- v \

[y

-~ " Vector Interpolation Polynomials

over Finite Elements ..
k-4

, -~

- {

A thesis submitted to the Faculty of Graduate Studies and »
Research in partial fulfillment of the requirements
for the "degree of Doctor of Philosophy

Department of Electrical Engineering
McGill University

Montréal, Canada w,
.« September, 1984.

(©Nevine Nassif, 1984 ' .



P

ABSTRACT , u

[al

- °© ’
Vectdr interpolation functions which approximate electromagnetic vector fields are
constructed in this thesis. These vector functions are to be used when the solution of
Maxwell’s equations involves an irrotational or solenoidal vector field. In addition the

functions are chosen so,that they can easily be used in the implementation of a finite
& a

~
3

element method.

Four bases are constructed. The first two span the spaces of solenoidal or irgo-

tational two component vector polynomials of order one in two variables whereas the

¢

" other two span the spaces of solenoidal or irrotational three component vector poly-

nomials of order one. in three variables. The vector polynotmals are then used within
]

the finite element method to approximate the two component current density J and

electric field E over a conducting plate and the three component current density in a
. A

three dimensional wire. N

{



RESUME .

* - ,
,l
Des fonctions d'interpolation vectotielles servant d'approximation 4 des champs

électromagnétiques sont construites dans cette ‘thése. Ces fonctions ne peuvent étre

utjlisées que dans le.cas ou la solution des équations de Maxwell comprend des champs

. * .

don} le rotationnel ou la divergence est nul. De plus, ces. fonctions sont choisies, de

-- ‘ '

.

o :
maniere a pouvoir étre utilis€es dans le contexte d’'une méthode d’éléments finis.

! v

Quatre bases particuliéres sont construites. Deux de ces bases engendrent, les es-
paces de dimension deux des polynémes de- degré un & deux wvariables, dont soit le
rotationnel ou la divergence est nul, tandis ‘que des polynémes similaires mais a trois

variables engendrent deux espaces de dimension trois. Ces bases de polyn(‘?mes sont

‘ensuite utilisées dans le cadre de la méthode des éléments finis pour calculer la densité,
r A )

‘e

de courant et le champs électrique’ d’une plaque conductive et la densité de courrant
_ q P

.
o

d’un cable tridimensionnel.” .
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CHAPTER 1

INTRODUCTION

Vector interpolation functions which approximate electromagnetic vector fields
are constructed in this thesis. These vector functions are developed specifically to be
used when the solution of Maxwell’s equations involves an irrotationa\l or a solenoidal
vector field. In addition the functions are chosen so that they can easily be used in the

implementation of a finite element method.

1.1 The Finite Element Method in Electromaghetics

[}

For the last two decades the finite elementl method has been used effectively for
the analysis of electromagnetic field problems. Several problems which had formerly
been intractable became quite easy to solve computationally.~At present, conferences
[COMPUMAG 1976. 1978, 1981 and 1983] which report advances in the field are held
regularly, books such as those by Silvester and Ferrari (1983) and Chari and Silvester

(1980) have been written, and several computer packages which compute electromag-

w
-

netic fields can be found on the market. )
J} ’ -
At first most of the work undertaken was concentrated mainly on determining the
% o . ’
field ir regions with translational or axial symmetry which could be reduced to a two
dimensional problem. When'*an electromagnetic field is defined over a two dimensional
region it is usuoally written in terms of a differential operator \?cting on a séalar poten-

3
tial or on a stream function and an approximate solution is then found for the scalar

function whereas when the region is three dimensional, the vector field is formulated in

1
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Introductic;n’ . v .
terms of either a scalar poéential or a vector potential. Althaough a formulation which
exprésses a t};ree component irrotational field in ternis of a scalar potential is advanta-
geous, a formulation which expresses a three component solenoidal vector field in terms
of a vector potential offers no teal advantage whengver it is possible to determine the
vector field directly. This is because the vector potential and the .vector field both
hé\{.e three components whereas a scalar potential is a scalar function. Furthermore the
vector poten%ial is nonunique and one solution for the vector potential can differ from
another by the gradient of a scalar function. This causes problems wi?h the numeri-
cal approximation and attempts were made by Mohammed, Davis, Pogovic, Nehl and

Demerdash (1982), Kotiuga and Silvester (1982), Kotiuga (1982) and Chari. Silvester,

Konrad, Csendes and Palmo (1981) to find formulations which ensure the iniquenéss of

the vector potehtial. However Friedman (1982, p.30) noted the advantages of a method

where the vector field is discretized directly because the solutioni for the vector field is

unique. In this 'thesis solenoidal and irrotational vector ‘Qapprog(imation functions are

~developed so that a method which approximated the field directly can be implemented.

4

1.2 The Finite Elem?Wethod Applied to Vector Fields
» L*4

Often when a vector field is approximated each component of the vector is treated

se;farately and approximated by scalar interpolation polynomials. This method is used

by Chari, Silvester, Konrad, Csendes, Palmo (1981) and Demerdash, Nehl, Fouad. Mo-

hammc d (1981) in order to determine the vector potential in a three dimensional region.

Webb (1982) also breaks down the electric and magnetic fields intol\components and per-

” 2 . .

forms a component by component approximation. When each confponent of the vector
8

. > b]
is treated alone, boundary conditions and interface conditions are difficult to impose as

they are always tangential and normal to the boundary. In addition such a scheme does

2
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not allow the possibility of approximating a vector field within the space of solenoidal

-

vector functions or the space of irrotational vector functions. A different approach
ra 2 !

would be to use vector approximation functions which could then be chosen _to be either

solenoidal or irrotational and which would allow the boundary and interface cgn’ditions

to be easily imposed.

%

Finite element methods which use vector approximation functions to compute a
véctor field have beengused exténsively by numerical analysts in continuum mechanics
and especially in fluid mechanics. Raviart and Thomas (1977) and Griffiths (1979) con-
structed t\wo component vector approximation functions and Hecht (1981) constructed
three component vector functions which are solenoidal in each element and which are
continuous at the midpoints of interelement edges or faces but not along the entire edge
or face. The functions required to approximate an electromagnetic solenoidal or irro-
tational vector field need not be continuous across an interelement face or edge but in
order to satisfy Gauss’ law, the normal component of a solenoidal vector field has to be
continuous across an interface. Likewise to satisfy Stokes’ law, tﬁe tangential component
of an irrotational vector field must be continuous across an interface Hence functions
tailored speciﬁcally for approximating electromagnetic fields would be desirable and are

constructed in this thesis.

Okon (1982) derives vector expansion functions which can be used to approximate

»

the current density over a two dimensional surface. His functions have either constant
curl or constant divergence. He however does not attempt to find similar functions
which could be used to approximate the current density in a three dimensional region.

. !

1.3 'The Vector Approximation Functions

?

S

In Chapter 2 iyis shown that two types of vector approximation functions are
\ . o ‘a

N, o
4

3 .
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required: solenoidal and irrotational. The solenoidal vector functions whose normal
components across interfa.ces are continuous are used to-compute the current density in
a conducting region and the irrotational vect'or functions whose tangential components
are continuous ‘across interfaces are used to.approximate the static electric field On

the boundary of a region it is the normal components of a solenoidal vector field and

the tangential components of an irrotational field which are prescribed. It would there-

, fore be approprlate to find solenmdal and irrotational vector approximmation functions

v

whose undetermined coefﬁments are the components of the field which are normal and
[}

tangential to interfaces and to the boundary.

-

In Chapter 3 the two types of vector approximation functions are derived for two
component vector fields in two vz;r}a%les and for three component vector fields in‘ three
variables. These functions are devised with the finite element method in mind. A
solenoidal vectoriﬁeld over a given triangle or tetrahedron is approximated in the space’
of first order solenoidal vector polynomials. A basis for this space is constructed in such
a way that when an approximation of the vector is written as a linear combination of
the basis vectors, the coefficients in the linear combination are the components of the
vector field normal to an edge of the triangle or to a face of the tetrahedron evaluated
at i‘l vertex. Similarly an irrotational vector field is approximated in, t'he space of first
order*irrotational vector polynofnia]s. "A basis for this space 1s constructed in such a
way that when an approximation of the vector is expressed as a linear combination of
the basis vectors, the coefficients in the linear combination are the components of the
vector field tangent to an edge or a face evaluated at a vertex. Having chosen such a set
of basis functions, it is easy to ensure continuity of the normal component of a solenoidal
vector field across interelement edges and the continuity of the tangential component of

Y
an irrotational field across these same edges. The boundary conditions are prescribed

by constraining the‘appropriate coefficients.

[y

4
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Although for completeness. both solexn:idal and irrotational vector approximation
families should be developed, there is little practical value in using interpolation schemes
for irrotational fields since these functions are easily handled by using a scalar potential.
On the other hand it is impossible to describe a three component solenoidal vector field

in terms of a stream function and a vector potential is often used. In this case there is

L]

great advantage in developing interpolation schemes for solenoidal vector fields.

rd
L]

In this thesis only functions whose components are first order polynomials are

! .
considered. It turns out that tﬁe corresponding zeroth order three and n component
solenoidal vectc;r functions were devi§ed by McMahon (1953, 1956, 1974) and the zeroth
order twuo component solenoidal vectorj polynomials were first introduced by Synge in

1952.

In Chapters 4 and 5 the two component vector approximation functions are used

to determine the electric field and the current density= in a two dimensional conduct-
ing plate. The finite.element matrices are given and the continuity requirements, and °
boundary conditions are imposed. The threercomponent solenoidal vector approxima-

tion functions are then used to find the current density in a three dimensional wire

<

whereas the electric field in the wire is determined from the approximation of the scalar

Y
L

tential.
potential N

-

Finally it is shown that whether a solenoidal or irrotational vector field is approx-
imated with nth order vector approximation functions or whether a stream function or
a scalar pc;tential is approximated with n + 1st order scalar polynomials, the resulting

13

field'is the same and both methods are equivalent.
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CHAPTER 2

THE PROBLEM FORMULATION

-~

&

Maxwell’s equations often lead to boundary value problems involving irrotational
]

or solenoidal vector fields. The purpose of this chapter is to determine the properties

-

of these vector fields that"the approximation functions which are developed in the next

-

chapter should satisfy. To this end, two simple examples which involve §olenoidal and

irrotational vector fields are presented in order that the properties of these fields can be

" deduced.

[n the following pages two problems are posed,,In the first problem the resistance

of a two dimensional conducting plate and in the second the resistance of a three dimer}-

sional wire is sought. The resistance is estimated by minimizing the power functional
,t

P which is expressed’in terms of either the irrotational static electric field E or the
E ]

A
L -

solenoidal current density J. .

w
Fach of thd two problems is formulated in four ways. Two methods for evaluating

the.electric field are given. In the first the electric field is expresseci as the gradient of a
scalar potential and in the second the electric field is sought in the space of irrotational’
vector functians. "Similarly there are two_ways in which the eurrent density can be
computed. The two component current delnsity can be written in terms of a stream
function and the three componernt current densit}‘( can be expressed in terms of a vecto;

.

potential or both can be sought in the space of solenoidal vector functions.

When the power functional is expressed in terms of the electric field and the
potential difference across the region is equal to 1, the value of the functional is always

greater than the conductance of the region except at the functional’s minimum where it

6
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-

is equal to the conductance. Similarly when the power functional is expressed in terms
of the current density and the total current through the region is equal to 1, the value
of the power functional is always greater than the resistance of the region except at the

functional’s minimum where it is equal to the resistance.

*

/
When an approximation for the (minimum of the power functional is found, the
* approximate, value of the’conductance Gqpp is an upper bound for the exact conductance
G of the rergion and the approximate value of resistance R,p, is an upper bound for the

exact resistance R of the f‘egion. The exact value of resistance lies between these two

bounds. ' ‘ ’ »

< =R< Ra.pp' (21)

L
The above inequality is used in Chapter 5 to give an indication of the accuracy of the

vector approximation functions.

s - ,

2.1 A Problem Involvingthé Two Component E and J Vectors

The resistance of the thin conducting plate Q of thickness d shown in Fig. 2.1(a)
needs to be computed. ¥, and ¥! are “equipotential surfaces between which there may
be.a potential difference and the tangential components qf the.electric field vanish on
both these surfaces Current cannot flow through the surface ¥, hence the normal

-

component of J vanishes on this surface. The total current through the plate is I,

N\

I=/ J-ndS ' (2.2a)
Sy

B

where S, is any cross-sectional surface through the plate (1 whose boundary lies in &,.

The plate is modeled by a two dimensional region ¥ and has a nonzero constant finite

7
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conductivity ¢. L, and X reduce to two curves I'; and I'j and X, is replaced by the

.
curves ['; and I'}. The integral given by (2.2a) becomes . -

>

I= d/ Jndl. (2.2b)
C‘g .

Faraday’s law, the<Continuity equation and the constltutlve relatlon given by Eq

oy

(2.5) are required in order to determine either the electrxc field E or the current denSIty

J in the conducting plate 1. Faraday’s Law states that for any open surface S’

/ E-dl':/ 9B s -0 . (2.3)
BSI S’ at ST

- 7
]
Hence, the electric field integrated around any closed ]oop i§ zero if the time rate of

change of the magnetic field is zeroﬂe contmulty equatlon states that for any three

dimensional region 0’

/anlg nﬁS&/ ———dV—O | (2.4)

Hence the net current flowing into a closed surface is zero if the time rate of change of

the charge density is zero. The constitutive relation

4

J =0E (2.5)

relates the current dénsity J to the electric field E.

7l

By Stokes’ theorem, Faraday's law can be rewritten as
' ]

<

4 / Ed=/ VxE-ds=9 (2.6)
as! s

[

from whi;:h it follows that

VXxE=0 inQ (2.7)



"
KB

T
o

Fig. 2.1(a)

Fig. 2.1(b)

. \

A conducting plate € of thickness d.

A two dimensional model for the conducting plate.

- '
y
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The Problem Formulation

and that the tangential component of the electric field E,; is continuous across interfaces

(the R;eader can refer to a textbook on electromagnetic field theorynfor the derivation
of the interface conditions. for example see Popovic, p.460, or Stratton, Section 1.13).
Since s simply connected and the curl of the electric field vanishes everywhere in (1,
\E} is a conservative field and can be written as the gradient of a scalar potential o,

E=Vy inf. (2.8)

Because the tangential component of the electric field vanishes on T, and %, ¢ is
a constant on ¥z equal to V and ¢ is a constant on L} equal to V'. The potential

difference between £, and £} is V —'V'. The imposed boundary conditions are ¢ = V
2 Y

on ¥, and ¢ = V' on Lj.

By the divergence theorem, the continuity equation is rewritten as follows

W ! &

/ J'ndSr—/ V.-JdvV =0 e (21’9)
an! 04 ’

=¥

»

which implies that
VI=0 w0 (2.10)

and that the normal component of the current density J, is continuous across interfaces.

In order to determine the electric field in the conducting plate 01, Eqs. (2.5), (2.8)

and (2.10) are combined and a solution for the second order equation =

V-(oVe)=0 - in Q] (2.11)

subject to the boundary conditions

o=V “Tonk, ,
p=V' onZ) S (2.12)

- (6Vp)n=0 onZ] - '

LA
.
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" must be found. Then Eq. (2.8) is used to compute E.

~

Next it will be shown that the extremum of the power functional

-

‘ " P:‘[J.EdV:/glEide:/a1Vx]2dV: - (2.13)
' Q a Ja ~

subject to the principal boundary. conditions ' .

x=V on ¥,
' (2.14) .
x=V', on%

is a solution of the boundary value problem given by Eqgs. (2.11) and (2.12), that is,
the y for which P is a minimum is p. A necessary con ition for the functional P to be
stationary at v is that the variation of P vanish for all variations of ¢~ which vanish on
¥, and'X;. Taking the variation of P at @ the conditions for ¢ to be an extremal are

deduced.

The variation of P, 6P, is taken assuming {} has fixed boundaries ‘and

]

6P = / 0§ |Ve|* dv
. 0

(2.15)

= / 20V6p.- Vi dV. ’

Jo .

Now using the following vector identity in which F is a vector and g is a scalar:

V' (gF) =gV -F +Vg-F L (2.18)
and the divergence theorem, the variation of P is rewritten as e ;
6P=/ 2600V -ndS —/ 260V - (6Vp)dV. '(2'.17)
aQ Q

s

At o the first variation of P must vanish. Therefore setting Eq. (2.17) to zero the

conditions on ¢ which must hold when P is stationary are determined. First of all, on

. 11

[
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s

-the parts of the boundary of (1 where the principal boundary conditions are préscribéd,

the variation of p is zero. Equation (2.17) therefore becomes

0 =/ 6poVp -ndS —/ bpV - (0V)dV. (2.18)
o, Q

Equation (2.18) must be an identity for any variation in ©. In particular 6 can be

chosen to be zero on the boundary and to take on any value within 2, in which case

N

0:/ 5oV - (oVp)dV. = - (2.19)
o Ja

A}

- Equation (2.19) holds if and only if V - (6V¢) = 0 everywhere in 0. If V- (Vi) does

not vanish everywhere in (2, then é¢ can be chosen so that the integral in (2.19) does

not vanish. However (2.19) must hold for all §¢ since g is the extremal of P. Therefore,

R must satisfy the Euler-Lagrange equation

" v. (ogp) =0 in . A (2.20)

Next a,5¢ can be chosen which is non-zero on the boundary. Because Eq. (2.20) holds,

.

Eq. (2.18) reduces to
‘ / 6an¢-ndS. (2.21)
Zy

4

5 -

"Eq. (2.21) holds if and only if -

»

oVo-n=0 onl, ! (2.22)

.
! L]

since 69 can take on any value on the boundary. The condition given by (2.22) is a
!/ . -
" natural boundary condition and need not be imposed explicitly. Hence it has been shown

that finding the function ¢ which makes the functional P in (2.13) stationary, subject

12
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to the principal boundary conditions (2.14),_ is equivalent to solving the boundary value

problem described by (2.11) and (2.12).

The stationary value.of the functional P is a minimum. To show this, P(p -+ ¢)

°

is examined where P(y) is the stationary value.
P('<p+¢)=foéV(<p+¢){2dV ‘ \
Q : .
= / o |VoldV + / o Vo|*dv +2/ avp-v;\dlf
Q ‘ Q ) /02

= P(p) + P() + 2/ oV Vhav.
Q

LY

In the above integral, ¢ can be regarded as a special instance of 6900 in Eq. (2.15) which
means that the abq}'e integral vanishes sin.ce the variation of P vanishes at . Therefore
Plo~o)is ° |

P(p + ¢) = P(p) + P(4) (2.23)

-

)

and since the value of P is always greater than zero, the value of P(p +7¢) is greater

than P(p) for any ¢. Therefore, P(p) is a minimum.

The resistance of the plate needs to be computed. The minirpum of the functional
can be related to the conductance of the plate. Starting once more with the functional in
(2.13) and making use of the vector identity given by (2.16) and the divergence theorem,

\

P is rewritten as

P = / oxVx-ndS —9/ %V' (’D'VX)dV. K (2.24)

a0 Q- :
Conductance is calculated at tl.le\minimum value of power when x = . The volume
integral given in (2.24) vanishes since its integrand is the Euler-Lagrange equation given
in (2.20) when x = ¢. Furthermore the surface integral vanishes on £, because of (2.22).

W hat remains is the following: ,

R:/ agngo-ndS+/ opVp -ndSs. ) (2.25)
125} £

13
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©

- From_the conditions in Eq (2.14), v on %2 and ¢ on XY are known constants Since

J =0V from Egs. (2.5) and (2.8), Eq. (2.25) reduces to

o P:V/ J-ndeV’/ J-nds (2.26)
o HA
° \

Since Eé and XY are both possible candidates for S) in Eq. (2.2a), if n'is taken to be = -

the outward normal to the surface ¥, then

/J-ndS:I' )
g , .

and

" and thus Eq. (2.26) reduces to ,

pd

Plpy=I1(V-V')= (Vv -V')?G

" since [ = (V ~ V')G. The value for th uctance can thus be calculated at the ,
minimum value of pow T an imposed potential difference. ‘

e

Instead of finding the electric field E, the current density J can be determined.
From Eq. (2.10), it is seen that the divergence of J vanishes everywhere in . On the
two dimensional surface ¥ which is used to model the conducting plate 2, J can be

related to a stream function 7 through a differential operator as follows:

J=n'xVy I - (2.28)

[

where n’ is in the direction normal to £. In order to derive a second order differential

equation. Eq. (2.27) is combined with Egs. (2.5) and (2.7) to obtain
. ’ !
n' x V¢

ag

n' -V x [ } =0 n . (2.29)

14
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.

Because J,, =0 on 'y and I'|, % is a constant on T'; equal to I;/d and ¢ 1s a constant
on I'| equal to Ir/d where I, — I, is equal to I, the total current. Therefore, J can be

found by solving Eq. (2.29) for ¢ subject to

O I
Ib:j— on I
] )
lb:?izron I
/ V J N
nx d)-t::O on I'y
n'xV?b_ K

Finding the solution to Eq. (2.29) subject to the conditions given in (2.30) is equivalent
i
to minimizing the power functional shown in Eq. (2.13), rewritten in the following way:

(JQ . ' 2
P:/J-Eded/J-EdS:d/'——'dS:d/E—i—X—' ds (2.31)
Q PH n

EO’ o

subject to the principal boundary conditions

, .o I oﬁ\&/
N ~d

: Iy (2.32)
d

“n

The x for which P is a minimum i% 1,0.‘

A necessary condition for the functional to be stationary at ¥ is that the variation

+of P vanish for all variations of ¥ which vanish on I'; and I'}. Taking the‘ variation of

&

- P at ¢ and using the identity

n'-Vx(g&)=n"gVxF+F- -n xVg, (2.33)

15
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the following conditions on ¥ must hold when P is stﬂationa.ry:

&

< '
n’-VX[M}ZO m T
\\) o
!
v
DXVY 20 onTy
(e
[
v
Ii—X(;—?-t:o on T,

i ¢

[t can also be shown that the stationary point of P is a minimum and that the
resistance of the plate is calculated at that minimum. The functional P in Eq. (2.31)

can be rewritten as

D.

P:d/ w<’—‘—’-‘—v—¢i>-dl—d/n'~wx(m)ds (2.34)
oxn . z

2 o

w

using the vector identity given by Eq. (2.33) and Stokes’ theorem. The volume integral

]

in (2.34) vanishes since its integrand is the Euler-Lagrange equation and the Surface
integral vanishes on I's and T by virtue of the natural boundary conditions. Hence,

“

Eq. (2.34) reduces 10

2 =’d/ " (MWM—"’) dl. | (2.35)
r, a ) o

Because of the principal boundary conditions given in (2.32) and the constitutive relation

\

(2.5), Eq. (2.35) can be rewritten as

) v
P=1 E-dl+I/ E-
. 1 ry . ’ r }l
=L - L)V -V
=I(V"VI) ~

=I’R

ETON
x

16
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7

since V — V' = IR. Hence resistance can be calculated from

W, 20

~
A

Equations (2.27) and (2.36) express the conductance and the resistance of the

plate. If an approximaite value @, is found for the scalar potential, then
”

PappE = P(Soapp) > P_(‘P)

for all v,pp as was shown by Eq. (2.23). The approximate value of conductance GoppE

is greater than or equal to the exact value of conductance since

_ P(papp) P(p)
GarvE = [ —yz = [ v

7 =G

and G,ppp is thus an upper bound for the conductance of the plate. If an approximate

o

value Y., is found for the stream function, then wl

Papps = P('/)app) 2 P(w)

&

. for all ¢,,,- Therefore the approximate value of resistance R,,,; is gredter than or

equal to the exact value of resistance since

o _ Pl | P(¥)

v appJ — 2 =72 =R

o .

ard Eappj is thus an upper bound for the resistance of the plate. A lower bound fo

the resistance of the plate is determined from G,p,g. Since

’

GappE 2 G,

17
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then
1 1

Gompz = C ~
If

1

GomE = RappE, .

tb:en, i s

Roppe < R. T

- Lhus, if approximate solutions are found for both ¢ and ¥, the resistaq‘ce of the plate

can be bounded from above and from below by “ hJ

v

RappE SR< RctppJ- . (237)

The difference between Ryppp and R,ppy gives an indication of how close the approxi-
@

1
mation of the minimum of the power is to the actual minimum.

v

In the two formulations outlined in the preceding pages, it _is seen that the argu-

ment of “the'power functional is either the potential © or the stream function 7. Either

A

of these t‘wo scalars is determined when the functional is minimized but if either E ot
J is desired, the appropriate differential operator has to be applied to the respective
scalar. An alternative approach would be to solve directly for the vector fields without
the intermediate step. Rewriting the functional in Eq. (2.13) and the conditions given

by {2.14) in terms of the two component electric field, the power functional

7

P= d-/ o |E|*dS - (2.38)
b

‘

has to t&ninimized subject to the following conditions:

AN
Wy

-

18
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The Problem Formulation

1. the curl of the electric field E must vanish everywhere in the region I,

*

VxE=0 mn X

Et:O onI‘z ' »

S Ei=0 ~on["2;

©

‘ / E-d=V-V'
Cy .
must be prescribed along. any curve C; joining I'z to I'f.,

) Whepn the power furictional is expressed in terms of the scalar potential the first condition
is satjisfied when the electric field is written as the gradient of a scalar potential. The
K V4

secon d third conditions are satisfied when ( is prescribed on I'; and I‘;. To find

the vector field E* which minimizes the power functional given in (2.38) subject to the

.
ey

‘o
;%t *“w"*
o

above three conditions, the vector field E* is sought within the space of irrotational -

two component vector functions in two variables which satisfy conditions 2 and 3. The
tangential component of the electric field must be continuous across interfaces and must

vanish on I'; and I'. Similarly, one can also minimize the functional

-

0 2 ) ‘
\ . P= df By (2.39)
4

subject to the following conditions:

!

1. the divergence of the current J must vanish everywhere within the region ¥,

[

V-I=0 inl;

19
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Jpo =0 on Iy

J, =0 on T

: d/ Jpdl =1
Cy

must be prescribed along some curve Cy from Iy to T'{;

¥

" &

To find the v‘ector,ﬁeld J~ which minimizes the power functional given in (2.39) fsubject
to the ab;)ve three conditions, the extremal of the functional is found within ti;le space
of divergence-free two component vector functions of two variables. Furthermore, the
normal component of the current density must be continuous across interf:;ces and must

I
vanish on 'y and I'}.

Finally, ‘the two formulations may be restated as follows:
"

minimize

P=d / o|E?dS
b

H

within the space of irrotational vector functions, subject to

, . E,=0onT,
Et =0 on Flz
E-dl=V -V (2.40)
Ca
an.l minimize |
|J' 2 1
P=d|}| — dS
— ¢
within the space the solenoidal functions, subject to ; .

20
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Jpn =0 on T

Jn=0 onTj

[ d/ Jodl =1. . ’ (2.41)
. Cy

.

T he conductance of the plate can be computed once more by

\

P(E)

G=—»—"t - (2.42)
(Jo, B 1)
and the resistance of the plate is computed by
P(3-
R = &) (2.43)

(afo Jadt) 3

2.2 A Problem Involving the Three Component E and J Vectors

A problem analogous to the conducting plate problem ‘is ¢chosen for the three
dimensional case. The resistance of a three dimension@l conducting wire {1, with nonzero
constant finite condtictivity o0, as pictured in Fig. 2.2, must be computed. ¥, and X,
are equipotential surfaces between which there may be a potential difference, and the
tangential componenis of the electric field vanish on both .22 and ¥,. No current can
ﬁo»‘ out of the surface ¥; hence the compom'ant of the current density mormal to X;

4

vanishes on ;. The total current throﬁgh the wire is

\
I =/ J-ndS (2.44)
$

21
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«

1

ﬁ A/

Fig. 2.2 A three dimensional wire. .

=

where S| is any cross-sectional surface through the wire (1 and the boundary of S lies

&

in 21.

Using the three field equations (2.3), (2.4) and (2.5) from Section 2.1, the problem

is formulated in four ways. As for the two dimensional problem, E can be written as

the gradient of a scalar function, ¢. The scalar\potential can then be computed by -

minimizing the functional
s

P= / o|Vo| dv
9]

]

subject to the principal boundary conditions .
p — ‘V on 2,

- o=V on Iy

92 ' ) ‘
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For the above functional

V- (6Vp)=0 ‘inQl

is the Euler-Lagrange equation and

-

(anol-quzo on X,

is a natural boundary condition. The electric field is then computed from

’E = V(p. - 3

2 v o

Alternatively E can be computed directly by minimizing the functional

~

P= / c|E* av CT(245)
0
subject to - )
VxE = n
‘ Exn= on L, .
. Exn= on T}

. E-d=V-V ‘ (2.46)

c , _

where C is any curve joining Tz to L. To find the irrotational vector field E* which
minimizes the power functional’given in (2.45) subject to the conditions given by (2.46),

the electric field E” is sought within the space of irrotational three component vector
’ 1

_functions of three variables which satisfy the principal boundary conditions. The tan-

gential components of the field must be continuous across interfaces and must vanish

on I, and Ij. u \

o

23 Y
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AN

2

A solution for the three component current density J can be found by writing J

©

as the curl of a vector potential sihice the divergence of J vanishes everywhere in 1,

@

3

J=VxT: (2.47)

- Since .
4 - .

VXxE=0 inQl.

and

N J=0E .
]
the following second order equation in T is obtained:

' ‘ ‘VXE:VX(g):Vx(VXT>=o in 0.

g

-

The boundary conditions which are imposed on T are derived from those imposed on

“
N /“ 2
) J. The total current through the wire is |,
@ . .
I=| J-ndS= [V xT-ndS:/ T.dl.
? 5 51 851
Therefore } .
' / T-dl=1 . (2.48)
a5 - -~ .
must be imposed. The normal component of J vanishes on £,. Therefore
-

(VxT) n=0 on3.

~

The tangential component, of the electric field vanishes on £, and ). Hence

VxT
( X >><n=0 on L, .
0 °
v
( XT)xn:O onZ'z.*
g
}) /‘/‘ . «
T : 24
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In order to determine T the following boundary value problem must be solved:

VxT -
Vx( s );0 in (1 ’ o

g

subject to

(VxT)'n=0 onZ

(VXT>XDIO OTLEZ

o

Vx T
< x,)xn: on L.

o

Alternatively T can be found by minimizing the functional P

V x T|? '
P= / VTP oy (2.49)
0 ag

subject to the principal boundary conditions

(VxT)-n=0 onX
T-dl=1. (2:50)
35,

In order to determine the value of the tangential components of T on the surface &,
from thesbove conditions, T is written as the grédient of any scalar function. f T = Vy

on ¥, then clearly \

» -

(VxT) n=(VxVx) n=0 onX,. (2.51)

In order for the condition (2.51) to hold x can be any, once differentiable function which

3

has a jump discontinuity of I along any curve C which joins L to L5 1.

t This method for prescribing the tangential components of T on X is suggested’
by Kotiuga and is discussed in the first chapter of his forthcoming Ph.D. dissertation.

He cites Milani and Negro (1982) for having used a similar approach. However they

restrict x to be a harmonic function. .

25
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After computing T, the current density J can be found by using Eq. (2.47).
Unfortunately T is not’ unique and one solution for T can ;rary from another by the
gradient of a scalar function since V x Vi = 0. Therefore T' = T + Vi is also a valid
solution. Such nonuniqueness may cause problems when T is computed numericélly.

Instead, since the solution for J is unique, the power functional can be written in terms

of J ar{d minimized. The functional

d

2 .
— P;/ Wy (2.52)
oall

is, minimized subject_to the following conditions:

1
r

N V-J=0 n
. Jd'n :0¢ fﬂén 81 . (253)
! / J-ndS =1
5

The current density J~ which minimizes the functional (2.52) is sought in the space of
solenoidal three component vector functions in three variables which satisfy the principal
boundary conditions. ‘In addition the normal component of J must be continuous across

interfaces and vanish everywhere on £,.

The conductance of the wire can be computed when the stationary value of the
LY

functional (2.45) is known from

. __ P(E7)
N (ch*"ﬂ)z t -

T

and the resistance can be computed when the statighary valu% of the functional (2.52)

A B . 2

4

(2.54)

is known from ) V% \

P(I")

\ ‘ &‘R‘: (fo,3-nds)’

26
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~—~.
In this chapter a two dimensional problem has been posed and formulated in four

ways. From the formulations which make use of a potential, the problem is restated

in terms of the vector fields. In order to minimize the functionals which are written

.ot

in terms of the vector fields, the electric field must be approximated within the space
of irrotational \;ector functions and the current density must be approximated within
the space of solenoidal vector approximation functions A basis of first order irrota-
tional vector polynomials and a basis of first order solenoidal veetor polynomials are
constructed in the following chapter. A three dimensional problem has also b_een for-

mulated and it has been shown that solenoidal and irrotational three component vector

functions could be used to approximate the current density and the electrit field respﬁgg—,/

tively. The functions developed in Chapter 3 are used in Chapters 4 and 5 to compute

numerically the current in the conducting plate and in the wire.

In conclusion, the problems chosen in this chapter are just one example of three
possible ‘problems in electrostaties and magnetostatics. Analogous problems which in-
volve either the magnetic field H and the magnetic flux density B or the electric field
E or the electric flux density D can’be solved respec/tively to determine the Binductance
and capacitance of a region. The readey should refer to Cambrell’s Ph.D. dissertation

(1972) or to the paper by Hammond and Penman (1976) for more examples of dual

energy principles.

27
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HE VECTOR INTERPOLATION POLYNOMIALS

Solenoidal and 1rrotatl6nal two and three component. vector appw unc-

tions are constructed in this chapter Jh@threwoneﬁ@ndal vec\er inter-

” —

e
polation functions ose oWst but the two component vector functions

v

//a-re’ eveloped

/ undation for the construction of the three component ones. Before the vector approxi-
&

mation functions are developed, a finite elemnent method which uses a Ritz minimization
4 .

cause they are easier to construct and they help in providing a

is described in Section 3.1 since this method will be used in the following chapters to -
? approximate numerically the minimum of the functionals which were given in the last
chapter. In Section 3.2 the solenoidal two component vector functions 1n two variables

- N
. are developed and the irrotational vector functions are then easily derived. In Section

-

LY

i 3.3 the three component solenoidal and irrptational vector functions are given.

¢

3.1 The Finite Element Method using a Ritz Minimization

e

n order to minimize'the functionals given in Chapter 2 Ritz’ method which was
’ first described in 1908 and examples of which can be found in Kantorovich (1964),
is used In this method a functional whose argument is replaced by a function of n
parameters is minimized with respect to the n parameters. Often in order to s’implify the

. m.nimization process, the argurpent of the functional is written as a linear combination

of n basis functions which lie in a finite dimensional subspace of the space in which the
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e - S
o

—

A o

For the functionals described in the preceding chapter, the vector functions Ii;md

J ca approximated by a linear combination of basis functions

N

. -8 k
T 7, E= E C,V; : .

5 Y
At 1=1

I3 . k (3'1)
1= du -
1=1 - T
and substituted into the appropriate functipngl:
. @ : “ ) . . ) 1‘ ) - k ] ) 2 . —
- SR . - ‘P:/o e,v;| dV
- - (32

P= LV 4dV.
Q

g

The principal boundary conditions can then be imposed by constraining pof the ¢,
and the d, where p is the number of coefficients which must be constrained as a result of
the principal boundary conditions. The integration appearing in the functionals in (3.2)
can then be explicitly performed. This results irf a function of the unconstrained d, or

~

‘ . ¢,.The extremnum of thefunctional can then be found by differentiating the function with
respect to these ¢, or d, and setting the derivatives equal to zero. The unconstrained
¢, and d, are the Ritz parameters and the differentiation results in £ — p equations in

- k — p unknowns. Since the power functional is quadratic, the £ — p equations are linear.

© When the power functional is written' in terms of basis functions

—

k k
PZ/U(ZC,Vi)' ZCJVJ- av
Q

i=1 1=1

29
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k &k ‘

o = UZZCIC]Vi Vj dv

2 =1)=1
1 k k

=Y e [, | (33

=1 =]

7
o

the functional is evaluated by computing the integral in Eq. (3.3). However, for all but
the simplest regions it is very difficult to choose basis functions so that the above integra-
tions are -easy tc; perform. To simplify the integration problem, finite element methods
can be used. In the finite element method a region is discretized into elements. The
unknown function s approximated by shape functions whose differentiability require-
ments over each element and at the interelement interfaces is dictated by the original
variational funictional In this thesis the functions which will be used to approximate

the irrptational and solenoidal vector fields are defined over elements which are triangles

and tetrahedra.

¥

3.2 The Two Component Vector Intérpolation Functions

+ \ [}
L « -

When finite element methods are used to approximate a scalar potential, the
interpolation functions.are generally polynomials since according to the Weierstrass!
approximation theorem any continuous function can be approximated to any accuracy

on a given interval by choosing a sufficient number of linearly independent polynomi-

als. F;rthe;more', polynomials are easy to integrate, differentiate, and evaluate on a
LY

computer. The vector approximation functions which are constructed in this chapter

! The reader can refer to Davis (1975) for details of the Weierstrass approximation
theorem.

. 3
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Svas

H
~

are therefore vector functions whose components are polynomials. Furthermore,these

functions are either solenoiflal vector polynomials or irrotational vector polynomials.

In the problem at hand, the solution for the current density or the electric field
need only be approximated within the space of solgn’oidal or irrotational vector fields
respectively. A solenoidal field is one whose divergence is zero everywhere inside a region
1 and whose component normal to interfaces iswcmipu(;us. An irrotational vector field
is one whose curl is zero everywhere inside a region 2 and whose compoﬁent tangent
to interfaces is continuous. Hence, a solenoidal vector field is approximated by vecto;
functions whose divergence is zero in an element and that have normal component con-
tinuity across element boundaries. Likewcise, an irrotational vector field is approximated
by vector functions whose curl is zero in an element and that have tangential component

o

continuity across element boundaries

3.2.1 Solenoidal Vector Polynomials in Two Variables

In order to approximate a two component solenoidal vector field in two variables by
polynomials of order n, n? + 5n+4/2 linearly independent solenoidal vector polynomials
defined over a region £ are needed. The above number is obtained as follows. A

polynomial in two variables is of the form

n 1 - * .
DD auTy . (3.4)
1=03;=0
e,

A vector polynomial u therefore has the form

X s (2;0 Lot yl—]) (3.5)
Y=o 25 =0 byzlyt

31 . [ £
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and the divergence of u in Cartesian coordinates is .
<4

’

n

9 (=% a
V-u:£ ZZa,,z’y‘“’ s ZZleIJ 1

1=0 7=0 1=0 3=0

n t~-1

:ZZ]aUzJ I Y (- ]z:] o

1= 1] 1 , 1=1j=0

=YY denE T (g 1)bu-'if*l“y‘"’ :

1=1 =1

:iz (Fayy = (0= 5+ 1by-1) 2~y

) 1=1)=1

When the divergence of u-is zero,

L

SN ey + (=i - Dby 2 T =0

1=1 j3=1

must be true for all z, y in the region (). Therefore

© -5 °
(78 + (2 =3 + 1)by;—y) =0, 1<i1<n, 1 <3< M3-6)
holds when the divergence of u is zero. The number of constraints N that have to be
imposed on the coefficients a,; and b,, of u in order that the divergence of u vanish
everywhere in Q is . )

{vc.:ZZl:’zz:ﬁ(—’-‘-z-ﬂ. - (3

11 3=1 1=1

The number N of basis functions required to span the space of nth order vector pol§~

" nomials defined in (3.5) is

n T n

N=Y31=(+1)=(a+1)(n+2) (3.8)

 ue—



F

/(\Z

The Vector Interpolation Polynomials

>

and the number
(n+1)(n+4) _n®+5n+1 | (39)

N, = 2 2

of basis vector functions which span the space of two component,solenoidal vector poly-
nomials is obtained by subtracting N, from N. In the case of first order polynomials;,

N, = 5.

-

Fig. 3.1 .The normal component of the vector field across an edge.

f
P

A
[

A solenoidal véctorxﬁeld“.cazn thus be approximated over each element by a linear
combination of five solenoidal !i_ﬁq@__{l}} independent vector functipns whose 3omponents
are first order boljrﬁomials. '1"he component of the approximation of the vector field
norma! to interelement edges must be continuous. In other words, for the two elements
E, and E2 showril in.Fig. 3.1, ¥n) = —upg everywhere on the edge shared by E; and
E. (un; is the component of u in E, which is normal to the edge shared by E,| and

E,). Because the vector field is approximatgd by first order polynomials, only two

points need be chosen along the edge between E; and E; where u,; + un2 must be set

E:
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equal to zero. .If there are two distinct points on the edge where u,, + tny = 0, then
Un1 + Un2 is zero everywhere on the line. For example, at edge 1 of the triangle show}l
in Fig. 3.1, the normal component ot; the v;zctor field evaluated at n-ode 2 is d} and
the normal component evaluated at node 3 is d5. If edge 1 of one triangle is coincident
+ with edge 1 of another triangle as shown in Fig. 3.2(&); then di; is set equal to —dj,
and df, is set equal to —d},. As the normal component of the vector field must be
evaluated/at two points on each edge, six such points a.re needéd on the entire triangle

afid the components of the vector normal to the edges and evaluated at these points are

1, dy dy, 4y, di, di. The d, are pictured in Fig. 3.2(b)

When a solenoidal vector field is approximated by a complete set of first order

.solenoidal vecter polynomials, it is written as a linear combination ‘of the basis vectors

5
- u :Zd,ui. . (3.10)
1=1 .

\

\

The d, in the above expression have in general no relation to the d] defined in the
preceding paragraph. However, when the continuity of the normal component of the
solenoidal vector field is imposed, it is the d! which 'are equated at interelement edges.
Hence the d, must be tranformed into the d!. Ir; order for the computation of the
transformiition to be as rapid as possible, it should contain as many zero entries as
possible. This;\is done by constructing the basi\s functions in such a way that as many

of the d: as possible are zero for each function.

A

The solenoidal basis vector functions are now constructed. A first order vector

- .

polynomial is of the form—

g (az+by+c)
T \dt+ey+f) -

< 34
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‘ d;Qj{,—’ <

12 %21

— /
dfﬂ .
; L 16
. - o

Fig. 3.2(a) o8 .
. ¢ ~
“~

»
Fig. 3.2(b) The @’ are the components of the field normal to an edge.
. o~
in Cartesian coordinates. Whern'sthe divergence of u is zero, a = —e in the above

-
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4

expression. Therefore a firgt order solenoidal vector polynomial is of the form

1
. \\__ﬁ‘ 4_(
1 U=

b

’
-

az+by + ¢

dz—ay-{—f)' (3-11)

A Cartesian coordinate system whose z coordinate is parallel to one of the edges of a

« triangle and whose y coordinate is normal to that edge is chosen. The coordinate axes

‘

are t and n and the triangle vertices are at (t;,n;), (tz,n2), (t3,n3) as shown in Fig.

3.3. The normal components of u with

respect to the edges evaluated at/the vertices of

the triang(le are the d} whereas the tangential components are defined to be ¢}, ¢}, ...cg.

n

edge

1 (t37 n3) /] 14

Fig. 3.3  The t — n coordinate system with respect, to edge 1 of the triangle. -

»

The reader should now recall that as many of the d] as possible should be zero for

each basis function. The simplest possibility is that only one d, is nonzero. Hence the

Dy

36 -
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coefficients a,b,c,d, f of u are determined when

u = (0,0) at (ty,ny)

u = (dy,0) at (t3,ny)

©

\Y

u = (0,0) at (t3,n3)

1

in which case only df is nonzero. The following system of equations is obtained:

t] g 1 a 0
’ tg no 1 dl
ts ng 1 b 0
- ot ST o (3.12)
: d
—MN2g tz 1 f 0
—-n3 i3 1 . 0

. From the last three equations in (3.12) it can be determined that d = a = f = 0 since

(t1,my). (t2.m3), (t3,n3) are neither coincident nor collinear. The following overdeter-

mined set of equations for which no solution exists remains:

Thereﬁere there does not exist a solenoidal vector polynomial for which d,...,d} are

zero. Next, two d] are allowed to be nonzero. So

u = (0,0),

t

u = (dl,O) at (tz, ng)

at (tl,nl)

I

s u = (d,,0) at (t3,n3)

37
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is chosen. Here only df and df are nonzero. The system of equations in (3.12) is set up
once more with a different right hand side. Proceeding as before it can be shown that

d =a = f =0, hence the following system of equations is obtained:

J
s
3] 1 g 0 T ’
nz 1 (i’) =1d]. T b (3.13)
) nz 1 d; N
4]
Solving (3.13) . N
¢=-bn, /
//
b —h e G ./
(ng = ny) (ng —ny) /
/

is obtained. It is seen that a solution to the above system of equations exists only if

dy = dp. In this case

b L : ,

(nz - nl) . !
dlnl /

\
since ny = n3 from Fig. 3.3. Hence the solenoidal ve¢tor function u for which d', d, d}

and df are zero is

_ . .
u=d ( (nr"l)n(;L (n1—ng) )

=

so the first basis function is taken to be

-

S

1 "
uy = ( (*12‘-"1)n(;L (ny~n3) ) . (3.14)

u; is a vector function directed parallel to edge 1. It has a constant value of 1on edge
1 and varies linearly across the triangle to vertex 1 where it vanishes. uy is pictured

in Fig. 3.4. Taking the divergence of u;, V-u; = 0 is verified. There are two more
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(21’71«1) ' v

Fig. 3.4 The solenoidal vector function u;.

functions similar to uy which are parallel to edges 2 and 3. Expressions for uz and us

are given later in this chapter.

A fourth vector polynomial is constructed by setting

2

u= (d4, 0) at (tl,nl)
u= (0, 0) at (tg,nz)

u = (0,0) at (t3,n3).

In this case d), and d; are nonzero. The right-hand-side vector of Eq. (3.12) becomes
(4 0 0-0 0 0)7.

Solving the system of equations

o
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a

J

is obtained since ny = nz. This new vector function therefore is

*

. . ”
u=dy ( (nl—"z)n(j (ng—ny) )

and

S U S B .
Uy = ( (n1—n3) 0 (nz‘"1)> (3.15)

(ta, nZ)

Fig. 3.5 The solenoidal vector function ug4.

is taken as the fourth basis vector. uy4 is parallel to edge 1 however it takes on a value
&
of 1 at vertex 1 and vanishes everywhere on edge 1 as pictured in Fig. 3.5. Taking the

divergence of ug, V -uy4 = 0 is verified. There are two otl}‘er,\ﬁmctions similar to uy

parallel to edge 2 and edge 3.

Six solenoidal vector polynomials of order 1 have been constructed. They however
cannot be linearly independent since only 5 such functions are required to form a basis

for first order solenoidal vector polynomials. Before it is determined if any choice of
R =Y

10
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five u; provides the necessary basis, the vector functions are rewritten using barycentric

coordinates.
.9

Barycentric! or simple).( coordinates are coordinates which are local to every tri-
angle. A point p in a triangle is uniquely defined by (¢;,¢2,¢3) where ¢; is the ratio of
the area of triangle 7; over the area of the entire triangle shown in Fig. 3.6. When

the u; are rewritten in termsof these barycentric coordinates, the ¢, and n, coordinates

need not be retained.

—— (ti,ny)

/

(t%nz)

Fig. 3.6 The barycentric coordinates of a triangle.

+

Expresgj\ng the u; in terms of barycentric coordinates, they become

uy = (52 + ) (é)

t Barycentric coordinates were first introduced by Mobius in 1827 in order to per-
form center of mass calculations, hence their name (see Smith (1929) for an English
translation of Mobius’ definition of barycentric coordinates ). '

4] e
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In order to show that the six functions given in (3.16) are linearly dependent, the

Gram matrix is built and it is shown that its determinant is equal to zero. Each element

- [/
Uo :(§1 +§3)( cos 3)

sin 8

— [/
us =G +2) ( Z5pog?)
1
Uy = ¢ (0>
ue = —cosfs
572\ ging,

e = —cosf,
6= —sin 02

of the Gram matrix is the inner product of two of the vector functions, i.e.

where the domain of integration is the triangle A. (A is also used to symbélize the area

gt,:/ u; - u; dS
A

of the triangle.) Tle following matrix is obtained:

6
~5cosf;
_ A | —5cost,
12 2
—3cosfs
—3cosfs

G

-

Noting the symmetries in the G matrix and performing a few row and column operations,

-5cosfl3 —5cosf, 2

6 ~5cosf#; - —3cosl,
—5cos 8, 6 —3cos b,
—3cosfz —3cosby 2

2 -3cosfy —cosls
~3cos 0, 2 —cos 2

—3cos b5
2
—3cos
—cos 03

9 -
—cos 6,

the matrix G’ which is row and column gquivalent to G is obtained.

4
—4cosby
o = A ~4cosh,
12 0
0
0

&

—4cosfz —4cosl, 0~
4 —4cosfly —2cosf;
—4cos b, 4 —2cos 8,
0 0 -2
0 0 —cosfs
0 0 —cosf,
42

—2cos 03
0

N
—2cos 8,
o
—cosf3
-2
—cos b,

~3cosb,
~3cos b,

2
~cos b

~cos 8
2

—2cos.0,
—2cos b,
0
—cosfy
—cos b,
-2
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{ Q

The determinant of G depends on the determinants of the two blocks on the diagonal,

-, If either of these deterfninants vanishes, the determinant of G' vanishes, and so does

the determinant of G. The determinant of the first block on the diagonal is

1 —-cosfs —cosb,
det G, = 64| —cos b5 1 —cos 8,
—cosf@y —cosb, 1 .
)
which reduces to
det Gy = 64(1 — cos® 07 — cos® B2 — cos? B3 — 2 cos 8 cos 82 cos b3). .
&,
\ ° N .
Since 01'+ 02 + 03 =T,
~4 cosfy cosfycosfz =1+ cos28; + cos 28, + cos 26;.
Also, )
1
2cos® = cos20 + 1.
Making use of the above two identities, det G = 0 is obtained. .

4

Eliminating any one of the u; results in a set of five linearly independent solenoidal
vector polynomial. If ug is eliminated, the Gram determinant of the matrix G”, which
is made up of the upper left five by five block of G, can be reduced to an éxpression of

the form (see Appendix I for details)

o

. 327
det G" = Ty (1 — cos? 83) (1 + cos 6 cos 83 cos 83) .

43
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< -

The above expression vanishes if 83 = 0 or if cosf;cosfscos8; = —1. But cosf| <1

where the equality is true if and only if § = nm. Therefore the product cos-8, cos #, cos 3

is equal to —1 only if

or if

02:7T‘ and 01:03—:0

or if
9;=n"' and 0, =62 =0
since §; -~ 02 + 63 = m. The determinant of G” therefore vanishes only when the area

of the triangle is zero and only then will the five solenoidal vector functions be linearly

dependent.

3.2.2 Irrotational Vector Polynomia1§ in Two Variables

In this section irrotational vector polynomials in two variables are constructed
from the solenoidal vector polynomials. The curl operator in two dimensions is very
similar to the divergence operator. As a matter of fact the cur] operator can be written
as the product of a rotation matrix and the divergence operator. If the divergence of a

4

vector in Cartesian coordinates is written as
4

]
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nomials

then the divergence of the vector can also be expressed as -

=

(& 3

-

Hence if

then

0
Vx(l

_lu
0

0
-—Vx(‘1

t

3 B 0 -1 U
ay 51) 1 0 Uy * :
‘u=0

1
0

>a=¢,7/

In other words, the irrotational vector polynomials are derived by rotating the solenoidal

vector polynomials by 7 or ~7. Six irrotational polynomials are given below

V1= (52 +s‘3)< 01)

vz = (¢ +S‘3) (

s

Va3 = 5‘1 +§2)

sin 03
cos 83

)

— sin 02
cos b,

()
)

sin 83
cos §3

)

—sinf,

(2
-5
=5

(3.17)

)

cos 7,

Only five of the irrotational vector polynomials given in Eq. {3.17) are linearly

independent and as was the case for the solenoidal vector functions, any five can be

chosen. Since inner products are invariant under orthogonal transformations and the

elements of the Gram matrix are inner products, the Gram matrix for five v; is the

— e =
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°

Fig. 3.7  The irrotational vector function v;.

same as the Gram matrix for the corresponding five u;. Therefore its determinant will . -

only vanish when the area of the triangle is zero at whic}; point the irrotational vector
functions are linearly dependent. The function vy is in the direction normal to edge 1
and takes on a‘value of 1 on that edge and va,nis}{es at vertex 1. v, and vy behave in
a similar fashion. v4 is in the direction normal to edge I, however it vanshes on edge
1 and-reaches the value of 1 at vertex 1. vy and v4 are pictured indFigs. 3.7 and 3.8.

A vector field which lies in the space of irrotational first order vector polynomials can

be written as a linear combination of the-v; as

5
}:ctyi. (3.18)
1=1 : .

[

In order to ensure the continuity of the component of the electric field \tangent to

interfaces, the ¢, must be tranformed into the ¢, which are shown in Fig. 3.3. The
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<

transformation which maps the ¢, into the ¢] is the same as that which maps the d,

into the d! because the ¢! are obtained from the d! by a rotation of 7 and the v; are

a2
obtained from the u; by a rotation of =F. . -

(tayyna) (t3,n3) )

Fig. 3.8  The irrotational vector function v4.
L

-
[

3.3 The Three Component Vector Interpolation Functions

3.3.1 Solenoidal Vector Polynomials iq Three Variables

The number N of linearly independent functions which are required to span the
space of three component vector polynomial functions in three variables over a three

dimensional region is éomputed in the same way as for the two component fungtions.
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A polynomial of order n in three variables is of the form

n J
k,1—k_ 1— .
- D2 D agkatyhe :

1=0 =0 k=0

and 4 three component vector polynomial in three variables is of the form

a

‘ T T sy .
u=| 3o Xm0 ko bukey! TF 2 . (3.19)
) E:l=0 Z;:O Zizo c;] kl:kyj _kz" J

/

\\“_7_\

The divergence of the vector given by (3.19) in Cartesian coordinates is

‘ ‘ n 1 J |
V-u=§£ ZZ Zaukxky”kz'"] Zzzbukz y’ "k :

1=0)=0 k=0 1=0 3=0k=0
n ot ]
353 ety e
1=0 3=0k=0
1
—ZZZkauka ! kz’”’+ZZZ(L,JbW
1=17=1k=1 1=17=1k=0
n 1—1
+ZZZz— Jeypziy’ Rt I T
1=13=0 k=0
n ot ] ' n 1 ' -
— Zzzkaljkzk—lyJ—kzt—J +ZZZ(J —k+ 1)b”kzk—1yj—kzt—-1
1=171=1k=1 1=1)=1k=1 -
. n ] 7 R \ .
LYY Sl ety \
1=1)=1k=1
n 1 ] ! ’
:ZZZ(I"“M‘*‘(J‘_]‘:‘*‘l)bth—l +(z—_7+1)c,_.,_1k l)xk ! ¥y kgt
=] 3=l k=1 ]

In order for the divergence ?f u to vanish everywhere over the region the following must
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b

3 3

hold for all z,y, 2.

n o el 7 j .
> Y (kg + (0 =k + 1)byroi+ (G~ 2 +1) eyymipi) 271y R =0,

1=1)=1k=1

This means that
(ka’l]k._*— (]. -k + 1) b‘l]k—l + (z' —J+ 1) Ct]—lk—l) =0 (320)

for

The number of constraints N/ which are specified by the condition (3.20) is
. \

n ] 2 n

NC,=ZZZI=ZZJ.22f(jI~}—I):n(n+1é(n+2) (3.21)

=1=1k=1 z=1g\=1 =1

and the number N' of linearly independent vector polynomials whic ‘are required to

span the space of three component vector polynomials of order n is

N’:3i}ii:1:(7+1)(";2)("+3). (3.22)

=0 7=0k=0 \

Hence the number of linearly independent three component solenoidal vector polyno-

s 1
n.als of order n in three variables 'ﬁ{‘equired to form a basis is

' ‘e N = (n+ 1)(n22)(2n+9)' (3.23)
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Fig.39  The normal component of the vector field across a face.

In the case of first order polynomials, N] = 11. A solenoidal vector field will therefore
be approximated over each tetrahedron by eleven linearly independent first order vector

polynomials whose divergence vanishes everywhere inside the element.

~ The continuity of the normal component of -the field across interelemnent faces

\

must be ensured by requiring that u,; = u,3 everywhere on the face shared by two
elements as shown in Fig. 3.9. Since the vector field is approximated byma'\
poly-nomials, three points, where u,; + 4, must be set equal to zero, must be chosen
on each face shared by two tetrah_edra. Ifu,,+u,y = 0isimposed on the face shared by
E, and Ej at three points which are not collinear and are on that face, then up; + up2
is zero everywhere on the face and thc\: component'of the field normal to the face is

continuous across that face. Since the normal component of the vector field must be

" evaluated at three points on each face, twelve points are needed for the entire element.

At these points the value of the component of the field normal to a face is denoted by

50
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€l eh,e5,...eh5. Each e is the component of the field normal to a face and evaluated at

~N a vertex of the tetrahedron.

-

Fig. 3.10  The ¢! are the components of the field normal to an edge and evaluated

/"

~— The eleven linearly independent three component solenoidal vector Polynomials

— , Hals
\L@ed in the same way the two component solenoidal vector polynomials were

constructed in Section 3.2.1. They are give}l in (3.24) in terms of a polynomial and |

’

at a vertex of the tetrahedron.

a unit vector directed along an edge of the tetrahedron. The polynomial is written in

.

terms of the barycentric coordinates of the tetrahedron shov;; in Fig. 3.11 and the unit

vectors e, which are parallel to the edges of the tetrahedron are shown in Fig. 3.12.

[y
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-

Fig. 3.12 /The directions of the vectors along the edges of the tetrahedron. -
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uy = (¢ +¢ley

ur = ¢1€;
uz = (g3 +¢)es
Ug = ¢2€2
uz = (2 + ¢)es )
Ug = ¢3€3 (324)

ug = (¢1 + ¢2)eq
! Ujo = C4€4
us = (¢3 + ¢1)es
uy| = ¢2es.
e = (¢ + ¢4)eq ’ ‘
™~

As with the two component solenoidal vector polynomials, the vector pélynomi—

4

als given in (3.24) are nonzero at two of the twelve e/ and vanish at the other ten.
Furthermore five vector polynomials can be picked from the eleven given in (3.24) in
such a way that their projection onto a face of the tetrahedron will result in five of the
two component solenoidal vector fuNnctions. For example if the three component vectors '
uy,uz,ug,l7,ug are projected onto face 1 of the tetrahedron pictured in Fig. 3.12,

the vector polynomials which result, are the two component vectors u;,uz,us,ug, s

where ¢4 is replaced by ¢;.

In the case of the two component solenoidal vector. polynomials, six were found
from which five had to be chosen. In the case of the three component solenoidal vector
polynomials, there are eighteen of which only eleven are linearly independent. The,

eighteen are:

u; = (¢2 + 3)ex Uy =¢1€;y tuz (4€1
uz = (g3 + S'4)?2 Ug = (z2€2 U= (€2
us = (¢2 + s‘g)es Ug = (3€eg3 uis= ¢es
(3.25)
g = (1 + ¢2)eq Uj30 = ¢41€4 Uje= (3e4
ug = (¢3 + ¢1)es Ujzj = G2€5 U1y= (4€5
’ ue = (¢1 + ¢1)ee U312 = (3€e u1s= (2€6-
"53
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L/
4

Fig. 3.13

0

, Fig. 3.14  The three component solenoidal vector funct

£

ion uy,

~

54
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The first six are each parallel to one of the six edges;wey are nonzero on that edge and
vanish at the two vertices which do not coincide with that edge. One such (uy) is shown
in Fig. 3.13. The remaining twelve are also parallel to the edges of the tetrahedron;
they however vanish on an entire face and are nonzero at only one vertex. One vector
polynomial from the second set (us) is shown in Fig. 3.14. Eleven linearly independent
functions must be choser; fr(;m among the eighteen and unfortunately any choice of
eleveil will not do. The eleven given in (3.24) are linearly independent and are chosen

by ensuring that the Gram determinant is nonzero fo#a giverr tetrahedron.

3.3.2 Irrotational Vector Polynomials in Three Variables

A three component vector polynomial of first order in three variables takes on the
form
ar +by—cz+d \
cv=\|ex+fy+gz+h}. '(3.26)
iz +Jy + kz+!

In order for v to be irrotational the following three conditions have to hold between the

coefficients of the polynomials in the coefficients of v

J-¢=0
. c—i=0. ‘ (3.27)
e—b=0

Nine linearly independent vector polynomials whose curl vanishes everywere in a three

dimensional region {1 are required to span the space of irrotational three component

ve: tor polynomials of first order in three variables.

Il

Seven of these functions are derived by choosing four vector polynomials which

are normal to a face and have a value of 1 everywhere on that face and which vanish at

55



w

The Vector Interpolation Polynomials

the vertex of the tetrahedron which is not in that face. Three more are alsq nogfnal to

a face, vanish everywhere on the face and have a value of 1 at the vertex i?h is not

- //
in that face. These seven are s

A

M

Fig. 3.15 The directions of the vectors along which the irrotational vector polyno-

mials are directed.

vi=6af, vs = (¢ + ¢+ ¢a)ft

Vg = ¢af2 ve = (¢ + ¢+ ¢a)f2
(3.28)

va =¢afs vy = (a1 + ¢ + ¢a)fs.
V4 = ¢afy -

The f; which are shown in Fig. 3.15 are unit vectors which are each normal to one of
the faces of the tetrahedron. The remaining two irrotational vector polynomials can be

chosen in whichever way as long as the resulting nine vector polynomials are linearly
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Fig. 3.16 The f! are the components of the field tangential to a face and evaluated ——

at a vertex of the tetrahedron. _ e

R - - I

independent. There however does not seern to be an ‘obvious’ choice for these remaining
two. An irrotational vector field which lies in the space of first order irrotational vector

polynomials can then be written as a linear combination of the nine basis functions as
e

: 9
. ‘ A - (3.29)
1=1

For an irrotational vector ﬁelcll, the tangential component of the ﬁeldl must be
continuous across interelement interfaces. In order to impose continuity in the compo-
nents of the field tangent to an interelement face, the components of the field tangé;t
to each face of the tetrahedronare evaluated at each of the vertices and equated to the

corresponding tangential components of the field in the neighbouring tetrahedra. These

tangential components are the f] shown in Fig. 3.16. There are twenty-four f/ which

' 57 :
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‘have to be equated at interelement faces in orderﬁor the tang&ﬁ}al comblm’ent of the
field to be continuous. 'I;his seems to require a lot of effort and 4s unecessary especially

{whema irrotatiqnal field can be expressed as the gradient of a scalar function. Hence it
is not fruitful to consider three component irrotational vector interpolation any further.

/7

The functions whi‘ch have been constructed in this chapter are used in the f(;llowing'_
two chapters to solve the two problems which were formulated in Chapter 2. The
solenoidal and irrotational vector polynomials were constructed in such a way as to
satisfy the requirerf1ent§ outlined in Chapter 2. A solenoidal vector function can be
approximated by a linear combination of the solenoidal vector polynomials uj. The

coefficients in the linear combination can be eagjly transformed into another set of

-

coefficients which are the components of the vector f}eld normal to an edge or a face

and evalyated at a vertex. S(imilarly, an irrotational vector field can be approximated by
A

1

a linear combination of irrotational vector polynomials v;. For'two component vector

A

fields the coefficients in the linear combination can be easily transformed into another

set of coefficients which are the components of the vector field tangent to an edge and

.

evaluated at a vertex. In the case of the three component irrotational vector fields, there -

o

is no advantage in using vector approximatiolnn polynomials and it is recommended that

the field be ‘expressed in terms of a scalar potential.

-

L4
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CHAPTER 4

THE FINITE ELEMENT MATRICES

N
N

< —
&

The two problems posed in Chapter 2 can now be solved numerically with the

help of the finite elemént method and the vector interpolation polynomials developed

7

in Chapfer 3. The problem region is first discretized into a finite element mesh: of |

triangles or tetrahedra. ‘In Section 4.1.1 the current density is approximated by a
two component solenoidal vector polynomial whose component normal to interelement
edges is continuous and in Section 4.1.2 the electric field is approximated by a two
componeq;lt irrotational vector polynomial whose component tangent to interelement
edges is continuou$™ The method which is used to impose the continuity conditions and
the boundary‘conditions is described in each s:ectio‘ﬁ. In Section 4.2 the three component

current density is approximated by a three component solenoidal vector polynomial in

order to determine the resistance of the wire.

4.1 The Two Component Vector Interpolation Polynomials

4.1.1 The Two Component Solenoidal Vector Polynomials

The power functional which has to be minimized in order to determine the resis-

tance of the conducting plate is

¢

gt

lhﬁﬁh" -



The current density J in the above functional can be approximated by a linear combi-
-nation of the two component solenoidal vector polynomials of ptder 1 over each triangle
’ - \

\

5
J=Y du
=1

™

to obtain r

2.
d IZ?:ldtlfi
P :d/ — dS
A g

- f (i) (Zho ) o
A 5

o

o

5 5
. =d/ Lz Loy By
A

5 5
) .—.ZZd,d,d/ R g,
. i=17=1 A
e

If o is a constant, the functional can be rewritten as

5 5
_ ~1d:d
P, = Z;_l zi_—l 1/ u; - u; dS : (4.1)
¥ A

g

AN .
where o' = o/d and has units of conductivity /unit length. The functional Pa is thus

approximated by

dTTd e
PA : ’ . (4'2)
o
where
. dT =(dy dy d3 dy ds) . (43)

and each element ¢,, of T is
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k]

The matrix T is the matrix G defined in Chapter 3.

.

6 —5cosfa —5cos by 2
A —5cosf; 6 ~5cos8; —3cosfy
T=—1 —5cos8, —5cosb, 6 —3cosf,
12 2 ~3cosf3 —3cosb, 2
—3cos b3 2 —3cosf; —cosly

-3cosf3

2

-3 cos b, (4.4)
— COS 03

2

In order to impose the continuity requirements the d, are transformed into the

corresponding’ d, which were defined in Chapter 3. The d] are the components of the

vector field which are normal to an edge of the triangle and evaluated at a vertex. The

.

transformation which takes the d, into the d! is the following:

0 0 sin 02‘ 0

0 —sind; 0 0

D= sin 03 0 0 -0

b 0 0 —sinf; sinfs
. 0 sin 6 0 —sinfs
—sin 02 0 0 0
and A
A d' = Dd

where

T =(dy dy dy dy dy df).

b

—sin 03
0 /

0 /
0 \ (4.5)
0

Sin 01

D is not a square matrix and is therefore not invertible. However,

( o 0

f =1

0 sin03
1

D= &mo, 0

0 —sin §;

0 0

sin g sinflg

1

sin 03 0 0
0 0 0
1
sin 01 0 0
-1
0 0 sip )
sin 8 0 6
sin 8 sin 83
61

=

sin 65 , N (4.8)
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is a transformation which takes the d' into d where the following compatibility condition

must hold if Eq. (4.6) is satisfied:

L (d} + dy) +I5(ds + d}) —l3(ds + d§) =0 (4.9)

where [, is the length of edge 2 of the triangle.

It will now be shown that the condition given in (4.9) states that the integral over
a closed surface of the normal component .of the solenoidal vector field must vanish.

Since the u; are solenoidal, the integral of the divergence of J over a triangle vanishes:

/\7 .JdS = /v Zdu,ds
:/ Zdlv-uids
A1==1

= 0.

By the divergence theorem

/V-st=/ J.dl
’ pay P Jay

and the compatibility condition (4.9) is easily deduced:

Oz/ J,.dl
3A '

12/ Jn‘dH—/ ‘Jndl+/ Jodl
edge edgeq edgeg

! l l
= (@ +dy) + 3 (dg + di) + 2 (d + dg).

The continuity of the normal component of the solenoidal field is therefore imposed

by transforming the d into d’ through d = D'd’ and then by equating the ¢! of two

62 :
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neighbouring triangles across the edge that they share. For example, in the two triangles
) o '
shown in Fig. 4.1,
dig = ~dayg
(4.10)

r ‘
414 - _d25

is imposed:’

Fig. 4.1 Imposing the continuity of the normal component of J across an interele-

ment edge.

Conditions such as (4.10) are satisfied over the entire mesh by building.a con-
nection matrix which equates the appropriate d, at all interelement boundaries. As
an example, the connection matrix for the two triangles shown in Fig. 4.1 will now
be given. Before any continuity conditions have been imposed the

approximation of the functional P takes on the form

»
P = dngdtsddis

L = (4.11)
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where

tin
t121
1131
tin

t1s1
szs =

o O o C

and

. dY

di13

ti12
t122
t132
ti42
t1s2

[l ol el o]

= (du

tiis
tiza
tias
ti143

t153
0-

Q-

di2

t114
t124
ti134
144

134

o O O o

d13

The d are then transformed into d’ by

for each triangle and by

t115 0
t125 0
t13s 0
t145 0
tyss 0
0 211
0 t221
0 t231
0 to41
0 t251
dis . dis  dzg
d=D'd

gt
ddzs - Ddts dis

[ev I oo B oo Y e ]

t212
t22
to32
t242
ta52

cooco

t213
t223
toas
t243
t253

O S O o

t214
ta2a
t234
taq4
t254

[« = I e

t215
ta25
tazs
taqs
t2s5

dyz da2z dzq das).

(4.12)

(4.13)

(4.14)

for the entire mesh. The d’ are “connecte‘d"”’with the help of the C" matrix uséd in the

' following equation:

\f

COOCOOoOCOC OO OO0~

O COOCOOOCO OO MmO

|
—

OCoCcoooOoOCQOCO~O 07

O O OO0 OO ~=O OO

=]

A

D000 O0OO0OO~DODOOO
co0oocoooco~DO0OQCO

CO000O~OO0O0O00D0O

OO O O OO0 QOO O C

|

OO O = OO OO OO OC

(= e
_

’OOHQOOOOOO

/

(4.15)
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The functignal‘“atherefore becomes

P

_4f¢™D

! !
d’l,:s les D

Cd!

drs c

o (1.16)

&
%

where\the d. are the variables which describe the connected problem.

nce the continuity of the normal component is ensured across every edge in

the fine element mesh, the compatibility condition giveﬁ by (4.9) has to be imposed.

This cah be done in two ways. The first method uses another connection matrix which

eliminatps one of the d’, per triangle. This matrix is given below for the simple two

triangle /mesh shown in Fig. 4 1 however it is not clear how this®matrix should be

construkted for larger meshes.
d;“ 1 0 0 ¢ 0 0 0 0Y d:m
d,cn 0 1 0 0 0 -0 0 0 512
i 0 0 1 0.0 0 0 0|fd,
» 0 o -0 1 0 o0 0 o d
" 0o 0 9 0 1 0 o of|dg

=1 Zn by Zhe zZha .

d:ClG ha b3 bz o hg Lo 0 0 d:c2l
iz 0 00 0 0 1 0. 0|y
d 0 1 0 0 0 o0 10 s
t23 0 1 0 0 .0 .0 .0 1
d! 0 0 L3 la3 0 —lay - zl2g _1}
€24 log lag lag  lgg

The second method uses ‘Lagrange multipliers to impose the compatibility conditions.

A condition of the type shown in (4.9) must be satisfied for every triangle in the mesh.

This means that for the two triangles shown irt Fig. 4.1, the two following constraints

must hold: ‘ ‘ /

Li(dyy ~dyy) + ha(dys +di,) + lhis(djs +dyg) =0

l2l(d'21 - dgzz) + 122(‘1'23 + d'24) + 123(‘1'25 + d,26) = 0.
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The above condition can be reexpressed in the form

£

Qd),, = QCd. = 0. (4.17)

Finally the boundary conditions must be imposed. For the conducting plate, the

boundary conditions given in Chapter 2 were

J.=0 onT, (4.18)

Jo=0 onT) (4.19)

/ Jodl =1, (4.20)
Cy

wére C\ is a curve which joins 'y to '}, Conditions (4.18) and (4.19) are easy to impose

as they reciuire t}:;?t ;he component of the current density normal to I'; and I"l be zero.
Because theAf:urrent den‘;ity is appfoxirnated by first order solenoidal vector polynomials
over each triangle, the normal component of the current density need only be imposed
at two points on an edge which makes up part of T'y or T'{ for the normal component

of the current density to be zero everywhere on that edge. Hence, the appropriate d.,

whic*ll are the components of the vector field normal to an edge must be set to zero.

The remaining coefficients are denoted by d'f. Condition (4.20) is impoe},ed by choosing

a path through the finite element mesh and satisfying the integral constraint along that

path. This path joins T'; to I'Y and is made up of k edges. The integral constraint

1
reduces to a linear equation relating the d'f which correspond to the edges which lie on

the path:
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:/ J,Ldl+...+/~ Jpdl
edgey edgey

. { ! .
.= el(d 0t deg) - ﬂ( ekl + dogo)

.4

=1 (14.21)

where (., is the length of the ith edge and d.,, is the component of the current density

normal to edge : evaluated at vertex 1 of the edge. This last condition, which can be’

reexpressed as P

-’

e oTd; —I=0 (4.22)

can be imposed with the help of a Lagrange multiplier or by explicitly eliminating one

of the d; which appear in (4.22).

The functional which is obtained when the function'a'i (4.16) is constrained by the
conditions (4.17) and (4.22) is

1Tt g7 °
L= ——f-;~,~i,+ ATQ'dy + 2u(bTd ~ 1) - (4.23)

w

where T/ ="CTD'T T4,y D), ,C and Q' = QC for the d’;. L now has to be minimized
with respect to the d’, the A,, and u. Taking the first derivatives of L with respect to
the d’;, the ), and p,

2T’d’ ,
;L, = + 2Q'T )\ + 2ub
8L .
. 7Y =2Q’ dy
; ‘;i’ (de/ . I) ‘
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'S
is obtained. The above can be reexpressed as

T'/o" @T b d 0 .
Q@ 0 0 Al=1]0 (4.243
bT 0 0 U I

oL _aL _dL _,

a0, ~ ax  ou

All the entries in the vector on the right hand side of (4.24) are zero except for
the last one which prescribes the value of the total current /. The system of equations
in {4.24) can now be sclved in order to find the approximation for J in the space of first
order solenoidal vector polynomials of order 1. Unfortunately the matrix in (4.24) is
indefinite due to the 0 block on the diagonal. Had the constraints (4.17) been imposed .
with the help of connection matrices, the matrix in the resulting system of equations
would have been positive definite. This m;aans that a Cholesky decomposition or even
an incomplete Cholesky decomposition cannot be performed on the matrix in (4.24) as
it is not positive deﬁni'te. H.owever, it is not clear how a connection matrix should be

constructed in order for the constraints (4.17) and the boundary condition (4.22) to be

satisfied.

S

4.i.2 The Two Component Irrotational Vector Polynomials

In Chapter 2 the power functional was also expressed in terms of the electric field

Péd/ o [E|* dS
b))
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and the electric field E can be approximated by a linear Fcombination the two component

irrotational vector approximation functions over each triangle in the finite element mesh

5
E= Zcivi

1=1
which when substituted into the functional yields

5

5
PA = ZZ c,c]-d/ oV Vj dv.

1=0 3=0 A

¢

Since o is assumed to be a constant, it can be taken out of the integration so that
Pp =0'cTTe (4.25)

is obtained where

¢T'=(e1 ¢ ¢a ¢4 c5) \ (4.26)

and the T matrix here is the same as the one for the solenoidal vector polynomials given

in (44) S

In order to impose continuity in the ta.ngel}tial component of the electric field
across interelement edges the ¢, need to be transformed in the ¢, shown in Fig. 3.2.
The ¢ are the components of the vector field tangent to an edge of the triangle and
evaluated at a vertex. The transformation matrix which takes the ¢, into the the ¢!
is the transformation D which transformed the coefficients é, of the solenoidal vector

interpolation polynomials into the coefficients d!. Therefore

S
]

¢' = Dc- (4.27)
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Once more D is not invertible, however D’stransforms the ¢’ into the ¢ as long
as the compatibility condition (4.9) holds. This conditions can now be reinterpreted in
“terms of Stokes’ theorem over one triangle. Since the electric field is approximated by

<3

irrotational vector polynomials

- 5 .
/ VxEdS:/ Vx Y evidS
A

o 1=1
5
= / C,V X VidS
A

1=1

©

By Stokes’ theorem

/ E-dl=/VxEdS :
aAn FAN

and the compatibility (4.9) is deduced from

0=/ E-dl
A

':'/ Eth-/ Etdt+/ E,dl
edgey edgeo edgeg

{ l {
= Slel +eh) + (e + ) + (e + cp).
Therefore the ¢ are transformed into the ¢’ by
¢=D'¢ (4.28)

L]
on each triangle and the continuity of the tangential component of the field is ensured

by equating the ¢’ across interelement edges. This is done buy connecting the ¢’ in the

same way as the d’' were connected in the last section and yields the following expression

70 g
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“for the functional

P =q'c.cTD'F T, , D, Ccl. (4.29) .

'If the same mesh is used to obtain the expression for the functional in (4.16) and the
expression for the functional in (4.29), then the C, Ty, and D), . in both expressions

are identical. The ¢/ are the variables which describe the connected problem.

The compatibility conditions, which can be rewritten as

"
@

//,,”'QCc'c = Qlc’c =0 (4.30)

e [}

-

<

are then imposed with the help of Lagrange multipliers. Once more for the same finite

element mesh the Q in (4.30) is identical to the @ in (4.17). ]

P
&

Finally, the following boundary conditions have to be imposed on the tangential

" component of the electric field in the conducting plate:

v - ™
‘o .

Et =0 on Fz o (431)
- <&

E:=0 onTy ., (4.32)

i E-di=V -V .*(4.33)
Cy ‘ .

The two conditions (4.31) and (4.32) are easily imposed by setting the appropriate ¢/,
to zero. The integral condition (4.33) is satisfied by choosing a path C, from‘bdl"g to [,

which is made up of k triangle edges and setting the integral of the tangential component

of Lhe electric field over these edges equal to the potential difference V — V'

E-d= / E.dl }\ /
Cq k edges
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»

. = / Edl + ... +/ ‘Edl
. Jedge; edgej

ley , | Lok . -

= ; (el +cla) +.0 et %(C;CI + Cka)

=V -V - ’

The above can be expressed as - ’ ' .
. af cf - (V |4 ) — ’ i (4.34)
, ' -~
. ~—/ /

-

and imposed using the I’;agrange multiplier gethod. The c} are the coefficients which

k3

remain once conditions (4.31) and (4.32) have been imposed.

The functional which is obtained when the functional (4.29) is conWy

)

(4.30) and (4.34) is

*

'l. = B T ©
'=¢' (c'fT?T'c'f) + ZATQ'c'f +2u(a cs - (V - V’)) . (4.35)
The functional is minimized by taking first derivatives with respect to the c’f, the A, .
. . . ._\ * ’ 5 . . . .
and u, ~* ) G
) B C .
’ oL |
— =o' (2T'¢; 'TA + 2ua .
o aCf -
oL 1y ~
< -, 2 ! d
EX) Q -
aL
— =2(a'¢ V-V
La (@ - -y,
j‘Setting the above derivatives to zero, the following matrix-equation is obtained:
, M i dT QT a ¢ , 0 . .
T - Q@ 0 0 A= (VR I (4.36)
) (aT 0 0} \ v -v
a ” s - e o
. L2 R
| . ‘ ; .
‘ ] F. - o

)

e
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O .
4.2 The Three Component Solenoidal Vector Polynomials

o

As in the case of the two component current density vector, the functional f3r the

three component current density vector can be approximated over a tetrahedron by

T

e'Te
Pp = (4.37)

o
1
where o is a constant, _ )
T . . ‘

y e =(e1 €2 ex €4 €5 € €7 €3 e € €11), (4.38)

< : - *

and T is the Gram matrix for the eleven three component solenoidal vector polynomials

“

: <&

e (6611 erz Se13 Serq OSers ders e ez 3ers 2e14 3egs
. Begz Segz depq Sezs Seag  2ex 2637 3ezz  3ezq  2ezs

Gesz DSezq 4dess Sess 2e3 3ezp 2e33 3egq 3dess

= beqs Deys Degqe 3eqy 3eqr 2e43  2e4q4 deyp
A _ Bess dese  3esy  2es0 3esz  2esq  less
T = 20 ) " bese 3es1  2e52 2e53  3esa  2ess

2e1n, €12 €13 €qa €15
2e37 €23 €24 2e25
2e33 €34 €35

2eq4 645)

. 2655

(4.39)

where €,; = e; - ej and A is the volume of the tetrahedron.

’
’

Before any continuity conditions have been imposed, the approximation of the

functional is :
P _ eg‘wwaedts

— (4.40)

»

The e, are transformeq into the corresponding e/ shown, in Fig. 3.10 via

\ ' el = Fe. l ' (4-41)

s - N .
. %
13 '
‘o
. - . ~
o Lo
B
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and the e/ are equated across interelement faces in order to ensure that the component
of the approximation to the field normal to interfaces is continuous. E is not a square

matrix and is therefore not invertible. However the transf\ormation

0 0 1A, 0 0 l1As 0 l1Ag 0 0 0 0

( 0 0 0 0\ 0 l3As 0 0 0 0 ‘0 0
—l3Ay =0 0 0 0 0 0 0 ~lg A, 0 0 -l3 Ay

0 0 0 i4As O 0 14A2 0 0 0 l4 AL 0

1 0 0 0 0 0 0 0 0 0 0 ls Ay 0]

E'=— | ~lsds 0 0 0o 0o 0 0 0 0 0 0 0

Sl 0 0 0 —l1A3 O 0 ] 0 ] 0 -1 A, 0
—laAy —lpAy4 0 0 0 0 0 0 —{2A» 0 0 A

(0] 0 I3 A4 0 0 IgAs3” O 0 0 "0 0 0
—l4 A4 0. 0 0 0 0 0 0 ¢ 0 0 —{4 Aq

\ 0 0 0 ~lsAs O 0 I5A:2 0 0 lsAy s Ay 0

(4.42)

transforms thé e into the e,, and (4.41) is satisfied if the compatibility condition
Ag(e) +e +eh) + Aglel + €5 +eb) + As(eh + s+ eh) + A, (€hg +eh, +el,) =0 (4.43)

holds. The /, in (4.41) are the length of the edges of the tetrahedron shown in Fig.
3.10 and the A, are the areas of the four faces of thetetrahedron. The compatibility
condition (4.42) can also be deduced from Gauss' as was the compatibility condition
(4.9). The requirement that the component of the solenoidal vector field normal t(l)\ a
face be continuous is then imposed by equating the e’ across interelement faces. This is
done by constructing a connection matrix as in the previous section. The approximation
to the functional becomes |

- T T T ! /]
-~ ~ P e, CTE} ,Ta,Ey Ce,

~ (4.44)
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r

, Where
eqs = E'ely,, = E'Cé’, \4.45)

and €/ .are the variables which describe the connected problem. The compatibility

&

conditions which can be expressed as

Qeg, = QCe =0 (4.46)

are once more imposed with Lagrange multipliers.

The following conditions on the normal component of the current density must
’ 3
also be imposed: -

J-n=0 onZXI (4.47)

/ J-nd§ =1 . (4.48)
s, oo

’

Condition {4.47) is satisfied by setting to zero the appropriate €, and

the remaining coefficients are denoted by e’f. Condition (4.48) is imposed by choosing
a cross-sectional surface S; through the finite element mesh whose boundary lies in

21. This surfaces is made up of k faces and the integral constraint reduces to a linear
14
‘ ¢
equation relating the e’f which correspond to the faces in S;:

/ J-ndS = / JndS
51 k faces

i = / JndS + / JadS
face 1 face k .

Afi Ark

B
= ——(€f11 *e}lz + e3'13) +.o+ 3 (5}_/;1 + e}kz +e’fk3)

3
=1 . (4.49)
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where-Ay, is the area of the tth face and e},; is the component of the cufrent density
normal to face 2 and evaluated at vertex 1 of that face. The above condition can be

reexpressed as

6Tey —1=0 (4.50)

and can be imposed with the help of a Lagrange multiplier. The functional which must

be minimized when the functional (4.44) is constrained by (4.46), (4.47) and (4.50) is

ef T'e) -
L= ———+ 207Q'e}; + 2u(bT e’ - 1) (4.51)

‘where T' = CTEL Ty, E},,C and Q' = QC for the €. The resulting system of equa-

tions is
T'/o QT b AR AL
Q' 0O ol=1Ax]|=}0]. (4.52)
T 0 0 i I

kY
The solenoidal vector interpolation functions are used in Chapter 5 to compute
the current in a wire. However the three component vector interpolation functions are

not implemented since it is still much easier to use a scalar potential when the solution

for an irrotational field is sought.
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CHAPTER 5

APPROXIMATIONS USING THE VECTOR POLYNOMIALS

In this chapter the resistance of the two dimensional conducting plate presented
in Chapter 2 is computed. The irrotational vector functions g:lelveloped in Chapter 3 are
used to approximate the electric field and th&solenoidal vector functions are used to
approximate the current density. Next the resistance and the conductance of the three,
dimensional conducting wire are calculated once an approximation to the solenoicial

current density and the irrotational electric field in the wire are determined. 3

5.1 The Electric Field in a Conducting Plate

In Chapter 2 two methods for approximating the three component electric field

were given. In the first case the power functional
Pzz/.ande (5.1)
Q .

b

is minimized subject to the principal boundary conditions

x=V on X,
x=V' onE'z/.///

The function x which makes P a minimum is 3. Hence the electric field is computed

(5.2)

b

from

E = Vp. | (5.3)

In the second case, .

’ ‘ szﬂmwv (5.4) -
Q \
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is minimized subject to

VE=0 in0 " (5.5)
E, =0 on X, (5.6)
E;=xQ  on Zé. (5.7)

The above two methods are equivalent. The}efore the approximate,solutions ob-
tained for the electric field using each method are the samefif the approximations to E
used in both cases span the same §ubspace of the space in which E lies. [t can be shown
that if polynomials of order n which are continuous and piecewise differentiable are used
to approximate the scalar function . the electric field E lies in the space of irrotational
vectc;r polynomials of order n — 1 whose tangential. components are continuous across
interfaces. THis can be seen from Eq. (5.3). Since E is'the gradient of ». E is irrota-
tional for any . If ¢ is a polynomial function of order n then E is a vector polynomial
of order n — 1. Finally. if  is continuous across an interfacgj then tHe derivatives of
@ in the direction tangential to the interface exist and are Et/;qual on both sides of the
interface: E; is therefore continuous. It can~ also be shown that if E lies in the space of
irrotational vector polynomials vOf order n — 1 whose tangential components are contin-
uous across interfaces, a scalar function ¢ can be found such that E is the gradie;t of

© and such that ¢ is a continuous piecewise differentiable polynomial of order n. Since

E is irrotational and the region 2 is simply connected, E is a conservative field and

~

, /p.E -dl = p(p) - v(po) (5.9)

where pg is a poii?t of reference in (1, p is any other point in (1, and ©(py) is a known

j
constant. If E is an irrotational vector polynomial of order n — 1, integrating E along a

~
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curve joining po to p, a polynomial of order n is obtained for ¢ (p). If the path from pn

© to p in the integral of (5.9) crosses an interface, then a (p) which is continuous across

the interface can be found since E, is continuous.

In conclusion it can be' said that the approximation to E lies in the same space
whether it is written as the gradient of a continuous piecewise differentiable scalar
polynomial of order n or whether it is written as an irrotational vector polynomial of
order n — 1 whose tangential components are continuous across interfak:es. Therefore,
whether the functional given by (5.1) or the functional given by (5.4) is minimized
subject tq the principal‘conditions, the sa.rﬁe approximation to E is obtained if the
approximating functions are chosen as stated above. The same can be said a]:>out the

two component electric field. Whether the functional
P:d/aWﬂ%S (5.10)
. by

is minimized subject to the principal boundary conditions

x=V ‘onl,

'(5.11)
x=V'"  onT

or the functional o ’

.P:d/omﬁw‘ ‘ (5.12)
)
is minimized subject to the conditions ‘ ’ .
- Y Et =0 on Pz
E: =0 on FlZ .
' / Bedl =V -V, (5.13)
, C2

-

‘the same approximation to E is obtained when the above mentioned approximating

functions are chosen for the scalar potentfal and the electric field. A similar argument .

.

- . 4 9 . b
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e

e
A o
Y

can be followed when the two component current density is written in terms of a stream

function. The approximations obtained for the current density are the same whether

the functional

' 2
, P:d/ I—"(—X—l’ s (5.14)
z X

is minimized subject to the principal boundary conditions

'——-% onFl
‘ (5.15)
x=£2- on T ’
d 1

-

and 1, the function which makes P stationary, is approximated by nth order polynomials

.+ which are continuous and pigcewise differentiable or whether the functional
\

712

P = d/ Ll dsS (5.16)

5 O
is minimized subject to , =

Jn=0 onTly ‘ (5.17)
J.=0 onT (5.18) .

d/ Jpdl = 1. (5.19)

ca )

-

J is approximated by 73- Ist order irrotational vector polynomials whose normal
0

mponent is continuous across interfaces.

The first order irrotational and solenoidal vector polynomials developed in Chapter
3 can be used to approximate the electric field E and the current density J and the
solutic'm which is obtained must be equivalent to a solution which wéuld be obtained if
the scalar function is approximated with second order polynomials. The vector functions
are now used to find J and E in the two dimensional conducting plate by minimizing

the power functional given in (5.12) or the functional givén in (5.16).

/
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Approximate values for conductance and resistance can then be computed from
Egs. (2.42) and (2.43) respectively. Equation (2.42) is an upper bound for the conduc-
tanc‘e or a lower bound on the resistance and Eq. (2.43) gives an upper bound on the
resistance. An average of the two values can be used to approximate the resistance in
the piate. In the next section conducting plates for which‘the resistance is known are
presented. The current density and the electric field are then computed for these two
dimensional plates and the computed values of resistance are compared to the ex(act

value.

N

5.2 A Conducting Plate

The conducting plate showp in Fig. 5.1 is considered. This plate X is symmetric
about the center line: 'y is of the same shape as ['y and T is of the samﬁe shape as
I'%. Furthermore it is assumed that Ty, T{, Ty, and T, are differentiable and that the
four corners of the plate are right angles. In order to compute the conductance of that

plate, the power functional

P=od / Vx!?dS (5.20)
P .

is minimized subject to
x=V on >

(5.21)

x=V' onTy _

‘and G is computed from :
P(p) X
G= WV (5.22)

" where o is the scalar function at which P is a minimum. In order to compute the
~ ¥
u‘ - .
resistance, the power functional

&

¢

3

P = f/ n' x Vx|*dS - (5.23)
0Jx
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ted

2

Fig. 5.1 A conducting plate & which is symmetric across the center line.

-

°

is minimized subject to the principal boundary conditions

v 1 P
X = = on T,
I ’(5.24)
X=7 on T
and R is computed from
: ' P(y) °
R = m (5.25)

where 1 is the scalar function at which P is a minimum,

v

“ It will now be shown that the functionals (5.20) and (5.23) are identical if 0 = 1.

The boundary conditions (5.21) and (5.24) are the same by virtue of the shape of the
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region L if V is set equal to I; and V' is set equal to I,. The functional (5.23) can be

!

rewritten as follows:

3

d
P= -/(n' x Vx) - (n' x Vx)dS
b

o

=4 [ (xx ' x aas
g Jx

d
=~ / n'- ((Vx-Vx)n' - (Vx-n') Vx)dS
=
_ 4 / Vx - VxdS (5.26)
g Jn’

v P

sincé ' is a unit vector normal to the plate £. When ¢ = 1 the functional (5.26) is

identical to the functional (5.20). Hence,

P(y) = P(p) (5.27)
If
/ (V - V’) = (Il - IQ) =»1 ' (528)
then’
¢
; G=Pp)=Pp)=R
¥
or
1
— =R
R
hence
R=1 or R = -1
Since the resistance must be positive, ’
R=1 (5.29)
’ 83 *
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.

The conducting region shown in Fig. 5.1 therefore has a resistance and conductance of
1. In the following section the resistances of plates which possess the same symmetry!
as the plate shown in Fig. 5.1 are computed. Since the exact value of the resistance of
each of these plates is known. the error in the approximate value of resistance can be

computed.

&

5.3 The Two Component Vector Approximation Functions

The exact solution for the electric field or the current density can be expressed as a
linear combination of the vector polynomials constructed in Chapter 3 if the solution for
E or J lies in the space of first order vector polynomials. Furthermore the approximation

of the resistance of the plate is egual to the exact value of resistance sinc’e

RappJ = P(wapp) = P(d)) =R

y = The resistance of the square plate shown in Fig. 5.27is computed first. The

conductivity o and the thickness d of the plate are assumed to be 1. The current

density over the’plate is found by minimizing v

o

) 2
P= /E 32 ds (5.,30)‘

subject to

<

Jn :O on F’I ' (5.31) “

- —JRrdl = 1. o

Ty

! The reader should refer to Duffin (1959) for more on conjugate condﬁctors.
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Fig. 5.2 A square conducting plate.

| ’

-The sqﬁare plate is triangulated as shown in Fig. 5.2. The current density is ap-

proximated over each element by a linear combination of first order solenoidal vector
polynomials and the continuity of the component of the approximation 1o J nomia‘tl to
interelement edges is ensured. Since the solution for the current density over the square
plate is a constant field, the current density can be expressed as a linear combination

of first order vector polynomials. Therefore the value of resistance computed from

[

RGPPJBZ P(J‘app) (532)

should be equal to 1. The current density is computed using the method described
in Chapter 4 and the resulting resistance is found to be 1 even when the plat"e is

triax\\gulated as shown in Fig. 3 3.
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Fig. 5.3  An alfernate triangulation of the square plate.

The vector approximation functions are now used to approximate the current -
density over the conducting plate shown in Fig. 5.4. Although the current deI;sity is
not known a priori, the resistance of the plate is known to be equal to t when o = 1
because thée pTzit‘e’ has the symmetry described in Section 5.2. The boqndary segmients
Ty, I, T3, and T} are app;oximated by continuous piecewise differentiable curves. The
funciiona.l given in (5.30) is minimized subject to ’ghe principal conditions (5.31) for
the conducting plate ¥ shown in Fig. 5.4. The current density is approximated by a
solenoidal vector polynomial of order 1 whose normal component is contix}uous across -
the interelemént edges even though the exact solution is not expected to lie in that

space. The resulting approximation to the current density is shown in Fig. 5.5. The ,

-«
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7 4,pproximations Using“the Vector Polynomials.

o

resistance is computed using Eq. (5.32) and is found to be 1.002726.

The conductance in the plate-is also computeds It was shown' in Section 5.2 that

the conductance of the pla@ould be equal to the resistance. In order to compute

i . .
+ s ¢ ’

conductance, the functional

P = / |Bf* ds “(5.33)
T . .
is minimized subject to ' - . o :
’ .E,=0 on T,
_ !
; Et =0 on F2 ‘ (5.34)
Edl = 1. K ¢

- Iy

It can be seen from the (g?ﬂ) and (5.34) that the conditions on J, are identical to
those on E; by virtue of the shape of the region, that is because I'; has the same shape

as 'y and I'| has the.same shape as ';. Furthermore, as was mentioned in Section

4.1.2, the 'disconnected T matrices obtained when E is approximated by the solenpidaf

vector polynomials and when J is approximated by the irrotational vector polynomials
; . g

over the same mesh are identicgl'. Therefore it is expected that the approximmation to

E" should be equal to the approximation to J~ and that.the computed value for‘ the

i

conductance

depE = P(E*app) ) (5.3'5) -

L4

should be equal to the R,pp; computed by (5.32). The computation of the conductance

0

’ ~

of the plate is performed because the triangulation of ¥ is not symmetric about the
cenlt‘er line and it was thought that the asymmetry might cause the value of the con-

ductance to differ from the value of the resistance. The computed conductance turns

. \

°

out-to be 1.002725. The difference between the computed value of resistance and the

2
' .
computed value of conductance occurs only in the seventh significant digit. -

)
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-y )
Fig. 5:6  Another conducting plate whose resistance is 1. _

+ It {s reasonable to expect that a-more accurate solution for the vector fields and
ult'im;ltel}; for the resistance and the conductafice would be computed if the tria.‘lgulation
.of th;:ﬁg&e shown in Fig. 5.4 wgre.reﬁned. Such results };a\:é been shown by Ciarle?
(1972,1978) and Strang (1971). It is not however clear ilow the approximati-on functions
behave on triangles‘ of different shapé’s. It was shown in Qhai)ter 3 that the Gram
determinant of the vector polynomials is eq}lal to zero only V\Z’hen t’.l;c'e aréa of the triangle
is zero. The resistance of conducting plates of the type described in Section 5.2 is now
cor;lputéd. .%Thgse con&ucting plates are.triangulated uniformly, each with triangles of

., different shapes. The ;‘:latﬁes shown in Figs. 5.4 and 5.6 are examples of two of these ..

4
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Approximations Using the Vector Polynomials , ) '
\ ° R ‘ s ' i /’}{ '
plates. The effect of the triangulation on the error-in the sesistance of the plate is shown

in Fig. 5.7(a). The error in the resistance is g'raphed versus the angle of the smallest
El . P - ‘ &
angle in tl‘ig triangle. It can-be segn from the graph that the error in the resistance .

begins to increa.%e rapidly once t—he smallest angle in the @rian,éle is less than 14°. It is
interesting to note tha!; the error increases linearly as a function of the gotangent of the ¢
smallest angle in the triangle for angles of less than 26°. This graph is shown in Flg
5.7(b). The conductance was also computed Tor all the conducting regions. The values

for the resistance differed from those for the conductance only in"the sixth or seventh &

.
L

-~ . .

5.4 The Three Component Vector Approximation Functions

. ~

P
. The re51stance of three three dlmenswnal wires whose conductwnty o is equal to

\,
1is computed The current denstty is computed by mlmmlzmg the functxonal

e P= / iy : (5.36) -
L0 ~— . . . Q : ] ’ ‘ [
& . ' of : s % . . @ '
: subject o the conditions B ‘ - .
. o . X R ) ‘n= 0 on X . , .
. '“ il - fid b . (503_7) .1 ’

C J-.ndS =1. ‘ ,
" S1 K . ‘ )

t - . . v .

The resistance in the wire is computed at the value J* which minfmizes the functional in

N ‘

(5.36). The current density is approximated by the hree component solenoidal vector’

'
'

functions devslopeéi in Chapter 3 and the approximation to the resistance in the wire

therefore is ) T, -
. T, RGPPJ/ P(J'app) d:'. - ) o (5.38()' H ‘
o /v - o - . 8
; -
, e |
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Fig. 5.7(a) The error in the resistance of the cphductihg plate as a function of the

smallest angle of the triangles in the mesh.

- e

e
If the exact solution for the current density J~ lies in the space of first order solenoidal

vector functions, then the approximate value of resistance is equal to the exact value.

The resistance of adu})e is determined first. The length of the side of the cube is

equal to 1. The resistance of the cube can be determined analytically since

»

rR=1 ‘ 1 © (5.39)
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Fig. 5.7(b) The error in the resistance of the conducting plate as a function of the
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cotangent of the smallest angle of the triangles in the mesh:

‘ N

where { is the length of the cube and A is the cross-sectional area. Since g = 1, th®

] o

resistance of the cube should be equal to 1. The solution for the current density in the,

wire is a constant field and can therefore be expressed as a linear con/bination of the

first order solenoidal vector polynomials. The computed value for the resistance should
- # o

therefore be equal to 1. The current density was computed using the method described

L] ;
g

. >
in Chapter 4 for a finite element mesh’of twenty-four tetrahedra and the resistance was
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j Fig. 5.8 A three dimensional wire in the shape of a cube.
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. 4

found to be.0.999999. | SR

-

_The resistance is then calcul_ai:;ad for the wire shown in Fig. 5.9. For the secon& .
wire- the currént density can also be expressed as a linéar“ combination of the first order
éol;anoidal vector polym‘)mials. The Capproximate value of resistance should therefore be
—equal‘ to the exact value of the reéistz\mnce of the wire. The exact value of the resistance

in the, wire can be calculated from Eq. (5.39). For the geometry shown in Fig. 5.9 the

resistance is 0.2666667 and the resistance which is found using Eq. (5.38) is 0.2666668.
. -
The resistance of the third wire shown'in Fig. 5.10 is computed next. The first

half of the wire shown in Fig. 5.10 is identical to the first half of the wire shown in
5.9 but the second half is bent upwards. Although (5.39) cannot be used any longer
to compute the resistance of that wire, it is clear that the resistance should be greater

- 4
\ /‘ .94
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Fig. 5.9 A second three dimensional wire.

. &

than the resistance of the wire shown in Fig. 5.9 becBuse the length of the wire has

&

- . , . ( .
. increased and the cross-sectional area has decreased by virtue of the bend. The

F

5
in Fig. 5.10. \

L

‘
»

The conductance of the third wire was also \gomputed: The electric field in the

region was determined by minimizing the functional in (5.1) subject to the principal

boundary conditions
\ ! X = 1 roon 82 B . \' \
x=0 i onZXj
and then using Eq. (5.3). The conductance in the wire is computed from

G=Plp)
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Fig. 5.10 -A third three dimensional wire. : ) \

t b ®

e

Ther§calar potential ¢ was approximated by a continuous function which is a second
order polynomial in each tetrahedron. The approximation to the conductance in the V ‘

wire was found to be 3.765481. Recalling Eq. (2.37),

‘ . ! RappE < R < RappJ’

4
%,

the value of the resistance in the wire can be estimated to be the average of

7 o
s 3

Roppy. Since

. Rappi = 0.265570 ( {
and . ) “ 2 ’ 5
Rapps = 0.286018,
the res‘istz\mce in the wire is estimated to be
Rapp = I%"””" “;R‘”’PE = 0.275794.
. N &- | Q
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FET
4

The percentage error in the approximation of the resistance is

° \Boppe — R

app| x 100 = 3.6%
Rapp

)
3

i
for a finite element mesh of twenty-four tetrahedra. It is reasonable to expect that the

approximation to the resistance will improve if a finer mesh is used.

¢

5.5 .Conclusions ’

3

Tn this thesis solenoidal and irrotational two component first order vector polyno-
mials defined over a triangle and three component first order vector polynomials defined
ovgr a tetrahedron were éonstructed. These are intended to be used when an approxi-
mation for either a solenoidal vector field or an irrotational vector field is desited. They

were used in this thesis to approximate the static electric field and the current density

in two dimensional conducting plates and in three dimensional wires. To the best of the

author’s knowledge, these vector polynomials do not appear in the literature although

the zeroth order analogues were constructed by Synge and McMahon in 1952 and 1953.

Of the four families, the three component solenoidal vector polynomials are the
most interesting since they (Lffer a new method for apprb)‘cimating‘three component
solenoidal vector fields. The| solenoidal field need not be expressed as the curl of a
vector potential and can bé approximated directly. Because the solution for the field
is unique, problems encountered due to the nonuniqueness of the vector potential can

0
be avoided. In particular, the bourlldary conditions in termsof the field need not be
translated i%to boundary conditions in terms of the potential and the three components

of t\l';é"‘x;é't:tor field can be computed without first computing the three components of

the vector potential.
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When a solenoidal vector field is approximaté&, the coefficients in the Ritz mini-
mization are taken to be the components of)the vector field normal to the element edges
or faces. Such a choice of coefficients facilitates the imposition of boundary conditions
since for solenoidal vector fields the boundary conditions are stated in terms of the’
components of the fleld normal to the boundary. Similarly when an irrotational vector
field is appro%xirnated the coefficients in the Ritz minimization are taken to be the com-
ponents of the vector field tangent to the element edges or faces because the boundary

__conditions imposed on an irrotational field are stated in terms of the component of the

field tangent to the boundary.

Although it was shown in Chapter 3 that the Gram determmnant for the two
corﬁponent vector polynomials vanishes only i/lvhen the area of the triangle is zero, no
similar result could be proved in t.he case of the three component vector functions since
there are eleven three component solenoidal vector polynomials and no way could be
found in which to simplify the Gram determinant in order to show that it would only »
vanish when the volume of the tetrahedron is zero It could e;asily be shown that for
specific tetrahedra, the Gram determinant was nonzero. However, trying to reduce the
Gram determinant is not the method which éhould be followed in order to show that the
e‘leven t’hree component solenoidal vector polynomials are linearly dependent only when
the volume of the tet:ahedr?n is zero. It must be shown that if a basis for the space of
nth order solenoidal vector polynomials is defined over a tetrahedron, then any affine

. transformation which takes that tetrahedron into another nondegenerate tetrahedron

will induce a nonsingular tran$formation on the basis.

No attempt was made in this thesis to find Vvector polynomials of higher order
] \

which satisfied the constraints outlined in Chapters 2 and 3. " Thé method used in

-

Chapter 3 to construct the first order polynomials would be very tedious to undertake

‘
v

98

-t



‘\1"{

g
Approximations Using the Vector Polynomials

for higher order polynomials. A more general way to determine the higher order families

should therefore be developed.

-

lf‘ inally, the vector polynomials were used to approximate the solenoidal current
density and thé irrotational electric field. A word of caution should be given at this
point. ,The solenoidal vector’ pelynomials ¢an be used to approxim‘ate a solenoidal
electromagnetic vector field but they should not be used to approximate the vector
potential even when the divergencé of the vestor potential is zero. The solenoidal vector
polynomia.ls constructed in this thesis'only ensure continuity in the normal component of

g

the field. The vector potential however needs to have normal@nd tangenbtial ¢éomponent
continuity. First, if the divergence of the vector potentialMero. the vector
potentrial must be continuous in the normal direction since it is a solenoidal field. Second,
the curl of the vector potential is a solenoidal field whose normal component must be
continuous which means ,tha:t the tangential components of the vector potgntia’l must

also be continuous across interfaces:

- 1A
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APPENDIX I°

For the vector polynomials

. GH — é
12

-

~

6
—5cosfs
—5cosfs

-2
—3cosfy

- 1%

%
RN

—pcosfy ~—5cosfy °

6

'—5c0s8; «—3cosfy
~3cosfz ., —3cosby

~5cos b . 6
—3cos B3 3cos by

2

~3cost,

Ry

2

2

. —Cos 03

Y

b
i

Uj,...,uUg given in (3.16), the Gram matrix is

-3 CO_S'ﬂg “
2

—cos 03
2

The rows and columns of G” will be denoted as Ry, Rz...Rs,C},Ca,...Cs. If ~Ry is

added to 'R, and —R5 is added to Rg,

~2cosf; —2cos 0,

4
—2xos 83 4 —2cos b,
det G" = — | —3c0sfy —5cosb; 6
- 12 2 . ~3cosf; —3cosby
—3cosf; 2 —3cosé,

Adding R, to —R4 and R; to —R; follow'ed by adding Ca  to Cy .and Cs to C; results/in

detG" =

St

g

The determinant of the Gram matrix

det G" = é—‘cos 0,

‘ Al

y

—

0/ —2cos b5 )
—2cosfz» O
—~3cosfs —3cosd;
T2 —cos 83
—cosfa 2

\

4 —4cosfs —2cosb, 0 ~2cos Oz
| —4 cos §3 4 —2cosl; —2cosfs ’ 0
— | —8Bcosfy —8cosby- 6 Z3cos, —3cosb)
0 0 - cosb; -2 - cos 03
0 0 cosf;  —cosls -2
can then. be expressed as
4 —4 cos 03 0 ) "2_:&08 03 .
—4cosf3 4 —~2cos b3 0 -
12 ~8cosf; —8cosd; —3cosb, —3cosb,
0 0 -2 —cosfy,
. 4 |—4cos b3 —2cosd, - —-?cosﬂg <
. —l}-cosa —4.cosf3 4 —2cosf, 0 P
T 12 77| —8cos b, ~8cosf; 6 —3cos 8y
’ 0 0 cosf, —cos 83
4 —4cosfy —2cosl, 0
—2A |“4cos b 4 —2cosf; —2cosfz|
+ 12 | ~8cosf, Y8cosb, 6 ' —3cosfl, » .
0 0 cos b, -2
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-
and reduced to . 1
* ' 4 4
: A. ‘ 4 —4.cosf3. —2cosfs |
det G’ = o (2cos 61 — cos 03 cos f2) | —4cos b3 4 0 |
“ . —8cosf; —8cosf; —3cosd,]|
, "4 —4 cosfy 0
+(2cos s — cosdy cosl3) | —4cos b 4 + —2cosf;
—8cosf;, —8cosf#; —3cosd,
. i ~4cosf; —2cosb, i
T+ (4 — cos? 63) | —4 c0503 4 —2cosf; |
N i —8cosf; —8cosh, 6 f
Expanding the above determinants, the determinant of G” reduices to
. s
8A ' - ,
det {;" = — (1 - C05203) (1 + cosf, cos B, cosfly) . !
¢
& ' - A S
: i
~ "
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