
POSTG RESQL-RR
INTEGRATING RECOVERY INTO

. POSTG RESQL-R SYSTEM

WeiBin Liang

A Thesis
Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

School of Computer Science

McGill University

Montreal, Quebec

2005-06-01

Copyright by WeiBin Liang, 2005

All Rights Reserved

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 978-0-494-22744-2
Our file Notre référence
ISBN: 978-0-494-22744-2

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ACKNOWLEDGEMENTS

l would like to thank my supervisor, Bettina Kemme, for the enthusiastic su

pervision and tremendous helps she gave to my master's research. l would also like

to thank my colleagues, especially Shuqing Wu, Yi Lin, and Huaigu Wu, who are

always willing and ready to give their supports to me. l also want to thank my family

for their endless loves and supports.

11

ABSTRACT

Prototypes of replicated database management system have been designed and

implemented to improve the reliability and availability. Although these systems

are quite robust to failure, a recovery mechanism is still missing to bring a failed

site back into the system. This thesis studies two different distributed recovery

strategies and presents a hybrid distributed recovery algorithm that combines the two

strategies. These recovery algorithms using different strategies are also integrated

into PostgreSQL-RR system. This thesis also compares the cost in term of time

associated with recoveries using different strategies, which gives a good foundation

to the heuristic used in the hybrid distributed recovery algorithm to automatically

select an optimal strategy to reduce the recovery time.

III

ABRÉGÉ

Les prototypes de systme de gestion de donnes copi ont t conus et ont t appliqus

pour amliorer la fiabilit et la disponibilit. Bien que ces systmes soient tout fait

robustes l'chee, un mcanisme de rtablissement est calme manquant pour rapporter

un site rat dans le systme. Cette thse tudie deux stratgies de rtablissement distribues

diffrentes et prsente un algorithme de rtablissement distribu hybride qui combine les

deux stratgies. Ces algorithmes de rtablissement utilisant des stratgies diffrentes sont

aussi intgres dans le systme de Postgresql-RR. Cette thse compare aussi le cot dans

le terme de temps associ avec les rtablissements utilisant des stratgies diffrentes, qui

donne une bonne fondation l'heuristique utilis dans l'algorithme de rtablissement

distribu hybride automatiquement pour choisir une stratgie optimale pour rduire le

temps de rtablissement.

IV

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

11

III

ABRÉGÉ .. IV

LIST OF TABLES V11

LIST OF FIGURES Vlll

1

2

3

4

Introduction .

Background .

1

7

2.1 Group Communication Systems 7
2.2 Virtual Synchrony and Extended Virtual Synchrony 9
2.3 PostgreSQL-R..................... 11

2.3.1 Two flinning modes of PostgreSQL-R 11
2.3.2 Concurrency and Replica Control for PostgreSQL-R 13

2.4 Recovery in a Replicated Database Management System 17

Distributed Recovery Algorithm for PostgreSQL·RR

3.1 Overview of the Algorithm
3.2 FormaI Description of the Algorithm

3.2.1 Partial Copy Strategy .
3.2.2 Total Copy Strategy
3.2.3 Discussion

Integration of Recovery into PostgreSQL-RR

4.1 Architecture of PostgreSQL-R .
4.2 Architecture of PostgreSQL-RR
4.3 Major Players during Recovery .

4.3.1 Recovery Backend .

V

22

22
26
26
32
34

36

36
37
38
39

5

6

7

4.3.2 Replication Manager
4.3.3 PostgreSQL-RR in Recovery

4.4 WriteSet Log
4.4.1 Log using File
4.4.2 Log using System Catalog

4.5 Snapshot in PostgreSQL-RR

Evaluation.

5.1

5.2

Synthetic Data
5.1.1 Setup..
5.1.2 TCS Recovery
5.1.3 PCS Recovery
5.1.4 Further Discussion.
5.1.5 Online Recovery
Benchmark Data ..
5.2.1 Setup
5.2.2 TCS Recovery
5.2.3 PCS Recovery

Special Failures

6.1 Network Partition.
6.2 Total Failure .

Conclusion.

References

VI

46
48
51
52
53
54

56

56
56
57
59
62
63
64
65
65
67

69

69
70

71

72

LIST OF TABLES
Table page

3-1 Constants and Variables. 27

3-2 Functions 28

4-1 Recovery Messages . 41

5-1 TCS Recovery 65

5-2 PCS Recovery 67

vii

LIST OF FIGURES
Figure page

3-1 PCS Recovery at the Recovering Site 29

3-2 PCS Recovery at the Peer Site . 30

3-3 Extension for the Peer Site . . . 33

3-4 Extension 1 for the Recovering Site 33

3-5 Extension 2 for the Recovering Site 34

4-1 Architecture of PostgreSQL-R . 37

4-2 Architecture of PostgreSQL-RR 38

4-3 StateMachine for Recovery Backend . 40

4-4 Composite State: Recovering . 43

4-5 Composite State: Assisting . . 45

4-6 StateMachine of Replication Manager 47

4-7 Recovery using PCS . 49

5-1 TCS Recovery 58

5-2 PCS Recovery 60

5-3 Online TCS 63

Vlll

CHAPTER 1
Introduction

Over the years, we have witnessed an increasing demand for scalable and highly

reliable and available systems. One trend to address this issue is to replicate re

sources, which includes both computing resources and data. In the database field,

we focus on data replication. We can replicate data at different computers and con-

nect them into a cluster to handle workload collectively. In this thesis, we call the

comput ers in the cluster sites. When the demand shoots up, we can scale up the

system by simply adding more sites to the cluster.We can also distribute these data

replicas physically to where the data is needed to provide fast local access. Further-

more, if one site fails, its workload can be taken over by another site that contains

the same replicated data, providing fault-tolerance. The challenge is how to perform

transactions on these replicated data. A transaction is a collection of operations that

logically belong together. An operation can be either a read operation or a write

operation. A read operation gets the current value of a data object in the database,

while a write operation updates the value of a data object. A transaction can either

commit or abort. If a transaction commits, all updates by the transaction must be

reflected in the database. Otherwise, none of the updates by the transaction should

be reflected in the database. This is referred to as transaction atomicity. Although

concurrent transactions may access the same data, the execution of these transac-

tions must have the same effects as if they were executed serially. This is referred to

1

as transaction isolation. When a transaction now aceesses replicated data, it usuaIly

foIlows a read-onejwrite-aIl approach. With this approach, it reads data from only

one replica. However, when it writes data, it must either perform the write on aIl

replicas or perform it on one replica but then this replica must propagate the changed

data to the other replicas to keep data consistent. Different replication approaches

have been developed to satisfy the ab ove transaction properties at different degrees.

They can be categorized based on two parameters: (1) where write operations are

performed; (2) when update information of a transaction is propagated to aIl repli

cas. In regard to (1), we distinguish two approaches. In the master-slave strategy,

aIl write operations are performed at one site, the so caIled master site, while aIl

other sites of the system, caIled slave sites, process read operations. After processing

a write operation, the master propagates the changed data to the slaves in order

to keep the replicas consistent. In contrast, using the update-everywhere strategy,

write operations can be executed at any site of the replicated system, and every site

is responsible to propagate the corresponding changes to aIl other sites. In regard

to (2), with the eager (or synchronous) strategy, update information is propagated

within the transaction boundary; while with the lazy (or asynchronous) strategy,

update information is propagated any time after the commit of the transaction. In

theory, an eager update-everywhere approach is preferred, because data consistency

is maintained across the entire system and the workload can be evenly distributed

to aIl sites even for an update intensive system. However, this cornes with a priee.

It requires distributed concurrency control (e.g. 2-phase-Iocking) and an agreement

2

protocol (e.g. 2-phase-commit) in order to isolate concurrent updates across the en

tire system and maintain consistency between data replicas. Hence, it often poses

too much overhead to the system and the system suffers a huge performance down

grade. Furthermore, a database system using this strategy does not scale weIl. So,

although major database management system vendors, like Oracle, do provide users

this replication strategy option [9], in practice, commercial applications that cry for

high throughput and low response time opt for the master-slave approach. However,

for a write intensive system, the master site becomes the performance bottleneck.

AIso, the system is inflexible because update transactions may only be submitted

to a specific site. Then, how about the lazy update-everywhere approach? With

this replication scheme, data may need to be reconciled for conflicting concurrent

transactions. For example, transaction Ta updates data object X to 0 at site Sa and

commits. Before the change is propagated to site Sb, transaction n updates X to

1 at Sb. After both changes are propagated to both sites, X has different values

at these two sites, and hence X needs to be reconciled. As it is argued in Gray's

paper [14], the reconciliation rate shoots up dramaticaIly when the replication degree

increases.

The rapid development of Group Communication Systems (GCS) [1] sheds a new

light to this. Current research on data replication focuses on utilizing the rich multi

cast semantics provided by GCS to serialize transactions [17, 18, 19]. PostgreSQL-R

[30] is a great success by introducing replication into PostgreSQL [25] using an ea

ger update-everywhere strategy. It uses a particular multicast primitive provided

by Spread [28], an advanced GCS, to propagate update information to aIl sites of

3

the system. This particular multicast primitive guarantees an running sites of the

system deliver the same set of messages in the same order. That is, even if two

sites multicast two different messages ml and m2 simultaneously, an sites in the

system receive them in the same order, i.e., either ml before m2 or m2 before ml.

In PostgreSQL-R, updates are multicast in a writeset message with this total order

and then each site commits a transaction upon receiving its writeset. In such a way,

an sites commit exactly the same set of transactions in exactly the same order, and

concurrent transactions are serialized based on the order of writeset delivery. This

keeps data consistent across the whole system without the need of distributed con

currency control or an agreement protocol. PostgreSQL-R has good availability and

scalability without losing too much performance.

One very important issue which is not addressed sufficiently in the PostgreSQL

R project is recovery. Recovery, is the mechanism to bring a site, which either failed

previously or is a brand new site to join the replicated database system, into the

system.

Any replicated database system without a recovery mechanism is essentiaHy

impractical. First of aH, any site is doomed to fail, in the long run. Since a replicated

database system is designed to improve availability and reliability, any failed site must

be able to rejoin the system. Second, the total workload submitted to the system

usually increases over time. There must be a way to add new sites to the system

to handle higher demands. The recovery mechanism is needed when a site joins or

rejoins a running system. When a failed site wants to rejoin the system, it first needs

to bring its local data back into a consistent state. In this local recovery, it makes

4

sùre that all changes by transactions that committed before the crash at this site

are reflected in its database, but none of the changes by aborted transactions. After

that, it needs to update the local data to be consistent with other sites, which means

that it needs to apply the changes of transactions that committed during its down

time.

Recovery can be performed both off-line and on-line. Off-line recovery means

that the system stops processing client requests during the time when a site is be

ing brought into the system. The system only resumes its normal operations once

recovery is done. On-line recovery, on the contrary, allows the system to keep on

processing client requests even during the recovery of sites. For critical systems,

like flight control system, only on-line recovery is practical. The challenge of on-line

recovery is that recovery has to be synchronized with the execution of ongoing trans

actions at other sites. At the end, the recovering site should have the changes of

these transactions. In this thesis, we focus on on-line recovery.

Recovery in a replicated database system can be performed using different strate

gies. We can either let a peer site transfer the information of transactions missed by

the recovering site and re-execute these transactions at the recovering site, i.e., apply

the changes of these transactions one after the other. Or we can take a snapshot of

a peer site and install the snapshot at the recovering site. What are the significant

factors that affect the performance of each strategy, and how to choose one over the

other? These are issues we want to address in this thesis. In particular, this thesis

presents an hybrid recovery mechanism that is able to perform both types of recovery

and dynamically choose the one for which a faster recovery is expected. Furthermore,

5

the algorithm coordinates the recovery process with ongoing transaction processing

at the other sites such that neither the peer nor the recovering site misses a transac

tion. We have implemented our approach into PostgreSQL-R and caU the extended

system PostgreSQL-RR

The rest of the thesis is structured as follows. Chapter 2 gives an introduction

to group communication systems, the architecture of PostgreSQL-Rand its concur

rency and replica control algorithm. Furthermore, it gives an overview of different

recovery strategies. Chapter 3 presents a formaI description of a hybrid distributed

recovery algorithm for PostgreSQL-RR. Chapter 4 shows how the algorithm is im

plemented in PostgreSQL-RR. Chapter 5 gives an evaluation of this implementation

and compares different recovery strategies. Chapter 6 shows how the system handles

network partition and total failure. Chapter 7 concludes the thesis.

6

CHAPTER2
Background

This chapter go es over sorne prerequisites needed for the understanding of the

PostgreSQL-RR system and the recovery algorithm implemented in the system. This

includes an introduction to the main concepts behind group communication systems,

an overview of the existing PostgreSQL-R system, and an outline of possible recovery

strategies for replicated database management systems.

2.1 Group Communication Systems

More and more distributed systems are developed to solve more and more com-

plex problems. An inherent difficulty in building a reliable and efficient distributed

system is to determine the current state of remote components. Group communica

tion systems (GeS) [1], which provide a messaging service and group membership

service, have been developed to help solve this problem. Sorne well known GeS in-

clude ISIS [7], Transis [13], Totem [23], Horus [26] and Spread [28]. Spread is indeed

used in PostgreSQL-R and PostgreSQL-RR because of its superior performance and

functionality.

The membership service provides the group concept to let applications define

multiple recipients of a multicast message. That is, group is an abstraction for a set

of processes, and is identified by the group name. When the application needs to

multicast a message to these processes, it just multicasts the message to the group.

Another abstraction, view, is used by the GeS to keep track of the current group

7

composition. A view-change message is delivered to all members of the group should

the group composition change. The GCS provides an interface to applications to

define a group, to join or leave a group, and to get the up-to-date membership

information of a group. The GCS also detects the failure of any group member and

excludes it from the group.

The messaging service provides a rich set of multicast primitives to distributed

applications. Multicast semantics can be categorized by two attributes: message

ordering and message reliability. Messages can be ordered in one of the four ways:

unordered, FIFO ordered, causally ordered and totally ordered. Only total order

multicast is used in PostgreSQL-RR, hence is of our interest in the following dis

cussions. In George Coulouris, Jean Dollimore, and Tim Kindberg's book [10], total

ordering is defined as following: "If a correct process receives message m before it

receives m', then any other correct pro cess that receives m' will receive m before

m'''. Here, a correct pro cess is a pro cess that does not fail under the time of obser

vation. So, total order multicast guarantees that all correct pro cesses in the group

receive messages in exactly the same order. The reliability attribute can take one

of the following values: unreliable, reliable, and uniform reliable. Reliable delivery

guarantees any message multicast by a correct pro cess will be received by all correct

sites eventually and at most once. This is sufficient only for systems that do not con

sider recovery. Consider the following scenario where a pro cess multicasts a reliable

message to the group, receives it and fails directly afterwards. For sorne reason, this

message does not reach the other pro cesses of the group and hence will not be re

ceived by them. This does not conflict with the reliable message property. However,

8

it has two negative implications. First, the application of the failed site might have

performed sorne actions on behalf of the message before crashing (e.g., committing

a transaction), but the other available sites are not aware of the message. Second,

it poses a great challenge to the recovery of the failed process, because it received a

message that no other process has received. Uniform reliable delivery addresses this

issue and guarantees that if a pro cess p receives a message m, then even if p fails

directly afterwards, message m will be received by all other correct processes. This

normally requires that if a message m is multicast to the group, the GCS component

of each pro cess first receives the message, then sends an acknowledgment to all oth

ers, and only when it receives acknowledgments from an other sites does it deliver the

message to the application. That is, the application only receives a message when

the GCS knows that every other pro cess has physically received the message. This

introduces a higher message delay compared to reliable delivery. Uniform reliable

multicast is used in PostgreSQL-R.

2.2 Virtual Synchrony and Extended Virtual Synchrony

The Virtual Synchrony (VS) model is discussed in [6, 7, 15J. The VS model

basically guarantees two properties. (1) View change messages, which are generated

by the system when pro cesses leavefjoin the group, are totally ordered. This means

that all correct pro cesses install the same set of views in the same order. (2) Other

multicast messages generated by pro cesses are totally ordered with respect to view

change messages. This means that if a pro cess delivers a message m in viewi, then

no other process should deliver m in another view. If reliable multicast is chosen for

9

the VS model, we will have the following additional property: if VI and V2 are con

secutive,views installed both at pro cesses p and q, then p and q receive the same set

of messages in VI' Notice that the original VS model, which is implemented in ISIS

[7J, does not consider uniform reliable multicast, but paper [27J elaborates how the

reliable multicast primitive can be extended to provide uniform reliability. Further

more, in case of network partitions, VS only allows pro cesses in the primary partition

to progress. The primary partition is the partition that contains the majority of the

group. Pro cesses that are not in the primary partition should stop execution. They

can later recover and rejoin the primary partition with a new identifier.

The Extended Virtual Synchrony (EVS) model is discussed extensively in paper

[22J. EVS is defined by a set of specifications regarding how messages are delivered.

The main difference to the VS model is specified by the Safe Delivery property, which

requires a uniform reliable multicast. In fact, safe is just a synonym of uniform

reliable total order delivery. Furthermore, EVS uses a different failure model than

VS to allow network partitions and re-merges, and pro cesses in the non-primary

partition to continue to execute, yet the delivery of messages across the system

remains consistent. EVS can be implemented on top of the message transmission,

membership, and total ordering algorithms. The main idea is to switch GCS into a

transitional phase before a new view is installed. GCS first delivers a transitional

view change message to aIl group members to signal the start of the transitional

phase, then it tries to recover lost messages and any safe messages that could not be

delivered in the previous view. A lost message for site Sa is a message m multicast

by any other site in the view but has not been received by Sa. So, in the transitional

10

phase, m must be retransmitted to Sa from another site in the transitional view. A

safe message that could not be delivered is a message m that was received by Sa, but

Sa has not yet received acknowledgment for the receipt of m from all other sites in the

view. After an these messages are recovered and delivered to all connected members,

the view change message is delivered and the new view is installed. Messages sent

by members in the transitional phase are buffered, and they are delivered in the new

view.

Spread [28J implements the EVS model and provides a uniform reliable total

order multicast primitive.

2.3 PostgreSQL-R

This thesis enhances the PostgreSQL-R system to support recovery. Before

introducing the enhancements, we first need to have sorne basic knowledge of the

PostgreSQL-R system. PostgreSQL-R extends the open source database manage

ment system PostgreSQL with replication. The system and its data are fully repli

cated in a cluster of sites (i.e., computers). All sites of the cluster work collabo

ratively via uniform reliable and total order multicast messages to provide better

system scalability and availability. The architecture of the system is discussed in

Chapter 4, where we talk about how we integrate our recovery algorithm into the

system.

2.3.1 Two running modes of PostgreSQL-R

PostgreSQL-R can run in two different modes: non-replication mode and repli

cation mode. Running in the non-replication mode, a site takes client requests and

11

pro cesses them 10caIly. Modifications are only reflected in the local database. Run

ning in the replication mode, the local system joins a communication group main

tained by the GCS, and collaborates with other members of the group. Each site

in the group can handle client requests separately, but any update made by a com

mitted transaction to the local database is also propagated to aIl other sites and

is applied to their copy of data. Accordingly, transactions are executed in different

ways under these two modes.

Under the non-replication mode, any request submitted by a client is parsed,

optimized and executed within the boundary of a transaction. Modifications made

by a committed transaction are only reflected in the local database, so no writeset

is created to capture the update information of the transaction. Upon the start of

each transaction, a unique Local Transaction Identification (LID) is created and is

assigned to the transaction. The system uses LID to identify transactions.

Under the replication mode, there's a global view and a local view of the

PostgreSQL-R system. The global view of the system refers to the cluster of com

puters. Each of these computers runs an instance of PostgreSQL-R, and they com

municate with each other through the GCS. The local view of the system refers the

particular site of the cluster. When a transaction is submitted by a client to a local

system, it is first executed at the local site and considered as a local transaction. A

writeset structure (WS) is created for each local transaction to capture aIl update

information of the transaction. Upon the client request to commit the transaction,

the WS is propagated to aU other sites via a total order multicast. When the WS

arrives at a remote site, it is processed by this remote site in one transaction. This

12

transaction is considered as a remote transaction by this remote site. Conceptually,

this remote transaction and the local transaction that originally created the WS

should be considered as a single transaction, yet, they may have different LIDs at

each site. PostgreSQL-R uses a unique Global Transaction ID (GID) to identify a

transaction across the whole global system. It is very important to keep the GID

for a transaction to be the same at all sites. Thanks to the total order multicast

primitive provided by the GCS, this is relatively easy to accomplish by keeping a

counter of all committed transactions at each replica. Upon the start up of the sys

tem, all counters start from one. Upon the delivery of a WS, the current reading of

the counter is assigned to the transaction. If the transaction commits, the counter is

increased by one, otherwise, the reading remains the same for the next transaction.

Since all sites commit the same set of transactions in the same order, each commit

ted transaction is assigned the same GID at all sites. Each replica also maintains a

mapping between the LID and the GID of each committed transaction.

2.3.2 Concurrency and Replica Control for PostgreSQL-R

The challenge of replication is to detect conflicts between different transactions

if the transactions execute at different sites. That is, if two transactions update

the same data object at different sites, none of these sites is aware of the conflict

occurring at the other site. Only when writesets are exchanged can such conflicts be

detected and handled. In order to understand the concurrency and replica control

mechanisms implemented in PostgreSQL-R, we have to understand how a central

PostgreSQL sever performs concurrency control for local transactions running on a

single site.

13

A database is a set of relations where each relation contains a set of records. A

read operation returns sorne values from the current state of the database. A write

operation modifies sorne values of the current state of the database and derives it

to the next state upon the transaction commits. So, the history of the database

is the ordered sequence of these states. A database snapshot [2] is an abstraction

that captures one of these states of a specifie moment of the evolution history of the

database. Snapshot Isolation (SI) [5] is a type of multi-version concurrency control.

Under SI, a transaction Ti is assigned the begin timestamp (either physical or logical)

TSi(BOT) upon start. It then gets a snapshot of the current committed state ofthe

database history. AH subsequent read and write operations will be performed on this

snapshot, hence are invisible to other transactions. At commit time, the transaction

gets commit timestamp TSi(EOT). Ti conflicts with transaction Tj if TSj(EOT) in

the interval of [TSi(BOT) , TSi(EOT)] (i.e., Ti and Tj are concurrent but Tj commits

before Ti) and Tj wrote data that Ti also wrote, and we call this a writejwrite confl.ict.

In this case, Ti must abort. Otherwise, it commits, and modifications to the snapshot

will be refl.ected back to the database and der ives it to a new state. Rence, state

changes by a transaction are refl.ected in the global database state at the time of

commit of the transaction. As you might notice, read operations do not block or

confl.ict with other operations. This maximizes the potential for concurrent execution

and boosts the system performance.

PostgreSQL uses a multi-version system to store its data [30]. Each update on

a data record creates a new version. PostgreSQL keeps aH versions of data (even

the deleted records) in the system. Each data record is treated as an object. The

14

state of the database at time t is the collection that contains an appropriate version

for each data object. The appropriate version for the data object X is the one

created by the transaction Tj such that Tj is the last transaction that updated X

and committed before t. This makes it relatively easy to take a snapshot of the

database and implement an SI algorithm. When a data object X is first accessed by

a transaction Ii, Ii retrieves the version from the state ofthe database at the time of

the start of Ti, and copies, it into its own snapshot. Subsequent modifications made

by Ii are only reflected in this snapshot and are invisible to other transactions. When

Ii commits, a new version of the modified data will be appended to the database,

which will form the new state of the database. PostgreSQL uses two-phase-Iocking to

serialize concurrent transactions that have writejwrite conflicts, which means that a

transaction needs to acquire a lock on the data object before it writes it and releases

the lock only after the transaction commits or aborts.

PostgreSQL-R [30] extends PostgreSQL's concurrency control algorithm to pro

vide Snapshot Isolation (SI) to handle concurrent transactions in a replicated setting.

The new algorithm is called SI-PR and describes how PostgreSQL-R handles local

and remote transactions differently.

A local transaction is executed in three phases: execution phase, send phase

and commit phase. During the execution phase, for each data object X accessed

by transaction Ii, Ii retrieves the version V of X created by transaction Tj such

that Tj is the last transaction that updated X and committed before Ti starts. If Ii

contains only read operations on X, V is used. If Ti contains write operations on X,

it first checks for writejwrite conflict. If there is a transaction that also wrote X and

15

committed after Ii started, Ii aborts. If there is no conflict, it requests a lock on X.

If the lock is granted, it clones V to V', and performs subsequent updates on V' when

the lock is granted. Otherwise, it waits for the lock. When the lock is eventually

granted to Ii, Ii needs to reperform the conflict check. It also retrieves the GID of

Tj from pg transrecord, and adds both V' and the retrieved global id GID to the

writeset WSi of Ti. Upon the commit request for Ti, if Ii is read-only, it commits

right away and the send phase is skipped. Otherwise, the send phase begins. W Si

is sent to aH replicas using total order multicast. The commit phase starts upon the

delivery of W Si. The G l Di is determined and is added to pg transrecord along with

LI Di. Finally, Ti updates the log (to record the commit ofthe transaction), releases

all locks it acquired in the execution phase, and wakes up all transactions that are

waiting for any of these locks.

A remote transaction is executed in three phases: version check and early exe

cution phase, late execution phase and commit phase. The version check and early

execution phase st arts upon the de livet y of the W Si for remote transaction Ii. G l Di

is determined right away. A transaction Ti is then started with LI Di locally. For

each object X in W Si with associated G l D j, a version check is performed: Ti re

trieves the local version V of X created by transaction Tk such that Tk is the latest

committed transaction that updated X and committed before Ti starts. It then re

trieves GIDk from pg transrecord. If GIDj is different from GIDk , which implies

that another transaction at this remote site, Tk in this case, has updated X between

the time Ii updated X on the local site and this version check, Ti must abort. Tk

must be a transaction whose writeset was received between the time Ti 's local site

16

multicast W Si and the delivery of W Si. As we said before, if two transactions that

execute concurrently at different sites conflict, we commit the first whose writeset is

delivered (in this case Tk) and abort the other (in this case Ti)' Ifthere is no conflict,

~ tries to acquire a lock on X. If the lock is granted, it updates the object and goes

for the next object contained in W Si. If the lock is being hold by a local transaction,

that transaction is put into the abortTransactionList, and the update to the object

X is delayed. If no other version check leads to a conflict, Ti may commit. As a

result, all transactions in the abortTransactionList must abort. They are concur

rent local transactions who have a conflict with Ti but their writesets have not yet

been received (otherwise they would already have committed). Ti aborts all these

transactions, and performs those postponed updates. If Ti aborts due to a conflict,

none of these transactions will be aborted but they keep their locks. Furthermore,

the G 1 Di that ~ receives will be reused by the next transaction whose writeset will

be received. In the commit phase, ~ records the commit/abort of the transaction,

releases all holding locks and wakes up transactions that are waiting for these locks.

2.4 Recovery in a Replicated Database Management System

Current research on recovery can be found in both the database systems com

munit y [20, 8J and the distributed systems community [24, 3J and coyer both non

replicated and replicated systems. The basic ideas behind the recovery mechanisms

proposed in theses communities are very similar. They all requires the system to do

the following: 1) Regularly checkpoint the system, which means to log the current

state of the system. 2) Log all changes in the order they were made to the system. 3)

U pon the begin of the recovery, restore the system to the lastest checkpointed state,

17

and replay aIl changes logged after that checkpoint. For a non-replicated system, aIl

logged information is usually kept in a local stable storage. For a replicated system,

both the checkpointed state and the changes may be kept in the stable st orage at

a remote site, hence astate transfer may be required. As we can see later in this

thesis, recovery in a replicated database management system follows the same path.

A replicated database management system is a system that replicates pro cesses

and data and distributes them into a set of connected sites, where each site runs more

or less as an instance of the database management system. Recovery in such a system

can be quite sophisicated, and is discussed in papers [20, 8]. Recovery in a replicated

database system is required when a site, either a brand new one, or a site that

failed previously, joins the system. The whole recovery pro cess can be divided into

two steps: central recovery and distributed recovery. Central recovery is only needed

when the joining site was previously a member of the system. Central recovery brings

the local database of the joining site back into a consistent state (i.e., modifications

to the local database by aIl transactions that committed before the site's failure

should be refiected in the database; modifications by any non-committed transaction

must not be refiected in the database). Central recovery is provided by aU database

systems as a standard feature. It can be performed independently before distributed

recovery. Distributed recovery makes the local database of the joining site to be

consistent with other sites of the system. This subsection emphasizes on distributed

recovery.

We are looking at two different strategies for distributed recovery: the Total

Copy Strategy (TCS) and the Partial Copy Strategy (PCS). With TCS, a complete

18

copy of data stored in sites of the current system is first transferred to the joining

site, then the joining site installs the copy into its local data storage. With PCS, only

the update information of committed transactions that were missed by the joining

site is transferred to the joining site, then the joining site installs the updates into

its local data storage. There exist other variations of these strategies or different

strategies. In case that a failed site rejoins the system, an enhancement can be made

to TCS in that we only transfer the part of the database that has been modified by

transactions sinee the previous failure of the joining site. That is, only the objects

that were changed during the downtime are transferred. This is very attractive when

many transactions were executed during the downtime of the recovering site, but they

only changed a small active part on a huge database (i.e., hot-spot data). In this

case, PCS would have to apply many transactions, although for each object only the

last change is relevant. TCS would copy a lot of data that has actually not changed.

However, determining what data objects actually changed is quite complicated and

has its own overhead. There is also a lazy approach [16], where data objects are

synchronized only when they were updated by a new committed transaction.

In theory, both TCS and PCS can be applied when distributed recovery is

required. But in practiee, both strategies have their advantages and limitations.

When a new site joins a running system, PCS can not be applied unless the current

system keeps a complete history of update information of transactions that have been

committed sinee the original start of the system, which is very unlikely. Hence, only

TCS is good for the task. When a site that failed previously is rejoining the system,

both TCS and PCS can be used. TCS has the advantage that it does not require the

19

running system to maintain a log of the update information, while PCS requires the

system to provide mechanisms to log and retrieve update information. The current

system must have kept update information of all transactions missed by the rejoining

site. The size of the updates may be huge for a high throughput and update intensive

system or if the joining site has been down for a significantly long time before its

rejoin. Even if aU necessary updates are kept by the running system, the size could

be so big that the recovery using PCS will be outperformed by a recovery using

TCS in term of efficiency, and maintaining the update history may post significant

overhead to the system. Mabrouk Chouk proposed in his master's thesis [8] a way to

retrieve the update information from the Write Ahead Log (WAL), which is required

by the central recovery anyways, to avoid keeping extra information. But this can

only be a system specifie solution. For instance, the WAL kept by the database

may be checkpointed from time to time by the system automatically, and then the

distributed recovery may fail. Even if we can have full control of the WAL, a further

question then will be, how much update information should a running system keep,

and how can it checkpoint its update information log. However, if the database is

huge, the recovery time in case of TCS might be prohibitive and much longer than

PCS, especially if the failed site was down for litt le time and has missed only few

transactions.

Inherent challenges arise when TCS and PCS are performed online. Here, the

rest of the system continue executing transactions. In this case, a synchronization

point must be found. To find the synchronization point means to decide the transac

tion T such that missed transactions committed before Tare transferred from a peer

20

site to the recovering site while T and aIllater transactions are applied at the recov

ering site as standard remote transactions. If TCS is chosen, the peer site providing

the state might have to stop processing any new transaction during the recovery, or

the state of the joining site after recovery will not be consistent with those of other

sites of the system. This might dramatically reduce the availability of the system.

Furthermore, the peer site needs to buffer aIl update information propagated from

other sites during the recovery, which might not be feasible if the throughput of the

current system is high and the recovery will take a long time.

At this point, you might want to ask, can we have a flexible solution, a hybrid

one that combines the two strategies? Yes, we can! A distributed recovery algorithm

that always chooses the optimal strategy, yet the system orily keeps a reasonable size

of update information, will be elaborated in Chapter 3.

21

CHAPTER3
Distributed Recovery Algorithm for PostgreSQL-RR

This chapter describes our approach to distributed recovery at the algorithmic

level, the implementation details of how it is integrated into PostgreSQL-RR will be

elaborated in the next chapter.

3.1 Overview of the Algorithm

The distributed recovery algorithm used in PostgreSQL-RR is a hybrid one that

combines both TCS and PCS. The algorithm uses a heuristic to choose the best

strategy to perform the distributed recovery. In case on-line recovery is required,

the recovery may need to use both strategies, one after another, to make the state

of the joining site to be consistent with other sites of the running system. Before we

formally present the algorithm in the next section, we would like to give an overview

of the algorithm first.

In order to provide PCS recovery, the system needs to keep track of the updates

of all transactions. As mentioned in the previous chapter, the WAL might be used

but this is not possible in PostgreSQL-RR due to PostgreSQL's checkpointing mech-

anism. Instead, we changed the commit handling during usual processing. At the

end of the successful execution of a transaction and just before the system can com

mit the transaction, the updates of the transaction, which are kept in the writeset

data structure (WS) in PostgreSQL-RR, together with the GID of the transaction,

are stored into a special table. We call this Writeset Log (WSL). This log can be

22

later used by the peer site to send the WSs of transactions the recovering site has

missed. In order not to let WSL grow indefinitely, we still allow a site to checkpoint

the log and delete the oldest update information.

The distributed recovery begins when a new site joins a running system or after

a previously failed site restarted and finished the central recovery, and wants to join

the system. This site Sj first joins the GCS group composed of sites of the running

system. Then, Sj locates one of the group members Sp as the peer that will assist the

distributed recovery process, and directly connects to it. Sj can locate potential peer

sites by either looking at the membership of the current GCS or by being provided by

a list of candidates via a configuration file specified, e.g., by the system administrator.

In PostgreSQL-RR, the latter is used. Sj asks each potential candidate whether it

is willing to become the peer. A site can deny the request because it is heavily

loaded, for instance. After the connection is set up to a willing peer Sp, Sj tells

Sp via the connection what transactions it has missed since its previous failure. As

mentioned in the previous chapter, all committed transactions are totally ordered

by the system, transactions are committed at all sites in exactly the same order,

and each transaction is denoted by its unique Global Transaction Identifier (GID).

In PostgreSQL-RR, GIDs are in consecutive, monotonically increasing order. So, Sj

sends the GID (lastGid) of the last transaction committed at the site just before

its previous failure. If Sj is a new site, it sends -1 as a predefined signal. When Sp

receives lastGid from the connection, it estimates the cost of TCS recovery and the

cost of PCS recovery and chooses the one with smaller estimated cost. Sp looks in

its WSL for a record that contains lastGid. If the record can not be found, it means

23

Sp checkpointed its WSL, or Sp joined the system itself only after the failure of Sj,

or Sj is just simply a new site being added into the system to share the workload.

Rence, Sp does not have update information of all committed transactions that are

missed by Sj. In this case, TCS has to be used. Otherwise, both TCS and PCS

can be used. Sp retrieves the maximum GID maxGid contained in its WSL. The

gap between lastGid and maxGid represents the number of committed transactions

missed by Sj so far. If the gap is greater than a threshold, which is determined by

a heuristic, it is assumed that a distributed recovery using TCS will outperform the

one that uses PCS. Rence TCS will be used. If the gap is smaller than the threshold,

PCS will be used.

If PCS is used, Sp retrieves all WSs whose GID are greater than lastGid from

WSL and sends them to Sj. WSs are sent in multiple rounds. At each round, Sp

packs a certain number of WSs into one message and sends it to Sj. Upon receipt

of the message, Sj unpacks the WSs one by one from the message and applies them.

Applying a WS is similar to executing a remote transaction, except no locks need to

be held for data to be updated. After all WSs in the message have been processed,

Sj notifies Sp to send more WSs. In offline recovery, the recovery is done when all

retrieved WSs were sent to Sj and applied. In on-line recovery, new transactions

are simultaneously executed in the running system. This means WSs of these newly

committed transactions keep arriving at both Sp and Sj. Recall that Sj has joined

the group and hence, receives all WSs currently multicast in the group. In this

case, both Sp and Sj need to do more. Sj may receive the same WS both from Sp

and the GCS. It needs to know when and how it should switch from applying WSs

24

received from 5p to applying WSs received from GCS. 5p needs to know up to which

WS it should send to 5j , and must agree with 5 j when to stop transferring WSs.

A similar concept, called determination of a synchronization point, is mentioned in

paper [20]. So, a synchronization protocol is needed here. In PostgreSQL-RR, when

5p perceives that there are only a few more WSs left to be sent to 5 j , it multicasts

a special message in total order to aH sites. 5p then sends aH WSs of transactions

that commit before the receipt of this special message; and 5 j starts to buffer WS

received from GCS after the receipt of the special message. The switch will then

be straightforward. When 5 j has applied aH WSs from 5p , it starts to apply the

buffered WSs. When aH buffered WSs have been applied, the recovery is done, and

5 j can start to act as a normal site and to handle client requests.

If TCS is used, 5p first retrieves maxGid from WSL, and then takes a snapshot

of the current state of its local database and saves it to a file. No transaction should

be committed between the retrieval of maxGid and taking the snapshot. Taking a

snapshot is an atomic operation and can be serialized with other transactions. So,

the snapshot reflects aH modifications made by transactions committed before taking

the snapshot, and none of the modifications made by transactions committed after

the snapshot. This property of snapshot is very important for the synchronization

proto col. Furthermore, the maximum GID of transactions committed before the

snapshot is maxGid. After the snapshot is taken, 5p sends maxGid to 5 j . Upon the

receipt of maxGid, 5 j leaves the group and halts. The system administrator then

copies the snapshot data from 5p to 5j , restarts 5 j in non-replication mode, and

installs the snapshot into its local database. After the snapshot is fully installed, Sj

25

contains data that is consistent with the data of Sp when the snapshot was taken.

The system administrator restarts Sj again in replication mode. Sj joins the system,

performs distributed recovery using PCS, with the maxGid received previously from

Sp as its lastGid.

During the recovery, clients may not connect to the recovering site, since the

transactions that handle these new client requests must be serialized after the trans-

actions missed by the site during its down time.

Note however, that the peer site continues to execute local and remote transac-

tions as any other non-recovering site during the recovery process.

3.2 Formai Description of the Aigorithm

A recovery is a collaboration between the recovering site Sj and the peer site

Sp, hence the recovery algorithm used in PostgreSQL-RR includes two parts: one

for Sj and one for Sp. In the implementation chapter, we can see that both the

peer and the recovery site are indeed composed of several processes. During the

recovery pro cess , these pro cesses coordinate via messages. However, to make the

algorithm easier to understand, it is described here at a relatively high level: each

site is treated as a single unit, and communication between different pro cesses within

a site is hidden from the description. Furthermore, no further crashes are assumed

during the recovery process.

3.2.1 Partial Copy Strategy

We present the recovery algorithm in two steps. First, we present the recovery

algorithm that uses only PCS. Figure 3-1 shows the recovery steps at the recovering

site Sj, and Figure 3-2 shows the recovery steps at peer site Sp. Then, we extend
1

26

the algorithm such that it can dynamically choose between TCS and PCS based on

a cost estimation. Descriptions of constants and variables used in the algorithm can

be found in Table 3-1, and Table 3-2 contains descriptions of sorne obvious functions

in the algorithm.

Vars/Constants
N
Nthreshold

START BUFFER

maxGid
type

NWS/AllWS
WSBuffer
WSList

Table 3-1: Constants and Variables

Description

The number of WSs that can be sent in one message.
The criteria set by the user to be used in the heuristic to
choose the recovery strategy.
Boolean. Sj st arts to buffer multicast WSs when it is set
true.
Maximum GID.
Message type. The message type determines the semantics
of its content and how it can be decoded.
WSs that are sent along a message.
Linked list. Used by Sj to buffer multicast WSs.
Linked list. Used by Sp to store WSs retrieved from WSL.

As shown in Figure 3-1, the recovering site first performs local recovery, sets up

sorne variables and then joins the replication group. As shown at line 7, we need to

have a list of running sites from which the recovering site can choose the peer. There

are different ways to have this potential peer list. One of them is to let the system

administrator specify a list of potential peers in the configuration file. Or Sj can

sim ply build a potential peers list from the view change message, which contains aIl

connected members in the group. If the former is used and the system administrator

can always determine the most appropriate site to be the peer, the lastGid can be

sent along with the MSG REQUEST message, and both the MSG APPROVE

27

Table 3-2: Functions

Functions

send(receiver, type, content)
recv(sender, type, content)
mcast(type, content)
mcast recv(type, content)
buildW S List(fromGid, toGid)

sendWSO

applyWS(WS)
conne ct (site)
isToAssistRecoveryO

endAssistanceO

Description

Sends a message.
Receives a message.
Multicasts a message.
Receives a multicast message.
Retrieves WSs from WSL and inserts them into
WSList. Details can be found in Figure 3-2.
Removes WSs from WSList and sends them to the
recovering site. Details can be found in Figure 3-2.
Performs the updates captured in the WS.
Builds a TCP /IP connection with the site.
Used by a site to determine if it wants to be a peer
site. The decision is based on its current workload
and if it has been already assisting another site to
recover. Details can be found in Figure 3-2.
Called by a peer site when the recovery is done to
do sorne necessary cleanup so that it can poten
tially assist another site to recover.

28

I. Sj starts up 25. IF START BUFFER = false
2. Performs Central Recovery 26. Drops WS
3. START BUFFER:= false 27. ELSE
4. Joins the communication group 28. Appends WS to WSBuf fer
5. Retrieves rriaxGid from WSL 29. Upon receipt
6. lastGid = maxGid (Sp,MSG TXN UPDATE,NWS)
7. For each potential peer P { 30. For each WS in NW S
8. connect(P) 3I. apply(WS)
9. send(P,MSG REQUEST) 32. send(Sp,MSG CONTINUE)

10. recv(P, type) 33. Upon receipt multicast
lI. IF type = MSG APPROVE (MSG SYNC)
12. Sp :=P; 34. IF the message was multicast by Sp
13. send(Sp,MSG LA ST TXN,lastGid) 35. ST ART BU F F ER := true
14. BREAK; 36. Upon receipt
15. ELSE (Sp,MSG RECOVERY DONE,AllWS)
16. / / type = MSG DENY 37. For each WS in AllW S
17. IF aH potential peers have been tried 38. applyWS(WS)
18. / / Recovery failed 39. Blocks GCS channel
19. System exits 40. For each WS in WSBuffer
20. } 4I. applyWS(WS)
2I. FOR (; ;) { 42. U nblocks GCS channel
22. Upon receipt of a connection request 43. / / Recovery is done

from a client 44. Runs as a normal site;
23. Declines the request; 45. }
24. Upon receipt multicast

(MSG WRITESET, WS)

Figure 3-1: PCS Recovery at the Recovering Site

29

l. new WSListO 28. maxGid:= max GID in WSList
2. FOR (; ;) { 29. ELSE
3. Upon receipt (P,MSG REQUEST) 30. maxGid:= fromGid
4. IF isToAssistRecoveryO = true 3l. IF toGid =-1
5. Sj :=P 32. Retrieves WSs whose GID are greater
6. send(Sj,MSG APPROVE) than maxGid and inserts them to the end
7. EL SE ofWSList
8. send(P,MSG DENY) 33. ELSE
9. Uponreceipt (Sj,MSG LAST TXN,gid) 34. Retrieves WSs whose GID are greater

10. Il Uses PCS than maxGid but not greater than toGid
Il. buildWSList(gid, -1) and inserts them to the end of WSList
12. sendWSO 35. }
13. Upon receipt (Sj, MSG CONTINUE)
14. IF WSList.size <= N 36. sendWSO {
15. buildWSList(O, -1); 37. IF WSList.size > N
16. sendWSO 38. Removes the first N WS from W S List
17. } and includes them in NW S

39. send(Sj,MSG TXN UPDATE,NWS)
18. isToAssistRecoveryO { 40. ELSE
19. IF assisting another site for recovery 4l. mcast(MSG SYNC)
20. RETURN false 42. mcast recv(MSG SYNC)
2l. ELIF system is heavily loaded 43. upToGid:= GetCurrGIDO
22. RETURN false 44. buildWSList(O, upToGid)
23. ELSE 45. Removes aU WS from WSList
24. RETURN true and puts them in the AllW S
25. } 46. send(Sj,MSG RECOVERY DONE,AllWS)

47. endAssistanceO
26. buildWS(fromGid, toGid) { 48. }
27. IF fromGid = 0

Figure 3-2: PCS Recovery at the Peer Site

30

message and the MSG LAST TXN are not needed. In PostgreSQL-RR, the former

way is implemented (line 11-19).

During recovery, clients may not connect to Sj (line 22-23). WSs that are

received from the GCS are either ignored or buffered (Hne 24-28). Only those

WSs transferred from Sp are processed by Sj (line 29-31). When Sj receives the

MSC SY Ne message, it knows that recovery is nealy done and it has to start buffer-

ing WS coming from the GCS (line 33-35). After Sj receives the M SC RECOV ERY DON E

message from Sp and pro cesses all WS that are included in the message (line 36-38),

a transitional phase starts (line 39-42). Sj furst blocks the communication channel

with GCS, that is, does not listen to the messages from GCS. It then pro cesses all

WSs that were buffered during the recovery phase, and at last reopens the commu

nication channel again. So, during this transitional phase, WS that are multicast by

other sites are buffered in the GCS. The reason that we have two buffers to store WS

is because GCS and the PostgreSQL-RR are loosely coupled. If we allow new WS

to be added to WSBuffer during the transitional phase, we might remain there

forever and won't switch back to normal mode. Instead, we want to make the tran-

sitional phase as short as possible. For PostgreSQL-RR, in all tests conducted, only

one WS is buffered in WSBuf fer and needs to be processed if no more than 10 WS

are sent in one single message from Sp.

Figure 3-2 shows the actions at the peer site .. After agreeing to help with

recovery (line 3-8 and 18-25), it sends writesets in several rounds (line 9-17). It

continuously retrieves writesets from WSL (Hne 26-35) and sends them to Sj until

the synchronization point is found (line 36-48).

31

3.2.2 Total Copy Strategy

As discussed before, TCS is necessary in sorne cases: (1) A new site is added to

the cluster. (2) A joining site has crashed for a sufficiently long time before its restart

and all other sites of the system checkpointed their WSLs in between. Furthermore,

if the size of the database is relatively small, and the recovering site missed a lot of

update transactions, a TCS recovery is preferred.

When TCS is performed, recovery is done in two steps. First, the peer site takes

a snapshot of its database. For that it starts a transaction T which then reads the

entire database. Then this snapshot is transferred to the recovering site and installed

there. Note that the snapshot contains effects of all transactions committed before

T started and none afterwards. Thus, all transactions concurrent to T will their

changes not have reflected in the snapshot. Renee, the TCS will be followed by a

PCS to retransmit these missing transactions. We can easily extend the algorithms

displayed in the previous figures.

For the peer site, we can insert the code displayed in Figure 3-3 into Figure 3-2

between line 9 and 10. The peer site first decides whether to use PCS or TCS (line

2-5). If the recovering site has missed more than Nthreshold update transactions,

TCS will be used. TCS must also be used if Sj is a new site; Recall that when a

new site joins the system, its WSL is empty. Wh en such site retrieves maxGid from

its WSL (in Figure 3-1 at line 5), maxGid is assigned -1. Then, the recovering site

sends -1 as the lastGid in M SG LAST T X N message. When the peer site receives

it and tries to find it from its WSL (in Figure 3-3 at line 5), it cannot be found.

Rence TCS will be used. If TCS is used, Sp takes a snapshot as described above and

32

1. / /Uponreceipt (Sj,MSG LAST TXN,gid) 6. / / Uses TCS
2. / /Determines which recovery strategy to 7. toGid := GetCurrGIDO

use
3. maxGid = the max GID in WSL
4. di!! = maxGid - gid
5. IF (gid cannot be found in WSL

OR di!! > Nthreshold)

8.
9.

send(Sj, MSG USE TCS, toGid)
Takes a snapshot of database and saves

it to a file
10. endAssistanceO;
11. / / Uses PCS

Figure 3-3: Extension for the Peer Site

1. Upon receipt (Sp, MSG USE TCS,lastGid)
2. Writes lastGid to a file
3. Prints to screen to notify the

system administrator about using TCS
4. System exits

Figure 3-4: Extension 1 for the Recovering Site

informs Sj about the last transaction included in this snapshot. Then the recovery

is finished for the peer (line 6-10).

For the recovering site, the code displayed in Figure 3-4 needs to be added

to Figure 3-1 between line 28 and 29. The basic idea is that when the recovering

site receives the MSG USE TeS message, it stores the gid in a file, signaIs on

the screen that TeS needs to be used, and then shuts itself down. The system

administrator's help is now needed. When the system administrator gets the signal,

he waits until the snapshot is taken at the peer site. He then copies the snapshot

from the peer site to the recovering site, restarts Sj in non-replication mode and

installs the snapshot. After the snapshot has been fully installed, he shuts down Sj

and restarts it at replication mode again. When now Sj again restarts, it must know

whether a snapshot was installed. For that we have to also replace code displayed in

Figure 3-1 at line 5 and 6 with code displayed in Figure 3-5.

33

1. IF lastGid is specified in the configuration file
2. Retrieves lastGid from the file
3. ELSE
4. Retrieves maxGid from WSL
5. lastGid := maxGid

Figure 3-5: Extension 2 for the Recovering Site

3.2.3 Discussion

1 want to discuss a little bit more about sorne constants used in the above

algorithms.

First, N, the number of WSs that should be sent in one single message, is

determined by the buffer size of the Internet socket used for the communication

between the peer site and the recovering site. The larger the N is, the less message

rounds are required, but a larger buffer is required for the Internet socket. A large

N also has a side-effect on the transitional phase. Since more WSs need to be sent

in one message, it takes longer for Sp to copy the serialized WSs into the message

and the message to be transferred from Sp to Sj. This implies that there will be a

longer time after Sj sends MSG CONTINUE and before it receives the next set

of missed WSs. Rence more WSs may be buffered in WSBuf fer at Sj during the

recovery phase. This may prolong the transitional phase. According to my tests, the

benefit gained from using large N is nat significant. A 10 for N is recommended.

Second, the value of Nthreshold represents the criteria used by the user to

choose the recovery strategy, and it varies from case to case. Sorne major factors

that need to be considered include the size of the database, the number of WSs that

need to be transferred, and the average size of these 'wSs. Sorne guidelines based on

test results will be given in Chapter 5.

34

Although we did not consider further crashes during the recovery, we can easily

extend the algorithm to handle them. If the peer site fails at any time during the

recovery, the recovering site terminates the recovery and exits. This will require

the system administrator to restart the site again. The WSs that have already

be transferred to and been processed by the recovering site do not need be redone

during the next round of recovery. Similarly, if the recovering site crashes during the

recovery, the system administrator just starts the site again.

35

CHAPTER4
Integration of Recovery into PostgreSQL-RR

This chapter discusses how the recovery algorithm described in Chapter 3 is im

plemented in PostgreSQL-RR. Sorne important issues that are covered in this chapter

include the architecture of PostgreSQL-Rand how it is extended to PostgreSQL-RR,

the role each component of the system plays during recovery and the interactions

between components. Furthermore, the implementation of the WSL and how a snap

shot is taken and instaUed are discussed .

. 4.1 Architecture of PostgreSQL-R

PostgreSQL-R itself is an extension of the open-source database management

system PostgreSQL. As depicted in Figure 4-1, a PostgreSQL-R system is a cluster

of nodes, and each node contains a full copy of data and is composed of the following

components: postmaster, replication manager, local backend, replication backend and

communication manager. The group communication system, in this case Spread, is

not part of the system, but is required to work with the system to provide membership

service and the uniform reliable and totally ordered multicast service.

Each component of the system is indeed a process. Postmaster is the main pro

cess that creates aU other pro cesses of the system. It first creates the communication

manager and the replication manager upon startup of the system, and then creates

the remote backend upon the replication manager's request. Upon a connection re

quest from a client, it creates a local backend. A local backend is a pro cess that

36

f __ p.~~~gr~:~g~~B ____ j f __ p.~~~g~~:~9~~B ____ j

Network

Figure 4-1: Architecture of PostgreSQL-R

takes client requests in the form of SQL statements and executes them locally. A

replication backend pro cesses writesets (WS) propagated from other nodes of the

system. The replication manager coordinates the work of other pro cesses and the

communication between them. The communication manager provides an abstraction

of the GCS to the replication manager.

4.2 Architecture of PostgreSQL-RR

The architecture of the new PostgreSQL-RR is very similar to PostgreSQL-R, as

what can been seen in Figure 4-2. PostgreSQL-RR pro cesses transactions in almost

the same way, except sorne extra information needs to be logged for assistance of

37

recovery. That is, the new system basically inherits aIl components from PostgreSQL

R. Most components assume the same old responsibilities they do in the old system.

A new component, the recovery backend, is added into the system, to retrieve WSs

from the WSL at the peer site and transfer them to the recovering site. Then, the

recovery backend at the recovering site pro cesses the WS to update its local database.

i ____________________________ ~~?!g~_~_§9~:_RR __ j i ______________________________________ . ___ ~~?!gr~_§g~:_RR_

Network

Figure 4-2: Architecture of PostgreSQL-RR

4.3 Major Players during Recovery

Recovery backend, replication manager, replication backend, and communica

tion manager work together for recovery. The communication manager still works

as a delegate for the GeS in the new system as it does in PostgreSQL-R, and the

38

replication backend at the recovering site needs to process aH buffered WSs before

the joining site can switch to a regular mode, but it pro cesses these WSs the same

way it processes remote transactions in the old system. Renee there was no need to

change them in order to introduee recovery. So, this section focuses on the recovery

backend and the repli cation manager ..

Proeesses in the system are coordinated via messages, henee each of them is

designed as a message driven system. The best formalism to describe a message

driven system is UML StateMachine (SM). We give a brief introduction to this

formalism, more details can be found in [29]. In a SM diagram, rounded rectangles

represent state and arrows represent transitions. Astate can be either a simple

state or a composite state, which has nested internaI states and transitions. Each

transi.tion may have an event[condition]/action rule where each element is optional.

A transition is a system progression from its current state pointed by the arrow tail to

its destination state pointed by the arrow head. A transition is fired when the event

specified for the transition occurs and the condition is true, the action is executed

before the system enters the destination state. The system st arts from the initial

state which is represented by the closed circle, and ends at the final state represented

by the bordered circle. A circled X represents a port, which is the communication

interface between the internaI and the external of astate.

4.3.1 Recovery Backend

The recovery backend plays a major role in recovery. The recovery backends of

the peer and the recovering site have different tasks. At the peer site, it retrieves

39

WSs from the WSL and transfers them to the recovering site. Then the recovery

backend at the recovering site pro cesses the WSs and updates the local database.

RecoveryBknd

[no peerHost is specified]

Recovering Assisting

Figure 4-3: StateMachine for Recovery Backend

The SM in Figure 4-3 describes the dynamic behavior of the recovery backend,

and the description of each message used in the recovery can be found in Table 4-1.

The recovery backend can be in any of the following states: idle, recovering, assisting,

and the exit state. Upon start up, the recovery backend initializes sorne data struc

tures and the communication channel with the replication manager. After that, as

mentioned in the previous chapter, it needs to get the potential peer list from which

it can get a peer to assist its recovery. In PostgreSQL-RR, this list is given by the

system administrator in the configuration file. For that, it checks in the configuration

file if a peer host name is specified. If no, it enters the idle state, and no recovery

40

Message Type
MSG ASSIST

MSG APPROVE

MSG DENY

MSG LASTTXN

MSG TXN UPDATE

MSG CONTINUE

MSG SYNC

MSG SYNC GID

Table 4-1: Recovery Messages

Description
Sent by the recovey backend at the recovering site to
the recovery backend at the peer site.
Sent by the recovery backend at the peer site to the
recovery backend at the recovering site.
Sent by the recovery backend at the peer site to the
recovery backend at the recovering site.
Sent l;>y the recovery backend at the recovering site
to the recovery backend at the peer site.
Sent by the recovery backend at the peer site to the
recovery backend at the recovering site. The message
contains up to N WS information.
Sent by the recovery backend at the recovering site
to the recovery backend at the peer site.
It is sent by the recovery backend at the peer site to
the replication manager at the peer site. The repli
cation manager forwards it to GCS.
Sent by the replication manager at the peer site to
the recovery backend at the same site.

MSG RECOVERY DONE If it is sent by the recovery backend at the peer site to
the recovery backend at the recovering site, it means
the peer has transferred all WS needed by the recov
ering site. If it is sent by the recovery backend at
the recovering site to the replication manager at the
same site, it notifies the replication manager to start
processing the buffered WSs.

MSG USE TCS Sent by the recovery backend at the peer site to the
recovery backend at the recovering site. It tells the
recovering site that TCS is chosen to perform the
recovery. The snapshot of the database reflects aH
transactions that have GID not greater than lastGid.

41

needs to be do ne for the site. This is used when we initially start up the duster where

aIl sites have the same database state. Otherwise, it enters the recovering state, and

the site becomes a recovering site. If the recovery backend exits the recovering state

via the TeS port, it enters the exit state, because if TCS is performed, the site

has not yet completed recovery. Instead, it has to first apply the snapshot and then

perform PCS. For PCS, after the recovery is done, the recovery backend enters the

idle state. In the idle state, upon the receipt of a MSG REQUEST message from

another recovering site, the recovery backend enters the assisting state, and the site

becomes a peer to assist the recovery. When the recovery is done, or the recovering

site failed during the recovery, the recovery backend at the peer site goes back to the

idle state. During the recovery, the recovery backend at the recovering site is in the

recovering state, while the recovery backend at the peer site is in the assisting state.

If any error occurs at the site and function proc exitO is caIled, the recovery backend

enters the exit state and does sorne necessary dean-up. After that, the pro cess exits.

As illustrated in Figure 4-4, the recovering state is a composite state. Upon

entering the state, the recovery backend first sets up a TCP /IP socket with the re

covery backend at the peer site. After the communication channel is up, it sends a

MSG REQUEST to the peer via the channel and enters the waiting state to wait

for the response from the peer. In the waiting state, upon the receipt of message

MSG DENY, it connects to another potential peer and requests assistance. In this

case, the recovery backend remains at the same state. Upon the receipt of message

MSG APPROVE, the recovery backend retrieves from WSL lastGid, the GID of

the last transaction committed before the previous failure of the site. Note that if the

42

Recovering

/ send(peer,MSG_REQUEST)

Waiting

recv(peer,MSG_TXN_UPDATE,WSList
applyWS(WSList),

send(peer,MSG_CONTINUE)

recv(peer,MSG_DENY) /
Gets another peer from the potential peer Iist

send(peer,MSG_REQUEST)

recv(peer,MSG_APPROVE,peerHostld) /
send(peer,MSG_LAST _ TXN,lastGid)

recv(peer,MSG_USE_TCS,lastGid) /
Saves lastGid to a file,

Prints to screen to notify the system
Administrator to use TCS

recv(peer,MSG_RECOVERY_DONE,WSList) /
applyWS(WSList),

send(RMGR,MSG_RECOVERY _DONE,lastGid)

TCS

Figure 4-4: Composite State: Recovering

site is a new site to join the system, the WSL is empty, and the lastGid is set to -1.

It then sends lastGid along with message MSG LA ST TXN to the peer and enters

the pmcessing state. In this state, the recovery backend responds to three types of

messages. Upon receipt of message MSG USE TCS, it retrieves the lastGid from

the message and writes it to a file. Then, it prints to the screen to notify the system

administrator to assist the TCS recovery. After that, it exits the state via the TC S

port. Upon receipt of message MSG TXN UPDATE, it retrieves the list of WSs

from the message, and appHes them one by one to its local database. Furthermore, it

43

puts the WSs into its local WSL. The WSs that come along with the message are al

ready serialized and can be put into the WSL right away without further format con

version. Upon receipt of message MSG RECOVERY DONE, which basically tells

the recovering site that aU WSs missed by the recovering site have been transferred

from the peer, the recovering site pro cesses the received WSs, retrieves the maximum

GID from WSL and sends it along with message M SG RECOV ERY DON E to the

replication manager. At this point, the recovery backend has just finished its part of

the recovery, and enters the idle state. The recovery of the site is not done yet. As

we will see later, the site still needs to transit to the regular state, which is performed

by the replication manager in the post-recovering state (i.e., the transitional phase

at the recovering site). The SM of the replication manager is displayed in Figure

4-6.

Similarly, the assisting state is also a composite state, which is illustrated in

Figure 4-5. Upon entering the assisting state, the recovery backend is first in the

waiting state. Upon receipt of message M SG LAST T X N, it retrietes lastGid from

the message and uses it to determine which recovery strategy to be used, i.e., TeS

or peso The decision is based on the estimation of the recovery time for using each

strategy. If TeS is chosen, the recovery backend enters the dumping state. In this

state, the recovery backend sends the maximum GID in the WSL to the recovering

site in message MSG USE TeS. Then, it invokes the Unix system command to start

a new shell to execute pgdump, a built-in feature of PostgreSQL, to take the snapshot

of the database in one transaction. Note that no transaction should be committed

during the sending of the message and the opening of the snapshot transaction, or it

44

Assisting

return from system cali
"pgdump'

)1

[WSList.size >NII
Send(recoverlngHost,MSG_TXN_UPDATË,WSLlst

recv(RMGR,MSG_SYNC_GID,upToGid) 1
buildWSLlst(O,upToGid),

Removes ail WSs (AIIWS) Irom WSList ,
send(recoveringHost,MSG_RECOVERY _DONE,AIIWS

Figure 4-5: Composite State: Assisting

will be missed by the recovering site. When pgdump is done, the recovery backend

exits the assisting state and enters the idle state. If PCS is chosen, the recovery

backend retrieves aH WSs whose GID is greater than lastGid into the W SList. If

the WSList contains no more than N (N = 10 in our implementation) WSs, it sends

message MS G SY Neto the replication manager and enters the synchronizing state.

Otherwise, it removes the first N WSs from the W S List, sends them to the recovering

site in message MSG TXN UPDATE and enters the WSRetrievingAndTranserfering

state. While in the WSReirievingAndTranserfering state, upon receipt of message

MSG CONTINUE from the peer, the recovery backend checks the number ofWSs

45

contained in the W S List. If the number is greater N, it removes the first N WS from

the W S List and sends them in the message M SG T X N U P D AT E to the recovering

site. If the number is no greater than N, it first retrieves aH new WSs from the WSL

(writesets that were entered into WSL since the last time the peer site retrieved

from WSL). If the list size is larger than N, it sends again the first N WSs in the

MSG TXN UPDATE message. Otherwise, it sends message MSG SYNC to the

replication manager and enters the synchronizing state. In the synchronizing state,

upon receipt of message MSG SYNC GID from the replication manager, it gets

upToGid from the message, retrieves from WSL aH WSs that have not been retrieved

and have GID less than or equal to upToGid into the WSList. After that, it removes

aH WSs from the WSList and sends them in message MSG RECOVERY DONE

to the recovering site. After this message is sent, the assistance of the recovery is

finished, and the recovery backend exits the assisting state via the done port and

enters the idle state.

4;3.2 Replication Manager

Apart from taking charge of information flow between components, as it does in

PostgreSQL-R, the replication manager also helps in the synchronjzation phase of a

recovery.

As depicted in Figure 4-6, the replication manager can be in any of the foHowing

states: regular, recovering, transition and the exit state. Upon start up, the repli

cation manager checks in the configuration file if any potential peer site is specified.

If the system administrator did not specify any in the configuration file, which typi

cally tells the system no recovery is needed, the replication manager enters the regular

46

RMGR recv(RecoveryBknd,MSG_SYNC) 1
send(GCS,MSG_SYNC)

[no peerHost is specified 1
Regular

Recv(GCS,MSG_RECOVERY_SYNC) 1
Send(RecoveryBknd,MSG_SYNC_ GID,currGid

.....,.,~..;.;;..;;.;;..;....;;;.;..;";";';O'--____ --1 recv(RecoveryBknd, G_RECOVERY_DONE,gid) 1

1--I _____ s_et_c+r_re_nt_G_ID_t_o ..:g_id ____ -I~ Transition

Exit
SG_WRITESET,WS)

'--____ --' [Recovering in Buffer_ Yes]1
bufferWS(WS)

Figure 4-6: StateMachine of Replication Manager

state. Otherwise, the replication manager enters the recovering state. In the regular

state, the replication manager behaves almost the same as it does in PostgreSQL-R.

The only difference is that in PostgresSQL-RR, it needs to assist the synchroniza-

tion ofWS. Upon receipt of message MSG RECOVERY SYNC from the recovery

backend when the site is a peer assisting a recovering site for the recovery, it forwards

the message to GCS, and GCS will then multicast the message in total order. Upon

receipt of this message back from GCS, the replication manager sends the current

GID to the recovery backend in MSG SYNC GID message. The recovering site is a

composite state. Before the synchronization is done, the replication manager stays in

the Buffer No state. While in this state, it drops an WSs received from GCS. Upon

47

receipt of message MSG RECOVERY SYNC from the peer site through the GCS,

it enters the Buffer Yes state and st arts to buffer every WS received from GCS.

Upon receipt of message MSG RECOVERY DONE from the recovery backend, it

exits the recovering state and enters the post-recovering state. In this state, it first

blocks the communication channel with GCS, then sends all buffered WSs to the

replication backend one by one. The replication backend pro cesses them the same

way it pro cesses any other remote transaction. After all buffered WSs are processed,

the replication manager reopens the communication channel with GCS and enters

the regular state. The recovery is done. Again, the replication manager exits upon

the invocation of function proc exitO.

4.3.3 PostgreSQL-RR in Recovery

In this subsection, we assemble all pieces together to have a whole picture of

the recovery. A récovery scenario where the recovery is done successfully using PCS

is illustrated in Figure 4-7.

The recovery pro cess is a sequence of interactions between pro cesses at both

the recovering site and the peer site. In the following discussion, we focus on the

messages sent back and forth. Directly after the recovering site starts up, joins the

GCS group and connects to the peer, the recovery backend of the site (rcbr) sends a

MSC REQUEST message to its counterpart of the peer site (rcbp). Rcbp responds

with the approval message M SC AP P ROVE. Then, rcbr retrieves the maximum

GID from its WSL and sends it to rcbp in the M SC LAST T X N message. Upon

receipt of the message, rcbp calls buildWSListO to retrieve all WSs whose GID is

greater than the received lastCid and appends then to the end of the linked list

48

,j:>.
co

~
~.
>-;
(1)

t
:;:t

~

~
"-<:
.:
r:n
~.

"'Ij
(1
(f]

:-------~-------------~--------------------:

R~n\lprinn Ritp
~

1 :GCS 1 . 1 :RMGR 1 I:RecoVeryBkOO l , I:ReCOVerYBknd 1 1 :RMGR 1

:--.----.---. ---.---.-------------- -----------MOO_REQUEST L ________ ------------------ ------.

MSG_SYNC

MSG_SYNC

MSG _.APPRO\IE

MSG_LAST_TXN (lastGid)

~buildWSlist (lastGid,-l)

loop 1 ,INF, j
[VVSList.size>N] MSG 1XN UPDATE (NWS)

- - applyVVS(NVVS)

MSG_CON~NUE ~
(\IVSList.size<=N]!J

~ buildWSList (0,-1)

MSG_SYNC

MSG SYNC
MSG SYNC GID(currGid

- -. stariE

2 buildVVSList (O,currGid) ~.
MSG_RECO\IERY_DONE (AlIWS) applyVVS(AIIVVS)

~
MSG_RECO\IERY_[joNE

PÇ"endAI

ufferO

BufferedVVS

WSList. Then, it starts a loop to send these WSs to rcbr. Each round, rcbp re

moves N WSs from the beginning of the W S List and sends them to rcbr in message

MSG TXN UPDATE. Upon receipt ofthis message, rcbr extracts the WSs from

the message and invokes applyWSO. For each WS, applyWS() basically opens a

new transaction to apply the updates captured in the WS to its local database.

The WS as weIl as its GID is also logged into the WSL. When aIl received WSs

have been processed, rcbr sends message MSG CONTINUE to rcbp. Upon re

ceipt of the message, rcbp checks if the W SList contains more than N WSs. If yes,

another around of WS transfer begins. If the WSList contains no more than N

WSs, rcbp invokes buildW S List() and then checks the condition again. If the list

size is greater than N, a new round of WS transfer begins. If the list size is still

not larger than N, the synchronization phase begins. For that, rcbp sends message

MSG SY NC to the replication manger of the peer site (rmgrp). Rmgrp then for

wards the message to GCS. GCS then multicasts the message. At the recovering

site, upon receipt of the multicast message, the replication manager (Rmgrr) calls

startBuf fer() to set variable START BU F F ER to true. From then on, and up

to the site is fully recovered, Rmgrr appends WSs received from GCS in message

MSG WRITESET into linked list WSBuffer. At the peer site, upon receipt of

message MSG SY NC, rmgrp get the maximum GID (currGid) from its WSL and

sends it to rcbp in message MSG SYNC GID. Upon receipt ofthis message, rcbp

invokes buildWSListO again. The function first get the maximum GID (fromGid)

from the WSList, then retrieves aIl WSs whose GID is greater than fromGid but

no greater than the received GID from message MSG SYNC GID. After than,

50

rcbp sends these WSs to rcbr in message MSG RECOVERY DONE. After this

message is sent, the assistance of the recovery is done at the peer site. At the recov

ering site, upon receipt of the message, rcbr processes the WSs received along with

the message like those in message M SG T X N U P DATE. After that, it sends mes

sage MSG RECOVERY DONE to rmgrr. Upon receipt of this message, rmgrr

ï'nvokes sendAllBuf feredW S(). This function first blocks the GOS channel, then

sends aIl WSs in WSBuf fer to the replication backend of the recovering site. The

replication backend then pro cesses these WSs. After aIl WS have been processed,

rmgrr unblocks the GOS channel, and the recovery is fully completed.

4.4 WriteSet Log

In theory, we do not need to store WSs separately. In PostgreSQL-R, update

information of a transaction is stored in the Write Ahead Log (WAL). During a

recovery, we can pro cess the WAL and re-generate the WS structure. In this way,

we don't need to keep redundant update information in the database. But there are

drawbacks of this alternative. First, we need to scan the WAL to retrieve the update

information and to construct the WS structure. This poses serious overhead to the

recovery process. Second, PostgreSQL checkpoints the WAL from time to time to

keep the log relatively small. We need to change the checkpoint criteria to force

the WAL keep enough transaction records for the potential assistance of a recovery.

Otherwise, the distributed recovery may be forced to use the TOS. Hence, we have

looked at solutions not using the WAL.

Upon a transaction commit, a record containing the GID and the WS of the

transaction needs to be logged. There appears to be three ways to implement the

51

logging mechanism. First, log the record directly in a file using Unix 1/0 interface.

Second, log the record into a regular table of PostgreSQL-RR. Third, log the record

into a system catalog of PostgreSQL-RR. Since we were not able to execute SQL

queries from within PostgreSQL-RR itself, which would be needed to insert and

retrieve WS from a regular table, we only discuss the first and the third option in

the following subsections.

4.4.1 Log using File

Transactions commit sequentially in PostgreSQL-RR along with the sequential

increase of the GIDs for these transactions. A WS record has to be written to the log

file upon the commit of its corresponding transaction together with the corresponding

GID. No deletion of records needs to be done until the file becomes too big. Record

retrievals are only needed during the assistance of a recovery at the peer site: the peer

retrieves WSs of transactions missed by the recovering site, which requires sequential

read from the file only. A sequential file sounds like a perfect candidate for the job.

But there are sorne technical problems that need to be solved.

The first is the format of the WS record in the file. Before the WS structure

can be transferred via the network, it needs to be serialized. This means what we

want to put into the file is actually the serialized WS, wh:ich is basically a bit stream

of zeros and ones. How to differentiate the GID from the WS within a record, and

how to differentiate a record from another record requires a predefined data format.

Second, the performance of the file access becomes worse when the size of the file

becomes larger and larger. To reduce the size of the file, we might want to compress

a large WS record before it is put into the file, which is a common technique used

52

by database management systems to record variable size objects. Then, we need to

add an attribute to the record indicating whether the WS was compressed or not.

Third, we need to write the WS record into the file before the transaction com

mits. Then we have to coordinate the write with transaction commit to guarantee

the atomicity property of the transaction. That is, if the transaction commits, then

WS should be transferred from a peer to the recovering site. If the transaction does

not commit, it should not be transferred.

Fourth, we need to develop our own library functions to access records according

to the predefined data format, which is very time consuming and error prone.

4.4.2 Log using System Catalog

PostgreSQL uses system catalogs to record meta-data of the database, and pro

vides a interface for efficient access to the catalog using caching and indexing. A

system catalog is like any other table stored in the database, thus any operations

on the system catalog can be easily wrapped in a transaction. This eases the imple

mentation of the WSL dramatically. Only after a transaction commits does its WS

become visible in the system catalog.

Serialized WS are stored in the system catalog in the form of BYT EA. BYT EA

is the data type in PostgreSQL for Binary Large Object, or BLOB, which is defined

in the SQL standard. BYT EA data is of variable size, and PostgreSQL automatically

compresses it before it is stored into the catalog to save storage space. When a WS

is retrieved from the catalog, we need to check if we need to decompress it before we

un-serialize it back to WS structure.

53

We have created a system catalog pg writeset to store WS records for PostgreSQL

RR. This table has two columns. The first one is of l NT EGER type and stores

GIDs; the second one is of BYT EA type and stores serialized WSs. An index is built

on the column GID using a B-tree. B-tree is an index structure that is very useful for

range queries. These are the queries we have to pose for the buildW S ListO function

to retrieve WSs. We use PostgreSQL's system table interface to retrieve ranges of

records using the B-tree.

4.5 Snapshot in PostgreSQL-RR

To use TCS in a recovery, we first take a snapshot of the peer, transfer it to the

recovering site, and then install the snapshot at the recovering site. This is relatively

simple with the built-in features of PostgreSQL. PostgreSQL provides two features

to front-end users: pgdump and pgrestore. These two features were introduced to

allow the system administrator to backup the database during system migration.

Pgdump takes a consistent snapshot of the database. This can be viewed as an

atomic action: only transactions that committed before the invocation of pgdump

are refl.ected in the snapshot even if there are transactions running concurrently to

when the snapshot is being taken. PostgreSQL actually suggests to avoid executing

new transactions during the execution of pgdump, because those transactions will be

missed by the snapshot. In PostgreSQL-RR, we must be able to handle concurrent

transactions to support online recovery. Thanks to the PCS recovery implemented in

PostgreSQL-RR, the writesets of transactions missed by the snapshot can be applied

after the snapshot is installed at the recovery site.

54

Pgrestore basically converts the snapshot into SQL statements and feeds them to

PostgreSQL. Pgrestore must be executed with PostgreSQL running in non-replication

mode, since no WS needs to be built and be propagated to other running sites.

55

CHAPTER5
Evaluation

In this chapter, we illustrate sorne experiments we did on PostgreSQL-RR. The

focus of these experiments is to give an estimation of the cost of the distributed

recovery using the two strategies, which in turn helps us to develop the heuristic

used in the hybrid distributed algorithm to choose the optimal strategy to minimize

the recovery time.

5.1 Synthetic Data

5.1.1 Setup

We ran our experiments in a local area network using two PCs running RedHat

Linux. Each PC has 1 GB RAM and two processors (3.0 Ghz with 512 KB cache).

The database contains 20 tables. Each table was created using a similar schema. For

instance, table t a was created using the following SQL statement:

CREATE table t_a (

t_a_id int4 constraint t_a_pk primary key,

t_a_param1 char (80) ,

t_a_param2 int4,

t_a_param3 float8,

t_a_param4 date

) ;

56

5.1.2 Tes Recovery

Recall that the basic idea of the TeS approach is that the peer site reads its

entire local database into a snapshot and transfers it to the recovering site. Then the

recovering site installs the snapshot into its local database. Hence, the major factor

that affects the recovery time using the TeS approach is the size of the database.

In order to evaluate the dependency on database size, we first performed off-line

recovery using databases of different sizes.

The setup of the experiments is quite straight forward. For each experiment, we

first started only the peer site Sp with empty tables indicating no recovery is needed.

Then, we started sorne client processes, which then connected to Sp and inserted

records into its tables. By inserting different numbers of records into the tables, we

created databases of different sizes. After the database was loaded, we stopped the

clients and specified Sp as the potential peer site in the configuration file for site

Sj. Then we started Sj up in replication mode. Sj then used Sp as the peer site

to perform recovery. Since Sj initially had an empty WSL, the TeS strategy was

automatically chosen.

Figure 5-1 shows recovery time when we increase the database size up to 1

gigabyte. T Reeovery represents the total recovery time. T pgdump represents the

time it takes the peer site to take a snapshot of its database. T sep represents the

time it takes to transfer the snapshot from the peer site to the recovering site using

Linux shell command sep. T pgrestore represents the time it takes the recovering

site to install the snapshot into its database.

57

eoo ------~----------'---~----------------'--_____"!

1

---- T-.:.Reèovery

---t .. pgOump

Figure 5-1: TeS Recovery

As we can see in the figure, it takes about 70 seconds to recover a 100 megabyte

database, and it takes about 700 seconds to recover a one gigabyte database. Note

that all time components in the figure increase linearly with the database size. Rence,

we can extend the chart to estimate the recovery time for larger databases. For

instance, it will take about 2 hours to recover a 10 gigabyte database, and it will

take about one day to recover a 100 gigabyte database, which is quite expensive but

still feasible. To recover a one terabyte database, it will take more than 8 days, which

is not so practical.

Let us have a doser look at the components of the total recovery time. T pgdump

counts for about 70 percent of T Recovery time. P gdump is performed at the peer

site, which might affect the peer during online recovery. Recalled that pgdump is a

transaction that reads the entire database, and in PostgreSQL-RR, read operations

58

never block any other concurrent operations. pgdump does use sorne CPU time of

the peer site, but it represents only one database client request, and hence the effect

it has on the peer site should be reasonably small. P grestore is performed at the

recovering site, hence has no effect on the existing system at aIl. T sep is so small

that we could just safely ignore it.

5.1.3 PCS Recovery

The basic idea of the PCS approach is to transfer all WSs of transactions missed

by the recovering site during its down time from the peer site and apply them into

the database of the recovering site. Hence, the major factor that affects the recovery

time using the PCS approach is the total number of WSs to be transferred and

applied. Hence, we ran off-line recovery requiring different numbers of WSs to be

transferred.

To run an experiment, we first started site Sp and Sj in replication mode indi

cating no recovery is needed. Sp and Sj had identical data where each database table

had 10000 records lead to a database of 20 megabytes. After that, we started sorne

client processes, which then connected to either Sp or Sj and submitted transactions.

Each of these transactions contained one to three write operations, each write opera

tion updating two records. After a while, we manually crashed Sj and terminated the

clients who were connected to it. Clients who connected to Sp continued to submit

transactions to Sp. When the desired number of transactionshad been submitted

to Sp after the failure of Sj (determining the WSs to be transferred), we terminated

all clients. Then, we specified Sp as the potential peer in the configuration file and

started Sj up again in replication mode. Since the WSL of Sj was not empty in

59

this case, the Nthreshold determined which recovery strategy to be used. We set

Nthreshold to infinity to force a PCS recovery.

Figure 5-2 presents the time needed for recovery depending on the number of

WSs to be transferred during recovery. T Recovery represents the total recovery

time. T W S Retrieval represents the time it takes the peer site to retrieve aU WSs

missed by the recovering site from its WSL. T WSApply represents the time it takes

the recovering site to apply aU updates that are captured in the WS into its database.

T Rest represents aU other minor time components of the total recovery time, which

includes the time for the GID synchronization, the time it takes to transfer WSs over

the network, and the time it takes to pro cess the buffered WSs. As we can see in

the figure, T W SApply counts for more than 90 percent of the total recovery time.

Figure 5-2: PCS Recovery

60

1 -+- T_RecoYety

--i j'SRetri eyal
......... T_WSApply

-...;...T R~t

As shown in Figure 5-2, the relation between T Recovery and the number of

WSs (N) is linear when N is less than 60000. If we consider the relation between

T Recovery and N where N is greater than 60000, T Recovery increases propor

tioned to the increase of N again but at a lower rate. This can be explained with

PostgreSQL's caching mechanism. When WSs are applied at the recovering site,

some records may be accessed over and over again, and hence are cached by Post

greSQL. When the cache is loaded up, subsequent accesses to these records are more

efficient. Of course, whether the recovery can take advantage of such mechanism

depends on the database size.

We tested PCS recoveries that transferred and applied up to 200000 WSs where

each of them contained 2 to 6 records. It takes about 4 minutes for a site to recover

which missed 100000 transactions during its down time. And it takes about 6 minutes

for a site that missed 200000 transactions to recover. As we can see, the PCS recovery

is quite efficient. Again, we can extend the chart to estimate T Recovery for greater

N. For example, it will take about 700 seconds for a site to recover where N is equal

to 380000. In two hours, a site that missed about 4 million transactions can recover.

In one day, a site that missed about 48 million transactions can recover. To get the

numbers for a given application, such test runs should be made with the particular

application in question.

One interesting number we want to have is the number of WSs that can be

transferred and applied in one second, because this will determine if online recovery

is possible. If during online recovery the remaining system commits more transactions

per second than can be transferred with PCS to the recovering site, the recovering

61

site will never catch up. That is, recovery must be faster than the system commits

new transactions. From the figure, when N is greater than 60000, T Recovery =

0.0018N+20. So, in average, about 550 transactions can be transferred and applied

per second.

Finally, let us have a look at the components. T W SApply counts for more than

90 percent of the total recovery time, but being an action performed at the recovering

site, applyWS has no effect on the peer site during online recovery. Writeset retrieval

is performed at the peer site, but since the T W S Retrieval only counts for one

percent of the T Recovery time, we can safely ignore its effect on the peer if recovery

is performed while transactions continue to execute on the peer.

5.1.4 Further Discussion

After we have the two charts presented in the previous two sections, we have a

way to determine Nthreshold. We first measure the size ofthe database in question

to get the corresponding T Recovery time from Figure 5-1. Assume that we have

T Recovery time equals to t l in this case. We use t l in Figure 5-2 as the T Recovery

to find out the corresponding N, the number of missed WSs that can be transferred

in the same time. This is the Nthreshold. It means that we can transfer and apply

N WSs in the same time we can recover the site using the TCS approach. If the

number of transactions missed by the recovering site is less than this N, then TCS

recovery should be performed. Otherwise, PCS should be used. Now assume the

application runs 100000 update transactions per hour and a site is down for two

hours, i.e., 200000 transactions have to be transferred. In our configuration ab ove ,

62

for a database sm aller than 500 megabyte, TCS will be used. Otherwise, PCS will

be used.

5.1.5 Online Recovery

So far, we only discussed results from offiine recovery experiments. In order to

extend the above results to online recovery, we ran further experiment to explore

how the ongoing execution of transactions affects the cost of recovery.

350~--~

300+-------------------------------------~--~

250+-------------------------------~~------~

~200~----------------------~~~------------~
e
ID
E

~ 150+-----------------~~~------------------~

100+-----------~~--------------------------~

50~----------------~--~--=-~~----------~

O~--~----~--~--~----~--~----~--~--~

o 50 100 150 200 250 300

Size of Daœbase (M b)

350

Figure 5-3: Online TCS

400 450

--TY9dump_Omlne

--TYgdump_Online

""--T_Recoverv_omlne

--T Recol,lerv Online

We first did experiments for online TCS recovery. For that, we first started

two sites with six clients connected to each. Each client submitted 45 transactions

per second (tps) to the server, hence, the total system throughput is 280 tps. Then

63

we started the third site Sj and forced it to recover using TCS. Figure 5-3 shows

T pgdump and T recovery for both omine recovery and online recovery while in

creasing database size. As we can see, with online recovery, T pgdump needs more

time than with omine recovery, since pgdump competes with other transactions on

the peer site for CPU and disk resources. However, the etfect on T recovery is minor.

For instance, when the size is 400 Mb, T Recovery Online is 297 seconds, which is

17 seconds more than its counterpart T Recovery Of fline, an 6 percent increase.

However, the effect of recovery on the transactions executing on the peer site was

quite significant. In our setup, the response times were 5ms before recovery and

arose to 10ms during the execution of pgdump.

We also did experiments for online PCS recovery. We barely observed any in

crease in recovery time compared to omine PCS recovery. This supports our previous

reasoning.

5.2 Benchmark Data

It is always good to see the performance of the system on a realistic application.

We used the Open Source Development Lab's Database Test 1 (OSDL-DBT-1) kit

[21], which is a deviation of the TPC-W benchmark [11J and simulates the on-line

bookstore workload. There are 12 tables that record the customer information, the

book information and the order information. The size of the database is determined

by the number of customers and the number of items we choose for the test. The

workload can be determined by choosing a different mix of browsing and ordering

transaction. The system throughput is determined by the number of users simulated

by the driver and the thinktime used by each user.

64

5.2.1 Setup

We ran our experiences in a local area network using two PCs running 2.6.12.2-

smp Linux Kernel. Each PC has 512MB RAM and two Pentium III CPUs at 733.86

MHz. The database is built according to the requirements of the benchmark. We

chose the browsing profile that about 80 percent of the transactions are browsing

transactions and the rest are ordering transactions. We chose thinktime to be 3.0

seconds. The benchmark driver simulates 100 clients and maintains 20 connections

with one database server for the clients. This database server is also served as the

peer during recovery. The other database server is the recovering site.

5.2.2 TeS Recovery

The test is very similar to the one using synthetic data, except this time, the

clients are controlled by the benchmark test kit. We tested the TCS recovery both

off-line and online for three different database sizes. We recorded T pgdump and

T pgrestore. T pgdump represents the time it takes the peer site to take a snapshot

of its database. T pgrestore represents the time it takes the recovering site to install

the snapshot into its database. We also recorded T resp, the response time clients

experience when submitting Home transactions, both with and without the system

undergoing a recovery.

Table 5-1: TCS Recovery

Size(Mb) T pgdump T pgdump T pgrestore T resp(ms) T resp(ms)
(Off-line) (Online) (w/o recov- (with recov-

ery) ery)
100 9 12.3 39 106 131
210 18.7 35.1 87 319 458
355 41.3 76 196 334 611

65

As shown in Table 5-1, it takes 12.3 seconds to take a snapshot online for a

100 megabyte database, and 76 seconds for a 355 megabyte database. The overall

performance of the system recovery is pretty good. The problem is that T pgdump

increases more than linear with the increase in database size. The reason for this is

the pgdump operation needs to read the table into the memory and then writes it to

a file. As the size of the database goes up, the size of each table also goes up, and it

will be harder and harder to fit the whole table into the available memory.

The transaction response time (T resp) increases with the size of the database

with and without recovery. Without recovery, the response time with a 355 megabyte

database is three times as high than with a 100 megabyte database. With recovery

running in the background, the response time with a 355 megabyte database is four

and a half times as high than with a 100 megabyte database. In particular, with a

small database of 100 megabyte response times without and with recovery are nearly

the same, while with a 355 megabyte database response times during recovery are

nearly double as high as when no recovery pro cess is running. When the database

is small, nearly all data fits into main memory, and the chosen throughput of X

does not put a high burden on the CPU. Renee, recovery and transaction processing

do not compete, and recovery do es barely affect response times. Rowever, with a

large database, a throughput of X leads to a higher load for CPU and memory, and

recovery negatively influences transaction response time.

66

5.2.3 PCS Recovery

Similar to the tests using synthetic data, we recorded T W S Retrieval, T W S Appl y

and T Recovery during both off-line and online PCS recovery. T Recovery repre

sents the total recovery time. T W S Retrieval represents the time it takes the peer

site to retrieve aH WSs missed by the recovering site from its WSL. T WSApply

represents the time it takes the recovering site to apply aU updates that are captured

in the WS into its database. We also recorded the transaction response times at the

clients.

Table 5-2: PCS Recovery

Off-line
N T W S Retrieval T WSApply T Recovery
6105 0.1 22.5 23.5
15609 0.3 65.1 67.9
30538 0.6 146.0 151.6

Online
N T W S Retrieval T WSApply T Recovery
6105 0.3 23 24.4
15609 1.7 67.1 78.1
30538 3.3 143.2 152.5

Table 5-2 shows the results for different numbers of WSs (N) that have to be

transferred. T Recovery increases linearly with the number of WSs to be transferred

from the peer site to the recovering site. T W SApply accounts more than 90 percent

of the total recovery time. As described in previous sections, apply W S is performed

at the recovering site, hence has no effect on the peer site during recovery. WS

retrieval is performed at the peer site, but T W S Retrieval accounts for less than 2

percent of the total recovery time. So, we believe that PCS recovery has only minor

67

effect on the ongoing database system. Transaction response time experienced by

the clients is the same during recovery and when no recovery takes place, which also

implies PCS is very good for online recovery.

68

CHAPTER6
Special Failures

To make our discussion complete, 1 want to address two more questions: how

PostgreSQL-RR handles network partition and total failure.

6.1 Network Partition

As mentioned in a previous section, Spread implements EVS to provide uni-

form reliable messaging service even when the network is partitioned. This cornes

with both benefits and drawbacks. The uniform reliable messaging service enables

PostgreSQL-RR to maintain data consistency even during site failures. But the fail

ure model of EVS allows a communication group to partition and remerge at a later

time. This allows any two nodes of the communication group in PostgreSQL-RR

to commit two different sets of transactions and cause data to become inconsistent

across the system. So, network partition is not handled correctly in PostgreSQL-RR.

We can extend PostgreSQL-RR to allow it to keep data consistent across the

system even when network partition occurs. We borrow the idea from VS model.

Only group inembers in the primary partition can proceed, any member in a non-

primary partition must stop proceeding and emulate failure. At remerge the members

that come from a non-primary partition have to perform recovery. There may at most

be one primary partition in the system. The problem becomes how to determine the

primary partition. There are two typical approaches: majority and dynamic voting.

Determining the primary partition is a challenging task. There exist systems that

69

pro duce a primary partition layer on top of a GCS [12, 4]. Upon view change, this

layer determines whether the new view is primary. It forwards the view message to

the uppe~ layer (e.g., to the communication manager of PostgreSQL-RR) indicating

whether the view is primary or not.

6.2 Total Failure

The uniform reliable messaging service guarantees that any message delivered

at a failed site is also delivered at an other running sites, which implies that data

kept stored at each site is consistent to each other even in failure situation. That

is, a failed site has always a prefix of transactions committed at running sites. In

case of a total failure of the system, i.e., an sites crash (e.g., power-outage in a

cluster), there is a way in which PostgreSQL-RR can recover from it. The system

administrator first st arts each site in non-replication mode and retrieves the largest

GID (maxGid) from pg writeset. MaxGid is the GID of the last transaction that

commits just before the failure of the site. After that, the system administrator sorts

them in a list and restarts each site according to its or der in the list. The first site

starts up as a regular site without distributed recovery. The second site starts up

as a recovering site with the first one as the peer. Wh en the recovery is done, both

sites are regular sites. Then, the administrator starts up the next in the list as a

recovering site. When an sites in the list have recovered, the whole system is up.

In theory, the system is ready to take requests from clients after the first site is up.

The recovery of the recovering site does not prevent the peer or any other regular

site from processing clients' requests.

70

CHAPTER7
Conclusion

This thesis presents the design and the implementation of the hybrid distributed

recovery algorithm that takes the best out of different recovery strategies. A site can

be recovered by transferring either the whole database from a running site of the

system to the recovering site (i.e., the TCS strategy), or only the update information

of transactions missed by the recovering site during its downtime (i.e., the PCS

strategy). The algorithm handles the case where a new site joins a running system

as weIl as the case where a crashed site rejoins the system, and dynamicaIly chooses

the optimal one based on the feasibility and the estimation of the recovery cost. This

thesis further presents how to recover PostgreSQL-RR after a total failure.

71

References

[1] Group Communication. Special Section. Communications of the A CM, 39(4):50-
97, April 1996.

[2] M.E. Adiba and B.G. Lindsay. Database snapshots. In VLDB, pages 86-91.
IEEE Computer Society, 1980.

[3] R. Barga, D. Lomet, and G. Weikum. Recovery guarantees for general multi
tier applications. In ICDE'02: Proceedings of the 18th International Conference
on Data Engineering, page 543, Washington, DC, USA, 2002. IEEE Computer
Society.

[4] A. Bartoli and B.Kemme. Recovering from Total Failures in
Replicated Databases. Technical Report 2003, available from
http://webdeei.univ.trieste.it/Archivio/Docenti/Bartoli/repExt.pdf.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. A
critique of ansi sql isolation levels. In Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data (SIGMOD'95), pages 1-10,
New York, NY, USA, 1995. ACM Press.

[6] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems.
In Proceedings of the eleventh A CM Symposium on Operating systems principles
(SOSP'87), pages 123-138, New York, NY, USA, 19,87. ACM Press.

[7] K. P. Birman and R. Van Renesse. Reliable Distributed Computing with ISIS
Toolkit. IEEE Computer Society Press, Los Alamitos, CA, 1993.

[8] M. Chouk. Master-slave replication, failover and distributed recovery in post
gresql database. Master's thesis, McGill University, Montreal, Canada, 2003.

[9] Oracle Corporation. Oracle 9i Replication, June 2001.

[10] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems. Concepts
and Design. 3rd edition. Addison Wesley, Reading, MA, 2000.

72

73

[11] T.P.P. Council. Tcp benchmark w, 2000.

[12] D. Dolev, 1. Keidar, and E.Y. Lotem. Dynamic voting for consistent primary
components. In PODC '97: Proceedin9s of the sixteenth annual ACM Sym
posium on Principles of Distributed Co mputing, pages 63-71, New York, NY,
USA, 1997. ACM Press.

[13] D. Dolev and D. Malki. The Transis Approach to Righ Availability Cluster
Communication. Communications of the ACM, 39(4):64-70, 1996.

[14] J. Gray, P. Relland, P. O'Neil, and D. Shasha. The dangers of replication and
a solution. In ACM SIGMOD Conf., 1996.

[15] R. Guerraoui and A. Schiper. Transaction model vs Virtual Synchrony model:
bridging the gap. In K.P. Birman, F. Mattern, and A. Schiper, edit ors , The
ory and Practice in Distributed Systems, volume LNCS 938, pages 121-132.
Springer, 1994.

[16] L. Irun-Briz, F. Castro-Company, A. Calero-Monteagudo F. Garcia-Neiva, and
F.D. Munoz-Escol. Lazy Recovery in a Rybrid Database Replication Protocol.
In XII Jornadas de Concurrencia y Sistemas Distribuidos, pages 295-307.

[17] B. Kemme and G. Alonso. A suite of database replication proto cols based on
group communication primitives. In Proceedings of the The 18th International
Conference on Distributed Computing Systems(ICDCS'98), page 156, Washing
ton, DC, USA, 1998. IEEE Computer Society.

[18] B. Kemme and G. Alonso. Don't be lazy, be consistent: Postgres-R, a new
way to implement database replication. In Int. Conf. on Very Large Databases
(VLDB) , 2000.

[19] B. Kemme and G. Alonso. A new approach to developing and implementing
eager database replication protocols. ACM Transactions on Database Systems,
25(3), 2000.

[20] B. Kemme, A. Bartoli, and O. Babaoglu. Online Reconfiguration in Replicated
Databases Based on Group Communication. In Proc. of the Int. Conf. on De
pendable Systems and Networks, 200l.

[21] Open Source Development Lab. Descriptions and documentation of osdl-dbt-l,
2002.

74

[22] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended
Virtual Synchrony. In Proc. of the 14th IEEE Conf. on Distributed Computing
Systems, pages 56-65, June 1983.

[23] L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, R.K. Budhia, and C.A. Lingley
Papadopoulos. Totem: A Fault-Tolerant Multicast Group Communication Sys
tem. Communications of the ACM, 39(4):54-63, Apri11996.

[24] P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. State Synchronization
and Recovery for Strongly Consistent Replicated CORBA Objects. In Proc. of
the IEEE Int. Conf. on Dependable Systems and Networks(DSN). IEEE Com
puter Society Press, 200l.

[25] PostgreSQL. homepage: http://www.postgresql.org/.

[26] R. Van Renesse, K.P. Birman, and S. Maffeis. Horus: A Flexible Group Com
munication System. Communications of the ACM, 39(4):76-83, Apri11996.

[27] A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Syn
chronous Environment. In Proc. IEEE Conf. Distributed Computing Sys
tems(IDCDS), pages 561-568, 1993.

[28] Spread. homepage: http:j jwww.spread.orgj.

[29] UML. homepage: http:j jwww.uml.orgj.

[30] S. Wu. Integrating synchronous update everywhere replication into postgresql
based on snapshot isolation. Master's thesis, McGill University, Montreal,
Canada, 2004.

