/s . Y
. ’ { bR 3 -
g - . s
" &
, \
4 »
~ P .
v . '
A Graphic Simulator for Robotic Workcelis .
. . ' haid
Faycal Kahloun \

B Eng.. Université du Québec 2 Trois-Rivién\s ’ -

- A -
LS
i , /
L RS v
o b . _
- ‘ ®
|
' -~
. - g) h)
_ . Departmerif‘bLEle/c\q\ical Engineering - “ -
\ ; -, ‘ . McGill University
o

4 '

Athesis submitted to the Faculty of Graduate Studies and Research

"in partial fulfillment of the requirements for the degree of

o (
M. Eng., McGill University, 1987 :

. ’ : March 12, 1987 '

© Faycal KahloGn

. @m@

RESEARCH THESES/REPORTS

v

Y

' THESIS NO.87 _3T

L4
TITLE: A Graphic Simulation for Robotic Workcells

AUTHOR (S)

Department of Electrical Engineering

L

DATE: March 1987/

GRANT OR.CONTRACT: pcag

o

NO. OF PAGES: 11, '

. SUPERVISOB: Dr. malowany

]

2

- Faycal Kahloun

fo-

McGill University
Montreal, CANADA
o

e

=

_

% o

“ (N _This thesis is dedicated to the memory

. . _ of my dear friend and valued compa}u'o'n Mounir Slama.-

” N '
\ .
. . © - 3
- 1 WY
v -
.
.
. N v
o L]
B
N P
av
-
. \’
° ‘
’
3 -
.
- -
2 o
- i
<,
o
. ~
-
\
.
.
) - -
. -
-
“ a
ry .
' [+
s ! -
)
-
. =
. & 1
‘
1 N -
, -
-
- \
-
-
. ¢
a
)
) : :
.
v ; '
. S P
. ' N -
q
- - ‘
‘4
- N
.
» M
¥ "
. .
: 5 .
»
7
o - o - -
i o .
' ' 3
v \
») - +
ke /
e . \
.
S
. o ,
R -
o
, -
o\
- ! ~ <
- V A
. .
a
A
5 -
® ‘ ’ }
~ - - o -
4
N £
N .
L - 1
. - o . - 1] -
& ‘
' s
. " ;
N , .
»
- e ~ ! d
) * v ¢ - '
. ' [
5 B 2 . . -

ABstrat% T

\ R

N -

. * .
- L.

“ - » s

. . o .
3 "
o . - ’

A .

| .+ As robotic appltcattons are becoming more and more complex robotic workcehs
are evolvmg to include varied and < mpllcatag conf:guratlons mvolvmg multiple robots
working' in conjunction with sensing zewces. Programming such a system is a difficult
and tedious task. The use of a Simulator provides a testbed for débuggin'g incremental
chgngéé‘ and developing new applica’tion_ programs. Furthermore, debugging becomes safer,
since actual equipment is not used, and program development can proceed during the
prodljction cycle. Moreover, the simula.tor. usually requires a grapl;ics interface, to create a
more-powerful and u;er-friendly programﬁing environment. This thesis presents a solution
to the problem of robotic wagkcell simulation by decompo.sirlg it into smaller problems of
dgtibase. data sublanguagg. solid modelling. motion. of solids in 3-D. robot kinematics.

-

robot programming and graphics.
)‘ o k - .

4 . -

‘&

~

s * - {\ ' ‘ .
Comme les apphcations ef robot|que dev:ennent de plu§ en plus complexes

les cellules de travall robotisées sont! appelees a inclure des configurations compliquées -
tmp!lquant des robots mbltiples’ utlhsa?t des systemes seqsortels. La progra‘mmat’lon de
tels sﬂystémes est une tiche difficile et laborielse. L'utilisation d'un simulateur procure
un banc d'essai permettant de mettre au point des programmes d'application. De plus,
le }Jévelpppement des tiches de travail devient plus s.ecurithaire puisqu'e 'equipement réel
n'est pas utilisé. Cette approche présente également I'avantage' de ne pas interr'o'{r‘hpreole

cycle de production pour des fins de développement de nouvelles strategies. Le simulateur

7z
nécessite généralement une interface graphique afin d'amiliorer la facilité d'utilisation et de

K produire un environnement de programmation plus performant. Cette'thése présente une

solution au probléme de la simulation des cellules de travail robotisées en le décomposant
en des problémes plus simples de base de données language d’ mterface modehsahon des: -

solides, mouvements des corps rlgldes en 3-D, cinématique des robots, programmatlon des

3

-

robots et graphisme.

n o

£

<
N

\/ | would like to thank all the members of the Computer Vlsmn and- Robotlcs

Laboratory for thelr constant support during the course of this work. | would like to thank

<

my supervisor, Dr. Malowany, who provided me with guidance throughout this project. |

would also like to-thank Dr. Angeles for his help concerhing the kinefatics aspects of tius

wo/rk.‘“and Dr. Hayward. for providing me with useful literature. o

v'l am very thankful to .my colleagues Moshe Cohen, Bruno Blais, Baris D(;lﬁlf.
and Clement (osselin for their help in proofreading and correcting this ma'nuscnpt. Spe-
cial thanks to Mike Parker who helped me overcome difficult programming hurdles, and to
Sylvain’ Juneau, Ab'&ql—Reza Mansouri, Sté;;ha}\e Aubry, and Iskender Paylan, whose en-~
couragem‘ents were of great value in completing this work. | would like tc; acknowledge my
immediate family for their continued support and understanding throughout the years. The

financial support of FCAR]and of the Tunisian government are afso gratefully acknowle}z(ged.

.—// ;

. Contents

z e
- Contents ") , ‘
+ ’f v
, (3 ‘ -
" Listof Figures i B e S Shooovi
. '\&) 4
Chapter 1 Introduction.......... Feeeeeeenn e e 1
: ! ;
1.1 Robotics..... R N S e |
. ,] ‘ »
"1.1.1 Robot Architectdges /T 1.

,1.24 Why Sin:ulation? - RRREEEE R R R R RRER 4
13 Previous Simulé‘tors' Joeeeeens ST e T 5
1.4 Project’s Outline. SUTIUUUUTIU e . .6
‘-Ch’apter 2 Database and Data Syblgng'upgg 8
251 D%tabase.:..*. EEREERY R R RRERREE v \.. 8
-21.1 The Relational Approach T o e 10
21.2 The Hierarchical Approach RO
21.3 The }Ve;v;ork Asproach........... s SRRRREE PR RERRTRRRS 12
2.1.4 Approach Selected e F R R . 13
@2.1.5' WorlldRepresentation G, I V. &
22 DataSublanguage......... ..ottt S et ‘17,
'\2.2.1 data sublanguage Infplementation . e R e 17 -
2.2.2 Datamodel Examples. S e ‘. e 21
<237 Summary: e e e 1 aw 22
\ .) /i

/ ! ;
5 o
.) ‘)" y .) . Contents~
F ‘Chapter 3 Solid Modelling ..".............. .| IO 2.
31 * golid Modelling Techniques ., PR 24
B . 3.1.1 Sweep Representations TR ' 25
3.1.2 Gﬁnstfuctive Solid ‘Geometry S 26
- 3.1.3 Boundary Representbtuihons oo Lo . .‘ 29
. N * 3.1.4 Cell Decomposition and Spatial Occupan'cy Enumeration : . 31)
- p :
. ' 3.1.? Existing Solid Modelless .,0 ... e 35
. 3.2 Approach Selected e, AU 35
3.21. 'Comparison e, .. e . e ... 36
- ; 3.2.2 Conversion Alglorféhms e e e 37
323 Dedision ... \\oo .. RTINS B 39
'3.3 Implemented Solid Modeller.............. ... N 40
) 3.3.1 Examples of B-reps L bl 40
p 3.3.2 Examples of S;/veep Representations ‘ 47 .
4 3.3.3° Further Extensions’. viiiinineiiiiii, 52
3.4 Graphics . B e e e e e e e e e 54
/ "« 3.4.1 World Coordinates Generator . .. T R 54 A
' ‘) - . - 3.4.2 éraphics Facilitl:és [R PRI P Vg 57
3.5 Geometric ‘Prope:tieA Ceeaes S * 7. 59
' 35.1 Area.........:,-......:‘ e TR 60
. L 35,20 VOWME 2 oo .6
”3.5.3 Centroid A 62
3.6 S?mmalry e e I e, 63
@} L Chapter 4 Motion and Programminé e U 64
' 41 Moyinga Solid icecceiiiiii . 64
. (vii
. 3 . -

+

»

- Contents
L]
-

. ;1.2 Manipulator Identification and Storage Structure A e 67’

4.3 Articulated Motion PP e e 70

. 4.3.2 Inverse Kinematics................ AP S,

[e

4.4 Motion Simulation e e, s

4.4.2 Play-back Simdla_tion
4.4.3 Discussion e e e e e e e
‘4.5 Grésping Solids.................... e e R

4.6 Program Developmento oo

4.6.2 Programming the Simulator e, T ‘

4.7 Summary O

Chapter 5 Results................... ... e DU e

5.1.2 Example 2: One manipulator and one solid to move veeeen :

) 5.1.3 Example 3: Two manipulators and one solid to move

5.2 Discussion ... F e e e e
.~ 521 Time Gonsiderations e e e e,

5.2.2 Implementation Aspects0.0..... 2t i

™~

) . « ' List of Figures
List of Figures ‘

. \
2.1£ Robot Manip’ulators ERN e e, PR R .. .10
~2.2‘,l The relational approach. S P - 10
2.3:; The hierarchical approach. ERRTRS e 11
2.4% The network approach.......... Ceser i g 12
25! Database aichitecture. PSR e .. 15

P - ‘ .
2.6? _The creation process. e e e .00 19

| . , .

2.7? The removal process. e e e RV 20
3.1: PDcurves..\ e e e e D T 26
\3.'2: Sweep Representations. e e SERERRYRRRRY 27
3.3",\ CSG Repre /nt'ations..\ ST e L0 28
3.4/ Half Spaces. e W 29
3.5/ Non Uniqueness of Bereps,'v z B T o el # co 3
36 B-reps tree. T e e e e e ; 32
3.7 Quadtree Representations........... o _. R R TP 34
3.8/ Top View of a'Cylinder. R P N . '41
3.9/ Burepsofa Cylinder. Aevvnns " el ... 43
3.10 B-re;:s Construction of Spheres. \\. T, 46

- e . -
3.11 Tree Struciture of a Sphere. IS AP 46
31 é—feps of Spheres. P T (; e el 647
3.13 B-reps of }Ellipsoids. e *. . .;. e e e 48

\

3.1;1 Translational Sweep. TR R RPRTS SRLTERPERIPRS .. 49
3.1% RotationaISweep...” e ” P Y |

{ | --‘ | ix
|

- m)
List of Figures
316 A Cone With Rotational Sweep. i, 53
317 A Torus With Rotational Sweep.cviiiiiniien... 53
318 Worldsofid Structure.iiii . ’”55
3.19 Structure of a Solid'in the Datamodel:. I 56
320 A LineSegement. e 61
41 PointMotion.o 64
42 Chping Effectw/l\-ﬂotlon C e e e e 66
43 Puma260.. 7T ... L oo o s e e e 70
4.4 General Robot Architecture. e !
45 Joint's Motion. P .. 18
4.6 zoint—time Relatlons. . . . ooii -81
47 Graspinga Solid..........oooouuiin i, P e e 84
4.8 |Interaction Between the /f‘pplication Program and the Simulator 89 n
51 Programi............. e e 93
5.2 Init@o'sition of the Puma: v = (0,0,-90,0,90,0).............. cea 94
5.3 Relative Motion by Av = (-70,-10, 10,30, -20, —-10). e 94 .
5.4 Absolute Motion to v = (~60,0,-70,0,90,30)................... N 95
5.5 F"seudpcode of Program2....., [ETP 96
5.6 Initial Configuration of Workcell 2, . . T o 96
5.7 Pick ConfigU(ation. ... 97-
5.8, PlaceConﬁgurgtién..,.........g...‘.'....(: % L jQ\7
5.9 Final Configuration of Workcell 2.................. 908
r 5.10 Pseudoco'de of Progvram‘ I PP . 99.
511 Initial Configuration of Workcell 3.\ oiie e 100
| ° 6 | X

5.12
5.13

5.14

" 5.15

5.16

5.17

Pick Configuration of Puma 1.
Motion of Puma_1 to the Transfer Configuration...*
Final Configuratién of Workcell 3. . : "
’
\

$

List of Figures

Xi

v

Chapter 1 Introduction °

e 2% .

"1.11 Robot Architectures o

1.1 . Robotics

“

Robots are among the most advanced automated machines built sir?ce the indus-
trial revolution. Many definitions have beelég%signed to them..but the one we think applies
best is the RIA’s (Robotics Institute of America): “ A robet js a progr;mmable. multifunc-
tional m;nipulator de'signed to move material.\parts. tools, or specialized d.evices. through
variable programmed, motions for the performance of a variety of tasks” [Holland83]. From
this ‘defi,nition we can conclude that tasks are performed through a variety of motions. ‘The

basic question in gébotics in general is 'how to perform motion?’. To this end. problems

a 1

of architecture, kinematics, dynamics, and contro| arise. From the same definition we can

also see the importance of programming considerations in robotics. .

Id

- o

. & i
Inspired by the human body, a robog is made of many joints and links in order to
be able to cover a desired workspace. One big difference between humans and robots from
an architectural point of view is that parts of the human body are flexible or ;;iecewisg rigid
such as the s;)ipe. which is rare even though possi.ble for robots. This limitation is especially
dueto the diﬁjculty of controlling a flexible body. Thus, most robots today are mad; of rigid

bodies called links connected “togefher by joints. There are many types of joints:. Prismatic,

td

. 11 Rohntyre

revolute, cylindrical, spherical and others. In’practice. however, the prismatic and revolute
- {
joints are dommant because they form the basis for any other type oy joint, and are easier to

fabricate mechanlcally The ability to achieve any type of motion is a positioning problem.
ys it should be possible to reach any point in the workspace of the manipulator. However.
~in order to manipulate material characterized by dimensional properties;‘. the direction with

which the ma’gipulat approaches the ‘material is also of interest. Hence. in order to

fulfil the definition given ™ f*and orientation of the hand or end effector

of the manipulator are of interest. This separation of position and orientation has led
to a popular class of manipulator;. namely wrist partitioned manipulators This latter
class of manipulators separates to a certain extent the position from the oientation of ’the'
manipvlators. Wrist partitioned manipllators are usually six dgrees of freedom (6 d.o.f).
of \rvhich three degrees are rieeded for positioning and three for direction In some tasks.
however, only five degrees of freedom are necessary as explained by Angeles [Angeles86al].
Examples of such tasks are the on€s used in manipulating objects which ;\ave one axis of-

-

symmetry, which is a rather current topic. ’ - .

. o |
1.1.2 Robvbt 'Kinematics "

°o

The kinematics ‘problem _in robotics can be divided in two, forward and mverse)
kinematics. The forward kinematics problem is defined as follows: Given the joint values
and rates, find the p?srtlon. the’ onentatlén. and the speed of the end effector of the -

manipylator. The inverse kinerhatics is the reverse problem and is more complex to sol\(e

> in the general case. In order to solve these problems certain means have been standardized,

such as the choice of the coordinate frames to use in order to facilitate the solution. The

Hartenberg and Denavit parameters are by far the most ’popular definitions used to define
\ ¢ ‘g
those frames, particularly due to the uniformity of the transformations relating the frame

attached to the (i + 1) joint to the one attached to the it* joint [Paul81a).
t i ~ - |

a <

/o . !

b

! . . c 11 Robotics

. 1.1.3 Robot Dynamics .

~

v
-

When a manipulator is moving to a particular position and orientation of its-
end effector, many considerations enter into account beside the’ poeition. wvelocity. and
acceleration. qravity has an effect on the desired motion. as does friction and other forces
and torques ;pplie’dgto the manipulator. The problkem of dynamics.is' complica‘ted due
to the high 'non-linéarity of manipulator motion. The dynamical equations relate forces
and torques to positionsf. velocities, and accelerations and are usually solved in order .&o
obtain the equations of motion of the manipulator. Lagrangian mechanics is widely used in
robotics to formulate theé dynamical equations since it bypasses the physical pro;:erties of
the problem. The dynamical equations are then formulated in a purely mathematical u;a;l.
Generally in robotics, the f;rward dynamics ceICUlatidqs are not needed, since the desired

motion is usually known. An inverse computation is needed to determine the forces and

torques to apply at the joint level for control. The problem of dynamics is the motive for

_ the development of control theory in robotics [Pa;u181a].

@
. o

1.1.4 Robot (;ontrol
S T

. Once a 'traje{:toryais specified in terms of time-based functions defining the
jaint positions, rates. and accelerations, a control scheme must be developed to assure
tracking of the desired trajecto;y.‘ A feedback control system is needed to approximate
with minimal error the’ desired positions, rates, or accelerations, depending on the type of
control, regardless of the varied torques resulting' from the robot’s configuration [Craig86,

Paul81a]. S . ,

1.1 éd Robot Programming

. In order for a robot manipulater to be of any use, means ha\ge to be provided
to specify the deswed conf' guratlons it is to.attain. Robot languages have been introduced

concurrently wnth the introduction of robots themselves. Although this goes backfarther

¥ i

.) . E 12 Why Simulation?

than a decade. developments have been slow and robot ‘languages have been progressed

1 «
it a rather haphazard manner. The languages that are currentfy in use can be divided -

into three-categories. These are manipulator level languages. object level languages. and
task level Janguages. The m@nipulatot. level languages are the lowest Jevel in a robo‘tic}‘
programming €nvironment and deal in terms of joints values or end effectorscoordinates for ’
motion tasks. Object |ev;l programmin} is very much in use. with the idea being to define
objéctshand their coordinates in some form of a database. The tasks would therefore be
per%ormed in terms of objects. and not (directly in terms of coordinates [Faverjon86i fe.g
grasp.tray, where the coordinates of the tray dre defined in tl';e database). The la:st cdtegory
is an extension to the object level. and deals in higher terms ‘<\)f tasks, whigJL are scmehow
interpreted into .Iower level commands [S.ata81] (e.g assemble pump wl;icl; is interpreted

as a series of lower level commands such as move, grasp arid others).

1.2 Why Simulation? ‘

' El

-

* Many problems ‘may arise in orogramming a robot or a complete workcell. For

example, the programmer can ask the robot ic go out of its worksp’ace. and thus error

LY

- s
detection becomes mandatory in every robot program. This is cumbersome and is usually
* & .

npt the, case in practice. -Robots are oftén placed in constrained workspaces, suth as on

4

a table. so the tasks aref very~dependant on the robot environment. and a program could
be prefectly suitable for'one enfironment and not at all for another. Many other problems

* -
are encountered in robotics, so as a precaution, simulatiop is negessary in any. robotic

environment. Simulation can have many uses, of which we shah‘ name several: .

Q

q 5~

1- Graphic simulation of a robotic workcell may be used as a means for teaching

new entrants to-the field. while safeguarding against possible damage to the *

. robotic equipment. *°

s

~
2- Insome instances, it may be desired to experiment with manipulators of specific
’ architectures due Q vironmental or task-related constrahts: this could also

:. 4

&

o

o

~ PR

13 Previous Simulators

L &

-«

t

be accomplished using a simulator.

¢

3ﬁl’/ogrammmg a mampulator for, a partlcular task is an everyday " problem in

robotics. and ms/tead of trying out’ the task on the mampulator it can be tried

on a snmulated replication of the mampulator. ’

\ . e

4- In some industries. the placement of many manipulators is very important in

terms of efficiency, and the possible solution{ can be tried on a simulator, thus

avoiding inconvience and high cost.

%
. -] —

[\

5- Contructing new manipulators specialized for different tasks can also be simpli-

- . . [.
fied enormously by using,a simulator. ‘

6- Before making a decision such as‘buying a particular robot for a well defined

N -]
task, a simulator can be used for eomparison Between pohypeting manipulators.
’ . ‘ 4 - @

)

¢
0 -

There are. of course, many other consuderatlons which justify the us<ulness of

a robotic workcell simulator. Some of them will be encountered in the following chapters
of this thesis. ® \ .
‘) ,
1.3 Previous Simulators
\

)

v * Previous work on robot offdine programming and simulation systems is abun-
 dant. As examples we mention the McAuto system [Shumaker80 Kretch82]. the GRASP
program [Derby82a). the MIRE system [Liegeosis et al. 80], the SIMULATOR program
{Soroka80]. and the SAMMIE system [Heginbotham et al. 73]. An over\;iew of the existing

systems™ is presented by Derby in [Derby82b]. from which we concluded that most robot .

simulators use commercial solid modellers such'as PADL [Voelcker et al.78], CATIA [Bqrrel
et al. 83]. NONAME [Staff from GMP 81], and others, However, due té the generality
of those solid modellers, the robot simulation process tends to be cumbersome and slow.

Moreover. the solid modellers mentioned above can not be easily integrated with a workcell

\ ' 3 \ 5

RETR

P , : 1.4 Projéct's Outline

o

programming environment. We have therefore decided to develop a solid modeller suitable

for rigid body mampulatlon 3nd partscularly robotics appllcatlons Thus, the source code

is provided, and flexibility is’'one of the prominant feat/res of our design. -
-
1.4 "Project’s Outline
\)
- ' . ' >
Our goals in this project are listed as follows:
1- To create any workcell interactively and easily. .
v

~
-

.
. 2- To program the workcell for different tasks to be accomplished by a variety of

motions.

. .
s - k]
. . “

AY

3- To view graphically the results of the tasks.

4

. - $ 3
There are many problems which we shall introduce now and will be solved later

. when encoutered. The first goal is divided in Two major parts. namely, a data structure

for easy mteractWe use, and a solid modelling part which is used for modelling workcells
In any type of sumulatlon where a variety of objects, such as tools, parts, robnts and

bthers are to be used, certain orga>mzed data is needed in order to facilitate the storage,

1

retrieval, “and modlflcatlon of any type of information related to the objects of interest. In a

%

. robotic workcell snmulatlon. the information of interest is either descriptive or geometric irt

general, ;nd thus the data structure should be capable to handle both. Moreover, this data
structyre cha‘nge's with time due to motion, and should be rdynamic. After the design of
the data structure. the user needs some way to interact with it; this means of interaction
is called 4 data subl’anguagé.‘ Both the data structure and the data sublanguage are the
subject of chapter 2, where. }:ney are designed and discussed in detail. The 'second solid
modelling part of" the first ‘goal is basically an extension.to the data structure and data
sublanguage. The creation of a particular ®bject can be done at the lowest’level by using
the data structurenanq the data,;ublanguage. However this is difficult, as will be shown

,-‘q « ())
e ’ 6

<)
A}

J

(/

14 Project’s Outline
t N ~ a R

in chapter 2. Hence some other means have been developed to facihtate the modelling
of a workcell as discussed in chapter 3. The first part of chapter 3 is an overvne‘:v of the
existing methods of solid modelling, éNhﬂe the Iatter part is a presentation of what was
developed for the simulator and a discussion of the advantages and disadvantages of the
methods in use. The second goal is the programming aspect of 'the workcell. Thls‘ comes
,down to th\e simulatiqn of a motion applied to one solid in 3—-D space ‘as introduced and
discussed in chapter 4. In robotnc{ however, the motion is applied simultaneously to many
solids, namely the different links of ‘a robot plus the grasped object if any. and this is more)
difficult to solve. Moreover, the motion is usually known m’cartesuan space rather than

joint space, and thus the inverse kinematics solution is needed. The whole notion of motion.

" in robotics is discussed in chapter 4, and'fsolutions are presented with means of speeding

up the entire process. The last goakds obtaining and viewing results; this is presented in
chapters 2, 3, and 4, whenever a result is required. The graphics _aspect of the result is
dlscussed briefly at the end of chapter 3 as a way of verifying the solid modelling. Chapter
5 presents some results in which we create a workeell, pgpgram it. and vuew the output of
the program. Some ways of debugging a robot program will also be introduced. As we can
notice from this mtroducnon to the pro;ect s outline, the dynamics and control aspects of |
robotics arg beyond the scope of this thes1s ﬁus the results are a'good approxnmatlon of
reality as long as the control scheme is successful enough to make the dynarnlcal effects

‘ 1
negligeable. The architecture, kinematics, and programming aspects in a robotics workcell

-)
are the mdjor interest for this thesis.

L] - d

¥ 4

g A} ‘ L) \ - A

¥
The design of a data-st[ucture° has become, more and more important in solid

modt\alling. and hence in any kind of graphic simulation involving solids. lxependingon the
application, some representations are more suitable than others; thus. a decision has to
‘be made on the structure to be used for the world modelling.” Once this is done, a data

sublanguage (user interface) is developed to perform the interaction between the user and

this data-structure or database.. This chapter is dividad in two major sections, namely, -
‘ !

da\aba'se and datg sublanguage.

'

2.1 Database -

In a. simulation environmfgt: the designer or programmer has to deal with dif-
férent components to construct the world model. and there is therefore a need to develop
~ a database which contains the descriptive and geometric information of these components,
In general the components have relations betweén them, which should also be stored in the

same database[Date81]. _ g

The need for this type of database appeared when world modelling begcame
important in the field of robotics in gen'e‘ral. This is due to the fact that most robots
work in a knovyn environment, and hence a dynarhic database which could handle the initialv
model of the workspace and the changes during the manipulation would be very helpful.

This concept of dyn_amic database found use in fields other than robotics and vision such

4

) mampulated are fairly complicated [Dittrich85. Haskin82]). This imposes an additional

- entities and their relationships. namely, the relational approach. the hierarchical approach

AU S

, 21 Database .

as in flight sumulators The reasons mentioned above, and some othg\research res»ults
led us to believe that a good desngn of a datamodel (DM), the user's view of a database -

[Date81] would be very helpful for the simulator.

5

v In order to make this good design, we have to’define the criteria which make,
an adequate datamodel. One of these criteria is that the datamodel should provide ways
to retrieve or derive all the required characteristics of a selected object, in an acceptable

-

amount of tlme For engineering applications it has been noted that the objects to be

criterion of simplicity for rep(esentlng_ these objects in the datamodel. *The third criterion \
which defines a good database design is/ its compactness, which we should keep in mind
while we are developin\g the st{ftware for the datamodel. Looking at what has been done
before. we can notice that there are three traditional favored design approaches to represent

e

and the network approach [Date81]. - .
A

]

-~

.

\ We shall investigate these approaches one by one, before building our design.
The‘g%st way to discuss these approaches is. probably. to consider an example. Suppose

we are, asked to represent some typical robot manipulators as part of an assembly “chain;

one of them could be a 6 degree of freedom with 6 revolute pairs. The first moving link
is g;ometrically cylindrical, the second and third links could be constructed eas_ily out of
surfaces connected together to form a certain volume (volume2 and volume3)'. and the last _
three link §’const|tute a spherical’ joint and are geometrically represented with one sphere.
Iri‘ other words we can consider this particular manipulator as being made of four different
‘solids, a cylinder, volume2 and \;olume3 and a sphere. This is geometricallj similar to
a Puma: Let us suppose that we have three manipulato-r.‘s. and like the one_described -

above, they are made of many links decomposable geometrically in smaller entities®such as

cylinders, spheres, and blocks, as shown in-figure 2.1.

<

71 Datahaen

i

2.1.1 -The Relational Approach.

Figure 2.1 Robot Manipulators. .

Al K
A

N ¢

- -~

As mentiéned before, a database sys’te‘m must be able to represent entities

_and relations between them [Freedman86]. In the relatipnal\approach._there is no explicit

distinction between the entities and the relations [Ullman82]. Considering our example of

robots and the solids which construct them, we can defim?v two relations: ROBOT and

"SOLID. These two relations are represented using a table, which is the typical way of

" representing a mode! by the relational approach [Astrahan76]. this is shown in figure 2.2

14

~ |RoBOT .
\ ¢ Serial number] Solid_1Solid_2Solid_3
: 1 T | 2 1
‘ 2 0 3 1 -
3 0 - 3. 0
SOLID .
Serial number| Surfaces | Cylinders| Spheres
o -~ 1 0 1 0
: 2 6 0 0
-3 0 0 1
T e

Figure 2.2 The relational approach.

C

21 Database

To determine the components which make up a given solid. the appropriate
solid is located using the serial number, and then we read across its row in the table.
To determine which solid contains a given component or a certain quantity of a given

component, we locate first the component’s column and then read across to the serial

number. Since robots are constructed from.golids and solids from components, an extra

level of searching is required to know what components (spheres, cylinders. surfaces) make
one particular robot. This extra level of searching is_also needed for the reverse operation
of finding which robot contair:s a given component. More complex queries ‘could also be
answered, for example, which solid contaips components ‘1" AND "2, ‘1" OR 33 and so
on: in fact, an); type of query based on the relational algebra can easily be answered, and

hence the name Yelatienal database [Codd72].

'S

2.1.2 The Hierarchical Approach

In the hierarchical approach, relationships are entirely implicit. and the relation-

ship ‘between two entities is presented by the relative position of the two nodes defining

. the entities [Date81, Ullman82]. Continuing with our example, the representation in this

approac}\ would be as shown in fig;:re 2.3.

.

) “ Robot_2| |Robot_3 .
~ \\\~ . %
. . T }K\.:\ d
- Solid_1| [sclid_2| [solid 3™ - '
(L . ‘
Surface| [Cylinder Spher;i'« S .

! -

- Figure 2.3 The hierarchical approach.

; - .

In this approach, responding to a query is necessarely divided in two distinct

¢ operations: First. traverse the whole hierarchy to find the entity on which the query is to

be applied, second. apply the query [Kunwoo85}. As an example, the qtery couid be ‘what

L4

(oM

o~

are the components_of solid_1¢, in order to answer this. the solid 'solid-1' would have to be

located. and then all the nodes attached to this etftity's node would copstitute the answer.

s M

CY

Lo In °

.

.

2.1.3 - The Network Approach)

. J‘/

The network datamode! all

i

21 Database

=t

ws for more flexible associations by replacing the

hierarchical structure with a network [Freedman86]. In this approach. the nodes fepr'esent

LY

solids, the s&ructure in this approach would be similar to the one shown |;1/f|gure 24

the tuples of data. and the arcs represent the relations. Using the example of robots and

|
|
1

|
|
|

/lv

{

) . ’ Robot_1
[Surfacei 0 .Solid_1 1
‘| Cylinder 1
1 ¢ ‘
i Sphere } 0 -
- 7w o
| A ; Solid_2 2, ‘
r) - . ? 0 - -
;’ 0 - ISolid3 1
: 0 @ * Robot 2
' 1
) 3 .
' 1 - .
_ . 0 Robot_3
3

2

Figure 2.4 The network approach.

\

1
,‘

All relations in a network datamodel are explicit, and thus the‘ positions of the

nodes are irrelevant. Answering a query means searching the network for all possible paths
=

to apply the operation, Some special care should ba taken if the arcs form a chain [Date81).

12 -

21 Database

2.1.4 Approacl; Selected =~ T

We have presented three known datamodel approaches none of which is really

perfect In thls paragraph, their respective drawbacks will be shown. An attempt to

construct a datamodel avoiding these drawbacks will be made fot this simulator study.

o
a

2 g ¢

The relational approach shows its weakness, whert considering'engineeriﬁg‘é

.

phcations, where the representation of complex entitities and relations is needed, a large

amount bf relations must then be kept [Fenves85]. The ability to représent these complex

-objects requires a hierarchical approach. but. in its turri, the hierarchical approach has other

disavamreages. Since the relationships-‘are implicit. the only way the user can interact with

the information contained in a relationship is by building’ it up dynamically while traversing

>

the hierarchical tree, [Date81]. For ex;mple. to know if a sphere A is part_of one solid S,,

we should locate the solid and then fetch all the‘components which build it. In the network

approach, on the other hand, the relations. are explicit and.are present by means of pointers.

However. the relations and the entities are considered as «different objects and are stored -

differently. .

@
— -]

The fact hat the relational datamodel is not suitable for representing the variety

of objects we meet ir-engineering applications do€s not make it a bad representation. since
[

it has advantages such as the explicity of the relations. The network and hierarchical

approaches both have positive points as well, namely the simplicity of representing complex

objects.” In our design we aimed at using the advantages of all these approaches> The
network approach is, in practice, very similar to the hierarchical ane. and so there is no

advantage in con5|der|ng it seperately, espec1ally since it introduces the chain complexity..

i,

The hierarchical datamodel is very suitable for engineering applications, however

its biggest disadvantage is the implicity of the relations. If we make these relations explicit
& 8

by giving them identities and by supplying means to access them. the problem would be

partly solved. The second disadvantage of a hierarchical approach is the fact that for each

.query we have to traverse the whole hierarchy to find the entity or relation (once made

r

13

\ 21 Database

o

explicit) on which t'he query 1s to be applied This requires further optm)ization, such as

[

4

allowing the queries to be specified at intermediate levels of the hierarchy rather than just
N .
at the top. With the two changés mentioned above. we avoid the disadvantages of the

” hierarchical datamodel. I

. To recapitulate. we can say that our representation would basically be a hierar-

chical datamodel with explicit relations and a user interface allowing actess to every level
4 o °

) v -
of explicit relations or entities. S

2.1.5 World Representation ,

1]

o >
L 3 a »

. The term world representati‘on is used to signify the datamodel approach we
used for world modelling. The chosen datamodel is made of entities and relations as

described earlier. In practice, the entities include xy_pairs (XY). surface.contours (SCT) .

. surfaces {S). blocks (B), objects (O) and scenes (§C) The explicit refations are basically
homogeneous transformations with identifications. ;hese include transform_surfaces (TS),
transform_blocks (TB) and transforrrf\fobjects (TO). Thus, we have six different level of

- entities and three levels of \explicibrelations. Every entity from the level block up has explicit
relations attached to it. All the entities at the same level are stored as linked lists bounded

by a begin_list and an end_list pointer. The relations at the same level are alrso stored as

linked lists, and differ from the storage of entities in that we can have many linked lists at

the' same level of relations defined as transformations. these linked lists are also bounded

by begin ard end marks, this is shown i figure 2.5.

Let us now start with an xy_pair and build up a typical model. The jxy_pair is
a structure determining the coordinates of one point in a two dimensional space. Many
xy-péirs constitute a surface_contour, and a gron of'surface_contours make up, a surface.r
The feature that a suﬁace could be made of many surface_contours is providéd to allow

holes in a surface. A surfacé is then made of the union of different sets of surface.contours

. referred to as main_countours and hole_contours, which are stored as linked lists. Up

s
1]

14

21 Database®

— — e o ! . e
Scenel~ &—1Scenet : Null
B 1 g
f;ans , NS.eee i?ans. e oo
[oby- iobJ. Nullj G53. iggffs ‘
° - ' ™ - ’ - . -

Trans.| (Trans. Nul) Trans. Tr‘ans..___,ﬁml\ ’
&)

Block Block

R
: \
Bloak—————Nal]]

Trans Trans. 4 ‘
* 4 Surf. Tttt
..// .)

Sur face

(Sot——JNal1] -+
Scir 'ﬁc'/

Hole
L‘cy.@wj——-txymwﬂ H

% Sct: Surface contour . .

-

8-

Figure 2.5 Database architecture.
4 ¥

to the surface level. we deal with two dimensional representations. An xy_pair is part

of a su;face_contcﬁlr, which in turn is part.of a’surface. Both of the aforementioned

relations, namely “part of” relations are stored implicitly. We can not ntherefqre access:

them directly. This is done to make us think of a surface as being the lowest entity that

we can manipulate in the hierarchy. Manipulation or quer‘y of surface_contours or Xy_pairs

is accomplished indirectly through the surface to which they belong. The next level above
.

surfaces is a level of explicit rglations, namely transform_surfaces. Every transform_surface

has an "id". a homgeneous transformation and points to a surface entity. This level of

“relations is identified and explicit, and thus may accept queries. The transform_surfaces

@

are grouped together, ending w'th an end.mark of a null pointer, to build a higher level

entt/ty. the block. A block is made by applylng the transform. surfaces in question on the

Fs

’\J i 15

pro

. ;

€ ¥,
R

o

yL

. . o 71 Database

surfaces to which they are pointing: the transformations are speC}fued in a three dimensional
space and thus a block is the first 3-D entity. The next level above the blocks is made
of transform_?locks: "again these relfmons are explicit. Withput going through, the entire
model, we can Say that this structure is propagated up to the highest entity level called,

a scene. Adding other levels is unecessary. since the data sublanguage offers facilities

‘Fo copy from the same entity level, with an 6pt:on of specifying a relation while c0pyin§.

However, if deemed neceésary facilities to go to higher Ievels are easy to implement
Theoretlcally this approach 1s capable of representmg complucated sohds In reality, some
practical considerations enter into account. For example. is it acceptable to ask the uscr to
enter a homogeneous transformatlon every time he wants to attach a lowqr level entlty to
higher level one. The answer to thls qUestnon is obviously no, and therefore we Introduced
other features. For example specnfynng the attachement transformatlon is achieved from a
composition of scalings, rotatlons and translatlons with respect to some cqordmate §ystemv.
The rotationsz\‘in <i)_artiacular could be specified in different ways such as using the euklr angles,
using 3 points of a rigid solid to describe the start and end position _and orient‘;tion or using
an axis of rotation, a point of the axis and an angle:- of course gcrgf’ationncould be specified

in other ways as well.

v A Looking| at the datamodel, we can notice that there are no storage reserved for

templates or instances at any level; this is not\explicit in the datamodel. but is implemented
in the data sublanguage using the copy facility. A drawback to this datamodel is the fact
that one particular entity could be shared by many higher level entities [Cardenas79]. and
thus any changes applied to it may 3ffect «;ntities that we did not. want to affect. This is a
characterisFic of any model based on a hierarchical approach, this risk could, of course. be

avoided by replicating information, however this is space consu.ming. The type:of change

that €ould cause the most damage is certainly the deletion, that is why. we included a

descriptive field called ""pointed-by" in each entity. This field gives_information about the
number of relations that are pointing to the.entity in question. Deletion takes place only if

the “pointed_by" field is zero. otherwise, it is refused.

16

&
xa‘;

=

o

°

A

.difference between our datamodel and the relational model is the fact that the relations

ad(transformations) and the entities are different, but, accessed similarly. The major differ-]

: ; /

The datamodel we have chosen has a good characteristic of a relational model.

22 Data Sublanguage

in that all essential relations are explicit apd can therefore be “queried”. It also embodies

an advantage of the hierarchical model. namely the hierarchy of building solids. One major

S

2

ence with the hierarchical apﬁroach is that a query would net have to traverse the whole
hierarchy but is, instead. applied at one level, and the searching or traversing is achieved

horizoﬁtally° through linked lists, of course there is also the difference caused by the explicity

1

of relations. . o

2.2 Data Sublangdage \ .
&

L'.§
The data sublanguage (DSL) is the user’s language to interact with the data-

model. Practically the data sublanguage has been limited to three types of qugriés which

are additi‘on. deletion and update [Date81]. To facilitate interaction with the datamodel.
some other features such as copying and showing were added. Moreover, in order to speed
up the editing phase of the datamodel and in order. to avoid problems such as typing an
incorrect user command, the user intgrface is managed by a command line parser and

syntatic checker called a "key tree matcher”.

* A good data sublanguage is one which best accomodates the use of the data-

S

model. In order to accomplish this, in vnew of the hierarchical aspect of our datamodel the

user interface isimplemented at every level of entities or explicit relations. Furthermore, the

data sublanguage is implemented so that the explicit relations and the entities are accessed

in a-similar manner. The next paragraph will explain in greater detail the implementation

ofrithe data sublanguage. - - ©

PS o
2.2.1 . data sublanguage Implementation

]

The facilities offered by the data sublanguage are all accessible to the user via the

key tree matcher; the basic and most useful operations are creation, removal, modification,

o

(-3

] ‘ ‘ 17

o

o -
.
.
h . .

2

22 Data Sublanguaee

copying. showing, attachment, detachment and model fiing. The tools that were developed

=

to allow use of these facilities include ‘memory allocation facilities, searching and insertion

of entities and relations. The identification of an object is done using its name and the
‘level to which it belongs, and thus all queries will require at least those two specifications,
in order to be applied. Let us now présent the facilities offered by the data sublanguage

trying as much as possible to omit programming details. .

2.2.1.1. Creation .

. The creation process applies only to entities and takes a level §pecification and
-a name. First the specified level is verified to assure it does not already contain an entity
of the same name. The memory allocation, if needed. and insertion in the entity list then

take’ place. The flowchart for this query is shown in figure 2.6.

’

2.2.1.2 Removal

This process also only ap})lies to entities and takes a level and name specifica-

) tion. The entity to:be removed is first located at the level specified. If the entity is not
™ being pbinted to by any higher Ievelrrelation.): is unlinked, and the memory |;reviously
allocated for it is saved in a garbage collection for the level in quéstion; otherwise the query

is refused. A flow chart ‘is shown in\figure 2.7.

¢ 2213/ Modification) ' .
R

‘ “ RS

This query applies both to entities and relations. In the case of entities it needs
a name and level specification. If the search is successful the query enters a smaller key
tree matcher. in order to make the modification more user friendly: for example we.can see
the"possible kinds of allowed changes, such as char;ging the type , the.name and other
characteristics. The modlﬁcatlon can also be applied at a Ievel of relations. Every relation
Q is identified by its name, uts fev I and the name of the entity to which it is attached. .

" Modification of relations operates in basically the same manner as modification of entities.

18

) ' é? Data Sublanguage

‘ 7
< ~
» [\ .
\
‘) 1]
'0 ' * rl
Error
, message
>
, Memory N ’
F\ _ allocation °]
.]
Insertion
of entity ,
\ °
o »
-\ J\ & P’y
End
{

Figure 2.6 The creation process.
\ 1]

In both cases, if the results of the search are negative, the user is notified and the action
is refused. The control then goes back to a higher level database manager (DBM) i.e key

tree matcher and waits for new commands,

"..2.21,4 Copying ‘ o
"This facility is used in order toﬁmake use of instances of entities at- every Ievel
It takes as arguments a level specification, a name of an existing entity at that level and a
new name for the deslred'entlty. The utility venﬁes certain parameters, and copies the old »
9ntlty to the new one, with an optlon of specifying a relat:on to be applied. The creation of
c the new entity, interrogates' the garbage collection to determme if there is enoygh memory

to accomodate the new entity; if the space is found to be insufficient , ‘new midmory is

A . 19 -

2:2.1.6 "Attachment -

-] \
' 22 Data Sublanguagzer

o
nie
i

U v

nlink fromi

| linked llsﬂL

= 5 k{emory saving
rror rror .
message | message in garbage
‘ - - collection
SR}]
AN
<uEnd) i
N’
’ o o
A
Figure 2.7 The removal process -
’ ‘ o e \
allocated.

2.2.1.5 Showing
»
Showing i; a query that mqy\be'applied to both entities and relations. This query
provides all of the possible information about an object. Different versions of showing have
been implemented depending on the amount of detai} wanted about a particular object.

-

This query installs a relation between two entities. It tgkes as arguments the
name of the relation, the level and name of the entivty that this relation is to be attached to,
and the name of the entity that the relation should point to. It first"veri?ies the exist&€nce of
both entities and the non exist@nce of a relation with the same namé at the level specified
Then memory allocation, if heeded, and insertion occur and th: “pointed.by" field of the
entity being pointed to by this relation is incremented. The relation (transformation) could/

be specified in different ways, depending on the ability of the u’sner.’ For more details we

20

vi

2.2 Data Sublanguage

a

provide example 1 at the end of-this chapter. . . N

2.2.1.7 Detachment

Detachment removes a relation between two entities. After all thg necessary
searching and verifications are performed. a specified relation is unlinked from the linked
list attached to a particular entity. The space that the relation was occupying is saved in a
garbage collection at the same level of relations. The “pointed_by” field of the entity that

was pointed to by the relation,in question. is decremented.

, -
U -

2.2.1.8 Model Filing j

For model filing we have two basic facilities, ramely, save and load. These two

7

facilities are used so that we would not have to re-create any object (relation or entity)
\

‘once it has been created in the datamﬁel)

-

‘ In the preceeding sections we have discussed the most useful q’uéries in our
_datamodel. This user in%erface was developed keeping ease of use and compactness as
primary goals, to allow eonvenient use of the datamodel. The user interface is written ‘in
“C” and'could resi‘de on any UNIX machine; it is actually implemented on a SUN running the
UNIX 4.3 BSD. The execution /time of the queries is not very critical since the development
of the model is done at the editing phase of the database . We provide twd simple examples

here to clarify the datamodel and its data sublanguage. .
2.2,2 Datamodel Examples

2.2.2.1 Example 1: A Cube
This example is about consttucting a unit cube as a block in the datamodel.
First we should construct a umt square, this is done by invoking the creation process at

V' the surface level where we create a surface called “squarel”, this surface has just one

°

23 Summary

main contour, without holes. Then. we invoke the creation command at the block level for

“cubel”. Once this is done the attachment takes place. we attach the surface "sq:uarel" to

block “block1” six times, using six transform_surfacés, each transform_surface is specified

using theqfollowing scaling (S). rotating (R) and translating (T) factors:
Sz=1,8y=1,5:=1,R; =90,Ry=0,R, =0,T;=0,Ty=0,T, =0
S:=1,8 =158 =1,R; =90,Ry=0,R, =0,T: =0,Ty=1,T-=0
§ 1,5y =1,5; =1,R; = 0,Ry = ~90,R; = 0,T; = 0,Ty = 0,T: = 0
Sz=1,8y=1,8:=1,R; =0,Ry =-90,R; =0,T: =1,Ty=0,T.=0
S:=1,5, - 1,5; =1,R; =0,Ry =0,R, =0,T; =0,T, =0,T; =0
$:=1,5,=1,5, =1,R; =0,Ry =0,R, =0,T; =0,Ty =0,Ts =1 '

If our datamodel was empty beYore this opera}ion. thén as a result we now have one block

pointing six times to one surface.

' '2.2.2.2 ' Example 2: A Parallelepiped

N

Ihis example is about how to (/:onstruct a parallelepiped, using what has been
done in the previous examble..‘ Let u; s'uppose we want to construct a paralleleptped
of length 2,3, and 1.5 along the z,y, and z axes. One way of doing so 4s by creating
an object c:;?d “paralkelepipedl”, and attaching the block "cubel"_t?/it by specifying a
transform. df which has the proper scaling factors. Another way would be by using the
block “cubel” as an instance and copy it at the block level to farm another block for the

paraﬂ&piped. while copying we have to specify the scaling factors properly.

-

2.3 Summary o

\

For solids such as cubes, pyramids:-parallelepipeds and others it is acceptable to

ask the user of thessystem to construct them by specifying transformations in 3-D applied’

.on 2-D surfaces. However. constructing such solids as spheres. cones. and ellipsoids is

an extremely difficult task which is practically impossible to perform in the above manner

°
22

ke

- ’ -) 23 Sommary

i -

Thus some further extensions are required, which is-why we mvestlgated the solid modelfing
techniques. The next chapter will introdice those techmques dlscuss them and present

what we have developed in thls simulator for the purpose of solid modelhng
-

»

’

23

”
.) . . .
- G ‘ - N
o
Chapter 3 ’ ﬂ Solid Modelling
. \ . N)
1 4 ~

3.1 Solid Modelling Techniques
\ .
) \
A solid modelling system is defined by the following four properties, as stated
by Requicha [Requicha80j: . |
. o] /‘//‘:

1- Data structures which represent solids.

t

2+ Input facilities for creating, removing, and modifying the representation of solids.

L §

) 3- Outpu't facil('fjés for the results of the representations.
4- Facilities for answering geomet7 questions. -

o

In the previous chapter, we developed the datamodel to accomodate the rep-*
S i

’
@

resentation of solids. The data sublanguage‘was developed to fulfil the second property
of a solid\modelling system. The third and)fourth properties wijll be investigated at the
end of this chapter in‘two sections devoted to the graphics and geometric properties. In
this section, we develop means of tepresenting solids which are more suitable to our needs
than those demonstrated in the examples of chapter 2. In order to do so. som?raditional
representations will be presented and discu;sed, and then a representation will be chosen

and developed in greater detail. , L

A

~ © 3.1 Solid Modelling Techniques

3.1.1 Sweep Representations

L}

Sweep representations are by far the most mathematically structured schemes
for representing solids [Hayward86]. Intuitively the i;iea is easy to understand, it is based
on the fact that by moving a point along a certain tr;ajectory we-create a cufve, by mo)ving a
curve we create a surface and b.y moving a surface we create a solid. Sweep representations
are very practlcal for modelling constant cross-section solids as demonstrated by Lossmg
[Eossmgm] and they also proved to be suitable for detecting collision between sohds in
a workcell, where a moving solid S_1 collides with a fixed solid S _2 if the volume swept
by S.1 while moving intersects that of S_2 [Boyse79]. These representations have also
been used in material removal applications, in which, the material found in the intersectiop
of the volume swept by the tool while moving ;';nd a fixea solid is removed [Voelcker74,
Voelcker77]. These representatlons have been successful because they are well definéd
mathematically. The entity seed for the motion is usually called the generatér and the
trajectory to be followed is the director. Once the director is defined, a generator lf chosen
and swept along to represent the desired solid. The most common curves used to fully
describe the director ’are the PD curves (P for position and D for direction). These curves

"are a‘general form of six component curves, in which the first three components define a
z;
continuous parametric equation of position that associates a point P, = | y; on the
. - 2,
curve: the last three components define a continuous direction equation that associates a
k] ~

direction vector d;. At each point of the curve, assuming that the parameter is u, we can

o

then define a fzamé as follows :

" dP/du
. L, = Te/da] © - , (3.10)
d, x b xt,
= 3.1b
] Ta < &1 (349)
o, =t xn . [(3.1¢)
N . Q

A BD curveis shown in figure 3.1.

v

, —~ i
Other extensions could be added t¢ the PD curves such as scaling factors which

would then make them 9 components curves. Figure 3.2 shows examples of various PD

’ 25

<&

1

o .) 3.1 Solid Modelling Techniques

P

. f‘jgure 3.1 PD curves.

curves. The first one (fig.) 3.2a) is just a translational sweep of a given generator following
a given straight director. Figure 3.2b uses the same generator following a different director,
where we can notice the twisting. Figure 3.2c shows the scaling effect using the same

generator and directbr as in figure 3.2b, this last curve is described by 9 components. «

In practice, the tnost éommon techniques in the sweep representations are the
translaotional and rotational sweep $Requicha80]. For example; the translational sweep cguld
be used to model a cube s:tarting with a square surface generator, and the rotational sweep
could be used io modei a cone given a rectangular trian'gle generator. The sweep approach
is prefered wh-en‘deafing with flexible solids instead of rigid bodiés due to the structural
way of adding the scaling factors in the PD curves. In the cur}ent work, the translational

and rotational sweep have been implemented and will be explained in greater mathematical

]

detail later.

3.1.2 Constructive Solid Geometry

4

Constructive solid geometry is another regresentati%n approach for solid mod-

elling. This representation uses three entities in order to model a given solid: pflmlth
regularized boolean operators and rigid body transformations [Re;quicha77]. The construc-

tive solid geometry (CSG) techniques could be modelled by binary trees: the nontermi-
. P]

[2

v

31 Solid Modelling Techniques

»
Q
t -
/’"’ —-——-—\\
”~ \\
\a
e
.
3.2 o
& 3.2b)
s - 3
'/ / "_-s_‘_ \:\ v
ﬂ / /‘}/:-____\"\\
S - 7 \\
iz N :
A e \\]\
2NN L
s s N
g ‘)77 .
/// /
7
-
- : 3.%2¢c .
‘\ . X N ,’

Figure 3.2 Sweep Representations.

' ¢ @ ¢ [
nal nodes represent either rigid motions (translation, and rotation) or regularized boolean
operators (in ‘order to ensure the non construction of dangling deges or. surfaces): the

terminal nodes are either primitives or arguments defining the rigid body transformations

o

[Requicha80]. this is shown in figure 3.3. & | /\

e /

. - . . } -
The basic boolean operators being used are the regularized union, intersection.
and difference. The CSG representations are very attractive in many ways.. Primarily, the

‘s

2

/

4

I

= 3.1 Solid Modelling Techniques

. V% ‘ |

“ ___/

-

- y .

ﬁ g Bl

I

ERENVANAN
- P L.

N A A
#; Regularized .- y

Figure 3.3 CSG Representations
problem of representing a particular solid could be stated rigorously through the(use of
boolean operators. Another advantage of theiCSG is that if the prirr‘\itives are valid and .
bou.,nded and if the bo:Ieén operatc;rs are regularized then the resulting solids are valid and
bounded, this is verified in PADL [Voelcker78]. The most common primitives are the cube,
the cylinder, the sphere, the cone and the torus. In general. however, practical systems

offer facilities to, create quasi-primitives using techniques such as sweep represe\ntations. .

v P. o ¢
\

0 °) ° 28

3.1 Solid Modelling Techaiques

s
and it is the user’s res;pons,ibility to verify their validity. The primitiveos which are part of
a C5G modelling system are usually represented using haﬁf—spaces. The half-spaces are
defined as two unbounded regions of a cartesian-space dividec{ by an unboundeid surface.
As an example, a cylinder is represented by four half-spaées:,two of ;bem ::yclﬂindrical and
obeying the relation 0 < z? + y? < r2 and two planar half-spaces obeying ‘the relation

a <z < b, as shown in figure 3.4. .

In CSG representations, as in sweep representations. the’ rigid body transforma-’
tions could be extended to include flexible bodies. by adding scaling factors. Furthermore
it is possible to add other.kinds of transformations such as éymmetric tra;\sformations.
however, this is limited by the boolean algo;ithms used in the CSG. The CSG also has
disadvantages such as the complexity in computing the solid’s boundaries. This problem is
c‘alled CSG to Boundary representations conversion, and is very useful if we plan to detect

interference between solids.

v

1
. Figure 3.4 Half\ipac_es

.

3.1.3 Boundary Represenfations

The bou'ndary of ; solid is a closed region in 3-D which seperates the inside .
from the outside of the solid. The region has to be well formed which means closed.

orientable, non-self-intersecting, bounded and connected [Mortenson85]. The bounding

e

29

-

. .
-
‘ \

[L)
Q .
3.1 Solid Mogelling Techniques®

-] .
ﬁg\g surface is composed of the union of faces composed themselves of edges and vertices. The

edges could beinterpreted as bounded intersections of half-spaces. Then we can define a

solid as:]

. oy n m R \
. s = [J) half-spaces (3.2)

o ? ° g a=ly=f*

-~

The faces or patches (2-D) of an object must satisfy the following conditions as stated by

*

Requicha [Mortenson85] :

1- A finite number of faces defines the boundary of a solid.

,2-' A face of a solid is a subset of the solid's boundary.)
he

The union of all faces of a solid defines its boundary.

3

4- A face is itself a subset or limited region of some more extensive surface.

-

A face must have a finite area and be dimensionally homogeneous.

o
1

The five conditions mentioned above guarantee the unambiguity of the faces and
thus"the unambiguity of the solid made of these faces. Boundary representations (B-reps)
are nbdt unique, since the faces®ould be chosen arbitrarily as long as they cover the solid

°

<

completely without overlapping. This non uniqueness is demonstrated in figure 3.5.

Boundary representations ar;e suitable for representing complex solids. Let us

suppose we «want to represent a ceftain solid S, this task could be decomposed recursively

b)'r stating S as the union of two less complicated solids A and B, § = A U B as found in_
[Barnhill74]. This scheme is further decom?osed until we reach subsolids that we already
have cr,éated.qor we can create. The.problem is then to defi.ne the bounding' surface of S

- as a function of the bounaing surfaces of the final subsolids. Some algorithms have been
developed in order to soive this problem [Baumgart74]. A typical boundasy representation

could be modelled by a tree, not necessarily binary. as shown in figufe 36. Boundary

representations- have found a’lot gf sucgess 3n"applications invo!ving computer graphics“.

30

®.31 Solid Modelling Techniques

Figure 3.5 Non Uniqueness of B-reps Vi

This is due to the fact that they are easily handled for graphics manipulations because every
solid, at the lowest level, is represented as a list of vertices which are suitable for displaying.
Boundary rep“resentations have also been exte{]sively used for robotics applications where

collision detection is a major aspect. Lately some further developmentin mechanics have

}
rendered these representations suitable for representing assemblies. This is due to the,

simplicity with- which the volume, first and second moments of inertia could be calculated
using line integrals, since lines are part of the boundary representations structure.- The
methods in order to do so have been developed by many as explained in [Lee82a, Lee82b.
Woodwark82]. However, many unresolved opyoblems‘ remain in these schemes such as
the validity of a given representation: is a representation closed, oriented. dimensionally
homogeneous, and so on?. Boundary representations have been used’in this simulator, for
* reasons that will be mentioned later.
. §
3.1.4 Cell Decomposition and Spatial Occupancy Enumeration

. Cell decomposition is the most natural way to regresent solids. The idea is

simple: Starting with a complex solid, decompaose it into different pieces called subsolids

t -

a

>
)
.
o
b ° * ’
.
\ N 4

31

L4

31 Solid Modelling Techniques

/ ‘Solid
Faces
Edges
Yertices

|
s
> Figure 3.6 B-reps tree
A ’ w

or cells, where each piece should be easier to represent than its own parent. If necessary.
we continue to decompose the subsolids until we reach a set of subsolids which we have
the tools to represent. The solid we started with, is then the urﬂﬁon of all the decomposed
subsolids or cells. This representation approaci'l is, of course, non unique but unambiguous.
The cell decomposition schemes could be cdnsidered as particular cases of CSG'schemes,
where the only operator used is the “glue” operator which is a restricted union operator.
The "glue"'operator could be defined as the union operator between two-cells meeting
exactly at a common face, edge or vertex. Inﬂ the cell decomposition techniques. the final
cells need not to be identical. A particula; case of cell decomposition is spatial occupancy
enumera’tloga. where the final cells are of the same shape usually cubical. Some other
schemes have appeared where the final cells are spherlcal for example as in [O roorke79]
In our discussion we will use cubical final cells. and the charactensthk of the cubical
example should be applicable to bther types of finzoil cells. Usually the final cells (cubes),
ot{ predefined size, are placed on a grid in a three dimensional space. Representing a solid
means placing it on the grid Iand filling it with these cubes. These representations have
two major advantages comparye‘d to the general cell decomposition techniques. of which the

first is the simplicity with which we can access a given point in space, and the second

32

o
a 3.1 Solid Modelling Techniques

is the uniqueness of the represent‘z;tion [Baer79). However, there are disadvantages, of
which the biggest is probably the amount of storage needed for these representations,
especially as the amount of storage increases considerably \Ach the predeﬁnec; resolution
:of the representation. The smaller the final cell is. the bigger the resolution. The coding
of these representations is done the following way: Any given cell is either empty (0) or
contains part of a solid (1). This coding is very redundant [Redd78]. be;:ause there is
a high probability of finding large streams of 1's or O'; before finding zﬁy change. The
changes are just around the boundary- of the solid. ~ln o}der to avoid.this redundancy, and
at the same time save memory, another technique appeared and was applied primarily in
2-D. It is called the quadtree. The quadtre‘e is a method which uses spatial occupancy

d 1 . . 3 .) -
enumeration more efficiently. It is based on recursive subdivision of a square in quadrant

-
-

[Hunter79], as shown in figure 3.7. At any stage a quadrant could have three states,7nd N

different decisions then have to be made: . /
‘ . / /
1- Full quadrant. no further subdivision. ¥ ‘ /
’ : . < /
2- Empty-quadrant, no further subdivision. /
) ;

3- Partjally full quadrant, subdivision.

o
a

We continue to subdivide the quadrants un_til they are either full or efipty, <‘)r
until we reach a predetermineci resolution. As we can see from figure 3.7, each node of the
tree is subdivided in fou}. if it represents a partially full quadrant. In this representétion.
the nodes and their state are stored ‘in partial arrays: the maximum size of these arrays
is 2" x 2" [Mortenson85]. where n represents the height of the tree. In our example of
figure 3.7. n = 3 and thus the maximum potential array size is 64, but with the quadrants
method. the array’s size is 45. The quadtree method converges very quickly to the objects’

details, because from the very beginning, the totally émpty or totally full quadrants are

eliminated. The redundancy problem is also eliminated. In the example shown in figure

3T _équare 2is represen’ted by just one node instead of four taking the resolution to be

33

»
'Y ! © ’
A, .

. 3.1 Solid Modelling Techniques

s

% - the same as square 21. In order to aceurately represent one 2-D entity, we have to go
o * down to very small squares, where the size of the smallest square in this representation is

diractly related to the surface curvature and the range betwsen the fine and coarse features

2

f the surface to be represented [Mortensof85]. /-

1 R ,
12114
’ - 13133
15 | 16 | 25 |5
21}23117(19[27(29
22[24/18|20128|30

F =9

— |
-3

26

11 121314 17 18192021 2223!27 z.azetajua-;g FERETS
o Partily full, divide. .

. 4 O Epty.
. .Fullo

a——

\ °

Figure 3.7 Quadtree Representations l

The success of the's:e representations has led to its 3-D_ analog, called the octree_~
/ representatians [Meagher80]. The ‘name comes from the “fac\t that each cube {instead of
v square in 2-D) is subdivided into octants. A subdivision of the cube is made if the cube
in question is partially full; otherwise if totally empty or totally full, there is no further
subdivision. Thc;. representational tree looks likg the one of figure 3.7, except that every
Q node, if divisible, has eight descendants instead of four. The maximum potential array size

in these representations is 2™ x 2™ x 2™, where n is the height of the tree. Using the octree

34

. . . 32 >Approach Selected
(. coding however,‘t‘he amount of memory needed is always less than the maximum size, as
s was shown in the 2-D analog. . °

[
|9

Octree and quadtree representations are very useoful and easy to manipulate.
Meagher [Meagher82] developpd some algorithms in order to tr;mslate. rotate, scale solids
“ represented usihg spatial occupancy enumeration teci]niques and in particular octree mod-
‘ els. he aslo developed techniq_ues to compute the geometric properti?s andl perform the
) interference analysis. Octree repr‘esentati(;ns are particularly suitable for the con:putation
Q

of certain geometric properties of solids such as volume, first and second moments of

inertia, because these computations are usually reduced to the computation of geometric

properties over cubes. These representations are also suitabje for interference detection
since the conversion to B-reps is not difficult, The spatial occupancy enumeration tech-
niques are not very structured however, and can even be described as heuristic. compared
to the other approaches discussed above. The success of the octree representations do not

depend only on the solid to .eperesent but on its position and orientation as well.

3.1.5 " Existing Solid Modellers -

0
L

There are other representation schemes used for solid modelling. but the re;)re-

‘ sentations mer}tjoned above are the ones which most avoid problems such as: Ambiguity.
incoherence and creating non-sence objects. Therefore most commercial solid modellers

us;e CSG (PADL{VOEL78]. GMSolid[Boyse82]). B-reps zROMOLUS[MortensonBSD. and-
.SWeep represeniations (;I'RUCE[WangBG]). A survey on the exsisting solid modellers can

be found in [Baer79]. , {

3.2 Approach Selected

.

In this section we will compare the previously mentioned approaches and talk

(about some conversion techniques from one approach to another. At the end of this section

we will make a choice on the approach to be used after defining the goals we are seeking.

¢ 35

° 3.2 Approach Selected

3.2.1 Comparison

7

The‘most common approaches used in solid modelling are sweep representa-
tions, CSG, B-reps and spatial occupancy enumerapion techniques. Each approach has
advantages which make it the most suitable for a partjcular application. Sweep-represen-

tations are very structured mathematically and easy to extend: they have found success

in applications where the shape of solids changes during 2 certain task. as in the matenal |

removal applications. Sweep representations are theorstically very generaLso they can
supposedly handle an} type of solid. However. it is difficult to analytically describe the
volume swept by a certain generator following a certain director. In g

the rotational and translational sweep are usually the only ones implemented. This 1s due
to the fact that any trajectory could be decomposed into different seéments for position
and different arcs for twisting. The second most structured technique in solid modelling
is CSG. This approach gets its popularity mainly for two reasons: first, its use of boolean
operators t:) hierarchically represent complex solids and seucond, the certainty of modelling
valid and bounded solids. CSG rep'resentations have been extensively used in assembly
representations, ana are 'certainly the most user friendly approaches. However, they are
usually meant for systems where the question-of consistency arises, and they are difficult
to convert to other representations. Boundary representations are third in mathematical
structure, and their aim is to represent a solid by bounding it with a 3-D surface. These
representations have found great success in robotics, especially if interference detection is
an important objective [Boyse79]. B-reps suffer. from validity checking. and the alg;)rithms
developed to this end are usually héiristic and time consuming, so that the problem of
validity checking is left generally to the user. TP;e final approach is spatial c;ccupancy
enumeration. and particularly the octree representation, which are based on the following
concept: given 4 rough approximation of the object by a cube enveloping it. gradually re-

fine the description of the object’'s parts by providing f\ierarchically smaller cubes. These

approaches areulﬁnding widespread use because of their hierarchical structure, but are still _

-

heuristic and not well defined mathematically.
B - !
36

ost solid modellers

« 3.2 Approach Selected

As mentioned before, practical solid modellers usually use more than just one

approach iﬁteracting with the same datamodel. In order to make this possible, a conversion
13

algorithm from one approach to the other is embedded in the solid modeller. In the next -

-

L

section we will present some conversion algorithms. X)
/ " o 3

3.2.2 ConveZion Algorithms

Many conversion techniques have appeared in the literature in order to establish
compatibifity between different approaches [Light82]. In this section we will introduce three

conversion algorithms. The aim of this section is not to go into implementation details but

to present typical examples of conversion for the sake of demonstration.

n

The first algorithm we introduce fere is the -pattern recognition decomposition
algorithm which is used in the sweep-to-CSG conversion. In this type of conversion, the
solids represented using sweépirepresentatibns are given, and the algorithm tries to ider)tify .
patterns which will construct the primitives in the CSG approach. This first operation is . ‘

. called the search fo; pattern. Once a pattern is found, it is cla;sifiéd. This pattern
classification operation is done by taking one pojnt of the p:;ttern and testing it to establish
whether it is inside or outside of the current sweep outline. The next step is the construct
pattern solid operation, which constructs the subsolid to be considered later as a primitive.
Once the subsolid is constructed to m;:ke a primitive and classified in order to kngw the
boolean operator to use{b(union if classified inside and difference if outside) the information
is saved in a stack which is later traversed for the CSG representation. The detailed

" algorithm is presented in [Vossler85]. Note that, this algorithm fails in some circumstances

during the search for pattern 6peration.\)) i

The next conversion algorithm we will falk about:is used for the CSG-to-B-reps '
conversion. These kinds of algorithms are called boundary evaluators and usually tend to
be very long unless some heuristic tests are included. The basic idea is to suppose that

the surfaces of the subsolids constructing a CSG model are unbounded. First. intersect

»

/ . . 37

el

{ y \

32 Approach Selected

each surface of a subsolid A with each sufface of another subsolid B. The unbounded edges
produced this way are the tentative edges or t-edges as explained in [Boyse79]. The next
step is to interse»ct these t-edges with the unbounded .surfaces in order to produce points

lying on the edges. These points seperate a t-edge in different segnmrents which are then

classified as being outside, inside or on the boundary of the whole solid. The real edges

are the segments on the boundary of the solid. The classification of the the segments is
a difficult task: without getting into detail, we can mention that a common techn;que to
use to overcome this difficulty is ‘the 'nei?gﬁ’borhood model teghnique [Mortenson85]. The
boundary evaluator algorithms gua.rantee one attractive feature in that the faces of the
overall*solid are (subs'et of the faceS'-of the subsolids it contains. This fact cguld be used
for verification after the conversion. .

L4

L N
The last conversion algorithm we introduce is for the octree-B-reps conversion

TFhis conversion algorithm is summarized in four different steps as explained in [TosiyasuBSI.
\ -

1- Converting an octree to an extended octree.

2- Labeling the entities of the extended octree. .

’

Generating tables of boundary representation information. . |

[

3

[
+

4- Generating a sequence of Euler operations.
- . o
In this description of the algorithm, we explain the four different pbiptis men-
tioned above. The first point is basically adding geometric inforgvnation as an extension to
the leaves of an octree. This geometric information is thevbody. planes.- edges and vertices
of each octant. The body is a reference to the name of the modelled object, and we ini-

°

. i Lo .
tially need one.body. six planes, iwelve edges and eight vertices for each cube. However,

/considering the adjacent leaves of the tree, this could be reduced to one body, thyee planes.

three édges and one vertex in order to completely define an octant. The reduction is due to

shared information: for example. acube has.eight vertices, seven of which are shared with

* ’ 38

C

- ' . 3.2 Approach Selected -~

adjacent cubes to make their origins. The next step is labeling, which is a h]'é:rarchical 3-D
application of connected graph l.abeling. a typical “if-then” algorithm. After labeling the;eéi&o‘
the boundary table generation. There are usually five tables to generate: the object/ ;’)lané‘ﬁ‘
table. edge/vertex table, plane/edge table and then two data tables. namely, the verte
coorai‘ﬂates table and the plane-normal-vectors table. Once }hese tableiare generated, the
_next step is to generate a sequenée of euler operations that will construct the B-reps of |)
the desired solid. This algorithm is fully detailed in [Tosiyasu85]. Note., however, that the \

algdrithm does not work if the object includes cubes connected by just one edge.

[=4
-

=])
The aim of this se::}ion was to demonstrate that the conversion algorithms are

,

useful and show tl’:?t' methods of solving the problem. in the implementation part-of this ;

“chapter we will see in greater detail a particular conversion technique developed for the |

simulator’s purposes. . .

9

\ . , A ;
3.2.83 Decision L -
.)) | |

In this section we will make a decision on the approach to be used,”and will
give the reasons\f’or our choice. The B-reps, seemed to be the most appropriate for the
application we are seeking, namely. a robotic workcell simu!aiion. There are two major
reasons for making 'this choice: First, lookipg at our datamodel explained in chapter 2, we
notice that the lowest entity‘ in the l}iera%; is a surface or face. which is the basic entity

.for the B-reps approach. Second. in any robotics application. e problem of interference
detection or avoidance arises: the B-reps have proved their suitability for those types of’
problems [BoyseT9]. One can argue about the weakness the B-reps present when checking
the validity or consistency of solids. This is a great drawback for a solid modeller project,
but since our aim is primarily simulation and not necessarily to develop a perfect solid

.modetier. we left the validity and consistency checking to the user. In the data sublanguage’
e;tplained earlier'we check for the validity of a surface when it is specified so that it is

‘impossible to create dangling edges when ‘modelling a solid, but if the user does not checkj

for the whale solid’s validity. it could result in dangling surfaces, open solids or overlaped

-

d) 39

-
Y

3.3 Implemented Solid Modeller

surfaces. If we had based our ¢hoice just on the suitability of the datamodel. the second
alternative would have been the octree representations, but the fact that they are heuristic

made them unattractive.
+

-

The solid modelling part of this simulator is based on the B-reps approach.
however this approach lacks generality. This means that the mathematical tools developed
in order to make a particular solid. for example a sphere, can not be used to create another

. .) /L .
solid such as a cylinder. That is why we considered developing a more general, structuted

)approach. and the obvious choice was that of sweep representations. Since our datamodel

‘suits the B-reps. we developed a sweep to B-reps.conversion. The mathematical derwvations

T . . .
for the B-reps approach and the conversion sweep to B-reps will be given in the next section

’

3.3 Implemented Solid Modeller

LY

Our goal in this section is to provide information about the solid modeller and
its interaction with thf: datamodel described in chapter 2. We kney that the first 3-D
entity in our datamodel is what was called a block. so our aim is then to be able to create
the 3-D subsolids at the block level. These subsolids would later be considered as entities

to be attached to hiéher level_solids by the attach operation. Every’subsolid should be

presented as a tree whose branches are transformations and whose leaves are faces stored

as surfaces in the datamodel. Of course there is no\,need; to have different surfaces if
we are c;eating regular solids; for example: a cylinder of 32 faces. will need one surface
poin?ed to by 32 different transformations and another surface pointed to twice in order
to close the cylipder. Other subsolids such as spheres will require more than one surface
in order to be constructecrfrom the same data structure. The.next paragraph will present

-6
the boundary representation of some common subsolids; however the same idea applies to

other subsolids not mentioned here.
. « -

3.3.1 éxamples of B-reps ,] .

" In this section we show how to capstruct some subsolids using boundary repre-

Ve .

40

33 Implemented Solid Modeller

sentation techniques. We choose to give as examples a cylinder. a sphere and an ellipsoid.

and we will discuss the representation of these subsolids.in the datamodel we have created.

a
33.1,1 A Cylinder

~

~N

. The necessary specifications needed in order to construct a cylinder are five:
the name of the cylinder to be stored at the block level, its height 4, its radius r, the namé
of the surface to be used for patching. and.the number of patches n The surface to be
used for patching is usually 2 uniz square surface, and if this surface does not exist in the
datamodel, it is automatically created. First we determine the existence of E;ny block with
the same name as the cylinder in question already loaded in the datamodel. If the search is
positiveothen the action is refused and control returns to the database manager at the key
tree matcher If the search is negative, meaning there 1s no block of the s.:arEe name as the
cylinder, we then verify the validity of the data being specified to construct the cylinder.
The next thing to verify 1s the existence of the p‘atching surface in the datamodel, and if 1t

does not exist it is creatad as a unit square and linked to the linked list of surfaces.

.
e

Figure 3.8“ Top View of a Cylind;r

-

1

Figure 3.8 shows part of the top view of the desired cylinder, where we can see

¢

that
0= — (3.3q)

n o

64

33 Implemented Solid Modeller

. ’ I =ry/2(1 - cosb) (3.3b)
The variables [, from equation 3.3b , and ~ the height of the cylinder. would be used as
scaling factors to/the square surface. For the cylinder it is easy to compute the transfor-
mation to patch one surface as givéﬁ by 9 parameters (SRT):%scaIing (Sz,Sy,Sz). rotating
(Rz, Ry, R;) and translating (Tz,Ty,T;). We will now show how to calculate all these

parameters for the ith patch. From figure 3.8 we can get the deviation of each patch with

respect to the horizontal x axis - D
o ¢ “ .
—1,7 :
. Qaq = oS (isznﬂ) (3.40)
= cos—l(;—-sin(Zﬁ) — cosay) (3.4)
This formula is recursive and s applicable tq, the ith patch as follows:
o
r 1—1
o, = cos—ln(ism(zﬂ) - Zlcos(a])) (3 4¢)
- J:

[N

We now ' have all the information for scaling and rotation. but must still find the translational
part of the transformation. Let us call u, the translational vector From figure 3 8 we can

easily see that:

—rsin{if)~
= | rcos(if) (3.5)
- 0

We can now give the results obtained to construct a cylinder out of a 2-D square. The

u,

operation involves scaling. rotating, and translating by the following factors:

Sp=1, S,=h S,=1 (3.60)

] W ’
R; = 5 R, =0, R; =0 "~ (3.60)
. (T2, Ty, T) = uzT (3.6¢)

The above equations are valid for each transform_surface pointing to the unit square surface

’

used in patching. A graphic result is shown in figure 3.9. ‘ '

-

r

S~ Then+ 2 transform_surfuaces would have names whose prefix.i$ specified by

the user. Moreover. the transform_surfaces could have been specified as homogeneous
I * o .
” . 42

§
33 Implemented Solid Modeller

~
. « hd ?
” . N . \
-
ey

Figure 3.9 B-reps of a Cylinder

transformations instead of seperate SRT factors, however in this example we decided to
show the SRT instead. as they are easier to understand. Once all this is done, the cylinder
is closed at the top and the bottom by a certain surface. The appropriate surface for closing

. !
is created using the information from the vertices of the top or bottdm of the cylinder.

4

“

3.3.1.2 A Sphere o -

For a sphere it is not péssibié to compute t!iu‘a transformations as a set of SRT
factors as we did in the case of the cylinder. Instead, homogeneous transformations will be
computed since'the transform levels in the datamodel support both types of information. .
To construct a sphere and link it to Ythe blocks linked list we need four basic parameters:
the name of the sphere to be stored as a block, its radids r~the number of faces per half

’ slice of the sphere n, and the number of slices for the whole sphere m. So’me tests are first
perfc;rmed for the validity of the parameters, and tf__pen the computation of the homogeneous
transformations starts. The number of faces ;;er Ralf slice is the number of surfaces that

“have to be created and later attachgd with different homogeneous transformations to make

o 0 the whole sphere. A general face of a sliceﬁiﬁs shown in figuré 3.10a, a half slice is shown

in figure 3.10b, and the position of a slice on a, sphere is ‘shown in figures 3.10c and 3.10d.
Our purpose is to first construct the n tequired 'surfaces and then to find the honiogeneéus

.\—'\Eansformations to move them in space in order to patch their appropriate locations. The
] -

’ : a3

f
. 33 Implemented Solid Modeller
I

construction of the surfaces is easily performed after deriving the following equations based

on figure 3.10a:

B = %nz (3.7a)
© 7r .
a= 5 (3.70)

The leﬁgth w is the same for all the surfaces (fig. 3.10a)

o
w = r/2(1 — cosa). (3.7¢)

We can also derive the other dimensions of the surfaces. recursiyel

lly = r/2[1 = cosp) | (3.84)~

, [u, = 2rcos(1a)\/2(1 - cosp) (3.86)

U, =lu,_4 ‘ (3:80‘).

where 1 < i < n. Notice that since luy is equal to zero, the nearest patches to the
pole of the sphere are trlangles Once the ny surfaces are created, they are stored at the

surface leve| of the datamodel: their names should be specified by providing a prefix. Now

that the surfaces are available, we should compute the transformations to manipulate them

5

accordingly. Knowing that each surface is pointed to by m different transform surfaces in

, order to make a whole circumference and denoting by j the slice’s order in the circumference,

we compute the orthonormal basis B/, = (e, , e}, ,e},) attached to the same surface
at each desired position, as shown in figures 3.10a and 3.10c. The basis Bl'] should be
computed with respect to the world basis B’ = (e1,ep,e3). The three vectors ry, . ry,,,
and r3;, .shown in figure 3.10d. are directly related to the Rasis B:J. and we tan now give

the necessary formulae to compute them:

| coszia)cos(jﬂ) , .

N r,; =7 | cos(ia)sin(jg) " (3.9q)
sin(ia)

*cos(ta)cos((7 + 1)0)
ryj =1 | cos(ia)sin((j + 1)B) | = r1 ;41 (3.95)
| - sin(ia) '

Ly

_—

3.3 Implemented Solid Modelier

[* o ’ - .
¢ ' ?
cos((7 + 1)a)cos(75) ‘
1, =7 | cos((¢ +1)a)sin(jB) | =ry 415 , (3.9¢)
) , sin((i +1)a)
s These equations are apphcable for1 <7 <mand1l < i< n and are all
expressed wnth respect to the basis” g From the above equations we can express the basis
Bz’-7 as: . |
! I3 — Ty
eliJ = ————— ' (3100.)
N P ”"Zz] "'rlz]”
£l B .
o : ¢ ry —t
371z !
® . ' !r31]-‘r,11] ” - (COS’)’)el,U' o
€n; = T siny (3.10b)
and o ‘
, .
) egz] : €1,y X e’Zif& (3.106)

The above equations define the rotational part of the homogeneous transformation. The

" translational part is only defined by the vector ry,,: thus the whole transformation becomes:

Tl] = (e’lzy’e,Zzg’egz]"lz]) (3-11) ,

Through the above procedure, we create just one hemisphere. In order to create

» :)
the other half. we multiply all the homogeneous transformations by a reflection with respect
to the XY, plane, and link all the transform_surfaces together. The final tree structure of

the sphere as stored in the.datamodel is shown in figure 3.11.

4
3

This idea of attaching a basis to the surfaée to be patched and then to compute
it at the appropriate focation of the surface on the solid with r;‘spect to the-world basis
is easy to apply and requires no more than geometrical techniques. Moreover, considering
the regularity of the primitives we want to éreate. it is usually possible to find recursive
approaches and hence recursive programming. Examples of spheres that have been created '
with this approach are shown in figure 3.12, having diﬂ‘erqnt (m,n) but keeping Ehe same

radius for comparison. .

45

s - - ‘503 3 Implemented Solid Modeller ‘

n=3 .

d
N Block level ...
‘ Surface level Sn = L. S‘ v oo~ NULL
. , N —{5 e {Ny
m: number of slices/sphere
. n: number of faces/half slice

Figure 3.11 Tree Structure of a Sphere.

46 °

2

-y

E]

" A3 implemented Solid Modeller

= n =4
r':|=£2l m= 16
re 2 r = 2

L

!

Figure 3.12 B-reps of Spheres.

3.3.1.3 An Ellipsoid

. e
.

)
Creating an ellipsoid is a\:simple extension of a sphere, and there are two possible

courses‘of action. Let us suppose that we have already created a sphere'S at the block level.
We can attach this sphere S to an object E, using the\attach operation, by specifying a
transform_block whigh has Jiﬂ'erent scaling factors in % y. and z respectively: However, this
means that an ellipsoid is stored as an object and the sphere as a block. If we want to store
the eollipsoid as a block in the datamodel we can copy the sphere S at the blocks’ level to
an ellipsoid E at the same level, since the copy query accepts transformation specifications.
This means that the initial sphere is used as g template for the ellipsoid. Figure 3.13 shows

two ellipsoids which have been created from the two spheres of figure 3.12.

3.3.2 Examples of Sweep Representations

© o

The above examples showed the B-reps manner of representing solids. The
° '
most general idea in the B-reps is the one used for constructing the sphere, where a

certain basis? alf the appropriate patching location. is expYessed with respect to a fixed

47

3.3 Implemented Solid Modeller

g2
S_x = S_y=1 Sx:?_yaos
S_z = 0.5 z
<+

Figure 3.13 B-reps of Ellipsoids.

basis, generally the world coordinate basis. This determines the trans.formation needed in
order to perform the necessary patching. What is attractive about this approach is the
possibility of expressing the formulae recursively}because of the uniformity of the B-reps
in représenting_ regular solids. However, this approach is very dependent on the subsolid
to be created, and the mathematical derivati?ns had to be developed for each subsolid
independently. Seeking flexibility, we have developed two .sweep types, the translational
sweep and the rotational sweep. We will refer to this feature as sweep but it is really a
sweep to B-reps conversion since the final result ‘igs in terms of patches bounding the solid
to be reﬁresented, as will be shown later. This sweep feature helps to create non regular
solids as well as regular ones, and the a'dvantages of this approach are well known from
previous dis,cuuss’ions. In this implementation we covnsideredosimplified cases of sweep, the
first simplification is ‘applicable to both the translatifmal and the rotational sweep, notably
the fact that the generators to be used are supposed to be surfaces rather than solids.
This limitation could easily be eliminated if needed because a solid itself is represented by
surfaces in the datamodel. Some other s-implifications have been made and they will be

mentioned seperately in the sections describing translational and rotational sweeps.

u

48

¢

AN

o s

3.3 Implemented Solid Modeller

3.3.2.1 Translational Sweep

/

The idea is the following: given a surface S, sweep it along a straight director
. > .
for a distance h. The specifications needed in order to perform this are: the name of the

block to be created. the name of the generator to be used, the direction vector. the length

sof the sweep, and the name of the surface to be used for patching the route swept by each

edge of the generator. In’ this particular example of translational sweep, we considered the
case where the director is perpendicular to the generator, which means that the director is
parallel to ttle z axis. As usual the validity of the specifications is verified. In particular. if
the unit .square surface to be used for the pé'tghing is not in the datamodel, it is created

and linked to the other surfaces. Figure 3.14 shows an example of a translational sweep. \

Genarator ’ Sweep Result

.
h ~

Figure 3.14 Translational Sweep.

The final result of the translational sweep is a block pointing to two surfaces

through many transform_surfaces. The first surface is the generator itself which is used

49

.

3.3 _Implemented Solid Modeilgr
@ !

twice for closing the path swept along the director. and the second surface is a unit square

which is used to surround the path in question. Let us suppose that the genérator has m

. edges as part of its main contours and n edges as part of its hole contours: then for each

block created with thois approach’we have m + n + 2 attached transform_surfaces. In this
section we will give the SRT factors necessary to point to the m + n squares. The ot’her
two sets of SRT factors that are pointing to the éenerator are obvious: one of them is the
specification for the identity matrix. and the other is just a translation of £ along the z axis.
The §IRT factors pointﬁg to the_square are develpped next. We note that this algorithm

was not stated recursively and dgpends on the edge to be moved. Let us suppose that the

. Iy Iy Y
edge is defined by two vertices Py = | y1 | and Py = | y, |. thus the SRT factors are
0 0/’
determined as a function of Py and P;: , I
Sz = |P{Pyll, Sy=h, 5.=1 (3.12a)
t L —17I7—T .
—c0s —73-——1 , ifyy <uwyq:
Rr=2, R,=0, R.= { " z(z-rf b 1wy < vy (3.126)
cos (—"S':T), otherwise.

Tr=xq, Ty=y;, T,=0 ~ (3.12¢)

&

Figure 3.14 was created using the techniques developed above, figure 3.14a shows the
generator with™holes in it, and figure 3.14b shows the result of the trcanslatio’nal sweep of

the generator in question along the z axis for a certain height.

3.3.2.2 Rotational Sweep

2

The mathematical derivations for the rotational sweep will be developed in this

section, and we will not develop the SRT factors for the transform surfaces but rather the

73

transfo’mations themselves. Moreover, if we consider the most general case, the deriva-'
LY

> . .
tions would be rather lengthy ‘and cumbersome. We will therefore develop the case in which
only one edge is sweeping and extend it to the general case later. In this particular.imple-

mentation we considered the case where the revolution is performed with respect to the z
7 i
axis. We also assumed that the sweep is done uniformly and hence the patching surfaces

/
PN N &

50

]
.

3.3 _Implemented Solid Modeller

created while sweeping an edge are all of same shape. Figurg 3 15a shows an edge of length
‘¢ to be swept with respect to the z axis, and figure 3.15b shows a typical surface that has
to be created for the patching. The specifications needed to p'erform the rotational, sweep
\are the edge’s geometric information, the resolution specified as the nur'nb_er of times the ﬂ
patching surface is used (n), and the name of the block to be created. Of course, some
tests are peéformed to ensure the validity of the specifications. The methc;d to be used

here is the following: for each edge create a surface or patch, and then express the basis
»

B, = (uy,, up,, u3,) which is attached to the it patch with respect to the world coordinate

<

system.

“

Figure 3.15 Rotational Sweep.

4

This will determine the rotational part of the transformation required to move
the patching surface to its appropriate location. The translational part of the transformation

is determined by the vector up, of figure 3.15a. l:et us now give the necessary formulae to

. . 51

-

[

.;"a
]

o

»

33 Implemented Solid Modeller

- . perform the creation of the patching surface:

%

| 2
; a= %, = a\/2(1 ~cosa), Iy = b\/2(1 — cosa) " (3.13q)

¢ = \/(a. -2+ d2, \/ h- ’2 (3.135)

The above formulae.define the 2-D surface that is created for each edge, what is left now

is to express the basis B, attachedf,tfe the ith patch with respect to the world coordinate

basis B = (uy, up,u3). given that § = T5%'and v = cos~ Yd/e) then

lysin((i — 1)a — 9) esynysin((z — 1)a)
u, = | —ljeos((i =) —8) |, uy,= | —esinyecos((i ~ 1)a) (3.144)
0 , ccosy
and u3, = uy; X uy,. the translational part is given by: -)
o . . —asin((¢ - 1)a)
“”‘ ur, = acos((z - 1)) . (3.14b)
v o 0
and the whole transformation pointing to the patch in question is: | \
T, = (ug,,up,, uz;,u,) ¢ (3'146)

o
The above equations were deve[oped for just one edge, however, they‘ are eesily extended
to a whole surface since a surface is itself constructed by edges defining the main contours
and the hole contours. The rotatiofial sweep was developed to be a&plied with respect to
the z axis, but could, of codrse. be extended gasily. Figures 3.16 and 3.17 show examples
of solids that have been cn7/ated using the rotational sweep, we note that the cone of figure

3.16 is cloeed. - -

3.3.3 Further Extensions ~ (. -

< .
At this stage we presented the implemented solid modeller It is based on

s

the boundary representatlons To extend its capablhty a sweep to B-reps conversion was-
added B-reps representations are very specific to the subsolid being modelled and will

27 . o v ' - ‘J o
“~ - -
. . AN :) 52
- ’ s 2 ¢ 2

3.3 Implemented Solid Modeiler

Figure 3.16 A Cone With Rotational Sweep

LS

= Figure 3.17 A Torus With Rotational Sweep.'

always need extensions for other possible subsolids. But we, can suggest one possible

extension for the sweep representatlons namely, to develop facilities for specnfymg tFue

s

dlrector as PD curves instead of just a translational and rotatiorial sweep. ThIS extensnon

could be conducted further to 9 components curves if dealing with flexible solids. . The

53

-

5
7.

»

34 Graphics

&

translational and rotatlonal techmques developed for the sweep representations were made

general enough to accomodate the aforementioned extensions. -

3.4 Graphics

s
o

The solids which h'avebbeen ;:reated using the solid modeller ne’ed to be presented
grap-hically for the simulation. In this section we present the datamodel modifications for
graphics purposes and the gr_aphic§ facilities that have been developed.\ If we look at our~
datamodel. we notice that the solids ‘at any 3-D entity level are presented by means cf
transformations pointing to lower level entities, this representation scheme is propagated

‘until the 2-D surfaces are reached. We have to mo&ify this form of storage to something_

° L

easier to manipulate g(aphiéilly namely edges and vertices. This process is called the
world coordinates generator, and the_entities obtained are the world solids. Once the
viorld_solids are computed the information that was stored in the form of figure 2.5 is no
longer needed Therefdre. the previous datamodel can be cleared usu‘?g some facilities in
the data sublanguages The datamodel of figure 2.5 is then rep!aced by another datamodel,
which is more appropriate for graphics manipulations, but is less user friendly. In the next
paragraph we present the world coordinates generator and t'he querieé that could be applied
on the woild _solids, after this, we 'p}resent some graphics facilities that have been develé;e(_i
such as the view point fra'nsformatilon. the clipping. the perspective view, the back surface
removal, and the mu!tiple windows facilities. .

.
o

3.4.1 World Coordinates Generator

~ The world coordinates of the world solids are stored the following way: each

[4

world_solid has a name, a type (block. object. or scene), the name of the entity that it was
o

created from. and a field of geometric properties; this information is stored in a world solid
structure. Moreover, each world_solid poinis to three other structures, the first‘one is the

beginning of a linked list of 3-D main surface contours, the second is for the 3-D hole

.- c " 54

34 Graphics

’ surface contours. and the third structure is another world solid in orde} to form a linked
list of world bolids. Each 3-D surface contour {main and hole) structure points to another
3-D surface contour in order to form linked lists, and points to the ‘beginning of a linked
list of 3-D verfices. The representatioﬁ is better shown in figure 3718. Hole contours were
omitted to simplify the figure. All-the linked lists are bounded by a begin an& an end mark

and garbage collections is used as in the previous datamodel.

begin __ , l
wor ld_ solxds T N : NULL

& f‘m Wmn

1”—| T [N

Figure 3.18 World_solid Structure

Some facilities have been developed in order to interact with the world_solids.
the ones which are visible to.the user are the creation, the rembval. the showing, and
the saving and loading facilities. Some other facilities have been imp_lemen.ted in order to
accomodate the queries, they are, the searching and the me#nory allocation if ;Ieeded. The

modification query has not been implemented since it is difficult for the user to modify 3-D

world coordinates. However, if the user needs to modify these coordinates it is necessary

to go back to the other formg of storage (i.e the one of figure 2.5). A world solid could be
created for any 3-D entity without distinctio? between a ';cene. an object or a block. We
should mention here that a world_solid is n{t necessarily just one solid , it could be made
of many solids as long as they are supposed to be constructing the same entity or different
entities which are manipulated together; for example a table could be constructed as ’a,n

object in the datamodel, an oscilloscope as another objett placed on the table. if those two

55

RS

¢

0 -

“

; 34 Graphics

¢

| y SsCene
4

, T32
T11 121/ 13¥s
\\|

[2)

() v) *) objects
——— . . ; o
. o~ ‘
&/) () l!_/) k blocks ol
G (f\) 1 surfaces
’ 2 T°
linked list
of main SCT
¢
linked l1st
tof hole SCT

Figure 3.19 Structure of a Solid in the Datamodel

entities are stable with respect to each other, they could be grouped together as a scene

>

and theﬁ a world solid would contain both of them.

[

o Figure 3.19.hows the structure of a solid or a group of solids that need to be
processed through the world coordinates generator. which transforms the representation of

figure 3.19 to the one of figure 3.123, where each entity is expressed as-
s .
n m1,

. entity = U U T,g(lower level enti_ty), (3.15)

°

»

=1 3=1 -
. .
where n‘is the number of lower level entities, and m, is the number of transformations
pointing to the it# lower level eritity. The above equation is applied for all th® 3-D solids, at
the surfaces level. Both main and hole contours are considered. Once the world coordi‘njtes

of a world_solid are created by invoking the world coordinates generator, they should be

56

<

: 34 Graphics

transformed to the view coordinate system and then processed graphically for the display,

the graphics facilities will be explained in the next section. _
(‘T*\\

] 3

3.4.2 Graphics Facilities °}

Once a view point is specified by the user. we need to perform the view pdint
transformavtvon. The coordinates of a world_solid are transformed and stored in a view
structure This structure is the one that will he modified for the perspective view and
for the motion. A view_solid structure could combine many worid_solids in a linked list.
A view_solid structure contains some descriptive fields as well as geometric fields. the
most important descriptive fields are: the name. the color, and a field which, describes
the solid as movable or stable. The geometric fields are many. First the whole geometry
of the view_solid stored as linked lists as described for the world_solid shown in figure

318. Second a banding volume is giveri as the dimensions of a parallelepiped. Finally

a basis is attached to the parallelepiped expressed with respect to the world coordinate
system which will be used for the grasping operation. As usual the view_solids are stored
as bounded linked Iist; with garbage cqllections at each level i.e the view_solids level, the
3-D surface*countours level, and the ver(t‘:?ces level. All the facilities that were stated above -
for the world_solids are applicabie to the view_solids. Moreover, a modification facility has
been implemented for modifying the descriptive fields of the view_solids. The view point
transformation is easy to perform once we express the view coordinate basis with respect
to the world coordinate basis. Some simplifications have been made in érder to compute
the view coordinate basis. We suppose that the z axis of the view coordinate systeg is
pointing to the origin of the world coordinate system. We also suppose that the x axis for
the view coordinate system is parallel to the xy plane of the world coordinate system with
a predefined direction. In ou°r discussion from now on, matrices are 3 x 3 matrices and their
subscripts determine the basis with respect to which 'they are expressed. The same notation

oints. If the subscripts are omitted then the default reference basis

applies to vectors a
is with respect Yo the world coor i§1ate system. Let us now supposé that Q is the matrix’
J,

that ~xpresses the view coordinate\\stem with respect to the world coordinate system,

&

57

4

=

. 34 Graphies

and V is the view point known in the world coordinate system, then for each point # of

the world solid we have: -

[Plo={ v | =[Q[VP]w (3.16)

Next the clipping should be performed against a viewing pyramid. The-user defines the

ratio g where D is the distance from the view point to the plane of the display screen and

S is the screen size; a point is visible on the screen if :

)

D
n -2y < GTv <zy, and —zy< Z < zy . (317)

The details of the clipping algorithm can be found in references such as [Newman79] or
[Foley82]. We should state however, that the clipping can cause chang‘es in the vertices
and can of course change the number of vertices or even surface countours. These results
are managed and stored in the same linked lists. If more space is needed it i1s allocated.

.

if less space is needed the surplus is released for later use. After clipping the perspective

Le
transformation is performed, for each clipped point P = | y. | of the view sold. we
2y
T\ o
-compute P; = | ys; | where z5 and ys are the screen coordinates. and are defined as
" ZU l 3
follows: -
T : : Ye :
Ty = (—=)Voz + Vez, and ys = (;—)V_.,y + Vey (3 18)
v v

B

Where Vez, Vsz, Vey, Vsy are the commonly used parameters to describe a window on. the
display screen. After the perspective view transformation a view solid is represented at the
lowest level-by linked lists of vertices, each vertex h;ék‘t,he screen coordinates (zy, y,,)T and
a view coordinete 2z, which has stayed unchanged after the graphics manipulations. z,, is

not useful for displaying but will later be used for motion.

A back surface removal algorithm could easily be integrated. After performing
2 & s
the view point transformation we compute a hormal vector to each surface contour. If the /
coordinate of the normal vector with repect to the view coordronate system is negatrve that

means that the vrewer is facing the surface therefore the surface should be_processed for

%

- 53

XY

35 Geometric Properties

°

the clipping and the perspective transformation, if the z coordinate is positive the surface

contour should not be visible, and hence no further graphic manipulations are rieeded.

3

»

. One attractive g/raphic facility is the use of multiple windows available in the
SUN workstation. For simulation purposes different views would be helpful to the user. The
different windows are stored as linked lists in the datamodel, they are identified by names,
each window structure has all the information needed for the view point transformation,
clipping. and perspective view Each window is managed and served by a different procest
running as a “child”of the main program in order to respond to chanées in window's
properties such as closing, Bpening. and changes in size. In ordé&r to display a parti.cular
solid, the user invokes the displaygcommand with the specification of the window. All the
queries that could be applied to the world_solids could also be’applied to the windows. Every
window’s structure has additional information which will be used later for motion. Only
the bdsic facilities such as clearing a parti‘cular window or clearing a partiﬂcJI:;r view_solid
in a particular window have been developed to ease the use of the graphics interface for

the user. As future work, we can suggest more graphic options that would be helpful, such

as “zoom” to help the user to closely observe the motion in the workcell.

3.5 Geometric Properties

Usually. after representing a solid using the solid modeller’s facilities, we are

interested in computing some of its geometric properties such as the area of its closed
S , ¢
boundary, its centroid. and its volume or 0" moment. In this section, wKa\ introduce the

facilities that were developed in order to accamplish this. These facilities are developed to

fulfil the fourth property given by Requicha mentioned in section 1.

.. : [
The area of a planar region could be considered as ihe 0t* moment in a two
dimensional space. The k** moment of a closed region Q in a v dimensional euclidean

space is defined as:

N = / fe(nd@ : (3.19)
0

-]

u
}

59.

Al

A
3% Geometric Properties

where fi(r) is a homogeneous function of k** degree of the position vecto: r and is at the

t

same time a tensor of the kt# rank. Let gm(r) be a m®-rank tensor such that:

div[gm (r)] = fi(r) (3.20)

where m = k + 1. Using the Gauss Divergence Theorem. we can state that.
Q

I, = / gm(r) -ndoQ (3.21)
> Jan

‘

& o

Where 92 denotes the boundary of the clgsed region {2 and n is the unit normal vector to

890. pointing out of { region. The camputation of the 0!* moment can be reduced to

4
*

‘ 1
-4 lp = ——/anrndaﬂ (3.22)

I v

as shown in [Angeles83] Using this above formula. the area and the volume of a world_solid
'
represented in the datamodel shown in figure 3.18 can be computed and these ‘will be

presented in the following sections.

3.5.1 rea

Let us é:sume that a solid is represented by n patches. the area of the solid
is. ther the sum of the areas of each individual patch: 4 = A, wh‘er A, is the
area of a patch. The problem is now reduced to the computation of the area of a patch.
Moreover, the area of a patch could be computfad as if the patch were in a 2-D space. thus

012 represents, in this case, a closed m-sided polygon:
_ X

o0 = | J aq, ' (3.23)
1=1 '\

Where 02, denotes the itk side of the polygon. And the area a of the polygon ‘is then

expressed as:

1 & / g
a= = r-n,dos); (3.24)
2 g an, ¢ ' .

\

3.5 Geometric Properties

D

Where n, is the unjt normal vector to the side or edge in question in a 2-D space. In order

- < N
to decompose this further, let us consider separately the contribution of one edge to the

area of the whole bolygon. this could be written as: °

v

[y

1 1
iﬂz . AQZ rdaﬂl -= in, '3, N (3-25)

ot
e B0

Where s, is the length of the considered edge and F, is the position vector of its centroid,

as shown in figure 3.20; all those parameters are éasily"compufed knowing the two vertices
of the edge.

Figure 3.20, A Line Segement

4. 9

Then. the area of the bourided region 2 s finally stated as:

- : A=

N =

o ,
DD n sy - (326

patchesi=1 ’

The latter formula is suitable for computer implermentation.

? 4 &

61

3.5 Geometric Properties

Ll 3.5.2 Volume

1]

The 0t moment in a 3-D space is the volume V of a solid:
1 / '
V== r-ndoQQ 3.27
. 3 Jan , (3-27)
Where 02 represents the whole boundary of the world_solid, let us now suppose that we

have m patches in the solid in question, then 49 could be expressed as 9N =)\, i1,
where 91, is a patch, the volume is then:
| V=3 Z/ r-n,doQ, ' (3.28)
N,

o ' e
where n, is the unit normal vector to the patch in question. Let us now consider the

J

1.4, ’ (3.29)

contribution-of the 1t* patch to the whole volume:

v . V,= %n, / rdof, = %nz
a0,

_ . . & . .
where T, is the position vector of the centroid of the patch, and A, its area that could be

computed using formula 3.26 developed in the previous section.

3.5.3 Centroid

°

- ™
' Both.computations of the area and the volume of a solid need the computation
of a centroid, this is accomplished easily, the positioh wvector ¢ of the centroid of an edge

-

ora patch is readily computed knowmg the posut&on vectors of the n vertices:

== Z P, (3.30)
1.=1

. The above formula assumes that the mass is concentrated at the vertices of the
_different patches. In the present work, we have implehenteq the facilities for computing
the three previously mentioned propertles and stored them in the geometric fields of the
world _solids upon user request. As an extension, we can foresee the need of computlng
the 1%¢ moment, being the first-rank tensor and the 274 moment of inertia, this extension
"could be easily added using the Gauss Divergence theorem as for the 0" moment. A more
accurate computatien of the centroid would then be ¢ = :—1- The reader is referred to the

0 /
work of Angeles [Angeles86b] if the extension is considered. '

o

62

u

3.6 Summary

3.6 Summary j(

In this chapter, we discussed different solid modelling approaches. We chose

the bounciary representations method for the simulator and the reasons for this choice were
\given. We also gave examples of the implemented B-reps and examples of the sweep to
1 B-reps conversion. We, then, introduced some graphics facilities and the computational
aspect of the geometric properties of solids. In the next chapter, we consider the problem
of motion of solids in 3-D spac?. We shall invéstigate the articulated motion of general
manipulators, and shall also solve the forward and inverse kinematics of manipulato;'s.
keeping the generality as an important goal. Our main concern will be speed and storage

optimization. 3

63

‘v,’ru '
(40

Chapter 4 Motion and Programming

4.1 Moving a Solid -

Let us start by solving the problem ofc moving one point in 3-D al?ng a certain
trajectory. The trajectory, should be decomposed into segments of position and orientation
to facmtate the snmulatlon of motion. Thus the motion problem i }s reduced to the motion
of a pomt for a certain PD segment which could be fully defined by a matrix A for the

orientation and a vector u for the.displacement. as shown in figure 4.1.

-

Cl4

Figure 4.1 Point Motion.

<
We can now state that the motion of a paint P to P’ is defined as:

¢

[OP']y = [(OP") + u]y = [A[OP] +u]y, (4.1)

_S

v

- 4.1 Moving a View_solid

&

The motion is supposed to be defined in the world coordinate system, and O is its origin.
For compatibility with our view _solids coordinate system., it is better to express the above
equation in the view coordinate system. To this end, we assume that the rotational part

of the view point transformaticn is defined by the matrix V and that the view point is Oc.

Then we can state that:

. A, =V,AV; 1 =Vv,A, VT (4.24) -
and ‘ i \)
uy = Vyuy . (4.2)
Thus the new point P’ is derived in the view coordinates: .
[0:P]y = P} = V,AWVT Py + (VLANT — 1)[00.], + Vyuy (4.3)

where | is the identity matrix. Assuming that M = V,A,VT and t = (M-1)[00.]v+Vouw
then the motion could be expressed similarly as in the world coordinate system:

- A
with P! = [0, P']y = (:z:’,y;’,z’)T and P, = (z,y,2)T. The common way of producing the
“motion graphically is to apply equation 4.4 to the view_solid, apply clipping to the resuit
and then prespective’view transformation. All of the above operations should be applied
at each sample of motion or each set (A,u) in the trajectory. A less time consuming

alternative would be to apply the motion transformations in screen coordinates, this can be’

1] -

accomplished using the z coordinate of the points previously ke'pt in the view coordinate
system. We will now adapt equation (4.4) to the form of storage we have been using. Every
point P of a solid is stored as -P; = (a,b,2)T where the z coordinates of P and P are
the same.’ L'Jnder a set (A,u) describing a step of motion in the world coordinate system,
the pointsPs is transformed to Pl =(d,¥ ,2")T; in order to simulate this motion we need
to computen P! as a funtion of A, u and Ps. Let us suppose that M = (uflr, ug',ug')r and

t= (?;,ty,tz)T. then:

-

o

(ul(0P)+ta\ - |
P, = | ul(0.P) +t, o ~ (45)
) ug‘(OcP) +tz “ ‘ .
¥ ’ P,
6

-

v

screen

Q motion

. Figure 4.2 Cliping Effect on Motion.

From the previous graphics transformations we have

a D (EWir + Via
Po=b] =1 §(LVoy+Vey
2 . 2y
) and .
B al \ F(%vaz + VCI
! (] _ 2}
4 ° J Ps - bl b g—(%)vsy-*- ch
z y
v
Let us now define the vector: o v N v
S a-V o>
© a = (__V.m).
wl = (a,8,1) where ? b- 1%,
D . A=l -
Then, we can derive that:
. 1 .
z{uf w)+t
a = 'SD'V“’(1z7 :c) Ve .
N D z(u w)+ty

4.1 Moving a View _solld

(4i.6a)
(4.6b)

(4.7)

(48)

The above three equations determine the motion in screen coordinates and update the 2

coordinate of the point Plnder motion. The method we have used for the motion sim-

ulation accelerates the process but poses one disadvantage: The clipping and perspective\

view are done just once at the very beginning in order to prt;duce P, given P; thus, if a

solid is clipped at its initial position it will always stay so, and if the clipped sofid should

appear on the screen under the effect of motion, it will appear as-if it were still clipped. the

effect is shown in figure 4.2.

L d
¢

: 4.2 Manipulator Identification and Storage Structure

&

~This could be avoided by specifying graphics data which will keep the moving
solids and the possibly grasped $olids in the middle of the screen. Since time requirements

are importa}lt in the simulator, the motion was implemented the way shown above accepting

the clipping disadvantage. ’

A trajectory is sampled at certain intervals in order to produce motion, however,
in practice the motion of a link of a manipulator is either rotational or translational. and
hence equation (4.8) could be further simplified by. taking care of the two types of motion
seperately. Moreover, the motion or the trajectory of the motion is divided in such a way as
to be mostly repetitive. As an example, assume that a revolute link of a robot is supposed
to move by 65° from its initial position. The motion could then be considered as 6 x 10° +5°
in order t6 make 7 frames of the whole trajectory.thug for the 6 first frames the matrix A

i
of rotation is the same and descnbes 10° of rotation. The motion equations (4.8) could be

written recurslvely for each step of motion by replacing (a',¥,2') by (a;41,b,41,231) and
(a,6,2) by (a,,8;,2,). Since the repetitive aspect of the sampled motin. M and t remain
unchanged (n — 1) frames on n frames. e

v

In order to make the above derivations more general, we should include the case
where the motion is given with respect to a coordinate system (i) different from the world
coordinate system. Assuming that the motion is'given by a set (A,,u;). then the matrix

M and the vector t of equation 4.4 become:
- M = Vo (T, (Vo (T2)w) C . (49q)
t = Vol((T)wAi(T.)5 —1(0,06)u + (T,)ut] (4.90)

Where (T;)w:is the 3 x 3 matrix which transforms the world coordinate frame to the frame
i of motion, and O; the origin of the latter. The above formula is useful whenever the

motion to be simulated is given in the joint space of a manipulator.

/
-

@

4.2 Manipulator ldentification and Storage Structure

1
\ !
3
L4

In the previous section we have discussed the implementation of motion and

o !

i : 67 .

/

'\u

L]
- "B

4.2 Manipulator ldentification and Storage Structure

- A A

the means adapted to speed it up as applied to one view_solid. In this section, we will
introduce ways of constructmg a whole manlpulator and |dent|fymg it: we will also introduce
the structure ‘necessary for the storage. A manipulatar is constructed geometrlcally with
links whlch are represented‘mh the datamodel as groups of view_solids identified by their

names. Each link i has @ name and points to a set of Hartenberg and Denavit parameters

[Hartenberg64] associatingethe preceeding joint to the next one. A matrix Q, and a.vector a,

are hence formed and stored in each link's structure. Moreover, each link has a descriptive
field which defines the type of its preceeding joint to be revolute. prismatic or others This
is done so that we ¢an speed up the simu'lation by taking care only of the rotational or the
translational aspect of the motion. For the time being. only prismatic o} revolute joints
can beosimulated. The Iin.k's are stored as linked lists, each of which defines a robot and

is poiptea to by a robot structure. Each robot structure has a name, some descriptive ‘
fields ‘for information such as isotropic.‘serial and others. The robot structure po'mts to
a linked Ioist' of graspea soilds, generall)} just oné and contains information about the end
effector’s position aid or'i[er;ltatibn. Finally the robot structure includes information such
as the nominal spJeed in the joint space. All the rob\ot structures are therpselves -stored as
linked lists. and as for the previous linked lists in the datamodel, some queries could be
applied. The most important queries’ are creation, modifica;ion of the descriptive fields,
removal and showing. The new data structure for articulated motion could then be defined
as follows: The lowest entities are view_solids, then links and then robots. However,
because of the multiple windows’ use in ;he simulator, a P;igher level entity is needed to
which robots and view_salids could be assugned this entity was called a tool. Each tool
is baswally a windoW divided into a graphlcs subwindow for motion snmulatnon and a text
subwindow for time simulation, as will be explained later. Every tool is represented in the
datamodel by a structure which has a name and pomts to robots and view_solids identified
by their respectlve names. Each toof has a different process managing its windows in order
to respond to queries such as close, expand. or quit. In each tool structure we also find the
graphics data proper to its graphics 'subwindow. The last:field in a tool structure points

to the beginning of a linked [ist of structures called off_line motion structures which will

v
~ 'y
' i~

-

& . ”

ae

S
*\’ 4 2 Manipulator ldentification and Storage Structure

\s . -)
be introdiced in the section concerning the types of simulation. The t90| structures are

themselves organized in a linked list manner and respond to the standard queries.

The above data structure was implemented keeping in mind the possibility of
further extensions. There is, however, one problem remaining concerning the fact that the
V

view _solids are stored using their screen coordinates and therefore the same view_solid

cannot be used in different windows: if a view _solid is to be used twice or more it should

have a different name in each tool. This confirms the fact that by gaining time we lose

memory, having gained time by applying motion to the screen coordinates.

In order to clarify the process of constructing and identifying a robot, we will

give an example for the Puma 260. We first create the base of the robot which can ‘be
. 5 o

approximated by a cylinder, as is the first link of the Puma. Once created, the two cylindérs

would be linked to the level of blocks in the datamodel. The second and third links of the

manipulato; could be mgdplleydﬁugjpgg_arﬁggig)d_mggi!e surface and sweep it along the 2z
axis from the x-y plane. At the end of the third link we have a cylindrical solid, which must
be constructed. The last three links together could be mod;alled by a sphere connected
to a smaller cylinder. Finally, the gripper-is modelled using an approx}mative surfacﬂe and
applying a transfatior:al sweep on it. The. sizes of the surfaces, cylinders, and spheres
are found in the mechanical manual of the robot, which should be used precisely. AII’ the
constructed pieces are stored as blocks in the datamodel and should be moved _to their
appropriate place in_space in order to construct the rob{)t as an entity. The displacements
to the appropriate place could be performed using the different pieces’ as instances and
copying them to the appropriate places by giving the exact transformations needed to this
end. Atthis stage, the world_solids could be built of the different blocks and the view_solids
could be constructed with the option of specifying color. There is now no need to i(eep the
,blocks and the world solids. so th;y can be cleared from the datamodel. The view_solids

are then associated to a particular tool with the needed graphics data, and a result i\s shown

in figure4.3. -

-~

At this point, the robot is not yet identified. and neither are the links. For

4
.

s 69

——

\

4

43 Articulated Motion

[N

Figure 4.3 Puma 260

the purpose of identification. we create six links and assign a view_solid or a group of

~ view_solids to each link. After doing so. we create a robot in the same tool and assign to
it the different links. The descriptive fields for the robot and the links shoulu be specified.

- After the idendification process. the robot is ready to be moved aroun;i under specific
commands. Since we have the total liberty in bringing the different blocks along in orde’r

to construct the robot, we should specify the initial values for the variajg[es of each robaot.

The next section is devoted to articulated motion.

e LS

f v

4.3 Articulated Motion

i
g ¥ s

Generally, the motion could be descriﬁed-{n two different spaces, namely, the
joint space and the c¢artesian space. This section will introduce the two spaces and will
also discuss ways of changing from one space to the other. If the motion is described in

' joint space, the displacements or rotﬁtions are known for each joint and therefore there are
no cémplications for motion simulation. If the motion is described in the cartesian space,
the final position and orientation of tf\e end effector are usually known with respect to the

world coordinate system: then the inverse kinematics would have to be solved in order to

¥ o

* []
' 70

4 3 Articulated Motion

find the motion in joint space. As an introduction, we shall provide some background on,
robots kinematics without getting into detail since this material could be found in a variety
of books [Paul81a. Cra'rg8ﬁ]. We shall also give means for solving the inverse kinematics
problem keeping in mind the gener;lit; of the simulator., This section will also pr:asent the.
different types of simulation that have been implemented in order to perform the animation.
At the end of this section we will consider the problem of grasping a solid and the method

develSped to solve it.

o ,
4.3.1 Forward Kinematics

.

Let us consider a general robot architecture as shown-in figure 4.4.

6| : 9; R’ : 95
o *
- 1
(e)
.’ % q‘
R} ¢ Pxy2)
l —\
{ . H \
.
. :

Figure 4.4 General Robot Architecture.

The manipulator is supposed to be constructed of n links. the first one being
fixed. The types of manipulato;s that we are consiﬁering are serial and form an open chain,
and theifore the numbering of the links is unambiguous. The closyre equations to be used
are those of Hartenberg and Denavit [Hartenberéﬁ«t]. where the architecture of the chain is

determined by the set (a,,b;,0;) with i = 1--.n : each link ¢ has a basis B, attached to

4

1

. i 43 articulated Motion

w

I it. B; = (O,. X,. Y,. Z,) which respects the conditions stated by Hartenberg and Denavit.
The relative posmon of the basis B, 1 with respect to the basis B is givencby a rotation

matrix Q; and a displacement vector a, .

cd, —sb,ca; sb,sq,

Q,=1| 80, cleca, —cb,sq, (4.10a)
) 0 sa, ca,
.; aicgz - 5
a, =/| a,s0,, (4.100)
2 « b,

Where ¢ stands’for cos and s for sin. The orientation and position of the end effector are
€

respectively. determmed‘ by Q the orientation matrix with respect to the world coordmate

system and r the vector relatmg the orlgm of Bk to the end effector. in basis By. So we

can erte -
f\\ , . QQ;---Q,=Q ~ (4110)
@ n
T Yladi= | (4115)
o ° =1))

In this treatment, we assume that the basis By is the one of the world coordinate sy"stem.

In forward kinematics, Q and a, are known and the computation of Q and r is easuly

sccomplished. if the motion is described in joint space, the simulation could be performed

by sampling a curve which connects the initial and final positions of each joint. The forward

» klnematlcs computatlons would be used for updating the position and orientation of the '
end eﬂ"ector in the rqbot structure. However, the trajectory for a motion is usually supplied

in the cartesian space. and therefore inverse kinematics would have to be solved.,

- -

¥ : 4.3.2 Inverse Kinematics

Before solving the inverse kinematics problem for the whole trajectory, we should

solve it for one particular position and orientation of the end effector. For a general purpose
robot simulation we‘certainly-need\a general purpose inverse kinematics package. which will

deliver the joint angle 8, for revolute joints or the displacement b; for the prismatic ones.

- given the position and orientation of the end effector in the world coofdinate space. Closed

72

4.3 Articulated Motion

form solutions were developed and reported [Paul81a, PaGl8ﬂ>] for a particular simple class

of manipulators. Another more general solution appeared later [Featherstone83], but it still

/deyzwith a sub-class of manipulators namely the wrist partitioned ohes. Some other

techniques appeared which are a mixture of closed form and numerical iterative solutions
[Tsai84, Takano85]:, these techniques apply to the class of six revolute (6R) manipulators.,
The inverse kinematics procedure deals with what is probably the most popular architecture,

. |
that of the six degree of freedom manipulators (revolute or prismatic joints). For simplicity.

we will first develop the basic equatioris for- a 6R manipulator and deal with prismatic joints
subsequently. From equation 4.11a and 4.116 with n = 6, we have a system of twelve
equations with six unknowns. These equations are dependent because of the fact that a

rotation has the two properties

[

QQ? =1=qTqQ ' (4.12a)
det(Q) = 1 C (#12)

i

By taking the vector invariants and the trace of both sides in equation (4.11a) we can

reduce the number of equations to.seven as follows:

vect(Q1Qgz--- Q) — vect(Q) =0 ‘ (4.13a)
r(QyQy -+ Qg) — t7(Q) =0 C (4435)

6
Y [ali—r=0 (4.13¢)

=1 , .
Equations (4.13a) and (4.13b) are nonlinearly dependent because

lvect(Q)]|2 + [tr(Q) —1]2/4 =1 - | (4.13d)

We cannot, however, keep just the vector invariant information without the_trac,e: as that
would génerate confusion on the angles of rota‘tion [Angeles85]. Let us consider the vector
f in .seven dimensional space. The components of this vector are the seven left sides
of equations (4.13a). (4.13b) and (4.13c). so f is a function of 8y --- 84 for simplicity.
f(0y -+ 8g) is denoted f(8). where § is a six dimensional vector. The inverse kinematics

problem can then be stated as follows: solve the equation

f('o‘);o \ L (14)

» 13

43 Articulated Motion

The Jacobian of f is a 7x6 matrix known to be

_ o

Jd = — 4.15
Py (4.15)
After differentiations, we<ind that® ; -
(tr(Q)I - Q)A
J=| —2vect(Q)°A (4.16a)
B g
where A and B are 3x6 matrices defined as follows 3
- / &
’ A= [e,Qle,---,Ql ---Qse] (416b)
B=[exr,Qexry, --,Qq - Qsge x rg] : (4.16¢)
with eT = (0,0,1), and . - _
ro#= ag, rp—=a;+ rik+1 (4.17)

4

Since we have more equations than variables, Newton-Gauss method seems to

be the most appropriate for soI‘vingh equation (4.14). Let us state the procedure : given an °

initial guess of the six dimensional vector 6o, generate a sequence g1 ,52,- . ,5",5";’"1 ,r i
such as to decrease the objective function z at each iteration, zk is the objective function \ -
\at iteration k. It is defined as ' °
25 = [FT(0°)F (6%)]1/2 (4 18)

at each iteration a correction vector AG* is applied to the: vector gk, so that

-

1 = 6% + NG | (4.19)

Using the Newton-Gauss method. this correction+factor must satisfy the following equation
; .

- o~

J(F) A = —£(8%). " (4.20)

Thus
AGF = 3 (§F)f (@) with 3 = (4Ty)~14T (4.21)-

N [R UL

43 Articulated Motion

More detailed explanation about this could be found in [Angeles85]. We keep iterating
until we reach a small prespecified objective function. At the end. the vector g holds the
solution we are looking for. For prismatic joints the unknown is not 6, anymore but b;. This
does not significantly change the procedure except that the Jacobian is modrF ed so as to
differentiate with respect to the varlable b,. Later for the resolution of the equatlon (4.14),
the unknowns are modified according to the joint's type. The method we just described,
namely. the Newton-Guass approach, has two points that we s}hould discuss further. The
first is the fact that the method garantees convergence to the solution only when the initial
guess is already close enough to the solution. The second . point jnvolves the multiplicity

‘ofusolutions and methods of finding them all. This second point is beyond the scoee of

the work we developed. and research is being conducted as a different project in order to

solve the problem. The solution for the second point would be used especially for path
planning and collision avoidance as future development for the simulator. The first point

is of more interest for us now. and will e discussed next. Two problems could cause the

non convergence of the algorithm

e
: @0 is far away from the solution we are seeking.

Z)U is inp a reglon where the jacobian J is ill conditioned.

- .
y -

In the latter case, the computation of Ag* !rom equation 4.21 is very likely to
be erroneous since J7J has a condition number which is the square of the condition number

of J. The condition number is a measure of ill conditioning and is defined as follows:

e(d) = RIS B = yerwaT) (422) ~

where W issa positive definite and usually diagonal matrix and should be chosen so that
Il = 1. One way of making sure that the initial guess does .not cause an ill conditioned
jacobian is to first minimize /c(.l) and use as A0 the vector that satisfies the minimization.
This minimization_problem could usually be solved in a closed for{n manner, but otherwise

it is an optimization problem. From the end effector’s position and orientation hence caused

°
o

- : 75

833

4.4 Motion Simulation

by A8, we use a continuation method towards the desired position and orienta-tion At
each step in between, we use as an initial guess for the pomt P, and orientation given
by Q; the vector Aa‘ 1 which is the solution for the inverse kinematic problem at step
t — 1. This way we assure the vicinity of the initial guess to the desired solution, and
hence the two problems mgntioﬁed above for the !\lewton-Guass approach are solved using
the minimization of x(J) as a start for the initial guess, and a’continuation method to the
desi'red end effector’s position-and orientation.” The mathematical detail of the approach

are not presented here, but are well explored in [Angeles87].

The\numerica'l solution of the inverse kinematics problem was investigated in
order to preserve the generality of the simulator in handling any type of .robot. We should,
however, notice that the approach developed above is applicable just to 6 degrees of freedom
robots. Moreover, in practice most robots are designed so that they havé a closed form
solution for the inverse kinematics. Therefore, we kept the option of linking a closed form
inverse kinematics package to the simulator; thls could be useful for time saving because
a closed form:solution for a particular robot is usually faster than a general numerical

solution. Also, the closed form methods provide the multiple. solutions, so if the user is

- dnterested in comparing the multiple solutions or paths, the closed form solution is needed.

at least for the moment. As an example, a closed form solution for the Puma 6-R robot
was dewgloped and resides in the simulator, so if a Puma is involved in the simultion, the
closed form is interrogate& for the invedrfe kinematics instead of the numerical solution.
The closed form solution for the Puma is not presented here since it is well known and
could be found in many references [Paul8la, Lloyd85]. The Puma is a manipulator of 3
singularities and hence 2 =8 reﬁl solutions exist for an inverse kinematic problem. The
user has the option of specifying the solution hz is looking for; the eight solutions are

—ga

selected using three of the following possibilities: right-left; up-down, and flip-(no-flip); the

_ eight possibilities are shown in [Lloyd85]. ' »

.16

. e

44 Motion Simulation

4.4 Motion Simulation

In the previous section, we discussed the problem of forward and inverse kine-

. matics At this stage. a motion described .in cartesian space could be transformed to a
motion in joir;t space; we now develop means of simulating joint space motion.- Interactive
and real time simulation is not easy to accomplish and may even be impossible for a general~
purpose simulator depending on the comfplexity of the workcell in which we are interested. <
However, time scaling can be used and the simulation can occur in “slow motion”. Here a
clock is shown in the text subwindow of thé_ tool to indicate the time it would take if the
program we are simulating were being run on the real robot instead of the simulator.. The
simulator was designed to run in lthrpe different modes as selected by the user; there are

two interactive modes and one off-line mode which will be explained' later, in this section.

e In this section, we are not showing the result of simulating a whole robot program, which
- 4

will be the subject of a subsequent section. Instead, we suppose that the user wants to
move relatively the n joints of a selected robot by a vector A2 If a joint is prismatic then
its corresponding Ad, is replaced by Ab,. ;

! 4.4.1 [Interactive Simulation

v In this context. interactive means that the simulation is done at the time when
the command is issued. so the computations are -performed at the same time, as the sim-
ulation. This type of simulation will be reffered to as on-line also. Depending on the
application, the trajectory followed by the end effector may or umay not be of interest. Eor
example. in pick and place operations. only the final position and orientatien of the end

effector are of importance. However, in path planning and many other applications, the

trajectory followed by the end effector and the different links is of primary interest. In the

\ -

interactive mode.. we developed two types of simulation, the first is called joint-by-joint

¥4

simulation and Tould be used for pick and place and other operations where tlie trajectory
is not important. The second type is called the path simulation and is used for applica-

s - !
(flons where the path-followed is important. The- second type of simulation is more time

1

[

4.4 Motion Simulation

-

' ﬂJoint.l
@, .,
o ant
' joint2 // \
. L
al
Q1
joint1 P
—rTrg -

PR *

Figure 4.5 loint's Motion
consuming because of computational aspects as will be shown later, however, it is closer

to reality.

4.4.1.1 Joint-by-joint Simulation

‘ Joint-by-joint simulation is a type of simulation where the joints are f‘rtoved
one by one respectively. In the joint-by-joint mode, the required parameters are the tool's
name, the robot’s name,:the vector of th;a total relative motion A# and the step size of

. motion sampling. First a verification of the existence of the tool and the robot in the tool
in question is performed, then the validity of the other given data is checked. | et us denote
l;y 60 the step of m'otion. and by-d the vector of variables for ﬂ;e robot to be moved. In |
this treatment of joint motiqn, we assume that the joint var}.abtes increase linearly from
the start position to the‘:end position. This is an arbitrary choice. and in practice, the
joint motion could be foilowing a spline[§>'a'th78]. a 3-4-5 polynomial[Derby83]. or a linear
motion as in RCCL [Hayward84]. Now we shall state the problem in a manner which will
allow the material of section 1 of this chapter to apply towards its solution. First, we
make a list of moving view _solids for each joint to be moved. The list is made of the links
following the joint in question plus the grasped view _solids if any. Figure 4.5 shows an

' i
example where joint ¢ is the one to be moved. :

8

4.4 Motion Simulation

The motion is defined for each step by the set (A;(66),u;(66)): in the present
implementation, we have either A, (66) = or u,(66) = 0 dépending on whether the joint is
prismatic or revolute, and hence the computation is reduced. The cas\k; where the motion is
described in a reference frame other than the world coordinate frame was diséu;sed earlier
and equations 4.9a and 4.95 should be used in this case. For the motion of joint ¢, we
need to perform the computations for (T,)w and O; of équations 4.9a vand 4.9b. which gre
compited the following way: '

{

(Tow =1 (Tw =(Ti-1)wQ.—1 ‘ (4.23q)

-,

01

1]

0, O,=v,=v,_1+a,_1 (4.23b)

[

- .

Now we shall state the motion set (A,,u,) in the'it® frame. Respecting the Hartenberg
:
and Denavit choice. A;(66) is a step of a rotational motion with respect to the z axis of

‘the 1" frame and hence is defined as:

c(69) —s(68) 0
A, (60) = | s(60) c(68) O o (s24)
’ 0 0 1 o

The vector u,(68) is a step of a translational motion with respect to the z axis.of the ith

13

fra'me and is defined as: ’ .
uf =(0,0,69) | (4.25)

For tran—slational motion 6b replaces 64, which is a step for the variable of a prismatic joint.
. Before the motion of the i** joint, the previ}ms joints have been moved respectively and
hence the matrices Q; and the vectors a,’ with 1 < j < i—1, remain unchanged. Thus the
computation of 4.23a and 4.23b is needed just once for each joint to be moved. After the

computations for 4.23a and 4.235, M and t are computed from equations 4.9a and 4.96
-with the simplificagtion introduced by the fact that the joint is either translational or rota-
tional. At this stage, the motion equﬁations of section 1 are applied on each view_solid which
is in the linked list of moving view_solids of joit:ct i. The procedure is repeated (m; + 1)

times for each joint ¢ where:

~ DO;
- my = | (4.26)
79

'3

4.4 Motion Simulation

- The last frame of motion is produced by (A8; —m,§8), completing the total relative motion.
|

The whole procedure mentioned above is repeated for each joint of the robot
starting from the first joint to the last one. After applying the motion to jo&_gt i, the variable
9; is up}dated so that 1t could be used correctly for computing (T;+1)w and O, 1. At the
end of the motion, the end effector’s position and orientation fields in the robot’s structure
are updated. In order to display the motion, the screen is updated once every step of
motijon for each joint. The computations of motion are applied to the moving view solids
only‘. so for each frame the total scene is made of the union of the moving view solids and

the static view_solids.

&

4.4.1.2 Path Simulation

P’é’th simulation is used when we aresjnterested in the path followed by Ehe
manipulator dur'ing a certain task. In this particular implemeﬁ’tétion. we assume that the
joint variables attain their final values linearly from their start positions.’ If»she changes
ifn ioint space are not linear, for exam%lg_following a Spline.thié assumptioﬁ/;rciduces an
error. However, if the control algdrithms for the joints controllers are known, they could
be incorporated into the simulator system. Figure 4.6 shows an example of motion injoint
space. j ~

The information needed in order to perform this type of motion is the tool's
name, the robot’s name. and the‘ total relative motion A9 and 68. This type of motion
is closer to reality than the previous one, and the motion sampling is done based on time
intervals 67. As was mentioned earlier, the joint speed is specified by the user and is
stored in the robot’s structure; it is used 7s. being the speed of the joint which has to move

the most in order to accomplish the whole motion command.

60 b (oF “al)maz

0T ==, and = 7 (4.27)

7/

In this type of simulation, the=step size of the motion is different from one joint to another,

' let us denote by 607 = (664,---,60;,---,60,) the vector of steps of motion for the different

[N

/ LA 80

—

‘o

4.4 Motion Simulation

2

. \
\\\Cj ©
s , ¢

lvv t’

I 9 .
i
eF
i .
e_|

\\“\;
Figure 4.6 Joint-time Rela,tions.
joints, where: .
Ag; .
' 60; = 7’—6T : (4.28)

- -

This motion is not applied joint by joint. but instead is'applied in terms of time. Assuming
that T = méT + AT. we first simulate m times the motion caused by the joints altogether,
then we add the motion caused during AT. For the total relative motion we then have
{(m + 1) frames shown on the screen. For each step of motion, a list of moving view_solids
is built for each joint and the computations of equations 4.23a and 4.23b are performed.

However the display is not updated until -the step motion is computed for all n joints.
|
81

) 44 Motion Simulation

Moreover, the re-computation of equations 4.23a and 4.23b is required for each 'step of

motion, because if joint 1 moves by §6; then, in order to apply the motion caused py the
(v + 1)““ joint. we should update Q; or a, by incrementing 6, by é64,. Thus, for each
joint ¢ the. matrix (T,)y or the vector (v,),, is updated (m + 1) times. There is. however,
no point of updating the end effector's position and orientation at every step, so this is
done at the very end of the total relative motion. This approach of motlon simulation is
computatlonally lengthy because of the frequent updating,. but is closer to reality and is~

the approach to be used i in approaximating the trajectory followed by the end effector.

4.4.2 Play-back Simulation <

o
o

Play-back simulation is meant to be used when the solution time of the simu-
fation becomes excessive and the moiton display becomes d'egrade‘d‘. Here the sequence of
jmage displays are stored in memory, permitting then to b;: viwed or “played back” in a
faster séquence. The word off-line will sometimes be used for play-back. In this section,
we explain the data structure for off-line or play-back sirr:ulation and its computational
aspects. Each tool structure, as mentioned before. points to the Begjnning of a linked list
of off-line motion structures. In its turn, an off-line motion structure points to two linked
|i;ts of view_solids, namely, M solids and static view_solids. An off-line motion
structute has two fields. The first is a descnpt:ve\fleld for determining when there is a
change in the linked lists of moving and stable view_solids, such as when the robot grasps
an objegt during a certain task. The second field co:tSrn\s the value of the time needed to
perform the motion if the motion command were given to a\r\eal robot instead of &simulated
rbboi. this time is referred to as simulated time. The simﬁlgated time is displayed in the

text subwindow’ of the tool of motion. '

‘ - When an off-line relative motion command is issued, the same computations as

f .
in the case of on-line or interactive path simulation approach are performed. and the result

u«; stored ih the view_solids fields of the off-line motion structures. The split of view.solids
1

- into moving and static is done so that if there is no change in the change field, the static

¢ 82

- ‘ ¥
[FOTEESUUITN v %
,

.

-44 Motion Simutation
1]

\
solids of the (¢ + 1)t motlon frame are just the same as those in the i*# frame. and hence
no further memory 1s needed The change field could be set in many circumstances such
as when robot A stops moving after a certain motion command. or when robot B starts

movung in the same tool. The change field was made available for saving time and memory

S in not duphcatmg the same stable solids between subsequent frames. All of the off—lme

-

motion structures are stored as linked lists, For some Iong xelatwe motion commands long
programs or even f6r complicated scenes. the memory needed for storlng the dlfFefent fra‘mes« .
of-m)ptlon may exceed the amount of memory that could bé allocated for one process In

this case, the process opens a disc fife and saves the needed |nformat|on After eomputing
S

and saving the frames of motion. thg user can request a SImq}atlon command in one specuhc

LRI I ' \,v-t"l

tool. and then the graphlc dlsplay is updated and the motion is simulated. For each frame

of motion, the vertices.of the moving V|ew _solids. are the ones prevuously computed and

- :

stored, and thus the time needed for thist type of sumdlat’fon it ba§1cally ‘the timre nteded for

the dLspIaymk plus the time needed for loading the precomputed mformatlon from external
-* . »
storage" Usmg “this particular approach a real time snmulatlon or animation is possible

.-
i -~

44.3 Discussion & e o~ L

e

The above three types of simulation have been developed for different purposes.
The last type. namely the off-line simulation, is intefesting when an exact. duplication of «
?motion tommandis wanted. However, an interactive simulation is sometimes needed
for more interactive programming , and we therefore'developed the mteractive joint-by-
joint and path simulation approaches. In order to assess the interactive approac}e’s, we
developed a simulated clock which shows the time that the action would have taken if the
execﬁtio’n was on a real robot. For combparison, -a real clock 1s also shown on the screen
We will now discuss the simulated time implementation. Let us st'éo_r_t with the case of peth
simulation aproach, where the\time needed for each display update or step motion is known
from equation 4.27. Thus the time display in the text subwin}dow is just incremented. by |
6T for each stﬁ motion. In the joint-by-joint simulation approach, the display is updated

(X)=1m™, +1) times for each motion command, and the time is incremented during the

2.

83

N

o

&y

- , ' 4’5 Grasping Solids

. ,
motion of one joint which we chose to be the joint that has to move the fastest for the

L4

whole-motion—For the off-line simulation approach, the time is updated in the same manner

as in the path simulation approach. but is stored in the frames of motion instead. In order

4 L3 P

to make the off-line approach closer to reality in terms of timé, a wait statement is included

in the pr.ogram at each frame. The wait interval should be shorter than 6T due to the time

e

taken to update the display, however this is negligible. - 3

4 ms

‘ - .

. . . P ') (
4.5 Grasping %lh\ds
< When the view_solids were introduced, we mentioned that their structures con-

=

tain three fields that’were used for the grasping facilities. The first field is ‘descriptive

=3

and is entered by the user in-order to tell if the view_solid in question is movable or not.

For example..a cube on a table can be movable whereas the table itself or one link of a

9= -

T e .—
particular robot cannot be. If the view solid is movable, then as soon-as it is created a
certain bounding parallelepiped is computed for it and its dimensions are stored in the

view_splid's structure. Moreover, the \view_solid’s centroid is computed and a coordinate

frame is attached ta{Lis/%l,wown in figure 4.7. . i .
TN . - . -
—

: &
: ,// // z° WlP e J
I/ ’X —1”//

a /, '

- Figure 4.7 Grasping a Solid
6.

©

"“The frame in queStion is stored ‘in a field of the structure of the view_solid,
and we should note that the frame is expressed with respect to the world coordinate pys-

tem. The grasping routines are called when a command to clo_se' the gripper of certain

84.

fo .

p f 46 Program Development

robot is entered. The data needed in order to perform the 'close_gripper’ command are:

[}

Tool's name. robot’s name, maximum distance allowed in order to consider the gripper

. close enough to the solid to be grasped. the maximum angle of deviation between the end

effector’s z axrs and the z,y or z axis of the bounding parallelepiped. and finally a spec—' —
|f|cat|on of the type of simulation being used: Joint-by-joint. path, or off-lme simulation.\ -
*As for all commands. a verlﬁcation of the vdlidity of the given data is_ performed first, then
sc;me tests are conducted in order to know if a solid is indeed being grasped. The tests
are perft?rmed on the movable view_solids only.. FThe first test is to know if the z axis of
the end effector is parallel to any of the axes of the frame attached to the view_solid being
tested. If the test succeeds within a certain margin fixed by the usér, namely the angle
of deviation, then the possibility of grasping the view_solid by the gripper along a certain

direction is” verified. This test i8-a verification to determine if Ay < w, as, shown in figure

4.7. If the two tests are positive then a distance test is performed to know if the point

" P of the end eﬁﬂ‘ector is close enough to Be capable of grasping the solid being tested.

The distance te;t is apgr\o\ximative within a certain toleratéd distance specified by the user.
If one movable view_solid amoﬁg all the movable view_solids in ?he workcell satisfies the
tests of grasping, then it is declared ‘gra;sped and is linked to the Iinkeci list of grasped
solids of the robot which received the close_gripper command. If a robot that is grasping
a view_solid is ordered to°move, then the view_solid in question is also moved accordingly.
and moreover, the frame attached to tﬁe grasped view_solid at its centroid is update'd at
the end of each motlon command that the robot in question receives. In the case of off-line
motion we should note that the view_solids that we test for graspmg could be inr the lists
of both stable or moving view_solids. The view_solid to grasp could have previously been
moving, such as in the case wher’e one robot haqu\ a s{olid to another one; this particular

<

example will be discyssed in the next chapter, under results.
-) ‘ »

4.6 Program Development.

o ’

L3 & \
We have by now developed means for handling commands such as ‘maove_joints.relative’
- %

[+
and ‘elose’gripper’, and the input data required for both types of commands was mentioned

®]

s - .
LY LY

—0

)
.

46.1.1 Motibr{ Comman;is

of telative motion in joint space. If a Puma robot is under simulation,. the closed form

{

d . .
: - TN ‘ /m 46 Program Development

earlier. In thisfection. we introduce some more commands based on the ones mentioned

above, then wel introduce means of interaction with the simulator, and we also pr%de an

example of a program to be sfmulated. We should mentlon here that all commands can’be

7/

applied in three different modes of snmulatlon .as prevnously mentioned. -

&

* 3

4.6.1 Simulation Commands . .

"
0

+ The only motion command that we have developed at t:jvtage is ‘move_joints_relative’;
A l ° .

the execution of this command has been explained preyiously. In®this ‘section we present
some other commands that are available in the simulator. The absolute mo‘tion°in joints
space is easily transformed to reiative motion by taking the difference (§f,nal - (th,;[)
where § final IS the desired vector of absolute motion in Jomt space and ﬂznzt‘zal is the vector
of the robot s variables found in the” robots structure When the motlon is described in
cartesian space, the inverse kinematics package is used to give the absolute motion in joint
space which, in its turn, is transformed to relative motiog in jpint space and executed as
exptained before depending on. the type of simulation being used. A useful 'command in

various robotics applications-is ‘moyg_straight_line’. which guarantees a straight motion of _

the end effector. In the present implementation of the straight line motion, we suppose that

“the arientation, of the end effector stays unchanged from the initial to the final configura-

tion; the position of the end effector is sampled with some prefixed step. At each step, the

inverse kinematics is solved and the motion is simulated using the previous development

inverse kinematics is solved and thus it is the user's responsibility to specify the desired -

configuration among the eight possibilities. If no.configuration is chosen, then a default

o .
o a -

configuration is used. “) P

°

At this stage of development of the simulator. we have four motion command§>
two in joint space, ‘move_joints_relative’ and ‘move._joints_absolute’, and two motion cop-

M . . - . . é ’ . ’ . . [

mands described in cartesian space, ‘'move_end_effector’ and “move_straight_line’. For the .

® +

. 86

v

v

T, * . 46 Program Development

‘move_end_effector command, the joints move linearly from their initial to their final posi-

. - ¢ '
tions. . © \

. N “ N

For the ‘move_staright_line' command however, a samplmg of a stralght line
is done in carte5|an space in order to assure an apprommatlve Ilnear motion in cartesuan
space. Between the samples, the motion is linear in joint space and thus not necessarily in
cartesian space, depending on the type of robot. This error is negligible since the sampling

:) - _
frequency can be increased to more closely approximate a straight line motion in cartesian

-

4

4.6.1.2 Other Commanc}s

ot
- »

The only command other-than motion commands that we have discussed this

far is ‘close_gripper’. which is explained in the section on "Grasping Solids”™. Two other

commands must be added here. The firs'tais called ‘open gripper’ and it is easily served

by clearing the field .of grasped solids in the robgt structure of the robot which receives

this command. If a motion commahnd is sent to‘the same robot after the ‘open_gripper’
command, the solid which was graéped' before would no longer move with the robot. The
second command is ‘robot_speed’, which changes the.speed field in" a vobot structufe,
This affects the simulated time, the step motion 64 in the path simulation, and the wait
duration’in the off-line simulation. Ip chapter 5, we will see through examples the use of all

the co'mnglands that have been introduced. We should note, however, that the commarids

syntax is not shown’in detail in this section, and that each command requires data such.

as tool's name, robot’'s name, and others.

e 7
F

46.2 Programming the Simulator

.
\
-~ <. Ay N . el

K Once the workcell is created and the manipulators identified and initialized.
® - -~ »
the time comes to progfam the workcell. The available simulator's commands are seven

and have been introduced‘in a previous section. All of tHe_commands could- be entered

.

87

wg

]

£

-

. . . . 46 Program Development

M &

interactively directly using the key tree matcher which simplifies the debugging of the
tasks. For examble. assume that we want to order a certain robot ‘to grasp a certain solid
.\}aithoui knowing the exact position and direction needed for the end effector in order tb do
so. This could be be tried diréctl;(on the simulator until the action suc"cgeds and the'solid-is
successfully grasped. Then we can read the end effector’s p‘osition and orieniat_ion or even
the value of the joint variables so that they can-be used later in the robot progra;n. This
method is equivalerit to\gmg‘a‘t«eachl" ing pendant when we program a real robot. Moreover,
some parameters such as speéed, step motion or grasping_ param'e\ters\ could be modified
interactively for comparison and time considerations. This method of trying commands
direcily on the simulator is useful and comes usually at the first stage of developing a
program. The ;econd stage involves the ability to write a robot prog[am-usiqg a ceftain'
syntax or predefined language, and be able. to observe the behaviour of the whole robotic)
workcell using the simulator, This process is explained in the next paragraph, omittingo

however, the programming detail. - \ .

4.6.2‘.1 Interaction with the Simulator

.

Our purpose is to develop a progl:am and then app]y it to the /mulator. A
communication package is therefore needed to assure the interaction between the application
program and the simulator. From the simulator’s end, just one command is neneded,. namely
¢ the command to ir;té'rpret a program in a given tool using one specified simulation mode,

When the simulator's process receives the interpret command it goes to a sta;:e of a
‘receiver’ from a certain communication channel, and the simulator is thus ready to execute
any transmitted command from the communicat'/ipn package through th? channel; At the
* sending en;i. once a program is written with simulator cqmmanas in it, every t?me that
one of these commands is encountered, this p/rocess,,transmits the necessary information
tn ti;g simualtor through the the same chan/r’;el as the simulator, aqs shown in figure 48,

/ ‘, , .

3

The child process created as /a transmitter terminates upon reception of a signal -

o

from the simulator. This signal could 7e an acknowledge signal or an érror signal. in which }

\ & . -\
/ ‘ . 88

/
/

0

A4

. 3
) AT Summary
.
iWorkcel l\ L -
- . Progran)
\ ‘ - :{ Upon an int~erpret command
',/""“\\ v .

s . SN \
’(Simulator\l'_—{::"—(cm ld)

S——

’

\ /
S——

)

, -t . . Communication channel - .

-

w

" case the program being simulated is also terminated, and the type of error is. displayed at

" Figure 4.8 Interaction Between the Application Prggran\ and the Simulator

(

the simulator. "The workcell application program including the simulator's commahds is

written in the ‘C’ programming language. However it may be written in anyj language and

compiled using the proper compiler since the

program itself is not ihterpreted line by line.

“

For the present implementation 'C" was chosen because the' process which establishes the

communication protocol and the simulator itself are written in ‘C’. If the program is written

in another language, communication modules should be adapted according to-differences

in syntax. "The simulator's commands have: been assigned a particular syntax. I{ the

_ user wishes to use a different syntax, it is easy.to make the required translatio‘n, since

the simulator’s commands in the application program are function names which create

the communication processes internally. . At

this stage of the ‘simulator, the application“

programs reside on the same machine as‘the simulator itself, however this is not necessary.
A) .

The communication processes were developed keeping in mind the future extention of

having the simulator and the application program 'run‘m'ng on different machines.

a7 .Sqmmary

o - '

In this chapter, we presented the

q

l .

A Y

1

?o(ipn commands and the way they are.

<

89

S

|

{ -

. ‘ , 4.7 Summary -
A ; ? ‘

treated for the simulat ion. The inverse kinematics problem was also |ntroduced and solved

to a certain extent for ‘a general rebot. Moreovecka closed form solution for the inverse’

kinematics of the Pumalrobot was implemented. We also disciissed some other commands

I

" which were judged necessary for a robotic work simulation. Finally. we tackled the problem

4]

1 .
of interaction with.the imulator and exposed both ways of interaction name?mdi[ectly

through the simulator or through an independent program'which is the result we are seeking.

, At this stage we are capsble of writing a robot program and snmulatlng it as long-as we

follow a certain predefined syntax. The next'chapter presents results. where we will simulate

and discuss different programs in various workcells,

2 ° .
. +

oy
. i . /'
) -
" ’ \ Ve G
u :) -
.
14
«
R
- .
[}
H
: k]
. .
Y :
a £ ’
VS .
» N .
» - . .
R s
- AN
4 . b
{ ,
w/ q . £ »
. 4
- o
. | o -
1
. > .

\ o
’) ’ g » :) - : i':f' -
) ks ¥ ; :»_ J
© -
. . .
< ‘5 -
T ‘
L’;k ~ . b *] (
- ‘ . \ »)
- ’ . - v
-~ Y s)])
. / .t \ ~
- - - .
]) . , A} ’/g o ; \1 . .
, Ch 5 - - T A
) apter . ' Resuilts
-3
4) -)
’ ') ' ¢
’ . -
-2
~ . ¢ he o ¢

This chapter presents simulation results. In order to obtair{l\these‘ results, we
. had tEo go through’ (r(::tages. The first stage was,:the creation of 2-D surfaces necessary

to model the \{vorkcel, s was explained in chapter 2. After the creation' of the correct
2-D surfaces, the technique's“developed ~for:solid modelling were used to represent the
components of the workcell, as per chaptér 3. Then the manipulators’ identification and
initlalization took blace. The simulation commands can, ‘at this stage. be applied in two
ways. from the simulator direigtly or through an external program. During the development

.

phase of a robot program, the conlmands are usually entered interactivelr using the key tree
» matcher. Once the debuggivng' is complete; the programmer can write the robot program
successfully. The robot program sends simulation commands with the _required data to
the simulator through a communication channel, and the slmulation can be performed ln
three different modes as explained in chapter 4. The simulated time appears on the screen
" upon request from the user, which helps assess the workcell performance This chapter is ,

devoted to.thres examples of s‘g\nulatlon The first - example involves only one mampulator

. in a workcell and will deal with joint space moticn. The secchd example involves one
) ~ manipulator and one movable object and will deal with motion in cartesian space/alnd the
] problem of grasping. The third and last example involves t;vo manipulators and will deal
'Wlth mos,t of the problems that can be solved using the 5|mulator\Al| three examples can
run in the three modes: of snmulatlom On the dlsplay screen, the motion step 64 is specified
o ” by the user; the smaller 66 i made, the more continuous is the motion. For iflustrations,

some frames are presented but obviously .not all frames are given in figures,
[+

. ,
- \
o P)
.

'
4
& N !
5

‘ : 5.1 Experiments A L=
- 5.1.1 Example 1:0ne Manipulator - ‘ W
‘ ' ’ ., @
" ' Let us assume that a workcell involves a Puma 260 manipulator which is 6
. ' degrees of freedom and six revolute. Let’ us assume also that we want to order the manip-
\ ulator to move, and that the commands of motlon are glven in joint space: Before trying

these commands on the real manipulator, it is prefered to try them on a simulation of the

. \\ manipglator. First, we should .con'strgc't graphically the robot in question and supply all the
required data for simulation such as the robof’s identification, speed grasping data, initial

values of the Hartenberg and Denavit variables of the robot, and others. We can then wnte
. .
a small program, as shown in figuré 5.1; to move the joints of the Puma. J

{

The program is ba‘sica-!ly constructed of three motion commands: The first
command mcves the robot relatwely from its imitial posrtlon by a vector of Hartenberg and
Denavut variables (-70, —10,10, 30,20, —10}. The second motion command is also in
joint space but is absolute and brings the robot to the state (— 60 0, -70,0, 90 ,30). The‘
last motion command brings back.the robot to it its initial posmon wh:ch is (0,0, 90 0,90, O)

, in joint space. In practice, the pr gram is interpreted and the result is shown smoothly
on the dlsplay screen. For&he sake of clarity, we show three states “of the Puma robot.
The first :is shown in figure 5.2, and res-ents the initial position of ‘the robot. "Figure 5.3 © .

presents the state of the robot at the enc of the execution of the relative motion command,

and ﬁgixre 5.4 presents the state of the robgt after completion of the absolute motior .

&

command. The final state of the robot is the same as in figure 5.2. . .

4 . N R
\ (cube, and two non movable stages onthe table.' This example is a particular case of a

pick and place task. where the solid to be moved is the cube. Let us suppose that we
- 8

} ' ’ k)) , 92

it

=

51 Experiments

A\
\

J

o

-

Y

o~

include “system.comm.h” /*definition agd declaration files for the communication Iink“/ -
include “types.h” ot . . o - ‘o
dt;ﬁne NUM 6 /*number of joints¥/ ‘ . | |

/* . . . */ i . . -

L] . -
main(argc, argv) ~) . . .

int argc; -) 5
" char *argv[]: - ‘. . 8

'

-~

fioat VINUM]: - .

.
L 1

init_comm(argv): /* establish the communication link */

speed(“P}:ma", 0.3); /* 0.3 rd/§ for the joint which moves the fastest*/

<
affect_var(v, -70, -10, 10, 30, -20, -10); .)
* L) - s Ee
", if (!move joints.rel("Puma”, v) } /* relative motion in joint space to a robot called Puma in the simulator */
clean(): /* if any. error, close the tommunication link and exit the program~*/ ’ \

exit(1):/*the error type is shown at the simulator's end */ '
I | B >
affect_var(v, -60, 0, -70,'0, 90, 30; - - Coe
if (Imove_joints-abs(“Puma": y)) /* absolufe motion for Puma */
clean(): .

exit(2); “
1. . o . .

affect_var(v, 0, 0.-90, 0. 90. 0): if (Imove joints_abs(“Puma”, v)) /*back to "start” position and orientation
*/ .) .] ° ’ . v - . - *

-

exit(3): oL . e e ,'
] S T

clean(); /* terminate successfully the transmission of simulator's commands */

]

-

A o

= =5
'

<@

Figure 5.1 Program 1. 03

, f

-

) A . 7 5.1 Experiments
»'- » 3
0 ‘ i '
. T , _
Hhi
I
i
E -
EY ,
. : \
Figure 5.2 Initial Position of the Puma. v = (0,0,°-90,0,90,0).
i U' -
- d s hd
- . .
. 9
' o
’ -
- @ .
. . " ; # -] o *
L] . - . '\
Y : i}
’ L -
Figure 5.3 Relative Motion by Av = (-70, —10, 10, 30, -20, -10). :
C -know the position and orieritation of the cube, the first task would then be to order the
robot té move to a configuration from which the end effector can grasp the cube. The
S /o .
R ') 94

~

51 Experiments

Figure 5.4 Absolute Motion to v = (—;QO, 0, —70,0,90, 30).
\)
oriehtation is such that the orientation constraints of grasping are satisfied, as explained
earlier. Once the robot is at the desired configuration, which coyld be tested dire‘&ly from
t{le key tree matcher as a replacement of a teaching pendant, the robot is required to close
its gripper and hence ”g:r;zsp the cube. Let us now suppose that we want the cube to be
placed on o6ne stage. Knowing the positipn and orientation of the parallel@piped bounding
the stage, a motion command is issued to the robot to blace its end effector over the stage,
andothe gripper is opened. In order to terminate the whole\progrqm an absolute motion in
joint space is ordered to bring the, obot back to its initial position. The first \two motion
commands\are in cartesian space .and hence the inverse kinematics p'roblem is s\)lved using
the closed form solution of the Puma robot, ¥ another robot was ‘under simulation, the
Newton-Guass or general ir:verse kinematics solution would have been used as e;(p;Iained in
the previous chapter. A pseudocode of the\ progr{am to perform the whole task is shown in
figure 5.5. The ;esults are shown in figure 5.6,5.7,5.8 and 5.9. The reader may notice some
discrepancy in the robot model for some configurations such as joint 2 in figure 5.7. This

is due to the approximate measures used for modelling the Puma 260 sincgwan accurate

. 95

5.1 [xpkriments

J* error recovery is-not shown. it should exist after each simulator command*/

initialization(): -
move_end_effector (Puma, C1):/* C1:.Configuration suitable fog grasping the cube*/

close_gripper (Puma),
move_end _effector (Puma, C2):/* C2'7Conﬁguration above stage 1 */.
open _gripper (Puma). /*release the cube on stage_ 1%/

move joints_abs (Puma, V1): /*V1 The initial configuration gf Puma */

end;)
- Vv

Figure 5.5 Pseudocode of Program 2

el

N

Figure 5.6 Initial Configuration of Workcell 2.

%)

definition was not available.

“) o) 5.1 Experiments

Figure 5.7 Pick Configuration

5.1 Experiments

y
- s

-

Figure 5.9 Final Configuration of Workc?jéﬁ%

5.1.3 Example 3: Two maﬁipulators and one solid to mdove

*

This last example involves the coordination of two manipulators. Both were
chosen to be Puma maniptilators, howeveri there is no obligation to do so. The workce;l
is cc;m;;osed of a spherical solid and twg»robots. each on its own tagle. The aim of this
prograntis to show the capability of handling multiple robots, and the p\ossible interaction
between them. Fitst of all, the workcell is created. the manipulators are ideqtified. and their
regp;ective parameters inigialized. “The motion and grasping tasks are then tested diurectly

through the key tree matcher to facilitate debugging. Then the program is(wnritten in order
t0 manipulate the workcell in a convenient manner, This example consists of ordering one
robot to go and Pick up an object knowing its position and orientation. Then the same
robot, "Puma_1”, moves to a particular point which belongs to the iptersectic;n of he work
environments of both robots. The second robot. J“Puma]". is then ordered to move to
almost the same’point with an orientation of its end effector which enables grasping the
object. The robot "Puma_2" is then ordered to close its gripper, and “Puma_1" is ordered

to open it. thus constituting a transfer of the solid. "Puma_1" goes back to its initial

!
98

°

\
O 9 . 5.2 Discussion
hd &

. .
configuration, and “Puma_2" brings the solid to withiq its work environmenit. releases it on
the table in a chosen position and orientation and gdesﬂ back to its initial configuration. A
pseudocode of the program is shown in figure 5.10. ‘Certain tests are omittad. such as the

¢ test needed to verify\the success of any type of motion command. We alsa present some
of the sequences during the execution of this program: the titles of the figures e’explain the

actions being simulated. = .

4

initialization(); T \"N-—M

move_end _effector Puma_1. C1),/* C1: Conﬁguratlon suitable to grasp the sphe’re"‘/

close_gripper(Puma_1);

move_end_effector (Puma 1 C2): /*C2: Configuration in the intersection of the workspaces of Puma 1 and

Puma_2*/.

move_ end _effector (Puma_2, C3), /*C3: Configuration suitable for grasping the sphere handed by Puma 1*/

close_gripper{Puma_2); ° ‘

opeén_gripper(Puma_1); ‘

move joints_absolute (Puma_1. V1), /*V1: Initial values for the variables of Puma 1*/

move_end_effector (Puma_2, C4); /*C4: A certain configuration above the table*/

open-gripperiPi:maJ);)

moveJoints-absol@PumaJ‘. V2): /*V2: Initial values for the variables of Puma_2*/
o .

end; . \

s
L

Figure 5.10 Pseudocode of Program 3.

w .

5.2 Discussion s

>
%9 "

°5.i.1 Time Considerations ; . : g .

.
- ° _ 3 : J

» e N
-3

As mentioned ‘earlier, the play-back simulation or ammatlon approach is the
fastest. once the computations are complete. This approach is used when user interaction
with the simulator is unnecessary. Some timing experiments have begn conducted, we give

. the r\esults fSr the first example in this chapter. The speed was set to 0.3 rd/s. and the

N

99

52 piscussion

)

S————
AN AR N
S se———— 4 R

| ——T
7:—.‘
VAN sy i /i

ey
[J

Figure 5.11

a

:
FQ -
1)
¢ o
Y
k'
o Lo
I 4
~
-]
4

<

Figure 5.12

o I3

n

@

*r

e

PN

]

.

o

Figure 5.14 Trapsfer Configuration.

.

o

’

~

1 3 & v

3

17177

Figure 5.16 Puma_2 at Place Cofiguration.

ey
,

el

5.2 Discassion

§
k
°
d
o
t
.74
a
4
N N
0
»
' ¢
o
. &
\
<N
N
102 .

P .) 5.2 Discussion

3

\

- 4

Figure.5.17 Final Configuration of Workcell 3.

program took 9.06 sec to animate after the cl)mputations. without the insertion of any wait
statement. Considering the speed and the total motion, the time that thelwhole program
would have taken'if,it were running on the real robot is shown- as the simulated time in
‘the time subwindow and is about 14 sec. Therefore, real time simulation is sometimes
possible. However, this is not garanteed since it depends on the complexity of the workcell
and the speed of the manipulators. For the on-line joint-by-joint simulation. the program
takes 54.74 sec. which is about four- times the real-time. In the case of the on-line path
simulation which is the closest to reality but the slowest for reasons of frequent updating
as mentioned in the previous chapter, the program took 124 sec to simulate. These results
show the tradeoffs to consider while simulating. We should note that the }notion simulation
in this particdlar example involves the manipulation of almost 800 vectors, as shown in
figure 5.2.) '

ﬂ - ‘ ‘ kS
103

. t o 53 §ummam
(. -5.2.2 7 Implementation Aspects
_ - ’
B The simulation program was lmplemented in a fodular magner which includes

flfty ‘C” modules. There are 5 main blocks in the program: Database and data sublanguage
(5900 linés). solid modelling (2400). mation and kinematics (7500). graphics and database
) suitable for graphics (1800). and the communication manager (400). The number &f lines
givéh above for each block is approximate. For the moment all the blocks reside in the same
SUN 3 workstation. Thi; is not necessary however, since some of the blocks do not need to
be on the SUN. T;:desig(r can be easily extended to place some of the blocks on the VAX

. 750 using the concept of a sessioh layer [Freedman85] over ‘the local area network.

~ Kl
©
L}

5.3 Summary

From the examples shown above, we can see the facilities that the simulator

presents. The procedure to follow in order to run the simulator is as follows _First construct

the workcell to'be programmed This is done using the database data sublanguage arid
solid modelling facilities. After the construction of the workeell, agidentification process
should take place to identffy tfe manipulators and describe them; the solids other than
‘ anipulators should also be described as movable or not. The third stage invo!ves‘is
programming the wgrk"cell. under certain parameters such as simulation mode and tﬁe
speed of the manipulators. In the examples 'given above; the manipulators in use were six
degrees of freedom and six revolute manipulators. However, this was not necessary, since

the manipulators storage structure can accept different architectures.

104 -

°

»

‘ oConElusion

In this thesis, an actual implementation of a graphic simulator for robotic work-
cells was developed.” The problem of robotic workeell simulation was décomposéd into
smaller problems of database, data éublanguage. solid modelling, motion of solids in 3-D,
robot kinematics. robot pro'grammin‘g. and graphics. A database was developed in order

~

to store and allow the manipulation of 3-D solids. The database is hierarchical in struc-

dure. but also has the propérty of eifﬁcnt relations, as typical of a relatlonal database. A

data sublanguage was implemented to enable interaction with the database lt has the ba-
sic three queries allowing addition, deletion, and update of the,entltles and relatlon; of the
database. To further ease the interaction with ﬁhe database, other facilities were developed.
Chapter 2 of this thesis presented in detail the database and data sublanguage which are

included in this simulator.

a
J

In order to model solids. certain solid modelling techniques were developed. The
boun~dary representations were preferred for reasons mentioned in chapter 3, and the com-
»*

mon primitives in solid modelling were created using those techniques. Seeking generality

¥ ~
*however, a sweep to boundary representations conversion was implemented. The rotational

and translational sweep are therefore gmong the solid modelling facilities in this simulator.

anplicated solids can be modelled using B-reps and sweep facilities. At the end of chapter
. ’ Y -

3. we presented the graphics facilities. as well as ways of extracting geometric properties

14

of solids. -

g 5.3 Summary

Once solids have t;een ,mod‘elled.,techniques were developed to move them ac-

cording to simulation commands. Those techniques were inplemented using mostly 2-D

information in order to épeed up motion processing. Other simulation commands such as

speed and grasp, were also lmplemented All the simulation commands may be entered

usmg the keyboard or through an mdependant program The first approach Is used- at the

debugging stage. and thé seggnd approach is used when the user is interested in simulating
an entire program. The simulation commands and programming aspects of the simulator .-

'were presented in chapter 4. In chapter 5. we presented simulation results of some robot

programs. - ..

The simulation of robotic workcells can be e;(tended to appear closer to reality.
For this srmulator we suggest four areas of development that can be added in the near
future. Theofrrst extension concerns graphics, where helpful graph{c modules can be added,
such as zooming. polygon filling, hidden surface removal, and others. There is. however, |
a tradeoff of speed to- conslder The second extension concerns solid mode]lmg where by .
using the rotational and translat{onal sweep facilities, we can extend to sweep along any
PD curve. ' The third possjble extension concerns collision detection “for which boundary
representations are very suitable. The fourth possible extension conc:r‘ns the programmin
aspect of this simulator. At this stage. the programming is done at the manipulatoi/\
'l’evel. which means tha®the command‘s are given in terms of joint or end effector valtres.
However, since a database is available to us, and objects are already defined in it, object level

programming or even task level programming would be possible to implement. Dynamics

may also be considered as a,desirable addition to the simulator.

106

{ / * References

A\ |
[AngelesSB] Angeles J.. Cdlculo de Cantidades fisicas GIobaIeS Asociadas a Volimenes

' Acotados por Superficies Cerradas Mediante Integracion en la Frontera, lngemena
Vol. LIll, No. 1, pp. 95-102, 1983.

L[4
+ Referencec ®

AngelesBS] Angeles J., On the Numencal Solution of the Inverse Kmematlc Problem, -

int. J. Robotics Res, pp. 21 - 37, 1985.

Angeles86a] Angeles J., /terative Kinematic Inversion of General Five-Axis Robot Ma-
nipulators, Int. J. Robotics Reés.. Vol. 4, No. 4, pp. 59-70. Winter, 1986.

[Arigeles86b] Angeles J., The Evaluation of Moments of Bounéfed Regio:;s Reduced to.
Line Integration Tech. Rep, Mech. Eng, McRCIM, McGill U., 1986. .

[Angeles87] . Angeles J.. Rojas A., Manipulator Inverse Kinematics Via Condmon Number
Minimization and Continuation,.to appear in the Int. J. of Robotics and Automatton
May 1987.

[Astrahan76] Astrahan M. M.. et al.. System R: A Relational Approach to Data Man-
agement, ACM Transactions on Database Systems, Vol. 1, No. 2. pp. 4 - 10,
1976.

[Baer79] Baer A.. Eastman C., Henrion My Geometric modelling: a Survey. Computer
Aided Design. Vol.-11. No. 5. pp. 253-272. Sept. 79.

[Barnhill74] Barnhvll R. E.. Riesenfeld R. F.. Computer Aided Geometric Des:gn Aca-
- demic Press, N.Y., 1974.

.
I

[Baumgart74] Baumgart B. G.. Geometric Modelling for Computer Vision, Rep. STAN—‘ .

CS-742463, Stanford Artlflaal Intelligence Lab., Stanford Univ, Stanford., Calif., 1974

[Borrel83] Borrel P., Bernard F Liegeois A.. Bourcier D., Dombre E.. The Robotlcs
Facilities in the CAM-CAM CATIA S ystem Developments in Robotics, ednted by B.
Rooks IFS Pub.. 1983

[Boyse79] Boyse J. W., Interference Detection Among Solids and Surfaces, Commun.
ACM, Vol. 22, No. 1, pp. 3-9. January 1979,

[Boyse82] Boyse J. W., Gilchrist J. E., GMSolid: Interactive Modelling for Design and
Analysis of Solids, |IEEE Comp. Graph. Appl., Vol 2, No 2, pp. 27-42, March 1982.

[Cardenas79] Cardenas A. F.. Data Base Management S ystems Allyn and Bacon,

Boston, Mass. 1979. 4

+

r

~

=~

References

-~

: \
[Claybrook85] Claybrook B. G.. Claybrook ‘A.. Williams J.. Defining Database Views as -
Data Abstraction, \EEE Trans. .Software Enigineering, Vol. 11, No. 1, pp. 3 - 14,

January 1985.

[Codd72] Codd E. F., Relational C ompleteness of Data Base Sublanguages ibid, pp
65 - 98, 1972. .

[CraigB6). Craig J.J.. Introduction to Robotics: Mechanics and- Control, Addison-Wesley,
1986 d ¢

[Date81] Date C. J.. An /ntroductlon to Database Systems, Addison-Wesley, Reading,

Mass.. 1975. _

[DerbyB2a] Derby S. J.. General Robot Arm Simulation Program (GRASP): Parts 1 and
2. ASME Comp. Eng. Conf., San Diego, pp 139- 154 1982.

[DerbyBZb] Derby S. J.. Computer Graphgcs Robot Simulation Programs; a Compari-
son Robotics Research and Advanced Apphcatlons. ASME Pub., Edlte\i by W. 1.
Book:203-211, 1982, . i

[Derby83] Derby S.. Simulating Motion Elements of General-Purpose Robot Arms, Int.
J. Robotics Res., Vol. 2, No. 1, pp. 3-12, 1983. -

[Dittrich85] " Dittrich K.. Lorie R., Object-Oriented Database Conc'epts for Engineering
Applications, COMPINJ. Montréal, pp. 321-325, September 1985, '

&

[FaverjonBé] Faverjon B.. Object Level Programming of Industrial Robots. Proc. IEEE
Int. Conf. Robotics and Autemation, San Fransisco. pp. 1406-1411, 1986.

-

[Featherstone83] Featherstone R. Position And Velocity Transformations Between Robot
End-Effectaor Coordinates and Jomt Angles,-Int. J. Robotlcs Res, Vol. 2, No. 2. pp.

35 - 45, 1983.- : - .

[Fenves85] Fenves S. J.. Representation and Processing of Engineering Design’ C%}:— \
straints in a Relational Database, COMPINT, Montréal, pp. 343 - 347, September
1985. , Y v

[?oleyBZ] Foley.J. D., Van Dam A.. Fundamentals of Interactive Computer Graphics,
Addison-Wesley. Raeding, MA, 1982.

[Freedman85] Freedman P.. Carayannis G.. Gauthier' D., Malowany A., A Session Layer
for a Distributed Robotics Environment, |EEE Rroc. COMPINT, Montréal. Québec,

Canada, 1985.

* [Freedman86] Freedman P., Michaud C., Malowany A.. The Design of a Robotics

Database for a High Level Programming Environment, Technical Report TR-86-7R,
¢ .-

. i " 108
{

-4

»

L
.

—~F :
References
L

Computer Vision and Robotics Laboratory Dept of EE, McGill Umversrty Montreal

June 1986. .
[GMP81] Staff of GMP NONAME User Manual, Dept. Mech. Eng.. Univ. of Leeds.,
U. K., Oct. 1981, .

‘[_I:I§rtenberg64] “Hartenberg R. S. and Denavit, J | Kinematics syrithesis of linkages

NEW YORK: McGraw-Hill. 1964. o

[Haskm82] . Haskin R.. Lorie R.. On Exténd;'ng the Functions of a Re/atiéznal Database
System, Proc. Int. Conf. Mnagement of Data (ACM). June 1982. -

7

‘[Hayward84] Hayward V.. R. P. Paul. Introduction to RCCL: A Robot Centrol "C"

[

£ibrary, |EEE first Int. Conf. on Robotics, Atlanta, June 1984.

[Hayward86] Hayward V.. Fast Collision Detection S cheme by Recursive Decompos:tlon
of Manipulator Workspace, Proc. IEEE ‘Int. Con. Robotlcs and Automation, Vol. 2.
_ pp. 1044-1049, April 1986. .

[Hegmbotham73] Hegmbotham W. B., Dooner M., Kennedy D. N.. Computer Graphics
Simulation of Industnal Rabot lm;gract/ons SME Proc. of 3rd CIRT, Seventh ISIR,
1973.

[Holland83] Holland J.M., Badic Ro}gtlcs Concepts, Howard W. Sams and Co...Ing
“1983. Lo

. -2 2
[H unter79] Hunter G M., Steiglitz. Operations on Images Using Quadtrees, |EEE Trans.
Patern Anal. Machine Intell., PAMI-1, No. 2, April 79,

[Llo§d85] Lloyd J.. Implementation.of a Robot Control Development Environment, M.
Eng. Thesis, McGill U.. Montréal. Québec, Canada, Dec. 1985

[Kretch82] Kretch S. J.. Robotics Animation, Mebl:ranical Engineering, pp. 32-35, Aug.
1983, '

[Kurrw0085] Lee K.. and Grossard D. C:, A hierarchical data structure for representing
assemblies: part 1, Computer-aided Design. Vol. 17, No. 1. pp. 15 - 24, Jan-

uarmebruary 1985. - 7 &
[LeeBZ’a] Lee Y. T.. Requi G.. Algorithms for Computing%he Volume and Otlier

Integral Propertles of Sollds 1. K nown Methods and Open Issues, Commun. ACM,
Vol. 25. No. g, pp. 635-641, 1982

[Lee82b] Lee,Y.|T.. Requicha A. G., Algorithms for Computing the Volume and Other
Integral Properties of Solids. 1. A Family of Algorithms Based on Representation
Conversion and Cellular Approximation, Commun. ACM. Vol. 25, No. 9, pp. 642-
650, 1982. \ . - .

4]

\ o L S SR 109

-

'

t e

0 . References

[Lieget;iSBO]; Liegeois A., Fournier A., Aldan M. J.. Borrel P, A System for Computer-
aided Design of Robots and Manipulaters. SME, Ptoc. of 10th ISIR. 1980.

fLight82] Light R.. Gossard D.. Modification of Geometric models through Vanational
~ Geometry, Computer Aided Design. Vol. 14. No. 4. pp. 209-214. July 82.

[Lossir]g74] Lossing D. L.. Eshleman A. L.. Planning a- Common Data Base for Engi-
neering and Manufacturing, SHARE XLIlI, Chicago. Aug. 1974. .

[Meghaer80] Meghaer D. J., Octree Encoding:, A New Technique for the Representation,
Manipulation and Display of Arbitrary Three Dimensional Objects by Computer. Tech.
Rep. IPL-Tr-80: 111, Image Processmg Laboratory, Rensselaer Polytechnlc Institute,
Troy. N.Y.. Oct. 80.

[Meghaer82] Meghaer D. J.. Octree Generation, Analysis, and Manipulation. Tech.
Rep. IPL-Tr-027. Image Prncessing Laboratory, Rensselaer Polytechnic Institute,
Troy. N.Y.. April 82

[Mortenson85] Mor»tenson M. E..°Geometric Modeling. Waley N. Y. 1985

[Newman?Q] Newman W. M., Sproull R. F.. Prm\c:p/es of Interactive Computer Graphics.
McGraw-Hill, N.Y., 1979.

[O'rourke?9] O'rourke J., Badler N., Decomposition of Three-Dimensional Objects into .
Spheres, IEEE PAMI. Vol. PAMI-1° No. 3. July 1979. T o

[Paul81a] Paul R. P., Robotlc Manipulators: Mathematics Programming. and control,
Cambridge: MIT Press, 1981.

"[Paul81b] Paul R. P.. Shimano B.. and Mayer G. E., “Kinematic Cont}ol'Equations For

simple Manipulators, IEEE Trans. 'Sys. Man C ybernetlcs SCM - 11(16) -pp. 449 -
455, 1981.

[Redd78] Reddy D. R., Rubin 5., Representation of 7fhree Dimensional AObjects. Rep.
CMU-CS-78-113, Dép. -Computer Science. Carnegie Mellon Univ.. Pittsburgh. Pa.,
April 78. : l

,[Requfcha??] Requicha A. A. G.. Voelcker H. B.. Constructive Solid Geometry. Tech.

Memo. 25. Production Adtomation Project. Univ. Rochester, Rochester, N.Y.. Nov.®

7. I -

y -

[Requicha80] Requucha A. A..G., Representations for Rigid Solids: Theory Methods
and Systems Computmg Surveys Vol. 12 No. 4 pp. 437-464, December 1980)

-~

[Sata81] Sata T.. et al.. Robot: Simulation S ystem as a Task Programmmg Tool Proc.

(e

11th. ISIR. Tokyo, Oct. 1981. Cy

\ 110

Referencec

@’ . [Shumaker80] Shumaker G G.. Robotics-Air Force Project®Computer World, March
4 1980. \ : -

[SorokaBO]' Soroka B. I.. Debugging Mampulator Programs With a Simulator. Proc
Autofact West Conf.. pp. 6569-671, 1980.

[Spath78] Spath H. Munich- Vienna:Spline-Algorithmen Zur KonstruKtion Glatter Kur-
-
i ven und Flachen, 2nd. edition. R.-Oldenburg Verlag: pp. 27-4, 1978.

[Takano85] Takano M. A.. A new Effective Solution for Inverse Kinematics Problem
(Synthesis} of a Robot w:th Any Type of Conflguratlon Journal of the Faculty of
Engineering. The Umversuty of Tokyo. pp. 107 -135, 1985.

[Tosiyasu85] Tosjyasu L. K., Toshiaki S., Kazunori Y.. Generation of Topologlcaléound-

o

ary Representations from Octree Encoding. IEEE Comp. Grap. and Appl.. Vol. 5,
No. 3. pp. 29-38, March 85.

[Tsai/84] Tsai \L. W.. and Morgan A. P.. Solving the Kinematics of the Most General
six- and five-degree-of-freedom Manipulators by Continuation Methods, ASME paper
84-DET-20. Cambridge.*Mass.. ASME Design Engineering Technical Conference,
1084, i

[Ullman82] Ullman J. D.. Principles of Database Systems, Computer Science Press,
Inc., 1982.

[Voelcker74] Voelcker H. B.. Middleditch A. E.. Zuckerman P. R., Fisher W. B.. Nelson
T. S.. Requicha A. A. G., Shopiro J. E., Discrete Part Manufacturing: Theory and
Practice, Part 1, Tech. Rep. 1. Production Automation Project. Univ. Rochester.
Rochester, N.Y., December 1974.% R -

[Voelcker77] Voelcker H. B. Requicha A. A. G., Geometnc Modelling of Mechamcal
Parts and Processes IEEE Comput., Vol. 10. No. 12 pp 48-57, December 1977.

[Voeicker78] Voelcker H. B., Requicha A. A. G., Hartqurst E. Fnsher W.. Metzger J..

) Tilove R., Birrell N.. Hunt W., Armstrong G., Check T., Moote R., Mcsweeney J..

° : The PADL-1.0/2 S ystem for Defining and Displaying Solld Objects, ACM Comput
Gr., Vol 12, No. 3, pp. 257-263, Aug. 78.

\[Vossler85] Vossler L. D., Sweep-to-CSG Conversion Using Pattern Recognition Tech-
niques, IEEE Comp. Grap. and Appl., Vol. 5, No. 8, pp. 61-68. August 85.

[Wang86] Wang W.P., Wang K.K., Geometric Modeling for Swept Volume of Moving
Solids, \EEE Comp. Graph. App., pp. 8-17, December 1986. Y

[Woodwark82] Woodwark J. R.. Quinlan K. M.. Reducing the Effect of Complexity on
Volume Model Evaluation, Computer Aided Design, Vol. 14, pp. 89-95, 1982.

¥

111

