size. 

The total propagation time from "start" (laser pulsed) to "end" (laser returned) is then 

converted into a signal, whose amplitude is linearly proportional to this transit time. 

More recently, a high performance rangefinding system using the same principle has 

been reported [Kaisto et al., 1990]. The system can measure distance within a range from 

3 m to 30 m with mm-Ievel of accuracy. This accuracy is achieved at a maximum ratt of 

10 x 103 points per second. 

Moiré topography 

A moiré interference pattern can be created by iIIuminating a scene with the supuimposed 

patterns of two equi-spaced gratings. The moiré projection patterns representing the 

contours at equal depth Cé'n be visualized when viewing the scene through an identical 

optical camera grating (Fig, 2.2). However, there is no sign information in the contour map 
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to indicate the increase or decrease in depth from one contour to another. Mathematically, 

the inter(erence pattern P (x) (rom the two grating patterns Pl and P2 is described by: 

where the Pl and P2 are the amplitudes of the patterns, ml and m2 are the modulation 

indices, WI and W2 are the spatial frequencies of the two gratings, and 4>1 and 4>2 are the 

spatial phase shifts. 

When the signal is low-pass filtered (or blurred), resulting in P*(x), only the frequency 

difference and the constant terms remain: 

For equally spaced (i.e., identical) gratings, only the phase difference term is left. 

Therefore. contour lines for different range levels can be recovered by changing the phase 

of the second grating while maintaining the object and the camera fixed. 

Moiré range imaging techniques are suitabJe for measuring the relative distance to 

surface points on a smooth surface. A commercial range imaging sensor based on a single 

frame moiré with a reference plane is reported in [Besl, 1988]. The sensor can acquire 

a 480 x 512 range image in approximateJy 2 seconds, with 1 part in 4000 accuracy. 

Unfortunately, no data 011 the field of view were quoted in the article. 

Lens focusing 

Lens focusing techniques can also be used to determine depth. The range measurement is 

taken by adjustlng the lens setting 50 that the best focus is achieved. Lenses are governed 

bya simple equation (see Fig. 2.3): 

1 1 1 -+- =­
u v F 

(2.9) 

where tl is the distance from a point on the object surface to the lens, v the distance 

between the Jens and the reference plane onto which the focused image is projected, and 
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Fis the focallength of the lens. Given the geometric setup of the apparatus, the distance 

v can be easily computed. 

Two similar techniques [Rioux and Blais, 1986] are developed based on lens focusing 

and are c10sely related to the triangulation methodology (di"\..'Jssed in the next section). 

ln the first technique, an array of point light sources is projected onto the scene, while 

using an annular mask (with a circular opening) in the aperture of the objective lens. 

A reference plane at a known distance is set in-focus by the camera focus adjustment 

5uch that, points at the reference plane will have no efTect on the image, whereas points 

at different heights will form a blurred circle on the image. The relative distance from 

each point to the reference plane is computed from the radius of the blurred image in the 

focal (image) plane of the camera; e.g., the bigger the radius, the larger the distance. 

The designed sensor is capable of measuring depths of 144 points with an accuracy of 

±1 mm over a 100 mm depth of view. 

The second technique requires that the scene be illuminated by multiple light st ripes 

while using a double aperture mask in the camera lens. By following the same set-up 

procedure for the reference plane as in the previous one; wh en the light stripe is not in-
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2. Sensor measurements 

focus, the camera sees the split lines. Similar to the first technique, the relative distance 

to the reference plane is proportional to the splitting distance. The instrument is equipped 

with a specially designed signal processing element to detect the maximum returned signal 

on the CCD (charge-coupled device) array. This information is then used to derive the line 

splitting di~tances on each scan sequence for the whole image. The sensor, also known 

as "BI RIS" [Blais and Rioux, 19861. is capablf.' of capturing a 256 x 256 range image in 

less than 1 second by analyzing 10 projected lines in every 24 frames. In each frame, the 

proJected light stripes are shifted. A resolution of 1 mm over a depth range of 25 cm is 

achieved. 

Triangulation 

Active triangulation is probably the most popular technique for acquiring range images, 

and many commercially available sensors are based on this principle. Fig. 2.4 shows a 

simple configuration of an active triangulation range sensing system. A light beam is 

projected onto the object in the scene and the r~sulting illuminated pattern is imaged by 

the detector. Knowledge of the spatial parameters of the instrument, the position of the 

image on the detector, the lateral separation b (base line) between the detector lens and 

the light source, and the projection angle {} of the source - allows the determination of 

the distance z by means of solving a simple trigonometry problem. 

Most triangulation-based range sensors require structured light to iIIuminate the scene. 

One distinct feature associated with the structured light projection is the so-called shadow 

effect2, which appears in the following locations: (i) at points on the surface where the 

projected light cannot reach, or (ii) at points on the surface where the projected light is 

occluded from the sensing elements due to the presence of intervening substance. Con­

sequently, no data is obtained for the image element that corresponds to these locations. 

The absence of range data may also be due to poor surface refle ... tance or other artifactual 

responses of the sensor. The shadow problem has always been seen as a major drawback 

of structured light-based sensors. 

An example of a commercial sensing system using this principle is the Jupiter Series, 

2 Also referred to as the "missing parts" problem 
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Figure 2.4: Simple triangulation range finding geometry. 

z 

which is marketed by Servo-Robot and is capable of scanning 3000 points/s in a viewing 

spa ce of 1 m3, with the volume-centre resolution of 1 mm in the x, and 0.3 mm in the z 

direction. A similar scanner patented by Rioux [Rioux, 1984], with a moderate acquisition 

rate and high resolution is used in our study. In addition to the devices mentioned above, 

other designs involving the projection of structured light stripes/patterns exist, and are 

presented in [Kanade, 1987, Besl, 1988]. 

2.4 NRCC/McGili laser rangefinder 

The rangefinder used in this study is the result of a joint development project between 

the National Research Council of Canada (NRCC) and McGill University. The technique 

employed is based on optical triangulation using a novel geometry (synchronized scanning) 

invented at NRCC by Marc Rioux [Rioux, 1984]. A schematic diagram of the scanner is 

shown in Fig. 2.5. 
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2. Sensor measurements 

Figure 2.5: Schematic of the NRCC/McGililaser rangefinder. 

ln the existing laboratory prototype, ara He-Ne laser is used as the energy source. The 

laser beam, on entering the compact optical t.ead via a fibre-optic cable onto a fixed mirror 

m JI, is then reflected to one side of a double-sided. coated scanning mirror mal along the 

X axis. From there, it reflects onto a second fixed mirror mf2 which directs the beam 

onto a second scanning mirror m,2 along the Y axis, which finally projects the beam to 

a point on the object's surface. The reflected light follows a symmetrical path back onto 

the opposite side of the first scanning mirror (m,Il from where it is defler:ted onto a linear 

CCD array. The two s~anning mirrors are driven by two galvanometers, one for the X 

direction and the other for the Y direction. The synchronization of the scanning geometry 

is maintained by a specially designed timing circuitry [Livingstone and Rioux, 1986], so 

that the orientation of the two scanning mirrors is acquired simultaneously. This makes 

random access to any pixel in the field of view possible. 
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Field of View: 
single axis 100 cm x 100 cm 
dual axis 100 cm x 100 cm x 100 cm 
Resolution: 
X axis, closest approach 0.40 mm/pixel 
X axis, most distant point 4.00 mm/pixel 
Y axis, closest approach 0.40 mm/pixel 
Y axis, most distant point 4.00 mm/pixel 
Z axis, closest approach 0.20 mm/pixel 
Z axis, most distant point 1.40 mm/pixel 
Acquisition Speed: 
single axis 20.0 lines/second 
dual axis 15 seconds/frame (256 lines) 
Approximate Dimensions: 
main body 18 cm x 13 cm x 5 cm 
motor shaft protrusion 2cm 
Power Output: Approximately 6.0 mW (final mirror) 
Weight: Approximately 1.0 kg 

Table 2.1: Specifications of the NRCC/McGili prototype laser scanner based 
on the synchronized scanning principle. 

The scanning geometry of the rangefinder is designed in such a way that, for a given ori­

entation of the two scanning mirrors, the distance along the Z axis from the object to the 

scanner is largely proportional to the displacement of the returned laser signal on the CCD 

detector array. Thus, from the measurements of the orientations of the two mirrors and 

the beam deflection, the distance to any point on the surface of an object on the scan line 

can be determined. A look-up table [Bumbaca et al., 1986, Archibald and Amid, 1989} 

is used to correct for the geometrical distortion and the non-linearities resulting from the 

optics and the scanning mechanism. One reason for using a look-up table is that high ac­

curacy is achieved without compromising the data acquisition rate. It is worth noting tt·at 

the NRCC/McGiII laser scanner geometry employs a relatively small angular displacement 

separation between the energy source and the CCD detector, and thereby considerably 

ieduces the occurrence of ~hadow effects in the range image. 

The laboratory prototype has been designed with a number of objectives in mind: a 

minimal shadow effect, a compact and lightweight unit, high accuracy and a moderate 

acquisition rate. The specifications for the resulting device are listed in Table 2.1. In 
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a research environ ment, it is highly desirable to have the f1exibility of moving a scanner 

around to collect information at differ€nt viewpoints. The compact and lightweight design 

enables the scanner to be mounted on the gripper of an industrial robot such as a PUMA 

560. This permits various views of the objects to be acquired, and therefore, provides the 

ability or overcoming the problems due to object occlusion, shadowing, and insufflcient 

data. A discussion of the problem of multiple view integration from range images can be 

found in [Soucy, 1992]. 

2.5 Practical problems 

The NRCC/McGiII laser scanner has proven very useful in solv;r ~ many laboratory scale 

problems in the pasto However, increasing the 1 m3 field of view of the current version 

of the scanner to a larger and more practical volume of perhaps 125 m3 (5 m x 5 m 

x 5 m) for a mine environment, can create a number of technical and safety problems. 

For example, severa 1 hundred mW of laser power will be required in order to coyer this 

volume. This may cause safety hazards to the workers in the proximity of the scanner 

unless adequate protection is provided3 . The 125 m3 fiele.! of view may also create sorne 

technical difficulties in the' optical design of the device, but these have been viewed as 

secondary in light of the power requirements. 

A similar design of the scanner already exists for welding applications 

[Beranek et al., 1986]. The device is environmentally sealed, temperature stabilized, and 

equipped with an air jet to eliminate the disturbance caused by smoke and fumes. There­

fore, it seems feasible to incorporate the same type of technology in the mine environ ment. 

Alternatively, other range finding technologies as mentioned in this chapter, are com­

mercially avallable with a large depth of view (see Table 2.2). However, not ail these 

devices are readily available for the mine environ ment, and much experimentation will be 

required before a device could be considered viable in a mine environment. 

lThe chances of getting struck by the laser source reduce considerably when the beam is scanning. 
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Category 

Radar 

Moiré 

Focusing 

Triangulation 

Typical Typical Depth Typical Applications General Comments 
Resolution of View 

0.1 mm - 20 cm 2 m - 100 m Cartography, target de- lack of precision, but should have suf-
tection and navigation. ficient accuracy for the characterization 

of muckpile shape. Main prohit.:TI is the 
relative slow acquisition rate. 

1.0JLm - 50 mm -10 m Shape analysis, inspec- Moiré topography has been around since 

tion and assembly. 1859. Capable of obtaining high accuracy 
measurements, but the major drawback is 
that only a few designs have a large field 
of view. 

1.0 mm- 150 mm -10 m Navigation and object High acquisition rate could be achieved 
manipulation. with compromise on the accuracy. Has 

great potential in mining applications, 
but experimentation in an actual mine en-
vironment would be required before any 
real assessment could be made. 

1.0JLm - 100 mm - lOm Navigation, assembly, The most popular technique for range 
inspection, object ma- finding; commercial products are widely 

nipulation and shape available Safety could be a problem if 
analysis. high power laser source is used for a large 

field of view. 
- ---

Table 2.2: Srief overview of the four active range finding techniques (radar, 
moiré, focusing and triangulation). 
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Field of View: 500 cm x 500 cm x 500 cm 
Resolution: 
X axis, closest approach 0.5 cm / pixel 
X axis, most distant point 2.0 cm/pixel 
y axis, dosest approach 0.5 cm/pixel 
y axis, most distant point 2.0 cm / pixel 
Z axis, c10sest approach 0.2 cm/pixel 
Z axis, most distant point 1.0 cm/pixel 
Acquisition Speed: $ 5 seconds/frame (512 x 512 pixels) 
Approximate Dimensions: 
main body $ 30 cm x 30 cm x 20 cm 
Power Qutput: Possibly within the eye safety level 
Weight: ~ 5.0 kg 

Table 2.3: Proposed rangefinder specifications for the rockbreaker application. 
These specifications are far from complete and only serve here as an illustration 
of what is expected from su ch a device. 

2.6 Summary 

Four types of active range finding techniques were discussed in this chapter. Out of 

ail these techniques, no one method seems to be clearly superior. Various approaches 

based on the same principle may yield unequal performances and/or accuracies depending 

on the hardware design and instrument set-up. One technique, suitable for a particular 

application may weil prove to be inappropriate for another. 

The NRCC/McGill laser scanner is chosen in this study, partly because of its high 

resolution and the relëttively short acquisition time. In this study, the concentration is 

mainly focused on deriving meaningful descriptions of the scene. 

Nevertheless, in selecting or designing a rangefinder that qualifies for the rockbreaker 

application, one needs to consider a large number of issues both technical and non· 

technical. The proposed specifications for such a rangefinder are presented in Table 2.3. 
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Chapter 3 

3.1 Introduction 

Reconstruction and interpretation of sensor 
measurements 

The information obtained from a rangefinder consists of direct distance measurements 

of points on the surface, and they are often very difficult to interpret. A more explicit 

representation of these surface measuremencs is therefore required before the geometric 

properties of the object can be inferred. In this chapter, a basic framework for analyzing 

range images is reviewed. The so-called "bottom-up" or "data-driven" paradigm is made­

up ofthree levels of proceS~èS; namely - image reconstruction, image segmentation and 

inference of scene geometry (Fig. 3.1). In this chapter, more will be said about each 

of these processes, together with d:~cussions on sorne of the methodologies developed in 

the past for range image analysis. However, higher levels of processes such as, object 

recognition and object manipulation also exist but they are not addressed in this thesis. 

3.2 Surface reconstruction 

Image reconstruction is referred to in [Blake and Zisserman, 1987], as the process that 

produces stable and reliable representation of the scene from discrete data samples. For 

range images, the image reconstruction is limited to the recovery of the geometry structure 

of the scene, which is best described by its surface propert:es. One advantage of using 

the surface properties is that they indicate ail the essential ftatures for the surface char­

acterization. Thus the accuracy of the reconstructed surfac.'! is very critical to the entire 

image analysis process. Many surface reconstruction methodologies have been evolved 

over the past few years, and a" are essentially regularization methods, that transform 

the inherently ill-posed problem into a well-posed one by imposing addition al constraints 

[Grimson, 1983, Terzopoulos, 1983, Blake and Zisserman, 1987]. 

However, the term "surface reconstruction" is somewhat misleading, as its definition 

varies from one researcher to another. To avoid confusion, surface reconstruction is 
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Geomelrical Represenlalion 

t 
Level 3 

1 Inference of Scene Geometry ....-

t Partitioned Regions 

Level 2 Image Segmentation 

t Stable Representation 

Level 1 Image Reconstruction 

t 
1 

Measuremenls of the Scene 

Figure 3.1: Block diagram of the "bottom-up" paradigm for image analysis. 
Three levels of processes are shown here, namely - image reconstruction, image 
segmentation and inference of scene geometry. 

referred to here as the process that recovers the stable local surface structure from sensor 

measurements. More will be said in the nel'.t chapter about how local surface structure 

can be recovered stably and reliably. 

3.2.1 Recovery of the local surface structure 

ln the past, some success have been reported using surface differential properties as 

tools for surface analysis, directly from the available range data [Brady et al., 1985, 

Faug~ras and Hebert, 1986, Besl and Jain, 1988). These properties at each discrete sam­

pie are best described by using a local surface representation. This surface representation 

provides the essential information for the higher level processes su ch as image segmenta­

tion. 
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Local surface representation 

At any point P on a smooth surface Sone can define a tangent plane TI' that describes 

the local surface orientation at P. Following the definition of a "smooth surface" found 

in [Bennett and Hoffman, 1987], a surface is considered to be smooth1, provided that 

every curve on the surface is a C2 function; i.e., a function with ail derivatives up to and 

including the second order derivative are continuous2 • The surface curvatures at any 

point P, can be seen as the second derivatives of the parametric curves3 at P on the 

surface. 

Figure 3.2: local representatic," of a surface - the augmented Darboux 
frame 'P(P) = (P,K.MP,K.MP,Mp,Mp,Np) along the oriented curve C on 
a smooth surface S. 

A simpler way to understand the notion of surface curvature, is to consider a series 

of vectors through the point P in the tangent plane Tp. Each direction of these tangent 

vectors (say Vp) specifies a curve C on the surface. The curvature of the curve C can 

be measured by its tendpncy to "bend" out of the tangent plane; i.e., the greater of the 

tendency of bending away from Tp - the larger is the curvature, and vice versa. This 

curvature is known as the normal curvature KnP, in the direction specified by the vector 

1 Mathematically, a "smooth" curve is deflRed as one which is COQ. This implies a function with 
continuous derivatives ail the way up to infinite order [do Carmo. 1976]. 

2The term "continuous" is used here to refer to a function whose derivatives exist and are computable 
3See (do Carmo, 1916] for the definition of il parametric curve 
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~), and whose sign is determined by the orientation of the surface normal Np. Normal 

curvature forms the basis of ail surface curvature measurements, and it is very useful 

in surface analysis. There exist two normal curvatures at every point on every curved 

surfact', referred to as the two principal curvatures. One has the maximum and the 

other has the minimum value, and they are denoted by the symbols ICMP and ICMP. The 

directions associated with these two normal curvatures are commonly referred to as the 

principal directions, and they are represented by two vector~ Mp and Mp respectively 

(see Fig. 3.2). One very important fact is that Mp and Mp are always orthogonal to 

each other [do Carmo, 1976J. This forms the basis of the surface reconstruction algorithm 

employed in our study. This algorithm will be discussed in the next chapter. 

The local surface properties at eaer. sample point, can be described by an 

orthonol mal frame referred to as the augmented Darboux frame4 [Sander, 1988, 

Sander and Zucker, 1990). The augmented Darboux frame V (P) at point P, is a col­

lective unit of two scalars and three unit vectors (Fig. 3.2). The two scalars are the 

magnitudes of the two principal curvatures ICMP and KMP, the three unit vectors are, the 

surface normal Np, the two principal directions Afp and Mp. 

3.2.2 Local estimation techniques 

After the local surface representation for a smooth surface is defined, the next step is 

to estimate the surface properties at each sample. A number of local methods have 

been proposed in the computer vision literature [Flynn and Jain, 1989]. Sorne used the 

analytical fitting of local surface patches to the range data, while others estimated the 

surface derivatives or curvatures directly from the range measurements. Typically, a sur­

face estimation involves two steps: (i) compute the surface normals, and (ii) estimate the 

principal curvatures and principal directions. This section presents a brief description of 

several methods used for local cLirvature estimation. 

4The name "augmented Darboux frame" is after Gaston Darboux [do Carmo, 1976]. The only dif­
(erence between the augmented and the original Darboux frame, is that the latter does not inc\ude 
information about the directions of the principal curvatures. 
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Analytical surface estimation techniques 

One analytical method, based on the least-squares fitting of surface patch is reported in 

[Besl and Jain, 1986b). The estimation of surface normal at each point is carried out by 

fitting a plane to its neighbouring samples. To compute the surface curvatures, parabolic 

quadric patches are fitted to the data. This local surface fitting is made through a series 

of separable convolution operations using a certain size window. Surface curvatures at 

the sample point are th en computed directly from the approximated local surface. patch. 

Another analytical approach is to apply a B-spline approximation to the original range 

data as the surface fit [Dierckx, 1977]. The analytical expressions of the surface derivatives 

required for curvature estimation can be derived quite easily, once the B-spline apprClxi­

mated surface is established. One disadvantage of the B-spline approximation is that any 

jump discontinuities, including those associated with the physical edges/boundaries of the 

object are smoothed out by the fitting process. This however may not cause a problem 

in cases where the samples are relatively smooth and dense. 

Curvature5 at any point P on the surface, can also be determined by studying the local 

surface orientation changes in a 5mall neighbourhood [Iuner and Jain, 1985]. One way of 

accomplishing this, is first to obtain an estimate of the surface normal at each point that 

best describes the local surface orientation. As mentioned before, the surface normal can 

be estimated simply by fiuing a plane to the neighbouring points using a least-squares 

apj>roxirration. The normal curvatures can then be derived from the neighbouring surface 

normals. 

Direct surface estimation techniques 

The technique to be described [Fan et al., 1987], is based on dire::t estimates of the first 

and second partial derivatives from the available range data. Based on the values of 

these derivatives, the normal curvaturec at each point are computed in four directions; 

0, 45, 90 and 135 degrees. The resulting directional curvatures are then combined to 

form the estimates of the two princiPêll curvatures at each sample point. It is well­

known in numerical analysis that derivative functions are highly sensitive to nOIse, ln 
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which high frequency noise is amplified. However, direct surface estimation approaches 

are less computationally expensive, and require fewer computing cycles than the analytical 

approach. 

ln this section a number of local methods for obtaining the surface estimates are 

dis,ussed. In general, analytical approaches have shown to be more stable in estimating 

surface properties than direct computational approach [Flynn and Jaïn, 1989). However, 

one must bear the additional computation expenses that the analytical approaches require. 

3.3 Surface segmentation 

Marr was one of the first researchers to emphasize that segmentation is a context depen­

dent process, whose goal is often not very weil defined [Marr, 1982). Image segmentation 

has been referred to by some researchers in the past as the operation that ar ,dogous to 

figure to ground separation; i.e., that isolates the objects of interest from tJ.~ background. 

This definition is somewhat ambiguous; to what extent can one distinguish the subtle dif­

ference between the objects and the background from an image? For example, given an 

image of an office scene, should one consider the bookshelf as an object apart from the 

wall. or should the books be treated as objects partible form the bookshelf? Both cases 

can be correct, because as the definition of an object can vary depending on the suc­

ceeding actions to be performed. For this reason, Marr ruled out a general segmentation 

methodology, applicable to ail vision problems. Nevertheless, segmentation is required for 

most vision-based systems if any higher level processes are to be performed. 

Typically, a range image would contain a large amount of information about the 

geometric structure of the scene. As a result. a direct interpretation is very difficult, 

and therefore it is often ne<.essary to first partition (segment) the data into different 

regions/surfaces before the scene geometry can be inferred. There are many ways of 

decomposing surfaces; for most vision-based systems, these partitioning operations are 

usually application oriented. Most of the segmentation techniques found in the computer 

vision literature to date fall in one of the two main categories: (i) data-driven; and (ii) 

model-driven. 
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Model-driven approaches require a priori knowledge about the objects in the scene; 

e.g., knowledge of shape, colour, texture, and so on. Some of the most popular 

model driven segmentation techniques include histogram-based thresholdmg and tem­

plate matching, but these methods provide little information when the image data do not 

conform to the, restrictive, image model assumptions. These techniques seem to work 

weil in structured environments but were proven to be inexpedient in unstructured ones, 

and because of this, tliey are excluded from the following discussion. 

Data-driven approaches can be further sub-divided into region and boundary-based. 

3.3.1 Region-based techniques 

A typical region-based approach would involve two complementary operations, merging 

and splitting [Rosenfeld and Kak, 1982, levine, 1985, Horn, 1986). Merging is a process 

that combines neighbouring pixels into regions or adjacent regions into bigger ones with 

similar characteristics. On the other hand, splitting is the process that separates one 

region into two or more regions. It is common that statistical and/or spatial measures 

of pixel-to-pixel correlation (spatial coherence), is used as an indicator for determining 

whether merging or splitting operation should be performed. This operation ends wh en no 

more regions can be siJlit or merged; i.e., wh en the number of regions becomes stabilized. 

Surface type mapping 

Differentiai geometry [do Carmo, 1976, O'Neill, 1966) and topology have been employed 

by mathematicians for many decades as the bélsic tool for characterizing surfaces. One 

of the advantages of using the local surface model V (P) is, that it allows to form any 

arbitrary smooth surface, where the shape can be arbitrary complicated. Given an arbitrary 

shaped, smooth surface S, one can map 5 into regions based on the signs of the mean 

and Gaussian curvatures at each point P. The mean curvature of a surface is defined as, 

(3.1) 

and the Gaussian curvature is defined as, 
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(3.2) 

where "MI' and "MP are the two principal curvatures. 

Based on the sign .. of the Gaussian and mean curvature at each point, one can obtain 

a qualitative measure of the surface shape. Only eight possible combinations exist as 

shown in Table. 3.1, and the corresponding surface types are known as: pit, peak, valley, 

ridge, saddle valley, sadd le ridge, planar, and minimal sadd le (Fig. 3.3). 

" 
Kp < 0 Kp = 0 /(p > 0 

IIp < 0 Saddle Valley Valley Pit 
(hyperbolic) ( cylindrical) (parabolic) 

IIp == 0 Minimal Surface Flat not possible 
(hyperbolic) (planar) 

IIp > 0 Saddle Ridge Ridge Peak 
(hyperbolic ) ( cylindrical) (parabolic) 

Table 3.1: Eight fundamental surface types classified by using the signs of the 
mean curvature (Il p) and Gaussian curvature (K p). 

A number of techniques have been developed to segment range images, based on 

the [(pJlp mappings. Sesl and Jain were among the first, to propose the use of 

Gaussian and mean curvatures for range image segmentation [Besl and Jaïn, 1986a, 

Besl and Jain, 1986b, Vemuri et al., 1987, Yokoya and levine, 1988J, initially segments 

the image into many small patches according to the eight fundamental surface types. 

These patches were then merged to form larger ones using an iterative region grow­

ing algorithm. Some very impressive results were obtained using this technique 

[BesJ and Jain, 1988]. 

3.3.2 Boundary-based techniques 

Most of the boundary-based techniques proposed to date are based on locating various 

types of discontinuities in the image that associate with the physical edges of the objects 

[Marr, 1982, Rosenfeld and Kak, 1982, levine, 1985, Horn, 1986J. In practice, the direct 

measurement of these dïscontinuities from raw data, is highly prone to noise, and the 
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Peak 

Ridge 

Saddle 
Ridge 

Minimal 

Figure 3.3: Eight fundamental surface types: pit, peak, valley, ridge, saddle 
valley, saddle ridge, planar, and minimal saddle. 

resulting edge segments are often unreliable and picture dependent [Canny, 1986). 

Partitioning Boundary detection 

ln the last few years, various surface boundary-based techniques have been proposed 

for range image segmentation, based on recovering different types of surface features 

[Brady et al., 1985, Ponce and Brady, 1987, Fan et al., 1987). 

One surface decomposition theory has been put forward by Hoffman and Richards 

[Hoffman and Richards, 1984). in which they proposed that surfaces can be decom­

posed into parts by identifying the associated partitioning boundaries. In their article 
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[Hoffman and Richards, 1984J, Hoffrr.an and Richards began by illustrating a few line­

drawing diagrams, and they subsequently demonstrated that, humans have the incredible 

capability of recognizing objects, even in situations when information such as shading, 

motion, colour and texture are absent. They argued that shape alone is sufficient for ob­

ject recognition. Subsequently, they advocated that the following transversahty principal 

should be used as the basis for shape decomposition. 

Transversality principle: An interpenetration of two arbitrarily shaped 

smooth surfaces results in a concave discontinuity of their tangent 

planes along the contour of intersection. In the context of smooth 

surface decomposition, the partitioning contour is located at negative 

curvature minima. 

The fundamental idea embedded in this particular part decomposition strategy is, to 

treat each complex object as a configuration of irreducible primitives, each referred to as 

a part. Any arbitrary complex shaped object can then be made-up, using a combination 

of parts, and possibly with different sizes and shapes. However, each part is confined to 

be convex and compact in shape. (Note that concavity is created alone the intersection 

of two adjoined parts.) Compact is used here to refer to a surface without any dents or 

depressions. 

Another part theory is documented earlier in [Koenderink and van Doorn, 1982]. In 

the article, Koenderink and van Doorn suggested part boundaries are contours on a surface 

where the Gaussian curvature is zero, the so-called parabolic contours. Such contours 

possess a number of nice properties. For example, parabolic contours do not intersect and 

always form enclosed boundaries. By using them as partitioning boundaries, Koenderink 

and van Doorn derived four classes of parts, namely; humps, dimple:. furrows and ridges. 

Although, this partitioning strategy worked weil on sorne smooth surfaces of genus zero 

(i.e., no holes), but clearly it poses limitations wh en representing complex shapes with 

only four classes of part primitives. 
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Feature aggregation 

One task that boundary-based approaches have to accomplish is feature aggregation, 

which is an operation that labels and connects recovered boundary points into groups 

that resemble the structure of the 'Norld. 

The next stage of processing involves aggregating individual boundary points into 

contours. The feature points along do not provide enough information for the surfacè 

decomposition, because to segment the surface into regions, it requires enclosed contours 

to represent each individual region. Finding the enclosed contours for each region is akin 

to filling in a drawing by connecting a series of dots. Where the dot density is high enough, 

the interpolation of the contour is fairly obvious and can be accomplished with a nLlmber 

of spline interpolation algorithms. However, as the density decreases, it is sometimes not 

obvious how to interpolate the contour without additional constraints. 

3.3.3 Hybrid techniques 

More recently, a hybrid technique is reported in [Gupta and Bajcsy, 1990]. In the paper, 

Gupta and Bajcsy purposed a paradigm for part description and segmentation that in­

tegrates various types of information obtained from different levels of processes. Three 

levels of processes are involved in the paradigm; the occluding contour, the surface and 

the volumetrie levels. They argued that no single level of processes is robust enough to 

capture ail the details of objects in the scene. The segmentation process should proceed 

tirst by obtaining the local occluding contours and surface descriptions. At the higher 

(global) level, a curve segmentation module and a surface segmentation module are used 

to refine the segmentation in a fine to coarse fashion via two feedback loops; one internai 

and one external. These feedback loops are controlled by a decision making module which 

evaluates and integrates information obtained from the curve segmentation, the surface 

segmentation, and the fitting of superquadric model (the latter i!: introduced in the next 

section). A number of examples are illustrated in [Gupta and Bajcsy, 1990] . 
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3.4 Inference of scene geometry 

Ali computer vision applications require a final description to represent the scene, which is 

application specifie. For most practical problems su ch as object manipulation and object 

recognition, one needs a description that can capture the geometrical properties of the 

objects in the scene such as, position, orientation, shape and size - as weil as other 

intrinsic properties such as, colour and texture. However, the range information obtained 

from a standard rangefinder makes the recovery of the latter intrinsic prop·~rties rather 

difficult, and they are not addressed here. 

3.4.1 Parametric shape modelling 

There exist many different approaches to obtain a three-dimensional representation of a 

scene, and the most corn mon approarh is based on the use of parametric models. In 

the past, a number of researchers in computer vision nave proposed the use of gener­

alized cylinders to describe different parts of objects in a scene, by starting with the 

local approximation of the axis, and gradually recovering ail parameters of the general­

ized cylinders [Binford, 1971, Marr, 1982 Brooks, 1983]. Another approach uses com­

binations of ellipsoidal and cylindrîcal models to form a coarse object representation 

(Ferrie and levine, 1988]. For a more general approach to 3-D representation, a com­

plex family of solid models is considered in [Pentland, 1987, Solina and Bajcsy, 1990]. 

This has the capability of modelling a large set of standard geometrical shapes, and yet 

is simple enough that their parameters can be solved using standard numerical methods 

[Press et al., 1988]. Only the latter parametric solid primitive, the superq ua dric , is dis­

cussed in the following section, because it represents a large class of parametric shapes 

including the ones mentioned above. 

Superquadric Models 

The superquadric model was first discovered by a Oanish writer and designer named 

Peit Hein, and has the capability of describing a wide range of three-dimensional shapes 

[Gardner, 1965, Gardner, 1975). Hein used the superellipse, a 2-D sub-set of superquadric 
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Figure 3.4: Two-dimensional parametric shapes (superellipse): Ixl 2/t+ lyl2/t = 
1 for the relative shape parameter ( == 0,0.5, 1, 2, 3 and 6. For simplicity, the 
two size parameters a:z; and ay are set to be unity. 

(Fig. 3.4), and solved a city-planning problem which arose in 1959 in Sweden. During 

that period, he designed the outer-shape of a fountain that fitted harmoniously into 

a rectangular open space located at the heart of Stockholm. Since then, superquadrics 

have been employed by researchers from both, the computer graphies and computer vision 

communities for solid shape modelling [Barr, 1981, Pentland, 1987J. 

To better explain the characteristics of the superquadric, let us first conside~ a 2-D 

family of parametric shapes (superel!.pse) described by the following function, 

2/t 1 2/t 
f(x,y) = I~I + JI.... = 1. 

a:z; ail 
(3.3) 

where f is the relative shape 5 parameter, a:z; élnd ail are the parameters that define the 

superellipse size in x and y coordinates respectively, and they are also knowlI as the radial 

aspects. By varying f from 0 up to infinity, one can obtain a wide variety of shapes 

SE is also referred to in [Solina and Bajcsy, 1990] as the "sqlJareness" parameter 
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Figure 3.5: Samples of superquadric surface model by varying (1 and (2 between 
1 and 2 respectively. 

(see Fig. 3.4). Starting at ( = 0, a perfect rectangular shape is produced. By increasing 

the relative shape parameter to 1, the squarishness of the curve gradually disappears and 

the shape turns into an ellipse. As ( increases further to 2, the shape transforms from 

an ellipse into a rhombus. When the relative shape parameter gets larger than 2, the 

shape becomes concave, and as the parameter approaches infinity, the shape turns into a 

"cross-like" figure with zero cross-section area. 

One can expand the 2-D parametric equation Eq. 3.3 into 3-0, and derive an implicit 

equation for the surface of a superquadric model (see Fig. 3.5), 

(3.4) 

The parameters ar , ail and a z , define the size of the superquadric corresponding to the x, 

y and z axes in the object centered coordinate system. The parameters f1 and f2 define 

the relative shape of the superquadric in the latitude (xz) plane and longitude (xy) plane 

respectively. 

Eq. 3.4 15 commonly referred to as the ;ns;de-oufs;de function [Barr, 1981, 
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Gross and Boult, 1988, Solina and Bajcsy, 1990], because superquadrics are mathernat­

ical solid models, and their surfaces can be divided into three distinct regions for a given 

point P = [Px, Py , PzlT in 3-D space. These regions are defined as, if, 

J(Px, Py , Pz) = 1 then P lies on the surface, 

J(Px, Py , Pz) > 1 th en Plies outside the superquadric, 

J(Px, Pli' Pz) < 1 then Plies inside the superquadric. 

There exist a number of ditTerent approaches for recovering the model parameters, 

and they ail share one thing in common - by defining a measure of the "error of fit" IR 

their fiuing functions [Pentland, 1987, Gross and Boult, 1988, Solina and Bajcsy, 1990, 

Whaite and Ferrie, 1991]. Pentland initially suggested to solve the model recovery prob­

lem analytically for ail independent parameters [Pentland, 1986]. However, an analyti­

cal solution to the problem turned out to be very complicated for most general cases. 

Later, Pentland [Pentland, 1987J combined the part model recovery with segmentation, 

by searching through the entire superquadric parameter spa ce for the "best" fiUed mode!. 

This method has proved to be computationally e::pensive. In spite of the computational 

problems he had encountered, Pentland successfully demons1rated the power of using 

superquadrics in representing a wide variety of objects ranging from natural scene to 

man-made objects. 

Another method, the s\l-called "minimum volume" approach, was first motivated by 

[Bajcsy and Solina, 1987], due to the facts that there exist situations where a set of 

superquadric parameters can be found, and they ail fit equally weil to the range data 

obtained from a single view-point. The basic idea behind the minimum volume approach 

is to select the smallest superquadric as the part model among ail possible solutions. 

Although experiments have shown that the minimum volume model tends to produce 

more intuitive results, there are a number of drawbacks associated with this approach 

[Solina and Bajcsy, 1987, Solina and Bajcsy, 1990]. For example, if the recovered mini­

mum volume model is wrong (i.e., too small and do es not represent the corresponding 

part properly), then this can have disastrous etTects in many cases; e.g., when a robot 
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attempts to manipulate the part/object. Other measures of "error of fit" , like the mean 

square value of the inside-outside function or the true Euclidean distance are also possible 

[Gross and Boult, 1988J. 

Measures of the "error of fit" are essential to the fitting process, however, ail methods 

mentioned above failed to address the uniqueness of the fitted model when multiple 

solutions are available for a single part. This is very important for "higher" level processes 

su ch as, object recognition or path planning. A formai discussion on the uniqueness of 

the recovered parametric model is presented in [Whaite and Ferrie, 1991J, along with a 

novel method of evaluating the uncertainty associated with the model. 

Deformable p:lrametric model 

Barr was among the first to suggest that local and global deformations can be achieved by 

tapering, twisting, and bending of parametrized solids (Barr, 1984). Additional expressive 

power of the solid modelling can be obtained by the ability to deform the superquadric 

model, both locally and globally into the desired shape. This is very useful for captur­

ing the complex surface appearance of natural objects. It was later realized by Pentland 

[Pentland, 1987), Solina and Bajcsy [Solina and Bajcsy, 1990) in the recovery of paramet­

ric model from range data. 

More recently, with the advances in the parametric solid modelling, physical and dy­

namic constraints are being embedded mathematically into the parametric model. In 

addition to the geometry recovered from the standard parametric model, the formulation 

of physically-based models can include simulated forces, masses, strain energies, and other 

physical quantities. Therefore, the physically-based model has the advantage of analyz­

ing and predicting the motions and interactions of complex objects. Notably, there have 

been two physically-based modelling approaches proposed to date: (i) Pentland's "modal" 

analysis approach, and (ii) Terzopoulos and Metaxas' "dynamic" approach. 

Pentland's "modal" analysis approach, is somewhat analogous to Fourier trans­

form, with Icw-order modes to provide a description of the overall shape, and 

high-order modes to represent the high-frequency :surface details (Pentland, 1990, 

Pentland and SclarofT, 1991]. More importantly, the mathematical formulation is based 
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on finite element rnethod (FEM) that provides an analytic characterization of surface be­

tween nodes or pixels. For example, an object may be interpreted as a mesh of nodes, with 

a certain mass, damping and stifTness between the nodes. Subsequently, virtual forces are 

defined at each node such that the model can be deformed to fit the data samples. n,e 

final shape may be thought of as the result of pushing, pinching and pulling on a lump 

of elastic material (such as clay), starting with a spherical approximation. One major 

problem of this particular approach is the instability of modelling non-convex objects. 

ln Terzopoulos and Metaxas' "dynamic" approach [Terzopoulos and Metaxas, 1991), 

the so-called deformable superquadrics are governed by a set of equations of motion. 

They augmented the models with the local deformation capabilities of membrane splines. 

As a result, virtual (external) forces are permitted to deform the physically-based models 

globally like superquadrics in order to recover the translation, rotation, scale, three radial 

aspects, and two squareness parameters. In addition to this, the forces also deform 

the models locally like splines to reconstruct the fine structure and the natural irregular 

appearances from the data. The mathematical formulation of these physically-based 

models is rather complex, and beyond the scope of this thesis. 

3.5 Hidden factors 

ln almost every computer vision application, one has to confront the scale, and the res­

olution problems. Although, scale and resolution are closely related to eac:h other, they 

are treated as independent in this section. 

3.5.1 Resolution factor 

Resolution is considered here as a physical attribute of the image; i.e., the number of 

pixels in the image, and the number of bits per pixel. In other words, the resolution of a 

image is usually dependent upon the hardware limitation or the image format. 
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3.5.2 Scale factor 

Scale is referred to here as the mechanism that controls the level of detail in the image for 

a given resolution. The scale problem in localizing feature points has been addressed by 

many researchers, but it is still regarded as one of the many not weil understood problems 

in computer vision. The scale issue dates back to the early days of computer vision 

research on edge and curve detection [Rosenfeld and Thurston, 1971J, and more recently 

on the introduction of the so-called scale-space filtering by Witkin [Witkin, 1983]. 

As Witkin stated in his paper [Witkin, 1983J, descriptions that depend on scale can be 

computed in many ways. One simple way of deriving these descriptions, is the scale-space 

filtering approach. A family of images are obtained by convolving the original image with 

the Gaussian kernel Q(x,y,O') with different variances CT, 

I(x, y,O') = Io{x,y) * Q(x, y, CT), (3.5) 

where 

1 [-(X2 + Y2)] 
Q(x, y, 0') = 211'0'2 exp 20'2 ' (3.6) 

where * denotes convolution with respect to x and y, and Io(x, y) is the original image. 

The smaller the value of 0', the scale parameter, the higher the level of detail in the 

image. Wh en CT = 0, I(X,y,CT) is equal to the original imi:lge Io(x, y). As CT gets larger, 

I(x, y, 0') becomes averaged out. In other words, 0' can be used to control the amount 

of detail in an image. 

It has been pointed out by a number of researchers, that scale-space filtering has a 

blurring effect equivalent to the solution of a heat conduction or diffusion equation; i.e., 

the inversion is an ill-posed process with a one-to-many mappings [Koenderink, 1984, 

Hummel et al., 1987J. As Koenderink put it [Koenderink, 1984J, this implies that any 

feature at a coarse level of resolution is required to possess a (not necessarily unique) 

"cause" at a finer level of resolution although the reverse need not be true. 
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3.6 Summary 

ln this chapter, the general framework for range image analysis Îs reviewed. Three main 

levels of processes are introduced; (i) image reconstruction, (ii) image segmentation, and 

(iii) inference of scene geometry. In addition, a selection of techniques developed for 

surface analysis is also briefly discussed. Although, there exist many non-surface type 

techniques for range image analysis, their lack of theoretical support makes them Jess 

attractive and therefore they are not included in the discussions. 

This chapter also serves as the basis of our strategy for rock identification and local­

ization, which will be discllssed in the next chapter. 
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Chapter 4 

4.1 Introduction 

Recovery of muckpile model from range 
measurements 

ln this chapter. the methodologies are presented that will be employed in a strategy for 

rock fragments localizl.tion and identification. The paradigm is based on the framework 

reviewed in the previous chapter for range image analysis. which involves three main levels 

of processes. viz; muckpile surface reconstruction, muckpile decomposition, and muckpile 

modelling. One obvious reason for choosing this particular "bottom-up" approach is that 

very few assumptions about the scene are required, and the assumptions made are very 

general. This is particularly important if the strategy is to be successful wh en applied to 

an unstructured environment such as the one encountered in mining. 

The problem faced is how to identify and locate highly irregular objects such as rock 

fragments, from the highly noisy and quantization error prone measurements su ch as 

those obtained from a rangefinder. Therefore, one must start by studying how the range 

measurements can be reconstructed reliably and stably. 

4.2 Muckpile surface reconstruction 

A novel minimization methodology for surface reconstruction was presented in Sander's 

doctoral thesis [Sander, 1988]. In his thesis, the emphasis was placed on the reliable 

recovery of surface structure from three-dimensional images acquired through magnetic 

resonance imaging (MRI) devices rather than from the graph surface type images like those 

obtained from rangefinders or standard T.V. cameras. To study Sander's methodology 

even further, Lagarde [Lagarde, 1990] applied the same surface reconstruction formalism 

to range images, and it is on Lagarde's scheme that our surface reconstruction algorithm 

is based. 

The fundamental concept behind Sander's algorithm is local curvature consistency 

[Parent and Zucker, 1989, Sander and Zucker, 1990]; i.e., the local surface curvature at 
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point P is assumed to be in consistencyl with its close neighbours. Based on this as­

sumption, a measure of the local curvature consistency is derived as the constraint to 

drive the minimization process2• In addition, the consistency constraint is subjected to 

the orthogonality of the augmented Darboux frame V (P). 

The surface reconstruction process involves two steps: (i) initial surface estimation 

and (ii) surface estimates refinements. 

4.2.1 Initial surface estimates 

Initial estimates of surface properties are readily computable using a number of different 

local methods (§ 3.2.2). However, analytical approaches are favoured here as oppoed 

to direct estimate approaches, trusting that the higher accuracy obtained by the initial 

estimates justifies the extra computational cost. 

One su ch approach, a linear regression technique, is employed in this study for ob­

taining the initial estimates of V (P). As mentioned previously in § 2.2, a range image 

can be expressed as a function z = r(i,j), and it can be rewritten as z = f(u,tJ). From 

this function and by using standard differential geometry [do Carmo, 1976), the surface 

properties can be made explicit. 

The initial estimation starts by fitting the local neighbourhood of P in surface 5 with 

a plane, that represents the tangent plane Tp [Ferrie and levine, 1988]. Once 1'" is found 

the surface normal Np is readily available. After obtaining Np, the next step approximates 

the surface S with a parabolic quadric patch of the form: 

jeu, v) = a u2 + buv + cv2
• (4.1) 

The estimate Î is based on samples within a particular local neighbourhood. Akin to the 

normal estimation, the coefficients of the second order polynomial function in Eq. 4.1 can 

1 The notion of curvature consistency is that the surface curvature at each sam pie point is assumed 
to be similar to those represented by the neighbouring local surface models; e g , in our case, the local 
surface model is described by a parabolic quadric patch Other surface type patches are also possible, 
and are discussed in [Lagarde, 1990] 

2Typically, a minimization process is one that involves minimizing sorne energy functions subject to 
constraint satisfaction. 
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be computed, using a least-squares fit to the range data [Johnson and Wichern, 1982]. 

To simplify the analysis, a local coordinate system uvw (with the three unit vectors ël , ë2 

and ë3 ) is defined for the estimate Î with the point P at the origin and the w axis aligned 

with the surface normal Np. 
.... 

For the curvature computation, let us consider the second fundamental form ITp(Vp) 

at P in the direction pointed by the unit vettor Vp E Tp , defined as: 

(4.2) 

A weil established axiom from difTerential geometry states that, the value of np(Vp ) is 

equivalent to the normal curvature KnP of a smooth curve in surface 5 through point P 

oriented in the Vp direction [do Carmo, 1976]. Up(Vp) can be expressed in terms of the 

surface estimate Î( u, v) as follows: 

... 
1 du2 + 2m du dv + n dv2 np(Vp) - (4.3a) 

- (du du) (~ :)(::) (4.3b) 

- (dVp) TA (dVp) ( 4.3c) 

where 

1 = Îuu ÎUII 
A 

flllJ 

J1 + Î~ + Î( m = )1 + Î~ + Î~ , n = JI + Î~ + Î~ . 

The eigenvalues of the matrix li represent the maximum and minimum values that 

the second fundamental form can take, and are, therefore, the principal curvatures. The 

principal directions associated with these curvatures coincide with the eigenvectors of fi 
[do Carmo, 1976]. Note that if Î is evaluated with the origin at P = (0,0) in the local uv 

coordinates, su ch that il x ë2 = Np, and Îu = ÎII = 0, then one can express np(Vp) in 
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terms of the polynomial coefficients by substituting Eq. 4.1 into Eq. 4.3. This results in 

the following Hessian matrix: 

__ (2a b) H- . 
b 2c 

(4.4) 

The principal curvatures, KMP and KMP, of a smooth surface S at point P, are 

represented by the eigenvalues of H: 

(4.5a) 

"'MP = a + c - J(a - c)2 + 1J1. (4.5b) 

Similarly, the two principal directions, ~P and ÔMP are represented by the eigenvec­

tors of li and shown as: 

(4.6a) 

(4.6b) 

Note that ~p and ~p are explicitly expressed in the local coordinates (u, v), 

whereas, Mp and Mp are expressed in the world coordinates (x, y, z). 

4.2.2 Surface estimates refinement 

This section describes the second step, the minimization stage, used to obtain a stable 

reconstruction of surface S. This follows the initial estimation of V (P) from the discrete 

range data. Notably noise and quantization error have always been a problem in inferring 

image structures both from intensity and range images. Similarly, for range images this 

49 



( 

4. Recovery of muckpile model from range measurements 

Figure 4.1: Obtaining an updated frame of V (P), V (Pa), by local extrapola­
tion. The augmented Darboux frame '[) (Q) is transported along the curve Ca 
on the parabolic quadric surface patch Sar, and arrives at its neighbour P with 
a difTerent orientation as V (Pa). 

problem can cause unstable or corrupted surface estimates from the local methods, espe­

cially in the estimation of the two principal directions Afp and M,p [Sesl and Jain, 1986a]. 

However, these directional properties are crucial to the inference of discontinuities and part 

boundaries for surfac~ decomposition. 

Iterative refinement process 

From now on, Sander's surface reconstruction algorithm will be referred to as the curva­

ture consistency algorithm. The algorithm operates in the fo"owing way: it refines the 

local surface representation at each point iteratively until it becomes consistent with its 

neighbouring sample points. The main reason for adopting the curvature consistency al­

gorithm is that the complete minimization3 is specified in terms of local surface properties, 

and il results in a less ambiguous (i.e., more stable) representation of the surface. 

The iterative scheme can be explained with the aid of the model shown in Fig. 4.1. 

Since the augmented Darboux frame 1) (P) at point Pis described by a parabolic quadric 

patch, one can consider extrapolating outwards along the quadric patch from its neigh-

31n theory, the minimization process can be carried out independently at each sample point, therefore 
sorne sort of parallelization in the computational pro cess is possible. 
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bouring point Q to P, to extract a notion of what the surface at P should look like 

according to its neighbour at Q. In other words, an estimate of the frame 'D(P) at P, 

1) (Par), is obtained th:-ough the assumption that the curvature is locally consistent within 

the neighbourhood of the two points, P and Q. By repeating this extrapolation for ail 

neighbours of P, {Qo}, such as a = l,"', n and n is the number of neighbours, one 

can obtain a collection of augmented Darboux frames {1) (Po)}, each representing an 

estimate of V (P). More formally, the extrapolation along the surface is equivalent to 

transporting the augmented Darboux frame 1) (Q) along the surface patch Sa to obtain 

Curvature consistency implementation 

The functional minimization of the curvature consistency algorithm is restricted by 

the orthogonality constraints inherent in the frame 1) (P), which are given by 

(Ferrie et al., 1989, Ferrie et al., 1990], 

.. ~ 

(Np, Np) = 1 
.. ~ 

(Mp, Np) = O. (4.7) 

The same formulation as in [Sander, 1988, Sander and Zucker, 1990] is followed, for 

the augmented Darboux frame at P, V (P) =. (P, "'MP, "'MP, M'p, .Ntp, Np), and its 

estimate 1) (Par) = (Po, K.MPo, "'MPo, MPar, MPar, Npo ) on the surface patch Sa. Each 

component of the augmented Darboux frame 1) (P) to be updated is found independently, 

except the component Mp. Note that Mp is given by the cross product of Mp and Np. 
Three energy equations 4 are derived for the least-squares error measure of the estimates. 

The first two are given as: 

n 

min E(ICMP - K.Mpo)2 + (KMP - KMpa)2, 
/CM p, /CMP 01=1 

(4.8a) 

(4.8b) 

4Energy equation - sorne sort of error measure function. 
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By applying the standard minimization procedures to solve Eq. 4.8 (see [Sander, 1988] 

for details), one c.an derive the following updating formulae first for Np, 

N"(a+1) _ U:::=1 NJ~o' E~=1 N~~t)' E:=1 N!~o) 
p - , 

V(L~=1 NJ~o)2 + (L~=1 N~~o)2 + (L::l N~~a)2 
then for P, ICMP and ICMP, 

n p(a) 
p(a+1) = E _Ci_, 

Ci=1 n 

n (a) 
(a+1) ,,"MPCi 

ICMP = LJ --) 
Ci=1 n 

where the superscript i indicates the iteration number. 

n (a) 
(a+1) _ " IC MPa 

ICMP - L...J--
a=1 n 

(4.9) 

(4.10) 

The third energy equation requires a special treatment because there is a 1800 

ambiguity in the directions associated with Mp and Mp. To avoid this ambiguity, 

iff!' is expressed in terms of the following tangent pr.ane coordinates [Lagarde, 1990, 

Ferrie et al., 1989), 

such that, il and ë2 satisfy, 

Then 

lIë111 = lIë2 11 = 1; 

(ëI, ë2) = O. 

(4.11) 

(4.12a) 

(4.12b) 

(4.12c) 

(4.13) 

The value of '1/' that minimizes Eq. 4.13, is substituted into Eq. 4.11 to obtain M~). Sim­

ilarly, the standard minimization procedures are applied to derive the following updating 

functional for l/J: 
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(4.14) 

where 

n 

A,) = L(AfPa , ë.) (ÛPa , êj); i = 1,2; j = 1,2. (4.15) 
a=1 

A qualitative measurement of the updated surface estimates at iteration i, is given by 

the sum of the residual errors R(I), with 

R(I) - I:R(V(p)(I>,V(p)o)(i») 
) 

(4.16a) 

- L Eg> + E~;) + E~;>; P, ES. (4.l6b) 
) 

The convergence of the minimization process can be tracked, by taking the derivative 

of the residual errors; i.e., the residual errors converge to a minimum as the derivative 

approaches zero. This can be used to control the number of iterations until the difTerence 

of two consecutive residual errors, IR(I) - R(I-I)I, is below a specified threshold. Note 

that R(I) is measured entirely by the sum of local differences computed over the surface. 

Experiments have shown that the algorithm converges quite rapidly, generally within 10 

iterations [Lagarde, 1990]. 

4.3 Muckpile decomposition 

The objective of surface decomposition here is to decompose the muckpile surface into 

regions, such that each region corresponds to the surface of an individual rock. This 

enables us to infer the spatial and geometrical prol'erties of each rock independently. 

Ultimately, this information will be passed onto higher level processes; e.g., to derive a 

control strategy for the breaking mechanism [Nilsson and lindberg, 1989]. 
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From observations, it is found that the majority of the rock fragments resulting from 

blasting are largely convex in shape; i.e., when ignoring the small scale geometric irreg­

ularities Inherent in the rock surface. Based on these findings, one can consider each 

rock fragment as a convex entityjpart. The principle of transversality, states that wh en 

two arbitrarily shaped convex parts come into contact, they meet in a contour of concave 

discontinuity. 

Based on the convex and compact assumption for the rock shape, and the transver­

salit y principle, one can design an algorithm to detect the features required for surface 

decomposition. The impor:.ant features that are sought can be expressed as functions of 

the surface properties recovered from the curvature consistency algorithm. 

4.3.1 Feature recovery 

Two types of features are required for the muckpile surface decomposition; (i) jump 

discontinuities that correspond to the occluding contours of the muckpile, (ii) negative 

curvature minima that correspond to the contact boundaries between individual rocks. 

These feature points are best illustrated by the simple diagram shown in Fig. 4.2. 

The jump discontinuities caused by occ/usions of the muckpile are first recovered for 

the surface decomposition. Since the oversized rock fragments are located directly above 

the grizzly structure, if the range measurements are aCQuired vertically above the grizzly 

structure, a simple depth thresholding of the z component will suffice in identifying points 

that corresp~nd to the occluding contours. However, if the measurements are takcn from a 

difTerent viewpoint (camera position), a transformation of the range data will be required, 

su ch that the xy plane is parallel to the gr:7 zly structure. In the cases, where there are 

no overlapping or tOlJching rocks, the surface decomposition becomes straight forward, as 

the regions obtained through the depth thresholding should directly correspond to each 

indlvidual rock surface. 

let us consider an augmented Darboux frame V(P), the !ocal surface representation 

at point P, with KMP and Afp representing the stable estimates of minimum curvature 

and its associated principal direction at P. Point P is defined as the critical point or 

trace point T [Ferrie et al., 1989, Ferrie et al., 1990] (i.e., with a negative local minimum 
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(a) 

(b) 

(c) 

Before 
Smoothing 

jump 
discontinui 

After 
Smoothing 

ObjectA ObjectB 

concave 
discontinuity 

negative 
curvature minimum 

jump 
discontinuity 

Figure 4.2: Feature recovery for part decomposition. (a) Showing two convex 
and complex objects A and B. (b) Before smoothing: the concave discontinuity 
corresponds to the contact boundary, and the jump discontinuity corresponds 
to the occluding contour. (c) After smoothing: the concave discontinuity is 
transfcrmed into a negative curvature minimum. 

curvature), if and only if the following is true, 

I\:~p 1 = 0 
MP 

AND I\:MP <0 (4.17) 

where K~p IMP is the directional derivative of the normal curvature I\:nP in the direction 

specified by the vector Mp . 

Since we only have discrete measurements, I\:~p IMP can be approximated bya differ­

ence equation. To simplify the computation, a simple comparison between neighbouring 

curvatures is sufficient for identifying the negative local curvature minimum. Point P is 
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bound to be a local curvature minimum, if 

KMP < Knpt 1 
MP 

AND KMP < Knp-I . 
MP 

( 4.18) 

If P is a point that satisfies Eq. 4.18 and its minimum curvature KM(P) is less than 0, 

then P has a local negative curvature minimum; i.e., P is a trace point. p+ and P- are 

the closest sample points from P in the directions of Mp and -Mp, and Knpt IMP and 

KnP- IMp are the normal curvatures at p+ and P- in the Mp direction. 

For various practical reasons, it is very difficult to apply the transversality principle 

directly on range images. First we face the problem of obtaining smooth surface data 

from the sensor. Inevitably there will be noise added to the data during the acquisition 

process, even with th( measurements ta ken from a scene that is fully occupied by objects 

with no dents and depressions. Even if the data are assumed to be perfect; i.e., the 

range measurements match the exact physical appearances of the abjects, there is still 

a problem in recovering the surface properties from the discrete data, which will provide 

reliable surface estimates. The curvature consistency algorithm is developed precisely 

for this purpose; i.e., provides a stable surface representation even with the presence of 

additive noise in the data. 

Second, and more important is the problem of tuning into a correct range of scales. 

We are living in a world of objects consisting of different levels of structure. Humans, 

for example, have the extraordinary ability to tune into the right level of scale depending 

upon an a priori knowledge of the scene and/or the types of the objects. Unfortunately, 

the process of inferring different levels of scales remains not weil understood. Not surpris­

ingly, this scale problem turns out to be a very significant one for the muckpile surface 

decomposition. Rock surfaces are very textured, and contain many small irregularities due 

to the litho-~tructure of the deposits. Direct inference of rock surface properties at the 

very fine scales, would result in a problem of localizing the "true" partitioning boundaries. 

More details of this problem will be given in the next chapter. 
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4.3.2 Partitioning contour aggregation 

By referring back to the transversality principle, objects (muckpiles) are said to be con­

catenated or adjoined together by a number of convex and compact parts (rocks). If the 

contours of negative minima are recovered from the stable surface estimates, then the 

trace points {Tq } should be equivalent to the contact boundaries between rocks. 

However, in practice the trace points corresponding to the contact boundaries do 

not always form enclosed partitioning boundaries required for the surface decomposition. 

Different features must be recovered and combined together in a cooperative manner, su ch 

that the image can be decomposed into meaningful regions for the later visual processing 

stages. As mentioned in the previous section, two types of features associated with the 

partitioning boundaries have to be recovered. A reliable way of combinmg this information 

together must be derived in order to perform the surface decomposition. Experience has 

shown that the contact bou ndaries between rocks are most likely to be terminated along 

the occlu ding contours of the muckpile, therefore one can use this as a constraint to 

derive a partitioning boundary detection scheme for identifying the partitioning boundary 

for each rock fragment. 

Given a set of trace points {Tq } (negative curvature minima) corresponding to the 

contact boundaries between different rocks, and a set of points {Jg } (jump discontinuities) 

corresponding to ocduding contours of the muckpile, the method for connecting the 

contact boundaries with the occluding contours is the following. First end points from 

the recovered trace points {Tq } are defined. 

End point: a trace point with only one connectivity; contextually this im­

plies trace point that has one and onlyone neighbouring point directly 

intact to one of its eight directions, and that neighbouring point is also 

a trace point. 

After the end points are identified from the contact boundaries, the contour connection 

is constrained between the end points and the occluding contours; i.e., the end points can 

be extended to intersect at the closest distance on the occluding contours. Because of the 
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high density of these feature points, straight line interpolation should suffice in locating the 

enclosed contours for each of the individual rocks. Regions can then be identified using a 

standard clustering algorithm which labels connected points as comprising a unique region 

(Ballard and Brown, 1982]. 

4.4 Muckpile modelling 

Having partitioned the surface acquired by the rangefinder into regions corresponding t:) 

different rocks, the next task is to infer the three-dimensional shape of each rock. Our 

approach is to model each rock using a volumetrie primitive with sufficient degrees of 

freedom to account for the expected range of shapes. In particular, the superquadric 

model is chosen for our rock modelling. The reasons that the superquadric is chosen for 

the mode"ing are, (i) its capability of representing a large range of shapes, (ii) the fact 

that spatial and geometric information (e.g., position, size, shape, centre of mass, surface 

orientation, etc.) about the objects can be easily recovered from the mode!. 

4.4.1 Fitting of superquadric model 

Given a set of partitioned surfaces SI from the surface S, su ch that 5 - U SI and 

1 == 1, ... ,n, where Tt is the total number of parts in the surface S. 

One can obtain a set of volumetrie primitives C from the superquadric model, by 

varying a = ((lt (2, ar , ail' az ) in the parameter space. Now, the task is to determine the 

parameter of a volumetrie element VI, VI E C that best characterizes SI minimizing the 

expresSIon, 

( 4.19) 

The fitting algorithm for the superquadric model is very similar to those mentioned in 

[Gross and Boult, 1988]. It makes use of a nonlinear minimization technique to recover the 

required model parameters, starting with an initial estimate. The fitting procedure is an 

iterative one, akin to [Solina and Bajcsy, 1990], and begins with a good ellipsoidal (fi = 

(2 == 1) approximation that provides an initial estimate of the rotation and translation 
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parameters for the part to be modelled. Experience has shown that the initialization of the 

relative shape parameters, fI and (2 are not very critical to the final model V, After the 

ellipsoidal approximation is achieved, the translation parameter is initialized by locating 

the centroid of the points in the surface S,. The next step is to find the initial rotation 

parameters by aligning the axes of the ellipsoid along the principal moments of inertia of 

S, about the centroid. 

A nonlinear least-squares technique is used for the minimization - the levenberg­

Marquardt method [Press et al., 1988], to minimize the error of fit between a superquadric 

surface V, and a surface patch of range data S,. The fiuing procedure is repeated with a 

new set of parameters a at each iteration, until the sum of the least-squares error measure 

stops converging. The final set of parameters a, represents the best fitted model for the 

corresponding part that is to be described. 

One might argue that the superquadric is an overly complex model for the purpose of 

the rockbreaker problem. However, in addition to breakage, the operation also requires 

manipulation of the rock mass for which the pose information provided by the model 

is indeed useful. The two additional shape parameters, which are potentlally useful in 

the inference of other physical properties, come at a modest increase in computational 

expense. As a general characterization of rock shape, the superquadnc is clearly hmited 

However, the general impression is that for the problem typified by the rockbreaker, the 

shape approximation by the superquadric model in practice is adequate. 

4.5 Discussion 

As mentioned in Chapter l, the basic strategy for muckpile identification and localization is 

very similar to that proposed in (lkeuchi and Hebert, 1990] and [Choi et al., 1990). 80th 

the paradigms involve similar processes; i.e., range data acquisition, surface reconstruc­

tion, surface segmentation and fiuing of superquadric models. However, the computa­

tional approaches used to perform the surface reconstruction and the segmentation differ 

significantly. The approach used here is based on curvature analysis and the inference of 

3-D curves [Sander and Zucker, 1990, Ferrie et al., 1989). Whereas Ikeuchi and Hebert, 
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and Choi et al. applied deformable models (e.g, "snakes" and "def()rmable surface") 

similar to those proposed in [Ter ... .,poulos et al., 1987, Kass et al., 1988]. Aside from the 

theoretical issues, there are practical considerations for the choice of approach. One con­

sideration is that, the analysis involves a minimum number of "hidden" parameters. At 

present, there is a single scale parameter (see next chapter). Another consideration is the 

active contours or "snakes". Examples have shown that they have worked weil for rela­

tively smooth surfaces [Ferrie et al., 1989], but for the highly textured surfacfs assoclêued 

with rock fragments, they have proven to be more difficult (espp.r.Îally in estimating the 

process parameters). 

On the other hand, the surface segmentation scheme is somewhat similar to 

(Ponce and Brady, 1<)87, Fan et al., 1987, Fan, 1990], in detecting features for partition­

ing boundaries. However, the present method is more stable for two reasons. First is that 

the surface representation obtained through the curvature consistency algorithm is stable, 

which is critical to the part decomposition. Second is that the transversality principle is 

the natural basis for identifying the partitioning boundaries. 

However, the basic strategy here is very difTerent from the one proposed in [Lim, 1990] 

for rock recognition, with graph models to denote geometric salient features. This is 

understandable, since the objective in the lalter case is quite difTerent. 

4.6 Summary 

ln this chapter, the methodologies employed in our strategy for the rock identification and 

localization are presented. Three levels of processes are discussed. 

First, the stable representation of the surface is recovered from the range measure­

ments by applying a surface reconstruction process. The process involves two processing 

steps: (i) initial estimates of surface properties, and (ii) surface estimates refinement. 

The resulting stable surface estimates, make the surtace features required for surface 

decomposition explicit. 

ln the second level of process, the transversality princlple is presented as the ba­

sis of our surface decomposition strategy, for partitioning muckpile surface into regions 
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corresponding to different rocks. Two type of features are consldered in our surface seg­

mentation scheme, (i) jump discontinuities corresponding to occlusion boundaries between 

muckpiles, and (ii) negative local curvature minima corresponding to contact boundaries 

between rocks. 

The final processing step is to find a volumetrie model that best characterizes the 3-D 

shape of each partitioned surface. Each individual rock is represented by a parametric 

primitive, and this final representation can be used by other higher levels of processes, 

su ch as for controlling the breaking mechanism of a rockbreaker. 

The purposed strategy is fairly independent of the origin of data; i.e., we are not 

committing ourselves to any particular type of range sensor. Since hardware development 

is advancing in a much faster pace with respect to the progress in algorithm design. 

although this is largely a personal intuition, we are likely to see faster and more accurate 

range sellsors becoming available in the near future. 
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5.1 Laboratory selup 

This chapter describes the results obtained by using the previously described methodology 

in a laboratory environment. A scaled down version (50 cm x 40 cm) of a grizzly was 

built ln our laboratory wlth a grid size of 10 cm x 10 cm. Nickel and copper ore samples 

with diameters1 ranging from 4 to 8 cm were used for the experiments. The samples 

were relatively clean, 1 e., free from accumulated mud and dirt. Images of rock piles 

were captured by the NRCC/McGill laser scanner. The scanner was mounted on the 

end-effector of a PUMA 560 industrial robot to accommodate different viewing positions. 

Fig 5 1 shows the laboratory setup. 

A highly flexible software tool has been developed on a Silicon Graphics (Personal Iris) 

workstation. whlch is directly linked to a Local Area Network; the networked machines 

include a wide range of computers with different architectures, various types of imaging 

acquisition devices and robotic controllers The complete operation of image acquisition 

from the laser scanner, the position of the robot, the transfer of the data over the netwoi 

and the rendermg of the range data IS entirely abstracted from the user level. The 

advantage of having such a software system is that the user can concentrate on a particular 

problem. wlthout worrylng about the techntcal details of hardware implementdtion. 

5.2 Processing sequences 

The data acquisition tlme for a full size (256 x 256) range image was approximately 15 

seconds A typlcal set of raw range data obtained from muckpile samples located on top 

of the grizzly model, 15 shown ln Fig. 5.2. 

1 Typically. rock fragment size IS measured by a sphere that has an equivalent volume 
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(a) 

(b) 

Figure 5.1: Laboratory setup for the rockbreaker pilot study. (a) An overall view 

of the PUMA 560 robot and the NRCC/McGill laser scanner. (b) A close-up 

view of the grizzly model and ore samples. 
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(a) 

(b) (c) 

Figure 5.2: Raw range measurements of muckpiles. Two piles are shown here, 
one consists of two and the other of three rock fragments respectively. The 
muckpiles were placed on top of the grizzly model. (a) 3-D plot of the range 
data. (b) Shaded image. (c) Grey-scale image (darker pixels represent points 
further away from the scanner). 
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5.2.1 Figure and ground separation 

Because of the chosen view-point2 (directly above the gnzzly model) and the calibrated 

field of view of the laser scanner, background/object separation after data acquisition can 

be performed by a simple depth thresholding based upon an a priori knowledge of the 

height of the grizzly. The result is a binary image, which shows muckpile separated from 

the grizzly model (Fig. 5.3) 

(a) (b) 

Figure 5.3: Figure/ground separation (a) Range image of rock pile afh'r 
figure/ground separation with grey-scale representing the range. (b) The asso­
ciated binary image. 

5.2.2 Rock surface reconstruction 

The next processing stage is the reconstruction of the muckplle surface from the range 

data. First, we find initial estimates of the surface properties (i e., surface normal. principal 

curvatures and principal directions at each sample point) using local methods Then 

we refine the initial estimates iteratively, using the curvature conslstency algonthm. In 

2Transformation is required for other camera position. su ch that the ry plane IS always parallel to the 
grizzly model. 
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general, the solution converges rapidly after five iterations. Fig. 5.4 shows a comparison 

of the principal directions (with needles representing the principal directions). One can 

easlly note that the principal directions obtamed after applying five iterations of curvature 

conslstency are far more stable wh en compared to the initial estimates obtained through 

local methods 

(a) (b) 

Figure 5.4: Needle map of principal dIrections Mp. (a) Initial estimates using 
local method. (b) ReflOements after applying 5 iterations of curvature consis­
tency a/gorlthm 

To compare the curvatures of the muckpile surface, the l\plll' curvature-sign map 

that characterizes the muckplle surface based on the eight surface primitives defined in 

!i 33.1 is computed (Fig 55) Although, the surface representatlon obtained from the 

minimizatlon process is much more stable than the one obtained from the initial estimates, 

the problem of inferring the surface boundanes remains (see Fig 5.!>b) Ideally, for the 

surface decomposltlon, it is desirable to obta," a surface representation that describes the 

general geometnc structure of the muckpile, rather than a detailed representation which 

,"cludes the unwanted and highly textured rock surface features. 
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5 Results 

(a) (b) 

Figure 5.5: Comparison of K p Jlp curvature-sign map (a) Initial estimates 

using local method. (b) Refinements after applying 5 Iterations of curvature 
consistency algorithm. 

Scale-space filtering 

As mentioned in the previous chapters, to infer the partitioning boundaries for the part 

decomposition, only the overall structure of the muckplle at certain scales are slgniflcant 

T 0 obtain the surface representation of the muckpile at a partlcular scale, Gaussian filterlng 

is first applied to the original range data before the surface reconstruction A set of stable 

surface descriptions at different scales can be obtained by varylng the scale parameter (1 

(Fig. 5.6). 

5.2.3 Rock decomposition 

Similarly, the surface features (negative curvature minima) at different scales for the 

partitioning boundary detection can be recovered. These critical points should correspond 

to the contact boundaries between rocks if the appropriate scale is chosen. Fig 5 7 

shows critical points recovered at different scales after applying flve Iterations of the 

curvature consistency algorithm. By combining these critical points together wlth the 
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17=3 0"=4 

17=5 0" = 7 

17=8 (1 = 10 

Figure 5.6: 1\. J> Ill' curvature-sign map at different scales. 
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5. Reosults 

occluding contours obtained from the featurejground separation, the enclosed contours 

each isolating an individual rock can be recovered. Because of hlgh density of these feature 

points, and the availability of a priori knowledge of how the contact boundaries should 

end, a simple stralght line interpolation between end points and occluding boundartes, 

in practice is often sufficient for finding the rock boundaries However, if the denslty of 

these feature points decreases, it mlght not clear how the rnterpolatlon should proceed 

The resulting enclosed regions are then labelled using a standard clustenng algonthm A 

set of segmentation results based on the critical points in Fig 5.7 is shown in Fig 5.8. 

5.2.4 Fitting of superquadric model 

The final processing stage for the rock localization and identification problem is to re­

coyer the ~patial propertles for each tndividual rock. These propertles Include the centre 

of gravit y, the surface orientation, the approximated shape and sIze The wtre frames 

corresponding to the final models for each rock are shown ln Fig. 5.9b To get a more 

qualitative appreciation of these results, the wire frames are rendered as shaded images 

and plotted against the original set of range data (Fig. 5.9). 

5.2.5 Processing time 

Table 5.1 shows the approximated time required for each processing stage on a Sun 

Sparcstation 1. 

Surface P.econstruction 20 mins. 
Surface D~composition 30 secs 

--
Fitting of Superquadric Model 5 mins 

Table 5.1: Approximated time required for each processmg stage. surface re­
construction, surface decompositlon, and fittlng of superquadrlc mode!. 
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Figure 5.7: Surface feature points al different scaleso 
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Figure 5.8: Surface decomposition at different scales 
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(a) 

(b) 

Figure 5.9: (a) 0 . (T = 6 in F' ngmal range d t (c) 
Ig 58 (b) a a part't' 

( c) Shaded im~g~ f Superq uadric (wi re ; loned according '0 .h . o .h. superquad . rame) model fo.t' e reglon map rlC mode!. mg of the rock-pile. 

72 



1 

5 Results 

5.3 Case studies 

Five case studies are presented in the following section, to evaluate the strategy proposed. 

The computation of surface reconstruction and part decomposition was performed on a 

Sun Sparcstation 1+. For the superquadric modelling, each rock was modelled mdividually 

The rendering of the muckpile models was done on a Silicon Graphies 4J> /35 (Personal 

1 ris) workstation. 

Example one 

Fig. 5.10 shows a shaded image and a range image (intensity represent'i range) of a 

muckpile consisting of three rock fragments. Using the same procedures mentloned ln 

this chapter, the muckpile surface is decomposed at dlfferent scales (Fig 5 11) The fmal 

muckpile model is shown in Fig 5 12. 

(a) (b) 

Figure 5.10: Raw range measurements of muckpiles. Three rock fragments 

are shown here, with two rocks overlapping a bigger rock The muckpiles were 

placed on top of the grizzly model. (a) Shaded image. (b) Grey-scale image 

(darker pixels represent points further away from the scanner). 
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17=3 

17=6 0'=7 

0' = 10 

Figure 5.11: Surface decomposition at different scales. 
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5. Results 

(a) 

(b) (c) 

Figure 5.12: (a) O,iginal range data partitioned according to the region map 
Fig. 5.11. (b) Superquadric (wire frame) model fitting of the rock-pile. (c) 
Shaded image of the superquadric model. 
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5. Results 

Example two 

The second example shows three rock samples (one isolated and two overlapping rocks) 

in Fig. 5 13 The surface decomposition at different scales is shown in Fig. 5.14. The 

superquadncs corresponding to this muckpile model is shown in Fig. 5.15. 

(a) (b) 

Figure 5.13: Raw range measurements of muckpile. Three rock samples are 

shown here, one Isolated and two overlapping fragments. (a) Sl-taded image. 

(b) Grey-scale image (darker pixels represent points further away from the scan­

ner) 
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Figure 5.14: Surface decomposition at different scales. 
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(a) 

(b) 

Figure 5.15· map Fig. 5.1 ~ (a) Original range data . . ( c) 
(c) Shaded im~g:b~f S~p.rqu.dric (wir. f:.art'ltoned .ccording to h . t e superquadric m dm le) model fitting of th t e reglon o e. e rock-pile. 
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5. Results 

Example three 

Fig. 5.16 shows another example of three overlapping rock samples. In partlcular, the 

rock fragments were arranged in such a way, that they only slightly overlap each other; 

i.e., the depth discontinuities along the contacting boundaries are relatlVely sm ail The 

surface decomposition worked weil even under these situations (see Fig. 5 17) The final 

muckpile model is shown in Fig. 5.18. 

(a) (b) 

Figure 5.16: Raw range measurements of muckpile. Three rocks are shown 
here, with two 5mall rock fragments slightly overlapping a bigger fragment. 
(a) Shaded image. (b) Grey-scale image (darker pixels represent pOlOts further 
away from the scanner). 
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Figure 5.17: Surface decomposition at different scales. 
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(a) 

(b) 

Figure 5.18: (.) Origi •• , r.ng. d.t. p.rtitioned '<carding ta the r.gio

n 
'"'p Fig. 5.17. (h) Superqu.dric (""ire fram.) rnodel litting of th. rock_pol. (c) Sh.ded irn.g. of th. sup.rqu.dric rnod.I. 

(c) 
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Example four 

The fourth example is of a muckpile sample consisting of three rock fragments (Fig. 5.19). 

ln this partlcular example, a bigger rock fragment was Iying on top of two smaller rock 

fragments Note that thls case is unlikely to happen in a real mine, since small fragments 

tend to stay on top of the bigger ones after being unloaded from the LH 0 vehicles. 

Fig 5.20 shows the surface decomposition at different scales. The final muckpile model 

IS shown in Fig 5.21 

(a) (b) 

Figure 5.19: Raw range measurements of muckpile. Only one muckpile is shown 
here, with one big rock fragment on top of two smaller fragments. (a) Shaded 
image. (b) Grey-scale Image (darker pixels represent points further away from 
the scanner). 
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Figure 5.20: Surface decomposition at different scales. 
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Figure 5 21' ( 
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(e) Shaded im~g~b ~f ~~perquadrie (wire f:.:.t1t)loned according to th e superquadric mod 1 e model fitting of th e reglon e . e rock-pile. 
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5. Results 

Example five 

Fig 5.22 shows four rock fragments. The surface decomposition at different scales 15 

shown in Fig. 5.23. Fig 5.24 shows the final muckpile mode!. 

(a) (b) 

Figure 5.22: Raw range measurements of muckpiles. Two piles are shown here, 
each with two rock fragments. (a) Shaded image. (b) Grey-scale image (darker 
pixels represent points further away from the scanner). 
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Figure 5.23: Surface decomposition at different scales. 
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(a) 

(c) 

. the region map (b) artitioned accordmg
ft 

tO
h 
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( ) Original range ) model Ittm Figure 5,.24: a adric (wire frame 

3 (b) Superqu mode!. Fig. 5.2 . the superquadnc Shaded image of 
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5. Results 

5.4 Discussion 

Six sets of results have been presented in thls chapter, including flve from the case studies 

It is very dlfficult to assess the reliability and robustness of the strategy proposed, based 

Oil the limited number of examples. However, among the total of mort' than twenty 

test cases that haa been studied, the success rate was approximately 80 percent. This 

promising figure suggests that the strategy IS indeed adequate for Identifymg and locatmg 

rock fragments from the configurations simulated ln the laboratory 

The main problem of this particular approach is the muckplle G.!composltion, and 

especially the determination of the scale parameter (0') The expenence gained from thls 

exercise has shown that once the appropriate range of scales is estabhshed, based on 

trial-and-error, the rock lumps can be identified correctly. The scale parameter is hlghly 

correlated to the physical attributes of the eqUlpment and the objects 10 the scene For 

example, the larger the rock size and/or the greater the surface irregulanty, the larger the 

scale parameter (see Table 5.2) 

-[----------- l 
a=6 a==7 

------~--:.--r ----- - -- -
-6 1 8.0 X lO-G -1--·_· --- .. 
-1 1 5 y 10 1 
--- -- - -- -

Average Rock !lrze (m-2 ) 5.6 X 10-6 6.0 X 10-6 6.4 X 10-6 7.2 X 10 FIeld of Vlew 
Average Slze of Surface Irregulantï -

0.3 X 10-1 0.4 X 10-1 0.8 X 10-1 1.1 X 10 Avera/{e Rock Slze ------
Table 5.2: The correlation of scale parameter (a) between the average rock 
size (4 - 8 cm diameter), the field of vlew ratio (1 m3 ), and ~he average size of 
surface irregularity (0.2 - 1.5 cm) 

The partitioning boundaries identifled by muckpile decompos;tlon algorlthm do not 

always correspond to the "true" rock boundaries This is partly because of the smoothmg 

effect from the scale-space filtering. Results have shown that the errors mtroduced are 

negligible, and are compensated for during the modelhng fiUing procedure 

There are also sorne problems encountered ln the expenment for modelling the muck­

pile, wh en the rock shape is highly irregular or fiat These problerns are due to the 

loose constraint in inferring the rock size with insufflcient data and the Incapab.llty of 

superquadric for modelling complex rock shapp.s. Additional constramts can be embedded 

in the modelling fitting procedure, sud that each overlapped rock fragment cannot be 

modelled by the parametric primitive that grows below the fragment(s) Identlfled underlay 
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Chapter 6 Conclusions 

ln this thesis. steps towards the goal of rock fragment localization and identification 

required for the secondary rock-breakage automation, using computer vision-based tech­

niques have been presented. In particular, the study reported in this thesis has concen­

trated on the inference of the muckpile surface structure from the range measurements 

obtained from a laboratory scale model. The basic concepts employed are borrowed from 

standard dlfferential geometry for analyzing 3-D curves and surfaces. 

The proposed strategy involves three main steps: (i) surface reconstruction, (ii) surfac~ 

decomposltion. and (iii) volumetrie modelling. Sander's curvature consistency algorithm 

has proven to be very useful in recovering stable surface structure even with highly noisy 

measurements Subsequently, the part decomposition of muckpile is made possible be­

cause of the stable surfaca estimates. The final muckpile model was obtained by litting 

superquadric primitives to the identified rock surface::: This gives a qualitative description 

of the position, orientation, size and shape of each rock fragment. This description is very 

useful for the "high level" operations, not just limited to rock-breaking application, but 

car. also be applied to many applications of similar nature; such as ore analysis, blasting 

assessment, materials transportation, etc. 

Not surprisingly, the scale factor turned out to be very important because of the highly 

textured surface and geometrical irregularity inherent in the litho-structure. In spite of 

the fact that, the scale factor is somewhat related to t~e resolution of the measurements 

and th..:: physical size of the objects, the exact relationship remains not weil understood. 

A number of questions remain to be answered - how to chose the range of scales, and 

how to combine information across different scales. 

Although encouraging results have been obtained, based on the proposed strategy, 

much of the work remains to be refined and enhanced before it can be applied in the real 

mine environment. The following is a list of items from th~ strategy proposed which can 

be improved: 
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6. Conclusions 

• For the surface reconstruction aspect, the current version of the curvatme consis­

tency algorithm d..,es not have the capability of preserving surhce discontinuities, 

however, this information is very important for the part decomposition process. A 

new enha nced version of the curvature consistency algorithm WI~! !:: r.-quired, for 

example to include a mechanism that guides the update of surface estimates based 

on the error measurement. 

• For the muckpile surface decompor,ition aspect, the boundary features such as nega­

tive local curvature minima and jump dlscontinuities have plOven to be very useful. A 

more robust decomposition strategy will be required, su ch as combining the bound­

ary information with the region information, say, withm a certain neighbourhood 

size, and identifying the partitioning boundaries more reliably. 

• For the modelling aspect, physically-based deformable models seem to be more 

promising than the existing "pure" superquadric models. They provide better lo­

cal surface structure, v .. hich is very useful if the breaking tool is to be positioned 

precisely on the rock surface. Moreover, the physically-based model provides the 

basic dynamic elements which would be used to simulate and predict the physical 

responses of the object due to external forces. This would bi very useful if one can 

derive a physical model from the ore samples, and use this model to predlct how 

much force is required to break each of the oversized rock lumps and to subsequently 

predict how weil the rock fragments will react. 

Other practical problems: 

(i) The viewing problem due to bad view angle or occlusion of small fragment.s. T 0 

solve this particular problem integration of range measurements at different vi,ewpoints 

will be required. 

(ii) Sensor fusion - integration of difTerent sensor measurements. An aspect of the 

overall problem that has not been investigated here is the use of the rockbreaker hammer 

itself as a feedback in the rock discrimination process. Hypotheses for rock location 

identified by the vision system, could be tested by trial shifting of apparently separate 

rocks to ensure that they are indeed separa te je xi st before the breakage operations are 
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6. tondusions 

initiated. Suc::h a combination of see·and-touch techniques is of course common amongst 

Intelligent creatures E'xplonng new environments. 

(iii) The computing time problem has not been studiE'J in this thesis, but it is very 

important to the dutomation process. Therefore, it should be given a high priority in the 

future research 

(iv) The safety problem, such as providing the worker with sufflcient sheltering and 

protection If a high power laser is used as the energy source for the sensor. 

The results obtained from the experiments are a successful demonstration of how 

computer vision techniques can be apphed in locating and identifying highly irregular 

·)bjects such as rock fragments. To conclude this thesis, more research will be tequired 

in the future to inll~stigate the problems addressed here, and to build a one-to-one scale 

test-bed so that more in·depth assessment of the projec.t can be made. 
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