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ABSTRAC,-!, 

.., 
Vector interpolation functions which approxirnate electromagnetic vector fields are 

constructed in this thesis. These vector functions are to be used when the solution of 
\ . 

Maxwell's equations involves an irrotational or solenoidal vector field. In addition the 
, 

functions are chosen" so" that they can e~sily be used in the implementation of a finite 
,1 

ele~ent rnethod. 

Four bases are constructed. The first two span the spaces of solenoidal or irto-

tational two component vector polynomials of order one in two variables whereas the , 

other two span the spaces of solenoidal or irrotadonal three component vector poly-

nomials of order one. in three variables. The vector polynofTIlals are then used within 

the finite element rnethod to approximate the two component current density J and 

electric field E over a conducting plate and the three component carrent density in a 
o 

~ 

three dimensional wire. 
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RÉSUMÉ ". 

,. 
Des fonctions d'interpolation vectohelles serv~nt d'approximation à des champs 

électromagnétiq~es sont' construites _ dans cette 'thèse. Ces fonctions ne peuv~nt être 

utilisées que dans lei cas où la solution des équations de Maxwell comprend des champs 

dont le rotationnel ou. .la divergence est nul. De plus, ces. fonctio~s sont choisies, de 
J .'. ,.' , 

Ct 

'. 

manière à pbuvoir être utilisé,es Jans le contexte d'une méthode d'éléments finis. • . . 
Qua~re bases particulières sont construites. Deux de ces bases engendrent. les es

paces de' dimens-ion deux des polynômes "de- degré un à deux .variables, dont sait le 

rotationMl ou la divergence est nul', tandis 'que 'des polynômes similaires mais à trois . - , . 
variables èngendrent deux espaces de dimension trois. Ces bases de polynôme!:; sont . . \ 

• 'ensuite utilisëes dans le cadre de la méthode des éléments finis pour calculer la densité, 
, , 

\ . 
de courant et le champs électrique' d'une plaque conductive et la densité Ue courrant 

d'un cable tridimensionneL' 
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CHAPTER 1 

INTRODUCTION 

Vector interpolation functions which approximate electromagnetic vector fields 

are constructed in this thesis. These vector fundions are developed specifically to be 

used when:- the solution of Maxwell's equattons involves an irrotational or a solenoidal 

vector field. In addition the functions are chosen so that they can easily be used in the 

i'mplementation of a finite element rnethod. 

1.1 The Finite Element Method in Electromag etics 

For the last two decades the finite element method has been used effectively for 

the analysis of electromagnetic field problems. Several problems which had-formerly 

been intractable became quite easy to solve computationally;-~ At present, co"nferences 

[COMPyMAG 1976. 1978, 1981 and 1983] which report advances in the field are held 

regularly, bpoks sueh as those by Silvester and Ferrari (1983) and Chari and Silvester 

(1980) have been written, and several computer packages which compute electromag

netie fields can be found on the market. 
S 

At lirst rnost of the work undertaken was conçentrated mainly on ~termining the 
"'t:.. 'r.> • \ -" > 

field in regions with transhtional or axial symmetry which ~ould be reduced ta a two 

dimensional problem. W\len ~'an electromagnetic field is defined over a two dimensional 
1 

region it is usually written in terms of a differential operator hcting on a stalar poten-
" \ 

\ 

tial or on a stream functlOn and an approximate solution is then found for the scalar 

function whereas when the region is three, dimensional, the vector field is formulated in 



.-

) 

lntroq uction' 

o 

terms of either a scalar potential oi: a vector potential. Although a formulation which . , 

exprè~ses a three component 1rrotational field in terms of a scalar potential is advanta-

geous, a formulation which expresses a three component solenoidal vector'field in ter ms 
~ 

of a vector potential offers no real advantage whenever it is pos"Sible to de termine the 

vector field direétly. This is because the vector potential and the vector field both 

hà~e t.hree components whereas a scalar potential is a scalar functlon. Furthermore the . 
. , 

vector potential is nonunique and one solution for the vector potential can differ from 
"'~ . , 

another by th~ gradient of a scalaf function. This causes problems wittr the numeri-

cal approxi,matîon and attempts were made by Mohammed, Davis, Popovic, Nehl and 

Demerdash (1982), Kotiuga and Silvester (1982), Kotiuga (1982) and Chari. Sdvester, 

Konrad, Csendes and Palmo (1981) to find formulations which ensure the ~uniquenës's ~f 

the vector potehtial. However Friedman (1982, p.30) noted the advantages of a method 
., • t· 

where the vector field is discretized directly because the solution for the vector field is 

Unique. In this 'thesis solenoidal and irrotational vector i~p~oximation functions are , . . 
"developed so that a method which approximated the field directly èan be implemented. . . 

1.2 The Finite ~lempethod Applied to Vector Fields 

Often when a vector field is approximated each component of the vector is treated 
'11-,'_ 

sep~rately and approximated by scalar interpolation polynomials. ThIS method is used 

by Chari, Silvester, Konrad, Csendes, Palmo (1981) and Demerdash, Nehl, Fouad. Mo-, 

hamm( d (1981) in order to determine the vector potential in a thr e dimensional region. 

Webb (1982) also brealts down the electric and magnetic fields into components and per-, , 
• 2 

'forms a component by component approximation. When each co one nt of the vector 
. . \) 

is treated alone, boundary conditions and interface conditions are ifficult to impose as 

they are always tangential and normal to the boundary. In add)tion such a scheme does 

2 
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not allow the possibility of ~pproximating a vector field within the space of solenoidal 

vector functions or the space of Ir~.otational VE'ctor functions. A different approach 
, 

would be to use vector approximation functions whic)l could then he chosen_to he either 

solenoidalor irrotational and which would allow the boundary and interface con'ditions . . 
to be easily imposed. 

Finite elem~nt methods which use vector approximation functi9ns to compute a 
7 

vector field have beeI\;}used extensively by numèrical analysts in continuum mechanics 

and especially in fluid mechanics. Raviart and Thomas (1977) and Griffiths (1979) con

stru<.ted two component vector approximation funcÙons and Hecht (1981) constructed 

three component vector functldns which are solenoidal in each element ~nd which are 

continuous at the ml~points of interelement edges or faces but not along the entire edge 

or face. The functions required to approximate an electromagnetic solenoidal or irro-

tational vector field need not be· continuous across an interelement face or edge but in 

order to satisfy Gauss' law, the normal component of a solenoidal vector field has to be 

continuous across an interface. Likewise to satisfy Stokes' law, the tangential component 

of an Irrotational vector field must be continuous across an interface Hence functions 

tailored specifically for approximating eJectromagnetic fields would be desirable and are 

constructed in this thesis. 

Okon (1982) derives vector expansion f\lnctions which can he used to approximate . 
the eurrent density over a two dimensional surface. His functions have either e~nstant 

~ curI or constant divergence. He however does not attempt to find similar functions 

which could be used to approximate the eurrent density in a three dimensional region. 

1.3 'The Vector Approximation Fundions 

n • In Chapter \:~1is shown that two types of vect?r approximation functions are 

3 
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, 
required: solenoidal aild irrotational. The solenoidal vector functions whose normal 

components across interfaces are continuous are used t<ycompute the current density in 

a conducting region and the, irrotat'ional vector funct'fons whose tangential components - ~ 

are continuoÏls across interfaces are used to ,approximate the .static electric field .on 

the boundary of a region it is the normal components ~f a solenoidal vector field and 

the tangential componènts of an, irrotational field which are prescribed. It would there-

. fore be appropriate to find solenoidal and irrotational vector approxImation functions 

whose und~termined coefficients are the components of the field which are normal and 

tangential to interfaces and to the boun~ary. 

fn Chapter 3 the two types of vector appr?ximation functions are derivJror 'two 
. 

component vector fields in two varia\les and for three component vector fields in three 

variables. These functions are devised with the finite element method in mind. A . ' 

solenÇ>idal vec tor. field over a given triangle or tetrahedron is approximated in the space-

of first order solenoidal vector polynomials. A basis for this space is constructed in such 

a way that when an approximation of the vector is written as a line~r combination of 

the basis vectors, the coefficients in the linear combination are the components of the 

vector field normal to an edge of the triangle or to a fac'e of the tetrahedron evaluated 

at a vertex. Similarly an irrotational ve<;tor field is approximated in, the space of first 

orderirrotational vector polyno~ials .. A basis for this' space ~s constructed in 5uch a 

way that when an approx\mation of the vector is expressed as a linear combinat ion ~'r-

the basis vectors, the coefficients in the linear combinatJon are the components of the 

vector field tangent to an edge or a face evaluated at a vertex. Having chosen such a set 

of hasis functions, it is easy to ensure continuity of the normal component of a solenoidal 
1 . 

ve.'tor field across interelement edges and the continuity of the tangential component of 
\. 

an irrotational field across these same edges. The boundary conditions are prescribed 
, 

by constraining the appropriate coefficients. 

4 
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Although for completenes~. 'both solen~dal and irrotational vector approximation 

families should be develbped, there is little practical value in using interpolation ~chemes l 

for irrotational fields- since these functions are easily handled by using a scalar potential. 
" , 

On the other hand it is impossible to describe a three component solenoidal vector field 

in terms of a stream function and a vector potential is often us~d. In this ~ase there is 

great advantage in developing interpolation schemes for solenoidal vector fields. 
\ 

p 

In this th.esis only functions who,se components are first order: polynomia'ls are 
1 " 

considered. It turns out tbat the correspon~ing zeroth order three and n component 

solenoidal vector functions were devised by Mc Mahon (1953, 1956, 1974) and the zeroth 
, 'J 

order two component solenoidal vector polynomials were ~rst introduced by Synge in 

i952. 

In, Chapters 4 and 5 the two compon~nt vectOr approximation functions' are used . 
to determine the electric field and the current density in a two dimension al conduct-

ing plate. The finite/element matrices are given and the continuity requirements.,and 

boundary conditions are imposed. The three~component solenoidal vector approxima-

tion functions are then used to find the current density in a three dimensional wire 

whereas the electric field in the wire is determmed from the approximation of the scalar 

potential. 

Finally it is shown that whether a solenoidaJ or 4rrotational vector field is approx-. -

imated with nth order vector approximation functions ar whether a stream function or 

" 
a scalar potential is approximated with nt lst order scalar polynomials, the resulting 

fieldïs the same and bath methods are equivalent. 

5 
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CHAPTER 2 

THE PROBLEM FORMULATION 

Maxwell's equations often lead to boundary value problems involving irrotational , 
or solenoidal vector' fields. The purpose of this chapter is to determine the properties 

of these vector fields that'-the approximation functions which are developed in the next 

chapter should satisfy. To this end, two simple examples which involve ?olenoidal and 

irrotational vector fields are· presented in order that the properties of these fields can be 

deduced. 

In the following pages two problems are posed-pIn the first p[oblem the resistance 

of a two dimensional conducting plate and in the second the resistance of a three dime~~ 

sional wire is sought. The resistance is estimated by minimizing the power functional 
fi> 

P which is expressed 'in terms of either the irrotational static electric field E or the 
"n { 

solenoidal current den~ity J. , 
-,,1 

Each of th$' two problems is fàrmulated in four ways. Two methods for evaluating 

the electric field are given. In the first the electric field is expressed as the gradient of a 

scalar potential and in the second the electric field is sought in the space of irrotationa:l . 

vector functions. ~imilarly there are two, ways in which the €urrent density can be 

computed. The two component current density can be written in terms of a stream 
, , 

.. function and the three component current density can be expressed in terms of a vector 

potential or both can be sought in the space of solenoidal vector functions. 

When the power functional 15 expressed in terms of the electric field and the 

potential difference across the region is equal to 1, the value of the fllnctional is alw.ays 

greater than the conductance of the region except ~t the fllnctional's minimum where it 

6 
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The Problem Formulation -'" 

is equal to the conductance. Similarly when the power functional is expressed in terrns 

of the current density and the total current through the region is equal to 1, the value 

of the power functional is 'always greater than the resistance of the region except at the 

functional's minimum ~here it is equal to the resistance. 

/ 

When an approximation for. the rinimurn of the ~ower functional is found, thç, 
, . 

" approximate. value of the'conductance G app is an upper bound for the exact conductance . , 

G of the r~gion and the approximate value of resistance Rapp is an upper bound for the 

exact resistance R of the ~egion. The exact value of resistance lies between these two 

bounds. 

[ 

• 

1 1 
-- ::; - = R ::; Rapp' 
G app • G 

(2.1) 

The above inequality is used in Chap~er 5 to give an indication of the accuracy of the 

vector approximation functions. 

, " 

~ ':>-.(.lI ~ (r-

2.1 A Problem Involving thé Two Component E and J Vectors 

The resistance of tne thin conducting plate n of thickness d shawn in Fig. 2.1(a) 

needs to be compu:téd. :E2 and E~ are ~equipotential surfaces between which there may . 
be. a potential difference and the tangential components of the electric field vanish on 

both these surfaces- Current cannot flow through the surface El hence the norm~l ' 

component of J vanishes on this surface. The total current through the plate is l, 

, 

1 = J J 'ndS 
ls} (2.2a) 

whete S} is any cross-sectionalsurface through the plate n whose boundary lies in El' 

The plate is modeled by a two dimensional region E and has a nonzero constant finite 

7 



Thè PrtDblem Formulation 
• 

• conductivity (J. 2: 2 and 2:; reduce to two curves r 2 and r; an~ 2: 1 is replaced by'the 

curves r land r;, The i~tegral given by (2.2~beco!lles 

• 
1 = d r Jndl. (2.2b) 

/ lc)" "" 

Faraday's law, th-e1:ontinuity equation and the constitutive,'relation given by È; . 
" 

(2.5) are required in or der to determine either the electric field E or the current density 

J in the conducting plate n. Faraday's Law states that for any open surface S' 

E . dl = - - . dS = 0 1n 
. j aB 

as' s~ at 
D 

1 
/ 

(2.3) , 

/ 

Hencè. the eledric field inü:grated around any c\osed loop is zero if the time rate of 

change of the magnetic field is zero. The continuity equation states that for any three 

dimensional region n' '1"" -~1/1 âp 

J.n~F --â dV =0. (2.4) 
a 0.' .) n n' t 

, ~j) 

Hence the net c'urrent flowing into a clos~d surface i5 zero if the time rate of change of 

the charge density i5 zero. The constitutive relation 

(2.5) 

relat.es the current dàIsity J to the electric field E: 

By Stokes' theorem, Faraday's law can be rewritten as 
1 1 

; [ E . di = [ V' xE· dS = 9 
Jas' 1s' 

(2.6) , 

from which it follows ,that 

V'xE=O in n (2.7) 

8 
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Fig. 2.1 (a) A .conducting plate n of thickness d. 
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Fig. 2.1 (b) A two 4imensional model for the conducting plate. 
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The Problem Formulation 

and that the tangential component of the electric field Et is continuous across interfaces 
o -

(tl}e reader can refer to a textbook on electromagnetic field theory for the derivation 

of the interface conditions. for example see Popoviç, p.460, or Stratton, Section 1.13). 

Since ri\s simply connected and the curI of the electric field vanishes everywhere in 0, 

\E is a conservative field and can be written as the gradient of a scalar potential cp, 

E = V'tp 'in n. (2.8) 

Because the tangential component of the" electric field vanishes on 1:2 and E~, cp 1S 

a constant on E 2 equal to V and cp is a constant on E~ equal to V'. The potential 

difference between E 2 and E~ is V - 'V'. The imposed boundary conditions are i.p = V 

r' 
1 onE2andcp=V'onE~. 

By the divergence theorem, the contirtuity equation is rewritten as followos 
1 

{ J ~ n dS = f V'. J dV = 0 
Jan' Jn, 

\.;, 

'" "-: (2:9) 
., 

which implies that 

V'·J=o mn (2.10) 

and that the normal component of the eurrent density J n is continuous across interfaces. 

In order to de termine the electric field in the con~ucting plate n, Eqs. (2.5), (2.8) 

and (2.10) are combined and a solution for the second order equation 

V' . (aV'cp) = 0 ' in 0 

su bject to the boundary c<?nditions 

.. 

cp = V ." on E2 

cp = V' 

(aV'ip) . n == 0 

10 

on E' , 2 

on E~ 

(2.U) 

\ 
\ 

'(2.12) 

. . 

~ . . , 
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must be foun4. The~Eq. (2.8) is used to coml?ute E. 

Next it will be shown that the extremum of the power functional 

subject to the principal boundary. conditions 

x=V 

x = V' 
, 

on E' 2 

(2.13) 

'. t 

(2.14) 

is a solution of the boundary value problem gjve~ by Eqs. (2.11) and (2.12), that i,s, 

the y fo~ which P i,s a minimum is 'P. A nec~ssary c,on~n for the functional P ~o be 

stationary at 'P is that the variation of P vanish for ait variations of rp' which vanish on 

E 2 and' E~. Taking the variation of P at tp the conditions for 'P to be an extremal at~ 

deduced . 

.The variation of P, 0 P, is taken assuming fl has fixed boundaries' and 

bP = ln (J61;'Ç7'P1
2 

dV 

= r 2(J"VbIP_' \7tpdV. 
Jo -

(2.15) 

Now using the following vector identity ln which F is a vector and 9 is a scalar: 

\7', (gF) =.g\7 . F + 'ilg . F (2.16) 

and the divergence theorem, the variation of P is rewritten as 

bP = r 2bcp(J\7'P' ndS - i 26rp"V· ·(oy:'tp)dV. 
Jan Jo '(2.17) 

l' 

At <p the first variatia,.n of P must vanish. Therefore setting Eq. (2.17) to zero the 

conditions on <p which must hold when P is statioriary are determined. First of ail, on 

l1 

-
" -
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,the parts of the boundary of f2 where the principal boundary conditions are prescrib~d, 

the vanation of cp is zero. Eqt;ation (2.17) therefore becomes 

o=:: { o<p(]'Ç1cp'ndS- { bipY'·(oV'ip)dV. 
lEI Jo (2.18) 

Equation (2.18) must be an identity for any variation in cp. In particular 8<p can be 

chos~n ta be zero on the boundary and to take on any v,:lue within n, in which case 

, (2.19) 

. Equation (2.19) holds if and only if V' . (oV'ip) =:: 0 everywhere in n. If 'Ç1. (oV'ip) does 

n'ot vanish everywhere in n, th en b'f can be chosen so that the integral in (2.19) does 
, 

not vanish. However (2,19) must hold for ail oep sinc~ ep is the extremal of P. Therefore, 

,'g must satisfy the Euler-Lagrange,equaÙon 
\ . 

in n. .(2.20) 

Next a,8tp can be'chosen which is non-zero on t'he boundary. Because Eq. (2.20) holds, 

Eq. (2.18) reduces ta. 

.' -
. Eq. (2.21) holds if and only if 

(J'Ç1rp,' n==.O 

" 

(' 

on El 

(2.21J 

(2.22) 

silice érp can tak~ on any value on th~ boundary. The condition given by (2.22) is a 
/ 

, nattira1 boundary condition and need not be imposed explicitly. Rence it has been shown 

that fin ding the function ep whÎch makes the fùnctional P in (2.13) stationary, subject 

12 



The Problem Formula.tlOn 

ta the prmcipal boundary conditions (2.14)" is equivalent ta solving the boundary value 
, 

problem described by (2.11) and (2.12). 

The statianar.x value. of the functianal P i,s a minimum. Ta show thjs, P( cp T cP) 

is examined where P(cp) is the stationary value. 

P ('rp + cP) = l 0- i V' (cp -+- cP) 1
2 dV' \ 1 

= { ~ jV"j' dV,+ { a jVpj' dV +2 { oV\O ,,::t Jo ,Jo • Jo 
= P ( rp) + P ( cP) + 210 CI '\l rp . '\l <1> dV. . 

ln the above integral, cP can be regarded as a special instance of 6rp in Eq. (2.15) which 

means t"hat the above integraI vanishes sinee the variation of P vanishes at cp. Therefore . . . . 
P(tp + cP) is .. 

P(cp + cP) = P(cp) + P(<!;) (2.23) 

'. 
and sinee the value of P is always greater than zero, the value of P(cp +?<I» is greater 

than P( cp) for any cP. Therefore, P( rp) is a minimum. 

The resistance of the plate needs to be eomputed. The minirpum of the funetional 

can be related to the conductance of the plate. Starting one!! more with the functional in 

(2.13) and makmg use of the vector identity given by (2.16) and the divergence theorem, 

P is rewrit-ten as 

P == [ o-X'\lX' D dS -~ [' >,;:V· (~V'x)dV. 
Jao Jo" 

(2.24) 

Conductance is calculated at the 'minimum value of power when X == tp. The volume 

integral given in (2.24) vanishes since its integrand is the Euler-Lagrange equation given 

in (2.20) when X = <p. Furthermore the surface integral vanishes on El beeause of (2.22). 

\\ hat remains is the followmg: 

p. == J: o-cp'\lrp. D dS + l o<p'\lrp' n dS. 
E2 E~ 

(2.25) 

13 



The Problem Formulation ) 

J = (J'Vrp from Eqs. (2.5) and (2.8), Eq. (2.25) reduces to 

, " 

p = V i J. n dS --; V' i J. n dS 
E 2 E~ 

(2.26) 

Since E~ and E~ are both possible candidates for SI in Eq. (Z.2a), if nîs taken to be ~ , 

the outward norrpal to the surface E2' then 

and 

and thus Eq. (2.26) reduces to 

r J. ndS = 1 
lEz . 

{ J '-ndS = -1 
JE' 2 

.. 

(2.27) 

since 1 = (V - V')e. The value~ ttctance can thus be calculated at the 

minimum value of pow~posed potential difference. 

Instead of finding the electric field E, the current density J can be determined. 

From Eq. (2.10), it is seen that the divergence of J vanishes everywhere in O. On the 
> 

two dimensional surface E whlch is used to model the conducting plate 0, J can be 

related ta a stream functIon ?jJ through a differential operator as follows: 

J = n' x 'Vl/J mE (2.28) 

w'lere n' is in the direction normal to E. In order to derive a second order differentlal 

equation. Eq. (2.27) is combined with Eqs. (2.5) and (2.7) to obtain 
\ 

zn E. 

14 
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The Problem Formulation 

Because J n = 0 on fI and r'" 'IjJ is a constant on fI equal ta ft 1 d and l/J lS a constant 

on f~ equal to hl d where Il - 12 is equal ta l, the total current.. Therefore, Jean be 

found by solving Eq. (2:29)- for 'IjJ s bject ta 

tP = Il 
. d 

12 tP = ~ on 
d 

n' x \1'!/J 1 

---·t=O 
(J 

r' 1 

on f 2 

n' x \l'lb 
---·t=O 

(J 
on \~. , (2.30)· 

Finding the solutIon ta Eq. (2.29) subject ta the conditions given in (2.30) is equivalent 
\ 

ta minimizing the power fun~tional shawn in Eq. (2.13), rewntten in the following way: 

J i i IJj2 1 " .2 
P = J . E dV = d J . E dS == d _i dS = d ,In x X 1 dB 

D E 130' E a 

subject to the principal boundary conditions 

Il 
X= -

d 
o~ 

12 • r' X = - on l' 
d 

The X for which P is a minimum i~ '!/J. 

(2.31) 

7 (2.32) 

A necessary condition for the functional to be stationary at tP is that the variation 

. of P vamsh for aH variations of tP which vq.nish on rI and r'l' Takfng the variation of 

P at '!/J and using the identity 

~ 
n' . V' x (gG) == n' . g\1 x F + F . n' x \1g, 

• ' C 
(2.33) 

15 
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, 

die following conditions on 'I/J must hold when P is stationary: 

n' . V x [~' xa V 1/1 1 = 0 

n' x 'Vt/; 
--_·t =0 

a 
n' x Vt/; 
---·t =0 

(J 

mE 

on r~. 

It can also be shown that the stationary point of P is a minimum and that the 
? , 

resistance of the plate is calculated at tnat minimum. The functional P in Eq. (2.31) 

can be rewritten as 

.' using the vector idéntity given by Eq. (2.33) and Stokes' theorem. The volume integral 
... 

in (2.34) ,Vanishes since its integrand is the Eule.r~Lagrange equation and the .:surface 

(integral vanishes on r 2 9-nd r~ by virtue of the natu~al boundary co,d!tions. Hence, 

Eq. (2.34) reduces to 

P ='d r 'I/J (n' x.V1/J~(n' x \l'I/J) . dl. (~.35) ir
l 

Cl) ·al+a Jr~ t{J \- a 

Because of the principal boundary cqnditions given in (2.32) and the consti~utive relation 

(2.5), Eq. (2.3~) can be rewritte~ as 

"" 
P == Il lr E· dl + 12 r, E· dl 

rl .' i r 1 /" , 

Il l~ 
= (ft - 12 ) (V - V') 

= 1 (V - V') 

= I~R 

16 
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since V - V' = 1 R. Hen~e resistanc~ can be calculated from 

P(t) = R. 
] '::. 

(2.36) 

Equations (2.27) and, (2.36) express the conductance and the resist<\nce of the 
. , 

plate. If an approximate value 'Papp is found for the scalar potential, then 

for ail 'Papp as was shown by Eq. (2.23). The approximate value of conductance CappE 

is greater than or equal to the exact value of conductance sinee 

P(<Papp) P(<p) 
CappE = (V _ V')2 > (V _ V')2 = G 

,t and GappE is thus an upper bound for the conductance of the plate. If an approximate 

1 
" 

value 'l/Japp is found for the stream function, then 

PappJ = P(t/Japp) 2: P(t/J) 

, for ail tPapp' Therefore the approximàte value of resistance RappJ is gteàter than or 

equa! to the exact value of resistance sinee 

R - P(t/Japp) > P(1/J) = R 
appJ - ]2 -]2 

al' n ~appJ is thus an upper bound for the resistance of the plate. A lower bound for 

the resistance of the plate is determined from G appE' Since 

17 
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The Problem Formulation 

then 

If 

then 

1 
---< 

1 

GappE G 

1 

G 
= RappE, 

appE 

RappE ~ R . 

. ,..r;r,hus, if approximate solutions are found for both cp and 1/;, the resistance of the plate 
, ~ 

can be bounded from above and from below by 

RappE S R ~ RappJ ' . (2.37) 

The difference between RappE and RappJ gives an indication of how close the approxi-
• 

mation of the minimum of the power is to the actual mi,nimum. 

, 

In the t~o formulations outIined in the preceding pages, i1J.s seen that the argu-

ment of {he' power functional is either the potential cp or the stream function 'IjJ. Either 
, 

of these two scalars is determined when the functionaI is minimized but if either Eor 

J is desired, the appropriate differential operator has to be applied to the respective 

scalar. An alternative approach would be to solve directly for the vector fields without , 

the intermediate step. Rewriting the functional in Eq. (2.13) and the conditions given 

by (2.14) in terms of the two component electric field, the power functional . 

f 

P = d·l (] IEI2 dB 

h~ to ~inimized subje,t to the foll?wing conditions: 

18 
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The ProbJ~m Formulation 

1. tqe eurl of the electric field E must vanish everywhere in the region E, 

V'xE=O in :Ej 

2. 
on r z 

Et = 0 on r;; 

"-
3. 

must be prescribed along. any curve Cz joining fz to r~.< 

) WhEhe power f~I1ctional is expressed in terms of the sca'lar potential the first condition 

is sat'sfied when the eleetric field is written as the gradient of a scalar. potential. The 
~ ,1 

seeon d third conditions are satisfied when rp is prescribed on fz and f~. To find 

the vector fi~ld E' which rninimizes the power functional given in (2.38) subject to the 

above three conditions, the vector field EX is sought within the sp~ce of irrotational . 

two component vector functions in two variables which satisfy c0!lrlitions 2 and 3. The 

tangential component of the electric field must be continuous across interfaces and must 

vanish on f 2 and r~. Similarly, one .can also minimize the fpnctional 

(2.39) 

subject to the following conditions: 

1. the divergence of the current J must ~anish everywhère within the region E, 

V·J = 0' in Ej 

19 
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2. 

3. 

on r 'l 

, 

d f Jn dl = l 
Je], 

must lre prescribed along sorne curve Cl from r l to r~; 

If 

To find the v'ector field J'" which minimizes the power functional given in (2.39)!subject 
! - , 

to the above three conditions, the extremal of the functional is found within the space 

of divergence-free two component vector functions of two variables. Furthermore, the 

normal component of the current density must he éontilmous across interfaces and must 
"i 

vanish on ri and r~. 

~ 

Finally, the two formulations may be restated as follows: 
~ ~ 

minimize 

within the Space of irrotational vector functions, subje(t to 

. . 
an, l minimize 

"( 

Et = 0 on r~ 

f E.dl=V-V'. 
JC2 

. within the space the solenoidal functions, subject to 

'20 
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. The Problem Formulation 

Jn == 0 on r~ 

(2.41) 

-" 

The, conduètance of the plate can be computed once more by 

P(E") 
G=----'---'---

(JC2 E". dl) 2 

(2.42) 

and the resistance of the plate is computed by 

R == P(J') 

( d Je 1 J ~ dl ) 2 . 

(2.43) 

2.2 A Problem Involving the Three Component E and J Vectors 

A problem analogous to the conducting plate problem Îs c'hosen for the three 

dimensional case. The resistance of a three dimension al conducting wire n, with nonzer.o 
.. 

constant finite conductivity 0, as pictured in Fig. 2.2, must be computed. 2: 2 and E~ 

are equipotential surfaces between which ther-e may be a potential difference, and the 

tangpntial components of the electric field vanish on bath 2: 2 and E~. No current can 

flo~ out of the surface El henée the component of the current density Mrmal to El , 
vanishes on El' The total current through the wire is 

\ 

I == { J. ndS 
lSI 

21 
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The Problem Formulation 

~~-------------~1----__ __ 

~---c----~~~~~~----__ 

Fig. 2.2 A three dimensional wire. 

where SI is àny cross-section al surface through the wire n and the boundary of SI lies 

in 'E l' 

Using the three field equations (2.3), (2.4) and (2.5) from Section 2.1, the problem 

is formulated in four wajs. As 'for the two dimensional problem, E can be written as 

the gradient of a scalar function, cp. The scalar "potential can then be computed by 

minimizing the fune tional 
J 

>, 
subject to the principal boundary conditions .. 

cp =.v on E, 

cp = V' on E~. 

22 
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The Problem Formulation 

For the abové functional 

'1 . (aV'<p)'= 0 "in n 

is the Euler-Lagrange equation and 

on ~l 
... 

is a natural boundary condition. The electric field is then computed from 

E = Vrp. 

Alternatively E can be computed directIy by minimizing the functional 

subject to '" 

. .. 

V xE=O in n' .0 
Exn =0 

Ex n = 0 on E~ 

L E·dl = V - Vi 

(2.45) 

(2.46) 

where C is any curve joining E2 to E~. To find the irrotational vector field E" which 

minimizes the power functional'g~ven in (2.45) subject to the conditions given by (2.46), 

the electric field E" is sought wi~hin the~pace ,of irrotational three component vector 

dl functions of three variables which satisfy the principal boundary conditions. The tan-

gential components of the field must' be continuous across \nterfaces and must vanish 

on ~2 and E;. ~ 
[i- • 
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The Problem Formulation 

" " 
A solution for the three component curreÎ1t de}lsity J can be found by writing J 

as the curl of a vector potential sihce the divergençe of J vanishes everywhere in n, 

J = V' x T: (2.47) 

- Since 
• 

V'xE~O in n • 
" 

and 

J = dE . 
\ 

j 

the following second order equation in T is {)btained: 

· (J) (VXT) yxE=V'x -;; =Vx a =0 in n. 

The boundary condItions which are imposed on Tare derived from those imposed on 

J, The total curr.ent through the wire is l, 

• 
J = [ J, n dS = [. 'C' ~ T ' n dB = r T, dJ. 

181 181 1asl 

Therefore 

r T.dl=[ 
Jasl . / 

must be imposed, The normal component of J 'vanishes on El' Therefore 
/ 

(V x T) . n == 0> on El' 

.. 

The tangentia) component. of the electric field vanishes on E 2 and E~. Hence 

(V; T) x n = 0 
(

'VqX T) x n = 0 on E~,' 

24 
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In order to determine T the following boundary value problem must be solved: , 

subject to 

(\7 x T)· n = 0 on El 

(V;~)xn=o 

(Vx T) 
a' xn=O on E~. 

Alternatively T can be found by minimizing the functional P 

subject to the principal boundary conditions 

(V x T)· n = 0 

{ T· dl = l. 
las1 

on !:;l 

" . 

(2.49) 

(2.50) 

In order to determine the value of the tangential components of T on the surface El 

from the~bove conditions, T is written as the gr~dient of any scalar function. If T = \7 X 

on El, then clearly 

(V x T) . n = (W x \7X) . n = 0 (2.51) 

In order for the condition (2.51) to hold X can be any, once differential;:?le function which 

hac;; a jurnp discontinuity of 1 along any curve C ,which joins ~2 to E~ t. ' 

t This method for prescribing the tangential eomponents of T on Elis suggested' 
by Kotiuga and is discussed in the first chapter of his forthcoming Ph.D. dissertation. 
He cites MiIani and Negro (1982) for having used a siniilar approach. However they 
restrict X to be a harmonie function. 

, , 
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After computing T, the current density Jean be found by using Eq, (2.47). 

Unfortunately 7' is ~ot' unique and one solution.J.or T can ~ary from another by the 

gradient of a scalar function since V' x \7 ip = O. Therefore T' = T + \7 <p is also a valid 

solution. Such nonuniqueness may cause problems when T is eomputed numerically. 

Instead, since the solution for J is unique, the power functional ean be written in terms 

of J and minimized. The functional 

p~1~2dV 
U ri a 

(2.52) 

! 
is, minimized subject,J,o the following conditions: 

, 

J mO 

J . n = 0 :' 'on L: 1 (2.53) 

f J.ndS=I. 
J SI 

Th~ eurrent density.J" which minimizes the functional (2,52) is sought in the space of 

solenoidal three component vector functions in three variables which satisfy the principal 
l , , 

boundary conditions. ,In addition the normal cômponent of J must be continuous across 
, . 

interfaces and vanish everywhere on L: l' 

The conductance of the wire can be computed when the stationary value of the 

functional (2.45) is ~nown from 

ana the resistance èan be computed when the statiq ary value of the functional (2.52) 
"l; Il O' 

~ 1 .' 'l' 

it:' known From /;/ ' 

R = P(J() 

~ " (fs
l 

J . n dS r (2.55). 
.- ' 
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In this chapter a two dimensional problem has been posed and formulated in four 

ways .. From the formulations whieh make use of a potential, the problem is restated 

in terms of the vector fields. In order ta minimize the functionals whis=h are written 

in terms of the vedor fields, the electric field must be approximated within the space 

df irr~tational vedor functions and the current density must be approximated within 

the space of solenoidal vector approximation functions A basis of first order irrota-

tional vector polynomials and a basis of first order solenoidal ve{;tor polynomials are 

eonstructed vin the following chapter. A three dimensional problem has also been for-

mulated and it has been shown that solenoidal and irrotational three cornponent vector 

functions could be used ta approximate the eurrent density and the electri~ field respec~ 
, ....... ~-_.---~ 

tively. The funetlOns developed in Chapter 3 are used in Chapters 4 and 5 to compute 

numerically the eurrent in the eonducting plate and in the wire. 

In conclusion, the problems ehosen in this chapter are just one example of three 

possible 'problems in eleetrostatÎ@'S and magnetostatics. Analogous problems whieh in-

volve either the magnetic field H and the magnetic flux density B or the electric field 
/ . 

E or the eleetrie flux density D can' be solved respectively ta determine the inductance 

and capaeitanee of a region. The reader should ref~r to Cambrell's Ph.D. dissertation , 

(1972) or to the paper by Hammond and Penman (1976) for more examplés of dual 

energy prin·ciples. 

-_.-_--'/ 

. , 
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THE VECTOR INTERPOLATION POLYNOMIALS 

. .;----- ~-~ ----------
_.,. ------< ,.- ~ 

, Solenoidal a~d-'irr~tatiOnal two'"a;nd three cor:~n~nt- vejt6r~app~îlinc-

tions are constructed in this c~~t~r:~-he-tnr-~~_:~~wment5ô~idal vecter inter-
---, ~ 

polation fl,lnctions os-é-o~st but the two component vector functions 

, _ ~~ eveloped fi cause they are easier to construct and they help in providing a 

___________ undation for the construdion of the three component ones. Before the vector approxi-

Il 

, ~ c _ 

matlon functions are developed, a finite element method which uses a Ritz minimization 
1 

is described in Section 3.1 slnce this method will be used m the fallowing chapters to 

approximate numerically th,e minimum of the functionals which were given in the last 
, . 

chapter .. In Section 3.2 the solenoidal two compollent vector f1Jlnctions ln two variables 
"-

are developed and the irrotational vector functions are then easily deriv~d. In Section 

1 3.3 the three compbnent solenoidal and irrotational vector functions are giv"en. 
~ . 

3.1 The Finite Element Method using a Ritz Minimization 
~ , 

(or.d~r to minimi~e. the function.I, given in Chapt;r 2 Ritz' method which.was 

first described in -1908 and examples of which can be found in Kantorovich (1964), 

is USPfl II?- this method a functional whose, argument is replaced by a functian of n 

parameters is minimized with respect ta the n parameters. Often in order to simplify the . , 

ITl.nimization process, the arguQ:lent of tJîêfunctional is written as a linear combination 

of n basis functions which lie in a finite dimensional ·subspace of the space in which the 

extremal of the functional lies and which satisfy the principal boundary co - , 

28 
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The Vector 1n;JJ~polation 

/ / 
POJYno~ 

/ 
'-

------~---- -

For the functionals described in the preceding chapter, the vector functions Ê and, 

approximated by a linear combination of basis fu-ncti6ns 

k 
(3.1) 

J_= L11Uj 
,=1 

~I1d substitut~d into the appropriate functi9nal: 

(3.2) 

o , 

The principal boundary conditoions can then be imposed by cons training p of the CI 

and the dt where p is the number of coefficients which must be tônstrained as a result of 

the principal boundary conditions. The integration appearing in the functionals in (3.2) 

can then be explicitly performed. This results in a function of the unconstrained dl or 

cl.The extremum of the functional can then be found by differentiating the function with 

respect to these CI or dt and setting the derivatives equal to zero. The unconstrained 

Ct and dl are the Ritz parameters and the differentiation results in k - p equations in 

k - p unknowns. Since the power functional is quadratic, the k - p equations are linear. 

When the power f'unctional is written' in terms of basis functions 
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The Vector fnterpoJation Polynomia/s 

k k ' 

" -= ! (J L L C,CJVj 

n t== 1 J==l 

v·dV J 

k k 

= L L ctc) 1 O'Vi 0'yj dV, 
1== 1 ) == l n 

(3.3) 

the tunctional is evaluated by computing the integral in Eq. (3.3). However, for ail but 

the s~mplest regions it is very difficult to choose basis functions 50 that the above integra-

tions are "easy to perform. To simplify the integration problem, finite element methods 

can be used. In the finite element methad a region is discretized inta elements. The 

unknown fu~ction )s appraximated by shape functions wnose differentiability require

ments o'ver each element and ,ât the interel~ment interfaces îs dictated by the original 

variational functional In this thesis the functions which will be used to approximate 

the irrptational and solenaidal vectar fields are defined over elements which are triangles 

and tetrahedra . ., 
3.2 The Two Component Vector hÎtërpolation Functions 

\, 
When' finite element methods are used to approximate a scalar potential, the 

interpolation funcÙons ·are generally polynomials since according to the Weierstrasst 

approximation theorem any continuous function can be approximated to any accuracy 

on a given .interval by choasing a sufficient number of linearly independent polynomi-
f 

als.- F lfthe,rmore', polynomials are ea:;iy to integrate, differentiate, and evaluate on a . \ 

computer. The vector approximation functions ~hich are constructed in this chapter 

t The reader can refer to Davis (1975) for detai\s of the Weierstrass approximation 
theorem . 
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The Vector Interpolation Polynomials 

are therefor~ vector functions whose components are polynomials. Furthermore, these 

fun~tions are either solenomal vector polynomia!s or irrotational vector' polynomials. 

In the problem at hand, the ~o'lution for the current density or the electric field 

need only be approximated within the space of sol~noidal or irrotational vector fields 

respectively. A solenoidal field is one whose divergence is zero everywhere inside a region 

n and whose component normal to interfaces iSJ'Qtlrti~u~us. An irrotational veçtor field 

is ~ne whose eurl is zero everywhere inside a region n and whose compo~ent tangent 

to interfaces is eontinuous. Henee, a solenoidal vector field is approximated by veetor 

functlons whose divergence is zero in an element and that have normal eomponent con

tinuity acros~ element boundaries. Like~ise, an irrotational vector field is approximated 

by vector funetions whose curl is zero in an element and that have tangential component 
o 

eontinuity across element boundaries 

3.2.1 Solenoidal Vector Polynomials in Two Variables 

In order to approximate a two component solenoidal vector field in two variables by 

polynomials of arder n, n2 + 5n +4/2 Iinearly independent solenoidal vector polynomials 

defined over a region E are needed. The above number is obtained as follows. A 

poly~ial in two variables is of the form 

n l 

L LatJxJy'-J. 
t=O ]=0 

A .. ector polynomial u therefore hM the Corm 

" 
u= 

31 
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The Vector Inter:po/ation Polynomia/s 

and the divergence of u in Cartesian coordinates is 
IJ 

n 1 n 1-1 

= L L jatJ x1 - l yl-J + L L)~ - j)btJXJyl-J-l 

1=1 )'=1 1=1 J==O 

n 1 _ 

= L L jaiJxJ-lyl-J + (i - J + l)bt)~;:&::-l~I-J 
1=1 )=1 

= t t (j alJ '. (l - ) -r 1) blJ _ d xJ - 1 Y 1-r. 
1=1 J=1 

When the divergence of u,is zero, 

n 1 

L L (ja l ] + (t - j - l)b,]-d x1~lyt-J = 0 

1=1 J==1 

must he true for al! x, y in the regi~n n. Therefore 

1 ~ i ~ n,' 1 ~ J <::: t 

• 

, ~36) 
,",' 

holds when the divergence of u is zero. The riumber of constr~ints Ne tha~, have to be 

imposed on the coefficients al] and b,) of u in order that the divergence of u vanish 

ever.ywhere in n is 

N 
_ ~ ~ _. ~ _ n(n + 1) 
c-L...,~l-~t- . 

. 2 
• 1=1)=1 1=1 

(3.7) 

The numher N of basts functions required to span the space of nth order vector' poly-

nCJ/nials defined j'n (3.5) Îs 

n, n , 

N = L LI = L(i + 1) :=: (n + l)(n + 2) (3.8) 
1=0)=0 1=0 
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and the number 

N
s 

= (n + l}(n + 4.) = n2 + Sn + 4 
2 2 

.(3.9) 

of basis vector functions whi~h span the space of two component,soienoidai vector poly-

nomials is obtained b:r subtracting Ne from N. In the case of first order polynomials; 

Ns ;=: 5. 

,,' 

Fig. 3.1 ~The normal component o.Qhe vE;ctor field across an edge. 

,\\ , , . 
A solenoidal veétorJleld.~a:n thus be approximated over each element by a Iinear 

combination of five solenoidal lin~aJly independent vector functions whose }omponents 
~ ~ - ... "" . ~ 

are first order polyllOrnials. The cornponent of the approximation of the vector field 

normal to interelement edges must be continuous. In other words, for the two elements 

E, 'and E 2 show!]. in, Fig. 3.1, Un 1 =:: -Un 2 everywhere on ~he edge shared by Eland 

E: (UnI is the component of u in El which is normal to the edge shared by Eland 

E2 ). Because the vector field is approximat~d by first arder polynomials, only two 

points need be chosen along the edge between Eland E2 where Un 1 +- U n 2 must .be set 

\ 
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equal ta zero. If there are two distinct points on the edge where UnI + Un 2 = 0, then 

Un 1 + U n 2 is zero everywhere on the line. For example, at edge 1 of the triangle shown 

in Fig. 3.1, the ,normal component of the vector field evaluated at n~de 2 is d; and 

the normal component evaluated at node 3 is d;. If edge l of one triangle is coincident 

with edge 1 of another triangle as shown in Fig. 3.2( a), then d'II is set equal to -d;2 

and d~l is set equal to -d't2' As the normal component' of thè vector field must be 

evaluate at two points on each edge, six such points are needed on the entire triangle 

a d the components of the veetor normal to the edges and evaluated at these poi~ts are 

d~,d;,d~,d~,d;,d~. The d: ,are pictured in Fig. 3.2(b). 
" . 

When a solenoidal vector field is approximated by a. complete set of first arder 

.solenoidal vect~r polynomials, it i!3 written as a linear combination -ôrthe basis vectors 

(3.10) 

\ 
The dt in the aaove expression have in general no relation to the d~ defined in the 

preceding paragraph. However, when the continuity of the normal component of the 

solenoidal vector field is imposed, it is the d: which are equated at interelement edges. 
_ r 

Renee the dt must be tranformed into the d~.. In order for the computation of the 

transform'il.:tion ta be as ra,pid as possible, it should c'ontain as many zero entries as 
, ' 

possible. Thi~ is done by construeting the basis functions in such a way that as tnany 

of the d~ as possible are zero for each function. -

1 

The solenoidal basis vector functions are now constructed. A first order vector 

polynomial is of the fonn-

u = (a; + by + c) 
dx + ey + f 
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, 

# d:~ d' 

/ 

1221 

> d' . 
14 

( 

Fig. 3.2(a) 

\. 

edge 1 

fig. 3.2(b) The d~ are the components of tl1e field normal to an edge . 

• P 
in Cartesian coordinates. WheI1h~he divergence of u is zero, a -e III the above 
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expression. Therefore a fin~t order solenoidal veetor polynomial is of the form 

u = (ax + ,bi; + c). 
dx - ay + f (3.11) 

A Cartesian coordinate system whose x coordinate is parallel to one of the edges of a 

• triangle and whose y coordinate is normal to that edge is chosen. The coordinate axes 

are 't and n and the triangle vertices are at (t l , nr), (t 2, nz),' (t 3 • n3) as shown in Fig. 

3.3. The normal components of u with respect to the edges evaluated at the vertices of 
,1 

the triangle are the d~ wherefiS the t'angential components are defined to he c~.' c~ •... c~. 

n 

• 

1 

edge 1 t 

Fig. 3.3 The t - n coordinate system with respect, ta edge 1 of the triangle. 
II> 

The reader should now recall that as many of the d~ as possible should be zer<.~ for 

each hasis function. The simplest possihility is that only one dt is nonzero.' Renee the 

36 

" 

--, 



\ " 

" 

The Vector Interpolation Polynomials 

coefficients a, b, C, d, f of u are determined when 

u = (0,0) 

u=(dI,O) 

u=(O,O) 

in which ca.se only d~ is rionzero. The following system of equations is ohtained: 

t] • nI 1 0 
t2 1 

a 
d] n2 b 

t 3 n3 1 0 
t} '. °1 

te 
0 -nI 

d 
-n2 t2 1 

f 
0 

-n3 t3 1 0 

(3.12) 

. From the last three equations in (3.12) it can he determined that d = a = f = 0 since 

(t1,nd· (t 2,n2), (t3,n3) are neither coincident nor collinear. The following overdeter-

mioned set of equations for which no solution exists remains: 

There~re there does not exist a solenoidal vector ,polynomial for which d~, .'" d~ are 

zero. ~ext, two d~ are allowed to be nonzero. So 

37 
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is chosen. Here only d~ and d~ are nonzero. The system of equations in (3.12) is set up 
\ , ~ 

once more ~ith a different right hand side. Proceeding as before it can be shown that 

d = a = if == 0, hence the following system of equations is obtained: 
l' 

) 1 
---:;> 
" 

T (3.1.3r 
1 

l' 

Solving (3.13) 

c == -bn} 

b = dl 
(n2 - nd 

or 

is obtained. It is ~een that a solution to the above system of equations exiits only if 
/ 

( 

;' dl == d2 • In this case 

b = dl 
(n2 - nd 

d1n l 
c = -,---"----"--:-

(nI - n2) 
\ 

sinee nz = n3 from' Fig. 3.3. Henee the solenoidal vettor fimction u for which d~, d~, d~ 

and d~ are zero is 

( 

1 + nI ) u=dl (n 2 -n tln
o 

(nl-n~) 

-=-

50 the first ba.sis function is taken to be 

(3.14) 

Uj is a vector function direeted paraUel to edge 1. It has a constant value of 1 on edge 

1 and varies linearly across the triangle to vertex 1 where it vanishes. UI is pictured 

( 
in Fig. 3.4. Taking the divergence of UI, "V . UI = 0 is verified. There are two more , 
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/ 1 ~ 

Fig. 3.4. The solenoidal vector function u!_ 

functions similar to UI which are parallel to edges 2 and 3. Expressions for u~ and U3 

are given later in this chapt~r. 

A10urth vector polynomial is constructed by setting 

u = (d4 , 0) 

u=(O,O) 

U = (0,0) 

In this c~se d~ and d~ are nonzero. The right-hand-side v~ctor of Eq. (3.12) becomes 

( d4 . 0 0, ° ° ° ) T • 

Solving the system of equations 

"b~ f d4 

(nI - n2) 
d4 n2 

c= 
(n2 - nt") 
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is obtained sinee nz = n3. This new vector function therefore is 

and 

(3.15) 

Fig. 3.5 The solenoidal vector function u.c. 

is taken as the fourth basis vector. U4, is parallel to edge 1 however it takes on a value 
1 

of 1 at vertex 1 and vanishes eveI'ywhere on edge 1 as pictured in Fig. 3.5. Taking the 

divergence of U4, V' . U" = 0 is verified., There are two ot~ctions similar to u'1o 
-~ 

parallel to ed'ge 2 and edge 3. 

Six solenoidal vector polynomials of order 1 have been eonstructed. They however 

cannot be linearly inde pendent sinee only 5 such funetions are required to form a basis 

for first order solenoidal veetor polynomials. Before it is determined if any choice of 
, 00, 
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{ive Ui provides the necessary basis, the vector functions are rewritten using barycentric 

~ 

coordinates. 
b. 

Barycentric t or simple~ coordinates are coordinates which are local to every tri-

angle. A point p in a triangle is uniquely defined by (~l' ~2, ~3) where ~1 is the ratio of 

the area of triangle Tl over the area of the entire triangle shown in Fig. 3.6. When 
" 

the Ui are rewritten in termsof these barycentric coordinates, the t l and ni coordinates 

need not be retained. 

-----

Fig. 3.6 The barycentric coo~dinates of a triangle. 

Expres§~ng the Ui in terms of barycentric . coordinates, they become 
~ . 

t Barycentric coordinates were first introduced by Mobius in 1827 in order th per
form center of mass calculations, hence their name (see Smith (1929) for an English 
translation of Mobius' definition of barycentric coordinat es ). 
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\ 
, l' 

( ) (
-cos (J3 ) 

U2 = Çl + Ç3 • 0 
sm 3 

( ) (
-cos (J2 ) 

U3 = Çl + Ç2 • (J 
-sm 2 

_ (- COS0 2 ) 
U6 - Ç3 • (J 

-sm 2 

• 

(3)6) 

In order to show that the six functions given in (3.16) are linearly dependent, the 

Gram matrix is built and it is shown that its determinant is equal to zer$>o Each element 

of the Gram matrix is ,the inner product of two of the vector functions, Î.€. 

where the domain pf integration is the triangle 6. (6 is also used to symb~lize the arèa 

of the triangle.) Tfie following matrix is obtained: 

6 -5 cos 03 -5 cos (J2 2 -3cos 03 ,-3 cos O2 

-5 cos (J3 6 -5 cos (JI . -3 cos (J3 2 -3 cos BI 

G= 6 -5 cos O2 -5cos 01 6 -3CbS(J2 -3 cos 01 2 
2 -3cos (h -3 cos O2 2 - cos 03 - cos 02 12 

-3 cos B3 2 -3 cos (JI - cos B3 2 ~ - cos 81 

-3 cos O2 -3C05 01 2 - cos (Jz - cos 8 1 2 

.. 
Noting the symmetries in the C matrix and performing a few row and çolumn operations, 

thè matrix C' which is row and column çquivalent to G is obtained. 

4 -4 cos 83 -4 cos O2 0 
~ 

-2 cos 83 -2COS.02 

. -4 cos B3 4 -4 cos (Ji -2C05j}3 0 -2COS(JI , ~I 

G'= 6 -4 cos Oz -4 cos 81 4 -2 cos (J2 -'2 cos 811 0 - \ 

- cos O2 12 0 0 0 -2 - cos 03 

0 0 0 - cos B3 -2 - cos 81 

0 0 0 - cos O2 - COS 81 -2 

,) 42 
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The '<!lëterminant of C' depends on the determinants of the two blocks on the diagonal. 

If either of these deterrninants vanishes, the determinant of C' vanishes, and so does 

the determinant of C, The determinant of the first block on the diagonal is 

which reduces to 

1 
det G 1 = 64 - cos (J3 

- cos (J2 

\ 

Since 81,+ (J2 + (J3 = 7r, 

- cos ()a 

1 
- cos 81 

- cos O2 

- cos 01 

1 

-4 cos ()l cos 82 cos 03 = 1 + cos 20 l + cos 202 + cos 203 , 

Also, 

2 cos 2 (J = cos 2() + 1. 

, 
Making use of the ab ove two identities, det G = 0 is o~t'8.ined. 

" 

Eliminating any one of the Ui results in a set of five linearly inde pendent solenoidal 

vector polynomial. If Ue is eliminated, the Gram determinant of the matrix G", ~hich 

is made up of the upper left five by five block of G, can be reduced to an expression of 

the form (see Appendix 1 for details) 
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( 

The above expression vanishes if 1)3 == 0 or if cos 01 cos O2 cos 03 = -1. But ,cos 01 :::; 1 

where the equality is true if and only if 1) == nn. Therefore the product COS.01 cos O2 COS 03 

is equal to -1 only if 
/ ~ 

(JI = 11" and (J2 = 83 := 0 
p 

or if 

O2 = 7r and 01 = 03 = 0 

or jf 

()3 = 11" ~ and (h = O2 = 0 

since 01 -'- ()2 + 1)3 = 11". The determinant of Cil therefore vanishes only w hen the are a 

of the triangle is zero and only then will the five solenoidal vector funçtions be linearly 

dependent . 

3.2.2 Irrotational Vector Polynomials in Two Variables 

" 

J In this section irrotational vector polynomials in two variables are constructed 

( 

" 

<l , , 

,J .... 

Il ' 

from the solenoidal vector polynomials. The curl operator in two dimensions is very 

similar to the divergence operator. As a matter of fact the eurl operator can be written 

as the product of a rotation matrix and t_he divergence operator. If the divergence of a 

vector in Cartesian coordinates is written as . 

an·! the curl of a vector is' writteIi as 

" .' v x u = ( - L iL) (u:z:) 
8y 8x u 

y 

44 
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then the divergence of the vector can also he expressed as -, 

.. _--

Hence if 

then 

In other words, the irrotationa.1 vector polynomials are derived by rotating the solenoidal 

vector polynomials by i or - f. Six irrotational polynomials are given below 

V.l = (Ç2 + Ç3) ( ~1 ) 
V2 = (Ç1 + ç~) (~inOo3) 

cos 3 

V3 = (Ç1'~ Ç2) (~~~~:2 ) 
V4=Çl(~1) 

Vs = Ç2 (;:.::) 

. (- sin (}2) 
V6 = Ç3 ()' cos 2 

Q , 

(3.17) 

Only five of the irrotational vector polynomials given in Eq. (3.17) are linearly 

independent and as was the case for the solenoidal vector functions, any live can be 

chosen. Since inner products a,re invariant under orthogonal transformations and the 

elements of the Gram matrix are inner products, the Gram matrix for live Vi is the 
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J J J J J J 

J' J J l j J J 
(t 2' n2 )I---t---r---r--y---,--,- ~t3' n3) 

Fig. 3.7 The irrotational vector functron VI' 

same as the Gram matrix for the corresponding five Ui. Therefore its determinant will 

only vanish when the area of the triangle is zero at which point the irrotational vector 
< 

functions are Iinearly dependent. The function VI is in the direction normal to edge 1 
. , 

and takes on a value of 1 on that edge and vanishes at vertex 1. V2 and V3 behave in 

a similar fashion. v 4 is in the direction normal to edge 1, however it vanlshes on edge . 
1 and~reaches the value of 1 at vertex 1. VI and v" are pictured in Figs. :t7 and 3.8. 

A vector field which lies in the space of irrotational first order vector polynomials can 

be written as a Iinear combination of-~as 

• 
(3.18) 

In order to ensure the continuity of the component' of the electric field tangent to 
, ( 

interfaces, the c, m"l1st be tranformed into the c: which are shown in Fig. 3.3. The 
~ 
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transformation which maps the c, into the < is the sa~e as that which maps the ( 

into the d~ because the c; are obtained fro~ the d: by a rotation of ~ and the Vi are 
~ 

obtained from the Ui by a rotation of -27r
• 

.' 

Fig. 3.8 The irrotational yector function v 4. 
• 

3.3 The Three Component Vector Interpo]ation Functions 

3.3.1 Solenoidal Vector Polynomials in Three Variables 

The number N~ of linearly independent functions which are required to span the 

space of three component vector polynomial functions in ·three variables over a three 

dimensional region i..s ~omputed in the same way as fo~ the two component funçtions. 
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A polynomial of order n in three variables is of the for~ 

" 

n , J 

L L L atJkxkyl-kzt-J 

,=0 )=·0 k=O 

anp/c( three component vector polynomial in three variables is of the form 

u= 

The divergence of the vector given by (3,19) in Cartesian coordinates is 

nt) n 1 )-1 

= I: L [, kat)kxk-ly)-~ztqJ_ + L L LJj-=-llb·~-u 
t=IJ=lk=1 I=l)=lk=O 

n 1-1 J 

+ I: L L(i - j)C'Jk xk y;-k zt-i- 1 

t=1 )=0 k=O 

nI] nI) 

(3.19) 

:::: L L L kal;kxk-lyJ-kzt-J + I: L LU - k + l)btJkXk-lyJ-kz'-J 

l=l;=lk=l l=lJ=lk=l 

n 1 J 

+ LL L(z -J + 1)Ct:kXk-lyJ'-ki-J 

t=l]=lk=1 

nI] ; 

= I: L L (katJk + U - k + 1) b"k-l + (i - j + 1) C,,-lk-d xk- 1y,-kz t-) 

1=1 )=;.J k=l 

In order for the divergence of u to vanish everywhere over the region the following must 
\ 
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l , 

hold for all x, y, z. 

n " J À' . 
2: L: 2: (ka,Jk + (J - k + 1) bl)k-l + (i - J + 1) C1]-lk-d Xk-1yJ-k z'-] == O. 
1=1 J==I k=I 

This means that 

(ka'Jk'+ (j - k + 1) bt1 k-1 + (i - J + 1) CtJ-Ik-I) = 0 (3.20) 

for 

1 ~ z ::::; n, 1 ~ j ~ t, 1 SJc :::; j. 

The number of constraints N: which are specified by the condition (3.20) is 
-. 

N: = t t t 1 = t ti = t 1(1 : 1) = n(n + l~(n + 2) 
-----~=~ t==1 )=1 k=l 1=1,=1 1=1 

(3.21) 

o 

~ 

and the number NI of linearly independent vector 'polynomials whie 'are required to 

span the space of three component vector polynomials of order n is 

N' = 3t tt 1 = (n+ l)(n;2)(n+3). 
I=Ol=Ok=O • 

(3.22) 

Renee the number of linearly independent ,three component solenoidal vector polyno

m,:ls of order n in three variables {equired to form ia basis is 

N' = (n + l)(n + 2)(2n + 9) 
8 6 
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Fig.3.9 The normal compone nt of the vector field across a face. 

In t'he case of first order polynomials, N~ = 11. A solenoidal v.ect'or field will therefore 

be approximated over each tetrahedron by eleven linearly independent first order vector 
, . 

polynomials whose divergence vanishes everywhere inside the element. 

-. The continuity of the normal component of 'th!: field across interelement faces 
~ 

must be ensured by requiring that UnI ,= U n 2 everywhere on the~shared by two 

ele~en.ts as shown in fig. 3.9. Since the vector field)s approximated bY~~ 
polynomials, three points, where Uni + U n 2 must be set equal to zero, must be chosen 

on each face shared by two tetrahedra. If UnI +U n 2 = 0 is imposed on the face shared by 

E l 'an(~ E2 at three points which are not collinear and are on that face, then UnI + U n 2 

is zero everywhere on t~e face and the component of the field normal to the face is 'j 
. ',' 

continuous across that face. Since the normal componént of the vector fie.ld must be 

evaluated at three points on each face, twelve points are needed for the entire element. 

At these points the value of the component of the field normal to a face is denoted by 

50 



The Vector Interpolation PolynomtiJs 

e,i, e~, e~, ... ei2. Eaçh e: is the component of the field normal to a face and evaluated at 

a vertex of the tetrahedron. 

Fig. 3.10 The e~ are the components of the field norm~l to an edge and evaluated 

at a vertex of th'e tetrahedron. 

~_______ The eleven Iinearly' independent three component solenoidal vector polynomials 
~ , , . 

~ed in the same ~ay the two component solenoidal vector polynomials were 

constructed in Section 3.2.1. They are give~ in (3.24.) in terms of a polynomial and 

a :mit vect?J' directed along an e~ge ~f the tetrahedron. The polynomial is written in 

terms of the barycentric coordinates of the tetrahedron shown in Fig. 3.11 and the unit 

vectors el which are parallel to the edges of the tetrahedron are shown in Fig. 3.12. 
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l 

r 

Fig. 3.11 The barycentric coordinates of a tetrahedron. 

1 

1 

Fig. 3.1~/The directions of ~\1e yec~ors along the edges of the tetrahedron. 
/ . 
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u! = (~2 + ~3)eI 
Ur = Ç"l e I 

U2 :::; (Ç3 + ~4)e2 
Us = Ç"2e2 

U3 = (~2 + ~4)e3 
Ug = Ç"3eS (3.24) 

U" = (Çl + ç2)e" 
UlO = Ç"4 e 4 

Us = (Ç3 + çdes 
liu = Ç"2 e 5· 

U6 = (~l + ç4)e6 

" As with the two component solenoidal vector polynornials, the vector p~lynomi

ais given in (3.24) are nonzero at two of the twelve e: and vanish at the other ten. 

Furthermore !ive vector polynomials can be picked from the eleven given in (3.24) in 

slich a way that their projection onto a face of the tetrahedron will result in !ive of the 

two component solenoidal vector functions. For example if the three component vectors 

UI' U2, U3' Û7, Us are projected onto face 1 of the tetrahedron pictured in Fig. 3.12, 

the vector polynomials which .result, are the two component vectors liI, U2' Us, U", Us 

where ~4 is repiacep by rI' 

In the case of the two component solenoidal vector" polynomials, six were found 
-

from which !ive had to be chosen. In the case of the three component sole~oidal vector 

polynomials, there are eighteen of which. only eleven are linearly independent. The, 

eighteen are: 
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l 

-------~--

3 

2 

Fig. 3.13 
The sole1}oidal three component vector functipn u 1. 

o 

1 

2~ /------------r-----7 3 

4 

Fig. 3.14 
The three component solenoidal vector function U'T. 
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The first six are each parallel to one of the SIX edgesj ~ey a,re nonzero on that edge and 

vanish at the two vertices which do not coincide with that edge. One such (UI) is shown 

in Fig. 3.13. The remaining twelve are also parallel to the. edges of the tetrahedronj 

they however vanish on an entire face and are nonzero at only one vertex. One vector 

polynomial from the second set (UT) is shown in Fig, 3.14. Eleven linearly independent 

functions must be chosen from among the eighteen and unfortunately any choice of 

eleven will not do. The eleven given in (3.24) are linearly independent and are chosen 

by ensuring that the, Gram determinant is nonzero f~ giverr tetrahedron. 

3.3.2 Irrotational Vector Polynomials in Three Variables 

A three component vector polynomial of first order in three variables takes on the 

form 

( 

ax + by - cz + d ) 
. v = ex + fy + gi + h . 

ix + JY + kz + 1 
'(3.26) 

In order for v to be irrotational the following three conditions have to hold between the 

coefficients of the polynomials in the coefficients of v 

J --g=O 

c-i=O. (3.27) 

e - b = 0, 

Nine linearly independent vector polynomials whose curl vanishes everywere in a three 

dimensional region n are required to span the space of irrotational three component 

ve, tor polynomials of first order in three variables. 

Seven of these functions are derived by choosing four vector polynomials which 

are normal to a face and have a value of 1 everywhere on that face and which vanish at 
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the vertex of the tetrahedron which is not in that face. Three more are aJ.s 

a face, vanish everywhere on the face and have a value of 1 at the vertex 

in that face. These seven are 
/ 

1 

2 

,.. 

al to 

Fig. 3.15 The directions of the vectors along which the irrotational vector polyno-

mials are directed. 

Va = Ç3f3 

Vs = (Ç2 + Ç3 + ç4)f1 

V6 = (Çl + Ç3 + ç4)f2 
(3.28) 

The fi which are shown in Fig. 3.15 are unit vectors which are each no~mal to one of 

the faces of the tetrahedrpn. The remain~ng two irrotational vector polynomials can be 

chosen in whichever way as long as the resulting nine vector polynomials are linearly 
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". 

1 

/ 

/ 
/ 

1 

2 

Fig. 3:16 The f: are the components of the field tangential to ~ face and evaluated--= 

,at a vertex of the tetrahedron. 

independent. There however does not seem to be an 'obvious' choic~ for these remaining 

two. An' irrotational vector field which lies in the space of first order irrotational vector 

polynomials can then be written as a Iinear coffibination of the nine basis functions as 

(3.2~) 
1=1 

".t> 

For an irrotational vector field, the tangential component of the field must be 
1 

continuous across interelement interfaces. In order to impose continuity in the compo-

nents of the field tangent to an interelement face, ,the components of the field tangent 

to each face of the tetrahedronare evaluated at each of the vertices and equated to the 

corresponding tangential components of the field in the neighbouring tetrahedra. These 

tangential components are the f: s,hown in Fig. 3.16. There are twenty-four f: which 
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r 

'have to he equated at i~terelement faces in order0or the tang~~l comionent of the 

field to he continuous. This seems to require a lot of effort and.is unecessaryespecially 
.' 

rhen\a irrotati~nal field can be expressed as the gradIent of a scalar function. Hence it 

is not fruitful to consider three component irrotational vector ,interpolation any further. 

" 
The functions w hich have been constructed in this chapter are used in the following'_ 

two chapters to solve the two problems which were formulated in Chapter 2. The 

solenoidal and irrotational vector polynomials were constructed in such a way as to 

satisfy the requirement~ outlined in Chapter 2. A solenoidal vector function can be 

approximated by a 11near combination of the solenoidal vector polynomÏills Ui. The 

foefficients in the linear combination can be eaqjly transformed into another set of 

coefficients which a~e the components of the vector ~eld normal to an edge or a face 

and evaluated at a vertex. S(;milarlY, an irrot~tional ~ector field can be approximated by , \ 

a linear comhination of irrotational vE:ctor polynomials Vi. For 'two cornponent vector 
"'-'""" 

fields the coefficients in the Iinear combination can be easily transforrned into another . .,. 
set of coefficients which are the ~omponents ~f the vector field tangent to an edge ar.d 

., 

evaluated at a vertex. In the'case of the three component irrotational vector fields, there -
is no advantage in using vector approximatio'n polynomials and it is recommenrled that , ' -

the field he expressed in terms of a scalar potential. 
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CHAPTER 4 

THE FINITE ELEMENT MATRICES 

The two problems posed in Chapter 2 can now be solved numerically with the 

help of the finite elemént method and the vector interpolation polynomCals developed 

in Chapter 3. The problem region is first discretized int~ a finite element mesh· of 

triangles or tetrahedra. In Section 4.1.1 the current density is approximated by a 

two component solenoidal vector polynomial whose component normal to interelement 

edges is continuous and in Section 4.1.2 the electne field is approximated by a two 
~ , 

component irrotational vector polynomial whose component tangent to interelement 

edges is continuou~The method which is used to impose the continuity conditions and 

the boundary conditions is described in each section. In Section 4.2 the three component , . 
eurrent density is approxirnated by a three ,component solenoidal vector polynomial in 

order to determine the resistance of the wire. - .a 

4.1 The Two Component Vector Interpolation Polynomials 

4.1.1 The Two Component Solenoidal Vector Polynomials 

The 'power functional which has to be minimi~ed in order to determine the resis

tanc(; of the conducting plate is 

P = d ~ J·EdS 

= d ~ j~12dS. 
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The current density J in the above functional can be approximated by a linear combi-

o nation of the two component .solenoidal vedar polynomials of...p.r:a~r 1 over each triangle 
\ 

\ 

• 
to obtain 

f (L;=l dtUi) . (L~=l ~JUj.) 
= d t::. -'-----..:.........(]-----,~. dS 

5 5 
= d ft::. ~t=l LJ=~ dtd} Ui 0 Uj dS 

" 
'. 

If (] Îs a constant, the functional can be rewritten as 

~5 ",5 d d ! 
P L...t=l L...J=l , J dS l::; = Ui . Uj 

'0" t::. 
(4.1) 

\ 

where a' = a j d and has units of conductivity junit length. The functional Pl::; is thus 

approximated by 
__ At' 

. (4.2) 

where 

( 4.3) 

and each el~ment t,} of T is 
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The Finite Element Matrices 

The matrix T is the matrix C" defined in Chapter 3. 

6 -5 cos 03 -5 cos O2 2 -3 cos 83 

T= ~-
-5C0803 6 -5 cos Dl -3 cos 03 2 
-5cos O2 -5 cos Dl 6 -3 cos ~2 -3 cos nI ( 4.4) 

12 
2 -3 cos 03 -3 cos O2 2 - cos 03 

-3 cos 83 2 -3 cos Dl - cos ()3 2 

In order to impose the continuity requiremenis the dt are transformed into thè 

corresponding' d~ which were defined in Chapter 3. The d~ are the components of the 
. 

vector field which are normal to an edge of the triangle and evaluated at a vertex. The 

transformation which takes the dt into the d~ is the following: 

a 
a 

sin 03 D=w a 
a 

- sin O2 

and 

where 

a sin O2 
'" - sin 83 a 

a a 
a -sin81 

sin Dl 
, a 

a a 

d' = Dd 

d' 2 

a 
a 

- a 
sin 03 

- sin ()2 

a 

" 

- sin 03 

a 
a 
~ a 

a 
sin 81 

D is not a square matrix and is therefore not invertible. ~owev~r, 

0 0 _1_ 0 0 0 sin 83 
a 1 -} 0 0 0 0 sin 83 

D'= 
_ I_ 

D _1 _ 0 a ,sin 83 
~jn (J2 sin8} sin 81 sin 82 

a - sin 81 0 0 -1 " 0 sin 83 sin (J2 sin'/I~ 
sin 82 

~. 

a D a 0 1 
sin 81., sin 83 'sin 81 

61 

1 
1 

{ 4.5) 

(4.6) 

(4.7) 

- (4.8) 



The Finite Element Matrices 

is a transformation which takes the d' into d w'here the following compatihility condition 

must hold if Eq. (4.6) is satisfied: 

( 4.9) 

where 11 is the length of edge l of the triangle. 

It will now he shown that the condition given in (4.9) states that th~ integral over 

a closed surface of the normal component .of the, solenoidal vector field must vanish. 

Since the Ui are solenoidal, the integral of the divergence of J over a triangle vanishes: 

! "V. J dB =! "V. t dt Ui dB 
6. 6. 1=1 

. 5 

• = { L dt V' . Ui dB 
J6. 1=1 

= o. 

.' 
By the divergence theorem 

( V'. J dB = [ J~dl 
16 la6 

and the compatibilit:y conditioll (4.9) is easily ded~c,ed: 

.; 

0= [ Jndl 
186 

= [ ~&+f '~&+1 ~& 
Jedgel Jedge2 edge3 

= ~ (d' + d' ) + ~ (d' + d' ) + 13 (d' + d' ) . 2 .t 2 2 3 4 2. 5 6 

The continuity of the normal component of the so\enoidal field is therefore imposed 

by transforming the d into d' through d = D' d' and then hy equating the d~ of two 
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The Finjte Element Matrices 

neighbouring ~riangles across the edge that they share. For examp!e, in the two triangles 
p 

shown in Fig. 4.1, 

d/~ 15 d' d' 14 25 

, 

(4.10) 

Fig. 4.1 Imposing the continuity of the normal component of J across an interele-

ment edge. 

Conditions such as (4.10) are satisfied 'over the entire mesh by building a con-

nection matrix which equates the appropriate d~ at ail interelement boundaries. As 

àn example, the connection matrix for the two triangles shown in Fig. 4.1 will now 

be given. Before any continui,ty conditions have been imposed the 
1 

approximation of the functional P takes on the form 

(4.11) 
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where 

t111 tt 12 tLI3 t114 t115 0 0 0 0 0 

t121 t122 h23 t124 t125 0 0 0 0 0 

t 131 t 132 t 133 t 134 t 135 0 0 0 0 0 
t 141 t142 lt43 t 144 t 14 5 0 ·0 0 0 0 

Tdt8 = t151 t152 t1S3 ---t-TI4 t 155 0 0 0 0 ~O 

0 0 OQ 0 0 t211 t212 t213 t214 t 21 5 
(4.12) 

0 0 0 0 0 t221 t 222 t 223 t 224 t 225 

0 0 0 . 0 0 t Z31 t 232 t 233 t234 t235 

0 0 '0 0 0 t241 t242 t243 t244 t245 

0 0 0- 0 0 tt51 t252 t253 tZ54 t255 

and 

dIts = ('du d12 d I3 d l4 . dIS d21 d Z2 d 23 d Z4 dZ5) . ( 4.13) 

The d are then transformed into d' by 

,. 

d = D'd' (4.14) 

.. 
for each triangle and by 

ddu = D~,sd~tB 

for the entire rnesh. The d'are "connecté<JolJ ~ith the help of the C' matrix used ,in the 

following equation: 

,f 

d'll 1 0 O· 0 0 0 .0 0 0 0 d~ll 
d~2 0 1 0 0 0 0 0 0 0 0 d~12 
di3 0 0 1 0 0 0 0 Q 0 0 d~13 
di4 ~ 0 0 0 1 0 0 0 0 0 0 d~14 
d~5 0 0 0 0 1 0 0 0 0 0 d~15 
die 0 0 0 0 0 1 0 0 0 0 d~16 (4.15) = d~l 0 0 0 0 0 0 1 0 0 0 d~ill 
d~2 0 0 0 0 0 0 0 1 0 0 d' . 

c22 

d~3 0 0 0 0 0 0 0 0 1 8 d~23 
d~4 0 0 0 0 0 0 0 0 0 1 d~24 

,. ~ .. l' d~5 0 0 0 -1 0 0 0 0 0 0 

d~6 0 0 -1 0 0 0 0 0 0 0 

64 

~ 
l, 



} 

The Finite Elemeht .\1atrices 

. 
The functi6nai'q.,herefore Decornes 

p = d~TCT D~~dTdtiJD~H!Cd~ 
(JI 

(4.16) 

where the' d~ are the variables which describe the connected problem. 

nce the continuity of the normal component is i!nsured across every edge in 

the fin e element mesh, the êompatibility condition given by (4.9) has to be imposed. 

This ca be done in two ways. The first method uses another connection matrix which , 

eliminat s one of the d~. per triangle. This matrix is given below for the simple two 

however it is not clear how this Ilrnatrix should be 

constr ted for larger meshes. 

.-

d~ll 1 0 0 a 0 0 0 0 d~ll 
d~12 0 1 0 0 0 ·0 0 0 d~12 
d~13 0 0 1 0 0 a 0 0 d~13 
d~14 0 O' 0 l' 0 a a 0 d~14 
d~ 15 a 0 cr 0 1 a 0 0 d~15 
d~16 =lu 2ll. .::.!.ll =iu -1 a 0 0 d~21 / 13 / 13 / 13 /13 
d~21 0 0 , 0 0 a 1 0 0 'd' . c22 
d~22 0 1 0 0 0 a 1 0 "d' c23 

. d' 0 1 0 0 0 a .0 1 c23 

d~24 0 a !.2.a !.u 0 =ln ' =ill -1 
122 122 122 /22 

The second method uses 'Lagrarige multipliers ta impose the compatibility conditio'ns. 

A condition of the type shawn in (4.9) must 'be satisfied for every triangle in the mesh. 

This means that for the two triangles s,hown in Fig. 4.1, the two following constraints 

must hold: / 
III (d~l .l.- d'12 ) + 112(d~3 + d~4) + 113(d~5 + d~6) = 0 

121 (d~l 7 d~2) + l22(d~3 T d~4) + l23(d~5 + d~6) = O. 
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The Finite Element Matrices 

The ab ove condition can be reexpressed in the form 

Qd~la = QCd~ = o. 

.' ...... , 
... 

(4.17) 

Finally the boundary conditions must he imposed. For the conducting plate', the 

houndary conditions given in Chapter 2 were 

Jn = 0 

! Jndl = i, 
LI 

on rI (4.18 ) 

(4.19) 

(4.20) ( 

wCre Cl is a curve whichjoins rI ta r~. Cdnditions (4.18) and (4.19) are easy to impose 
. ~. 

as they require that the compone nt of the current density normal ta rI and r'l be zero. 

'" ". 
Because the current demity is approximated by first order solenoidal vector polynomials 

over each triangle, the normal component of the current density need only be irnposed 

at twp points on an edge which makes up part of rI or r~ for the normal component. 

of the current density ta be zero every\\:,here on that edge. Hen~e, the appropnate de, 

whi~h are the components of the vector field normal ta an edge must be set to zero. 
~ , 

The remaining coefficients are denoted hy d'J' Condition (4.20) is imposed by choosing 
1 • 

a path through the fini te element mesh and satisfying the integral constr~int along that 

-path. This path joins _ rI to r~ and is made up of. k edges. The integraI const.raint 
f 

reduces to a Iinear equation relating the dj which correspond to the edge~ which lie on 

th!J path: 
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== f Jndl + ... + f - Jndl 
edgel edgek 

tel (d' d') tek (d' . d' ) == 2 ell + e12 + ... ~ 2 ekl + pk2 

==! (4.21) 

where let is the length of the ith edge and d~tl is the component of the current den~ity 

normal to edge t eval4ated at vertex 1 of the edge. This làst condition. which can he' 

reexpressed as . --
./ 

_ i~22) 

, 
can he imposed with the help of a Lagrange multiplier or by explicitly eliminating one 

of the dl which appear in (4.22). 

The functional which is obtamed when the functionaJ (4.16) is constrained by the 

conditions (4.17) and (4.22) is 

. (4.23) 

where T' ='CT D~;8Td,(JD~lSC and Q' = QC for the dl' L now has to he minimized 

with respect to the di, the ..\11 and J,t. Taking the first derivatÎves of L with respect to 

the d't, the À, and J,t, 

&L 2T'd' 
- = __ f + 2Q'T). -t- 2J,tb 
Bd' a' , 

f 

&L = 2Q' d' 
ô>. f 

&L = 2(bT dt - 1). 
&J,t 
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"'" is obtained. The above can he reexpressed as 

if 

(

T' /0' ~'T 
Q' 0 
bT 0 

AlI the entries in the 'vt;ctor on the nght hand side of (4.24) are ,zero except for 

,the last one which prescribes the value of the total current J. The system of equations 

in (4,..24) can now be s6lved' in order to find the approximation for J in the space of first 

order solenoidal vector polynomials of order 1. Unfortunately the matrix in (4.24) is 

indefinite due to the 0 bloc~ on the diagonal. Had the constraints (4.17) been imposed , 

with the help of connection matrices, the matrix in the resulting system of equations 

would have been positive definite. This means that a Cholesky decornposition or even 

an incomplete Cholesky decomposition cannot be performed on the matrlX in (4.24) as 

it is not positive definite. However, it is not c1ear how a connection matrix should he 

constructed in order for the constraints (4.17) and the boundary condition (4.22) to he 

satisfied. 

4.i.2 The Two Component ,lrrotational Vector Polynomials 

In Chapter 2 the power functional w,as also expressed in terms of the electric field 
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and the electric field E can be appr~ximated by a liqear combination the two component 
- 1 

irrotational vector approximation functions over each triangle in the finite element mesh 

which when substituted into the functional yields 

Since a is assumed to be a constant, it can be taken out of the integration so that 

( 4.25) 

is obtained where 

a' = ad, 

\ ( 4.26) 

and the T matrix here is the same as the one for the solenoidal vector polynomials giv:en 

in (4.4). 

In order to impose continuity in the tangential component of the electric field 

across interelement edges the Ct need to be transformed in the c~ shown in Fig. 3.2. 

The < are the components of the vect?r field tangent. to an edge of the triangle and 

evalu~ted at a vertex. The transformation matrix which tak,es the Ct into the the c~ 

is the transformation D which transformed the coefficients dt of the solenoidal vector 

intetpolation polynomials ~nto the coefficients d~. Therefore 
) - --

) ~ 

C' = De· (4.21) 
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The Finite Element Matrices 

Once more D is not invertible, however D' otransforms the c' into the c as long 

as the compatibility condition (4.9) holds. This conditions can now be reinterpreted in 

/terms of Stokes' theorem over one triangle. Since the electric field is approximated by 
'1 

irrotational vector polynomials 

. 5· 

{ V' ~ EdS = f V' x Lc,v\dS 
J 6 6 1=1 

5 

= f L C, V' x VidS 
6,=1 

= o. 

By Stokes' theorem 

j" JE· dl =! V' X E dS 
86 6 

and the compatibility (4.9) is deduced from 

Therefore the care transformed into the Cf by 

, 

c = D'c' ( 4.28) 

on each triangle and the continuity of the. tangential component of the field is ensured 

by equating the c' across interelement edges. This is done by connectin~ the c'in the 

same way as the d' were connected in the last section and yields the following expression 

\ . 
\ 
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.' 

dfor the functional 

P , '"CTD'T T 'n' c' = a Cc dIS dl8 dIS Cc' 

'If the same mesh is' used to obtain the expression for the fun~tional in (4.16) and the 

expression fo; the functional in (4.29), then the C ,':'TdIS' and D~18 in both expressions 

are identical. The c~ are the variables whic? describe the connected problem: 

The compatibility conditions, which can° be rewritten as 

//QCc' = Q' c' = 0 
,/ cc. 

( 4.30) 
J-' 

are then imposed with the help of Lagrange multipliers. Once more for the same finite 

element mesh the Q in (4.30) is identical to the Q in (4.17). 

Finally, th'e following boundary conditions have ta be imp9sed on the tangential 

component of th~ electric field in the conducting plate: 
'--.. 

Et = 0 on f 2 '- ( 4.31) 
(\ 

Et = 0 on f~ 
, 

, (4.32) 
.1 

1 E· dl = V - V' . "(4.33) 
C2 ' 

>-, 

The two conditions (4.31) and (4.32) are easily imposed by setting the appropriate < 
to zero. The int~gral condition (4.33) is s~tisfied by choosing a path C2 frorrfr 2 toO r; 

~hich is made up of k triangle edges and setting the integral Qf the tangential component 
----

1 

of the electric field over these edges equal to the potential difference V - V': 
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The Finite Element Matrices 

=!' Etdl + ... + r y Etdl 
_ , edge l ) edgek 

1 el ( ~ ') 1 ek (' ' ') = 2 CIl + C 12 + .. .J+ 2"" C k l + C k2 

= V - V'. 

The above can be expressed as 

T' .. ( ') a CJ - V,- V = 0 (4.34) 

"-J ' /;-~ 
and imposed using th~ ~agrange mult.ipli~r wethod. The cf are the ~~effiçients w~ich 

[emain once conditions (4.31) and (4.32) have been imRQsed. 

" 

The functional which is obtained when the functional (4.2.9) is con~ 

(4.30) and (4~34) is 

L' ~ u' (c7"i" cf) + 2,\ T Q' cf + 2~ (a T Cf - (V - ~')) .. ~4.35~ 

The functional is ~inimized by taking first derivatives with respect ta- the cf' the '\" 

and Ji" 
• ~.); '1 ",' 

.. 

aL~ , .. NT\ _ aCf = ·u! \.21 C J ~+ 2p,a 

aL 1 l ' - = 2Q Cf \ 
a,\ . 
aL " - = 2 (aT Cf - (V - V')) . ap, , 

1 

~ " :~ettin~ the ab ove derivati~es to zero: the fOllowing matrix' equ~tion is obtain~~": 
• /" ' P , " 

,{ 

( q'T' Q'T a)( cf) ,( 0 ) 
é '. 

Q' 0 o ,\ = o,J'. .( 4.36) , 
, aT 0 0, Ji, V - V' , 
s 

" 
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\) 

4.2 The Three Component Solenoidal V.ector Polynomials 

As in the case of the two component current density vector, the functional for the •. ' 

three component current density vector can be approximated over a tetrahedron by 

( 4.37) 

where a is a constant, _ 

eT = (el e2 e3 C4 ~5 ea e7 es cg ew eu), , (4.38) 
~J ~ 

, ' 
and T is the Gram matrix for the eleven three component solenoidal vector polynomials 

6e_erz 5el3 5e'14 Sel5 4elG 2ell 3el2 3et3 2e14 3etS 
6e22 5e23 4e24 5e25 5ezG 2eZI 2e22 3e23 3e24 2e2S 

6e33 5e34 4e35 5e3G 2e31 3e32 2e33 3e34 3e3S, 
6e44 5e45 5e46 3e4t 3e42 2e43 2e44 3e45 

6e55 5eS6 3esi 2eS2 3eS3 2eS4 2eS5 
.6es6 3eGl 2eG2 2eG3 3eG4 2eG5 

2ell et2 el3 e14 eiS 
2e22 en eZ4 2e25 

2e33 e34 e35 
2e44 e45 

2e5S 
(4.39) 

, 
where ell = ej . ej and b. is the volume of the tetrahedron. 

Before any continuity conditions have been imposed, the approximation of the 

funet Î<lfial is 

p = e~8TdlBed'8 
a 

The e~ are transforme~ inta the carresponding e: shmyn, in Fig. 3.10 via 

. e' = Ee. 
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and the e~ are equ~ted across interelement faces in order to ensure that the component 

of the approx,imation ta the field normal ta interfaces is cantinuous. E is not a square 

matrix and i~ therefore not mvertible. However the tran3,\armation 

O· a llA4 a a lIAs 0 llA2 0 0 0 0 
a 0 0 0 0 l2As 0 0 I~ ... 0 a 0 0 , 

-lsA4 .",0 0 0 0 0 0 0 ~lsA2 0 0 -LsAt 
0 0 0 l4As 0 0 l4Az 0 0 0 l4Al 0 

E' = ~ 
0 0 0 0 0 0 0 0 a 0 lsA! 0 

-L6A4 0 0 0 a 0 0 0 0 0 0 0 
3~ 0 0 0 -lIAs 0 0 0 0 0 0 -LIAt 0 

-lzA. -lzA. 0 0' 0 0 0 0 -lzAz 0 0 .!.lzAl 
0 0 lsA. 0 0 LsAs' 0 0 0 0 0 0 

-l.A. 0 0 0 0 0 0 0 0 0 0 -1.At 
0 0 0 - lsAs 0 0 l5A2 0 0 l5Al LsAl 0 

(4.42) 

transforms thè e~ Înto the et, and (4.41) is satisfied if the compatibility condition 

holds. The it in (4.41) are the length of the edges of the tetrahedron shown in Fig. 

3.10 and the At are the areas of the four faces of thetetrahedron. The compatibility 

condition (4.42) can also be deduced from Gauss' as was the compatibility condition 

(4.9). The requirement that the component of the solenoidal vector field normal to a 

face be continuous is then irnposed by equating the e' across interelement faces. This is 

done by constructing a connection matrix as in the previous section. The approximation 

ta the functional becomes 

ITCTE'T T E' C' P = ec dt8 dIS dtB ec 

(J 
(4.44) 

1: 
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where 

and e~ ,are the variables which describe the connected problem. The compatibility 

conditions which can be expressed as 

(4.46) 

are once more imposed with Lagrange multipliers. 

J 
The following conditions oh the normal component of the current density must 

also be imposed: 
o 

J·n = 0 

j. J. ndJ = 1 
S Q' 

l ' 

on El 

~ 

( 4.47) 

( 4.48) 

Condition {4.47) is satisfied by setting tO,zero the appropriate e~ and 

the r~maining coefficients ~re denoted by el. Condition (4.48) is imposed by choosing 

a cross~sectional surface SI through the finite element mesh whose boundary lies in 

El' This surfaces is made up of k faces and the integral constraint reduces to a linear 
f 

equation relating the el which correspond to the faces in SI: 

= 1 \ (4.49) 
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/ 
where·A ft is the area of t~e tth, face and elt! is ~he component of the cutrent density 

- " 

normal to face l. and evaluated at vertex 1 of that face. The above condition can be 

reexpressed as 

( -t.50) 

and can be imposed with the help of a Lagrange multiplier. The functional which must 

be minimized when the functional (4.44) is cons_trained by (4.46), (4.47) and (4.50) is 

(4.51) 

. where T' = CT E~~sTdtsEdt8G and Q' = QG for the el' The .resulting system of eqtia-

tians is 

1 
\ 

; . 

( 

T'/a 
Q' 
bT 

Q'T. b) ( e't) \ ' ( 0 ) o 0 = >. = 0 , 
'0- 0 p" 1 

(4.52) 

The solenoidal vector interpolation functions are used in Chapter 5 to compute 

the current in a wire. However the three component vect<?r inteFpolation functions ~re 

not implemented since it is still much easier to use a scalar potential when the solution 

for an irrotational field is sought. 

( 
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CHAPTER 1) 

APPROXIMATIONS USING THE VECTOR POLYNOMIALS 

In this chapter the reslstance of the two dirnensional conducting plate presented 

in Chapter 2 is cornputed. The irrotational vector functions ~eveloped in Chapter 3 are 

used to approxirnate the electric < field and th~solenoldal vector functions are used to 

.. 

approxirnate the current density. Next the resistance and the conductance of the three., .. 

dimensional conducting wire are calculated once ~n approximation to the solenoidal 
. . 

eurrent density and the irrotational electric field fn the wire a~e determined. 

5.1 The Electric Field in a Conducting Plate 

In Chapter 2 two methods for approximating the three component electric field 

were given. In the first case the power functiop.al 

(5.1) 

is ~inimized suôject to the principal boundary conditions 

X=V 
(5.2) 

x = Vi 

The function X which makes P a minimum is rp., Renee the electric field is computed 

from 

In the second case; 

" E = \lep. 

p == la 0' IEI2 dV 

77 

(5.3) 

(5.4) 

, 



/ 

\ ' 

1 . 

Approximations Osing the Vector Polynomials 

is minimized su bject to 
" . 

V"<E=O in 0 

on E2 

Et ~ on E~. 

f E. dl = V - Vi 
1C'2 

(5.5) 

(5.6) 

(5.i). 

(5.8) 

The above two methods are equivalent. Therefore the a' proximate .solutions ob

.tained for the electric field using each method aie the same ~f the appr~imations to E 

used in both cases span the same subspace of the space in ,hich E lies. It can be shown 

that if polynomials of order n which are continuous and p. cewise differentiable are used 

to approximate the scalar functÎon tp l the electric field E lies in the, space of irrotational 

vector polynomials of order n - 1 w hose tangentiaL components are continuo us across 

interfaces. This can be seen from ~q. (5.3). Since E is·thè gradient of:p. E is irrota

tional for any cp. If cp is a polynomial function of order n then E is a vector polynomial 

of order n - 1. Finally. if cp is continuous across an interface, then the derivatives of 
c, 

cp in the direction tangential to the interface exist and are equal on bot~ sides of the 

interface: Et is therefor~ continuous. It can also be shown that if E lies in the space of 

irrotational vector polynomials of order n - 1 whose tangential components are contin-
'1 .. 

uous across interfaces, a scalar function cp can be found such that E is the gradient 'of 

cp and such that tp is a continuous piecewise differentiable polynomial of order n. Since 

E is irrotational and the region n is simply connected, E is a conservative field and 

(5.9) 

where Po is a poi~t of reference in 0, p is any other point in n, and cp(Po) is a known 
• J 

constant. If E is an irrotational vector polynomial of order n - 1, integrating E along a 
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curve joining Po to p, a polynomial of order n is obtained for cp(p). If the path from Po 

to p in the integral of (5.9) crosses an interface, then a ip(p) which is continuous acros~ 

the interface can be found since Et is continuous. 

In conclusion it can be said that the approximation to E lies in t'he same space 

whether it is written as the gradient of a continuous piecewise differentiable scalar 

polynomial of order n or whether it is written as an irrotational vector polynomial of 

order n - 1 whose tangential components are continuous across interfaces. Therefore, 

whether the functional given by (5.1) or the functional given by (5.4) is minimized 

subject tq the principal conditions, the same approximation to E is obtained if the 

approximating functions are chosen as stated above. The same can be said about the 

two component electric field. Whether the functional 

. p= ~h ulVxl'dS (5.10) 

is minimized subject to the' principal boundary conditions 

x = V 
'(5.11) 

x = V' on r~ 

or ,the functional 

(5.12) 

is minimized subject to the conditions 

Et =0 

Et = 0 on r~ 

r Etdl = V - V,' JC2 

(5.13) 

the same approximation to E is obtained wh en the above mentioned approximating 

o functions are chosen for the scalar potential and ,the electric field. A similar argument 
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, 
can be followed when the two component current density is written in terms of a stream 

function. The approximations obtained for the current density are the same whether 

the functional 

(5.14) 

, . 
is minimized subject to the principal boundary conditions 

and t/;, the function which makes P stationary, is approximated by nth order polynomials 
. , 

- ~ which are continuous and pi~cewise differentiable or whether the functional 
\ 

is minimized subject to 

P = d { ~2dS 
J.E Cl 

• 

J n = 0 

d { Jndl = I. 
1 LI 1 

on,. rI 

on ri 
1 

(5.16) 

(5.,17) 

(5.18) . 

(5.19) 

~ J is approximated, by 1- 1st order irrotational vector polynomi~s 1'~hose normal 

~ompoilent is continuous across interfaces. 

The first orQer ,irrotaj;ional and solenoidal vector polynomials developed in Chapter 

3 can be used to approximate the electric field E and the current density J and the 

solution which is obtained must be equivalent to a solution which would be obtained if 
1 

the scalar function is approximated with second order polynomials. The vector functions 

are now used to find J and E in the two dimensional conducting plate by minimizing 

the power functional given in (5.12) or the functional given in (5.16). 
1 
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Approximate values for conductance and resistance can then be computed from 

Eqs. (2.42) and (2.43) respect.rvéTY. Eqtration (2.42) is an upper bound for the conduc

tance or a lower bound on the r-esistance ,and ~q. (2.43) gives an upper boun'd on the 

resistance. An average of the two values can be used to approximate the resistance in 

the plate. In the next section conducting plates for which the resistance is known are 

presented. The current density and the electric field are then computed for these two 

dimensional plates and the computed values of resistance are compared to the exact 

value. 

5.2 A Conducting Plate 

The conducting plate shown in Fig. 5.1 is considered. This plate r; is symmetric , 

about the center line: rI is of the same shape as r 2 and r'[ is of the same shape as 

r~. Furthermore it is assumed that rI' r~, r 2, and r~ are differentiable and that the 

four corners of the plate are right angles. In order to compute the conductance of that 

plate, the power functional 

(5.20) f-

is minimized subject to 
x=v on r~ 

(5.21) 
x = V' on r~ 

. and G is computed from 

G= P(rp) 
. (V - V')2 

, 

( 5.22) 

where rp is the scalar function at which P is a minimum. II\, order to compute the 
• I~ 

resistance, the power -functional 

p = - ln' x \1xl dB , dl 2 

(J r: 
( 5.23) 
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Fig. 5.1 A eondueting plate E whieh is symmetrie across the center line. 

is minimized subject to the principal boundary conditions 

Il 
X = - Ion fi 

d 
12 

X = d on r 'l 

and R is computed from 

R = P{1/J) 
UI - 12)2 

whèfe t/J is the Bealar function at which P is a minimum. 

(5.25) 

" .0 
. It will now be shown that the functionals (5.20) and (5.23) are identical if (J == l. 

The boundary conditions (5.21) and (5.24) are the same by virtue of the shape of the 
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region E if V is set equal to ft and V' is set equal ta 12, The function~l (5.23) can be 

rewritten as follows: , 

p = ~ { (n' x V'x) . (n' x \7)()dB 
a JE 

= ~ { ni. (V'x x (n' x \7X))dS 
• a J r; 
=c~ f n'. ((V'X' V'x) n' - (V'x . nI) V'x) dB aJr; , 
= ~ f V' X • V' X dS 

a JE ' (5.26) 

'i 

sin~é n' is a unit vedor normal to the plate L .. When (J = 1 th~ functlanal (5.26) is 

identical ta the functianal (5.20). Hence, 

If 

Il 

then' 

or 

hence 

P(1/J) = P(<p). 

G = P(<p) = P(tJI) = R 

1 -=R 
R 

R = 1 or ,R = -1. 
! 

Since the resistance must be positive, . 
-' 

·R = 1. 
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The conducting region shown in Fig. 5.1 therefore has a resistance and conductance of 

1. In the following section the resistances of plates which possess the same symmetry t 

as the plate shown in Fig, 5.1 are computed. Smce the exact value of the resistance of 

each of these plates is known. the ,error in the approximate value of resistance can be 

computed. 

5.3 The Two Component Vector Approximation Function's 

Th~ exact solution for the electric field or the current density can be expressed as a -
linear combinat ion of the vector polynomials constructed in Chapter 3 if the solution for 

Eor J lies in the space offirst arder vector'polynomials. Furthermore the approximation 
,. 

of the resistanc~ of the plate is equal ta the exact value of resistanc€ since 

RappJ = P(1/;app) = P(t/J) = R. 

The resistance of the square plate shown in Fig. 5.2~is computed first. The 

'7 conductivity a and the thickness d of the plate are assumed to be 1. The current " , 
density over the "pIat~ is found by minimizing 

subject to 

J n =0 

-f----1ndl -= 1. 
Jr 2 

.. 

on r~ 

t The reader should refer to Duffin (1959) for more on conjugate condfictors. 

84 

(5',30) 

(5.31) . 



Approximations Using the Vettor PolY1}omials 

• 

Fig. 5.2 A square eondueting plate. 

\ 

~The sq~are plate is triangulated as shown in Fig. 5.2. The enrrent density is 'ap-

proximated over eaeh element by a linear combinat ion o} first order solenoidal veetor 

polynomials and the continuity of the component of the approximation to J nor~al to 

interelernent edges tS ensured. Since the solu tion for the etirrent density over the square 

plate is a constant field, the eUfrent density can be expressed as a linear combination 

of first order veetor polynornials. Therefore the value of resistanee computed from 

(5.32f 

shou!': be equal to 1. The current density is epmputed using the me~hod described 

in Chapter 4 and the resulting resistance is fOUhd to be 1 even when the plat~ i~ 

triar~la"'d èS shown in Fig. 

\ 

\ 

j 
\ 
\ 

\ 

53. 
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Tf 
1 

r~ 

Fig. 5.3 An alpernate triangulation of the square plate. 

r~ 

The vector approximation functions are now used to approximate the current 

" 
density over the cond~cting phite shown in Fig. 5.;4. Although the c-urrent density is 

not known a priori, the resistance of the plate is known to be equal to 1 when (J = 1 

because thè pIi.t'é has the symmetry described in Section 5.2. The boundary segments , , 

rI, r~, r 2, and r~ are approximated by continuous .piecewise differentiable curves. The. 

funciional given in (5.30) is mini~ized subject to the principal conditions (5.31) for 
" . 

the conducting plateL: shown in Fig. 5.4. The eurrent density is approximated by a 

solenoidal vector polynomial of order 1 whose normal component is continuous across 

the interelemènt edges even though the exact solution is not expected to lie iIl:,..that 

space. Thé resulting app.roximat~on to the current density is shown in Fig. 5.5. The 0 
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, Fig. 5.~., A symmêtric region ~hich is uniformly triangulated. 
. " . . 
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r,esistance is computed using Eq. (5.32) and is found to be 1.002726. 

The conductance in the plate'i~ also computed<~ It was shown' in Section 5.2 that 
~ . 

,~he conductance of the pla~ould be ,equal to the resistance. In order to compute 

conductance, tHe functional 

is minimized subject to 

P = llE I2 dS 
E. 

, • Et = 0 on r 2 

Et = 0 on r~ 

1 Etdl ~ 1. 

. (5.33) 

(> 

(5.34) 

.... \ • rI 
It caI} he seen from th~·-r~.3"lr and (5.34) that the conditions on Jn are identical t'o 

Ihose on Et b~ vN-tue' of the shape ofl he redon. ;hat is bec ause rI has ;he same shape 

as f 2 é,\.nd fil has the.same shape as r~. ~urthermore, as was mentioned in Section 

4~1.2, the 'discon,nected T matrices ohtained when E is approximated by the solenc;>idai . 
vector polynorrÎials and when J is apprbximated hy the irrotational vector polyno~ials 

over the same mesh ~re ide~ticlr, Therefore it is, ex;e.cted that the approxÏb.lation to 
\) ~Ào. 

>, 

E' should be equal to the approximation to J. and that. the computed value for the 

conductance 

GappE = P(E* app) (5.3'5) A 

• 
should bè equal to the RappJ corp.puted by (5.3:Z), The computat,ion of the conductance 

of the plate is performed because the triangulation of E is not symmetric about the 

cen~er line and it was thought that the asymmetry might ca1,lse the value of the~ con':' 

ductance to differ from the value of the resistance, The computed conductance turns 
• ? " • • 

\) , , \ . 
out, to he 1.002725. The difference between the computed value of resistance am! the 

1 • 

computed value of conductan~e occu,rs only in the ~evel1th significant digit . 
• 
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Fig. 5.5 The current density over the conducting plate shown in, Fig. 5.4. 
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1 

r 
; ~ 

Fig, 5:6 Another conducting plate whose resistance is 1. 

- .' 

It is- reasonable to expect that a..more accurate solution for t~e 'vecto}' fields and 

ultim~tely for the resistance and the conductance would be computed if the triangulation 
• Co L \,) • 

of the ~ shown in Fig. 5.4 w~re.refined. Such result~ havè b~en shown by Ciarlet 
.. l '\ 0. _..-

(1972,1978) and Strang (1911). It is not however clear how the approximation functions 

behav!, on triangles, of different shapés. It was shown in C:hapter 3 that the Gram 

dderminant of the vector polynomials is equal to zero only when the area of the triangle 
, IJ. r 

-, 

is tero. The resistance of conducting plates of the type described in Section 5.2 is now .. , 
, 

computed. 'àTh~se conducting plates are.trianguljl.ted uniformly, each with triangles o{ 
, . . .. 

differ.ent shapes. The plates shown in Figs. 5.4 and 5.t> are examples of two of these .,. 
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.... " t ·It ?",~I . 
plates. The effe~t of th~ triangulation"on the error· in the ,esistanc~ of th~ pl~te is shown 
. . 
in Fig. 5.7 (a). The erior in the' resistance is grapJted versus th~ angle of the smallest 
" r' ! 

angle in tlie triangle. ft cano be segn from the graph that the error in the resistance . . , 
begins to increa~e rapidly OI~ce. the smallest angle in the ~riangle is less than 14°: It is 

interesting to note that the erro{ increase~ linearly as a function of the cotangent of the- 'l{ 

smaHest angle tn the triangle for ~ngles of less than 26°. This graph is shown i11 Fig. 

, .' 
5.((b). !J'he conductance was also computed for aIl the ,colJ.du;cting regions. The values 

for the res1stance differed from th.ose for the conductance only in ·the sixth or seventh , ... .... " 

.. significant digit. 
.. 

. , . '-, 

lb.. ,:~ r 
5.4 The Three Compon~nt Vecto~ Approximation Fimctions; 

. . \. . " . 
1 .f \~, 

The r1Fsistance of thiee three dimens~al wire~ who~e conductiv.,ity u 1s equal to 
, • , '\ 0 

L \. . < 

[ 1 is computed'. 'fhe- current density is computed by minimizing the functional 
. ., 

~ '" ' ,f' 
~ su bjeèt to the conditions 

\ " , 

". . .. 
./ 

J·n=O onEl 

, l J-~ ndS =;, 
51 , \:; 

T~e resistance in the wire is computed at ~he v~lue J" which minlinizes the functional in . ' 

(5.36). The cutrtmt density is approximated by the cthrée component solenoidal vec.for-
- , ',, )<1 

fu llctions devtloped in Ch'apter 3 and the approximation tô the resistance in th~ wire 

therefore is 

, 

, ~ 

Ra,PPJ/= .P{J~ apl')' 
1; 

/ 

/ 

/ 91 , 
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Fig. 5.7(a)' The error in the resistétn.ce of the co~ducting plate as a function of the - , .,. , 

'. smallest angle of th~ tri~gles in ~the mes.h. 

If the exact solution for the eurrent density J- lies in the space of first order solenoidal 

vector functions, then the approximate value of resistante is equal to the exact value. 

The ~~si~ance ~f ~ ,jube is deter~ned first. The length C::f the side ~f tte c~be' is 
equal to 1. "The tesistance of t~e ,cube can be determined aqalytically sinee 

, ' 

1 
R=

uA 

'92 
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Fig. 5.7(b) The error in the resistance àf the conducting plate as a function of the 

cotang,ent of the 'smallest angle of the triangles !n the mesh:' 

where 1 is the length of the cube and -A is the cross-sectional area. Since a =- 1, th'& 

resista,-tce of the cube should be eqùal to 1. The solution for the current density in the, 

wire 'is a constant field and can therefore ~e expressed as a tinear combination o~ the 

fj'st order solenoidal vector polynomials. The computed value for the resistance sh~u1d • ,therefore be equal to 1. The current density was computed l1sing the method described 

. \ 

, \ 

. 7'" ... ,/ 

in Chapter 4 for a finite element mesh' of twenty-four tetrahedra and theoresistance was .. 
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. \ . 

) ,Fig. 5.8 A three dimension al, wire in t~e shape of a cube. . . 
-, 

found to he-O..999999 . 

, J- f 

,The resistance is then calcul~ted for the wire shown in, Fig. 5.9. For the second '. 

wîre the current density ,can ais? be expressed as a linéar combination of the first order 

solenùidal vector polynomials. The approximate value of resistance should therèfore be 

equat to 'the exact value of the resistance of the wire. The eXact yalue of the resistance 

in thep wire can he ca\culated from Eq. (5.39). For the geometry shawn in Fig. 5.9 the 

r~sistance is 0.2666667 and the resistance which is fmind using Eq. (5.38) 15 0.2666668. 
" 

$"" 

The resistance of the thir1 wire shown 'in Fig. 5.10 is computed next. The first 
> 

half of t~e ",ire shown in Fig. 5.10 is identical to the first half of the wir,e shown i-!l 

5 .. 9 but the second half is bent upwàrds. Although (5.39) cannot be used any longer 

to compute the resistance of that wire, it is dear that tlie resistance should be greater 
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Approximations Usingthe VectCJr Polynomials 
, -' \ . , , . \"., ' 

Fig, 5.9 

p 

,-
/ 

) 

-.(;--
, ' , ,. , 

A second three dimensional wir . 

.\ 
\ 
\ 

\ 

, , . , 

• 1 

4 

than the resistance of the wire shown in Fig. 5.9 bec~se the length of the wire has . " ( . 
increased and the cross-sectional area has decre sed' by virtue of the ben~. The 

approximate value of'resistance was found to be 0.286018. for the triangulation shown 

in Fig. 5.10. \ 
... '. \ 

The conductance of the third wire was also computed: The electric field in the 
1 

region was determined by minimizing the functional in (5.1) subject to the principal 

boundary cond~tions 
x = 1 on E2 

---.,I;J 1 .. ) 

x =0 on E~ 

and then using Eq. (5.3). The conductance in the wire is comp~ted from 

G = P(ip) . 
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Fig. 5.10 • A third three dimensional wire. 

The' ~calar potential cp was approximated by a continuous function which is a second 

arder polynomial in each tetrahe'dron, The approximation to the conductance in the 

wire was found to be 3,765481. Recalling Eq. (2.37), 

RappE ~ R :::; RappJ, 
\ 

li, 

the 'value of the resistance in the wire can be estimated to be the a:verag~ of 

RappJ. Since 7· 

RappE = 0.265570 

an'd 

RappJ, = 0.286018, 

the resist~nce in the wire is estimated to be 

R - RapPJ + RappE 
app - 2 = 0.275794. 
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)f~ -

The percentage error in the approximation of the resistance is 

100 = 3.6% 

\ 

for a finite element mesh of twenty-four tetrahedra. It is reasonable to expect that the 

approximation to the resistance will improve if a finer mesh is us~d. 

5.5 ,Conclusions 
,j 

In this thesis solenoidal and irrot~tional two component first ~rder vector polyno-
, 

v mials defined oyer a triangle and three component first order vector polynomials defined 

ovw a tetrahedron were constructed. These are intended to be used when an approxi

mation for either a solenoidal vector field or an i,rrotational vector field is desifed. They 

- were l1:sed in this thesis to approximate the statie electrie ~eld and the current density 

in two dimensional conducting plates and in three dimensional wires. To the best of the 

author's knowledge, these vector polynomials do not appear in the literature although 

the (leroth order analogues were constn,lcted by Synge and McMahon in 1952 and 1953. 

Of the four families, the three component solenoidal vector poJynomials are the 

most interesting sinee they bffer a new method for appr~~imating' three cOillPonent 

solenoidal vector ijelds. The solenoidal field need not bé expressed as the curl of a , . 
vector potential and can bé .. pproximated directly. Because the solution for the field 

is unique, problems encounter d due to the nonuniqueness of the vector potential can 

be avoided. In particular, the boundary conditions in terII1lof the field need not be 
r; 

trç,nslated into boundary conditions in terms of the potential and the three components 
: c 

, ' 

~f th~~~~~tor field can be computed without, first computing the three components of 

the vector potentiaJ. 
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When a solenoidal vector field is approximatêd, the coefficients in the Ritz mini-

" rnization are taken to be the components of the vector field normal to the element edges 

or faces. Such a choice of coefficients facilitates the imposition of boundary conditions 

since for solenoidal vector fields the boundary conditions arc stated in terms of the' 

components of the field normal to the boundary. Similarly when an irrotational vector 

field,is approximated the coefficients in the Ritz minimization are taken to be the com
l' 

ponents of the vector ,fielçi tangent to the element edges. or faces because the boundary 

_conditions imposed on an irrotational field are stated in terms of the component of the 

field tangeJ;).t to the boundary. 

Although it was shown in Chapter 3 that the Gram determmant for the two 

component vector polynomials vanishes only when the area of the triangle is zero, no 

similar result could be proved in the case of the three component vector fun.ctions since 

there are eleven three component solenoidal vector polynomials and no way could be 

found in which to simplify the Gram determinant in order to show that it would only ~ 

vanish when the volume of the tetrahedron is zero It coulcl easily be shawn that for 

specifie tetrahedra, the Gram determinant was nonzero. HO,wever, trying to reduce the 

Gram determinant is not the method which should be followed !TI order to show that the 

eleven three component solenoidal vector polynomials are linearly dependent only when 
.., 

the volume of the tetrahedr~n is zero. It mast be shown thàt if a basis for the sp~ce of 

nth order sqlenoidal vector polynomials is defined over a tetrahedron, then any affine 

, transformatIOn which takesO that tetrahedron into another nondegenerate tetrahedron 

will induce a nonsingular transformation on'the basis. 

\ 1 

No attemp-t was made in thlS thesis to find vector polyn'pmials of higher order 
Q \ 

\ 

which satisfied the constraints outlined in Chapters 2 and 3. Thè- method used in 

Chapter 3 to construct the first order polynomials would be very tedious to undertake 
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for higher or-4er polynomials. A more general way to de termine the higher order families 

should therefore be developed. 

FinallYl the vector polynomiall'i, were used to approximate the solenoidal current 
. 

density and the irrotational electric field. A word of caution should be given at this 

point. u The solenoidal vector' polynomials can be used to approximate a solenoidal 

electromagnetic vector field but the)' should not be used to approximate the vedor 

potential even when the divergene~ of the ~r potential is zero, The solenoidal vector 

polynomials constructed in this thesis' only ensure continuity in the normal component of 
, ~ 

the field. The vector potential however needs to <have norrnal1'nd tan~.tial éomponent 

continuity. Flrst, if the divergence of the vector potential ~o zero. the vectar 

patential must be contin"uous in the normal direction since it is a solenoidal field. Sec~nd, 

the eurI of t,!J.e vector potential is a solenoidal field whose normal component must be 

continuous which means ,that the tangent'ial components of the vector pot,ential must 

also be continuous acr0!5!s interfaces: 
- , ,.. 
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APPENDIX l '> 

For' the' yector polynomials Ub' •.. "Us given in (3.16), the Gram matrix is 

6 .< -[, cos 03 ,-5 cos ()2 
.- 2 -3 c0!31/a 

Cil = 6. 
-5 cos (}a 6 -5 cos.() 1 .. -3.cos 03 2 
-5 cos 02 -5cos 01 6 -3 co~ Oz , -3 cos 8 11 

, 

12 ".,." 
. 2 -3 C?S 'B3 ~3 cos 02 2 - cos 03 

-3 cos Ua 2 -3COS'01 . - cosU3 2 

The rows and colum'ns ofC" will be denoted as Rl,R2 ... Rs,Cl,G..2,.:'CS' If -R4 is, 

added to RI and - Rs is added to R2, 

4 
-2'Cos 03 

" 6, det C = - -5.cos 8z , 12 
2 

, 
-2 cos 83 

4 
-5 cos 81 

, -3 C05 03 

2 

-2 cos Oz 
-2 c!Js 81 

6 , 
-3COS02 

-3cose l 

01 
-2 cos 831> 

-3 cos 82 

·2 

-2 cos B3 
o 

-3cos.81 

- cos 83 
2 ... 

Adding RI to -R4 and R2 ta -Rs Jollowed by adding G\jO Cl <âQ.d~ Cs to Cz results in 

, 1 
4 -4 cos 83 -2 cos O2 0 -2C05 ()3~ 

6 1 -4 cos 03 4 -2 cos 0 1 -2-cos 83 0 
"..i' 

clet C" = - -8 cos 82" -8 cos 01 • q ~a-'Cos 82 -3~OSOl 
...... 12 0 0 cos O2 -2 -; cqs 83 

, . , 

9 0 cos 01 - cos 03 -2 

The determinant of the Gram matrix c~n then. be expressed as . 
4 o < -2;ëos 03 , 

11 6 -4cosO~ 
det G = -'cos 81 12 -8 cos O2 

-4 cos 8? 
4 -2 cos 03 0 -

-8cos81 -3cos0-i -3COSOl 

, / 

o o -2 -COS03' 

4 ; -4 cos ea -2 cos O2 " -2 cos 83 

6 -4 cos ()3 + - COS(J3 .\lo" 
4 -2cos 81 0 

,12, -8COS()2 -8COSOl 

b 
6 -3cos 81 

o 
4 

-2~ ~4 cos 8a +--12 -·8.cos O2 
1 0 

...- . 

-4co~ Oa 
4' 

1..8 cos 01 

o 
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-2COS02 0 
-2 cos 01 -2 cos 83 

6 ' -'3 cos O2 

cos O2 -2 
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and reduced to 

det a" = ,6 ((2 cos (h - cos (J3 COS,è2) 
12 

4 
-4 cos ()3 

-8cos O? 

4 
+ (2 cos 82 - COS 81 cos ( 3 ) -4 cos 03 

-8 cos O2 

4 
+ (4 - cos 2 (J3) -4 cos (J3 

-8cos82 

-
-4 cos 03 

-l 

-8 cos 01 

~ ., 

- 4.C08 03• - 2 cos 03 i 
4 '0 l' 

-8CQS(Jl -3cos&11 

-4 cos (J3 0 
4 ' -2 cos 03 

\"8 COS '(JI , 1)-3 C05 (J2 

-2COS021 

-2C05011 . 

6 : 

" 

.. 
.. 

Expanding the a:bove 'determinants, the determinant of a" reduces to 

( 

oP' 
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