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Abstract 

Gaussian blur or degradation ;s the convolution of a signal or image against a Gaus-
• 

sian kernel Solutions to the problem of removing Gaussian blur are presented from two 

approaches F,rst. in the contmuous approach. the image ;s cons,dered to be a functton • 
deftned on a continuous domain The process of blurring is mode lied as cont,nuous convo­

lution of data against the Gaussian kernel. In order to remove this blur a Imear deblurnng 

kernel i5 sought. Although the inverse of a Gaussian canno~ be represented exactly as a 

convolution kernel in the spatial domain. by restricting the blurred data to polynomlals of 

fixed degree. 1 show that a convolution inverse does exist. These deblurring kernels are the 

pseudo-in'lerses of the Gausslan convolution operator. and constructive formulas for the 

deblurring kernels in terms of Hermite polynomials are given. Second. from the discrete ap-
\ 

proach. the image is modelled as a matrix of discrete ,values. In contra st to the conttnuous 

case. the blurrtng process is now formulated as multiplicatIon of a data matrix by the blur 

matflx. However. the resultant system of linear equations can not be solved using typical 

numencal methods. slOce the problem is iII-cond,tloned. The problem is solved by symbol­

.cally decomposing the inverse o~ the blur matnx 50 that ail the numerically ill-conditioned 

terms are gathered into a diagonal matn". The result permit; exact and stable deblurring 

provided the extent of blurring is known a priori. 
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Résumé • 
Le flou gaussien, ou dégradàtion d'une image. est te résultat de la convolution du 

signal avec une fonction noyau gaussienne. Des solutions au problème de l'éliminatIon du 

flou gaussien sont présentées selon deux démarches. Selon la première démarche, l'image 

est définie comme une fonction continue sur un domaine continu. l'addition de flou est 

modélisée comme une convolution continue du signal avec le noyau gaussien. Dans le but 

d'éliminer ce flou, une fonction noyau linéaire est recherchée, Bien que r inverse d'une 

convolution gaussienne ne peut pas être représentée de façon exacte comme un noyau 

de convolution S4r J'espace, nous montrons qu'une telle convolution inverse existe si on 

représente le signal perturbé par des polynômes de degré fixe Nous définissons ainsi des 

pseudo-inverses des opérateurs de convolution en vue de l'élimmation du flou. Les termes . , 
de polynômes de Hermite sont explicités à l'aide de formules constructives Du point de 

vue discret, l'i.mage est modélisée par une matrice de valeurs Par opposItIon élU modèle 

continu. l'addition de flou est représentée par la multIplication d'une matrice de flou par la 

matrice d'image. Nous obtenons un système d'équations linéaires mal conditionné, et par 

conséquent. que l'on ne peut pas résoudre à l'aide de méthodes numériques usuëlles. le 

problème se résoud par une décomposition symbolique de l'inverse de la matrice de flou des 

manière à réunir les termes mal conditionnés dans une matrice dIagonale, Nous pouvons 

ainsi obtenir une élimination exacte et stable du flou. pourvu que l'amphtude du flou soit 

connue à prion. 
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Preface 

Gaussian blur is a most common phenomenon. yet to date no ellact solution for re­

moving it has been given. Most traditional methods have advocated Fourier transform and 

ad-hoc techniques. such .as "enhancement filters". (Rosenfeld and Kak). (Pratt). However. 

in addition to having problems with numerical stabihty and singularity. these techniques do ., . 
not remove the Gaussian blur exactly. In contrast. we will show how to remove Gaussian 

blur exactly both in the continuous and the discrete domams. 

Gaussian blur octurs m many events of nature ThiS is mainly due to an application 

of the central li mit theorem: when a large number of random local degradations combine 

sequentially. the resulting degradatlon closely resembles a Gausslan. Natural examples in­

clude atmospheric and optical blur. Aiso. in computerzied tomography. the imaging and 

reconstruction processes introduce degradations which are approximately Gaussian. [Her­

man). 

The human visual system. as weil as other human sensory mechanisms. is a rich 

source of examples of Gaussian degradation. For instance. the i~age on the retina is '. 
projected by a lens that can only focus on one plane and for only one wavelength of the 

incoming light. Hence. the image of an object which is not on the focal plane is blurred. 

Another example illustrating Gaussian blur is the transmission of visual mformation by the 

optlC tract. The distribution of the axonal diameter of the optic nerves IS approximately 

Gaussian IFukada). Since the axonal dlameter of the optic nerve directly determines the 

delay of arrivai of mformation (at the L G N). the information is blurred The kernel of this 

blur can be approximated by a Gaussian. 

These examples pose serious questions in understanding visual perception .• Is Gaussian 

degradatlon of visuai information. which is introduced by various sources. an important 

aspect of perception. or is it merely the practical and physical limit of the optics and 

the "wetware"? Furthermore. is such blur an undesirable feature or can it be used to 

extract useful information about the three dimensional world? Glven the finite depth of 

field of the human eye. Helmholtz has suggested· that knowledge of the amount of blur 
• 
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can be used to recover estimates of the depths of objects in the vlsual field IHelmoholtz]. 

and Pentland has applied these techniques to range-finding practical robots IPentland] 

Further. hyperacuity. the ability to percieve spatial resolution an order of magmtude higher 

than retinal spac,"g. can not be explained without senously cons;der;ng the effect of blur 

on the visual informatIon. IWesthelmer] 

Gaussian degradation manifests itself both in discrete and continuous processes. for 

instance. the measurement of temperature of an object is a continuous process. In thls 

case the data and the blurred data are both continuous functions and the blurnng process 

is modelled as the continuous convolution of the Gaussian against the data. However. in 

sorne other instances. the blurring process has a discrete nature. for example when either 

or both of the input and output are discrete functlons. In s!-,ch cases. a closer model for 

, blur is the matrix multiplicatIon of the G~ussian blur matrix and the data matrix. 

The continuous modelhng leaves us with the followmg integral equation to solve: 

where 

h(x) = K(x. t) * !(x) 

= f K(x - ç, t)J(ç)dç, 
JIRn 

K(x,t) = 1 e- I:t12/4t 
( 4nt)n/2 

(1.1.1) 

(1.1.2) 

is the Gaussian kernel. whose extent is parameterized by t > O. It is normalized to have 
c-

unit mass. 

The problem of Gaussian deblurringïs to recoverthe original data f(x). when on/, h(x) 

and the amount of blurring tare known. We seek a solution in form of a fil ter D(x,t) such 

that 

f(x) = D(x, t) * h(x) 
(1.1.3) 

= D(x"t) * K(x,t) * !(x), 

for f(x) amang a class of functio,ns. ThIS filter. defined in equation 1.5.9. resembles the 

difference of Gaussians operator (DOG). but with extra side lobes: see figure (O. a) These 

side lobes are an indication of notions of approximatIon and order in.the theory. and increase 

in number as the dimension of the space of allowable data increases: see figure l.1.c. 
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The discrete problem IS one of solving the following hnear system of equatlOns 

-
h = BI. (11.2.2) 

co 

where. 

1 b 64 69 6("-1)2 

h l 6 64 6("-2)2 

B~ b4 6 1 6 6("-3)2 

bg 64 b 1 6(n-4)2 (11.2.3) 

6(n-1)2 6(n-2)2 b(n-3)2 6(n-4)2 l 

and f is the vector representing the original data. and k IS the observed blurred data. 

Theoretically. the solution to this problem is straight-forward. invert the blur matrix and 

multiply by h to solve for f. Practically. however. as the dimension of the problem reaches 

. realistlc proportions. tradltional numerical methods fail mlserably due to the accumulation 

of numerical errors. Therefore. we resort to a symbol;c solution. where most of the actual 

inversion is done symbolically for a Gaussian blur matrix. We proceed by decomposing 

the ,blur matrix into simpler matrices. which can then be symbolically inver,ted. Thus. the 

inverse of the Gaussian blur matrix is deco,.posed. Further. the decomp05ition is such that 

ail the ill-conditioned terms are gathered ;nto a diagonal matrix. with other matrices being 

perfectly well-conditioned. 

The thesis is organized into two separate parts. the first of which. treat5 the contin­

uous and the second the discrete approaches to the Gaussian debluring problem .. The 

introductory section to each part gives an independent and in depth introduction. 

The two main lesults in this thesis. the solutions to Gaus5ian degradatio~ formulated 

continuously and di5cretely. are convergent in the following sense. Consider the vector 

defined by the I th row of the inverse blur matrix. This vector i5 roughly constant over 

ail i. modulo the appropriate shift. This justifie'f the definition of a discrete deblurring 

kernel as the mlddle row of the inverse blur matrÎx; see figure (O.b). Observe the similarity 

between the continuous and discrete deblurring kernets. This is not suprising sinee the 

two (continuous and discrete) models are different approximations to the same physicat 

process and must therefore yield similar results . 

• 
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The different approaches had different ~dvantages. however. In the contlnuous ap­

proach. it becomes clear how the deblurring kernel changes with the order of approximation 

inherent ln the pseudo-inverse ca\culatlOn ln the discrete approach. numencal issues come 

to the forefront. Both perspectives are therefore necessary ta properly understand Gaussian 

deblumng , 

Oeblurrlng kernel; order )~ 13 

I~ ,r 
1+ 
l ~,,"---=0= •. 0 e x 0.20E+0 

Figure O.a The continuous deb1urring kernel of order 13 with (r = 1.0. il'! the ,rap"'s 
x axis unils 
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Abstract 1 

Abstract 1 

. ... 

Gaussian blur. or convolution against a .Gaussian kernel. is one of the most common 

models for image and signal degradation. We are concerned with the inverse of thls process. 

or Gaussian deblurring. As in the process of blurring. we seek a linear deblurnng kernel 

Although the Inverse of a Gaussian cannot be represented exaetly as a convolution kernel in 

the spatial domain. by restFlcting the spaee of allowa~le funetlons to polynomials of flxed 

finite degree then a convolution inverse does eXlst. Constructive formulas for the deblurring ,­

kernels are denved in terms of Hermite po/ynomials. For image polynomials of fixed degree 

N. the corresponding kernel glves stablè deblurring among the class of funetlons whlch are 

G~l,Jssian filtered versions of data welr approximated by polynomlals of degree N and less. 

Stated different/y. the deblurring kerne/s are pseudo-inverses of the Gaussian, convolution 

operator. 
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Chapter 1.1 Introduction 

Given an image or a signal. the reahzation of any practical system for processlng 

must introduce some amount of degradation Since almost ail of these systems consist of 

several stages .• each of which contributes to the degradatton. they often compose into what 

appears to be a Gaussian degradation. In this paper we shall be concerned with inverting 

this process. or the deblurring of Gaussian blur. 

Our model of blur is as a spatially Invariant Gaussian pOint spread function within a 

linear system. Formâlly this leads to convolutions. as follows. Let J(x) denote the original 

image function. xE IRn. Then the observable - but blurred - functiQIl h(x) is given by: 

where 

h(x) = K(x,t) * J(x) 

= ( K(x - ~,t)J(€)d€, 
JIRn 

(J.t.t) 

K(x,t) = 1 /2e-I:z:12/4t (J.1.2) 
(411't)" 

is the Gaussian kernel. ';whose extent is parameterized by t > O. It is normalized to have 

unit mass. 

The problem of Gaussian deblurring can now be formulated' How can the original data 

J(x) be reconstructed when only h(x) and the amount of blurring tare known? Again. we 

shall formulate this as a epnvolution. and we seek a filter D(x,t) such that 

J(x) = D(x,t) * h(x) 

= D(x, t) * K(x, t) * I(x), 

for J(x) among a class of functions . 

. , 
~. 

(J.1.3) 
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1 1 Introduction 

Our motivation for chooslng thls problem IS two-fold Flrstly. many practlcal Imagmg 

configurations are structured in a manner that mtroduces blur elther optlcally or for other 

reasons (e.g. computerlzed tomography IHerman. 1980)). and the Gausslan IS the natural 

first approximation to thls blur And sensors are becomlng far more re~iable'at hlgher hght 

levels. leavmg detërminlsllc sources of blur more sallent Techniques for reducing thls blur 

, are th us of practlcal importance There are even applications m physlologlcal optics. such , 

as the de--focusmg that automatlcally takes place for obJects outs.de of the depth of field 

of an accomodated eye. 

Our second motivation IS theoretlcal. It is weil known that while the deblurring prob­

lem is m general non-mvertible trom Founer considerations and unstable. t It is nonetheless 

possible to achieve acceptable deblurring under certain conditions. One way to accomplish 

this is by means of a pseudo-inverse + which is an ~xact inverse under restricted condl-
, 

tions. Although such results have been available in the mathematlCal IIterature for some 

time (John. 1955). they are not widely known withm the computational vision and image 

processing communities. Rather. the image processing community typically formulates 

the problem purely ln dlscrete terms by applying idMbraic pseudo-inverse techniques le.g .. 

Pratt. 1978). But th.s obscures the analyt,cal structure of the process. leaving central 

notions such as the order of the deblurrmg pseudomverse implicit. Pseudo-inverses imply 

notions of approximation. and one would like a formulation in which the degree of this 

approximation.:~ould be made explicil. Then one could understand how the structure of the 

deblurring kernels changed as a function of the order of approximation. 

ln thls paper. we derive kernels which can be used to deblur a tixed amount of Gaussian 

blur. They accomplish thls inverse process exactly. and stably. among polynomials of fixed 

degree. Our analysis uses Hermite polynomials. a natural choice for reasons th~t will 

become clear shortry. The explicit formulas for the deblurring filters are given ln the main 

theorem in chapter 1.5. Smce the analysis leadmg to this theorem ;s technical. we provide 

t One must be clear about the fundamental distinction between a stable or unstable problem (m the 
Numerical Analysis literature it is usually refered to as a' well- or iII-conditioned probJem le g see 
Stewart 1973)) as opposed to a stable or unstable algorithm for a given problem Henceforth. stabihty 
has a ditrerent meaning when applied to a pro~lem or an algorithm 

t Aiso. refered to as a generaliled inverse 

9 
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motlvatmg background in the next chapter, 
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Chapter 1.2 Background 

1.2.1 Blurring and Diffusion 

There is a fundamental connection between blurring. deblurring. and the heat equa­

tion. It is provided by the structure of the Gaussian distribution: as the following exar'nple 

iIIustrates. Consider a rod of infinite length onto which an impulse of heat is placed at 

sorne position As time evolves. the heat will diffuse and the original impulse will spead 

out. By basic physics the resulting temperature distribution will approxlmate a Gaussian 

whose extent depends on the ellapsed time Isee e.g .. Feynman. 1963]. By superposition. 

the model for the temperature distribution along the rod at any time is the initial temper­

ature distribution convolved with a Gaussian. This 15 the physically realized solution to 

the heat equation t. The spatial parameter for the Gaussian depends on how much time 

has evolved. and the diffusion process effectively blurs the mitial temperature distribution 

incrementally. In the nQtation introduced in chapter 1.1. if f(x) is the initial temperature 

distribution. then h(x, t) = K(x, t) * J(x) is the blurred distribution after t units of time. 

Pormally. this is an initial value problem. and can be stated as follows: given J(x) and t. 

find h(x. t) satisfying 

..Ilh = iJh/iJt, h(x,O) = J(x) . (1.2.1) 

We. of course. will interpret J(x) as an unblurred image. 

t the 50-caillee! "source kernel" IWidder. 1915) 

'~ 
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1 2 '1 Deblumng and the Inverse Heat Problem 

T wo basic observations that follow from this formulation of the blumng problem that 

will be important 10 the analysis that follows. First. note that the space of initial distri­

butions that can be blurred is a large one: it 'ksentially corresponds to any function for 

which the convolution integral is defined. and clearly includes sorne discontinuous ones. 

Second. suppose that a function J(x) has been blurred for sorne tlme. say to. resultmg 

in h(x, to). 'rhis resultant function could subsequently be blurred further. say to tt, with 

tl > tO' These two blurring operators, each of which rnay have its own physical justifi­

cation. results in one composite Gaussian operator. Indeed. by the centrallimit theorem. 

other blurring operators compose into approxlmate Gaussians wh en iterated. 

1.2.2 Oeblurring and the Inverse Heat Problem 

Since deblurring is the inverse of blurring. the preceedmg connection between blurring 

and diffusion suggests that deblurring can be modelled as a diffusion running backwards 

in lime. Blurring is the forward problem. and deblurring is the inverse problem. Formally. 

the problem of reconstructing f(x) given h(x) .and t is the inverse heat equation problem. 

since the function h(x) represents a distribution of heat after t units of time. where J(x) 

is the initial t = 0 distribution. 

As ln the forward or blurring problem. which was modelJed as convolutions of the 

original data against a "blurring kernel" (a Gaussian). our' goal now is to find "deblurring 

kernels". or kernels against which the blurred data can be convolved to yield the deblurred 

original. However. the rnathematics is not straightforward. There are a number of technical 

difTerences which make the deblurring pr~blem more difficult than blurring. While the 

blurring (or heat diffusion) problem can be solved for almost ail distributions (i.e .. the 

solution is just a smoothed version of the initial data). the inverse problem is defined only 

for a restricted class of functions. Running "time" backwards. il is impossible. in general. 

to reconstruct the original data J(x) from the blurred data h(x). First. not ail functions h(x) 

are blurred versions of some original, function J(x). Secondly. the blurring operator is not 

a one-to-one..mappmg in a general function space. There exist pairs of distinct functions. 

J(x) and j{x), which yield the same blurred function h(x). Finally. in a general function 

12 
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1 2 2 Deblurrint! and the Inverse Heat Problem 

space the deblurring problem is horribly Ill-conditioned. In other words. arbitrary smalt 

perturbations ln the given function h(x) can lead to large changes in the reconstruction of 

f(x). 

These difficulties are 50 severe that one might be pessimistic about any progress toward 

discovering deblurring kernels. However. t.he deblurring problem can be given a pseudo­

invErse formulaW?l!,. which leads to a well*conditioned problem. We formulat~ the pseudo-
il \rl'\\ ,. 

inverse prob~m fort~olynomia' data in chapter 1.3. and present the deblurring kernels 

for polynomià~iI.5.6). The structure of these kernels is a function of the order of 
\ . 

approximation. revealing how the SOI~ to the pr~blem ~hanges as the data become 

more complex. . 
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Chapter 1.3 Pseudoinverse Formulation 

Let r denote the blurring operator. which takes functÎons in a large normed space " 

into much smoother functions. also in A. Although r is a continuous operator. for many 

choices of "'. T has no continuous inverse defined on its range. 

The idea of a pseuoinverse is as folloW5: Consider a closed ~ubspace .M ç A. The image 

of .M under Twill also be a closed subspace. and 50 if A Îs a complete Hilbert spate. one' 

can pose the problem 

Given hE A, find f E .M minimizing liT f - hll· (1.3.1) . 

The solution f to this minimization problem is the pseudo-inverse of h under the map T 

on A relative to the subspace M. and will be denoted A,lh. 
ln our case. we set 1\ = .c2(e-:r

2
dx). an enormous Hilbert space. which contains 

distributions which are not tempered We set .M = PN \ the space of polynomials of degree 

N and less. In chapter 1.4. we will note that Mis T -invariant. Since.M is finite dimensional 
. /' 

and T is one-to-one. r-is an isomorphism of .M onto .M. Thus the problem of finding the 

pseudo-inverse of h is equivalent to finding f such that Tf is the orthogonal projection of 

h onto .M. An algorithm for computing f can therefore be constructed by projecting h to 

h' on .M. and then solving the finile dimensional problem T f = h'. Clearly. this process is 

stable for filted N. 

ln chapter 1.5. we present the solution to the deblurring problem on .M. so that the 

problem Tf::= h' is sol.ved by a convolution 

(/.3.2) 

. ; 
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1 3 Pseudoinvers€ Formulation 

will become evident t~at for h E 1\. and h' the orthogonal projection of h onto M = PI\'. 

(/.3.3) 

Thus' the entire algorithm, projection onto .M and inverting T on .M~ can be represented 

by a single convolution. In facto the kernels DN given in chapter I.S are unique in hav.ing 

thls double property, 

.I!.", 
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Chapter 1.4 The Deblurring Problem 

Consider the operator Ot defined on !2(IR) by the equation 

, 
'1 l j oo 1 2 

(Otf)(y) = c;fj-x /I.t f(y - x)dx. 
-00 2v 7rt 

• 
(1.4.1 ) 

~or t > O . Ot is a compact symmetric bounded hnear operator on .c 2 (IR) mapping into 

.c2(IR). This operator has many special properties. such as 

(/.4.2) 

Aiso. 

u(x,t) = (Otf)(x), (1.4.3) 
j 

satisfies the heat equation 

with 

u(x .. O) = j(x): (1.4.5) 

see loers. John. Schecht",). Il ... denote the Fourier translorm of • luncti~ glx) by jlw). 

'/', "thenbt is a multiplier operator given by 

(1.4.6) 

By means of this formula. Ot can be extended to operate on the class of temperate distri­

Butions S' of Fourier transformable distributions [Hormander. 1983). In particular. Ot! is , 
defined for any polynomial f. 

J 
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1 4 The Dcblurnng Problem 

We will speclalize to the case of t = 1. and set 

By suitably scaling the spatial parameter x E IR. nt. t > O. can be seen to be equivalent 

to T operating on a rescaled version of f. i.e .. 

(Otf)(y) = (Tj)(y/2v'i), (1.4.8) 

where 

j(z) = f(2/vt). (1.4.9) 

Thus the invertibility of Ot is settled by inverting T. 

From the Fourier multiplier formula 

(J.4.10) 

and the fact that e-w2 /1, '# 0 for ail w. it is clear that T is one-to-one on any space of 

Fourier transformable functions. Further. since the inverse of the ~ultiplier. ew2
/ 4, has no 

inverse Fourier transform. the inverse of T is not representable as a convolution. nor can be 

applied to the general space of ail Fourier transformable functions. Instead. we can restrict 

the domain of T. and then represent its inverse as a convolution on the range of T. Many .. 

such restricted domalns are possible. In the next chapter. we consider T restricted to the 

class of polynomials of degtee N or less. 

17 
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Chapter 1.5 Poly~omial Domains 

Let fN denote the space of polynomials over IR of degree less than or equal to N. The 

monomials {l, x, x2, .. .• xN} for~ a basis for PN' If this basis is .orthonormalized with 

respect to the inner product 

(I.S.l) 

then the basis of Hermite polynomials {HO, Hl,' .. ,H N} result. The Hermites can be 

represented explicitly: 

,ln/21 m (2x)n-2m 
Hn(x) = n. 2: (-1) '( _ 2 )1' m. n m. 

m=O 
or by the Rodrigues formula: 

2 dn 2 
Hn(x) = (-l)né: dxn~e-x ), 

see. e.g .. (Courant and Hilbert. 1962] or ILebedev. 1~ 
Observation 1.5.4: T is closed on PN' 

Proof: we will show that T Rn E Pn for n 5 N. 

(1.5.2) 

(1.5.3) 
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',l!) Polynomial DomalRs 
1 

Using THo = 1. we have 

• (/.5.5 ) 

As a result of observation 1 5,4. T is an isomophism of PN' The inverse of T on PN 

is clearly given by 

N N 
T -l(L a.x') = I)a,/2')H,(x). (/.5.6) 

\=0 .=0 
Our main resuft is that T -1 restricted to PN can be represented bye a convolution with 

an explicit kernel D N (x): 

Theorem 1.5.7: For f E PN and 9 = Tf. then 

o (/.5.8) 

where 

21N/2j (-1 k 
D N(X) =:: e-x L Vi ~ k H2k(X). 

. k=O 1fk.? 
(1.5.9) 

We will give a proof below using direct integration (as opposed to using Fourier trans-

form distributions). Note. however. that D N (x) is not the unique funetion representing 
r 

T-1 on PN' In general. the kernel can be translated by any funetion which yields a zero 

convolution against PN This includes ail functions of the form 

e-z2 Hn{x), n > N. 

The stated kernel (1.5.9) is unique among the class of functions of the form e-
x2 P(x), 

where P(x) is a polynomial of degree N. 

It is interesting to compare the form of DN(X) with standard enhaocement filters For 

example. for N'= 3. 

(1.5.10) 

"19. 
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1 5 Polynomial Domatns 

(1.5.11) 

which is a not uncommon high emphasis filter (see. e.g .• the papers by E. Mach jn (RatiifT. 

1965]. and (Rosenfeld and Kak. 1976). In figure 1.1. we display plots of Dl\' for several 

values of N. 

Deblurrln9 ~e,..nel; order >/ 3; ----o-ekl)urrlng ~errlel; ordeÏ"---::: 
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Figure I.l.a One dimensional deblurring kernels. D N' N = 3,5,1,9, drawn lo the 
same scale Note that as the order increases both the magnitude and the number 
of sign changes incruses as weil. 
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1 5 PolynomIal Domains 
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Figure l.1.b One dimenslonal deblurring kernels, D", '" = 3,S,7,9, scaled so 

that the structlJre of each kernel is clear Note that the numbCI" of side lobes is 1 ~ 1 
on either si de of the central peak 
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1 5 Polynomial Domalns 

Th. d.b 1 urrt 1\S k ."TlI \ 0 forai,. ») 3,5,7.9 • 

a.€le 

Figure I.t.c Emergence of side lobes as N increases JI = 3.5.7.9. 
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I.S PolynomIal Domains 

The proof of the theorem depends on several lemmas. 

Lemme 1.5.12: 

nodd 
n even 

~of: For n odd. e-x2 xn is an integrable odd function. and 50 clearly An = O. For 

n= 2p,p;::: l, 

Since Ao = 1, 

foo 2 
A2p = _ e-:r x2Pdx 

-00 

= -_ ( -2x) e -:r x2p- 1 dx 1fOO 2 
2 -00 

2p - 1 JOO _72 21'- 2d =-- f X x 
2 -00 

2p - 1 
= v'i-2- A2p-2' 

(2p - 1)(2p - 3) ... 1 _ (2p)! 
A2p = 2p - 22pp!' 

The Formula holds for p ~ O. 

Lemme 1.5.15: 

C2~,2r = {OO . ~e-x2 H2k(X)x2Pdx = {O,' (2p)l : ~ ~. • 
Loo v1l" 22p-2k(p-kl" 

Proof: For k ? 1. p ~ l, 

C2k,2p = 0 for p < k. and for p ~ k. 
, . 

. ~ .. ,. 

v 
,(1.5.13) 

(1.5.14) 

• 

(1.5.16) 
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1 5 Polynomial Domains 

(21c.l" = (2p)(2p -1). : .(2p - 2k + 1).CO.2p-2k 

.. _ (2p)! (2p-2k)! 
- (2p - 2k)! 22p - 2k(p - k)! (1.5.17) 
_ (2p)! 

- 22p- 2k (p - k) '" 

• 
1 

Lemme 1.5.18: 

For n 2 k. 

) 
Proof: For k odd. we observe from (1.5.9) that DN(X)Xk is an odd integrable function. 

,J 

and so integrates to zero. For k = 2p. 

(1.5.19) 

1 

Prool of the Theorem: By equation (1.5.5). it suffices to show that DN *J2nxn) = 
Hn(x), n ~ N. We have 

. 
~ 
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1 5 Polynomial DomalOs 

(DN * 2~..xn)(y) = i: 2n DN(X)(Y - x)ndx 

= i: 2n DN(X) t(-l)k (~)yn-kx:dX 
k=O 

(1.5.20) 

The theorem above could have been proved using the convolution theorem. a~d by 

computing the Fourier transform of DN{X). ,We will nonetheless compute Div in order to 

show that the multiplier for D N apprQaches. pointwise. the inverse of the multiplier for the 
, 1 

operator T (see (1.4.10)). 

Observation 1.5.21: 

D'N(w) -+ e:..J
2

/4 pointwise as N -t 00. 

Proof: 

(1.5.22) 

where 1 stands for the Fourier transform operator. Now. 

(1.5.23) 
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1 5 Polynomial Domains 

. Thus 

(1.5.24') 

~ 

Hence 

. \ 

(1.5.2» 

1 

l' 
~ f' • " 

. , 

, As ~ C9.~seéauen~e of observation 1.5.21. we see that D N (~) does not converge point-. ' 
" 1 

wise to ~ny' function' as N --+ 00, since ottierwise the Fourier txansform of that function 
• 1 

wou Id l:ie e'JJ
2
/4, which is impossible. -PN(X) does converge in C2(e- x2 dx). but tha; does 

not imply pointwise convergence to any function. We accordingly have stable deblurring 

when using the kernels DN(X)~ where stability is measured in terms' of deviation from a 

. l>oly';om~aJ of degree N. and the .e2(e- x2 dx) norm is used as the metric . 
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Chapter 1.6 , , 

Higher Oimens~on's 

. ' ' 

The Gaussian blur operator is given by 

T J(x)::: [ 1i",-n~e-(x-y)2 !(y)dy. 
JIRn 

0 ., 

• (J.6.l) 

Due to the separability of the kernel and Fubini' s theorem. T can be decomposed into n, 

iterated blurrings-

Consider a polynomial in IRn: 

!(x) = L aQxo 

lol$N 

a = (q,hCl2' ... , on), Of 'E Z, a t ~ 0, 
'\'""" 

For fixed x. the function of one real variable 

.. 
Î5 a polynomial of degree no greater t,han N. so 

DN *(Tg) =g, 

\ 

(/.6.2) 
, . 

(/.6.3) 

(/.6.41. 
'.' 

(J .6.5) 

• 
(1.6.6). , 

(/.6.7) 

(J.6.8) 

.. ~ 
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1 6 Higher DimensIons 

where' T is the st~ndard onè dimensl~nal blu~ring operator 'Introduced ln chapter 1 3. Com-
,,' 

bi~ing. we find, th~t " , . 
, , 

(l.G.9) 

for ~l'Iy polynomial f(r) of f6rm (1.6.4). Th~s deb~urring of blurr~d polynomials of degree 
, , 

N can be accomplished by conVc;>lution ,against thè lèernel .' 

(1..6.10) 

" ' 

Thu5 the situation in higher c,frmensions is s,milar to the one 'ditnensional case. The 

de~'urring convolution kernel is separable. and will be of ~he for~ ~-r2 1'(x),' where P(x) 
~, " 

is a polynomi~1 of degree nN in x E IRI'! Figure 1 2 shows a plot of DS· for n = 2. X = 3. 

, " 

, , 

" 

,Figure "2.a Two dlmensiol,lal dcblurring kerne!. DI" (.cl, 72)' IV = 3, displayed as 
an image, Notè the central posit!ve reglon and the' Slgn cha,:!ges in the ~urrounding : 

, l 'reglons , , \ 
Il 

, , .. 
, " 

2t 

" , , , . 

. . 
.. ' 



, " 

1 6 Higher Dimensions 

.( , 

z 
te " X 

Figure 1.2.b Two dimensionàl deblumn~ kcrncl D.\"(Xl 72)' .". = 3, Notè the 
stgn ch~nges in the kernel surrounding the central posItive peak 

, 
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Chapter 1.7 Experiments in Oeblurring 

ln this chapter we iIIustrate the deblurring op~rator. It was implemented in the most 

straightforward fasnion. using single-precisIon arithmetic. The continuous operators. botll 

for blurring and for deblurring. were discret.zed by point sampling. 

Figure 1.3.a contains an image of an urban scene (in Pittsburgh): figure 1,3.b displays 

the same image convolved with a Gaussian; and figure 1.3.c contains the deblurred image 
\ 

obtained with a 9th-order kernel. t To facilitate reproduction. these images were di.splayed 

using dither-matrices on a high-resolution laser (I.e .. binary) prmter. 50 the above examples 

should only be taken as a qualitative indication of the debiurrrng O"ly 32 gray levels are 

effectively displayed. Informai observations from several members of our laboratory were 

that the results were much more impressive when viewed on a raster-graphlcs"system 
'. . 

monitor. 

A more precise representation is shown in figure 1.4 This graphs the performance of 

the operators as a function of both the amount of blurring (0') ani of the order of the 

deblurrlng filter (N). Performance is defined as the ratio: 

IIf-Tfll-jl!-T-1T!11 
il! - T /1:, 

where lifli is the F -norm of the matrix f. 
r, 

j • , 

Note that. for this image. the pëfformance of the deblurring filter peaks at order 9 

for smalt 0'. but. as the amount of blurring becomes large. the filter becomes much less 

'effective at ail orders tested 

t An idel1tical (J = 1.0 ln internai units was usèd for both the blurring and the deblurring kernels 
,; 



1 7 Expcflmcnts III Oeblurnn;; 

Figure 1.3.a 'Vi. Imagc of an urban scene 2S6x2S6 resolution dlsplayed USIO!; 

dither matrices ~lh 32 effective gray Icvels Note that the structure ln the left 
portion of the Image contalllS dlsccrmblc detail 
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1 7 Expenments ln Dcblurrtng 

Figure I.J.b A Gaussl3n-Blurred version of figure 13 il (0 ;:: 1.0) Note that the 
detail in the left portion IS now smoothcd over 

32 



'7 Expenments 10 DcbJurnn~ .. 

Figure 1.3.c An arder 9 Gausslarl dcblurrcd version of figure' 3 b Note that the 
contrasl and detal' have becn qU.1htJlIvely IOlproved 

33 ' 
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1 7 Expenmcnts 111 Dcblurnng 

Figure 1.4 An illustration of how the performance of the dcblumng operator varies 
as a functlon of the order of dcblurring kernel (the x·axls .\" = 3.5,7,9,11,13). and 
the amount of blur (the y-axIs Cl = 1 0,1.5,20,25.3.0,4 0.5 0, 6.0lfor the image 
in figure 1 3 a For small amounts of blumng the performance of the deblurnng fllter 
peeks at order 9 whlle for hlgher 3mounts of blur. It performs much less efTectivcly 

34 
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Chapter 1.8 Summary 1 

Gaussian blu,r is one of the most common forms of degradat.on affecting signais and 

images. It is unfortunately non-invertible in general. but pseudo-inverses are possible ln 

this paper we formulated a precise version of the Gauss.an deblurring problem. and obtained 

formulae for the kernels of deblurnng filters 10 terms of HermIte polynomials One then 

sim ply needs to con volve these kernels against (blurred) .mages to effect deblumng. As 

the order of the kernel increases. the space on which deblurrmg is exact increases as weil. 

The mathematics used in formulatmg the deblurrmg kernels were based on the heat 

equatlon The connect.on between blurring and the heat equatlon 15 provided by the Gaus­

sian: the spread of any heat dIstribution IS governed by convolutions against a Gausslan 

kernel. Deblumng then amounts to soJvmg the heat equat.on backwards in t.me. 

However. backward solutions to the heat equatlon are notoriously unstable. Neverthe-, 
less. we have been able to show that stable deblurrmg is possible in prmciple for a class 

of image functions. and. perhaps more importantly. that sorne degree of stable deblurrmg 
> 

is possible ln practice for real Images. The example ln the paper was obtained uSlng the 

most stralghtforward implementation. More serious attention to numencal issues. such as 

arithmetlc precision and quadrature. could possibly lead to even better results. 

o 

----.;.."-----~-~------------------------- --- -----~ -----
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PART Il - Deblurring Gaussian Blur: Discrete Approach 
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Abstract Il 

Abstract Il 

Suppose a function - an image or a signal,- is degraded by Gaussian blur: I.e. suppose' 

the function is convolved agamst a discrete Gau'ssian kernel. We present a symbolic method 

to stably remove such Gaussian degradation. The blur is modelled as multiplication by a 

Toeplitz matm. which IS derived from the Gaussian kernel The problem. therefore. is 

one of solving a system of hnear equatlons governed by thls matnx. We find the inverse 

by decomposing the blur matrix and then analy1lcally invert,"g the resulting sub-matnces. 

Moreover. the decomposltlon is 5uch that the numencally ill-conditioned terms are gathered 

into a diagonal form The result can be combined for exact and stable deblurring 
/ 

• ,< 
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Chapter Il.1 

Il 
( 

Gaussian blur is a common phenomenon. yet to date no exact solution (or removing 

it has been given. Traditlonal image processing techniq*\'deal with this problem either 

with ad-hoc practlcal measures. "enhancement fllters" (or example (Rosenfeld and KakI. 

or use Fourier or other methods. However. ail of these techniques have problems such as 

thelr numerical stability. their smgularity. or the introduction o( approximations (Pratt), ln 

contrast. we present a symbolic method to mvert Gaussian blur analytlcally It Îs superior 

to direct numerical techniques as it fully utilizes the special structure of the Gaussian. 

Gaussian degradation is the linear process of convolution against a Gaussian blurring 

kernel Natural examples indude atmospheric and optical blur. The lèns of the eye. as 

another example. blurs .mages in this fashion (Campbell and Gublsch). The amount of 

such blur can be used as a d IPentlandJ. Also. to a fl~st approximation. the 

degradation of computer tomography lm es is of hls kmd (Herman) A. vast number of 

other examples exist. mamly due to an ap IOn of the centr'al hmlt theorem wh en a 

large number of random local degradatlons combine sequentially. the resulung degradation 

closely resembles a Gausslan 

Il.1.1 Remova' of Gaussian B'ur is III-conditioned 

Our goal ln thls paper 15 to remove spatially invariant Gaus51an degradation o( known 

amount ln the discrete domatn t. After sampling. a one-dlmenslonal signal is represented 

t These conditIons will be partly relaxed in chapter Il 9 
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Il 1 l Removaf of Gaussian Bll,lr IS IH-conditloned ' 

~ a vector. and similarly. an, .mage is répresented as a matrix of mtensity values" T~ , 
, ' 

degradation is modelled by discrete convolution of a pômt-sa~pled Gaussian a_gainst this:.' 

data ThIs leads to a Gaussian "blur" matnx B. which' we o~~erve Jo. be symmetric 
.,. " a 

Toeplitz. We will show that ln the one-dimensional ca~e. the degt~datjon is equivalent to 

multiplicatIon of the data vector by this Toeplitz matmi: t~ th~ two-d'mènsional case. the 

separabiltty of the Gaussian kerne' allows us to model ,the degradation as left and right 

multiplicatIon of the dat~ matrix by two Nblur matfl~~s" .' 
Let f denote the true data vactor. h the observéd degraded data vector. and B the b/ur 

, ! ~ 1 

matrix, The prob/em ln the one-dimenslonal discrete domain is then solvmg the system of 

linear equations: t 
'J , 

h = Bf. (11.1.1) 

5uch a taslt, would seem to be straightforward: simply invert the matrix and multip/y to 

obtain the deblurred.vector. However. the above m,atrix is horribly iII-conditioned; a small 

perturbation of the vector h cou Id lead to' a large perturbation of the vector f. This is 

especially true for a blur matnx with entnes close to 1 (whlch corresponds ta oa large 

spatial extent parameter. o.) Therefore. one can not numerically mvert this m~trix~to solve 

the system of linear equations. 
, 

The problem of solving systems of Hnear equatlons. by methods other than inver-

sion. has resufted in a number of stable algofithms t whlch appear to be applicable to 

Gaussian deblumng, Examples of these algorithms inc/ude Gaussla,n ehmmation, Crout de­

êomposition. and Cholesky dewm~ositlon of positive definite matrices. to name only a few 

'~:::';" IStewart]. These algorithms are designed to deal with generahystems of hnear equations. 

However. in a partlCular ,case. such as Gaussian deblurring. they do not make full use of 

the speCIal structure of the problem. Moreover. due to accumulation of numeflcal errors. 

thelr performance drops drastically as the dimensIon of the problem increases to realistic 

proportlor1s 
--------
;':* The rnatnx, B will be dehned formally ln chapter Il 2 

t A stable algorithm is one whose cornputed output value for sorne input IS the exact output of sorne 
nearby input -

• 
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111 1 Removal of Gaussian Siur is III-condiuohed . 

\ 
Our approach to deblurring is to in vert the blur matrrx analyt.cally We will accomplish - . 

this by ,means of anâlytie decompositions and analytic inversions of the resulting sub­

matrices. These decompositions are sketched in the next chapter. in which we lay out 
; 

the plan for the paper. and are developed in more detail, in subsequent chapters. Before ~ . 
beginning. however. we should like to stress one of the advantages of our approach: Analytic 

inversioo does not alter the conditioning of the problem. rather. the decomposition that 

we der ive collects ail of the "sensitive" terms into a sirrgle diagonal matrix. This diagonal 
.... 

form greatly simplifies the handling of numerical problems .. 

• J 
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CIl.pter 11.2 Discrete bebluri'ing Problem 

ln this chapter we formulatè the discrete deblurring problem as a matrix equation. First, 

we deal with the one-dimensional ~ase. Let ft be the original data points. {Jt samples of 

the d,egrading kernel. and ht the observed degraded data points Using discrete <:onvolulion 
, 

as the model of degradation. we have 

00 

hJ = L gj-%J,: , j = -QO, ... ,00. (11.2.1) 
1==-00 

We make two simplifications to arrive at the blur matrix. B. First. when dealing with 

finite images .. we set ail the peHpheral data to zero. namely. ft = 0 for t < 1 ~nd i > n.' 

where n is the dimension of our data. Second. we use the fact that the kerneJ, is Gaussian' 

and substitute samples of the Guassian into the matrix. To simplifiy such a substitution, 

define a constant b of the scaled Gaussian t 

b ~ -1/2(72 
-f! , 

which implies that samples of the Guassian at i are 9t = h12
. ' 

Then, 
n 

h) = L bU _,)2 ft 1 ~ j :S n . . 
1==1 

Let, 

* For ease of analysis. w~ will use a scaled Gaussian Clearly. such a scalar does not afJett the result of , 
this paper as' we are dealing with a linear system. 

., It J 
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Il 2 p,screte Debiurrrng PrQblem 

, ' 

where 

" 1)2 
t:l • - 9 _ b.IJ-' 
/JIJ - J-1 - • 

Using th.s notation. we have 
~' 

(J./.2.2) 

where. 

. 
.' b"~-1)2 ,l, b b4 b9 , 

b 1 b b4 , .. b(n-2)2 

(11 ,2.3) 
Bg b4 b l' b 1,(11':'3)2 

b9 b4 b ' 1 b(n-4)2 ... 

. 
O~serve that B is symmetnc Toeplitz. ~Iso. we "YiII show. by mean~ of the Choh!sky 

dec<>mposition' (appendi~ 'C) that B, as positive--defirlite. 

As a preview of our results. we display the final decompsition of B-1: 

Theorem Il.6.1: 

where i is èlefined as. 

1 

. b 1- h4 
- 1-6"[ 

b21-b6 

1-~2 

\ 
1 

1 

\ 

'\ 

J' .. ' 

(/J.6.1) 

·(1I.6.2) 

, . 

'.' 

',' l', 

< • 

l ' ... 

.. ' 
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Il 2 Dlscrell' Deblurr-ing Proble!l' 

l" 

l 

, 1 

1 
1 \ 

rhe elements of the~ mâtrices are defined as 

~, Lè. {~_,2l11-'~\·~(1 =ïn=7î 

The full details of th'5 theorem are in chapter Il 6. 

1 ~'J 

1 :f:. J. 1 

i'2 j 
, < j: 

ln the two-d,meosional case. we use separabihty of the kernelto generalize not only to 

Gaussians wlth one spatial constant. but to two-dimenslonal kernel5 whose one-dimensional 

profiles are Gau5sians of differen~ spatial parameter. o. In other words. we consider kernels 

of the form 

= 9(01) . 9(02)' 
. \ 

Then. similar to the one-dimensional case. 

00 00 

~I.J = L L 9t-'k,m-lfk,m 
k=-oo m=-oo 

nt n2 

= L L gt-do tlg}-m(02)h,m 
k=1 m=l '. 

= t 9t-k(01) [i: fk,m9m .}(02)] : 
Ie=l m=l 

.. 
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Il 2 1 Overvlcw of the Solution 

let. 

where 

Therefore. 

for k = 1,2: t,J = 1.2 .. ,nk 

Pk • ( (J-t)2 
l,) = g) -1 Ok). = bic 

bk = e -1/2(J~ 

for k=1.2. I,J=1,2, .. ,nk 

for k = 1,2. 

~. 

This problem can be easily solved g,ven that we know haw to solve (i1.2.2) .. 

Il.2.1 Overview of the Solution 

(1/.2.4) 

There are several steps to mverting the blur matrix B analytieally. First. note that 

B exhibits a regular pattern: one row is a shift of the previous one and .also. as we shall 

show. the elements of each row are powers of one another However. if one attempts to 

symboheally Invert B. the analytle form of the inverse is elusive: as the dimension 1>f B 

varies 50 does the analytie form of the full Inverse 

Fortunately. B can be decomposed lOto less comphcated submatrices whose analytlc 

inverse IS attamable. Suppose B is decomposed into a lower-triangular matrix L and an 

uppeHriangutar matnx R. such that 

B=LR (//.2.5) 

Then. 

(/1.2.6) 
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Il 'l l OVCrvlCW of the SolutlOIl 

We will flnd these trtangular matnces- Land R-(chapter Il 3) and will show that they 

have Inverses expressed with exact analytic formulas (chapters 11.4 and Il.5) This will 

make It possible to solve the system of equatlons analyttcally. 

As a by-product of the above lU-decomposltion of B. we easily ftnd the Cholesky de­

compost ion of B. This not only aids ln algorithms wlth restricted storage spacE constraints. 

but also proves that B is positlve:deftnite (appendix C) 

However. the problem at hand is still an Ill-condttioned one ln order to effectively deal 

with the numerical conditioning of this problem. we then derive a further decomposition of 

'B-l (based on the prevlous decompositions). such that 
. ' 

(1I.2.7) 
... ----

where l is a lower triangular matrix. and b 15 i diagonal matrix t. Returning to issues 

of stability and conditioning. we are able to show that L is well-conditioned and b is iII­

conditioned. This decomposition. therefore. unbraids the singularity of B and confines it 

to a simple diagonal matnx that can be dealt wlth appropriately. Thus. numerically stable 

implementations are not only possible. but are'practlcal as weil. 

Finally. a brlef comparison' of sorne of the advantages and disadvantages of numerical 

versus symbolic methods is made in the chapter Il.10. 

t Note that T denote~ transpose 
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Chapter Il.3 The lU Decomposition of B 

;;'? 

ln thls chapter we prove that B. the T oephtz matrIX derived trom the Gaussian kernel. 

can be decomposed as the product of a lower-triangular-matrix. L. and an upper-triangular-. . 
matrix. R. 

. - Theorem 11.3.1: 

L~ 

{'. "'" 
where 

B= 

1 
6 

b4 

b9 

b(n-1)2 

6 
1 
6 
b4 

6(n-2)2 

64 69 

6 64 

1 6 
6 1 

6In-3)2 6In-4)2 

,,(n-1)2 ,,(n -21211_ ,,2n-2) b(n-3)2(1 _ b2n-2)(1_ b2f1 - 4 ) 
y 

bl n _1)2 

b(n-2)2 

'b(n-3)2 
b(n-4)2 (I1.2.3) 

1 

(11.3.2) 



If 3 The LU Decomposition of B 

and. 

1 b b4 b9 bl n _ 1)2 

1 b1-b4 

I-b2 
b41 -b6 

I-b2 
b1n-2)21-b2n- 2 

I-b2 

Rf:). 1 b 1-b6 

I-h2 
b(n-3)21-,,2n-21-b2~-4 

1- /12 1-1>4 
(11.3.3) 

\-, 

1 

_ The elements of the matrices B. L. ~nd Rare denoted as. (311 '>"1)' and PI)' respectively. 

These are defined as follows. 

a ~ blt-))2 
fJl) - • (I/.3.4) 

(1/.3.5) 

(I/.3.6) 

For a proof of this theorem see appendix B. 
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-Ch~pter Il.4 The Inverse of L 

ln this thapter we derive the inverse of the Jowet-triangular matnll. L. Qbtained from the 

LU-decomposition of B. We proceed by defining a Jower-triangular matrjx. i. and proving 
Il 

it iEQhe inverse of L ThIs is done by showing , 

Theorem Il.4.1: 

" 
LL= 1. 1 

Define i as, 

:1 , 
-' h 1 

It-h2) (1~h2) 

h2 -1. 1 ( 1-1>2 )( 1 _. ,,4 ) {j" (1_#12 )2 ' (1-1>2)(1-b4 ) 

_.1>3 ,,2 "-6 1 (1-b21(ï-=b4ïil,~ (1-b2J2t1-~/,i) il-I>2)2(1_h4 ) (1-1>2) (te.. b4j (r.:b6j 

'sn-l f~n_2 
1 (l-h2)(1-b )11':b2n-=-1) ~ -/12)211-1>4). l~b2n -4) Il-b2)(1-b4) (1-b2n- 2) 

(11.4.2) 

(1-b2F2) (J /.4.3) 



- , 

Il 4 The Inverse of L 

Proof: 

We will show the product of the i th rowof L and the jth column of L IS the 'l th element 

of the identity matrix. 1 Clearly. for j > 1 the product yields zero. 50. we consider the 

case J 'S t. 

The followmg 15 the ,th row of the L matnx (represented as a column matrix). 

'\ 

L T_ 
FOU'--! -

, blt _I)2 

6(1-2)2(1 _ b21- 2) 

6(1-))2(1_ 621 - 2)(1 _ 621 - 4) ... (1- b21 - 2)+2) 

6('-J-l)2(1 _ 621 - 2 )(1,- 621 - 4 ) .. (1 - b21 - 2)) 

b(l- J- 2)2(1 - b2l 2)(1 -- b21 - 4 ) . . (1-- b21 - 2)-2) 

b(I-(J+k))2(1 _ 62t - 2)(1 _ b2;-4) . _. (1- b21 - 2()+k)+2) 

Similarly. the following js the J'h columl"! of L. 

, The product. th~n. is 

o 
o 
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Il 4 T he Inverse of L 

L- L . -b(t- ))2(1 _ b2t - 2)(1 _ b21 - 4 ) (1 _ b2t-21+2)_ 
rOW-f column -] -. . .. 

1 

6(1-)-1)2(1 _ 621 - 2)(1 _ b2t - 4) . (1- 621 - 2])_ 

-b 1 
(1- 62) . (r=-b2)(i-~ b4 ) . (1 - b21-2) + 

• b(I-]-2)2(1 _ 621 - 2)(1 _ b21 - 4 ) , (1 _ 621 - 2]-2)_ 

(- b)2 1 
(1 - b2 ) (1 ~ b4) . (1':::--b2f(T~ b4 ). . (1 - b2]-2) + 

+ 

6(t-(J+k))2(1 _ b2t - 2 )(1 _ 621 - 4)" (1 _ b21 - 2(J+k)+2)_, 

(;b)* 1 ' -
(1-_--;::filc--)(.,--1--'-_..J:...,64~)-, .. (,1 - b2k) . (ï'- b2)(1 - b4) ,. (1 - 621-2) + 

+ 

(1 - b2t - 2)(1 - b2t - 4 ) _ .. (1 - b2)_ 

(-b)I-] 1 
7"( 1---b-::-:-2 )-:"'( 1---'-b~4 )"':-.-. --:-( 1-- b21 - 2]) - (1 - b2)( 1 - b4) . . . (1 - b2] - 2) . 

50 
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, - JI 4 The InVèrse of L 

Or. 

_ . (1 - b21 - 2)(1 - b2t -4) ... (1 _ b2t - 21+2) 

Lrow-,Lcolumn-J = (1 - /)2)(1 - b4 ) • . (1 - b2J - 2) . 

{ b(l- J)2 + 

b(t-J-lj2(1_b2t-2J). -b + 
(1 - b2:) 

b(1- J -2)2(1 _ b2! 2J )(1_ b2t-2J-2). (_b)2 + 
_ (1 - b2)(1 - b4) 

+ 

b('-b+kU2 (1 - b21 - 2J )(1 _ b21 - 2)-2) •.. (1 _ b2t-21J+k)+~). 
( _b)k 

- ~~ ---+ 
(1 - b2 )(10 - b4 ) . (1 - b2k ) 

+ 

To sum the above expression. we can name eaçh terrn explicitly and use induction to 

arrive at an analytic expression. Define. 

'\ 

1 - b21 - 2]-2k+2 

1- /)2k 
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114 The Inverse of L 

1 - b2 

i -~--b-2r-~2J . 

No";' let's look at the sum of the first two terms ln the braces above 

Similarly. 

This suggests the following: 

~ 

Lemma Il.4.4: 

.. 

Proof : We hav~ proved the case fo~ k = 0, 1,2. It remains to show that ifthe assertion 

ès true for k, then it is also true for k + 1. 50. assume that the above expression holds true 

for k. Then. 
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m=O 

Returning to the proof of theorem Il.4.1, we had, 

Il 4' The, Inversé of L 

1 - b2t-2J-2k-2 

1 - 62k+2 

(1- b~t-2)(1_ b21 - 4) ... (1 _ b21-tJ+2) 1-J 

Lrow-tLco/umn-J = (1 - 62)(1 - b~) ... (1 - 02,-2) . fo am. 
where 

l-J 

Lem={~t-J-le a 
L-m=O m + I-J 

m=O 

ln the case of t ; J, we use the lem ma to prove. 

I-J t-)-1 

~ am = L am + SI_ J 

m:=O m=O 

Z = J 
i> j 

• 

2 1 b21.- 2,-2 1 b2i - 2j-4 1 b2 
= (-1 r -J - t b1 +t - J -1 - - . ... ~ - + (-1) t -] bl - J 

1 - hl 1 - b4 1 - b2t - 21-2 , -

= O . 

. In conclusion, 

/ 

• 

. . 
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.' or, 

• t 

It followli that l is the inverse of L. which proves the theorem. 

, . 

"4 The In\'erse of L 
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Ch.pter Il.5 The Inverse of R 

This chapter is the analog of the previous chapter: in it we define. a.matrix Rand p,.ove 

that it is the Inverse to R. the upper-triangular obtained fro!1l the LU-decomposition of B. 

by showing 

Theorem Il.5.1: 

RR=l. • , . 
Define il as. 

.-
1 -6 b2 _~3 b4 ,(_b)71-1 

1 b1- h4 
- 1-62 

621 - 66 
1-62 

. _631 - 68 
1-62 

( _6)1I-,21-62n- 2 
/1-62 

1 61- 66 621-b81-b6 ~(_b)n-31-~2n-21-b2n-4 
- t-~2 1-b2 1-62 ... 

1-b2 l-b4 , 

1 b1-b8 
- l-b2 

( b)n-41-b2n-21-b2n-:-41-h2n,:'6' 
- , l-b2 1-/14 1-66 

t 

1 

(11.5.2) 

'where~the elements of il are . 
1 

... 

:( . . , 

, . 
, ' . 

" 
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Il S Thé Inverse of R 

t>i 
i $ j. , ~,.5.3) 

We follow the same pa th as the previous chapt~rs in that t~e jth rC?~ of k times the" 

jth column of R is shown .to .equal Il]' Clearly. f~r t > j, this product is' zero. Hence. we 

only consider the case 1 < J, 

.. 
" 

, Th~ following IS the ,th rowof li (represented as a column vector) 

< ' 

" 

-1 _ 
, R."oW-t -

,0 
o 

,0 
,1 

bl -b21 
- t=b1 

( _6)21-1>21+2 1- b21 
1-62 ~ 

(_b)Ù-h2t+41-b2t+21-b21 
1- h~ 1-64 1=bO , . 

, Similarr- the following is the jth column of the R mauix, ' 

, ' 

" 

, \ 

, , 

\ . 

, 
\ 
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Rcolumn- J = 

bl} -1)2 

b(}-2)21-b2J - 2 
1-1>2 

1 
o 
o 

" S The Inverse of R 

Therefore. the product IS. 

_,' , _ (_t)21-62}-21-62}-4 1_62]-2(1-1) 
~TOùJ-l Rcolumn-] - 1 ' b } 1 _ 62 1 _ b4 ' , , -1 =-62(1-=1) + 

l - b21 (1 2 1 - b2) - 2 1 .- 62) .. 4 1 - hl} - 21 - b--, b(;- t+ Il __ . __ . __ . ____ . __ '" _ + 
t - 62 1 - b2 1 - 64 l' - tJ2t 

{_b)2! - b21+21_-=-_~2~ 'blJ_(1+2))2l-_62}~~ ~~J-~ '" ~_.b2,-:(I+1) + 
1 .. 62 1-64 1-62 1-64 I-b2(1+1) 

( _ 6)3 ~ - 621+~ ~ b21+~!. - b21 'bb _ (t+3))21-=~2) - 2 !..- !!..2~~~ , .. 1 - b2}-2(t+2) + 
l - 62 t - 64 1 - b6 1 - 02 1 - 64 1 _ ';(1+2) 

+ 
(-,b)k~ b21+2k-2t - ';1+2k-4 ... !....= b2k+2 , 

1-b2 t-64 l-tJl,-2 

blJ -(t+k))21 - _~2J-~ ~ 62,-4 ' .. 1 - b2)-2(,+k-1) + 
t - b2 1 - b4 1 - b2(,+k-l) 

, . 
" 
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Il 5 The Inverse of R 

As before. we need to name each term exphcltly and use induction to sum ail the terms. 

Therefore. define 

Then. we have 

'" 

} - t 

Rrou,-.RcQlumn-; = L T J71' 

171=0 

Let us consider sum of ~o terms. 

1 - b2J-2(l+1) 

1 - b2(.+1) . 

S8 
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Il S The Inverse of R 

Similarly. 

which leads us to the following lemma 

59 



Il 5 The Inverse of H 

Lemme Il.5.4: 

1 - 62J-21-21 - 62J - 2.-4 1 _ 62J-2.-21c 

1 - 62 1 - 64 - ... , 1'_ b2/c 

;., 

Proof: We have proved the case for k = 0,1,2. It remains to show that the above 

assertipn holds for k + 1 if it is true for k. Assume. therefore. Il is true for k. Then. 

/cH le 

L Tm = L Tm + T k+l 

m=O m=O 

le ' -'-k)2+lel - tJ.J-2 1 - 62}-4 1- 62;-2.+2 = (-1) hl; --- .. , . 
1 - b2 1 - 64 1 - 621 - 2 

1 - h2J-21-2 t - 62,-21-4 1 - b2J-21-2k (II 55) ---;:-:---+ . . 
1 - b2 1 - b4 1 - b2k 

le 1 ( le 1)2 k t 1 - b21 +2k 1 - b2t+2k-2 1 - b21c+4 
(-1) + b J -1- - + + .. . /. 

1 - b2 1 - b4 1 - :;;1t- 2 
1 - b2}-21 - b2}-4 1 _ b2J-2t-2k 

1 - b2 1 - b4 1 - 1ilt+2k 

Rearrange T k+l as 

60 



,II 5 The Inverse of R 

o 

k+l ( -t-k-l)2+k+l1 - b2}-2 1 - b2,-4 ! 1 - 62}-21+2 
T k+1 = (-1) 6 J ---- .,. • 

1 - 62 1 - 64 1 - 621 - 2 

1 - b21+2k 1 - b21+2k-2 1 - b2k+4 

1-~ 1 - b4 --'" 1' - b21 - 2 

1 - 62J - 21 1 - b2J -21- 2 1 _ b2)-21- 2k 

1 - f}ll 1 - b21+2 1 - f}l1+2k 

_ k+l ( -'-k-l)2+k+l1 - ';)-21 - b2)-4 1_62)-21+2 
- (- 1) 6} 0, ~ 1 _ 62 1 _ b4 .. . 1 _ b2t - 2 . 

1 - b2t+2k 1 - b21+2k-2 1 - ~t 

1 - 62 1 - 64 1 - b2k+2 

1 - 62,-2t 1 - b2}-2!-2 1 _ ~)-2.-2k 

1 - 61' 1 - 62-+2 1 - b2t +2k 

_ k+l ( -t-k-l)2+k+l1 - 62]-21 - b2]-4 1 - 62)-21+2 
-(-1) 6' .... 

1 - b2 ~ 1 - 64 1 -, 621 - 2 

1 - 62]-21-2 1 - b2J-21-4 1 - ';l]-2t-2k 1 - b2}-2t 

1 - 62 1 - 64 l - IJlk 1 - b2k+2 • 

, 

Substituting back into the sum expression (11.5.5). we get 
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" 5 The Inverse of' R . 

k+l 2 1 _ b2}- 2 t - b2}-1, t _ b2J-21+2 L "fm = (_1)kbb- 1 - k) +k____ ... . 
1 - b2 1 - hl, 1 - 621 - 2 

m=O . 
1 - b2} - 2,- 2 1 _ b2J - 21 - 4 1 _ b2J-2t- 2k 

-----,,~-+ 
1 - h2 1 - 64 1 - b2k 

2 1 b2J - 2 1 b2}-4 1 b2}-21+2 (_1)k+lbb-t-k-1) +k+l_-____ - ___ ... - . 
1 - b2 1 - b4 1 - b21 - 2 

1- b2)-2t-- 2 1 - b2J-21-4 1 - b2J-2t-2k 1- 62J - 21 

1 - b2 - -1= b4- ... ----r=-~ . 1 - b2k+ 2 

2 1 b2)- 21 b2)-4 1 b2]-21+2 = (_1)k+lb(J-t-k-l) +k+l_-___ ( __ -: ___ ... --=- . 
1 - b2 1 - b4 1 - b21 - 2 

1-b2)-21-21- 62)-27 4 I_b2~-21-2k 

--1 - b2 - --1-=T- ... - 1 - b2k 

_b2}-2k-2k-2 + -----
[ 

1 b2)-2t] 

1 - b2k+2 

2 1 b2}-21 62J-4 1 "1- 21+2 
= (_1)k+lbb- t - k- 1) +k+l - - ... - 0- • 

1 - b2 1 - b4 1 - b21- 2 

~: 1 - 62]-21- 2 1 - 62)-21-4 1 - b2}-21-2k 

1 - 62 1 - b4 t - IJ2k 
1 - b2J-2a-2k-2 

1 - b2k+2 

whlch is e~actty what we set out to prove JO lemma Il.5.4. 

1 

Now. r.eturning to theorem 11.5.1. if i =,), 

For i < j, 
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"5 The Inverse of R 

}-t }-l-l 

L Tm = 'L Tm + TJ _ t 

m=O m~O 

T 0 summarize. ',. 

1 - ';J- 2 1 - b2J-4 1 -1,23-21+2 . 
= (-lP-l-

1
b1-

t 
- 1 _ b2 1 _ 64 '.. 1 _ b21-2 + 

1 - b2J - 2 t - 62)-" 1 _ 62J-2t+2 (-lP-'f,l-t .. , __ ~~_ 
1 - b2 1 - 64 . 1 - ,;,-2 

=0. 

i < j . 

'=J: 
i > j . 

"-

ft follows .that il IS the inverse of R. thus completing the proof of theorem Il.5.1. 
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Chapter Il.6 The LTbL Decomposition of the Inverse of B 

ln this chapter. we give a decomposition of B-l which we derive from the lU-decom­

position of B. We will deflne three matrices: L a lower-triangular matnx. b a diagonal 

matrix. and Il an upper-triangular matnx. The~. we will show that 
1 

Furthermore. we will find that. 

50 that. 

... Theorem Il.6.1: 

• (I1.6.1) 

Proof: We proceed a5 follows. From the lU-decomposition of B we gel Land R. which 

in 'turn gives a decompositlon of B-l. Then. we decompose the lower-tnangular matnx L 

(recaU this is the Inverse of L) into another lower-tnangular matnx L and a diagonal matrix . 
b Define 

1. 

\ 

.. 



l-

; 
L~ 

. . 

, 

• « 

1 

-b 

b2 

-- b3 

1 

1 

bi - h4 
- 1-b2 

b21 -b6 

1-b' 

1 
(1-b2) 

1 

b1-b6 
- l-b2 

The elements of these matrices are defmed as 

respect;vely. Then. 

1/6 The LT DL Decomposition of the Inverse of B 

1 

. 
(_b)n-41-h2n-21-b2n-4t_b2n-6 

I-b2 1-/14 I-b6 , ... 1· 

(11.6.2) 

(1I.6.3) 

(1I.6.S) 
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1/ 6· The L T lJL Decomposition of the Inverse of B 
/ 

fi 

(bL)t] = 2: 6tkÂk] 

k::l 

Therefore. 

Aiso. define. 

, 1 

) 

.' 

\ 

J2i 

t < i 

At this point we note'that kT = L. Us.ng this decomposition of L. -we-concl~de 
~ 

B-1=R-1L-1 

= LTbL. 

. 

.. 
1 l 

Note the speCial property.of, this detom~sition' namety. that î is a well-conditioned 
( 

matrix. This. impltes' that we have i~olated the iII-conditioning jnt? a dia~onal matri", -
. . 

b- thereby greatly simplifying the handling of possible numericalJ'roblems. In this sense. 

then. the LT DL decomposition might be said to be oPti~al. , . 
,'\ 66 

j , 

.. . " 

, ' 

, " 



" 

... 
, . 

. . 
, \ 

.J 

, ' 

, : 

Chapter Il.7 . Examples 

ln 'this ,chapter we prO\fide examples of discrete deblurring. The images wer:~ obtail')ed 
, -

in two'differe,nt ways::(l) by simulated blur. and (2) by a; realistic optical,source of.blur. 

The simula~ed blu,r was implemented using discrete <;onvolution against a Gaussian. 

Then. we use the LT bL decompositiôn of B-l \0 deblur them. Recall that 

h = Bf. 
"" 

.(11.2.2) 

~ .. 
Therefore. to obtain f from h. we use 

f = LThîh. (1l.7.1) 

For images the ptoblem is obtaining F from H, 

(11.2.4) 

whÎè'h is readily solved as 

The original and blurred images of SQUARE. CORNER. and CITY are displayed in' 

the (.a) and (.b) part of frgures Il.1. Il.2. and 11.3. respectÎvely. The SQUARE image was 
-

. c~osen to illus~rate deblur~ingtof images of geometric s~ructures. The COR~~R image 

~amines a subportion of SQUARE at higher resolution. Finally. the CITY ~mage carries 
, " , 

the' demonstration to an image of a ~atural scene very rich in structure: The debluried 
, . ! 

images are found in the (.c) part of the ~igur.e. Note ~hat the reconstruction is perfect J 

-, " 

• • 

. .. , , . 
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Il 7 hamples 

in the case of spatially Invariant Gaussian blur. of known spatial extent .and hlgh accuracy 

representation. 
~ 

Since the problem with Gaussian deblurring IS (m-part) numerical. In the next senes 

of experiments we varied the accuracy of the InitiaI. give", information The SQUARE,. 

CORNER. and CITY' images wére accurately convolved against a Gaussian and then repre­

sented by 4. 6. 8. 10. 12. 14. 16. 18. i4. and 30 bits/pixel The deblurnng value is tlte best 

possible for each representation. and was chosen b~ campanng. the results of deblurring 

with several values. The results are shawn in figures Il.4. 11.5. and 11.6 respectjvely Note 
o _ • 

that ~ith 4 bits of accuracy so,\e' mmimal deblurring is achieved But as the accuracy is 

increased. our .method glves °progressively better results. At 30 bits. the reconstruction IS 

virtually perfect. 
o 

A plot ef performance versUs representation accuracy for the CITY senes is shawn 

in figure Il.7. Accuracy IS in bits/pixel. Performance is the normalized norm difference 
, 

between the (known) .original. F. and the reconstructed if'!1age. FR . 

IIF-FRII 
performance == I!FII ' (11.7.3) 

( 

where. 

(11.7.4) 
t,1 

dur last example is the EYECHART image with sever al different debl~rrjng values. In . ' 

this case. the source of blur is aptical: the camera lens was defocused before the image 

:~as scanned. and the résult digitlzed ta 8 bits/putel quantlzation. The results in figure 
.. 

11.8 show the welL-known trade off between reconstruction of .the image and avoiding nOise 

amplification The best possible deblurring 'value depends on the accuracy of the glven 

degraded image. 

There are some technical points about the deblurring algorithm that are relevent ta 

successful implementations. First. the fraction al elements of L should not be computed ln 

a straightforward way Rather. factors should be cancelled (which is possible in every case). 
, . 
in order ta avoid nUpleric'ally unstable cOJ11putatian of these elements This is especlally • 

true for values of b dose ta 1 (corresponding to a large amount of blur). Second. elements 

, 68 
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H 7· EXJll1pltf. 

, l , ~ .. 

• of b. the matnx which IS the ill-condltloned part of tOIS. pfoblem. should ~e handled. with 

e"tr~me care Observe that t~e elerpents o( ÎJ ,"crease very rapidly ln magnitude movlng - , 
.. down t~e diago~ Therefore. one should use speclalrzed "Iong-word" anthmetic functlons 

to deal with them This is affordable sind~the complexlty mcreases "nearly Wjth size .. Also. 

n?te' the' el~~ts of b are highly correl1tf.ed. the next element On the diagonal is ~asily 
computed from the present element This faet can be utilized to obtain high accuracy , 

T~-e accuraéy of deblurring i5 directly a«ected by numerlcal quanllzation: for a given 

word le~gth 'stabre debwrring only appears pc,ssible IIP to a ~toff blur parameter "o. For . 
, instance f~r Fortran RçAl*S accuracy (inner products are also computed REAL*8). the 

, , 

tutofJ .point is approximately bD :: 0.85. For values of b less bo. thè algorithm a'ways . . , 

performs perfectly. given complete information about the blurred Image (1 e np tnmcation 
\ . 

occured after bJurring.) How~ï( sllghtly beyond tflis point. i e b > lio. the"performan<;e 

drops drB5tically. Thus. for a given numèrical accuracy. one canodetermine how mJih bl.ur . , 

"~can be removed reliably. Note. however. that the upper limit of deblumng value in our 

, , 

examples was decided by the accuracy in the representation of the degraded image rather 

th an the internai accuracy in representation and arithmetic. The plot ln figure Il.7 supports 
, ... ' 

this point 

\ \ , . 

", 

, -' 

.f Figure Il.1.a The original image, SQUARE at 40x40 5p~tjal resolution. 6 bits/pixel 
The image was chosen to illustrate the consequences of dcblurring in delail for a 
structured image 

1 

\ 
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Il 7 Ex.fmples 

. . 

Figure Il.1.b Thp Image SQUARE blllrrcd wlth f. = 0 80 

Figur:e Il.l.c The deblurred Image. uSlOg 1. = 080 Agam note that the deblurring 
is effcctlvely pcrfecl 

, ' 

10 
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Il 7 hamplcs 

.----------~--

" , 
. Figure Il.2.a The origrnallmagc (ORNER al 100x100 spatial resolullon. ,6 bits/pixel 

\ 
Id .,Ud' " 
J 

, 
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Il 7 hantples 
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1 

1 
.-" _ .. ~. 

Figure Il.~.b The image CORNER blurred wlth ,. = 0 80 

'z 
,Figure Il.2.c The deblurred .mage. UStng l, = 0.80 Nole lhal with h'1gh ilccurJCy 

representation of the blurred .mage. the rcpresentation, is cfrcctively pencet 

, 
'"",1 
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"7 Examples 

~
. re 11.3.a The orcginallmage CITY at lOOxlOO spatial resolution 6 bl~s/pjxel 

This image is chosen to demonstrate deblurnng .of a known structure at hlgher 
resolutlon 

.. 
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111 Examples 

Figure 11.3.b The Image CITY blurred with f. = 0.80 

Figure Il.3.c The deblurred Imagt uSlOg /, = 0 80 Note that the pcrform3nc:e 
of our deblumng method 15 nol affe<ted by the content$ of the Image Nole that 
deblurring of CITY which IS very ric.h ln stru(ture 15 a!;ain vlrtually perfect 

• Q 
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111 Examples 

Figure Il.4.8 The Image SQUARE dcblurred uSlng ~ ::: 0 20 wlth 4 bit rcpresenta­
tion of the blurred Image This senes of experiments (4 5 and 6) WOlS undertaken 
to illustrale the relallonship bClween the numerical representatlon and the amount 
of stable Gaussian deblurring See text 

.. 
Figure Il.4.b The image SQUARE dcblurrcd uSlng f = 0 35 wlth 6 bit representa-, 

tlon of the blurr~d ,maRc 

15 
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\ 
\ 

Figure Il.4.c The image SQUARE deblurrcd usmg h = 0 45 with 8 bit representa· 
tlon of the blurred image 

-" . 

Figure Il.4.d The image SQUARE deblurred uSlOg /J = 055 wlth 10 bit represen­
tation of the blurred Image 

( 

16 
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Il 7 b:aOlples 

Figure Il.4.e The image SQUARE deblurred using 1. = 0 60 wlth 1·2 bit represen· 
tation 01 the blurred Image 

" Figure Il.4.f· The image SQUARE deblurrcd uSlng 1 :: 065 wlth 14 bit represcn· 
tation of the bturred image 

" 

" . 
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Il 7 Examples 

Figur~·1I.4.g The image SQUARE dcblurred using f = 065 wlth J6 bit represen­
tatÎon of the blurrcd image 

Figure Il.4.h The Inla~c SQUARE dcblurrcd us'"j.\ f. :::: 0 70 with 18 bit represen. 
tation of the blurrcd Image 

18~J 
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Il 7 Examplcs 

Figure Il.4.i The imagetSOUARE deblurred using h = O?5 wlth 24 bit representa· 
tion of the blurred image . 

Figure fi .4.j The image SQUARE deblurrcd lISlng ,. = 0 80 with 30 bit representa­
tion of the blurred Image 

'1" 
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If 7 Exampl'es 

ai 

Figure Il.S.a The image CORNER deblurred uSlOg /. = 030 with 4 bit representa­
tlon of the blurred image 

1 , 
"-----------

Figure IL5.b The image CORNER deblurrcd usin~ l, = 0 40 with 6 bit representa­
tion of the blurred image 

-
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Figur~ U.S.C The image CORNER deblurred using f = 0 45 with B bit representil" 

tion oL. t~e blurred image 

Figure Il.5.d The image CORNER dcblurred using ,. ::: 0,50 with 10 bit rcprescn, 
tation of the blurred image 
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( . 
Figure 11.5.e The image CORNER deblurred Usm& 1> = 050 \Vith i2'bit represen. 

, -< 

tatlO~ of the ;blurred image 

.. 
,', 

o 

,.. 

• 

Figure Il.5.1 The im,agc CORNER debh~rrcd lIsing f. == 050 wlt'h' 14 bit rêpresen. 
, . 

t3tlQn or the bi.uroj . -;1 :l';C ~ 

J , , 

' . 
~ 
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"7 Examplcs 

Figure Il.5.g The image CORNER deblurred using /. = 0.50 with 26 bit represel1-
tation of the blurred image. 

Figure Il.5.h The image CORNER deblurred usin, t = 0.50 with t8 bit represen­
tation of the blurred Imagc 

, 
\ 
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\ 

Figure Il.S.i The image CORNER deblurred using b = 0.50 with 24 bit ';èpre~nta­
lion of the blurred image 

II' 

'1 
1 

Figure Il.5.j The image CORNER deblurred using b = ,0.80 with 30 bit represen-
tation of the blurred image 1 

84 



Il 7 Examples 

o 

Figure Il.6.a The image CITY deblurred using b = 0.20 witb 4 6it representation 
\ of the blurred image 

, 
) 

Filure Il.6.b The ImaJte CITY deblurred using 1. = 0 35 \Nlth 6 bit represent"tion 
of the blurre<! image. 

1 
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Il 7 Examples 

Figure Il.6.c The image CITY debluned using b = 045 with 8 bit representation 
of the blurred image 

Figure Il.6.d The imige CITY deblurrtd using b = 0.50 with 10bit representation 
of the blurred image 
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111 Exampfes 

• 

Figure U.6.e The image CITY debfurred using l, = 060 w;th 12 bit representation 

.of the blurred image 

Figure Il.6.f The image CITY deblurrcd uSlng 1. = 60 with 14 bit representation 
of the blurred image 
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111 ExaOlples 

Figure Il.6.g The image CITY deblurred ùsing f. = 065 with 16 bit representation 
of the blurred Image 

.. 

Figure Il.6.h The image CITY deblurred using b = 0.10 wilh 18 bit representation 
of the blurred image 

"''---------------

• 
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Il 7 Examptes 

Figure Il.6.i The Image CITV deblu ...... ed UStng b = 0.10 with 24 bIt representation 
of the blurred image D 

Figure Il.6.j The Image CI TV dcblurred using 1. = 080 with 30 bit represent~tion 
of the bturred image 

, , 

• 
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117 Examples 

Figure 11.7 Performance versus atcuraty of the degraded ,mage for CITY Atcuracy 
in bits/pixel in the x-axis Perlomance the normahzed norm dlfference between the 
original image ilnd the reconstrutted Image is the y-axis. see text 
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Figure Il.8.a The image EVECHART obtained from a camera with the picture out 
of focus The image IS scanned al 200x200 spatial resolUllon 8 bits/pixel 

.. 

Figure 11.8.b The'-' crH~RT ,--

( 

" 
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Il i Examples 

Figure Il.S.c The EYECHART image deblurred with b = 040 

Figure 1I~8.d T~ EVECHART imar,e deblumd with ,. = 0.'5 Note the trade­
off between the reconstruction and noise ilmp'ifiCiition Intreasin, the ilccuracy of 
representation of the degraded imiilge would improve the mults-as is suUesled bJ 
experiments Il 4. 115 and 116 
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Chapter Il.t Discrete vs. Continuous Deblurring 

" 

There are a ~umber of interesting similarities as welf as differences between the method 

presented for deblurring continuous G~ussian blur in IKimia and ZuckerI and [Hummel. 

Kimia. and Zucker). and the method presented here for removlng discrete Gaussian blur. 

The main result of the above papers was to conclude that in or der to remove continuous 

Gaussian blur. the image should be convolved against the deblurring kernel 
!'.!' ~ 

• 2 IN /2) (-·l)k 
. DN(x) = e-- x 2::: fi k H2k(x), 

!r=O ,7rk'2 
(/.5.9) 

'where N is the order of polynomial approximation of the original image and H2k(x), is 

the Hermite polynomial of order 2k. FIgure (l19.a) shows the deblurring kernel for N = 9 . 

Similarly,. one can obtain a discrete deblurnng kernel by ploting a row of 8- 1 (Figure Il.9.b) 

Note that the plots of the deblumng kernels resemble each other closely 

The dlsc .. ete method. h~wever. does not have sorne of the problems associated with 

continuous convolutions The shrinking of the boundary. for example. IS non-existant for 

discrete deblurring and the dlscrete algorithm permlts more stable implementatlOns in high­

), accuracy. low noise situations. 

FIgure (11.10) shows a compartson of the two methods on the image CITY. At low 

numerical accuracy (6 bits/pixel) the results appear better with contlOuous deblu.-ring. 

However. at high numerical accuracy. the results are significantly better with dlscrete de­

blurring. The stability at lower numeucal accuracy is a r~sult of smoothmg inherent in the 

low order approJtimation of the continuous deblurring , 
( 
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Il & Dlstr~te vs (ontlnuous Otblumnl; 
o 

Figure Il.9.a A plot of the contlOuous deblumng kernel 

Figure Il.9.b A plot of the dlscrete deblurring kernel Note the similarity in struc­
ture to the continuous deblurnng ~ncl in figure 1/ 9 a 

a 
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1\ 8 Dlstrcte vs Contlnllous Oeblumn:: 

) 

\ 
Figure Il.10.a The CITV Image deblurrcd using the conunuous method w.th 6 

bits/pixel ac:curacy wlth equivalent blur and deblur sigma. (.' = 1.5. and deblur 
~ernel order 5 ,Compare this result to 116 b where disc:ret~deblurring is pcrformed 
on CITY with the samc nnmerÎcal accuracy. See text for discussion 

Figure Il.10.b The CITY image deblurred using the continuous method. as above. 
but with higher accuracy , 

95 

- A 

Il 



() 

Il 8 Dlsuete vs Contin~ous Deblurrtng 

Figure II.I0.c The CITY image deblurred using the discret~ method. The deblur 
parameter is b = 0.80 which is equivalent to the above sigma Note that with the 
same. atcuracy as Il 10 b, the results are significantly better. 
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Chapter Il.9 Extension to Stably Decomposable Kernels 

Degradations other than Gaussian can also be represented as the linea~onvolution of 
• 

the image agalnst sorne kernel Thusfar. we have shown how the problem is"structured for 

a Gaussian kernel: Now. we would like to extend this result to a larger class of kernels. 

The extension is not completely straightforward. however. since for a Gaussian kernel we 

were able to model the degradation as the left and right multiplication of the image matrix 

by degradatlon matrices and this IS not always possible. Rather. discrete convolution is 

represented. in general. as a single multiplication of the image vector by the degradation 

, kernel (matrix). In this chapter. we sho~ how to put a subclass of degradation kernels 

into thé left and right matrix form. so that the techniques developed for rernoving Gaussian 

degradation can be,--applied. 

Consider the class of·kernels for which it is possible to model the degradation with left 

and right degradation matrices. That is. let the matrix F represent the image. Then .. a 

kernel K belongs to this class if 

- - T 
such that BLFBR ; F * K V F, (J 1.9.1) 

\. 

whe Ë Land Ë R are the left and right degradation matrices. respectively. A kernel that 

" satisfies .1) will be refered to as a decomposable kernel. 

Note that. ith the image represented as a matrix. neighbourhood relations are pre­

served ln appendix . we discuss thé necessary and sufficient conditions for a kernel to 

be decomposable. 

The next step to extend the suit to such kernels is to obtain blur matrices from the 

o 

• 
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" 9 Extension tô Stably Decomposablf: Kernels 

left and right degradation matrices Ï3 Land Î3 R. Hence. define matrices V L and FR. 

(1I.9.2) 

where BLis the left blur matrix. VL is the "residual". and similarly for the right side. Then. 

we have 

(IJ.9.3) 

The problem. therefore. is recovering F from H in (11.9.3). and this can be done in two 

steps. First. solve for Z in 

(11.9.4) 

S~cond. solve for F in 
\ 

(11.9.5) 

The first step can be achieved using conventional methods for solving a linear system of 

equations. provided matrices VL and VR are not iII-conditioned. let us refer to decom­

posable kernels that yield well-conditioned matrices VL and VR as stably decomposable 

kernels. The 5econd step employs algorithms based on theorem (11.6.1). which recover F 

accurately. 
~ 

We have therefore shown how to remove degradations governed by stably decomposable 

kernels. Given a kernel K representing some degradation. we can use the conditions of ap­

pendix D to determine whether K is decornposable. Then. we can test for the conditioning 

of V L and V R to deterrnine whether K is stably decornposable. If K is indeed a stably 

decomposable kernel. then the method of this paper can be applied effectively. 
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Chapter Il.10 Summary Il 

We have considered ~roblem of inverting discrete Gaussian blur. This w.a_s ac­

complished by deriving a decomposition of the' blur matrix that isolates the numerically 

iII-conditioned part of the problem. There are several advantages to this method com­

pared with direct numerical methods. First. typical numerical methods for solving the 

matrix equation (11.1.1) fail when the dimension of the problem reaches realistic propor­

tions. Second. such methods employ general purpose algorithms that do not make use of 

the special structure of the Gaussian. In contrast. we have utilized the full structure of 

the problem. Third. since we carried outr,;! large part of the inversion process symbolically. 

much of the overall numerical error is avoided. Fourth. our symbolic method confines the 

ill-conditioned part of the problem to a diagonal matrix. This allows for accurate methods 

since the complexlty of very accu rate computations increases linearly with the dimension 

of the problem. Aiso. the partitloning of the problem IOta complex well-conditioned and 

simple iII-conditloned parts has made It possible to preditt the numerical accuracy needed 

to d~al Yllth any amount of blur. Finally, the method can be extended to a larger class of 

kernels. which we refered to as stably decomposable ones. 

More practically, our method is effective with problems characterized by low noise and . 
f 

high representation accuracy. In such situations, the method removes the blur completely 

and exactly. Given the improvements constantly taking place in imaging technology, partic-
> 

ularly the increased reliability of sensors at higher light levels. images to which this method 

can be successfully applied should become more common. 
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Ch.pter J Il.1 Speculation on results 

(, 
The last two parts have demonstrated how to remove Gaussian blur in the continuous 

and the discrete domains .. 1 will now take the liberty to speculate about possible implications 

of these results towards interpreting the physiology of the human visual system. 

Recently. physiologists have noticed that the receptive fields of some cortical cells. 

which were thought to be accurately modelled by ~ difJerence of Gaussians. exhibit side 

Ie>bes. Gabor functions are now used to approJtimate the receptive fields of these cortJ­

cal cells (Marcelja). Interestingly. our deblurring kernels are extremely close. to an even 

Gabor function in form. although thelr analytlcal expression is different. Figures III.1.a 

shows an even (Cosine) Gabor function. and Figures III.1.b and 1II.1.c show the continuous 

and the discrete deblurring kernels. respectively. Note the similarity. both qualitative and 

quantitative. between the Gabor function and the deblurring kernels 

What functional interpretation can be ascribed to these cortical cells ,iven their ob-, 
served receptive field structure? To answer this. note that side lobes have been observed 

in the receptive fields of simple cells which respond to th in oriented stimuli al a specifit 

location IMovshon). 5uch simple cells are generally thought of as contributing to line 

and contour "detection". One might speculate. then. that these cells perform a combined 

fLllction of responding to very thin oriented stimuli while simuitaneously deblurring in the . 
orthogonal direction to the prefered orientation. The primary task of deblurring in such an 

hypothesis. then. is to localize blurred line segments. This assertion conforms to the loca­

tion specificity of a simple cell. 1 should stress the belief that several different functional 

roles may be simultaneously assigned to any given physiological observation. and t~refore. 
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III 1 Speculatton on resutts 

this spectulation does not.prevent other Interpretations of the observed receptive fields. 

Blurring, and deblurrmg may also contnbute to visuai hyperacuity We have s~own 

that the inform~tion m the origmal and the blurred data are equlvalent and tnterchangable. 

However. given the cholcé of samplmg the origlOal or the blurred data. It IS preferable to 

.sample the blurred data. This is because blurrtng spreads"the 'mformatlon. say about an t; 

edge ln the scene. to several retlnal receptors: thls information mlght have been mlssed 

otherwise. Deblurring. then. provides a way of reconstructtng the mter-receptor information. 

ln the framework of an elaborate theory. IZucker and Hummel. 1985] have shown how 

hyperacUlty might be achieved by deblurring visuai information ln the smallest channel. 

Accord,"g to this theory. the visual information IS flrst processed by a differential operator 

(laplacia,n). separated into ilS negatlve and positive parts. and then transmltted to the 

,cortex. A deblurring of the information in the smallest channel 15 needed for a possible 
.' 

(impliclt) reconstruct~n of the visual image whlch provides ,vlsual precision better t"an the 

retinal spacing. 

• 
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Figure lII:t.a A Coslnè Gabor function with (f = 1.0. in the craph's x axis unit. 
, with f,~quency of the cosine tèrm . .., = 0.02 
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Figure III.Lb The contlnUous deblumng kernel of order 13 with cr = 1.0, in the 
graph's x axis unit 
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Figure lll.t.c The discrete deblurnng kerncl wlth 1. = 060, 
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Chapter 111.2 Conclusion 

" 

ln summary. in this thesis 1 attempted to model and .solve the Gaussian blur problem. 
, , 

Gaussian blur was approached from two directÀ)ns: one continuous and the other discrete, 

ln the continuous approach. we used conti,nuous convolution of the Gaudian against con­

tinuous data to model the blurring process, Then. the problem of removing Gaussian blur , . 
is one of solving an integral equ~ti~n, The solution to this prol>lem is formulated as con­

tinuous convolution of a deblurrmg kernel'{f.5.9) against ~he bl,:,rr~d data. In the discrete 

approach. we modelled the Gaussian blur process as matrix multiplications. The solution 

now amounts to solving a linear system of equations w~ich are. however. ill-conditioned', 

We solve the equations by a series of symbo!ic decompositions éJnd inversions. T~e result 

IS that the inverse blur matrix is decomposed into two well-conditioned triangulat matrices 

and one diagonal matnx which contains ail the iII-conditi.oned term's. '\ 

The solutions for both the continuoJs and' the di~crete d~mains are convergent in form: 

both the continuous and the discrete solutjons present kernels which resemble a difference 

of Gaussians (DOG). but with extra side lobes 1 speculate that It is the fQrm 'of ,th!se 

kernels with their side lobes that provides one possible ~xplanation for obser~~C:I ~id~l~bes . 

of receptive fields in the visual cortex. Furthermore. deblurring can be used to recover the,' . 
depth of obJects in the visual field. Aiso. the phenomenon of hyperacuity would not be 

possible without blurring. and deblurrmg provides a Rossible method for ~~onstructi~g the .. ' 

inter-receptor visual detail. It would be interesting to see whether the conceptual framework 

of deblurring and further or simultaneous processing of visual informaticm. in a combined 
, . . 

form. cou Id provide constraints for deepemng our understanding of physiological data. 
: 

" 
'. 



l 

, 

<. 

References 

References 

Bers. Joh,n. Schechter. Partial DifferentiaI Equations. American Math~!rnaticël' Society. Prov­

idence. RI 02904. 1964 

Campbell. F.W .. Gubisch. R.W .. Optleal Quality of the Human Eye. J. Physiol .. (Lond.). 

1966. 186. 558-578. 

Courant. R .. and Hilbert. D . Methods of Mathematical Physics. WileY. New York. 1962.' 

Feynman R .. Leighton. R .. Sands. M . The Feynman Lectures on Physics .. Addison-Wesley. 

1963 

Fukada Y .. Receptive Field Organization of Cat Optie Nerve Fibers with Special Reference 
\. 

to Conduction Veloclty. Vision Res .. 1971. 11. 209-226. 

Helmholtz H. von. Treatise on Physiological Optics. J.P.e. Southall. ed .. Dover (reprint). 

1962. 

• Herman. G .. Image Reconstruction (rom Projections. Academie Press. New York: 1980. 

Hormander. l.. The Analysis of Linear Partial DifferentiaI Opera tors ,. Springer. New Y~rk .. 

1983 

. Hummel. R.A .. Kimia. B .. Zucker. S.W .. Deblurring Gauss/an Blur. TR 83-15R. McGill 

University. Montreal. Canada. Computer Vision. G;aphics. and Image Pro­

cessing. to appear. 

John. F .. Numerical Solution of the Equation of Heat Conduction for Preceeding Times. 

Annal; de Matematica. 1955. 11. 129-142. 

Kimia. B .. and Zucker. S.W .. Oeblurring Gaussian Blur. IEEE Conl Computer Vision and 

105 



1 

References 

Pattern Recognition. Washington. D.C .. Jun~. 1983 

Lebedev', N. N .. Special Funetions and their Applications. R A. SiJverman(Ed.). Prentice­

Hall Inc .. Englewood Cliffs. N J.. 1965. 

Marcelja. S .. Mathematical description of the responses of simple cortical cells. J. Opt. 

Soc. Amer .. 1980. 70. 1297 - 1300 

Movshon. J .. Thompson. 1 .. and Tolhurst. D .. Spatial summation in the receptive fields 

of simple cells in the ca1's striate cortex. J. Physiol. (London). 1978. 283. 

53-77. 

Pentland. P.A .. A New Sense for Depth of Field. Proceedings of the Ninth /JCAI. 988-994. 

1985 

Pratt. W .. Digital Image Processing. Wiley-Interscience. 1978. 

1 

Ratliff. F.. Mach Bands: Quantitative Studies on Neural Networks in the Retina. Holden-

Day. San Francisco. 1965 

Rosenfeld. A .. and Kak. A. Digital Picture Processing. Academic Press. New York. 1976. 

Stewart. G. W .. Introduction to Matrix Computations. Academie Press. New York. 1973. 

Westheimer. The Spatial Sense of the Eye. Invest. Ophthal. Vi!.uaIScl .. 1979. 18. 893-

912.prefaee.tex 

Widder. D .. The Heat Equation. New York. Academie Press. 1975. 

Zucker. S.W .. Hummel. R.A .. Recepti~e Fields and the Representation of Visual Informa­

tion. TR 85-16R. McGiII University. Montreal. Canada. 1985. 

106 



\ 

, '. A A Second Proof of Theorem 1 5 7 

Appendix A. A Second Proof of Theorem 1.5.7 

ln this appendix. we outline a natural and more intuitive proof of the main theorem 

(1.5.7) in order to derive the deblurring kernel DN(X), 

Proof: We require that the debJu;ring kerneJ D(x)satisfy 

n~ N. (A.l) 

Equ;vaJently. 

(A.2) 
;. 

6y expanding both sides we discover that this requirement translates into constraints on 

the monomial moments dk = J~oo D(x)x/cdx of D(x). namely 

n 2n I( l)k 100 In/2J ( 1)m(2 )n-2m L n. - 1 ,l D(€)€kd€)xn-k = n! L - 1 x,, 
O 

(n - k).k. -00 0 m.(n - 2m). 
k= m= 

Equating powers of x. 

and 

d2m+l = 0, 
n-l 

m = 0, 1, ... '(-2-) 

d _ (-1)m(2m)! 
2m - 22m 1 ' 

n 
m = 0,1, ... '(2"]' 

m. 

(A.3) 

(A.4) 

(A.5) 

These equations should hold for every n,.n = 0,1, ... , N. The conditions for n = N 

subsume ail others. 

The above constraints on dk can be tra,!slated to yield formulae for coefficients of an 

expansion of D(x) of the form 

2 N 
D(x) = e- x L ŒkHk(X). (A.6) 

k=O 

We restrict the upper hmit of the above sum not only because it provides sufficient con- s -

straints for a _unique kernel. but this kernel turns out to be the pseudo-inverse operator 

on PN. the space of polynomials of order N. Also. It is interesting to note that It yields 

the Most stable kernel. Adding any combination of higher order Hermite polynomials 

Hn(x) : n = N + 1, ... , to D(x) will yield another legitlmate deblurring kernel. 
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The ak' s will satisfy the linear system of equations 
N -

L akljOO e- x2 Hk(x)x1dx) = dl> 1 = 0,1, ... , N. (A.7) 
k=O -00 

We first consider odd ( = 2m + 1 for which dl = o. For k = 2p,p = 0,1, ... ,1~1, Bk 

Îs a sum of even power polynomials and according to lemma 1.5'.12. the integral vanishes. 

However. when k = 2p + l,p = 0,1, ... , (~), we have -

IN-II 
l a2P+tfi: e-

x2 
H2p+l(X)x

2m+1dx) = 0, 
p=O 

N -1 
m = O,t, .. , '(-2-]' (A.a) 

". We use the followikg ~emm3-to prove this linear system of equations i5 non-singular. 

t " 

~:: .. ... ~- ~ .~ - ~ -
Lemma A.9: 

/

00 1 -x2 2 +1 {O, P < k 
c2k+l,2p+l == . r;;;e H2k+l (x)x P dx = (_l)k (2p-2k+2)(2p+l)! p? k . 

-00 y1r 22p-2k+1(p-k+l)!' 

Proof: For k ? 1. p? 1, 

JOO 2 2 d2k+1 2 • 
·1:ffc =' e-x ((_t)2k+lex (e- X ))x2p+1dx 
y II 2k+l,2p+l d 2k+l 

-00 x 

J
OO d2k+l 2 = _ (e- X )x2p+1dx 

-00 dx2k+l 

J
OO d2k 2 

= (2p+ 1) ---yc-(e- X )x2pdx 
-00 dx , 

== -v;r{2p + 1)(2p)C2k-l,2p-l' 

Clearly. c2k+l,l = O. k > 1.' Using lemma 1.5.12. 

_ 2 (2p + 2)! > 0 
cl,2p+l - 22p+2(p + l)! ,p - . 

Combining. c2k+l,2p+l = 0 for p < k. and for p ? k. 

C2k+1,2p+l == (-1)(2p + 1)(2p) .. . (-l}(2p - 2k + 3)(2p - 2k + 2).Cl,2p-2k+l 

-(_l)k (2p+1)! 2 (2p-2k+2)! 
- (2p - 2k + 1)!' 22p-2k+2(p - k + 1)! 

=(-1)k(2 -21é 2) (2p+l)! . 
p + 22p-2k+l(p - k + l)! 

(A.IO) 

(A.l1) 

1 

(A.12) 
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-
The lemma implies none of the-c2p+l,2p+l is zero. Hence. the solution to ( 

I~J 
2: a2p+l c2p+l,2m+l = ° 
p=O 

is unique and clearly. 

~~. N-l 
m =-0, t; ... , 1-

2
-], 

p = 0, t, .. 
N - t 

'[-2-)' 

For even 1 = 1m. 

~ [Joo -x2.n ( ) 2md ) _ (-1)m(2m)! 
L- ale e le x x x - 2 ' 
k;O -00 2 mm! 

The above integral vanishes for n odd. Thus. 

~ 1/00 -x2n ( ) 2md ] _ (-t)m(2m)! 
L- a2p e 2p x x x - 2m,' 

O -00 2 m. op= 

which becomes. using lemma 2 of section S. 

Canceling and rearrangmg. 

'm , 

Ji 2: ( r:. )'a2p22p = (_t)m, 
p=O m p. _ 

which can be easily recognized in the form 

15' Then. it is evident that 1 
~ 

j 

(~1)P 
a2p = t;; '2 . v 1rp· P 

{ 

N 
m = 0, t, ... , [2")' 

N 
m =0,1""'[2")' 

'1 

(A.t3) 

(A.t4) 

(A.t5) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 
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ln summary. then. 
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. , 

A A Second Proof of Theorem I.S 1 

1 (1.5.9) 
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Appendix B. Proof of the lU Decomposition of B 

ln this appendix we present the proof for the theorem (11.3.1). 

B = lR. (11.3.1) 

P roof: We will show that the i th row of the .c. matrix.: .c.1 • multiplied by the jlh column 

of the R matrix. RJ is the 'J·th element of the blur matrix. B. 

Assume t ::; J. Denote llIl) by ft Then. 

,,= (b(I-1)2 b(t-2)2 (1 _ 621 - 2 ) 6(1-3)2(1_ 621 -;2)(1 _ b2t - 4) 

[(1 - b2t -:2)(1 _ b2t- 4) ... (1 _ ~2) ] .' .. ) . 

bb-1)2 
611- 2)21-b21 - 2 

1-62 
bb-3)21-b23-21-b2,-" 

1-62 1-b4 

1 
o 

o 

Rewriting it with a few more terms explicit. we get. 

" 
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B. Proof of the LU Decomposition of B 

+ 

,,= b(t-112 -b(J-112 

+ b(t-212(1'_ 621-2) 

+ 

1 Recall that our intention is to prove" = 611-.)2. Hence. it seems reasonable to exp and 

the last part of the previous formula based on its form. Therefore. we define 
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B Pro~f of the L U Decomposition of B 

and try to expand il. 

n = bU- 1 )2( _ ,,23- 21+2(1 _ b21 - 2)(1 _ b21 - 4) ... (1 _ b2[-2&+4)+ 

- ,,23-2&+~(1 - b21 - 2)(1_ b211 ... (1 _ 62,-2&+6)+ 

_ ,21-6(1 _ 621-2)(1 _ b2,-4)+ 

_ ,,23-4(1 _ 621 - 2)+ 

_ ,,2,-2+ 

1). 

n = - ",2-2(&- lb b,2_2&+2(1_ b2.7-2)(1_ b21 - 4) ,., (1- b23-2i+4)+ 

- ",2_2(&-1"b,2_ 2&+4(1 _ b2,-2)(1_ b23 - 4), .. (1 _ 62,-2&+6)+ 

- ",2-2(t-l},b,L2&+6(1 _ b21-2)(1_ ,,23-4), .. (1 _ 623 - 2&+8)+ 

_ ",2-2(&-lb b,2-6(1 _ b2;-2)(1 _ b23-4)+ 

_ ",2-2(,-l}, b,2_4(1 _ b21-2)+ 

_ ",2-2(,-l}, b,2_2+ 

blJ _i)2 . 

Substituting n back inta the expression (B.l) for 1\ we get 

, 

, \ 
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" = 6(1-1)2 6b-1)2 

+ 6(1-2)2 (1 _ 621 - 2 ) 6(J-2)2 
1- b2]-2 

1 - b2 

+ b(I-3)2 (1 _ 621 - 2 )(1 _ b21 - 4) b(]-3)2 

+ 

B Proof of the LU Decomposition of B 

1 - b2J-21 _ ~,-4 
n 

1-b2 1-64 

[ 
'] 2 1 - 62J-2 1 - 62,-4 1 - b2J - 2(1-4) 

+ b9(1 - b
21

- 2)(1 - 621
-

4) .. , (1 - b
8

) b!J-l+3) 1 _ 62 1 _ 64 ... 1 _ b2(1-4) 

[ ] 
2 1 - 62,-2, - b2,-4 1 - 62J-2(1-3) 

+ 64(1- b21 - 2)(1 _ 621 - 4 ) ... (1- b6 ) b(]-,+2) 
1 - 62 1 - 64 . . . 1 - 62(1-3) 

[ ] 
2 1 62]-21 62J - 4 1 b2]-2(1-2) + b(1 - b21 - 2)(1 - b21 - 4) ... (1 _ 64 ) b(;-t+1j - - .. , ---~--::"<"-

1 - hl 1 - b4 1 - b2(1-2) 

+ {._ bJ2-2(1-'1)J612_21+2(1_ 62J-111 _ b2,-4) ... (1- 62,-21+4)+ -_ 61 2- 2(1-1116,2_21+4(1 _ b2J-2)(1 _ 62.1-4 ): .. (1 _ 62;-21+6)+ 

_ 612-2(1-1I1bI2_21+6(1 _ b2J-2)(1 _ b2;-4) ... (1 _ 62)-21+8)+ 

_ 612-2(1-1}}bI2-6(1 _ b2,-2)(1 _ 62;-4)+ 

_ 612-2(1-1)]bI2_4(1 _ b2]-2)+ 

_ 61 2-,2(1-1I1bI2 - 2+ 

b(]-1)2 }. 

Now. rewrite the first few lines of this expression having in mind we want to somehow 

come up with bl1- I )2! 

114 

• 



r ( 

\ ' 

fi Proof of the 'lU Decomposition of B 

+ { _ ,/-2{1-111 612_21+2(1 _ b23-2)(1 _ b2J-4) ... (1 _ b23-21+4)+ 

_ ",-2-2(1-1)3 6,2_21+4(1 _ b2J-2)(1_ b23-4) .. . (1 _ b2J-21+6)-f: 

_ ",2-2(1-1)3 612_21+6(1 _ b2J-2)(1 _ b2J-4) _ .. (1 _ b2;-21+8)+ 

_ ",2-2(\-1)] b12-6(1 _ 62)-2) (1 _ b21 -4)+ 

_ ",-2-2(1-1)] 6,L4(1 _ 62J-2)+ 

_ ",-2-2(1-1)J 6,2_2+ 

6('-1)2 }. 

Now. pair up expressions. starting with the top and bottom e_xpressions (excluding bb-1 )2 
-

of course: it is a special case!) and terminating with the center ones. Sorne reorganization of 

the expressions. powers of b in particular. is essential for the proof to continue successfully. 
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B Proof of'the, lU Decomposition of B 

,,= 6b-,)2 + 

- ",2-2(1-1b6i2 - 2 [1 _ b(21-4)b-1l] + 

- ~'2-2(1-1)76t2_4(1 _ b2]-2) [1 _ b(21-6)b-2) 1 -b21 - 2 ] + 
1 - 62 

_1l
2 

-2(1-1b6,2-6(1 _ b2J - 2}(1 _ 62'-4) [1- 6(2t-8)(J-3) 1 - b21 - 2 1_ 11"-4] + 
• l-b2 1-114 

\ . 

No~. dètine An as the n + 1 tb, row of the Iê!st expression: 

Q 
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B Proof of the LU Decomposition of B 

â'-3 ~ _/;2-2(1-1b612_21+6(1 - 62J - 2)(1 _ 62J - 4 ) ... (1 _ 62J-2(1-4». 

l-b2 1-b4 1-b6 [
1 _ b4(J-t+3) 1 - b21

- 2 1 - b21 - 4 1 - b21 - 6 ] 

â t - 2 ~ _/;2-2(t-1 lJ b,L 2t+4(1 - b2J - 2)(1 _ 623-4) ... (1 _ b2J - 2(1-3». 

1 - b2 (J -1+2) - ~ _-__ 
[ 

1 "1-21 b21 - 4 ] 

1-112 1-b4 

â t - 1 ~ -t/-2(I-llJb,2_2t+2(1_ b2J - 2)(1 _ b2J-4} ••• (1- 62]-2(1-2))(1_1 - b2
::2). 

! 1-~ 

ln general. 

Then. 

A = b(}-,)2 + rll1 + â 2 + d3 + . " + ài-3 + â,-2 + d,-l' 
t-t 

- b(J-,)2 " A - + L-ul-k' 
k=l 

Hence. the problem reduces to showing the sum term above is zero. The folJowing 

lemma gives an explicit expression for the sumo 
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B proo! of the lU Decomposition of B 

Lemma B.2: 

k-l 1 -L â,-m =b'2-2(t-ll16tL21+2k(1 - b23 - 2 )(1_ 62J - 4) .• (1- b23-2t+2k). 

m=l 

(B.2) 

Prqof: We prove this lemma by using induction. let's have a look al the sum for some 

values of k. This will give us an idea of what the general expression for the sum is (i.e. 

above was not pu lied from a hatl). as weil as providing the start point for the induction 
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B Proof of the lU Decomposition of B 

( Now. proceed to sum more expressions. 
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8 Proof of the lU Decomposition of B 

. We now use induction in order to obtain the sum (8.2) for i - 1 terms. Assume. 

k-l 

2: Aa-m = A t -l + A t -2 + ... + à,-k+l 
m;::l 
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B Proof of the lU Decomposition of B 

and consider. 

k 

L â t - m = â l -1 + At -2 + ... + â t - k• 
m=1 

We will proye that our proposition is true for k. 

Now. grouping similar powers of b inside the braces we get. 
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B Proof of the lU Decomposition of B 

.,::" 

This proves the proposed induction and hence the lemma. 1 

We apply this lemma to the sum (B.2) with i - 2 terms. 
, ' 
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B Proof of the LU Decomposition of B 

m=l 

Then. 

{ l H,,-2 +." + b1m-I )(21-'). + .... HI.":')(2J~') + ~, •. -3)(2J-2)1 

= ,i-2(t-l)Jb12- 211_ b(l-2)(2J -2»). 

t-1 1-1 

L Il'-m = L: â t - m + â 1 
m=l m=1 

_ = 1/-2(;-111612 - 2(1_ 6(,-2)(2,-2») _ ",2-;-2(t-1bbtL2 [1 _ 6(2i-4)(J-l)] , 

=0. 

Finally. 

t-1 
A = 6(]-&)2 + L At-k 

k=l 

== bb-i )2. ' • 
It temains to prove this for the case i > j, which brings us to the following lemma. 

-' - . 
Lemma B.2: C,R, == eJR,. 

Proof: Assume i > i Then. " 
1 • 

\ ' 
, . . 

. , 

C'l'R] =. (.6(1-1)2 6(1-2)2(1_ 621 - 2) 6(t-3)2(1 _ 62i-2)(1 _ 62&-4) 

[61'- J)2 (1 - b~·-2)(1 - 6~-') ... (1 _ b2'-'(J-l)] ... 
" 

[(1- 621
-

2)11 - 62t - 4) ... (1 -Ii)] ... } . 
t _,'. , 

.' 
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C The è,holesky Decomposition of B 

, , 

• 

b(t-1)2(1 _ 6~t-2)(1 _ 621-4) ... (1 _ 621-2(]-11).1 

:+ 
(') 21 62t - 2 1 b2t - 4 1 b2, - 2(]-I) 

(1 - b21 - 2)(1_ b21 -+1'.·. (~- b2).b('~1) - 2 - 4 ... ----=---=--
, 1 - b 1 - b 1 - b2J-2 • • 

The above I~mma proves that the matrix product .c ,R is symmetric. Therefore. the 

proof which has been presented for the case of i ~ J,"is valid for ail i,j. 

ln conclusion. this section has demonstrated that the product of t. and R. lower-' 

triangular and upper-triangular matrices. respectively. is actuall~the blur matrix B. 

" \ 
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C The Chol~ky DecompositÎon or B 

Appen'dix C.: The Cholesky Deco'mposition of B 
, 

'. 
ln this appendix we decompose the blur matrix. B. into the product of a lower triangular 

matri~. l'. and its transpose (Ch6lesky decomp~stjo",). This new decomposition may offer 

new possibilities in reduting storage space and computation time Aiso. it proves that B 

is a positive definite matrix MoreQver. fa ter aecompsitions can also be derived from it. 

ln order to obtain l'. we resort to the resulfs of'chapter l1.3. namefy. the LU-decomposition' 

of B. To do this. we introduce an auxillary dlagonai matrix D as defined below. The efe- ' , 

menls of D. l'. and. R' are denoted by 61J . >'~J • and P~3 . respectively. 

1 

l ' 1 
Vl-b2~ 

/ l ,1 1 
Vl-b2~ Vl-b6 

, , ' 

, . 

" 

and. 
. 

1 L-
" '{ l , t ~ 1 -' ~, ~ ·/t-b4 .,. Vt-b2t - 2 

{11J -, v, 
, l 'u l G 

We showed B ==.c. R" which yields 

, wh~re 

and., 

1 
, . 

\'B~lDD-IR 

= t'R', 

, , 

'P\rô~ing the foUowing'lemma. will give ùs the Cholesky decomposition of B . . \; \ \ 

" . 
\ . 

, , 
, 

, . 

',' 

, (C.,2) 
\ 

. , , 

1 • 
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C. The Cholesky Detompositlon of B 

Lemma C.l: l,T = R'. 

Proof: 

n 

À~.7 = L Àtk6k] 
k=l . / (C.3) 

= )',J63]' / 

Hence. using the expression for .\1] (11.3.5) we have. 

Similarly. 

, where,. 

, 
\ ,! 

Then. 

There(ore .• 
" , 

" , 
, ' 

This proves the asserti~n t~at 

D-1
:::: [61,J 

l' 

. [1, 1 =; daag 63] . 

1 • 

PI _.\1'. 
JI - 1]' 

• 

i?j 

i < j 
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o Dccomposable Kernels 

Appendix D. Decomposable Kernels 

ln this appendix, we
o 
est-.blish the necessary and sufficient conditions for a discrete 

kernel to be decomposable. First. recal! that a dlscrete kernèl is ca lied decomposable if 

the convolution of the image against this kernel can be modelled as multiplication of the 

image. which 'is represented as a matril. F. by two degradation matrices. Specifically. a 

ke~nel K is decomposable if 

:3 ilL,BR such that BLFBll T = F * K 'V F, (Il.9.l) , 

where B Land ÏJ R are the left and right degradation matnces. respectively. 

Since (11.9.1) holds for ail F. let 

i==1,2, ... ,m: 1=1,2, ... ,n, (D.l) 

for some ,". i'. 
Denote columns of ih and BR by BLI and BRt. respectively. Then. omiJting details. 

we conclude 

Aiso. 

IF. K)t1 == = L FpqK 1 - P,J-q 
pq 

Therefore. K is decomposable iJ and only if 

\,.J • , ., ., 

vi,),',]. 

• 

(D.2) 

(D.3) 

(D.4) 

The above equivalent condition (0.4) provldes the following neeessary and sufficient 

condition for a decompsable kernel: 

'Vp,q,r,s. (D.S). 
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D. Decomposable Kernels 

To prove necessity. assume K is decomposable. and let i,J,k,l,t',J',k',I', be such 

that the fo/lowing hold. 

Then. 

p=i-i' ~ 

q=i-j' 

r=k-k' 

s = 1 - l' 

KrqKr~ = BL1,t,ÏJRJ,/.BLk,k,BRI,lf 

= Èh"t,ÏJRL,L,·BLk,k,BRJ,J' 

= KpsKrq, 

which concludes the neces5ity of (0.5). 

(D.6). 

(D.7) 

Next. we show that condition (0.5) is al50 sufficient. In other words. for any given 

kernel that salisf.es (0 5). there exist left and righl blur matrices satisying (9.1). let. 

1 = 1,2, ... ,m. (D.S) 

Then. 

j = 1,2, ... 1 n. , (D.9) 

Û>nsequently. 

" (D.10). 

, This is a meanigful assignment since. 

v), j', 1, l', (D.11) 

trom (0.5). The matnces B L and BR satlsfy (0.4) and therefore. K is decomposable. 

This proves the sufficiency of (0.5\ 

ln summary. we have proved that (D.5) is a necessary and sufficient çondition for a 

kernel to be decomposable. 
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