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Abstract

Gaussian blur or degradation is the convolution of a signal or image against a Gaus-
sian kernel Solutions to the problem of removir;g Gaussian blur are presented from two
approaches First. ip the continuous approach. the image is considered to be a function
defined on a continuous domain The process of blurring is modelled as continuous convo-
lution of data agains;; the Gaussian kernel. In order to remove this blur a hnear deblurnng
kernel is sought. Although the inverse of a Gaussian cannot be represented exactly as a
convolution kernel in the spatial domain, by restricting the blurred data to polynomials of
fixed degree. | show that a convolution inverse does exist. These deblurring kernels are the
pseudo-inverses of the Gaussian convolution operator. and constructive formulas for the
deblurring kernels in terms of Hermite polynomials are given. Second, from the discrete ap-
proach, the imag\e is modelled as a matrix of discrete values. In contrast to the continuous
case, the blurring process is now formulated as multiphcation of a data matrix by the blur
matnx. However. the resultant system of linear equations can not be solved using typical
numerical methods. since the problem is ill-conditioned. The problem is ‘'solved by symbol-
ically decomposing the inverse of the blur matnx so that all the numerically ill-conditioned

terms are gathered into a diagonal matnx. The result permits exact and stable deblurring

provided the extent of blurring is known a priori.
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Résumé P

Le flou gaussien. ou dégradation d’une image. est le résultat de la convolution du
signal avec une fonction noyau gaussienne. Des solutions au probléme de I'élimination du
flou gaussien sont présentées selon deux démarches. Selon la premiere démarche, I'image
est définle comme une fonction continue sur un domaine continu. L’addition de flou est
modélisée comme une convolution continue du signal avec le noyau gaussien. Dans le but
d'éliminer ce fou. une fonction noyau hinéaire est recherchée. Bien que I'inverse d une
convolution gaussienne ne peut pas étre représentée de facon exacte comme un noyau
de convolution sur I'espace, nous montrons qu'une telle convolution inverse existe si on
représente le signal perturbé par des polynomes de degré fixe Nous définissons ainsi des
pseudo-inverses des opérateurs de convolution en vue de I'élimmati}on du flou. Les termes
de polynomes de Hermite sont explicités a l'aide de formules constructives Du point de
vue discret, I'image est modélisée par une matrice de valeurs Par opposu'tuon du modeéle
continu, I'addition de flou est représentée par la multiplication d’'une matrice de floy par la
matrice d'image. Nous obtenons un systéme d'équations linéaires mal canditionné, et par
conséquent. que l'on ne peut pas résoudre a l'aide de méthodes numériques usuelles. Le
probiéme se résoud par une décomposition symbolique de I'inverse de 1a matrice de flou des
maniére a réunir les termes mal conditionnés dans une matricé diagonale. Nous pouvons
ainsi obtenir une élimination exacte et stable du flou. pourvu que 'amplitude du flou soit

connue a priori.
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Preface

Preface

Gaussian blur is a most common phenomenon. yet to date no exact solution for re-
moving it has been given. Most traditional methods have advocated Fourier transform and
ad-hoc techniques, such as “enhancement filters”. [Rosenfeld and Kak], [Pratt]. However,
in additlog to having problems wi‘th numerical stability and singularity. these techniques do
not remove the Gaussian blur exactly. In contrast, we will show how to remove Gaussian

blur exactly both in the continuous and the discrete domains.

Gaussian blur occurs 1n many events of nature This is mainly due to an application
of the central limit theorem: when a large number of random local degradations combine
sequentially, the resulting degradation closely resembles a Gaussian. Natural examples in-
clude atmospheric and optical blur. Also, in computerzied tomography. the imaging and
reconstruction processes introduce degradations which are approximately Gaussian. [Her-
man].

The human visual system. as well as other human sensory mechanisms. is a rich
source of examples of Gaussian degradation. For instance, thehfmage on the retina is
projected by a lens that can only focus on one plane and for only one wavelength of the
incoming light. Hence. the image of an objecE which is not on the focal plane is blurred.
Another example illustrating Gaussian blur is the transmission of visual information by the
optic tract. The distribution of the axonal diameter of the optic nerves i1s approximately
Gaussian [Fukada]. Since the axonal diameter of the optic nerve directly determines the
delay of arrival of information (at the LGN). the information is blurred The kernel of this
blur can be approximated by a Gaussian.

“ These examples pose serious questions in understanding visual perception._ Is Gaussian
degradation of visual information. which is introduced by various sources. an important
aspect of perception, or is it merely the practical and physical limit of the optics and
the “wetware”? Furthermore, is such blur an undesirable feature or can it be used to
extract useful information about the three dimensional world? Given the finite depth of

field of the human eye, Helmholtz has suggested-that knowledge of the amount of blur
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can be used to recover estimates of the depths of objects in the visual field [Helmoholtz].
and Pentland has applied these techniques to range-finding practical robots |Pentland]
Further. hyperacuity. the ability to percieve spatial resolution an order of magnitude higher
than retinal spacing, can not be explained without seriously considering the effect of blur
on the visual information. [Westheimer]

Gaussian degradation manifests itself both in discrete and continuous processes, For
instance. the measurement of temperature of an object is a continuous process. In this
case the data and the blurred data are both continuous functions and the blurring process
is modelled as the continuous convolution of the Gaussian against the data. However. in
some other instances, the blurring process has a discrete nature, for example when either

or both of the input and output are discrete functions. In such cases. a closer model for

. blur is the matrix multiplication of the Gaussian blur matrix and the data matrix.

The continuous modelling leaves us with the following integral equation to solve:

h(z) = K(z,1) * f(z)

o (1.1.1)
= | K{z- & )f(§)dE,
IR"
where
K(zt) = ——_¢—lal/at (11.2)
N TYNRE
is the Gaussian kernel, whose extent is parameterized by ¢t > 0. {t is normalized to have
¢
unit mass.

The problem of Gaussian deblurring is to recover the original data f(z). when only h(z)
and the amount of blurring ¢ are known. We seek a solution in form of a filter D(z,t) such

that
J(z) = D(z,1) » h(z)

= D(z,1) » K(z,t) + f(z).

(11.3)

for f(z) among a class of functions. Thus filter, defined in equation 1.5.9, resembles the -

difference of Gaussians operator (DOG), but with extra side lobes: see figure (0.a) These
side lobes are an indication of notions of approximation and order in the theory, and increase

in number as the dimension of the space of allowable data increases: see figure {.1.c.

Q&



e PR TR AP GRT TR L AT

Preface

The discrete problem 1s one of solving the following linear system of equations

| h = Bf. (11.2.2)
where,
( 1 b b4 B . pin-1)2)
b 1 R TR Lol
A b b 1 b ... b("__3)2 )
st % b X X sn-a? | (11.2.3)
pln-112 pn-212 p(n-3)2 pn-4)2 1 }

and f is the vector representing the original data, and h s the observed blurred data.
Theoretically, the solution to this problem is straight-forward. invert the blur matrix and

multiply by h to solve for f. Practically. however, as the dimension of the problem reaches

" realistic proportions, tradstional numerical methods fail miserably due to the accumulation

of numerical errors. Therefore, we resort to a symbolic solution. where most of the actual
inversion is done symbolically for a Gaussian blur matrix. We proceed by decomposing
the blur matrix into simpler matrices. which can then be symbolically inven:ted. Thus, the
inverse of the Gaussian blur matrix is decomposed. Further, the decomposition is such that
all the ill-conditioned terms are gathered into a diagonal matriﬂx, with other matrices being
perfectly well-conditioned.

The thesis is organized into two separate parts, the first of which treats the contin-
uous and the second the discrete approaches to the Gaussian debluring problem. The
introductory section to each part gives an independent and in depth introduction.

The two main gesults in this thesis. the solutions to Gaussian degradatiop formulated
continuously and discretely. are convergent in the following sense. Consider the vector
defined by the 1th row of the inverse blur matrix. This vector is roughly constant over
all i, modulo the appropriate shift. This justifieS the definition of a discrete deblurring
kernel as the middle row of the inverse blur matrix; see figure (0.b). Observe the similarity
between the continuous and discrete deblurring kernels. This is not suprising since the
two l(continuous and discrete) models are different approximations to the same physical

process and must therefore yield similar results.
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The different approaches had different advantages. however. In the continuous ap-
proach. it becomes clear how the deblurring kernel changes with the order of approximation
inherent in the pseudo-inverse calculation In the discrete approach. numerical issues come

to the forefront. Both perspectives are therefore necessary to properly understand Gaussian

deblurring
.u.f'g; \
UDablurring kernel; order 2. 13
o
. ¥ T T 1 1) LE T R Ll L 4 ) 4
S -
2 |
[ -
+ ul -4
21 |
r‘ I il
| ! ‘__’\/‘ )
-1 |
3 - 4
- b4
\E o -t 14
. |+ | W S VAN TR W RN N WY T 1
2 e.ee X 0.20E+04 .
Figure 0.3 The continuous deblurring kernel of order 13 with ¢ = 1.0. in the graph's
X axis units
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* Abstract |

Abstract |
P ' :
. A

f ‘ Gaussian blur, or convolution against a.Gaussian kernel, is one of the most common
models for image and signal degradation. We are concerned with the inverse of this process,
or Gaussian deblurring. As in the process of blurring. we seek a linear deblurring kernel
Although the inverse of a Gaussian cannot be represented exactly as a convolution kernel in
the spatial domain. by restricting the space of allowable functions to polynomials of fixed
finite degree then a convolution inverse does exist. Constructive formulas for the deblurring -
kernels are.denved in terms of Hermite polynomials. For image polynomials of fixed degree

N. the corresponding kernel gives stable deblurring among the class of functions which are

Gaussian filtered versions of data well approximated by polynomials of degree N and less.

Stated differently. the deblurring kernels are pseudo-inverses of the Gaussian convolution

operator.
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Chapter 1.1 . Introduction

©

Given an image or a signal. the realization of any practical system for processing
must introduce some amount of d;gradation Since almost all of these systems consist of
several stages,-each of which contributes to the degradation, they often compose into what
appears to be a Gaussian degradation. In this paper we shall be concerned with inverting
this process, or the deblurring of Gaussiap blur.

Our model of blur is as a spatially invariant Gaus;sian point spread function within a
linear system. Formally thﬁs leads to convolutions, as follows. Let f(z) denote the original

image function. z € IR". Then the observable - but blurred - function h(z) is given by:

h(z) = K(z,t) » f(z)

_ ) (1.1.1)
= | on Kz = £01(€)de,

where

1 Y
K(I,t) = WC |Z| /4t ‘1.1.2)

is the Gaussian kernel. ‘whose extent is parameterized by t > 0. It is normalized to have

unit mass.
The problem of Gaussian deblurring can now be formulated- How can the original data
[(z) be reconstructed when only h(z) and the amount of blurring t are known? Again, we

shall formulate this as a convolution, and we seek a filter D(z,t) such that
f(z) = D(z,t) * h(z)
= D(z,t) » K(z,t) * f(z), .

for f(z) among a class of functions.

(11.3)

AR
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Our motivation for choosing this problem s two-fold Fustly. many practical imaging
configurations are structured in a manner that introduces blur either optically or for other
reasons (e.g. computenzed tomography |Herman. 1980]). and the Gaussian is the natural
first approximation to this blur And sensors are becoming far more reliable at tugher light

levels. leaving deterministic sources of blur more salient Techmques for reducing this blur

. are thus of practical importance There are even applications in physiological optics. such

as the de-focusing that automatically takes place for objects outside of the depth of field
of an accomodated eye.

Our second motivation 1s theoretical. It is well known that while the‘ deblurring prob-
lem is in general non-invertible from Fourier considerations and unstable, 1t is nonetheless
possible to achieve acceptable deblurring under certain conditions. One way to accomplish
this is by means of a pseudo-inverse ¥ which is an exact inverse under restricted condi-
tions. Although such results have been available in the mathematical literature for some
time [John, 1955], they are not widely known within the computational vision and image
processing communities. Rather, the image processing community typically formulates
the problem purely in discrete terms by applying algebraic pseudo-inverse techniques [e.g..
Pratt. 1978]. But this obscures the analytical structure of the process. leaving central
notions such as the order of the deblurring pseudoinverse implicit. Pseudo-inverses imply
notions of approximation, and one would like a formulation in which the degree of this
approximation could be made explicit. Then one could understand how the structure of the
deblurring kerr;;is changed as a function of the order of approximation. )

In this paper, we derive kernels which can be used to deblyr a fixed amount of Gaussian
blur. They accomplish this inverse process exactly. and stably, among polynomials of fixed
degree. QOur analysis uses Hermite polynomials, a natural choice for reasons that will
become clear éhortly. The explicit formulas for the deblurring filters are given in the main

theorem in chapter 1.5. Since the analysis leading to this theorem is technical, we provide

t One must be clear about the fundamental distinction between a stable or unstable problem (in the
Numerical Analysis literature it is usually refered to as a well- or ill-conditioned problem [eg see
Stewart 1973)) as opposed to a stable or unstable algorithm for a given problem Henceforth. stabilty

has a different meaning when applied to a problem or an algorithm
¥ Aiso. refered to as a generalized inverse
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| Chapter 1.2 Background

1.2.1 Blurring and Diffusion

There is a fundamental connection between blurring. deblurring. and the heat equa-
tion. It is provided by the structure of the Gaussian distribution. as the following example
illustrates. Consider a rod of infinite length onto which an impulse of heat is placed at
some position As time evolves. the heat will diffuse and the original impulse will spead
out. By basic physics the resulting temperature distribution will approximate a Gaussian
whose extent depends on the ellapsed time [see e.g.. Feynman, 1963]. By superposition.
the model for the temperature distribution along the rod at any time is the initial temper-

ature distribution convolved with a Gaussian. This 1s the physically realized solution to
the heat equation t. The spatial parameter for the Gaussian depends on how much time
has evolved. and the diffusion process effectively blurs the itial temperature distribution

incrementally. In the notation introduced in chapter 1.1, if f(z) is the initial temperature

~ distribution, then h(z,t) = K(z,t) + f(z) is the blurred distribution after ¢ units of time.

Formally, this is an initial value problem, and can be stated as follows: given f(z) and t.
find h(z.t) satisfying
ADh = 0k/ot, h(z,0) = f(z). (1.21)

We. of course, will interpret f(z) as an unblurred image.

1 the so-callled “source kernel” [Widder. 1975]
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Two basic observations that follow from this formulation of the blurring problem that
will be important in the analysis that follows. First, note that the space of initial distri-
butions that can be blurred is a large one: it tssentially corresponds to any function for
which the convolution integral is defined, and clearly includes some discontinuous ones.
Second. suppose that a function f(z) has been blurred for some time. say tg. resulting
in h(z,tp). ' This resultant function could subsequently be blurred further. say to ty. with
ty > tp. These two blurring operators. each of which may have its own physical justifi-
cation, results in one composite Gz;ussian operator. Indeed, by the central limit theorem,

other blurring operators compose into approximate Gaussians when iterated.

1.2.2 Deblurring and the Inverse Heat Problem

Since deblurring is the inverse of blurring, the preceeding connection between blurring
and diffusion suggests that deblutring can be modelled as a diffusion running backwards
in time. Blurring is the forward problem, and deblurring is the inverse problem. Formally,
the problem of reconstructing f(z) given h(z) and is the inverse heat equation problem,
since the function h(z) represents a distribution of heat after ¢ units of time. where f (z)
is the initial ¢ = 0 distribution.

As in the forward or blurring problem, which was modelled as convolutions of the
original data against a “blurring kernel” (a Gaussian). our goal now is to find “deblurring
kernels”, or kernels against which the blurred data can be convolved to y}eld the deblurred
original. However, the mathematics is not straightforward. There are a number of technical
differences which make the deblurring pv<|>b|em more difficult than blurring. While the
blurring (or heat diffusion) problem can be solved for almost all distributions (i.e.. the
solution is just a smoothed version of the initial data). the inverse problem is defined only
for a restricted class of functions. Running "time” backwards, it is impossible, in general,
to reconstruct the original data f(z) from the blurred data k(z). First. not all functions h(x)
are blurred versions of some original function f(z). Secondly. the blurring operator is not
a one-to-one_mapping in a general function space. There exist pairs of distinct functions,

f(z) and f(z), which yield the same blurred function h(z). Finally. in a general function

12
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122 Deblurring and the liverse Heat Problem

space the deblurring problem is horribly ill-conditioned. In other words, arbitrary small
perturbations in the given function h(x) can lead to large changes in the reconstruction of
(z).

These difficulties are so severe that one might be pessimistic about any progress toward
discovering deblurring kernels. However, the deblurring problem can be given a pseudo-
invérse formulat,wg which leads to a well-conditioned problem. We formulate the pseudo-
inverse prob(em fomjaolynomlal data in chapter 1.3, and present the deblurring kernels
for polynomw%%“(l 5.6). The structure of these kernels is a function of the order of

approximation. reveahng how the solufion to the problem changes as the data become

more complex. y .
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Chapter 1.3 Pseudoinverse Fc;rmulation

Let T denote the blurring operator. which takes functions in a large normed space A
into much smoother functions, alsoin A. Although T is a continuous operator, for many
choices of A. T has no continuous inverse defined on its range.

The idea of a pseuoinverse is as follows: Consider a closed s?ubspace M C A. The image

of M under T will also be a closed subspace, and so if A is a complete Hilbert space. one’

.

can pose the problem

Given h €A, find feM minimizing || T f — 4. (1.3.1),

The solution f to this minimization problem is the pseudo-inverse of h under themap T
on A relative to the subspace M, and will be denoted I\;(lh.

In our case. we set A = £2(e‘12d1:). an enormous Hilbert space, which contains
distributions which are not tempered We set M = Py, the space of polynomials of degree

N and less. In chapter 1.4. we will note that Mis T -invariant. Since M is finite dimensional

‘and T is one-to-one, Tg'is an isomorphism of M onto M. Thus the problem of finding the

pseudo-inverse of h is equivalent to finding f such that T is the orthogonal projection of
h onto M. An algorithm for computing f can therefore be constructed by projecting h to
h’ on M. and then solving the finite dimensional problem T f = &', Cleatly, this process is
stable for fixed N.

In chapter 1.5, we present the solution to the deblurring problem on M, so that the

problem T f = A’ is solved by a convolution

f=Dnsk. (1.3.2)
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13 Pseudoinverse Formulation

will become evident that for h € A. and A’ the orthogonal projection of h onto M= Pp:.
Dys+h =Dy h. (1.3.3)

Thus the entire algorithm. projection onto M and inverting T on M. can be represented

by a single convolution. In fact, the kemels Dy given in chapter 1.5 are unique in having

15
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Ch'apterA 14 ' The Deblurring Problem

Consider the operator {2; defined on EZ(IR) by the equation

Q:f)y) = /_ : 2_;7_;(1’/“ f(y - z)dz. (14.1)

Fart > 0. €, is a compact symmetric bounded linear operator on £2(IR) mapping into

£2(IR). This operator has many special properties, such as

2 0 Qe = Q4. (14.2)
Also,
- u(z,t) = (Q.f)(z), J (14.3)
sz;tisﬁes the heat equation ' & '
Au = uy, (14.4)
with
u(z,0) = f(z): (1.4.5)

see [Bers, John, Schechter]. If we denote the Fourier transform of a function g(x) by §(w).

+ then {}; is a multiplier operator given by

a——— _ 2

(R f)(w) = e™*}(w) (1.4.6)
By means of this formula, £2; can be extended to operate on the class of temperate distri-
biutions S’ of Fourier transformable distributions [Hormander, 1983). In particular. €/ is

* .

defined for any polynomial f.
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, 14 The Deblurnng Problem

We will specialize to the case of 1 — % and set

1 )2
Tf=ﬂl/4f=—\/—;'e z *f.‘ . (,1.4.7)
By suitably scaling the spatial barameter z € IR, €2;. t > 0, can be seen to be equivalent

to T operating on a rescaled version of f. i.e.,

¥

@) = (THw/2v0), Ay

where

f(=) = 1(2/V1). (1.4.9)

o

Thus the invertibility of €, is settled by inverting T .

From the Fourier multiplier formula

(ThH(w) = e 14} w), - (1.4.10)

§

and the fact that e‘“’z/ 4 # 0 for all w. it is clear that T is one-to-one on any space of
Fourier transformable functions. Further, since the inverse of the Fnultiplier. c“’z/ 4 has no
inverse Fourier transform. theinverse of T is not representable as a convolution. nor can be
applied to the general space of all Fourier transformable functions. Instead, we can restrict
the domain of T, and then represent its inverse as a convolution on the range of 7. Many _
such restricted domains are possible. In the next chapter, we consider T restricted to the

class of polynomials of degree N or less.

17



Chapter 1.5 , Polynomial D&:m’ains

Let Py denote the space of polynomials over IR of degree less than or equal to N. The
monomials {1, z,z?,... .z} form a basis for Py If this basis is orthonormalized with

respect to the inner product

-

F > —
I B o e I (X
-—w 0 B
then the basis of Hermite polynomials {Hy, Hy,...,Hy} result. The Hermites can be

represented explicitly:

[n/2]

(2:1:)”’2"‘
=n! - .
Hy(z) =n 3_:0( e Tre e h (15.2)
or by the Rodrigues formula:
24" 2
Hn(I) -—"(—l)nex ‘—i-z—n € z ), . . (1.5.3) '
see, e.g.. [Courant and Hilbert, 1962] or [Lebedev. 19¢5 _

Observation 1.5.4: 7 is closed on Py .
Proof: we will show that TH,, € P, for n <N.

V(T Hn)(v) "[_:C“(y-z)zﬂn(ﬂdz

[o =] n
/ e"yzezzy(~1)" d e“‘z)dz
- 00

i

e
o sn—1
:Zy/ e“yzehy(—l)"'l-‘—i———-——i(c"’z)dx
—00 dzn—

=vm 2Y(THp 1) (y): X
\ .
vy
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' Using THy = 1. we have

(T Hn)(z) = 2"z". N ) . (15.5)
As a result of observation 154, T is an isomophism of Pyy. The inverse of T on Py

is clearly given by

K3

N N

TS aa) = ) (a,/2*)H,(2). 5 - (15.6)
=0 1=0 ’ ’

Our main result is that T ~! restricted to Py can be represented by a convolution with

an explicit kernel Dy (z):
Theorem 1.5.7: For f € Py and ¢ =T f. then

d=Dnx*g - (1.5.8)
where
) IN/2) k
_ ——:cz (’1)
Dnl(z)= ¢ ’g N Ha(2). (15.9)

We will give a proof below using direct integration (as opposed to using Fourier trans-
form distributions). Note, however, that Dy (z) is not the unique function representing
T~ on Pp. Ingeneral. the kernel can be translated by any function which yields a zero

—-——

convolution against Py This includes all functions of the form
2
Cvz Hn(.’l!), n>N.

The stated kernel (1.5.9) is unique among the class of functions of the form e”:‘zP(x),

where P(x) is a polynomial of degree N.

It is interesting to compare the form of D (z) with standard enhancement filters For

example, for N= 3,

2 2
D3(x) = —ﬁc (1 - :1:2) . ‘
7 (7.5.10)
= .__1__3—1'2 — l_id_._(._l__.e_zz). ‘
Nz . 2dz2' /7

. 1o
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15 Potynomial Domains

Dy~g =|1- 53;;”9«

(1.5.11)

which is a not uncommon high emphasis filter (see. e.g.. the papers by E. Mach in [Ratliff,

1965). and [Rosenfeld and Kak. 1976]. In figure 1.1, we display plots of Dy for several

values of N.
Deblurring Fernel; order >> 3~ Ueblurring Fernel; order I ¢
e
R T T T L) B ¥ T | T Lo . LA T L 4 T T T T L L
1 i E - §
8 8
E o _E b -
|+ + |
e F 49 4
2 L 1381 ]
- _J - )
= / \ ! - - -
- = N - -}
b 4t ]
® de F -
3 S
e JE - o
l"’ | [ T | i 1 ol ; 1 R /] __L + | 1 b1 1 i 1 i (] 1 J
0.00 : X 0.20E+04/% f. o0 X 0. ZBE+fa
Deblurring kernsl; order >> 7 Debtlur ring kernel; order >. v
2] a
T r T T I ™ T R LA T T T T T T T T T
1 41 4
g 8
E t 1€ T .
+ B |
g = Jg - _l
- 1 F .
é - J? = ..4/ '
3 S
E [ T T ]
+ S N ST SO S TR U ' N T B ¢ L A ) 11 a2 3 3 1
L 9.00 X 8.20E+94? 8.00 X 8. 20E+04,

Figure l.1.a  One dimensional deblurring kernels. Dy, N =3,5,7,9, drawn 1o the
same scale Note that as the order increases both the magnitude and the number

of sign changes increases as well.
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vebtlUrring kernel; order 3. &  Detlurring ternel; order .- &
%) 0
N ! LI A | T Y ¥ T T T T . ¥ 1 T L) T T T T T A\ T
g |- e
'S 2 £ 1
E of -JE o ‘ -4
+ + { |
d il 1
o -i o =
L B N -
! \ 11 | }
i N 1L _
- ] ) \1 7 i ) ]
. o _4" . B R N B
e [ \ : V
€ +HE - -
+ | S W L Lot a1 | + | O i ' R T SR T |
8 o.o00 X @.cor+pal @00 ¥ B.ZOF+A4
g feblurring kernel: order > 7. Deblurririg kernel; orger >, ¥
.a 3 1)
:. T T T | B A | T Y L e I T T T T T e
1 41 R
1 3 |
=t 1€ t | .
+ | 4+ L fl N
21 gl
‘ | -
: . . . l ’ -
Cor 1t | -
|
1 " 1 - l \ =
N T ——
N - - o -
s | 47 ¢ J
3 S
'E — -E p— -
!"’ | R M T (AU I TS YO VAN W | + | S T S PUREIE SR S N DR SO |
$ _o.00 X a,zoc+04'f © . ae % G 2OF +p 4

", Figure 1.1.b  One dimensional deblurring kemels. Dy N = 3,5,7,9, scaled so
that the structure of each kernel is clear Note that the aumber of side lobes is | 5} ]
on either side of the central peak
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VG & Musres O
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DM |

The dablurring kernel of order D5 3,5,7.,9.

T ] ] L { i ¥ T LS o T L]

l - L 1 L L Il A d —d l '

8.60 % < 20E*Q

Figure §.1.c Emergence of side lobes as N increases N = 3,5,7,9.
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1.5 Polynomial Domains

The proof of the theorem depends on several lemmas.

Lemma 1.5.12:

Pwoof: For n odd. e“’2r" is an integrable odd function. and so clearly An = 0. For

n=2p,p21,
[~ ]
A =/ .e” xzzzpd:c
=00
o0
= —-%/ (~2x)e_’212”_1dx .
o (1.5.13)
= ZB—Z_—E / e"'?zz’“’zdr . °
—w R
=21 A;,, B
Since Ag =1, E -
_(2p-1)(2p-3)...1_(2p)!
Ay = ' 5 = 3%y (15.14)
The Formula holds for p > 0. ’ s
Lemma 1.5.15:
= [ S Hule)ae Yo "3y
c = —e z)xPdr = 2p . -
2™ | o yr H ﬂr(zr(ﬁ, p2k
Proof: For k > 1, p > 1, ' , ' ‘
[e o
ﬁCZkﬂp:/ 6—12[(_1)215 12 d ( -z )]zzpd.t
- OO0
_ [ —-(e” 12):;:2de
oo dzlk (1.5.16)

= \/77(211)(217 = 1)ezk_2,2p-2-
Clearly. cjp 0 = 0.k > 1. Using Lemma 1. ¢y 3, = = (2p)t/(22Pp!). for p > 0. Combining.
€2k2p = O for p < k. and for p > k.

-y

23
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-

Ck,2p = (29)(2P~ 1) .~ (20— 2k +1).c0 224
(2r)!  (2p-2k)!

’ : = p - 2K)1220-2k(p — k). (1.5.47)
___ (2 ' .
20— 2k(p ~ k)1’ r
Lemma 1.5.18: : . ’
Forn >k, A

d /00 ( ) kd {0, k odd
K = Dalz)z*dxr = _N\k/2_ kK
o N (-1) (k2" k even

‘ }
Proof: For k odd, we observe from (1.5.9) that Dy(z)z* is an odd integrable function,

and so integrates to zero. For k = 2p,

’ o 0o IN/2] '
/_ooDN(z)xkd.r / e Z \(/_1')21 Hy,(z)z?Pdzx

. ln/2] ( 1), , M
- . 21,2p .
¥ 1=0 1'2
_ {; (-1} _ (2p)! ~
= 2 227 oy . 519

_ [2p)!
~ p! Z t'(P 1)!

2
=S -1

_ (2p)!

(-1)° (1/2)”—

P

Proof of the Theorem: By equation {1.5.5). it suffices to show that Dy * (2"z") =
{ Hp(z),n < N. We have




15 Polynomial Domains

(Dp 22"} = [ 2"Dala)ly - "z
= /_w 2" Dy(z) i(—n" (:)y"—"zfdz

Zk'( k)'( l)k n-—kdk

(1520)
1)2m2n m (2m yn-2m
= nl Z (2,1,)1(31 Z zm)|(— ) 2(2m ! -2
1 i n m,n-im . o
— Z m'((n »)Zm)' ~2myn-2

= Hn(y)- | |

The theorem above could have been proved using the convolution theorem .and by
computing the Fourier transform of D (x)..We will nonetheless compute Dy in order to

show that the multiplier for Dy approaches, pointwise, the inverse of the multiplier for the

operator T (see (|.4.16)). . . ’ " .
~ Observation 1.5.21: '
5—];((.0) - e"“'z/4 pointwise as N — oco. .
Proof: : \ r
LY
Dy(w) = ?‘% WL Fle 2 B (2))(w), - (152
where ¥ stands for the Fourier transform operator. Now. L
N
-zl 2k atk 2 '
Fle* = -1 Pl z
= Haaloll() = 1= 0% T () (152

= (w)zk\/?re'“"z(‘.
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s\

. [g/:z] (=% ok % 2/4
DyWw) = ) —=pg(—1) W™ v/mel”
. | = ki -
‘ IN/2)
. 2 Z 1 w
k= K2 .

(1.5.24)

Hence . .

—'.u2/4ew2/2 “ J

lir b\w =e
i Dy (w)

[ '2
) =" /4, 1

-

o .
°
*
Q

. Asa go_nqsei;uenqg of observation 1.5.21. we see that D (z) does not converge point- -
wise to any“lfunctian‘/as N — oo, since otherwise the Fourier transform of that function
would be ev2/4 | which is impossible. Dy (z) does converge in Bz(e—’zdz). but that does
not imply pointwise convergence to any function. We accordingly have stable deblurring
when usi’ng the kemels Dy(z), where stability is measured in terms of deviation from a -

" polynomial of degree N. and the £2(e"2d1:) norm is used as the metric.
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Chaptér 1.6 Higher Uimensioﬁ's

The Gaussian blur operator is given by

Tf(z) = /l n nfBe-lz-1)? f(v)dy. . (16.1)
Due to the separability of the kernel and Fubini's theorem. T can be decomposed into n

£

iterated blurrings-

o T=ToTho...0oTy o (1.6.2)
1 —{z,> 1\2 . k .
(T./)z) = / v L AP Fo (1.6.3)
oo . : .
Consider a polynomial in IR": "
flz) = Z agz® ' ‘ | (164‘) o |
LT al<N S
f ° a = (%%029 LA ] an)a ag € Z! az 2 0, / (.’-6-5)
. | . |
Clei=)"a, 2= gon (166). -

For fixed x, the function of one real variable

g(yt)zf(:q,...,y,, --’zn) ,(1.6.7)

-

is a polynomial of degree no greater than N, so

Dy » (Ty).= g, (1.6.8)



" 16 Higher Dimensions

f "

'

where T is the standard one dnmensu)nai blurrmg operator introduced in chapter | 3. Com-

bmmg we fmd that

Yot

for any polynomial f{z) of form (1.6.4). Thus deblurring of blurred polynomials of degree

N can be accomplished by conyolution against thé kernel o . .

-

‘ " DpT(r)= PN(EI")D.'V‘(IZ)“*D.\'(?n)- | (1.6.10)

Thus the situation in higher dimensions is similar to the one dmnensuonal case. The

deblumng convolution kernel is separable. and will be of the form ¢~ 72 P(z), where P(z)

is a polynomial of degree nN in z € IR™ Figure | 2 shows a plot of Dy " forn = 2. N = 3.

‘Figuie 1.2.a  Two dimensional dcbiumng kernel, Dy (zq,79), N = 3, displayed as
. an image. Note the central posmve region and the sign changes i m the surrounding '
> . regions .

. . .
N . 4 ' Y :

L3 . . * . .

1) = [, Dxlo)Dxlun) . Dl )(T Nl -shdy (169

!
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Figure [.2.b  Two dimensional deblurmng kernel Dy (zq 75). A" = 3. Note the
sigh changes in the kernel surrounding the central positive peak

2




Chapter 1.7 , o Experiments in Deblurring

in this chapter we illustrate the deblurring operator. It was implemented in the most
straightforward fashion, using single-precision arithmetic. The continuous operators, both
for blurring and for deblurring, were discretized by point sampling.

Figure 1.3.a contains an image of an urban scene (in Pittsburgh): figure 1.3.b displays
the same image convolved with a Gaussian; and figure 1.3.c contains the deblurred image
obtained with a 9t"-order kernel. ! To facilitate reproduction. these imaées were displayed
using dither-matrices on a high-resolution laser (i.e.. binary) printer. so the above examples
should only be taken as a qualitative indication of the deblurring Only 32 gray levels are
effectively displayed. Informal observations from several members of our laboratory were
that the results were much more imbressive when viewed on a (aster-gvaph'lcs“system
monitor.

A more precise representation is shown in figure 1.4 This graphs the performance of

the operators as a function of both the amount of blurring (c) and of the order of the

deblurring filter (N). Performance is defined as the ratio:

W =Th-1 -7y »
“f— Tf{:a

where |i f|i is the F—norm of the matrix f.

k3

. £ .
Note that. for this image. the pe¥formance of the deblurring filter peaks at order 9
for small o. but., as the amount of blurring becomes large. the filter becomes much less

‘effective at all orders tested

t An identical ¢ = 1.0 1n internal units was used for both the blurring and the deblurring kernels

/}
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Figure L3.a Aﬂiamage of an urban scene 256x256 resolution displayed using
dither matrices with 32 cffective gray levels Note that the structure in the left
portion of the image contams discermible detail

e -

3



17 Expennments in Deblurring

et

Figure 1.3.b A Gaussian-Blurred version of figure 1 3 a {0 = 1.0) Note that the
detail in the left portion 1s now smoothed over

32



I'7  Expenments in Deblurnng

Figure 1.3.c  An order 9 Gaussian deblurred version of figure 13 b Note that the
) contrast and detail have been qualitatively improved
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Figure 1.4  An illustration of how the performance of the deblurring opcrator varies
as a function of the order of deblurring kernel {the x-axis NV =3,5,7,9,11,13). and
the amount of blur (the y-axis 0 =10,1.5,20,25,3.0,40.50,6.0)for the image
in figure | 3 a For small amounts of blurnng the performance of the deblurring filter
pecks at order 9 while for higher amounts of blur, 1t performs much less effectively

-



Chapter 1.8 - . | Summary |

Gaussian blur is one of the most common forms of degradation affecting signals and
images. It is unfortunately non-invertible in general, but pseudo-inverses are possible In
this paper we formulated a precise version of the Gaussian deblurring problem. and obtained
formulae for the kernels of deblurring filters in terms of Hermite polynomials One then ~
simply needs to convolve these kernels against (blurred) images to effect deblurring. As
the order of the kernel increases, the space on which deblurring is exact increases as well.

The mathematics used in formulating the deblurrning kernels were based on the heat
equation The connection between blurring and the heat equation 1s provided by the Gaus-
sian: the spread of any heat distribution i1s governed by convolutions against a Gaussian
kernel. Deblurring then amounts to solving the heat equation backwards in time.

However. backward solutions to the heat equation are notoriously unstable. Neverthe-
less. we have been able to show that stable deblurnng is possible in principle for a class
of image functions, and, perhaps more importantly, that some degree of stable deblurring
is possible in practice for real lm;ges. The example in the paper was obtained using the
most straightforward implementation. More ser,ious attention to numenical issues. such as

arithmetic precision and quadrature, could possibly lead to even better results.
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st AT

, Abstract |l

Suppose a function - an image or a signal - is degraded by Gaussian blur; 1.e. suppose-
A the function is convolved against a discrete Gaussian kernel. We present a symbolic method

to stably remove such Gaussian degradation. The blur is modelled as multiplication by a

Toeplitz matrix which 1s derived from the Gaussian kernel The problem. therefore, is

one of solving a system of linear equations governed by this matrix. We find the inverse
by decomposing the blur matrix and then analytically inverting the resulting sub-matnces.
Moreover, the decomposition is such that the numenically ill-conditioned terms are gathered

into a diagonal form The result can be combined for exact and stable deblurring
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Chapter I1.1 Introduction

Gaussian blur is a common phenomenon. yet to date no exact solution for removing
it has been given. Traditional image processing techniquis deal with this problem either
with ad-hoc practical measures., “enhancement filters” for example [Rosenfeld and Kak].
or use Fourier or other methods. However. all of these techniques have problems such as
their numerical stability. their singularity. or the introduction of approximations [Pratt]. In
contrast, we present a symbolic method to invert Gaussian blur analytically It is superior
to direct numerical techniques as it fully utilizes the special structure of the Gaussian.

Gaussian degradation is the linear process of convolution against a Gaussian blurring
kernel Natural examples include atmospheric and optical blur. The fens of the e;; as
another example. blurs images in this fashion [Campbell and Gubisch]. The amount of

such blur can be used as a d [Pentland]. Also. to a fust approximation. the

degradation of computer tomography images is of this kind [Herman] A vast number of
other examples exist, mamly due to an ap ion of the central hmit theorem when a
large number of random local degradations combine sequentially. the resulting degradation

closely resembles a Gaussian

11.L1.1 Removal of Gaussian Blur is lll-conditioned

Our goal in this paper 1s to remove spatially invariant Gaussian degradation of known

amount In the discrete domain’. After sampling. a one-dimensional signal is represented

t These conditions will be partiy relaxed in chapter 119



-

o

. composition, and Cholesky decorﬁpositlon of positive definite matrices, to name only a few

i1 Removai of Gaussian Blur 1s IH- condttuoned -

'
[

Qy 'a vector, and similarly. énr image is‘répresented as a matrix of mtensity values . The |
degradation is modelled b9 discrete convolution of a pdmt»SéryﬂpIed Gaussian :{gainst this o )
data This leads to a Gaussian “blur” matnx B. which ‘we observe ‘toﬁ be symmetric
Toeplitz. We will show that in the one-dimensional case. the dégr;datioh is é&uivalent to
multiplication of the data vector by this Toeplitz matnx; In the two-dimensional case, the
separability of the Gaussian kernel allows us to model the degradation as left and right
multiplication of the data matrix by two “blur matnces .

Let f denote the true data vector, h the obServéd degraded data vector. and B the blur

matrix. The problem in the one-d;mensnonal drscrete domain is then solvmg the system of

linear equatlons 3

h = Bf. (11.1.1)

Such a task would seem to be straightforward:'simply invert the matrix and multiply to
obtain the deblurred.vector. However. the above matrix is horribly ill-conditioned; a small
perturbation of the vector h could lead to-a large perturbation of the vector f. This is
especiélly true for a blur matnx with entnes close to 1 (which corresponds to a large
spatial extent parameter, 0.} Therefore, one can not numerically invert this me;irix,to solve
the system of linear equations.

The prol;lem of solving systems of linear equations, by methods other than inver- ‘

w

sion. has resulted in a number of stable algorithms ! which appear to be applicable to

Gaussian deblurring. Examples of these algorithms include Gaussian ehmination. Crout de-

|Stewart]. These algorithms are designed to deal with general systems of linear equations.
However, in a particular case, such as Gaussian deblurring, they do not make full use of
the special structure of the problem. Moreover, due to accumulat}on of numerical errors,
thetr performance drops drasticélly as the dimension of the problem increases to realistic

proportions .

3‘;1 The matnx B will be defined formally in chapter Il 2

t A stable algorithm is one whose computed output value for some input 1s the exact output of some
nearby input
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3 111 Removal of Gaussian Blur is Hi-conditioned

Our approach to deblurring is to invert the blur matrix analytlcally’ Welwill accomplish
this by ‘means of analytie decompositions and analytic inversions of the resulting sub-
matrices. These decompositions are sketched iq the next chapter, in which we lay out
the plan for the paper. and are developed in more detail in subsequent chapters. Before_
beginning. however, we shoul'd like to stress one of the advantages of our approach: Analytic
inversion does not alter the conditioning of the problem, rather, the decomposition that
we derive collects all of the “sensitive” terms into a sirigle dia;onal matrix. This diagonal

form greatly simplifies the handling of numerical problems. -

1
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Chapter 11.2 ' | Discrete Deblurring Problem

. %

=4

In this chapter we formulate the discrete deblurring problem as a matrix equation. First,
we deal with the one-dimensional case. Let f, be the original data points. g, samples of

the degrading kernel, and h, the observed degraded data points Using discrete convolution

as the model of degradation, we ha\;e ' . '
s | ' 1
hy= Y giufi §=-00,...,00. ' (I1.24)
1=-00 ’

We make two simplifications to arrive at the blur matrix, B. First, when dealing with
finite images. .we set all the petipheral data to zero. namely. f, = 0 for 1+ < 1'.and 1 >n
where n is the dimension of our data. Second. w;: use the fact that the kernel is Gaus;sian'
and substitute samples of the Guassian into the matrix. To sihlpliﬁy such a substitution,

define a constarit b of the scaled Gaussian }
g=e P00, b -1/202 1 ﬁf

which impli\es that samples of the Guassian at 1 are g, = b’z. .
Then, '
n 2 .
=3 8070 1<i<n .
. 1=1 . '

Let,
TEITAL

! For ease of analysis, we will use a scaled Gaussian Clearly. such a scalar does not affect the result of
this paper as we are dealing with a linear system, . '
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c W2 Discrete Deblurring Problem

¢

-A ’.
h = [hy):
FAN
= [8,):
whgre “ ‘
R B9, = gla-12, - |
Using this notation, we have ' ’ ‘ . ;
' ] - o (11.2.2)
' where, \ .
[ 1 b I BURTCE
. b "1 b pé - !,(n72)§ |
2 A I T S S
B=1{- bg 64 b ' 1 ' L b(n—4)2 . (]]2.3)

Observe that B is symmetric TOephtz Also we will show by means of the Cholesky
-, decomposition (appendix C) that B. is positive-definite.

As a preview of our results, we display the final decompsition of B—1:
Theorem 11.6.1:

1= 17Di, , (116.1)

where L is defined as,

[ ! > )
~b i
b2 _bl—h‘ \ 1
1-H :
33 21-146 146
b b 1- b1——57 ” 1
n-1 n - 21-52" -2 n-31- 52" 24 p2n- -4 n-41-p2n-21_y2n-44_,2n-6
(07 (- o ) i i S T ),
L ‘ - v o o (116.2)
’ ‘ A " | 42




2 Discrete Deblurring Problem

" % :\ +
, ' ( 1 , \
) A |
‘ (1-67)
S ' o 1 .
LA ‘ (1-r2)(1-13) e
. D= 1 -
‘ (1-82)(1—b4)(1-40)
| | \ - ' ITTrY FTmew L )
. ' ‘ o ‘ ‘ (1-b){1-b4) (1-p2n-?)
: e (6.3)
The elements of these matrices are defined as
o . woa [ 1—pti=2g p2i-4 g p-n+2
’ C Ay = (-] 1-62 18 1-60-2 127
0 1< 7:
1
- ; . — o e 1=
‘ b, < { aen-s) ety 7Y
‘ 0 1£7. 1
; ‘
= , The full details of this theorem are in chapter |l 6.
In the two-dimensional case. we use separability of the kernel to generalize not only to
Gaussians with one spatial constant, but to two-dimensional kernels whose one-dimensional
profiles are Gaussians of different spatial parameter, 0. In other words, we consider kernels
R of the form 2 o ) 20 2
Vo , glzy)=e /01" . ¥/
\ = 9(01)'9(02\)- -
Then. similar to the one-dimensional case.
. o0 o
T h:t,j = Z Z /A —»’k,m—]fk,m
k=-00 m=-o00
. " "2
o ] = Z Z yt-k(al)gj—m(o.?)fk,m
' . - ‘ k=i m=1 .,
. n1 ny
, - = 6-kloy) [Z ftm9m ~;(°2)} : , o
}‘ ' k=1 m=1 N

LX)




11 21 Overview of the Solution

Let,

H=lh, ) i=12. ..np j=12,...,m

F={f,,l +=12... ny, 3=12,...,m

’\

B* =gk, for k=1,2 1,7=12.. ,n

© where
Y
85, = 9y ulox) = by~ for k=1,2. 1,7=12...,m;
2
by = e-l/Zak for k=12
Therefore, < -
H=B{FB
Sl (11.24)

This problem can be easily solved given that we know haw to solve (ﬂ22)

-

11.2.1 Owverview of the Solution

There are several steps to inverting the blur matrix B analytically. First, note that
B exhibits a regular pattern; one row is a shift of the previous one and also. as we shall
shaw. the elements of each row are powers of one another However, if one attempts to
symbolically invert B. the analytic form of the inverse is elusive: as the dimension “%f B
varies so does the analytic form of the full inverse

Fortunately. B can be decomposed into less complicated submatrices whose analytic
inverse I1s attainable. Suppose B is decomposed into a lower-triangular matrix L and an

upper-triangular matrix R. such that

B=LR (11.25)

Then. ‘
B-1=p-1L7L. ’ (11.2.6)
44
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W21 Overview of the Solution

We will find these trnangular matrices— L and R—(chapter |l 3) and will show that they
have inverses expressed with exact analytic formulas (chapters 11.4 and 11.5) This will
make 1t possible to solve the system of equations analytically. ’

As a by-product of the above LU-decomposition of B, we easily find the Cholesky de-
compostion of B. This not only aids in algorithms with restricted storage space constraints,
but also proves that B is positive-definite (appendix C)

However. the problem at hand is still an ll-conditioned one In order to effectively deal

with the numerical conditioning of this problem. we then derive a further decomposition of

‘B-1 (based on the previous decompositions). such that

B~ 1=iTHi, . (11.2.7)

where L is a lower triangular matrix, and D 1§ a diagonal matrix t. Returning to issues
of stability and conditioning. we are able to show that L is well-conditioned and D is ill-
conditioned. This decomposition, therefore. unbraids the singularity of B and confines it
to a simple diagonal matrix that can be dealt with appropriately. Thus. numerically stable
implementations are not only possible, but are‘practical as well.

Finally, a brief comparison’of some of the advantages and disadvantages of numerical

versus symbolic methods is made in the chapter 11.10.

t Note that T denotes transpose
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Chapter 1.3 The LU Decomposition of B
In this chapter we prove that B. the Toephtz matrix derived from the Gaussian kernel,
can be decomposed as the product of a lower-triangular-matrix. L. and an upper-triangular-
matrix, R. ) \
. . Theorem 11.3.1:
4 . B = LR,
L e
where
[ 1 b bt © L st
b 1 b Y
o b 1 . bln-y?
B = bg b‘ b 1 . b(n—4)2 " (]1.2.3)
T o AP
1
b (1- b2) N
L2 w4 b1 - %) (1 - b2)(1 ~ &4

&

b(n-—l)2 b(" ~‘2)2“ _ b2n-2) b(n—3)2(1 _ b2n—2)(1 _ 1,21&—-4)

~

[(1-82n=2)(1_s2n—-4) (4 _ b))

(11.3.2)




and.

13 The LU Decomposition of B
;

(16 o P pin—1)? )
1—64 41-(,6 -2 2 1,‘6271'—2
1obimn - bln=2"
A 6 2 2n-2 2n-4 p
) 1-b (n-3)21-¢ 1-42] . 1133
R 1 bkl ot T o (1133
- V’
\ 1 /

- The elements of the matrices B. L, and R are denoted as. §,,.X, ;. and p, ,. respectively.

These are defined as follows. \
[ 4
8,, Lo, (11.3.4)
2 _ T .
{\U _é_ b("]) (1 _b2:—2)(1 _ b2 4)” . (1 v 2(3 l)) i>) : (11.3.5)
0 1<j
A [ pla—n21=b27-21$27 -4 4_p27-231)
A {b( 1-62 1% -1 ST (11.3.6)
0 1>

For a proof of this theorem see appendix B.
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Chapter 11.4 The Inverse of L

In this chapter we derive the inverse of the lower-triangular matnx, L. obtained from the

L U-decomposition of B. We proceed by defining a lower-triangular matrix, L. and &roving

it i®the inverse of L This is done by showing '
Theorem 11.4.1:

-
LL=1 .
. Define I as,
1- ” . _ " '
e L
(1-42) - (1-82)
#2 -b 1
. . (1-62)(1-4¥) & (1-02)2 (1-t3)(1-4%)
L= 3 2 .
b3 b2 ) “b
(1~m(1~bz)(1(-77ﬁ (1-b2)7(1-°b4) (1—62)1(1—174) (1-b2) (1-8){T=8)
o N 1(:“1%‘ .2
I ) it _ -2 1
(1-62)(1-1¥) (1420~ 2 “_bz)?“_,,a), (1-42n—4) o (1-82)(1-t¥) (1—.62"'2)
. (114.2)
where the elements of [, are,
v A (-b)! 7 ) 1 S s
l ' Ty ={(()1~bz)(l—b! (1-8=27) a1 H) (1-+5-2) v2J (1143)

1<y _




114 The lnverse of L

Proof:
We will show the product of the ith row of L and the 7! columin of L 1s the 1'" element

of the identity matrix. ] Clearly. for 7 > 1 the product yields zero. So. we consider the

case ) < 1.

The following 1s the it" row of the L matrix (represented as a column matrix).

( | =112
b(x—2)2(1 Y VIE 2)

b(x-—])z(l ~ - 2)(1 B 521*4) ) '_(1 _ b21-2]+2)
4 b(:—-]~1)2(1 _ b21—2)(1}_ b2:~4) {1 - b2:~2])
T _ plt- 7- 2)2(1 Y 2)(1 - b21—4) - b2z~21~2)

L"OIL‘-‘I

b(z-(]+k))2(1 _ b21~2)(1 - bZ;‘d) 1= b21-2(]+k)+2)

(1-862-2)(1 - 52'-4) . (1=82)
\ - : : )

Similarly. the following is the 3t column of L.

A

0
1 (1- (»7)(] bz) (1 sz'Z)
b

(1-6Z) (1-p2)(1- t4) (1 -K1=%)
i _ (-#)?
column-; = (1 b2)(1 b4) (1-42)(1- b4) (1-427 1)

(~b)l2+K)-
(-#2)(1-4) (1 W2+E) - 2:, (1-62)0- b‘) (1-27-2)

-

(=4) 7/
(1-82)(1-6%) (1- 62' Z) (1- 52)(1—54) (1-427-2)

The product. then. is
49
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14 The lnverse of L

2
Ly oy -3 Leotumn -3 =b(1_'7) (1 - bz'—z)(i - b21_4) 1= b21‘23+2)_
. ] .
(1- bz)(I - b‘) (1= bZJ—Z) P

b(t-]—1)2(1 _ b21~2)(1 _ b21u4) ' (1 ” b21—2]).
-b 1
(1-52) (1- 62)(1 - 6%) (1 - b2-9)

+

) b(t—]—2)2(1 _ b?t—l)(l _ b21—4)_ (1 - b21—2]—2)_
-0 1

A-05)(1-6%) (1~ o). (- 657"
R g

\ : b[tu(_7+k))2(1 _ b?t—?)(j . bZI‘A)., (1- b21~2(1+k)+2)'. |
_ (z0)F o 1 -
(1-82)(1-0%)...(1 - 82K) (1 -62)(1 —b%) ..(1-b2-2)

.

-+

(1- 6271 — 24y .. (1 - %)
. (-b)~7 . 1
(1-62)(1-0b%) .. (1-0b2-2) (1-0)(1-b%)...(1-0b22-%)

50
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<~H4  The Inverse of L

Q.

i L ) —(1 _ b2|—2)(1 - 62‘_4)... (1- 621—2]+2).
row—tYcolumn~) = (1- bz)ﬂ _ b‘) 1 - b2)—2)
{uwﬁﬂ_ )
(t-3-1274 _h-25y. b
i b (1 -0 ) iz b2:)+
2
(-1-220q _ 2 23y p2-2-2y. ___(=8)
b (18 )-8 B e
+
. b(z—(_7+k))2(1 } b21~2])(1 _ b21—21~2) - b21—2(1+k)+2),
_ (- 8¢ .
(1-82)(1- 5%) (1 - &%)
+
(l—- b?t-Z])(l _ b2z—-2]—2) (1 _ b2).
(-8)'"’ }
’ L 1=02)(1-b%) (1 -02-2)f

To sum the above expression, we can name each term explicitly and use induction to

arrive at an analytic expression. Define,

0y 2 b=,

212
et

1-62
1-27 9 — p2-27-2

A 2,,1 - b?
o0, = b(l—]-—Z) +2 :
2 1 — o 1_8 .,

Ty

7—k)24kl — Y271 - p2-27-2  q _ ph=27-2k+2

A _
O, = (—1)ks T e R AT

*



N4 The lnverse of L

1_b21-231_ b21~2}-2 1 — K

=( .y % LT e SR
ez*]“( 1)1 b 1- 82 1 -4 - p2i-2y

Now’ let's look at the sum of the first two terms in the braces above

—

2 1 — b2
On + Oy = plr—1-1)+1 [p2-25-2
p21-2-2

= 12+l
1- 5

Similarly,

, . 2 - pruy-2 ~
©p+0; + 0, = —bl1-1) +’1~—i——-gz——+
]’_2)2_}2 pr-211 - b2;—-2]—2

1-b2 .1 — b
p2r1-2-2q _ p-27—4

b=

— b(t—1—2)2+21 =

1— b 1.- b4
This suggests the following: B
l~emma 4.4
Kk 2—-23-2 n-2,-4 1-23—-2k
30 0, = (~tkplra-HRek LT HTI Z VTE 1 TR
1- 8?2 1-p 1 - 2k

m=0

)

Proof : Wehave proved the case fop k = 0,1,2. It remains to show that if the assertion

is true for &, then it is also true for k& + 1. So, assume that the above expression holds true

for k. Then.



na

k+1
, Z On'= Zem +9k+1
m=>0 m=0 :
_ (—l)kb(’ —J—k)2+k1 _ b2'—2]f21 _ ph--4 B 1 - p2-2-2k
1- 2 1-4 1 -k

. b?z 71 — b2z—2)—2 ] — b2k

(— 1)k+1b(t—_y k-1)2 4kl

The Inverse of L

1-4 1-p4 1 - p2k+2
= (- q)+1 ple-s—k-1)24k+11 A Tl A T Gt
- b2 1 - 1 — p2k
_ -2
pR=2-2k-2 1--2
1 - p2k+2

2;-2q _ p21-25-4

1- b21—2]—-2k——2

_ ( 1)k+1b(1 7-k— 1)2+Ic+l1 sl
- b2 1 —

Returning to the proof of theorem 11.4.1, we had,

(1~ bz.'“z)(l _ bz"‘)... (1- b21—-2'_7+2) - ?

PRI

m=0

Lrow—zl’column—] = (1 — b2)(1 _ b‘) L (1 — b2]—2)
where
Z em —_ { 1:= ] .
, =0 Zm Gm+0,*1 1>7

In the case of 1 > J, we use the lemma to prove.
1—7 1-)-1
Z@m‘—' D Om+8,, _ )
m=0 m=0

b21—23-2 1-— b2i—2'_7—4' 1- b2

1 — bh2k+2

= (ﬁ1)1—3—1b12+t—1—11 ~

1= B2 1-4 1=
= 0.
-In conclusion,
7
0 1<;
Lrow—-1Lcolumn—) =41 1=
0 1>

»
.
.

b2-27—-2

> o

+(-1)*787
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or,

It follows

- Leoturnn-— i=h 2

s

that [ is the inverse of L. which proves the theorem,

o

W4 The lnverse of L
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Chapter 1.5 The Inverse of R

o

This chapter is the analog of the previous chapter; in it we define. aumatrix R and prove

that it is the inverse to R. the upper-triangular obtained from the LU-decomposition of B,

by showing
Theorem 11.5.1: ;
M RR=1 1
- . Define R as. s . |
¥ . ‘ N . 1
(1 -6 ¥ -5 bt e (-p)n? :
Cp1-bt 12188 3148 _pyn-21-p2n-2 (
V-bte Vi . e (=855 R
1 _pi=tb 2148146 {—p)n-31zp2n 2y -p2nd
1-42 1-b21-82 1-62 -4
A 148 pan—d1-p2n-2q_s2n-44_,2n>6
R = ! s SRR W M vors S ST S T 2
1 (_b)n-Sl—bz""z1—52""41*62"‘61;62""8
’ ' 1-4pe 1-68 10 1
. .
\ : 1 !
o , (11.5.2)
' ' . A K ,
. where the elements of R are. . .
r -
’ X




It5  The ihverse of K

¥
e
A [0 l . - 1> .
Py = ,(_-b)J_’ l~sz‘2‘l-bZJ'_‘ . 1-422-2142 i<j (1 ',5.3)
1-62  1-sh 1-p8-2. " =% :

‘We follow the same path as the previous chaptérs in that the {0 row of R times the.
7t column of R is shown to equal 1,,. Clearly. for 1 > j, this product is: zero. Hence. we
only consider the case 1 < j. Lo ‘ T ‘

* The following 1s the 1'P row of R (represented as a column vector)
o 0 \
- 0
r-v N . M .
© i ’1 ‘
l _bl—hz'
. ’ 1—b Al
e | (_b)zl—b2'+21—b?'
- T 1“‘6 1-'7 \ﬁ
R ) Rpow——t = (_b)3‘1_621+4 l—b2'+2 l-—bz' . ‘
R Y SR Y g
e 1 pZe+2 " ‘
1-42 1-o8 1-ph-2
; .
o : (_b)]"l"bz]—zl_sz—4---1—',2] -142

1-p2  1-p% 1-pd -2
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W5 The Inverse of R
( | pl-112 \
pli-2)21-4% -2
bla- 1)21 62221 425~ 4 . 1_(,2]—2(:-—1)
1-62 188 1_p20-1)
~ {; (1)) 212 -2 p2 -4 4 -0
b 2 1-#2 - (,1 1 b2
plo- (,+2))?1,b_1_21 p-4 ',_,,2]—2(”1)
1-82 1-44 1-p2(1+1)
Rcolumh-—; = 1+3))21- b2.7 2y 424 1-421-2(2+2)
pla- (1+3)) 1-
- 1-62 11—t 1-32(142)
plo—fr+k)2a-p21-23 b21 -4 1 -2+k-1)
1-62  1- b‘ 1 p20+k-1) .
1
0
0
Therefore, the product s,
= - 21721 _ p21-4 ~ p-2(r-1)
Rrow—tRcolt’nmnv] =1- b(]”)zl b 1-6 1._ ,b,,_.______,,
' 1-62 1-4 1 - 20-1)
bl - b el (1+1))21 - b2 1_ ~ b2 A . 1 - b21“2'+
1 -5 1-62 1-b% 1- b2t
(~b )21 ~ b+l _ 2 bl (+2))21 - b21- ?1 — p-4 N 1 __‘b21-2(1+1)
‘ 62 1- 64 1-62 1-p 1 p20+1)
(-5 "2'“’ A T eI e s B A b b” 201+2)
1-0b% 1-00 1-62 1-60 — 2h+2)
+
(-.b)kl - b21+2k—21 - b2$+2k—-4 1- pk+2
1- 82 1- 4 1-b2-2
oli- (k)21 = b2~ 21 ~ -4 g pl-2atk-1)
. 1-b62 1-p 1 — b2+k-1]
* : + ’ ‘
;. (,.b)]"'l ~ -2 62]—4 - ..1 _ b2]“2t+?
16 1-bF 1= b5-2
’ ’ 57



A 115 The Inverse of K

As before. we need to name each term exphcitly and use induction to sum all the terms.

Therefore, define

o211 - 62721 —p-h g p2-20e-1)
1-82 1-8  1-p2k-)

v

To 2 bl

12491 - 0% 1 -2 g4y _,,zj-z,/

Y
Ty = (~1)pl1- .
1= (=1) 1-62 1-b2 1-0o8 1- b2

+21*62‘+21 b2 1 -p-21 _ p-4 1 = p-2(:+1)
102 1-68 1-62 1-88 - p2+0)

_( 1)2p7 1= 2)?

. é ("1)3”(]-“3)2_#31 — bt ph+2q bzl.l —~ p21-2 1‘:1,2]—4 1- b2]’2('+2).
3 ‘ 1-57 1-b% 1-66 1-062 1-08 1_ p20+2)

_ph+2k-21q _ p1+2k-4 _ p2k+2
Tkg (__1)’61,(]-—1*’5)24"&71 b4 1 b4t 1 b +

1- b2 1-60 1-p2-2
1-p9-21 . p21-4 1 - b2 -2(s+k-1)
1-82 1-6% 1 phFk-d)

1- 62]—21 _ b2]-~l 1 - b21—21+2
1-62 1-68  1-p8-2

LA (e
Then. we have

Ryou—s column -3~ 2: Tm.

m=0
Let us consider sum of two terms.
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TO‘.+ Ty = b(J—')21 ~-p21-29 _ p21—4 - 1 - b2_1~2(:-1)+
1-62 1-04 1 p2a-1)
142 1-42 1- b4 1 — b2

T I s Bl A Il
) 1-62 1-48 1 - ph-2

-2 1-897%

1- 52
= _b(1—1—1)2+'11 ~ 21721 — p23-4 1 - p-2+2 ‘ L_ p2-2-2
1-4? 1- v 1 - p2r-2 1- 52

Similarly.
To+ T+ Ty = —b(1—1—1)2+1 1-p21-21 _ p2-4 1 — b 242 ' 1 - p-2-2
1-62 1-b4 1 - p2-2 PRy,
p-i-22421 7 0B B2 - b2y - ph g - g2t
1-82 1-b6% 1-82 1-pt 1 p2eH)
= __b(]—1~2)2+21 - 521721 - p21-4 1- p27- 22+2 . 1. p-2-2
. - b 1~ b4 1- p21-2 1- 52
IR T i
1- 64
RTINS S ek el A el Al Sl iy b p2-2—4
) 1-® 16 1-%72 1-#  1-8
——

which leads us to the following lemma
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Lemma 11.5.4;

k : _127-214 _ p27-4 _p-2142
‘ Z:Tm:(—1)"1;(1“'*")2'*"’1 b7-21 - b2 nl it

o 1-82 1-b68  1-pn-2
1 —pu-2-2q_ p2 -4 1- b2]—21——2k
1- 52 1-68 - T 1- b2k

Proof : We have provéﬁ the case for k = 0,1,2. It remains to show that the above

assertion holds for k + 1 if it is true for k. Assumne. therefore. it is true for k. Then.

k+1 k
}: Tm = Z Tm+ Tty
m=0 m=0
- (_1)kb(]-—x—k)2+k1 - b21-21 - pl-4 11— 1,2]—2z+2'
1-42 1 1 — p2t-2
1 - p0-"2-29_ p27-2-4 N { - b2]—21—2k+ (11.5.5)
1-42 1 - 1 — b2k
' (—1)k+‘b(3“"k-1)2+k+11 — bh+2k g phit2k-2 - bz"?".
1-? 1-b4 1 -2
1 p2-24 _pl-4 §_ pl-n-2k
1-52 1_5% 1 phiZk

Rearrange T, .1 as
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S )
<
- (_1)k+1b(;—z—k—1)2+k+11 —b-21 —ph p g B2
k41 1-82 1-68 1- 622
1 — p2rt2k 1 _ p21+2k-2 1 — plk+4 \
1- 2 1-¢ T 1-7
1 - p-2q _p2y-2-2 1 - -2k
1- 52t 1-pht2 1 ph+2k
= (1)l k1) 2kl = A Sl S Bk it
“t 1-b62 1- 1- b2-2
1 - bl:+2k 1-— b21+2k—2 1 - bZ:
1-62  1-68  1-pke2
1 - pl-2rq _ 621—21_2 1 -y 2-2 .
1 - p> 1 — p2e+2 1 — p2s+2k
= (—1)k+1pl k-1 2+k41] A Sl AR Sl et
1-b2 F1-0 1 - b2-2
1 = p-2-24 _ p2y-2-4 1 -2~ 2-2k 1 _ ph-2
1- 82 1-b08 1Bk 1 - pkeD

Substituting back into the sum expression (11.5.5), we get
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W5 The inverse of R -

"Z"':’ o (_1)kb(J‘“1“k)2+kl ~p-2 1___ p21-4 - 1- 62]—2:+2'
— T - 1 - 1 - p2-2
1-32-21-29 _ p21-21-4 1~ pl1--2k
1- 82 T R
(~1)k+1pl k=12 +kt11 - b2-21 - phh 1o et 22
1- 8?2 1- b4 1 - b2
p-n-21 p21-21-4 1- p-2u-2k 4 _ bz_)—ZI
1-62  1-88 T 1-k 1 p2ke2
_ (_1)k+lb(1—:*k—l)2+k+11 - b2 pTr4 g g nA2
1—62/1—174 1 - bh-2
1 - b?]—?x —21 ~ b?]-?r 4 1- b?{-2t~2k
1- 2 1-68 1-
_p--2k-2 1 212
1 - b2k+2
- (_1)k+1b(3—1——k-1)2+k+11 SR Sl AR Tl At
1-b2 1-0b* 1 - 422
*\/ 1- 62]_2'"21 _ 62]—21—4 1- b2]-—2t—2k
1- b2 1-68  1-0%*
1 — p2-2-2k-2
. 1 p2k+2

which is exactly what we set out to prove in lemma 11.5.4.

Now. returning to theorem 11.5.1. if 1 = 5,

Ry ow—1 Realumn - = 1.

Fori < j,
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5 The Inverse of R

g :
J-t 1—1—1
Z Ym- Z Tm'f' T]_,
m=0 m=0

(g T
1-#2 1 - b4 1-p2r-2
(_1)]—11,;‘11 ~b2-21 . p2s-4 1- pl-2+2

1-02 1-p . Ty g2
=0.
~ To summarize,
W, )
0 1<y,
Rrow-iRcqumn—J =41 3 =3
0 1>5,
or, »
.(
) : ,Rrow-—t Rcolumn—] = 1,].

1

~

It follows that R 1s the inverse of R, thus completing the proof of theorem 11.5.1.
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Chapter 11.6 The LTDL Decomposition of the Inverse of B

~
L d

In this chapter. we give a decomposition of B~1 which we derive from the LU-decom-
position of B. We will define three matrices: L a lower-triangular matnix. D a diagonal

matrix. and & an upper-triangular matrix. Then. we will show that

Furthermore. we will find that,

so that. ' ,

¢  Theorem 11.6.1:

B 1=[THi. ’ (11.6.1)
Proof: We proceed as; foliows. From the LU-decompoQition of B we get L and R, which

in turn gives a decomposition of B~1. Then, we decompose the lower-tniangular matnix L

(recall this is the inverse of L) into another lower-triangular matnix L and a diagonal matrix

{ D Define
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N6 The LTDL Decomposition of the Inverse of B

~b 1
2 ~bl=b 1
A 1-82 ‘
L= 53 p2 146 _p1=t6 : 1
1-42 1-62

v

_gret (o212 on 3 2n-2y 2ned 0 2020 dn-dy 206
\( b) (=) 1-42 (-0) 1-62 1 (-6) 1-62 1% 16

(11.62)

1 .
( 1 )
I (I—bz) ‘
’1 Q
A (l—bz)(i—bz) :
b= .
(1-82)(1-5%)(1-45)
\ TR /
- (1-82)(1-%) (1-p2n-2)
(11.6.3)
The elements of these matrices are defined as
R =3 1-p21-2q_p2i-4 1-p21—2742 . R
,\,Jg{y( b) ’Tp— 1-8 T 1pi-7 129 (77.6.4)
0 1< g:
A ‘ - t ’—:]
b, = { (I-00(1-tK) (i-p&-7 ; (11.6.5)
0o - t#
respectively. Then. o
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< 6" The LT DL Decomposition of the laverse of B

/ o
. . : -
(DL)U = Zétk’\kg R . . -
k=1 i o
= 611)‘1_) ) : ) .
* ( b)‘ J ) i 1 j
(1 -02)(1-4) -p8 ) CA-h(1-t¥%) q-s2i-7) =
" 1 < ]
= A, .
’ Y
?
Therefore, ‘ . .
e ' X4
\
L'1=1=Dbi. d .
. l N N \\
Also, define, . .
& R é R=pRr

4

a ) -

o i I3

Note the special property of this deCO;rr;Sbsition' namely. that L i’s a well-conditioned
matrix. This. implies that we have isolated the nll-condmomng into a diagonal matrix -
' D- thereby greatly s:mpllfymg the handling of possible numencal problems. In this sense.

then, the LT DL decomposition might be said to be optlmal.
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Chaptﬂ"“ nre . . Examples

-

in this chapter we brovide examples of discrete deblurring. The images were obtained

" in two'differept ways: (1) by simulated blur, and (2) i)y a realistic optical,source of .blur.

The simulated blur was implemented using discrete convolution against a Gaussian.

Then. we use the LT D1, decomposition of B~1 to deblur them. Recall that

. h = BY. : (11.2.2)
Therefore. to optai}l f frot;\ h, we use ' .
f=LTDLh. | R 7/ I XY
For images the pﬁblem is obtaining F from H, ’ ) ’ .
” H = ByFB, o (11.2.4)
‘whfc\l; is readily sol‘veti as , - ‘
L F- (LIbiLy) B (1F D{Lz). o C(117.2)

The original and blurred images of SQUARE, CORNER. and CITY are displayed in’
the (.a) and (.b) part of figures Il.1, 11.2. and 11.3. respectively. The SQUARE image was

’ :tosen to illustrate deblurringcof images of geometric structures. The CORNER image

amines a sut;portion of SQUARE at higher resolution. .Finally. the CITY [maée carries
the demonstration to an image of a natural scene very rich in structure: The deblurred
- 1

images are found in the (.c) part of the figur.e. Note that the recoﬁstrui:tion is perfect

Y
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W7 Examples

in the case of spat:ally invariant Gaussian blur. of known spatial extent and high accuracy
represer’ltation. ' ° . o ’

Since the problem with Gaussian deblurring 1s (in*part) numerical. in the next series
of experiments we varied the accuracy of the initial. giverr information The SQUARE,.
CORNER, and CITY images were accurately convolved against a Gaussian and then repre-
sented by 4, 6, 8, 10. 12, 14. 16. 18, 24, and 30 bits/pixel The deblurring value is the best
possible for each representation, and was chosen by comparing, the results of deblurring
with several values. The results are shown in figures 1.4, 115, and 11.6 respectj\}ely Note
that Qwitha 4 bits of accuracy son(e"mmimal deblurring is achieved But as the accuracy is

*  increased, our method gives progressively better results. At 30 bits, the reconstruction i1s
virtually perfect. f . «» s
A plot of performance versus representation accuracy fora the CITY series is shown

in figure 1.7. Accuracy i1s in bits/pixel. Performance is the normalized norm difference

between the (known) original. F. and the reconstructed image, Fp .

[

. performance = ﬂ’i”}ﬁ—ﬁ”, (11.1.3)
wher;. | p ]
iFl =3 FAM2. (11.7.4)
tv] " '

’O’ur last example is the EYECHART image with several different deblytring values. In
this case, the source of blur is optical; the camera lens was defocused before the image
"was scanned. and the result digitized to 8 bits/pixel quantization. The results in figure
11.8 show the well-known trade off between reconstruction of the image and avoiding noise
amplification The best possi'ﬁle deblurring value depends on the accuracy of the given
degraded image. ’

There are some technical points about the deblurring algorithm that are relevent to
successful implementatibns. First, the fractional elements of L should not be computed n
, @ straightforward way Rather. factors should be cancelled (which is possible in every case):

in order to avoid numerically unstable c'omputation of these elements This is espeaially

true for values of b close to 1 (corresponding to a large amount of blur). Second. elements

v . ? 68 o
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.of D). the matrix which s llhe ill-conditioned part of this problem. Sh'o“uld be handled, with
extr:!me care Observe that the elements of D increase very rapic!ly 1n magnitude moving
down the diagon,a! Therefore. one should use specialized “long-word™ anithmetic functions
to deal wuh them This is affordable sincgthe complexity increases linearly vith size JAlso.
note the ele’nts of D) are highly corfe!u‘;ed the next element on the diagonal is easily
compu\ted from the present element This fact can be utilized to obtain high accuracy

Tipe accuraéy of deblurring is directly affected by numerical quantization: for a given
~word le}lgth ‘stable deblyrring only appears possible up to a c}qtoﬂ' blur parameter bg. For ‘
instance for Fortra;l REAL‘B accuracy (inner pro‘ducts are also computed REAL*8). the
cmoﬁ' pomt is approximately by = 0.85. For values of b less by. the algorithm always
pe,rforms perfectly, given complete information about the blurred image (i e no truncation
occured after blurring.) Howluér(slughtly beyond this point. ie b > 8. the-performance
drops' drastically. Thus. for a given numerical accuracy. one can determine how m\}ih blur

“can be removed reliably. Note. however. that the upper limit of deblu‘mng value in our

exarr'\plés was decided by the accuracy in the representation of the degraded image rather

. than the internal accuracy in representation and arithmetic. The plot in figure 11.7 supports

this point

¢ Figure Hl.1.a  The original image. SQUARE at 40x40 spatial resolution. 6 bits/pixel
The image was chosen to illustrate the consequences of deblurring in detait for a o
structured image , 69

)
4

’

9




\ < ‘
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|
[
Figure 11.1.c The deblurred image. using t =0 80 Agan note that the deblurring
is effectively perfect s
Ny
-4 h ! - \
/‘L < R
‘ | 70
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Figure 11.2.b The image CORNER blurred with ¢ = 080
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Figure 1.2.c  The deblurred image. using & = 0.80 Note that with gh accuracy
. . representation of the biurred image, the representation is eflectively perfect
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}
Figure H.3.3  The onginal image CITY at 100x100 spatial resolution 6 bits /pixel
This image is chosen to demonstrate deblurring of a knows structure at tugher
resolution ‘
A4
- | . 3
.
! 73
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17  Examples

Figure I1.3.b  The image CITY blurred with * = 0.80

]

Figure 11.3.c The deblurred 1mage using & = 0 80 Note that the performance
of our deblurnng method ts not affected by the contents of the image Note that
' deblurring of CITY which «s very rich in structure 1s again virtually perfect
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Figure 11.4.a  The image SQUARE deblurred using b = O 20 with 4 bt representa-
tion of the blurred image This series of experiments (4 5 and 6) was undertaken
to illustrate the relationship between the numerical representation and the amoun
of stable Gaussian deblurring See text . '

3

Figure 11.4.b The image SQUARE deblusred using ¢ = 035 with G bit representa-
tion of the blurred image

Examples

7%
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Figure I1.4.c The image SQUARE deblurred using & = 045 with 8 bit representa.
tion of the blurred image

Figure 11.4.d Theimage SQUARE deblurred using b = O 55 with 10 bit represen-
tation of the blurred image

Examples

&
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Figure fl.4.e Theimage SQUARE deblured using t = O 60 with 12 bit represen-
tation of the blurred image

Figure 11.4.1- The image SQUARE deblurred using { = 065 with 14 bit represen-
tation of the blurred image
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[y

Figure'll.4.g  The image SQUARE deblurred usin
tation of the blutred image

»

gt =005 with 16 it represen-

Figure l.4.h  The image SQUARE deblurred usin

kb= 070 with 18 bit represen- )
tation of the biurred image ‘
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4
T
Figure 11.4.i The image,SQUARE deblurred using b= 0 75 with 24 bit representa- ’
tion of the blurred image. ,
rd
[
Patal
Figure 11.4.j The image SOUARE deblurred using & = 0 80 with 30 bit representa-
tion of the blurred 1mage
A
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Figure 11.5.a The image CORNER deblurred using b =0 30 with 4 bit representa-

tion of lhe blurred image

\

Figure 11.5.b The image CORNER deblurred using b =0 40 with 6 bit representa-

tion of the blurred image
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Figure #4.5.c The image CORNER deblurred using t = 0 45 with 8 bit re“pre_senta-,

tion of the blurred image 4 ,
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* Figure 11.5.d  The image CORNER dcblurred using ¢ = 0.50 with 10 bt represen-
tation of the blurred image
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Figure I1.5.f Theimage CORNER deblurred using & = 050 with' 14 bit répresen-
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Figure 11.5.g The image CORNER deblurred using | = 0.50 with 16 bit represen-

tation of the bjurred image.

Figure §1.5.h The image CORNER deblurred using # = 0.50 with 18 bit represen-

tation of the blurred image
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Figure 11.5.i The image CORNER deblurred using b = 0.50 with 24 bit representa-
tion of the blurred image
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Figure 10.5.j The image CORNER deblurred using & = 0.80 with 30 bit represen-
tation of the blurred image L
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Figure ll.6.a Theimage CITY deblurred using b = 0.20 with 4 Bit representation
\_ of the blurred image

3

'

Ny
N

)

A4

Figure 1.6.b The image CITY deblurred using b = 0 35 with 6 bit representation
of the blurred image.
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Figure 11.6.c  Theimage CITY deblurred using b = 0 45 with 8 bit representation
of the blurred image

Figure 11.6.d Theimage CITY deblurred using b = 0.50 with 10bit representation
of the blurred image
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. ﬂ Figure 11.6.e The image CITY deblurred using b = 0 60 with 12 bit representation
.of the blurred image ,
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Figure 11.6.g Theimage CITY deblurred using ¢ = O 65 with 16 bit representation
of the blurred image ’

Figure I1.6.h Theimage CITY deblurred using b = 0.70 with 18 bit representation
of the blurred image
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’ Figure 11.6.i The image CITY deblurred using b = 0.70 with 24 bit representation
of the blurred image o

4

Figure 11.6.j The image CITY deblurred using ¢ = 080 with 30 bit representation
of the blurred image
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Figure 11.7 Performance versus accuracy of the degraded image for CITY Accuracy
in bits/pixel in the x-axis Perfomance the normalized norm difference between the
original image and the reconstructed image is the y-axis, see text
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Figure 11.8.a The image EYECHART obtained from a camera with the picture out
of focus The image 15 scanned at 200x200 spatial resclution 8 bits/pixel

Figure I1.8.b The 7 C7HART 1~ “rblurred with £ =030

91
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—

K ‘ Figure I1.8.c  The EYECHART image deblurred with & = 040

-

Figure 11.8.d The EYECHART image deblurred with & = 0.45 Note the trade-
. off between the reconstruction and noise amplification  Increasing the accuracy of
representation of the degraded image would improve the results -as is suggested by

experiments 4. 115 and 116

9
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Chapter 11.8 Discrete vs. Continuous Deblurring

\

There are anumber of interesting similarities as well as differences between the method
presented for deblurring continuous Gaussian blur in [Kimia and Zucker] and [Hummel.
Kimia, and Zucker]. and the method presented here for removing discrete Gaussian blur,

The main resuit of the above papers was to conclude that in order to remove continuous

Gaussian blur, the image should be convolved against the deblurring kernel

[N/2]

Dy(z)=e Y

. k=0

()"
/mk12k

Hylz), (1.5.9)

‘where N is the order of polynomial approximation of the original image and Hyp, (z), is

, the Hermite polynomial of order 2k. Figure (il 9.a) shows: the deblurring kernel for N = 9.
Similarly, one can obtain a discrete deblurring kernel by ploting a row of B~ 1(Figure 11.9.b)
Note that the plots of the deblurrning kernels resemble each other closely

The discrete method, ho‘we:ver. does not have some of the problems associated with
continuous convolutions The shrinking of the boundary. for example. 1s non-existant for
discrete deblurring and the discrete algorithm perrmits more stable implementations in high-
accuracy, low noise situations.

Figure (11.10) shows a companson of the two methods on the image CITY. At low
numerical accuracy (6 bits/pixel) the results appear be’tter with continuous deblurring.
However, at high numerical accuracy, the results are significantly better with discrete de-
blurring. The stability at lower numencal accuracy is a result of smoothing inherent in the
low order approximation of the continuous deblurring

)
T

|
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Figure 11.9.b A plot of the discrete deblurring kernel Note the similarity in struc-
ture to the continuous deblurring kernel in figure 11 9 a
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i

e

Figure 11.10.a The CITY image deblurred using the continuous method with 6
bits / pixel accuracy with equivalent blur and deblur sigma. ¢ = 1.5, and deblur
kernel order 5  Compare this result to 11 6 b where discret‘?deblurring is performed
on CITY with the same numerical accuracy, See text for discussion

Figure 11.10.b The CITY image deblurred using the continuous method., as above.
but with higher accuracy |



' 18 Discrete vs Continuous Deblurring

Figure 11.10.c The CITY image deblurred using the discrete method. The deblur
parameter is b = 0.80 which is equivalent to the above signfa Note that with the
same accuracy as Il 10 b, the results are significantly better.
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Chapter 11.9 Extension to Stably Decomposable Kernels

Degradations other than Gaussian can also be represented as the lineariconvolution of
the image against some kernel Thusfar, we have shown how the problem is";truct‘ured for
a Gaussian kernel.” Now. we would like to extend this result to a larger class of kernels.
The extension is not completely straightforward, however, since for a Gaussian kernel we
were able to model the degradation as the left and right multiplication of the image matrix
by degradation matrices and this 1s not always possible. Rather, discrete convolution is
represented. in general, as a single multiplication of the image vector by the degradation
kernel (matrix). In this chapter. we show how to put a subclass of degradation kernels
into the left and right matrix form, so that the techniques developed for removing Gaussian
degradation can be.applied.

Consider the cIa-ss of-kernels for which it is possible to model the degradation with left
and right degradation matrices. That is. let the matrix F represent the image. Then. .a

kernel K belongs to this class if
3B, Bp suchthat By FBR =F+K VYF, (1194)

B and Bp are the left and right degradation matrices. respectively. A kernel that
satisfies (9.1) will be refered to as a decomposable kernel.
Note that, “with the image represented as a matrix. neighbourhood relations are pre-
served In appendix D, we discuss the necessary and sufficient conditions for a kernel to
be decomposable.

The next step to extend theresult to such kernels is to obtain blur matrices from the
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119 Extension to Stably Decomposable Kernels

left and right degradation matrices B; and B . Hence. define matrices V; and V.
B =V.B; : Bg = BgVp, (119.2)

where By is the left blur matrix. V is the “residual”. and similarly for the right side. Then.

L4

we have

H =V;B; FBRVp. (11.9.3)

The problem, therefore, is recovering F from H in (11.9.3), and this can be done in two

steps. First, solve for Z in

| H=V,2Vp. (11.9.4)

Second, solve for F in

Y

‘ Z = B, FBj. (11.9.5)

\

The first step can be achieved using conventional methods for solving a linear system of
equations. provided matrices V;, and Vg are not ill-conditioned. Let us refer to decom-
posable kernels that yield well-conditioned matrices V; and Vg as stably decomposable

kernels. The second step employs algorithms based on theorem (11.6.1), which recover F

-
.

accurately.
5 '
We have therefore shown how to remove degradations governed by stably decomposable

kernels. Given a kernel K representing some degradation, we can use the conditions of ap-
pendix D to determine whether K is decomposablg. Then. we can test for the conditioning
of V; and Vg to determine whether K is stably decomposable. If K is indeed a stably
decomposable kernel, then the method of this paper can be applied effectively.
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Chapter 11.10 ) Summary ||

&

We have considered -t-bg;problem of inverting discrete Gaussian blur. This was ac-
complished by deriving a decomposition of the blur matrix that isolates the numerically
ill-conditioned part of the problem. There are several advantages to this method com-
pared with direct numerical methods. First, typical numerical methods for solving the
matrix equation (I1.1.1) fail when the dimension of the problem reaches realistic propor-
tions. Second. such methods employ general purpose algorithms that do not make use of
the special structure of the Gaussian. In contrast, we have utilized the full structure of
the problem. Third, since we carried out.a large part of the inversion process symbolically,
much of the overall numerical error is avoided. Fourth, our symbolic method confines the
ill-conditioned part of the problem to a diagonal matrix. This allows for accurate methods
since the complexity of very accurate computations increases linearly with the dimension
of the problem. Also. the partitioning of the problem into complex well-conditioned and
simple ill-conditioned parts has made 1t possible to predict the numerical accuracy needed
to deal with any amount of blur. Finally, the method can be extended to a larger class of
kernels. which we refered to as stably decomposable ones.

More practically, our method is effective with problems characterized by low nois:e and
high representation accuracy. In such situations, the method removes the ‘blur completely
and exactly. Given the improvements constantly taking Place in imaging technology. partic-
ularly the increased reliability of sensors at.higher light levels, images to which this method

can be successfully applied should become more common.
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Chapter Jil.1 o Speculation on results

(

The last two parts have demonstrated how to remove Gaussian blur in the continuous
and the discrete domains. | will now take the liberty to speculate about possible implications
of these results towards interpreting the physiology of the human visual system.

Recently. physiologists have noticed that the receptive fields of some cortical cells.
which were thought to be accurately modelled by a difference of Gaussians. exhibit side
lobes. Gabor functions are now used to approximate the receptive fields of these corti-
cal cells [Marcelja). Interestingly. our deblurring kernels are extremely close to an even
Gabor function in form, Ialthough their analytical expression is different. Figures lll.1.a
shows an even (Cosine) Gabor function. and Figures I11.1.b and lll.1.c show the continuous
and the discrete deblurring kernels, respectively. Note thé similarity, both qualitative and
quantitative, between the Gabor function and the deblurring kernels

What functional interpretation can be ascribed to these cortical cells given their ob-
served receptive field structure? To answer this. note that side lobes have been observed
in the receptive fields of simple cells which respond to thin oriented stimuli at a specific
location [Movshon). Such simple cells are generally thought of as contributing to line
and contour “detection”. One might speculate, then, that these cells perform a combined
function of responding to very thin oriented stimuli while simultaneously deblurring in the
orthogonal direction to the prefered orientation. The primary task of deblurring in such an
hypothesis, then, is to localize blurred line segments. This assertion conforms to the loca-
tion specificity of a simple cell. | should stress the belief that several different functional

roles may be simulitaneously assigned to any given physiological observation. and therefore,

t



W1 Speculation on resulls
this spectulation does not.prevent other interpretations of the observed receptive felds.

Blurring and deblurring may also contribute to visual hyperacuity We have shown
that the information n the original and the blurred data are equivalent and interchangable.
However. given the choice of sampling the orniginal or the blurred data. it 1s preferable to
sample the blurred data. This is because blurring spreads~the information. say about an
edge 1n the scene. to several retinal receptors; this information might have been missed
otherwise. Deblurring, then, provides a way of reconstructing the inter-receptor information.
in t.he framework of an elaborate theory. [Zucker and Hummel. 1985] have shown how
hyperacu;ty might be achieved by deblurring visual information in the smallest channel.
According to this theory, the visual information 1s first processed by a differential operator

(Laplacian). separated into its negative and positive parts. and then transmutted to the

_ cortex. A deblurring of the information in the smallest channel i1s needed for a possible

(implicit) reconstruction of the visual image which provides visual precision better than the

retinal spacing. ‘ N
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Chapter 111.2 - . Conclusion

<

¥

In summary. in this thesis | attempted to model and solve the Gaussian blur problem.
Gaussian blur was approached from two directions; one continuous and the other discreie.
In the continuous approach, we used continuous convolution of the Gaus$ian against con-
tinuous data to model t!le t;lurring process. Then, the problem of removing Gaussian blur
is one of solving an integral equatiqn. ‘The solution to this problem is formulated as con-
tinuous convolution of a deblurring kernel (.5.9) agai‘nst the blpnéd data. In the discrete
approach, we modelled the Gaussian blur process as matrix multiplications. The solution
now amounts to solving a linear system of equations which are, however. ill-conditioned.
We solve the equations by a series of symbolic decompositions and inversions. The result
1s that the inverse blur matrix is decomposed into two well-conditioned tnangular matrices
and one diagonal matrix which contains all the ill-conditioned terms. \

The solutions for both the continuous and the discrete domains are convergent in form:
both the continuous and the discrete solutjons present kernels which resemble a difference
of Gaussians (DOG). but with extra side lobes | speculate that it is the form ‘of these
kernels with their side lobes that provides one possible explanation for obseryea §id¢lbbe§ .
of receptive fields in the visual cortex. Furthermore, deblurring can be used to recover the, -
depth of objects in the visual field. Also. the phenomenon of hyperacuity would not ‘be
possible without blurring, and deblurrgng providgs a possible method for 'réconstructir{g the
inter-receptor visual detail. It would be interesting to see whether ‘the conceptual framework
of deblurring and further or simultaneous processing of visual informatian. in a comlzined

form. could provide constraints for deepening our understanding of physiological data.
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Appendix A. A Second Proof of Theorem 1.5.7

In this appendix. we outline a natural and more intuitive proof of the main theorem
(1.5.7) in order to derive the deblurring kernel Dy (z).
Proof: We require that the deblurring kernel D(z)satisfy

D(z) + 2"z" = Hy(z): ‘ n < N. (A.1)

Equivalently.
. oo

[ peNen(z - 0t = Fala). (4.2
—w ¢

By ex;anding both sides we discover that this requirement translates into constraints on

the monomial moments di = [°_ D(z)z*dz of D(z). namely

[n/2]

~ nl(-1)k [ k etk _ (=1)™(2z) "2
g__«; (n— k)!k![/_m D(e)¢"agls™" = "!mzzzo e 2y 49)
Equating powers of x,
dypmsq =0, m=o,1,...,[”;1] (A.4)
and
~1)™(2m)!
dz,,,z(—E%(r—n—!"i, m=0,1,...,[§]. (A.5)

These equations should hold for every n,n = 0,1,...,N. The conditiohs; forn = N

subsume all others.

-

The above constraints on dj. can be translated to yield formulae for coefficients of an

expansion of D(z) of the form

2 N
D(z) = * Z ay Hi(z). (A.6)
k=0

We restrict the upper imit of the above sum not only because it provides sufficient con-
straints for a unique kernel. but this kernel turns out to be the pseudo-inverse operator

on Py . the space of polynomials of order N. Also. 1t is interesting to note that it yields

the most stable kernel. Adding any combination of higher order Hermite polynomials

Hy(z) :n=N +1,..., to D(z) will yield another legitimate deblurring kernel.
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A A'Second Proof of Theorem § 57

The a;'s will satisfy the linear system of equations

N oo
Z ak[/ e"sz(z):z:ldz] = d,, [=0,1,...,N. (A.7)
k=0 % :

We first consider odd [ = 2m + 1 for which d; = 0. ’For k=2pp= 0,1,...,[-’;-],Hk
is a sum of even power polynomials and according to lemma 1.5.12, the integral vanishes.

However, when k =2p+1,p= 0,1,...,[%—1], we have

Iz b 2 N -1
Y el / P Byt ™) =0, m=01, [T (48)
p=0 B
* We use the following lemrgaig prove this linear system of equations is non-singular.

N

Lemma A.9:

® 1 z2 2p+1 ° p<k
¢ = —e * H )z dr = _ vk _(2p—2k42)(2p+1)! .
2k+1,2p+1 ./—ooﬁ 2%+1(7) (-1) ST Ty i p>k

Proof: Fork > 1, p> 1,

} ) 0'0 .2 2 d2k+1 2.
- Vicsatapns = [ U e e
= — ® _d_ziil_(e—zz)xbﬂdz
— oo dz2k+1 (A.10)
= (2p+1 / ~7%) 2P
1) [ ol et
= ~V(2p + 1)(2p)c2k-1,2p-1-
. Clearly. ¢jp 1,4 = 0. k > 1. Using lemma 1.5.12,
_ ., (2p+2)
cl,2p+1 = 222p+2(p + 1)' P20 (A.11)
Combining. ¢y11 2541 = 0 for p < k. and for p > k.
c2k+1,2p+1 = (—=1)(2p + 1)(2p) ... (=1)(2p — 2k + 3)(2p — 2k + 2).cq 2p-2k+1
: CCap e, (20— 2+ 2)
(2p — 2k + 1)1 22-2k+2(p _ k 4 1)1
P TPy (2p +1)!
=(-1)*(2p 2k+2)22P‘2k+1(p-k+1)!' ]
(A.12)
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~

The lemma implies none of the cp;,117p41 is 2ero. Hence. the solution to

271
A N-1
- § a2p4+1€2p41,2m+1 =0  m =0, 1‘,--.,l——5—].
p=0

is unique and clearly.

a1 =0 p=0. YY)

For even ! = 2m,

. N oo —-1\m \ -
Z ak[/ e_zsz(:c):czmd:c] = Ll)(_Zm)_.’ m=0,1,... ,[ﬂ]
- —o0 22mym| ’ 2
k=0
The above integral vanishes for n odd. Thus,
lgl ®© 2 9 (-1)™(2m)! N
b 1 m — N —_—
Zazp[/_wc Hzp(z)z dz] = W’ m —-0,1,’...,[—2—
.p=0
which becomes, using lemma 2 of section 5,
m
(2m)! _ (-1)™(2m)! _ N
Zoaz”lﬁﬂm-b(m — p)!l = oty 0Ll
p=

Canceling and rearranging.

N
L

‘'m
!
N Z _"i_azpfp =(-1)™, m=0,1,...,|

= (m - p)!

which can be easily recognized in the form

©

m . |
Z (':)y”x'"‘p =(z+y)"y=2,z=-1.
p=0 )

» Then, it is evident that ’/,

_ (=1
v

I

/

(4.13)

(4.18)

(A.15)

(A.16)

(A.17)

(A.18)

(4.19)

(4.20)
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In summary. then.

D(z) = Dy(z) = e~* Z

o haN
L)
) ‘}*’L‘r{ﬁ; ;;
[+

(-1
« /TPl

A A Second Proof of Theorem 1.57

Hzp(z). [ ] (159)

o 1o
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i B Proof of the LU Decomposition of B

Appendix B. Proof of the LU Decomposition of B

In this appendix we present the proof for the theorem (I1.3.1).

B=[R. ‘ (I1.3.)

Proof: We will show that the i*" row of the £ matrix, £,. multiplied by the 5 column

of the R matrix. R, is the 15" element of the blur matrix. B.

Assume 7 < ;. Denote £,R_7 by A. Then,

A= [b(z—-l)2 b(t—2)2(1 - bZz-—Z) b(l—3)2(1 _ b2i—-,2)(1 _ bZ:—Q)

[u-bhﬁhu—bﬁ4y.41—wﬂJ”].

blr-1)2
( 5(1—2)21—521*2 - \
2432 1';6 274
(7-3)21-b20-¢ 1 p20~
b 1-8 1-t3
. : ‘ ‘
b plme)2 12 1 2-8 220~ 1)
‘ T T Y (B )
1
0
\ 0

Rewriting it with a few more terms explicit, we get,

i

&
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B. Proof of the LU Dec;amposition of B

@ = p0-17 plr-1)2

. — -2
+ b(z—Z)z (1 _ 621--2) b(J—Z)z 1-b7

1-42
- 1-527-21_ p27-4
p0-32 (1 — pr-2y(1 - p2r—4) pl-3)2
¥ ( 4 ) C1-p2 1 b
+
1~ p2-21 _ p21-4 1_b2]-—2(t—3)
By - p2 -2 p2-t 6y] sli—1+2)? '
+[ =670 ~ ) b)]b 1-86 1-4 1 - p2(:-3)

_p2i-yq4 g4 A (1_,+1)21 - b22-21_ p21-4 1-p-2(-2)
+ [ol1 - 8221 - 8274 (1 b)] b i sL SN Seadtui el
+ [(1 - bZ:-—Z)“ _ b21—4)” (- bz)] plr- 1)21 — =21 _p21—4 g _ p-2-1)

1-p2 l—b‘ 1 —p-1)
y (B'i)
A= b1 p-1)?
_ pu-2
(=223 _ p2-2y plo- 2)21 b
+ (-2 (1 — p2-2) -
; ~ 21 _ 294 )
(i-3)q _ g2-2y(q _ -4y plo-3)21 ¢
+613°(1 )1 ) e
| 27-21_ p27-4 1 —ph1-2(-4)
9 2v~ 214 8 (]..,..’,2)2 1-6 1
+[b (1-b SR -] b e e e

23-24_ p23-4 1 _ pa—-2(:-3)
2:-2 214 6 (s- !+2)21 b —a—
+[sra-822 - 02 (1= 6] b gy B wey I )
27-21_p20-4 1 —p2-2(s-2)
-2 2:-4 _] pleny21z0
+[b(1 b 1-0b ... (1 b)] b 1-52 1-p% 7 1 -pA-2)

Fol7 =021 p2myy(1 — g4y (1 - 22 1)),

- Recall that our intention is to proveA = b(J*')z. Hence, it seems reasonable to expand

the last part of the previous formula based on its form. Therefore, we define

n é b(]—'l)z(l _ b2]—2)“ _ 621—4) . (1 _ bZJ‘z(t—l))’
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B Pro?f of the L U Decomposition of B

and try to expand it.

n= b(j"’)zl _ b2J—Zt+2(1 - b2,7—2)(1 _ 623-4) (- b2?’—21+4)+
_ b2,1—2z+4(1 _ b23—2)(1 _ bZJ—‘{‘ . (1 - b23—21+6)+

- 67751 — 0-2)(1 - 44+
— b2 — Y4

1).

n=- b]2—2(t—1)]btz—21+2(1 _ b2,1—-2)(1 . b2]—4) . (1 _ b2]-21'+4)+
_ b72~2(z-1)gb#-zz+4(l BT - B (1 - 2246y

_ 672—2(1—1)31,12—21-}—6(1 - b2_1—2](1 _ b2]—4) (- b2_7—-21+8)+

_ b12—2(t~1)_7b12—6(1 _ 62-7_2)(1 _ b2]—4)+
_ byz*Z(t—l)Jbzz-J(l _ b2]—2)+
_ b]2—2(z-—1)3b12-2+

=92

Substituting M back into the expression (B.1) for A we get
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{ come up with bls “)2!

B Proof of the LU Decomposition of B

A = p-1)2 pl-1)2

2 2 1-p2272
ple=2% (4 — p2r—2) pl0-2)¢ 279
+ 6 ) )
21— 721 44 '
b(t-—3)2 1_b21—-2 1_b21—4 b(]—-3)
+ 832 (1 - 7)1 - g2 Ll St
+
-~ —p21-21 —p—4 1- b2]~2(t—4)
Oq _ p2i-2y(q _ p2-4 8] g2 10 .
+ [P - o221 -2 - o8] b T Ty T et S
_p-214 _ 274 1- b2]—2(‘l—3)
[(40g ;202 _p—4 _ a6 (]_,+2)2 1-b67-1-%
+ [t - o2 Y1 -4y - 9] b )
=24 _p-4 1 _ p27-2(-2)
[ 21-2 %n-4 4] p-e+1)2 167771 b 1-b
- —b R § I J
+ - 70 ). (-] b -8 1-4 1- b26-2)
K’ + {;_ b72—'2(t—’l)]bl2—2t+2(1 - b21—2)7(1 _ 623—4) = 62]—21+4)+

- 1,72—2(1—1)11,:2—2:“(1 _ b2]-27‘1 4y (1 - sl ltE)

_ b72—2(z—1)1bz2—2z+6(1 _ BB (1 - ) (1 - bl
: :

— w220t ? -6y _ 202y _ gl

_ 612—2(1—1)](,:2—4(1 — b Yy

_ pi-20e-1y?-2y

b(J-!)z}_

Now, rewrite the first few lines of this expression having in mind we want to somehow

-
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B.  Proof of the LU Decomposition of B

A =pP-21 pit-2i+2
’+b;2-—4] b12—4t+8‘1 _ b2]—~2)1 — b2

1-
2_6; 218y 32)-2gq _ -4y 1B 21- b2
+7-61 ¢ (1— 62-2)(1 - 84

-2 1- b8

+
1 - b21—2 1-~ bZt—4 1- bZt—G
1-»22  1-bp% 1-p2
1_b2t—21_b21—4
1-62 1- b
1—62‘_2'

-2

4+ pl-20-3) 2 -6rt18 (1 - b2-2)(1 - 2274 (1 = 420~ 2= 4))]

+ b12—2(1—2)_7 612*41+8

-

(1 _ b2]-—2)(1 _ b27—4).. ’ (1 _ b2]—2(t—3))j

+b72—2(i—1)1 b12—2z+2 r(l _ bZJ-—Z)(l _ b2_7—4) . (1 _ b2]—-2(t-2))j

+ { _ bjz—Z(t—l)] b12—2:+2(1 _ b2]—2)(1 _ b21-4) I b2_7-21+4)+
_ “'2-—2(1—1)_7 6:2—21+4(1 _ 627—2)(1 _ sz—‘). L (1- 62-7_2""6)-{-,

- b_72~2(z—1)] b12—21+6(1 _ 62]-2)(1 _ 62-7—4). (- b2_7—-21+8)+

~ 221 6 _ -2y (q - 4y
_ 221 pleAg g2y
_p2-2-1); g2y

5(1-1)2},

. . . . . , . . —)2
Now. pair up expressions. starting with the top and bottom expressions (excluding blr—1)
of course: it is a special case!) and terminating with the center ones. Some reorganization of

the expressions, powers of b in particular, is essential for the proof to continue successfully.
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A= b(’_')2+
_ b]2-—2(t‘1)_76"2"2 [1 - 6(21‘4)(.7‘1)} +

' 2~
‘“.2—2(1—1)11’12-—4(1 _ b2]—2) {1 - b(2t—6)(]-2) }_%9_(?3} +

) TTTLE PR I N b4y |1 _ pl2e-8)(;-3)1 221 g2
v 76 )1 ) [1-8 T |t

_ 6]2—2(1.-1)]b12—21+6(1 _ 627—2)(1 vz —4)_“ (1- Y —2(1—4),.

. b‘(]—i+3)1 _ b21—21 — ph-4 1 — p2-6 N
1—0 1 16

- u2~2(1—1)3bi2—21+4(1 _ 62;-—2)(1 _ b2-7_4)... (- b2]—2(:—3)).

212 -4
[1_(,2(]—‘1+2)1“'b‘l 1- 57 J_*_

1— 1

1- 22

2010 2-242 [ g 425-2 _p27-4 _p-2(-2)
pi-20-1y {(1 =2) (12274 (1 -4 )](1 —)
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B Proof of the LU Decomposition of B

L
A é _};}\—2(1—1)]612-—2 [1 _ b(zl"”(J“l)] g
o N 2 1 - p2-2
A= —p-20-1)p -4 1-322-2y )1 _ pi-6)(r~2)
’ ( N, - 2
8y w21y -6(g 202 _ 274 |1 _ yz-8)(p-y1 = 821 — p2d
. 1-02 1-4
A, é _.b,2_2(t—-1)1b12_2t+6(1 _ b2_7~2)(1 - b2]—4) - b2]—2(1~4)).
. 64(7”‘+3)1 —b2-219 _p2-44 _yn—6
‘ 1-2 1-64 16
A, g ~H2_2(1—~1)]b12—21+4(1 _ b21—2)(1 _ 621—4) (- b2]-2(1—3)).
1 g2 —t+2)1 24 _ p—4
1-» 1-p4
-2
A;-] é _bJ2_2(z——1)]b12-2z+2(1 _ b2]—§)(1 _ b2]—4) . (1 _ bZJ-Z(;—-Z))u _ 11— bb‘z )
‘ 1
in general, =
Ag-k é __b7‘2—2(t—1)]b12_21+2k(1 = b2]—2)(1 _ bZJ-‘) . (1 _ b21"2‘t—k—1)).
1 plh-1)2-2e425)1 — B221 — ph-d A-pho
1-b6 1-p8 T 1 p2k |-
Then,
-2 ‘
A= b2 +'A1 +Ay +43+ ... +A;_3+ A, _)+4,_4.
-1
2
:b(J ) +ZA1-I¢‘ -
k=1
Hence. the problem reduces to showing the sum term above is zero. The following
{ lemma gives an explicit expression for the sum.
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B Proof of the LU Decomposition of B

Lemma B.2:

. L8

%

\\ b » .
k-1 y ol )
- Z A=t =2(1-1)g 42 ~2z+2k(1 _ b?]-"?)(l _ b2]-—4) (- b21—-21+2k).

m=1

— +

132 Y T R

[1 _ b21—2k b2]—2:+2k1 N b2t—2k—2 1- b2~.—2k

o2y 221 = BT g o2kdmo2) g gl +
1—52 1~b‘ l—bzm .
ple-2i2y - 24201 = 2741 — p-6 j_.b2z—2k]
102 1-4 T 1-p2k-2)
(B.2)

¢

b

Proof: We prove this lemma by using induction. Let’s have a look at the sum for some
values of k. This will give us an idea of what the general expression for the sum is (i.e.

above was not pulled from a hatl), as well as providing the start point for the induction

1- b2'-2)
=&

p2-4
1%

A, _y= __b]'2~2(t—l)]b12—2z+2(1 _ b2]—2)(1 _ b2]-—4) (1= b23—21|\-2))(1 _

- b12~2(:—‘.1)’3bt2—-21+4(1 _ bz_)—z,(l Yy —4) (1= 62]~2(t—2))

£
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B Proof of the LU Decomposition of B

3

2:—4
A;—] + A,..z — b,?_z(t—l),]btz_h-i-‘(l _ b2]-——2)(1 _ b2]—4) ) (1 _ b2]._2(,__2))11~ b;z

_ b72—2(z—1)]b12—21+4(1 _ 621—2)(1 _ b2]——4) L1 - b2]-2(z—3))_

- b2(1-1+2) 1- b21—2 1- b2z—4
1-62 1-p*

= 22?2y _ 22 (1 _ -4y (1 — p2-2e-3)),

1 1- b21—21 _ b2t—4
1 - b2]—2(1—2) -1 b2(]-:+2)
P ’1-w * 1-6 1-b4

_ b21—4

- _b,Z»z(f-l)Jb.Z—zm(l C B (1 b Y. (1 - B203),
[(1 ~ 1-p2—4 b2.7_2‘+41 — ph-4 (1 _ 1 — p2-2 ]

Tz — L
= —b]2—2(t-—1).7b12_21+4(1 - 62]—2)(1 —_ b21‘4)'” (1 _ b2]—2(;_3)).
—bz}____ﬁij _ b2]—2:+81 - bu4q _ b21—6}

] 1- 42 1— 4?2 y

= b12—2(1—1)1b12—21+6(1 . b2]-2)(1 _ b2]—4) o (1 _ b2]"2(t—3)). .
'1 _ b2t—6 b21‘21+5\1 _ b21—4 1- b21—6
i 1- 1-p 1- b4

Now, proceed to sum more expressions.
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B Proof of the LU Decomposition of B

. A,_1 + A )+ A = b72 ~2{1— I)Jbez 2t+6(1 62]'2)(1\ _ bz,_A) (1 _ 627—2(’—3))_
F! —p2—6 b27’2’+61 — 241 _ p2-6
1-42 1-6 10

L

- u2—2(1—1)1b12—21+6(1 bZ]—Z)(l _ 627_4) - b21—2(1—4))_
r —b4(1_!+3)1 ~ b21-2q _ ph-4q _ ph- ]

1-562 1-b0 1-16

b

— bj2-2(=-1)1b12—2;+e(1 _ bz;-z)u — 0% (1 - 62120 4)),

2 - —6
{(1 - b2]—2(t-3)) [1 — b7 + bb- ~n+61- 41 -2 ]+

1 — 1-2 1-b%

b‘(] £+3)1 b21—21_b2z—41_,b2z—6 }
1-52 1-p% 1-b°

— b}'z—2(t—1)1b12—21+6(1 b2]—2)(1 b2]-—4) ( b21_2(1—4)).

[_(1_1 bz—) p27- 2,+61 — b 6( 1— bz“ 1+
- b2 - b v b
_ b‘]_‘1+121 _ ph-4q b2' 1 - 1 bZt 12y
1— 82 1-8 -6

= b]2—2(1-—1)]b:2—21+8(1 bZJ—Z)(l b2]—4) - 527—2(’_4)).
[1 _ bZt— sz 21+81 —p-61 _pu-8
1—#? 1-02  1-p8
b‘]“‘“""ml - bz"-‘l — pb-6q _ be—B]
1—82 1-p 1-15

<+

We now use induction in order to obtain the sum (B.2) for i — 1 terms. Assume,

k-1
I WY R W PO o WP
m=1

_ b72~2(t—1)1b12_21+2k(1 623—2)(1 b2]-4) o (1 _ b23-2,+2k).

3[1 ~ p2—2k L5 el — plt-2k—21 _ p22-2 . N
N 1-p2 1-p2 1- & s
pim-1)(2-2ue2k) 1 = 27 2EHAm— L) g g2 22m-2) g ph2k
1-6 . 1 -4 1 —pm T
\ plE-27-na2p) 1 0241 276 1 bz'“z’c]
) 1-62  1-p4 11— p2k-2
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, B Proof of the LU Decomposition of B
and consider.

D)

k
] Z A _m=8_1+48_2+.. .+ B

m=1
We will prove that our proposition is true for k.

k k—1
Z A, m= Z A tb ik
m=] m=1
- b7'2—2(t—l)]éz2—2:+2k(1 _ bZ]—Z)“ _ b2_1—4) - b2_7—21+2k)_
1- b21-—2k s b21—2‘+2’€1 _ b2\—2k—21 - b2t—2k s N
1- 82 1-52 1— b4
p(m=1)(27-2:+2K) 1 - p2t—2k+2m—1) q _ p22—2k-2(m-2) 1 — p-2k -
1— 52 1 -4 1 - pm
b(lc—2)(2_7—2z+2lc) 1-p2—41- b2z——6 1— b2z—2kJ N
1-p2 1-b4 1 — b2k-2
l_ b72—2(t-1)_7 bz2—21+2k(1 _ b2]—2)(1 _ b2)—4) (1= b2]~2(1-k—1))_

TR AN ER i Bl A _ g2k
1—-b6 1-6 " 1-p2k
= 220 pt B 2R (g 2021 g2y (1 - g2 2 2kH2),
_ a2k _ p2-2k—-2 9 _ 3222k
[_I_.i____ +b2]—21+2k1 b 1-b -
1-b2 1-4 1- b
plm=1)(25-2n+2k) 1 — b2 —2kA2m=1) 4 _ p2:-2k-Am—2) g _ ph-2k -
1 -8 1 — T pim
pl-2)(27 - 24260 1 = pr-41 - p2-6 g _ b21~2k]+
. 1-82 1-p% 11— p2k-2
[—623‘2""2"1 ~bB % RTREYTS b 2k-2y _ ph-l -
1- 42 1- b2 1 - pb
_ (27— 2042K) 1 — p-2k42(m-1) { _ p1-2k-2(m-2) ¢ _ ph-2 .
1"'62 1__.b4 1——b2"' et
LI NTINE L Gt bl A e bz‘“Zk]
1-862 1- b4 1 - pk-2
: — [1- st -2 = s A b2r*2k]
' T8 19 1-p*

Now. grouping similar powers of b inside the braces we get,
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B Proof of the LU Decomposition of B

L
k 2
Z At—-m -y —2(1—1)Jb12—2t+2k(1 . 62]—2)(1 _ b23-—4) (1 _ b2]—2t+2k+2)_
m=1 ) d
1- p2r-2%
{ e
b2_1——21+2k1 . bZt—Zk 1 _bZt—2k+2 y
Tow o e

pim—1)(27-2:+2k)

1- b21—2k+2(m—'-2) 1- b21—2k—2(m-—_3) 1 — b2k 1 _ b21—2k+2(m——1)

1 -4 1 - g — p2m-2 { _ 2m -1)

Jk-2) (22261 - 6201 - B2 B g _ph2k g g2t »
1- 562 1—b% 1 - p2%k—4"_p2k-2

ple=1)(2-24+2Kk)1 b2y p26 g ph-2k 122 }

-1
1—b2 1-— b4 ‘l—bzk—z(l_bZk )
= 1,72-2(1—1)Jb12_21+2kf2(1 —m2)(1 - 2974 (1 — U2 ke2)
(1. 222 ~
{‘TZTT_*
b2]—2z+2k+21 - b21—2k 1- bh—2k—2

1-p 1- b4
b(m—l)(2]—2:+2k+2).

+

1- b21—2k+2(m-—2) 1- b21—-2k—2(m-— 3) b21—2k t- bzt—Zk—Z)

o 1 - 1 - Tl —gm-2 |- 2m +...4
b(k—z)(21—21+2k+2)1 _ ph6q _ pn-8  q_p2e—2kq _ b21-2k—2+
T —8 1—60 T 1_p2E-4 | _ pk2
b(k—l)(21—2:+2k+2)1 _oplid Jp-6 g _p2i-2kf_ b21—2k-2}
16 1-b T 1-p2k-2 1 _ g

This proves the proposed induction and hence the lemma.

We apply this lemma to the sum (B.2) with i -2 terms.
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B Proof of the LU Decomposition of B

\—’\'
i:z A .= 1,72—2(t-1)1b,2_2(1 - By, ' o
=1 y
{1 e bmi2-2) 4y - q(:.-a)m—z)}
=220 22y p-223-2)) .
Then,

11

-1
Z b, = Z A+ A

r_n=1 m=1

Lemma B.2: £, R, = [, R,.

Proof: Assume ¢ > j. Then. .

= Mz“z(;‘”ibiz—?u_ b(t-223-2)) _ 2 -20-1)5 522 [y _ b(zs-4)(,—1)] }

=0,
' H
Finally,
2 1—1 "
A=l ’;A,_k , -
- b("—i)z‘ N ' .

It remains to prove this for the case 1 > 7, which brings us to the following lemma.

\
- 4
3 v

LR, = [‘b(z—n? =207 (1 - 22y g3y _ gdi-2)(q _ g4

’ [b(z—_‘])z(l _ b21—2)(1 _ b2t—4) o (1 _ b23—2(1—l))] o

o R e B T A N
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C  The Cholesky Decoﬁwposition of B

( b(12‘1)22 ) \
_n21-p21-
ol2-2) EEYE

b(]—3)21—523_21_~b2-7_4
1-02 1-eb )~

‘Hence.

LR, = b('*l)z.b(]_l)z-k
b(z—?)z(l _ b21—2).b(_7~

3)21 - b21-21 - p21-4
1-82 1-4

b3 (1 - p-2)(1 - pB4) 400~
+
b(t—])z(l _ b21-2)(1 _ b21—4) 1= b21—2(]—l|).1

= b1 -1
2 21 — b2
b(]-Z) 1 . b2]—2 'b(1—2) .
321 - p2-21- bz"‘+ -
1-62 1-b4

B3 (a - g2y (1 - 4y b

+
—ph-2q _ ph—4 1 — p2t—2(1-1)

- (1 - )b

1-02 1-46¥ 7 1-p0-2
— .
= L;R,. (]

The above lemma proves that the matrix product £ R is symmetric. Therefore. the “
proof which has been presented for the case of 1+ < 3,'is valid for all 1, .
In conclusion. this section has demonstrated that the product of £ and R. lower-’

triangular and upper-triangular matrices. respectively. is actually*the blur matrix B.
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C  The Cholesky Decomposition of B

Appendix C.. The Cholesky Deco'mposifion of B

1, '

in this appendix we decoripose the blur matrix. B. into the product of a lower triangular

matrix, L', and its transpose (Chélesky decompostion). This new decomposition may offer ’

new possibilities in reducing storage space and computation time Also, it proves that B

is a positive definite matrix Moreover, later decompsitions can also be derived from it.

In order to obtain L', we resort to the resulfs of chapter 11.3, namely, the L U-decomposition

of B. To do this, we introduce an auxillary diagonal matrix D as defined below. The ele- *

ments of D, L', and. R’ are denoted by 6, A:] . and f’:g . respectively.

'

b

r,

L - v

o Proving the following lemma, will give us the Cholesky decomposition of B.

" . : 125

awo :
AN V182 V1-68 :
D= . , 1 1 1 “\
V1-62 V144 V/1-16
‘ K . T ' . 1 1 : 1 J
‘ : o : a Vi1-t2a/1-b4 " /3 p2n-2-
and. r'( : h , L '
’ e e 11 e z=‘j" A
i b, é V1-02 Vit V1-p2-2 A L (C)
We showed B =.L R, which )‘yieldsb R : o C o !
‘ . 'B= (DD 'R ‘
v — £1RI
‘where © . u '
'S, q
and.' ' ‘ R c;
: " pepig.
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C. The Cholesky Decomposition of B

Lemma C.1: 2'T = R/,

Proof:

n
A:] = Z ’\1k6kj
k=1

) / ~ B

; 17%3-
Hence. using the expression for Ay, (11.3.5) we have.

) ('.,_J)z(1__’,,&—2)(1_‘,2:—4)_ (1_b21‘—2(1~1)) .
Xy = {b V1-82V1-08 V1-23-7 P20

0 1<j
Similarly,
n .
fr !
Py = Z Oy kPk;
k=1
— ., .
o = by
" where, . ' ~
' -1 _ gt
b= [6%1]
3 | = diag [6—1—} .
fa - 12

Then. -

“

124 p2t—21_p21—4 p2~2(3-1 T
= {b(: e VIRV R VIS iz
0 ' ' ' 1<y
B R ]
Therefore, - ‘ .
VI
, P = Ay
‘ o T ‘
R ' ’
This proves the asser'tilon that
| | B=ro".
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D  Decomposable Kernels
Appendix D. Decomposable Kernels

In this appendix, we establish the necessary and sufficient conditions for a discrete

' kernel to b“’ decomposable. First. recall that a discrete kernel is called decomposable if
the convolution of the image against this kernel can be modelled as multiplication of the

image, which'is vepresentea as a matrix, F, by two degradation matrices. Specifically, a

’ kernel K is decomposable if

<
—

3B, Br suchthat B FBr =F+K VF, (119.1) -

’

where B L and BR are the left and right degradation matrices, respectively,

Since (11.9.1) holds for all F, let

F,=6 1i=1,2,....m 3=12...,n, (D.1)

1-2f,3~3"

for some ¢/, 3’
Denote columns of By and By by By, and B Ry. respectively. Then, omit}ting details,

we conclude

?

LY ELFBRT =a:c;’;. (D.2)

Also,

IF * Klz] == Z quxt—p,_v—q
Pq .

(D.3)
= K,y gy
Therefore, K is decomposable if and only if
Bbt,r'b’?],z’ =K _p, g Vigig (D.4)

The above equivalent condition (D.4) provides the following necessary and sufficient

condition for a decompsable kernel:

/_/ quKrg = Kp‘gqu v p.q,7,S. (D-S).
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D. Decomposable Kerneis

To prove necessity, assumé K is decomposable, and let 1,3.k,1,¢/, 5, k',l/, be such

that the following hold.
A

p=t—1 c
g=5-7
(D.6).
r=k—k'
s=1-1
Then, X ) ) )
quKf«‘ = BLI,Z’BR],]"B-Lk,k'BRlvl'
= BL:,:’BRI,I"EL[;,HBR]’]I (D7)

= Kpsqu,
which concludes the necessity of (D.5).
Next. we show that condition (D.5) is also sufficient. In other words. for any given

kernel that satisfies (D 5). there exist left and right blur matrices satisying (9.1). Let,

Bp,=1 1=12,...m (D.8)
Then,
BR].J' 7 Ko ;- 7=12,...,n. " (D.9)
Consequently, ‘
..r K —ql 44t
B ==
* 171 (D.10).
_ Ky
KDJJ_J'
. This is a meanigful assignment since, .
Kovryoy _ Eitier, RANS (D.11)

Ko -y Kos-v

from (D.5). The matrices By and By satisfy (D.4) and therefore. K is decomposable.
This proves the sufficiency of (D.S)Q
In summary, we have proved that (D.5) is a necessary and sufficient condition for a

kernel to be decomposable.
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