g

Inferring Surface Structure of Rock Piles
from Range Images

William K. W. Cheung

B. Eng., (University of Sheffield, UK), 1989

Department of Mining and Metallurgical Engineering
McGill University
Montréal

June, 1992

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillmen of the requirements for the degree of

Master of Engineering

© William K. W. Cheung, 1992




Jnk

Abstract

This thesis deals with the problem of applying computer vision techniques in an under-
ground mine environment. In particular, the problem of the localization and identification
of oversized rock fragments prior to secondary breakage, following the initial drilling and
blasting operation is addressed. The strategy employed is based cn the methodologies
developed for reconstruction and interpretation of range image data. Discrete rock pile
images acquired using the NRCC/McGill laser rangefinder were used in this study. The
main contribution of this thesis is the complete study of the paradigm which involves:
range data acquisition, surface reconstruction, segmentation, and fitting of parametric
shape models The final representation obtained from the model, describing the spatial
and geometric properties of each rock fragment and can be used to control an automated
rock-breaking mechanism. To support the strategy developed, a number of experimental

results at different processing stages are presented.



Résumé

Cette thése s’attelle au probléme de I'application des techniques de visionique en mi-
lieu minier souterrain. En particulier, nous attaquons le probléeme de la localisation et de
I'identification de fragments rocheux surdimensionnés, a la suite des opérations initiales de
forage et d’expicsion. La stratégie employée est fondée sur les méthodes developpées pour
la reconstruction et l'interprétation d'images télémétriques. Des images d'empilement de
roches, obtenues & I'aide du télémétre 3 laser NRCC/McGill ont été utilisées pour cette
étude. La contribution principale de cette thése est I'étude compléte du paradigme qui
comprend: I'acquisition de données télémétriques, la reconstruction de surface, la segmen-
tation, et le choix et I'ajustement de modeles de forme paramétriques. La représentation
finale obtenue 3 partir du modeéle décrit les propriétés spatiales et géometriques de chaque
fragment rocheux et peut €tre utilisée pour contrdler un mécanisme automatisé de frag-
mentation des roches. Afin de valider notre approche, un certain nombre de résultats

experimentaux des différentes étapes sont présentés dans la thése.
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Chapter 1 Introduction

Machine vision has been successfully applied to industrial problems, assisting or even
replacing human operators in tasks involving visual perception. Examples of such
successful applications include, inspection of printed circuit boards [Hara et al., 1982,
Mandeville, 1985), finger-prin® recognition [Hrechak and McHugh, 1990}, letter sorting
[Mitchell and Gillies, 1989], and automatic welding [Beranek et al., 1986]). However, very
little has been done in transferring the existing computer vision technology to hostile envi-
ronments like the ones enccuntered in mining. Recent advances in computer architecture,
improved software reliability, and the availability of sophisticated image acquisition de-
vices have opened up a new frontier 1or such novel computer vision applications. Clearly,
mining tasks that require human supervision, znd that are dangerous and/or tedious, are
worthwhile candidates for coraputer vision-based automation.

This thesis deals with such an application of computer vision in mining and in particular
to the problem of rock fragment identification and localization for secondary rockbreaking
operations. Currently, a human operator determines the position and the geometry of
each rock to be broken, and then positions and controls the breaking tool accordingly. In
an automated system, spatial information and the geometry of the scene m: -. be acquired
at high rates. The “traditional” contact sensing methods, such as tactile ensing have
failed in this respect, while the non-contact sensing methods, including the computer
vision-based approach, provide a natural and viable framework for such a system.

Thz basic approach used here is quite different from those proposed in the past for
use in mining, and is based on the use of a laser rangefinder rather than a standard T.V.
camera, to reduce the complexity of image interpretation. Rar.;ge images have a number
of advantages over intensity images for inferring the 3-D structure of vbjects in a scene.
Ideally, range information is not subjected to the changes in lighting conditions, surface
reflectance und camera position. This is achieved by making the scene geometry explicit.

Nevertheless, the “low-level” vision problems, such as feature detection and segmentation
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remain [Jain and Jain, 1990].
The strategy is based on the methodologies developed for 3-D object recognition by

[Pentland, 1987, Ferrie et al., 1989). It involves the reconstruction and interpretation of
range image data; stable surface properties estimation, feature recovery, part decompo-
sition and solid modelling of three-dimensional objects. Experience gained from previous
work in solid shape modelling of man-made objects, supports the applicaiion of these
ideas in the rockbreaking problem [Fe:rie et al., 1990]. The final representation of the

mine scene obtained from the modelling will be utilized to control the rockbreaking mech-

anism as already mentioned.

1.1 Mining automation

The mining industry is currently undergoing an extensive technological revolution. A con-
siderable amount of research and development has recently been carried out on automat-
ing the mechanization and instrumentation of mining equipment. On the other hand, the
manufacturing industry has long been experiencing the prosperity and profitability which
fully or semi-automated machinery can generate. Mining industries in developed coun-
tries that are not blessed with abundant resources and cheap labour, must automate their
mining operations in order to remain competitive.

One can easily identify the four main objectives of mining automation: (i) reduce
production costs, (ii) increase productivity, (iii) enhance the working environment, and
(iv) improve the safety of the warkers. In order to achieve all these objectives, automation

in mining requires intelligent machines, capable of
e carrying out actions,
e perceiving and understanding the surrounding environment,
e making intelligent decisions.

Furthermore, their behavior should adapt to changes in the environment and be based

on a priori knowledge. Such a priori knowledge may include, the information about
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the surrounding environment, the characteristics of the machinery, and their established
operating procedures.

In one of the early papers on mining automation, Salamon reviewed a general frame-
work for mine automatic control systems, and correctly predicted the slow progress in the
introduction of automation into the mining industry [Salamon, 1976]. One explanation
[Kassler, 1985], is that the direct transfer of technology developed for other industries into
mining has proven ineffective. A number of factors inherent in the mining machinery and
environment, which may affect the automation process, should also be seriously considered
during the early stages of such projects if any degree of success is to be achieved.

In generai, there are two classes of machinery that can be automated, viz: (i) station-
ary, and (ii) mobile. A machine is considered to be stationary, if it is fixed to a designated
location, and its work-space is well defined and restricted. A machine is said to be mobile,
if it is capable of moving or changing its entire position without being attached to any
specified location. Thereby, the workspace of a mobile machine may change according to
its new location/position. The problem of automating a stationary machine is relatively
straightforward when compared to that of a mobile machine. The additional mobility
complicates the automation process.

Most of the robots employed in the manufacturing industry fall in the first category,
with their bases fixed to the floor, performing routine “pick and place” operations. Unlike
the structured robot environments that are typical in the manufacturing industry, mine
environments continuously evolve over the entire production cycle, in a manner highly
dependent upon the geological irregularities inherent in the randomness of nature.

Typical tasks that the mining machinery has to perform, include rock-attack, sec-
ondary breakage, ore handling and transportation. A large number of mining machines
are therefore essentially mobile. For the purposes of automation, they are closely re-
lated to autonomous vehicles rather than industrial robots. The required payloads and
control strategies are quite different for manufacturing automation and mining automa-
tion. Additionally, mining machinery is subjected to various abuses from their surrounding
environment (e.g., dust, heai, humidity and vibration). Thus, it makes the design and

development of mining automation particularly challenging.
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1.1.1 Machine vision in mining

The following describes some of the mining computer vision applicztions discussed in the
literature. Most of these applications share a common theme; the use of standard T.V.
cameras as sensing devices, and registering the direct illuminance emitted fron. t*. scene.

In interpreting these images, a priori knowledge about the characteristics of each feature

to be detected is often required.

Ore deprsit evaluation

The distribution of hithologic facies from an exploitation wall can be considered as an
indicator for the ore deposit structure evaluation. It has been shown that, with the help
of computer vision, it is possible to make a rough estimation of the mineral content in the
ores, by analysing images of the exploitation wall [Bonifazi and Massacci, 1989]. Given the
relationship between the chemical characteristics and the colour (spectrum) information
of each ore deposit, the litho-type was determined from the differences in the grey level
distribution of the images. [f the exploitation is advanced according to an alignment
whose coordinates are known, and the images are taken from the walls perpendicular to
the feeding direction, then the orebody volumes can be computed by means of a simple

geometrical calculation. This information can also be used for the geostatistical evaluation

of the mine production.

Rock slope analysis

In geological surveys, one of the most common problems is the determination of the
joint parameters that can be used to predict the behavicur (stability) of the rock mass.
Often, direct measurements of the slope are very difficult to perform; e.g., where the
joints’ outcropping on rock walls is high and steep. Photogrammetric techniques have
been developed as a tool for rock slope characterization and monitoring in difficult ground
conditions [Baratin et al., 1990).

The proposed method is based on reconstructing the three-dimensional terrain model

of the rock slope. At least two stereoscopic pictures of the slope are required for the
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reconstruction of the digital terrain model. The latter is used to derive the geometrical
parameters of the joints. Good agreement between both the calculated and the direct

measured values has been reported [Baratin et al., 1990}

Ore sorting

The separation of useful minerals from gangue is a classical problem that appears in
every mining exploitation. This sorting process is often carried ou* manually depending
on visual information. Vision systems have been proposed and developed in the past
to help maintain the mineral content above the minimal level required for high quality
industrial parts [Maenpaa et al., 1983, Manana et al., 1985). These systems proceeded
by identifying different rock and ore types on a moving conveyor belt based on their surface
reflectance spectrums.

Experience has shown that the mineral quality achieved by the vision-based sorting
system failed to surpass the quality achieved by skillful workers [Maenpaa et al., 1983].
Problems occur when the rock surface is covered with dirt or the rock consists of about
one-half of waste. Washing may well be required before the sorting process. A problem,
however, is that washing cannot be employed in sub-zero temperatures (e.g , during the

winter period).

Measurement of blast fragmentation

The knowledge of fragment size distribution is very crucial to the success of a mine
production. For maximum productivity and efficiency, it is important to optimize the
fragment size distribution throughout the entire production cycle; from the initial blasting
to smelting. The subject of fragment size estimation via image analysis techniques, has
attracted a considerable amount of interest from researchers all over the world.

Most of the proposed techniques are edge-based; i.e., they proceed by detecting fea-
tures corresponding to discontinuities in intensity changes. Studies have shown that the
size estimation can be derived, by using the edge information and the assumption that
blasted fragments are spherical in shape [Carlsson and Nyberg, 1983, Hunter et al., 1990].

Others include more sophisticated algorithms such as overlapping correction functions de-

5
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rived empirically from experiments [Maerz et al., 1987] and stereo techniques to compute
more reliable size distribution estimates using 3-D information [Cheung and Ord, 1990].
Attempts have also been made in the past to model rock fragments with convex poly-
gons [Gao and Wong, 1989]. An intersity image of a rock pile, obtained from a standard
T.V. camera, was pre-segmented by thresholding. The resulting binary image was then
treated as a rough segmentation of the muckpile which might contain a lot of broken
(weak) boundaries. The image was then passed to a second stage of segmentation in
an attempt to reconstruct the missing boundaries of the rock lumps. The boundary
reconstruction was based on approximating each 2-D rock profile with a convex poly-
gon. The final segmented image shared some resemblances to that obtained by manual
segmentation. Although this was judged to be adequate for computing the size and/or
volume distribution [Gao and Wong, 1989)], its lack of precision in localizing the “true”

rock boundaries, makes it insufficient for tasks such as rock fragment localization and

identification.

Roadheader automation

The outline of the orebody boundary and its geological features are essential in se-
lecting the cutting trajectories for a roadheader machine during the excavation process
[Orteu and Devy, 1991, Fuen' s-Cantillana et al., 1991]. This is due to the fact that the
cutting sequence must change according to the geometrical distribution of the mineral
deposits, especially when these deposits are highly irregular. Orteu and Devy proposed
the use of a computer vision-based system to discriminate the ore types present on the
cutting face [Orteu and Devy, 1991).

in the study, two colour cameras were mounted on the roadheader at different loca-
tions, in such a way that the covered areas are complementary to each other. Knowing the
geometrical setup of the instruments and the roadheader, the two images were combined
together to form a single image of the complete cutting face. The resulting image was
then separated into different regions that corresponded to the colour spectrum of each
ore type. From this segmented and labelled image, a so-called “face map” of the ore dis-

tribution is produced, which can be used to control the cutting boom of the road!:eader
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machine.

Guidance of LHD vehicles

Load-Haul-Dump (LHD) vehicles are in widespread use for the loading and transport
operations in underground mine environments. Considerable emphasis has been put both
on better path control and on more efficient usage of these vehicles. A monitoring system
has been developed to collect data from various sensors mounted on LHD vehicles, and
this information is used to assist the mine staff in problem diagnosis and maintenance
service [Baiden, 1988].

More recently, the development of automatic guided LHD vehicles based on ma-
chine vision has been reported. A prototype of such a system [St-Amant et a/, 1991,
Hurteau et al., 1991] has been built and was tested in an underground mine. The results
demonstrated the feasibility of employing automatic guided LHD vehicles in an under-
ground mine, equipped with optical lines fitted on the ceiling just above the vehicle's
guide-path. The basic idea is very simple; the prototype vehicle is equipped with two
specially designed optical line detectors for tracking the vehicle movement with respect to
the guide-path- one for the forward direction and one for the reverse direction A similar
practice in Sweden is also reported [Vagenas et al., 1991), however, a white-painted line

was used as the optical guide-path rather than a retro-reflective ribbon.

Secondary rock breakage

It is very difficult, if not impossible, to achieve perfect blasting results, due to both techni-
cal and economic reasons. The drilling of straight blast holes that remain parallel over the
long distances demanded by mining economists is difficult to achieve [Chabot et al., 1989)].
After blasting therefore, the resulting fragment sizes are often badly distributed, making
the processing and transporting of minerals very difficult. In cases where the rock frag-
ments are too large, a secondary breakage is usually required to prevent oversized material
from being transported. It is very common to find that in a mine machine, breakdown
results from the frequent loading of oversized fragments.

Initial studies demonstrated the potential of machine vision for the automation of the
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Drawpoint LHD

ead)

5 &

Orepass

Figure 1.1: A typical plan-view of an underground hardrock mine.

secondary rockbreaking process [Hurteau et al,, 1989, Cheung et al., 1990]. This appli-

cation is the primary focus of this thesis and will be examined in more detail in the next

section.

1.2 Rockbreaker automation problem

In a typical underground hardrock mining operation, after the initial drilling and blasting,
the broken material, also known as muckpile, is loaded onto an LHD vehicle. The LHD
vehicle carries the muckpile from the drawpoint and empties its load on top of a vertical
orepass — a gateway in underground mines for transporting minerals. Despite attempts
to avoid the transport of oversized rock lumps, a considerable proportion do arrive at the
top of the orepass. Since thz orepass can be easily blocked by large rocks (Fig. 1.1), a
metal sieve structure, of perhaps 1 m? in mesh size and 4 m x 5 m in dimensions, known
as a grizzly is placed on top of it to prevent oversized lumps from entering the ore transfer
system. It is essential to keep the grizzly clear and free from the accumulation of rock
lumps throughout the entire production cycle. A large mechanical device equipped with a

jack hammer, commonly referred to as the rockbreaker (Fig. 1.2), is employed for clearing
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Figure 1.2: Schematic of an automated rockbreaker, consists of both sensing
and processing components.

the grizzly and breaking up the remaining oversized rocks. The role of the rockbreaker is
to ensure that the production is free from interruption due to blockage of the grizzly.

During a typical, manually controlled rockbreaking operation, a human operator pro-
tected inside the control cabin of the rockbreaker, manoeuvres the jack hammer of the
rockbreaker directly above the muckpile to be cleared by sieving and hammering. Theo-
retically, using the mechanical device the operator can reach any location on the grizzly
with restrictions on the orientation of the hammer. In practice, it is found to be more
difficult to break rocks that are close to the near corners than those located in the middle
of the grizzly because of a bad viewing angle and the geometrical configuration of the
rockbreaker.

A typical rockbreaking process, starts by cleaning the front of the grizzly and then
continues to the back in a sweeping fashion. Sometimes, the operator will go through

each hole systematically if he/she is unable to make a decision; e.g., if the muckpile and
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the small fragmerts obstruct the view. The size of the target rock is also a very important
factor for the breakage. If the rock is large, its sides will be attacked iirst until it is reduced
to a more manageable size. If it is small, the hammer will be aimed directly at its centre.
Before applying the hammering, care must be taken to ensure that the tip of the hammer
is in good contact with the surface of the rock. Moreover, an appropriate amount of
pressure has to be exerted by the hydraulic system during the breaking. Ideally, the
operator will position the hammer perpendicular to the rock face. Any other orientation
will increase the risk of breaking the hammer’s tip, producing uncontrollable flying chips

and undesirable movement of the rock.

In positioning the hammer, skill, experience, attention, knowledge of rock mechanics
and the location of the grizzly are required on the part of the human operator, making
this process an extremely slow and costly one. It may take up to 45 minutes! to complete
the clearance of one muckpile. Furthermore, the operation of the hammer is based on
the operator’s vision and perception of the given rock configuration, as well as on his/her
experience. Thus, it makes the performance of the rockbreaker very much dependent
upon each individual operator.

The rockbreaker resembles an industrial robot in a number of ways; it is composed of
articulated joints with four degrees of freedom and has a fixed base. It seems obvious that
the knowledge gained from previous robotic and machine vision research can be applied
to the rockbreaker automation problem.

The strategy for the rockbreaker problem used here is very similar to the work reported
in [Choi et al., 1990] and [Ikeuchi and Hebert, 1990], in the development of a vision-based
rock sampling system for a planetary exploration mission that collects terrain samples.
More will be said about their work later as the strategy closely resembles that of the
present project. However, it differs significantly in the computational methodology used

to perform image segmentation.

1The breaking time can vary substantially from mine to mine
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1. Introduction

1.3 Objectives and contributions

This thesis concentrates on the computer vision aspect of the rockbreaker automation
project. Although, other issues such as trajectory planning and control are also important
for the success of the rockbreaker automation, they are considered to be secondary when
compared to the problem of identifying and modelling target rock lumps in the muckpile.

The main objective of this research is to investigate, study and select the existing
algorithms developed in computer vision, and apply them to the problem of rock fragment
localization and identification.

The main contribution of this thesis, is the successful demonstration of computer vision
techniques applied to characterizing the rock shapes on a laboratory scale. More impor-
tantly, the complete image processing framework is studied; i.e., range data acquisition,

data reconstruction, image segmentation, and fitting of volumetric models.

1.4 Organizaiion of the thesis

The next chapter describes how the measurement of the scene is acquired using the
NRCC/McGill laser rangefinder. In addition. alternative range imaging techniques are also
briefly discussed. Chapter 3 reviews the basic framework for range data reconstruction
and interpretation. Some of the methodologies developed based on standard differential
geometry for surface analysis are also discussed. Chapter 4 describes the algorithms
involved in our computing strategy. Chapter 5 presents muckpile images at different
stages of the processing, and the final validation of the image analysis strategy proposed

in this thesis. Finally, Chapter 6 summarizes the results of the research and recommends

future research directions.
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Chapt»r 2 Sensor measurements

2.1 Introduction

The ultimate objective of this research is to provide the rockbreaker with the ability to
automatically identify, locate and break the oversized rocks remaining on the grizzly. [t
is obvious that special attention has to be given to the measurement and analysis of the
environment if any degree of autonomy is to be delegated to the machine. In particular,
vision has been regarded as the most important channel of perception. This chapter is

devoted to the imaging aspect of the rockbreaker research.

Light Source Viewer

. Normal .

Figure 2.1: A typical image formation — a function of four variables: the
position of the light source, the viewing position, the reflectance of the surface,
and the geometry of the object.

Different imaging sensc:s have been developed to acquire various types of measure-
ments. Therefore, one has to begin by understanding how these measurements are cre-
ated. The visual images perceive in our everyday life are complex functions of four vari-

ables [Marr, 1982, Levine, 1985, Horn, 1986] (see Fig. 2.1): (i) the position of the light
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2. Sensor measurements

source(s) used to illuminate the scene, (i) the position of the viewer, (iii) the reflectance
of the surface(s), and (iv) the geometry of the objects in the scene Although, humans
and animals do not seem to have any problem inferring the world’s structure from visual
information, the compiexity of the image formation process makes the problem of scene
reconstruction a very difficult one. However, researchers have shown that by exploiting
additional constraints inherent in the image(s), the geometry and structure of the scene
can be recovered [Ullman, 1979, Witkin, 1983, Horn, 1986]. This gives rise to the so-
called “Shape from X" paradigm in computer vision, where X could be, shading, texture,
motion, focus, stereo disparity, etc.

An important aspect of any automation-related research is the study of how special
sensors can be used to advantage. As far as the rockbreaker automation problem is
concerned, only the geometrical properties of the rocks are required for performing the
breaking task. Three-dimensional imaging sensors have been developed, and can be used
to obtain descriptions of the scene geometry through direct surface measurements. The

majority of the so-called “range images” are created in this manner.

2.2 Range images

To understand the term “range image”, one needs to understand the term “image”. An
n x m digital image T is defined in [Levine, 1985], as a function ¢(:, j) of two discrete
variables ¢ = 1,---,n and j = 1,.--,m, where g(1,j) is a grey-scale measurement.
Therefore, an image can be thought of as some function of two indices ¢ and j.

When dealing with range data one must consider the need to cover a three-dimensional
surface by collecting data from several different camera positions. Therefore, the notion
of an image can be extended and a range image R defined as a function of (¢4, j),

follows

R=T(€;iaj); 7:=1,"'7n’j=1""’m (21)

where ¢ describes the camera’s position and attitude in the scene. The camera position

is specified by a translation vector (X, Y., Z.) from the scene coordinate origin, and the
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camera’s attitude by Euler angles of rotation (0.,0,,0.) about the scene X, Y, and Z
axes respectively, and r is a distance measurement from the camera to a point on the

object’s surface.

A special case where the image is obtained by making only one distance measurement
at each camera position, and where the camera is always pointing in the same direction
will now be considered. In this case it is the camera position that is a function of the

indices

Xe = hi(i,j), (2.2a)
Yo = ha(i,j), (2.2b)
Z. = hs(i,3) (2.2¢)

where hy, ha, h3 are functions that constrain the camera to lie on a surface, for example
a plane, in the scene.

However, the range measurement is not always taken along the direction in which the
camera is pointing, and often needs to be transformed into local camera coordinates z,
y, and z. For distance measurements that are taken at different camera positions, one
must project each measurement from the camera coordinate system zyz to the scene

coordinate system XY Z,

X z
y | =R@G.)| y | +6. (2.3)
Z z}

where éc = (X, Y., Z.)7, and the rotational matrix R’(éc) from the (z,y, z) coordinates
to the (X, Y, Z) coordinates.
For the sake of simplicity, assume that the scene and camera coordinates are chosen

to align so that the camera is always positioned in the scene's XY plane, and hence

=i, y=j z=r(i}j) (24)
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2. Sensor measurements

then
z=r(r,y). (2.5)

Eq. 2.5 is also known as the graph surface representation. As a consequence of the
indexing scheme, one can define the neighbouring sample points for each measurement.
For example, the measurement of (7, j + 1) is a neighbour'of r(, 5).

In practice, the two indices ¢ and j are often used to represent the original sampling grid
of theimage, and depend on the geometry of the measuring device. Range measurements
in the form of Eq. 2.1 can be converted directly into the (X,Y, Z) coordinates by means
of a calibration look-up table or correction function. The converse is not always true, due
to the fact that it is not possible to map (X, Y, Z) from a three-dimensional parameter
space back to a six-dimensional parameter space such as the one in Eq. 2.1.

Range images are also loosely referred to by many other terms depending on the
context: range map, depth map, depth image, range picture, rangepic, 3-D image, 2%0
image, digital terrain map (DTM), topographic map, xyz point list, contour map, and

surface height map.

2.3 Range imaging techniques

Range imaging techniques can be grouped into two classes, passive or active, depending
on the sensing method. Passive techniques make use of ambient or unstructured light-
ing conditions and do not involve any special projections. However, the imaging process
often requires a priori models of the objects and/or the properties of illumination of the
scene. Active techniques perform range finding by projecting onto the scene structured
or patterned signals such as light stripes, dots, pulses, special patterns or colour. An inde-
pendent description of the object surface is derived without additional a priori knowledge
about the scene.

From a practical point of view, active techniques seem to be more appropriate for
the rockbreaker project. The mining environment provides an additional set of obstacles

and limitations, such as dirt and lighting problems, in the use of the usual passive tech-

1The term “neighbour” does not necessarily correspond to the closest sample
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2. Sensor measurements

niques, like shape from texture or shape from shading. In this section, a number of active

techniques are introduced from an engineering standpoint.

2.3.1 Active techniques

Most active range imaging techniques are based on one of the following six principles
[Besl, 1988]: (i) radar, (ii) moiré, (iii) lens focus, (iv) triangulation, (v) Fresnel diffraction,
and (vi) holographic interferometry. Since principlec {v) and (vi) demand set-ups that
cannot be realistically obtained in a real-mine environment (see [Besl, 1988] for details),

they are excluded from the following discussion.

Imaging radars

Animals such as bats and porpoises are equipped by nature with ultrasonic “radars” to
sense their surroundings even under unfavourable lighting conditions. The underlying
principle of a radar system is that the distance between the transmitter, the object, and
the receiver can be expressed as a function of time. Suppose that the transmitter and the
receiver are located in close proximity, and can be treated as a single transducer. Then

the distance to the object can be derived from the basic time/range equation:

vt =2z (2.6)

where v is the speed of signal propagation and z is the distance from the transducer to
the reflecting surface of the object. By calculating the time ¢ taken for the signal to travel
from the transmitter to the surface of the object, and from the object back to the receiver,
the distance z can be recovered. Of course, Eq. 2.6 can only be true when atmospheric
attenuation and other relevant physical properties of the reflecting surface are ignored.
Based on this concept, Jarvis [Jarvis, 1983] built a laser time of flight range scan-
ner, capatie of taking one range measurement at a time. A high speed, galvanometer
controlled, scanning mirror system was employed to deflect a laser beam at a point in
the scene. The operating distance for the rangefinder was between 1 and 4 meters, and

2.5 mm accuracy was achieved with 100 samples per point in the ideal situation. With
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2. Sensor measurements
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Figure 2.2: Moiré topography configuration.

the laser pulse frequency set at 10 kHz and an output power of 2.5 W, a 10 samples/point
average, over a 64 x 64 size range image, was acquired in 4 s. Constant fraction discrim-
ination was used to detect the return time of the pulse, independent of the pulse size.
The total propagation time from “start” (laser pulsed) to “end” (laser returned) is then
converted into a signal, whose amplitude is linearly proportional to this transit time.
More recently, a high performance rangefinding system using the same principle has
been reported [Kaisto et al., 1990]. The system can measure distance within a range from
3 m to 30 m with mm-level of accuracy. This accuracy is achieved at a maximum rate of

10 x 102 points per second.

Moiré topography

A moiré interference pattern can be created by illuminating a scene with the superimposed
patterns of two equi-spaced gratings. The moiré projection patterns representing the
contours at equal depth cen be visualized when viewing the scene through an identical

optical camera grating (Fig. 2.2). However, thereis no sign information in the contour map
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2. Sensor measurements

to indicate the increase or decrease in depth from one contour to another. Mathematically,

the interference pattern °(z) from the two grating patterns P, and P is described by:

P(z) = P;Pz{l + m, cosfwiz + ¢1z]}{1 + my cos[waz + ¢2x]} (2.7)

where the P, and P, are the amplitudes of the patterns, m; and m; are the modulation
indices, w;, and w, are the spatial frequencies of the two gratings, and ¢, and ¢, are the
spatial phase shifts.

When the signal is low-pass filtered (or blurred), resulting in P*(z), only the frequency

difference and the constant terms remain:

P(z) = P,Pg{l + mym, cos [(wl —w)z + $i(z) — ¢2(m)] } (2.8)

For equally spaced (i.e., identical) gratings, only the phase difference term is left.
Therefore, contour lines for different range levels can be recovered by changing the phase
of the second grating while maintaining the object and the camera fixed.

Moiré range imaging techniques are suitable for measuring the relative distance to
surface points on a smooth surface. A commercial range imaging sensor based on a single
frame moiré with a reference plane is reported in [Besl, 1988). The sensor can acquire
a 480 x 512 range image in approximately 2 seconds, with 1 part in 4000 accuracy.

Unfortunately, no data on the field of view were quoted in the article.

Lens focusing

Lens focusing techniques can also be used to determine depth. The range measurement is
taken by adjusting the lens setting so that the best focus is achieved. Lenses are governed

by a simple equation (see Fig. 2.3):

1
4 == 2.9

u + v F (29)
where u is the distance from a point on the object surface to the lens, v the distance

between the lens and the reference plane onto which the focused image is projected, and
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2. Sensor measurements
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Figure 2.3: Range from focusing principle.

F is the focal length of the lens. Given the geometric setup of the apparatus, the distance
v can be easily computed.

Two similar techniques [Rioux and Blais, 1986} are developed based on lens focusing
and are closely related to the triangulation methodology (discussed in the next section).
In the first technique, an array of point light sources is projected onto the scene, while
using an annular mask (with a circular opening) in the aperture of the objective lens.
A reference plane at a known distance is set in-focus by the camera focus adjustment
such that, points at the reference plane will have no effect on the image, whereas points
at different heights will form a blurred circle on the image. The relative distance from
each point to the reference plane is computed from the radius of the blurred image in the
focal (image) plane of the camera; e.g., the bigger the radius, the larger the distance.
The designed sensor is capable of measuring depths of 144 points with an accuracy of
+1 mm over a 100 mm depth of view.

The second technique requires that the scene be illuminated by multiple light stripes
while using a double aperture mask in the camera lens. By following the same set-up

procedure for the reference plane as in the previous one; when the light stripe is not in-
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2. Sensor measurements

focus, the camera sees the split lines. Similar to the first technique, the relative distance
to the reference plane is proportional to the splitting distance. The instrument is equipped
with a specially designed signal processing element to detect the maximum returned signal
on the CCD (charge-coupled device) array. This information is then used to derive the line
splitting distances on each scan sequence for the whole image. The sensor, also known
as “BIRIS" [Blais and Rioux, 1986], is capable of capturing a 256 x 256 range image in
less than 1 second by analyzing 10 projected lines in every 24 frames. In each frame, the

projected light stripes are shifted. A resolution of 1 mm over a depth range of 25 cm is

achieved.

Triangulation

Active triangulation is probably the most popular technique for acquiring range images,
and many commercially available sensors are based on this principle. Fig. 2.4 shows a
simple configuration of an active triangulation range sensing system. A light beam is
projected onto the object in the scene and the tesulting illuminated pattern is imaged by
the detector. Knowledge of the spatial parameters of the instrument, the position of the
image on the detector, the lateral separation b (base line} between the detector lens and
the light source, and the projection angle 6 of the source — allows the determination of
the distance z by means of solving a simple trigonometry problem.

Most triangulation-based range sensors require structured light to illuminate the scene.
One distinct feature associated with the structured light projection is the so-called shadow
effect?, which appears in the following locations: (i) at points on the surface where the
projected light cannot reach, or (ii) at points on the surface where the projected light is
occluded from the sensing elements due to the presence of intervening substance. Con-
sequently, no data is obtained for the image element that corresponds to these locations.
The absence of range data may also be due to poor surface refle.tance or other artifactual
responses of the sensor. The shadow problem has always been seen as a major drawback
of structured light-based sensors.

An example of a commerctal sensing system using this principle is the Jupiter Series,

2Also referred to as the “missing parts” problem
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Figure 2.4: Simple triangulation range finding geometry.

which is marketed by Servo-Robot and is capable of scanning 3000 points/s in a viewing
space of 1 m3, with the volume-centre resolution of 1 mm in the z, and 0.3 mm in the z
direction. A similar scanner patented by Rioux [Rioux, 1984], with a moderate acquisition
rate and high resolution is used in our study. In addition to the devices mentioned above,
other designs involving the projection of structured light stripes/patterns exist, and are

presented in [Kanade, 1987, Besl, 1988].

2.4 NRCC/McGill laser rangefinder

The rangefinder used in this study is the result of a joint development project between
the National Research Council of Canada (NRCC) and McGill University. The technique
employed is based on optical triangulation using a novel geometry (synchronized scanning)
invented at NRCC by Marc Rioux [Rioux, 1984]. A schematic diagram of the scanner is

shown in Fig. 2.5.
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NRCC / McGill
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Figure 2.5: Schematic of the NRCC/McGill laser rangefinder.

In the existing laboratory prototype, an He-Ne laser is used as the energy source. The
laser beam, on entering the compact optical Lead via a fibre-optic cable onto a fixed mirror
1y, is then reflected to one side of a double-sided, coated scanning mirror m,; along the
X axis. From there, it reflects onto a second fixed mirror my, which directs the beam
onto a second scanning mirror m,, along the Y axis, which finally projects the beam to
a point on the object’s surface. The reflected light follows a symmetrical path back onto
the opposite side of the first scanning mirror (m,;) from where it is deflected onto a linear
CCD array. The two scanning mirrors are driven by two galvanometers, one for the X
direction and the other for the Y direction. The synchronization of the scanning geometry
is maintained by a specially designed timing circuitry {Livingstone and Rioux, 1986}, so
that the orientation of the two scanning mirrors is acquired simultaneously. This makes

random access to any pixel in the field of view possible.
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Field of View:

single axis 100 cm x 100 cm

dual axis 100 cm x 100 cm x 100 cm
Resolution:

X axis, closest approach 0.40 mm/pixel

X axis, most distant point 4.00 mm/pixel

Y axis, closest approach 0.40 mm/pixel

Y axis, most distant point 4.00 mm/pixel

Z axis, closest approach 0.20 mm/pixel

Z axis, most distant point 1.40 mm/pixel
Acquisition Speed:

single axis 20.0 lines/second

dual axis 15 seconds/frame (256 lines)
Approximate Dimensions:

main body 18cm x13cm x5cm
motor shaft protrusion 2cm

Power Output: Approximately 6.0 mW (final mirror)
Weight: Approximately 1.0 kg

Table 2.1: Specifications of the NRCC/McGill prototype laser scanner based
on the synchronized scanning principle.

The scanning geometry of the rangefinder is designed in such a way that, for a given ori-
entation of the two scanning mirrors, the distance along the Z axis from the object to the
scanner is largely proportional to the displacement of the returned laser signal on the CCD
detector array. Thus, from the measurements of the orientations of the two mirrors and
the beam deflection, the distance to any point on the surface of an object on the scan line
can be determined. A look-up table [Bumbaca et al., 1986, Archibald and Amid, 1989]
is used to correct for the geometrical distortion and the non-linearities resulting from the
optics and the scanning mechanism. One reason for using a look-up table is that high ac-
curacy is achieved without compromising the data acquisition rate. It is worth noting that
the NRCC/McGill laser scanner geometry employs a relatively small angular displacement
separation between the energy source and the CCD detector, and thereby considerably
reduces the occurrence of shadow effects in the range image.

The laboratory prototype has been designed with a number of objectives in mind: a
minimal shadow effect, a compact and lightweight unit, high accuracy and a moderate

acquisition rate. The specifications for the resulting device are listed in Table 2.1. In
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a research environment, it is highly desirable to have the flexibility of moving a scanner
around to collect information at different viewpoints. The compact and lightweight design
enables the scanner to be mounted on the gripper of an industrial robot such as a PUMA
560. This permits various views of the objects to be acquired, and therefore, provides the
ability of overcoming the problems due to object occlusion, shadowing, and insufficient

data. A discussion of the problem of multiple view integration from range images can be

found in [Soucy, 1992].

2.5 Practical problems

The NRCC/McGill laser scanner has proven very useful in solvi- g many laboratory scale
problems in the past. However, increasing the 1 m® field of view of the current version
of the scanner to a larger and more practical volume of perhaps 125 m3® (5 m x5 m
x 5 m) for a mine environment, can create a number of technical and safety problems.
For example, several hundred mW of laser power will be required in order to cover this
volume. This may cause safety hazards to the workers in the proximity of the scanner
unless adequate protection is provided®. The 125 m® field of view may also create some
technical difficulties in the optical design of the device, but these have been viewed as
secondary in light of the power requirements.

A similar design of the scanner already exists for welding applications
[Beranek et al,, 1986). The device is environmentally sealed, temperature stabilized, and
equipped with an air jet to eliminate the disturbance caused by smoke and fumes. There-
fore, it seems feasible to incorporate the same type of technology in the mine environment.

Alternatively, other range finding technologies as mentioned in this chapter, are com-
mercially available with a large depth of view (see Table 2.2). However, not all these
devices are readily available for the mine environment, and much experimentation will be

required before a device could be considered viable in a mine environment.

3The chances of getting struck by the laser source reduce considerably when the beam is scanning.
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inspection, object ma-

nipulation and shape
analysis.

Category Typical Typical Depth | Typical Applications General Comments
Resolution of View
Radar 0.1lmm-20cm | 2m-100 m | Cartography, target de- | Lack of precision, but should have suf-
teciion and navigation. | ficient accuracy for the characterization
of muckpile shape. Main probiem is the
relative slow acquisition rate.
Moiré 1.0pum - 50 mm - 10 m | Shape analysis, inspec- | Moiré topography has been around since
tion and assembly. 1859. Capable of obtaining high accuracy
measurements, but the major drawback is
that only a few designs have a large field
of view.
Focusing 1.0 mm - 150 mm — 10 m | Navigation and object | High acquisition rate could be achieved
manipulation. with compromise on the accuracy. Has
great potential in mining applications,
but experimentation in an actual mine en-
vironment would be required before any
real assessment could be made.
_ﬁiangulation 1.0um - 100 mm ~ 10m | Navigation, assembly, | The most popular technique for range

finding; commercial products are widely

available Safety could be a problem if
high power laser source is used for a large
field of view.

Table 2.2: Brief overview of the four active range finding techniques {radar,
moiré, focusing and triangulation).
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Field of View: 500 cm x 500 cm x 500 cm
Resolution:

X axis, closest approach 0.5 cm/pixel

X axis, most distant point 2.0 cm/pixel

Y axis, closest approach 0.5 cm/pixel

Y axis, most distant point 2.0 cm/pixel

Z axis, closest approach 0.2 cm/pixel

Z axis, most distant point 1.0 em/pixel
Acquisition Speed: < 5 seconds/frame (512 x 512 pixels)
Approximate Dimensions:

main body <30 cm x30 cm x20 cm
Power Cutput: Possibly within the eye safety level
Weight: <5.0 kg

Table 2.3: Proposed rangefinder specifications for the rockbreaker application.
These specifications are far from complete and only serve here as an illustration
of what is expected from such a device.

2.6 Summary

Four types of active range finding techniques were discussed in this chapter. Out of
all these techniques, no one method seems to be clearly superior. Various approaches
based on the same principle may yield unequal performances and/or accuracies depending
on the hardware design and instrument set-up. One technique, suitable for a particular
application may well prove to be inappropriate for another.

The NRCC/McGill laser scanner is chosen in this study, partly because of its high
resolution and the relatively short acquisition time. In this study, the concentration is
mainly focused on deriving meaningful descriptions of the scene.

Nevertheless, in selecting or designing a rangefinder that qualifies for the rockbreaker
application, one needs to consider a large number of issues both technical and non

technical. The proposed specifications for such a rangefinder are presented in Table 2.3.
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Chapter 3 Reconstruction and interpretation of sensor
measurements

3.1 Introduction

The information obtained from a rangefinder consists of direct distance measurements
of points on the surface, and they are often very difficult to interpret. A more explicit
representation of these surface measuremencs is therefore required before the geometric
properties of the object can be inferred. In this chapter, a basic framework for analyzing
range images is reviewed. The so-called “bottom-up” or “data-driven” paradigm is made-
up of three levels of processes; namely — image reconstruction, image segmentation and
inference of scene geometry (Fig. 3.1). In this chapter, more will be said about each
of these processes, together with discussions on some of the methodologies developed in
the past for range image analysis. However, higher levels of processes such as, object

recognition and object manipulation also exist but they are not addressed in this thesis.

3.2 Surface reconstruction

Image reconstruction is referred to in [Blake and Zisserman, 1987], as the process that
produces stable and reliable representation of the scene from discrete data samples. For
range images, the image reconstruction is limited to the recovery of the geometry structure
of the scene, which is best described by its surface properties. One advantage of using
the surface properties is that they indicate all the essential features for the surface char-
acterization. Thus the accuracy of the reconstructed surface is very critical to the entire
image analysis process. Many surface reconstruction methodologies have been evolved
over the past few years, and all are essentially regularization methods, that transform
the inherently ill-posed problem into a well-posed one by imposing additional constraints
[Grimson, 1983, Terzopoulos, 1983, Blake and Zisserman, 1987].

However, the term “surface reconstruction” is somewhat misleading, as its definition

varies from one researcher to another. To avoid confusion, surface reconstruction is
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Figure 3.1: Block diagram of the "bottom-up” paradigm for image analysis.
Three levels of processes are shown here, namely — image reconstruction, image
segmentation and inference of scene geometry.

referred to here as the process that recovers the stable local surface structure from sensor

measurements. More will be said in the nest chapter about how local surface structure

can be recovered stably and reliably.

3.2.1 Recovery of the local surface structure

In the past, some success have been reported using surface differential properties as
tools for surface analysis, directly from the available range data [Brady et al., 1985,
Faugeras and Hebert, 1986, Besl and Jain, 1988]. These properties at each discrete sam-
ple are best described by using a local surface representation. This surface representation

provides the essential information for the higher level processes such as image segmenta-

tion.
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Local surface representation

At any point P on a smooth surface S one can define a tangent plane Tp that describes
the local surface orientation at P. Following the definition of a “smooth surface” found
in [Bennett and Hoffman, 1987, a surface is considered to be smooth!, provided that
every curve on the surface is a C? function; i.e., a function with all derivatives up to and
including the second order derivative are continuous?. The surface curvatures at any

point P, can be seen as the second derivatives of the parametric curves® at P on the

surface.

Figure 3.2: Local representation of a surface — the augmented Darboux
frame D(P) = (P, KMP,&mp, Mp, Mp, Np) along the oriented curve C on
a smooth surface S.

A simpler way to understand the notion of surface curvature, is to consider a series
of vectors through the point P in the tangent plane Tp. Each direction of these tangent
vectors (say Vp) specifies a curve C on the surface. The curvature of the curve C can
be measured by its tendency to “bend” out of the tangent plane; i.e., the greater of the
tendency of bending away from Tp — the larger is the curvature, and vice versa. This

curvature is known as the normal curvature k,p, in the direction specified by the vector

!Mathematically, a "smooth” curve is defined as one which is C*°. This implies a function with
continuous derivatives all the way up to infinite order [do Carmo, 1976).
2The term “continuous” is used here to refer to a function whose derivatives exist and are computable

3See [do Carmo, 1976) for the definition of a parametric curve
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Vp, and whose sign is determined by the orientation of the surface normal Np. Normal
curvature forms the basis of all surface curvature measurements, and it is very useful
in surface analysis. There exist two normal curvatures at every point on every curved
surface, referred to as the two principal curvatures. One has the maximum and the
other has the minimum value, and they are denoted by the symbols xysp and xoqp. The
directions associated with these two normal curvatures are commonly referred to as the
principal directions, and they are represented by two vectors Mp and Mp respectively
(see Fig. 3.2). One very important fact is that Mp and Mp are always orthogonal to
each other [do Carmo, 1976]. This forms the basis of the surface reconstruction algorithm
employed in our study. This algorithm will be discussed in the next chapter.

The local surface properties at each sample point, can be described by an
orthonoimal frame referred to as the augmented Darboux frame* [Sander, 1988,
Sander and Zucker, 1990]. The augmented Darboux frame D (P) at point P, is a col-
lective unit of two scalars and three unit vectors (Fig. 3.2). The two scalars are the
magnitudes of the two principal curvatures kpp and xo¢p, the three unit vectors are, the

surface normal Np, the two principal directions Mp and Mp.

3.2.2 Local estimation techniques

After the local surface representation for a smooth surface is defined, the next step is
to estimate the surface properties at each sample. A number of local methods have
been proposed in the computer vision literature [Flynn and Jain, 1989]. Some used the
analytical fitting of local surface patches to the range data, while others estimated the
surface derivatives or curvatures directly from the range measurements. Typically, a sur-
face estimation involves two steps: (i) compute the surface normals, and (ii) estimate the
principal curvatures and principal directions. This section presents a brief description of

several methods used for local curvature estimation.

*The name “augmented Darboux frame" is after Gaston Darboux [do Carmo, 1976]). The only dif-
ference between the augmented and the original Darboux frame, is that the latter does not include
information about the directions of the principal curvatures.
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Analytical surface estimation techniques

One analytical method, based on the least-squares fitting of surface patch is reported in
[Besl and Jain, 1986b]. The estimation of surface normal at each point is carried out by
fitting a plane to its neighbouring samples. To compute the surface curvatures, parabolic
quadric patches are fitted to the data. This local surface fitting is made through a series
of separable convolution operations using a certain size window. Surface curvatures at
the sample point are then computed directly from the approximated local surface patch.

Another analytical approach is to apply a B-spline approximation to the original range
data as the surface fit [Dierckx, 1977]. The analytical expressions of the surface derivatives
required for curvature estimation can be derived quite easily, once the B-spline approxi-
mated surface is established. One disadvantage of the B-spline approximation is that any
jump discontinuities, including those associated with the physical edges/boundaries of the
object are smoothed out by the fitting process. This however may not cause a problem
in cases where the samples are relatively smooth and dense.

Curvatures at any point P on the surface, can also be determined by studying the local
surface orientation changes in a small neighbourhood [ittner and Jain, 1985]. One way of
accomplishing this, is first to obtain an estimate of the surface normal at each point that
best describes the local surface orientation. As mentioned before, the surface normal can
be estimated simply by fitting a plane to the neighbouring points using a least-squares
approximation. The normal curvatures can then be derived from the neighbouring surface

normals.

Direct surface estimation techniques

The technique to be described [Fan et al., 1987], is based on direct estimates of the first
and second partial derivatives from the available range data. Based on the values of
these derivatives, the normal curvaturec at each point are computed in four directions;
0, 45, 90 and 135 degrees. The resulting directional curvatures are then combined to
form the estimates of the two principal curvatures at each sample point. It is well-

known in numerical analysis that derivative functions are highly sensitive to noise, in
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which high frequency noise is amplified. However, direct surface estimation approaches

are less computationally expensive, and require fewer computing cycles than the analytical

approach.

In this section a number of local methods for obtaining the surface estimates are
discussed. In general, analytical approaches have shown to be more stable in estimating
surface properties than direct computational approach [Flynn and Jain, 1989]. However,

one must bear the additional computation expenses that the analytical approaches require.

3.3 Surface segmentation

Marr was one of the first researchers to emphasize that segmentation is a context depen-
dent process, whose goal is often not very well defined [Marr, 1982). Image segmentation
has been referred to by some researchers in the past as the operation that aralogous to
figure to ground separation; i.e., that isolates the objects of interest from the background.
This definition is somewhat ambiguous; to what extent can one distinguish the subtle dif-
ference between the objects and the background from an image? For example, given an
image of an office scene, should one consider the bookshelf as an object apart from the
wall, or should the books be treated as objects partible form the bookshelf? Both cases
can be correct, because as the definition of an object can vary depending on the suc-
ceeding actions to be performed. For this reason, Marr ruled out a general segmentation
methodology, applicable to all vision problems. Nevertheless, segmentation is required for
most vision-based systems if any higher level processes are to be performed.

Typically, a range image would contain a large amount of information about the
geometric structure of the scene. As a result, a direct interpretation is very difficult,
and therefore it is often necessary to first partition (segment) the data into different
regions/surfaces before the scene geometry can be inferred. There are many ways of
decomposing surfaces; for most vision-based systems, these partitioning operations are
usually application oriented. Most of the segmentation techniques found in the computer
vision literature to date fall in one of the two main categories: (i) data-driven; and (ii)

model-driven.
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Model-driven approaches require a priori knowledge about the objects in the scene;
e.g., knowledge of shape, colour, texture, and so on. Some of the most popular
model driven segmentation techniques include histogram-based thresholding and tem-
plate matching, but these methods provide little information when the image data do not
conform to the, restrictive, image model assumptions. These techniques seem to work
well in structured environments but were proven to be inexpedient in unstructured ones,
and because of this, they are excluded from the following discussion.

Data-driven approaches can be further sub-divided into region and boundary-based.

3.3.1 Region-based techniques

A typical region-based approach would involve two complementary operations, merging
and splitting [Rosenfeld and Kak, 1982, Levine, 1985, Horn, 1986]. Merging is a process
that combines neighbouring pixels into regions or adjacent regions into bigger ones with
similar characteristics. On the other hand, splitting is the process that separates one
region into two or more regions. It is common that statistical and/or spatial measures
of pixel-to-pixel correlation (spatial coherence), is used as an indicator for determining
whether merging or splitting operation should be performed. This operation ends when no

more regions can be split or merged; i.e., when the number of regions becomes stabilized.

Surface type mapping

Differential geometry [do Carmo, 1976, O’Neill, 1966] and topology have been employed
by mathematicians for many decades as the basic tool for characterizing surfaces. One
of the advantages of using the local surface model D (P) is, that it allows to form any
arbitrary smooth surface, where the shape can be arbitrary complicated. Given an arbitrary
shaped, smooth surface S, one can map S into regions based on the signs of the mean

and Gaussian curvatures at each point P. The mean curvature of a surface is defined as,

Hp = .(_'_“_""_”__';_"_""_’Q (3.1)

and the Gaussian curvature is defined as,

33



3. Reconstruction and interpretation of sensor measurements

Kp = KMPEMP (3.2)

where kpp and kpp are the two principal curvatures.

Based on the signs of the Gaussian and mean curvature at each point, one can obtain
a qualitative measure of the surface shape. Only eight possible combinations exist as
shown in Table. 3.1, and the corresponding surface types are known as: pit, peak, valley,

ridge, saddle valley, saddle ridge, planar, and minimal saddle (Fig. 3.3).

[ " Kp <0 l Kp=0 l KP>OJ
Hp <0 || Saddle Valley Valley Pit
(hyperbolic) | (cylindrical) | (parabolic)
Hp =0 || Minimal Surface Flat not possible
(hyperbolic) (planar)
Hp >0 || Saddle Ridge Ridge Peak
(hyperbolic) | (cylindrical) | (parabolic)

Table 3.1: Eight fundamental surface types classified by using the signs of the
mean curvature (H p) and Gaussian curvature ( Kp).

A number of techniques have been developed to segment range images, based on
the Kplip mappings. Besl and Jain were among the first, to propose the use of
Gaussian and mean curvatures for range image segmentation [Bes! and Jain, 1986a,
Besl and Jain, 1986b, Vemuri et al., 1987, Yokoya and Levine, 1988], initially segments
the image into many small patches according to the eight fundamental surface types.
These patches were then merged to form larger ones using an iterative region grow-
ing algorithm.  Some very impressive results were obtained using this technique

[Bes! and Jain, 1988].

3.3.2 Boundary-based techniques

Most of the boundary-based techniques proposed to date are based on locating various
types of discontinuities in the image that associate with the physical edges of the objects
[Marr, 1982, Rosenfeld and Kak, 1982, Levine, 1985, Horn, 1986]. In practice, the direct

measurement of these discontinuities from raw data, is highly prone to noise, and the
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Peak

Valley Ridge
Saddle Saddle

Valle Ridge
Planar Minimal

4

Figure 3.3: Eight fundamental surface types: pit, peak, valley, ridge, saddle
valley, saddle ridge, planar, and minimal saddle.

resulting edge segments are often unreliable and picture dependent [Canny, 1986].

Partitioning Boundary detection

In the last few years, various surface boundary-based techniques have been proposed

for range image segmentation, based on recovering different types of surface features

[Brady et al., 1985, Ponce and Brady, 1987, Fan et al., 1987].

One surface decomposition theory has been put forward by Hoffman and Richards

[Hoffman and Richards, 1984), in which they proposed that surfaces can be decom-

posed into parts by identifying the associated partitioning boundaries. In their article
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[Hoffman and Richards, 1984], Hoffman and Richards began by illustrating a few line-
drawing diagrams, and they subsequently demonstrated that, humans have the incredible
capability of recognizing objects, even in situations when information such as shading,
motion, colour and texture are absent. They argued that shape alone is sufficient for ob-
ject recognition. Subsequently, they advocated that the following transversality principal

should be used as the basis for shape decomposition.

Transversality principle: An interpenetration of two arbitrarily shaped
smooth surfaces results in a concave discontinuity of their tangent
planes along the contour of intersection. In the context of smooth
surface decomposition, the partitioning contour is located at negative

curvature minima.

The fundamental idea embedded in this particular part decomposition strategy is, to
treat each complex object as a configuration of irreducible primitives, each referred to as
a part. Any arbitrary complex shaped object can then be made-up, using a combination
of parts, and possibly with different sizes and shapes. However, each part is confined to
be convex and compact in shape. (Note that concavity is created alone the intersection
of two adjoined parts.) Compact is used here to refer to a surface without any dents or
depressions.

Another part theory is documented earlier in [Koenderink and van Doorn, 1982). In
the article, Koenderink and van Doorn suggested part boundaries are contours on a surface
where the Gaussian curvature is zero, the so-called parabolic contours. Such contours
possess a number of nice properties. For example, parabolic contours do not intersect and
always form enclosed boundaries. By using them as partitioning boundaries, Koenderink
and van Doorn derived four classes of parts, namely; humps, dimplez, furrows and ridges.
Although, this partitioning strategy worked well on some smooth surfaces of genus zero
(i.e., no holes), but clearly it poses limitations when representing complex shapes with

only four classes of part primitives.
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Feature aggregation

One task that boundary-based approaches have to accomplish is feature aggregation,
which is an operation that labels and connects recovered boundary points into groups
that resemble the structure of the world.

The next stage of processing involves aggregating individual boundary points into
contours. The feature points along do not provide enough information for the surfacé
decomposition, because to segment the surface into regions, it requires enclosed contours
to represent each individual region. Finding the enclosed contours for each region is akin
to filling in a drawing by connecting a series of dots. Where the dot density is high enough,
the interpolation of the contour is fairly obvious and can be accomplished with a number
of spline interpolation algorithms. However, as the density decreases, it is sometimes not

obvious how to interpolate the contour without additional constraints.

3.3.3 Hybrid techniques

More recently, a hybrid technique is reported in [Gupta and Bajcsy, 1990]. in the paper,
Gupta and Bajcsy purposed a paradigm for part description and segraentation that in-
tegrates various types of information obtained from different levels of processes. Three
levels of processes are involved in the paradigm; the occluding contour, the surface and
the volumetric levels. They argued that no single level of processes is robust enough to
capture all the details of objects in the scene. The segmentation process should proceed
first by obtaining the local occluding contours and surface descriptions. At the higher
(global) level, a curve segmentation module and a surface segmentation module are used
to refine the segmentation in a fine to coarse fashion via two feedback loops; one internal
and one external. These feedback loops are controlled by a decision making module which
evaluates and integrates information obtained from the curve segmentation, the surface
segmentation, and the fitting of superquadric model (the latter ic introduced in the next

section). A number of examples are illustrated in [Gupta and Bajcsy, 1990].
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3.4 Inference of scene geometry

All computer vision applications require a final description to represent the scene, which is
application specific. For most practical problems such as object manipulation and object
recognition, one needs a description that can capture the geometrical properties of the
objects in the scene such as, position, orientation, shape and size — as well as other
intrinsic properties such as, colour and texture. However, the range information obtained
from a standard rangefinder makes the recovery of the latter intrinsic prop«rties rather

difficult, and they are not addressed here.

3.4.1 Parametric shape modelling

There exist many different approaches to obtain a three-dimensional representation of a
scene, and the most common approach is based on the use of parametric models. In
the past, a number of researchers in computer vision nave proposed the use of gener-
alized cylinders to describe different parts of objects in a scene, by starting with the
local approximation of the axis, and gradually recovering all parameters of the general-
ized cylinders [Binford, 1971, Marr, 1982 Brooks, 1983]. Another approach uses com-
binations of ellipsoidal and cylindrical models to form a coarse object representation
[Ferrie and Levine, 1988]. For a more general approach to 3-D representation, a com-
plex family of solid models is considered in [Pentland, 1987, Solina and Bajcsy, 1990].
This has the capability of modelling a large set of standard geometrical shapes, and yet
is simple enough that their parameters can be solved using standard numerical methods
[Press et al., 1988]. Only the latter parametric solid primitive, the superquadric, is dis-
cussed in the following section, because it represents a large class of parametric shapes

including the ones mentioned above.

Superquadric Models

The superquadric model was first discovered by a Danish writer and designer named
Peit Hein, and has the capability of describing a wide range of three-dimensional shapes

{Gardner, 1965, Gardner, 1975]. Hein used the superellipse, a 2-D sub-set of superquadric
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Figure 3.4: Two-dimensional parametric shapes (superellipse): |z|2/‘+ |y|2/‘ =
1 for the relative shape parameter ¢ = 0,0.5,1,2,3 and 6. For simplicity, the
two size parameters a; and a, are set to be unity.

(Fig. 3.4), and solved a city-planning problem which arose in 1959 in Sweden. During
that period, he designed the outer-shape of a fountain that fitted harmoniously into
a rectangular open space located at the heart of Stockholm. Since then, superquadrics
have been employed by researchers from both, the computer graphics and computer vision
communities for solid shape modelling [Barr, 1981, Pentland, 1987].

To better explain the characteristics of the superquadric, let us first consider a 2-D

family of parametric shapes (superelipse) described by the following function,

2/

Yl =1 (33)

ay

2/e
+

z

f(z,y) =

a;
where ¢ is the relative shape® parameter, a, and a, are the parameters that define the
superellipse size in = and y coordinates respectively, and they are also known as the radial

aspects. By varying ¢ from O up to infinity, one can obtain a wide variety of shapes

5€ is also referred to in [Solina and Bajcsy, 1990] as the “squareness” parameter
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N =

/Ay,
- avamne

Figure 3.5: Samples of superquadric surface model by varying €; and ¢; between
1 and 2 respectively.

(see Fig. 3.4). Starting at ¢ = 0, a perfect rectangular shape is produced. By increasing
the relative shape parameter to 1, the squarishness of the curve gradually disappears and
the shape turns into an ellipse. As ¢ increases further to 2, the shape transforms from
an ellipse into a rhombus. When the relative shape parameter gets larger than 2, the
shape becomes concave, and as the parameter approaches infinity, the shape turns into a
“cross-like” figure with zero cross-section area.

One can expand the 2-D parametric equation Eq. 3.3 into 3-D, and derive an implicit

equation for the surface of a superquadric model (see Fig. 3.5),

2/ez
ad + (3.4)

a, a, a,

2/e2 /e 2/e

y z |5

flz,y,2) = ( ) -
The parameters e, a, and a., define the size of the superquadric corresponding to the z,
y and z axes in the object centered coordinate system. The parameters ¢; and ¢; define
the relative shape of the superquadric in the latitude (z2) plane and longitude (zy) plane

respectively.

Eq. 3.4 is commonly referred to as the inside-outside function [Barr, 1981,
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Gross and Boult, 1988, Solina and Bajcsy, 1990], because superquadrics are mathemat-
ical solid models, and their surfaces can be divided into three distinct regions for a given

point P = [P,, P,, P,]" in 3-D space. These regions are defined as, if,

f(Pz, Py, P,) = 1 then P lies on the surface,
f(Pz, Py, P;) > 1 then P lies outside the superquadric,

f(Pz, Py, P,) < 1 then P lies inside the superquadric.

There exist a number of different approaches for recovering the model parameters,
and they all share one thing in common — by defining a measure of the “error of fit" i
their fitting functions [Pentland, 1987, Gross and Boult, 1988, Solina and Bajcsy, 1990,
Whaite and Ferrie, 1991]. Pentland initially suggested to solve the model recovery prob-
lem analytically for all independent parameters [Pentland, 1986]. However, an analyti-
cal solution to the problem turned out to be very complicated for most general cases.
Later, Pentland [Pentland, 1987] combined the part model recovery with segmentation,
by searching through the entire superquadric parameter space for the "best” fitted model.
This method has proved to be computationally e:pensive. In spite of the computational
problems he had encountered, Pentland successfully demonstrated the power of using
superquadrics in representing a wide variety of objects ranging from natural scene to
man-made objects.

Another method, the so-called “minimum volume” approach, was first motivated by
[Bajcsy and Solina, 1987], due to the facts that there exist situations where a set of
superquadric parameters can be found, and they all fit equally well to the range data
obtained from a single view-point. The basic idea behind the minimum volume approach
is to select the smallest superquadric as the part model among all possible solutions.
Although experiments have shown that the minimum volume model tends to produce
more intuitive results, there are a number of drawbacks associated with this approach
[Solina and Bajcsy, 1987, Solina and Bajcsy, 1990]. For example, if the recovered mini-
mum volume model is wrong (i.e., too small and does not represent the corresponding

part properly), then this can have disastrous effects in many cases; e.g., when a robot
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attempts to manipulate the part/object. Other measures of “error of fit”, like the mean
square value of the inside-outside function or the true Euclidean distance are also possible
[Gross and Boult, 1988].

Measures of the “error of fit” are essential to the fitting process, however, all methods
mentioned above failed to address the uniqueness of the fitted model when multiple
solutions are available for a single part. This is very important for “higher” level processes
such as, object recognition or path planning. A formal discussion on the uniqueness of
the recovered parametric model is presented in [Whaite and Ferrie, 1991], along with a

novel method of evaluating the uncertainty associated with the model.

Deformable parametric model

Barr was among the first to suggest that local and global deformations can be achieved by
tapering, twisting, and bending of parametrized solids [Barr, 1984). Additional expressive
power of the solid modelling can be obtained by the ability to deform the superquadric
model, both locally and globally into the desired shape. This is very useful for captur-
ing the complex surface appearance of natural objects. It was later realized by Pentland
[Pentland, 1987}, Solina and Bajcsy [Solina and Bajcsy, 1990] in the recovery of paramet-
ric model from range data.

More recently, with the advances in the parametric solid modelling, physical and dy-
namic constraints are being embedded mathematically into the parametric model. In
addition to the geometry recovered from the standard parametric model, the formulation
of physically-based models can include simulated forces, masses, strain energies, and other
physical quantities. Therefore, the physically-based model has the advantage of analyz-
ing and predicting the motions and interactions of complex objects. Notably, there have
been two physically-based modelling approaches proposed to date: (i) Pentland’s “modal”
analysis approach, and (ii) Terzopoulos and Metaxas' “dynamic” approach.

Pentland’s “modal” analysis approach, is somewhat analogous to Fourier trans-
form, with low-order modes to provide a description of the overall shape, and
high-order modes to represent the high-frequency surface details [Pentland, 1990,

Pentland and Sclaroff, 1991]. More importantly, the mathematical formulation is based
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on finite element method (FEM) that provides an analytic characterization of surface be-
tween nodes or pixels. For example, an object may be interpreted as a mesh of nodes, with
a certain mass, damping and stiffness between the nodes. Subsequently, virtual forces are
defined at each node such that the model can be deformed to fit the data samples. The
final shape may be thought of as the result of pushing, pinching and pulling on a lump
of elastic material (such as clay), starting with a spherical approximation. One major
problem of this particular approach is the instability of modelling non-convex objects.

In Terzopoulos and Metaxas’' “dynamic” approach [Terzopoulos and Metaxas, 1991],
the so-called deformable superquadrics are governed by a set of equations of motion.
They augmented the models with the local deformation capabilities of membrane splines.
As a result, virtual (external) forces are permitted to deform the physically-based models
globally like superquadrics in order to recover the translation, rotation, scale, three radial
aspects, and two squareness parameters. In addition to this, the forces also deform
the models locally like splines to reconstruct the fine structure and the natural irregular
appearances from the data. The mathematical formulation of these physically-based

models is rather complex, and beyond the scope of this thesis.

3.5 Hidden factors

In almost every computer vision application, one has to confront the scale, and the res-
olution problems. Although, scale and resolution are closely related to each other, they

are treated as independent in this section.

3.5.1 Resolution factor

Resolution is considered here as a physical attribute of the image; i.e., the number of
pixels in the image, and the number of bits per pixel. In other words, the resolution of a

image is usually dependent upon the hardware limitation or the image format.

43



PR ¢

3. Reconstruction and interpretation of sensor measurements

3.5.2 Scale factor

Scale is referred to here as the mechanism that controls the level of detail in the image for
a given resolution. The scale problem in localizing feature points has been addressed by
many researchers, but it is still regarded as one of the many not well understood problems
in computer vision. The scale issue dates back to the early days of computer vision
research on edge and curve detection [Rosenfeld and Thurston, 1971}, and more recently
on the introduction of the so-called scale-space filtering by Witkin [Witkin, 1983].

As Witkin stated in his paper [Witkin, 1983], descriptions that depend on scale can be
computed in many ways. One simple way of deriving these descriptions, is the scale-space
filtering approach. A family of images are obtained by convolving the original image with

the Gaussian kernel G(z,y,0) with different variances o,

I(:L', y,a) = 1.0(3:1 y) * G(x’ Y, 0), (35)
where
1 —(z*+ y?)
g(:t, Y, 0') - 2702 exp 20_2 ’ (3’6)

where * denotes convolution with respect to z and y, and Iy(z,y) is the original image.
The smaller the value of o, the scale parameter, the higher the level of detail in the
image. When o =0, I(z,y,0) is equal to the original image Iy(z,y). As o gets larger,
I(z,y,0) becomes averaged out. In other words, o can be used to control the amount
of detail in an image.

It has been pointed out by a number of researchers, that scale-space filtering has a
blurring effect equivalent to the solution of a heat conduction or diffusion equation; i.e.,
the inversion is an ill-posed process with a one-to-many mappings [Koenderink, 1984,
Hummel et al., 1987]. As Koenderink put it [Koenderink, 1984], this implies that any
feature at a coarse level of resolution is required to possess a (not necessarily unique)

“cause” at a finer level of resolution although the reverse need not be true.
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3.6 Summary

In this chapter, the general framework for range image analysis is reviewed. Three main
levels of processes are introduced; (i) image reconstruction, (i) image segmentation, and
(iii) inference of scene geometry. In addition, a selection of techniques developed for
surface analysis is also briefly discussed. Although, there exist many non-surface type
techniques for range image analysis, their lack of theoretical support makes them less
attractive and therefore they are not included in the discussions.

This chapter also serves as the basis of our strategy for rock identification and local-

ization, which will be discussed in the next chapter.
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Chapter 4 Recovery of muckpile model from range
measurements

4.1 Introduction

In this chapter, the methodologies are presented that will be employed in a strategy for
rock fragments localization and identification. The paradigm is based on the framework
reviewed in the previous chapter for range image analysis, which involves three main levels
of processes, viz; muckpile surface reconstruction, muckpile decomposition, and muckpile
modelling. One obvious reason for choosing this particular “bottom-up” approach is that
very few assumptions about the scene are required, and the assumptions made are very
general. This is particularly important if the strategy is to be successful when applied to
an unstructured environment such as the one encountered in mining.

The problem faced is how to identify and locate highly irregular objects such as rock
fragments, from the highly noisy and quantization error prone measurements such as
those obtained from a rangefinder. Therefore, one must start by studying how the range

measurements can be reconstructed reliably and stably.

4.2 Muckpile surface reconstruction

A novel minimization methodology for surface reconstruction was presented in Sander’s
doctoral thesis [Sander, 1988]. In his thesis, the emphasis was placed on the reliable
recovery of surface structure from three-dimensional images acquired through magnetic
resonance imaging (MRI) devices rather than from the graph surface type images like those
obtained from rangefinders or standard T.V. cameras. To study Sander's methodology
even further, Lagarde [Lagarde, 1990] applied the same surface reconstruction formalism
to range images, and it is on Lagarde's scheme that our surface reconstruction algorithm
is based.

The fundamental concept behind Sander’s algorithm is local curvature consistency

[Parent and Zucker, 1989, Sander and Zucker, 1990]; i.e., the local surface curvature at
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point P is assumed to be in consistency! with its close neighbours. Based on this as-
sumption, a measure of the local curvature consistency is derived as the constraint to

2, In addition, the consistency constraint is subjected to

drive the minimization process
the orthogonality of the augmented Darboux frame D (P).
The surface reconstruction process involves two steps: (i) initial surface estimation

and (ii) surface estimates refinements.

4.2.1 Initial surface estimates

Initial estimates of surface properties are readily computable using a number of different
local methods (§ 3.2.2). However, analytical approaches are favoured here as oppcised
to direct estimate approaches, trusting that the higher accuracy obtained by the initial
estimates justifies the extra computational cost.

One such approach, a linear regression technique, is employed in this study for ob-
taining the initial estimates of D (P). As mentioned previously in § 2.2, a range image
can be expressed as a function z = r(7,7), and it can be rewritten as z = f(u,v). From
this function and by using standard differential geometry [do Carmo, 1976], the surface
properties can be made explicit.

The initial estimation starts by fitting the local neighbourhood of P in surface S with
a plane, that represents the tangent plane Tp [Ferrie and Levine, 1988]. Once T is found
the surface normal Np is readily available. After obtaining Np, the next step approximates

the surface S with a parabolic quadric patch of the form:

flu,v) = au? + buv + co?. (4.1)

The estimate f is based on samples within a particular local neighbourhood. Akin to the

normal estimation, the coefficients of the second order polynomial function in Eq. 4.1 can

1The notion of curvature consistency is that the surface curvature at each sample point is assumed
to be similar to those represented by the neighbouring local surface models; e g , in our case, the local
surface model is described by a parabolic quadric patch OQther surface type patches are also possible,

and are discussed in [Lagarde, 1990]
2Typically, a minimization process is one that involves minimizing some energy functions subject to

constraint satisfaction.
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be computed, using a least-squares fit to the range data [Johnson and Wichern, 1982].
To simplify the analysis, a local coordinate system uvw (with the three unit vectors €y, &
and ¢3) is defined for the estimate J with the point P at the origin and the w axis aligned

with the surface normal Np.

For the curvature computation, let us consider the second fundamental form Il p( Vp)

at P in the direction pointed by the unit vector Vp € Tp, defined as:

Oy(Vp) = (—dNp(Vp), Vp). (4.2)

A well established axiom from differential geometry states that, the value of Op(Vp) is
equivalent to the normal curvature £,p of a smooth curve in surface S through point P
oriented in the Vp direction [do Carmo, 1976). Hp(V’p) can be expressed in terms of the

surface estimate f(u,v) as follows:

Op(Vp) = ldu?+ 2mdudv + ndv? (4.3a)
( du d ) A (4.3b)
= v .
“ m n dv
— T- -
- (dvp) A (dvp) (4.3¢)
where
fuu fuu ,i‘:!ll

| =

N Y Ty T A Y Ty

The eigenvalues of the matrix H represent the maximum and minimum values that
the second fundamental form can take, and are, therefore, the principal curvatures. The
principal directions associated with these curvatures coincide with the eigenvectors of H
[do Carmo, 1976]. Note that if f is evaluated with the origin at P = (0,0) in the local uv

coordinates, such that &) x & = Np, and fu = f., = (), then one can express l]p(Vp) in
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terms of the polynomial coefficients by substituting Eq. 4.1 into Eq. 4.3. This results in

- 2a b
H=( , 26). (4.4)

The principal curvatures, xpp and kap, of a smooth surface S at point P, are

the following Hessian matrix:

represented by the eigenvalues of H:

kmp= a+c+/(a- ) + 8, (4.5a)
kmp= a+c—/la-c)?+ 1 (4.5b)

Similarly, the two principal directions, G p and Oqp are represented by the eigenvec-

tors of H and shown as:

B} b

Oup = , 4.6a

v (<m>) e
Y.

Gup = (a"c' (;‘ )+b2). (4.6b)

Note that fyp and Opcp are explicitly expressed in the local coordinates (u,v),

whereas, Mp and M p are expressed in the world coordinates (i, y, z).

4.2.2 Surface estimates refinement

This section describes the second step, the minimization stage, used to obtain a stable
reconstruction of surface S. This follows the initial estimation of D () from the discrete
range data. Notably noise and quantization error have always been a problem in inferring

image structures both from intensity and range images. Similarly, for range images this
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Figure 4.1: Obtaining an updated frame of D (P), D (Py), by local extrapola-
tion. The augmented Darboux frame D (Q) is transported along the curve C,
on the parabolic quadric surface patch S,, and arrives at its neighbour P with

a different orientation as D (P, ).

problem can cause unstable or corrupted surface estimates from the local methods, espe-
cially in the estimation of the two principal directions Mp and M p [Besl and Jain, 1986a.
However, these directional properties are crucial to the inference of discontinuities and part

boundaries for surface decomposition.

Iterative refinement process

From now on, Sander's surface reconstruction algorithm will be referred to as the curva-
ture consistency algorithm. The algorithm operates in the following way: it refines the
local surface representation at each point iteratively until it becomes consistent with its
neighbouring sample points. The main reason for adopting the curvature consistency al-
gorithm is that the complete minimization? is specified in terms of local surface properties,
and it results in a less ambiguous (i.e., more stable) representation of the surface.

The iterative scheme can be explained with the aid of the model shown in Fig. 4.1.
Since the augmented Darboux frame D (P) at point P is described by a parabolic quadric

patch, one can consider extrapolating outwards along the quadric patch from its neigh-

3In theory, the minimization process can be carried out independently at each sample point, therefore
some sort of parallelization in the computational process is possible.
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4. Recovery of muckpile model from range measurements

bouring point Q) to P, to extract a notion of what the surface at P should look like
according to its neighbour at Q. In other words, an estimate of the frame D (P) at P,
D (P,), is obtained through the assumption that the curvature is locally consistent within
the neighbourhood of the two points, P and (). By repeating this extrapolation for all
neighbours of P, {Q,}, suchas a = 1,---,n and n is the number of neighbours, one
can obtain a collection of augmented Darboux frames {D (P,)}, each representing an
estimate of D(P). More formally, the extrapolation along the surface is equivalent to
transporting the augmented Darboux frame D (@) along the surface patch S, to obtain
D (P.).

Curvature consistency implementation

The functional minimization of the curvature consistency algorithm is restricted by
the orthogonality constraints inherent in the frame D(P), which are given by

[Ferrie et al., 1989, Ferrie et al., 1990),

(Np, Np)=1 (Mp, Mp)=1 (Mp, Np) =0. (4.7)

The same formulation as in [Sander, 1988, Sander and Zucker, 1990] is followed, for
the augmented Darboux frame at P, D(P) = (P, kmp, nMp,Mp,MP, Np), and its
estimate D (P,) = (Pa, nMpa,nMpa,Mpa,Mpa,ﬁpa) on the surface patch S,. Each
component of the augmented Darboux frame D (P) to be updated is found independently,
except the component Mp. Note that Mp is given by the cross product of Mp and Np.
Three energy equations * are derived for the least-squares error measure of the estimates.

The first two are given as:

n

Ey = min ?_.;:("MP — kMPa)’ + (kMP — KmPa)?, (4.8a)
By = min 3 |Ne - Nealf (4.8b)
Np a=1

*Energy equation — some sort of error measure function.
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4. Recovery of muckpile model from range measurements

By applying the standard minimization procedures to solve £Eq. 4.8 (see [Sander, 1988]

for details), ore can derive the following updating formulae first for ﬁp,

(Zn—- N_,ggo,z:n__ N.S;)a"—da" NZ(;‘)Q) (4 9)
V(S NEL Y + (0 NSLY + (5no  NEL Y

then for P, kxyp and kpqp,

Nl(;ﬂ)

n_ pl) () n (1)
P(H»l) — Z %’ SC;F}) — E KA:lPa, Su-;) — Z lC,\:lPa (410)
a=1 az=l a=l

where the superscript i indicates the iteration number.

The third energy equation requires a special treatment because there is a 180°
ambiguity in the directions associated with Mp and Mp. To avoid this ambiguity,
Mp is expressed in terms of the following tangent plane coordinates [Lagarde, 1990,

Ferrie et al., 1989],

Mp(3) = & cos 9 + & sinh; ¥ € (0,2r) (4.11)

such that, €] and &, satisfy,

€1,€2 € Tp; (4.12a)
lléill = llezfl = 1 (4.12b)
(é‘l, 62) =0. (412(:)
Then
= min > [1 — (Mp(¥), MPa)2] . (4.13)
a=1

The value of 3 that minimizes Eq. 4.13, is substituted into Eq. 4.11 to obtain M,‘;”. Sim-
ilarly, the standard minimization procedures are applied to derive the following updating

functional for y:
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an-1 (A22 - An) + \/(7\11 — An)? +44%,

(+1) —
'»b 2A]2 )

(4.14)
where
A, =Y (Mpa, &) (Mpa, &)  i=1,2; j=1,2. (4.15)
a=1

A qualitative measurement of the updated surface estimates at iteration i, is given by

the sum of the residual errors R™"), with

R = Y R(D(R),D(Pa)) (4.162)
J

= Y EU + ED) + B P, €S. (4.16b)
J

The convergence of the minimization process can be tracked, by taking the derivative
of the residual errors; i.e., the residual errors converge to a minimum as the derivative
approaches zero. This can be used to control the number of iterations until the difference
of two consecutive residual errors, | Rt — R(-Y)|, is below a specified threshold. Note
that R(*) is measured entirely by the sum of local differences computed over the surface.
Experiments have shown that the algorithm converges quite rapidly, generally within 10

iterations [Lagarde, 1990].

4.3 Muckpile decomposition

The objective of surface decomposition here is to decompose the muckpile surface into
regions, such that each region corresponds to the surface of an individual rock. This
enables us to infer the spatial and geometrical properties of each rock independently.
Ultimately, this information will be passed onto higher level processes; e.g., to derive a

control strategy for the breaking mechanism [Nilsson and Lindberg, 1989].
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4. Recovery of muckpile model from range measurements

From observations, it is found that the majority of the rock fragments resulting from
blasting are largely convex in shape; i.e., when ignoring the small scale geometric irreg-
ularities inherent in the rock surface. Based on these findings, one can consider each
rock fragment as a convex entity/part. The principle of transversality, states that when
two arbitrarily shaped convex parts come into contact, they meet in a contour of concave
discontinuity.

Based on the convex and compact assumption for the rock shape, and the transver-
sality principle, one can design an algorithm to detect the features required for surface
decomposition. The impor:ant features that are sought can be expressed as functions of

the surface properties recovered from the curvature consistency algorithm.

4.3.1 Feature recovery

Two types of features are required for the muckpile surface decomposition; (i) jump
discontinuities that correspond to the occluding contours of the muckpile, (ii) negative
curvature minima that correspond to the contact boundaries between individual rocks.
These feature points are best illustrated by the simple diagram shown in Fig. 4.2.

The jump discontinuities caused by occlusions of the muckpile are first recovered for
the surface decomposition. Since the oversized rock fragments are located directly above
the grizzly structure, if the range measurements are acquired vertically above the grizzly
structure, a simple depth thresholding of the 2 component will suffice in identifying points
that correspond to the occluding contours. However, if the measurements are taken from a
different viewpoint (camera position), a transformation of the range data will be required,
such that the xy plane is parallel to the grizzly structure. In the cases, where there are
no overlapping or touching rocks, the surface decomposition becomes straight forward, as
the regions obtained through the depth thresholding should directly correspond to each
indwidual rock surface.

Let us consider an augmented Darboux frame D (P), the 'ocal surface representation
at point P, with xyp and A?p representing the stable estimates of minimum curvature
and its associated principal direction at P. Point P is defined as the critical point or

trace point T [Ferrie et al,, 1989, Ferrie et al., 1990] (i.e., with a negative local minimum
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Object A Object B

(b)

Before concave
Smoothing discontinuity
jump jump
discontinuity discontinuity

(c)
After negative
Smoothing curvature minimum

Figure 4.2: Feature recovery for part decomposition. (a) Showing two convex
and complex objects A and B. (b) Before smoothing: the concave discontinuity
corresponds to the contact boundary, and the jump discontinuity corresponds
to the occluding contour. (c) After smoothing: the concave discontinuity is
transfcrmed into a negative curvature minimum,

curvature), if and only if the following is true,

":;P =0 AND kmp <0 (4.17)

where £!p |mp is the directional derivative of the normal curvature £,p in the direction
specified by the vector Mp.

Since we only have discrete measurements, k], p |mp can be approximated by a differ-
ence equation. To simplify the computation, a simple comparison between neighbouring

curvatures is sufficient for identifying the negative local curvature minimum. Point P is
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bound to he a local curvature minimum, if

Kmp < Knp+ AND Kmp < Knp- . (4.18)
MP MP

If P is a point that satisfies Eq. 4.18 and its minimum curvature xr((P) is less than 0,
then P has a local negative curvature minimum; i.e., P is a trace point. P* and P~ are
the closest sample points from P in the directions of Mp and —Mp, and K, p+ |mp and
Knp- |mp are the normal curvatures at P+ and P~ in the Mp direction.

For various practical reasons, it is very difficult to apply the transversality principle
directly on range images. First we face the problem of obtaining smooth surface data
from the sensor. Inevitably there will be noise added to the data during the acquisition
process, even with the measurements taken from a scene that is fully occupied by objects
with no dents and depressions. Even if the data are assumed to be perfect; i.e., the
range measurements match the exact physical appearances of the objects, there is still
a problem in recovering the surface properties from the discrete data, which will provide
reliable surface estimates. The curvature consistency algorithm is developed precisely
for this purpose; i.e., provides a stable surface representation even with the presence of
additive noise in the data.

Second, and more important is the problem of tuning into a correct range of scales.
We are hving in a world of objects consisting of different levels of structure. Humans,
for example, have the extraordinary ability to tune into the right level of scale depending
upon an a priori knowledge of the scene and/or the types of the objects. Unfortunately,
the process of inferring different levels of scales remains not well understood. Not surpris-
ingly, this scale problem turns out to be a very significant one for the muckpile surface
decomposition. Rock surfaces are very textured, and contain many small irregularities due
to the litho-structure of the deposits. Direct inference of rock surface properties at the
very fine scales, would result in a problem of localizing the “true” partitioning boundaries.

More details of this problem will be given in the next chapter.
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4.3.2 Partitioning contour aggregation

By referring back to the transversality principle, objects (muckpiles) are said to be con-
catenated or adjoined together by a number of convex and compact parts (rocks). If the
contours of negative minima are recovered from the stable surface estimates, then the
trace points {T,} should be equivalent to the contact boundaries between rocks.

However, in practice the trace points corresponding to the contact boundaries do
not always form enclosed partitioning boundaries required for the surface decomposition.
Different features must be recovered and combined together in a cooperative manner, such
that the image can be decomposed into meaningful regions for the later visual processing
stages. As mentioned in the previous section, two types of features associated with the
partitioning boundaries have to be recovered. A reliable way of combining this information
together must be derived in order to perform the surface decomposition. Experience has
shown that the contact boundaries between rocks are most likely to be terminated along
the occluding contours of the muckpile, therefore one can use this as a constraint to
derive a partitioning boundary detection scheme for identifying the partitioning boundary
for each rock fragment.

Given a set of trace points {T;} (negative curvature minima) corresponding to the
contact boundaries between different rocks, and a set of points {J,} (jump discontinuities)
corresponding to occluding contours of the muckpile, the method for connecting the
contact boundaries with the occluding contours is the following. First end points from

the recovered trace points {7,} are defined.

End point: a trace point with only one connectivity; contextually this im-
plies trace point that has one and only one neighbouring point directly
intact to one of its eight directions, and that neighbouring point is also

a trace point.

After the end points are identified from the contact boundaries, the contour connection
is constrained between the end points and the occluding contours; i.e., the end points can

be extended to intersect at the closest distance on the occluding contours. Because of the
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high density of these feature points, straight line interpolation should suffice in locating the
enclosed contours for each of the individual rocks. Regions can then be identified using a
standard clustering algorithm which labels connected points as comprising a unique region

[Ballard and Brown, 1982].

4.4 Muckpile modelling

Having partitioned the surface acquired by the rangefinder into regions corresponding to
different rocks, the next task is to infer the three-dimensional shape of each rock. Qur
approach is to model each rock using a volumetric primitive with sufficient degrees of
freedom to account for the expected range of shapes. In particular, the superquadric
model is chosen for our rock modelling. The reasons that the superquadric is chosen for
the modelling are, (i) its capability of representing a large range of shapes, (ii) the fact
that spatial and geometric information (e.g., position, size, shape, centre of mass, surface

orientation, etc.) about the objects can be easily recovered from the model.

4.4.1 Fitting of superquadric model

Given a set of partitioned surfaces S; from the surface S, such that S = |J; S; and
[ =1,...,n, where n is the total number of parts in the surface S.

One can obtain a set of volumetric primitives £ from the superquadric model, by
varying a = (¢, €2,a,a,,a;) in the parameter space. Now, the task is to determine the

parameter of a volumetric element V;, Vi € L that best characterizes S; minimizing the

expression,

Vl(x,y, 2) - Sl(z,y,z) . (4.19)

The fitting algorithm for the superquadric model is very similar to those mentioned in
[Gross and Boult, 1988]. It makes use of a nonlinear minimization technique to recover the
required model parameters, starting with an initial estimate. The fitting procedure is an
iterative one, akin to [Solina and Bajcsy, 1990], and begins with a good ellipsoidal (¢; =

¢2 = 1) approximation that provides an initial estimate of the rotation and translation

58
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parameters for the part to be modelled. Experience has shown that the initialization of the
relative shape parameters, €; and ¢; are not very critical to the final model V, After the
ellipsoidal approximation is achieved, the translation parameter is initialized by locating
the centroid of the poirts in the surface S;. The next step is to find the initial rotation
parameters by aligning the axes of the ellipsoid along the principal moments of inertia of
S; about the centroid.

A nonlinear least-squares technique is used for the minimization — the Levenberg-
Marquardt method [Press et al., 1988], to minimize the error of fit between a superquadric
surface V; and a surface patch of range data S;. The fitting procedure is repeated with a
new set of parameters a at each iteration, until the sum of the least-squares error measure
stops converging. The final set of parameters a, represents the best fitted model for the
corresponding part that is to be described.

One might argue that the superquadric is an overly complex model for the purpose of
the rockbreaker problem. However, in addition to breakage, the operation also requires
manipulation of the rock mass for which the pose information provided by the model
is indeed useful. The two additional shape parameters, which are potentially useful in
the inference of other physical properties, come at a modest increase in computational
expense. As a general characterization of rock shape, the superquadric is clearly imited
However, the general impression is that for the problem typified by the rockbreaker, the

shape approximation by the superquadric model in practice is adequate.

4.5 Discussion

As mentioned in Chapter 1, the basic strategy for muckpile identification and localization is
very similar to that proposed in [lkeuchi and Hebert, 1990] and [Choi et al., 1990]. Both
the paradigms involve similar processes; i.e., range data acquisition, surface reconstruc-
tion, surface segmentation and fitting of superquadric models. However, the computa-
tional approaches used to perform the surface reconstruction and the segmentation differ
significantly. The approach used here is based on curvature analysis and the inference of

3-D curves [Sander and Zucker, 1990, Ferrie et al., 1989]. Whereas lkeuchi and Hebert,
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and Choi et al. applied deformable models (e.g, “snakes” and “detormable surface”)
similar to those proposed in [Ter.opoulos et al., 1987, Kass et al., 1988]. Aside from the
theoretical issues, there are practical considerations for the choice of approach. One con-
sideration is that, the analysis involves a minimum number of “hidden” parameters. At
present, there is a single scale parameter (see next chapter). Another consideration is the
active contours or “snakes”. Examples have shown that they have worked well for rela-
tively smooth surfaces [Ferrie et al., 1989], but for the highly textured surfaces associaced
with rock fragments, they have proven to be more difficult (especially in estimating the
process parameters).

On the other hand, the surface segmentation scheme is somewhat similar to
[Ponce and Brady, 1987, Fan et al., 1987, Fan, 1990], in detecting features for partition-
ing boundaries. However, the present method is more stable for two reasons. First is that
the surface representation obtained through the curvature consistency algorithm is stable,
which is critical to the part decomposition. Second is that the transversality principle is
the natural basis for identifying the partitioning boundaries.

However, the basic strategy here is very different from the one proposed in [Lim, 1990]
for rock recognition, with graph models to denote geometric salient features. This is

understandable, since the objective in the latter case is quite different.

4.6 Summary

In this chapter, the methodologies employed in our strategy for the rock identification and
localization are presented. Three levels of processes are discussed.

First, the stable representation of the surface is recovered from the range measure-
ments by applying a surface reconstruction process. The process involves two processing
steps: (i) initial estimates of surface properties, and (ii) surface estimates refinement.
The resulting stable surface estimates, make the suiface features required for surface
decomposition explicit.

In the second level of process, the transversality principle is presented as the ba-

sis of our surface decomposition strategy, for partitioning muckpile surface into regions
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corresponding to different rocks. Two type of features are considered in our surface seg-
mentation scheme, (i) jump discontinuities corresponding to occlusion boundaries between
muckpiles, and (ii) negative local curvature minima corresponding to contact boundaries
between rocks.

The final processing step is to find a volumetric model that best characterizes the 3-D
shape of each partitioned surface. Each individual rock is represented by a parametric
primitive, and this final representation can be used by other higher levels of processes,
such as for controlling the breaking mechanism of a rockbreaker.

The purposed strategy is fairly independent of the origin of data; i.e., we are not
committing ourselves to any particular type of range sensor. Since hardware development
is advancing in a much faster pace with respect to the progress in algorithm design,
although this is largely a personal intuition, we are likely to see faster and more accurate

range sensors becoming available in the near future.
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Chapter 5 Results

5.1 Laboratory setup

This chapter describes the results obtained by using the previously described methodology
in a laboratory environment. A scaled down version (50 cm x 40 cm) of a grizzly was
built 1n our laboratory with a grid size of 10 cm x 10 cm. Nickel and copper ore samples
with diameters! ranging from 4 to 8 cm were used for the experiments. The samples
were relatively clean, 1e., free from accumulated mud and dirt. Images of rock piles
were captured by the NRCC/McGill laser scanner. The scanner was mounted on the
end-effector of a PUMA 560 industrial robot to accommodate different viewing positions.
Fig 51 shows the laboratory setup.

A highly flexible software tool has been developed on a Silicon Graphics (Personal lris)
workstation, which is directly linked to a Local Area Network; the networked machines
include a wide range of computers with different architectures, various types of imaging
acquisition devices and robotic controllers The complete operation of image acquisition
from the laser scanner, the position of the robot, the transfer of the data over the netwos
and the rendening of the range data i1s entirely abstracted from the user level. The
advantage of having such a software system is that the user can concentrate on a particular

problem, without worrying about the technical details of hardware implementation.

5.2 Processing sequences

The data acquisition time for a full size (256 x 256) range image was approximately 15
seconds A typical set of raw range data obtained from muckpile samples located on top

of the grizzly model, 1s shown in Fig. 5.2.

ypically, rock fragment size 1s measured by a sphere that has an equivalent volume
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(b)

Figure 5.1: Laboratory setup for the rockbreaker pilot study. (a) An overall view
of the PUMA 560 robot and the NRCC/McGill laser scanner. (b) A close-up

view of the grizzly model and ore samples.

63



5. Results

(b) (c)

Figure 5.2: Raw range measurements of muckpiles. Two piles are shown here,
one consists of two and the other of three rock fragments respectively. The
muckpiles were placed on top of the grizzly model. (a) 3-D plot of the range
data. (b) Shaded image. (c) Grey-scale image (darker pixels represent points
further away from the scanner).

64



5. Results

5.2.1 Figure and ground separation

Because of the chosen view-point? (directly above the gnzzly model) and the calibrated
field of view of the laser scanner, background/object separation after data acquisition can
be performed by a simple depth thresholding based upon an a priori knowledge of the
height of the grizzly. The result is a binary image, which shows muckpile separated from

the grizzly model (Fig. 5.3)

(a) (b)

Figure 5.3: Figure/ground separation (a) Range image of rock pile after
figure/ground separation with grey-scale representing the range. (b) The asso-
ciated binary image.

5.2.2 Rock surface reconstruction

The next processing stage is the reconstruction of the muckpile surface from the range
data. First, we find initial estimates of the surface properties (i e., surface normal, principal
curvatures and principal directions at each sample point) using local methods Then

we refine the initial estimates iteratively, using the curvature consistency algonthm. in

2Transformation is required for other camera position, such that the ry plane i1s always parallel to the
grizzly model.
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general, the solution converges rapidly after five iterations. Fig. 5.4 shows a comparison
of the principal directions (with needles representing the principal directions). One can
easily note that the principal directions obtained after applying five iterations of curvature

consistency are far more stable when compared to the initial estimates obtained through

local methods

Figure 5.4: Needle map of principal directions Mp. (a) Initial estimates using
local method. (b) Refinements after applying 5 iterations of curvature consis-
tency algorithm

To compare the curvatures of the muckpile surface, the A'p/p curvature-sign map
that characterizes the muckpile surface based on the eight surface primitives defined in
% 33.1 is computed (Fig 55) Although, the surface representation obtained from the
minimization process is much more stable than the one obtained from the initial estimates,
the problem of inferring the surface boundaries remains (see Fig 5.5b) Ideally, for the
surface decomposition, it is desirable to obtain a surface representation that describes the
general geometric structure of the muckpile, rather than a detailed representation which

includes the unwanted and highly textured rock surface features.

66



5 Results

(2) (b)

Figure 5.5: Comparison of I'pHp curvature-sign map (a) Initial estimates
using local method. (b) Refinements after applying 5 iterations of curvature
consistency algorithm.

Scale-space filtering

As mentioned in the previous chapters, to infer the partitioning boundaries for the part
decomposition, only the overall structure of the muckpile at certain scales are significant
To obtain the surface representation of the muckpile at a particular scale, Gaussian filtering
is first applied to the original range data before the surface reconstruction A set of stable
surface descriptions at different scales can be obtained by varying the scale parameter o

(Fig. 5.6).

5.2.3 Rock decomposition

Similarly, the surface features (negative curvature minima) at different scales for the
partitioning boundary detection can be recovered. These critical points should correspond
to the contact boundaries between rocks if the appropriate scale is chosen. Fig 57
shows critical points recovered at different scales after applying five iterations of the

curvature consistency algorithm. By combining these critical points together with the
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Figure 5.6: A’ pllp curvature-sign map at different scales.
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occluding contours obtained from the feature/ground separation, the enclosed contours
each isolating an individual rock can be recovered. Because of high density of these feature
points, and the availability of a priori knowledge of how the contact boundaries should
end, a simple straight line interpolation between end points and occluding boundaries,
in practice is often sufficient for finding the rock boundaries However, if the density of
these feature points decreases, it might not clear how the interpolation should proceed
The resulting enclosed regions are then labelled using a standard clustening algonthm A

set of segmentation results based on the critical points in Fig 5.7 is shown in Fig 5.8.

5.2.4 Fitting of superquadric model

The final processing stage for the rock localization and identification problem is to re-
cover the spatial properties for each individual rock. These properties include the centre
of gravity, the surface orientation, the approximated shape and size The wire frames
corresponding to the final models for each rock are shown in Fig. 5.9b To get a more
qualitative appreciation of these results, the wire frames are rendered as shaded images

and plotted against the original set of range data (Fig. 5.9).

5.2.5 Processing time

Table 5.1 shows the approximated time required for each processing stage on a Sun

Sparcstation 1.

Surface Feconstruction 20 mins.
Surface Decomposition 30 secs
Fitting of Superquadric Model || 5 mins

Table 5.1: Approximated time required for each processing stage. surface re-
construction, surface decomposition, and fitting of superquadric model.
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Figure 5.7: Surface feature points at different scales.
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Figure 5.8: Surface decomposition at different scales
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Figure 5.9: (a) Original range data partitioned according to the region map
o =6in Fig 5.8. (b) Superquadric (wire frame) model fitting of the rock-pile.
(¢) Shaded image of the superquadric model.

72



5 Results

5.3 Case studies

Five case studies are presented in the following section, to evaluate the strategy proposed.
The computation of surface reconstruction and part decomposition was performed on a
Sun Sparcstation 14. For the superquadric modelling, each rock was modelled individually
The rendering of the muckpile models was done on a Silicon Graphics 41)/35 (Personal

Iris) workstation.

Example one

Fig. 5.10 shows a shaded image and a range image (intensity represents range) of a
muckpile consisting of three rock fragments. Using the same procedures mentioned 1n

this chapter, the muckpile surface is decomposed at different scales (Fig 5 11) The final

muckpile model is shown in Fig 5 12.

Figure 5.10: Raw range measurements of muckpiles. Three rock fragments
are shown here, with two rocks overlapping a bigger rock The muckpiles were
placed on top of the grizzly model. (a) Shaded image. (b) Grey-scale image
(darker pixels represent points further away from the scanner).
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Figure 5.11: Surface decomposition at different scales.
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Figure 5.12: (a) Oiiginal range data partitioned according to the region map
Fig. 5.11. (b) Superquadric (wire frame) model fitting of the rock-pile. (c)
Shaded image of the superquadric model.
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5. Results

The second example shows three rock samples (one isolated and two overlapping rocks)

in Fig. 513 The surface decomposition at different scales is shown in Fig. 5.14. The
superquadrics corresponding to this muckpile model is shown in Fig. 5.15.
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(b)

Figure 5.13: Raw range measurements of muckpile. Three rock samples are
shown here, one isolated and two overlapping fragments. (a) Shaded image.
(b) Grey-scale image (darker pixels represent points further away from the scan-
ner)
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Figure 5.14: Surface decomposition at different scales.
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L

Figure 5.15: (a) Original range data partitioned according to the region
map Fig. 5.14. (b) Superquadric (wire frame) model fitting of the rock-pile.
(c) Shaded image of the superquadric model.
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Example three

Fig. 5.16 shows another example of three overlapping rock samples. In particular, the
rock fragments were arranged in such a way, that they only slightly overlap each other;
i.e., the depth discontinuities along the contacting boundaries are relatively small The

surface decomposition worked well even under these situations (see Fig. 517) The final

muckpile model is shown in Fig. 5.18.

(a) (b)

Figure 5.16: Raw range measurements of muckpile. Three rocks are shown
here, with two smali rock fragments slightly overlapping a bigger fragment.
(3) Shaded image. (b) Grey-scale image (darker pixels represent potnts further

away from the scanner).
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Figure 5.17: Surface decomposition at different scales.
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5. Results

Example four

The fourth example is of a muckpile sample consisting of three rock fragments (Fig. 5.19).
In this particular example, a bigger rock fragment was lying on top of two smaller rock
fragments Note that this case is unlikely to happen in a real mine, since small fragments
tend to stay on top of the bigger ones after being unloaded from the LHD vehicles.

Fig 5.20 shows the surface decomposition at different scales. The final muckpile model

1s shown in Fig 5.21
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Figure 5.19: Raw range measurements of muckpile. Only one muckpile is shown
here, with one big rock fragment on top of two smaller fragments. (a) Shaded
image. (b) Grey-scale image (darker pixels represent points further away from
the scanner).
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Figure 5.20: Surface decomposition at different scales.
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(b) (c)

Figure 5.21: (a) Origin:l range data partitioned according to the region
map Fig. 5.20. (b) Superquadric (wire frame) model fitting of the rock-pile.
(c) Shaded image of the superquadric model.
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Example five

Fig 5.22 shows four rock fragments. The surface decomposition at different scales is

shown in Fig. 5.23. Fig 5.24 shows the final muckpile model.
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Figure 5.22: Raw range measurements of muckpiles. Two piles are shown here,
each with two rock fragments. (a) Shaded image. (b) Grey-scale image (darker
pixels represent points further away from the scanner).
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Figure 5.23: Surface decomposition at different scales.
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(b)
Figure 5.24: (a) Original range data partitioned according to the region map
Fig. 5.23. (b) Superquadric (wire frame) model fitting of the rock-pile. (c)

Shaded image of the superquadric model.
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5.4 Discussion

Six sets of results have been presented in this chapter, including five from the case studies
It is very difficult to assess the reliability and robustness of the strategy proposed, based
o the limited number of examples. However, among the total of more than twenty
test cases that haa been studied, the success rate was approximately 80 percent. This
promising figure suggests that the strategy s indeed adequate for identifying and locating
rock fragments from the configurations simulated in the laboratory

The main problem of this particular approach is the muckpile decomposition, and
especially the determination of the scale parameter (5) The experience gained fron this
exercise has shown that once the appropriate range of scales is established, based on
trial-and-error, the rock lumps can be identified correctly. The scale parameter is highly
correlated to the physical attributes of the equipment and the objects in the scene For
example, the larger the rock size and/or the greater the surface irregulanty, the larger the

scale parameter (see Table 5.2)

oc=3 o =4 o=25 g=26 rr;: ]

AverageRockSze —(13-2) 15,6 106 | 6.0 x 1076 | 6.4 x 107 [ 7.2 x 107 | 8.0 x 10-°

AverageSize of Surface Imegulanity [l 9 3o 10-1 [ 0.4 x 10~! [08x 101 | 1.1 x10"' | 15 » 10 !

Average Rock Size

Table 5.2: The correlation of scale parameter (o) between the average rock
size (4 — 8 cm diameter), the field of view ratio (1 m*®), and *he average size of
surface irregularity (0.2 — 1.5 cm)

The partitioning boundaries identified by muckpile decomposition algorithm do not
always correspond to the “true” rock boundaries This is partly because of the smoothing
effect from the scale-space filtering. Results have shown that the errors introduced are
negligible, and are compensated for during the modeliing fitting procedure

There are also some problems encountered in the experiment for modelling the muck-
pile, when the rock shape is highly irregular or flat These problems are due to the
loose constraint in inferring the rock size with insufficient data and the incapabiity of
superquadric for modelling complex rock shapes. Additional constraints can be embedded
in the modelling fitting procedure, such that each overlapped rock fragment cannot be

modelled by the parametric primitive that grows below the fragment(s) identified underlay
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Chapter 6 Conclusions

In this thesis, steps towards the goal of rock fragment localization and identification
required for the secondary rock-breakage automation, using computer vision-based tech-
niques have been presented. In particular, the study reported in this thesis has concen-
trated on the inference of the muckpile surface structure from the range measurements
obtained from a laboratory scale model. The basic concepts employed are borrowed from
standard differential geometry for analyzing 3-D curves and surfaces.

The proposed strategy involves three main steps: (i) surface reconstruction, (i) surface
decomposition, and (iii) volumetric modelling. Sander's curvature consistency algorithm
has proven to be very useful in recovering stable surface structure even with highly noisy
measurements Subsequently, the part decomposition of muckpile is made possible be-
cause of the stable surface estimates. The final muckpile model was obtained by litting
superquadric primitives to the identified rock surfaces This gives a qualitative description
of the position, orientation, size and shape of each rock fragment. This description is very
useful for the “high level” operations, not just limited to rock-breaking application, but
can also be applied to many applications of similar nature; such as ore analysis, blasting
assessment, materials transportation, etc.

Not surprisingly, the scale factor turned out to be very important because of the highly
textured surface and geometrical irregularity inherent in the litho-structure. In spite of
the fact that, the scale factor is somewhat related to the resolution of the measurements
and the physical size of the objects, the exact relationship remains not well understood.
A number of questions remain to be answered — how to chose the range of scales, and
how to combine information across different scales.

Although encouraging results have been obtained, based on the proposed strategy,
much of the work remains to be refined and enhanced before it can be applied in the real
mine environment. The following is a list of items from the strategy proposed which can

be improved:
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6. Conclusions

o For the surface reconstruction aspect, the current version of the curvature consis-
tency algorithm does not have the capability of preserving surface discontinuities,
however, this information is very important for the part decomposition process. A
new enhanced version of the curvature consistency algorithm wil! bz required, for
example to include a mechanism that guides the update of surface estimates based

on the error measurement.

e For the muckpile surface decomposition aspect, the boundary features such as nega-
tive local curvature minima and jump discontinuities have pioven to be very useful. A
more robust decomposition strategy will be required, such as combining the bound-
ary information with the region information, say, within a certan neighbourhood

size, and identifying the partitioning boundaries more reliably.

e For the modelling aspect, physically-based deformable models seem to be more
promising than the existing “pure” superquadric models. They provide better lo-
cal surface structure, which is very useful if the breaking tool is to be positioned
precisely on the rock surface. Moreover, the physically-based model provides the
basic dynamic elements which would be used to simulate and predict the physical
responses of the object due to external forces. This would b: very useful if one can
derive a physical model from the ore samples, and use this model to predict how
much force is required to break each of the oversized rock lumps and to subsequently

predict how well the rock fragments will react.

Other practical problems:

(i) The viewing problem due to bad view angle or occlusion of small fragments. To
solve this particular problem integration of range measurements at different viewpoints
will be required.

(ii) Sensor fusion — integration of different sensor measurements. An aspect of the
overall problem that has not been investigated here is the use of the rockbreaker hammer
itself as a feedback in the rock discrimination process. Hypotheses for rock location
identified by the vision system, could be tested by trial shifting of apparently separate

rocks to ensure that they are indeed separate/exist before the breakage operations are
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6. Conciusions

initiated. Such a combination of see-and-touch techniques is of course common amongst
intelligent creatures exploning new environments.

(i) The computing time problem has not been studiea in this thesis, but it is very
important to the automation process. Therefore, it should be given a high priority in the
future research

(iv) The safety problem, such as providing the worker with sufficient sheltering and
protection if a high power laser is used as the erergy source for the sensor.

The results obtained from the experiments are a successful demonstration of how

computer vision techniques can be applied in locating and identifying highly irregular

bjects such as rock fragments. To conclude this thesis, more research will be 1equired

in the future to investigate the problems addressed here, and to build a one-to-one scale

test-bed so that more in-depth assessment of the project can be made.
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