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Abstract

Nowadays, almost all hospitals and clinics in developed countries store patients’ personal med-

ical data in digital format taking into account appropriate security measures and in compliance

with applicable legal requirements. Due to the rapid development of so-called Big Data re-

search tools, such as artificial intelligence and machine learning, these data, if accessible, have

the potential to benefit medical research in the search for new medications and improved treat-

ment approaches. However, in Quebec as is the case in many jurisdictions, access to patient

data is difficult for two main reasons. First, patient consent is required, and second, patients

typically have their medical data spread across multiple source systems in multiple institu-

tions, which makes it difficult to piece together their complete medical history. Moreover, in

most contexts patients do not know who has access to their data and they cannot control ac-

cess rights.

Opal (opalmedapps.com) is a patient portal developed at the Research Institute of the McGill

University Health Centre (RI-MUHC) that provides patients with access to some of their med-

ical data at the MUHC. Opal’s long-term roadmap calls for carefully developed infrastructure

to link multiple hospitals simultaneously so that patients will be able to access their medical

records that are stored in different institutions. However, the originally-designed infrastructure

does not allow patients to control access to their data and contribute them for research. There-

fore, in this thesis project, we explored the design and development of a new infrastructure for

secure and user-controlled personal medical data sharing. Initially, we studied the architecture

and workflow of the existing Opal platform. Then, we analyzed various modern decentralized

tools and technologies for storing and controlling personal data. Based on the analysis and
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knowledge acquired, we designed and implemented a novel prototype system for controlling

and sharing personal medical data with researchers using a blockchain-based infrastructure.

The blockchain is a tamper-proof mechanism for storing data in an immutable way by using

cryptographic and network technologies. As described in this thesis, our novel data-sharing

infrastructure is designed to record (1) the permissions that each patient gives to research study

personnel to access their data, (2) the data-access privileges that a "public trust" committee

provides to researchers to access shared data, and (3) the data access logs of researchers who

access the shared data.

Thus, patients can contribute their data to a specific research study by providing electronic

consent in a patient portal such as Opal and by specifying which of their data records they wish

to share. The system is designed to allow patients to withdraw their consents at any time and

stop further sharing of their data if they change their minds. Also, as all data access requests are

automatically recorded on the blockchain, each patient has the ability to know who accessed

their data and when.
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Abrégé

De nos jours, presque tous les hôpitaux et cliniques des pays développés stockent les données

médicales personnelles des patients enformat numérique tout en tenant compte des mesures

de sécurité appropriées et en conformité avec les exigences légales. En raison du développe-

ment rapide des outils de recherche utilisant les mégadonnées, tels que l’intelligence artificielle

et l’apprentissage automatique, ces données ont le potentiel de profiter à la recherche médicale

dans la recherche de nouveaux médicaments et pour améliorer les approches thérapeutiques.

Cependant, au Québec comme c’est le cas dans plusieurs juridictions, l’accès aux données des

patients est difficile pour deux raisons principales. Premièrement, le consentement du patient

est requis, et deuxièmement, les données médicales des patients sont généralement réparties

sur plusieurs systèmes informatiques localisés dans plusieurs établissements, ce qui rend dif-

ficile la reconstitution des antécédents médicaux complets. De plus, dans la plupart des situ-

ations, les patients ne savent pas qui peut accéder à leurs données et ne peuvent contrôler les

droits d’accès.

Opal (opalmedapps.com) est un portail patient développé à l’Institut de recherche du Cen-

tre universitaire de santé McGill (IR-CUSM) qui permet aux patients d’accéder à certaines de

leurs données médicales au CUSM. La feuille de route à long terme d’Opal nécessite une infras-

tructure soigneusement développée afin derelier plusieurs hôpitaux simultanément et pourque

les patients puissent accéder à leurs dossiers médicaux stockés dans différentes institutions.

Cependant, l’infrastructure conçue à l’origine ne permet pas aux patients de contrôler l’accès

à leurs données et de les partager pour la recherche. Par conséquent, dans ce projet de thèse,

nous avons exploré la conception et le développement d’une nouvelle infrastructure pour le
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partage de données médicales personnelles sécurisées et contrôlées par l’utilisateur. Dans un

premier temps, nous avons étudié l’architecture et le déroulement des opérations de la plate-

forme Opal existante. Ensuite, nous avons analysé divers outils et technologies modernes et

décentralisés pour le stockage et le contrôle des données personnelles. Sur la base de l’analyse

et des connaissances acquises, nous avons conçu et mis en œuvre un nouveau prototype pour

contrôler et partager des données médicales personnelles avec des chercheurs à l’aide d’une

infrastructure basée sur la chaîne de blocs (blockchain).

La blockchain est un mécanisme inviolable permettant de stocker des données de manière

immuable en utilisant des technologies cryptographiques en réseau. Comme décrit dans cette

thèse, notre nouvelle infrastructure de partage de données pour Opal est conçue pour enreg-

istrer (1) les autorisations données par le patient au personnel des études de recherche pour

accéder à leur données, (2) les privilèges d’accès aux données qu’une “fiducie publique” fournit

aux chercheurs avant d’accéder aux données partagées, et (3) les relevés d’accès aux données

de tous les chercheurs qui accèdent aux données partagées.

Ainsi, les patients peuvent partager leurs données à une étude de recherche spécifique en

fournissant un consentement électronique dans Opal et en spécifiant quelles données ils souhait-

ent partager. Le système est conçu pour permettre aux patients de retirer leur consentement à

tout moment et de cesser le partage de leurs données s’ils changent d’avis ultérieurement. De

plus, toutes les demandes de données sont automatiquement enregistrées sur la blockchain,

chaque patient a la possibilité de voir qui a accédé à ses données et quand.
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Chapter 1

Introduction

1.1 Motivation

We are living in an era where data-based techniques (e.g., machine learning, statistical meth-

ods, data science, etc.) help humans perform intellectual tasks with enhanced speed, precision,

and effectiveness. These techniques have been around for almost 50 years. However, they have

started being actively used only in recent years thanks to modern computer processing power

and a sufficient quantity of data. Healthcare is one of many fields where artificial intelligence

and data-based techniques are employed, helping researchers find new treatment methods and

medications. In this thesis project, we designed and developed a working prototype version of

a secure and user-controlled medical data-sharing platform in order to allow patients to share

their medical data for research purposes.

1.1.1 Real-world Data and Evidence

In clinical research and healthcare delivery, researchers and clinicians use scientific methods

to explore and invent new medical treatments, surgical techniques, drugs, biomedical devices,

and medications. These methods include a variety of experimental techniques to prove or re-

fute hypotheses. One of the tried and trusted techniques is the clinical trial—a research study

of human subjects that is designed to determine if new biomedical or behavioral interventions
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are safe and effective [1, 2]. When conducting a clinical trial, researchers are eager to collect as

much data as possible in order to strengthen the analysis results and optimize the risk-benefit

ratio of the treatment being studied [3, 4]. However, clinical trials require many resources, such

as personnel (and hence funding) and time [5, 6]. Resource availability affects the quantity of

data collected (i.e., the number of patients recruited) and, consequently, the applicability of the

trial’s findings.

In recent years, technological advances have broadened the possibilities available to clinical

researchers. For example, in 2018, the United States Food and Drug Administration (FDA) in-

troduced a new framework to accelerate medical product development and to bring about new

innovations and advances faster using real-world data (RWD) and real-world evidence (RWE)

[7]. RWD is a term that describes observational data obtained outside regulated clinical tri-

als and generated during routine clinical practice. RWD may come from a number of sources

including electronic health records (EHRs), insurance billing and claims, patient-reported out-

comes (PROs), and biometric monitoring devices (such as smartphones and smartwatches).

Using these unconventional sources of data, new treatment methods can be evaluated under

real-world conditions in larger populations and at much lower cost than is possible with typ-

ical clinical trials. RWD are closely related to RWE—the clinical evidence regarding the usage

and potential benefits or risks of a medical product derived from the analysis of RWD. RWE can

be generated by different study designs and analyses, including but not limited to, random-

ized trials, including large simple trials, pragmatic trials, and observational studies (prospective

and/or retrospective). Thus, the FDA’s new framework along with available RWD and associated

RWE help medical product developers to expand on the clinical trial process. Also, it helps to

monitor and evaluate the safety of previously-approved therapies and satisfy post-marketing

study requirements.

1.1.2 Comparative Effectiveness Studies

In 2009, the United States Institute of Medicine published a report on comparative effective-

ness research (CER) intending to assist consumers, clinicians, purchasers, and policymakers to
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make informed decisions to improve health care at both the individual and population levels

[8]. The purpose of CER is to determine which existing healthcare techniques and treatments

work best for which patients and which pose the greatest benefits and harms. CER generally

focuses on broader, more heterogeneous populations (i.e., real-world populations) than tradi-

tional clinical trials with the goal to provide evidence about the effectiveness of a new medical

approach under consideration. Although clinical trials, in particular randomized control clini-

cal trials, do provide evidence about effectiveness, they are typically based on a small number

of patients that meet a rigorous set of eligibility criteria. CER allows researchers to address the

question of which of the available treatments is most effective for a specific patient rather than

the question of whether a treatment works or not. Thus, many CER studies heavily rely on RWD

[9]. However, it is not trivial to get access to or collect such RWD.

1.1.3 Data Science and Big Data in Healthcare

Data science is a multidisciplinary field that combines scientific techniques and theories from

many fields, such as mathematics, statistics, data mining, artificial intelligence, Big Data, etc.,

in order to extract knowledge and insights from data. Data science can trace its origins back

in 1962 when John Tukey called for a reformation of academic statistics [10]. Tukey pointed to

the existence of an as-yet unrecognized science, whose subject of interest was learning from

data, or “data analysis”. The term “data science” was proposed by Peter Naur in 1974 and be-

came more widely used at the beginning of the 2000s due to an expansion of statistics beyond

theory into practice [11, 12, 13]. Modern data science has a close relationship with so-called

Big Data—a field that deals with very large, diverse data sets that include structured, semi-

structured, and unstructured data, from multiple sources, and in different sizes ranging from

terabytes to zettabytes. Big Data challenges include capturing data, data storage, data analysis,

searching, sharing, transfering, visualizing, querying, updating, information privacy, and data

source handling. Big Data has become an important tool for research and business, where data

scientists are responsible for breaking down big data sets into usable information and creating

software and algorithms that help companies and organizations determine optimal operations
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[14]. The world’s biggest technology companies are constantly analyzing their data to produce

more efficiency and develop new products. In 2010, the global data-driven industry was worth

more than $100 billion and was growing at almost 10% a year: about twice as fast as the software

industry as a whole [15].

Data science techniques and Big Data have had a huge impact on healthcare research. With

the rapid integration of so-called mHealth (mobile health), eHealth (electronic or digital health)

and wearable technologies in healthcare systems, the volume of healthcare data is constantly

increasing. This includes EHR data, imaging data, patient-generated data, sensor data, and

other forms of difficult-to-process data. These data help data analysts and data scientists to

improve healthcare by providing personalized medicine and prescriptive analytics, clinical risk

intervention analytics, and predictive analytics, as well as automated external and internal re-

porting of patient data, and many other data-driven applications [16, 17]. One of the first ap-

plications of data science and Big Data in healthcare was made by Google in 2008. The com-

pany developed a web service that provided estimates of influenza (“the flu”) activity by ag-

gregating Google Search queries [18, 19]. Although the predicting system was sometimes very

inaccurate and was eventually discontinued in 2015, it demonstrated the potential of data sci-

ence in healthcare [20, 21]. In 2015, Google used Big Data and data science to identify breast

cancer tumors that metastasize to nearby lymph nodes. Their deep learning–based approach

called Lymph Node Assistant (LYNA) was able to correctly distinguish a pathology slide with

metastatic cancer from a slide without cancer 99% of the time [22]. As of summer 2021, the

most recent applications of data science and Big Data were demonstrated during the COVID-19

pandemic. Various technologies have been used to minimize the impact of the disease, in-

cluding minimizing the spread of the virus, case identification, and development of medical

treatments [23, 24, 25, 26]. However, despite the benefits of Big Data and data science, the use

of these technologies in healthcare has raised significant ethical challenges ranging from risks

for individual rights, privacy and autonomy, to transparency and trust [27, 28].

A typical data science project has a certain life cycle pattern that can involve different phases.

According to Prof. Ruths at McGill University, the data science pipeline includes six phases that
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Figure 1.1: Data science project six-phase pipeline [29].

are shown in Figure 1.1 [29]. The first phase of the pipeline is the question definition. It is

the most crucial and important step that defines the problem that the data scientists are try-

ing to solve. A poorly formulated question can lead to issues in the following phases and poor

results for the whole project. Each word of the question must be “clear” and understandable

without any vagueness or ambiguity. At the same time, the question must be defined in a way

that can be measurable and possible to interpret in numbers. The second phase of the pipeline

is data collection. This step includes obtaining and arranging the data so they can be worked

with. Namely, in accordance to the question definition, data scientists must decide what data to

collect, obtain the raw data, identify anomalies in the data, correct issues in the data, and stan-

dardize the structure of the data. The third phase is data annotation, which involves inferring

features that will be used for analysis. This step can include creating new features. There are

three primary ways of generating features: (1) human annotation (e.g., crowd-sourced annota-

tion or by involving experts), (2) programmatic (e.g., machine learning), and (3) mixed human

and programmatic annotation. The data collection and data annotation phases are very much

related. Therefore, a good data science project spends about 60%-80% of the project time in

these two phases [30]. The fourth phase is the data analysis, where the goal is to generate the

results or findings. Data scientists create models and visualizations using existing statistical

methods and machine learning techniques. The fifth phase is the interpretation phase and

it puts the analysis results into the context of the objective(s) of the project. The goal of this

step is to explore how the analysis findings relate to the original question. The last phase of the
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pipeline is communication, where data scientists present and explain the insights of the project

in the form of a report, publication, or presentation. A good data science project is an iterative

cyclic process, where the results at each phase are continuously assessed. If an implemented

phase produces bad results or does not relate to the underlying problem, then the approaches

of the previous phases must be analysed and re-implemented [31].

1.1.4 Problems: Data are Spread Out and Difficult to Access Legally and Tech-

nically

As discussed above, in the last few decades, clinical research and healthcare have been en-

hanced with new techniques and methodologies thanks to digitization and technological ad-

vances. However, it is difficult to fully exploit these techniques and methodologies due to nu-

merous technical and legal challenges that are discussed in this section.

Despite the popularization of eHealth and electronic health records (EHRs), it is hard to ag-

gregate medical data (the data collection phase) into an electronic data set or database. First

of all, healthcare data are often fragmented among different sources. Since a patient can visit

different healthcare providers over the course of their treatment, their medical data are spread

out among different organizations. This makes it difficult to automate the data collection pro-

cess due to technical issues (e.g., organizations’ firewalls and security measures) and leads to

another challenge. Different healthcare providers may store their patients’ records in different

formats, which makes data aggregation from different sources even more complicated, even

within a single institution. Although the use of digitized and structured data simplify this pro-

cess, each healthcare provider may use different metadata naming conventions (e.g., Microsoft

Excel table headers, database table names or database fields, etc.) that require merging so-

lutions. Fast Healthcare Interoperability Resources (FHIR) is a modern standard created by the

Health Level Seven International (HL7) healthcare standards organization that helps healthcare

providers to store data in a single format. The standard describes data formats and elements

(known as “resources”) as well as interfaces for exchanging EHRs [32]. The practice of stor-

ing medical data in a standardized format has been popularized only in recent years, therefore
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many (if not most) healthcare providers and software vendors currently store data in their inter-

nal formats. Another issue relates to the constantly changing data. For example, patients and

physicians move, change their names and professions, retire and die. Thus, healthcare data are

not static, and most elements will require relatively frequent updates in order to remain clean,

complete and current. The last, but not least, technical challenge is to ensure that aggregated

datasets are accurate, correct, consistent, relevant, without duplications, and not corrupted in

any way.

Besides the technical challenges, the data collection process often faces various legal hur-

dles. Since medical records contain sensitive information about individuals, these data are

considered personal data or personally-identifiable information. Each legal jurisdiction has

its own regulations for storing, processing, and accessing personal data. Thus, not anyone is

allowed to access such data. For example, in Canada, data protection laws and regulations are

encapsulated in a complex set of federal and provincial statutes. These laws and regulations in-

clude statutes of general application, as well as sector-specific statutes, such as health privacy

regulations, and related regulations such as anti-spam and consumer protection regulations

[33]. Therefore, there are varying definitions of “personal health information” under provin-

cial health privacy laws, which generally relate to identifying information about an individual

related to their physical and mental health. In Quebec, the medical records of patients are con-

sidered confidential, so only patients and their treating clinicians can access them. Patients

must, in most circumstances, give permission for other people to see their medical records [34].

An example solution that partially solves the aforementioned technical issues is the Opal

application developed at the Research Institute of the McGill University Health Centre (RI-

MUHC). In 2014, McGill Computer Science professor Laurie Hendren, as a cancer patient, en-

countered a lack of effective personal medical data management [35]. Prof. Hendren’s medical

data were spread out among different healthcare providers, so she had to organize all of her

medical records by herself. Also, it showed to her that patients do not have the power of control-

ling their medical records. Thus, along with Dr. John Kildea (medical physicist) and Dr. Tarek

Hijal (radiation oncologist), Prof. Hendren founded the Opal Health Informatics Group, which
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has been developing the Opal patient portal platform (opalmedapps.com) for Quebec patients

[36]. The Opal platform aggregates various fragmented data that it has access to, which in turn

enables patients to store, organize and share their health data with their caregivers.

1.2 Thesis Goals

Due to the popularity and increased exposure of Opal, the number of Opal users is constantly

increasing. As of Summer 2021, the Opal app has about 1,700 users. Because of this, the amount

of medical data processed by the platform is growing. As discussed earlier, data such as these

are a crucial component of modern healthcare research methods and techniques. For example,

these data could be used for clinical trials, CER, or for a data science project. Thus, researchers

have a high interest in data that are aggregated and accessed by a platform such as Opal.

Although Opal aggregates medical data and partially solves the aforementioned technical is-

sues, these data cannot be used for research without patients’ consent. Researchers have to get

patients’ consent to use their personal medical data in each specific research study. However,

patient consent does not guarantee the safety or confidentiality of personal data. For example,

a healthcare provider’s or a researcher’s system can be compromised by a malicious actor to get

access to patients’ data without consent.

The founders of Opal have outlined its core principles as a patient-centric app, where the

data belong to a patient who controls them. Therefore, following Opal’s core principles, the

goals of this thesis are as follows:

• Participate in a process of stakeholder co-design among patients, clinicians, and researchers

to co-design the requirements of a secure and patient-controlled data-sharing system

called the “Research Portal”.

• Design, develop, and deploy the Research Portal as a prototype solution for providing re-

searchers with access to Opal users’ data for research purposes. The system must store (1)

patients’ electronic consent (e-consent), (2) researchers’ data-access privileges, and (3)
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researchers’ data-access history in a tamper-proof manner. The system’s storage mecha-

nism must be immutable (append-only) to ensure the integrity of the record of consents,

privileges and data accesses. At the same time, a tamper-proof solution must guarantee

that Opal users’ data, as stored in the host healthcare institution cannot be used or modi-

fied even by the institution’s IT staff or by other users without authorized access. However,

using the Research Portal a system administrator should be able to set the privileges for

accessing the shared data for each researcher participating in a study. The system should

allow patients to withdraw their consents and stop further sharing of their data if they

change their minds.

• Analyze modern decentralized technologies and their possibilities for storing data in an

immutable (append-only), tamper-proof manner so that Opal users may confidently con-

trol access to their data for research use.

• Provide recommendations for further improvements to the Research Portal based on the

knowledge gained from the stakeholder co-design and development processes. Also, pro-

vide guidance on deploying a production-ready solution.

1.3 Structure of the Thesis

This thesis is organized as follows:

In Chapter 2: we introduce the Opal patient portal app and platform as well as its features,

infrastructure, and workflow. Also, we discuss the concepts and existing solutions for data-

sharing and data-access control. Moreover, we present the co-design process for designing and

building a prototype of the Research Portal—our data-sharing service in the ecosystem of the

existing Opal patient portal but extendable to any similar ecosystem.

In Chapter 3: we provide an overview of decentralized technologies. First, we present one of the

earliest and best-known decentralized systems, the World Wide Web, and discuss its transfor-

mation into a centralized system. Also, we discuss the problems of the centralized Web and is-

sues related to personal data. Then, we present modern decentralized platforms, such as Solid
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and blockchain. We analyze in depth these two decentralized technologies and evaluate the

complexity of using them to support our Research Portal needs.

In Chapter 4: we present the design process of a patient-controlled data-sharing service—the

Research Portal. First, we outline the desired solution and list its high-level requirements. Then,

we discuss modern software development methodologies and define the functional require-

ments of the system as text use cases. The text use cases are visualized in the form of use case

diagrams and a sequence diagram. Also, we present the technologies used for developing the

Research Portal for Opal-sourced data. In detail, we explain the Hyperledger Fabric platform

for running a private permissioned blockchain network. At the end of the chapter, we present

the design of our prototype blockchain network and the Research Portal.

In Chapter 5: we present the results of this thesis project. The chapter describes the developed

prototype Research Portal—a secure and patient-controlled system for data sharing. We explain

the existing features and its workflow. Also, we discuss the results of the co-design process and

its impact on the technology development. At the end of the chapter, we discuss the feasibility

of the blockchain solution.

In Chapter 6: we summarize the major points of this thesis project and discuss the remaining

challenges to be addressed within the scope of the overall Opal patient portal platform project.
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Chapter 2

Background

2.1 Opal App Infrastructure and Workflow

Opal is a mobile phone application that acts as a patient portal. It was initially developed for

radiation oncology patients at the McGill University Health Centre (MUHC) but its use is being

expanded to encompass all types of patients. The app allows patients to access their personal

health information, such as appointment schedules, lab results, personalized educational ma-

terial, radiotherapy treatment planning views, and more. Figure 2.1 illustrates some of the Opal

app’s screens.

The app has five information categories arranged as tabs: “Home”, “My Chart”, “General

Information”, “Educational Materials”, and “Account Settings”. The “Home” screen provides no-

tifications and up-to-date pertinent information personalized to the individual patient, such

as next appointment, status of treatment/treatment planning, and waiting room management.

The “My Chart” screen contains personal health information specific to the individual patient,

including appointment schedule, doctors’ notes, radiotherapy treatment plan views, lab test

results, and secure messages from the treating team. The “General Information” page includes

information regarding the hospital that is not personal to an individual patient. The “Educa-

tional Materials” screen has relevant, just-in-time educational material that is specific to the

individual patient’s diagnosis and phase of treatment. The fifth tab is the “Account Settings”
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Figure 2.1: Illustration of the Opal app screens. The first screen shows the application’s landing

page. The second screen illustrates the “Home” page, which is shown to users after signing

in. The third screen shows “My Chart” tab that contains patients’ information, and the fourth

screen is an example of visualized lab results data.

screen that provides tools to allow the patient to change preferences such as language, font size

and password. Table 2.1 lists Opal’s features and functionality grouped by categories.

Also, Opal has features that are under development and not available to its users yet. One of

these new features, called “all-in-one”, will allow Opal patients to access their data from multi-

ple healthcare institutions simultaneously in a single app. The all-in-one solution will initially

connect to two hospitals in Montreal: the MUHC and Ste-Justine hospital. Using Opal’s multi-

institution data communication infrastructure, it is intended that patient data, linked and stan-

dardized in Opal, may be securely copied to a research database and accumulated there for

research studies. Figure 2.2 shows the concept of the ’All-in-one’ solution.
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Table 2.1: Categories of information and features/functionality provided to patients via Opal.

Category (Menu/tab) Features & Functionality

Home

Screen/Overview

Next appointment

Notifications (e.g., new document, new message, etc)

Posts (messages from treating team and general hospital

announcements)

Status of treatment/treatment planning

Waiting room management (check-in, call-in, waiting time estimate)

My Chart Diagnosis information

Notification archive

Appointment schedule with appointment location maps

Appointment change requests

Treatment/Treatment planning information

Access to (selected) doctors’ notes and nursing notes

Lab test results

Messages from treating team

Secure two-way messaging with clinicians

Patient-reported outcome questionnaires

General

Information

Facility to update contact information (personalised on login)

General hospital announcements

Patient charter

Parking information

General hospital maps

Way-finding

Leave feedback regarding app/portal

Facility to report bugs in the app/portal

Educational

Material

Videos

Booklets

Pamphlets/fliers

Account

Settings

Language preference

Font size
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Figure 2.2: High-level architecture of the multi-institutional version of Opal (“All-in-One”). The

Opal-PIE or patient information exchange is the backend Opal software that must be installed

in each hospital to connect the patient app with the hospital-sourced personal health informa-

tion for each patient user. The vision of the Opal Health Informatics Group is a solution that

provides patients with direct data-sharing capabilities via e-consent for research data use.

Figure 2.3 presents a schematic of Opal’s communication architecture. To securely serve

data to the Opal app and isolate access to the EMR source databases (e.g., Aria, ORMS, etc.), the

architecture contains a custom-developed database, known as OpalDB. The database is run in

the MySQL database management system and hosted on a Linux server with automatic mirror-

ing to an independent fail-over server and nightly backups to a backup server. The database

and server are internal to the hospital’s firewall.
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Selected data are transferred from the EMRs to OpalDB using the “Auto Update” scheduler

(essentially customizable Linux cron jobs) that copies across approved appointments, tasks,

documents, lab test results, etc. All of the data that reside in OpalDB are accessible to the pa-

tients that own them. Therefore, it is important to strictly control their insertion into OpalDB.

The OpalAdmin Publish Manager provides this control. It is a secure web application that al-

lows the clinical team to (a) control the personal health information that will be shared with

patients (b) create content (educational material, posts, questionnaires, etc) and apply person-

alization rules, and (c) create tagged data (such as maps and appointment explanations) that

will be used to supplement the personal and personalised data.

Figure 2.3: Opal’s communication architecture. The dashed line outlines Opal’s back end soft-

ware known as the Opal PIE (Patient Information Exchange).

Secure serving of data through a hospital’s firewall to Opal is facilitated by Firebase, a real-

time backend-as-a-service cloud database operated by Google Inc. [37]. Firebase is designed

such that all applications that are connected to it are served data in real time. As such, if any

data on Firebase are changed, all connected applications immediately see the change, and vice-

versa. Also, Firebase provides authentication tools and Secure Sockets Layer (SSL) encryption.
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Therefore, Opal users’ security and confidentiality are achieved at several levels. First, all data

sent to/from the hospital and to/from Opal are encrypted by Opal’s infrastructure (Listener or

patient app) using the Advanced Encryption Standard (AES) algorithm. A hash representation

of the user’s password, generated using the Secure Hash Algorithm SHA256 and other informa-

tion, is used as the key to encrypt all data. The second layer of security is provided by Firebase

itself, which communicates on an SSL layer. Encrypting the patient’s data, before sending them

through Firebase, ensures that all data within Firebase are encrypted and cannot be read by

Firebase employees. Furthermore, in the event of a compromise (e.g., password retrieval from

an Opal user through a phishing attack), only the patient’s own data are compromised.

The Listener is a node.js script that monitors and communicates with Firebase. When the

user-authenticated app requests data, it places a token on Firebase that is immediately seen

by the Listener. The Listener then fetches the appropriate data from OpalDB, encrypts them

and copies them to Firebase, where they are immediately propagated to the Opal app. As soon

as delivery is complete, Opal deletes the data from Firebase. In the event of a disruption in

the connection to the patient’s device, the Listener deletes the data from Firebase after five

minutes. This ensures that stale patient data (albeit encrypted) are never sitting on Firebase. In

general, the Listener pushes data outward from the hospital. However, certain data types, such

as patient-reported outcomes (PROs) questionnaire responses and appointment check-ins are

accepted inward.

OpalAdmin is a roles-based web interface that is internal to each hospital where the Opal

platform is installed. It is used by the clinical teams to set the rules to publish data to patients

and to see which data patients have accessed. Also, it is used by superusers and the hospital

security team to access Opal’s activity logs. All patient logins, data access requests and data

changes are logged in OpalDB using MySQL’s Triggers function. The activity log storage mech-

anism was one of the sources of inspiration for this thesis project. Since logs stored in regular

database storage can be modified by compromised superusers or people who get unauthorized

access, such an approach does not guarantee the immutability of previously-added log records.

Thus, the log may not be a reliable source of historical system events (e.g., as evidence to be
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used in court). This potential limitation was a motivation to explore storing activity logs in an

immutable, tamper-proof manner.

2.2 Data Sharing

Nowadays, every person generates massive amounts of personal data. The vast majority of

these data are generated from digital technologies. This includes wearable devices, online ac-

tivity (e.g., social media posts), banking, e-commerce, EHRs and many others. As discussed

in Chapter 1, these data can be significant for academic research, particularly in healthcare.

Historically, it was difficult to access such data due to several reasons: (1) the absence of estab-

lished frameworks for transferring personal data to researchers, (2) the absence of choice for

individuals to decide with whom to share their data, (3) technical and legal issues. A solution to

these problems is user-controlled data sharing (a.k.a. data donation).

Data sharing is an act of an individual who contributes their personal data for research pur-

poses by providing consent. People voluntarily allow transfer of their data that were generated

for a different purpose to a collective research dataset. This allows researchers to use otherwise

private data for the benefit of society. The “donation” concept comes from medical fields and

science, where organs and blood are often donated. Therefore, the term “data donation” can be

used to increase awareness on the need to make personal data available for scientific research.

In 2019, the Opal team conducted a survey among Opal users about their interest in new fea-

tures [36]. The results showed that 177 patients out of 260 were positively interested in having

an option to anonymously share their medical data for research. According to other research

studies, many people are willing to share their data and biospecimens for research that could

benefit the wider general public [38, 40, 39]. Anya Skatova’s research shows that social duty is

the biggest reason to share personal data [41]. At the same time, understanding how personal

data will be used plays a significant role in the decision of the participants to share their data.

This includes legal and technical aspects to ensure data are not passed on to unauthorized per-

sons. Also, giving participants the power to decide who has access to their data, when, and for
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how long, will increase their trust and willingness to participate. Technologies like APIs (Ap-

plication Programming Interfaces) allow for direct computational access to data sources and

make it possible that the data sharing may involve providing access to an ongoing data stream.

In these cases, it is important to inform participants about how long this authorization will re-

main active and what options the participant has to revoke access in the future [42].

2.2.1 Related Work

The data-sharing concept is not new and becomes more popular every year. The US web-

site PatientsLikeMe (patientslikeme.com) was one of the first platforms for patient data shar-

ing/donation. It has been in operation since 2005 and counts over 830,000 data donors with

over 2,900 conditions. Members are able to share personal stories and information about their

health, symptoms, and treatments. Also, users have the opportunity to learn from the aggre-

gated data of others with the same disease and see how they are doing in comparison with

others. Thanks to the collected data, PatientsLikeMe’s research team has published more than

100 peer-reviewed scientific articles in leading journals such as the BMJ, Nature Biotechnology,

and Neurology [43].

Another popular data-sharing project is Open Humans (openhumans.org) that was founded

in 2008. The platform allows users to upload, connect, and privately store their personal data,

such as genetic, activity, or social media data. Once users connected their data sources, they

can join projects that help to explore and analyse their data. Also, participants can choose to

share their data with studies and other projects run by third-party researchers. As of fall 2021,

the platform has 12,495 members and 54 tools.

In 2013, an open-source project called Tidepool (tidepool.org) was founded. The platform

helps patients with diabetes to retrieve data from over 50 supported devices (e.g., insulin pumps,

continuous glucose monitor) and analyse them via Tidepool Web and Tidepool Mobile. The

Tidepool Big Data Donation Project allows users to share these data in anonymized form with

researchers. Participants can opt in or opt out of the Tidepool Big Data Donation Project at any

time. Also, users have the power to decide who has access to their account, and how much ac-
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cess they can have. The platform charges researchers a fee for accessing shared data, and then

donates 10% of the proceeds to diabetes organizations. The Tidepool Big Data Donation Project

also make some datasets publicly available at no cost to researchers.

The Swiss group Healthbank (healthbank.coop) has been in operation since 2015 and it al-

lows participants to upload their data to its site and from there share them with clinicians and

researchers. The platform allows users to provide health data from any source and in any for-

mat. Also, participants may stop sharing their data at any time. The main feature of the platform

is that users can monetize their personal data. Researchers have to pay users to have access to

their data. Users can review the details of the offer and then decide if they are willing to partici-

pate in the research or not.

In 2019, Apple released a research app (Apple Research app) that allows users to partici-

pate in health studies from their Apple devices. Apple teamed up with different researchers and

health organizations that run different health research studies. Thus, users can opt to partici-

pate in three health studies: (1) a women’s health study, (2) a hearing study, and (3) a heart and

movement study. The app puts data sharing in users’ control, so they can withdraw at any time.

Also, the app encrypts users’ data for security reasons, informs users how their data will support

the research, and guarantees that the data will not be sold to third parties.

2.3 Data Access Control

In recent years, identity and access management (IAM) have become more prevalent and criti-

cal in data management systems as regulatory compliance requirements have become increas-

ingly more rigorous and complex. IAM addresses security concerns that the right subjects

(users) access the right objects (resources) at the right times for the right reasons [44]. IAM

identifies, authenticates, and controls access for subjects who will be utilizing IT resources, in-

cluding hardware and applications’ employees. Thus, the access control process is a crucial

part of the IAM concept.
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Access control is generally considered in three successive steps: (a) identification, (b) au-

thentication, and (c) authorization [45]. Identification is an assertion of who someone is or

what something is. This can be a person, process, system, or other subject. Identification is

only a claim of identity and does not imply that this claim is correct. The username is the most

common form of identification. Authentication is the act of verifying a claim of identity. There

are three different types of information that can be used for authentication: (1) something that

the subject knows (e.g., password, personal identification number (PIN), pass-phrase, etc.),

(2) something that the subject has (e.g., magnetic swipe card, USB flash drive, etc.), (3) the

subjects’s biometrics (e.g., palm prints, fingerprints, voice prints, and retina (eye) scans, etc.).

Strong authentication requires providing more than one piece of authentication information

(e.g., two-factor authentication). Authorization defines what operations a subject can perform

in the context of a specific object (e.g., application). After a subject has successfully been iden-

tified and authenticated, a system must determine what informational resources they are per-

mitted to access and what actions they are allowed to perform. The determination is based

on administrative policies and access control mechanisms (models). For example, one subject

might be authorized to enter a sales order, while a different subject is authorized to approve the

credit request for that order.

Access-control models tend to fall into one of two classes: based on capabilities and based

on access control lists (ACLs). Both classes have four basic actions: (1) allowing access, (2)

denying access, (3) limiting access, and (4) revoking access. However, the way these actions are

performed will differ based on the implementation involved. In a capability-based model, ac-

cess is granted or conveyed to a subject by transmitting such a capability over a secure channel.

Subjects have an unforgeable token (capability) that provides access to the object. For example,

we can think of a token capability as being analogous to the access card we might use to open

the door of a building. Many people can have a token to open the door, but each person might

have a different level of access (e.g., access hours). Also, the token can be transferred to a dif-

ferent person. Thus, the right to access an object is based entirely on possession of the token,

and not on who possesses it. In an ACL-based model, a subject’s access to an object depends
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on whether its identity appears on a list associated with the object. ACL systems have a variety

of different conventions regarding who or what is responsible for editing the list and how it is

edited. ACLs are typically built specifically to a certain object. They contain the identifiers of

the subjects allowed to access the object and permissions that describe what each subject is

allowed to do with the object. For example, ACLs are commonly used in file systems, where

subjects have different access permissions: read, write, and execute.

There are many different access control models. The most common models in real-world

environments are the following:

• Discretionary Access Control (DAC)—the data owner determines who can access specific

objects. For example, a system administrator may create a hierarchy of files to be accessed

based on certain permissions.

• Mandatory Access Control (MAC)—the owner of the object does not get to decide who

gets to access it, but instead access is decided by a group or individual who has the au-

thority to set access on objects. Usually, MAC is implemented in governmental organiza-

tions, where access to a given object is largely dictated by the sensitivity label applied to

it (e.g., secret, top secret, etc.).

• Role-Based Access Control (RBAC)—the model is similar to MAC, where functions on ac-

cess controls set by an authority responsible for doing so, rather than by the owner of the

object. The difference between RBAC and MAC is that access control in RBAC is based

on the role the individual being granted access is performing. For example, a human re-

sources specialist should not have permissions to create network accounts; this should

be a role reserved for network administrators.

• Attribute-Based Access Control (ABAC)—access rights are granted to subjects through the

use of policies which evaluate attributes (e.g., subject attributes, object attributes and

environment conditions). Completely Automated Public Turing Test to Tell Humans and

Computers Apart (CAPTCHA) is an example of ABAC, where a subject has to prove they

are a human [46].
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• Multilevel Access Control—combination of the simpler access control models (e.g., DAC

and MAC). Such access controls are used extensively by military and government orga-

nizations, or those that often handle data of a very sensitive nature (e.g., nuclear secrets,

health information). In this thesis project, we used this access control model where both

DAC and MAC models were used (i.e., patients share their data by signing e-consents and

administrators set privileges for accessing the shared data).

2.3.1 Related Work

Various solutions have been proposed to address the security and access control concerns of

healthcare [47, 48, 49, 50, 51, 52, 53]. However, in recent years, there has been a proliferation of

solutions for the use of blockchain to manage healthcare records both for clinical care and for

research. As far as we are aware, all of the solutions involve storing the data themselves on the

blockchain.

In 2016, Huiju Wang et. al. proposed an architecture for storing and sharing healthcare

data using blockchain technology [54]. They were one of the first researchers who incorporated

blockchain technology into the design of a healthcare data system. Their proposed Healthcare

Data Gateway (HDG) app’s architecture utilizes blockchain technology that enables patients to

own, control, manage, and share their own data easily and securely without compromising their

privacy. The architecture consists of three layers: (1) the storage layer—a private blockchain

network that stores healthcare data, (2) the data management layer—a set of individual’s HDGs

that are independent but connected to each other, and (3) the data usage layer—entities that

use patient healthcare data (e.g., electronic medical record systems and data analytics algo-

rithms). Also, they proposed one purpose-centric access control model, where data requests

are expressed using a single unified interface.

Another blockchain-based solution for efficient medical data sharing and data access con-

trol was proposed by Kai Fan et. al. [55]. Their solution allows patients to provide doctors with

access to their EMRs when they visit different hospitals. For the blockchain network, they devel-

oped their own hybrid consensus mechanism which can effectively avoid network congestion.
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Also, to assure the security and the privacy of medical data, they developed an encryption solu-

tion to store the data on the blockchain. In this model, a requester must have the corresponding

decryption key in order to read data from the blockchain.

In 2017, Daisuke Ichikawa et. al. proposed a tamper-resistant mobile health solution using

the Hyperledger Fabric blockchain platform [56]. Specifically, they developed an mHealth sys-

tem for cognitive behavioral therapy for insomnia using a smartphone app. In their solution,

medical data were collected via the mobile app in JavaScript Object Notation (JSON) format and

sent to their private Hyperledger Fabric blockchain network. Although they ensured that the

data on the blockchain were resistant to tampering and revision, the data were not encrypted.

Another healthcare blockchain system was proposed by Griggs et. al. in 2018 [57]. Using a

private blockchain Ethereum protocol, they created a proof-of-concept system where sensors

can communicate with smart devices (e.g., smart watches, fitness trackers, etc.) that call smart

contracts and write the records of all events on the blockchain. The system utilizes contracts

to facilitate automatic analysis of the collected data from Wireless Body Area Network (WBAN)

devices with custom threshold values for each patient. These thresholds allow the system to

trigger alerts for unusual activity. Raw sensor data are aggregated by the master device (a mobile

phone) and then sent to nodes in the blockchain for processing by the smart contracts. All data

records are stored on the blockchain network, however only authorized entities can access the

blockchain for inspection and block verification.

In 2020, SudeepTanwar et. al. proposed (1) a system architecture and algorithm to provide

an access control policy for participants to achieve privacy and security, and (2) implementa-

tion of a EHR sharing system, based on the blockchain network [58]. Their system utilizes a

Hyperledger Fabric blockchain, where its participants have different roles: (1) Patient, (2) Clin-

ician, (3) Lab, and (4) System administrator. Participants can only access records that they have

been granted access to by patients. The patients’ data are stored on the blockchain and pa-

tients can add records using a client application. The client application invokes a chaincode for

committing a transaction to the network. Records are updated and visible to every user in the

blockchain network.
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Thus, many modern data access control mechanisms are based on the blockchain technol-

ogy. All the blockchain-based solutions described in the literature involve putting the health-

care data themselves on the blockchain. Such an approach allows healthcare providers to store

data in an immutable, tamper-proof manner. However, the data can be easily accessed by the

blockchain network members.

2.4 User-centered Design: Building a Prototype of the Research

Portal

This thesis project was a part of a larger research project called PARTAGE—Patients and Re-

searchers Team Up and Generate Evidence, which was the winning project of the 2019 Trottier-

Webster Award for Innovation at the RI-MUHC. The project explores the ethico-legal issues and

possible solutions for data sharing. Also, the PARTAGE project aims to develop a secure data-

sharing infrastructure, where (1) patients can securely share de-identified data, (2) researchers

can request access to previously-consented patient data available via the Research Portal, and

(3) the system can permanently document by whom and when the data were accessed.

Following the original development principle of Opal, the PARTAGE project has a patient-

centered focus [36]. Therefore, the project utilizes a stakeholder co-design approach, where

patients, clinicians, researchers, and software developers are included in the design and devel-

opment process at all times. This allows the PARTAGE team collaboratively discuss new fea-

tures and get feedback from all stakeholders, in particular from patients. The team includes

four working groups:

• Stakeholder co-design: The first working group established the group of key stakeholder

participants, including all the co-applicants, patients, Opal software developers, and other

researchers at the MUHC. Also, the first working group formulated the project conception

and estimated what resources were needed for the remainder of the research project.
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• ELSI: The second working group has been focusing on the ethical, legal and social issues

(ELSI) posed by data sharing. This includes the legality and meaning of electronic consent

in Quebec, as well as whether consent can have a broad purpose for all of a patient’s data

that Opal has access to. Also, the group explores the legal issues surrounding data storage,

provenance of data originating in multiple institutions and the right of patients to revoke

consent.

• Technology development: The third working group has been developing the data-sharing

portal based on the second working group’s analysis and co-design collaboration. The

group includes software developers from the Opal development team who help with the

integration of data sharing functionality into the existing patient-facing app. Also, Opal’s

developers participate in the stakeholder co-design to ensure alignment between the de-

sign and development. The design and development phases of this thesis project were a

part of the stakeholder co-design and technology development working groups.

• Pilot: The goal of the fourth working group is to analyse the hypothesis that patients will

be willing to share their data through the deployment and testing of a prototype solution.

The group will form a group of test users, who will be asked to provide feedback on the

developed solution. Also, test users will be invited to join a focus group to share their

experiences with the research team.

Figure 2.4 represents the PARTAGE’s participatory co-design flow.
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Figure 2.4: Schematic overview of the participatory co-design process of the PARTAGE research

project. The project follows a patient-centered approach, so patients work with the develop-

ment team to offer new features and explain their concerns. Therefore, the co-design group

includes patients, clinicians, researchers, and Opal’s software developers to ensure all the par-

ties involved in the project can provide their feedback.
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Chapter 3

Overview of Decentralized Technologies

3.1 Background

In 1989, Tim Berners-Lee invented the World Wide Web (the Web)—an information system

where web resources are identified by Uniform Resource Locators (URLs) and accessible over

the Internet [59]. Berners-Lee envisioned the Web as a decentralized system that is controlled

by many participants, such that no one individual or entity can own it, control it, or switch it

off for everyone else. In Web 1.0 (the first version of the World Wide Web), any two machines

connected to the Internet could send packets to each other without firewalls and other secu-

rity measures. The web pages thus accessed were static with read-only access. Thus, Web 1.0

was essentially a virtual library, where most of the users were consuming the content, and only

qualified users could generate new content. However, Web 1.0 did not meet users’ demands,

such as instant user interactions, content creation, and e-commerce, and these demands led to

Web 2.0—the current Web [60, 61]. Web 2.0 allows users to interact with each other and easily

publish user-generated content through centralised services provided by big companies, such

as Google, Facebook, Microsoft and Amazon. Figure 3.1 depicts the client-server architecture

that is widely used in the current Web.
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Figure 3.1: The client-server model of Web 2.0 that separates workloads between clients and

servers. Clients send requests to servers via the Internet network in order to access services

(e.g., connect with other users, online shopping, etc.). Servers are programmed based on busi-

ness logic that handles clients’ requests and provides concrete actions in response. All the

clients’ service-related data are stored on the servers and controlled by the service providers

(red dashed line), so clients do not have full control over them.

Very quickly, Web 2.0 evolved into an effectively centralized ecosystem, in which corpo-

rations control, store, and monetize user-generated data and personal information. Business

companies develop web platforms and mobile applications (apps) that attract users who create

profiles by uploading their personal data. Often, those platforms and apps allow the businesses

behind them to collect from users’ devices other data and generate statistics on the users over

time, such as user activity, metadata, etc. The personal user information is sent to the servers

and stored in the databases of business companies. Table 3.1 demonstrates the differences be-

tween decentralized, centralized, and distributed networks.

Collected data become an asset of the business and are used for their internal marketing

purposes or sold on to third parties. In some cases, this may be done without user consent. As

an example, in 2018, it was disclosed that British consulting firm Cambridge Analytica collected

personal data of Facebook users without their consent [62, 63]. The data were used for analyt-

ical assistance to the 2016 presidential campaigns of Ted Cruz and Donald Trump. Cases of
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personal data misuse may also take place in healthcare systems. In July 2021, Financial Times

published an article in which they showed that more than 40 companies have accumulated

years of detailed medical records from hospitals in the UK [64]. These and many other cases

have shown the imperfection of the Web 2.0 model: users’ data can be easily misused by busi-

nesses for their profits, while users do not have control over their data. Therefore, in 2017, Tim

Berners-Lee highlighted the main three challenges for the current Web: (1) taking back control

of our personal data, (2) preventing the spread of misinformation, (3) realizing transparency for

political advertising [65].

Since Opal is a mobile web application, it is based on the client-server model structure

where user’s data are stored centrally on a server, so users do not have full control over them.

Therefore, in this chapter, we examine and discuss two modern decentralized technologies

and the possibility of integrating them into Opal’s infrastructure so that Opal users may regain

certain control over their health data. Also, we analyze the possibility of using decentralized

technology to store patients’ data-access consents, researcher privileges, and access logs in a

tamper-proof manner.
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3.2 Inrupt Solid

In 2009, Berners-Lee proposed an architecture of socially-aware cloud storage for decentraliza-

tion of the current Web [67]. The proposed architecture implies separation of web applications

from data storage, allowing the user to control access to their data regardless of the applications

that use them. The applications act as services, which can access users’ remote data by using

the users’ credentials under the control of the user. Berners-Lee implemented the high-level

idea in the Inrupt Solid Project [68, 69]. Solid (Social Linked Data) is a web decentralization

specification that aims to radically change the way web applications work today, resulting in

true data ownership as well as improved privacy [70]. In 2018, Berners-Lee launched a start-up

called Inrupt. Inrupt is an open-source platform that helps developers create new applications

and services that are built on the Solid specification [71].

The novel aspect of Solid is “Personal Online Data Stores” (Pods) – user-owned data stores

for keeping personal data. Users create one or more Pods and grant permission to applications,

web services, businesses, etc., as needed, to access their personal data stored within them. The

specification empowers users with control of what information is allowed to be accessed by

others and allows users to cut off access to anyone whenever they wish. Thus, user data never

becomes an asset to anyone except the user. Figure 3.2 illustrates the architecture of the Solid

platform.

Pods are hosted on a Solid server that follows the Solid protocol [72]. One Solid server can

host many Pods that are fully isolated from each other. Each Pod has its own set of data and

access rules and is fully controlled by a user. To host a Pod, users can use a Pod provider (e.g.,

Amazon, DigitalOcean, etc.) or set up their own personal Solid server. Also, users can have more

than one Pod hosted on different servers and move data between their Pods. All of a user’s data

are linked through their WebID–a unique identifier associated with a specific user. A WebID is

an Internationalised Resource Identifier (IRI) that can be dereferenced as a “friend of a friend”

(FOAF) profile document serialized in the Resource Description Framework (RDF) [73]. FOAF

is a machine-readable ontology that allows groups of people to describe social networks (their

31



Figure 3.2: Architecture of the Solid platform. Users control their Pods and everything in them

(red dashed line), whereas servers provide only services (business logic) without storing any

data. Users decide who can access their Pods’ data and can restrict access whenever they wish.

activities and relations to other people and objects) without the need for a centralised database

[74]. RDF is used as a standard model for data interchange on the Web using a variety of syntax

notations and data serialization formats [75]. Thus, using both FOAF and RDF, the WebID helps

applications and services get access to data stored in different places. Solid’s authentication

and authorization systems help users to set different access rules to their personal data.

Although the Solid specification provides a high level of personal data control and strong

security, we decided not to use it for this thesis project for several reasons as shown in the Ta-

ble 3.2. First, the Opal app and its existing infrastructure would have to have been rewritten

using the Solid platform, which would require more time and resources than available. Sec-

ond, the specification does not provide a mechanism for storing data in an immutable way.
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Last but not least, as of Summer 2021, the specification was still in the testing stage, and many

features were still under development. However, as described in the Conclusions and Future

Work chapter, the Solid technology must be seriously considered as an option to enhance fu-

ture patient-centred improvements of the Opal app.
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Table 3.2: Comparison of the Opal’s current implementation and a possible Solid-based solu-

tion. The third column shows the modifications and changes of the current implementation

that would be required to implement a Solid-based solution.

Opal Current solution Solid Required Modifications

Architecture Centralized Decentralized Designing new architecture, system workflow and re-

quirements.

Data Storage Single central database Pod Every user must have a personal Pod. This would require

a solution for migrating the existing users’ data to their

Pods.

Data model

(logical structure)

Relational (MySQL) Vocabularies

(ontologies)

To migrate to a Pod, the data stored in the Opal

database(s) would need to be described with vocabular-

ies. This would require a deep exploration of vocabulary

concepts to build them. mCode might be one of the pos-

sible solutions to describe the data for cancer patients

[76]. Also, the existing data would need to be migrated

to the created vocabularies.

Registration

& Authorization

User account WebID The app would need to guide users on how to register

their WebID and personal Pod. The authorization pro-

cess must be based on the WebID.

Front end AngularJS AngularJS The front end views would not require any changes.

However, the communication logic of the app would

need to be modified based on the new architecture (e.g.,

registration/authorization, accessing personal data from

a Pod, etc.). Firebase communication might need to be

eliminated.

Back end Server logic & Firebase Server logic The back end, including Listener, Opal Admin, Auto Up-

date, and Publish Manager would need to be modified

or completely rewritten based on the new architecture.

There would be no need for the Opal database(s) since all

the data would be stored in users’ Pods. Firebase and the

Listener might need to be eliminated. However, the new

back end would still require a secure solution for con-

necting to different Pods through the hospital’s firewall.
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3.3 Blockchain

The second decentralized technology that we considered, and ultimately adopted for use in this

thesis project, is blockchain, which originated in the world of online digital currencies. In this

section, the principles and the underlying technology of the blockchain are described.

In digital currencies there is a potential situation called the double-spending problem that

occurs when malicious users attempt to spend the same digital token (e.g., virtual money) more

than once [77, 78]. Physical money is not affected by this problem as it can only be spent once.

However, a digital token can be duplicated or falsified and potentially reused. In centralized

systems (e.g., Web 2.0), the double-spending problem is solved by using a central trusted third

party (e.g., a bank) that can verify whether a token has been spent already or not. In decen-

tralized systems, it is significantly harder to prevent double spending, since all servers in the

network must be synchronized and make the same decisions based on mutual agreement. For

example, two broadcasted transactions to the distributed network that attempt to spend the

same token can cause desynchronization of the servers. Since these two transactions will ar-

rive at each server at different times, each server will consider the first transaction it sees as

valid, and the second as invalid. This will lead to a disagreement between the servers and, con-

sequently, it will not be possible to determine true balances. A solution to this problem is a

consensus algorithm. By 2008, researchers proposed different conceptual solutions, but none

of them were fully implemented [79, 80].

The first implemented solution to the double-spending problem in a decentralized sys-

tem using a peer-to-peer network was proposed by an anonymous inventor going by the alias

Satoshi Nakamoto in 2008 [81]. Nakamoto’s design was the core of the first decentralized dig-

ital currency called Bitcoin. Bitcoin was able to solve the double-spending problem without

the need for a trusted authority or a central server. The solution is based on an ongoing crypto-

graphically secured chain of timestamped transaction blocks known as a blockchain. By design,

a blockchain is resistant to modification of the data stored in the chain of blocks. Each block

in the chain contains a cryptographic hash of the previous block, a timestamp, and a batch of
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transactions. Transactions are hashed and encoded into a Merkle tree [82]. A blockchain can

store different types of information, but the most common is a ledger of transactions.

Blocks are chained to each other through hash pointers and together they form the blockchain.

In any blockchain-based protocol, the first block is known as the genesis block. It is the basis on

which additional blocks are added to form a chain of blocks. This block is sometimes referred

to Block 0. It is a special case as it does not references a previous block. Thus, the genesis block

is almost always hardcoded. Figure 3.3 shows a structure of the growing chain of blocks (i.e.,

the blockchain) that is used in most blockchain networks.

Figure 3.3: Structure of a digital ledger (blockchain) consisting of records called blocks. Each

block stores a timestamp, a hash of the previous block, and transactions. Transactions are

hashed in a Merkle tree. A block can store any auxiliary data based on its specific implementa-

tion. The chain of blocks replicates a linked list data structure, where each block is linked to the

previous one through hashes. The first block is a genesis block, which does not have a previous

block.

The blockchain is maintained by a decentralized network, in which the ledger is fully repli-

cated on all network nodes. Each node is controlled by a different party, so no single person or

group has control over the ledger and the network. All nodes collectively maintain the ledger

and work to agree on the order of transactions based on the network rules and ordering algo-
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rithms. Transactions are permanently recorded and can be seen by any member of the network.

Network nodes group new transactions into a block with a fixed size (e.g., the original Bitcoin’s

block size is 1 mebibyte). Network participants validate new transactions to make sure that: (1)

transactions on the new block do not conflict with each other and (2) transactions on the new

block do not conflict with the previous block’s transactions. Therefore, network nodes need to

agree on the next block to be added to the blockchain. However, sometimes the network may

end up in a disagreement between the nodes. Thus, separate blocks can be produced concur-

rently, creating a fork. Based on the blockchain implementation, forks can be either temporary

or permanent. Temporary forks occur due to the difficulty of reaching fast consensus in a dis-

tributed system (e.g., Bitcoin). In these cases, the fork is resolved when subsequent blocks are

added and one of the chains becomes longer than the alternatives. The longest series of blocks

starting from the genesis block becomes the main chain, and the network abandons the blocks

that are not in it. Permanent forks occur due to different versions of the validating software

on the nodes. In case of the new rules in the network, all the nodes must upgrade their soft-

ware. If one group of nodes continues to use the old software while the other nodes use the new

software, a permanent fork can occur. Figure 3.4 illustrates an example of a blockchain with

forks.

Figure 3.4: Schematic structure of the growing list of blocks that form a blockchain with forks.

The blue block is the genesis block, which is the first block in the blockchain. The beige blocks

that connect to the genesis block form the main chain. The green and red blocks are orphan

blocks that form two separate forks. Forks occur when not all the network participants agree on

the newly generated block. Thus, a blockchain diverges into two potential paths forward.

37



Since blocks are connected through hash pointers, any tampering with the content of any

block can easily be detected by the network. If one network participant tampers with a record

of transactions, all other nodes would cross-reference each other and easily pinpoint the node

with the incorrect information. Thus, the distributed ledger is immutable, where the data en-

tered are irreversible. No participant can change or tamper with a transaction after it has been

recorded to the shared ledger. Each additional block strengthens the verification of the previous

block and hence the entire blockchain. Figure 3.5 demonstrates the peer-to-peer blockchain

network.

Figure 3.5: Schematic of a peer-to-peer network that maintains a blockchain. Each node keeps

a copy of the blockchain ledger. The network works to agree on the order of all transactions

based on the network rules and ordering algorithms. If a node decides to falsify any block, the

network will detect it and reject the changes.

Therefore, blockchain technology can be described as an immutable (tamper-proof) trans-

action ledger. The records, called blocks, are linked together using cryptography and distributed

in a peer-to-peer network. Although the primary use of blockchain is for cryptocurrencies in
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networks with no central authority, Nakamoto’s solution has been adapted for different uses.

New solutions are based on different implementations, namely, consensus algorithms and net-

work configurations. Thus, nowadays, blockchain technology is being used in fields such as

supply chain management, energy trading, anti-counterfeiting, video games, healthcare, etc.

[86, 83, 85, 84, 87, 88]. Below, we discuss cryptographic hash functions, digital signatures,

blockchain types, consensus algorithms, and blockchain platforms.

3.3.1 Hashing and Digital Signatures

Blockchain technology is based on cryptographic hash functions (CHFs). A CHF is a function

that converts data of arbitrary length (“input” or “message”) into a bit string of a fixed size (“out-

put” or “hash”). The conversion process utilized by the hash function is called hashing. The

source data are called the input array. The result of the conversion (i.e., the output) is called the

hash. There are many hashing algorithms with different properties, such as bit depth, compu-

tational complexity, cryptographic strength, etc. For example, Bitcoin is based on the SHA256

algorithm.

An “ideal” hash-function must satisfy three conditions: (1) fast calculation, (2) determinism

(a given input must always generate the same hash), and (3) collision free (no two x, y can exist,

such that H ash(x) = H ash(y)). A CHF is a one-way function, which is practically infeasible

to invert. Hashes help to preserve the integrity of the blockchain. By continuously utilizing

previous hashes of each block we are able to ensure the blocks in the blockchain are kept in the

right order and are dependent on each other. If a malicious party were to come in and try to

manipulate any of the data, the hashes would change quickly and the chain would “break”, so

everyone in the network would know not trust the malicious chain. Also, hashes help to save

space, since it more efficient to store a single hashed string, instead of copying all the actual

data in the preceding blocks.

Blockchain security methods include the use of public-key (asymmetric) cryptography—

a cryptographic system that uses a pair of keys: (1) public key that may be known to others

for verification purposes, and (2) private key that is used to create the owner’s signature and
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known only to the owner [89]. In such a system, it is mathematically impossible for a user to

forge another user’s private key from their public key [90]. Blockchain systems use asymmetric

cryptography to secure transactions between users and move assets from one identity to an-

other. For example, in the Bitcoin network, owners digitally sign their coins to transfer them

to other recipients. Figure 3.6 shows the simplified chain of ownership originally described in

Nakamoto’s white paper.

Figure 3.6: Simplified structure of sequential transactions with one input and one output for

transferring assets between different identities in Blockchain. To transfer an asset (e.g., bitcoin),

the sender has to have the receiver’s public key. The current owner creates a new transaction

that includes information about a transferring asset (e.g., amount of bitcoins) and a hash of the

previous transaction digitally signed by the current owner. The previous transaction, by which

bitcoins were received, becomes the input of the new transaction. Also, the new transaction

includes the public key of the receiver (the output). Transactions can have many inputs and

outputs. The transaction is broadcast to the network through open channels without encryp-

tion. All the nodes verify the digital signature of the received transaction before processing it.
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3.3.2 Blockchain Types

There are four different blockchain types with their pros and cons. These types are based on

different consensus mechanisms, and thus, operate differently.

3.3.2.1 Public Permissionless Blockchains

A public permissionless blockchain is decentralized and does not have any single node that

controls the network. Anyone can join the blockchain network and participate within it. Partic-

ipants can read and write transaction data. Also, any participant can validate transactions and

generate new blocks. A public permissionless blockchain consumes more energy than a private

blockchain as it requires a significant amount of electrical resources to function and achieve

network consensus (e.g., Bitcoin). All transactions that take place on public blockchains are

fully transparent, so anyone can examine the transaction details. Hence public permissionless

blockchains provide no privacy for transactions. Also, public permissionless blockchains don’t

scale well, which leads to slow performance of the network.

3.3.2.2 Private Blockchains

A private blockchain works in a closed network, where the participants’ and validators’ accesses

are restricted. A participant can join a private blockchain network only through an authentic

and verified invitation from the controlling organization. The controlling organization can set

up permission levels, security, authorizations, and accessibility. Thus, some transactions can

have restricted access based on the access rules. Since the number of authorized participants is

typically less than in a public blockchain, it can process hundreds or even thousands of transac-

tions per second. However, private blockchains are more centralized than public blockchains.

3.3.2.3 Hybrid Blockchains

A hybrid (public permissioned) blockchain has a combination of centralized and decentralized

features (public and private blockchains). Such an approach allows organizations to set up a
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permission-based system alongside a public permissionless system. The controlling organiza-

tion of the hybrid blockchain can appoint privileged parties. These parties are able to run a

node with abilities that are unavailable to the general public. For example, on the Ethereum

blockchain network, a participant can define a smart contract (automatic transaction) that can

be performed only by the contract’s owner and not by others.

3.3.2.4 Consortium Blockchains

A consortium blockchain is similar to a hybrid blockchain in that it has private and public

blockchain features. However, multiple organizations share the responsibilities of maintaining

the blockchain. The consensus process is controlled by a pre-selected set of organizations that

determine who may submit transactions or access the data. A consortium blockchain is ideal

for business when all participants need to be permissioned and have a shared responsibility for

the blockchain.

3.3.3 Consensus Mechanism

Since a blockchain is a decentralized peer-to-peer system with no central authority, it creates

a major problem of achieving overall system reliability in the presence of a number of faulty

processes. Thus, all nodes in the blockchain network should come to a consensus using con-

sensus mechanisms. The consensus problem (e.g., double-spending problem in decentralized

systems) requires agreement among a number of nodes for a single data value [91]. Some of

the nodes may fail or be unreliable in other ways, so consensus protocols must be fault tolerant

or resilient. Also, the consensus algorithm defines the blockchain’s network type (e.g., public,

private, etc.). There are different kinds of consensus algorithms. Each algorithm is based on dif-

ferent principles and each has pros and cons. Below we describe in detail four basic consensus

algorithms: (1) the proof-of-work algorithm, (2) the proof-of-stake algorithm, (3) the delegated

proof-of-stake algorithm, (4) the practical Byzantine fault tolerance algorithm, and (5) the Raft

algorithm.
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3.3.3.1 Proof of Work (PoW)

PoW is the original consensus algorithm in a blockchain network as proposed by Nakamoto.

This algorithm is used to confirm the order of transactions and add new blocks to the chain. It

is a type of “zero-knowledge proof”, where so-called “miners” compete against each other by

solving a complex mathematical puzzle—a puzzle friendly hash [92]. All the nodes in the net-

work “work” to find a hash with a specific pattern (mining) in order to add a new block to the

blockchain. A hash function H is puzzle friendly if for a given random input (e.g., blockchain

block) and a target set Y (e.g., desired hash), it is hard to find a random value (called nonce) such

that H(i nput ||nonce) = Y . In one-way hash functions, it is practically impossible to reverse

the function to find the input—given H(x) it is infeasible to find x. Therefore, all the blockchain

nodes keep trying random nonce values until one of them finds a solution. The more comput-

ing power a participant has, the faster they can solve the puzzle. The target hash has a specific

pattern that is hard to find (e.g., 13 hexadecimal leading zeros in the SHA256 hash).

Thus, the PoW algorithm requires a huge amount of energy and computing power. The

cost of doing the work disincentivizes bad actors from participating. When a miner success-

fully finds the correct hash, they present their block, including the mined hash, to the network

for verification. Verifying whether the block belongs to the chain or not is a relatively simple

process. If the majority of the participants approve the new block, all the network accepts the

solution. The successful miner gets a reward for finding the hash.

The drawbacks of PoW algorithm are:

• It is an extremely inefficient process because of the energy consumption involved.

• Some nodes have more chances of finding the correct hash than others because of differ-

ences in computing power.

• It is vulnerable to a 51% attack—if a participant or organization owns more than 51% of

the nodes in the network, it can corrupt the blockchain by gaining the majority of the

network.
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• Transactions are not instantaneous, since it takes some time to mine the transaction and

add it to the blockchain. Thus, transaction confirmation takes from 10 to 60 minutes.

3.3.3.2 Proof of Stake (PoS)

The main purpose of PoS is to solve the problem of high energy consumption associated with

PoW. This method requires that participants (nodes) have a legitimate stake in the blockchain

(e.g., a certain number of bitcoins). PoS algorithms replace the hash calculation with a simple

digital signature. Instead of investing in computational powers for mining, blockchain partici-

pants invest in the coins of the system by locking up some of their coins as stake. By investing

personal coins, users become validators—network node operators that validate data, similarly

to PoW systems. However, there is no energy-intensive computational process to earn the right

to validate. For example, in Ethereum blockchain, a user has to stake 32 ETH (ethers, or vir-

tual currency tokens) to become a validator. When it comes time to validate a new transaction

block, the network randomly selects a validator to approve the block based on their propor-

tional stake in the network. The network itself runs a lottery to decide which node will forge a

new block, and system participants are exclusively and automatically entered into that lottery

in direct proportion to their total stake in the network. The higher the number of virtual cur-

rency tokens that quantify a participant’s stake, the higher their probability to be chosen as the

winner who gets to forge the new block. When the block is confirmed, the validator is rewarded

with network transaction fees. A user’s stake is also used as a way to incentivise good validator

behavior. For example, if validators act maliciously or fail to validate (e.g., node goes offline),

they can lose a portion of their stake or their entire stake for deliberate collusion.

However, such an approach is biased towards the “rich” participants, who can stake more

virtual currency tokens than others. So the PoS protocol must take into account that the lottery

cannot be completely random to ensure the network is truly decentralized and secure.
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3.3.3.3 Delegated Proof of Stake (DPoS)

DPoS works in the same way as the PoS system, except that users choose an entity that will rep-

resent their portion of stake in the system. Each participant votes for delegates by pooling their

digital coins into a staking pool and linking them to a particular delegate. The delegates will

represent individual stakes in the system, and the delegate elected by the system will validate a

new block. The reward is shared with users who pooled their coins in the successful delegate’s

pool. The rewards are shared based on each user’s stake—the more a user stake, the higher a

share of the block reward they receive. This allows individuals with smaller stakes to team up to

magnify their representation, thereby creating a mechanism to help balance out the power of

large stake holders. However, this comes at the cost of greater network centralization.

3.3.3.4 Practical Byzantine Fault Tolerance (PBFT)

This consensus algorithm was proposed by Miguel Castro and Barbara Liskov in 1999 [93]. PBFT

was designed to work efficiently in asynchronous systems and solve many problems associated

with already available Byzantine Fault Tolerance solutions. Byzantine Fault Tolerance (BFT) is

a condition of distributed computing systems, where some of the nodes in the network may

fail to respond or respond with incorrect information. The term is derived from the Byzantine

Generals Problem [94]. PBFT method of establishing consensus requires less effort than other

methods. The algorithm tries to provide a practical Byzantine state machine replication that

can work even when malicious nodes are operating in the system. Nodes in a PBFT-enabled

distributed system are sequentially ordered with one node being the primary (or the leader

node) and others referred to as the secondary (or the backup nodes). Any eligible node in the

system can become the primary by transitioning from secondary to primary (typically, in the

case of a primary node failure). The goal is that all honest nodes help in reaching a consensus

regarding the state of the system using the majority rule. A PBFT system can function on the

condition that the maximum number of malicious nodes must not be greater than or equal to

one-third of all the nodes in the system. As the number of nodes increases, the system becomes

more secure. However, PBFT does not scale well because of its communication overhead, where
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every node multi casts their responses to every other node. Thus, the PBFT works efficiently

only when the number of nodes in the network is small.

A necessary prerequisite for the PBFT is that all participants should be known in advance.

Therefore, this algorithm is mainly used in permissioned blockchains. PBFT consensus rounds

are broken into the following phases:

• The client sends a list of transactions to the primary (leader) node.

• The leader orders the transaction candidates that should be included in a block, and

broadcasts this list of ordered transactions to all the secondary (backup) nodes.

• The nodes (primary and secondaries) perform the ordered transactions one by one and

then send back a reply to the client. The reply includes the calculated hash code for the

newly created block.

• Each peer broadcasts its answer (the resulting hash code) to other peers in the network,

and starts counting the responses from them. If the node sees that 2/3 of all validation

peers have the same hash code, it will commit the new block to its local copy of the ledger.

• The round is completed successfully when the client receives m+1 replies from different

nodes in the network with the same result, where m is the maximum number of faulty

nodes allowed.
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Figure 3.7: Normal case operation of the PBFT algorithm proposed by Liskov and Castro. When

the primary node receives a client request, it starts a three-phase protocol to atomically multi-

cast the request to the nodes. The pre-prepare and prepare phases are used to totally order re-

quests sent in the same view even when the primary, which proposes the ordering of requests, is

faulty. The prepare and commit phases are used to ensure that requests that commit are totally

ordered across views [95].

If needed, a majority of the honest nodes can vote on the legitimacy of the current lead-

ing node and replace it with the next leading node in line. This algorithm is used in private

blockchains. Figure 3.7 illustrates the operation of the algorithm in the normal case with no

faults.

3.3.3.5 Raft

Raft is a consensus algorithm that is used in private blockchains. The algorithm was designed

in a way that is easy to understand compared to other algorithms. Also, it provides additional

features, such as (1) a strong form of a leader node (e.g., log entries only flow from the leader to

other servers), (2) leader election (i.e., randomized timers to elect leaders), and (3) membership

changes (i.e., allows a cluster of servers to continue operating normally during configuration

changes) [96, 97]. Raft nodes are always in one of three states:
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• Leader—the node that is responsible for processing new log entries, replicating them to

follower ordering nodes, and managing when an entry is considered committed. The

network elects a single node to be the leader.

• Followers—nodes that receive the logs from the leader and replicate them deterministi-

cally, ensuring that logs remain consistent. Followers also receive “heartbeat” messages

from the leader. If the leader stops sending those message for a configurable amount of

time, the followers will initiate a leader election.

• Candidates—nodes that do not receive communication messages from the leader over a

period called the “election timeout”.

Initially, all nodes start out as a follower. In this state, they can accept log entries from a

leader (if one has been elected), or cast votes for leader. If no log entries or heartbeats are re-

ceived for a certain amount of time (e.g., five seconds), nodes self-promote to the candidate

state. In the candidate state, nodes request votes from other nodes. If a candidate receives a

quorum of votes, the majority of nodes, then it is promoted to be the leader. The leader must

accept new log entries and replicate them to the followers. Raft uses a randomized election

timeout to ensure that split vote problems are resolved quickly. If a quorum of nodes is unavail-

able for any reason, the ordering service cluster becomes unavailable for both read and write

operations, and no new logs can be committed.

3.3.4 Blockchain Frameworks and Platforms

Since it requires a significant amount of time and resources to implement a solid blockchain

codebase from scratch (e.g., networking, agreement protocol, blocks, transactions, smart con-

tracts, etc.), we decided to explore existing ready-to-use blockchain platforms and frameworks.

In our analysis, we took into account the following factors:

• Blockchain type.

• What consensus protocols are supported by the platform.
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• What programming languages are supported by platform’s SDKs (client application).

• Support of smart contracts functionality.

• Platform’s popularity—reputation of a blockchain platform on websites (e.g., GitHub).

• Scalability—a blockchain network should be able to scale to adapt to the growth.

We analyzed nine the best known modern blockchain platforms and their main features that

are presented in Table 3.3. Hyperledger Sawtooth and Hyperledger Fabric platforms were fit-

ting our requirements the best. Both platforms are private permissioned blockchains that have

modular architectures. The platforms allow to use different programming languages, both for

smart contracts and platform’s SDKs, and set custom network configuration (e.g., number of

nodes, block size, block time, etc.). Also, the platforms show high transaction rate and can be

simulated in the Docker platform. However, Hyperledger Fabric had better official documenta-

tion and more materials online.
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3.4 Hyperledger Fabric

Since the Hyperledger Fabric platform (1) is compatible with the technology stack of the ex-

isting Opal infrastructure, (2) stores, by its nature, data in an immutable, tamper-proof way,

and (3) has regular major releases and detailed documentation with examples, we decided to

use it to run our prototype blockchain network. The Hyperledger Fabric platform is a private,

permissioned blockchain initially developed by IBM and Digital Asset [114, 115]. One of the key

features and advantages of the platform is the support of modern programming languages, such

as Go, JavaScript, and Java, for writing smart contracts. Also, the platform has a highly modu-

lar architecture that allows developers to configure and modify the components of the network,

such as endorsement policies, key-value databases for storing a world state (e.g., CouchDB, Lev-

elDB), ordering service, membership service provider, etc. In this section we discuss the main

components of the Hyperledger Fabric blockchain network.

3.4.1 Organizations and Consortia

Participants who form a Hyperledger Fabric network are known as organizations or “members”.

Each organization can have different goals, business interests, and subsequently different roles.

However, all members are interested in transparent cooperation between each other and fair

functioning of the network. A consortium defines the set of organizations in the network who

share a need to transact with one another (i.e., common goal). A Hyperledger Fabric network

can have multiple consortia. In most cases, multiple organizations come together as an initial

consortium to form the network. Permissions and access rights for each organization are de-

fined by a set of policies, which are agreed by the consortium at the moment of creating the

network. However, the network policies can change over time—subject to the agreement of the

organizations in the consortium (e.g., adding new administrators, adding another consortium).

A consortium is a group of organizations that own peers and chaincodes (discussed below) with

no ordering service nodes. For this research project, we deployed one consortium with three or-
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ganizations within it. Figure 3.8 displays the high-level architecture of our proposed blockchain

network.

Figure 3.8: High-level architecture of our Hyperledger Fabric blockchain network with three

organizations in one consortium.

3.4.2 Peers

Any blockchain network consists of the fundamental elements called peer nodes. In Hyper-

ledger Fabric, each organization may have one or more peers based on the network policies

and requirements. Each peer keeps a local copy of the append-only blockchain ledger and a

snapshot of the world state (current state). A peer receives an ordered set of transactions in the

form of blocks to form a ledger and world state. A world state is a key-value store that keeps

the current values of all ledger states. It allows chaincodes to get the current value of a ledger

instead of traversing the whole transaction log. Also, a peer can optionally store a chaincode

– a smart contract that allows client applications to communicate with the Hyperledger Fabric

blockchain network and make changes in the world state.

Hyperledger Fabric distinguishes four different types of peers:

• Endorsing peer – a peer that has installed smart contracts to endorse transactions sent

by a client. The peer executes the received transactions on the local copy of the ledger
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and digitally signs the results. It submits the digitally signed transaction response and

generated read/write sets back to the client. However, the transactions are not committed

to the blockchain ledger.

• Committing peer – a peer that receives from the ordering service ordered transactions

packaged in a block. The peer validates all the transactions, marks them as valid or in-

valid, and commits the block on the local copy of the blockchain.

• Anchor peer – a special peer that is authorized for cross-organization communication.

• Leading peer – a peer that communicates with the ordering service and distributes re-

ceived packaged transactions within the organization.

Figure 3.9 shows a Hyperledger Fabric network of two organizations, where each organiza-

tion has three peer nodes.

3.4.3 Channels

A channel is a communication line between peers that allows a group of participants to keep

their separate blockchain and ledger of transactions. All peers in the channel maintain a channel-

specific ledger, and transacting parties must be authenticated to a channel to interact with it.

Thus, only the members of the channel can see the transactions and data transmitted in the

channel. A peer can simultaneously be connected to different channels and maintain multiple

ledgers. Also, channels support atomic delivery (total-order broadcast) of all messages, which

guarantees delivery to the connected peers the same set of messages in the same order. Figure

3.10 depicts a sample Hyperledger Fabric network of three organizations with two channels.

3.4.4 Chaincode

In a blockchain network, a smart contract is a program that allows client applications to inter-

act with the world state database objects based on the rules defined in this program. Hyper-

ledger Fabric’s smart contracts are packaged into the chaincodes and installed on peers. Mul-
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Figure 3.9: A Hyperledger Fabric blockchain network of two organizations both connected to

channel A. Each organization consists of three peer nodes. Each peer locally manages their

copy of the blockchain ledger and the world state. Also, all the peer nodes have installed the

chaincodes for executing proposed transactions by a client.

tiple smart contracts can be defined within the same chaincode. Chaincodes can be deployed

on different peers and channels, however not every peer has to run a chaincode to get access

to the world state database objects. One of the main advantages of the chaincodes, compared

to the standard smart contracts of different blockchain platforms, is the possibility to manage

client application’s access to the network by setting restricted access to the invoking functions

of the chaincode. Also, Hyperledger Fabric supports the Go, JavaScript, and Java languages for

writing chaincodes. This allows developers to use modern standard programming languages

instead of using a closed smart contract language. For example, blockchain platforms, such as

Bitcoin and Ethereum, have their own smart contract languages [116, 117].
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Figure 3.10: A Hyperledger Fabric blockchain network of three organizations and two chan-

nels. All organizations are connected to channel A, while at the same time Org2 and Org3 are

simultaneously connected to channel B. Thus, both Org2 and Org3 maintain two blockchains,

whereas Org1 has only one.

3.4.5 Orderers

In any blockchain network, all transactions are ordered and recorded to the shared blockchain

ledger in the form of blocks. The order of the transactions is based on the consensus of the

network. In permissionless blockchain networks, such as Bitcoin and Ethereum, any node can

participate in the consensus process. These systems rely on probabilistic consensus algorithms

(e.g., mining), where the algorithm defines the ordering node for each round of ordering trans-

actions and generating a new block. Probabilistic consensus algorithms very often lead to di-

vergent ledgers (forks), where the participants have a different view of the accepted order of

transactions, and thus, different blockchain ledgers. For example, there are currently 105 forks

in the Bitcoin network and eight forks in the Ethereum network [118]. Hyperledger Fabric is

based on deterministic consensus algorithms that prevent a network from developing situa-

tions where nodes have ledger forks. The network has one or more special nodes called or-
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derers that together form an ordering service. This service establishes consensus on the order

of transactions and distributes a new generated block to connected peers for validation and

commit. Deterministic consensus algorithms guarantee that validated blocks by peers are final

and correct. The implementation of the crash fault tolerant ordering service is based on the

Raft protocol. Figure 3.11 illustrates an example of a Hyperledger Fabric network with three

ordering nodes that form an ordering service.

Figure 3.11: A Hyperledger Fabric blockchain network of three organizations that communicate

through the channels. The network has three ordering nodes that group into an ordering service

for ordering transactions in a strict order and bundling them into blocks.

The whole Hyperledger Fabric’s transaction flow is depicted as a sequence diagram in Fig-

ure 3.12. At first, a client (SDK) generates a transaction proposal that is distributed across all
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the endorsing peers. The endorsing peers verify that the client’s digital signature is valid and

execute the transaction against the current state database to produce transaction results. The

blockchain ledger is not updated at this point. At the next step, the client receives proposal

responses back and compares them between each other to make sure the responses are identi-

cal. If the original transaction had only read operations, the client application inspects the re-

sponses, and the transaction flow finishes at this point. If the original transaction involves write

operations, the client application sends the transaction proposal and response to the ordering

service to update the blockchain ledger. The ordering service receives transaction proposals

from different channels in the network and simply orders them by channel. So at this stage, the

ordering service orders the transactions, generates a new block, and distributes it to all peers

on the channel. At the last stage, the peers verify that the endorsement policy is fulfilled and

update the blockchain ledger and the world state database.

Figure 3.12: Sequence diagram of the transaction flow in a Hyperledger Fabric network [119].
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3.4.6 Hyperledger Fabric SDK

To interact with a Fabric blockchain network, the distributed platform provides a software de-

velopment kit (SDK) [120]. It serves as a high level API for client applications to submit trans-

actions to a ledger or query the contents of a ledger. Currently, Hyperledger Fabric supports

SDKs for Node.js and the Java runtime environment. Therefore, for communicating with the

blockchain network, we built a RESTful (Representational State Transfer) API on top of the

Node.js SDK. The SDK consists of four modules:

• Fabric-network – includes the API’s to connect to a Fabric network and interact with

chaincodes (smart contracts).

• Fabric-ca-client – allows applications to interact with the optional Certificate Authority

component, fabric-ca, for establishing trusted identities on the blockchain network.

• Fabric-common – provides APIs to interact with the main components of a Hyperledger

Fabric network: peers, orderers, and event streams.

• Fabric-protos - includes the protocol buffers for communication over gRPC.

Figure 3.13 shows the structure of a client application for interacting with the blockchain

network using Node.js SDK.

Figure 3.13: Client application request flow for interacting with the Hyperledger Fabric.
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Chapter 4

Design and Implementation of a

Patient-Controlled Data Sharing Service for

Healthcare

4.1 Desired Solution

Based on our analysis described in Chapter 2, we identified the blockchain as a possible solution

to manage the sharing of healthcare data in a tamper-proof manner. To the best of our knowl-

edge, all the previously-discussed methods (see Section 2.3.1) imply storing sensitive healthcare

data in the blockchain network itself. In this research project, we propose a novel approach

for controlling personal medical data for use in research in a tamper-proof manner by stor-

ing just the data-sharing consents (from patients) and data-access privileges (of researchers)

in a blockchain network. In our approach, the medical data themselves remain in the data

providers’ infrastructure until accessed by the researchers and all access attempts are logged in

the blockchain. One of the main advantages of this method is an easy integration to existing

infrastructure as there is no need to export medical records to the blockchain network. Also,

in this way the blockchain network has to store and handle less data, which improves its per-

formance and requires less configuration. And last but not least, it is harder to compromise
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the data access mechanism, since the data and the access privileges are stored in two separate

systems, allowing the data to be stored in encrypted format on a dedicated server that is not

public-facing. Figure 4.1 shows the proposed concept of controlled data access based on the

access rights and privileges stored in a blockchain network.

Figure 4.1: Schematic design of the proposed concept. Before accessing the data, requesters

have to retrieve their personalized access rights stored in the blockchain. If there are no privi-

leges, a requester cannot access the data.

To test the proposed concept in practice, we built a prototype Research Portal in the frame-

work of the PARTAGE project, where:

• Opal users can provide consent to share their medical data with a specific research study

by signing an electronic consent form (e-consent). The consent can be revoked by the

patient at any time, at which point the data will not be available to researchers anymore.

• Researchers access the shared data based on the match between their privileges and pa-

tients’ consents. The system automatically logs all data access requests.

• A public-trust committee (with administrator rights) controls the granting of researcher

privileges. However, the public trust committee itself cannot access the data and cannot

grant access to data that patients have not consented to make available. In practice, the

public trust committee would likely be a single or multi-institution research ethics board.

However, for the purpose of this project, we are not defining who exactly will participate

in this committee or specifying how they will operate.
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In our prototype system, researchers and public-trust administrators operate via an on-

premises web portal (Research Portal), and we emulate patient-provided consents using a ded-

icated demonstration module with the Research Portal. The tamper-proof blockchain system

is required to generate and record:

• Patients’ consents specifying the data they wish to share and the studies they wish to share

them with;

• Researchers’ privileges specifying which studies containing patient-shared data they are

permitted to access;

• Data access logs for regulator and patient audits.

Figure 4.2 visualizes the high-level architecture of the designed system. Figure 4.3 repre-

sents a diagrammatic representation of the system’s flow.
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Figure 4.2: The high-level architecture of the designed data access system. Patients share their

medical data by signing an e-consent form in the Opal app, while the Public Trust Commit-

tee (administrator) controls who can access the data by assigning researcher privileges upon

request from researchers. The blockchain network stores patient’s consents, researchers’ priv-

ileges, and data access history, which guarantees that this information is stored in a tamper-

proof and immutable way. Researchers can only access data that they have appropriate privi-

leges to access and to which patients have consented for sharing.
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Figure 4.3: Flowchart of the proposed Research Portal. Both the patient and public trust com-

mittee flows are independent processes and can occur asynchronously. A researcher can access

medical data only if they have both patient-provided consent and the public trust committee-

provided access privilege. The public trust cannot provide access to data that patients have not

provided their consents to be accessed.
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4.2 Functional requirements

Figure 4.4: The flow of the prototyping process. At the first stage, the development team inves-

tigates a real-world problem and how to solve it. The team works with potential users of the

system and ascertains their needs. The second stage is a cyclic process, in which the developers

define the requirements and the system design, and implement them. This step repeats until

the prototype meets the users’ requirements. The last stage involves implementing a produc-

tion version of the system and supporting it [121].

Modern software development processes propose a wide variety of models and methodologies

to organize and structure the development to achieve the final goals. They help developers

to improve the design, architecture, and quality of the final software product. These method-

ologies include Agile, Waterfall, Prototyping, Iterative and Incremental development, Spiral de-

velopment, Rapid application development, and Extreme programming [121, 122, 123, 124].

However, the initial phase for all development methodologies involves a requirements analysis

– the process of defining users’ expectations and vision on how the system should operate. The

result of the analysis is a set of documented requirements in formal technical language – i.e.,

the functional requirements.

Since the desired solution of this thesis project was a proof-of-concept, we followed the

Prototyping methodology. An important principle of this approach is to break the project into

smaller segments and develop small-scale mock-ups of the system, which allows the develop-

ment team to provide a quick implementation of an incomplete, but functional application.
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The development of a prototype is a cyclic process, where on each iteration the developers re-

flect on the system objectives, design and architecture, user interface, missing functionality,

etc., until the prototype meets the users’ requirements. Therefore, prototyping helps to identify

the requirements for a production application and appropriate system design. It also allows

the developers to explore and gain knowledge on new technologies. Figure 4.4 represents a

schematic diagram of the prototyping methodology.

4.2.1 Defining Use Case Scenarios

Functional requirements are a specification that describes the system behavior and includes

technical details on calculations, input data processing and output results presentation [125].

Functional requirements can be written in several different ways, such as a specification doc-

ument, user stories, or use cases. For this project, the functional requirements were written in

the form of use cases. A use case is a usage scenario for a piece of software, which contains a

list of actions or event steps defining the interactions between actors (users) and a system to

achieve a specific goal [126, 127]. There are different templates for writing use cases in text. The

most common templates are use case brief, casual, outline, fully dressed, Fowler style, etc.

In this section we introduce written use cases based on the Fowler style, a simplified variant

of the Cockburn template. According to Fowler, there is no standard way to write the content

of a use case, and different formats work well in different cases [128]. The Fowler template

includes:

• Title – the goal that the use case is trying to satisfy.

• Actor – a user who calls on the system to deliver a service.

• Main success scenario – a sequence of numbered steps that describe the interaction be-

tween an actor and the system. Each step is a simple statement that clearly shows who is

carrying it out.
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• Extensions – conditions that result in different scenarios other than the main one. A use

case can have many extensions. Thus each extension has its own number that relates to

the step it is extending.

Prototyping iterations helped us to capture the core functional requirements of the pro-

posed Research Portal, which are presented in Tables 4.1-4.7 as text use cases.
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Table 4.1: Researcher authentication and authorization use case

Field Specification

Use case Authenticate and authorize as a researcher

Actors Researcher (registered user)

Goal A researcher-user wants to access their profile (authorize in the system)

Success Scenario

Steps:

1. An unauthorized researcher goes to the login page;

The system requests login and password;

2. The researcher enters login and password;

3. The system verifies the user’s credentials;

4. The system verifies if a request was made by a real user (reCAPTCHA);

5. The system redirects the user to the researcher’s page.

Result
The researcher-user is successfully authorized in the system and has

access to their profile

Extensions

*
No access to the database.

The system returns an error message.

2a
The user chooses “I forgot my password”.

The system starts the “I forgot my password” scenario.

2b
The user chooses “Register a new researcher”.

The system starts the “Register a new researcher” scenario.

3a

The user with the specified credentials does not exist.

Result: denial of access.

The system returns an error message.

Return to the second step.

3b

The researcher reaches the maximum number of unsuccessful attempts

to enter credentials.

Result: denial of access.

The system returns an error message.

The user is blocked for some period of time. This period is set in the

configuration of the system.
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Table 4.2: Administrator authentication and authorization use case

Field Specification

Use case Authenticate and authorize as an administrator

Actors Administrator

Goal An administrator wants to access the admin page (authorize in the system)

Success Scenario

Steps:

1. An authorized administrator goes to the login page.

The system requests login and password;

2. The administrator enters login and password;

3. The system verifies the user’s credentials;

4. The system verifies if a request was made by a real user (reCAPTCHA);

5. The system redirects the user to the admin page.

Result
The admin-user is successfully authorized in the system and has

privileges to review and approve proposed studies by researchers.

Extensions

*
No access to the database.

The system returns an error message.

2a
The user chooses “I forgot my password”.

The system invokes the “I forgot my password” scenario.

3a

The user with the specified credentials does not exist.

Result: denial of access.

The system returns an error message.

Return to the second step.

3b

The administrator reaches the maximum number

of unsuccessful attempts to enter credentials. Result: denial of access.

The system returns an error message.

The user is blocked for some period of time. This period is set in the

configuration of the system.
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Table 4.3: Creating new studies use case

Field Specification

Use case Create a new research study proposal

Actors Researcher, administrator

Goal
An authorized researcher wants to create a research study proposal and

make the research study available to patients for participation.

Success Scenario

Steps:

1. An authorized researcher opens the “New research study” page.

2. The researcher fills in all the required fields to create a research study

proposal.

3. The researcher submits the proposal to the administrator for review.

Result
The system saves the research proposal.

The administrator receives a request to review the research proposal.

Extensions

*
No access to the database.

The system returns an error message.

3a
The researcher chooses “Save draft”.

The system saves a draft of the research proposal.
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Table 4.4: Research proposal review use case

Field Specification

Use case Review a research study proposal

Actors Administrator

Goal
An administrator wishes to approve a research study proposal and make the

study available to patients.

Success Scenario

Steps:

1. The administrator opens a review request attached to a research study

proposal.

2. The administrator sets the “Study Status” as “Approved”.

3. The administrator sets the privileges for accessing the shared data for

each researcher participating in the study.

Result

The research study proposal is approved, and patients can participate in

the study.

The system saves researchers’ privileges on the blockchain.

Extensions

*
No access to the database.

The system returns an error message.

2a

The administrator sets the “Study Status” as “Rejected”.

Result: The research proposal is rejected, patients cannot participate

in the study and researchers cannot get privileges to access data in the study.
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Table 4.5: Signing a consent form use case

Field Specification

Use case Sign a consent form

Actors Patients

Goal
A patient wishes to participate in a research study and share their medical

data with the study by signing an electronic consent form.

Success Scenario

Steps:

1. Patient goes to the “Research Menu” in the Opal app.

2. Patient selects the study in which they wish to participate.

3. Patient signs the e-consent form for participation in the study.

4. The system saves the consent in the blockchain.

Result
The patient’s medical data that have been shared by the patient become

accessible to the appropriate study-user1.

Extensions

*
No access to the database.

The system returns an error message.

1study-user concept is explained in Chapter 5.
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Table 4.6: Pulling (harvesting) shared data to the Research Portal server use case

Field Specification

Use case Pull the shared data to be available to the researcher for analysis

Actors Research Portal

Goal The Research Portal service wishes to update its shared data database.

Success Scenario

Steps:

1. The Research Portal service, acting as a “study-user“, logins into each

of the individual Opal listeners to pull newly-shared data records once

per X hours (e.g., once per 24 hours).

2. Each Opal listener provides to the study-user the newly-shared data

records that patients consented to sharing in the last X hours, and

sends the data to the Research Portal service.

3. The Research Portal service updates its shared data database.

4. The Research Portal service removes the previously-shared data records

that are no longer consented to (based on recently-withdrawn consents).

Result
The Research Portal shared data database is updated based on the

patients’ consents.

Extensions

*
No access to the database.

The system returns an error message.
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Table 4.7: Accessing shared data use case

Field Specification

Use case Access shared data

Actors Researcher

Goal An authorized researcher wants to download the shared data for their re-

search study.

Success Scenario

Steps:

1. The researcher selects their approved study and opens the “Shared Data“

page.

2. The system verifies that the researcher has

access rights to the “Shared Data“ of the approved research study.

3. The system selects the consented records and returns them

to the researcher in CSV format.

4. The system creates a new logging record in the blockchain with the details

of who (the researcher) downloaded what data, when and from which IP

address.

Result The researcher downloads the shared data in CSV format.

Extensions

*
No access to the database.

The system returns an error message.

2a

If the study is not approved or the researcher does not have the

appropriate access rights, the system returns a “Forbidden Access”

page.

3a If there are no consented records, the system returns an empty dataset.
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4.2.2 Use Case Diagram

A use case diagram is a graphical representation of interactions between actors (users) and sys-

tems. A use case diagram consists of actors, use cases within a system, associations between

actors and use cases, relations between use cases, and relations between actors.

Use case diagrams are text use cases that are presented in a visual form. The main purpose of

use case diagrams is to provide a visual representation of a system’s functionality and behavior

that allows customers, users, and developers to jointly discuss the designed or existing system.

Figure 4.5 shows a use case diagram of the proposed Research Portal—a data sharing system

that is based on the use cases discussed in Section 4.2.1.

Figure 4.5: Use case diagram of the proposed data-sharing approach. The diagram contains

two systems and three actors. The Patient interacts with the Opal App system, whereas the

Researcher and the Public Trust Committee interact with the Research Portal.
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4.2.3 Sequence Diagram

A sequence diagram is a visual representation of object interactions in a time sequence based

on text use cases and use case diagrams. It depicts a sequence of actions in use case scenarios

(e.g., creating, processing, deleting) and objects’ life cycles. The main elements of a sequence

diagram are:

• Actors and objects that interact with each other.

• Parallel vertical dotted lines (lifelines) that reflect time going from top to bottom.

• Activation boxes – rectangles drawn on top of lifelines that reflect the execution of a pro-

cess.

The interactions between actors and objects are shown by horizontal arrows called mes-

sages. Messages transfer control from the sender (from whom the arrow goes) to the recipient

(the one to whom the arrow is directed). The arrows show the course of the scenario and the

events that occur during it. There are three basic arrows for interactions:

• Synchronous message – the sending actor passes the control to the receiving actor or ob-

ject that needs to perform some action. The sending actor loses the ability to perform

any actions until the action performed by the receiving actor is completed. The arrow is

depicted with a solid head.

• Asynchronous message – the sending actor passes the control to the receiving actor or

object that needs to perform some action. The main difference from the synchronous

message is that the sending actor does not lose the ability to perform other actions while

waiting the action to be completed. The arrow is depicted with an open head.

• Reply message – contains a response for the sending actor. The message returns control

to the sending actor. The arrow is depicted with a dashed line.

Figure 4.6 illustrates the flow of interactions between actors and the proposed system.
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4.3 Technology stack

In this section we present the technology stack used to implement a patient-controlled data

sharing service.

4.3.1 Laravel Framework

Since the Opal backend has several services written in the PHP language, we decided to be

consistent with the existing code base and use PHP for developing our prototype of the Research

Portal. Doing so will help prevent the Opal project from having too many different technologies

and languages. Also, it will allow Opal developers to quickly understand the prototype code and

start developing the production version.

In order to write clean PHP code, adhering to best practices, we decided to use a PHP frame-

work. We analyzed the most popular PHP frameworks, such as CakePHP, Symfony, Yii, and

Laravel. According to Google Trends search statistics, Laravel is the most popular framework.

Figure 4.7 demonstrates the popularity of these frameworks from 2004 till the present time.

Due to the popularity and variety of features, we decided to use Laravel [130, 131]. The

framework follows the model-view-controller (MVC) architectural pattern and based on the

Symfony framework. It provides developers with a rich set of features and robust tools that

allow them to boost the speed of web development and build scalable applications. The main

features of the framework are the following:

• Built-in packages that have frequently used modules and libraries. Packages are provided

through Composer and Packagist.

• Artisan – a command-line utility that automates frequent actions performed by develop-

ers during development.

• Configuration management that allows developers to keep different configurations for

different environments in an efficient way.
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• Schema builder that helps to create a database schema by using PHP code. Also, it sup-

ports migrations to track the changes of the schema.

• Query builder for querying databases without using SQL. Laravel provides PHP classes

and methods for making queries programmatically.

• Eloquent - an Object Relational Mapper (ORM) for presenting database tables as classes

and each single row in the table as an object instance (active record pattern).

• Native authentication which includes features such as registration, authorization, pass-

word recovery.

Figure 4.7: Search per keyword in the world since 2004. Numbers represent search interest

relative to the highest point on the chart for the given region and time. A value of 100 is the

peak popularity for the term. A value of 50 means that the term is half as popular. A score of 0

means that there was not enough data for this term [129].
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4.3.2 Bootstrap & AdminLTE

For implementing the front-end part of the Research Portal, we used the Bootstrap framework

and specifically, the AdminLTE template. Bootstrap is an open-source framework that simpli-

fies the development of responsive websites [132]. The framework provides ready-to-use com-

ponents with a variety of CSS styles. One of the most important features of the framework is

a grid system that allows web pages to adjust their size dynamically on different screen sizes.

AdminLTE is an open source admin dashboard and control panel theme that provided us with

a range of responsive and reusable templates [133].

4.3.3 Docker

For developing and testing purposes, we deployed a Hyperledger Fabric Network by using Docker

[134]. Docker is an OS-level virtualization platform for running applications in isolated environ-

ments called containers. Containers contain all the needed libraries and configuration files to

run an application and multiple containers can be deployed on the same host simultaneously.

Therefore, Docker can simulate a blockchain network on the local computer by running several

containers. Container orchestration tools, such as Docker Swarm, Kubernetes, and OpenShift,

allow coordination, management, and deployment of containers across different hosts.
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Chapter 5

Results

5.1 Stakeholder Co-design

For the participatory stakeholder co-design process, the PARTAGE team formed a group of

stakeholders that met on a weekly basis to discuss the design and development of the data-

sharing solution. Table 5.1 lists the stakeholders who participated in these weekly meetings

and the expertise and perspectives that they brought to the team.

Table 5.1: List of the stakeholders who participated in the participatory stakeholder co-design

process. Participants met weekly to discuss the data-sharing solution and to ensure that the

results of the project meet their needs and are usable. Some participants played more than one

role.

Perspective Professional role of Individuals
Number of

Individuals

Patients Cancer patients 2

Researchers Informatics researcher/medical physicist,

bioinformatician

2

Clinicians Registered nurse 1

Ethico-legal Lawyer specializing on personal health information 1

Provateurs Students (medical physics and computer science) 2

Opal development team Opal chief architect and DevSecOps manager 2
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In the period between June 2020 and September 2021, the PARTAGE team held a total of 60

weekly meetings. Each meeting was one hour and 15 minutes long on average. All meetings

were conducted online via the communication platform Microsoft Teams. Through the active

participation of all the team members, the following aspects of the data-sharing solution were

investigated:

• Privacy impact assessment (PIA): The lawyer on the team investigated all the factors that

can have a positive or negative impact on the privacy of the individuals in framework

of the Opal app. These factors are: (1) the compliance of the project with regard to pri-

vacy and data protection legislation, (2) the identification of privacy risks generated by

the project and the assessment of their respective impacts, (3) strategies to avoid or effec-

tively reduce these risks. A report was prepared that includes the PIA analysis as well as

recommendations for better personal data protection for the privacy of individuals whose

data pass through Opal.

• Patients’ preferences for the consent process: One of the central discussions in the co-

design meetings was to determine if the data-sharing consent process should be global

(i.e., consent once to share data to all studies) or per-study (i.e., provide consent to share

data for each individual study). Another aspect of data-sharing that was studied was the

question of whether or not the sharing of individual types of data should be controlled by

the patient and how such a sharing feature should be displayed in the Opal app (e.g., if

patients want the ability to only share specific data types). While the PARTAGE team had

its own vision and preferences, gaining further perspectives from the wider patient popu-

lation was required and emerged as a main discussion topic for the focus group described

below.

• De-identification instead of anonymization: Two data protection strategies were inves-

tigated. One strategy was de-identification of data (a.k.a. pseudonymization)—a proce-

dure by which personally identifiable information is removed or replaced with a fictitious

value (i.e., pseudonym). In this way, researchers will get the shared data without the per-
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sonal information of participants. However, personal information can still be linked back

to the patient in the Opal system. Another strategy was data anonymization. This ap-

proach removes all personally identifiable information and permanently severs the link

to the original data source. This prevents the data being connected back to the patient,

even in Opal. Both strategies were explored extensively in the discussions and in the focus

group to determine patients’ understanding and preferences.

• System requirements: Based on the PIA analysis and the co-design discussions, we iden-

tified the system requirements of the Research Portal. First, we formulated the require-

ments in the text use cases form as discussed in Section 4.2.1. Then, we created use case

and sequence diagrams for a visual representation of interactions between users and sys-

tems. The designed requirements and graphical visualizations were presented in Chapter

4. Also, the PARTAGE team determined that the Research Portal must be a cloud solu-

tion and deployed outside of the RI-MUHC/MUHC network. This is due to the hospi-

tal’s firewall and security measures, which prohibit external connections to the network.

A cloud-based solution will allow researchers to use the Research Portal even if they do

not have access to the hospital’s network. Last but not least, we identified that (1) pa-

tients’ consents, (2) researchers’ data-access privileges, and (3) researchers’ data-access

history must be stored in a decentralized environment, to ensure the data are recorded in

a tamper-proof manner. As explained previously, we decided to use blockchain technol-

ogy.

• User interface design of the Research Portal: One of the first phases of implementing the

Research Portal was designing web page mockups of it. The mockups were discussed col-

laboratively by the co-design participants and then modified according to the feedback

received. After several iterations, the team agreed on the final user interface design.

• User interface design of the Opal Research Menu: A medical physics student worked on

a user-friendly, intuitive interface for a Research Menu in Opal—a sub-menu in the Opal
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app where patients can share their medical data for research purposes. Different mockup

interfaces were created in order to explore different possible options.

• Focus group: The PARTAGE team held a focus group to get patients’ feedback on their

preferences for (1) the consent and data-sharing process, (2) the data protection strategy

(de-identification instead of anonymization and other considerations), and (3) Research

Menu interfaces in the Opal app. Participants were invited to the focus group via Opal

and 42 patients expressed interest to participate. 10 invitations were randomly sent to the

interested patients, however only four patients ultimately attended the focus group. The

focus group session was split into two parts of 45 minutes each. During the first part,

PARTAGE team members gave a presentation on the PARTAGE project’s concepts and

its goals. In the second section, patients provided feedback on their preferences for the

data-sharing solution. Patients indicated that they themselves would choose the global

data-sharing option, (i.e., consent once to share data to all studies) but at the same time

the per-study consent option should be included for flexibility. Also, patients explored

different data protection strategies. Due to limitations for researchers and patients be-

ing unable to revoke access to their data if they are anonymized and the inability to link

anonymized data from different sources, patients agreed that team should move forward

with the de-identification approach. Last but not least, the focus group participants pro-

vided feedback on the user interface design of the Opal Research Menu. To make the

data-sharing process more rewarding, patients identified they would like to see a report

or some feedback regarding the research studies that their data are used in.

Based on the co-design findings, we built an architecture for the data-sharing mechanism

shown in Figure 5.1. The solution is based on the blockchain technology. On the left side of the

architecture, we have the Opal App which communicates with the Opal Infrastructure (clinical

world). When a patient decides to share their data, first, the app by using a blockchain client on

the Opal Infrastructure sends consents to the blockchain network. After that, the specified med-

ical data are de-identified and sent to the research database. The actual data-sending mecha-
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nism is beyond the scope of this project but would like involve a harvester mechanism and

proxy "research study user" access to the patient’s data. On the right side of the architecture, we

have the Research Portal for the Public Trust Committee and the researchers (research world).

The portal has its own back end and database, which keeps researchers’ profiles. The portal’s

back end checks (1) if the researcher’s study was approved by the Public Trust Committee, and

(2) if a researcher has privileges to access the shared data within it. If both conditions are met,

a researcher can access the patient-shared data. All the requests to the Research Database are

logged on the blockchain.
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Figure 5.1: Designed architecture of the Research Portal based on the results of the stakeholder co-

design process. The architecture consists of two parts that are separated by the red dashed line: the clin-

ical world (hospitals) and the research world. The clinical world includes the Opal app and its back end

infrastructure, whereas the research world includes the Research Portal and a permissioned blockchain

network. Patients share their medical data through the Opal app by signing an e-consent form. The

patient consents are stored in the blockchain network. Shared de-identified data end up (technical de-

tails of the transfer beyond the scope of this thesis) in a Research Database (i.e., ResearchDB) that is

securely hosted outside the hospital’s network. The shared data are transferred on a regular basis to

the ResearchDB based on the patient consents (blockchain enabled flow). Researchers can access the

shared data via the Research Portal if there is a match between the patient consents and their data ac-

cess privileges as provided to them by the Public Trust Committee. All data accesses are logged on the

blockchain.
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5.2 Description of the Implemented Solution

In this section, we explain the implemented system design as well as the design of the deployed

blockchain network. Also, we present the Research Portal and its features.

5.2.1 System Design

Using (1) the system requirements, (2) the designed architecture, and (3) the knowledge gained

during the co-design process, we designed a system for the Research Portal as shown in Figure

5.2. The Research Portal is a web application, where the front end (i.e., website) communicates

with the back end (i.e., server) via Hypertext Transfer Protocol Secure (HTTPS). Both researchers

and the Public Trust Committee use the same website. They have different user permissions

and web pages based on their roles and as authenticated by their credentials (i.e., email address

and password). The Research Portal is publicly available, so, in principle, anybody can register

for a researcher account. The Public Trust Committee administrators can be added or deleted

only by the system owners (Opal development team initially). The front end is based on the

AdminLTE template and Bootstrap framework. The server side includes four main components:

(1) back end logic, (2) the Research Portal database, (3) a blockchain client application, and (4)

the shared data databases.

The back end logic utilizes the PHP Laravel framework for handling front end requests and

managing access to the portal’s resources. The Portal Database (PortalDB) stores all the data

related to the Research Portal, such as users, research studies, etc. However, the PortalDB does

not store shared data. The PortaDB is implemented using Eloquent ORM and MariaDB—a fork

of the MySQL relational database management system (RDBMS). Each PortalDB table has a

corresponding Eloquent ORM “model” in the back end that is used to interact with that table.

Eloquent models allow the back end to retrieve, insert, update, and delete records from the

database tables.

The back end communicates with the blockchain network via the blockchain client ap-

plication. The blockchain client provides RESTful API endpoints that are implemented using
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JavaScript and run in the Node.js runtime environment. The endpoints utilize the Hyperledger

Fabric SDK library that (1) allows connections to a peer within the blockchain network, (2) en-

ables access to any of the blockchain channels for which that peer is a member, and (3) provides

access to the chaincodes running within that blockchain network.

When a researcher requests the shared data within a study, the back end checks if the re-

searcher has access privileges for that study stored on the blockchain. If (1) the study was ap-

proved by the Public Trust Committee, (2) and the researcher has privileges, the shared data are

transferred to the researcher. To pull the data from the “Shared data” databases, the back end

utilizes raw SQL (Structured Query Language) queries. For simplicity in this thesis project, the

“Shared data” databases have the OpalDB and QuestionnairesDB schemas of the Opal Infras-

tructure (see Figure 2.3). Fake medical records were hardcoded into these databases for testing

purposes.

The following components of the design were beyond the scope of this thesis project, and

thus they were not implemented:

• Study-user: An Opal user account that aggregates the shared data within a study. When

a Public Trust Committee member approves a new research study, the Research Portal’s

back end sends a request to the Opal’s infrastructure to create a new Opal account—a

study-user. Patient’s consented data will be automatically shared with a study-user ac-

count as part of the consent process. Thus, the Harvester service will know which data

can be pulled to the “Shared data” databases. Also, it will allow the Harvester service to

distinguish what shared records belong to what studies.

• Blockchain client application for hospitals: RESTful API endpoints that allow Opal app

users to sign or revoke e-consents. The endpoints will have the same implementation as

the implemented blockchain client for the fake consents in the Research Portal (for the

purpose of this thesis project, just fake consents were implemented). However, the client

must be configured and deployed according to the host hospitals’ servers’ characteristics
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and security regulations. Also, the Opal App and the Listener implementations must be

updated as appropriate.

• Harvester: A cron-job (or equivalent) service that updates the “Shared data” databases

once per X hours. The service logs in to each study-user account and copies the shared

records to the “Shared data” databases that the study-user has access to. Also, the ser-

vice should remove records from the databases for which e-consents were revoked, so

researcher users get only consented records.

The design of the Research Portal follows the Multilevel Access Control model—a combina-

tion of the DAC and MAC models. First, the DAC model is applied for the signing e-consents

process (i.e., patients determines who can access their data). Then, the Public Trust Committee

represents the MAC model (i.e., the administrators decide who can access the shared data).
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Figure 5.2: The design of the Research Portal. The portal is a web application that uses the Laravel

and Bootstrap frameworks for its back end and front end respectively. For communication with the

blockchain network, the server runs a Node.js API (blockchain client application). The Harvester is envis-

aged as a cron-job service that logs in to each study-user, collects the shared data and puts them into the

Shared Data storage. The storage consists of two databases that have the OpalDB and QuestionnaireDB

schemas to facilitate de-identified replication of data from Opal. Details and terms are explained in the

main text. Components that have been designed but that have not been implemented as part of this

thesis project are shown in pink. For the purpose of this project, fake patient consents were used.
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The implemented prototype Research Portal solution was deployed on a server at the RI-

MUHC. Tables 5.2-5.3 list the server’s technical characteristics and the software used to run its

back end and front end. To test the designed system and its business logic, we implemented and

deployed additional endpoints and chaincodes that allow Public Trust Committee members to

create fake e-consents on behalf of fake patients. This functionality was implemented only for

testing purposes and will be eliminated in future versions of the portal.

Table 5.2: The technical characteristics and components of the server used for deployment of

the Research Portal. The server is a virtual machine that is physically located at the RI-MUHC.

Name Details

Server Type Virtual Machine (VM)

Virtualization type: full

Hypervisor: Kernel-based Virtual Machine

(KVM)

Physical location: RI-MUHC

Central Processing Unit Intel Core Processor

Model: 61

Architecture: x86_64

CPU(s): 4

Thread(s) per core: 1

(CPU) (Broadwell) Core(s) per socket: 1

Socket(s): 4

CPU MHz: 2394.454

Storage Hard Disk Drive (HDD)

Write speed: 626 MB/s

Real read speed: 949 MB/s

Read speed from buffer: 4.8 GB/s

Random Access

Memory (RAM)

Dual in-line memory

module (DIMM)

Size: 4GB

Operating System (OS) Linux
Distribution: CentOS

Release: 7.9.2009
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Table 5.3: List of the software and frameworks used to run the Research Portal on the RI-

MUHC’s server.

Software/Framework Version

Back end

Web server nginx 1.16.1

PHP 7.4.19

Laravel Framework 8.29.0

Composer—Dependency Manager for

PHP

1.10.20

MariaDB 10.4.8

Front end

AdminLTE Template 3.0.4

Bootstrap Framework 4.4.1

jQuery—JavaScript library 3.4.1

npm—Dependency Manager for

JavaScript

7.12.1

5.2.2 Hyperledger Fabric Network for the Prototype Research Portal

For implementing the developed use cases and the system design, both of which require storing

data in a blockchain, we deployed a Hyperledger Fabric network. The architecture of the de-

ployed blockchain network is shown in Figure 5.3. The network consists of three organizations

(i.e., Org1, Org2, Org3), three channels (i.e., patients’ consents channel, researchers’ privileges

channel, and data access logs channel), and an ordering service. Each organization consists

of one peer that connected to the networks channels. The ordering service contains only one

ordering peer that utilizes the Raft algorithm. To run the network locally, we used the Docker

platform, where each peer was simulated in an isolated container. The chaincode binaries were

installed on the Org1 peer. The list of software used to run the blockchain network, including
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the client application, are shown in Table 5.4. Tables 5.5-5.9 describe the implemented client

application endpoints and installed chaincodes.

Figure 5.3: The design of the Hyperledger Fabric blockchain network used in the prototype Re-

search Portal. The network consists of three organizations, where each organization has one

peer. Peers Y and Z are committing peers, whereas peer X is both an endorsing and a com-

mitting peer. All three organizations are connected to three channels, where each channel is

intended for a specific type of data: (1) patients’ consents, (2) researchers’ privileges, (3) data

access logs. The ordering service contains only one ordering peer that utilizes the Raft algo-

rithm. Peer X has chaincodes installed on it that are invoked by the client application using the

Node.js SDK library. The network was deployed to the RI-MUHC’s server using Docker, where

each of the peers were simulated in separate containers.
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Table 5.4: List of the software used to run the Hyperledger Fabric blockchain network and a

client application.

Name Version

Hyperledger Fabric 2.3

Node.js—back end JavaScript runtime environment. 14.16.1

Go language—used for developing and compiling the chaincodes. 1.16.4

Docker—used for simulating the blockchain network. 20.10.5

Table 5.5: List of the API endpoints provided by the blockchain client application for managing

researchers’ privileges.

Blockchain client API

(endpoint) Description

/api/studies/create-study/ Allows the Public Trust Committee to create a new study record

on the blockchain that contains (1) an ID of the study that links

to the study information stored in the PortalDB, (2) a binary flag

of the study status (i.e., approved or not approved), and (3) list of

the researchers who can access the study. For each individual re-

searcher, the committee sets privileges (e.g., no access, read only,

full access).

/api/studies/update-

study/{study index}

Allows the Public Trust Committee to update a study record with

the researchers’ privileges stored on the blockchain.

/api/studies/query/{study in-

dex}

Allows retrieval of a study record stored on the blockchain. The

endpoint is used by the Public Trust Committee to see the cur-

rent privileges of the researchers.
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Table 5.6: List of the API endpoints provided by the blockchain client application for managing

patients’ consents.

Blockchain client API

(endpoint) Description

/api/consents/update-

recipient

Allows patients to create/update personal e-consents. An e-

consent contains the patient’s ID, metadata regarding the shared

data, and date/time information regarding when the consent

was created and updated. Every e-consent is assigned to a

recipient—a user who will get access to the shared data. In the

current version of the Research Portal an e-consent can be as-

signed only to a study-user. However this functionality can be

extended in future versions, so e-consents could potentially be

used to allow patients to share their data with family members,

caregivers, other patients, etc. For testing purposes, this end-

point is made available for Public Trust Committee users, who

can create “fake e-consents”.

/api/consents/get-all-

consents

Allows Public Trust Committee users to retrieve all patients’ e-

consents. This endpoint is implemented for testing purposes to

ensure that all the e-consent operations work correctly. The end-

point may be eliminated in future versions of the Research Portal.
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Table 5.7: List of the API endpoints provided by the blockchain client application for checking

if a researcher is allowed to access the shared data.

Blockchain client API

(endpoint) Description

/api/privileges/check-

shared-data-access

Checks if a researcher can access the study’s “Shared Data” page

based on the (1) study’s approval and (2) researcher’s privileges.

/api/privileges/permitted-

data-for-download

Checks what shared data can be downloaded based on the (1)

study approval, (2) researcher’s privileges, and (3) patients’ con-

sents.

Table 5.8: List of the API endpoints provided by the blockchain client application for adding

and retrieving data access history records to/from the blockchain.

Blockchain client API

(endpoint) Description

/api/log/add-log-record/ Creates a new log record on the blockchain. A record is created

when the researcher accesses shared data. The record includes

the researcher’s ID (requester), metadata regarding the data ac-

cessed, and date/time information about when the data were ac-

cessed.

/api/log/get-all-log-records Allows retrieval of all the log records stored on the blockchain.
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Table 5.9: List of the designed and implemented chaincodes. The chaincodes deployed to three

different channels: (1) researchers’ privileges channel, (2) patients’ consents channel, and (3)

data access history channel.

Chaincode Description

Researchers’ privileges channel

CreateStudy Creates a new study record that contains its status (e.g., approved, not

approved) and researchers’ privileges. The chaincode is invoked by the

“/api/studies/create-study/” API endpoint. The details of a study record

are provided in Table 5.5.

UpdateStudy Updates a study record and its researchers’ privileges. The chaincode is

invoked by the “/api/studies/update-study/{study index}” API endpoint.

ReadStudy Retrieves a study with its researchers’ privileges. The chaincode is used

by the (1) “/api/studies/query/{study index}”, (2) “/api/privileges/check-

shared-data-access”, and (3) “/api/privileges/permitted-data-for-

download” API endpoints.

Patients’ consents channel

UpdateRecipientUser Creates/updates an e-consent assigned to a recipient (e.g., study-user).

The chaincode is invoked by the “/api/consents/update-recipient” API

endpoint. The purpose of the chaincode is described in Table 5.6.

ReadRecipientUser Retrieves a recipient (e.g., study-user) with its all assigned consents.

The chaincode is invoked by the “/api/privileges/permitted-data-for-

download” API endpoint.

GetAllRecipientUsers Returns a list of the recipient users and their assigned consents. The chain-

code is invoked by the “/api/consents/get-all-consents” API endpoint. It

is used for testing purposes and may be eliminated in the future versions

of the Research Portal.

Data access history (logs) channel

CreateLogRecord Creates a new log recrod. The chaincode is invoked by the “/api/log/add-

log-record/” API endpoint.

GetAllLogRecords Retrieves a list of all log records. The chaincode is invoked by the

“/api/log/get-all-log-records” API endpoint.
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5.2.3 The Research Portal

This section presents the implemented client web application of the Research Portal (front end).

As stated above, the Research Portal is intended for two user types: researchers and the Public

Trust Committee members (administrators). Both user types use the same web page for autho-

rization, but access different web pages and rights once authorized. Anybody can register for a

new researcher account via the “Registration” page. At this point, new Public Trust Committee

user cannot be registered via the portal and can be created only by the Opal development team.

Figure 5.4 shows the implemented forms for registering new researchers and authenticating in

the portal.

Figure 5.4: The Research Portal’s web forms for registration and authentication. The left form

is intended for registering a new researcher. The right form is intended for authentication.

The following subsections present the web pages of an authorized researcher and an autho-

rized Public Trust Committee user (administrator).
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5.2.3.1 Researchers

Once authenticated as a researcher, the user is redirected to the Research Portal “Home” page.

This page allows the researcher to create new research studies and to manage existing ones.

When a researcher creates a new research study, the study must be approved by the Public Trust

Committee (administrator) before it can be used. Only then, the study becomes available for

patients so they can share their data with it. Thus, there are four research study status types:

• Draft: A new research study that is created and saved in the Research Portal but not yet

submitted to the Public Trust Committee for review. This study is not available for study

participants (patients).

• Under review: A new research study that is saved in the Research Portal and submitted to

the Public Trust Committee for review. This study is not available for study participants.

• Approved: A study that is approved by the Public Trust Committee and available for study

participants to share their data with it. Researchers with appropriate privileges can access

the data shared with this study.

• Rejected: A study that has been rejected by the Public Trust Committee and not available

for study participants.

To create a new study, a researcher must provide (1) the study name, (2) a brief summary

of the study, and (3) a detailed description of the study. Once the committee approves a new

study and sets the privileges for it, the researcher can access the data shared by patients with

the study. The data are grouped by categories and provided in comma-separated (CSV) files. In

the current version of the Research Portal, there are four categories of patient data: (1) ques-

tionnaires, (2) lab results, (3) diagnosis, (4) appointments. Figures 5.5-5.7 illustrate the imple-

mented “Home”, “New Study”, “Shared Data” pages available for authorized researchers.
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Figure 5.5: Researcher’s “Home” page that lists all the research studies linked to the authorized

researcher. The page allows a researcher to create, read, update, and delete studies. Also, from

this page, a researcher can access a study’s shared data if (1) the study was approved by Public

Trust Committee and (2) the researcher has privileges to access the data as set by the committee.

Figure 5.6: The “New Study” page that allows an authorized researcher to create a new study.

A research study must include three components: (1) study name, (2) study summary, and (3)

study detailed description. A researcher can save a study as a draft or submit it for review to the

Public Trust Committee.
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Figure 5.7: The “Shared Data” page allows an authorized, privileged researcher to download

the shared data of a particular study. The data are grouped in categories and provided in a

comma-separated value (CSV) files. The implemented prototype version of the Research Portal

supports four data categories: (1) questionnaires, (2) lab results, (3) diagnosis information, and

(4) appointments. Each research study has different data sets based on the patients’ consents.

The page is not available to researchers who do not have appropriate privileges.

5.2.3.2 Public Trust Committee

Once authorized as a member of the Public Trust Committee, a Research Portal user is redi-

rected to the “Home” page of the Public Trust Committee. The page lists all the studies that

have been submitted for review. During the review process, the administrator evaluates a pro-

posed research study and decides if it can be published in Opal for participation by setting the

study status as “approved” or “rejected”. Also, the administrator sets the researchers’ privileges,

so only privileged researchers can access the shared data. To test the designed solution and

the blockchain’s functionality , we implemented various pages for testing purposes. On the

“New Consent” page, the administrator can create or update fake e-consents on behalf of fake

patients. On the “Data Access History” page, the administrator can see the log records of the

data requests by researchers. Pages for e-consents and data access history were implemented

only for this prototype of the Research Portal and will be eliminated in future versions. Figures
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5.8-5.12 illustrate the implemented “Home”, “Review Study”, “Consents”, “New Consent”, “Data

Access Hisotry” pages that are available for authorized Public Trust Committee users.

Figure 5.8: Public Trust Committee’s “Home” page lists all the research studies submitted by

researchers for review. The page allows an authorized administrator to choose a study and open

it for review.

5.3 Feasibility Analysis of the Blockchain Solution

Based on our experience developing the Research Portal and the blockchain network, we iden-

tified that a production-ready blockchain-based solution would require a team of IT specialists

with appropriate expertise. First, the team should include a solution & application architect,

who will build the system design and its workflow based on the collected functional require-

ments. Also, the team should include two blockchain developers and one blockchain network

administrator. One blockchain developer will be responsible for developing blockchain smart

contracts, whereas the second developer will work on the blockchain client application. The

blockchain network administrator will be responsible for (1) deploying the network, (2) deploy-

ing the smart contracts, and (3) maintaining the operation of the network. Table 5.10 shows
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Figure 5.9: The “Review Study” page allows an authorized Public Trust Committee user to re-

view a newly-proposed study. The page contains information such as study owner (e.g., prin-

ciple investigator), study name, study summary, and the study’s detailed description. To com-

plete the review process, an administrator has to set the researcher’s privileges (e.g., full access,

read only, forbidden) and the study status (e.g., approved, rejected).

a list of IT specialists that we identified. To develop the Research Portal web application, an

additional full-stack software developer would be needed.

To support the design and development of an enterprise-grade blockchain network, we esti-

mate that the project owner would need to budget for $78,018 CAD. Also, the owner would need

to spend an additional $20,924 CAD ($34.49 CAD per hour) on a four-month work contract for

the full-stack developer [135] to complete the Research Portal.

For the operational costs (e.g., maintenance and support of the blockchain network) over

a six month period after go-live, the owner would need to budget for $23,932 CAD to support

a part-time blockchain network administrator/operator. Thus, in total, for a six months devel-

opment period and six months of operation, a project’s owner would need to spend $122,873

CAD. This number assumes that the Opal patient portal platform is installed and supported

separately. It also does not include overhead costs, hardware costs, software licensing costs,
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Figure 5.10: The “Consents” page lists all the patients’ e-consents stored on the blockchain.

The page is available only to the authorized Public Trust Committee users, who can see existing

consents and create new ones on behalf of fake patients. This functionality was implemented

only for testing purposes and will be eliminated in future versions of the Research Portal.

management costs, and employee benefits. All included, a budget of $200,000 CAD could be

justified for a one-year project.

This feasibility analysis was done for one institution, assuming that the institution imple-

ments a production-ready product (i.e., Research Portal and blockchain network) and shares

the implemented solution with its collaborating institutions. Thus, the expenses will need to be

spent only once. However, collaborating institutions will need to cover their own operational

costs (e.g., blockchain network administrator/operator) and the cost of deploying Opal if that is

the patient portal technology they wish to use.
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Figure 5.11: The “New consent” page allows Public Trust Committee users to create a new e-

consent on behalf of a fake patient. An e-consent includes the patient’s ID (Opal user’s ID who

shares the data), the recipient’s ID (a study-user to which the data are being shared), and toggles

that allow the patient to specify which data they are sharing. Created e-consents are stored

on the blockchain and can be updated using this page. The page was created only for testing

purposes and will be eliminated in future versions of the Research Portal.

104



Figure 5.12: The “Data Access History” page lists all the log records of the shared data requests

stored on the blockchain. The page is available only for the authorized Public Trust Committee

users. Each log record includes the researcher’s ID (requester), user type, requested data cate-

gory, and when the data were requested. The page was created only for testing purposes and

will be eliminated in future versions of the Research Portal.
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Table 5.10: List of specialists that would need to be hired to implement a blockchain-based data-

sharing solution as per the design described in this thesis. The list does not include other developers

who will work on the components not related to the blockchain development.

Job Title Description
Knowledge

required
Estimated

time Salary

Solution & appli-
cation architect

Responsible for formulating the
functional requirements. Designs the
blockchain network and Research
Portal.

1. Blockchain concepts
2. Hyperledger Fabric

3.5 months
(490 hours)

$61.54 CAD per hour [136]
as of November, 2021.
Total: $30,154.6 CAD

Smart contract
(chaincode) devel-
oper

Responsible for developing
chaincodes based on the functional
requirements and system design.
Collaborates with the blockchain
client application developer to agree
on the contract functions and their
parameters (i.e., interfaces). Also
collaborates with the network
administrator to deploy the developed
contracts.

1. Blockchain concepts
2. Hyperledger Fabric
3. Chaincodes
development
4. One of the following
languages: Node.js,
Java, Go
5. Fabric Contract APIs

2 months
(280 hours)

$56.98 CAD per hour [137]
as of November, 2021.
Total: $15,954.4 CAD

Blockchain client
application devel-
oper

Responsible for developing a
blockchain client application that will
invoke installed chaincodes utilizing
an SDK library. Also, develops an API
that will allow external applications
to call the chaincodes. Collaborates
with the smart contract developer and
network administrator.

1. Blockchain concepts
2. Hyperledger Fabric
3. One of the following
languages: Node.js,
Java, Go
4. Hyperledger Fabric
SDK library
5. RESTful API
(e.g., Express.js, Spring)

2 months
(280 hours)

$56.98 CAD per hour [137]
as of November, 2021.
Total: $15,954.4 CAD

Blockchain net-
work administra-
tor/operator

Responsible for deploying and
configuring the blockchain network
based on the system’s design and
formed consortium. Enrolls and
removes network participants, and
manages their access rights. Also,
deploys the chaincodes and organizes
the network’s security.

1. Blockchain concepts
2. Hyperledger Fabric
3. Hyperledger Fabirc
network configuration,
deployment, and
administration
4. Installing chaincodes
5. Docker

2 months
(280 hours)
plus
part-time
network
support

$56.98 CAD per hour [137]
as of November, 2021.
Total: $15,954.4 CAD

Totals 6 months $78,017.8 CAD
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis project, we designed and developed a prototype of a secure and patient-controlled

system that allows patients to share their health and healthcare data for research purposes.

First, we reviewed modern research methods and frameworks such as real-world data, real-

world evidence, and comparative effectiveness research that have become more popular among

health researchers. As we saw, these methods and frameworks require researchers to collect as

much data as possible in order to strengthen their findings. Also, we explored the data science

and big data fields as well as their application in healthcare research. Moreover, we investigated

the technical and legal challenges that often arise during the data collection phase of health

research.

Then, we reviewed the Opal app’s infrastructure and its various features. Here we studied the

app’s workflow and how the communication between the patient-facing app and its back end

is organized. Also, we explored the high-level architecture of the multi-institutional version

of Opal (“All-in-One”) as well as its back end components. Furthermore, we examined data

sharing and data access control concepts and their application in real-world systems. Since this

work was a part of a larger research project known as PARTAGE, we also presented the PARTAGE

team’s goals, its working groups, and its participatory co-design approach.
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As the goal of this project was to design and develop a data-sharing system where the data

owners (patients) may control access to their data for research, we analyzed modern decentral-

ized technologies and their possibilities for storing data in an immutable, tamper-proof way. We

analyzed the World Wide Web technology—a pioneer of decentralized systems—its evolution

and the drawbacks it presents. Also, we explored the Solid specification, the Inrupt Solid plat-

form, and the possibility of using the technology with Opal. Then we studied blockchain tech-

nology, its design and functioning principles. We provided an overview of different blockchain

types, consensus protocols, and modern blockchain frameworks and platforms. As we decided

to design and implement our data-sharing system based on the Hyperledger Fabric platform,

we investigated the platform’s components, such as organizations, consortia, peers, channels,

chaincodes, ordering service, and the Hyperledger Fabric SDK.

Based on our analysis and on the PARTAGE co-design process, we identified the desired

solution, namely we (1) designed a high-level architecture of the data-sharing system, (2) deter-

mined that certain data need to be stored on the blockchain, and (3) distinguished the actors of

the system. Also, we designed the system’s flowchart and defined its functional requirements in

the form of use cases. Moreover, we visualized the use cases in the form of use a case diagram

and a sequence diagram. These diagrams help describe the interactions between the various

actors and the system, as well as the object interactions in a time sequence. Furthermore, we

identified the technology stack needed for implementation of our solution.

As a result, we designed and built a prototype system for data sharing called the Research

Portal. The system was designed for providing researchers with access to patients’ data origi-

nating in the Opal patient portal platform. However, the developed solution can be extended

for use by other platforms and services as well. In order to store (1) patients’ e-consents, (2) re-

searchers’ data-access privileges, and (3) researchers’ data-access logs in an immutable, tamper-

proof manner, we designed a Hyperledger Fabric blockchain network. Also, we developed ap-

propriate Hyperledger Fabric chaincodes and a blockchain client application for interaction

with the blockchain network. The implemented Research Portal and blockchain client were
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deployed to a virtual server inside the RI-MUHC’s network, and the blockchain network was

simulated using Docker on the same server.

6.2 Future Work

We envision the following future work:

Study-user accounts management: Currently, the Research Portal utilizes test shared data that

were hardcoded into the “Shared data” database. In a production-ready implementa-

tion, the data should be pulled to the “Shared data” databases using the study-user ac-

counts. Thus, new study-user types (accounts) must be implemented and integrated to

Opal code base (or equivalently in any other patient portal infrastructure that may wish to

employ our technology). The implementation would involve modifications to the OpalDB

database and the Listener software. Also, functional requirements in the form of use cases

need to be designed for the following operations: (1) creating a new study-user account,

(2) generating a study-user’s credentials, (3) transferring study-user credentials to a Har-

vester service.

Harvester implementation: The process of transferring shared data from study-user accounts

to the “Shared data” databases should be executed by a Harvester service. Also, this ser-

vice should remove previously-shared records from the “Shared data” databases that are

no longer consented to (e.g., consents were revoked or expired). The implementation will

require (1) modifications of the Listener, and (2) an additional client blockchain applica-

tion to facilitate the Harvester’s communication with the blockchain network.

Supoort for e-consents: Based on the designed interfaces for a Research Menu in Opal, an up-

date to Opal’s code base and its back end is needed to allow patient-controlled saving

of signed e-consents on the blockchain. This includes modifications to the Listener and

installing the client blockchain APIs that invoke appropriate blockchain chaincodes.
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Blockchain network implementation: Define which organizations (e.g., hospitals, research in-

stitutes, non-profit organizations, etc.) will form the blockchain consotrium. Based on

the network participants and their nodes, an actual blockchain network should be de-

ployed. The network administrators (i.e., the participants who will control the network)

should be defined as well.

Encryption of data at rest: To maximize the security of the system, patients’ data should be

stored in an encrypted format. Thus, an encryption mechanism should be developed that

would encrypt existing data at rest in each hospitals’ databases and in the “Shared data”

storage of the Research Portal. It should only be possible to decrypt the data on the re-

ceiver side (e.g., patient, researcher) by applying a decryption key. Such an approach will

add an extra layer of security (i.e., data-centric security) in addition to the existing net-

works, servers and application security. The encryption will prevent unauthorized data

access in cases when attackers (1) gain physical access to the data storage (e.g., access to

the data center), and (2) gain read access to the raw database.

Opal Research Menu improvements: Since some patients might not want to share their med-

ical data due to reasons that are not related to privacy concerns (e.g., a patient does not

have the incentive to participate in a study), possible incentive solutions should be ex-

plored in depth (e.g., gamification strategy to reward data donors in order to encourage

them to participate). The ethico-legal aspects should be investigated as well. Another

possible improvement of the Research Menu is a recommender system. If a patient de-

cides to choose manually the data records that can be shared, there may be too much

information that needs to be filtered. Using artificial intelligence technologies, a rec-

ommender system could help patients to filter the data automatically. Also, the recom-

mender system could utilize the patient’s sharing preferences, and ensure that the patient

does not share any personal information that they do not wish to share.

Besides the suggestions made above, a more in-depth analysis of the Solid specification and

the Inrupt Solid framework should be carried out. Namely, the specification should be stud-
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ied in more detail, existing implementations should be explored, and a Solid-based prototype

of the Opal app should be developed for demonstration purposes with the minimum viable

functionalities.
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