
1
(. ,

'.

c .. . "

,.

'A Graphie 'Simulator for Robotic Workcells
1 ... , ...,..

.
Faycal Kahloun . .

B Eng .. Université d!, Québec à Trois-Riviè~

,- ")----.',

1

DepartmenÎOf~cal Engineering

(
.. McGiII Univèrsity

Atl'iesls submitted to the Faculty of Graduate Studies and Research

" ,

in partial fulfil/ment of the requirements for the degree oJ
(

cM. Eng .. McGiII University. 1987

c J

March 12. 1987

,..-
© Faycal Kahloun

(,

/ .

. .

/ .

\

•
,

·C

j

'loI

1

!.

\ .

, '

•

. i

RESEARCH THESES/REPORTS
, " , .

T,HESIS NO.87 _ 3T

~ TITLE: A Graphie Simulation for Robotie Workcel1s

AUTHOR(S)
• Faycal Kahloun

Department of Electrical Engineering
\ ..

L
,

/

DATE: March 198/

McGil~ Un1vers1ty

Montreal, CANADA
(1

'1
r\ . . .

GRANT OR. CONTRAèT: FCAR

NO. OF PAGES: 111

., SUPERVISOR: Dr. J.'1alowany

"

\
\

/

..

t> ,

, .

•
, ,

/

o

\
.c

o

"

,/

This thesis -is dedicàted to the metnory
5 _

of my dear 'irieru! and valued ,ompan;on Mounir Slama.·

o

..

o

"
",

, .

, -

•
~

~, "

, .

. .

,- <
~

r . ~

Abstra~ ,,--' '>.

\ <-
~ , ~

.0/

• . As robotie applications are ,beçoming more and more complex., robotic workceHs ,..
" ~

are evolying to include varied and. c~mplicat~ . configu'rations -involving multiple robo!s

working' in conjunction with sensing aevices. Programming such a" system is a difficùlt

and tedious task. The use of a simufator provides a testbed for de.bu~ing incremental

cI'.",gés and developing new application programs. Furthermore. debugging becomes safer. . .
since actuaJ equipment is riot used. and program dev~lppment èan proceed during the

. -.
production cycle. Mo·reov~r. the simulator ùsually requires a graphies interface. ta create a

• 0

." .
more .. powerful and user-friendly programming environmen~. This thesis presents a solution

~o the problem of robotie wjkcell simulation 'by deeomp~sing il into smaller problems 01

datOba ... da~a. sublanguag7'\:oIid modeliing. motion. ~I sol~s in 3-p. robot kinema'tic~.·
robot programming and graphies.

'." ~ -' .
" . ,

.'

..

,.

..

Ct - \

'- ·r
" '

"

....

1

. ,

,....

'-
..

1

in

b

o

(.

- '"

"

~
1

l ~ ,
'1 Résumé

,
1 .. ,

l'; l~'
Comme les applications e~ r~botiq~e _ devie~~eri't de plUfi en plus c~mplexes,

, ., les cellules de travail 'f'obotisées sont 1 appelées à incluPe des configurations compliquées
~ Il, -

imp!i~uant des r~bots mûltiples 'utilisa~t des systèmes se~soriels. La ·progra'mmat,ion de

tels systèmes est une tâche difficile et lab<?rieuse. L'utilisation d'un simulateur procure 1

un bar'c d'essai permettant de mettre au point des programmes d'application. De plus_, . .
le dévelpppement des tâches de travail devient plus securit'aire puisque l'equipement réel

n'est pas utilisé: Cette approçhe présente ég;~ement l'avantage de ne ~ interrOfnpre)e

cycle de production pour des fins de développement de nouvelles strategies. Le simulateur . / '

nécessite généralement une interface graphiqu~ afin d'arlliliorer la facilité d'utilisation et de

~ produire un environnement de programmation plus performant. Cette-thèse préseo.te une

solution au problème de la simulation des cellules de travail robotisées en le ~écomposant
(• c

en des problèmes plus simp.les de base de données,: language d'interface, modélisation des'
('"

solides, mouvements des 'corps rigides en 3-D, cinématique des robots, prog'rammation des
, . ,/ ..

robots et graphi~llle,

, a

"

" .. , "

"

..
1

1

\

1

, iv

'\

'.

o
"

oC ,.
-.C" .. Acknowledgements . ,

.. , 0

/.
1 would Iike to thank ail the members of. the Computer Vision and· Robotics

o

Laboratory for their constant support during the course of this work. 1 would like to thank
, - ~

my supervisor. Dr: Matowany. who pfavided me ~h guidance thral-lghout this proj.ect. f
~ r

would also li.ke to,thank Dr. Angeles for his help concerning the klnem~tics aspects of thls

work.· and Dr. Hayward. far providing me with useful literature.

-1 am very thankful ta .my colleagues Moshe Cohen. Bruno' Blais. Baris Dcnllr.

and Clement -Hasselin for ihefr help in proofreading and carrecting this manuscrrpt. Spc-
" ~.

cial thanks to ,Mike Parker who helped me overcome difficult programming hurdles. and to . - ,
Sylvain' Juneau. Ab'dol-Reza Mansouri. Stéphane Aubry. and Iskender Paylan. wnose en- -. .
caura.gements were of great value in çompleting t:lis ~ork. 1 would like to ack~o~ledge my

immediate family for their cqntinued support and understanding throug~ut the Years. The

financial suppar~ of FCARJand of the Tunis~an government are also gratefully aCknowle~ed.

,

f

• v

\ .

1

\

v

, '.

,
(

.. Contents

:.(
.,

Contents • f

,
'li ..

\ .
List of Figures , ... ,. .. '*' ••••••••••• : •••••••• ~. :., , .

vii

. "a . ,
Chapter 1 Intro~uctlon ~ ', 1

- l · b
. . . ' .

1.1 Ro OtIÇS •..•. ' ••• " .. ' •• ~ ..•• ! ' .. '.h 1

1.1.1
/. ,

Robot Architect es .. .
,-

1-' .

,1.,1.2 IRobot Kinematic .. ~ ~ ... ' :
.
2

~.
1.1.3 Robot Dyna 'cs ; '~

,
3

/

1.11:4 Robot C trot \ ': ..
• 1 •

3
-4 • -. \

1:1.5 Robot Programmmg .. , : 'J' •••••••••••••••• ' ••••••••••••••••••• 3

.1.2
1

Why Simulation? w •••••••••••• ',' ••••••••••••••••••••••••••••

1.. • ~ ,
, . .

4

1 J Previous Simulators '.' / , .. ' 1 ••••• '. : •••• 5

1.4 Project's Outline " .•. , " ".. ,. 6

. ,Chapter 2
/'~.. r -

Oatabase and Data SubJanguage ~
o "...".... " ". ...

8

2.1 D~tabase ~ ' .. : .. ~ \-........ \ ~
à • (\

8

- 2.1.1 T.~e Relational ~ppro~ch . ~ ~ \ '.' : .. \
- 1

, J

10
.

2}.2 The Hierarchical Approach ~
~

11
> ..

2.1.3 The Network AJproach ' • i '

12

2.1.4 Approach Selected '.' > 13
, \ ..

2.1.5 World Representation•. ·14,
~ ,

...
os " 2.2 Data Sublanguage ... : .. : 17.

\ 2.2.t data sublanguage Implementation -............ .' 17 ,

c
/ .

2.2.2 Gatamodel Examples· ... ~•.............. : ..
, .,..... ,

"2.3' Summary : , , ... ' ... : , .. ' ... , .. :
.9

2~

22

\
..
•

/ vi

G

, \.. .. (

,--------------------~-------------------------

l'

)

Contents

_ Chapter 3 SoUd 'Mode)ling " :- .. '" .. , ,,-... , .-. " : 2~~
/

3.1 'ft i.0lid Modelling Techniques : ... ~ .: .. , , . , , ' .. " .. , '.24

3.tl .- - 1
Sweep Representations ... , .-. , , , , ,_. . 25

3.1.2
. . .

Gonstructive Solid Geometry " '.' ... -.......... : , , , 26

\ 3.1.3
'".

,
, " .

• ". 1
Boundary Representations '/~ , .. ' .. , .. , , . , , , . , .. , . , , . 29 ,.

3.1.4 ,\ Cèll Decompbsition and Spatial Occupancy Enumeratio'1 .. , , , , , 4 , 31

3.1.5
- , .

Existing Sol id ModeileFs , .. , .. , .. , ... , .. D • •• " , , , , • , • , • , " ,,',

\

.0
35

3.2 Approach Selected , .. ,. ,' ' , , . 35 .
3 ,·C . ~ .

. ~.1. ompanson -.... ~ : -' ... , . , . , , _ ,~ . , , _ ... , - 36

3 2 2 C . AI ~ (h -.. onverslon gont ms ... ; ~. , , . , . , , , .. .
Q - \ •

3.2.3 Decision " , , , . , , .-

37

39
, -\

3.3 Implemented So~id Modeller ',' .. , ; : '.' .. '. , , : . 40

3.3.1 Examples of B-rep$:-, , ... , .-, , , , , .- , , . , , . , , . ; 40
. .. . \

. 3.3.2 Examples or Sweep Representations , . , . , , , , . , .. . 47,
.

3).3' Further Extensions'~ .. , , , •........ , , .. , . , , , .. 52

3.4 Graphies ' , , ... , , .. , ,
_ r 0 • 54

r" 3.4.1 World Coordinates Generator . " ' .. , , . -' ... ',' , , 54
",

. 3.4.2 Graphies Facilities '"' "' , , \ , .
.. ' ,. c ~ 57

o ' \ '... 3.5 Geometrie .Properties) .. , ... : '.' ' , ... , , .. t". .. . 59
"

3.5.1 Area .. , ... , .. :7'-' •.• , ••. ,.,• , ." .• :, •.... , .• , ... , .. ,.", 60
"

.
, F

3.5.2, Volume ; , , .' . ' . , , . : , 62
. '- \' ' ,

j.5.3 ,Centrold ... , , ... , ' .. , .. ' ,
.1

62

3.6 - .
Summa1ry r •, , 63

1

o Ch 4 M · dP .- ., \ -apter otlon an rogrammmg ; .. ',' ... , : ... , 64

4.1 M~il'Jg a, Solid
............ 1 , /1 II> t 4 ... 64

vii

,
.'

c

\

(

c.

.-
/

,"

Contents
.. . "

\- 4.2 Manipu/ator Identification and Storage Structure , :- ' 67'

4.3 Articu/ated Motion ... , .. " / . 70
o

4.3.1 Forward Kinematics : '•... , . 71
. "

4.3.2 Inverse Kinematics : , . " _ 72
("V-' ,

"Motion 'Simulation ,; ... , '.~ :\.. 77
.. " I.c"_ o ~1-. l!l1r

4.4.1 In'teractive Simulation ... , , , .. ' .. , , , .. , ... '. , . 1 • • • • 77

4.4
, ,

- ,

4'.4,2 Play-back Simûlation . , , , , , ... ": ... , .. : .. , , , , . .' 82

4.4.3 Discussion ... " ", ... , .. ' .. '. , , , ',' 83
, ,

'4.5 Grasping Solids , .. , . ~, .. , .. , , .-........ , .. , ... ,~ ... ,~ , 8"4
~ . ;

\ . '
4.6 Program Development . , , , , , 85

0-'

4.6.1 Simulation Commands " , _ , , ... , .. , , ,. 86

4.6.2 Programming the Simu/ator .. , .. ,' , .. ,: , , , . . 87

" ,
J 4.7 Summary,.,.", ... ' , ~' " , , , , '*' 89

Chapter 5 Results, , .. , . , , . , ... , , . , . , , . , .' , , , ' , . 91
,

/ t,
~ 5,1 E ' .' . xpenments ',., ,., ... ,., , , , " 92

5,1.1 Example 1:0'n~~anipulator , ... " ' .. , "~. , ... ," 92

5,1.2 Example 2: One manipu/ator and one so/id to move , ~ ', ~2
•

5.1.3 Example 3: Two manipulators and one solid to move ... ,•.. 98

5.2 Discussion ... , , , , . , , , , , , , , , . 99

-,/ 5.2.1 Time 'onsiderations ... , , ,', .. " '. : , .. .
/l'fil

• 99

5,2.2 Implementation Aspects ... , , 'l' '! •••••••••••••
• " , , 0

, 5:3, Summary , , , ',' ... , ',:

\ '-.
Chapter 6. Conclusion .-., ... ' ' '0' • , •• , •

104

104

105

R' ~ eferences . . , .. , , . , .. _ ~ .. ,<>;: •••••• ~ • • • , • • • • • • • • • • • • • • • • • • •• 107

1

viii -

- ,

, ~-.

-'

List of Figures

List of Figures

. '
\

R b t M . 1 t ' ' ~ 1 10 o 0 anlp,u a ors ~ , , , . , . , , , .. , ,', .. , . , , ..

The relational approach. ",., .. ,.'.:., .. "., ' ' ' ... , , . 10

The hierarchical approach , , , 11''

The net~ork approach , , : if 12

Database architecture , ' , .. ; : '.' .. " ., 15

The creation process , .. , . , , ... , , , , , , •. '. , , . , , , , . , . , , , , ,', ,o., ." - 19 . .
The removal process .. " .. , .. , , ',' . , ,'. , .• , , , , , .. " , , . , 20

PD curves. . \ .. ' : , .. , , .• , , . , . ;_ .. , 26

Sweep Repre ntations ... " ... , , ,,,., .. ,,,,.,... . 27
....

3.3',': CSG Repre n~ations.:, , .. , : •... :,.", , ' :'". 28
(,,,, .

3.4 Half Spaces. r •••••••• ,-. • 29 . .
Non Uniqueness of B."reps ... -.)' . ':.' . r • ••••••••• .- •••• : 1 • '.. 31

\ . ,

B-reps tree , .-.......... : '.' '. 32

Quadtree Representations , , , ; , . , .. , . , ... , . , ... , . . 34

Top View of a'Cylinder ; :.,'., ', , 41

e~s of.a Cylinder , .. '.\ :, .' :.,:. ,
" \

43

B-reps Construction of Spheres , ~ .. ',' , .. , . , , .. , ..
1

46

Tree Structure of a Sphere ... , : '. : '.' , .. 46
~

B-reps of Spheres. -...... ~ ! • , ••••••••••••• : • :-•• 47 . ,

B-reps of Ellipsoids .. , : '. : , " , .. ' 48

T(anslational Sweep. !; •••••••• , ••••••• , ••••••• , •••• ,. 49' - .,/ ,. JI!,
Rotational Sweep•.. , , . , .. , .. , . , ' ', , ... , . , .. 51

ix

~

"'"

n
List of Figures

(3.16 A Cone With Rotational Sweep. , , , ... , . , , , , . , . , 53

3 17 A Torus With Rotational Sweep .. \ , . , , , , , , .. , . , . , , , , , , , , " . 53

3.18 World...solid Structure. .." .. "" .. "." ... , ' ".,."""".. 55 . \

o 3.19 Structure of a Solid'in th~ Oatamodel:. , . , " ... , . , .. , .. , ,~, , , . , , , , , . , . 56

3.20 Aline Segement, , , ... "." , ... , :,.,.,._.".. 61

461 Point MotIon. , . . • ••••••• o •• 64

42 Chpmg EffeCL MotIon · ... • • o' •••• 66

43 70 Puma 260 ' .,. · ... ,

4.4 General Robot Architecture"".... , .. · ... " , , . , .. 71

45 Joint's Motion ... , ., .. ,., ,' '. ,., , ... , ,.' " 78

4.6 ~oint-time Relatlons. , , ., · , , .. , . , , , .. ·81

4 7 Grasping a Solid, .. , , ... , . ,. , .. , .. ", ... , " ... 84

4.8 Interaction Between the Application Program and the Simulator . , 89

5,1 Program 1 .. ,: , , : ... , , .'. , . , '. 93

5.2 rnjt~jtjon of the Puma: v = (0,0, -90,0,90,0) ' : 94

5.3 Relative Motion by 6v = (-70, -10,10,30, -20, -10) ... , , , . .. 94

5.4 Absolute MotTon ta v = (-60, 0, ~ 70,0,90,30) .. , ... , , ,' ... " 95

5.5 Pseud~code of Program 2 .. , , , . , , , , , '. 96
.

5.6 Initial Configuration of Workcell 2 , : .. ': .. , ,' ... , 96

5.7 Pick Configuration .. , , '. 97-
~1 ~'-'\

5.8, Place Conhgurati~n , .. ' ... ~ . , .. : .. , , , ... , , , , :. 97

5.9 Final Configuration of Workcell 2 , , , 98
<>

(5.10 Pseudocode of Program 3 " ,9 ... , ,•. , :, 99.
, 1

5.11 Initial Configuration of Workcell 3 ... : _• ' , , 100'

p

o
" ô

l Ust of FiKures

5.12 Pick C0!lfiguration of Puma_1. " 100

) 5.13 Motion of Puma_l to the Transfer Configuration. , , " . , , , , , , . ,. ",'" 101

1

5.14 Transfer Configuration, ,., ... , ,." .. ,.", .. "" ,

, 5.15

5.16

5.17

Puma_l Back ta Initi~1 co. ~uratioll' , ... /. ~

Puma...2 at Place Co uratlon..,.,., , ~,./, .. '" .,

Final COllfigurati n of Workcell 3, ,

\

\
\

, "

o r'

101

102

102

103

xi

"

o

o ,>

C
1

1

Chapter 1 Introduction .

' .

. 1.1 . Robotics

,

Robots are among the most advanced automated machines built siri-ce the indus-

trial revqlution. Many definitions have bee~signed to them .• but th . .e one we think applies
o

best is the RIA's (Robotics Institute of Americal: .. A rob<tt Ï$ a prograrpmable. multifunc-
~ . . ,

tional manipulator designed to move material. parts. tools. or specialized devices, through . '.

vari~bJé programmed, motions for the perfot:!llance o{ a variety of tasks" {Holland831. Fro01
~ .

this defi,nition we can conclude that tasks are performed through a variety of motions. 'The

basic ques~ion in !obotics in general is 'how to perform motion?'. To this end. problems
o ,

of architecture. kinematics. dynamic;:s. and control a.rise. From the sa~e definition w!! can . '

also see the importance of programming considerations in robotiés.

/
\ .

1.1.1 Robot Architectures 0'

Inspired by the human body. a robot is mad~ of many joints and links in order to
"

be able to coyer a desired workspace. One big difference between humans and robots from

an arc;.hitectULal point of view is tha.t parts of the human body are flexible or piecewise rigid . . '

such as the spi?e. which is rare even though possible for robots. This limitation is especially
, .

ëlue to the difficulty of controlling a flexible body. Thus. most robots today are made of rigid ,

bodies càJled links connected together by joints. There are many types of joints:, Prismat}c.

t

• , .

~
'0 •

" 11 Rnhnt\'

revolute. cylindrical. spherical alld others. In"practice. however. the prismatic an~ revolute
, \

joints are d~minal1t b~cause they form th'e basis for any other type ~rjoint. a'nd are eaSler to

fabricate m~chanically. The ability to achieve any type of motion is a positioning problem.

~s it should be possible to reach .any point in the workspace of the ma~ipulator. However.

l'in order to manipulate material characterized by dimensional properties. the direction with

which the m~iPulat~pproaches the 'material is also of interest. Hence. in order to
o' q

fulfil the definition given ~. \tir P9~nd orientation of the hand or end effcctor

of the manipulator are of '"terest. 'This separation of Posltlon and onentatlon has led

to a popular èlass of manipulator~. namely wrist partitioned manipulators This latter

class of manipula tors separates to a certain extent the position from the ollentation of the'

manipulators. Wrist partition"ed manipûlators are usually six dgrees of freedom (6 d.o.f).
- \

of which three degrees are ri'eeded for positioning and three for direction ln sorne t'asks. . ~

however. only five degrees of freecfom are necessary as explained by Angeles IAngeles86a)"

Examples of such tasks are the onés used in manipulating objects which have one axis 'of' ,

symmetry. which is a rattler current topic.
"

1.1.2 Robbt 'Kinematics

"

The kinematics 'problem .in robotics can be dividt::d in two. forward and inverse -
.. Q • il

kinematics. The forward kinematics problem is defined as follows: Given the joint values

and rates. find the Pfsition. thEf orientatic5n. an~ the speed of the end effecto~ of the
" . t"

manipJ.llator. The inverse kinernatic.s is the rever,se problem a.lnd is more compl~x to sol~e
1

in the general case. In order to solve thése probl~ms. certain mean's have been standa"rdized.

such as the choice of the coardinate frames to use in order .to facilitate the solution. The
1 1'" '\

H~utenberg and Denavit parameters are by far the most popular definÎtions used to define
\ • 0

those frames. particularly due to the uniformity of the transformations relating the frame

attached tô the (i + l)th joint: to the one atta~hed to the ith joint {PauIS1a]. ,

/ J 2

-<.

...

.\

(

o

..

Il Robotics

1.1.3 Robot Oynamics

When a manipulator is moving to a particular position and orientation of its

end effector. many considerations enter into account beside the" position. ·velocity. and

acceleration. ~ravity has an effect on the desired mo~ion. as \oes frict;~n an~ ~fher forces
/ 1 r

and torques applie~ to the manipulator. The problem of dynamics-. is\ complicated due
c

to 'the high 'non-lin'arity of manipulator motion. The dynamical equations relate forces . \
and torques to positions. velocities: and accelerations and are usua/ly solved in order to '"

olt

obtain the equations of motIon of the manipulator. Lagrangian mechanics is widely used in
~

robotics to fo'tmulate thë dynamical equations since it bypasses the physical properties of

the problem. The dynamical equations are thÈm formulated in a purely mathematical ~a~. ,

"" Generally in robo~ics. the fo~ward d~namics calculati~s are not needed. since the desired

motion is usually known. An inverse computation is needed to determine th~ forces and
o

torques to apply at the joint level for connol. The ,problem of dynamics is the motive for

the development of control theory in 'robotics [P~uI81a].

1.1.4 Robot Control

o o

Once 0 a trajectory is specified in terms of time-basèd functions defining the e
"

jQint positions. rates. and accelerations. a control sc he me must be developed to assure

tracking 'of the desired trajectory: A feedback q:>ntrol system is neeâed to approximate

with minimal error the desired positions. rates. or accelerations. depending on the type of

control. regardless of the varied torques resulting from the robot's configuration [Craig86.

PauI81a).

~ 1.1~ Robot Programming
\

. ,

ln or der for a robot .manipulater to be of any use: me~ns ha'le 0 to be provided . ' .
to speèify the desired. configurations it is "to ,attain: Robot ra~guages ha~è been Întroduc-ea

\ 0 ' (7 <:.. ~

concurrently wlth the iJlt~oduë:tion of robots themserve~. Although this goes backJarther

3

_______________ ~_.a__ ________ ~~_~ ___ _

•
b

., ,
" .;l

"'" • 1.2 Why Simulation 7)

o ,;

than a deéade. developments have been slow and robot -languages have been progressed
\ .

irt a rather haphazard manner. The languages that are eurrentfy in use ean be divided

into three .. eategories. The:ie are manipulator level languages. objeG:t level languages. and

task level Janguage~. The mtnipulatot level languages are the lowest Jev~1 in a robotie C

programming è'nvironment and deal in terms of joints values or end efTeetor.coordina\'es- for

motion ta~ks. Object lev;1 programmin! is very ml!eh in u~e. with the idea being t~ define

nbjécts and their toordinates in sorne form of a data base. The tasks would therefore be
" ~ , ~

performed in terms of objects. and not "ireetly in terms .ct coordinates [Faverjon86) {e.g

grasp_tray. where the coordinates of the tray àre defined in the çlataba~e). The last cdtegory
.,

, ~s an extension ta the abject level. and deals in higher terms of tasks. whiçl}, are 1'C"mehow

interpreted into lower le~el commands [5ata81] (e.g assemble pump wh'ieh' is interpreted . .
as a series of lower level commands sueh as m~ve. grasp artd others).

~

1.2 Why Simulation?

Many problems 'may arise tn programming a robot or a complete wo'rkeell. For

example. the programmer can ask the robot la go out of its w~rkspàce. and thus error
"4 - ,

deteetion berpmes mandatory in every robot program. This is eumbersome and is usually
• 1> •

npt th~ ease in praetice .. Robots are oJté~ plaeed in eonstrained workspaces. suth as on
'. ~

a table. 50 the tasks ar very ependant on the robot enviranment. and a pragrarri tbuld
\

be prefeetly suitable for one en ironment and not at atl for ~nother. Many other pr-oblems
~ ~ ,

are eneountered in raboties. sa as a precaution. simulatio(l i~ ne~ssary in any. robotie

environ ment. Simulation qn have many uses. of which we sha~' name sever_al:

o

1· Graphie simulation of a robotie workeell may be used as a means for teachmg

new entrants ta .the field. wh'ile safeguardjng against possible damage to the 0

.. rabotie equipment. • a

2- I~:some i~stanees,. it ~e d'esired t~ experiment wit~ manipulato.rs ~f specifie

are~itee1\ures du~<?nmental or task-related constra~t5: thls could also

't • 4

\)

...

c
\

\
)

c

. . .

be accomplished using a simulator.

..

1 3 Previous Simulators

,
32gramming a mal]jpulat~r. for, a, par~icula~ .~asR is an everyday "probl~m in

robotics. and insxead of trying out 'the ta~k on the manipulator. it can be tried
\ '

on a simulated replication of the manipulator. '

4- ln sorne industries. the pla~e~ent of many manipufators is very rmportant in .'

terms of efficiency. and the possible solutionS" can be tried on a simu'lator. thus

avoiding inconvience and high cost.
/ .

t
&>

5- C9ntructing new manipulators specialized for difTerent tasks can àlso bê simpfi­

fied enormously by using.a simulator.

6- Before making a decision such as buying a particular robot for a weil defined
• \ ' 0

. tas~. a simulator can be used {or eompari~on ~etwee'n ..co':Lpeting ~anipulators~
, • 1 J~. l'

o _

,. i.

. Ther~ a~e. of course. many other considerations ~ whic~ justify the u~ulness of

a robotÎe workcell simulator. Sorne of th~rn ,will be encountered in the following cnapters

of this thesis.

1.3$ Previous Simulators

\ "

Previous work on robot off.Jine programmmg and simulation systems is abun­

dant. As exarnples we rnention the McAuto system [S~umaker80. Kretch82]. the GRASP
,

program [Derby8'2a]. the MIRE system [Liegeosis .et al. 80]~ the SIMULATOR program

1Soroka80}. and the 'SAMMIE system [Heginbotham et al. 73]. An overview of the ~isting

systemS' is presented by Derby in [Derby82b). from which we concluded that most robot,

simulators use commercial solid model/ers sueh'as PADL [Voelcker et a1.78J. CATIA (Bq,rrel

et al. 83). NONAME [Staff from GMP 811. and others, ,However. due tô the generality
"

of those solid model/ers. tlte robot simulation process tends to be cumbersome and slow.

Moreover. 'the solid model/ers mentioned above can not be easily integrated with a workcell

5

(1

CI ..

, ,

'l,

" . ,
..

1.4 .Project's Outli,\~
, 0

programming environment. We have therefore decided to develop a solid modeller suitable
i

for rigid body manipulation ,~.nd particula"rly robotics \applications. ,Thus. the source cçde
, \

is provided. and flexibility is 'one 9f th~ prominant fe~ï'e$ of our deSign. -
1.4 -Project' s O~tline

\ ,

Our goals in tbis project are listed as follO\'ts:
"

1- Ta create any workcell interactively and easily .

.,: ..
. 2- Tp program 'the workcell for different tasks ta be accomplish~d by a variety of

. "
motloRS. '

3- ~o ~iew ir~phically t~ results of the :a~ks.
, : l

There are many problems which we shall introduce now and will be solved latcr

< wh n enêoutered. The first goal is' divided in twd major parts. namely. a data structure
't • • tI-

for asy interacti"e use. and a SQlid modelling part which is used for modelling workcells. . ' . ,
' .. " .

,

ln cjny type of simulation where a variety pf objects. such as tool5. parts. robots .and
, ,

bthers. are to ?~ used. certain orgarized, data is rkeded in arder to facilitqt~ the storage.

retrieval. n.aoo modification of any type of information related ta the objects of interest. In a - .
\ robotie wOr'kcell simulation. the information of interest is either descriptive or geometric irt ,
general. and thtls the data structure should be capabJe to handle both. Moreover. this data

,
" 5truct~re changes with time due ~o motiq,n. and should be dynamic. After the design of

the data struèture. the user needs sorne way to interaet with it: this means of interaction

is ca lied c{ data sublanguage.· Bath the data st;uctore and the data sublanguage are the
, .

subject of chapter 2. ~here, they are designed and discussed in detai/. The second solid
" . , ,

rpodelling part of the first 'goa,1 is basically an extension· to the data structure and data '

sublallguage. T.he creation 9f a p~trticular t'>bject can be done ~t the lowest ·'eve' by using
1

the data structure. an1 the data. sublanguage. However this is difficult. as wi/1 be shawn
,--4l ,. ' "

6

'-. \ , ,

\

o

(

\

(

t
1" Project's Outline

in chapter 2. Hence. sorne other means have been developed to facihtate the modelhng
'" <fi' Il

of a workcell. as discussed in chapter 3. The first part of chapter 3 is an overview of the
, \

existing methods of solid modelling. dNhile the latter part is a presentation of what was
"-

deve'loped for the simulator and a discussion of the advantages afld disadvantages of the .,.
~

methods in use. The second ,goal is the programmitig aspect of 1:he workcell. This cornes
.

, -down to t~e simulatiQ,O of a motion applied to on~ solid in 3"'() sRace. 'as introduced and

discusse~ in chapter 4. In robotic~ however. the ,motj!.>n i~ app/ied simu/taneously ta rpany _

cJ so/ièJs. nâmely the ~iffer~nt link~ afa robot plus the grasped object. if any. and this is more .
difficult to solve. Moreover. the motion is usually known in) cartesian spacé ra~her than,

joint space. and thus the i~verse kinematics solut,ion is n~eded. The whale notion of motion-
- ('.-

, in roboties is discu~ed in chapter 4. and' ~olutions are presented with means of speeding

up· the entire process. The last goaf...iS obtaining and viewing results: this is presented in

chapters 2. '3. and 4. whenever a result is required. The graphies .aspeet of th~ result i$

discussed briefly at the end of chapter 3. as a way of verifying the sol id modelling. Chapter
'. ..

5 presents SOrne results in which we create a workcell. pwgram it. and view the output of
, .

the program. Sorne ways of debugging a robot program will a\'so be jntroduced. As we can
\

notice from this introduction to the project's outline. the dynamics and control aspects of '
• 1 - a

roboties ar, beyond the scope of this thesls. -f'H~s the results are a 'good approximation of ,
/' reality =3S long as the control scheme is successful eri~ugh ta make the dynan:'ical effects ,.

.. ' ~ , ~

negligeable. The architecture. kinematics. and programming aspects in ft robotic:; workcell
-"" , are the mâjor interest for this thesis.

\.

.
c

/

7
(

..

, ,

"

-

'Il

, .

\

..
o

o

·Çhapter 2.
,

D~tabase a~d D~ta Sllblanguage

/.

1

.fj

The design ot' a data-stru~ture' has become. more and more important in solid
. '

mod~lIing. and hence in any kind of ,graphie simulation invorving solids. "epending 400 the
~ €J .-

application. sorne representations are more suitable tha'n others; thus. a decision has 'to

'be mé!de on the structure to be used for the world modelling.' Once this is done. a data
.

sublanguage (user interface) is developed to perform the interaction between the user and

this data-structure or data base., This chapter is dividad in two major sections. namely ..

d~ba'se a~d ~~ sublanguage.

2.1 Database
t

. \

ln .a~ simulation environm~: the deSigner or programmer has to deoal with dif-

férent components to construct' the worlâ mode/. and there is therefore a need to deveJop
, " .

a data base whi~h contains the, descriptive and geometric information of these compoRents.

ln general the compon~nts have relations betweén thern. which should al 50 be store,d in the

- same databas~[Daie81]. '-"

-
The need for this type of data base appeared wh~n worfd modelling bes:ame

, \

important in t~è field of robotics in general. This is due to the f aet that most. robuts
• .

work in a known environment. and henêe a dynàri1ic data base which could handle the initial

model of the workspace and, the changes du ring the méinipulation would be very tlelpful.
,

This concept of d~n,amrc database found use in fields ,other than robotiès and vision such

(

"·C

/
2 1 Databas~

1

as in f~ight simulato:s. The reasons mentloned above. and some~ oth~research re~lts.

led us to believe that a good desig.n of a Clatamodel (DM). the user's view of a database'
1

, \

[Date8iJ. wou/d be very helpfuJ for the simuJator.

" '

,
ln order to make this good design. we have tobdefine the cr.iteria whiéh make"

" ."

an adequate datamodeJ. One of thcse criteria is that the datamodel sho~ld provi~e ways

to retrieve or derive ail the required characteri~tics of a selected object. in an acceptable .
amoun~ of time. For engineering applications it has been noted that thé objects to be .
manipulated are fairly complicated [Dittrich85. Haskin82J. This imposes an additional

criterÎon of simplicity for rePfesenting. these objects in the datamodel. 'The third criterion

which defines a good data base design i;- its co~pactness. which we should keep in mind

whife we'are developi~g the software for the datamodel. Looking at what has been done
~ ,

before. we can notice that there are thr~e !raditiona/ favored design approaches to represent

entities and their relationships. namely. the relationaj approach. the hierarchica/ approach

and the network approach [DateS1]. '.

, . ..

, We shall irtvestigate these approaches one by one. béfore building our design.

The~st way to discùss these approaches i~. probably. tc! consider an example. Suppo~e
we arec asked to represent some typical robot manipulators .as part of an assembly'chaîn:

"
one of them could be a 6 degree of freedom with 6 revolute pairs. The first moving link

"\

i~ geometrically cylindrical. the second and third links could be constructed eas.ily out of .
surfaces connected together to form a certain volume (volume2 and volume3). and the last

three lin~çonstitute a sphericaJ' joint and are geometrically represented with one sphere ...

lri other words we can consider this pa'rticular manipulator as being made of four different
1 _

>solids, a cylinder. volume2 and volume3 and a sphere, This is geometrically similar to
"1

a Puma; Let us suppose that we have three manipulator.s. and like the one, described

above. they Dr.e made of many links decomposable geometrically in smaller entities:'such as

cylinders. spheres. and blocks. as shown in -figure 2.1.

9

•

~ 0,,<
\ '

IJ '

-------"s..-----__ -t-____ ~ ______ - __ _

Figure 2.1 Robot Manipulators.,
. , .

2.1.1 , -Tl1e Re'ational Approach, \

As mel)tioned before. a database syste'm ,must be able to represent entities

and relations betwe~n the~ [Freeçfman86]. In the relational \approach. -there ·is no explicit . " . .
distinction between the entlïies and the rela!Jolis [Ullman82}. Considerins our example of . ' ~

robôts and the solids which construct them. we can define two re/âtions: ROBOT and
'- .. , ,

-SOl/O. These two rela\ions are represented using a .table. which is the typical way of
~ .

(epresenting a model by the relational approach [Astrahan76). this is shown in figure 2.2
, , -

,
(

•

,
ROBOT

SeriaI number Sol.ld_l Sol1d_" Solid_3

1 1 . 2· 1
2 0 3 1 -
:! Or 3. 0

SOUD
Ser i al number Surfaces Cyllnders Spheres _

"'"'\ 1 0 1 0
'2 6 0 0

-3 0 0 1 ..

Figure 2.2 The ,relation al approach.

\
\

1

10

..

-c

'2 1 D;)tabas~

To determine the components which make up a given sohd. the appropriate

solid IS located using the seriai numoer. and th en we read across its row in the table.

To determine which solid contains a given component or a certain quant-ity of a given

component. we locate tirst the component' s column and then read across to the seriai
-

,number. Si(Jce robots are constructed f~om .~olids and solir!s from co~ponents. -an extra

level ~f searching is required to know what components (spheres. cylinders. surfaces) make
-one particular robot. This extra level of searching is also needed for the reverse operation

1 •
•

of finding which robot contains a given component. More complex queries 'cou/d also b~

answered. 'for example, which so/id contaigs components TANO '2'. '1' OR '3' aQd so

on: in facto any type of query based on the relational algebra can easi!y De answered. a'nd , . .
, hence the name telati.~al datab3se [CodëJ72].

,2,1,2 The. Hierarchical Approach

ln the hierarchical approach. relationship~ are entirely implicit, and the relation­

ship between two entities is presented b1 the relative position of the two nodes defining
".~.)

. the entities [Date81. Ullman82]. Continuing with our example. the repr~sentatlon in this

approach would be as shown in figure 2.3.
L

/

,.

Figure 2.3 The hierarchical approach.

'\
ln this approach, responding to a query is necessarely divided in tw~ distinct

f? operations: Firsl. tra~erse thë whole hierarchy to find the entity on which the query is to

-bé applied. second. apply the query {Kunwo085l. As an example. the query could be 'what

•

/

:
i ,

O· d'

1

1

21 O:ltabase

are the componen'ts. of solid_l!. in order to answer thls. the solid 'solid_l' would have to be

located, and then ail the nodes attached to this entity's node woufd cO)lstitute the an~wer.
_ -tl

,
r _

2.1.3 . The Network Ap~roach)

The ne~:rk aatamo~el allJ~s for m~re flexible associations by replacing the'

hierar,chical struct~re with a network [Freedman86]. In this approach, the nodes r-epresent
,"

the tuples of data. anc! the arcs represent the relations. Using, the example of robots and

"olids. ~he s~ructure in this approach would be similar to the one sho';'n i!J' figu:e 2.4.
-

• - Robot_l 0 I,..sol id 1 1 1
rSur: face 1 . - 1

P
1 1 1 .

/'1 Cyl ioder, ,
1

/ ' l '" -

/1 Sphere 1
0

-, -
i
l,

i ,

-

)f' 6
1 Soli~2 J \ 2 d ..

0 -/) " 'f 0 , -,

. . --
, O· - J SolicL3 1 1

1 1 ... Robot_2 0 1 0 ,

- 1 - - .
3 -- -

-1

0 Robot_3 ,- ~

1. 3

(. . { 0 /
,~, \ ' \

Figure 2.4 The network approach.

AU relations in a network datamodel,are explicit. and thus the\ positio~s of the

• nodes are irrelevant. Answering a query means searching the netwqrk for ail possIble paths
t:.

to apply the operation\) Some special care should ba taken if the arcs form a chain [DateSl].

12 -

,

.

.

\

o

(

J. __ .. '

,1

o

(

, 2 1 Oatabase

2.1.4 Approach Selected
o

We have presented three known datamodel approaches. none of which is really
1

• , 0

perfect ln this paragraph. theÎr respective drawbacKs will be shown. An attempt to
~ ,

construct a datamodel avoiding these drawbacks will be made fOl this slmulator study. . .
a

:) ., q , "-

The rela,tional approach shows Its ~eakriess. wher1 considering' engineeri~g~
~hcatlons: where the representation of complex entitities and r.elations is needed. a large 0

amount bf relations must then be kept [Fen,ves8S). The ability to repr~sent thése complex

·obJects requires a hier~rchical approach. but. in its turri. the hierarchical approach has other
,

dis~val'Kages, Since the relationships'ar& implicit. the only way the user can interact with

die information contained in a relationsliip is by building' it up dynamically ~hile"" traversing
~ 0

the hierarchical tree, [Date81]. For eX~":1ple. to know if a sphere A is par~_of on~ solid 5 ..

we should locate the solid and then fetch ail the "components which build it. In the network

élpproach. on the othe.r hand. the relations, are explicit andoare present by means orpointers . . ~ .
However. the relations and the entities are considered as c:difrerent objects and are stor~d .-

differently.
o

-D
The fact Lhat the relational datamodel is not suitable for repre,senting the variety

of objects we meet i/l'engineering applications .do~s not m~ke it a bad 'representation. since
, ()

it has advantages such as the expiicity of the relations. The network and hierarchical

approaçhes Doth have positive points, as weil; namely the simplicity of representing c~mp1ex . '
objects. - ln our design we aimed at using the aqvantages of ail these approaches.o The

netwdrk app;oach is, in practice. ~~ry, similar to the hierarchical one. and 50 there is 'no
'. .

advantage, il) considering it seperately, °especia~ly since if introduces !hè, chain complexity,.
'.

,
The hierarchical datamodel is very su!,table for engineering applications. however

v

its biggest disadvantage is the implicity of the relatio.ns., If we .rnake these relations explicit
• f)

by givi(lg them identities and by supplying means to access them. the problem would be . , .
partly solved. The second disadvantage of a hierarchical approach is the fact that for each

c

o query we have to traverse the whole hierarchy to find the entity or relatÎon (once '!1ade

13

f '

, .

Î

'1

o

()

expllCit) on whlch ~he query IS to be apphed This reqUires further oPtl",ization. such as
~ 0

allowmg the queries to be specified at intermedlate levels of the hierarchy rather than just
~

at the' top. With the two cnangés mentioned above. we avoid the disad~ntages of the

~ hierarchical datamodeJ.

... 1 () lit,

To recapitulate. we can sa'y that our representation would baslcally be li hierar·

chical datamodel with explicit relations and a user interface allowing aécess to ever"y level
.v 0 0 ", .

of explicit relations or entities.

2.1.5 World Representation

• The term world representation is used to signify the datamodel approach we

used for world modelljng. The chosen datamodel is made of entlties and relations as

described earlier. In practice. the entities incJude xy_pairs (~Y). surface.contours (SeT) .

. surfaces (5). blocks (B)iP objeçts {o) and ~cenes (SC). The explici~ relations are basically

homogeneous transformations with identifications. these incJude transform.surfaces (T5).

transform_blocks (TB) and transfor~~objects (TO). Thus. we have six different level of
-

entities and three levels of explicibrelations. Every entity from the level block up has explicit
<

relations attached to it. Ali tne entities at the same leyel are stored as linked lists bounded

by a begir:Llist and an end_list pointer. The relatiofls at the same level are also stored as
r

linked lists. and '8iffer from the stoJage of entities in that we can have many linked hsts at

the' sa me level of relations defined as transformations. the$e linked lists are also bounded

by begin a~ enc;f marks. this is shown ~n figure 2.5.

Let us now start with an xy.pair an~ build up a typical model. The)xy.pair is

a structure determining the coordinates of one pdint in a two dimensional space. Mll.ay
c

xy _p~irs constitute a surfaqLcontour. and a groJp of surface_contours make UA, a surface. r .
- -

The feature that a surface could be made of many surface_contours is provided to allow

holes in a surface. A surfacé is th en made of the union of diff~rent sets of surface .contours

referred to as main_countours and hole.contours. which are stored as linked lists. Up

14

c. o

,

•

c

•

o

Main
and

Hole

-.

* Sct: Sqrface contour

Figure 2.5 Oatabase architecture.

'f

2 1 Databasel

.
to the surface level. we deaJ .with two dimensional representations. An xy_pair is part

of a su{face_cont09.Jf. which 0 in turn is part· of a" surface. Both of the aforementloned

·relations. namely "part of" relations are stored implicitly. We can not "therefore access' ...

them directly. This is done to make us think of a surface as being the lowest entity that

we can manipulate in the hierarchy. Manipulation or query of surface_contours or xy_pairs
4

is accomplished indirectly through the surface to which they belong. The next level above
~ , . ---surfaces is a leve! of explicit r~ions. namely transform_surfaces. Every, transform:~urface

'" ... • "l.. ~

has an "id". a ~omgeneous transformation ,and points to a surface entity: TQis· level of
-

-relations is identified and explicjt. and th us may accept queries. The transform_surfaces

are gro~p,eclQ toget~er. ending wit,h. an end~mark of a null pointer. ~o build a higher level.

entity. $he block. ~ block is made by applying ~he transforn'Lsurfaces in question on the
/, .

15

o

o

o

...
• 0

surfaces to whlch they are pomting; the transformations are specltled in a three dlmenslonill

spac:e and thus a blQck is the first 3-D entity. The, Rext. level above the blocks'" is made

of transform_blocks: 'again these relations are explicit. With,out -going through. t~e entire
~ . - .

model. we call Say that this structure is propagated up to /the hlghest entity level called.

a scene. Adding other levels is unecessary. slnce the data sublanguage offers facilities
o

·~o copy trom _ the sa me entity level. with an option of specifying a relation while copyin~.

However. if deemed necessary. facilities to go to hlgher levels are ~asy to Il11plement

Theoretically. this appro~~h IS capable of representing compli~ated solids. In reallty. sorne

- practical considerations enter into account. For example. is it acceptable to ask the u~r to
" '

o enter a homogeneous transformatiori every time he ~ants to attach a low~r leve.1 entity to
~ ~

higher level one. The answer Dt~ ihis·' question is obviously no. and therefQre we mtroduced
• 1) 0 .', •

other features. For example. specifying the attachement transformation is achieved trom a
" D

composition of scalings. rotations a'nd translations ~ith respect to some coordinate sOystem.

The rotation~, in cp~rti~~lar could be specified in different ways such a's usin~ the eule; angles~
()

- "
using 3 points of a rigid solid to describe the st~rt ana end positi?"capd orient.ation or using

1 eGO ,\?o Il

an axis of rotation. a point of the axis and an angle:, of course a rotation could ~e specified

in other ways as weil.

, .

y \ lookin~at the data model , we can, notice that there are no stOlage res";ved for \

templates or instances at any level; this is not explicit in the ~atamodel. but is implemented
C'

in the data sublanguage using the copy faciIi ty. A drawback to this datamodel is the fact

that one particular entity could be shared by many hi«her level entities [Cardenas79]. and
,

thus any changes applied to it niay Mfect entities that we did no1o want to affect. This is a

/. characteristic of any model based' on a hierarchical approach. this risk could. of course. be

avoided by replicating information. however this is space consuming. The typeo of change

that could cause the most damage is certainl~ the deletion. that is why. we included a"
'~o J_C

des.criptive field ca lied ""point~d_by" in each entity. This f!eld 'gives)nformation about the

number of relations that are pointing to the.entity in question. Defetion takes place,onlr if

the "pointed_by" field is zero. otherwise. it is refused.

16 -
'.

"

(J

c
D

\)

.
9

o

"

/ 2 2 Data Sublanguage

The datamodel we have chosen .has a good ~haractenstic of a relational F1)odel.

in that ail essential relations are explicit and can therefore be "queried". It also embodies
1 •

a~ advantage of the hierarchical model. namely the hierarchy of building solids. One major
,

,difterence between our datamodel and the relational mod'el is the fact that the relations
f -

."(transformations) a~d the entlties are different. but. access~d similarly. The major differJ
o ,

o ence with the hierarchical àpproach is that a query would not have ta traverse the whole -
hierarchy but is. instead. applied at one level. and the searcfJing or traversing is achieved

horizontally' througti linked lists. of course there is also the difference caused by the explicity

of relations.

2.2 Data Sublangtlage
~

e-
.S

o

"

The data sublanguage (DSL) is the user's language ta interact with othe data-
- "

model. Practically the data sublanguage has been limited to three types of qu~riés which

are addition. deletion and update [Date81j. To facilitate interaction with the datamodel.
l .

sorne other features such as copying and showing were added. ~oreover. in order to speed

up the editing phase of the datamodel and in order. to avoid problems such as typing an
o

incorrect user commando the user interface is managed by a command line parser and

s~ntatic checker called a "k~y tree matcher".

.
~ A good data sublanguage is one which best accomodates the use of the data-
\" '" '

mode!. In arder to accomplish this. in view of the hierarchici)1 aspect of our datamodel. the
"

user interface is-' implemented at every level of entities or explicit relations. Furthermore. the
~

~ .
o datâ sublanguage is implemented sç that the explicit relations and the entities are accessed .

in a'similar manner. The next paragraph will explain in greater detaif the implementation

orthe da~a sublanguage. ~

•
2.2.1 , data sublanguage Implementation

o •

The facilities offered by the data sublanguag~ i;e .all accessiple to the user via the
"

,key tree matcher: the basic and most useful operations are creation. removal. modification.

" 17

Î

o

,

·0

copying. showing. attachment. detachment and model filing. The tools that were developed

to allow use of these facilities inclùdé 'memory allocation facilities. searching and i~serti~n
•

of entities and relations. The identification of an object is done using its name an\:t the .
'Ievel to which it belongs. and thus ail queries will require at least those two specifications.

in order to be applied. Let us now prèsent the facilities offered by the data sublanguage

trying as much as possible to omit programming details.

2.2wl.l - Creation

The creation process applies only to entities and takes a levei ;pecification and .
'a name. First the specified level is verified to assure it does not already conta in an entity

of the sa~e name. The memory allocation. if nèeded. and insertion in the entity list then

take' place. The flowchart for this query is shown in figure 2.6:

2.2.1.2 Removal

This process also only applies to entities and takes a level and name specifica-
,

tÎon. The entity to'f:ul re'Tloved is first located at the level specified. If the entity is no~
, .

... bell'\g ,p~inted to by any higher level relation. ~ is unlinked. and the memor,Y previously
.

allocated for it is saved in a garbage collection for tbe level in question: otherwise the query
_ d

is ref!Jsed. A flow chart is shown in figure 2.7.

,
2.2.1.3/ Modification

< J'~'
" '\ ___ ~ Jo

o

This query applies both tt) entities and relations. In the case of entities it needs

a name and level specific'ation. :f th~ search is successful the query enters a smaller key

tree matcher. in order to make the modification more user friehdly: for e.xample we.can see
" -

the possible kinds of allC?wed changes. suc~ as changing the type . the, name and other

charé\cteristics. The modification can also be applied at a level of relations. Every relation
<. \ '0

is identified by its name. its lev~1. and the name of the entity to which it is attached. 0

, -\.. .
Modification of relatiolJs operates in basically the same manner ~s modification of entities.

18

/

1 ..

1

c
..

,0

o

.

~-.... ,,-

(Start '\
'. / , /

No

Memory
allocation

1

InS/ertion
of entity

\

"

Yes Error
message

Figure 2.6 The creation proce~s.
\

o

2 2 Data Sublanguage

•

,

ln both cases. if .the results of the search are negative. the user is' notified and the action

is refused. QTh~ cont~ol then goes back to a higher level datab~se manager (D~M) i.e key

tree matcher. and waits for new commands,

b ", 2.2.l,,4 Copying

..
.

This facility is used in order to~ake use of instances of entities at-every level.·

It takes as arguments a level specifica~ion. a name of an existing en~ity at that level and.a . ,
new name for the desired·entity. The ut~ity verifies certain parameters. and copies the old "

1 ~ntity to th~ new one. with an option of specifying a relation to be applied: The cre~tion of
•

the new entity. interrogates' the garbage collection to determine if there is eno~gh memory

to accomodate the new enlity: if the SPilee is found to be insuflicieht • "new 71"0'y is

,~ ~ 19

. .

~ a

o

e'
0: f

No

Error
message

") es

f
o

a
<>

o ,
'12 Data Sllblill1~lIil~ty

Unllnk fr'om 1

No ,
_ Unked Il Slf

emory saving
ln garbagé

collection

Figure 2.7 The removal process --

1

allocated.

2.2.1.5 Showing

D

•
Showing is a query that may be'applied to both entities and relations. This query

--, , . \

provides ail of the possible information about an object. Different versions ,of showing have

been implemented depending on the 'amount of detail wanted about a particular object.

.
2.2.1.6 Attachment o

f (

This query installs a relation between two entities. It takes as ar uments the
o

name of the relation. the level an~ name of the enti~y that this relation Îs to be attached t0.

and the nam~ of the entity that the rel~tion shouÎd point to. It tirst '-verihes the existance of

both entities and 'the non existence of a relation ~ith the same namé at 'the level specified

Then memory allocation. if ~eded. and insertion occur and tl;,.:. "pointed_by" field of the

entity bei~g pointed to by this relation is incrementeq. The relation (transformation) coul/'

be specified in different ways. depending on ttîe ability of 'the us_er.' For more details w,e

20

)

c

Q

,

"

c

2.2 Data Sublanguage

Q

provide example 1 at the end of.this chapter.

c ...
2.2.1.7 Oetachment

Detachment removes a relation between two entities. After ail the neces~ary

searching and verifications are performed. a specified relation is unlinked from the linked

Hst attached to a particular entity. The space that the ~relation vias occupying is saved in a .
garbage col,lection at the same level of relations. The "pointed_by" field of the entity that

was pointed\ to by the relatio~ in question. is èlecremented.

Model Filing
;-,) " -

For model filing we ha~e two basic facilities. r.amely. save and load. These two

facilities are used 50 thàt we would not have to re-create any object (relation or entity) . , ~

. once it has been created in the datam~el.· ,

ln the preceeding sections we hav~ discu'ssed the most useful queries in our ,..
o

datamodel. This user interface was developed keeping ease of use and compactness as
. \ - .
primary goals. ,to allow convenient use of the datamodel. The user interface is writter;l in

"C" and' could reside on any UNIX machine: it is actually implemented on a SUN running the
""

UNIX 4.3 BSD. The execution time of the queries is not very critical since the development

of the model is done at tbe editing phase of the data base . We prov'ide twb simple examples

here to clarify the datamodel and its data sublanguage.

2.2.2 Oatamodel Examples l __

2.2.2.1 Example 1: A Cube

This example js about const'ucting a unit cube as a block in !he datamodel.

First we should construct a unit square. this is done ,by invoking the creation process at
l '" \ ~

the s~rface level where we create a surface ca lied "square!". this surface has just one

21 •
.. 0

o

•

)

, - ,

23 Summarv

main contour. without holes. Then. wé iiwoke the creation command at the black level for

"cube1". Once this is done the attacnment takes place. we attach the surface "square1" ta

block "block1" six times. using six, transform~surfacés, each transform_surface is specified

using the following scaling (Sl. rotating (R) and translàting (T) factors:

Sx = 1,8y = 1,8z = t,Rx = 90,Ry = O,Rz = O,Tx = O,Ty = O,T:: = °
Sx = 1,8y == 1,8z = 1,Rx = 90,Ry = O,Rz = O,Tx = O,Ty = 1,T;: = °
f~ = 1,8y = 1,8z = 1,Rx = O,Ry ::; -90,Rz = O,T;! = 0, TV = Q,Tz = °
Sx = 1,8y = 1,8z = 1,Rx = O,Ry = -90,Rz = O,Tx = 1,1'y = O,Tz = a

. \ .
Sx = 1, 8 y = 1,8z = 1,Rx = p,Ry = O,Rz = O,Tx = O,Ty = O,Tz = °

,

Sx = 1, 8 y = i,8z = 1,Rx = O,Ry = O,Rz = O,Tx = @,Ty = O,Tz = 1 1

If our datamoderwas empty belore this operation. thEm as a result we now have one block ,

pointing six times to one surface .

. 2.2.2.2 Example 2: A ParallelepiPETd ..

"\
This example is about how to construct a paraHelepiped. uSing what has been
/ ,/

done in the previous example. let us suppose w~ want to construct a paralleleptped

of length 2,3, and 1.5 along the x, y, and z axes. One way of doing 50 ~is by creating

an object callfl "paral.felepiped!". and attaçhing the block "cube!" ~ it by specifying a '

transformJ~ck which has the proper scaling factors. Another way would be by using the

block "cube!" as an instance and copy it a"t the block level to form anather block for the
o

par.iped. while copying we have to specify the scaling factors properlY. .

2.3 Summary

For solids such as cubes. pyramids;·paralleleptpeds and others it is aC,ceptable to .

ask the user of theosystem to construct them by specifying transfor.mations in 3-D applied

.. on 2-D surfaces. However. cbnstructitig such solids as spheres. cones. and ellipsoids is
o

an e~tremely difficult ~ask which is practically impos~jble to perform in the abave manner

22

.-
• l

i

.. '2 ~ Somma,.'!

Thus sorne further extensions 'are required. which 'iS'W~ we investlgated the soliâ modelring
• il . .

techniques. The next chapter will introdûce tho~e techniques. discuss them and present

what we have developed in this simulator for the purpose of solid modelling . ..
o

-ç •

..

..

\ -
o

(-'

o

•
(,-

23

•

..

o

0-

, . ,

.
--,.

.~"""..;-

", '="
,-'

'j-

" <1

'"
--

Chapter 3 Solid Modelling
t~

f ...,
.J - ,

, .
J

3.1 Solid Modelling Te-éhniques

- \
A sol id modelling system is defined by the followin~ four properties, as stated ..

by Requicha [Requicha80):

1- Data structures whieh represent solids.

2:. Input facilities for creating, removing, and Il)odifying the representation of solids .

..
l '

3- Output facil&s for the results of the representations.

4- Facilities for answering geometi questions.

o

ln the previous chapter. we developed the datamodel to accomodate the rep-'
a' l

resentation of solids. The data sublanguage was develope~ ta fulfil the second property

of a solid' modelling system. The third and fourth properties wjll be in .. estigated :..t the -

end of thi~ chapter in two sections àevoted to the graphies and geometrie properties. In

this section. we develop means of representing solids which are more suitable ta our needs
o

than those demonstFated in the examp!es 0.1 chapter 2. In.order to do sa, somyraditionaf

representations will be presented and discussed. and then a representation will be chosen
l , ,

and developed in greater detai!.

, ,

c

, ...

(

o

-.... ~ 3.1 Solid Modelling Techniques

3.1.1 Sweep Representations

Sweep rE'J)resentations are by far the most mathematically structured schemes
. .

for representing solids [Hayward86J. Intuitively the idea is easy to understand. it is based

on the fact that by moving a point along a certain trajectory we create a clItV!:!. by moving a
;

curve we crea te a surface and by moving a surface we create a solid. Sweep representations

are very practical for modelling constant cross-section solids as demonstrated by Lessing
~ F" -.ft ,

(l:ossing74j. and they also proved to be suitable for detecting collision between Solids in

a workcell. where a moving solid S _1 collides with a fixed solid S _2 If the volume swept

by S _1 while moving intersects that of S _2 (Boyse79]. These representations 'have also
,)

be~n used in material removal applications. in whl!=h. the material found in the intersectio ""-

of the voLume swept by the tool while moving ~md a fixed sol id is removed [Voelc~er7 ,

Vgelck~r77J. These representations have been successfùl Qecause they are weil defi d

mathematically. The entity ttëed for Jthe motion is usually ca lied the generator and the

trajectory tobe followed is the director. Once the director is defined, a generator is chosen
\

and swept along to represent the desired solid. The most common curves ~sed. to fully

describe the director are th~ PD curves (P for position and D for direction). These curves
, ~" , .

. are a -generar form of six component curves. in which the first three components define a

continuo"s parametric equation of position that associa~e5 a point. P: = (~) on the

curve: the la5t three components def~ne a continuous direction equation that a-ssociates a
(> •

direction vectol' di. At eaèh point of the c~tve. assuming that the parameter is u. w~ can

th en define a frame as follows : ..

A ~ éurve is shown in figure 3.1:'"'
•

dPtldu
~ = IIdfifdull

d, x~
ni, = 'I/di X ~II
0i ..:.. ~ -x n,

'/

-1'

(3.1a)

(3.1b)

(3.1e)
~

Other extensions cou Id be added ta the PD curves such as scaling factors which , ,

would then make them 9 components curves. Figure ~.2 shows examples of various PD

25

o

j

/

o

..

......

\

.
<>

\

,.,..---

z

-figure 3.1 PD curl/es.
~

J

3.1 Solld Modelllng Techniques

.<

curves. The first one (fig.) 3.2a} is just a translational-sweep of a given generator following

a given straight director. Figure 3.2b uses th~ sam~ generator following a different director.

where we can notice the twisting. Figure 3.2c shows the scaling effect using the same , (.

g-enerator and directbr as in figure 3.2b. this last curve is described by 9 components.

,

ln practice. the 'tnost common te~hniques in the sweep representations are the

transJationaJ and rotation al sweep 'Requicha80). For example; the translational sweep could D _

be used to model a cube s.tarting with a square surface generator. and the rotational sweep

G cou Id be used to model a cone given a rectangular triangle generator. Tfte sweep approach

is prefereèf wh-en' dealing with flexible solids instead \ of rigid bodi~s due to the structural

way ofadding the scaling factors in the PD curves. If' the current work. the translatiànal

and (otational sweep have been implemented and will be explained in greater rryathematical
?

detail later.
1

-3.1.2 Constructive Solid Geometry . .
• ,

Constructive solid geometry is another reRresentat~n approach for sol id mod-

el1ling. This representation. uses three entities in order to model a given solid: prjm;ti~

regularized ~oolean operators and rigid body transfor!l1atiollS (R~quicha 77). The construc-

tive solid geometry (CSG) techniques could be model/ed by binary trees; the nontermi-

(26

(~

3.2a

()

•

3 :'2e

Figure 3.2 Sweep Representations.
c ,

o

)

'3 1 Solid Modélling Techniques ,

3.2b
J

1

1 f.. ..

nal nodes represent either rigld motions (tr~nslation, and rotation)' or regula<rized boolesn

,?perators,. (in 'order to ensure the non construction of dangling deges o~"surfaces): the

terminat' nodes are ,either primitives or arguments defining the rigid bôdy transformations

[Requich~80). th~~ is shown in figure 3.3. <. 4\. /'
co 1

The basic boolean opera tors being used are the regularized union, interseÙion.
[, .

and difference. The CSG representations are very attractive in many ways~ Primarily, the

','
27

"

o

o

o

o
o u (

3.1 Solid Modelling Techniques

0-

....

.: Ragu 1 ari zad

./

Figure 3.3 CSG Repres,entations

problern of representing a particular solid coul.d be stated rigorously through the(use of

boolean operators. Another advantage of the\ CSG is thaOt jf the pri~jtjves are valid a'1d ."
• <!i.

bou.nded and if the booleàn opera tors are regularized then the resultlng solids are valid and
. .'

bounded. this is verified in PAOL (Voelcker78J. The mo~t common primitives are ~he cube.

the cy'linder. the sphere. the cone and the torus. In general. however. practical systems

offer facilîties. tOd crea te quasi-primitives using techniques such as sweep repre~entatjons. ..
o _ \

b
6'

" \'. \ 28 0

~ '" 't
,) 9 ..

•

'"

•
3.1 Solid Modelling Techniques

and it is the user' s responsibility to verify their validity. The primjtiv~s whic~ are part of

a CSG -t'II()delling system a~e usually represented using ha)r-spaces. The half-spaces are

defined as two unbounded regions of a cartesian' space divide~ by an unbounded surface.
.. .. l) Q

As an example. a cylinder is represented l:iy four half-spaces:.two of tbem cy!indrical and

obeying the relation 0 :::; x 2 + y~ :::; r2 and two planar half-spaces obeying "the relation,

a :::; z :::; b. as shown in figure 3.4.

ln CSG representatio'ns. as in sweep representations. the rigid body transforma-' '.

tions could be extended to inc/ude flexible bodies. by adding scaling factors. Furthermore

it is possible to add otherbkind} of transformations such as symmetric transformations.

however. this is limited by the boolean algorithms used in the CSG. The CSG also has

disadvantag~ such as the comple,xity in computing the solid's boundaries. This problem is

called CSG fo Boundary representations conversion, and is very useful if we plan to detect -

Interference between solids .

...

o 0

/
i

Figure 3.4 Half~pac_es

3.1.3 Boundary Representations

- Il!i> 0

The boundary of a solid is a closed region in 3-D which seperates the inside ,

from the outside of the solid. The region has to be weil formed which means closed . ..
orientable. non-self-intersectinl§. bounded and connected [Mortenson85]. The bounding

29

,,0 l

o o <

,

..

...

11

\ .
3.1 Solid Moqelllng Techniques'

surface is composed of the union of faces composed themse/ves of edges and vertices. The

edges cou/d be-interpreted as bounded int'ersections of ha/f-spaces. Then we can define a
D

solid as:
" n m

S := U n ha.lf-spaces (3.2)
CI r 1=1 J=~

The faces or patches (2-D) of an obj.ect must satfsfy ~he following conditions as stated by

Requicha [Mortenson85] :
•

1-

2-

3-

4-

5-

A finite number of faces defines the boundary of a solid.

A face of a sol id is a subset of the solid' s boundary.
0'

The union ~f ail faces of a solid defines its boundary.

t

A face is itself a subset or limited region of sorne more er'ttensive surface. ,

.
A face must have a finite area and be dimensionally homogeneous.

~

The five $=onditions mentioned above guarantee the unambiguity of the faces and
'. .

thus Qthe unambiguity of the solid made of these faces. Boundary representations (B-reps)

are nôt unique. since the faces tèould be chosen ârbitrarily as long as they co ver the solid
o

complete/y without overlapping. This non uniqueness is demonstrated in figure 3.5.
o ,

o

Boundary representations are suitable for representing complex solids. let us

suppose we want to represent a ceftain solid S. this task éould be decomposed recursively . .
by itating 5 as the union of two less ~omplicated solids A and B. S = A u B as found in.

\

[Barnhill74]. This scheme is further decomposed until we reach subsolids that we already
" . .

have cr,eated.
o
or we can create. The .problem is th en to define the bounding surface of 5 . .

as.a function of the bounding surfaces of the final subsolids. Som~ algorithms have been

developed in order to solve this prob/em [Baumgart74]. A typical boundary r~presentation

could be model/ed by a tree. not necessarily binary. as shown in figUfe 3.6. Bo"undary

representations- ha;e found ~'/ot (suc~ess in~applications invo~ving computer graphies'.

30

c ..

(

0: . 3 1 So/id Modelling Techniques

o

\

-']11/ » ~J' /

, , /

1/

D 0

Figure 3.5 Non Uniqueness of B-reps

-This is due to the fact that they are easily handled for graphies manipulations because every

solid. at the lowest level. is represented as a list of vertices whicl\ are suitable for displaying.

Boun.dary rep!esentatio~s have also been extersively used for roboties app/icati~n~ where

collision detection is a major aspect. Lately sorne further developmentin mechanics have
\

rendered these representations suitable for representing assemblies. This is due to the,

simplicity with· which the volume. first and second moments of inertia could be c~lculat~d

using line integrals. since lines are part of the boundary representations structure. - The

methods in order to do 50 have been developed by many as explained in [Lee82a. Lee8~b.

Woodwark821· However. many unresolved problems' remain in these schemes such as
o .

the validity of a givén representation: is a representation closed. oriented. dimensionally

homogeneous. and 50 on? Boundary representations have been used"in this simulator. for

reasons that will be mel1tioned later.

o ,

3.1.4 Cell Decomposition and Spatial O~cupancy Enumeration

Cell decpmposition is the most natural way to reQl'esent solids. The idea is
~ Q

simple: Starting with a complex solid. decompose it in~o different pieces called subsolids
1 1

31
o o

o

,)

/ - 's

?~t3
~'"

/\/\ :':: i

v1 v2 v3

Q

Figure 3.6 B-reps tree
\

3 1 Solid Modelllng Techniques

. S" lld

..
Faces

Edges

Vertices

t

or cells. where each piece shauld be easier ta representpthan its own parent. If necessary.

we continue to decompose the subsolids until we reach a set of subsolids which we have
.:>

o

the tools to represent. The solid we started with. is then the union of ail the decomposed
"

subsolids or cells. This representation approach is. of course. non unique but unambiguous.

The cell decomposition schemes could be cônsidered as particular cases of CSa' schemes . .
where the only operator used is the "glue" operator. which is a restriçted union operator.

The "gl~e" 'operator c~uld be defined as the union operator between, two'ce/ls meeting

exactly at a common face. edge or vertex. In the cell decomposition techniques. the final
. .

cells need not to be identical. A particular case of cell decomposition is spa~ial occupancy

enumeratioo. where the final cells are of the same shape. usually cubical. Sorne other
o •

schemes have appeared where the final cells are spherical for example as in [O'roorke79].
1

ln our discussion we will use cubical final ,cells .. and the characteristi~ of th.e cubical

example should be applicable to ot!rer types of fin~1 cells. Usually the final cells (cubes).
r

of predefined size. are placed on a gr id in a three dimensional space. Representing a solid

means placing it on th~ grid and filling it with these cubes. These representations have

two major advantages compare'd to the general cell decomposition techniques. of which the
oP " 4-

first is the simplicity with which we c~n access a given pbint in space. and the second

32

\

(

c-

()

Q 3.1 Solid Modelling Techniques ..
is the uniquene'ss of the represent'ation (Saer79]. However. there are disadvantages, of

which the biggest is probably the amount of storage needed for these representations.
~

, especi~lIy as the amouut ûf storage increases considerably ~th the predefined resolution

, of the representation. The ,..§maller the final cell is. the bigger' the reso/ution. The coding

of these representations is done the following way: Any given cell is either empty (0) or

contains part of a so/id (1). This coding is· very redundant [Redd781, because thére is

cl high probability of finding large ~treams of 1'5 or O·~ before finding ahy change. The

changes are just around the boundary' of the soli>d. In arder to avoid.this redundancy. and

at the same time save memory. another technique appeared and was appried primari/y in

2-D. It is called the quadtree. The quadtree is a method which uses spatial occupancy
'.'

enumeration more efficien~JY. It is based on recursive subdivision of a squa're in quadrant

{Hunter79]. as shawn in figure 3.7. At any stage a qu~drant coula have three states'r/d ..

different decisions then have ta be made: . .

1- Full quadrant. no fûrther subdivision.

2- Empty"quadrant. no, further subdivision.

3- Partially full quadrant. subdivÎsion.
Q

/
1

/
/
/

. \

We continue ta subdivide the quadrants un~il th~y are either f~1I or e~ptyo or
• 1

until we reach a predetermined reso/ùtion. As we can see from figure 3.7, each node of the

tree is subdivided in four. if it represents a partially fu-" quadrant. In this representation,

tbe nodes and their state are stored o>in partial arrays: the maximum size of these arrays

is 2n x 2n (Mortenson85], where ~ rep-resents the height of the tree. In our example of

figure 3.7. n = 3 and thus the maximum potential array size is 64. but with the quadrants

method. the array's size is 45. the quadtree method converges very quick/y ta the objects'

details. becau~e from the very beginning. the totally émpty or totally full quadrants are

eliminated. The ~~dundancy problem is also eliminated. In the example shawn in figure 1

. -
3.7. square 25 is represented by just one node instead of four taking the resolution ta be

'33

1.

,

•

J.

C>

1

•

o

o J
3.1 Solid Modelling Techniques

the same as square ~1. In order to acootately represent one 2-D entity. we have to go

down to very smalt squares. where the size of the smallest square in this representation lis

dirMetly related to the surface curvature and .. the range betnn the fine and coarse features

.,f the surface to be represented [Mortensot185]. / .

o

. /

n
1

1 i 2 S 1
1 1

3 4 611 13
5 7 12 1~

15 16 25',

21 23 17 19 27
22 24 18 120 28

o Partly full, dlvide.
o Empty.
• Full •

Figure 3.7 Quadtree Representations

.. -

29
30

9

10 ,

3~133
3 34

26

1

The success of these representations has led to its 3-D analog. called the octreeJ
,) r

representations [Meagher80]. The name comes from the "fact that each cube (instead of
'1

square in 2-D) is subdivided into octants. A subdivision of the- cùbe is maèfe if the cube

in question is partially full; otherwise if totally empty or totally full. there is no further

subdivision. The representational tree JOÇ)ks like the one of figure 3.7. except that every

node. if divisible. has eight descendants instead of four. The maximum poten~ial array size

in these representations is 2n x 2n x 2n • where n is the height of the tree. Using the octree

34

, .

"

c

l

o

c

•

. 32 ')Approach Sefected

coding however.'(.he amoun! of memory needed is always les.s thaQ. the maximum size. as

was shown in the 2-D analog. 0

o ~

Octrèe and qu~dtree representations are very usefuJ and easy to manipuJate.

Meagher (Meagher82) develop,ed sorne algorithms in order to translate. rotate. scale solids

represented usiflg spatial occupancy enumeration techniques and in particular octree mod-
.'

els. he aslo developed techniq~es to compute the geometric properti~s and, perform the
o 0 ' •

interference analysis. Octree representation5 are particularly suitable for the computation
• Cl

of certain geometric properties of solids 5uch as volume. first and second moments of

inertia. because these computati~ns are u5uaUy reduced to the 'computation of geometric
,

properties over cubes. These representations are a/so suitable for interference detection
o

since ·the conversion to 8-reps is not difficult~ The spatial occupancy enlimeration tech-.
niques are not very structured however. and can e\6en be de.scribed as heuristic. compared

to the other approaches discussed above. The success of the octree representations do not
"

depend only ?n the sol id to f eperesent but on its position and orientation as weil:

.
3.1.5 . Existing Solid Modellers

~ .
There are other representation schemes ~sed for solid modelling. but the repre-

sentations mentioned above are the ones which most avoid problems sJJch as: Ambiguity.
, .

incoherence and creating non-sence objects. Therefore most commercial solid modellers
,

use CSG (PADL(VOEL78]. GMSolid[Boyse82]). 8-reps {ROMOLUS[Mortenson8SD. and·

..swéep representations (TRUCE[Wang86]). A survey 'On the exsisting solid moèJell~rs can
'"

be found in [Baer79]. (

l
3.2 Approach Selected

ln this section we will compare the previously mentioned approaches and talk
, \ • Il

.... about sorne conversion techniques from one approach'to another. At the ~nd of this section

we will make a choice on the approach to be used after defining the goals we are seeking.

35

o

r.

1

o . .
"

3.2 Approach Selected

3.2.1 Comparison

.'
F

The most common approaches used in solid modelling are swee"p representa-. '"
tions, CSG. B-reps and spatial occupancy enumerê!lion techniques. Each approach has

advantages which make it the most suitable for a particular application. Sweep~ represen-
, ,

tations are very structured mathematically and easy to extend: they have found success
,

in applications where the shape of solids changes du ring 'J certain task. as in the materlal

removal applications. Sweep representations are theoretically very general so they can

supposedly handle any type of solid. However. it is difficult to ana~tlcally describe the

volume swept by a certain generator following a certain director. In ~ost solid model/ers

the rotational and translational sweep are usually the only ones implemented. This IS due

to the fact that any trajectory could be decomposed into differént segments for position

and different arcs for twisting. The second most structured technique in solld modelling

is CSG. This approach gets its popularity mainly for two reasons: first. its use of boolean
~

opera tors to hierarchically represent complex solids and second. the certainty of modelling

valid and bounded solids. CSG representations have been ex~ensively used in assembly.

represent1tions. and are 'certainly the most user friendly approaches. However. they are

usually meant for systems where the question 'of consistency arises. and they are dlfficult

to convert to other representations. Bounaary representations are third in mathematical

structure. and t,heir aim is to represent a solid by bounding it with a 3-D surface. These ..
representations' have found great success in roboties. especially If interference detectlon is

an important objective [Boyse79J. B-reps suffer. from validity che('~ing. and the algorithms

developed to this end are usually h~ristic and time consuming. 50 that the problam of .. - ,
validity checking is left generally to the user. The final approach is spatial occupancy

enumerat'ion. ~nd particularly the octree representation. which are based on the fo/lowing

concept: given d rough approximation of the object by a cube .enveloping it. gradually re-
,.

fine the description of the objecfs parts by providing ~ierarchically sma"er .cubes. These

approaches are"' finding widespread use because bf theïr hierarchical, structure. b'ut are still "
•

heurisdc and not weil defined mathematically.

1
36

o

(

1

(

3.2 Approach .Selected

As mentioned before. practical solid madel/ers usually use more than just one ,
approach interacting with the sa me dat3J11odel. In order to make this possible. a conversion

~

algarithm from one approach to the other is embedded in the soHo modeller'. In the next

section we will present some conversion algorithms.

3.2.2 Conve~ion Aigorithms

"

Many conv~rsion techniques have appeared in the literature in order to establish

'" compatlbilrty between different approaches [Light82]. In this section we will introduce three,
.,

conversion aJgorithms. The aim of this section is not to go into implementation details but

to present typical examples of conversion for the sake of d~onCstration.

The first algorithm we introduce gere is the ,pattern recognition decomposjtion

~Jgorithm which is used in the sweep-to-CSG conversion. In this typè of conversion. the
1

soJids represented using sweèp representatibns are giveg. and the algorithm tries to identify . '

•

patterns which wiU construct'the primitives in the CSG approach. Thi~ first operation is _
" Q), .,

, called thé search for pattern. Once a p~ttern is found. it is classified. This pattern
,

qassification operation is done by taking one poj,rt of the pattern and testing it to estabJish . .
whether it is inside or outside of the current sweep outline. The next step is the construct

pattern soJid operation. which constructs the subsolid to be considered later as a,primitive.

Once the subsolid is constructed to malœ a primitive and classified in order to kn9w the

boolean operator to use (union if classified inside and difference if outside) the information
'0

Îs saved in a stack which is Jater traver&ed for the CSG representation. The detailed .
algorithm is presented in [VossJer85]. Note that. this algorithm fails in some circumstances

dur'jng the search for pattern ôperation~

The next conversion algorithm 'le will Jalk a~out· is used for thé CSG-to-B-reps

conversion. Th~se kinds of algorithms are cal/ed boundary evaluators and usually tend to

be very long ~nless sorne heuristic tests are included. The basic idea is to suppose that

the surfaces of the subsolids consthlcting a CSG model are unbounded. First. intersect
o

37

o

,-

. .

o

\

3 2 Appro3ch Selected

each surface of a subsolid A with each s.Aace of another subsolid B. The unbounded edges

produced this way are the tentative edges or t-edges as explained in [Boyse79J. The next
~

step is to intersect these t-edges with the unboundeà ,surfaces in order to produce points
~ .

Iying on the e~ges. These points seperate a t-edge..in diff~ent seg~nts which are then

classified as being outside. inside or on the boundary of the whole solid. The real e"dges ' •
•

are the segments on- the boundary of the solid. The classification of the the segments is
• ot,

a difficult task: without getting into detail. we can mention that a common technique to
, '

use to overcome this difficulty is the fleighborhood model teGJ'mique [Mortenson85]. The . (

boundary evaluator algorithms guarantee one attractive feature in that the faces of the

overa"~olid a,re (subsêt of ~he facescof the subsolids it contains. This fact cbuld be used

for verificatioh after the collVersK1n~. ':,... ,

lit ~

!he'last conversion ~Igo.riihm we introduce is for the octree-B~reps conversion

This conversion algorithm is sum;"arized in four different steps as expiained in fTosiyasu8Sf. , .

1- ~onverting an octree 10 an exlended oClree.l . -•
2- Labeling the entities of the extended octree.

3.. Gênerating tables of boundary representation information.

4- Generating a sequence of Euler operations.

ln this description of the algorithm. we explain the four different p'oints men-..
~

tioned above. The fir~t point is basically adding geometric ~nforll1ation as an extension to'

the leaves of an octree. This geometric inf9rmation is the body. planes.· éd/{es and vertices

of each octant. The body is a reference' to the name of the modelled object. and wc mi-
. ~

tially need one .. body. six planes. twelve édges and eight vertices for each' cube. However.

/' considering the adjacent Jeaves of the tree. this could be reduced to one body. th,ree planes
u

'

three edges and one vertex in order to completeJy define an octant. The reduction is due ta

shared information: for example. 'iY'tube has.eight vertices. seven of which a;e shared with . "

38

\

(

1 ~
1 .

(

3.2 Approach Selected'

., ~\

adjacent cubes to make their origins. The next step is labeling. which is a hie'rarchical 3-D

application of connected graph I~beling. a typical "if-then" algorithm. After labeling therejf>
'';<4

the boundàry table generation. There are usuafly five tables to generate: the object/~(an~;"
table. edge/vertex table. plane/edge table and then two data tabies. n~rnely. the verte~
coor~tes tàble and the plane-normal-vectors table. Once these tables are generated. the

, < •

next step is to generate a se,!uenèe of euler operations that will construct the ~-reps of \

the desired solid. This algorithm is fully detailed in [Tosiyasu85]. Note. however. that the \

,!Igorithm does not work If the object includes cubes connected by just one edge.
o

11

• ,The aim of this se~ion ~as to ,demonstrate that the conversion algorithms ar.e

useful and show thcit methods of solving the problem. ln the implementation part-of this
"

• c~aPter ~e will see in greater det~ co~versjon technique dey~lop'ed for the

slmulator s purposes. " •

3.2.! Oeéision

ln thi~ section we will make a decision on the approilch to be us~d'- and will

give the reason;--for our choice. The B-reps. seemed to be the most appropriate for the , ~

application we are seeking. ~amely. a robotie workcell simula\ion. There are two major

reasons for making"this choi~e: First. lookTg at our dat~~odel explained i,n chapter 2. we

notice that the lowest entity in the hier-3'féhy is a surface or face. which is the basic entity

for the B-reps< approach. Second . .i~ any roboties application.,d' problem of interference

detection or avoidance a'rises: the B-~eps have proved their suitabili'ty for those types Qt'
problems [Boyse79]. One can argue about the weak~ess the B-reps present when checking

,

the validity or cQnsistency of solids. This 1s a great ~rawback for a soJid model/er project.

'but ~ince our aim is primarily simulation and nor necessarily to develop a perfed solid

modeHer. we feft the validity and consistency checking to the u.ser. In the data sublanguage'

explained earlier we check for the validity <?f a surface when it is spedfied sa that it is

'impossible to create dangling edges when ,modelling a solid. but if the user does not check ~
~

for the whole solid' s validity. it could result in dangling surfaces. open solids or overlaped

J

39

..

,

\

o

-

il' ,

\

3.3 Implemented Solld Modcller

surfaces: If we had based our éhoice just on the suitability of the datamode'l. the second

a/,ternative would have been the octree .representations. but the 'fâct that they are heuristic

made them unattractive.

The ~Olid ';'odelling pa;t of tJ. simulator is ba~ed on
,0 •

the B-reps approach.

however this approach lacks genera/ity. This means that the mathematlcal tools developed .
in arder to make a pa~ticular solid. for example a sphere. can not be used to crea le .muther

solid such as a cylinder. That is why we co~sidered developing a more gener<ll. slrudllind

approach. and the obvious choice was that of sweep representations. Since our dat.llllodd
p ,

suits the B-reps. we developed a sweep to B-reps,conversion. The mathematlcal dcrlvallons
, r-

for t,ho!! B':reps approach and the conversion sweep to B-reps will be given in the next section

3.3 Implemented Solid Modeller

Our goal in this section is to provide information about the soli d' mode 11er and

its interaction witH the datamodel described in chàpter 2. We kn~ that the first 3-D

entity in our data~od~' is what was cal/ed a bl~ck. so o~r aim is then , be ablé to create

the 3-D subsolids at the block level. These subsolids would later be considered as entities
. ,

to be attached to higher level-solids by the attach operation. Every. subso/id should be
J

pr~sented as a tree whose branches are transformations and whose leaves are faces stored

" . as surfaces in the datamodel. Of course there is no need to have different surfaces if

we are creating regular solids; for example~ a cylinder of 32 fac!!s. will need one surface

1 pointed to by 32 different transformations and another ~urface pointed ta twice in order

~o close the cylitlder. Other subsolids such as spheres will require more than one surface
~ ,

in order to be constructed from the same data structure. l'he.next paragraph will present
• <>

the boundary representation of sorne common subsolids: however the same idea applies to
"

other subsolids not mentioned here. ..
" 3.3.1 Exarnples of B-reps

.
ln this section we show how to c~truct sorne subsolids using b~undary re.pre-

40

(

•

(

3 3 Implemented Solid Modeller

sentatlon techniques. We. choo~e ta give as examples a cyltn~er. a sphere and an ellipsoid. :

and we will dlscuss the rep~entation of these subsolids.in the datamodel we have created.
1 ,

3.3.1.1 A Cylinder
'?

The necessary specifications needed in or der to construct a cylinder are five:

the name of the cyl in der to be stored at the block level. its height h. its radius r. the namê

of the surface to be used for patching. and, the number of patche~ n The surface to be
,

used for patching is usually a unit square surface. and If thls surface does not eXlst in the

datamodel. it is automatically created. First we. determine the existence of any block with

the sa me na me as the cylinder in question already loaded in the datamodel. If the search is

" positive then the action is refused and control returns to the data base manager at the key
.

tree matcher If the search is negative. meaning there IS no block of the same name as the
?

cylinder. we then verify the validity of the data being specified to cOITStruct the cylinder.

The next thing to verify IS the existence of the patching surface in th~ datamodel. and If It

does not exist It i:- creatad as a unit square and 'Iinked to the linked list of surfaces .

y

x
r

'patch i

L-______________________________ ~ ____ ~.;

Figure ~.8i Top View of a Cylinder o

Figure 3.8 shows part of the top view of the desir-ed cylinder. where we can see
~ . .,.

that

(J = 21l' (3.3a)
n

41

;\:(,

. t •

1

3 3 Implemented Solid Modellcr

l = rj2(1 - cosO)

The variables l. from equation 3.3b . and h the height of the cylinder. would be used as

scaling fa dors to the square surface. For the cylinder It is easy to compute the transfor·
./

'.
matlon to patch one surface as given by 09 param~ters (5 RT) ~ sçaling (S XI SYI S::). rotatlllg

(Rx,Ry~Rz) and translatmg (Tx, Ty,Tz). We will now show how to calcula te ail these

parameters for the i th patch. Fr~m figure e3.8 we can get the deviation of each patOch wfth

respect to the horizontal x axis o

o

Ql = cos- l (ysmO)

, 1 r
Q2 = cos- (T sin (20) - COSQd

ThiS formula is recursive and IS applicable tq, the, ,th patch as follows'

t-l

~ = cos- 1JYSzn(IO) - L cos(QJ))
J=l

~

(3.4(1)

(3.4b)

We now'have ail the information for scaling and rotation. but must still find the translatlahal

"part of the transformation. Let us cali Ut C the translational vector Frbm figure 3 8 we can

easily see that:

u, _ (~::~~;~») (3.5)

We can now glve the results obtained to construct a cylinder out of a 2-D square. The

operation involves scaling. rotating. and translating by the following factors: ". Sx = l, Sy = h,

1'(

R;x = l' Ry = 0, Rz =~Qt

(T;,:, Ty, T z) = u;

(3.6(1)

(3.6b)

(3.6c)

The above equations are valid for each transform_surface potnting to the Untt square surface
, ,

used in patching. A graphie result is shown in figure 3.9.

'-. The n + 2 transform_surfaees would have names whose prefix, iS specifjer by

ttle user. Moreover. the transform _surfaces eould have been specified as homogeneous

, 42

/

o

J.

(

. C
.. ,) î

z~

3 3 Implemented Solid Modeller

- , -'

\ 0 " ,0

Figure 3.9 B-reps of a Cylinder

transformations instead of sepe~ate SRT factors. however in this example we decided to
o '

show the SRT instead. as they are easier to understand. Once ail this is qone. the cylinder

is dosed at the top and the bottom by a certain surface. The appropriate surface for closing
o

, \
is created using the information from the vertices of ~he top or bott6m of the cylinder.

3.3.1.2 A Sphere
o

, 1
o

.~ , .
For a sphere it is not possible to compute the transformations as a set bf SRT

factors as we did in the case of the cylinder. Instead. homogeneous transformations will be

computed since'the transform levels in the datamodel support both types of information ..

To construcl: a sphere and link it to the blocks' linked list we need four basic parameters: .
the na me of the sphere to be stored as a block. its radius r.-the number of faces per half

slice o{ the sphere n. and the number of slices for the whole sphere m. Sorne tests are first
, ~

performed for the validity of the parameters. aQd then the computation of the homogeneous

transformations starts. The number of faces "~er ·Wal(slice is the number of surfaces that
~

-have to be created. and later attach,d witoh different homogeneous t.ransformations to make

~ the whole sphere. A general face of a slice,,~s shown in ~igurè 3.10a. a ha If slice is shown

in figure 3.10b. and the position of a slice on 'a, sphere is shown in figures 3.10c and 3.10d .

Our, purpo~ is to first cons~ruct the n fequired 'surfaces and then to find the homog~ne~us

~nsformations to move them in space in ord~f, to patch their appropriate locations. The

43

1

0

?

o

3 3 Implemented Solld Modeller
/'

construction of the surfaces is easily performed after deriving the following equations based . , .

on figure 3.10a:

..
fi ::::. 27r

m
7r

a::::.-
2n

The length w is the same for ail the surfaces (fig. 3.10a)

o
w = rJ2(1 - COSà).

We can also derive the other dimensions of the surfaces. recursl~

•
lit :..- rJ2(1 - cos~)

/
lUt::::' 2rcos(za) J2(1 - eosf3)

llt ::::. lUt-t

(3.7a)

(3:/b) ."

(3.8a)~

(3.8b)

(J.8et
where 1 ~ i :::; n. Notice that since [un is equal to zero. the nearest patches to the

pole of the sphere are triangles. Once the n, surfaces are created, they are stored at the

surface leve) of ~he datamodei: their names should be specified by providing a prefix. Now

o that the surfaces are available, we should compute the transformations to manipu/ate them
;'

accordingly. Knowing that each surface is pointed to by m different transform surfaces in . . .
, . order to make a who/e circumference and denoting ~y j the slice's order in th,e circumference.

we compute the orthonormal basis 8:J = (e1tJ' e~tJ' e~~J) attached to the same surface

at each desired position. as shown in figures 3.10a and 3.10c. The basis B' should b~ IJ

computed ~ith res~ec: to the world basis ,8"::::,"" (ebe~,e3). The .tnree vector~ fh)' r21)'

and r3iJ .~hown in fjgure 3.10d. are di.rectly related to the ~asis B:
J

• and we èan now give

the necessary formu/ae to compute them:
o

(

cos(ia)cos(j,B))
rhi::::' r cos(ia)sin(j,B)

sin(ia)

• (oCOS(ia)COS(U + 1),8»)
r2,j = r cos(ia)sinJ(j + 1),8)

- sin(ia)

,

(3.9a)

(3.9b)

44

l'

, .

c

, ,

, .

\

r'

3.3 Implemented Solid Modeller

(

'COSJ(i + 1)a)cosU,B))
r3z] == r cos((i + 1)a)sinU,B) = rl,z+l,j

sin((i + 1)0:)
1

(3.9c)

--~ Th,tse equations are. applicable for 1 ~ i =:; m and 1 < i =:; n and are ail

expressed with respect to the basis 0». °From the above equations we can express the basis

B:] as:

(3.10a)

r3z} -r li} (1

li r -r. Il - cosÎ)ehj
e

l _ _ 3--,t]~_1-!z]~ ____ _
2'1.J - Stni

(3.10b)

and o

(3.l0c)

The above equations define the rotational part of the homogeneous transformation. The

- translational part is only defined by the vector rh]; thus the whole transformation becomes:

(3.11)

Through the above procedure. we crea te just one heniisphere. In order to create

t" other half. we l1)ulti~ly ail the homogeneous transformations by a reflection with r~spect
to the Xv, plane. and link ail the transform_surfaces together. The final tree s~ructure of

~

the sphere as stored in the-~atamodel is shown in figure 3.11.

This idea of attaching a basis to the surface to be patched and then to compute . "
it at the appropriate location of the surface on the solid wÎth respect to theoworld basis

ô

is easy to apply and requires no more than geometrical techniques. Moreover. considering

the regularity of the primitives we want to create. it is usuéJlly possible to find rec'ursive
. ./

approaches ~nd hence re~ursive programming. Examples of spheres that have been created .

with ·this approach are shown in figure 3.12. having different (m, n) but keeping the same
, "

radius for comparison.

45 ..

,

/

.'

• 0'

o

15' 3 3 Implemented Solid Modeller

y

6
lu

.-----..

ë2 ~Ir-\W.
i ë1 ~\ o J

11
x

n=3

(3.10a: A General Face.) (3.10b: A Hdlf Slice.)

z

€3ij
..... , .
f,'!llj

Y

(3.10c: A Patch'at desired position.) (3.10d: Construction of a Sphere.)

L-----------4-------------------------------------~---------------------~-

o

Figure 3.10 B-(eps Construction of 51>heres .

-r--~----.--

Block level

SUi'face level

, ...

m: number of slices/spher~

-0-, .. -f!?IJ

n: number of faces/haIt silce

L...:+ _______________________ -' ________ .- .

Figure 3.11 Tree Structure of a Sphere.

46 0

.-

0

(

tI

~.3 Implemented Solid Modeller

0

œ • •
n = 2 n '" 4
m .. 4 m .. 16
,. .. 2 ,. .. 2

-'.

Figure 3.12 S-reps of Spheres.

3.3.1.3 An Ellipsoid

1 " e

Creating an ellipsoid is ,simple extension of a sphere. andothere are two possible

'" courses of action. Let us suppose that we have alread~re~ted a sphere'S at tlie block level.

We can attach this sphere 5 to an object E. 4sing the ttach operation. by specifying a

_ transform_b/ock whiCfh has different sclàling factors in . y. and z respectively~ Ho~ever. this

means that an ellipsoid is stored as an object and th~ sphere as a block. If we wan't to store
o

the e/lipsoid as a block in the datamodel we can copy the sphere 5 at the blocks' level to
, '.

an ellipsoid E at the same level. since the èOpy query accepts transformation specifications.

This means that the initial sphere is used as t) template for the ellipsoid. Figure 3.13 shows

two elfipsoids which have been created from the two spheres of figure 3.12.
, .

3.3.2 Examples of Sweep Representati,ons

The above examples showed the B-reps manner of representing solids: The
'0

most general idea in the 6-réps is the one used for constructillg the sphere. wh~re a

certain basi1 the appropria~e patching location. is exP.'tessed with respect ,to a fixed

47

"" 0

(

1

o

o

t

3.3 Implemented Solid Modetler

,
5 x .. ~_Y .. 0.5
S:z • 1

Figure 3.13 B-reps of Ellipsoids.

basis. generally the wor/d coordinate basis. Thir. determines the transforma~ion needed in

order to perform the necessary patching. What is attractive about this approach is the

possibility of ex pressing the forn:lU/ae recursive/y: because of the uniformity of the B-reps

in representin~ regu/ar solids. However. this approach is very dependent on the subsolid

to be created. and the mathematica/ derivations had to be developed for each subsolid

independently. Seeking flexibility. we have developed two .sweep types. the translational

sweep and the rotational sweep. We will refer to this feature as sweep but it is really a
,f

sweep to B-reps co_nversion since the final result is in terms of patches .bounding the solid

to be represented. as will be shown later. This sweep feature helps to creat~ non regular

solids as weil as regular ones. and the advantages of this approach are weil known from
t

previous discussions. In this implementation we consideredosimplified cases of sweep. the
, 0 •

first simplification is 'applicable to both the translational and the rota~.ional sweep. notably .
the fact that the generators to be used are supposed to be surfaces rather than solids.

This limitation cou/d easily be eliminated if needed because a solid itself is represented by

surfàces in the dttamodel. Some other simplifications have been made and they will be

mentioned seperately in the sections describing translational and rotational sweeps.

48

-----."

c

"

c

3.3 Implemented Solid Modeller

3.3.2.1

The idea is the following: given a surface S. sweep it along a straight di recto;
, ~ .

for a distance h. The specifications needed in order to perform -this are: the name of the

block to be created. the name of the generator to be used. the direction vector.,the length
) , ~

of the 5weep. and the na me of the surface to be used for patching the route swept by each

edge of the generator. In-' this particular exa~ple of translational sweep. we considered the

case where the director is perpendicular to the generatar. which means that the director is

parallel ta the z axis. As usual the validity of the specifications is verified. In particular. if
o •

the uniLsquare s'urface to be used for the patching is nat in the datamodel. it is cr~ated

and linked to the other surface~. Figure 3.14 shows an e.ample of a translational sweep. \

...

Gen.rator Sweep Result

r

...
Figure 3.14 Translational Sweep.

The final result of the translatÎonal sweep is a black pointing to two surfaces

through many transforrn_surfaces. The first surface is the generator itself which is used

49

o

3.3 .Implemented SoUd Modcll~r
,1 '

twice for closing the path s,wept along the director. and the second surface is a unit square
,

which is used to surround the path in question. Let 'us suppose that the gen~rator has m
•

. edges as part of its main contours and n edges -as part of its hole contours: then for cach
Ù J

bfock created with this approach"we have m t n + 2 attached transform_surfaces. III this
1

section we will give the SRT factors necessary to point to the m + n squares. The other

two sets of SRT factors that are pointing to the generator are obvious: one of them is the

specification for the identity.matrix. and the other is just a translation of h along the l axi5.

The SRT factors point~g to the.-square are developed next. We note that this algorithm

:::. ~:td:::: ~::::V::t:~:s d;::d(~ r::g

:
2t:
b
(ijr.th~·: ~:es;::o::c:::~ :::

determined as a function of Pt and P2: '

1

7r

Rx = 2' Ry =0,

Tx = xl, Ty = Y t, Tz = 0

<>

if Y2 ~ Yt:

oth~rwise.

(3.12a)

(3.12b)

(3.12c)

Figure 3.14 was created using the techniques developed above. fig.ure 3.14a shpws the

generator with'-holes in it. and figure 3.14b shows the result of the translatio'nal sweep of
e

the generator in question along the z axis for a certain height . .
3.3.2.2 Rotational Sweep

/ \
The mathematical derivations for th~ rotational sweep will be developed ln this

section. and ~e will not develop the SRT.factors for the transform_surfaces but rather the

transfo~mations themselves. Moreover. if we consider the most general case. the geriva-'
) CI '"

tions would be rather lengthy 'and cumbersome. We will the~fore develop the case in which

only one edge is sweeping and extend it to the general case later. In this particular.imple-
"

~n mentation we considered the case where the revolution is performed with respect to the z . [

aXIs. We also assumed that the sweep is don~ uniformly and hence the patching surfaces

/

/
/ .

50

(f

,

\

"

c·

D

3.3 0 Implemented Solid Modelter

created while sWèeping an edge are ail of same shape. Figure 3 15a shows an edge of length

'c to be swept with respect to the z axis, and figure 3.15b shows a typical sùrface that has

to be created for the patching. The specifications needed to perform the rotational. sweep
•

are the edge's geometric information. the ·resolution specified as the numb~r of times the

patching surface is used (n), and the name o~ the block to be created. Of course, sorne

~ tests are p~formed ta' ensure the validity of the specifications. The meth~d to be used

here is the followitig: for e~ch edge create a surface or patch. and therÎ express the basis
" ..

6 t = (Uttl u2p u~z) which is attached to the zth poatch with respect to the world coordinate

system.

,

z

c

,/ Uï • a ,.-
r+'

li x
// y ~

u3
/

//
,-

/' 15.a 15.b
x

Figure 3.15 Rotational Sweep.

"

This will dètermine thé rotational part of the transformation required to move
,

the patching surface to its appropriate location. The translational part of .the transformation

is determined by the vector UT, of figure 3.15a. l:et us now give the necessary formulae to
- .'

51

,

1

o·

3 "3 Implemented Solid Modeller

perform the creation of the patching surface: .
21T'

a= -,
n

11 = ay2(1 - cosa) , 12 ~ by2(1 - cosa) (3.13a)

,(3.13b)

The above formulae.define the 2-D surface that is created fo; each edge. what is left now

is to express the basis Bi attach,~q..,;:a the ith patch with respe~t to the world coordinate
~ .

basis B = (ub u2,U3)' given that fi -=. T'and 1::;: cos- 1(djc) then:

(

llsin(fi -1)a - fi))
• uh = -llcos((i ~ l)a - fi) ,

(

G'-~nlsin((i - 1)a))
u2v= -csinlcos(Ci - 1)a)

~ pcos"'f

and u3~ = uli x u2~' the translational part is given by:

"

(

-asin((i - 1)a))
UTt=, acos((~-1)a)

a

and the whole transformation pointing to the patch in question ie;:

,1 '

(3.14a)

(3.14b)

(3.14c)

The above equations ~ere deveroped for just one edge, however. th~t are ~asily extended '
-.

to a who/e surface since a surface is.itseJf constructed by edges defining the maili contours
.

and the hole contours. The rotatioiial sweep was deve/oped to be applied with respect to . . -
the z axis, 'but cou/d. of co~rse. b~ extended \asily. Figures 3.16 ,and 3.17 show examp/es ~

of ~olids th~t have' been er~ated u~ing the fotationa/ sweep. we n<?te that the cO,ne of figure

3.16 is closed. '

3.3.3 Furthef Extensions ... (• 0

. (
At thls stage. we pr-esented the imp/emented solid model/ei. It is based on

the boundary representatiofls. To extend its capabifity. a sweep t9 B-reps conversion was' - , .
added. B-reps representations are very specifie to the subsolid' being modelled and will

:~ .) " . ' . .J ' ,
., '52

_À

,"

.' .

. .
3.3 Implemented Sol id Modeiler

c
.'

o

"

r ,

.~
Figure 3.16 A Cone With Rotational Sweep

J
,

i

.'

/

c

1 Figure 3.17 f!'o Torus With Rotâtional Sweep:

c
always need extensions for other pos~ible subsolids. But. we. can suggest one po~~ible

, \J '"'J '
extension for the -sweep representations. namely. to develop facilities for specifyin~

/ _' ~ ,_ 0_

.director as PD curves instead 'ofjust a translational and rotatiorial sweep. This extension

....

could be conducted further to 9, components curves if dealing with flexible solids. _ The,

53

•

..)

l'

v

o

34 Graphies

translatianal and rotatio~al ièchniques developed for th~ sweep representations were made
, a

general en'i;ugh to accomodate the aforementioned extensions. -
p ,

3.4 Graphic~

The solids which have,been created u~ing the solid modeller need to be presented

graphically for t)1e simulation. In !his section we présent the datamodel modifications for

graphies purposes and the graphies facilities that have been dev~loJ}ed. If we look at our ~
- <) ,

datamodel. we notice that the solids at any 3-D entity level are presented by means of

transformations pointing to lower level ent~ties. this representation' scheme is propagated
, ,

'until the 2-D surfaces are reached. We have to modify this form of storage to something_
o •

easier to manipulate graphièâlly namely edges â~d vertices. This process is called tbe

world coordinat~s gene~ator. and the
o
entities obtained are the worl~Lsolids. Once the

"t
world_solids are computed the information that was stored in the form of figure 2.5 is no

longer needed. Theref(j.re. the previo,~s datamodel can be cleared usirfg sorne facilities in ,

the ~ata sublanguage~ The
r

datamodel of figure 2.5 is then replaced by another datamodel.
,

which is more appropria te for graphies manipulations: but is less user friendly. In the next

paragraph we present the world coordinates generator and the queries that could bf~ applied
, ;if'

on th~ wofld_solids. after this. we 'present ~ome graphies facilities that have been deve~/Pe~
l,. "

such as the view pO,int tra!lsformation. the clipping. the perspective view. the back surface

removal .. and the multiple windows faeilities. . .
'0

3.4.1 World Coordinates Generator

_. The world coordinates of the world_solids are stored the following way: eaeh
• o •

world..solid héls a name. a type (block. object: or scene). the name of the entity that it was
\)

created from. and a field of geometric properties: this information is stored in a world..soïid . .
str~cture. Moréover. each world_sQlid poinis to three other stn-!ctures. the first one is thè

• 0

beginning of a" linked list of 3-D main surface contours. the second is for the 3-D hole

a. 54

•

(
1

1

c

34 Graphies

,

surface contours. and the third structure is another wor/d_solid in order to form a lil1ked ,

list of world);olids. Each 3-D surface contour (main and hole) structure ,?oints to another

3-D surface contour in arder to farm linked lists. and pOints to the 'beginning of a linked

list of 3-D ver~ices, The representati~n is better shawn in figure 31.8. Hole contours were

omitted to simplify the figure. AII .. the linked lists are bounded by a begin and an end mark

ansf garbage collections is used as in the prev"ious datamodel.

b\:'gl n 1
w,'r 1 d_s('\ J 1 ds '-,-1, __ _

3-D
SCT

X'YZ

1

L-.-,--------JI-... -1 !'---

1 NULLI p-o~ NU~ '~ ~ '\
'~

"-...'-
"-

-.i NULL; :=r-o- 1 NULL

Figure 3.18 World_solid Structure

--1 NL'LL

Some facilities have been developed in order to interact witti the world_solids.

the ones which are visible to, the user are the creation, the removal. the showing, and

the saving and loading facilities, Sorne other facilities h'lve been impJemented in order to
'::,

accomodate the queries, they are. the searching and the memory allocation If needed. The

modification query has not been implemented since it is difficult for the user to modify 3-D

world coordinates. However. if the user needs to modify these coordinates it Îs necessary .
-

to go back to the other for'tl of storage (i.e the one of figure 2.5), A world_solid could be
"

created for any 3-D entity without distinctio? between a scen_e. â'n object or a block. We

should mention here that a world_solid Îs n~ necessarily Just one solid . it cou/d be made , ,

of many solids as long as they are supposed to be constructing the sa me entity or different

entities which are manipulat~d together: for example a table could be construded as a.n

object in the datamodel. an oscilloscope as another objet~ placed on the table., if those two

55

"

"

......
j..

J.

,"

o

34 Graphies
~

) sceoe r. 132 T11 T21 T31J i
r· \1- e,

,,-

) c .1 ob.ll:'ct s

l
.

• ~

. .. . , ,

,
----, >-

L) \iL) k blocks -::;;J

... (
G ()~ 1 surfaces

J
1 11 ok ed Ils t _1
,of main SCT

1 1 ioked lIst 1
1 lof hole SCT

1

1

Figure 3.t9 Structure of a Solid in the Datamodel

entities are stable with respect to each other. they could be grouped together as a scene

and then a world_solid would contain both of them.

Figure 3.19.,hows the' structure of a solid or a group of s.olids that ne~d to be

processed through the world coordinates generator. which transforms the representation of

figure 3.19 to the one of figure 3.18. where each entity is expressed as'
\

n m,

entity:: U U Tt.l(lower level entitY)t
,=11=1

,

(3.15)

where n' is the number of lower level entities. and mt is the numb~r of -transforrr'ations

pointing to the i th lower level eritity. The above equation is applied for aU th1! 3-0 solids. at .
the surfaces level. Both main afld hole contours are considered. Once the world coordinates

. "-
of a w~rld_solid are ~reated by i~voking the world coordinates generator. they should be

S6

o

<-

,

(

c

. '

34 Graphies

transformed to the view coordinate system aCld then processed grophically for the display.

the graphlcs facilities will be explained in the next section. '-
1 -(""'" '
1 J

3.4.2 Graphies Facilities.

Once a view point is specified by the user. we' need- to perform the view point

transformation. The coordinates of a world_solid are transformed and stored in a view
~

structure This structure is the one that will be modified for the perspective view and

for the motion. A view_solid structure could combine many world_solids in a linked list.

A vlew _solid structure cont;êins some descripti ve fields as weil as geometric fields. the

most Important descriptive fields are: the name. the color. and a field which. describes

the solid as movable or stable. The geometric fields are many. First the whole geometry

of the vlew_solid stored as linked lists as described for the world_solid shown in figure

3 18. Second a bou"nding volume is give~ as the dimensions of a parallelepiped. Finally

a basis is attached to the paréllleiepiped expressed with respect to the world éoordinate

system which will be used for the grasping operation. As usual the view _solids are stored
1

as bounded linked lists with garbag~ collections at each level i.e the view_solids level. the
, ,-<J

3-D surface4 countours level. and the vertices level. Ali the facilities that were stated above '
.

for the world_solids are applicable to the view_solids. Moreover. a'_modification facility has

leen implemented for modifying the descriptive fields of the view_solids. The view point

transformation is easy to perform once we express the ~iew coordinate basis with respect

to the world coordinate basis. Sorne simplifications have been made in (;mier to compute

the view coordinate basÎs. We suppose that the z axis of the view coordinate systelill is
,

pointing to the origin of the world coordinate system. We also suppose that the x axis for

the view coordinate system is parallel to the xy plane of the world coordinate system with

a predefined direction. In our discussion from n'ow on. matrices are 3 x 3 matrices and their

subscdpts determine the basis with respect to which they are expressed. The same notation

oints. If the subscripts are omitted th~n the default reference basis
. -

i!$ with respect 0 the world coor tate system. Let us now suppose that Q is the matrix-

that ,"xpresses the view coordinate '-vstem with respect to the world coordinate system.

't -"
'it 57

" ..
34 GrJplllcs

and V is the Vlew point known ln the world coordlnate system. then for each pOint P of

the world_solid we have:

(3. (6)

.
Next the clipping should be performed against a viewJng pyramid. The· user defines the

ratio g. where D is the distance from the view point to the plane of the display screen and

S is the screen size: a point is visible on the screen if :

and (317)

The details of the clipping alg?rithm can be found ln references such as [Newman 79J or

[Foley82]. We should state however. that the dipping can cause chan~es ln the vertlces

and can of course change the number of vertices or even surface countours. These results

are managed and stored in the same linked lists. If more space IS needed it IS a"ocatcd.
,

::~:::o::::~: ~:e::~:o::e:~r;~:Se:c:el:;;:::o:~i::er pUS~. "(f~~)CI':;'~hge t:,:~e::~:~t~:

-compute Ps (~:) . where Xs and Ys are the screen coordinates. and are defmed as

.\ Zv

fo"ows:
Xe" . " Yc

Xs = (zv) Vs:r + Vex• and Ys = (z~) Vsy + Vey
~

(3 18)

Where Vex• V.s x • Vey. Vsy are the cOplmonly used parameters to deseribe a window on, the

display sereen. After the perspective view transformation a view_solid is represented at the -, .
lowest level-by li~ked lists of vertices. eaeh vertex h~s_,t.he screen coordinates (x~,Y.d7' and

a view coordinate Zv which has stayed unchanged after the graphics manipulations. z'u is

n9t useful for displaying but will la ter be used for motion.

A back surface removal algorithm could easily be integrated. After performmg
il :,

the view point transformation we compute a hormal vector to each surface contour. If the 1

coordinate of the normal vector with repect to the view coordionate system is negative. tl1at

~ means that the "viewer is facing the surfac~ therefore the surf~ce should be "processed for

sa

0,

3 5 Geometrie Properties

the clipping and the perspective transformation. if the z coordinat~ is positive the surface

contour should not be visible. and hence no further graphic manipulations are needed . .
/

One attractive graphie fâcility is the use of mult.Îple windo~~ available in the

SUN workstation. For simulation purposes different views would be helpful to the user. The

different windows are stored as linked lists in the datamodel. they are id~ntified by names.

each window structure has ail the information needed for the view point transformation.
D

clipping. and persp~ctive view Each' window is O}anaged and served by a different process

r,unning as a "child"of the main program in order to respond to changes in window's .
properties such a~ c1osing. 6pening. and changes in size. In ord. to dispfay a partieular

solid. the user invokes the displaY!4command with the specification of the window. Ali the

queries that could be applied to the world..solids could also be'applied to the windows. Every

window' s structure has additional information whieh will be used later for motion. Only
• .. "

the bêlsiê facilities such as clearing a particular window or clearing a particular view _solid
" a . ,

in a parti,cular window have' been developed to ease the use of the graphies interface for

the user, As future work. we can suggest more graphie optio!1s that wou Id be helpfuï. such

as "zoom" to help the user to closely observe the motion i~ the wO'rkcell.

3.5 Geometric~ Properties

U~ually. after representing a sofid using the solid modellei 5 facilities. we are

i~~erested in computing sorne of its geo,metric properti~s such as the area of its closed

bo'undary. it~ centroid. a~d its volume· or ,O~h moment. In othis section. \ introduce the

. facilities that were developed in order to accomplish .this. ~hese facilities are developed to 0

fulfil the. fourth property given by R~quicha mentioned in section 1.

• 1

The area of a planar region could be considered as i.~e Oth moment in a two

dimensional space. The kth moment of a close,d region n in a l/ dimensional euclidean .

space is defined as: \ ,
1

"Ik :..Ia Ik(r)dQ (3 .. 19)

59.

'\

3 5 Geometrie Properties

where f k(r) is a homogeneous function of k th degree of the position vecto; rand is at the
., ,

same time a tensor of the k th rank. Let gm (r) be a m th -rank tensor such that:

div[gm (r)) = fk(r) .(3.20)

where m = k + 1. Using the Gauss Divergence Theorem. we can state that.

(3.21)

Where an denotes the boundary of the c~sed region n and n is the unit normal vector to

an. pointing out of n region. The computation of the oth moment can be reduced to

. J

..
'0 =.! r r· ndan

v Jan

r

(3.22)

as shown in [Angeles83} Using this above formula. the area and the volume of a world_solid
f

represented in the datamodel shown in figure 3.18 can be computed and these "Will be

presented in the following sections.

3.5.1 ~rea'

0'

Let us ~ssume that a solid is represented by n patches. the area of the solid . . "

is, theri the sum of the areas °of each individual patch: A = L~=l At' wh(er At is the

area of a patch. The problem is now reduced to the computation of the area of a patch.

Moreover. the area of a patch could be computed as if the patch were in a 2-D space. thus

an represents. in this case. a closed m-sided polygon:

(3.23)

Where an t denotes the ith. side of the palygon. And the area a of the polygon· is then

expressed as:

(3.24)

60

1

,

,

3.5 Geometrie Properties

Whert» n, is the ur1t normal \tector to the side or edge in question in a 2-D space. In order . ' '\

to d~compose this further. let us consider sep~rately the contribution of one edge to the

area of the whole polygon. this could be written as: "
..

, (3.25)

Where 8 1 is the length of the considered edge and 't is the position vector of its centroid.

as shown ln figure 3.20: al/ those parameters are easily"computed knowing the two vertice;

of the edge.

Figure 3:~O\) Aline Segement . . ~

Then. the area of t~e bourided region Q IS finally stated as:
v _ t> c

(3.26),

The latter formula is suitable for computer implementation.

- 61

o

3.5 Geometrie Propertles

3.5.2 Volume

The,oth moment in a 3-D space is the volume V of a solid:

V = ~ { r· ndÔo.
3 Jan

(3.27)

Where an represents the who/e boundary of the wor/d_solid. let us now suppose that we

have m - patches in the solid in question. then an cou/d b: expressed as an =- lJ~": 1 \Jn 1

where an t is a patch, the volume is then:

(3.23)
/

where nt is the unit normal vector to the patch in question. Let us now COf1~IJer lhe .
contribution-of the ,th patch to the who le volume:

. V, = -31 n,' { rdôn, = !nt • {.6.t (3.29)
Jan 3

~

where rI is the position ~ctor of the centroid of the patch. and .6. t its area that could be

computed using formula 3.26 developed in the previous section.

. .
3.5.3 Centroid

Both,computations of the area and the volume of a solid need the computation

of a centroid, this is accomplished ~asilY: th~ l'osition ,vector c of the centrold à(an edge

or a patch is readi/y computed knowing the position vectors of the n vertÎCes:
" ~ .

1 n
c = - LP,

n
1=1

(3.30)

The above formula assumes that the mass is concentrated at the vertices of the

Jlitferent patches. In the present work, we have implementeq the facilities for computing

the three previously mentioned properties and stored, them in the geometric fields of the -world_solids upon user request. As an extension. we can foresee the need of computing

the 1 st moment. being the first-rank tensor and the 2nd moment of inertia. this extension

-cou/d be easi/y added using the Gauss Divergence theorem as for the oth moment. A more

accurate computati~n of the centroid would then be c = !.t. The reader is referred to the
, '0

work of Angeles (Angeles86b) if the extension is consipered.

62 .

•

r

c
1

Summary

3.6 Summary

ln this chapter. we discussed different solid modelfing approaches. We chose

the boundary representations method for the simulator and the reasons for this choice were

,given. We also gave examples of the implemented B-reps and examples of the sweep to

A 8-reps conversion. We. then. introduced sorne graphies facilities and the computational

aspect of the geometric properti'es of solids. In ,the next chapter. we consider the problem

of motion of solids in 3-D space. We sha/l investigate the articulated motion of g.eneral
\ .

mani,pulators. and shall- aJso solve the forward and inverse kinematics of manipulators.

keeping the generality as an important goal. Our main concern will he speed and storage

optimizatiol'1.

,
, , 63

\

Chapter 4 Motion and Programming

r

4.1 Moving â Solid

Let us start by solving the problem of moving one point in 3~D along a certain
""

trajectory. The trajectory. should be decomposed into segments of position and' orientation .
to facilita~,e~ the simul~tion of motion. Thus the motion problem f reduced to the motion

of a point for a certain PD segment wh!ch could be fully defined by a matrix A for the

orientation and a vector u for the.displacement. as shown in figure 4.1.

p~'

y

00

z

Figure 4.1 Point Motion.

.::
We caf! now state that the motion of a peint P to p' is defined as:

[ol"Jw = [(OP") + uJw = [AIPP} + u}w (4.1)

\

~

c:

(

c/
\

/

4.1 Moving a View _solid

,
The motion is su~posed to be defined in the world coordinate system. and 0 is its origin.

For compatibility with our view _solids coordinate system. it is better to express the above

equation in the view coordinate system. To this end. we assume that the rotational part

of the view point transforma,tion is defined by the mat ri x V and tha! the view point is Oe.

Then we ean state that:

(4.2a) ,

and

Uv = Vvuw '_ (4.2b)

Thus the new point P' is derived in the view eoordinates:

where 1 is the identity matrix. Assuming that M = VvAwVr and t = (M-I)[OOe)v+VvUw

t~en the motion eo~ld be expres~ed similarly as in the world coordinate system:

P~ = MPv + t (4.4) ,

with P~ == [OeP1Jv = (x',1Î;,z,)T and Pv = (x.,y,z)T. The com~on way ~f p~oducing the

, motion ,.graphically is to apply equation 4.4 to the view _~olid. apply clipping to the result

and then prespective'" view transformation. Ali of the above operations should b~ applied

at each sample of motion or each set (A, u) in the trajectory. A less time consuming
• J •

alternative would be to apply the motion transformations in sereen coordinates. this can be' . '

aeeomplished using the z coordinqte of the points previously kept in the view coordinate
, ~

system. We will now adapt equation (4.4) to the form of storage we have been using~ Every

point' P of a solid is stQred as -Pa = (a, b, z)T where the z coordinates of P an~ Pa are

the same. ' ~nder a set (A, uJ describing a step, of motion in the world eoordinate system.

the point Pa is transformed ta P: = (a', b', ;l)T; in arder to siniulate this motion we need
, .

ta compute" P: as a 'funtion of A. u' and Pa. Let us suppose that M = (ur, uf,uf)T and <

t = (~:z:, ty, tz)T, then:

(4.5)

t

()

, .

o

-..

4.1 Moving il View.solld

sereen

Figure 4.2 Cliping Effect on Motion . ..
From the previous graphics transformations we have'

(
a) (~(i)Vsx + VêX)

Ps = ! = ~(~)~: + Vey

• •

(4.6a)

and

(4.6b)

Let us now d~fine the vector:
• 0

wT = (a,,8, 1) (4.7)

Then. we can derive that:

, _ 'Dv: (z(ufw)+tx) v:
a - -S- sx zl + Cl;

'T
b'_DV (Z(U2W)+ty) V

- -S- su zl + ey
(4.8)

z' = z(~rw) +tz

The above three equations determine the motion in 5(creen coordinates and update the ~

coordinate of the point Punder motion. ,The method we rrave used for the moti~n' sim·

ulation accelerates the process but poses one disadvantage: The clipping and perspectjv~ \
. ..

view are done jtJst once at the very beginning in order ta produce Ps given P: thus. if a

" sai id is clipped at its initial position it will always sta,y sa, and if the cJipped solid should

appear on the sereen under the effect of motion, it will appear as-jf it were still cJipped. the .
effect is shown in figure 4.2.

66

c-

",

c.

-
4.2 Manipulator Identification ,and Storage Structure r

~. .
A_ This could be avoided by specifying graphies data which will keep the inovi.ng

solids and the possibly grasped ~olids in the middle of the sereen. Since tJme requirements
, ..

a.re important in the simulak>r. the motion was impl~mented the way shown above aecepting
o

the clipping disadvantage.

A trajectory is 'sampled at certain interva1s in order tq p,roduce motjon. however.

in practice the motion of a link of a manipulator is either rotational or translational. and

hence equation (4.8) could be further simplified by. ta king care of th~ two types of motion

seperately. Moreover. the motion or the traJectory of the motion is divided in such a way as ..
to be mostly repetitive. As an example. assume that a revolute lin~ of a robot is supposed

to move by 65° from its initial position. The motion could then be considered as 6 x 10° + 5° e

~ • " ' 1

in order to make 7 frames of the whole trajectory. Thus. fOJ 'the 6 first frames the matrix A
\

of rotation is the same ançJ describes 10° of rotation. The motion equations (4.8) coulel be
'v'

written recurs/vely for each step of motion by repla~ing (a', b' , Z/) by (ai+b b1+b Zi-rt) and
,

(a, h, z) by (~1' bi, Zl)' Since the repetitive aspect of the sam pied motidn. M and t remain

unchanged (n - 1) frames ~:>n n frames. ; ""-

ln order to make the above derivations more general. we should include the case

where the motion is given with respect to a coordiriate system (i) different from the world

coordil1ate system. ~ssuming ~hat the' motion is-given by a set (Az, ui)' then the matrix

M and the vector t of equation 4.4 become: . .
M = Vv(TJ)wAl(Vtl(T~)w)T

T -' •
t :: V vH(Tl)W~,:(Tl)W - 'HOt Oe}w + (Tt}wu,)

(4.9a)

(4.9b)
r

Where (Tilw'is the 3 x 3 matrix which trél~sforms the wdrld coordinate frame ta the fram~

i of motion. and 0i the origin of ttfe latter. The above formula is useful wh~never the

motion to be simulated is given in the joint space of a manipulator.

"
4.2 Manipulator Identification and Storage Structure

1

\'

ln th~ previous section we have' discussed the implementation of motion and

..... ~ 1
6I...".,'

\

\:t
\~'

1

\

-)
f ;

" (1

l If ,
1

"
1

1 .
1
1

~-

0,

l}

\.

0

,
-- .. \.,.~

... , 4.2 Manipulator ldentification and Storage Structure

the means apapted to speed it up as applied to one view_solid. In this section. we will
Il

introduce ways of constructing a whole manipulator and ideritify'ing it: we will also introduce . ' 0, !

the structure -necessary for the storage. A m~nipula~or is constructed geometrically with
.... '" ~

links which are represented in the datamodel as groups of view_solids igentified uy thcir
r ... #, _

names. Each link i has a' name and points- to a set of Hartenberg and Denavit pararnctcrs

[H1lrtenberg64] associatin~the pre~eeding joint to the next one. A matrix Qt and a.veclor~,
L

are hence formed and stored ~n each link's structure. ·Moreover. eaeh link has a descnptlVi:'

field which defines the type of i~s preceeding joint to Qe revolute. prismatic or others ThiS

is done so that we çan speed up the simulation by taki'ng car~ only o(the rûtatlonal or the
•

translational aspect of the motion. For the time being. only prismatic or revolute Joiqts
o

ean be simulated. The links are st~fed as Iinked lists. each of whiçh defines a robot and
~ '. (

is pointeèJ to by a robot structure. Each rqbot structure has a na me. sorne descriptive

fi'~lds 'for informatio~ such as isotropie. -seriai and others. The robot ~tructure po'mts to
. .-

à linked list' of grasped soilds. generally just one and contains ·information about the end
o • 0

• ~ ,/ ; 1

effector' s Rosition and orientation. Finally the robot structure includes information such

as the nominal speed in the joint space. Ali the robot structures are themselves 'stored as
J

linked lists'! and as for the previous linked lists in thé da.tamodel~ some queries could be

a'pplied. The most impo!tant queries9 are-.cre~tion. modification of the descriptive fields.

removal and showing. The new data structure for articulated motion could th en be defined

as follows: The lowest entities are view_solids. then links and then robots. How~ver.
,

because of the multiple windows' use in the simulator. a higher level entity is needed to

which robots and view_so1ids could be as~iinea. this entity was ca/led a t~ol: Each tool
, • 1>

is basically °a windo~ divided into a graphies subwindow for mot!on ~iniulation and a t~xt

subwindow for time simulation. as will be explained later. Every tool is represenred in the '" ~

datamodel ,t>y a st'ruCture whièh has a name and' points to robots and view _solids identified ,
, '

, ~y their respeêtive names. Each t'oof has a different procëss 'managing its windows in order
,

to respond to queries'such as close. expand. or quit. ,In each tool structure we also find the' .
g~aphics data proper to its graphies "subwindow. The'last,field in a tool structur~ points

ta the beginning of a linked lis! of structures ca/led ofLline motion structures which will .' .
"

68

d

.1:

(

<:...

\ 42 Manipula'o, Iden'ifieation and Swage S'"eMe

be introduced in the seçtion cOr;lcerning the types of simulation. The tool structures are
~

tHemselves organJzed in a linked list manner an~ respond to the standard queries.

The abôve data structure was implemented keeping in mind the posslbility of
"

further extensions. There i:" however, one problem 'remaining concerning the fact that the
il

view _solids are stored u~ing their screen coordinates and therefore the s.ame view _solid

cannot be used in different windows: if a vîew_solid is to be used tiNice or more it should

have a different name io eacp tool. This confirms the fact that by gainrng time we lose

memory. having gained time by applying motion to the screen coordinates.

ln order t~ 'c/arify the p~oces~ of constructing and identifying a robot. we~W.fl/

give an example for the Pu.ma 260. We first create t~e base of the robot which can :be

approximated by a c'ylind~r, as is the first link of the Puma. Onc~ created. the two cyli~ rs

would be linked to the level of blocks in the datamodel. The second and third links of thè

manipulator could be model/ed using an approximative surface and sweép it alonl:>--'t,,-,h=e-,z"'--_~-i
-- --- -- _. - ------ - - - - - -_. ,. _.- -- - -

.(

axis from the x-y plane. At the end of the third link we have a cylindric~1 solid. which must

be constructed. The last three links together could be modelled by a sphere connected
.

to a smal/er cyllnder. Final/y. the gripper ,15 modelJed using an approximative surface and
1:>

applying a, translational s'weep. on it. The. sizes of the surfaces. cylinders. and spheres

are found in the mechanical manual of the robot. which should /Je used precisely. Ali the

constructed pieces are stored as blocks in the datamodel and ~hould bê' mo~edJo _ their

appropriate place in.space in order to construct the robft as an entity. The displace":,ents

to the appropriate place could be performed using the different pieces' as instances and . -
.copying them to the appropriate places by giving the exact transformations needed to this
-

end. At this stage. the world_solids cou Id be built o,f the different blocks and the .view_solids

., could be constructed with tPe op~ion of specifying color. There is now no need ta keep the
~

blocks and the world_solids. 50 they can be cleared from the datamodel. The view_solids
. ,

are then associated to a particular tool with the needed graphies data, and a result is shown
, 1 \

in figure ,4.3.

At this point. the robot is not yet identified. and neither are the links. For

69

\

1

o
\
"

,

4 3 Articulilted Motion

\

Figure 4.3 Puma 260

the purpose' of iderÎtif,ication, we create six links and assign a view _solid or il group of

view~sollcfstoeach link~-After doing 50.- we create a robot in the same tool and assign tô
it the difre~ent lin~s. The descriptive fields for the robot and the links shoulo be ·speclfied .

. After the idendification process. the robot .is ready to be movpd around under specifie

commands. Since we' have the tota{ liberty in bringing the different blod;s along in arder
, OC' •

to construct the robot. we should specify the initial values for the vart'<!.~res of eaeh robot.

The next s'ection is de~oted to articulated motion.

. " ~ • .1

1

4.3 Articulated Motion

Generally, the motion could be described- in two different spaces. namely. the
\

joint space and the éartesian space. This section will introduce the two spaces and will

arso discuss' ways of changing trom o,ne space to the other. If the motion is described in

joint space. the displacements or rot:tions are known for each jOint and therefore there are

no complications fer motion simul~tion. If the motion is described in the cartesian space.

the final position and orientation of the e~d effector are usually known with respect to the

world coordiriate system: then the inverse kinematics would have to be solved in order to

70

(

\

c

4 3 Articulated Motion

find the motion in joint space. As an introduction. we shall provide sorne background on,
o

robots kinematics without getting into detail since this material coufd be found in a variety

of books [PauI81a. Craj-g~6]. We shall also give means for solving the inverse kinematics
• 0

problem keeping in mina the generality of the simulator., This section will also present the­

cfifferent types of simulation that have been implemented in order to perform the animation.

At the end of this section we will consider the problem of grasping a sol id an.d the method

devel~ped to solve it .

..,
4.3.1 Forward Kinematics

Let us consider a general robot architecture as shown- in figure 4.4.

8, R,

!

f

Figure 4.4 General Robot Architecture.

• <

The manipulator is supposed to be constructed of n links. the first one being .
fixed. The types of manipulators that we are cons;{jering are seriai and form an open chain.

and thefiftfore the numbering of the links is unambiguous. The clos~re equations to be used

are those of Hartenberg and Denavit [Hartenberg64]. where the architecture of the chaip is

determined by the set (a" bi, ai) with i = 1 ... n ; each link i has a basis B~ attached to . .'
/

71

o

4 3 ~rticulated Motion

it, Bi = (01 , Xl' Y l' Zl) which respects the conditions st~ted by Hartenberg and Denavit.

The relative position of the basis Bt+l with respect to t~e basis Bl is givenoby a rotation

matrix Qi and a displacement vector al .
"

-S()l cai

c()lca1

sal

~
aiC(}l)

al = ,al SOl,
- .. b·

l

S(}l sa,)
-C(}lSCt1

cal

(4.10c1)

(4.IOb)

Where C stands"for' cos and s for sin. The orientation and·"position of the end eff<>d\)r Me
.J .. _ t

respectively. determin~èt by'Q the orientation -matrix with respect to the world coorJlllale
, - \ . , -

system and r die vector (ela~ing the ~.rigin of B\oto t~e end effector. in basis B1. 50 ~e

can write

(4.11a)

" ",' (4.11b)

ln this treatment. we assume that the basis Bl is the one of the world coordinate system . .
'In forward .kinematic~. Qi and a~ are known and the computation of Q and r is easily

, .
aècomplished. If the motion is described in joint space. the simu.lation cou/d be performed

by sampling a curve which connects the initial and final positions of each Joint. ihe forward

kinematics computations wou/d be used for up(fating the posil!ion and ~rieÎ1tation of the'
.

end effector in the r~ot structur~wever. the trajectory for a motion is usu,ally supplied

in the cartesian space. and therefore inverse kinematics would have ta be so/ved.}

4.3.2 Inverse Kinematics

,
- '

Before solving the inverse kinematics prob/em for the who/e trajectory. we shou/d

. solve it for one particular position and orientation of the eod effector. For a generaJ purpose
robot simulation we"certainly'need.a general purpose inverse kinematics package. which Will , .
deliver the joint angle (), for r,evo/ute joints or the disp/acement bi for the prismatic ones.

given the position and orientation of the end effector in the worJd coor~inate space. Closed

72'

1

c:

,

4.3 Articulated Motion
.,

form solutions were deve/oped and reported [PauI81a. Paûl81h] for a particuJar simple class

of manipulators. Another more general solution appear~d later [Featherstone83]. but it still

d~rith a sub-class of manipulators namely the wrist partitioned ones. Sorne other

~hniques- appeared which are a mixture of 'closed form and numerical iterative solutions

(Tsai84. Takano851:. these techniques apply to the class of six revolute (6R) manipulators., .
The inverse kinematics procedure deals with what is probably the most popular architecture.

. - '" - -,
that of t~ six degree of freedom manipulators (revolute or pris ma tic joints). For simplicity.

we will first develop the basic ~quations for- a 6R manipulak>r and deal with prismatic joints

subsequently. From equation 4.11a and 4.11b with n = -6. we have a system of twelve

equatioos with six unknowns. These equations are dependent because of the fact that a

rotation has the two properties

,

QQT = 1 = QTQ

det(Q) = 1

(4.12a)

(4.12b)

By taking the .vectôr invariantS and the trace of both sides in equation (4.1ta) we can

reduce the number of equations to .. seven as follo.ws:

(4.13a)

(4.13b)
6

I)ath - r =0 (4.13c)
t=l .

'" Equations (4.13a) and (4.13b) are nonlinearly d,ependent because

IIvect(Q)lj2 + (tr(Q) -1]2/4 = 1 (4.13d)

We cannot. however. keep just the vector invariant information without the trac,e. as that

would generate confusion on the angles of rotation [Angeles85]. Let. us consider the vector

f in -seven dimensional space. The component$ of this vector are the seven left sides
" ..".

of equations (4.13a). (4.13b) and (4.13c). 50 f is a function of 81 ... 86: for simplicity.

f(81 ... 96) is denoted f(i). where 0 is a six dimension al vector. The inverse kinematics

pr()blem can then be stated as fol/ows: solve the equation

f(6) = 0 (4.14)

73

\ .,

• 1

/'
a

o

~--------------------~----------------------------------

4 3 Articulated Motion

The Jacoblan of f is a 7x6 matrix known to be

After differentiations, weofind that':

J = a~.
ao

(

(tr(Q)1 - ~A)
J = -2vec~Q) A

where A and B are 3x6 matrices defined as follows

with eT = (0,0,1), and

(4.15)

(4.16a)
"

~

(4.16b)

(4.16c)

(4.17)

Since we have more equations lhan variables. Newton-Gauss method seems to

be the most appropnate for solving
o

equation (4.14). Let us state the prp~edure": given an

initial guess of the six dimensional vector (jO. generate a sequence ïj1 ,02 " .. ,ëk ,ëkt 1, .. ,Ô'n.
, ,

such as to decrease ~he objective function z at each iteration. zk is the objective funct~on \.,

\ at iteration k. It is defined as

(4 18)

at each iteration a corr~ctlon vector ~.ik is applied to the' vector ëk • 50 that
,

(4.19)

Using th.e Newton-Gauss method. this correction-factor must satisfy the following eQuation
; .

(4.20)

Thus

(4.2~l,

J \ 74

c

• 6

L,

4 3 Articulated Motion

More detailed explanation about this could be found ,in [Angeles851. We keep iterating

uniil we reach a small prespecified objective function. At the end. the vector ë holds the

solution we are looking for. For pfismatic joints the unknown is not (}~ anymore but bi' This

does not significantly change the procedure except that the Jacobian is modified 50 as to

differentiate with respect to the variabl~ bt . Later for the resolution of the equation (4.14).

the unknowns are modified accofding to the joint' s ty.pe. The method we just described.

namely. the Newton-Guass approach. h~s two points that we should discuss further. The
~

first is the fact that the method ga,rantees conv~rge!1ce to the solution only when the initial

gues'S is already close ~nough to the solution. Th~ second, point involves the multiplicity .
of. solutions and methods of findirig tb.emall.This second point is beyond the scope of

"the work we developed. and research is being conducted as a different project in order to

solve the probJem. The solution f-or the ~ecqnd point would be used especially for path

planning and collision avoidance as futu\e development for the simulator. The first .point

is of more interest for us now. and will 'Je discussed next. T wo problems could cause the

non convergence of the algorithm

~
r

i : 'OU is far"away from the solution ':le are seeking.

ii : jfl is i!J a 'region where the j~cobian J is iII conditioned.

ln th~ latter case. :he computation of âë~Tom equation 4:21 ois very--lik~l~ to

be erroneous since JT J has a !j:ondition number which is the square of the côridition ~umber
of J. The condition number is a measure of ill conditioning an~ is defined as follows:

IC(J) = I!JUIIl-lll, J!JII = Vtr(JWJT)
,

where W is.a positive definite and usually diagonal matrix and should be chosen so that

11111 = 1. One way of making sure thàt the initial guess does -not cause an iII condi'tioned

jacobian is to first minimize IC(J) and use as AOU the vector t~at satisfies th.e minimization.

This minimization problem could usually be solved in a dosed form manner. but otherwise
, " '\

it is an optimization problem. From the end effector's position and orientation hence caused

\
15

•

. ,

o

\1

4.4 Motion Simulation .
by /liD, we use a continuation method towards the de~ired position and orienta"tion. At

each step lin between, we use as â~ initial guess for the p~int P, and orientation given

by Qi the vector A~i-l which is the" solution for the inverse kinemat~c proble~ at step
,

i - 1. This way we assure the vlcÎnity <?f the initial guess to the desired solution. and

hence the two problems m~ntioned above for the ~ewton-Guass approach are solved using

the minimization of Jt(J) as a start for the initial guess, and a' continuation metho,d to the

desired end effector's position "and orientation: The mathematical detail of the approach
t

are not presen~ed here, but are weil explored in [Angeles87].

,

The numerical solution of the inverse kinematics problem was investigatea. in

order to preserve the generality of the"simulator in handling any type oLrobot. We should,

however, notice that the approach developed above is applicable just to 6 degrees of freedom

robots. Moreover, in practice most robots are designed so that they have a closed form

solution for the inverse kinematics. Therefore, we kept the option of lin king a closed form

inverse ~inematics package to the simulator: "this could be useful for time saving becéluse

a closed form' solution for a particular robot is usually faster tlian a general numericéll

solution. Also', the closed form methods provide the multiple. solutions, so if the user is

, cÏnterested in comparing the multiple solutions or paths, the closed form solution is needed.
"

at least for the moment. As an exampie, a closed form solution for the Puma 6-R robot
.

was defilloped and resides in the simulator, so if a Puma is involved in the simultion, the

closed form is interrogated for the inve!{e kinematics instead of the numerical solution.

'The closed form solution for the P~ma is nqt presented here since it is weil known an'd

cou Id be found in many referenc.es [PaulBla, L1oyd85J. The Puma is a manipulatar of 3

singularities and hence 23 = 8 r~al solutions exist far an inverse kÎnem~tic prablem. The . ~

user has the option of specifying the solution h~ is looking for; the eight' solutions are
--"'lJ

selected"using three of the following possibilit;ies: right-Ieft; up.down, and flip-{no-flip): the

eight possibilities 'are shown in [L1oyd8S]. ..

·76

..

(

c

4 4 Motion Simulation

4.4 Motion Simulation
"

ln the previou.:; section. we discussed the problem of forward and inversè kine­

maties At this stage. a motion described jn cartesian space could be transformed to a

motion in joint space; we now develop means of simutating joint space motion.' Interactive

and real time simulation is not easy to accomplish and may even be impossible for a general

purpose simulator depending on the complexity of the workcell in which we are interested. ~
, ,). l '

However. time scaling can be used and the simulation,can occur in "slow motion". Here a
"

dock is shawn in the text subwindow of the. tool ta indicate the time it would take if the

program we ,are simulating were being run 'on the real robot instead of the simulator. The

simulqtor was designed ta run in th~~e ditTerent modes as selected by the user: there are

two interactive modes and one off-/ine mode which will be explained' later. in this section.

ln this section. we are not showing. the resutt of simufating a whole robot program. which - ~ .

will be the subject of a subsequent section. Instead. we suppose that the user wants ta

move relati~ely the n joints of a se/ected robot by a v~ctor ~tJ. If a joint is pTismatic then

its corresponding A()~ is r~placed by Ilb~.

4.4.1 Interactive Simulation

.'

4

ln this context. interactive means that the simu/~tion is do ne at the time when
-

the commând is issued. 50 the computations are performed at the same time, as the sim-.
u/at.on. This type of simulation will, be reffered to as on-Ii ne also. Depending 0l! the

a~plication. the trajectory followed by the end efTect~r may or may not be of interest. ~or

example. in pick and place operations. only the final position and orientatiCiln of the end

effector are of importance. However. in path plarmiDg and many other appli~ations. the

trajectory followeJ by the end effector 'and the -different links is of primary interest.· In the

interactive mode.-. we deve/oped two types of simulation. the first is called joint-by-joint
/

simulation and èould be used for pick and place and other operations where t:le .trajectory

is not important. The second type is calléd the path simulation and is used for applica-
a

- 1

~ons wheïe the path -followed is important. The· second type of simulation is more ti'1le

77
, 1

o

1

o

al
Q1

Figure 4.5 Joint's Motion

4.4 Motion Simulation

,

consuming because of computational aspects as will be 'shown latef, however. it is closer

to reality.

. ,

4.4;1.1 Joint-by~joint Simulation

Joi~t-by-joint simulation is a type of simulation where the joints are moved

one' by one respectively. In the joint-by-joint mode. the ~equired paramete'rs are the tool' s'

name. the r<?bot' 5 name. 1 the vector of the total relative motion !fo and the step size of

motion sampling. First a verification of the existence of the tool and the robot in the tool

- in 'question is performed. then the validity of the othergivèn data i~ checked. 'et us denote

by 80 the step of motion. and by -0 the vector of variables for Che robot to be moved. In

this treatment of joint motion. we assume that [he joint variables increase Iinearly from

the start position to the -end position. This is a~ arbitrary choice. and in practke. the

joint motion could be following a splinel(Path78j. a 3-4-5 polynomial(Derby83]. 'Or a linear
1

1110tion as in Reel [Hayward84J. Now we shall state the probJem in a manner whicn will

alloYi the .material of section 1 of thi& chapter to apply towards Îts solution. First. we

make a list of moving view _solids for each joint.te be moved. The Ij'St Îs made of the links

following tj1e joint in, question plus the grasped view.solids if any. Figure 4.5 shows an
\

example where joint i is the one to be moved.

78

c

4.4 Motion Simulation

The motion is defined for each step by the set (Ai (80), ui(80}): in the pres'ent .
implementatiQn, we ha~e either At (88) = 1 or Ut (86) = 0 depending ond whether theJoint is

prismatic or revolute, and hence the computation is reduced. The cas'~ where tpe motion is

described in a ref~rence frame other than the Y/orld coordinate frarr'e was disiu,ssed earlier

and equation~ 4.9a and 4.9b should be used in this case. For the motion of joint i. we

need to perform the computations for (Tt)w and Di of equations 4.~a and 4.9b. which ~re
<

compüted the follo~jng way:
..J.

1

'~
(TtJw = l, (Ti}W' = (Tt-t}wQt-l (4.23a)

{

01 =Ô, 0t = vt = vi-l + ai-l (4.23b)
/ - '

Now we shall state the motion set (A~, Ut) in the'ith frame. Respecting the H~rtenberg
*'
a~d Denavit choice. Ai (00) is a step of a rotational motion with respect to the z axis of

,the ~,th frame and hence is defined as: .

-s(60) 0)
c(OtJ) °

o 1
(4.24) ,

The vector u,(88) is a step of a translational motion with respect to the z axis ,of the i th' ".

" frame and is defined as: '

Ur = (0,0,68) (4.25)
, .

For translational motion 8b replaces 68. which is a step for the variable of a prismatic joint.

Bèf6re the motion of the ith joint. the prev,!9us joints have been moved respectivefy and

henc..e tlie m~trices Qi and the vectors a J ;' with 1 :::; i ~ i -1. remain unchanged. Thus the

computation of 4.23a and 4.23b is need.ed just once for each joint to be moved. After the

computations for 4.23a and 4.23b. M and t,are computed from equatibns 4.9a and 4.9b
,

,with the simplification introduced by th.e fact that the joint is either translational or rota-
1) "

tional. At this stage. the motion equations of section 1 are applied on each view _sol id which

is in the linked list of moving view_solids of joint i. The procedure is repeated (mi + 1)

times for eac~ joint i where:

(4.26)

.. 79

4,4 Motion Simulation

. The Jast frame of motion is produeed by (68i-m,ô8), completing the to'tal relative motion,
~

The whole procedur~ mentioned above is repeated for each joint of the robot

starting from the first joint to the last one. After applying the motion to jowt i. the variable

8i is up,dated 50 that It could be used correctly for computing (Ti+l)w and 0H-l- At the
"

end of the motion. the end effector',s position and orientation fields in the robot'!. structure

are updated. 'n .arder to display the motion, the screen is updated once eV(HY step of

motjon for each joint. The computations of motion are applied ta the movrng viüw solids
,

only. 50 for each frame the total scene is made of the union of the moving vlew solids and

the statie view _solids.

4.4.1.2 Pa th Simulation

P{th simulation is used when we are\i,nterested in the path followed by the

manipulator du;ing a certain task. In this particular impleme~btion. we assume that the

joint variables attain their final values linearly from their start positions, ' If the changes
, -1

ih joint space are not linear. for ex.amD~following a sp,line.this assumPtiolrt~-~oduces an
~ '1 • , ,

error. However. if the control algôrithms for the joints -controllers are known. they could

be incorporated into the simulator system. Figure 4.6 shôws an example of motion in jomt
l~ "'

5pace.

The ,information needed in order to perform this type of motion is the tao\' 5

name, the robot's nàme. and the total relative motion 60 and éD. This type of motion
, '

is doser to reality than the -previous one. and the mbtion sampling 15 done based on time

intervals 6T. As was mentioned earlier. the joint speed is sp-ecified by the user and is

stored in the robot' s structure: it Js used -~s' being the speed of the joint which has to move

the most in order ta accompli5h the whole motion commando

66
6T = -,-,.,

(J
(4.27)

•
ln this type of simulation. thaestep size of the motion is different from one joint to another.

let us denote by '68T = (681" .. ,bfJi' ... ,68n) the vector of steps of motion for the different

80

/

c

c

, 4.4 MO,tion Simulation

[,'

t ,

92

~ (0
'J :J

t

"

,9.
1

t

t-__ ...

Figure 4.6 Joint-time Relations.

joints. where: '"

oOi = ll;i oT (4.28)

This motion is not applied joint by joint. but instead is applied in terms of time. Assuming

that T = moT + llT. we first simulate m times the motion caused by the joints altogether.

t~en we add the motion caused during IJ..T. For the tota1 relative motion we then have

(m + 1) frames shown on the screen. For each step of motion. a list of moving view_solids

is built for each joint and the computations of equations 4.23a and 4.23b are performed.

However the display is not updated until-the step motion is computed for ail n joints.

81 ~

4.4 Motion Simuliltion
(

Moreover. the re-eomputatÎon of eqùations 4.23a and d4.23b is required for eaeh 'step of

motion. beca~se if joint i moves by SOi then. in order to apply the motion caused by th'e
<,

(i + 11st joint. we should update Qi or al by inerementing Dt, by 60t . Thus. for e(lch

joint z' the. matrix (TJ)w or the vedor (vt)w is updated (m + 1) times. There i5. however.

no point of updating the end effector's position ànd orientation at every step. -50 ~his Îs

done àt the very end of the t~tal relative motion. This approach of motion simulation i5 . . ~
~ -
computationally lengthy be~use of the frequent updating. but is closer to reality and ~.

~ ,
, ~

the' approach to b~ used in approaxJmating the trajectory followed by the end effector.

4.4.2 Play-back Simulation

Play-back simulation is meant' to be used when the solution time of the simu­

fàtion becomes excessive and the moiton display becomes degrade'd. Here the sequence of
o ,

, .
jmage displays are stor'éd in memory. per'mitting th en to be viwed or "played back" in a

°é

faster sè'quence. The word off-line will sometimes be used Jor play-back. In thls section.

we explain the data structure for off-line or play-back simulation and its computational
p

aspects. Each tool structure. as mentioned before. points to the begjnning of a linked list

of off-line motion structures. In its turn. an off-Une motion structure points to two linked

li~ts of view_solids. namely. ~_solids and statie view_solids. An off-line motion

structure has two fields. The first i5 a descriptiv\ field for determining when ther-e is a

change in the'linked lists of moving and sta'ble v'iew_~lid~. such as when the robot gra5ps

an object du ring a certain task. The second field conta'ros the value of the time needed to . \
perform the motion if the motion command were given to a\real robot in5tead of a'"simulated

\

r~bot. this time is referred tb as simulated time.' The sim~lilted time is displayed in the ,
,

text subwindow
L

of the tool of motiof1.

\
1
1 When an off-line relative motion command is is~ued. the same cOn)putations as
l "

i~ the case of on-line or interactive path simulation approach are performed. and the result
, ,

. i~ stored in the view_solids fields of the off-line motion structures. The, split of view,so/ids
!

y,to moving and statie is done so that if there is no change in the change field, the statie
, ,

82

"

'\

l

, .

,"

...

...

,4 4 Motion Simulation

\

solids of the (i + 1ft motion frame are just the same as those ln the i th frame. and hence

no further memory IS needed. The change field could be set in many clrcumstances such

a~ when robot A stops moving after a certain motion commando or when robot B starts

moving in the same tool. Th~ change field was made availableJor saving time and memory
~ ,

'" ' '"
in not duplicating the same stable s<?lids between subsequent frames. Ali of the otT-hne

, ",

. "
r
.. ; A

r

motion str~c;~r~s are stOred as linke.d list~. Fo! sorne long .lelative motion comr.nand~. long
• ••••. '11 • • ..

programs or eV,en 16r complicated scenes. the memory needed for storrng the dlffefe'At frtttn'es,: . \
.. '
' ''.. of:.r.r:wtion may exceed the amount of memory that could bé allo.cated for one process ln

r" .

,,""

this ca~e. the process o~~~s a disé fire and saves the t1~eded information. After €omputrng
~ .

and saving the fra!11es of motion. t~ user can request a simLtlatio~n cqmmançl i~ one specifie
~ 1 • • .. " t Il' ~ ~"''l ç~. "!f l (" • - ,,~

tààr: and' t~',; th~ ·graphic.display is updated a~d th,e motion is slmulated. For each fr~me

of motion. the vertlces .of the moving view_solids. are the ones previously computed and

- '~t;;ed. and thu~ th~ time 'n~ed~d'for this '~yt>i of slm~lait6Î1 i~~baSi~a>lIy.~he t~me ~eded Jar ,
~,~

the 'displaying plus the time needed for loading the precomputed information from external
.".. - "'.

storag:- Using 'this .partiÇJ.Jl~r approach. a real time simulation or animation is possible
, ~ ,-:

4.4.3 Discussion

The above t ree types of si~ulatlon have been developed for ditTerenl purposcs.
, \

The last t}{pe ... namely t off-line simulation. is interesting when an exact. duplication of 0

? motion tommand IS wan d, However. an interactive si:'hulation is sometimes needed

• for more interactive programming . and we therefore deve/oped the Interactive Joint-by-

jOint an.d path simu/ation approaches. In order to a~5ess the interactive approa~s. we
. .

developed a simu~ated clock which shows the time that the. action would have taken if the

execôtion was on a real rçbot. For comparison. -a rea/ dock IS a/50 shawn on the screen
')

We will now discuss the simulated time implemen.tation. Let us st'àrJ with the case of p~th

simulation aproach. where the~me need~d'for each disp/ay update or step motion is kn~wn
from equation 4.27. Thus the' time display in the text subwindow is just incremented by . - ~,

ST for each st~ motion, ln the joint-by-joint simulation approach. the dis play is uprlllted

0:::;=1 mt + 1) times for each motion commando and the time is Încremented during the
, .

83

!

c:

'1

. "

415 Grasping Solids

" motion of one joint which we chose 'to be the joint thât has to move the fastest for the
•
whole-motion;-For the off-line simulation approach, the'time is updated in the same manner

as in the pa th simulation approach. but is stored in the frames of motion instead. In order
• ~ l' "

" ,. i r

to make the off-Hne approach closer to reality in terms of timé: a wait statement is incJuded .
in the p;ogram at each frame. The wait interval should be shorter than bT due to the time

taken to update the display. howèv~r this is negligibie. ' ,~

4~5 Grasping Solids (
-î

When the view_solids were introduced. we mentioned that their structures con­

tain three fields that'were used for the gra.sping facilities. The first field. i;\descriptive - '" and is entereq 'by the user in -arder to tell if the view _solid in question is movable or not. ~

Fo~ example, a cube on a table can be movable whereas ·the table itself or one link of a . ,
,- ~." " - -

partlcula! robot cannat be. If the v~ewrS0lid is movabl~. then as soon nas it is created a .
certain bounding parallelepiped is computed for it and its dimensions are stored in the

\

view_splid's st,ructu!e. Moreover. the ,view_solid's centroid is computed and a coordinate

frame is attached

t

Figure 4.7

o

..

1

•
z~J}p-...

GraspiÎ1g '! Salid

J

'The frame in que§tion is storeo-in a field of the structure of the view_solid.

and we should, note that the frame is expressed with respect to the world coordinate fYs­

tem, The grasping routines are calied when a command to dosé tire gripper of certain

84,

(

\

.,.

1 4 (; Program- Developrnent

robot is entered, The data needed in order tb perform 'the 'close_gripper' command are:
" .

Tool's name. robot's name, maximum distance allowed in order to consider the gripper
1

, close enol,lgh to the solid to be grasped, the maximum angle of d~viation between the end
"

effector's z axis and the x, y or z axis of the bounding parallelepiped. and finally a spec-

ification of ~e type of simulation being used: Joint-by-joint, path. or off-line simulation,\. .

'As for ail comm;nds, a verification of the vâlidity of the given data is p;rformed first, the'n

some tests are conducted in order to know if a solid is indeed being grasped, The tests
. ,.

are performed on the movable view_solids only. The first test is to know if the z aXIs of . . .
the end effector is parallel to any of the axes of the frame attached to th; view _solid' belng

, testetl. If the test succeeds within a certain margi'1 fixed by the usér. namely the angle
, , ' "

of deviation, then lhe possibility Qf grasping the view_solid by th,e grtpper alang a certain

direction is· verified. This test i§· a verification to determine if lly ::; w. as, shown ln figure . - ,

4.7. If the two tests are positive then a distance test IS performed to know If the point
fi'

. P of the end etlffector is close enough to ~e capable of grasping the solid being tested,

The distance te~t is ap~r,o!,imative within a certain toleratéd distance specified by the user.

tt one movable view_solid amo~g ail the movable view_solids in the workcell satisfies the
. .

tests of grasping, then it is declared grasped ~nd is linked to the linked list of grasped

solids of the robot which received the dose_gripper commando If a robot that if; grasping

a view_solid is ordered to"move, then the view_solid in question i~ also moved accor~ingly,

and ,moreover, the frame attached to _the grasped view_solid at its centroid ls update'd at

the end of .each rl'\0tion command that the rebot in question receives. In the 'case ~f off-line

motion we should note that the view_soltds thaf we test for grasping could be irr the lists

of both stable or moving view_solids. The view_solid to grasp -could have previously been

moving, such as in the case where one robot hands a solid to another one: this particular " .. . \ '
example will be discl!ssed in the next chéJpter, under results .

•
l.6 Program 'Development.

, .& \
We have by now developed means for handling commands such as 'm6\l~_joi"ts_relative'

• '? 0

and 'dose~gripper', and the input da~a required f9r both types of commands was mentioned

.. , .

o

\

'" 4.6 Pro/1am Development
• . .

earlier. In this(sec:ion. ~e introè~ce some more co.mmands based on the ones mentioned

above. then w~ introduce means of interaction with the simulator. and we also pr~de an

example of a prog;am to be sfmulated. We. should m~ntion h~re th~t ail commands can"be
,

applied in three different modes of simulation ,as previously mentioned.

4.6.1 Siml!lation CommandS

. .
4.6.1.1 Motion Commands ..

t The only mo~ion ~o:;'mand that we have developed a~ this~ta~e is 'move_joints_relative';

the execution' of this command has been exp/.ained precviously. I~his section we present

sorne other commands that are available in the simulator·. oThe absolute motion" in joi.nts
. '

space is easily transformed to !elative motion by taking the difference (O/mal - ~nttt~l}'
- <1 _

.where O.f mal is the desired vector of absolute motion in joint space and Dimf:1.al is the vector - \). -

of the robot' s ~ariables found in the> robot' ~ structùre: When the motion is described in
.' ,

cartesian space, the inverse kinematics pa"Ckage is used to give the absolute motion in joint

space which. in its turn, is transformed to relative motiotl in jQint space and executed as

explained before depending on. the type of simulation being used. A useful command in

various roboties applications 'is '~YI_straighLline', which güarantees a stra,igrt motion of _

the end etTector. In the present implementatioll of the straight line motion. we suppose that

. the orientati0'b of the end etTector stays unchê!nged from the initial to the final configura-
,

tion; (the position of the end etTector is sampled with sorne prefixed step. At each s~ep, the
. .

inverse kinematics is solverl and the motion is simulated using the previous development

of 'telative IT,Iotion in joint space. If a Puma robQt is under simulation .. the c10sed forrn . .
invetse kinematics is s~lved and thus ii is the user's responsibility to sp~cify the de~ed

configuration among the eight possibilities. If no· configurat~on is chosen, then a default

configuration is used. f)

li>' _

At this stage of development of the simulator, we have. four motion commandf

two in joint space, 'move_joi~ts_relative' and 'move_join!s_absolute', ~~d two motion coJh-
, ~)

mand.s described in carte~ian space. ,'move_end_effector' and o'move_straightJine'. For the

\

o
a

---v * .. ~ , ,

~ 46 Program Developmenl ..
'move_end_effector~ command, the joints m~ve linearly -from their initial to their final posi-

, . , ..
tions. , '

For the 'move_starightJin'e' command, however. a sampling of a straight line
, 0

\ - ,"
is aorie in cartesian space in order to assure an approximativEr linear motion in cartesian

space. Setween the samples. the motion is linear in joint space and th us not neces'Sarily in

cartesian spaçe. depending on the type of robot. This error is negligible since the sampling
"" - - . ~ .

frequency can be increased to more closely approximate a straight line motion in cartesian
• t .. ,.- •
~W , ;

'~'·;I:~Iiaçe. '
r" \" ~ ,

4.6.1.2 Other Commands
o

The only command other;,than motion commands that we have discussed this ,

far is 'close_gripper, which is. explained in the section on "Grasping Solids". Two other . ,

commands must be added here. The firs't, is caUed . open gripper' and it is easily served

by clearing the field .of grasped solids in the robot structure of the rOQot which receives
1 • ~ •

this çQmmand. If a motion comma~nd is s~nt to the same robot after the 'open_gripper'

commando the solid which was grasped' before wou Id no longer move with the robot. Th~

second command is "roboLspeed'. whiëh changes the speed field in' a robot structufe,

This affects the simulated time! the step motion 68 in the path simu}ation, and the wait

duration"in the off-line simulation. In chapter 5, we will see through examples the use of ail . \
, /:

the commands that have been introduced. We should note, however, that the commands
,J • ... ,1

" ,.tt

s)'flta~ is not shown 'in detail in this sectio~, and that each command requires data such,

as tool' s name, robot' s name, ~and otbers'.

4~6.2 "Programming the Srmulator dl
o

~. l' "
Once the workcell is created and the manipulators identified .and initialized,

• the time c~!"es to prog7am the workcell. The- available- sirTI:ulator's commands are sev_en

and hàve been introduced 'in a previous section. Ali of tHe commands could- be enterèd
•

87

v

..

(
..

•

• 4_6 Program Development

interactive/y directly, using the key tree matcher which simplifies the debugging of the

tasks. For example. assume that we want to order a certain robot -,to ~rasp a certa~n solid'

. without knowing the exact position and direction needed for the end effector in order t" do
• 0

50. This cou/d be be trred directly on the simu/ator unti/ the action succeeds and the' solid. is

suc,cessfully grasped. Then we can read the end effector's p,osition and orientat}on or even

the value of the joint variables 50 that they can -be used la ter in the robo~ program. This

method is equivalerft t~ng pendant when we program a real robot. Moreover,

sorne parameters suc~ as' spèed, step moti~n or grasping. param~~ers\ could be modified

interactively for comparison and time considerations. This metnod of trying commands

drrectly on the simulator is useful and cornes usually at the first stage of developing a

program. The second stage involves the~ability to write a robot program ·usi~g a certain'

syntax or predefined language, and be able, to observe the behaviour of the whole rabotic

workcell using the simulator. This process is explained in the next par~graph, omitting
"" 0

however, the programming detail. 0

4.6.2.1 Interaction with the Simulator

- .
Our purpose is to develop a program and t~en apply it to the 11.tor. A

/

communication package is therefore needed to assure the interaction between the application .
program and the simulator. From the simulator's end, just one,command is needed .. namely

• 0

the commé!nd to intërpret a program in a given tool using one specified si'mulation' mode.

When the simulator's proces'Js receives the interpret command it go es to a state of a

'receiver' from a certain communication c/:tanne!. and the simulator is thus ready·to execute

any transmitted command from the communicat;9n package thtough the channèl. At the
r. 1 \ \ U .e

. sending end. once a program is written with s1mulator commanèls in it, every time that . /'
one of these commands is encountered, this process Jransmits the necessary information

~ .. 1 j) »-
tl') the s~mualtor through the the sa me chan)1el as the simulator, as shown in figure 4.&.

- - / ~ .

, .

• • 1

The child preeess cre.ted .~ fr.nsmiuer termin.tes "pon ;eception of • sign.1 .

from the simulator: This signal couldJe an acknowledge signal or an érror signal. in which _ Q

\ ' \ Il . 0

/' 88

(/ ,

\

-

Go

•

, .
, .. -.

/

(Workcel Ù
\ P.'ogranr' . ,

r

··1-.... Upon an interpret command . ,
'. -"

·(~imulatolH,-~_' HChild))
J' '_ \ .

• #

.. Communication channel
. -
o

47 Summary

. Figure 4.8 Interaction 13etween the Application Pr?gram and H,e-5imulator

case tlJe program being simulated is also terminé;lted. and the type of error is. displa~ed at
,

the simulator. 'The workcell application program'induding the simulator's comma~ds is
.i

writteri in the 'C' pro~ram~ing language. However, tt may be wrÎtten in any language and

compiled using the proper compiler since the program itself is not mterpreted line by line.
0, _

For the present implementation 'C' was chosen bec~use the' process which establishes the
1 • •

communication protocol and the simulator itself are written in 'C'. If the program is written
1 --

in another language,' corilmunication modules should be adapted acéording tO'differenées

• ,

in syntax, -The simulator's coromands have- been assigned a particular sYntax. I{ the

user wishes to use a different syntax. it' is easy,to make the required translation, since
.. . ~

the simulator' s commands in the application program are function names which create
.. .. --

the commuOnication processes inte~nally .. At this stage of the 'simulaoor, the
c

application-

. prog~ams resid~'on the same machine aS'the simulator itself. however this is not necessary.
-), .
Th~ communication processes were developed keeping in min~ the future extentio" of

having the ~imu!ator and ,the' applicatio~ program runmng on' different machines. . . ~

l '
).

4~7 Summary o ·~o - , , "
ln this, chapter, .w~ presen.te~ t~e ~n comma,~ds an~ the way they are-

.. .. ~
89'

, .

c

, '
Il
Il

.,
4.7 Summary­

tr~at~d for the ~;mUlaSç>n. Thë inv:rse kinematics problem was also introduced and sOlve~ ,
, 't 6> ,

to a certain extent for 'a general rooot. MoreoV'e.k..à c10sed form solution for the inversé"--
~

kinem~tics of the pu~à~robot was imRlemente~. We also discûssed ~o~e other co~mands
.which were judged, neces~ary for a robotic ~ork sim~lation. Finall~, we tackled the probl~m ,

of ;nteraction with .the ~!.~'lUlator and exp~s~d both W~ys of interaction namer «di~ectly
through the simurator or t~rough an independent p'rogram'which is the result w~ are seeking,

• 1

, At this stage. wo are capàble of writing a robot program and simulating .it as long- as we
" "

fol/owa certain predefined syntax. The nexfchapter presents results. where we will simulate

and discuss different programs in various workcells.

r

. \ .

. ..

, o

..

"

,./

"

90

'.

. ,

"

1

..

1 ' .

..

,0

; , ' "

. <·t t

"
.:r ...

1 '-
,- ,

...
•

'"'

••
..

/. '
J /'

Ch.apter 5 ,/ ,i
.1 Results

.v ,

,,'
This chapter preserrts simulation results. In order to obtain these results. we , . .

~ -

had to go t:tJrouglÎtt'ree stages. The first stage wasfh~ creation of 2:D sur~aces necessary

to mode! the work~s waS e;<plained in chap..ter 2. After the creation ofthè correct

2-D surfâc~s. the techniqu~'s developed .for: sol id modelling wefe used' to represent the

components of the workcell. as per cha'ptèr 3. Then t~e manipulators' id.entific~tlon and

initialàation took place. The simul~tjon commands can. 'at this stage, be a~plred in two

ways. from the ~imulator direètly or through an external program. During the development

·phase of a robot program, the :o~mands are u}ually entered interactively using the key tre~
• matcher. Once the debuggi'ng is comp'le,tei the programmer can wri~e the robot program

-1

o

-
succe,ssfully. The rabot program sends simulation commands with the required data to

the simulator through a communication channel, and the simulation can bè performed in
. .. .

three di{ferent modes as explained in chapter 4. The simulated time appears on the sereen
1

(upon req'uesÏ: frbm the ~ser. which helps assess the worÎ«:ell performance. "fhis chapter is "

devoted to.thre'3 ex-amples of simulation. The first 'exa~ple involve~ only one manipufator . , -
in ~ wo~kcell and will de~l. with joint space motion. The seco~d example involves one'

/ ' ,

........ manipulator and one movable object and will deal with motion in cartesian space and the
".

pr~~lem of grasping. The t!rird and fast example involves two manipulators and will deal

'with mo~ of the problems that can be solved using the simulator" Ali three examples can

run iri.:he yuee modes'of ~imulatiom' On th;'"display sereen. the motion step fJf) is specified

by the' user: the smallèr éD is, made. the more continuous is the motion. For iIIu~trations,

sorne frames are presented 'but obviously .not ail frames are given in figures~
b . , ,

/

(

f

/ h

, \

..

J

5.1 Experiments.
o

~.1 Experiments

,
5.1.1 Example 1:0ne Manipulator •

, dt

~

Let us assume that a workcell involves a Puma 260 manipulator .. which is 6
,

degrees of freedorn and, six revolute. Let-us'assùme also that'we want tG ordér the manip~
... " _..- ~ 1 t-

'uJator to move, and that the c?mmands of motion are given'in joint space; 8efore trying \
-

these commands on the real 'manipulator. it is prefered to try them on a simulation of the

\ manipula~or. First. we should coristruét graphically th'e robo; in question and" supply ail the
:JJ • Q ~

required data for simulation such as the robofs ide~tification, ~peed .. grasping data. initial
- .

, L

values of the ,Hartenberg and Denavit variables of the robot. and others. We can then write
/" >'

a small program. as shown in figuré 5.1; to move the joints of the Puma.

The program is b,si~a4ly constructed of\ three motion commands: The first
. ,.

command mrlles the robot relatively from its illitiaJ p~sttion by a vector of Hartenberg and
, ~ - i' 1 •

\

Denavit variables (-70, -10,10,30, -20, -10). The second motion command is also in
D \ \

joint space but is absolute and brings the robot to the stàte (-qO,O, -'70,0,90,30). The, ~
. Y'

Jast motion command biings back'.the robot to its initial 'position which is (0: 0, -90,0,90,0)
- -,

in joint space. In practice. the pr gra';' is interpreted and the result is shown smoothly
. ~

on the display scre~n. For'the sak of cJarity. we sho~J three states 'of the Puma robot.
~

The first 'is shown in figure 5.2. and r~s·.mts the initial position of'the robot. "Figure 5.3 .

present~ ~h~ 'state of th~ robot at the e i, of, the ~xecution of the relative motion command,

a~d figure 5.4 presents the state -of th robQt after completion of the absolute motion

commando The final state of the robot is he sams as in figure 5.2. . .
, ,

5.1.2 Example 2: One ma'nipulator and ne solid to moye

The second exa,mple involves the sam robot as i~ example 1. on~ small movable

cube. and two non movable stages on ·the table. This example. is a particuJar case of a

pick and place task. where the s~lid 'to be moved is the cube. Let us suppose tnat we
B

92

..

J
\ \

••

"

• \
\

\

" J

o
,7

\

-

)
5 1 Experiments

include Msystem_c~mm.h" /*definition a:d declaration files for the communication Ilnk'.; •

include "types.h"
~ • • 0 .~

define NUM 6 /*number of joints*';
"

/* . *;
'F

main(argc. argv)

Int argc;

char *argvl1; .
,..

., .

". . .

. [...
"

float v(NUM]:
'\ .

init.comm(argv): 1* establish the communication Il,nk * /

sr>eedrPuma" . 0.3): 1* 0.3 rd/Ùor the joint whtch moves the fastest·;
f ~

affecLvar(v. -70. -10. 10. 30 .. -~0. -10): .(
• ~ .. .r

if (!move..joints_rel("Puma" . '1) } /* rela.tive motion iQ joint space to a robot ca lied Puma in the slmulator ./

, [-

clean(): 1* if any. error, close the 'Communication Iink and exit the.program·-*;

exit(1) :I*the error. type is shown at the si~tor' s end *;
("
affect_var(v. -60. o. -70:0. 90. 30);

• T'

if (!move..joints-_abs("Puma" . v)) 1* absolute motion for Puma *;
(;> ... - .-

[

cleanO:

exit(2); ,

,]

..

1

,

affect.var{'/. 0: O. -90. 0.90.0): if (!moveJolnts_abs("Puma". v)) I*'back to " st,art" position and orientation , , ,.... '
~ 0

[

clean(}:

exit(3J;

\
~ . .

"

cleanO: 1* termina te succes;fully the transmission of simulators comm~nds • /

(1

Figure 5.1 Program 1.

"

93

(

c

,

"

.II

i

,.

\

Fig~re 5.2 Initial Position of the Puma. v = (0,0,°-90,0,90, 0) .

.1 ,

....
Figure 5.3 R~lative Motion by Av = (-70, -10,10,30, -2b, -10).

0,

5.1 Experiments

. know the _position and orieni:ation of the cube. the first task ~oul~_ t,hen be to order the
-

robot ta move to a configuration from which the end effector can grasp the cube. The
1

94

- .

•

o

<}

" . 5 1 Experimcnts
r

"

"

o

Figure 5.4 Absolute Motion to v = (-:~Ot 0, -70, a, 90,30).

oriehtatiifn is such that ,the orientation constraints of grasping are' satisfied. as explained

earlier. Once the robot is 'li: the desired c~nfiguratlon. which could be tested dire1t'ly from

the key tree matcher as a replacement of a teaching pendant. the robot is required ta close
C ' - \ '

its gripper a'nd hence Igrasp the cube. Let us now suppose that we want the cube to be

placed on one stage. Knowing the position and orientation of the parallelepiped bounding .
the stage. a motion command is issued to the robot to place its end effector over the stage.

and the grippèr is opened, ln arder to terminate the whole' progr~m an absolute motion in ,

~ joint s~e is ordered to bring the, côbot back to its initial 'position, The firs't \two motion

commands'''ue in cartesian space .and hence the inverse kinematics p'~oblem is s?lved using

the c10sed form solution of the Puma robot if another robot was under simulation. the
o . ,

Newton-Guass or general inverse kin~matics solution would have been used as exp'iained in
,

the previous chapter. A. pseudo code of the\ program to perform the whole task is shown in
"

figure 5.5. The results are shown in figure 5.6.5.7.5.8 and 5.9. The reader may notice sorne

disc~epancy in the robot model for sorne configurations such as joint 2 in fig~re 5.7. This

is due ta the approximate measures used for modelling the Puma 260 since an accu ra te
, ~J

95

/

-------------~-~----------------------

1.
l~
.!
<4

:'
~ .,
~
<' ,

'.
)
,1

~

1

/

. C

-

/* error recovery is-not shown. it should exist after each simulator commartd* /

initialization() ;

5.1 ~riments

CI
move_end_effector {Puma. Cl):/* Cl: .Configuration suitable fog grasping the cube* /

close_gripper (Puma).

move_end_effector (Puma. C2) :/* C2~ Configuration ab~)Ve stage_l .. /.

open_gripper (Puma).l*release the cube on stage_l* /

movejoints_abs (Puma. \/1); rV1 Thé initial configuration ~uma .. /

end; /

,
Figure 5.5' Pseudocode of Program 2

Figure 5.6 Initial Configuration of Workcell 2 .

o

definition ~as not available.

\ 96
o

. "

5.1 Experimel1ts

o

1

Figure 5.7 Pick Configuration

r--~------------------------------

t

o Figure ~.8 Place Configuration.

1 97

" a
o

o ,

" .

\
\ ,

,

• 1

c
o

5.1.3

Figur~ 5.9 Final Configuration of workC~ 2~

Example 3: Two manipulators and one solid to m~e

/

5.1 Experim-ents .

. (,

ThÎs làst example involves the coordination of two manipulators. Both were .. ' '0

chosen to be Puma manip'blators. however. there is no obligation to do 50. The workcell
o ,

is c~m~osed of a sphericat solid and two.robots. each on its own table. The aim of this
~

pmgram is to show the capability of handling multiple robots. and the possible interaction

betweer) them. First of ail. the workceJl is created. the manipulators are identified. and their . (\ ' .-

re~pective para_meters jni~ialized. -the motion and grasping tasks ét,re then tested directly

through the key"tree matcher to facilitate debugging. Then the program is written in order
"

tô manipulate the workcell in a convenient manner~, This example consists of ordering one .
robot to go and pick up an object knowing its position ancl orientation. Theo the same ,
robot. "Puma_ln. moves to a particular point which belongs to the intersection of)J'le work

/ ' .
environments of both robots. The second robot. "Puma-2". is then ordered to move to

, .
almast the same ·point with an orientation .of its end effector which enables grasping tre

abject. The robot "Puma_2n is then ordered to close its gripper:, and "Purna_l" is ordered

ta open il. th us constituting ~ transfer of the solid. "Puma_l" goes back to its initial
1 '

98

t '

\

5.2 Discussion

configuration. and "Puma_2" brings the solid to within its work environment. releases it on
. - ~ -- ,. ,

the table in a chosen position and orientation and goes back ta its initial configuration. A

pseudocode of the program is shown in figure q.l0. Certain tests are omitted. such as the
1 •

test needed ta ver~he success of any type of motion commando We also present sorne

of the sequences durir\g the execution of this program: the titles of the fig~res ~xplain the

actions being simulated. '"
'-

~--------~----------------~----------~-~~------------------------------~---------' ---~~ initializationO: .
move_end_effector Pùma_l. Cl).j* Cl: Configuration suitab/e to grasp the sphère*j

" c1ose_gripper(Puma_l) :

move_end_effector (Puma_l. C2): I*C2: Configuration in the intersection of the workspaces of Puma 1 and

Pu~a_a.* /_

move_end_effector (Puma_2. C3). /*C3: Configuration suitable for ~rasping the sphere ha,!ded by Puma .1* /

close_gripper(Puma_2):

, ôpén_gripper(Puma_l):

movejoints_abso/ute (Puma_l. V~). I*Vl: Initial varues for the variables o{Puma 1*/
move_end_effector (Puma_2. C4): I*C4: A certain configuration 'above the table* / _

open_gripper(Pùma_2); ...

" b I~(.
l" ...

move.jolnts_a so ute Puma..2. V2); j*V2: Initial ~a/ues for the variables of Pumà _2* j

end:

•

c;!

Figure 5.10 Pseudocode of Program 3.

5.2 D.iscussion
,/

'0 tIt

'5.2.1 Time Considerations
o

J

"
As mentioned "earlier. the play-back simulation or animation approach is the

,
fastest. once the computations are complete. This approach is used when user jnteraction

with the simulator is u~necessary. Sorne timing experiments have be~B conducted. we give

the results for the first example in this chapter. The speed was set to 0.3 rd/s. and the

99

f
• 0

o 5 2 Discussion

.J
c~

1

)
o
'.

1 ...

<'

•

Figure 5.11 Initial Configuration of Workcell 3. . -

.\ '1»

0 '. 0

\,

•

"
0

ft " -c

nr"'~~;1

" r
?, 0

,

C· Figure 5 .. 12 PickoConfiguration of Puma_t.

,,-'

• <

100 ..

"

1

(

•

o
J

.'
o

Figure 5.13 Motion of Puma!i1 to'the Transfer Co.nfiguration .

°L ______________________________ ~

"" ,

Figure ~.14 Traflsfer Configuration.

"5.2. Dls(ussion

\
"

" >. • , . 101

; .

\
Figure 5.15 Puma_l Back tO,lnitial Configuration.

1 • /

..

./ .
Figure 5.:16 Puma_2 at ,Place Cofiguration.

CI ..
\
- f
.J

5.2 Discossion

, ,

,

\

o •

102

/
"

..

5,2 Discussion

Figure ,5.17 Final Lon figuration of Workcell 3.

program took 9.06 sèc to animate after the c~mputations. ~ithout the insertion of any wait

staternent. Considering the speed and the total motion. the time that thelwhole program . ,
would have ta ken if it were running on the real robot is shown· as the simuJated time in

the time sub'window and is about 14 sec: Therefore. real. time simulation is sometimes
\

possible. However. this is not garanteed since it depends on the complexity of the workcell

and the speed of the manipulators. For the on-Hne joint-by-joint simulation. the program
1>

takes 54.74 seç. ~hich is about foûr- times the real' time. In the case of the on-line path

simu,lation which is the closest to reality but the slowest for reasons of frequent updating

as mentioned in the: previous chapter. the program took 124 sec to sÎmulate. These results

show the tradeoffs to consider while simulating. 'Ne should note that the motion simulation

in -thi~ partic~lar example involves the manipulation of almost 80Q vectors. as shown in

figure 5.2.
.......

103

(..

()

(

o ;

" t

-5.2.2'/ Implemer.tation Aspects ~

,d 5.3 Summary . ,..

\

The simulation pr~gram was impleme!"ted in a fnadular ma~nerc which incJudes
p

fifty "C" modules. There are 5 main blacks in' the p~rogram: Oatabase and data sublanguage

(5900 lines). solid madelling (2400), motion and kinematics (7500). graphies and database

suitable far graphies (1800). and the cammunication manager (400). The number of /ines
1 -

giv~ above far each black is approximate. For the moment ail the blocks r~ide in the same
J <,

S.U N 3 workstation. This is ,not necessar.y however, since sorne of the blocks do not ne~d to

be on the SUN. T~esigt can be easily extended to place s~me of the blocks on the VAX

750 using the concept of a session layer [Fre'edman85) over'the local area net,work.,
III

5.3 Surrimary

. .
From the examples shown above. w~ can see the .facilities tha.t the simuJator

presehts. The procedure to follow in arder to run the simulator is as follaws: First canstruct
'.t • ' ..

the workcell to'be programmed: This is done using the database, data sublanguage arfd

,~Olid modelling facilities. ~fter the canstruct:ion .of. the workcell. ~ identification pracess ...

should take place to identify ttTe manipuJators and describe them; the s,?/ids other than

.... anipulators shauld also be described as mavable o~ not .. The third stage invalvès, is

programming the wo/k'cell, under certain par'V11eter~ such as simulation made and t.he
1

speed of the manipulators. In the examples given above; the manipulators in use were six

degree~ of freedom and six revolute manipulators. However. this wa!? not necessary. since

the manipulators storage structure can accept different" architectures.

-.
.

104 .

, '. \-

,.

o \

,;

)

•

..
o

"
o

Chapter 6 Co"\lusion ,

..

ln this thesis. an aetual implementation of a graphie simulator for robotie work-
1 . ,

eells was developed.' The problem of rob~tic workGell simulation vilas decomposed into

smaller problems of database, data sublanguage. solid modelling. motion of solids in 3-D.

robot kinematies. robot programming. and graphies. A data base was developed in order
~-

to store and allow the manipulation of 3-D solids. The database is hierarehi~al if' struc-

fJre. but als'o has the proplrty of ~x~cit relations. as typical of a relationaf data base. A . , ,

data sublanguage"" was implemented té enable interaction with the data base. It has the ba-
I -.

sic three queries allowing addition. deletion. and update of the...entîties and relations of the

database. To further ease the interaction with the database. other facilities were developed.

Chapter 2 of this thesis presented in detail the data base and data sublanguage which are

inCluded in this simulator.
:-

ln order to model solids,'certain solid modelHng techniques were developed. The
.. 1 ~ ~

boundary representations were preferred for reasons mentioned in chapter 3. and the com­
'-"

mon primitives in solid modelling were created using those techniques. Seeking generality
J '

'however. a sweep to boundary representations conversion was impleménted. The rotational

and translational sweep are therefore ,mong the solid modelling facilities in this simulator.

~plicated solids can be mOdeiieq using B-reps and SWf!ep facilities. At the end of chapter
. \ -

3. we presente(f the graphies facilities. as weil as ways of extracting geometric properties<
~ 1

bf solids. • Q

..

•

..

c

5.3' Summary

1 •

Once solids have been ,mode lied . ,techniques were developed to move them ac-

cording tp simûlation commands. Those techniques were iVlpleme"nted using mostly 2-D

information in order t~ speed, up motion processing. Other simu,lation commands such as
,

speed.' and grasp. were '~Iso implemented. Ali the simulation commands m~y be entered
.. / • 1 \ 't

using, the keyboard or through an independant program. The first approach IS usecf. at the

deblJgging stage. and thè se~.pnd approach is used when the user is interested in simLilatîng J'

~n entlre program. The simulation commands and programming aspects of the simulator

'were presented in ehapter 4. In ehppter 5. we presented simulation resul,ts of sorne robot
, ,

programs. , -

The simulation of robotÎc ,workcells can be extendeq to appeàr c10ser to reality.
'- .

For this simulator. we suggest four areas of development that can be added in the near

future. The.first' extens'ion concerns graphies: where helpful grapt!c modules can be added.

such as zooming. polygon filling. hiddel) surface removal. and others. There is. however.

a tradeoff of speeq to' consider. The sec.ond extension concer'ns sol id modeHin~. whére by ,
using the rotational é!nd translational sweep facilities. we can extend to swee'p alo!"g any

- ,
PD curve. 'The third possJble extension coneerns collision detectiMi for which boundary

.lit
represefltations are very;suitable. The fourth possible extension concerns the programmin~_

aspect of this simulator. At this stage. the programming is done at the manipulatJ,

level. which means th~the commands are given in terms of joint or end ~ffector values.
r

Howev~r. since a data base is available to us. and objects are already defrned in it. object level\
1 •

pr~grammiAg or eveh task lev~ programming wou,ld çe possible to implement. Dyna'~ic~

may also be con~idered as ~desirable addition to the simulator.

"

1

r

106

1

• Reference< l'J •

Il References \

\\
[Angeles83] Angeles J .. 'Caléulo de Cantidases r{sicas Globalf!; Àsoc~adas a Volumenes

. Acotados por Superficies Cerradas Mediante Integraciôn en la Frontera. Ingenierfa,
Vol. LIli, No. 1. pp. 95-102. 1983.

1
n~~leS85] Angeles J .. On the Numeriçal Solution of the Inverse Kinematic Problem. -

int, J. Robotics Res. pp. 21 - 37 . 1985. ,'" ,

- Angeles86a] Angeles J .. Iterative Kinematic Inversion of General Five-Axis Robot Ma~
nipulators. Int. J. Robotics Rés .. Vol. 4. No. 4. pp. 59-70. Winter. 19B!).

[Arlgeles86b] Angeles J." The Evaluation of Moments of 60unded RegioJs Reduced tir
Une Integration. Tech. Rep. Mech. Eng. McRCIM, McGiII U .. 1986. ,

,

(Angeles87]. Angeles J .. Rojas A .. Manipulatar Inverse Kinematics Via Conditian-Number . .
Minimization and Continuation . .to appear in the Int. J. of Robotics and Automation,
May 1981.

[Astrahan 76] . Ast~~han M. M .. et al.. System R: A Re/ational Approach ta Data Man­

agement. ACM Transactions on Oatabase Systems. Vol'. 1..., No. 2. pp. 4 - 10,
1916. . ~

[Baer79] Baer A .. Eastman C .. Henrion M'l Geometric modelling: a Sur vey. Computer
- .

Aided Design. Vol. ~ 11. No. 5. pp. ·253-272. Sept. 79, .
[Barnhill74] Barnhill R. E .. Riesenfeld R. F .. Computer Aided Geometrie Design. Aca~ , \

,demie Press. N.Y .. 1974.
fi

[Baumgart74] Baumgart B. G .. Geometrie Modelling for Computer Vision. Rep. STAN- •
CS-74~463. Stanford Artificiallntelligence Lab .. Stanford Univ. Stanford .. Calif.. 1974.-

-

"

[Borrel83] Borrel P .. Bernard F .. Liegeois A .. Bourder D .. Dombre E .. The Robotics

Facilities in the CA";1-CAM CATIA System: r;>evelopments in Robotics'. edited by~, r
Rooks. IFS Pub .. 1983.

, ,---
1 [Boyse79] Boyse J. W .. Interference Detection Among Solids and Surfaces. Commun.

ACM. Vol. 22. No. 1. pp. 3-9. January 1919.

[Boyse821 rBoyse J. W .. Gi/christ J. E .. GMSo/id: InteractÎve Modelling for Design and

Ana/ysis of Solids. IEEE Comp. Graph. Appt. Vol 2. No 2. pp. '27-42. March 1982. •

JCardenas79] Cardenas A. F .. Data Base, Management Systems. Allyn and Bacon.

Boston. Mass. 1979. ..

J07

1 ..

c

References

\
[Claybrook85) Clay brook B. G .. Oaybrook 'A .. Williams J .. Defining Database Views as-

Data A~traction. IEEE Trans. ,Software. E~g. Vol. 11. No. 1. pp. 3 - 14.

January 1'9.85.

(Codd72] Codd E. F .. Rf!lational .Completeness of Data B"ase Sublanguages. ibid. pp.

65 - 98. 1972.

[Craig86]... Craig J.J .. Introduction to Rob~tics: Mechanics and, Control. Addtson-Wesley.
1986: / 0

o ,[Date81] Date C. J .. An Introduction to Oatabastl Systems. Addison-Wesley. Reading.

Mass .. 1975.

[Derby82a] Derby S. J.. Gener~1 Robot Arll! Simulation Program (GRASP): P.artsl and

2. ASME Comp. Eng. Conf .. San Diego. pp. 139-is4. 1982 .

. (Derby82b] DerbY, S. J .. Computer Graph~~ R()bot.Simulation Programs\ a Compari-

..,son. Robotics Research and Advanced ~pplicati.ons .. ASME Pub .. Edite~ by W. J ..
\

Book:203-211. 1982.

[Derby83] Derby S .. Simulating Motion Elements of G'eneral-Purpose Robot Arms. Int.

J. Robotics Res .. Vol. 2. No. 1. pp. 3-12. 1983. ",

[D-ittrich85] Oittrich K .. Lorie R.. Object-Oriented D~atabase Concepts for Engineering

o • Applications. COMPINJ. Montréal. pp. 321-325. September 1985.
1 _, 0

(Faverjon86] Faverjon B .. Object Level Programming of Industrial Robots. P~oc. IEEE

Int. Conf. Robotics and Automation. San Fransisto. pp. 1406-1411. 1986. .-' .

[Featherstone83] Featherstone R; Position A~d Veladty Transformations Betw);n Robot

End-Effector Coordinates and Joint Angles. ·Int. J. Ro.boties Res. Yol. 2. No. 2. pp.

35 - 45. 1983.-

(Fenves85) /Fenves:. J .. Repre'Sent~tion and Proeessing of Engineering Design' &. -
straints in a ,!elational Database. COMPINT. Montré~1. pp. 343 - 347. September

1985. ~ ~

(to'ey82] Foley, J. D .. Van Dam A.. Fundamentals of Interac~ive Computer Graphies.

Addison-Wesley. Raeding. MA. 1982. -,

[Freedman85] Freedman P .. Carayannis G .. ~ier' D .. Malowany A .. A Session Layer

for a Distributed Robotics Environment. IEEEliroc. COMPINT. Montréal. Québec.

Canada. 1985 .

• [Freedman~6] Freedman P .. Micha"!,d C .. Malowany A .. The Design of a Robotics

Database'for a High Level Programming Environment. Technical Report TR·86-7R.
+

108

, -

/

..

"

\ ,

\ References

o /

Computer Vision and Roboties Laboratory. Dept. of EE. McGill University. Montréal.

.June 1986~' 0

,[GMP81] Staff of GMP .. NONAME User Manual. Dept: Meeh. Eng .. Univ. of Leeds .. , ,
U. K .. oct. 1981. '. ,

\ ' 1

Uiartenberg64] "'Hartenberg. R. S. and Denavit. J..I. Kinematics synthesis of linkages
. NEW yORK: MeGraw-Hifl. 1964. ,

[Haskin82] . Has~in R .. \ Lorie R .. 'On Ext~nding the Functions of a Relati~.nal Database

System. Proe. Int. C,onf. Mnagem~nt of Data (ACM). June 1982 .
..

, [Hayward84] Hayward V .. R. P. Paul. Intrpducti<?,n to RCCL; A Robot Control. "C"

'i!.iérary. IEEE first Int. Conf. on Roboties. Atlanta. June 1984. - . 1

[Hayward86] Hayward V .. Fast Collision Detection Scheme by Recursive Decomposition . /

~ of Manipulator Workspace. Proe. IEEE 'Int. Con. Roboties and Automation. Vol. 2. &

pp. 1044-1049. April 1986.

JHeginbotham73] Heg~nbotham W. 8.. Dooner M:. Kennedy D. N .. Computer,Graphics

Simulation of ~ndustrial, R<1bot In~raction~. SMÈ. Proe. of 3rd CIRT. 'Seventh ISIR.

1973.

[Hôlla~d83] Hol/and J.M .. Balic R;etics Concepts. Howard W" sams\ an~ Co.: .Inç ..
-1983.

"'7 •
[Hunter79j Hunter'~ M . .' Stelgfitl. Oper.ations on l'fIages Using Quadtrees. IEEE Trans.

Patern Anal. Machine Intell .. PAMI-1. No. 2. Aprir 79.
,

[lIoyd85] Lloyd J .. Implementation .of a Robot Control' Development Environl1}ent. M.
, Eng. Th~sis. McGiII U .. Montréal. Québec. èanada. Dee. ~.985.

[Kretch82] .

1982.

Kreteh S. J .. Robotics Animation, Me~hanical Engineering. pp. 32-35. Aug. . ,

[Ktmwoo85] Lee K .. a'nd' Grossard D. c.. A hierarchical data struct~re for representing

assemblies: part 1. Computer-aided Design. Vol. 17. No. 1. pp. 15 - 24. Jan-
uar;;iebruary 1985.· (l' ' (..

[Lee82~] Lee Y. T .. Requi~ .. Aigorithms for Computin~he Voiume and' Other
o '

Integral Properties of Solids. 1. Known Methods and Open Issues'. Co~mun. ACM,
1

Vol. 25. No. ,pp. 635-641. 1982. ,
[lee82b] Lee, Y. T .. Requieha A. G .. Aigorithms for Cômputing the Volume and Other

Integral Prop rties of Solids. Il. A Family of Algorithms 8ased on Representation

Conversion a ri Cellular Approximation. Commun. ACM. Vol. 25, No. 9 .. pp. 642-

650.)982. '.
Q

109

"

- 1
,

1 •
\

..J

c

[Liege~is80~ Liegeois A.. Fournier A, .. Aidan M. J .. Borrel P. A System for Computer­

aided Design of Robots and Manipulatqrs. SME. P"roc. of 10th ISIR. 1980.
(,

flight82] Light R .. Gossard D .. Modification of Geometf/c models t~rough Va";;tional

. Geo.metry. Computer Aided Design. Vol. 14. No. 4. pp. 209-214. July 82.

[L06Si~g74] Lossing D. L.. Eshleman A. L.. Planning a" Com11Jon Data Base for Engi-

neer{ng and Manufacturing. SHARE XLIII. Chic~? Aug. 1974. 1'>

[Meghaer80] Meghaer D. J .. Octr~e Encoding:, A New Technique for the Representjltion.

Mampu/ation and' Display of Arbitra,ry Three Dimensional Objects by'Compute;, Tech.
Rep.. IPL:Tr-8D: 1l1. Image Processing Laboratory. R-e~sselaer 'Polytechnic Institute.
Troy. N. Y .. Oct. 80. .

[Meghaer82] ryle&haer D. J .. Octree Generation: Ana/ysis. and Manipulation. Tech.
Rep. IPL-Tr-D27. Image Pr"ce~sing Laborator~. Re,nsselaer Polyte-chnic Institute.
Troy. N. Y .. April 82. .

[Mortenson85] Mor.tenson M. E .. oGeometric Modeling. Wiley. N. Y .. 1985 . .
[Newman!9] Newman W. M .. Sproull ~. F. .. Prin~iples oflnteractive Computer Graphics.

McGraw-HiII. N.Y .. 1979.

[O'rourke79] O'rourke J .. Badler N .. Decomposition of Three-Dimensiona/ Objects into

Spheres. IEEE PAMI. Vol. PAMI-1~ No. 3. July 1979.

(PauI8Ia] Paul R. P .. Robotic ManipuJ.ators: Mathematics Programming. and control.
o •

Cambridge: MIT Press. 1981. 0

-(PauI81b] Paul R. P .. Shanano B .. and Mayer G. E .. -Kinematic ControrEquations For , ,

simple Manipula tors. IEEE Trans . . Sys. Man Cyliernetics SCM ~' 11(16).opp. 449-
, 0

455. 1981.

[Redd78] Reddy D. R.. R,ubin -5 .. Representation of Three Dimensiona/ Objects. Rep.
CMU-CS-78-113. D«fP. 'Computer Science. Carnegie h'elJon Univ .. Pittsburgh. Pa ..
April 78. .

1

j[Requicha77] Requicha A. A. G .. Voelcker H. B .. Const.ructive So/id' Geoi;netry. Tech.
Memo. 25. Production AtÎtomation Project. Univ. Rochester. 'Rochester. N. Y .• Nov. o

77.
\ 1 ~.

\ ' - r
[Requicha80]' Requicha A. A .. G .. Representations for Rigid So/ids: Theory. Methods=

.... c'-'" 4

and Systems. Computing Surveys. Vol. 12. No. 4. pp. 437-464. Oecember' 1980. 8
l ~ " ,)

[5ata81] Sata T .. et ar.. Robot'Simuiatio~ System as a Task Programming Tooi. Proe.
llth .. ISIR. Tokyo. Oct. 1981.

o

\ 110

o

o ,

·'
/

o'

,
, ,

-..

[Shumaker80] Shumaker G G .. Robot/cs-Air Force Project." Computer World. March
1980.

[Soroka801 Soroka B. 1.. De,buggmg Mampulator Programs With a Simulator. Proe
Autofact West Conf.. ~p. 659-671. 1980.

[Spàth78] Spath H .. Munich-Vienna:Spltne-Algarithmen Zûr Konstr~Ktion Glatter Kur-

\ ven und F/iichen. 2nd. edition. R.-Oldenburg Verlag: pp. 27-4. 1978.
4

[Takano85] Takano. M. A.. A ne~ Effective Solution for Inverse Kinematics Prob/em
" <> -

(Synthesis) of a Robot with Any Type of Configuration Journal of the Faculty of
o

Engineering. T~e University of Tokyo. pp. 107 -135. 1985.

[Tpsiyasu85] Tosjyasu L. K .. Toshiaki S .. Kazunori Y .. Generation of Top%gica/Baund­

ary Representations from Octree Encoding. IEEE Comp. Grap. and Appl.. Vol. 5.
No. 3. pp. 29-38. March 85.

[TsaïlJ4] Tsai \L. W .. and Morgan A. P .. Solving the Kinema,tics of the Most General

six- and five-degree-of-freedam 'Manipu/atars by Contin~ation Methads. ASME paper
84-DET-20. Cambridge.\Mass .. A!5ME Design Engineering Technical Conference,

1984.
....

[Ullman82] Ullman J. 0 .. Princip/es of Oatabase Systems. CompJter Science Press.

Inc .. 1982 ..
a

[Voelcker74] Voelcker H. B .. Middleditch A. E .. Zuckerman P. R.. Fisher W. B .. Nelson

T. S .. Requicha A. A. G .. Shapiro J. E., Discrete Part Manufacturing: Theoryand

Practice. Part 1. Tech. Rep. 1. Production Automation Project. Univ. Rochester.
Ro~hester. N. Y .. December 19744 ' -0

[,!oelcker77] VoeJcker H. B .. R~quicha A. A. G .. Geofetric ModelHng of.Meehanica/

Parts and Processes. IEE~ Comput., Vol. la. No. 12. pp. 48-57. December 1977. ,
[Voelcker78] -Voelcker H. B.

"
Requicha A. A. G .. Hartqurst E .. Fisher W .. Metzger J ..

THove R.. Birrell N .. Hunt W .. Armstrong G .. Check T .. Moote R.. Mcsweeney J .. ,
The PADL ... t.O/2 System for Defining and Displaying S'olid Objects. ACM Comput.

Ci
Gr .. Vol 12. No. 3, pp. 257-263, Aug. 78. -

[Vossler85] Vosslet L. D .. Sweep-to-CSG Conversion Using Pattern Recognition Tech-

niques. IEEE Comp. Grap. and Appt.. Vol. 5. No. 8, pp. 61-68. August 85.

[Wang86] W~ng W.P.. Wang K.K .. Geometrie Modeling (or Swept Va/ume of Maving

Salids. IEEE Comp. Graph. App .. pp. 8-17, December 1986. , . .
[Woodwark82] Woodwark J. R.. Quinlan K. M .. Reducing the Effect of Comp/exity on

Volume Madel Evaluation, Computer Aided Design. Vol. 14. pp. 89-95. 1982.

111

