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Abstract

A dynamic treatment regime (DTR) formalizes the study of precision medicine in which

treatment decisions across multiple stages of clinical intervention are tailored to evolving,

patient-level information. Statistical methods for DTR are concerned with identifying an

optimal DTR, that is, the sequence of treatment decisions that yields the best expected

outcome for a population of (�similar�) individuals.

Dynamic weighted ordinary least squares (dWOLS) o�ers an accessible and theoretically

robust framework for estimation and inference of an optimal DTR. However, it su�ers from

several limitations. First, like other regression-based DTR estimation approaches, dWOLS

can yield estimators with non-regular limiting distributions in the sense that the standard

asymptotic theory does not hold, in turn leading to incorrect coverage of con�dence inter-

vals. A second limitation is that dWOLS only handles uncensored continuous outcomes. It

is often the case that the clinical outcome of interest is a survival time, which is typically

subject to right-censoring.

This thesis is composed of four manuscripts. The �rst manuscript compares the stan-

dard bootstrap to the m-out-of-n bootstrap with dWOLS when estimators su�er from non-

regularity. An application to decision rules about an infant's diet on childhood outcomes six

years later, in which estimators are likely to su�er from non-regularity, is presented.

In the second manuscript, we propose a novel method called dynamic weighted survival

modeling (DWSurv) for estimation and inference of an optimal DTR with survival outcomes

subject to right-censoring. An application to rheumatoid arthritis, in which a series of treat-

ments is typically recommended to achieve remission, is presented.

The third manuscript describes an extensive simulation study to evaluate the �nite sample

properties of competing methods for constructing con�dence intervals for the DWSurv pa-

rameters, including parametric and non-parametric bootstrap as well as methods based on

asymptotic theory. The impact of non-regularity is also assessed.

The fourth and last manuscript showcases DWSurv in an illustrative example about the
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treatment of type 2 diabetes, where the objective is to �nd an optimal sequence of treat-

ments that maximizes the time until the occurrence of a cardiovascular event or death. The

�rst stage compares the addition of sulfonylurea or dipeptidyl peptidase-4 inhibitors to met-

formin. Extensions to more than one stage are described. Data from a large observational

database are used.
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Abrégé

Les plans dynamiques de traitements (PDT) formalisent l'étude de la médecine de précision

où les décisions de traitement à travers plusieurs phases d'intervention sont adaptées aux

caractéristiques des patients. Les méthodes statistiques pour l'étude d'un PDT cherchent à

identi�er un PDT optimal, c'est-à-dire la séquence de décisions de traitement qui mène à la

meilleure réponse espérée pour une population d'individus similaires.

DWOLS est une méthode statistique théoriquement robuste, accessible et facile à appli-

quer pour l'estimation et l'inférence d'un PDT optimal. Cependant, la méthode com-

porte plusieurs limitations. Premièrement, comme d'autres approches d'estimation de PDT

basées sur la régression, les estimateurs dWOLS peuvent avoir des distributions limites non-

regulières dans le sens où la théorie asymptotique standard ne s'applique pas, menant ainsi

à des intervalles de con�ance avec des couvertures incorrectes. Une deuxième limitation

est que dWOLS prend seulement en compte les réponses continues non-censurées. Il arrive

souvent que les réponses d'intérêt clinique soient des temps de survie typiquement sujets à

la censure.

Cette thèse est composée de quatre manuscrits. Le premier manuscrit compare le bootstrap

standard au bootstrap m-out-of-n (m parmi n) avec dWOLS lorsque les estimateurs souf-

frent de non-regularité. Une application concernant des règles de décisions pour la diète

d'un nourrisson sur des réponses métaboliques mesurées durant l'enfance six ans plus tard,

contexte dans lequel les estimateurs sont probablement non-réguliers, est présentée.

Dans le deuxième manuscrit, nous proposons une nouvelle méthode appelée DWSurv pour

l'estimation et l'inférence d'un PDT optimal avec des temps de survie sujets à la censure

comme réponse. Une application à l'arthrite rhumatoïde, une maladie chronique pour laque-

lle une séquence de traitements est typiquement recommandée pour atteindre la rémission,

est présentée.

Le troisième manuscrit décrit une étude de simulation de grande ampleur pour évaluer les pro-

priétés d'échantillon �ni de di�érentes méthodes pour construire des intervalles de con�ance
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pour les paramètres de DWSurv, incluant le bootstrap paramétrique et non-paramétrique

ainsi que des méthodes basées sur la théorie asymptotique. L'impact de la non-regularité est

aussi étudié.

Le quatrième et dernier manuscrit démontre l'utilité de DWSurv dans une étude de cas sur le

traitement du diabète de type 2 pour laquelle l'objectif est de trouver une séquence optimale

de traitements qui maximise le temps jusqu'à la survenance d'un évènement cardiovascu-

laire ou la mort. La première phase compare l'addition du sulfonylurea ou des inhibiteurs

de la dipeptidyl peptidase-4 à metformin. L'extension à plus d'une phase de traitements

est décrite. Des données provenant d'une grande base de données observationnelles sont

utilisées.
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Chapter 1

Introduction

In this thesis, we consider the estimation of and inference for an optimal dynamic treatment

regime (DTR) with continuous outcomes, censored or not, using observational data. A DTR

is a set of treatment decision rules, each rule corresponding to a decision time point, that

dictates the treatment action to be taken at that point as a function of (time-dependent)

individual characteristics. For example, treatment decisions may be made at di�erent stages

of a disease or at routine clinical visits and the decisions may depend on the patient's speci�c

condition at the time of decision-making, including his response to previous treatments. This

framework is especially relevant for chronic diseases, such as rheumatoid arthritis and type

2 diabetes (T2D), where the patient's condition is changing over time and treatments must

correspondingly be altered. The study of precision medicine, which aims to identify �the right

treatment for the right patient�, is concerned with the discovery of an optimal DTR, that is,

the sequence of treatment rules that leads to the best expected outcome for a population of

patients sharing similar characteristics.

Identifying an optimal DTR is a sequential decision-making problem in which short- and

long-term treatment e�ects may be hard to disentangle. The sequence of treatments found

by optimizing separately each decision may not correspond to the sequence of treatments that
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actually leads to the best long-term outcome. For example, a less e�ective �rst-line treatment

may increase adherence to second-line treatments and lead to a better outcome while a

more aggressive �rst-line treatment would appear optimal in the short term but actually

decrease adherence to second-line treatments and yield a suboptimal outcome. Determining

an optimal sequence of treatments by �rst comparing �rst-line treatments would unknowingly

set patients on treatment pathways that include only inferior long-term outcomes; thus the

need for statistical methods that jointly estimate an optimal DTR across decision time

points.

In this thesis, we build on an existing method for optimal DTR with continuous uncensored

outcomes named dynamic weighted ordinary least squares (dWOLS) (Wallace & Moodie,

2015). DWOLS is theoretically robust yet its simple framework based on a series of linear

regressions is accessible to non-statisticians. It is implemented in the R package DTRreg along

with tools for model checking. DWOLS estimates an optimal DTR from experimental data

(e.g. data arising from sequential multiple assignment randomized trials (Murphy, 2005))

or from non-experimental data (e.g. observational study, registry data, claims data). The

estimation of an optimal DTR from non-experimental data must deal with the absence of

treatment randomization which may lead to confounding; that is, the treatment assignment

and the outcome share common causes which prevent estimating an unbiased treatment

e�ect. For this, dWOLS relies on a broad class of weights, including the well-known inverse

probability of treatment weights (IPTW), to balance the distribution of the confounders

across treatment groups.

DWOLS currently su�ers from two main limitations. First, dWOLS yields non-regular es-

timators; that is, estimators whose distribution does not converge uniformly over the pa-

rameter space (Robins, 2004). A negative consequence of non-regularity is that con�dence

intervals for the parameters used to construct the treatment decision rules may not have

nominal coverage. It is only under certain data generating mechanisms that non-regularity
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will be problematic; thus the importance of studying why and when non-regular estimation

have an impact in practice. Second, dWOLS is currently restricted to uncensored contin-

uous outcomes. Often, the criterion of optimality is survival time. For example, in T2D,

an optimal sequence of treatments could maximize the time until the occurrence of severe

complications. With survival outcomes being subject to right-censoring, another layer of

statistical complexity is introduced because the survival times of all individuals are not

necessarily observed nor do all individuals undergo the same number of stages of clinical

intervention (some individuals will be censored or experienced an event early and will not

receive second- or third-line treatments).

In this thesis, we use dWOLS as a starting point to study the impact of non-regular es-

timation in practice and to propose a novel multi-stage optimal DTR method that can

handle survival outcomes. In Chapter 2, we provide a critical review of the literature on

the problem of non-regular estimation and on optimal DTR methods for censored data. In

Chapter 3, we propose using the m-out-of-n bootstrap to alleviate the negative impact of

non-regular estimation with dWOLS, supporting our demonstration with a computationally

intensive simulation study and a case study on the impact of infant food intake on child-

hood metabolic outcomes. In Chapter 4, we develop dynamic weighted survival modeling

(DWSurv) to estimate an optimal DTR with survival outcomes. In Chapter 5, we explore

the �nite sample performance of di�erent methods for constructing con�dence intervals for

the parameters in the treatment decision rules with DWSurv, including scenarios that focus

on non-regular estimation. In Chapter 6, we present a case study on the treatment of T2D

using data from a large registry database and DWSurv. Chapters 3 to 6 were written as

stand-alone manuscripts and despite our e�orts to maintain consistent notation and minimize

overlap of information throughout the thesis, there is necessarily some repeated information

between the literature review and each manuscript as well as some variations in the notation

across the chapters of this thesis. Chapter 3 has been published in Biostatistics. Chapter 4

has been published in the Journal of the American Statistical Association. Chapters 5 and 6
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have been submitted for publication. The DTRreg package has been updated and published

on the comprehensive R archive network (CRAN) with the methods presented in Chapters

3�5 (https://CRAN.R-project.org/package=DTRreg).
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Chapter 2

Literature Review

The literature review is comprised of �ve sections. The �rst introduces concepts and methods

regularly used in the DTR literature, including dWOLS. The second section describes the

problem of non-regular estimation in the context of DTRs and reviews solutions proposed

in the literature. The third section focuses on optimal DTRs with censored data, describing

additional challenges and providing an extensive review of existing methods. The last section

introduces current guidelines on the management of T2D and reviews (the lack of) evidence

for identifying optimal DTRs.

2.1 Dynamic Treatment Regimes: General Framework

A DTR is a set of treatment decision rules implemented over time, each rule inputting

individual characteristics and outputting a recommended treatment for that individual at

the time of decision-making. A DTR is partitioned into stages of clinical intervention where

each treatment rule is applied at the beginning of the corresponding stage. For clarity, our

descriptions often concern a DTR with two stages, with the understanding that generalization

to more than two stages is straightforward once the two-stage setting is established.
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Upper and lower case letters respectively correspond to random variables and their real-

izations. We suppose that the available data come from a non-experimental study with n

participants identi�ed with the subscript i, often omitted for clarity, although all methods

presented in this thesis could be applied to experimental data. Treatment options at the

beginning of stage j are denoted with Aj where we allow the treatment options in the second

stage to depend on the treatment received in the �rst stage. We assume that treatments

are binary options so that Aj ∈ {0, 1} ≡ Aj. Let X1 denote the individual characteristics

(covariates) measured at the beginning of the �rst stage before initiating treatment A1 and

X2 denote covariates measured at the beginning of stage 2 before initiating treatment A2.

X2 includes time-varying covariates which may depend on the treatment received in the �rst

stage and, with a slight abuse of notation, X1 and X2 may represent di�erent subsets of

measured covariates. The overall outcome Y is de�ned as the sum of stage-speci�c outcomes

Y1 and Y2 and is a continuous uncensored variable, although this requirement will be relaxed

in Section 2.3. Sometimes, Y1 ≡ 0 and Y2 = Y is measured only at the end of the second

and last stage of intervention. Without loss of generality, we assume that larger values of

the outcome are preferred. Individual data are represented with a longitudinal trajectory

(X1, A1, Y1,X2, A2, Y2) where the ordering of the variables corresponds to the order in which

they are recorded. The data are conveniently grouped into history Hj ∈ Hj which corre-

sponds to accrued treatment and covariate information available at the beginning of stage j

but not including the stage j treatment, so H1 = X1 and H2 = (X1, A1,X2). A two-stage

DTR consists of the treatment decision rules d = {d1(h1), d2(h2)} where dj(hj) : Hj → Aj

is the decision rule at the beginning of stage j which inputs the history Hj and outputs a

recommended treatment Aj.

Statistical models to estimate an optimal DTR can be framed in terms of potential outcomes,

also called counterfactual outcomes (Rubin, 1974). Let Y a1,a2 denote an individual's potential

outcome at the end of the second stage if, possibly contrary to the fact, he receives treatments

a = (a1, a2). The axiom of consistency, which states that the actual outcome Y and potential
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outcome Y a are equal when the regime a is actually received, must be satis�ed. The two

following assumptions are required for the estimation of an optimal DTR:

(A1) The stable unit treatment value assumption, which states that an individual's outcome

is not in�uenced by the treatment allocation of other individuals (Rubin, 1980).

(A2) Sequential ignorability, which extends the no unmeasured confounders assumption to

longitudinal settings and requires that, for any regime (a1, a2), Aj ⊥⊥ Y a1,a2 | Hj for

j = 1, 2 (Robins, 1997).

An optimal DTR is de�ned as the sequence of treatment decision rules dopt =

{dopt1 (h1), dopt2 (h2)}, respectively corresponding to optimal treatments aopt = (aopt1 , aopt2 ),

that maximizes the expected potential outcome E[Y d]. The expectation E[Y d] de�nes the

population average outcome had all individuals received treatments according to d. The

potential outcome Y d is also called the value of a regime and denoted as V (d).

There are two general approaches to estimate an optimal DTR, regression-based estima-

tion and value search estimation, which we describe in a single-stage setting for clarity.

Regression-based estimation posits and estimates a (parametric) model for the outcome

given the treatment a1 and covariate h1 = (1, x1) e.g.

E(Y | = H1 = h1, A1 = a1;β,ψ) = β0 + β1x1 + a1(ψ0 + ψ1x1) (2.1)

and �nds the optimal treatment rule dopt(h1) by maximizing this quantity with respect to

the treatment i.e. dopt(h1) = arg maxa1∈A1
E(Y |H1 = h1, A1 = a1; β̂, ψ̂). The paramet-

ric speci�cation of the outcome model de�nes a class of possible regimes Dψ indexed by

a parameter ψ. For example, the parametrization (2.1) de�nes linear decision rules of the

form dψ(h1) = I(ψ0 + ψ1x1 > 0). Regression-based estimation typically requires that the

model for the outcome is correctly speci�ed in order to consistently estimate the parameters

ψ used to construct the decision rule and further requires that the true optimal decision

8



rule belongs to the class of regimes de�ned by the chosen parametrization for the outcome

model. Doubly-robust alternatives have been proposed, o�ering additional protection against

misspeci�cation of the outcome model by incorporating a model for the probability of treat-

ment in the estimation procedure (e.g. Robins, 2004; Wallace & Moodie, 2015). Q-learning,

G-estimation and dWOLS are important regression-based estimation methods which are de-

scribed in Section 2.1.2. Bayesian approaches have also been proposed, including the recent

Bayesian machine learning method (Murray et al., 2018).

Regression-based methods focus on estimation and inference for the parameters ψ used to

construct the decision rules. The uncertainty about the decision rules can be characterized

using well-established inferential principles, which is essential if one wants to use the esti-

mated DTR to inform clinical decisions or future research. Standard model checking tools

for regression models can also be used. Regression-based estimation su�ers a few limitations.

In DTRs with two stages or more, the estimators ψ̂ have non-regular limiting distributions

which may negatively impact the construction of con�dence intervals. This issue is dis-

cussed in detail in Section 2.2. Regression-based methods are also criticized for o�ering a

weak framework for nonlinear decision rules (Laber et al., 2014a; Qian & Murphy, 2011).

Methods have been proposed to accommodate �exible decision rules at the cost of losing

interpretability of the rules (Laber et al., 2014a; Moodie et al., 2014).

Value search estimation alleviates the need to specify a model for the outcome by directly

maximizing an estimator of the value of a regime expressed as a function of the decision

rule, V̂ (dψ). A restricted class of regimes dψ(h1) ∈ Dψ is also considered. Most value

search methods build on the inverse probability weighted (IPW) estimator for V (dψ) (Robins,

2000a) given by

V̂ (dψ) =
1

n

∑ Y I(A1 = dψ(h1))

P (A1 = a1|h1; α̂)
(2.2)

in which a propensity score model P (A1 = 1|h1;α) needs to be speci�ed and estimated. The

value is maximized with respect to ψ, ψopt = arg maxψ V̂ (dψ), and the optimal decision rule

9



is obtained as dψopt(h1). The consistency of estimators derived from value search methods

relies on the correct speci�cation of the propensity score model as opposed to the correct

speci�cation of the outcome model in regression-based estimation. Doubly-robust value

search methods have also been proposed and more e�cient versions of the IPW estimator

have been developed by adding augmentation terms to V̂ (dψ) (Wahed & Tsiatis, 2004;

B. Zhang et al., 2012b, 2013). Dynamic marginal structural modeling (Orellana et al., 2010)

is another approach to direct maximization. Value search estimation has been reformulated

into a weighted classi�cation problem (B. Zhang et al., 2012a; Y. Q. Zhao et al., 2012):

identifying the optimal decision rule by maximizing (2.2) is equivalent to �nding dψopt(h1)

that minimizes E
[
Y I(A1 6=dψ(h1))

P (A1=a1|h1;α̂)

]
. The latter formulation can be viewed as solving a weighted

misclassi�cation problem and (non-parametric) statistical learning methods for classi�cation

problems can be used to �nd the optimal decision rule (Y. Zhang et al., 2015; Zhou et al.,

2017). For example, backward outcome weighted learning (Y. Q. Zhao et al., 2015) is an

important method that applies to multi-stage DTRs, using support vector machines (SVM)

to solve the minimization problem.

Value search methods focus on estimation and inference about the value of a regime instead of

inferences about the parameters ψ and yield decision rules that are di�cult to use in clinical

practice. Their performance is often evaluated by assessing how close the estimated value

is to the true optimal value but disregards inferences about the parameters in the decision

rule. Value search methods that adopt a classi�cation perspective o�er more �exibility

than regression-based estimation and non-classi�cation value search estimation in terms of

specifying a form for the decision rules (B. Zhang et al., 2012b) at the cost of providing

uninterpretable decision rules and a lack of tools for inference (Laber & Zhao, 2015; Y. Zhang

et al., 2015; Y. Q. Zhao & Laber, 2014a; Y. Q. Zhao et al., 2015). The main purpose of value

search estimation is thus often to generate hypotheses and inform future research (Y. Q. Zhao

et al., 2015), for example, in exploratory analyses of clinical trials.
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Regression-based estimation is the focus of this thesis, with dWOLS being the starting point

for our contribution. DWOLS unites the strengths of two well-established regression-based

methods, Q-learning and G-estimation, into a theoretically robust yet accessible framework

to estimate an optimal DTR for uncensored continuous outcomes. The method is thoroughly

described in Section 2.1.2 after an introduction of Q-learning and G-estimation in the next

section.

2.1.1 Q-learning and G-estimation

An overview of Q-learning and G-estimation along with important DTR concepts is given in

this section. To avoid unnecessarily involved notation, we continue to focus on DTRs with

two stages although both methods can accommodate a larger number of stages.

Q-learning (Murphy, 2003; Watkins & Dayan, 1992) o�ers a simple framework for estimating

an optimal DTR via a series of regressions. It relies on the principle of backward induction

in that the estimation is carried out backward in time, starting with the optimization of the

treatment in the last stage and moving recursively through stages to optimize each previous

treatment. At each stage, Q-learning views the outcome Yj as a reward from receiving

treatment Aj given the historyHj and the objective is to identify the treatment option that

yields the largest expected reward. Because Q-learning works backward in time, the optimal

stage j treatment is that which maximizes a pseudo-outcome de�ned as the stage j reward

plus the sum of future rewards had future treatments been optimal.

For a two-stage DTR, Q-learning de�nes the Q-functions

Q2(h2, a2) = E[Y2|h2, a2]

Q1(h1, a1) = E[Y1 + max
a2∈A2

Q2(h2, a2)|h1, a1]

and the optimal treatment in stage j is aoptj = arg maxaj∈Aj Qj(hj , aj). Q1 models the stage 1
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pseudo-outcome Ỹ1 = Y1 +maxa2∈A2 Q2(h2, a2) which represents the (counterfactual) overall

outcome had an individual received his optimal treatment in stage 2. The second term,

maxa2∈A2 Q2(h2, a2), can be decomposed as

max
a2∈A2

Q2(h2, a2) = E[Y2|h2, a2] + µ2(h2, a2) = E[Y2|h2, a2] + E[Y
a1,a

opt
2

2 − Y a1,a2
2 |h2, a2].

The quantity µj(hj , aj), called the regret (Murphy, 2003), is always non-negative and repre-

sents the expected loss from receiving treatment aj in stage j instead of the optimal treatment

aoptj , assuming optimal treatments are received thereafter. This formulation provides an al-

ternative implementation of Q-learning where one would minimize the regrets instead of

maximizing the Q-functions (Murphy, 2003).

Q-learning relies on a series of regressions to estimate the optimal DTR. A common

parametrization of the Q-functions is a linear function

Qj(hj , aj;βj ,ψj) = βTj hj + ajψ
T
j hj , (2.3)

which can be �tted with standard forms of regression such as ordinary least squares (OLS).

With OLS and the linear model (2.3), the algorithm follows the three steps below:

1. Estimate the stage 2 parameters (β2,ψ2) by solving

(β̂2, ψ̂2) = arg min
(β2,ψ2)

1

n

∑
(Y2 −Q2(h2, a2;β2,ψ2))2

and derive the optimal stage 2 treatment aopt2 = I(ψ̂T2 h2 > 0).

2. Construct the stage 1 pseudo-outcome Ỹ1 = Y1 + β̂T2 h2 + |ψ̂T2 h2|.

3. Estimate the stage 1 parameters (β1,ψ1) by solving

(β̂1, ψ̂1) = arg min
(β1,ψ1)

1

n

∑(
Ỹ1 −Q1(h1, a1;β1,ψ1)

)2
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and derive the optimal stage 1 treatment aopt1 = I(ψ̂T1 h1 > 0).

The parametrization in (2.3) de�nes a restricted class of regimes of the form I(ψTj hj > 0).

This class of regimes yields decision rules that are easy to understand although they may

not always be realistic (Moodie et al., 2014; Y. Zhang et al., 2015). With Q-learning, the

Q-functions must be correctly speci�ed to consistently estimate the parameters ψ.

G-estimation (Robins, 2004) is a more robust alternative to Q-learning. It also uses back-

ward induction to �nd an optimal DTR across multiple stages. Unlike Q-learning, it o�ers

robustness against misspeci�cation of the outcome model at the cost of additional modeling

steps and increased complexity. G-estimation requires solving a series of estimating equa-

tions expressed in terms of a model for the probability of treatment and a model for the

outcome, decomposed into a treatment-free component and a treatment component called

the blip function.

The blip function expresses the di�erence in expected counterfactual outcomes of subjects

receiving di�erent levels of treatment. In a two-stage DTR, the blip functions are

γ1(a1,h1) = E[Y a1,a
opt
2 |h1]− E[Y 0,aopt2 |h1] and γ2(a2,h2) = E[Y a1,a2|h2]− E[Y a1,0|h2].

At each stage, γj(aj,hj) represents the di�erence between the expected outcome of an in-

dividual who received treatment aj and the expected outcome of the same individual had

he received some reference treatment aj = 0, assuming that the individual goes on to re-

ceive optimal treatment in subsequent stages. In the last stage (here, the second stage),

there is no subsequent treatment so the blip is only a di�erence in expected outcomes for

individuals receiving treatment a2 or reference treatment a2 = 0. The blip functions must

satisfy γj(0,hj) = 0. With a dichotomous treatment coded as {0, 1}, it necessarily takes

the form γj(aj,hj) = ajg(hj) with g(·) an arbitrary function of the history hj . The blip

function is central in the estimation of an optimal DTR as it is only through the blip that

the treatment a�ects the outcome. The optimal stage j treatment is then estimated as

13



aoptj = arg maxaj∈Aj γj(aj,hj). A linear function γj(aj,hj ;ψj) = ajψ
T
j hj is a common

choice of parametrization. This parametrization de�nes a restricted class of regimes also of

the form I(ψTj hj > 0). There is a one-to-one correspondence between blip functions and the

regret functions: µj(aj,hj) = γj(a
opt
j ,hj)− γj(aj,hj).

G-estimation further relies on functions Gj(ψj) de�ned as G1(ψ1) = Y1 − γ1(a1,h1;ψ1) +

Y2 + µ2(a2,h2;ψ2) in the �rst stage and G2(ψ2) = Y2 − γ2(a2,h2;ψ2) in the second stage.

At each stage j, the G-function is the sum of observed outcomes from stage j onwards

with the e�ect of treatment aj removed and, if applicable, the expected loss due to receiving

suboptimal treatments in subsequent stages added. The G-function represents the treatment-

free component of the outcome and depends on the unknown blip parameters ψ. In a

two-stage DTR, G-estimation takes the following steps:

1. Propose a model for the blip function γ2(a2,h2;ψ2) and set S2(A2) = ∂
∂ψ2

γ2.

2. Propose a model for the treatment-free component E[G2(ψ2)|h2;β2] and use the data

to estimate β̂2(ψ2).

3. Propose a treatment model E[A2|h2;α2] and use the data to estimate α̂2.

4. Obtain estimates ψ̂2 by solving the estimating equations

Ugest
2 (ψ2, β̂2(ψ2); α̂2) =

n∑
i=1

(S2(A2)− E[A2|h2; α̂2])
(
G2(ψ2)− E[G2(ψ2)|h2; β̂2(ψ2)]

)
= 0.

5. Repeat steps 1�3 with γ1(a1,h1;ψ1), G1(ψ1) and E[A1|h1;α1], respectively.

6. Obtain estimates ψ̂1 by solving the estimating equations

Ugest
1 (ψ1, β̂1(ψ1); α̂1) =

n∑
i=1

(S1(A1)− E[A1|h1; α̂1])
(
G1(ψ1)− E[G1(ψ1)|h1; β̂1(ψ1)]

)
= 0.

G-estimation can accommodate nonlinear speci�cation of the G-functions by modeling

g(E[Gj(ψj)|hj ;βj ]) linearly with g(·) a link function. For example, the identity link yields

the linear model E[Gj(ψj)|hj ;βj ] = βTj hj . G-estimation is doubly-robust as it yields con-

sistent estimators of ψ provided that either E[Gj(ψj)|hj ] or E[Aj|hj ] is correctly modeled.
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Despite G-estimation having several theoretical advantages over competing regression-based

or value search methods, it is not routinely used in practice (Vansteelandt & Jo�e, 2014).

This may be explained by the fact that discussions around G-estimation often focus on the-

ory rather than applications or demonstrative case studies. Another explanation may be

that G-estimation can be computationally intensive and o�-the-shelf software for its appli-

cation is still lacking (Vansteelandt & Jo�e, 2014). Only recently have e�orts been made to

render G-estimation more accessible thanks to the derivation of a simpli�ed theory and to

the development of the R package DTRreg (Wallace et al., 2014, 2017c).

2.1.2 Dynamic Weighted Ordinary Least Squares

Q-learning and G-estimation carry their respective strengths and limitations. The imple-

mentation of Q-learning is simple via standard regressions but the method lacks robustness

to misspeci�cation of the outcome model. While G-estimation o�ers the double-robustness

property, it is harder to translate into practice. DWOLS unites the strengths of the two

methods into one simple yet robust framework, introduced below.

DWOLS borrows from the framework set by Q-learning except that it relies on weighted OLS

and thus additionally requires constructing and estimating weights. The steps for estimating

a two-stage optimal DTR are:

1. Propose a model for treatment in the second stage E[A2|h2;α2] and use the data to

estimate α̂2.

2. Choose weights w2(a2,h2) that satisfy the balancing property

π(h2)w2(1,h2) = (1− π(h2))w2(0,h2) (2.4)

where π(h2) = E[A2|h2]. Calculate the weights for each individual using α̂2.
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3. Propose a model for the expected outcome E[Y |h2, a2;β2,ψ2] = f2(h2;β2) + a2ψ
T
2 h2

and estimate (β̂2, ψ̂2) by solving

U2(ψ2,β2) =
1

n

∑
ŵ2

 h2

a2h2

(Y2 − f2(h2;β2)− a2ψ
T
2 h2

)
= 0.

Derive the stage 2 optimal decision rule as aopt2 = I(ψ̂T2 h2 > 0).

4. Construct the pseudo-outcome using ψ̂2 as

Ỹ = Y + (aopt2 − a2)ψ̂T2 h2. (2.5)

5. Repeat steps 1 and 2 for the stage 1 treatment model E[A1|h1;α1] and weights

w1(a1,h1; α̂1).

6. Propose a model for the expected pseudo-outcome E[Ỹ |h1, a1;β1,ψ1] = f1(h1;β1) +

a1ψ
T
1 h1 and estimate (β̂1, ψ̂1) by solving

U1(ψ1,β1; ψ̂2) =
1

n

∑
ŵ1

 h1

a1h1

(Ỹ − f1(h1;β1)− a1ψ
T
1 h1

)
= 0.

Derive the stage 1 optimal decision rule as aopt1 = I(ψ̂T1 h1 > 0).

At each stage j, the dWOLS algorithm models the (pseudo-)outcome as a function of a

term that does not depend on treatment Aj, the treatment-free component fj(hj ;βj), and

a term that depends on the treatment, the blip component ajψ
T
j hj (the two components do

not necessarily depend on the same subset of the history hj). This decomposition is akin

to G-estimation which also separates the outcome model into the same two components.

The parameters βj and ψj are respectively called the treatment-free and blip parameters

and the covariates hj in the blip are called tailoring variables. The blip parameters are the
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focus of the estimation because it is only through the blip that the optimal decision rule

is derived as aoptj = arg maxaj γj(aj,hj ; ψ̂j). DWOLS constructs a pseudo-outcome in the

�rst stage which represents the (counterfactual) outcome had the optimal stage 2 treatment

been received. DWOLS takes advantage of the fact that this counterfactual is observed

for individuals who have indeed received their estimated optimal stage 2 treatment and thus

estimates the pseudo-outcome (2.5) only for individuals who have not received it. This places

less burden on predictions as opposed to Q-learning which estimates a pseudo-outcome for

all individuals, regardless if they received or not their optimal treatment (see step 2 of the

Q-learning algorithm), and requires correct speci�cation of the outcome model to obtain

such predictions.

Like G-estimation, dWOLS is doubly-robust as it yields consistent estimators of the blip

parameters if one or both the treatment-free and treatment models are correctly speci�ed

under assumptions (A1), (A2) and positivity of the treatment P (Aj = aj|hj) > 0 for aj ∈

Aj. The double-robustness property is obtained using a weighting argument. Theorem 1

in Wallace & Moodie (2015) states that, under assumptions (A1) and (A2) and assuming

that E[Y |h;β,ψ] = f(h;β) + aψTh for some function f , a weighted OLS of y on (h, ah)

yields consistent estimators of ψ if the weights satisfy the balancing property (2.4). The

balancing property de�nes an entire family of weights that remove any confounding e�ect of

treatment in a weighted OLS. For example, IPTW w(a,h) = [P (A = a|h)]−1 satisfy (2.4)

since

π(h)w(1,h) = π(h)/π(h) = (1− π(h))/(1− π(h)) = (1− π(h))w(0,h).

On the one hand, if the treatment model is correctly speci�ed and the weights satisfy (2.4),

then any confounding between the treatment and outcome is removed and the dWOLS

algorithm yields consistent blip estimators. On the other hand, if the treatment-free model

is correctly speci�ed, the estimating functions U1 and U2 have expectation zero and the blip

estimators are consistent.
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Wallace & Moodie (2015) propose dWOLS weights of the form w(a,h) = |a−E[A|h]| which

weigh each individual proportionally to the probability of receiving the opposite treatment.

They showed that, when treatment is binary, the estimators (β̂j , ψ̂j) obtained with dWOLS

weights are also a solution to the estimating equations Ugest
1 and Ugest

2 in G-estimation.

A simulation study suggested that the dWOLS weights yield the most e�cient estimators

of the blip parameters when compared to three alternatives, including IPTW (Wallace &

Moodie, 2015). Li et al. (2018) extensively discuss weights that satisfy (2.4), which they

refer to as balancing weights because they balance the distributions of covariates h between

the two treatment groups. They refer to weights of the form w(a,h) = |a − E[A|h]| as

overlap weights 1 and show that the overlap weights indeed minimize the asymptotic vari-

ance of the weighted average treatment e�ect. Balancing weights allow de�ning di�erent

target populations through di�erent choices of weights. For example, the overlap weights

place more emphasis on individuals with propensity score close to 1/2 relative to individuals

with propensity score closer to 0 or 1. This choice of weights yields a target population of

individuals in equipoise between treatments i.e. with a combination of characteristics such

that they could be assigned to either treatment with approximately equal probability. More

research around this target population may be needed as it represents patients for whom the

optimal treatment choice is unclear (Li et al., 2018).

The theory developed by Robins (2004) allows deriving an estimator for the asymptotic vari-

ance of ψ̂ which must adjust for the estimation of the treatment model and, if applicable, for

the substitution (i.e. �plug-in�) estimators in the pseudo-outcome. The following derivations

hold under standard regularity conditions that allow interchanging sums and integrals and

calculating �rst and second derivatives of the estimating functions U1 and U2. In the second

stage, adjusted estimating functions Uadj,2 are de�ned by performing a �rst-order Taylor

1We interchangeably use overlap weights and dWOLS weights to refer to weights of the form w(a,h) =
|a− E[A|h]|
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expansion of U2 about the limiting values of the nuisance parameters α2, leading to

Uadj,2(β2,ψ2) = U2(β2,ψ2; α̂2)− E
[
∂

∂α2
U2(β2,ψ2; α̂2)

]
E
[
∂

∂α2
sα(α̂2)

]−1

sα(α̂2) (2.6)

where sα(α̂2) is the score function of the treatment model E[A2|h2;α2] evaluated at α̂2.

Using the delta method, the asymptotic variance of ψ̂2 is the lower-right square submatrix

of dimension dim(ψ̂2) of

E

{(E [ ∂

∂(β2,ψ2)
Uadj,2(β2,ψ2)

])−1

Uadj,2(β2,ψ2)

}⊗2
 (2.7)

where E[X⊗2] = E[XXT ]. The variance of the �rst-stage estimators ψ̂1 is derived in a

similar fashion except that the adjusted estimating functions further account for the plug-in

estimators ψ̂2 used to construct the pseudo-outcome (2.5) as

U εadj,1(β1,ψ1) =Uadj,1(β1,ψ1)− E
[
∂

∂ψ2
U1(β1,ψ1; α̂1, ψ̂2)

](
E
[
∂

∂ψ2
Uadj,2(β2,ψ2; α̂2)

])−1

×Uadj,2(β2,ψ2; α̂2)

where Uadj,1 is derived as Uadj,2 but with the stage 1 models and parameters. We note that,

at each stage, the variance of (β̂j , ψ̂j) depends on the choice of weights. Wallace & Moodie

(2015) provide sample derivations with the dWOLS weights.

2.2 Non-regular Inference

In the previous section, we introduced important concepts and foundational methods for

estimating an optimal DTR with continuous uncensored outcomes. DWOLS faces an im-

portant inferential challenge when estimating an optimal DTR with multiple stages: in all

but the last stage, the blip estimators have non-regular limiting distributions (Hirano &

19



Porter, 2012; Laber et al., 2010; Robins, 2004). Non-regularity may negatively a�ect the

performance of con�dence intervals for the blip parameters. The problem of non-regularity

has already been studied in the DTR literature as it also impacts related regression-based

methods such as Q-learning and G-estimation. In this section, we explain the theoretical

problem of non-regularity and its practical implication and review solutions that have been

proposed in the literature to deal with non-regular inference.

2.2.1 Non-regular Estimators

In a two-stage DTR, the �rst-stage blip estimators obtained with dWOLS are non-regular

because they depend on the pseudo-outcome which in turn depends on a non-di�erentiable

(non-smooth) function of a plug-in estimator. Recall the form of the pseudo-outcome in

dWOLS, Ỹ1 = Y +(aopt2 −a2)ψ̂T2 h2, where a
opt
2 is the indicator I(ψ̂T2 h2 > 0) that depends on

the second stage blip estimators. The indicator function is non-smooth and non-di�erentiable

at 0. Because the �rst-stage estimating functions depend on ψ̂2 plugged into the indicator

function, the �rst-stage blip estimators ψ̂1 also depend on that non-smooth function. Conse-

quently, standard asymptotic approximations to the sampling distribution of the estimators

ψ̂1 cannot be used directly. More generally, in a DTR with J stages, the blip estimators

in all but the last stage are non-regular because they depend on a pseudo-outcome de�ned

with plug-in estimators of future blip parameters.

To assist with the understanding of non-regularity, we present a simple theory example used

by Robins (2004) and revisited by others (Chakraborty et al., 2010; Moodie & Richardson,

2010). Consider the function (x)+ = xI(x > 0) = max(0, x) non-di�erentiable at 0. Suppose

we wish to estimate (µ)+ from a sample of n independent and identically distributed (i.i.d.)

observations Xi drawn from a N(µ, 1). The maximum likelihood estimator (MLE) of (µ)+ is

(X̄n)+ obtained by plugging the sample mean X̄n into the function (x)+. When µ 6= 0, the

limiting distribution of
√
n((X̄n)+−(µ)+) is a standard Normal distribution left-truncated at
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0 and (X̄n)+ is asymptotically unbiased. An estimator is said to be asymptotically unbiased

if
√
n(ψ̂−ψ) converges in distribution to a distribution F with E(F ) = 0, and asymptotically

biased if E(F ) 6= 0. However, at the point of non-di�erentiability µ = 0, it can be shown

that
√
n((X̄n)+ − (µ)+) converges to a (1

2
, 1

2
) mixture of a left-truncated standard Normal

and a degenerate random variable with point mass at 0 and that the resulting mixture dis-

tribution has expectation 1/
√

2π. Therefore, the estimator (X̄n)+ is asymptotically normal

and unbiased for µ 6= 0 but asymptotically non-normal and biased for µ = 0. Thus, we say

that the estimator (X̄n)+ is non-regular or that it has a non-regular limiting distribution.

It is also useful to understand non-regularity as describing an estimator whose asymptotic

distribution does not converge uniformly over the parameter space. In the previous example,

the estimator (X̄n)+ converges to di�erent asymptotic distributions depending on the true

value of the parameter µ, therefore it does not converge uniformly over the parameter space

µ ∈ R.

The dWOLS estimators in all but the last stage are non-regular but it is only for exceptional

laws that inference for the blip parameters is a�ected by non-regularity. Exceptional laws are

de�ned as data generating mechanisms for which, at stage j, there is a positive probability

that the true optimal decision for some individuals is not unique (Robins, 2004). In the case

of a linear blip function γj(aj,hj ;ψj) = ajψ
T
j hj , the optimal decision is non-unique when

the linear combination ψTj hj is exactly zero, indicating that treatments aj = 0 and aj = 1

are equally good. This corresponds to the point of non-di�erentiability of the function

I(ψTj hj > 0) which de�nes the jth optimal decision rule. The jth optimal decision rule

appears in the pseudo-outcomes de�ned in stages 1 to j − 1 such that characterizing a law

as exceptional in stage j a�ects the inferences for the blip parameters in the previous stages.

Given the form one assumes for the blip model, two factors can lead to an exceptional

law: (i) the true value of the blip parameters ψj or (ii) the mechanism that generated the

tailoring variables hj in the treatment rule. For (i), if the true e�ect of the treatment aj

and its interactions with tailoring covariates is null, the probability of a non-unique optimal
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decision P (ψTj Hj = 0) is necessarily one, regardless of the distribution ofHj . For (ii), if Hj

contains only discrete variables, exceptional laws occur when, given the true parameters ψj ,

the probability of observing hj leading to ψTj hj = 0 is greater than zero. For example, for

a blip of the form a1(ψ1 + ψ2x1) with X1 taking discrete values, then P (ψ1 + ψ2X1 = 0) is

positive if the probability of generating X1 = −ψ1/ψ2 is non-zero and the law is exceptional.

Non-exceptional laws characterize data generating mechanisms in which the true optimal

decision is unique for all individuals with probability one.

The de�nition of exceptional laws does not allow identifying a law as exceptional in practice

because the true parameter values and the mechanism that generated the history are both

unknown. Robins (2004) suggests a practical solution to detect exceptional laws with G-

estimation: �rst, estimate the blip parameters across all stages and derive Wald con�dence

intervals about each parameter using the variance calculation described at the end of Section

2.1.2. Second, at each stage j, calculate the proportion p̂j of individuals for whom the optimal

decision rule recommends both treatments aj when considering all values in the con�dence

set for ψj . If the proportion p̂j is small, say less than 0.05, then the law at stage j is likely

not exceptional and inferences for the blip parameters based on Wald con�dence intervals

for earlier stages can be trusted. Otherwise, the law is likely exceptional and con�dence

intervals for blip parameters in earlier stages are not reliable. Moodie & Richardson (2010)

summarize the practical guidelines by pointing out that exceptional laws in the jth stage

only a�ect inferences in the previous stages and that the laws are likely exceptionals if at

any stage the null hypothesis of no treatment e�ect is not rejected.

2.2.2 The Bootstrap

For exceptional laws, Wald con�dence intervals based on the asymptotic variance (2.7) do

not have the correct coverage. The bootstrap is often proposed as a solution to construct

con�dence intervals when estimating the variance of an estimator is complicated or impos-
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sible (Efron, 1992a). Unfortunately, the bootstrap also fails to provide reliable con�dence

intervals for the parameters at exceptional laws (Shao, 1994). We review the bootstrap

algorithm and explain why it fails in non-regular settings.

Consider the problem of constructing a con�dence interval for a unidimensional parameter

θ for which we have an estimator θ̂n based on a sample of n observations. The goal of

inference is to learn about the distribution Fn(t) = P (
√
n(θ̂n − θ) ≤ t) in order to �nd the

quantiles tα/2 and t1−α/2 that allow constructing a (1−α)×100% con�dence interval for θ as

Cn =
[
θ̂n −

t1−α/2√
n
, θ̂n −

tα/2√
n

]
. The con�dence interval Cn has the correct coverage P (Cn ⊂

θ) = 1− α as n→∞. When Fn(t) does not have a well-de�ned form, the bootstrap can be

used to approximate it. For this, it su�ces to draw B samples of size n with replacement

from the original sample, compute the estimator θ̂
(b)
n in each b sample, b = 1, . . . , B, and

approximate the distribution Fn(t) by F ∗n(t) = 1
B

∑B
b=1 I

[√
n(θ̂

(b)
n − θ̂n) ≤ t

]
. The quantiles

tα/2 and t1−α/2 are approximated with the corresponding bootstrap quantiles t∗α/2 and t
∗
1−α/2

of F ∗n(t) and an approximate con�dence interval for θ is C∗n =
[
θ̂n −

t∗
1−α/2√
n
, θ̂n −

t∗
α/2√
n

]
which

has P (C∗n ⊂ θ) ≈ 1− α.

The validity of the bootstrap procedure is based on the following key result: supt| F ∗n(t) −

Fn(t)| → 0 ⇒ P(C∗n ⊂ θ) → 1 − α as n → ∞ (Efron, 1992a). In words, this means that,

as the sample size n increases, F ∗n becomes a better approximation of Fn which implies

that the coverage of C∗n approaches the desired probability. However, the condition above

is not satis�ed in some situations, including when the estimator θ̂n is non-smooth. Shao

(1994) considers constructing a con�dence interval for |µ| with the estimator |X̄n| de�ned

as a non-di�erentiable function of a plug-in estimator. When µ = 0, the author shows that

the distribution
√
n(|X̄(b)

n |− |X̄n|) does not have a limit, thus the bootstrap estimator of the

distribution of |X̄n| is not consistent and the validity of the procedure is not guaranteed.

Shao's example translates to our dWOLS parameters, where the blip estimators ψ̂j in all but

the last stage are de�ned with a non-smooth function of plug-in estimators. At exceptional
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laws, the bootstrap estimator of the distribution of interest P (
√
n(ψ̂j − ψj) ≤ t) is not

consistent and the derived con�dence intervals may not have the nominal coverage.

2.2.3 The m-out-of-n Bootstrap and Other Solutions

Because DTR methods that su�er from non-regularity are widely used, several solutions have

been proposed to alleviate its negative impact on inference, that is, unreliable con�dence

intervals about the blip parameters. We review solutions that could apply to dWOLS.

The m-out-of-n bootstrap has been proposed as an alternative to the standard bootstrap in

cases where the bootstrap fails asymptotically, including for constructing con�dence intervals

with non-regular estimators (Bickel et al., 1997; Bretagnolle, 1983; Shao, 1994). The m-out-

of-n bootstrap relies on the same algorithm as the standard bootstrap except that each

resample has size m < n where m must be de�ned as a function of n and must satisfy

m → ∞ and m/n → 0 as n → ∞. The estimator θ̂
(b)
m is calculated in each resample of

size m and the distribution of interest Fn(t) = P (
√
n(θ̂n − θ) ≤ t) is approximated by

the corresponding m-out-of-n bootstrap distribution F ∗m(t) = 1
B

∑B
b=1 I

[√
m(θ̂

(b)
m − θ̂n) ≤ t

]
.

The key idea is that, under the asymptotic conditions on m, the distribution F ∗m(t) provides

a better approximation for Fn(t) than the distribution F ∗n(t) based on the standard bootstrap

with resamples of size n. Chakraborty et al. (2013) present a toy example to help understand

why this is the case. Suppose we wish to estimate |µ| from a sample of n i.i.d. observations

Xi drawn from a N(µ, 1). The MLE for |µ| is |X̄n| which is non-regular as
√
n(|X̄n| − |µ|)

converges to a standard normal distribution when µ 6= 0 but to a χ1 distribution when

µ = 0. Let m = m(n) de�ne a resample size that depends on the original sample size n.

We visualize a random sample of size m drawn from the original n units by de�ning random

variablesW1, . . . ,Wn from a multinomial distribution withm trials and probability of success

(i.e. being resampled) 1/n. Within each bootstrap sample of size m, the bootstrap mean

is X̄
(b)
m =

∑n
i=1WiXi where the randomness in the mean now comes from the multinomial
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weights, with the Xis held �xed. The sample mean is a regular estimator and it can be shown

that, even with resample sizem < n, the bootstrap distribution
√
m(X̄

(b)
m −X̄n) can be used to

approximate
√
n(X̄n−µ) for µ ∈ R (Bickel & Freedman, 1981). For the non-regular estimator

|X̄n|, when µ 6= 0, it can also be shown that
√
m(|X̄(b)

m | − |X̄n|) converges to a standard

normal distribution as n and m tend to ∞. At the point of non-di�erentiability µ = 0,

the distribution
√
m(|X̄(b)

m | − |X̄n|) can be rewritten as
∣∣∣√m(X̄

(b)
m − X̄n) +

√
m
n

√
nX̄n

∣∣∣ −∣∣√m
n

√
nX̄n

∣∣ which converges to a χ1 distribution only when the asymptotic conditions on

m are satis�ed but does not converge when m = n.

The asymptotic conditions on m o�er little guidance on how to choose m in practice. Bickel

& Sakov (2008) suggest that m must not be �too large� or held �xed with respect to n.

They propose an adaptive rule for choosing m based on the idea that, when considering

a sequence of values for m, the bootstrap distributions should be �close� for m chosen in

the �right range� but di�erent when m is too large or �xed. Their adaptive rule requires

specifying a metric to measure the distance between the bootstrap distributions from two

di�erent choices of m and to choose a sequence m = f(q, n), where f de�nes positive integers

smaller than n and q is a tuning parameter that controls the di�erence between successive

m in the sequence. Chakraborty et al. (2013) adapt the rule proposed by Bickel & Sakov

(2008) to the context of Q-learning. They propose to choose m that adapts to the degree of

non-regularity in the data. The resample size m is de�ned as m = n
1+α(1−p̂)

1+α where p̂ is the

proportion of individuals with non-unique optimal treatment discussed in Section 2.2.1 and

α is a tuning parameter.

Solutions other than the m-out-of-n bootstrap have been proposed to construct valid con�-

dence intervals for the non-regular DTR estimators. Chakraborty et al. (2010) propose hard-

and soft-thresholding to reduce the asymptotic bias in Q-learning at exceptional laws. Both

approaches involve rede�ning the pseudo-outcome by replacing the problematic non-smooth

function with other functions. Hard-thresholding replaces the non-di�erentiable term |ψ̂T2 h2|
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in the Q-learning pseudo-outcome by |ψ̂T2 h2|I
(
ψ̂T2 h2 > λi

)
where λi > 0 is a threshold for

the ith individual. This means that individuals with |ψ̂T2 h2| �close� to zero, which corre-

sponds to the point of non-di�erentiability of the absolute value function where exceptional

laws occur, have the term |ψ̂T2 h2| in the pseudo-outcome shrunk to zero. A hypothesis test

for ψT2 h2 = 0 could be used to determine if the second-stage optimal treatment is likely to be

non-unique for individual i and λi could be chosen accordingly. Moodie & Richardson (2010)

propose a form of hard-thresholding, called zeroing instead of plugging in (ZIPI), in the con-

text of G-estimation. Soft-thresholding also shrinks the pseudo-outcome of some individuals

by replacing |ψ̂T2 h2| with |ψ̂T2 h2|
(

1− λi
|ψ̂T

2 h2|2

)
+
where λi > 0 is a (di�erent) tuning pa-

rameter. While hard-thresholding only shrinks the pseudo-outcome of individuals who may

have non-unique optimal treatment a2, soft-thresholding shrinks the pseudo-outcomes of all

individuals but shrinks more importantly that of individuals with ψ̂T2 h2 close to zero. How-

ever, both methods still involve a non-di�erentiable function. Hard- and soft-thresholding

are not supported with theoretical results (ZIPI is) and their performance in simulation

studies shows con�icting evidence (Chakraborty et al., 2010; Laber et al., 2014b). Laber

et al. (2014b) propose constructing adaptive con�dence intervals for the blip parameters in

Q-learning. They approximate the bounds of the con�dence intervals for the non-regular

estimators ψ̂1 by separating the contribution of individuals for whom ψT2 h2 is likely or un-

likely close to 0. As in hard-thresholding, this approach involves choosing a threshold to

quantify the acceptable distance of ψ̂T2 h2 from 0.

All methods presented in this section have been compared in simulation studies which typi-

cally consider three types of data generating mechanisms de�ning regular, near non-regular

and fully non-regular settings in a two-stage DTR (Chakraborty et al., 2013, 2010; Fan et

al., 2019; Laber et al., 2014b). Regular simulation scenarios are such that all individuals

have a unique optimal treatment in the second stage i.e. ψT2 h2 is �far� from the point of

non-di�erentiablity for all individuals. In regular scenarios, the laws are not exceptional and

inferences for the �rst-stage blip parameters are reliable. Non-regular simulation scenarios
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are such that some individuals (not necessarily all) have a non-unique optimal stage 2 treat-

ment. The laws are then exceptional and alternative methods for inferences in the �rst stage

are necessary. Near non-regular scenarios are such that some or all individuals have ψT2 h2

close to but not exactly 0. The laws are not exceptional but the inferences in the �rst-stage

might be a�ected by how close ψT2 h2 is to 0 and by the sample size. Con�dence inter-

vals based on hard- and soft-thresholding may under- or over-cover in non-regular or near

non-regular scenarios (Fan et al., 2019; Laber et al., 2014b). Adaptive con�dence intervals

proposed by Laber et al. (2014b) are generally valid but can be conservative (Chakraborty

et al., 2013; Fan et al., 2019). Chakraborty et al. (2013) found that their adaptive choice

of m using the degree of non-regularity in the data is at least as good as the adaptive rule

proposed by Bickel & Sakov (2008) in Q-learning.

2.3 DTR for Censored Data

Often, interest lies in estimating a DTR that optimizes the time until the occurrence of an

event. For example, in T2D, a sequence of drug and lifestyle therapies tailored to individual

patient characteristics aims to delay the development of diabetic complications, that is, to

maximize the time until complications. Estimating an optimal DTR when the outcome of

interest is time-to-event poses additional challenges which are discussed in this section. We

�rst review basic concepts and methods in survival analysis (Kalb�eisch & Prentice, 2011).

We then describe the main challenges intrinsic to the estimation of an optimal DTR when

the outcome is subject to right-censoring and review methods that have been proposed in

the literature.
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2.3.1 Important Concepts in Survival Analysis

Survival analysis is concerned with the distribution of T , the survival time from a well-de�ned

starting point until the occurrence of an event of interest, which we assumed continuous in

this thesis. T may not be observed for all individuals, in which case we say that the individual

is censored at time C < T . For example, a study comparing cancer treatments considers

T de�ned as the time from initiation of cancer treatment until complete remission. Right-

censoring may occur if a patient drops out of the study or is lost to follow-up before achieving

complete remission or if a patient has not achieved complete remission by the end of the study

period, both cases leading to observe C instead of T . The minimum between the survival

and censoring time Y = min(T,C) is observed. The indicator ∆ = I(T < C) allows us to

distinguish between those who experienced an event and those who were censored.

Several metrics can be used to characterize the distribution of T . The survival function

S(t) = P (T > t) gives the probability of surviving beyond time t. It is linked to the

cumulative distribution function F (t) = P (T ≤ t) through the relationship S(t) = 1− F (t).

The mean survival time is de�ned as µ =
∫∞

0
S(t)dt and quantiles of the distribution of

T , such as the median, can also be de�ned with S(t). The hazard function (hazard rate),

de�ned as h(t) = lim∆t→∞
P (t≤T<t+∆t|T≥t)

∆t
, provides information about T where h(t)∆t can

be viewed as the �probability� that an individual who is still alive at time t experiences

an event in the next instant ∆t. A related quantity is the cumulative hazard function H(t)

de�ned by
∫ t

0
h(u)du and satisfying S(t) = exp[−H(t)]. It is common to assume a parametric

model for the survival time such as the Exponential, Weibull and Log-normal distributions.

Parametric models are useful because they o�er insights into the form of the survival and

hazard functions and related quantities. Non-parametric methods to characterize functions

of the survival time are also frequently used, for example, the Kaplan-Meier estimator of the

survival function and the Nelson-Aalen estimator of the cumulative hazard function.

Beyond merely describing the distribution of T , interest often lies in learning about the e�ect
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of some covariatesX on T . There are two well-known approaches to the modeling of covariate

e�ects on survival: the Cox model and the accelerated failure time (AFT) model. The Cox

model (Cox, 1972) is a special case of multiplicative hazard rate models. It expresses the

conditional hazard rate as the product of a baseline hazard rate h0(t) and a function of the

covariates as h(t|x) = h0(t)exp(βTx). This form of the conditional hazard model implies

proportionality of the hazard rates over time of two individuals with di�erent covariate

values. Inferences in the Cox regression focus on the hazard ratio parameters β which have

an interpretation on the hazard scale. Partial likelihood is typically used to estimate the

Cox parameters which treats h0(t) as an in�nite dimensional nuisance parameter and has

the advantage of not needing to estimate this quantity. If necessary, h0(t) can be estimated

parametrically or non-parametrically, for example, with the Breslow estimator (Breslow,

1974). The AFT model is an alternative to Cox regression. It assumes a linear model for the

log-survival time as log(T ) = µ + γTx + σW with µ an intercept, σ a scale parameter and

W an error term. The choice of a distribution for W implies a speci�c distribution for the

survival time, for example,W following a standard normal distribution implies a Log-normal

distribution for T . The e�ect of the covariates is to accelerate (or decelerate) the time to an

event by a factor exp(−γTx). The interpretation of the AFT parameters γ is made directly

on the log-time scale akin to the interpretation of linear regression parameters. Likelihood-

based approaches that account for censoring can be used to estimate γ in a parametric

AFT while rank-based estimation (Wei, 1992) is a common choice for semi-parametric AFT

models where the error distribution is left unspeci�ed. Regardless of the modeling choice,

assumptions must be made about the relationship between the covariates, survival times

and censoring times in order to learn about the e�ect of X on T . Non-informative censoring

assumes that knowing the censoring time of an individual does not provide information about

its survival time, meaning that the distributions of T and C provide no information on the

value or distribution of the other. This assumption can be relaxed by adding that censoring

is non-informative given a set of covariates.
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2.3.2 DTRs and Censored Data: Additional Considerations

Finding an optimal DTR when the outcome of interest is survival time subject to right-

censoring poses additional conceptual and estimation challenges as compared to the situation

with uncensored continuous outcomes (Goldberg & Kosorok, 2012).

The obvious challenge with survival data is to deal with unobserved survival times due to

censoring. Individual trajectories may be incomplete because of censoring and it is unclear

how to incorporate the data of censored individuals in the estimation procedure for a DTR.

Necessarily, some assumptions must be made about the longitudinal relationship between the

censoring time, survival time and covariates. Because individuals may experience an event

or be censored at any time before the end of the study, a challenge speci�c to DTRs is that

all individuals do not necessarily enter the same number of stages nor do they necessarily

spend the same amount of time within each stage. This complicates the recursive estimation

procedure underlying regression-based methods of uncensored outcomes in which one starts

by �nding the optimal decision rule in the last stage and moves backward into previous

stages. In particular, it is di�cult to conceptualize the pseudo-outcome in stage j, de�ned

as the counterfactual outcome had future treatments been optimal, for individuals who did

not enter stages j + 1 and beyond because future covariates and future treatments received

are unde�ned. The fact that all individuals do not enter the same number of stages also

poses a conceptual challenge about how one de�nes stages over time. The two following

stage de�nitions could be considered, for example.

Example 1. Entrance in a stage of intervention is de�ned in terms of developing or not a

condition. Following transplantation, a sequence of treatments to prevent and treat graft-

versus-host disease (GVHD) aims to improve the survival time post-transplantation (Krakow

et al., 2017). The �rst stage of intervention compares preventive treatments for GVHD

following transplantation. A patient enters the second stage of intervention if he develops

GVHD and salvage treatments are then compared. Thus, entrance in the second stage is
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de�ned in terms of developing or not GVHD and the time from transplantation to GVHD

varies across individuals. Similar situations naturally arise in recurring and relapsing diseases

where it is not known if and when a patient will enter the second stage of intervention (e.g.

Huang et al., 2014).

Example 2. The duration of a stage of intervention is de�ned as the time elapsed between

two �xed treatment decision time points. The STAR*D sequential randomized trial for

major depressive disorder compares various treatment options over time for individuals who

do not attain a satisfactory response to their current treatment regime (Rush et al., 2004).

Participants are assessed at pre-planned clinic visits held every two or three weeks. At

each visit, depending on a participant's response to treatment, the participant could either

continue on his current treatment regime or be randomized to alternative treatments as

dictated by the study protocol. This framework mimics the situation where an individual's

condition is assessed at �xed routine clinic visits and the treating clinician makes a treatment

decision at each visit as to keep the individual on his current treatment or make any change

to the regime.

Beyond censoring and stage de�nitions, extending optimal DTR methods to accommodate

right-censoring requires choosing a criterion of optimality. With uncensored outcomes, the

criterion of optimality is the conditional mean (pseudo)-outcome across stages which could

also be used with censored data, provided enough information is available about the tail of

the distribution of T (Karrison, 1997). Existing DTR methods for survival outcomes have

considered other metrics as criteria of optimality. The restricted mean survival time has been

widely used (Bai et al., 2017; Goldberg & Kosorok, 2012; Huang et al., 2014; Y. Q. Zhao

et al., 2014b) because it can accommodate heavy censoring that may prevent observing

enough data about the tail of the survival time distribution (Karrison, 1997). The restricted

survival time Yτ is de�ned as Yτ = Y if Y < τ and Yτ = τ if Y ≥ τ , where τ > 0 is chosen

to be smaller than the longest follow-up time. The restricted mean survival time is then
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µ(τ) =
∫ τ

0
S(t)dt. It o�ers a practical advantage for methods that use inverse probability of

censoring weights (IPCW) (Robins & Rotnitzky, 1992) because P (C > τ), the probability

of observing censoring times larger than τ , is guaranteed to be positive due to truncation

of the survival and censoring times. Another possible criterion of optimality is the survival

probability at a particular time t (Jiang et al., 2017a). One potential problem with the t-

year survival probability is that the choice of t is often subjective and that choosing a single

value of t complicates the balance of short- and long-term bene�ts (Jiang et al., 2017b). The

median survival time or other quantiles of the survival distribution have also been proposed

as criteria of optimality (Jiang et al., 2017b).

Extending existing regression-based methods to accommodate censored data is subject to

some modeling constraints. The recursive estimation procedure of regression-based meth-

ods requires the construction of pseudo-outcomes across stages. With survival data, this

means estimating a relative improvement in (counterfactual) survival time under optimal

treatments in future stages. Therefore, one must be able to make predictions on the survival

time scale to extend the methods proposed for uncensored continuous outcomes to censored

outcomes. As such, modeling the survival time directly may be necessary to allow recovering

such predictions. The AFT model has been used (Huang & Ning, 2012; Huang et al., 2014)

as it directly models the log-survival time. Because the AFT parameters are de�ned on the

log-survival time scale, their interpretation easily translates into clinical domain knowledge.

Relying on Cox regression is a less interesting option as it would lead to decision rules inter-

pretable on the hazard scale, which is less intuitive, and would require specifying a baseline

hazard function to construct pseudo-outcomes. Also, the proportional hazard assumption

typically made by the Cox model may not be suitable for DTRs which consider that short-

and long-term treatment e�ects are di�erent (Jiang et al., 2017b).
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2.3.3 Existing Regression-based Methods

To the best of our knowledge, there exist only two regression-based methods for estimating

an optimal DTR with censored data, Q-learning with censored data (Goldberg & Kosorok,

2012) and a method by Huang et al. (2014) for recurrent diseases, which we summarize in this

section. We also brie�y mention how survival outcomes are handled with G-estimation.

Q-learning with censored data extends Q-learning to accommodate �exible number of stages

and incomplete individual trajectories due to censoring. It aims to maximize the expected

restricted mean survival time E
[
min

(∑J̄
j=1Rj, τ

)]
where Rj is the reward in stage j de�ned

as the length of the interval between decision time points j − 1 and j and J̄ ≤ J is the

(random) number of stages for an individual, allowing di�erent individuals to enter di�erent

number of stages. Let δj be an indicator where δj = 1 if no censoring happened before the

stage j + 1 and δj−1 = 0 =⇒ δj = 0. Because an event or censoring can occur at any time

during the follow-up, the individual trajectories are not of equal lengths but rather de�ned

up to stage J̄ as {H1, A1, R1, δ1, ...,HJ̄ , AJ̄ , RJ̄ , δJ̄} if an event is observed in stage J̄ or

{H1, A1, R1, δ1, ...,HJ̄ , AJ̄ , δJ̄} if censoring occurs in stage J̄ , in which case the censoring

time C <
∑J̄

j=1Rj is also observed.

The Q-learning algorithm for censored data is similar to the algorithm for uncensored con-

tinuous outcomes in the sense that it uses backward induction to �nd the optimal DTR and

requires modeling the outcome, here a survival time, at each step of the recursion. The

algorithm di�ers by incorporating IPCW to accommodate censored data, assuming that

censoring time is independent of both the covariates and survival time. It also di�ers by

transforming the observed trajectories before using them in the algorithm. The trajectories

of individuals who did not enter the maximal number of stages are imputed as following: for

j > J̄ , set Hj = ∅, Rj = 0 and draw Aj uniformly from Aj. Also, the observed survival

or censoring times are replaced by their truncated counterparts, ensuring
∑J̄

j=1 Rj < τ . At
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each stage, Q-learning computes the Q-function

Q̂j(hj , aj) = arg min
Qj

En

[(
Rj + max

aj+1

Q̂j+1(hj+1, aj+1)−Qj(hj , aj)

)2
δj

Ŝc(
∑j

k=1 Rk)

]

where Ŝc is the Kaplan-Meier estimator of the survival function of the censoring time and

En is the empirical expectation. Q̂j is set to 0 whenever hj = ∅, that is, when a failure

occurred before stage j. The terms Rj + maxaj+1
Q̂j+1(hj+1, aj+1) represent the remaining

(truncated) survival time from stage j onwards, given that optimal treatments are received

in future stages. Qj(hj , aj) is a parametric model for Rj + maxaj+1
Q̂j+1(hj+1, aj+1). This

is akin to the pseudo-outcome with uncensored data de�ned in Q-learning (see step 2 of the

Q-learning algorithm for uncensored data). All individuals contribute to the estimation of

Ŝc but Rj + maxaj+1
Q̂j+1(hj+1, aj+1) − Qj(hj , aj) is only de�ned for individuals who were

not censored in stage j. The optimal stage j decision rule is then obtain by maximizing

Q̂j(hj , aj) with respect to aj as in the uncensored case. A �nite sample bound on the

di�erence between the expected truncated survival times under the true optimal DTR versus

under the estimated optimal DTR is derived to evaluate the performance of the algorithm. Q-

learning for censored data su�ers important limitations. First, the assumption of independent

censoring is restrictive. Second, specifying a model for Qj(hj , aj) may be challenging in

practice. Third, the method lacks tools to make inference about the decision rules and their

parameters. To the best of our knowledge, Q-learning for censored data has never been used

in practice.

The method proposed by Huang et al. (2014) applies to DTRs with two stages of intervention

in which all individuals do not necessarily reach the second stage. Their work is motivated

by an application to the treatment of acute myeloid leukemia which consists of an initial

treatment A1 (�rst stage) followed by a salvage treatment A2 (second stage) if the disease

recurs or progresses. Following this example, the outcome to maximize is the time to death

de�ned as T = T1 + T2 where T1 represents the time until disease recurrence or progression
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or death and T2 is the time from salvage treatment to death, if applicable. As in Q-learning

with censored data, the algorithm relies on backward induction, uses the restricted mean

survival time as the criterion of optimality and incorporates censoring with IPCW.

Estimates of the decision rule parameters are obtained by solving a series of weighted esti-

mating equations across stages that depend on models for log(T2) in the second stage or for

the logarithm of T1 + T opt
2 , the overall survival time had the second stage treatment been

optimal, in the �rst stage. First, estimates for the parameters used to construct the optimal

salvage treatment decision rule (second stage decision rule) are obtained by solving

UHNW
2 (β2) =

∑
ηδω

 h2

a2h2

{log(T2)− βT21h2 − a2β
T
22h2

}
= 0

where η indicates if an individual entered the second stage and ω are IPCW. The model for

the survival time in the second stage is an AFT model speci�ed as E[log(T2)|h2, a2;β2] =

βT21h2 + a2β
T
22h2, de�ning decision rules of the form I(βT22h2 > 0). A Cox proportional

hazard model is used to estimate the hazard function of the censoring time and, using the

Breslow estimator, an estimator of the survival function of the censoring time is derived to

construct the weights ω. Second, the optimal initial treatment (optimal treatment in the �rst

stage) is estimated by solving estimating equations similar to UHNW
2 except that the outcome

is a pseudo-survival time de�ned by adding a positive quantity |β̂T22h2| to the survival time

of individuals who entered the second stage but did not receive their optimal treatment.

This is similar to how dWOLS de�nes a pseudo-outcome with the added consideration that

not all individuals enter the second stage. The consistency and asymptotic normality of

the decision rule estimators are established (see also Huang & Ning, 2012). The method

by Huang et al. (2014) improves on Q-learning by allowing the censoring times to depend

on baseline covariates. However, the method is not robust to misspeci�cation of the model

for the log-survival time.
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Despite the problem of non-regularity not being mentioned by the authors of the two meth-

ods, Q-learning and the method by Huang et al. (2014) also yield non-regular estimators

because of plug-in quantities in the backward estimation procedure. The same negative con-

sequences as those discussed for uncensored continuous outcomes apply (c.f. Section 2.2.1),

i.e. con�dence intervals for the decision rule parameters may not be reliable when derived

with asymptotic variance formulae or the standard bootstrap.

G-estimation with survival outcomes has been described to address the problem of estimating

the causal e�ect of a time-dependent treatment in the presence of time-varying confounding

using a class of causal models called structural nested failure time models (SNFTM) (Hernán

et al., 2005; Robins, 1998; Robins et al., 1992). In its simplest form, SNFTM assumes that

an individual's survival time under no treatment is expanded or contracted by the factor

exp(−ψ) were he continuously exposed to some treatment a i.e. T ai = T 0
i exp(−ψ) where

T 0
i and T ai are counterfactual survival times under no treatment or continuous treatment

over a given follow-up time. The observed survival time Ti is linked to the counterfactual

survival times Ti,ψ through the relationship Ti,ψ =
∫ Ti

0
exp(ψ × Ai,t)dt where Ai,t indicates

if an individual receives the treatment at time t. This form speci�es an AFT model for the

survival time. G-estimation is used to �nd ψ̂ such that Ai,t is independent of Ti,ψ given (time-

varying) confounders at each time t. For example, this can be done by specifying logistic

regressions logit(Ai,t) ∼ αti,ψ + βhi,t, where hi,t are the history at time t, and performing

a grid search about ψ to �nd the value ψ̂ which lead to α̂ = 0. The method also handles

multi-dimensional ψ, for example, by allowing treatment-covariate interactions.

The counterfactual survival time Ti,ψ can only be calculated if individual i experienced an

event during the follow-up period. While censoring due to loss to follow-up or competing

risks can be handled via a weighting argument as described in Q-learning for censored data

and in the method by Huang et al. (2014), SNFTM accommodates administrative censoring,

that is, censoring due to reaching the end of the follow-up period in calendar time without
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having experienced an event, using arti�cial censoring (Robins, 1998). Let Ci be the maximal

possible follow-up time for individual i, known at the beginning of the study. Assuming that

Ci is independent of the counterfactual survival time Ti,ψ, the indicator ∆i,ψ of whether the

event would have been observed had the individual been continuously treated or untreated

can be computed for the individuals who experienced an event as ∆i,ψ = I (Ti,ψ < Ci,ψ) where

Ci,ψ = Ci if ψ ≥ 0 and Ci,ψ = Ci × exp(ψ) if ψ < 0. This indicator is zero for all individuals

who are censored and is also zero for individuals who experienced an event but for whom an

event would not have been observed had they received another treatment. Estimates of ψ

are obtained by G-estimation, now using the fact that Ai,t should independent of ∆i,ψ given

(time-varying) confounders at each time t. Arti�cial censoring with G-estimation has been

criticized because it results in loss of information due to censoring individuals who actually

experienced an event (Jo�e et al., 2012).

2.3.4 Other Existing Methods

Although value search estimation is not the focus of this thesis, we present an overview of

methods proposed in the literature for estimating an optimal DTR with censored data.

Extensions of existing value search methods have been proposed to accommodate censored

data in single-stage settings (e.g. Cui et al., 2017; Geng et al., 2015; Zhu et al., 2017).

For example, Y. Q. Zhao et al. (2014b) and Bai et al. (2017) extend outcome weighted

learning by respectively adding one and two augmentation terms to account for censoring,

the latter method yielding a more e�cient estimator. Methods suitable for multi-stage

settings have also been proposed. Y. Zhao et al. (2011) use SVM within the Q-learning

framework to �t nonlinear Q-functions. The censored individuals contribute to the SVM

procedure via a particular choice of a loss function. The proposed method lacks tools for

inference about the resulting optimal DTR or the value of the optimal regime. Jiang et al.

(2017a) describe an inverse propensity score weighted Kaplan-Meier estimator to maximize
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the t-year survival probability. Conceptually, their estimator can be extended to more than

two stages but it may become less reliable. It could also incorporate an augmentation term

with a posited model for the survival time distribution to yield a doubly-robust estimator but

its formulation would be too complicated. Jiang et al. (2017b) extend the method by Jiang

et al. (2017a) to accommodate any user-speci�ed function of the survival function such as

the restricted mean survival time or median survival time. Assuming independent censoring,

their proposed estimator is consistent whenever the propensity score or the regression model

for the survival time is correctly speci�ed, assuming that the survival function of the censoring

time can be consistently estimated with the Kaplan-Meier estimator. The authors derive

the asymptotic distribution for the value of the regime. Hager et al. (2018) extend the

method by Bai et al. (2017) to a DTR with two stages of intervention by using a backward

induction procedure. They add augmentation terms to the IPW estimator to capture back

information from individuals who are censored in the �rst and second stages. Their proposed

estimator is doubly-robust as it consistently estimates the value of the regime whenever both

the propensity score and censoring hazard models are correctly speci�ed or if the survival

time hazard model is correctly speci�ed.

2.4 DTRs for the Treatment of Type 2 Diabetes

We conclude our review of the literature by giving an overview of the current guidelines for

the treatment of T2D, focusing on aspects that would bene�t from the development of DTR

methods for survival outcomes.

T2D is a chronic disease characterized by an elevated blood sugar level which can lead to

severe complications if untreated. One of the main therapy goals in the management of T2D

is lowering, or maintaining an optimal, glycemic level, as measured by glycated hemoglobin

(HbA1c). Ultimately, the aims of controlling glycemia are to avoid unstable blood glucose
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levels over time and to prevent or delay the development of diabetic complications with-

out signi�cantly altering the patient's quality of life. Treatment strategies for T2D include

lifestyle and drug therapies as well as considerations for the joint management of comor-

bidities (Garber et al., 2019). At diagnosis of T2D, interventions designed to improve the

patient's lifestyle habits are recommended before embarking pharmacotherapy. Metformin is

the preferred and most cost-e�ective �rst-line oral treatment. When metformin in monother-

apy fails to achieve therapeutic goals, it is recommended to add a second or even a third

oral agent to the current regime before eventually transitioning to injectable therapy. The

whole process of decision-making used to determine appropriate treatment strategies follow-

ing metformin for a speci�c patient is complex and, to some extent, subjective to the treating

clinician and patient's values but it remains widely accepted that the choice of second-line

and subsequent agents is best tailored to individual patients (Garber et al., 2019; Inzucchi

et al., 2015).

In the absence of comprehensive comparative-e�ectiveness trials that take into account the

dynamic nature of the treatment of T2D, personalized recommendations on the best agent

to be combined with metformin cannot easily be made. Thus, there remain uncertainties

in the choice of agent to add to metformin and in the sequence of therapies that follows.

This uncertainty is re�ected in practice as illustrated in a large observational study from the

Observational Health Data Sciences and Informatics collaboration (Hripcsak et al., 2016).

Using electronic health records and administrative claims data on 250 million patients, the

authors found that metformin is indeed favored as the �rst-line medication for T2D but that

second- and third-line add-on treatments are much more variable.

Existing second-line therapies and their e�ect on the risk of complications or mortality in

T2D have been widely studied (recently Kosiborod et al., 2018; Kuo et al., 2019; Nyström

et al., 2017; Yu et al., 2015) but the therapy comparisons do not account for the fact that

patients will likely make multiple changes to their treatment regime following the initial add-
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on to metformin. The estimation of optimal treatment rules that are tailored to patients'

characteristics has also been considered (e.g. Fu et al., 2016; Wang et al., 2018) but, again,

never beyond a single treatment decision. Others have considered the treatment of T2D from

a dynamic perspective (Kreif et al., 2018; Neugebauer et al., 2016). For example, Neuge-

bauer et al. (2013) use marginal structural models to determine when treatment should be

intensi�ed (add any drug to the current regime) based on HbA1c levels to decrease all-cause

mortality and complications. However, their study and other similar studies fail to provide

guidance on how to choose the drug to be added to intensify treatment.

2.5 Summary

The literature review introduced important methods for the estimation of an optimal DTR.

We introduced key DTR concepts and methods for uncensored continuous outcomes, includ-

ing dWOLS. We explained how the inferences with dWOLS may be a�ected by non-regularity

of the estimators in multi-stage DTRs. Methods have been proposed to alleviate the negative

impact of non-regularity, o�ering promising avenues for dWOLS. We presented challenges

pertaining to the extension of optimal DTR methods to censored data and summarized the

few methods that have been proposed for that purpose. Finally, we gave an overview of how

the management of T2D in clinical practice could bene�t from methodological advancements

in precision medicine.
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Chapter 3

Non-regular Inference for Dynamic

Weighted Ordinary Least Squares:

Understanding the Impact of Solid Food

Intake in Infancy on Childhood

Weight

Preamble to Manuscript 1. The ideas for this project came when dWOLS was a relatively

new method for estimating optimal DTRs with continuous uncensored outcomes. Despite the

practical and theoretical advantages of dWOLS, it lacked tools for constructing con�dence

intervals about the decision rules parameters in situations where the non-regularity of the

estimators may negatively a�ect the inferences. This project started as a course assignment

tackling a computationally intensive problem centered around the m-out-of-n bootstrap. A

basic simulation study was carried out and initial implementation of them-out-of-n bootstrap

was done in R. It then evolved into the more substantive project presented in this chapter.
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The original contributions are (i) proposing an empirical measure of non-regularity in con-

junction with dWOLS to choose m adaptively, and (ii) deriving a class of data-generating

mechanisms for exceptional laws, that is, where inferences with non-regular estimators may

be incorrect. The manuscript presented in this chapter was published in Biostatistics in

2017. The m-out-of-n bootstrap has been integrated in the R package DTRreg and released

on CRAN.
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Abstract

A dynamic treatment regime (DTR) is a set of decision rules to be applied across multiple

stages of treatments. The decisions are tailored to individuals, by inputing an individual's

observed characteristics and outputting a treatment decision at each stage for that individ-

ual. Dynamic weighted ordinary least squares (dWOLS) is a theoretically robust and easily

implementable method for estimating an optimal DTR. As many related DTR methods, the

dWOLS treatment e�ects estimators can be non-regular when true treatment e�ects are zero

or very small, which results in invalid Wald-type or standard bootstrap con�dence intervals.

Inspired by an analysis of the e�ect of diet in infancy on measures of weight and body size

in later childhood � a setting where the exposure is distant in time and whose e�ect is likely

to be small � we investigate the use of the m-out-of-n bootstrap with dWOLS as method

of analysis for valid inferences of optimal DTR. We provide an extensive simulation study

to compare the performance of di�erent choices of resample size m in situations where the

treatment e�ects are likely to be non-regular. We illustrate the methodology using data from

the PROmotion of Breastfeeding Intervention Trial to study the e�ect of solid food intake

in infancy on long-term health outcomes.
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3.1 Introduction

Personalized medicine is an approach to health care in which treatment decisions are tailored

to evolving patient-level information. This approach is especially relevant in the chronic-

care environment where the patient's health condition is changing over time and treatments

must correspondingly be altered. The statistical study of personalized medicine is known

as dynamic treatment regimes (DTR) or sometimes adaptive treatment strategies. In the

typical DTR setting, individuals are followed through multiple stages of clinical intervention

and the statistical goal is to perform estimation and inference on the sequence of decision

rules, one at each stage of intervention, which uses the individual's characteristics as inputs

and yields a recommended treatment decision. Of particular interest is the identi�cation of

an optimal DTR, that is, the sequence of treatment decisions that yields the best expected

outcome for a population of (�similar�) individuals.

Methods for estimating optimal DTRs have been widely considered in the last decade (Mur-

phy, 2003; Robins, 2004; B. Zhang et al., 2013; Y. Q. Zhao et al., 2015). Notably, Q-learning

(Sutton & Barto, 1998; Watkins, 1989) o�ers a relatively easy framework via ordinary least

squares (OLS) or other regression or prediction methods, but lacks robustness to model

mis-speci�cation. Alternatively, G-estimation (Robins, 2004) o�ers robustness against mis-

speci�cation of the outcome model at the cost of a greater investment both in terms of un-

derstanding the underlying theory and implementation. The strengths of the two methods

have been united under the recently proposed dynamic weighted OLS (dWOLS) approach

(Wallace & Moodie, 2015): it possesses G-estimation's double-robustness while relying on a

simple estimation framework based on sequences of weighted OLS regressions.

Despite its practical and theoretical advantages, dWOLS, like Q-learning, G-estimation, and

other regression-based DTR estimation approaches, can yield estimators with non-regular

limiting distributions (Robins, 2004). In a DTR context, non-regularity occurs because the

estimation of stage-speci�c treatment e�ects involves a non-smooth maximization operation,
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and the asymptotic distribution of the resulting estimator does not converge uniformly over

the parameter space (see Section 3.2.2 for further details). In the case of dWOLS, this

occurs when the true stage-speci�c treatment e�ect is small relative to the sample size

(or zero) so that the two treatment options are nearly (or precisely) equally optimal. In

randomized controlled trials or large-scale observational trials of treatment sequences, the

dWOLS estimators are likely to have non-regular limiting distributions as the expected size

of the treatment e�ect at each stage is usually small. A signi�cant negative consequence of

the non-regularity is that typical con�dence interval calculations for the DTR parameters

perform poorly in terms of coverage (Chakraborty et al., 2010; Moodie & Richardson, 2010;

Robins, 2004).

Them-out-of-n bootstrap has been proposed as a tool to produce valid con�dence intervals in

cases where the standard bootstrap fails (Bickel et al., 1997; Bretagnolle, 1983; Shao, 1994).

It proceeds similarly to the standard bootstrap, except that the resamples are of size m < n.

The performance of the m-out-of-n bootstrap is not guaranteed in non-regular situations

(Andrews & Guggenberger, 2010) as it relies on heuristic arguments and is highly dependent

on the choice of m, for which there exists no �nite-sample guidance. It is thus necessary

to evaluate the performance of the procedure in every new application. The m-out-of-n

bootstrap, applied with a class of resample size that adapts to non-regularity, has been found

to produce valid con�dence intervals in the DTR framework for Q-learning (Chakraborty et

al., 2013), and so o�ers a promising avenue to explore in the dWOLS context.

Consider the e�ect of an infant's diet during the �rst year of life on future health outcomes.

Current World Health Organization (WHO) and United Nations Children's Fund (UNICEF)

recommendations on infant diet include: (i) exclusive breastfeeding for the �rst 6 months

(mo) of life and (ii) introduction of nutritionally-adequate and safe complementary (solid)

food at 6 mo together with continued breastfeeding up to 2 years of age or beyond (�Infant and

young child feeding�, 2016). Despite these recommendations, recent studies conducted in the
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United States (Clayton et al., 2013) and in Australia (Newby & Davies, 2015) showed that

the introduction of solid food before 4 mo, and thus non-exclusive breastfeeding, is prevalent.

With childhood obesity becoming more and more of a burden in developed countries, a recent

meta-analysis (Daniels et al., 2015) indicated that early introduction of solid food (before

4 mo) results in an increased risk of childhood obesity, and that this association between

infant diet and childhood obesity is even stronger for infants that were not breastfed. This

suggests that the decision to introduce solid food in an infant's diet may be motivated by

evolving health characteristics of the infant.

The PROmotion of Breastfeeding Intervention Trial (PROBIT) (Kramer et al., 2001) has

collected longitudinal measurements on infant-feeding habits for over 17,000 infant-mother

pairs. Following the con�ict between WHO recommendations and the practices noted in the

literature on infant-feeding patterns, we aim to investigate the e�ect of solid food intake in

the infant's diet between 3 and 9 mo on long-term health outcomes in the DTR framework,

taking advantage of the richness of the PROBIT dataset and using the newly developed

dWOLS as method of analysis. More precisely, we examine whether there is evidence that

there is an optimal decision of when to start solid food (between 3�6 mo or 6�9 mo) on

the child's body mass index (BMI), waist circumference and triceps skinfold thickness at 6.5

years of age, and whether this decision should depend on infant characteristics. As the e�ect

of solid food intake between 3�6 mo or 6�9 mo is likely to have a small e�ect on BMI, waist

circumference, and triceps skinfold thickness measured at 6.5 years, inferences using dWOLS

will possibly yield e�ect estimators with non-regular limiting distributions.

In this article, we demonstrate the construction of valid con�dence intervals with the m-

out-of-n bootstrap with dWOLS as method of analysis, motivated by a case study based on

important health data to investigate whether the decision of introducing solid food into an

infant's diet should be tailored to reduce weight-related outcomes in childhood. In Section

3.2, we review dWOLS and the m-out-of-n bootstrap. In Section 3.3, we evaluate the
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performance of the m-out-of-n bootstrap for inference concerning dWOLS estimators via

a simulation study. In Section 3.4, we present details and results of the PROBIT data

analysis.

3.2 Methods

3.2.1 Notation and Important Concepts

Data needed to estimate a DTR consist of n longitudinal trajectories of measured covariates

and treatment received at each of a �xed number of stages of intervention. For simplicity,

we focus on DTRs with two stages of clinical intervention. Individuals' data are given by the

trajectories (X1, A1,X2, A2, Y ) of patient characteristicsXj and treatment Aj grouped into

stages of intervention, denoted by a subscript j (j = 1, 2). Let Xj be a matrix of covariates

measured prior to the jth treatment, Aj denote the treatment received at the jth stage, and

Y be the observed outcome measured at the end of the jth stage. We assume the outcome

is continuous and de�ned such that larger values are preferred. We consider the case where

treatment is binary, coded as 0 or 1. Denote an individual's history by Hj , a shorthand

representing the information available prior to making a treatment decision at the jth stage,

including previous treatments. We thus de�ne H1 = X1 and H2 = (X1, A1,X2). An

optimal DTR consists of a set of decision rules that maximizes the expected �nal outcome

E(Y a1,a2), where Y a1,a2 indicates a potentially unobserved, or counterfactual outcome Y

under treatment regime (a1, a2). At each stage, the decision rule is a function that inputs

the history Hj and outputs one of the two available treatments.

An important concept in DTR inference is the blip, or contrast, function. In the context

of a two-stage DTR with two possible treatments at each stage, the blip function at the

�rst stage is de�ned as γ1(h1, a1) = E(Y a1,a
opt
2 − Y 0,aopt2 |H1 = h1), and at the second as

γ2(h2, a2) = E(Y a1,a2 − Y a1,0|H2 = h2). It is interpreted as the di�erence between the
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expected outcome of an individual who received treatment aj at stage j and the expected

outcome of the same individual had he received some reference treatment aj=0 at stage j,

assuming that the individual goes on to receive optimal subsequent treatment thereafter.

The (potentially) counterfactual outcome could be modeled as

E(Y a1,a2|H1 = h1,H2 = h2) =
2∑
j=1

{
fj(hjβ;βj) + γj(hjψ, aj;ψj)

}
.

In this model, the expected outcome is separated into two components: a treatment-free

function fj, independent of the stage j treatment, and the blip function γj, where possibly

di�erent subsets of the history vector hj , respectively hjβ and hjψ, are used for each of these

two models. Although the stage j treatment-free function does not depend on the stage j

treatment, it may depend on previous treatments. Of interest is to identify the form and

parameters of γj as it is only through the blip function that the stage j optimal treatment

is estimated. The blip function is constrained so that γj(hjψ, 0;ψj) = 0. At each stage,

the optimal treatment decision is that which maximizes γj, given by �prescribe treatment

option 1 if γj(hjψ, 1;ψj) > 0, prescribe option 0 otherwise.� In a slight abuse of notation,

we will simply write hj in place of both hjβ and hjψ in much of what follows, with the

understanding that not all components of the vector need appear in all models.

Two assumptions are necessary for the estimation of a DTR: the stable unit treatment

value assumption (SUTVA) (Rubin, 1980) and no unmeasured confounding (Robins, 1997).

SUTVA demands that there is no interference between individuals leading to di�erent out-

comes depending on other individuals' treatment allocation. No unmeasured confounding

requires that the treatment allocation at stage j is independent of future (counterfactual)

outcomes and covariates given the observed jth stage history.
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3.2.2 Dynamic Weighted OLS

Inference for DTRs in regression-based approaches such as dWOLS focuses on the blip pa-

rameters ψj . As other standard statistical methods for estimating an optimal DTR, dWOLS

is based on a recursive backward estimation procedure (Murphy, 2003; Robins, 2004), which

performs a sequence of weighted OLS regressions. For a DTR with J stages of intervention,

dWOLS �rst estimates the e�ect of treatment (the blip parameters) at the �nal stage and

moves backward into previous stages. At each stage, the estimation of the blip parameters

is based on a weighted OLS regression of a pseudo-outcome ỹj (see Equation (3.1) below)

on (a subset of) the individual history hj available prior to the treatment decision. At the

last stage, the pseudo-outcome is identical to the �nal outcome y. At each previous stage,

it de�nes an expected outcome had the future treatment decisions been optimal and is esti-

mated by adding what was lost from receiving suboptimal future treatments to the observed

outcome. At each stage j of clinical intervention, the dWOLS algorithm takes the following

steps:

1. De�ne the pseudo-outcome

ỹj = y +
J∑

k=j+1

{
γj(hj , a

opt
j )− γj(hj , aj)

}
; (3.1)

2. Propose a treatment model E(Aj|Hj = hj ;ωj) and use the data to estimate ωj ;

3. Choose a weight function wj(aj,hj ;ωj) which satis�es

π(hj)wj(1,hj ;ωj) = [1− π(hj)]wj(0,hj ;ωj)

where π(xj) = P (Aj = 1|xj) and use the estimates ω̂j to obtain estimated weights

ŵj;

4. Propose a model for E(Ỹ
aj
j |Hj = hj) by specifying a treatment-free model fj(hj ;βj)
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and a blip function γj(hj , aj;ψj), and carry out a weighted OLS regression of ỹj on

(hj , ajhj) with weights ŵj. Use the resulting estimates ψ̂j to construct the next

pseudo-outcome, if necessary.

Typically, the blip model and the treatment-free model are linear in the parameters (though

they need not be), such that the optimal treatment at stage j, aoptj , is determined by the

decision rule I(ψ̂Tj hj > 0) which chooses the treatment (Aj=1) as the optimal decision when

ψ̂Tj hj is positive.

The resulting DTR parameters have the double-robustness property, that is, the blip pa-

rameters are consistently estimated if either the treatment model E(Aj|Hj = hj ;ωj) or

the treatment-free model fj is correctly speci�ed, assuming the blip function γj is correctly

modeled. In other words, the dWOLS estimators are consistent when either the treatment

model or the outcome model is correctly speci�ed, with the additional requirement that

mis-speci�cation of the outcome model is only with respect to terms in the model that do

not involve the treatment. The double-robustness property can also be exploited to pro-

vide insights on whether neither or at least one model is correctly speci�ed (Wallace et al.,

2016). The treatment models can be assessed using standard diagnostic plots whereas the

treatment-free and blip models can be assessed using diagnostic plots introduced in Rich et

al. (2010), all implemented in the DTRreg package in R (Wallace et al., 2014). The choice of

weights may a�ect e�ciency of the estimators; following previous work (Wallace & Moodie,

2015), we consider the weights wj(aj,hj) = |aj − E(Aj|Hj = hj)|.

The dWOLS method su�ers from nonstandard limit theory (Robins, 2004) because of a non-

smooth maximization operation in the de�nition of the pseudo-outcomes. For a two-stage
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DTR, the �rst stage pseudo-outcome is de�ned as

Ỹ1 = Y +
{
γ2(h2, a

opt
2 )− γj(h2, a2)

}
= Y +

(
max
a2
ψ̂T2 a2h2 − ψ̂T2 a2h2

)
= Y + ψ̂T2 h2

(
I(ψ̂T2 h2 > 0)− a2

)
. (3.2)

The �rst stage pseudo-outcome is thus a non-smooth function of ψ̂2 because the function

I(ψ̂T2 h2 > 0) is non-di�erentiable at ψ̂T2 h2 = 0 (point of non-di�erentiability). Since the

�rst stage blip parameters ψ1 are estimated via a weighted OLS regression of the pseudo-

outcome ỹ1 on (h1, a1h1), the resulting estimates ψ̂1 are in turn a non-smooth function of

ψ̂2. The DTR estimator of ψ1 is thus non-regular. As a result, the asymptotic distribution

of
√
n(ψ̂1 − ψ1) is not uniformly normal. More precisely, the asymptotic distribution is

normal if the second stage blip parameters ψ2 are �far� from the point of non-di�erentiability,

i.e. if the probability of generating a history h2 such that ψT2 h2 = 0 is zero. Similarly,

the asymptotic distribution is non-normal if ψ2 is �near� the point of non-di�erentiability,

i.e. the probability of generating a history h2 such that ψT2 h2 = 0 or indeed very near zero

is �large.� De�ne p := P (H2 : ψT2 h2 = 0) to be a measure of non-regularity in the data.

Speci�cally, the asymptotic distribution of
√
n(ψ̂1−ψ1) is normal if p=0, but is non-normal

if p > 0. Non-regularity can be de�ned in terms of the optimal second stage treatment

estimated by dWOLS. Referring to Equation (3.2), the pseudo-outcome of an individual

with history h2 is independent of the optimal second stage treatment decision I(ψ̂T2 h2 > 0)

when ψ̂T2 h2 = 0. Consequently, the expected outcome is the same for both treatments, and

the optimal treatment is not unique.

A practical consequence of this non-regularity in the estimation of the �rst stage treatment ef-

fect parameter ψ1 lies in the construction of valid con�dence intervals. Wald-type con�dence

intervals for ψ1 exhibit poor coverage rates (Robins, 2004). Standard bootstrap con�dence

intervals can also perform badly (Chakraborty et al., 2013, 2010; Shao, 1994), since the re-
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quirement that the statistic of interest is smooth such that it can be approximated linearly

is not met in non-regular settings.

3.2.3 The m-out-of-n Bootstrap

We propose the use of the m-out-of-n bootstrap in non-regular situations, following the

developments in Chakraborty et al. (2013). Them-out-of-n bootstrap is a general bootstrap-

type method proposed to rectify the inconsistency of the bootstrap estimator for non-smooth

statistics (Chakraborty et al., 2010; Shao, 1994).

The m-out-of-n bootstrap proceeds similarly to the standard bootstrap, except that the

resample size m is smaller than the total sample size n. Let θ be the statistic of interest

and θ̂n be its estimate in the original sample. A total of B bootstrap resamples of size m

are drawn, and the statistic of interest is estimated in each b resample, denoted as θ̂
(b)
m . The

quantiles of the distribution
√
m(θ̂

(b)
m − θ̂n) are then used to construct a con�dence interval for

θ. Despite its well-developed theoretical framework, there is some lack of practical guidance

on the use of the m-out-of-n bootstrap. Speci�cally, the conditions on the resample size

m are entirely asymptotic and cannot be translated into �nite samples properties. We

follow Chakraborty et al. (2013) in considering both �xed and adaptive choices for m; in

particular, we consider an approach to selecting m that re�ects the degree of non-regularity

in the underlying data generating process.

Adaptive Choice of m

A class of resample sizes m that adapts to non-regularity in the data is introduced in

Chakraborty et al. (2013) and is de�ned as a function of the sample size n and of the

regularity measure p. Provided p can be estimated from the data, a simple de�nition of m̂

given by Chakraborty et al. (2013) is m̂ := n
1+α(1−p̂)

1+α , where α > 0 is a tuning parameter and
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p̂ is an estimate of the degree of non-regularity in the data (see below). For a �xed n and α,

in a regular scenario where the second stage treatment e�ect is large, p=0 and so too should

be p̂, so that the resample size would equal n, yielding a standard bootstrap procedure. In a

non-regular situation where the second stage treatment e�ect is small or inexistent, p̂ would

be close to 1, and the resample size would be as small as dictated by α. Once m̂ is chosen,

the construction of (1− η)× 100% con�dence interval for ψ1 is straightforward, where η is a

�xed signi�cance level. Let ψ̂1 denote the estimate of the �rst stage treatment e�ect using

all n individuals and ψ̂
(b)

1,m̂ denote its bootstrap estimate based on resamples of size m̂. We

�nd the lower and upper η/2× 100 percentiles of
√
m̂(ψ̂

(b)

1,m̂− ψ̂1), respectively denoted as l̂

and û. A con�dence set for ψ1 is then given by (ψ̂1 − û/m̂, ψ̂1 − l̂/m̂).

As the true generative model is unknown, the measure of non-regularity p used to de�ne m̂

must be estimated from the data. An intuitive estimator of p, implemented in the DTRreg

package in R, considers the proportion of individuals for which the optimal second stage

treatment is non-unique. Recall that non-regularity occurs when, for an individual with

history h2, the two possible treatments lead to the same expected outcome, resulting in

the two treatments being optimal. Using the data, the estimated blip parameters and their

corresponding standard bootstrap con�dence sets, the idea is to identify individuals for

whom, when considering all blip parameters within their respective con�dence sets, both

treatments are optimal in the sense that the expected outcomes under the two treatment

choices are not signi�cantly di�erent.

The tuning parameter α controls the smallest possible resample size m̂. The choice of α may

be justi�ed by practical consideration, by bounding the smallest possible resample size, or it

may be tuned in a data-driven way. Chakraborty et al. (2013) proposed a double bootstrap

algorithm for choosing α adaptively. The double bootstrap procedure works as a cross-

validation tool for choosing the tuning parameter α such that the coverage of the m-out-of-n

bootstrap for the parameter of interest, say ψ, is close to the desired nominal rate. The
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statistic of interest is estimated in the original sample as ψ̂. The double bootstrap algorithm

sets α to a small value, say 0.025, and draws B1 �rst-level resamples with replacement of size

n from the original data. For each of the B1 resample, (i) the statistics of interest ψ̂(b1) is

estimated, (ii) the resample size m̂(b1) is calculated as a function of p̂ and of the current value

of α, and (iii) B2 second-level bootstrap resamples of size m̂(b1) are drawn. The statistic of

interest is estimated in each second-level bootstrap resample as ψ̂(b1,b2), and B1 con�dence

intervals are constructed for ψ from the distribution of
√
m(b1)(ψ̂(b1,b2)− ψ̂(b1)). The coverage

of the m-out-of-n bootstrap with the current value of α is then estimated by counting how

many of the B1 con�dence intervals constructed this way include ψ̂, the estimate from the

original sample. If the desired nominal rate is reached or exceeded, the current value of α is

chosen to choose a resample size m. Otherwise, α is incremented by a small value, say 0.025,

and the procedure is repeated until it yields the targeted nominal rate. Further details can

be found in the Supplemental Material B.1.

3.3 Simulation

We perform a simulation study to compare the performance of the m-out-of-n bootstrap

to the standard n-out-of-n bootstrap in terms of inference for dWOLS estimators. We

consider nine scenarios with two stages of treatment, each with two possible treatments

and one observed covariate. The generative models can be summarized in terms of: (i)

Xj ∈ {−1, 1}, Aj ∈ {0, 1} for j = 1, 2; (ii) P (Aj = 1) = P (Aj = 0) = 0.5 for j = 1, 2;

(iii) X1 ∼ 2×Bernoulli(0.5)− 1, X2|X1, A1 ∼ 2×Bernoulli(expit{δ1X1 + δ2(2A1 − 1)})− 1

where expit(x) = exp(x)/(1 + exp(x)); (iv) Y1 ≡ 0, Y2 = λ1 + λ2X1 + λ3A1 + λ4X1A1 +

λ5A2 + λ6X2A2 + λ7A1A2 + ε with ε ∼ N(0, 1). Individual histories are given by H2β =

(1, X1, A1, X1A1)T , H2ψ = (1, X2, A1)T and H1β = H1ψ = (1, X1)T . We use the following
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treatment-free and blip models speci�cation:

f2(h2β;β2) = β20 + β21X1 + β22A1 + β23X1A1

γ2(h2ψ;ψ2) = A2 (ψ20 + ψ21X2 + ψ22A1)

f1(h1β;β1) = β10 + β11X1

γ1(h1ψ;ψ2) = A1 (ψ10 + ψ11X1) .

These generative models have been chosen to consider di�erent degrees of non-regularity

(Chakraborty et al., 2010) which can be de�ned in terms of (i) the probability of generating

an individual history such that λ5A2 +λ6X2A2 +λ7A1A2 = 0 and (ii) the standardized e�ect

size E[(λ5 + λ6X1 + λ7A1)/
√

Var(λ5 + λ6X1 + λ7A1)]. Details on how those parameters in-

�uence non-regularity are given in the Supplemental Material B.2. Table 3.1 summarizes the

parameter settings and the scenario type (�regular", �near non-regular", �non-regular").

Table 3.1: Parameter settings for nine classes of generative model, classi�ed as �non-regular�,
�near non-regular�, and �regular.� The models are de�ned with (i)X1 ∼ 2×Bernoulli(0.5)−1,
(ii) X2|X1, A1 ∼ 2 × Bernoulli(expit{δ1X1 + δ2(2A1 − 1)}) − 1, and (iii) Y2 = λ1 + λ2X1 +
λ3A1 + λ4X1A1 + λ5A2 + λ6X2A2 + λ7A1A2 + ε.

Scenario λ δ Type

1 (0, 0, 0, 0, 0, 0, 0)T (0.5, 0.5)T non-regular
2 (0, 0, 0, 0, 0.01, 0, 0)T (0.5, 0.5)T near non-regular
3 (0, 0,−0.5, 0, 0.5, 0,−0.5)T (0.5, 0.5)T non-regular
4 (0, 0,−0.5, 0, 0.99, 0,−0.98)T (0.5, 0.5)T near non-regular
5 (0, 0,−0.5, 0, 1, 0.5,−0.5)T (1.0, 0)T non-regular
6 (0, 0,−0.5, 0, 0.25, 0.5, 0.5)T (0.1, 0.1)T regular
7 (0, 0,−0.25, 0, 0.75, 0.5, 0.5)T (0.1, 0.1)T regular
8 (0, 0, 0, 0, 1, 0,−1)T (0, 0)T non-regular
9 (0, 0, 0, 0, 0.25, 0,−0.24)T (0.5, 0.5)T near non-regular

We compare the performance of the following methods to construct a con�dence interval for

the main e�ect of the �rst stage treatment ψ10 using dWOLS as method of analysis: (i) the

standard n-out-of-n bootstrap; (ii) the m-out-of-n bootstrap using α=0.05; (iii) the m-out-

of-n bootstrap using α=0.1, and (iv) the m-out-of-n bootstrap using double bootstrap to
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choose α in a data-driven way. For each scenario, we use 1000 simulated datasets with a

�xed sample size n=300. We �x the number of bootstrap replicated to B=1000. For the

double bootstrap procedure, we use B1=B2=500 replications.

We report simulation results in terms of average resample size m̂, coverage rates and average

width of the con�dence intervals for ψ10. Table 3.2 shows the average resample sizes m̂

obtained from the four methods to construct a con�dence interval for ψ10. As expected,

for each scenario, the average resample sizes are smaller for the m-out-of-n bootstrap with

�xed α=0.1 compared to the m-out-of-n bootstrap with �xed α=0.05 as larger values of

the tuning parameter α yield smaller possible resample size m̂. On average, the m-out-of-n

bootstrap with adaptive choice of m̂ chooses the tuning parameter α around 0.05, and so the

corresponding resample sizes and other performance metrics are similar to those for the m-

out-of-n bootstrap with �xed α=0.05. Figure 3.1 shows the corresponding coverage rates and

average con�dence interval width for the four methods. As anticipated, con�dence intervals

constructed via the standard bootstrap (solid lines) have the smallest width, on average.

However, the corresponding coverage rates are below the nominal rate of 0.95, with the

coverage rates being signi�cantly di�erent than the nominal coverage rate of 0.95 (marked in

Table 3.2: Average bootstrap resample size over the 1000 simulated data sets. The columns
represent the nine di�erent scenarios with the degree of non-regularity denoted by NR = non-
regular, NNR = near non-regular, R = regular. The rows represent the four di�erent methods
of constructing CIs: (i) the regular n-out-of-n bootstrap (nn), (ii) the m-out-of-n bootstrap
with �xed α=0.05 (mn0.05), (iii) the m-out-of-n bootstrap with �xed α=0.1 (mn0.1), and (iv)
the m-out-of-n bootstrap with adaptive choice of α using double bootstrap. The average
values of the tuning parameter α for the last method are presented in the last row.

Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6 Sc.7 Sc.8 Sc.9
CI Method NR NNR NR NNR NR R R NR NNR

(i) nn 300 300 300 300 300 300 300 300 300
(ii) mn0.05 228.83 228.89 242.14 261.56 254.63 258.45 262.80 261.69 231.38
(iii) mn0.1 178.97 178.96 200.64 231.09 217.93 225.84 233.32 230.97 182.97
(iv) mnα̂ 235.26 236.39 236.99 264.11 254.62 259.45 261.94 264.62 228.93

α̂ (0.046) (0.045) (0.056) (0.047) (0.050) (0.051) (0.052) (0.047) (0.054)
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bold) in most examples. The m-out-of-n bootstrap with �xed α=0.1 (dotted lines) yields the

most conservative and wider con�dence intervals with coverage rates larger than 0.95 in most

examples. With �xed α=0.05 (dashed lines), the m-out-of-n bootstrap reduces conservatism

in most examples, but exhibits under-coverage in two scenarios (5 and 9). Interestingly, all

three m-out-of-n bootstrap approaches outperform the regular bootstrap in the two regular

scenarios (6 and 7). We also considered B=5,000 and 10,000; results were stable (results not

shown).
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Figure 3.1: Monte Carlo estimates of the mean width of 95% con�dence intervals for the
main e�ect of treatment (ψ10) for nine scenarios (y-axis) with corresponding degree of non-
regularity denoted by NR = non-regular, NNR = near non-regular, R = regular. Four
di�erent methods for constructing CIs are presented: the regular n-out-of-n bootstrap (nn,
solid lines), the m-out-of-n bootstrap with �xed α=0.05 (mn 0.05, dashed lines), the m-
out-of-n bootstrap with �xed α=0.1 (mn 0.1, dotted lines), and the m-out-of-n bootstrap
with adaptive choice of α using double bootstrap (mn adaptive, two-dash lines). Coverage
rates are indicated on the right of the CIs, with coverages signi�cantly di�erent than 0.95 at
signi�cance level 0.05 marked in bold. The actual value of ψ10 varies across scenarios.
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3.4 The PROBIT

The PROBIT study, a cluster-randomized trial, was initiated in the mid-1990s to investigate

the e�ect of the promotion of exclusive breastfeeding on infant health outcomes (Kramer et

al., 2001). Thirty-two hospitals in Belarus were paired according to hospital-level character-

istics, and within each pair, one hospital was randomized to the experimental intervention

while the other hospital was encouraged to continue with its usual practice in terms of breast-

feeding education. Sociodemographic and clinical information on the mother and her infant

was recorded at enrolment, and detailed information about infant health and feeding habits

were collected at routine visits held at 1, 2, 3, 6, 9 and 12 mo. The PROBIT cohort was

further followed, and health and development outcomes were collected when the children in

the cohort were approximately 6.5 years old.

We used the PROBIT data to assess whether the introduction of solid food should be tailored

to infant characteristics, considering three long-term health outcomes measured at 6.5 years

of age: BMI, waist circumference, and triceps skinfold thickness. Note that the introduction

of solid food was not randomized and thus the available data are �observational� (Moodie et

al., 2009). Previous analyses (Kramer et al., 2009; Moodie et al., 2009; Wallace & Moodie,

2015), though not conducted in a DTR framework, have suggested that there may be an

e�ect of the infant diet on long-term health outcomes, but that this e�ect is likely to be

small. DTR parameters are thus likely to have non-regular limiting distributions.

We removed infants who were introduced to cereals or other type of solid food before the age

of 3 mo as we believe they represent a di�erent population from the one we aim to study. We

de�ned the two stages of binary intervention as whether or not the infant received cereals

between 3�6 mo (A1) and between 6�9 mo (A2). For example, an infant who was not feed with

cereals between 3 and 6 mo, but received cereals between 6 and 9 mo would have A1=0 and

A2=1. We consider three separate DTR analyses maximizing each outcome transformed to

the negative scale assuming smaller BMI, waist circumference, and triceps skinfold thickness
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values are preferred among children who are not underweight. At each stage, we considered

infant weight at the start of the interval as the only tailoring variable, de�ning the blip

functions as γ1(h1, a1;ψ1) = a1(ψ10 + ψ11 × infant weight at 3 mo) and γ2(h2, a2;ψ2) =

a2(ψ20 +ψ21× infant weight at 6 mo). We de�ned the treatment-free model linearly at each

stage, depending on the following covariates: infant weight at the start of the interval,

infant sex, mother's alcohol consumption and smoking status during the interval, mother's

BMI, father's BMI, infant symptom indicators (rash, gastrointestinal and respiratory tract

infection, other illnesses), and hospitalization of the infant. We include a cluster indicator

in the treatment-free model to account for pairing of hospitals at randomization. We de�nes

the treatment model at each stage as the probability of an infant receiving cereals at that

stage, which depends on a wide variety of variables measured prior to the intervention:

randomization arm, infant sex, infant weight at the start of the interval, mother's age,

parity, mother's alcohol consumption and smoking status during the interval, gestational

age, symptom indicators, hospitalization.

For each health outcome separately, we carried out two kind of analyses: a naive complete-

case analysis and an analysis using inverse probability of censoring weights (IPCW) (Robins

et al., 1995). An infant was considered as censored at a given stage if he has a missing

value for the intervention at that stage. For the complete-case analysis, we removed an

infant from the analysis at a given stage and in all previous stages if he has missing values

in at least one covariate involved in the calculation of the treatment-free, treatment or blip

model at that stage. For the IPCW analysis, the probability of censoring at each stage was

modeled with a logistic regression using the full covariate history up to that point, except

parental BMI since almost all infants who had missing value(s) in the outcome(s) also had

missing values for parental BMI. To account for the clustered nature of the PROBIT data

(clustering of children within hospital pairs), we used a strati�ed standard bootstrap (Bickel

& Freedman, 1984), and a proportionally allocated, strati�ed m-out-of-n bootstrap (Müller

& Welsh, 2009) to draw resamples to construct the con�dence intervals, where strati�cation
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is with respect to hospital pairs.

Table 3.3 presents a subset of the infant-mother characteristics observed at baseline and

through the course of the study. Out of the 17,046 infant-mother pairs initially included in

the PROBIT trial, 4,031 infants were excluded because they were introduced to solid food

before 3 mo, and 28 infants were removed from the analysis because their BMI at 6.5 years

old fell below the WHO threshold of severe thinness (�Growth reference 5-19 years�, 2007),

leaving a sample size of 12,987 infants. Missing values occurred more frequently in variables

measured at the 6.5 years old follow-up visit, where more than 27% (n=3,582) of the infants

had missing values in at least one of: BMI, waist circumference, triceps skinfold thickness,

mother's BMI, or father's BMI.

Table 3.3: Baseline characteristics, stage-speci�c measurements, and measured outcomes for
infant-mother pairs included in the PROBIT data analysis.

Characteristics† (n=12,987 ) Missing values

Baseline
Sex (% female) 48.1 (6,247) 0
Gestational age (in weeks) 39.4 (1.0) 0
Mother's age at birth 24.9 (0.4) 0
Mother's BMI 24.5 (4.3) 2,701
Father's BMI 25.7 (3.3) 3,582
Stage-speci�c
Infant weight at 3 mo (in kg) 6.1 (0.7) 388
Infant weight at 6 mo (in kg) 8.1 (0.8) 526
Outcomes
BMI (in kg/m2) 15.6 (1.7) 2,601
Waist circumference (in cm) 54.5 (4.3) 2,597
Triceps skinfold (in mm) 10.0 (3.9) 2,599

† Reported as mean (standard deviation) or % (n)

The blip parameters estimated via the complete-case analysis are shown in Table 3.4. No

signi�cant e�ect of the the introduction of cereals or its interaction with infant weight was

observed for any of the three outcomes. The non-signi�cant e�ects of the second stage pa-

rameters suggest that the �rst stage estimators have non-regular distributions, and that the

corresponding standard bootstrap con�dence intervals may have poor coverage. As expected,
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all m-out-of-n bootstrap con�dence intervals are larger compared to the corresponding stan-

dard bootstrap con�dence interval. To use these results to identify an optimal DTR with

respect to a given outcome, the sign of ψ̂j0 + ψ̂j1 × infant weightj should be calculated for

each j stage, for j = 1, 2. For example, for an optimal value of BMI at 6.5 years old, only

infants weighting more than 0.40
0.06

= 6.67 kilograms (kg) at 3 months should be introduced

to solid food between 3 and 6 months (if we were to ignore the non-signi�cance of the �nd-

ings). Results with the IPCW analysis are very similar to the complete-case analysis (see

the Supplemental Material B.3). Diagnostic plots did not raise any concerns regarding any

of the �tted models (see the Supplemental Material B.4).

Table 3.4: Estimates of the blip parameters (ψ10, ψ11, ψ20, ψ21) in the PROBIT data analysis
with three outcomes using the complete-case observations along with 95% con�dence inter-
vals calculated with standard bootstrap (nn), m-out-of-n bootstrap with α=0.05 (mn0.05),
m-out-of-n bootstrap with α=0.1 (mn0.1) and m-out-of-n bootstrap with adaptive choice of
α (mnα̂).

Complete-case analysis

95% Con�dence Interval

Estimates nn mn0.05 mn0.1 mnα̂

BMI (n1
†=8,910, n2

‡=9,144, α̂††=0.07)

ψ̂10 -0.40 (-1.22; 0.42) (-1.40; 0.60) (-1.72; 0.93) (-1.49; 0.69)

ψ̂11 0.06 (-0.10; 0.22) (-0.12; 0.25) (-0.16; 0.28) (-0.14; 0.26)

ψ̂20 -0.55 (-1.84; 0.74) (-2.19; 1.10) (-2.56; 1.46) (-2.39; 1.30)

ψ̂21 0.06 (-0.12; 0.24) (-0.16; 0.28) (-0.19; 0.31) (-0.18; 0.30)
Waist Circumference (n1=8,913, n2=9,147, α̂=0.08)

ψ̂10 0.37 (-1.77; 2.52) (-2.37; 3.11) (-2.71; 3.46) (-2.51; 3.26)

ψ̂11 -0.09 (-0.45; 0.27) (-0.54; 0.36) (-0.59; 0.42) (-0.56; 0.38)

ψ̂20 -1.46 (-4.87; 1.95) (-5.86; 2.94) (-6.83; 3.92) (-6.39; 3.47)

ψ̂21 0.22 (-0.22; 0.65) (-0.33; 0.77) (-0.45; 0.89) (-0.40; 0.83)
Triceps Skinfold Thickness (n1=8,911, n2=9,145, α̂=0.08)

ψ̂10 -1.38 (-3.11; 0.35) (-3.61; 0.85) (-3.96; 1.20) (-3.90; 1.14)

ψ̂11 0.22 (-0.07; 0.51) (-0.15; 0.58) (-0.20; 0.64) (-0.20; 0.63)

ψ̂20 -0.40 (-3.61; 2.81) (-4.53; 3.73) (-5.51; 4.71) (-5.23; 4.42)

ψ̂21 0.05 (-0.35; 0.47) (-0.46; 0.58) (-0.58; 0.70) (-0.55; 0.67)

† Sample size at �rst stage, ‡ Sample size at second stage, †† Adaptive α
Using double bootstrap
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3.5 Discussion

Inferential methods for DTR are typically either robust but theoretically involved (and some-

times also hard to implement), or practically accessible at the cost of relying on stronger

modelling assumptions. The dWOLS approach has reunited the robustness of G-estimation

and the accessibility of Q-learning into a theoretically accessible, easy to implement, robust

and checkable framework. We have further enriched dWOLS with tools for valid inference

in any situations, notably in non-regular situations where the e�ect of a treatment e�ect is

weak or null for all or some subjects. Speci�cally, when the e�ect of an intervention is small

at a given stage, the dWOLS estimators in previous stages are likely to have non-regular

distributions, and standard bootstrap con�dence intervals may exhibit poor coverage. With

simulations, we showed that constructing con�dence intervals with the m-out-of-n bootstrap

procedure provides an accurate solution for remedying the standard bootstrap inconsis-

tency.

Small stage-speci�c e�ects are anticipated in experimental randomized controlled trials, or

in large-scale observation studies of treatment sequences. Our application to the PROBIT

dataset was an example of a real situation where DTR estimators are likely to have non-

regular distributions. We investigated whether the timing of the introduction of solid food

into infant diets a�ected three long-term health outcomes. We found that solid food intake

between 6 and 9 mo had a small, non-signi�cant e�ect on BMI, waist circumference or triceps

skinfold thickness, such that the main e�ect estimator of solid food intake between 3 and 6

mo was likely to have a non-regular distribution.

Our analysis is subject to some limitations. In particular, in the PROBIT data, it was not

known precisely within each interval when solid food was introduced. This may introduce

some partial misclassi�cation in the exposure, with children breastfed for very little or nearly

all of an interval classi�ed in the same exposure group. Moreover, infant growth during the

�rst year of life is likely a highly dynamic process, in which infant-feeding habits and infant
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general health characteristics may a�ect one another in close succession, so that the length

of the intervals considered in our analysis may be too coarse to capture the dynamic nature

of infant growth and maternal decisions about continued breastfeeding. Finally, there may

be unmeasured confounders a�ecting the conclusion of our analyses, e.g. maternal education

regarding or attitude towards nutrition (Kramer et al., 2002).

The m-out-of-n bootstrap has been used widely in the literature to correct for the inconsis-

tency of the standard bootstrap procedure in some situations, such as in non-regular cases.

In the broad class of problems in which a statistic has a discontinuity in its limiting dis-

tribution, the m-out-of-n bootstrap does not always work in the sense that the resulting

con�dence intervals may dramatically exceed the nominal level (Andrews & Guggenberger,

2010). Moreover, theoretical justi�cations for the choice of m are merely based on asymp-

totic conditions on m as a function of n, and it is necessary to rely on data-driven methods

for the selection of m (Bickel et al., 1997). As the validity of the m-out-of-n bootstrap

is not guaranteed in all settings, and as the choice of m may have a considerable impact

on the performance of the procedure, it is necessary to evaluate to validate the m-out-of-n

bootstrap as a tool for making valid inference in each new application as we did in this work

with dWOLS.

We proposed a methodology, the m-out-of-n bootstrap, for constructing valid con�dence

intervals for the DTR parameters with dWOLS as method of analysis. As expected, the class

of resample sizes introduced in Chakraborty et al. (2013) has proven to be particularly well

�tted for dWOLS. The adaptive class of resample sizes presented in this work is de�ned as a

function of an estimate of the non-regularity in the data and a user-speci�ed tuning parameter

α. As for other methods that require selecting a tuning parameter, general recommendations

on how to choose α are dangerous, and cross-validation should be used to select the best

value α in every application. The double bootstrap algorithm, implemented in the DTRreg R

package, provides a convenient cross-validation tool for choosing the tuning parameter α in
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a data-driven adaptive way, and we strongly encourage future users to rely on this approach

for choosing α.

Software

In an e�ort to promote reproducible research, scripts in the form of R code are available at

https://github.com/gabriellesimoneau/Rcode-Biostatistics. As the PROBIT dataset cannot

be shared, an example dataset has been created and sample output provided to show how to

reproduce the analyses in Section 3.4. For questions, comments or remarks about the shared

code, contact the corresponding author (gabrielle.simoneau@mail.mcgill.ca).
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Appendix B � Supplemental Materials

Contains the following sections:

B.1 Adaptive Choice of m � details on the adaptive procedure for choosing the resample

size m̂.

B.2 Details of the Data Generating Process used in the Simulation Study �

details and calculation examples for regular and non-regular simulation scenarios.

B.3 PROBIT: The IPCW Analysis � results with the IPCW analysis of the PROBIT

application.

B.4 PROBIT: Diagnostic Plots � diagnostic plots for the PROBIT application.
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Chapter 4

Estimating Optimal Dynamic Treatment

Regimes With Survival Outcomes

Preamble to Manuscript 2. While the work presented in the previous manuscript built

on one speci�c gap in dWOLS, namely the lack of inferential tools in non-regular scenarios,

the idea for this second project was to further generalize dWOLS to accommodate censored

outcomes. Extending dWOLS to time-to-event data yielded a new method called dynamic

weighted survival modeling (DWSurv), introduced in this manuscript. The original contri-

butions are (i) proposing an extended class of balancing weights that further account for

the censoring mechanism, (ii) proposing an algorithm to derive doubly-robust estimators of

the treatment e�ect and its interactions with tailoring variables in a general K-stage DTR,

(iii) establishing the consistency and double-robustness of the estimators, (iv) deriving the

asymptotic distribution of the estimators, and (v) designing simulation studies for two-stage

DTRs. The manuscript presented in this chapter was accepted for publication in the Journal

of the American Statistical Association and was published online at the time of submitting

this thesis. DWSurv is implemented in R as part of the DTRreg package and is available on

CRAN.
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Abstract

The statistical study of precision medicine is concerned with dynamic treatment regimes

(DTRs) in which treatment decisions are tailored to patient-level information. Individuals

are followed through multiple stages of clinical intervention, and the goal is to perform in-

ferences on the sequence of personalized treatment decision rules to be applied in practice.

Of interest is the identi�cation of an optimal DTR, that is, the sequence of treatment de-

cisions that yields the best expected outcome. Statistical methods for identifying optimal

DTRs from observational data are theoretically complex and not easily implementable by

researchers, especially when the outcome of interest is survival time. We propose a doubly

robust, easy to implement method for estimating optimal DTRs with survival endpoints

subject to right-censoring which requires solving a series of weighted generalized estimating

equations. We provide a proof of consistency that relies on the balancing property of the

weights and derive a formula for the asymptotic variance of the resulting estimators. We

illustrate our novel approach with an application to the treatment of rheumatoid arthritis us-

ing observational data from the Scottish Early Rheumatoid Arthritis Inception Cohort. Our

method, called dynamic weighted survival modeling, has been implemented in the DTRreg

R package. Supplementary materials for this article are available online.
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4.1 Introduction

Precision medicine is an approach to health care in which treatment decisions are tailored

to patient-level information. This approach is especially relevant in the chronic-care en-

vironment where a patient's health condition is changing over time, and treatments must

correspondingly be altered. One such example of a chronic condition is rheumatoid arthritis

(RA). Patients typically experience recurrent episodes of high disease activity followed by

periods of remission during their lifetime. An important clinical question is to determine

which sequence of treatments minimizes a patient's time to remission based on observed

characteristics at the time he/she enters an episode of disease �are-up.

Such adaptive sequences of treatments are called dynamic treatment regimes (DTRs). In the

typical DTR setting, individuals are followed through multiple stages of clinical intervention

and the statistical goal is to perform estimation and inference on the sequence of treatment

decision rules, one at each stage, which uses the individual's characteristics as inputs and

yields a recommended treatment. Of particular interest is the identi�cation of an optimal

DTR, that is, the sequence of treatment decisions that yields the best expected outcome. In

the RA example, an optimal DTR would yield the shortest time to remission in subgroups

of individuals with similar characteristics.

Guidelines from the American College of Rheumatology (ACR) recommend an adaptive

sequence of treatments to achieve remission in patients with RA (Singh et al., 2016). Rec-

ommendations were designed by a group of highly specialized clinicians and epidemiologists

based on the balance of relative bene�ts and harms of the treatment options, and the quality

of evidence from the literature. Yet, the evidence derived from single-stage clinical trials or

observational studies that compared �rst- and second-line treatments separately does not ac-

count for the dynamic nature of the treatment of RA. This might have profound implications

on the identi�cation of optimal regimes; focusing on the e�cacy of the �rst-line treatment

may unknowingly set patients on regimes that preclude more e�ective later-stage treatments,
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thus the importance of using adequate statistical methods.

In observational data, the fact that the �rst-line treatment a�ects the outcome but also

subsequent patient characteristics and treatments, which are in turn predictors of the out-

come, leads to a complex interplay between treatments and outcomes, making the discovery

of an optimal DTR a challenging task. When the optimization criterion is based on maxi-

mizing time-to-event, the possibility of right-censoring complicates the estimation procedure

because patients do not necessarily enter all stages of clinical intervention if they experience

an event or are censored before reaching the end of the study.

There is a substantial statistical literature on methods to identify an optimal DTR from

observational data (e.g. Murphy, 2003; Robins, 2004; B. Zhang et al., 2013; Y. Q. Zhao et al.,

2015) yet only a few methods have been proposed to accommodate time-to-event endpoints

subject to right-censoring. Q-learning has been extended for censored data to �nd treatment

regimes that lead to longer survival time (Goldberg & Kosorok, 2012). The method requires

positing parametric models for the survival time at each stage of intervention and making

predictions under optimal treatment assignments. Its approach to modeling is simple and

intuitive, using inverse probability of censoring weights (IPCW) to account for censoring.

However, it lacks robustness to model misspeci�cation, it is currently only implemented in

MatLab and it assumes that censoring is independent of observed trajectories. A related

method uses accelerated failure time (AFT) to model the survival time at each stage of

intervention (Huang et al., 2014) � a model that could equally be adopted in Q-learning �

however, this approach requires making predictions only for individuals who did not receive

their optimal treatment. Although the method does not make the restrictive assumption

of random (covariate-independent) censoring, it is singly-robust and not implemented in a

statistical software package. G-estimation is an alternative regression-based approach to

uncover optimal DTR with survival outcomes but it remains unpopular given its theoretical

complexity and computational burden (Hernán & Robins, 2010; Robins & Greenland, 1994).
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A number of value search or classi�cation-based methods have been proposed with survival

endpoints (Bai et al., 2017; Hager et al., 2018; Jiang et al., 2017a; Y. Q. Zhao et al., 2014b)

but they provide a less intuitive approach to both modeling and model-checking and often

lack tools for valid inference on the decision rules themselves.

This article provides a new, theoretically robust approach to estimation of an optimal

DTR with survival outcomes subject to right-censoring. Our method extends the dynamic

weighted ordinary least squares (dWOLS) approach (Wallace & Moodie, 2015) to time-to-

event data and borrows from the singly robust framework set up by Huang et al. (2014).

DWOLS is an easily implementable statistical method that unites the double-robustness of

G-estimation and the simplicity of Q-learning when the outcome is continuous and uncen-

sored. It accounts for nonrandomized treatment assignments with a broad class of weights.

Our extension to time-to-event data incorporates a �exible number of stages of intervention,

as in Q-learning, thus allowing individuals to experience an event or be censored before the

end of the follow-up, and it allows censoring to depend on time-varying individual trajec-

tories. The balancing weights introduced in dWOLS and extensively discussed by Li et al.

(2018) are extended to incorporate IPCW. Our method, named dynamic weighted survival

modeling (DWSurv), is doubly robust, easy to understand by non-statisticians, and has tools

for inference and model-checking. We have implemented DWSurv in the DTRreg package in

R (Wallace et al., 2017a).

We introduce our methodology in Section 4.2. Section 4.3 evaluates the performance of DW-

Surv and a related method in extensive simulation studies. Section 4.4 illustrates DWSurv

in an application to the treatment of RA using the Scottish Early Rheumatoid Arthritis

(SERA) Inception Cohort.
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4.2 Methodology

With the outcome of interest being survival time, an optimal DTR aims to identify the

sequence of decision rules that leads to longer survival time. Similar notations and principles

apply when the goal is to minimize the time to an event, for example, minimize time to

remission.

4.2.1 Notation and Assumptions

Unless speci�ed otherwise, upper cases, lower cases and bold respectively denote random

variables, realizations of random variables and vectors. Data needed to estimate a DTR

consist of longitudinal trajectories of covariates and treatments across a maximum of J

stages of clinical intervention. Let individuals be identi�ed with a subscript i = 1, ..., n

(often dropped for clarity) and stages be denoted by a second subscript j = 1, ..., J . Let ηj

be a random variable which takes value 1 if a participant entered stage j and 0 otherwise,

where all should have at least η1=1. Let Aj ∈ (0, 1) denote the treatment received at the

beginning of stage j. Let Tj be the survival time within stage j, with Tj set to zero when

ηj=0. The outcome is the overall survival time de�ned as the sum of the stage-speci�c

survival times T =
∑J

j=1 ηjTj. We de�ne the counterfactual survival time T a =
∑J

j=1 ηjT
aj

j

where T
aj

j denotes the potential survival time within stage j if, possibly contrary to fact, an

individual were given treatments aj = (a1, ..., aj) ∈ (0, 1)j, with a = aJ. The censoring time

is denoted by C. Let Y = min(T,C) and let ∆ = I(T ≤ C) denote the failure indicator. Let

Xj be a vector of covariates measured prior to the jth treatment. Denote an individual's

history byHj taking values hj ∈ Hj, the sample space forHj , which represents a shorthand

for the information available prior to making the jth treatment decision, including (functions

of) previous treatment assignments, covariates, and survival times. The observed data are

given by the individual trajectories (ηi1,Xi1, Ai1, Ti1, ..., ηiJ ,XiJ , AiJ , TiJ ,∆i), where Aij and
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Xij are missing when ηij=0. A DTR consists of a set of decision rules {d(h1), ..., d(hJ)} ∈ D

where D denotes the class of all possible treatment regimes. At each stage j, the decision rule

is a function d(hj) : Hj → (0, 1) that inputs the observed history hj and outputs a treatment.

An optimal DTR is the set of decision rules {dopt(h1), ..., dopt(hJ)} that maximizes the overall

expected survival time E(T a).

To identify an optimal DTR, we rely on the axiom of consistency to link counterfactuals to

observed data. We also make the following assumptions:

1. Stable unit treatment value (Rubin, 1980) � it requires that an individual's outcome

is not in�uenced by other individuals' treatment allocation;

2. Sequential ignorability (Robins, 2000b) � it is the no unmeasured confounder assump-

tion extended to longitudinal settings, which further requires that the treatment as-

signment at a given stage cannot depend on future covariates. It is expressed as{∑J
k≥l T

ak
k : l = j, . . . , J

}
⊥⊥ Aj|Hj , η1, . . . , ηj;

3. Coarsening at random (Gill et al., 1997) � it assumes that, at the beginning of each

stage, the probability of censoring onwards is independent of future outcomes, given

accrued information. It is expressed as
{∑J

k≥l T
ak
k : l = j, . . . , J

}
⊥⊥ ∆|Hj , η1, . . . , ηj.

4.2.2 De�nition of Optimal Dynamic Treatment Regimes

For simplicity, we de�ne an optimal DTR with up to two stages of intervention and denote

the optimal stage 1 and stage 2 decision rules, dopt(h1) and dopt(h2), with the shorthand aopt1

and aopt2 , respectively. It is straightforward to extend the following derivations and results

to two stages or more.

Like Q-learning, our approach relies on backward induction to estimate a sequence of treat-

ments that maximizes survival time. As a �rst step, the optimal stage 2 decision rule aopt2

is estimated by considering the e�ect of the stage 2 treatment and its interactions with tai-
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loring variables on a function f(·) of the expected counterfactual survival time from stage

2 onwards, E[f(T a1,a22 )]. Only individuals who entered the second stage contribute to the

estimation of the stage 2 decision rule. In a second step, the optimal stage 1 decision rule is

estimated by considering the e�ect of the stage 1 treatment and its interactions with tailoring

variables on a function of the expected counterfactual overall survival time had the second

stage treatment been optimal, E[f(T a1,a
opt
2 )]. With the aim of maximizing survival time,

this step requires to construct counterfactual survival times under aopt2 by adding a positive

quantity to the observed survival times of the individuals who did not receive their optimal

stage 2 treatment. The �rst stage treatment comparison is then �fair� as it is with respect

to an overall survival time that incorporates the e�ect of the stage 2 treatment, taken to be

optimal for everybody.

Formally, starting with the second stage of intervention, we de�ne the second stage treat-

ments comparison through the blip function

γ2(a2,h2) = E[log(T a1,a22 )− log(T a1,02 )|η2 = 1,H2 = h2]

where we consider f(x) = log(x), stretching the domain to R. The stage 2 blip function is

interpreted as the di�erence between the expected log-survival time within the second stage

of an individual who received some treatment a2 at stage 2 and the expected log-survival

time within stage 2 of the same individual had he received some reference treatment a2=0,

conditional on reaching the second stage and on his observed history h2. The blip function

needs to satisfy γ2(0,h2) = 0. The optimal stage 2 treatment is that which maximizes the

blip aopt2 = arg maxa2γ2(a2,h2). Note that aopt2 is a function of the individual histories such

that it may depend on the �rst and second stage covariates as well as on the �rst stage

treatment.

Next, consider the optimization of the �rst stage treatment. The comparison of the stage 1

treatments is based on the hypothetical situation in which each individual who entered stage
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2 would have received their optimal stage 2 treatment aopt2 . Let T a1,a
opt
2 denote the pseudo-

overall survival time, hereafter referred to as pseudo-outcome, had an individual received his

optimal stage 2 treatment. It is de�ned as T a1,a
opt
2 = T a11 + η2T

a1,a
opt
2

2 to make explicit that

individuals who did not enter the second stage have their pseudo-outcome equal to their

overall survival time, which is equal to the time spent in the �rst stage. We de�ne the �rst

stage treatments comparison through the blip function

γ1(a1,h1) = E[log(T a1,a
opt
2 )− log(T 0,aopt2 )|H1 = h1].

The stage 1 blip function is also interpreted as a di�erence of expected log-transformed

counterfactual outcomes and constrained to γ1(0,h1) = 0. The optimal stage 1 treatment is

that which maximizes the blip aopt1 = arg maxa1γ1(a1,h1).

4.2.3 Accelerated Failure Time Speci�cation

We operationalize the previous optimization procedure by specifying (semi-)parametric mod-

els for the blip functions. AFT models are a natural choice for clinical decision-making, as

the modeling is performed and treatment strategies are compared on the scale of interest:

the expected survival time. We assume an AFT model for log(T a1,a22 ) as

log(T a1,a22 ) = f2(h2β;β2) + a2g2(h2ψ;ψ2) + ε2

where the errors ε2 are independent and identically distributed (i.i.d.) across subjects al-

though more �exible forms such as splines could be incorporated into the model. The

distribution of the errors is left unspeci�ed with E(ε2) = 0. Note that if the errors are not

centered at zero, any deviation is absorbed in the intercept. The model for log(T a1,a22 ) is

separated in two parts: a stage 2 treatment-free component f2(h2β;β2) for any function f2

which depends on (a subset of) the stage 2 history h2 but not on the stage 2 treatment, and
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a stage 2 treatment e�ect component a2g2(h2ψ;ψ2) for any function g2 which depends on (a

potentially di�erent subset of) the stage 2 history and speci�cally includes the main e�ect of

treatment a2 and its interactions with tailoring variables. A typical choice of parametrization

is a linear function

log(T a1,a22 ) = βT2 h2β + a2ψ
T
2 h2ψ + ε2. (4.1)

Under assumptions 1-2, the previous parametrization implies a speci�c form of the stage 2

blip function given by

γ2(a2,h2;ψ2) = E[log(T a1,a22 )− log(T a1,02 )|η2 = 1,H2 = h2;ψ2]

= βT2 h2β + a2ψ
T
2 h2ψ − (βT2 h2β + 0×ψT2 h2ψ)

= a2ψ
T
2 h2ψ.

We identify the optimal stage 2 treatment for each individual who entered the second stage

by aopt2 = I(ψT2 h2ψ > 0).

Now consider the construction of the counterfactual survival time under optimal stage 2

treatment T̃ a1,a
opt
2 as

T̃ (ψ2) := T1 + η2

(
T2 × exp{ψT2 h2ψ[aopt2 − a2]}

)
emphasizing its dependency on the parameters in (4.1). An individual who received his

optimal stage 2 treatment has the term inside the exp(·) equal to zero and his pseudo-

outcome equal to his observed survival time, that is, T̃ (ψ2) = T . An individual who did

not receive his optimal treatment has the term inside the exp(·) greater than zero and his

pseudo-outcome larger than his observed outcome, that is, T̃ (ψ2) > T . An individual who

did not enter the second stage has his pseudo-outcome equal to his observed outcome.

The optimization of the �rst stage treatment proceeds in a similar manner but using the
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counterfactual survival time under optimal stage 2 treatment T̃ a1,a
opt
2 as criterion of optimal-

ity. We assume an AFT model for the pseudo-outcome, for example, as in (4.1) as

log(T̃ a1,a
opt
2 ) = βT1 h1β +ψT1 a1h1ψ + ε1 (4.2)

where the errors ε1 are i.i.d. with distribution left unspeci�ed. The model is also separated

in two parts: a stage 1 treatment-free model βT1 h1β and a stage 1 treatment e�ect model

ψT1 a1h1ψ. As above, this parametrization yields a similar speci�c form for the stage 1 blip

function and optimal decision rule.

This demonstrates that positing an AFT model can be viewed as considering a restricted

class of regimes Dψ whose elements are indexed by the parameters ψ = (ψ1,ψ2) involved

in the decision rules. The form of the decision rules resulting from the proposed linear

parametrization aoptj = I(ψTj hjψ > 0) is motivated by interpretability and feasibility in

practice. For instance, decision rules involving cut-o�s are natural and easy to implement in

clinical practice.

4.2.4 Estimation and Inference

Interest lies in the estimation of the parameters ψ involved in the decision rules. The

estimation procedure needs to account for right-censoring. For this, we use IPCW meth-

ods (Robins & Rotnitzky, 1992) with weights proportional to P(∆ = 1|Hj , Aj, ηj = 1). The

IPCW create a pseudo-population with the same size and same distribution of baseline co-

variates of the original study population with ηj = 1 by replacing the censored individuals

by copies of the uncensored individuals with similar treatments and covariates (Hernán &

Robins, 2010). The estimation procedure also accounts for nonrandomized treatment assign-

ments, also via a weighting argument. A positivity assumption is required: at each stage,

P (Aj = aj|Hj , ηj = 1) > 0 for all treatment options aj and P(∆ = 1|Hj , Aj, ηj = 1) > 0.
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The following algorithm details the estimation procedure:

1. Specify two parametric models for the probability of treatment and the probability

of censoring within stage 2 respectively denoted by P(A2 = 1|H2, η2 = 1;α2) and

P(∆ = 0|H2, A2, η2 = 1;λ2).

2. Specify weights w2(δ, a2,h2; α̂2, λ̂2) and estimate the stage 2 parameters (β2,ψ2) by

solving the following weighted generalized estimating equations (GEE)

U2(ψ2,β2) =
n∑
i=1

δiηi2ŵi2

 hi2β

ai2hi2ψ

(log(Ti2)− βT2 hi2β − ai2ψ
T
2 hi2ψ

)
= 0. (4.3)

Note that (4.3) uses outcomes only for those individuals for whom δ=1.

3. Construct stage 1 pseudo-outcome as

T̃ (ψ̂2) := T1 + η2

(
T2 × exp{ψ̂T2 h2ψ[I(ψ̂T2 h2ψ > 0)− a2]}

)
.

4. Specify two parametric models for the probability of treatment within stage 1 and

the probability of censoring from stage 1 onwards, respectively, denoted by P(A1 =

1|H1;α1) and P(∆ = 0|H1, A1;λ1).

5. Specify weights w1(δ, a1,h1; α̂1, λ̂1) and estimate the stage 1 parameters (β1,ψ1) by

solving the following weighted GEE

U1(ψ1,β1; ψ̂2) =
n∑
i=1

δiŵi1

 hi1β

ai1hi1ψ

(log{T̃i(ψ̂2)} − βT1 hi1β − ai1ψ
T
1 hi1ψ

)
= 0. (4.4)

The form of the weights w1 and w2 must satisfy the balancing property stated in the theorem

below (proof in Supplemental Material C.1).

Theorem 1 (balancing property). Under assumptions 1�3, solving the weighted GEE (4.3) and
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(4.4) will yield consistent estimate of ψ if the weights satisfy the balancing property

[1− g(0,hj)][1− π(hj)]wj(0, 0,hj) = g(0,hj)[1− π(hj)]wj(0, 1,hj)

= [1− g(1,hj)]π(hj)wj(1, 0,hj) = g(1,hj)π(hj)wj(1, 1,hj) (4.5)

where π(hj) = P(Aj = 1|Hj = hj , ηj = 1) and g(aj,hj) = P(∆ = 1|Hj = hj , Aj = aj, ηj =

1), for j = 1, 2.

The balancing property de�nes an entire family of weights. For example, the overlap

weights

wj(δ, aj,hj) =
|aj − P(Aj = 1|ηj = 1,hj)|
P(∆ = δ|ηj = 1, aj,hj)

satisfy (4.5), extending a form of weights previously introduced in the context of uncensored

outcomes (Li et al., 2018; Wallace & Moodie, 2015). They place more emphasis on individuals

with treatment probability 1/2, thus de�ning a target population of substantive clinical

interest, that is, the individuals whose characteristics could appear in any treatment group

with equal probability (Li et al., 2018). IPCW further gives importance to individuals who

were less likely to experience an event.

The consistency and asymptotic normality of the blip estimators ψ̂1 and ψ̂2 can be es-

tablished under standard regularity conditions and the additional assumption that optimal

stage 2 treatments are unique for all subjects (Moodie & Richardson, 2010) (see Supplemen-

tal Material C.2). The estimation procedure o�ers the double-robustness property. At each

stage of optimization j, solving the corresponding weighted GEE yields unbiased estimators

of the parameter ψj when either or both the treatment-free model βTj hj or the weighting

models, which include the treatment model P(Aj = 1|Hj , ηj = 1;αj) and the censoring

model P(∆ = 0|Hj , Aj, ηj = 1;λj), are correctly speci�ed provided that the form of the

decision rule ajψ
T
j hjψ is correct. We derive a formula for the asymptotic variance of the

estimators ψ̂1 and ψ̂2 by performing a �rst-order Taylor expansion of the GEE about the

80



limiting distributions of the nuisance parameters (Moodie, 2009; Robins, 2004).

Note that the construction of the pseudo-outcome might create impossible pseudo-

observation times if the pseudo-outcome exceeds the maximum possible follow-up time (see

examples in Hernán et al. (2005)). In the context of G-estimation, arti�cial censoring has

been proposed as a solution to correct for this, as such �impossible� pseudo-outcomes are

not only unsatisfying but lead to violations of the assumption of independent censoring and

observation times. However, this arti�cial censoring has also been viewed as a major draw-

back of G-estimation (Jo�e, 2001; Jo�e et al., 2012), and has not been adopted in related

approaches such as that of Huang et al. (2014); we follow these authors and do not implement

arti�cial censoring.

4.3 Simulations

We conducted a simulation study to compare the performance of DWSurv to the method

by Huang et al. (2014), hereafter referred to as the method by HNW. Unlike DWSurv, this

approach models the censoring time distribution rather than the censoring probability. Also,

it is not robust to model misspeci�cation, but instead requires correct speci�cation of the

event-time models. The simulation study aimed to (i) evaluate the accuracy, precision and

associated inference of the blip estimators, (ii) evaluate the ability to identify the true optimal

DTR, and (iii) compare the distribution of the survival time under treatment assignment

following the true optimal DTR, the estimated DTR by the two methods and any �xed

treatment strategy.Huang et al. (2014) (HNW)

We simulated data from an observational study with two stages of intervention. Denote

expit(v) = exp(v)/(1 + exp(v)) de�ned for v ∈ R and logit(u) = expit−1(u) de�ned for

u ∈ (0, 1). For individual i, the �rst stage treatment was assigned through a Bernoulli

distribution with P (Ai1 = 1) = expit(−1 + 2Xi1) where Xi1 was a baseline continuous
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covariate generated from a Uniform(0.1, 1.29). Similarly, the assignment of the second stage

treatment was based on a Bernoulli distribution with P (Ai2 = 1) = expit(2.8− 2Xi2) where

Xi2 was a continuous covariate measured at the beginning of the second stage generated

from a Uniform(0.9, 2). We generated ∆i, the censoring indicator, and ηi2, the indicator of

whether an individual entered the second stage, independently from Bernoulli distributions

with probability 0.70 and 0.80, respectively.

For those who experienced an event and entered the second stage (∆i = ηi2 = 1), we used

the AFT model in (4.1) to generate the survival time within the second stage as

Ti2 = exp(4 + 1.1Xi2 − 0.2X3
i2 − 0.1Xi1 + Ai2(−0.9 + 0.6Xi2) + εi2)

where εi2 had a Normal distribution centered at zero with variance 0.09. The true optimal

stage 2 treatment Aopt
i2 , given by I(−0.9 + 0.6Xi2 > 0), was used to calculate the stage 2

survival time had everybody received their optimal stage 2 treatment as

T opt
i2 = exp{log(Ti2) + (Aopt

i2 − Ai2)(−0.9 + 0.6Xi2)}.

For all individuals with ∆i = 1, the (counterfactual) overall survival time under optimal

stage 2 treatment was generated from the AFT model in (4.2) as

T̃i = exp(6.3 + 1.5Xi1 − 0.8X4
i1 + Ai1(0.1 + 0.1Xi1) + εi1)

where εi1 was also normally distributed with mean zero and variance 0.09. For individuals

who did not enter the second stage, T̃i was their observed survival time, that is, Ti = T̃i.

For individuals who entered the second stage, their observed survival time was derived as

Ti = Ti1 +Ti2 where Ti1 = T̃i−T opt
i2 . For those who did not experience an event, we generated

the censoring times from an Exponential distribution with rate 1/300.

This data generating mechanism yielded 30% independent censoring satisfying the assump-
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tions on the censoring mechanism made by both DWSurv and the method by HNW. We

also considered data-generating mechanisms with 60% censoring and with the censoring

time and probability dependent on baseline covariates. Another data-generating mechanism

considered the probability of censoring dependent on time-varying covariates to assess the

consistency and double-robustness of DWSurv in more complex situations. Details on these

alternatives data generating mechanisms are given in the Supplemental Material C.3.

To compare the accuracy and precision of the methods, we considered four simulation scenar-

ios. Scenario 1 assumed that all models (treatment-free, treatment, censoring) were correctly

speci�ed. Scenario 2 misspeci�ed the weight models (treatment and censoring) and correctly

speci�ed the treatment-free model. Scenario 3 had the treatment-free model misspeci�ed

but the weight models correctly speci�ed. Scenario 4 incorrectly speci�ed all models. To

compare the distribution of the survival time under di�erent treatment assignment schemes,

we estimated the optimal decision rules with DWSurv and the method by HNW from one

simulated dataset and then generated larger datasets (n=10,000) with treatment assign-

ment following the optimal decision rules estimated by the two methods. We considered

three sample sizes (n=500, 1000 and 10,000) and simulated 1000 datasets1.

Figure 4.1 shows the distribution of the blip estimates under four scenarios, with sample size

n=1000. As expected, when the treatment-free model was correctly speci�ed (scenarios 1 &

2), both methods were unbiased. Our method yielded unbiased estimators when the weight

models were correctly speci�ed, even if the treatment-free model was not (scenario 3), and

biased estimators only when all models were misspeci�ed. The method by HNW was not

robust to weight model misspeci�cation. The precision of the estimators was comparable

between the two methods. Results were similar with smaller and larger sample sizes, with a

higher proportion of censoring and with censoring dependent on baseline covariates.

1In the event that a data set contained at least one observation with negative Ti1 < 0, the whole dataset
was discarded and a new dataset was generated.
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Figure 4.1: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=1000 across four scenarios: (i) all the models correctly speci�ed, (ii) weight
models misspeci�ed but treatment-free model correctly speci�ed, (iii) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (iv) all models incorrectly speci�ed.
The data were simulated with 30% censoring, with both the probability of censoring and the
censoring times independent of the survival times.

With DWSurv, the proportion of individuals with the optimal DTR correctly identi�ed was

high. With the smallest sample size (n=500) and 30% independent censoring, DWSurv

identi�ed the true optimal DTR for an average of 94% of the individuals over the 1000

simulated datasets (range: 63%�100%). In general, larger sample sizes or lower censoring

percentages yielded higher proportions of individuals with their true optimal DTR correctly

identi�ed. The method by HNW yielded similar results.
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The distribution of the survival times under the optimal treatment decision rules estimated

by DWSurv was comparable to that of the survival time under the true optimal DTR.

With an initial sample size of n=500, the median survival time across 10,000 observations

simulated according to the DTR estimated by DWSurv was 7.07, which was equal to the

median survival time under the true optimal DTR. Because the true optimal treatment is

A1=1 for all individuals and the survival time within the second stage contributed to, on

average, only 22% of the overall survival time (median: 11%), both �xed treatment strategies

with A1=1 also yielded a survival times distribution comparable to the distribution of the

survival times generated under the true optimal DTR. The two �xed treatment strategies

with A1=0 yielded shorter survival times with median 6.90 in both cases. Detailed results

are shown in the Supplemental Material C.3.

4.4 An Application to Rheumatoid Arthritis

We applied our proposed method to a cohort of patients with RA. Current treatment recom-

mendations from the ACR targeted remission time in patients with early RA. At symptom

onset, it was recommended that traditional disease-modifying antirheumatic drug (DMARD)

monotherapy be initiated. At a follow-up visit, if disease activity remained moderate or high

despite DMARD monotherapy, it was recommended to use what we will refer to as DMARD

combination therapy and which was de�ned as traditional double or triple DMARD thera-

pies or adding a tumor necrosis factor (TNF) inhibitor or a non-TNF biologic agent to the

current regime. We aimed to estimate similar rules in a DTR framework. We used data

from the SERA Inception Cohort (Dale et al., 2016), an ongoing cohort of patients with a

diagnosis of undi�erentiated arthritis (UA) or RA. Patients attended a baseline visit and

follow-up visits every 6 months for 3 years, providing data on disease activity, demographics

and drug prescription at each visit. The Supplemental Material C.4 details key covariates,

outcomes, drug categories, and inclusion criteria.
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The primary analysis aimed to estimate two treatment decision rules that minimized time to

remission. The �rst stage of clinical intervention started at the baseline visit and compared

DMARD monotherapy (A1=1) to DMARD combination therapy (A1=0). The second stage

started at the �rst follow-up visit and compared staying on the same therapy (A2=1) or mak-

ing an �acceptable� change to the current regime (A2=0). Acceptable changes were switch-

ing, adding or discontinuing a drug such that the resulting regime was either a DMARD

monotherapy or DMARD combination therapy as described in Table C.33 of the Supple-

mental Material C.4. The outcome was time to remission measured from baseline until the

Disease Activity Score 28 (DAS28) erythrocyte sedimentation rate (ESR) was lower or equal

to 2.6, or the DAS28 C-reactive protein level (CRP) was lower or equal to 2.3 if DAS28-ESR

was not measured. Patients were censored if they were lost to follow-up, made an unau-

thorized drug change or made any kind of treatment change after the �rst follow-up visit.

Details on the implementation are available in the Supplemental Material C.4.

In a secondary analysis, the same methodology was applied to identify a sequence of treat-

ments that minimized the time until a 35% decrease in DAS28 score from baseline was

observed. This alternative endpoint was chosen to increase the number of events, as the pri-

mary analysis was subject to an unusually high proportion of censoring. For both analyses,

we conducted a complete-case analysis. In a sensitivity analysis, we compared the results to

single imputation analysis using chained equations (White et al., 2011).

Table C.34 in the Supplemental Material C.4 summarizes the patients' characteristics at

baseline and at the �rst follow-up visit. A total of 496 patients met our inclusion criteria

among which 488 have complete data. The median follow-up time was 307 days. Approx-

imately 66% of the patients were on a DMARD monotherapy in the �rst stage and 141

patients achieved remission by the end of the �rst stage. A little less than half of the pa-

tients (48%) reached the second stage of intervention, among which 70% remained on the

same treatment and only 11% were in remission before the end of the follow-up period.
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Table 4.1: Inference for a two-stage DTR in the rheumatoid arthritis application.

Time to remission 35% decrease in DAS28

Parameter Est. SE 95% CI Est. SE 95% CI

Baseline (n=488) Baseline (n=482)
ψ10 0.06 0.08 (-0.08, 0.21) 0.09 0.10 (-0.10, 0.29)
ψ11 (DA1) -0.10 0.08 (-0.26, 0.06) -0.14 0.10 (-0.34, 0.06)

1st follow-up (n=236) 1st follow-up (n=144)
ψ20 -0.08 0.12 (-0.33, 0.16) -0.03 0.33 (-0.68, 0.62)
ψ21 (DA2) 0.08 0.41 (-0.72, 0.89) -0.22 0.30 (-0.81, 0.38)
ψ22 (A1) 0.28 0.32 (-0.34, 0.90) 0.14 0.21 (-0.28, 0.55)

DAj : disease activity at the beginning of stage j, Est.: estimates, SE: standard
error, CI: con�dence interval

Table 4.1 shows the parameter estimates involved in the construction of the two treatment

decision rules along with measures of uncertainty in the primary and secondary analyses. At

baseline, the treatment decision rule took the form aopt1 = I(ψ̂10+ψ̂11DA1 < 0) where DAj was

1 if disease activity was moderate or high at the beginning of stage j, 0 otherwise. Although

the e�ects are not signi�cant, the decision rule recommends initiating DMARD monotherapy

if disease activity is moderate or high at baseline. At the �rst follow-up visit, the treatment

decision rule aopt2 = I(ψ̂20 + ψ̂21DA2 + ψ̂22A1 < 0) recommends changing the current regime if

the patient was on DMARD monotherapy in the �rst stage and staying on the same regime

otherwise. In the secondary analysis, although more events were observed overall (243 events

as opposed to 167 in the primary analysis), fewer patients entered the second stage (n=144)

among which a larger proportion (29%) experienced an event. The decision rule in the

second stage is di�erent than in the primary analysis. There was inconsistent evidence

that tailoring treatment based on disease activity or previous treatment was warranted.

Conclusions remained unchanged with single imputation analyses (results not shown). We

emphasize that the analyses presented in this paper were not meant to disprove the current

treatment recommendations but rather aimed to showcase the usefulness of DWSurv in

answering a clinical question.
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4.5 Discussion and Conclusion

We proposed dynamic weighted survival modeling to estimate an optimal DTR from obser-

vational data when the outcome is survival time subject to right-censoring. At each stage of

intervention, our method requires solving weighted GEE with mean structure corresponding

to a semi-parametric AFT model and weights that depend on models for the probability

of being censored and the probability of treatment. With weights satisfying the balancing

property and under standard causal assumptions, the procedure is doubly robust as it yields

consistent estimators of the e�ect of treatment and its interactions with tailoring variables

at each stage if only a subset of the nuisance models is correctly speci�ed. A broad class

of balancing weights are de�ned by combining IPCW with a function of the probability of

treatment. DWSurv is equipped with tools for inference including formulas for the asymp-

totic variance of the blip estimators and an approach to model-checking (Wallace et al., 2016,

2017b). Its implementation by other statisticians or epidemiologists is straightforward with

the DWSurv function in the DTRreg R package.

The de�nition of a stage of intervention was intentionally left vague throughout the notations

and derivations, allowing for stages to be de�ned with respect to the clinical problem under

study. For example, our application to RA considered the time between equally-spaced

follow-up visits as a stage. This de�nition is likely relevant for many chronic diseases where

the patient's condition is monitored routinely. Entering a stage of intervention could also

be viewed as a covariate whose value depends on previous treatments. For example, the

treatment of cancer often includes an initial treatment followed by a salvage treatment

if cancer recurs. In this case, cancer recurrence de�nes the beginning of a second stage.

Regardless of the de�nition of a stage, the estimated optimal decision rule in stage j applies

to the target population of individuals who reach this stage and require this treatment.

Our simulation study considered complex data dependencies, especially with respect to the

censoring mechanism. The data-generating mechanism presented in this article was designed
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to be fair to the compared methods with respect to the assumptions made on the censoring

mechanism. Alternative data generating mechanisms were also designed to showcase the

performance of DWSurv in more realistic and complex situations where both the probability

of treatment and of censoring depended on time-varying covariates. The simulation study

validated the double-robustness of the blip estimators in a multistage setting when the

probability of censoring depended on baseline or time-varying covariates. In particular, when

censoring only depended on baseline information, the proposed method showed equally good

performance as the method by HNW and outperformed it when all confounders were not

included in the treatment-free model.

The double-robustness of the blip estimators is an attractive theoretical property of the DW-

Surv algorithm. More than merely providing additional protection against model misspeci�-

cation, the double-robustness property allows taking advantage of clinical knowledge on the

mechanisms of treatment assignment and censoring through the speci�cation of models that

are deemed easier to inform than the outcome model. The double-robustness property can

also be exploited for model-checking purposes (Wallace et al., 2016).

A key requirement for DWSurv is that the survival time needs to be modeled directly in order

to estimate the pseudo-outcome for a subset of individuals. The Cox model does not provide

a natural framework as it models the hazard function rather than the survival time. It thus

requires additional steps and modeling assumptions to translate the estimated hazards into

a pseudo-outcome. AFT models provide an interesting alternative to Cox models as they are

concerned with the survival time directly. It has been argued that subject-matter knowledge

such as biological mechanisms is easier to translate into interpretable parameters of AFT

models than into those of Cox models (Hernán & Robins, 2010). Note that any parametric

survival models can be used in DWSurv if a speci�c distribution is deemed more appropriate

in a particular setting.

DWSurv relies on the mean survival time to estimate the decision rules. However, when
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administrative censoring is heavy, the tail of the survival distribution may be ill-determined

and the restricted mean survival time, de�ned as the mean of the survival time up to τ >

0, could then be used as an alternative outcome (Karrison, 1997). An additional data

manipulation step is required to de�ne the restricted survival time Yτ as yτ = y if y < τ

and yτ = τ if y ≥ τ , where τ is chosen to be smaller than the longest follow-up time, and

an additional step in the DWSurv algorithm would also be required when constructing the

pseudo-outcomes to ensure that the resulting counterfactual overall survival time does not

exceed τ .

As noted in Section 4.2, we followed Huang et al. (2014) and did not implement arti�cial

censoring. While this could lead to violations of the assumption of independence between

observation and censoring times (conditional on covariates), the found performance of our

estimators was excellent. There may be settings where this does not hold but any gain in

performance due to arti�cial censoring should be weighed against the additional complexity

of the approach relative to the simplicity of the current implementation of DWSurv.

A limitation of our proposed method concerns the estimation of standard errors for the blip

estimators. The asymptotic variance formulas we have derived are useful when all models

are correctly speci�ed. Although the formulas showed good performance in �nite samples,

model misspeci�cation may have a signi�cant impact on their performance. Moreover, under

speci�c longitudinal distributions of the data, all but the last stage blip estimators may be

nonregular in the sense that their asymptotic distribution does not converge uniformly over

the parameter space (Robins, 2004). Future work will look into the performance of alternative

standard error formulations in the presence of nonregularity.

We illustrated our new method with an application to the treatment of RA using observa-

tional data from the SERA Inception Cohort. We aimed to mimic the treatment decision

rules recommended in the 2015 ACR guidelines. We found inconsistent e�ects of tailoring

treatment to disease activity or previous treatment received on the two outcome de�nitions.
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Our analysis was subject to some limitations. First, the use of corticosteroids is a poten-

tial confounder which was not accounted for due to the complexity of summarizing, in a

low dimensional but meaningful way, drugs that are administered in di�erent routes and

at varying frequencies and doses. Second, although we restricted our analysis to patients

who had had a diagnosis less than a year prior to entering the cohort, the baseline visit

did not necessarily coincide with the recommended timing of the �rst treatment decision

in the ACR guidelines. Patients might have been on di�erent treatments before baseline,

leading to a form of exposure misclassi�cation. Finally, despite remission being considered

as the treatment goal in RA, there is no widely used de�nition of remission (Felson et al.,

2011). We used the DAS28-ESR as suggested in the ACR guidelines. As approximately 40%

of the patients had missing DAS28-ESR score at baseline, we used DAS28-CRP scores to

de�ne remission and disease activity level when DAS28-ESR was not available. However,

the DAS28 scores based on ESR and CRP are not directly comparable (Sengul et al., 2015;

Son et al., 2016) and the DAS28-CRP has not been fully validated although we appreciate

that it is widely used (Inoue et al., 2007; Kuriya et al., 2017). We acknowledge that de�ning

levels of disease activity and remission with di�erent thresholds of the DAS28-CRP might

have led to di�erent results but emphasize that our analysis merely aimed to illustrate the

application of DWSurv to a real clinical problem.

The method that we have proposed in this article, DWSurv, allows estimating an optimal

DTR when the outcome of interest is survival time subject to right-censoring. It is theo-

retically attractive, o�ering double-robustness and valid asymptotic variance formulas for

regular settings, and readily applicable in R. Finally, DWSurv eases knowledge translation in

the �eld of precision medicine as it yields parameters that are easily interpretable by clinical

collaborators analogous to risk scores and decision rules that can be applied in practice.
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Software

In an e�ort to promote reproducible research, scripts in the form of R code are available

at https://github.com/gabriellesimoneau/Rcode-JASA2019. For questions, comments or re-

marks about the code, contact the corresponding author
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Appendix C � Supplemental Materials

Contains the following sections:

C.1 Consistency and Double-robustness � formal proof of consistency and double-

robustness of the blip estimators.

C.2 Details on the Asymptotic Variance Formulae � steps to derive the asymptotic

variance of the treatment-free and blip estimators.

C.3 Details on the Simulation Study � details on alternative data generating mecha-

nisms and additional simulation results.

C.4 SERA Data Analysis � additional information about the SERA data application.
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Chapter 5

Finite Sample Variance Estimation for

Optimal Dynamic Treatment Regimes of

Survival Outcomes

Preamble to Manuscript 3. We expected that DWSurv would also su�er from non-

regular inference because it relies on the same type of substitution estimators as in dWOLS.

Therefore, this project initially aimed to study non-regularity in DWSurv and explore the

usefulness of previously proposed tools to correct for its negative impact on inferences. How-

ever, preliminary simulation studies suggested that the asymptotic variance formulae of the

DWSurv blip estimators led to conservative con�dence intervals in regular settings. We

realized that it was important to study and compare di�erent approaches to construct con-

�dence intervals for the DWSurv parameters in general, with non-regular situations as spe-

cial cases. The original contributions in this manuscript are (i) proposing parametric and

non-parametric bootstraps for censored data to be used with DWSurv, and (ii) evaluating

the performance of the asymptotic variance formulae derived for DWSurv estimators (this

has only been done once with G-estimation and uncensored continuous outcomes). This
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manuscript has been submitted to Statistics in Medicine. All inferential tools presented

in this manuscript are implemented in R as part of the DTRreg package and available on

CRAN.
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Abstract

Dynamic weighted survival modeling is an accessible and doubly-robust statistical method to

estimate an optimal dynamic treatment regime when the outcome is survival time. However,

it is unclear how di�erent methods to construct con�dence intervals for the decision rule pa-

rameters compare in practice when the true speci�cation of the nuisance models is unknown

or in non-regular situations. Via simulations, we compare two asymptotic variances based

on sandwich estimation, adjusting or not for the estimation of the nuisance parameters,

to three bootstrap methods. We �nd that the bootstrap approaches perform consistently

well at the cost of longer computational times. The asymptotic variance with adjustments

generally yields conservative con�dence intervals. The asymptotic variance without adjust-

ments yields nominal coverages for large sample sizes. We recommend using the asymptotic

variance with adjustments in small samples and the bootstrap if computationally feasible.

Caution should be taken when non-regularity may be an issue.
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5.1 Introduction

A dynamic treatment regime (DTR) is a set of treatment decision rules that are tailored to

individual characteristics, a form of precision medicine. DTRs are particularly relevant in the

chronic care environment where a patient's condition is changing over time and treatments

must correspondingly be altered. Across multiple stages of clinical intervention, the decision

rules input current patient characteristics and output a recommended treatment. Of interest

is usually to identify an optimal DTR, that is, the sequence of treatment rules that maximizes

or minimizes a certain outcome. Statistical methods for optimal DTR have been proposed

over the last decades (e.g. Murphy, 2003; Robins, 2004; Wallace & Moodie, 2015; B. Zhang

et al., 2013; Y. Q. Zhao et al., 2015) yet only a few have been extended to accommodate

time-to-event outcomes (Bai et al., 2017; Goldberg & Kosorok, 2012; Hager et al., 2018;

Huang et al., 2014; Jiang et al., 2017a). With survival time as the criterion of optimality,

the estimation procedure is complicated by the possibility of censoring and by the fact

that not all individuals may have the same number of decision points. Dynamic weighted

survival modeling (DWSurv) is a method for estimating optimal DTRs with censored survival

outcomes (Simoneau et al., 2018). It is robust, easy to understand by practitioners and

readily applicable in R with the dWSurv function in the DTRreg package (Wallace et al.,

2017a). It requires solving a series of weighted generalized estimating equations (GEE)

with mean structure satisfying a semi-parametric accelerated failure time (AFT) model and

weights that depend on nuisance models for the probability of treatment and censoring.

Under standard regularity conditions, DWSurv estimators are asymptotically normal and

con�dence intervals with nominal coverage can be constructed for large n.

The asymptotic variance of the DWSurv estimators accounts for the estimation of the param-

eters in the nuisance models through a series of adjustments. These adjustments are found

in the �rst-order Taylor expansion of the estimating equations about the limiting values of

the nuisance parameters. An application of the delta method then allows to approximate the
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asymptotic variance of the DWSurv estimators. A �naive� version of the variance formula

which ignores the adjustments could also be considered in practice. However, it is unclear

how both formulations of the asymptotic variance perform in �nite samples, for example, as

the number of nuisance parameters increases (Moodie, 2006). Moreover, even if the estima-

tors remain consistent under incorrect speci�cation of one of the nuisance models, it is unclear

if model misspeci�cation a�ects the quality of the asymptotic approximation (Robins, 2004).

With G-estimation, where asymptotic derivations are similar to that of DWSurv, it has been

noted that model misspeci�cation may slow the convergence of the con�dence interval cov-

erage to the nominal level (Moodie, 2009). Also, as in other regression-based approaches

for optimal DTR, the DWSurv estimators can be non-regular under certain data generating

mechanisms because the estimation procedure relies on a non-smooth maximization opera-

tion (Moodie & Richardson, 2010; Robins, 2004). This implies that the distribution of the

DWSurv estimators is not uniformly normal over the parameter space; a practical negative

consequence of this is that con�dence intervals based on the asymptotic variance can per-

form poorly in terms of coverage. Alternative methods to construct con�dence intervals for

DWSurv parameters can be used. The standard non-parametric bootstrap, which resam-

ples observations with replacement from the original sample, has been adapted to censored

data (Efron, 1981). Parametric bootstraps for survival times have been proposed (Efron &

Tibshirani, 1986; Hjort, 1985) and reviewed in the context of Cox regressions (Burr, 1994).

However, as with the asymptotic approximation, bootstrap methods can also perform poorly

in non-regular situations (Chakraborty et al., 2010; Simoneau et al., 2017), and the impact

of model misspeci�cation on the quality of inferences remains unclear.

The objective of this study is to compare the performance of �ve methods to construct

con�dence intervals for DWSurv parameters. The comparison via simulations focuses on sit-

uations frequently encountered in practice and for which the choice of a method to construct

con�dence intervals is not simple, for example, when the correct model speci�cations are

unknown and when non-regular inferences can occur. Section 5.2 introduces DWSurv and

98



formalizes non-regularity. Section 5.3 presents the form of the asymptotic variance formula

with and without adjustments for the plug-in nuisance estimators. We also review the boot-

strap and discuss speci�c considerations for its application to DTR. Section 5.4 presents the

simulation studies. Section 5.5 discusses the results and derives general recommendations on

how to choose the best methods to construct con�dence intervals depending on the situation

encountered in practice.

5.2 Dynamic Treatment Regimes

Consider an individual followed through multiple stages of intervention. Each stage j is

associated with two possible treatments aj ∈ {0, 1} and a decision rule d(hj) : Hj → (0, 1)

that inputs the individual's characteristics, or histories, hj measured at the beginning of

that stage and outputs a recommended treatment. The collection of decision rules across all

stages of intervention {d(h1), ..., d(hJ)} is a DTR and of interest is to identify and estimate an

optimal DTR {dopt(h1), ..., dopt(hJ)}, that is, the collection of decision rules that optimizes

an outcome usually measured at the end of the study. With time-to-event data, an optimal

DTR typically aims to maximize the survival time from the �rst stage of intervention until

a negative event (e.g. death) but may also aim to minimize the survival time until a positive

event (e.g. remission from a disease). The outcome is thus the overall survival time de�ned

as the sum of the stage-speci�c survival times T =
∑J

j=1 ηjTj where J is the total possible

number of stages, Tj is the survival time within stage j and ηj indicates whether an individual

reached intervention j. Right-censoring can occur when the outcome for some individuals is

unobserved. The censoring time is denoted with C and the observed time Y is the minimum

between T and C, with ∆ = I(T ≤ C) indicating if an event was observed. The following

details on the DWSurv algorithm are given for a two-stage DTR and apply directly to DTRs

with more than two stages.
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Under standard causal assumptions (Simoneau et al., 2018), DWSurv estimates the decision

rule parameters by assuming semi-parametric AFT models for the survival times across

stages. The estimation of an optimal DTR relies on the principle of backward induction

in which estimation starts in the last stage and moves backward into previous stages. In a

two-stage DTR, estimation for the second stage decision rule is carried out by specifying a

semi-parametric AFT model for the survival time in the second stage with mean

E[log(T2)] = βT2 h2β +ψT2 a2h2ψ (5.1)

where the distribution of the errors is left unspeci�ed except that it should have zero expec-

tation. The mean model has term βT2 h2β that does not depend on the treatment A2, which

is called the treatment-free component, and a term ψT2 a2h2ψ that depends on the treatment,

called the blip component. The optimal stage 2 decision rule is that which maximizes the

expectation given in (5.1) and is expressed as dopt(h2) = I(ψT2 h2ψ > 0) which only depends

on the blip parameters ψ2. If the expression inside the indicator is positive, then receiving

treatment A2 = 1 increases the survival time and the optimal treatment for individuals with

history h2ψ is A2 = 1. Estimation for the �rst stage decision rule is based on optimizing the

overall survival time had everybody received their optimal stage 2 treatment, namely T opt
2 .

This (counterfactual) overall survival time is called the pseudo-survival time T̃ and is de�ned

as T̃ = T1 + η2T
opt
2 . This allows for a fair comparison of the �rst stage treatments on the

overall survival time by ruling out the di�erences between individuals that are attributable

to the second stage treatment. A model for the mean pseudo-survival time T̃ is speci�ed

as

E[log(T̃ )] = βT1 h1β +ψT1 a1h1ψ (5.2)

where the treatment-free and blip components can be identi�ed as in the second stage. Based

on this speci�cation of the blip, the optimal stage 1 decision rule is dopt(h1) = I(ψT1 h1ψ > 0).

Therefore, the optimal DTR is: recommend treatmentA1 = 1 ifψT1 h1ψ > 0. If the individual
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reaches the second stage of intervention, recommend A2 = 1 if ψT2 h2ψ > 0.

DWSurv estimates the parameters of interest, ψ1 and ψ2, by solving a series of weighted

GEE. Inverse probability of censoring is used to account for potential informative censor-

ing. The estimation procedure allows for non-randomized treatment assignments, also via

a weighting argument. A broad family of weights is available (Simoneau et al., 2018), for

example weights of the form |aj−P (Aj = 1|Hj)|/P (∆ = δ|Hj) or inverse probability of cen-

soring and treatment weights could be used. The following algorithm details the estimation

procedure for a DTR with up to two stages:

1. Specify two parametric models for the probability of treatment and the probability

of censoring within stage 2 respectively denoted by P(A2 = 1|η2 = 1,H2;α2) and

P(∆ = 0|η2 = 1,H2, A2;λ2).

2. Specify weights w2(δ, a2,h2; α̂2, λ̂2) using the models speci�ed in step 1 and estimate

the stage 2 parameters (β2,ψ2) by solving the following weighted GEE using only

individuals with δ = 1

U2(ψ2,β2) =
n∑
i=1

δiη2iŵ2i

 h2βi

a2ih2ψi

(log(T2i)− βT2 h2βi −ψT2 a2ih2ψi

)
= 0. (5.3)

3. Construct the pseudo-survival time as

T̃ (ψ̂2) := T1 + η2

(
T2 × exp{ψ̂T2 h2ψ[I(ψ̂T2 h2ψ > 0)− a2]}

)
. (5.4)

4. Specify two parametric models for the probability of treatment within stage 1 and

the probability of censoring from stage 1 onwards, respectively denoted by P(A1 =

1|H1;α1) and P(∆ = 0|H1, A1;λ1).

5. Specify weights w1(δ, a1,h1; α̂1, λ̂1) using the models speci�ed in step 4 and estimate
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the stage 1 parameters (β1,ψ1) by solving

U1(ψ1,β1; ψ̂2) =
n∑
i=1

δiŵ1i

 h1βi

a1ih1ψi

(log{T̃i(ψ̂2)} − βT1 h1βi −ψT1 a1ih1ψi

)
= 0. (5.5)

A one-stage DTR would consist of steps 1 and 2 only while a DTR with three stages or

more repeats steps 3-5 as necessary. The estimation procedure o�ers the double-robustness

property by which, at each stage j, the procedure yields consistent estimators of ψj when

either or both the treatment-free model and/or the treatment and censoring models included

in the weights are correctly speci�ed, provided that the form of the blip is correct.

DWSurv su�ers from nonstandard limit theory (so-called non-regularity) because the con-

struction of the pseudo-survival time involves a non-smooth maximization operation as per

the indicator function in (5.4). As a result, the asymptotic distribution of the �rst stage

blip parameters ψ1 is not uniformly normal. More precisely, the asymptotic distribution of

√
n(ψ̂1 − ψ1) is non-normal if the expression inside the indicator is close to the point of

non-di�erentiability, which corresponds to data generating mechanisms in which the e�ect

of the stage 2 treatment is null or small.

5.3 Measures of Uncertainty

5.3.1 Asymptotic Variance Formulations

In a one-stage DTR, it has been shown that the asymptotic variance of the estimators

(ψ̂, β̂) must adjust for the plug-in estimates of the nuisance parameters α and λ in

U(ψ,β, α̂, λ̂) (Moodie, 2009; Robins, 2004). This is done by performing a �rst-order Taylor

expansion of the estimating function about the limiting values of α̂ and λ̂, say α0 and λ0.

An implementable version, which does not depend on the unknown values α0 and λ0, is
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derived by performing another Taylor expansion, given rise to

Uadj(ψ,β) ≈ U − E
[
∂

∂α
U

]
E
[
∂

∂α
sα

]−1

sα − E
[
∂

∂λ
U

]
E
[
∂

∂λ
sλ

]−1

sλ

where sα and sλ are the score functions for the treatment and censoring models. The

variance-covariance matrix of the estimators (ψ̂, β̂) is

Var(ψ̂, β̂) = E

{E [ ∂

∂(ψ,β)
Uadj

]−1

Uadj

}⊗2
 (5.6)

where E[X⊗2] = E[XXT ]. For a DTR with two stages or more, in all but the last stage, an

additional adjustment term for the plug-in estimators (ψ̂j+1, ..., ψ̂J) appearing in the pseudo-

survival times is added to Uadj (Moodie, 2009). Although the variance (5.6) is asymptotically

correct, its �nite sample performance may depend on the quality of the approximation of

U by Uadj, which may, in turn, depend on the dimension of the nuisance parameters and

the underlying data generating mechanism (Moodie, 2006). As the quality of the adjusted

asymptotic variance may be a�ected by how well one can estimate the nuisance parameters, it

is of interest to compare it to the naive asymptotic variance which does not make adjustments,

given by

Varnaive(ψ̂, β̂) = E

{E [ ∂

∂(ψ,β)
U

]−1

U

}⊗2
 . (5.7)

Although asymptotically incorrect, its performance in �nite samples is unknown and may be

acceptable in some cases. Speci�cally, it may counterbalance the potential negative impact

of an inaccurate approximation of U by Uadj in practice which may be too conservative in

its adjustment for the estimation of the nuisance parameters.
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5.3.2 Bootstrap

We review the standard non-parametric bootstrap by considering the case of uncensored

outcomes in a one-stage DTR. For simplicity, suppose that the parameter of interest ψ

is unidimensional, which corresponds to assuming no e�ect of patient characteristics on

the treatment decision. The goal of the inference is to characterize the distribution of the

estimator ψ̂ which depends on n observations of the form (ti, xi, ai) sampled from an un-

known population distribution F . With F unknown, the sampling distribution of ψ̂ is also

unknown. The idea behind the non-parametric bootstrap is to approximate the distribu-

tion of ψ̂ by sampling from the empirical distribution F̂ that puts probability mass 1/n

on each observed data point (ti, xi, ai). A sample from F̂ is called a bootstrap sample

s? = {(t?1, x?1, a?1), ..., (t?n, x
?
n, a

?
n)} and it corresponds to a random sample of size n drawn

with replacement from the original sample s = {(t1, x1, an), ..., (tn, xn, an)}. The bootstrap

algorithm proceeds in three steps:

1. draw a large number of independent bootstrap samples, say s?1, ..., s
?
B;

2. evaluate the statistic ψ̂ for the b-th bootstrap sample, say ψ̂(b), for b = 1, ..., B; and

3. approximate the distribution of the estimator
√
n(ψ̂n− ψ̂) with the bootstrap analogue

√
n(ψ̂(b) − ψ̂n), where ψ̂n is the estimate obtained using the actual sample s.

A (1− α)× 100% con�dence interval for ψ may be constructed with the α/2 and (1− α/2)

percentiles of the distribution of ψ̂(b), b = 1, ..., B. Other methods have been proposed

to derive con�dence intervals from bootstrap samples (Burr, 1994; Efron, 1992b; Efron &

Tibshirani, 1986).

The bootstrap could alternatively be carried out parametrically by conditioning on (X,A),

which is ancillary for the parameter of interest ψ, and resampling survival times T from FT ,

its parametric distribution. Suppose that the survival times are assumed to follow a semi-

parametric AFT model as log(T ) = xβ + aψ + ε, with E(ε) = 0. Estimators β̂n and ψ̂n are
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obtained with the DWSurv algorithm using the actual sample and residuals are calculated

as ε̂i = log(ti)−xiβ̂n−aiψ̂n. Then, by drawing n times with replacement from the empirical

distribution of the residuals, say ε?1, ..., ε
?
n, and generating the responses conditional on the

observed covariates (xi, ai) from the AFT parametric mean model as t?i = xiβ̂n + aiψ̂n + ε?i ,

a bootstrap sample is obtained as s? = {(t?1, x1, a1), ..., (t?n, xn, an)}. Therefore, step 1 of

the bootstrap algorithm samples from F̂T instead of F̂ . Note that if a speci�c distribution

for the error term ε is deemed reasonable, residuals could be drawn from that parametric

distribution instead of the empirical distribution.

With censored data, the observations are in the form (yi, δi, xi, ai). A natural extension of

the non-parametric bootstrap consists of resampling the quadruplets (yi, δi, xi, ai) to obtain

bootstrap samples s? = {(y?1, δ?1, x?1, a?1), ..., (y?n, δ
?
n, x

?
n, a

?
n)}. Alternatively, one could take

advantage of the structure of the censored data to generate bootstrap samples. We borrow

from Efron & Tibshirani (1986) who discuss a similar idea (see Section 5 therein). A typical

data point (Yi, δi, Xi, Ai) can be thought to be generated in the following way: the event in-

dicator is selected from a Bernoulli distribution δi|Xi, Ai ∼ Ber(pδ). If the event is observed,

Yi = Ti is generated from a survival distribution Ti|Xi, Ai ∼ FT . If the event is not observed,

Yi = Ci is generated from a censoring distribution FC . The observed sample was generated

from the unknown probability mechanism (pδ, FT , FC) and an obvious choice to draw sam-

ples from that mechanism is to replace (pδ, FT , FC) by (p̂δ, F̂T , F̂C). The DWSurv algorithm

assumes a parametric model for the probability of observing the event, P (∆ = 0|X,A;λ),

such that p̂δ could naturally be taken as P (∆ = 0|X,A; λ̂). Also, the DWSurv algorithm

does not make use of the actual censoring times in the estimation procedure and hence spec-

ifying F̂C and resampling censoring times is not necessary to construct bootstrap samples.

The parametric bootstrap modi�es step 1 as following: for each observation i, generate an

event indicator δ?i from p̂δ; if δ
?
i = 1, generate y?i as t?i = xiβ̂n + aiψ̂n + ε?i from F̂T as

in the uncensored case; if δ?i = 0, assign any value to y?i . The resulting bootstrap sam-

ple is s? = {(y?1, δ?1, x1, a1), ..., (y?n, δ
?
n, xn, an)} and steps 2 and 3 of the bootstrap algorithm
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are applied. Compared to uncensored data, this parametric bootstrap makes an additional

parametric assumption on the probability of observing the event.

The non-parametric bootstrap can be directly applied to a DTR with two stages or more,

where individuals with their complete trajectories are drawn with replacement to construct

bootstrap samples in which the DWSurv algorithm is applied to estimate the parame-

ters across all stages. For a DTR with two stages or more, the parametric bootstrap

needs to break down the estimation into as many one-stage DTRs as the total number

of stages. For example, in a two-stage DTR, estimation and inference for the second

stage blip parameter ψ2 are made by considering only the individuals who entered the sec-

ond stage. Conditional on their current history (H2, A2), bootstrap resamples of the form

s? = {(y?21, δ
?
1, h21, a21), ..., (y?2n, δ

?
n, h2n, a2n)} are drawn, where only the stage 2 survival time

is resampled. The event indicator δ? is selected from a Bernoulli distribution with probability

p̂δ2 corresponding to the �tted values of the censoring model in the second stage speci�ed in

step 1 of the DWSurv algorithm. For those with an observed event δ? = 1, y?2i is generated

from the assumed AFT model for the stage 2 survival time by drawing from the residuals.

From the B bootstrap resamples constructed this way, a one-stage DTR is �tted to each

resample with y?2i as the outcome and con�dence intervals are derived for ψ2. Estimation

and inference for the �rst stage parameters ψ1 are carried out separately. Conditional on the

stage 1 history (H1, A1), bootstrap resamples s? = {(ỹ?1, δ?1, h11, a11), ..., (ỹ?n, δ
?
n, h1n, a1n)} are

drawn, where now the pseudo-survival times are resampled. The event indicator is gener-

ated with probability p̂δ1 corresponding to the �tted values of the censoring model in the �rst

stage speci�ed in step 4 of the DWSurv algorithm and ỹ?i is generated from the AFT model

assumed for the pseudo-survival times by drawing from the residuals. A one-stage DTR is

then �tted to each bootstrap resample with ỹ?i as the outcome and con�dence intervals are

derived for ψ1.
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5.4 Simulation Study

The simulation study compares the performance of the �ve following methods to construct

95% con�dence intervals for the DWSurv blip parameters in one- and two-stage DTRs:

1. the adjusted asymptotic variance given by (5.6);

2. the naive asymptotic variance without adjustments given by (5.7);

3. the non-parametric bootstrap;

4. the parametric bootstrap which resamples residuals from their empirical distribution

(also referred to as parametric bootstrap 1);

5. the parametric bootstrap which assumes a Log-normal distribution for the survival

times and thus resamples residuals from a Normal distribution (also referred to as

parametric bootstrap 2).

The performance of the methods is characterized in terms of coverage probability, interval

width, and computational time.

5.4.1 Data Generating Mechanisms

The simulated data mimic two observational studies, one with only one stage of intervention

and the other with up to two stages, both with 30% censoring that depends on individual

characteristics at baseline. Denote expit(v) = exp(v)/(1+exp(v)) de�ned for v ∈ R. The �rst

stage treatment is assigned with P (A1 = 1|X11) = expit(−1+2X11) whereX11 is a continuous

covariate measured at baseline generated from a Uniform [0.1,1.29]. An additional binary

baseline covariate X12 is generated from a Bernoulli distribution with P (X12 = 1) = 0.4.

When applicable, the second stage treatment is assigned with P (A2 = 1|X21) = expit(2.8−

2X21) where X21 is a continuous covariate measured at the beginning of the second stage

generated from a Uniform [0.9,2]. An additional binary covariate measured at the beginning
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of the second stage X22 is generated from a Bernoulli distribution with probability p2, whose

value will be de�ned later to yield di�erent non-regular scenarios. The censoring indicator

is generated with P (∆ = 1|X12) = expit(0.1 + 3X12) and the indicator η2 of whether an

individual enters the second stage is taken as 1 for all individuals such that the event or

censoring only can occur in the second stage.

For the one-stage DTR, individuals who experience an event have their survival time T

generated from an AFT model as

log(T ) = β10 + β11X11 + β12X12 + β13X
4
11 + A1(ψ10 + ψ11X11) + ε

where ε ∼ N(0, 0.09) and (ψ10, ψ11)T = (0.1, 0.1)T , de�ning Log-normal survival times. Two

sets of treatment-free parameters are considered: a linear relationship between X11 and

log(T ) sets β13 = 0 and (β10, β11, β12)T = (4.7, 1.5,−0.8)T , and a nonlinear relationship sets

(β10, β11, β12, β13)T = (4.7, 3,−0.9, 0.05)T . Results from the simulations with a nonlinear

relationship are presented in the Supplemental Materials D.2�D.4.

For the two-stage DTR, the stage 2 survival time T2 is generated for the individuals who

experienced an event as

log(T2) = β20 + β21X21 + β22X22 + β23X
3
21 + β24X11 + A2(ψ20 + ψ21X22) + ε2

where ε2 ∼ N(0, 0.09) and (β20, β21, β22, β23, β24)T = (4, 1.1, 0.01,−0.2, 0.1)T . The value of

the blip parameters (ψ20, ψ21) is chosen later to yield di�erent non-regular scenarios. The

pseudo-survival time under optimal stage 2 treatment is generated as

log(T̃ ) = β10 + β11X11 + β12X12 + A1(ψ10 + ψ11X11) + ε1

where ε1 ∼ N(0, 0.09) and (β10, β11, β12, ψ10, ψ11)T = (6.3, 0.5,−0.01, 0.1, 0.1)T . The ob-

served overall survival time T depends on whether an individual receives his optimal stage
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2 treatment Aopt
2 = I(ψ20 + ψ21X22 > 0). An individual who receives his optimal stage 2

treatment has T = T̃ . Individuals who do not receive their optimal stage 2 treatment have

T = T̃ − T opt
2 where

T opt
2 = exp{log(T2) + (ψ20 + ψ21X22)(Aopt

2 − A2)}.

In both the one- and two-stage DTRs, individuals who are censored have their censoring

time generated from an Exponential distribution with rate 1/300. Sample sizes between 100

and 10,000 for the one-stage DTR and between 300 and 10,000 for the two-stage DTR are

considered and the number of bootstrap resamples is 1000. Each simulation study is based

on 1000 simulated data sets.

5.4.2 Unknown Error Distribution

In a one-stage DTR, we compare the �ve methods across various sample sizes when the sur-

vival times are generated from a Log-normal distribution with a linear relationship between

X11 and log(T ), which corresponds to the data generating mechanism described in Section

5.4.1. In this case, the expectation of the errors is zero as required by DWSurv. We also

perform the comparison with survival times generated from a Weibull distribution obtained

by de�ning ε = log(ε†) with ε† following a Weibull distribution with shape 4 and scale 1. This

de�nes a left-skewed error distribution with mean -0.1, thus violating the requirement on the

expectation of the errors. In this case, the estimators are still unbiased as the systematic

deviation from zero is absorbed by the intercept of the model and the impact on inferences

is investigated in the simulations.
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Figure 5.1: Coverage of 95% con�dence intervals for ψ11 in a one-stage DTR derived with
�ve methods across 1000 simulated data sets with sample sizes ranging from 100 to 10,000
with Log-normal or Weibull survival times. The horizontal dashed lines represent the bounds
for testing the null hypothesis that the coverage equals the nominal rate.

Figure 5.1 shows the coverage of 95% con�dence intervals for the blip parameter ψ11 con-

structed with the �ve methods across various sample sizes. As expected, the coverages

approach the nominal level as the sample size increases. While the naive asymptotic vari-

ance yields lower coverage than the other methods for the smallest sample size of n=100,

the adjusted asymptotic variance exhibits over-coverage for all sample sizes except n=100.

Results are comparable regardless of the true error distribution. Speci�cally, the parametric

bootstrap 2, which mistakenly resamples the survival times from a Log-normal distribution

when the true distribution is Weibull, performs comparably to the other methods. Results

for ψ10 or with data simulated with a nonlinear association between X11 and log(T ) are

similar (see Supplemental Material D.2).

5.4.3 Model Misspeci�cation

This set of simulations considers a one-stage DTR with true Log-normal survival times

generated with a linear relationship between log(T ) and the baseline covariate X11. The

�ve methods for inferences on ψ1 are compared when the treatment-free, treatment or cen-
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soring models are alternatively misspeci�ed as following: the true treatment-free model

β10 +β11X11 +β12X12 is misspeci�ed by omitting X12, a variable associated with the survival

time and the probability of censoring; the treatment and censoring models are both �tted

as a function of an intercept only while their distribution truly depends on X11 and X12,

respectively. Additional misspeci�cations are considered, such as generating survival times

with a true nonlinear treatment-free model as β10 + β11X11 + β12X12 + β13X
4
11 and misspeci-

fying the treatment-free model by omitting the nonlinear component X4
11. Additional results

are presented in the Supplemental Material D.3.

Figure 5.2: Coverage of 95% con�dence intervals for ψ11 in a one-stage DTR derived with
�ve methods across 1000 simulated data sets for sample sizes n=100 (�) and n=1000 (�)
under misspeci�cation of the treatment-free, treatment or censoring model. The dashed lines
represent the bounds for testing the null hypothesis that the coverage equals the nominal
rate.

Figure 5.2 shows the coverage of 95% con�dence intervals for the blip parameter ψ11 under

misspeci�cation of the treatment-free, treatment or censoring model for sample sizes n=100

and 1000. The non-parametric and parametric bootstraps perform well in terms of coverage

regardless of which model is misspeci�ed, for small and larger sample sizes. However, other

ways of misspecifying the treatment-free model lead to poorer performance of the three

bootstrap approaches, with coverage just above 92% across all sample sizes (see Supplemental

Material D.3). The two asymptotic variances yield low coverage with n=100 when either

one of the models is misspeci�ed but yield nominal coverage with a larger sample size when
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the treatment or censoring model is misspeci�ed. However, misspecifying the treatment-free

model yields even lower coverage for the con�dence intervals constructed with the adjusted

asymptotic variance with n=1000 despite the corresponding mean con�dence interval width

of 3.15 being much larger than that with the other methods (0.48 to 0.51). A closer look

into the inferences with the two asymptotic variances shows that the distribution of the

asymptotic standard errors has a heavy right tail driven by large outliers, explaining the large

mean width of the con�dence intervals, but also contains standard error estimates smaller

than that estimated with the other methods, explaining the poor coverage (see Supplemental

Material D.5).

5.4.4 Non-regularity

The impact of non-regularity on inferences is studied with a two-stage DTR with Log-normal

survival times. Table 5.1 presents the parameters of eight data generating mechanisms

characterizing regular and non-regular scenarios, which have already been used to study

the impact of non-regularity on inferences for DTR parameters with continuous outcomes

(Chakraborty et al., 2013; Simoneau et al., 2017). Sample sizes starting from n=300 are

considered in a two-stage DTR to ensure enough individuals reach the second stage. The

degree of non-regularity p is the probability of generating histories h2 = (a1, x11, x12, x21, x22)

such that the stage 2 treatment e�ect is null or small. Therefore, p is equal to P (ψ20 +

ψ21X22 = 0) and depends on the stage 2 blip parameters ψ2 = (ψ21, ψ21) and on X22

through p2 = P (X22 = 1). In practice, p can be estimated by the proportion of individuals

for whom the optimal stage 2 treatment is non-unique. Altogether, the parameters p, p2 and

ψ2 de�ne a non-regular scenario if p > 0, a near non-regular scenario if p = 0 but the linear

combination ψ20 + ψ21X22 is �close� to zero for all or some of the individuals, and a regular

scenario otherwise.

Figure 5.3 shows the coverage of 95% con�dence intervals for the blip parameter ψ11 across
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Table 5.1: Description of the eight regular to non-regular simulation scenarios.

Scenario p ψ2 p2 Description

1 Non-regular 1 (0, 0) 0.3 No e�ect of stage 2 treatment.
2 Near non-regular 0 (0.01, 0) 0.3 Weak stage 2 treatment e�ect.
3 Non-regular 1/2 (−0.5, 0.5) 0.5 No e�ect of stage 2 treatment for half of the sub-

jects, large e�ect for the other half.
4 Near non-regular 0 (−0.5, 0.49) 0.5 Weak stage 2 treatment e�ect for half of the sub-

jects, large e�ect for the other half.
5 Non-regular 1/2 (−0.2, 0.2) 0.5 No e�ect of stage 2 treatment for half of the sub-

jects, moderate e�ect for the other half.
6 Near non-regular 0 (−0.2, 0.19) 0.5 Weak stage 2 treatment e�ect for half of the sub-

jects, moderate e�ect for the other half.
7 Regular 0 (−0.9, 0.6) 0.5 Large e�ect of stage 2 treatment for half of the

subject, moderate e�ect for the other half.
8 Regular 0 (0.2,−0.7) 0.5 Idem to scenario 7, with smaller e�ects.

eight regular to non-regular scenarios with sample sizes n=300 and 1000. Across all scenarios,

the adjusted asymptotic variance always yields con�dence intervals with coverage higher

than the nominal rate, which goes in line with what is observed in the previous simulations

(c.f. Section 5.4.2). The coverages with the four other methods are similar within each

scenario and are typically closer to the nominal rate for larger sample sizes. There is no

discernable pattern allowing to di�erentiate between the performance of the �ve methods

across regular, near non-regular or non-regular scenarios. All methods are comparable when

focusing on inferences for ψ10 (see Supplemental Material D.4).
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Figure 5.3: Coverage of 95% con�dence intervals for ψ11 in a two-stage DTR derived with �ve
methods across 1000 simulated data sets with di�erent degrees of non-regularity for sample
sizes n=300 (⊕) and n=1000 (�). The dashed lines represent the bounds for testing the null
hypothesis that the coverage equals the nominal rate.

5.5 Discussion and Conclusion

Characterizing the uncertainty of DWSurv or, more generally, DTR estimators is a challeng-

ing task in practice. Although asymptotic variance formulae are derived for the DWSurv

estimators, it is not clear how this variance performs in �nite samples or in any situation

likely to occur in practice. Our simulation study focuses on the performance of �ve methods

to construct 95% con�dence intervals for DWSurv parameters: the asymptotic variance with

adjustments for the estimation of the nuisance parameters, the asymptotic variance without

adjustments, the standard non-parametric bootstrap, and two parametric bootstraps resam-

pling from the distribution of the survival times. A discussion of the simulation study results

and of practical considerations follows, allowing to derive well-informed recommendations for

users of DTR statistical methods, in particular, of DWSurv.

The �rst aspect of the simulation study aims to assess how robust the methods are to

the violation of the requirement for zero expectation of the true, yet unknown in practice,
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error distribution. Except for the adjusted asymptotic variance, the compared methods yield

con�dence intervals with nominal coverage probabilities for Log-normal and Weibull survival

times despite the fact that the error distribution of the latter is skewed with expectation

smaller than zero. The adjusted asymptotic variance generally yields conservative con�dence

intervals, even for larger sample size. This over-coverage, which has already been observed

previously with DWSurv (Simoneau et al., 2018), was one of the motivations for investigating

the performance of the naive asymptotic variance, which performs adequately for moderate

to large sample sizes in a one-stage DTR.

The robustness of the methods to misspeci�cation of the nuisance models is evaluated in the

second series of simulations. Only the adjusted asymptotic variance exhibits poor coverage

despite larger average con�dence widths, speci�cally in the case where the treatment-free

model is misspeci�ed. The coverages and con�dence interval widths obtained with the two

parametric bootstraps are not a�ected by misspeci�cation of the nuisance models. As the

parametric bootstrap relies on the �tted probabilities of censoring to resample right-censored

survival times, it is surprising that misspeci�cation of the censoring model does not a�ect

the performance of the method. Omitting a covariate strongly associated with the censoring

mechanism and the outcome may lead to less desirable performance.

In the last set of simulations, all methods yield con�dence intervals with good coverage in

the �rst stage of a two-stage DTR where non-regularity may a�ect inferences. The regular,

near non-regular and non-regular scenarios in our simulation study have been used before

to showcase the negative impact of non-regularity for constructing con�dence intervals in

DTR regression-based methods. It is unclear why those same scenarios do not yield similar

conclusions with DWSurv. One possible explanation is that, with survival times, not all

individuals necessarily enter the second stage due to censoring or experiencing the event

before. For them, a pseudo-survival time is not computed, eliminating their contribution to

non-regular estimation, and thus perhaps attenuating the negative impact of non-regularity.
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We do note that, in some scenarios, coverages are near the lower bound for testing the

null hypothesis that the coverage is di�erent than the nominal rate of 0.95 but this problem

disappears with the larger sample sizes of n=10,000. Them-out-of-n bootstrap (Chakraborty

et al., 2013) has been proposed as an alternative to the standard non-parametric bootstrap for

the inference of DTR parameters in non-regular scenarios, which could provide an interesting

alternative for DWSurv.

The simulation study considers several data generating mechanisms, each with variations in

the choice of the parameters. The parameters are not chosen to mimic one particular data

set or application but rather to encompass general simple DTRs. We chose to consider a

moderate, plausible amount of censoring across all data generating mechanisms. The per-

formance of the asymptotic variance was previously evaluated in a simulation study with

censoring up to 60% and showed comparable results to those depicted here. Note that as the

DWSurv algorithm does not use the censored individuals except in the construction of the

weights, increasing the proportion of censoring has an impact similar to that of decreasing

the sample size. The applicability of the standard non-parametric bootstrap may be com-

promised with an increasing proportion of censoring because the censored individuals may

be overrepresented in some resamples and the estimation of the parameters in those samples

may be unstable, especially through matrix inversion operations in the GEE in DWSurv.

The parametric bootstrap would not su�er from this problem as it controls the proportion

of censored observations in the resamples by sampling the event indicator δ.

In practice, computational resources may be limited. While the computational cost of the

two asymptotic variances simply increases with the sample size n, the computational cost of

the bootstrap procedures also increases with the total number B of bootstrap samples (see

Supplemental Material D.1). Moreover, the computational cost of the parametric bootstrap,

which needs to be applied as many times as the maximal number of stages in the DTR, also

increases with the number of stages.
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The results from the simulation study, practical considerations, and insights from work done

by others permit some recommendations for the construction of con�dence intervals for de-

cision rule parameters in DWSurv. Although the adjusted asymptotic variance formula is

justi�ed on theoretical grounds, it overestimates the variance of the estimators in some cases,

leading to conservative con�dence intervals as compared to alternative methods. Moreover,

it is not robust to misspeci�cation of the treatment-free model, leading to the more serious

problem of con�dence intervals with poor coverage yet large width, on average. We thus

recommend using the asymptotic formula only if one is con�dent about the correct speci�ca-

tion of the treatment-free model, for example, if enough covariates are available to the user

and the sample size is large. We recommend using the naive asymptotic variance to bench-

mark con�dence intervals obtained with the adjusted asymptotic variance only when the

number of observed events is above 700, which may correspond to a sample size of n=1000

with 30% censoring. The bootstrap approaches consistently yield con�dence intervals with

nominal coverages when the underlying error distribution does not have zero expectation or

when one of the nuisance models is misspeci�ed, although under-coverage is observed under

certain misspeci�cations of the treatment-free model. The bootstrap is thus a viable option

when computationally feasible. Although the expected negative e�ects of non-regularity on

inferences were not observed in our simulation study, caution should be taken when the �rst

stage estimators may be non-regular, that is, when the treatment e�ect in the second stage

is thought to be null or small as any method may lead to under-coverage.
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Appendix D � Supplemental Materials

Contains the following sections:

D.1 Computational Times � additional simulation results about computational time of

the �ve methods.

D.2 Additional Simulation Results: Unknown Error Distribution � simulation

results from other data generating mechanisms to complement Section 5.4.2.

D.3 Additional Simulation Results: Model Misspeci�cation � simulation results

from other data generating mechanisms to complement Section 5.4.3.

D.4 Additional Simulation Results: Non-regularity � simulation results from other

data generating mechanisms to complement Section 5.4.4.

D.5 Details on the Performance of the Asymptotic Variance � additional descriptive

statistics about the performance of the adjusted asymptotic variance in Section 5.4.3
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Chapter 6

Optimal Dynamic Treatment Regimes

with Survival Outcomes: An Application

to the Treatment of Type 2 Diabetes

using a Large Observational Database

Preamble to Manuscript 4. The idea of this case study arose from an actual clinical

question about the management of type 2 diabetes: once metformin in monotherapy fails

to achieve adequate glycemic control, what treatment(s) should be recommended next in

order to delay the occurrence of diabetic complications? This project highlighted the use-

fulness of DWSurv to answer a real clinical question but also pointed out the di�culty of

applying DWSurv when patients follow heterogeneous treatment pathways in practice. The

original contributions in this manuscript are (i) providing an individualized treatment rule

that can be used in clinical practice about which of sulfonylurea or dipeptidyl peptidase-4

inhibitors should be added to metformin once metformin in monotherapy fails to achieve

the therapeutic goals, and (ii) providing detailed summary statistics about treatment path-
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ways followed by patients with T2D in the CPRD database. At the time of submitting

this thesis, this manuscript was under a second round of review in the American Journal of

Epidemiology.
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Abstract

Sequences of treatments that adapt to the patient's changing condition over time are often

needed for the management of chronic diseases. A dynamic treatment regime (DTR) consists

of personalized treatment rules to be applied through the course of a disease that input the

patient's characteristics at the time of decision-making and output a recommended treat-

ment. An optimal DTR is the sequence of treatments that yields the best clinical outcome

for patients sharing similar characteristics. Methods to estimate optimal DTRs, which must

disentangle short- and long-term treatment e�ects, can be theoretically involved and hard to

explain to clinicians, especially when the outcome to optimize is a survival time subject to

right-censoring. In this paper, we decipher dynamic weighted survival modeling, a method

to estimate DTRs with survival outcomes, and illustrate how it can be used to answer an im-

portant clinical question about the treatment of type 2 diabetes using data from the Clinical

Practice Research Datalink, a large primary care database. We identify an individualized

treatment rule about which add-on treatment to recommend when metformin in monother-

apy does not achieve the therapeutic goals but fail to answer more complex questions given

the heterogeneity of treatment pathways observed in practice.
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6.1 Introduction

The treatment of chronic and recurring diseases often consists of a sequence of therapies that

adapt to a patient's evolving condition over time. The clinician decides which treatment to

recommend next based on the patient's characteristics (value of a biomarker, comorbidities,

patient's response to previous treatments) observed at the time of decision-making. In

such a situation, making the �best� treatment decision does not simply involve answering

the question �What is the best treatment for a speci�c patient at this time to prevent a

disease-related outcome?� but rather addresses the more complex question �What is the

best sequence of treatments for a speci�c patient?� Methods for estimating an optimal

dynamic treatment regime (DTR) are concerned with the latter question.

A DTR is a sequence of treatment rules, one for each decision time point, that inputs current

patient's characteristics, including information about previous treatments, and outputs a

recommended treatment. Of interest is to identify an optimal DTR, that is, the sequence

of treatment rules that yields the best expected outcome for individuals sharing similar

characteristics. Because short- and long-term treatment e�ects may be hard to disentangle

when multiple treatments are taken successively, simple statistical methods that optimize

each treatment decision separately rather than optimizing the sequence of treatments jointly

may fail to identify the DTR that indeed leads to an optimal outcome.

We consider the treatment of type 2 diabetes (T2D) which typically consists of a sequence

of lifestyle and drug therapies that aims to delay major diabetic complications and death.

Our interest is to identify a set of personalized treatment rules that maximizes the time until

such negative events occur. When the outcome to maximize is a survival time subject to

right-censoring, dynamic weighted survival modeling (DWSurv) o�ers a theoretically robust

and interpretable framework to identify an optimal DTR (Simoneau et al., 2018).

The aims of this article are to o�er an accessible overview of DWSurv and to illustrate how
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the method can be used to help discover optimal DTRs for T2D using large administrative

databases. We study the question �Is sulfonylurea or dipeptidyl peptidase-4 inhibitors (DPP-

4i) the best add-on treatment to metformin for maximizing the time until a cardiovascular

event or death?� and describe extensions of this to a multi-stage DTR.

6.2 Illustrative Example: Type 2 Diabetes

Guidelines on the management of T2D recommend a sequence of lifestyle and drug therapies

to lower, and maintain an optimal, glycemic level in order to reduce the risk of diabetic

complications (Garber et al., 2019; McGuire et al., 2016). Metformin is the recommended

�rst-line oral agent. When metformin in monotherapy fails to achieve adequate glycemic

control, treatment guidelines recommend to add a second and even a third oral agent before

eventually transitioning to injectable therapy such as insulin. However, there remain uncer-

tainties on which sequence of treatments should be followed when treatment with metformin

fails, although it is widely recognized that the choice of therapies must be individualized (Gar-

ber et al., 2019; Inzucchi et al., 2015). In the absence of comparative-e�ectiveness trials that

take into account the dynamic nature of the treatment of T2D, recommendations cannot

easily be made.

6.3 Methods: Dynamic Weighted Survival Modeling

Compared to other methods that have been proposed to estimate multi-stage optimal DTRs

with survival outcomes from observational data (Goldberg & Kosorok, 2012; Hager et al.,

2018; Huang et al., 2014; Jiang et al., 2017b), DWSurv is appealing because of its accessi-

bility and its theoretical robustness. It requires specifying parametric models for quantities

that can be informed by clinical knowledge (e.g. treatment assignment and censoring mech-

124



anisms). It is doubly-robust and is equipped with tools for model checking and inferences

about the estimated decision rules.

6.3.1 Notation and Assumptions

We �rst consider a single-stage DTR and assume that observational data from n individuals

are available. Individual data are (X1, A1, Y1, δ) where X1 are covariates observed at the

beginning of the �rst stage, prior to the administration of treatment A1, a binary option

coded as {0, 1}. Y1 is a survival or censoring time observed at the end of the follow-up. We

use T1 and C to respectively denote the survival and censoring times and the indicator δ

determines if Y corresponds to a survival time (1) or a censoring time (0). A single-stage

DTR is de�ned as an individualized treatment rule d1(h1) to be applied at the beginning

of the �rst stage, after the patient's chacteristics h1 (history) are observed, i.e. H1 = X1.

The decision rule d1(h1) is a function of the history that returns a recommended treatment

a1=0 or a1=1.

DWSurv adopts the counterfactual outcomes framework. It de�nes T a11 , the survival time if,

possibly contrary to the fact, treatment a1 is received. An optimal single-stage DTR is the

treatment rule dopt1 (h1) that maximizes the average counterfactual survival time T a11 condi-

tional on individual characteristics. Four assumptions (general enough to apply to DTRs

with more than one stage) are necessary for the estimation of an optimal DTR with DW-

Surv: (i) an individual's survival time is not in�uenced by others' treatment allocations, (ii)

there are no unmeasured confounders at each stage, (iii) conditional on the observed history,

censoring is non-informative at each stage, and (iv) an individual has a positive probability

of receiving either treatment at each stage and a positive probability of experiencing an

event.
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6.3.2 Estimation

DWSurv requires modeling the treatment assignment and censoring mechanisms as well as

the survival time. A semi-parametric accelerated failure time (AFT) model for the average

counterfactual survival time, referred to as the outcome model, is speci�ed as

E[log(T a11 )|H1 = h1, A1 = a1;β1,ψ1] = βT1 h1β + a1ψ
T
1 h1ψ (6.1)

where h1ψ, called tailoring variables, and h1β are two (possibly di�erent) subsets of the

history h1. The outcome model is separated into two components: the treatment-free model

βT1 h1β which does not depend on the stage 1 treatment and the blip component a1ψ
T
1 h1ψ

which depends on a1. The optimal �rst stage treatment is that which maximizes (6.1) with

respect to a1, here implying decision rules of the form dopt1 = I(ψT1 h1ψ > 0).

Th estimation of the parameters (β1,ψ1) must account for censored individuals for whom

T1 is not observed and must also eliminate any confounding between the treatment assign-

ment and the survival time. This is achieved via a weighting argument by using balancing

weights (Li et al., 2018; Simoneau et al., 2018; Wallace & Moodie, 2015). For example, the

overlap weights

w1(δ, a1,h1) =
|a1 − E(A1|h1)|
P(∆ = δi|h1, A1)

(6.2)

de�ne a target population in clinical equipoise, that is, individuals whose characteristics

make them almost equally likely to receive any treatment option. Models for the probability

of treatment E(A1|h1) and the probability of experiencing an event E(∆|h1, a1) are proposed

and estimated, for example with logistic regressions, and the weights are computed.

Given the outcome model (6.1) and the estimated weights ŵ1, estimators (β̂1, ψ̂1) are ob-

tained by solving weighted estimating equations implemented in an unpublished version of

the DTRreg package in R. The estimated optimal �rst stage treatment is aopt1 = I(ψ̂T1 h1ψ >

0).
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6.3.3 Double-robustness

DWSurv yields doubly-robust estimators of the parameters ψ1 used to construct the decision

rule. All other parameters (β1 and the parameters in the treatment and censoring models) are

nuisance quantities. The double-robustness property means that ψ̂1 are unbiased estimators

ofψ1 when the treatment and censoring models are correctly speci�ed or when the treatment-

free component of the outcome model is correctly speci�ed or when all three models are

correctly speci�ed. The obvious advantage of doubly-robustness is that it provides protection

against misspeci�cation of some models. Another advantage is that some models may be

easier to inform from a clinical perspective.

6.3.4 Inferences and Model Checking

Con�dence intervals can be calculated for the parameters ψ1 using asymptotic variance for-

mulae or parametric and non-parametric bootstraps. Residual plots can be used with DW-

Surv to assess model speci�cations (Rich et al., 2010), with residuals calculated on the loga-

rihmic scale for individuals who experienced an event as log(T1)−E[log(T a11 )|h1, A1; β̂1, ψ̂1].

The double-robustness property can also be exploited to provide reassurance that some mod-

els are correctly speci�ed (Wallace et al., 2016).

6.4 The Data

The objective of the illustrative example is to estimate an individualized treatment rule that

recommends the best agent to add to metformin between sulfonylurea and DPP-4i in order

to maximize the time until a cardiovascular event or death. We used data from the Clinical

Practice Research Datalink (CPRD), a large primary care database in the United Kingdom

(UK).
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6.4.1 Study Population and De�nitions

We assembled a base cohort of patients aged 40 or older with a �rst-ever prescription of

metformin in monotherapy between April 1, 1997, and March 31, 2018, and at least one year

of history in the CPRD prior to metformin. Women with a history of polycystic ovarian

syndrome and gestational diabetes (other known indications for metformin) were excluded.

The study cohort was composed of all patients who added sulfonylurea or DPP-4i to met-

formin, with study entry de�ned as the date when the �rst add-on was recorded. Patients

were considered to have added one of the drugs if a new prescription was recorded within 30

days after a prescription of metformin (Yu et al., 2015). Details on the CPRD database and

the study cohort are available in the Supplemental Material E.1.

Our analysis compared the addition of sulfonylurea (A1 = 0) and DPP-4i (A1 = 1) to

metformin. The outcome is the time from study entry until the occurrence of a cardiovas-

cular event (stroke, myocardial infarction or peripheral vascular disease) or death. Patients

were censored when they made any change to their treatment regime (adding or switching

drugs) or when they were lost to follow-up (end of study date or transferred out of the prac-

tice). The following covariates were recorded at study entry: age, sex, years on metformin,

socio-economic status (SES), smoking status, body mass index (BMI), glycated hemoglobin

(HbA1c), and comorbidities. Covariates were de�ned with the presence or absence of med-

ical, diagnosis, or prescription codes any time before the study entry (see Supplemental

Material E.2 for details).

6.4.2 Model Development and Fitting

Covariates selection for all models was made a priori. A parametric model for the out-

come was speci�ed as a linear combination of all available covariates, with the following

tailoring variables: glycemic control (good, HbA1c ≤ 7%; borderline, 7% < HbA1c ≤ 10%;
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bad, HbA1c > 10%), history of severe hypoglycemia (yes/no) and BMI. The probabilities

of treatment and censoring were modeled with logistic regressions using all covariates as

predictors. Overlap weights were used and the distributions of the �tted treatment prob-

ability, �tted censoring probability and estimated weights were inspected to determine if

truncation or trimming was necessary. Model speci�cations were checked with residual and

double-robustness plots. A complete-case analysis (using singly imputed values of SES) was

conducted. Several sensitivity analyses were performed, including restricting study entry to

after January 1st, 2007 (date when DPP-4i were �rst approved in the UK) and using more

stringent time-windows to record covariates before study entry. Details are given in the

Supplemental Materials E.3 and E.4.

6.5 Results

6.5.1 Cohort Description

The study cohort consisted of 36,911 patients among whom 28,370 patients (77%) added

sulfonylurea to metformin and the remaining 8,541 patients (33%) added DPP-4i. Table 6.1

presents the characteristics of the patients at study entry. A total of 2,551 events (7%) were

recorded and the median time to an event was 25 months. More events were observed in the

metformin-sulfonylurea group (8%, 2,293 events) than in the metformin-DPP-4i group (3%,

258 events).

Figure 6.1 shows the treatment and response trajectories by treatment group. The inner

rings show the distributions of patients according to the type of events they experienced or

to why they were censored. In both groups, about half of the patients who were censored

were lost to follow-up before making any treatment change. The other half were censored

because of a change to their treatment regime. Referring to Figure 6.1 A, 21% of the patients

on metformin-sulfonylurea combination therapy added a drug to their regime, 4% replaced
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Table 6.1: Characteristics of type 2 diabetes patients at the time of �rst add-on to metformin,
United Kingdom, 1997-2018.

Characteristics All patients Added sulfonylurea Added DPP-4i
n=36,911 n=28,370 n=8,541

Age, mean (SD) 62.4 (11.0) 62.5 (11.0) 61.9 (10.7)
Male, n (%) 22,195 (60.1) 17,031 (60.0) 5,164 (60.5)
SES, n (%)

1st quintile 3,813 (10.3) 2,991 (10.5) 822 (9.6)
2nd quintile 4,577 (12.4) 3,691 (13.0) 886 (10.4)
3rd quintile 4,465 (12.1) 3,615 (12.7) 850 (10.0)
4th quintile 4,534 (12.3) 3,689 (13.0) 845 (9.9)
5th quintile 4,005 (10.9) 3,145 (11.1) 860 (10.1)
Unknown 15,517 (42.0) 11,239 (39.6) 4,278 (50.1)

Smoking status, n (%)
Never 16,938 (45.9) 12,915 (45.5) 4,023 (47.1)
Current 6,931 (18.8) 5,650 (19.9) 1,281 (15.0)
Ex 13,042 (35.3) 9,805 (34.6) 3,237 (37.9)

Body mass index, n (%)
≤ 25 kg/m2 3,411 (9.2) 2,910 (10.3) 501 (5.9)
25 to 30 kg/m2 11,358 (30.8) 9,178 (32.4) 2,180 (25.5)
30 to 40 kg/m2 17,755 (48.1) 13,214 (46.6) 4,541 (53.2)
> 40 kg/m2 3,910 (10.6) 2,647 (9.3) 1,263 (14.8)
Unknown 477 (1.3) 421 (1.5) 56 (0.7)

Years of metformin, mean (SD) 2.5 (2.4) 2.2 (2.3) 3.2 (2.7)
HbA1c, n (%)
≤ 7% 1,684 (4.6) 1,342 (4.7) 342 (4.0)
7% to 10% 25,759 (69.8) 18,944 (66.8) 6,815 (79.8)
> 10% 8,221 (22.3) 6,904 (24.3) 1,317 (15.4)
Unknown 1,247 (3.4) 1,180 (4.2) 67 (0.8)

Alcohol misuse, n (%) 2,143 (5.8) 1,572 (5.5) 571 (6.7)
Renal disease, n (%) 3,251 (8.8) 2,398 (8.5) 853 (10.0)
Dyslipidemia, n (%) 29,009 (78.6) 21,692 (76.5) 7,317 (85.7)
Hypertension, n (%) 28,276 (76.6) 21,635 (76.3) 6,641 (77.8)
Severe hypoglycemia, n (%) 301 (0.8) 209 (0.7) 92 (1.1)

DPP-4i: dipeptidyl peptidase-4 inhibitors, HbA1c: glycated hemoglobin, SD: standard deviation, SES: socio-
economic status

metformin by another agent, 12% replaced sulfonylurea by another agent and 9% stopped

their current regime to start a completely new regime. The outer rings provide more details

on the type of treatment changes, showing the distribution of the chosen agent to add to the

current regime categorized by drug classes. The choice of a second add-on is variable in both

groups. Thiazolidinedione and DPP-4i are the preferred add-ons for metformin-sulfonylurea

users while sulfonylurea is the preferred add-on for metformin-DPP-4i users.

130



Figure 6.1: Treatment and response trajectories for metformin-sulfonylurea users (A) and
metformin-DPP-4i users (B). The inner ring shows the distribution of patients according to
the type of events and the reason for censoring. The outer ring shows the distribution of the
drug that was added to the current regime categorized by drug classes.
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6.5.2 Estimated Treatment Rule

Table 6.2 presents estimates of the parameters in the treatment rule along with measures of

uncertainty using 35,287 patients. The estimated decision rule recommends DPP-4i if the

linear combination

−0.99− 0.87× I(7% < HbA1c ≤ 10%)− 1.09× I(HbA1c > 10%) + 1.69× I(Hypoglycemia) + 0.04× BMI

is positive and sulfonylurea otherwise. The resulting rule is depicted in Figure 6.2. Pa-

tients with a history of hypoglycemia are recommended to add DPP-4i, regardless of other

characteristics. In the absence of a history of hypoglycemia, patients with a high BMI

are recommended to add DPP-4i and the worse the glycemic control, the higher the BMI

must be to recommend DPP-4i over sulfonylurea. Among patients included in the analysis,

the estimated rule recommends adding sulfonylurea for 32,642 patients (93%) and DPP-4i

for 2,645 patients (7%), with 25,753 patients (73%) having actually received their optimal

treatment.

Table 6.2: Treatment rule parameters estimates based on 35,287 patients.

Tailoring variable ψ̂1 (SE) 95% CI

Intercept -0.99 (0.76) -2.48, 0.51
HbA1c (ref: ≤ 7%)

7% to 10% -0.87 (0.45) -1.75, 0.01
> 10% -1.09 (0.52) -2.12, -0.07

Hypoglycemia 1.69 (0.71) 0.31, 3.07
BMI 0.04 (0.02) 0.005, 0.08

BMI: body mass index, CI: con�dence interval,
HbA1c: glycated hemoglobin, SE: standard error
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Figure 6.2: Estimated individualized treatment rule using history of severe hypoglycemia,
glycemic control and BMI. The recommended add-on treatments are shown on the right along
with the estimated expected years of life gained from receiving the optimal add-on versus
the other treatment option and the estimated 5th and 95th percentiles of that distribution.

6.6 Extension Beyond One Stage

We introduce additional notation and theory needed to estimate a two-stage DTR with

DWSurv and discuss how this extension could apply to the T2D illustrative example.

6.6.1 Estimation of a Two-stage DTR

Data needed to estimate an optimal two-stage DTR are also in the form of trajectories

(X1, A1, Y1, η2,X2, A2, Y2, δ) grouped into stages denoted with the subscript j, where Xj

represents covariates measured at the beginning of stage j, prior to the administration of

treatment Aj. The variable η2 indicates if an individual entered stage 2. Y1 and Y2 are

stage-speci�c survival or censoring time and the overall survival or censoring time Y is

Y1 + η2Y2. An individual who does not enter the second stage because he experiences the
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event or is censored in the �rst stage has missing stage 2 treatment, covariates and outcome.

We de�ne T a1,a22 , the survival time in the second stage if, possibly contrary to the fact,

the treatment regime (a1, a2) is followed. A two-stage DTR is the sequence of two decision

rules d1(h1) and d2(h2) to be applied at the beginning of stages 1 and 2 respectively, where

H2 = (X1, A1, Y1,X2). The optimal DTR {dopt1 (h1), dopt2 (h2)} is that which maximizes the

average counterfactual survival time T a1,a2 conditional on individual characteristics accrued

over time.

Backward induction is used to extend the estimation procedure described in a single-stage

setting to two stages. It implies identifying the optimal second stage treatment and then

optimizing the �rst stage treatment, thus working backward in time. The optimal second

stage treatment maximizes the average counterfactual survival time in the second stage

T a1,a22 . An outcome model E[log(T a1,a22 )|h2, a2, η2 = 1;β2,ψ2] akin to (6.1) but with the

stage 2 quantities is speci�ed. Models for the probability of treatment A2 and the probability

of experiencing an event are proposed and estimated using only individuals who entered the

second stage and weights w2 such as (6.2) are computed accordingly. Weighted estimating

equations are solved and the optimal second stage treatment is derived as aopt2 = I(ψ̂T2 h2ψ >

0). Once this initial step is completed, DWSurv proceeds with the optimization of the �rst

stage treatment using all individuals.

Because the �rst stage treatment a�ects the overall survival time (not only the survival time

in the �rst stage) which is also a�ected by the second stage treatment, the optimization

in the �rst stage uses a pseudo-survival time T̃ de�ned as the overall survival time had all

individuals, possibly contrary to the fact, received their optimal stage 2 treatment. For

individuals who did not enter the second stage, this pseudo-survival time is equal to the

observed survival time in the �rst stage i.e. T̃ = T1. Among individuals who entered stage

2, some may actually have received their optimal treatment (aopt2 = a2), in which case T̃ is

equal to their observed survival time T1 + T2. For individuals who entered the second stage
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but have not received their optimal treatment (aopt2 6= a2), T̃ is not observed and must be

estimated by adding what was lost from receiving a suboptimal stage 2 treatment, i.e. T̃ :=

T1 + T2 × exp{ψ̂T2 h2ψ(aopt2 − a2)}. Once T̃ is estimated for individuals who experienced

an event, similar steps as presented above are followed: an outcome model for the pseudo-

survival time E[log(T̃ a1,a2)|h1, a1;β1,ψ1] is speci�ed, weights w1 are computed based on

models for the probability of treatment a1 and the probability of experiencing an event and

the �rst stage optimal treatment is derived as aopt1 = I(ψ̂T1 h1ψ > 0). The resulting optimal

DTR would be: at the beginning of the �rst stage, recommend aopt1 ; if the patient enters the

second stage, recommend aopt2 .

6.6.2 T2D Treatment Pathways Beyond One Stage

We explored treatment and response pathways about the following two-stage DTR: the �rst

stage compares adding sulfonylurea or DPP-4i to metformin, as described previously, and the

second stage compares adding DPP-4i or insulin if patients were on metformin-sulfonylurea

combination therapy in the �rst stage or adding glucagon-like peptide-1 receptor agonists

(GLP-1) or insulin if patients were previously on metformin-DPP-4i. The outcome of interest

remains the time until the occurrence of a cardiovascular event or death.

Figure 6.3 summarizes treatment and response pathways of this two-stage DTR using the

study cohort described before. Among metformin-sulfonylurea users, 80% of the patients

(n=22,723) were censored in the �rst stage because they made an unacceptable treatment

change or were lost to follow-up before making any change to their treatment (see also Figure

6.1). Only 12% of metformin-sulfonylurea users (n=3,354) entered the second stage. The

number of events is small in the second stage, 90 (3%) among users who added DPP-4i to

their metformin-sulfonylurea regime and 94 (14%) among users who added insulin. Among

metformin-DPP-4i users in the �rst stage, fewer patients entered the second stage (n=377,

4%). Fewer events were observed in the second stage in that group, four events (1%) among
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users who added GLP-1 and only one event (1%) among those who added insulin.

Figure 6.3: Treatment and response pathways exploring a two-stage DTR that compares
adding sulfonylurea or DPP-4i to metformin in the �rst stage and further adding DPP-4i
or insulin (if patients were on metformin-sulfonylurea in the �rst stage) or adding GLP-1 or
insulin (if patients were on metformin-DPP-4i in the �rst stage) in the second stage.

6.7 Discussion

This illustrative example served as a proof-of-concept about the importance of focusing on

personalized treatment rules and the di�culty of studying multi-stage DTRs in the real

world. We presented a method to estimate an optimal DTR with survival outcomes called

DWSurv which takes into account the heterogeneity in response to treatment across patients

and thus allows answering the question �What is the best sequence of treatments for this

speci�c patient?� This di�ers from standard comparative-e�ectiveness studies which answer

the question �What is the best treatment for the average patient?�, ignoring that patients may

respond di�erently to the treatment. DWSurv estimates treatment rules that are tailored

to evolving patient's characteristics. The decision rules can be used in clinical practice for

recommending the best treatment for a speci�c patient. We illustrated the usefulness of

DWSurv in an application to the management of T2D. Using a large observational database,
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we discovered an individualized treatment rule for deciding which of sulfonylurea or DPP-4i

should be added to metformin once metformin alone fails to achieve the therapeutic goals.

We found that extending this rule to treatment decisions beyond the �rst add-on treatment

to metformin was challenging given that, in practice, patients follow heterogeneous treatment

pathways.

The illustrative example focused on an important clinical question in the management of

T2D: what to do when metformin in monotherapy does not achieve the therapeutic goals.

We derived an individualized treatment rule that inputs the patient's glycemic control, his-

tory of severe hypoglycemia and BMI at the time of decision-making and outputs the best

add-on treatment to metformin between sulfonylurea or DPP-4i. The recommended add-on

is that which maximizes the time until a cardiovascular event or death. The decision rule

estimated with DWSurv favors DPP-4i for patients with higher BMI and a history of severe

hypoglycemia while it favors sulfonylurea for patients with borderline or bad glycemic con-

trols. The estimated rule is in line with known medication pro�les (Garber et al., 2019). The

rule recommends DPP-4i when a patient has a history of severe hypoglycemia, a decision

that makes sense given that sulfonylurea is associated with a higher risk of hypoglycemia

and DPP-4i is not. In the absence of a history of hypoglycemia, patients with a suboptimal

glycemic control will tend to be recommended to add sulfonylurea, which is known to be

more aggressive in achieving good glycemic control. However, patients with a higher BMI

will tend to be recommended DPP-4i, which is neutral on weight change while sulfonylurea is

associated with weight gain. The estimated decision rule provides additional tools to the ex-

isting guidelines by proposing thresholds about BMI and glycemic control to identify the best

add-on treatment for a speci�c patient, thus facilitating decision-making by clinicians.

The estimated individualized treatment rule for choosing an add-on treatment to metformin

is to be applied at the time when the treatment should be intensi�ed but does not dictate

when the current regime should be changed. Therefore, DWSurv addresses the question
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�Given that the current regime does not work, what treatment decision should be made

next?� rather than �When should a treatment change should be made?� Individualized

targets for deciding when the current regime does not achieve the therapeutic goals have

been considered previously (e.g. Neugebauer et al., 2013).

The results of the analysis rely on several assumptions. First, we assumed that patients

were continuously exposed to metformin before study entry and continuously exposed to

metformin-sulfonylurea or metformin-DDP-4i from study entry until the event or censoring.

This assumed that a patient would not be withdrawn from pharmacotherapy once metformin

was started. Second, covariates were measured at study entry but, in the absence of a record

on the date of study entry, the value of the most recent record before study entry was used

instead. This strategy assumed that the value of the covariate remained constant since the

last time it was recorded before study entry. Third, we assumed that all confounders were

measured. Although the double-robustness property o�ered additional protection against

misspeci�cation of some models, the validity of the estimated treatment rule and of related

quantities (e.g. the expected life gained shown in Figure 6.2) may be compromised if impor-

tant confounders were missing. In fact, the diagnostic plots suggested that the treatment-free

model may be misspeci�ed (see Supplemental Material E.3).

There is an increasing interest in statistical methods that estimate optimal DTRs with

observational data, with DWSurv being one of the few that can handle survival outcomes.

Observational data needed to apply such methods are also increasingly available. Large

primary care databases such as the CPRD in the UK re�ect how the treatment of T2D

is managed in practice and o�er insights about treatment e�ectiveness that would not be

captured in controlled trials. However, this example on T2D highlighted a tradeo� between

feasibility and clinical relevance in that clinical questions may not always be easy to answer

even when the appropriate data and statistical methods are available. Using the CPRD,

we could not answer our two-stage DTR question because treatment pathways in practice

138



were too heterogeneous to capture enough events across stages. More events could have

been observed had we considered other or more general treatment comparisons, for example,

comparing treatment switches versus treatment add-ons across stages, regardless of the drug

classes or the number of agents added or switched to. This question could be answered with

DWSurv but the practical implication of the resulting decision rules would be modest in

that it would not help clinicians to decide which treatment to actually recommend to their

patient.

The management of T2D served as an illustration for the practical feasibility of estimating

optimal DTRs from observational data. Other chronic conditions could be studied from that

perspective. Hripcsak et al. (2016) describe the heterogeneity of treatment pathways for

T2D, hypertension and depression using an international data network regrouping over 250

million patients. However, T2D showed less variability in treatment pathways as compared

to hypertension and depression, mainly owing to the fact that metformin is a well-accepted

�rst-line treatment choice. We expect that the study of DTR would be even more challenging

for hypertension and depression, both diseases being treated with a variety of drugs even in

the �rst stage of the sequence of treatments.
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Appendix E � Supplemental Materials

Contains the following sections:

E.1 CPRD and Study Cohort � details on the CPRD database and on the assembling

of the study cohort.

E.2 Covariates De�nitions � de�nitions of covariates using medical, diagnosis and pre-

scription codes.

E.3 Implementation � details on the implementation of the single-stage DTR in R and

model-checking plots.

E.4 Sensitivity Analyses � results of six sensitivity analyses.
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Chapter 7

Conclusion

7.1 Summary

The work presented in this thesis introduces consistent and interpretable methods for the

study of precision medicine and demonstrates the usefulness of such tools in data applications

motivated by real clinical problems. Chapter 3 proposes using the m-out-of-n bootstrap to

construct con�dence intervals for the blip parameters in dWOLS in situations where non-

regularity is likely to a�ect the inferences. We recommend choosing the resample size m

in a way that adapts to the degree of non-regularity in the data using the double boot-

strap algorithm. Chapter 4 develops DWSurv, a method for estimating optimal DTRs with

censored outcomes. DWSurv requires specifying semi-parametric AFT models for the sur-

vival time across stages and yields doubly-robust estimators by relying on balancing weights

constructed with models for the treatment assignment and censoring mechanisms. Chapter

5 explores the �nite sample performance of two asymptotic formulae and three bootstrap

approaches to construct con�dence intervals for the decision rule parameters in DWSurv.

This work provides guidance for using DWSurv in practice. Chapter 6 demonstrates how

DWSurv can be used to �ll knowledge gaps in the treatment of T2D. Using data from a
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large primary care database, we estimate an individualized treatment rule for whether sul-

fonylurea or DPP-4i should be added to metformin to delay the occurrence of cardiovascular

events or death. We highlight how extending this rule to multiple stages of clinical inter-

vention can be challenging given that treatment pathways followed by patients in practice

are heterogeneous. All methods and inferential tools presented in this thesis are or will be

freely available in the DTRreg package in the hope of facilitating the uptake of the proposed

methods in applied sciences.

The simulation studies allow showcasing our theoretical developments or supporting heuristic

justi�cations (of the m-out-of-n bootstrap). The �rst manuscript considers nine simulation

scenarios characterized by the extent to which the non-regularity of the blip estimators is

likely to a�ect the inferences. The simulation studies highlight that choosing m in a data-

adaptive manner can be computationally intensive depending on the sample size. The second

and third manuscripts use novel simulation scenarios for two-stage DTRs with censored data

that showcase the double-robustness of DWSurv and evaluate the performance of competing

methods to construct con�dence intervals for its parameters. The simulation scenarios are

complex enough to handle treatment and censoring mechanisms that depend on time-varying

characteristics across stages.

All but the third manuscript include an illustration of the methods in a data application.

The �rst manuscript estimates two decision rules about the best timing for introducing solid

food in an infant's diet to optimize metabolic outcomes measured during childhood. In a

situation where the outcome is measured a long time (six years) after the treatments are

received (solid food intake at 3 and 6 months), non-regularity likely a�ects the inferences thus

the importance of considering the m-out-of-n bootstrap in this data application. The second

manuscript applies DWSurv to observational data from patients with rheumatoid arthritis to

validate existing guidelines about the management of episodes of disease activity. We identify

two decision rules that do not entirely coincide with recommendations in guidelines but
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recognize that the conclusions of this analysis are only as convincing as the assumptions they

rely on. Speci�cally, assuming that the baseline visit in the data corresponds to the beginning

of an episode of disease activity likely does not hold. The case study on the treatment

of T2D presented in the last manuscript provides insights into the practical challenges of

applying DWSurv to large observational databases. Despite having data for over 35,000

patients and observing over 2,000 events, few patients follow the treatment pathways under

study and not enough patients experience an event beyond the �rst stage, preventing the

application of DWSurv to estimate a two-stage DTR. We identify a sensible single-stage

treatment rule which recommends adding DPP-4i to metformin if the patient has a history

of severe hypoglycemia or if the patient's BMI is high and recommends adding sulfonylurea

otherwise.

7.2 Future Work

Together, DWOLS and DWSurv provide a complete framework for estimating optimal DTRs

with censored or uncensored outcomes. Indications on how dWOLS can handle continuous

or non-binary treatments have already been given (Wallace & Moodie, 2015), which could be

used with DWSurv and implemented in the corresponding function in the DTRreg package.

Beyond theoretical indications, applying DWSurv and dWOLS to problems with multiple

treatment arms or continuous treatments (e.g. comparing doses) would be useful to promote

widespread usage of the methods. For instance, the illustrative example about the treatment

of T2D could compare multiple treatment arms corresponding to the multiple drug classes,

thus improving the relevance of the resulting treatment rules for guiding clinical decision-

making.

The design of the simulation study for multi-stage DTRs with survival endpoints used in

Chapters 4 and 5 is subject to some limitations. The simulation study suits the purpose
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of demonstrating important properties of DWSurv at the cost of providing little intuition

on how the data generating mechanisms mimic the way the data arise in practice. Also,

the parameters of the data generating mechanisms require �ne-tuning to yield acceptable

survival times whose distribution also satisfy (or not) certain modeling assumptions across

stages. Designing simulation studies that translate into real data examples and limit the

extent to which the parameters of the data generating mechanism must be tuned is an

important avenue for future work on DTR methods of survival outcomes.

7.3 Concluding Remarks

DWOLS and DWSurv provide useful tools to answer open clinical questions about the treat-

ment of chronic or recurring diseases. With the increasing availability of large registry and

claims databases, such methods gain from being robust enough to handle non-experimental

data and from exploiting frameworks that are easy to understand and accessible to scientists

who are most likely to use the rules. More widespread usage of dWOLS and DWSurv can

improve clinical practice about how treatment decisions are made as well as improve the

statistical understanding of complex longitudinal data.
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Appendix A

Ethics Approvals

Ethics approvals for the work presented in Chapter 6 were obtained from the Independent

Scienti�c Advisory Committee of the CPRD (protocol number 18_169) and from the Faculty

of Medicine Institutional Review Board at McGill University. Approvals are shown on the

next three pages.
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REVIEWER  COMMENTS:

APPLICANT FEEDBACK:

DATE OF ISAC FEEDBACK: 28/09/18

DATE OF APPLICANT FEEDBACK:

For protocols approved from 01 April 2014 onwards, applicants are required to include the
ISAC protocol in their journal submission with a statement in the manuscript indicating
that it had been approved by the ISAC (with the reference number) and made available to
the journal reviewers. If the protocol was subject to any amendments, the last amended
version should be the one submitted.

** Please refer to the ISAC advice about protocol amendments provided below**
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Appendix B

Supplemental Materials for Chapter 3

B.1 Adaptive Choice of m

The class of resample sizesm introduced in Chakraborty et al. (2013) is de�ned as m̂ := nf(p),

with f(p) being a function of the regularity measure p that satis�es: (1) f(p) is monotone

decreasing in p, takes value between (0, 1], and f(0) = 1; (2) f(p) is continuous and has

bounded �rst derivative. It was shown that this de�nition of m̂ satis�es the consistency

conditions stated before (Chakraborty et al., 2013). Provided that we can estimate p from

the data, a simple de�nition of m̂ (Chakraborty et al., 2013) is given by m̂ := n
1+α(1−p̂)

1+α ,

where α > 0 is a tuning parameter and p̂ is an estimate of the degree of non-regularity in the

data. The tuning parameter α controls the smallest possible resample size m̂. For a �xed n

and p̂ ∈ (0, 1), m̂ can take any value between n
1

1+α and n.

We consider an estimate of p based on the proportion of patients for whom the

optimal treatment is non-unique. An alternative estimator of p is given by p̂ =

Pn

[
I
{
n(ψ̂T2H2ψ)2 ≤ τn(H2ψ)

}]
(Chakraborty et al., 2010), where τn(H2ψ) is a chosen

cuto�. We �rst notice that the indicator I
{
n(ψ̂T2 h2ψ)2 ≤ τn(h2ψ)

}
can be viewed as the

acceptance region for testing the null hypothesis ψ2
Th2ψ = 0 for a patient with history
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h2ψ. Therefore, a sensible choice for τn(H2ψ) is
(
hT2ψΣ̂21h2ψ

)
×χ2

1,1−ν , where χ
2
1,1−ν is the

(1−ν)×100 percentile of a χ2 distribution with one degree of freedom and Σ̂21 is the plug-in

estimator of
√
nCov(ψ̂2, ψ̂2). For a �xed n and α, the results in terms of coverage and width

of con�dence intervals are robust to the choice of ν (Chakraborty et al., 2013).

We detail the double bootstrap algorithm proposed in Chakraborty et al. (2013) for choosing

α in a data-driven way. Recall that we are interested in producing a con�dence interval for

the parameter ψ1 which is estimated by ψ̂1 from the original data. We provide a review of

the double bootstrap algorithm below.

1. Consider a set of candidate values for α e.g. {0.025, 0.05, . . . , 1}

2. Fix α to the smallest value in the set of candidate values.

3. Draw B1 standard n-out-of-n bootstrap samples from the original data and calculate

the bootstrap estimates ψ̂
(b1)

1 , for b1 = 1, . . . , B1.

4. For each b1 bootstrap sample, estimate p̂ and use the de�nition of m̂ to estimate m̂(b1),

for b1 = 1, . . . , B1.

5. For each b1 �rst-level bootstrap sample, draw B2 m̂
(b1)-out-of-n second-level (nested)

bootstrap samples and calculate the double bootstrap estimate ψ̂
(b1b2)

1,m̂ , for b1 =

1, . . . , B1, b2 = 1, . . . , B2.

6. For each b1 �rst-level bootstrap sample, compute the lower and upper η/2× 100 per-

centiles of {√
m̂(b1)

(
ψ̂

(b1b2)

1,m̂(b1) − ψ̂
(b1)

1

)
, b2 = 1, . . . , B2

}
,

respectively denoted as l̂
(b1)

DB and û
(b1)
DB . Construct the double centered percentile boot-

strap (Efron & Tibshirani, 1994) con�dence interval for each b1 �rst-level bootstrap

sample as

(ψ̂
(b1)

1 − û(b1)
DB/
√
m̂(b1), ψ̂

(b1)

1 − l̂(b1)

DB/
√
m̂(b1)),
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for b1 = 1, . . . , B1.

7. Estimate the coverage rate of the double bootstrap con�dence interval from all the

�rst-level bootstrap samples as

1

B1

B1∑
b1=1

I
{
ψ̂

(b1)

1 − û(b1)
DB/
√
m̂(b1) ≤ ψ̂1 ≤ ψ̂

(b1)

1 − l̂(b1)

DB/
√
m̂(b1)

}
.

If the above coverage rate is at or above the nominal level (1 − η) × 100%, then pick

the current values of α as the �nal value. Otherwise, increment α to the next highest

value in the set and repeat steps 3�7.

Further details on the double bootstrap algorithm for choosing α can be found in Chakraborty

et al. (2013).

B.2 Details of the Data Generating Process used in the

Simulation Study

We adapt the data generating models developed in Chakraborty et al. (2010) to the treatment

coded as Aj ∈ {0, 1}, j = 1, 2. Following the developments in the Web-based Supplementary

Materials of Chakraborty et al. (2016) and details in Chakraborty et al. (2010) (c.f. Section 4)

and in Laber et al. (2014b), we calculate the true target value ψ10 in terms of the parameters

of the data generating model λ and δ.

Recall that dynamic treatment regimens with two stages of clinical intervention, with stages

indicated by the subscript j, are de�ned by the following variables: (i) the patient outcome

Yj (continuous) after treatment j; (ii) the j-th treatment decision Aj, where treatments are

assumed binary {0, 1}; (iii) the non-treatment information (covariates) Xj available prior to

the j-th treatment, and (iv) the patient history Hj de�ned as a matrix containing patient

history prior to the j-th treatment, including prior treatment(s). The expected outcome
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models for two stages of intervention, referred to as Q-functions in Q-learning, are given

by:

Q2(H2, A2) = E[Y2|H2, A2] = HT
2ββ2 +HT

2ψψ2A2

Q1(H1, A1) = E[max
a2

Q2(H2, a2)|H1, A1] = HT
1ββ1 +HT

1ψψ1A1

with H2β = (1, X1, A1, X1A1), H2ψ = (1, X2, A1), H1β = (1, X1) and H1ψ = (1, X1).

The target parameter is the main e�ect of the stage 1 treatment ψ11 found in Q1(H1, A1).

Precisely, it is the coe�cient in front of A1 in H
T
1ψψ1A1 = A1(ψ10 +ψ11X1). Recall that the

generative models can be summarized in terms of: (i) Xj ∈ {−1, 1}, Aj ∈ {0, 1} for j = 1, 2;

(ii) P (Aj = 1) = P (Aj = 0) = 0.5 for j = 1, 2; (iii) X1 ∼ 2×Bernoulli(0.5)−1, X2|X1, A1 ∼

2 × Bernoulli(expit{δ1X1 + δ2(2A1 − 1)}) − 1 where expit(x) = exp(x)/(1 + exp(x)); (iv)

Y1 ≡ 0, Y2 = λ1 + λ2X1 + λ3A1 + λ4X1A1 + λ5A2 + λ6X2A2 + λ7A1A2 + ε with ε v N(0, 1).

It follows that

max
a2

Q2(H2, a2) = λ1 + λ2X1 + λ3A1 + λ4X1A1 + max
a2

a2(λ5 + λ6X2 + λ7A1)

= M + (λ5 + λ6X2 + λ7A1)× I[λ5 + λ6X2 + λ7A1 > 0] (B.1)

We can express (B.1) in terms of the four possible values (X2, A1) can take as

max
a2

Q2(H2, a2) = M +
1

2
(1 +X2)A1(λ5 + λ6 + λ7)I[λ5 + λ6 + λ7 > 0]

+
1

2
(1 +X2)(1− A1)(λ5 + λ6)I[λ5 + λ6 > 0]

+
1

2
(1−X2)A1(λ5 − λ6 + λ7)I[λ5 − λ6 + λ7 > 0]

+
1

2
(1−X2)(1− A1)(λ5 − λ6)I[λ5 − λ6 > 0]

= M +
1

2
(1 +X2)A1f1I(f1 > 0) +

1

2
(1 +X2)(1− A1)f2I(f2 > 0)

+
1

2
(1−X2)A1f3I(f3 > 0) +

1

2
(1−X2)(1− A1)f4I(f4 > 0)

152



where f1 = λ5 + λ6 + λ7, f2 = λ5 + λ6, f3 = λ5 − λ6 + λ7 and f4 = λ5 − λ6. We have

E[X2|X1, A1] = −P (X2 = −1|X1, A1) + P (X2 = 1|X1, A1)

=
−1

exp{δ1X1 + δ2(2A1 − 1)}+ 1
+

exp{δ1X1 + δ2(2A1 − 1)}
exp{δ1X1 + δ2(2A1 − 1)}+ 1

=
exp{δ1X1 + δ2(2A1 − 1)} − 1

exp{δ1X1 + δ2(2A1 − 1)}+ 1

1 + E[X2|X1, A1] =
2exp{δ1X1 + δ2(2A1 − 1)}

exp{δ1X1 + δ2(2A1 − 1)}+ 1
= 2expit{δ1X1 + δ2(2A1 − 1)}

1− E[X2|X1, A1] = 2(1− expit{δ1X1 + δ2(2A1 − 1)})

An expression for Q1(H1, A1) is given by

Q1(H1, A1) = E[max
a2

Q2(H2, a2)|H1, A1]

= M +
1

2
(1 + E[X2|X1, A1])A1f1I(f1 > 0) +

1

2
(1 + E[X2|X1, A1])(1− A1)f2I(f2 > 0)

+
1

2
(1− E[X2|X1, A1])A1f3I(f3 > 0) +

1

2
(1− E[X2|X1, A1])(1− A1)f4I(f4 > 0)

= M + A1f3I(f3 > 0) + (1− A1)I(f4 > 0) + A1expit{δ1X1 + δ2(2A1 − 1)}{f1I(f1 > 0)

− f3I(f3 > 0)}+ (A1 − 1)expit{δ1X1 + δ2(2A1 − 1)}{f2I(f2 > 0)− f4I(f4 > 0)}

Again, we notice that expit{δ1X1+δ2(2A1−1)} can be expressed in terms of the four possible

values (X1, A1) as

expit{δ1X1+δ2(2A1 − 1)} =
1

2
(1 +X1)A1expit(δ1 + δ2) +

1

2
(1 +X1)(1− A1)expit(δ1 − δ2)

=
1

2
(1−X1)A1expit(−δ1 + δ2) +

1

2
(1−X1)(1− A1)expit(−δ1 − δ2)
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Since A1 ∈ {0, 1}, we have A1(1−A1) = 0, A2
1 = A1 and (1−A1)2 = (1−A1). We get

expit{δ1X1 + δ2(2A1 − 1)}A1 =
1

2
(1 +X1)A1expit(δ1 + δ2)

+
1

2
(1−X1)A1expit(−δ1 + δ2)

expit{δ1X1 + δ2(2A1 − 1)}(1− A1) =
1

2
(1 +X1)(1− A1)expit(δ1 − δ2)

+
1

2
(1−X1)(1− A1)expit(−δ1 − δ2)

We then have

Q1(H1, A1) = M + A1f3I(f3 > 0) + (1− A1)I(f4 > 0)

+

(
1

2
(1 +X1)A1expit(δ1 + δ2) +

1

2
(1−X1)A1expit(−δ1 + δ2)

)
{f1I(f1 > 0)

− f3I(f3 > 0)}+

(
1

2
(1 +X1)(1− A1)expit(δ1 − δ2) +

1

2
(1−X1)(1− A1)expit(−δ1 − δ2)

)
× {f2I(f2 > 0)− f4I(f4 > 0)}

The coe�cient in front of A1 is expressed in terms of the parameters of the data generating

model λ and δ and is given by

ψ10 =λ3 + f3I(f3 > 0)− f4I(f4 > 0)

+

(
1

2
expit(δ1 + δ2) +

1

2
expit(−δ1 + δ2)

)
{f1I(f1 > 0)− f3I(f3 > 0)}

−
(

1

2
expit(δ1 − δ2) +

1

2
expit(−δ1 − δ2)

)
{f2I(f2 > 0)− f4I(f4 > 0)} (B.2)

B.2.1 Degree of Non-regularity

We classify the simulation scenarios in terms of (1) the probability p of generating an indi-

vidual history such that λ5A2 + λ6X2A2 + λ7A1A2 = 0, and (2) the standardized e�ect size

φ = E[(λ5+λ6X1+λ7A1)/
√

Var(λ5 + λ6X1 + λ7A1)]. Scenarios with p > 0 are characterized
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as �non-regular�. Scenarios with p = 0 and large e�ect of the stage 2 treatment are classi�ed

as �regular�. Scenarios with p > 0 but weaker e�ect of the stage 2 treatment (such that the

e�ect may be hard to detect) are classi�ed as �near non-regular�.

The two measures of non-regularity can be calculated in terms of the parameters of the data

generating model λ and δ. The standardized e�ect size φ can be calculated in terms of the

distribution of the linear combination (λ5 + λ6X2 + λ7A1) (see Table B.1). We have E[λ5 +

λ6X1+λ7A1] = q1f1+q2f2+q3f3+q4f4 and E[(λ5+λ6X1+λ7A1)2] = q1f
2
1 +q2f

2
2 +q3f

2
3 +q4f

2
4 ,

which can be used to calculate Var(λ5 + λ6X1 + λ7A1). Similarly, the probability p can be

calculated with P(λ5 + λ6X1 + λ7A1 = 0).

Table B.1: Distribution of the linear combination (λ5 + λ6X2 + λ7A1).

Value of
(X2, A1) cell Cell probability (λ5 + λ6X2 + λ7A1)

(1,1) q1 = 1
4

(expit{δ1 + δ2}+ expit{−δ1 + δ2}) f1 = λ5 + λ6 + λ7

(1,0) q2 = 1
4

(expit{δ1}+ expit{−δ1}) f2 = λ5 + λ6

(-1,1) q3 = 1
4

(expit{δ1 + δ2}+ expit{−δ1 + δ2}) f3 = λ5 − λ6 + λ7

(-1,0) q4 = 1
4

(expit{δ1}+ expit{−δ1}) f4 = λ5 − λ6

B.2.2 Calculation Examples

We give calculation examples and details for the 9 simulation scenarios described in Table

3.1 of the manuscript.

Scenario 1. Non-regular scenario (p = 1, φ = 0/0, ψ10 = 0). No treatment e�ect for all

subjects in either stage.

Scenario 2. Near non-regular scenario (p = 0, φ = ∞, ψ10 = 0). The main e�ect of the

treatment at stage 2 is very small (λ5=0.01) for all subjects. This scenario is regular as
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p=0, but is very close to the non-regular scenario 1.

Scenario 3. Non-regular scenario (p = 1/2, φ = 1, ψ10 = −1). No e�ect of the treatment

at stage 2 for half of the subjects, and a large e�ect of the stage 2 treatment for the other half.

Scenario 4. Near non-regular scenario (p = 0, φ = 1.03, ψ10 = −1.48). Weak e�ect of the

treatment at stage 2 for half of the subjects, and a large e�ect of the stage 2 treatment for

the other half. The weak e�ect may be hard to detect, hence this scenario is close to the

non-regular previous scenario.

Scenario 5. Non-regular scenario (p = 1/4, φ = 1.34, ψ10 = −1). Weak e�ect of the

treatment at stage 2 for half of the subjects.

Scenario 6. Regular scenario (p = 0, φ = 0.93, ψ10 = −0.08). Large e�ect of the treatment

at stage 2 for all subjects. This is a regular scenario.

Scenario 7. Regular scenario (p = 0, φ = 1.90, ψ10 = 0.30). Large e�ect of the treatment at

stage 2 for half of the subjects.

Scenario 8. Non-regular scenario (p = 1/2, φ = 1, ψ10 = −1). No e�ect of the treatment at

stage 2 for half of the subjects, and a moderate e�ect of the stage 2 treatment for the other

half.

Scenario 9. Near non-regular scenario (p = 0, φ = 1.08, ψ10 = −0.24). Weak e�ect of the

treatment at stage 2 for half of the subjects and moderate e�ect of the treatment at stage 2
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for the other half. This scenario is very close to the previous non-regular scenario.

For details on the scenarios, see Chakraborty et al. (2010) for the �rst 6 scenarios, and

Laber et al. (2014b) for scenarios 7, 8 and 9, respectively corresponding to examples A, B

and C.

B.3 PROBIT: The IPCW Analysis

The blip parameters estimated via the inverse probability of censoring (IPCW) approach,

along with 95% con�dence intervals constructed in four di�erent ways, are shown in Table

B.2. Estimates, con�dence intervals and conclusions are similar to the one obtained with

the complete-case analysis.

B.4 PROBIT: Diagnostic Plots

Residual analysis is commonly used tool to diagnose model misspeci�cation in standard

regression. In the context of optimal DTR, residual analysis can be performed at each stage

to simultaneously diagnose model misspeci�cation of the blip and treatment-free models.

Details on how to calculate the residuals and the �tted values at each stage are given in Rich

et al. (2010). Under correct speci�cation of the two models, residuals should be symmetrically

distributed around zero, and show no trend when plotted against the �tted values, or against

the covariates included in the blip model.

Residual analysis for the complete-case analysis with BMI as the outcome is shown in Figure

B.1. The upper row shows the diagnostic plots for the �rst stage, and the row below shows

the same diagnostic plots, but for the second stage. The left �gures show the residuals

against the �tted values, and the right �gures show the residuals against the infant's weight

157



Table B.2: Estimates of the blip parameters {ψ10, ψ11, ψ20, ψ21} in the PROBIT data analysis
with three outcomes using inverse probability of censoring weighting along with 95% con�-
dence intervals calculated with standard bootstrap (nn), m-out-of-n bootstrap with α=0.05
(mn0.05), m-out-of-n bootstrap with α=0.1 (mn0.1) and m-out-of-n bootstrap with adaptive
choice of α (mnα̂).

IPCW analysis

95% Con�dence Interval

Estimates nn mn0.05 mn0.1 mnα̂

BMI (n1
†=8,910, n2

‡=9,144, α̂††=0.07)

ψ̂10 -0.40 (-1.23; 0.43) (-1.42; 0.62) (-1.66; 0.85) (-1.55; 0.75)

ψ̂11 0.06 (-0.10; 0.22) (-0.12; 0.25) (-0.16; 0.29) (-0.14; 0.27)

ψ̂20 -0.46 (-1.76; 0.84) (-2.12; 1.21) (-2.54; 1.62) (-2.28; 1.36)

ψ̂21 0.05 (-0.13; 0.24) (-0.17; 0.28) (-0.22; 0.33) (-0.19; 0.30)
Waist Circumference (n1=8,913, n2=9,147, α̂=0.07)

ψ̂10 0.36 (-1.69; 2.41) (-2.17; 2.90) (-2.63; 3.35) (-2.33; 3.05)

ψ̂11 -0.09 (-0.43; 0.26) (-0.51; 0.34) (-0.58; 0.41) (-0.54; 0.36)

ψ̂20 -1.38 (-4.78; 2.02) (-5.65; 2.88) (-6.89; 4.12) (-6.07; 3.31)

ψ̂21 0.21 (-0.22; 0.64) (-0.33; 0.74) (-0.49; 0.90) (-0.39; 0.80)
Triceps Skinfold Thickness (n1=8,911, n2=9,145, α̂=0.07)

ψ̂10 -1.39 (-3.10; 0.32) (-3.61; 0.83) (-4.19; 1.41) (-3.85; 1.07)

ψ̂11 0.22 (-0.07; 0.50) (-0.15; 0.59) (-0.24; 0.68) (-0.19; 0.63)

ψ̂20 -0.27 (-3.73; 3.18) (-4.39; 3.84) (-5.35; 4.80) (-4.97; 4.42)

ψ̂21 -0.04 (-0.40; 0.48) (-0.47; 0.56) (-0.60; 0.68) (-0.55; 0.64)

† sample size at �rst stage, ‡ sample size at second stage, †† adaptive α
using double bootstrap

at the beginning of the interval. A loess smoother is drawn through the points (solid red

curve), and the dashed blue line shows the zero level. For all diagnostic plots, we notice

no weird trend. Figures B.2 and B.3 shows the same diagnostic plots for the complete-case

analysis with waist circumference and tricep skinfold thickness as the outcome, respectively.

Again, we identify no alarming pattern in the residual plots.

Figures B.4, B.5 and B.6 show the residual analysis for the IPCW analysis with BMI, waist

circumference and tricep skinfold thickness as the outcome, respectively. All residual plots

show no trend.
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Figure B.1: Plots of residuals at each stage vs. �tted values (left), and vs. infant weight at
the start of the interval (right) for the complete-case analysis with BMI as the outcome. A
loess smoother is drawn through the points (solid red curve), and the dashed blue horizontal
line shows zero level.
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Figure B.2: Plots of residuals at each stage vs. �tted values (left), and vs. infant weight
at the start of the interval (right) for the complete-case analysis with waist circumference
as the outcome. A loess smoother is drawn through the points (solid red curve), and the
dashed blue horizontal line shows zero level.
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Figure B.3: Plots of residuals at each stage vs. �tted values (left), and vs. infant weight at
the start of the interval (right) for the complete-case analysis with tricep skinfold thickness
as the outcome. A loess smoother is drawn through the points (solid red curve), and the
dashed blue horizontal line shows zero level.
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Figure B.4: Plots of residuals at each stage vs. �tted values (left), and vs. infant weight at
the start of the interval (right) for the IPCW analysis with BMI as the outcome. A loess
smoother is drawn through the points (solid red curve), and the dashed blue horizontal line
shows zero level.
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Figure B.5: Plots of residuals at each stage vs. �tted values (left), and vs. infant weight
at the start of the interval (right) for the IPCW analysis with waist circumference as the
outcome. A loess smoother is drawn through the points (solid red curve), and the dashed
blue horizontal line shows zero level.
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Figure B.6: Plots of residuals at each stage vs. �tted values (left), and vs. infant weight at
the start of the interval (right) for the IPCW analysis with tricep skinfold thickness as the
outcome. A loess smoother is drawn through the points (solid red curve), and the dashed
blue horizontal line shows zero level.
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Appendix C

Supplemental Materials for Chapter 4

C.1 Consistency and Double-robustness

We give a proof for the consistency and double-robustness of DWSurv. The proof is concerned

with the blip estimators ψ̂j . For simplicity, the proof is detailed for a DTR with a single stage

of intervention. It is straightforward to extend the reasoning to more than one stage.

In a one-stage DTR, DWSurv estimates the parameters (β,ψ) by solving the following

GEE:

U(β,ψ) =
n∑
i=1

δiŵi

 hiβ

aihiψ

(log(Ti)− βThiβ − aiψThiψ
)

= 0.

We simplify the notations

U(β,ψ) =
n∑
i=1

δiŵi

 xi

aixi

(log(Ti)− βTxi − aiψTxi
)

= 0.

Note that, for simplicity, we took Hβ = Hψ = X but that the following double-robustness

proof holds in the general case where Hβ and Hψ are di�erent subsets of H .
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C.1.1 Treatment-free Model Correctly Speci�ed, Weight Models

Misspeci�ed

First, let the treatment-free model be correctly speci�ed i.e.

E[log(Ti)|x, a] = E
[
log(Ti)− aiψTxi|x, a;β

]
= βTxi,

assuming the blip model aiψ
Txi is correctly speci�ed. With the expectation taken with

respect to p(T,∆|A,X), we have

E[U(β,ψ)] =
n∑
i=1

1∑
δi=0

∫
t

δiŵi

 xi

aixi

(log(Ti)− βTxi − aiψTxi
)
p(Ti|δi, ai, xi)dT

 p(∆i|ai, xi)

(C.1)

=
n∑
i=1

1∑
δi=0

δiŵi

 xi

aixi

[∫
t

(
log(Ti)− βTxi − aiψTxi

)
p(Ti|δi, ai,xi)dT

]
p(∆i|ai,xi)

=
n∑
i=1

1∑
δi=0

δiŵi

 xi

aixi

 p(∆i|ai,xi)
[∫

t

(
log(Ti)− βTxi − aiψTxi

)
p(Ti|δi, ai,xi)dT

]

=
n∑
i=1

E

δiŵi
 xi

aixi

 ai,xi

E
[
log(Ti)− βTxi − aiψTxi|ai,xi

]

where (C.1) is due to expressing p(T,∆|A,X) as p(T |∆, A,X)× p(∆|A,X) = p(T |A,X)×

p(∆|A,X) because of the coarsening at random assumption (i.e. T ⊥⊥ ∆|X, A). When the

treatment-free model is correctly speci�ed, the second expectation is

E
[
log(Ti)− βTxi − aiψTxi|ai,xi

]
= E

[
log(Ti)− aiψTxi − βTxi|ai,xi

]
= E

[
log(Ti)− aiψTxi|ai,xi

]
− E

[
βTxi|ai,xi

]
= 0
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such that U(β,ψ) consistently estimates the blip parameters ψ when the treatment-free

model is correctly speci�ed.

C.1.2 Treatment-free Model Misspeci�ed, Weight Models Cor-

rectly Speci�ed

Second, let the weight models be correctly speci�ed i.e. P(A = 1|X;α) = P(A = 1|X)

and P(∆ = 1|A,X;λ) = P(∆ = 1|A,X). We show that �nding the root of the estimating

function U(β,ψ) yields consistent estimators of ψ if the weights satisfy the following

balancing property.

Theorem (balancing property): Under assumptions 1�3 listed in the article, solving

the weighted GEE U(β,ψ) = 0 yields consistent estimators of ψ if the weights satisfy the

balancing property

[1−g(0,x)][1−π(x)]w(0, 0,x) = g(0,x)[1−π(x)]w(0, 1,x) = [1−g(1,x)]π(x)w(1, 0,x) = g(1,x)π(x)w(1, 1,x)

(C.2)

where π(x) = P(A = 1|X = x) and g(a,x) = P(∆ = 1|A = a,X = x).

Proof. In a standard linear regression log(y) ∼ βTx+ aψTx restricted to observations with

δ = 1, the estimators ψ are confounded (and potentially biased) by any lack of independence

between the elements of X and (A,∆). It is therefore su�cient to perform a standard linear

regression on a weighted data set (yw,xw, aw, δw) wherein the covariates xw are independent

of exposure (aw, δw) or, equivalently,

E(Xw|Aw = 0,∆w = 1) = E(Xw|Aw = 1,∆w = 1) = E(Xw|Aw = 0,∆w = 0) = E(Xw|Aw = 1,∆w = 0)
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For this, it su�ces to �nd weight such that

P(Aw = 0,∆w = 0|Xw = x)

P(Aw = 0,∆w = 0)
=

P(Aw = 0,∆w = 1|Xw = x)

P(Aw = 0,∆w = 1)
=

P(Aw = 1,∆w = 0|Xw = x)

P(Aw = 1,∆w = 0)
=

P(Aw = 1,∆w = 1|Xw = x)

P(Aw = 1,∆w = 1)
.

(C.3)

To satisfy (C.3), it is su�cient to �nd weights that ensure the numerators are equal and

the denominators are equal. Noticing that P(Aw = 0,∆w = 0|Xw = x) + P(Aw = 0,∆w =

1|Xw = x) + P(Aw = 1,∆w = 0|Xw = x) + P(Aw = 1,∆w = 1|Xw = x) must equal 1, each

numerator must equal 1/4. Let k = w(0, 0,x)P(A = 0,∆ = 0|X = x) + w(0, 1,x)P(A =

0,∆ = 1|X = x) + w(1, 0,x)P(A = 1,∆ = 0|X = x) + w(1, 1,x)P(A = 1,∆ = 1|X = x),

then each numerator can be expressed as

P(Aw = a,∆w = δ|Xw = xw) =
1

k
P(A = a,∆ = δ|X = x)w(a, δ,x).

The left-hand side must equal 1/4, and the right-hand side will be 1/4 for (a, δ) ∈ (0, 1)2 if

the weights are of the form (C.2). As an example, for a = 1 and δ = 1, we have

P(Aw = 1,∆w = 1|Xw = xw) =
1

k
P(A = 1,∆ = 1|X = x)w(1, 1,x)

=
1

k
P(∆ = 1|A = 1,X = x)P(A = 1|X = x)w(1, 1,x)

=
1

k
g(1,x)π(x)w(1, 1,x). (C.4)

If the weights satisfy (C.2), then

w(0, 0,x) =
g(1,x)π(x)w(1, 1,x)

[1− g(0,x)][1− π(x)]

w(0, 1,x) =
g(1,x)π(x)w(1, 1,x)

g(1,x)[1− π(x)]

w(1, 0,x) =
g(1,x)π(x)w(1, 1,x)

[1− g(1,x)]π(x)

such that k = 4g(1,x)π(x)w(1, 1,x) and (C.4) is indeed 1/4. This shows that the numerators

are equal if the weights are of the speci�ed form.
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Next, using fX(x) to denote the probability density function of X and writing
∫
fX(x)kdx,

the denominators in (C.3) can be written as

P(Aw = 0,∆w = 0) =
1

l

∫
fX(x)P(A = 0,∆ = 0|X = x)w(0, 0,x)dx

=
1

l

∫
fX(x)[1− π(x)][1− g(0,x)]w(0, 0,x)dx

P(Aw = 0,∆w = 1) =
1

l

∫
fX(x)P(A = 0,∆ = 1|X = x)w(0, 1,x)dx

=
1

l

∫
fX(x)[1− π(x)]g(0,x)w(0, 1,x)dx

P(Aw = 1,∆w = 0) =
1

l

∫
fX(x)P(A = 1,∆ = 0|X = x)w(1, 0,x)dx

=
1

l

∫
fX(x)π(x)[1− g(1,x)]w(1, 0,x)dx

P(Aw = 1,∆w = 1) =
1

l

∫
fX(x)P(A = 1,∆ = 1|X = x)w(1, 1,x)dx

=
1

l

∫
fX(x)π(x)g(1,x)w(1, 1,x)dx

and again these four expressions will be equal if the weights satisfy (C.2).

C.2 Details on the Asymptotic Variance Formulae

The derivations of an expression for the asymptotic variance of the estimators (β̂, ψ̂) are

shown below. The details are given for a single-stage DTR in Section C.2.1. Section C.2.2

speci�es the additional steps needed to extend the formulae to a multi-stage setting. Sec-

tion C.2.3 discusses a situation where the asymptotic variance formulae may be inadequate.

Section C.2.4 illustrates the performance of the formulae in a simulation study.
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For a one-stage DTR, the parameters (β,ψ) are estimated by solving the following

GEE:

U(β,ψ,α,λ) =
n∑
i=1

δiwi(α,λ)

 hiβ

aihiψ

(log(Ti)− βThiβ − aiψThiψ
)

= 0

where we emphasize that the GEE also depend on the parameters α and λ involved in the

estimation of the weights. The following derivations assume that all models (treatment,

treatment-free, censoring, blip) are correctly speci�ed.

We simpli�ed the notations to make the derivations easier to read. Let θ = (β,ψ), let

the vector Xiθ = (Hiβ, aiHiψ)T , let Xiλ = (Hiλ, ai)
T be the covariates, including the

treatment, used to construct the censoring model, and let Xiα = Hiα be the covariates

used to construct the treatment model. We consider the GEE with plug-in estimators of the

nuisance parameters (α,λ) as

U(θ; α̂, λ̂) =
∑

δiwi(α̂, λ̂)Xiθ

(
log(Ti)− θTXiθ

)
= 0.

The following developments follow from Robins (2004), Moodie (2009) andWallace & Moodie

(2015).

C.2.1 Asymptotic Variance Formula

The variance of the estimator θ̂ depends on the variance of U(θ; α̂, λ̂), which must adjust for

the plug-in estimators of the nuisance parameters. The variance of U(θ; α̂, λ̂) can be derived

by performing a �rst-order Taylor expression of the function about the limiting values of α̂
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and λ̂, α0 and λ0, given by the adjusted estimating functions

U adj(θ) = U(θ,α0,λ0) + E
[
∂

∂α
U(θ,α0,λ0)

]
(α̂−α0) (C.5)

+ E
[
∂

∂λ
U(θ,α0,λ0)

]
(λ̂− λ0) + op(1).

The adjusted GEE have variance E[U adj(θ)⊗2] = E[U adj(θ)U adj(θ)T ]. From the delta

method, an expression for the asymptotic variance of the estimator θ̂ is given by

Var(θ̂) = E

{(E [ ∂
∂θ
U adj(θ,α0,λ0)

])−1

U adj(θ,α0,λ0)

}⊗2
 . (C.6)

The variance of the estimator θ̂ depends on the choice of weights through the derivatives

with respect to α and λ in (C.5).

Details

Assuming logistic regressions for the treatment and censoring models

âi := P(Ai = 1|xiα;α0) =
1

1 + exp(−αT0xiα)

d̂i := P(∆i = 1|xiλ;λ0) =
1

1 + exp(−λT0xiλ)
,

we derive an expression for the variance of θ̂ using weights of the form

wi(ai, δi,xiα,xiλ;α,λ) =
|ai − âi|

δid̂i + (1− δi)(1− d̂i)
.
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The derivatives of the weight function in U(θ;α,λ) with respect to α and λ are

∂w

∂α
=
∂w

∂â

∂â

∂α
=

[
(1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)

]T
Xα

∂w

∂λ
=

[
|a− â|d̂(1− d̂)

[δd̂+ (1− δ)(1− d̂)]2

]T
Xλ

where 1 is a vector of 1's of length n, · is the element-wise product, and the divisions and

the square are also element-wise. The derivatives in (C.5) are

E
[
∂

∂α
U(θ,α0,λ0)

]
(α̂−α0) = n−1

[
δ · (1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)

]T
XT
θ (log(T )− θTXθ)Xα(α̂−α0),

E
[
∂

∂λ
U(θ,α0,λ0)

]
(λ̂− λ0) = n−1

[
δ · d̂ · (1− d̂) · |a− â|
δ · d̂+ (1− δ) · (1− d̂)

]T
XT
θ (log(T )− θTXθ)Xλ(λ̂− λ0).

An expression for Uadj(θ) is then

U adj(θ) =

[
δ · |a− â|

δ · d̂+ (1− δ) · (1− d̂)

]T
XT
θ (log(T )− θTXθ)

+ n−1

[
δ · (1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)

]T
XT
θ (log(T )− θTXθ)Xα(α̂−α0)

+ n−1

[
δ · d̂ · (1− d̂) · |a− â|
δ · d̂+ (1− δ) · (1− d̂)

]T
XT
θ (log(T )− θTXθ)Xλ(λ̂− λ0)

The derivative of Uadj(θ) with respect to θ is given by

E
[
∂

∂θ
Uadj(θ,α0,λ0)

]
= n−1

(
δ · |a− â|

δ · d̂+ (1− δ) · (1− d̂)
+ n−1δ · (1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)
Xα(α̂−α0)

+ n−1 δ · d̂ · (1− d̂) · |a− â|
δ · d̂+ (1− δ) · (1− d̂)

Xλ(λ̂− λ0)

)
XT
θ Xθ

172



Implementation

The previous form of the asymptotic variance of θ̂ cannot be implemented because it depends

on the unknown true values α0 and λ0. A solution is to use a second Taylor expansion, giving

rise to the function

U adj = U − E
[
∂

∂α
U

]
E
[
∂

∂α
sα

]−1

sα − E
[
∂

∂λ
U

]
E
[
∂

∂λ
sλ

]−1

sλ

where sα and sλ denote the score functions of the treatment and censoring models, respec-

tively. Then, the variance of θ̂ is given by

Var(θ̂) = E

{E [ ∂
∂θ
U adj

]−1

U adj

}⊗2
 .

We have

sα = (a− â)Xα

sλ = (δ − d̂)Xλ

E
[
∂

∂α
sα

]−1

=

(
1

n
â · (1− â)XT

αXα

)−1

E
[
∂

∂λ
sλ

]−1

=

(
1

n
d̂ · (1− d̂)XT

λXλ

)−1

E
[
∂

∂α
U

]
= − 1

n

(
δ · (1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)
XαXθ[log(T )− θTXθ]

)

E
[
∂

∂λ
U

]
= − 1

n

(
δ · |a− â| · d̂ · (1− d̂)

δ · d̂+ (1− δ) · (1− d̂)
XλXθ[log(T )− θTXθ]

)
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such that U adj is given by

U adj =
δ · |a− â|

δ · d̂+ (1− δ) · (1− d̂)
Xθ[log(T )− θTXθ] +

1

n

(
δ · (1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)
XαXθ

[log(T )− θTXθ]

)(
1

n
â · (1− â)XT

αXα

)−1

(a− â)Xα +
1

n

(
δ · |a− â| · d̂ · (1− d̂)

δ · d̂+ (1− δ) · (1− d̂)

XλXθ[log(T )− θTXθ]

)(
1

n
d̂ · (1− d̂)XT

λXλ

)−1

(δ − d̂)Xλ

and its expectation is

E
[
∂

∂θ
U adj

]
=

1

n

(
δ · |a− â|

δ · d̂+ (1− δ) · (1− d̂)
XT
θ Xθ −

1

n

(
δ · (1− 2a) · â · (1− â)

δ · d̂+ (1− δ) · (1− d̂)
XαX

T
θ Xθ

)
(

1

n
â · (1− â)XT

αXα

)−1

(a− â)Xα −
1

n

(
δ · |a− â| · d̂ · (1− d̂)

δ · d̂+ (1− δ) · (1− d̂)
XλX

T
θ Xθ

)
(

1

n
d̂ · (1− d̂)XT

λXλ

)−1

(δ − d̂)Xλ

)
.

From these expressions, the asymptotic variance in (C.6) can be calculated.

C.2.2 Extension to More Than One Stage

With more than one stage of intervention, the procedure described above is adapted to

account for the fact that the estimating functions in all stages except the last depend on

plug-in blip estimators from later stages through the pseudo-outcome. For a DTR with

two stages, the variance of the second stage estimators (β̂2, ψ̂2) is obtained following the

procedure described above, where the adjusted estimating functions in (C.5) is denoted

U 2,adj(θ2). For the �rst stage estimators, the estimating functions U 1,adj(θ1) further depends

on the plug-in estimator ψ̂2 through the construction of the pseudo-outcome, which is treated

as a nuisance quantity. The same principles as described above apply but an additional term

is added to the adjusted estimating functions in the �rst stage to account for the additional
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nuisance parameters as

U ε
1,adj(θ1) = U 1,adj(θ1)− E

[
∂

∂ψ2

U 1(θ1,α10,λ10,ψ20)

](
E
[
∂

∂ψ2

U 2,adj(θ2,α20,λ20,ψ20)

])−1

×U 2,adj(θ2,α20,λ20,ψ20).

C.2.3 A Note on Non-regularity

Under speci�c longitudinal distributions of the data, the �rst stage blip estimators may be

non-regular in the sense that their asymptotic distributions do not converge uniformly over

the parameter space (Robins, 2004). Non-regularity occurs because the pseudo-outcome T̃

is a non-smooth function of a plug-in estimator ψ̂2 as the function I(ψT2H2ψ > 0) is not

di�erentiable at {ψT2H2ψ = 0} i.e. when the treatment e�ect in the second stage is small

or null. The �rst stage blip estimators ψ̂1 are in turn a non-smooth function of ψ̂2 and

the asymptotic distribution
√
n(ψ̂1 − ψ1) is not uniformly normal. A signi�cant negative

consequence of non-regularity is that typical con�dence interval calculations for the blip pa-

rameters, including asymptotic and standard bootstrap procedures, perform poorly in terms

of coverage (Chakraborty et al., 2010; Moodie & Richardson, 2010; Robins, 2004; Simoneau

et al., 2017). The m-out-of-n bootstrap has been proposed to correct for non-regularity with

uncensored continuous outcomes and showed good performance with dWOLS (Chakraborty

et al., 2010; Simoneau et al., 2017), thus providing a promising solution for DWSurv.

C.2.4 A Simulation Study

We used the data generating mechanisms described in the Supplementary Material �De-

tails on the simulation study�. We considered situations where the censoring indicator was

independent of the survival times, conditionally independent given baseline covariates and

conditionally independent given time-varying covariates.
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Tables C.1�C.3 compare the Monte Carlo standard errors and the standard errors estimated

by the asymptotic variance formulae in a two-stage DTR. The formulae yielded conservative

coverages.

Table C.1: Comparison of Monte Carlo standard errors and standard errors calculated with
the asymptotic variance, with 95% Wald con�dence interval coverage, in 1000 data sets with
independent censoring.

n=300 n=1,000 n=10,000
θ SEMC ESE Cov. SEMC ESE Cov. SEMC ESE Cov.

30% independent censoring
ψ10 0.09 0.09 96.7 0.06 0.06 96.8 0.02 0.02 96.5
ψ11 0.12 0.15 98.5 0.08 0.10 98.5 0.03 0.03 98.5
ψ20 0.20 0.23 96.8 0.14 0.16 96.8 0.04 0.05 97.8
ψ21 0.14 0.16 97.1 0.09 0.11 97.7 0.03 0.04 97.7

60% independent censoring
ψ10 0.10 0.11 96.3 0.07 0.08 96.4 0.02 0.02 96.8
ψ11 0.14 0.17 98.7 0.10 0.12 98.1 0.03 0.04 98.5
ψ20 0.24 0.27 97.3 0.17 0.19 97.5 0.05 0.06 97.9
ψ21 0.17 0.19 97.0 0.11 0.13 98.1 0.04 0.04 97.6

SEMC, Monte Carlo standard error; ESE, estimated standard errors; Cov., coverage of 95% CI

Table C.2: Comparison of Monte Carlo standard errors and standard errors calculated with
the asymptotic variance, with 95% Wald con�dence interval coverage, in 1000 data sets with
censoring dependent on baseline covariates.

n=300 n=1,000 n=10,000
θ SEMC ESE Cov. SEMC ESE Cov. SEMC ESE Cov.

30% independent censoring
ψ10 0.08 0.09 96.8 0.06 0.07 97.0 0.02 0.02 96.7
ψ11 0.11 0.14 98.3 0.08 0.10 99.1 0.02 0.03 99.1
ψ20 0.18 0.21 97.4 0.13 0.15 97.8 0.04 0.05 97.3
ψ21 0.12 0.14 97.5 0.09 0.10 97.8 0.03 0.03 98.3

60% independent censoring
ψ10 0.13 0.13 95.0 0.09 0.09 95.1 0.03 0.03 96.9
ψ11 0.15 0.18 97.7 0.11 0.12 97.8 0.03 0.04 98.3
ψ20 0.24 0.27 96.3 0.17 0.19 96.5 0.05 0.06 97.1
ψ21 0.17 0.19 96.1 0.12 0.13 96.5 0.04 0.04 96.9

SEMC, Monte Carlo standard error; ESE, estimated standard errors; Cov., coverage of 95% CI
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Table C.3: Comparison of Monte Carlo standard errors and standard errors calculated with
the asymptotic variance, with 95% Wald con�dence interval coverage, in 1000 data sets with
censoring dependent on time-varying covariates.

n=300 n=1,000 n=10,000
θ SEMC ESE Cov. SEMC ESE Cov. SEMC ESE Cov.

30% independent censoring
ψ10 0.08 0.09 95.9 0.06 0.06 96.9 0.02 0.02 98.0
ψ11 0.10 0.13 98.7 0.07 0.09 98.6 0.02 0.03 99.0
ψ20 0.18 0.22 97.4 0.13 0.15 97.9 0.04 0.05 97.7
ψ21 0.12 0.15 97.9 0.09 0.10 98.4 0.03 0.03 97.8

60% independent censoring
ψ10 0.13 0.13 95.7 0.09 0.09 95.8 0.03 0.03 95.9
ψ11 0.15 0.17 97.1 0.10 0.12 97.9 0.03 0.04 98.6
ψ20 0.26 0.30 96.5 0.18 0.21 97.0 0.06 0.07 98.4
ψ21 0.17 0.20 96.6 0.12 0.14 97.1 0.04 0.04 98.7

SEMC, Monte Carlo standard error; ESE, estimated standard errors; Cov., coverage of 95% CI

C.3 Details on the Simulation Study

We o�er a complement to the simulation study presented in the article which compared

our method, DWSurv, to the method by HNW. In Section C.3.1, we introduce alternative

data generating mechanisms. In Section C.3.2, we illustrate the consistency and double-

robustness of DWSurv for all data generating mechanisms. In Sections C.3.3 & C.3.4, we

consider additional metrics to evaluate the performance of DWSurv.

C.3.1 Alternative Data Generating Mechanisms

Independent censoring

In the article, we presented results for a data generating mechanism that yielded 30% inde-

pendent censoring. We also considered data generating mechanisms yielding 60% indepen-

dent censoring. For this, we used the same steps as described in Section 4.3 of the article but

177



generated the censoring indicator from a Bernoulli with probability of success 0.4 instead of

0.7 (second paragraph of the section, last sentence).

Censoring dependent on baseline covariates

We considered a data generating mechanism where both the probability of censoring and the

censoring time depended on the baseline covariate X1. We used the same steps as described

in Section 4.3 of the article but generated the censoring indicator and the censoring time

as a function of X1. This implied generating the censoring indicator ∆ from a Bernoulli

with probability of success expit(−0.4 + 2X1) (30% censoring) or expit(−1.8 + 2X1) (60%

censoring). For individuals who were censored (∆ = 0), we generated their censoring time C

using the inverse probability method (Bender et al., 2005). It su�ced to generate U ∼ U(0, 1)

and make the inverse tranformation C = S−1
C (u|x1) where S−1

c (·|x1) is the conditional survival

function i.e. S(t|x1) = exp{−H0(t)exp(x1β)} where H0(t) is the baseline hazard. We used

a Weibull baseline hazard H0(t) = λtρ with shape ρ = 0.9 and scale λ = 1/300 and �xed

β = 2.

Censoring dependent on time-varying covariates (DWSurv only)

We considered a data generating mechanism where the probability of censoring depended on

time-varying covariates. The proposed data generating mechanism followed the same steps

as described in the article, but the censoring indicator was generated such that it depended

on the �rst and second stage covariates. Importantly, the data generating mechanism allowed

to recover the correct speci�cation of the censoring models i.e. the probability of censoring

given that a patient entered the second stage P (∆ = 0|η2 = 1,H2, A2) and the overall

probability of censoring given baseline information P (∆ = 0|H1, A1). First, we describe

the strategy that allowed generating a censoring indicator that depended on time-varying

covariates. Then, we detail the steps for generating right-censored survival times with 30%
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censoring.

Let δ1 be an indicator in the �rst stage where δ1 = 1 if an event was observed in the �rst stage

or if an individual did not experience an event but entered the second stage and δ1 = 0 if an

individual was censored in the �rst stage. Let δ2 be an indicator in the second stage where

δ2 = 1 if an event occurred in the second stage and δ2 = 0 otherwise. An individual who

was censored in the �rst stage will have overall censoring indicator equal to zero i.e. ∆ = 0

and η2 = 0. An individual who was not censored in the �rst stage can either (i) experience

an event in the �rst stage and have ∆ = 1 and η2 = 0 or (ii) reach the second stage without

experiencing an event before and have η2 = 1. We have

P (∆ = 0|X1, A1)

= P (∆ = 0 and δ1 = 0|X1, A1) + P (∆ = 0 and δ1 = 1|X1, A1)

= P (∆ = 0|δ1 = 0, X1, A1)P (δ1 = 0|X1, A1) + P (∆ = 0|δ1 = 1, X1, A1)P (δ1 = 1|X1, A1)

= P (δ1 = 0|X1, A1) + P (∆ = 0|δ1 = 1, X1, A1)P (δ1 = 1|X1, A1) (C.7)

which decomposes the probability of being censored at any point during the follow-up into

functions of the events �being censored in the �rst stage� and �being censored, but not in

the �rst stage�. The �rst part of the second term is

P (∆ = 0|δ1 = 1, X1, A1)

= P (∆ = 0 and η2 = 0|δ1 = 1, X1, A1) + P (∆ = 0 and η2 = 1|δ1 = 1, X1, A1)

= P (∆ = 0|η2 = 1, δ1 = 1, X1, A1)P (η2 = 1|δ1 = 1, X1, A1)

= P (δ2 = 0|η2 = 1, δ1 = 1, X1, A1)P (η2 = 1|δ1 = 1, X1, A1). (C.8)

Note that P (∆ = 0|X1, A1) and P (δ2 = 0|η2 = 1, δ1 = 1, X1, A1) are the two censoring

models that we need to be able to correctly specify to assess the double-robustness property,

respectively corresponding to P (∆ = 0|H1, A1) and P (∆ = 0|η2 = 1,H2, A2). Using the
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relationships (C.7) and (C.8), we express the probability of not being censored in the �rst

stage P (δ1 = 1|X1, A1) as a function of these two models as

P (δ1 = 1|X1, A1) =
P (∆ = 1|X1, A1)

1− P (δ2 = 1|η2 = 1, δ1 = 1, X1, A1)P (η2 = 1|δ1 = 1, X1, A1)
. (C.9)

Up to this point, the probability of censoring still only depends on baseline characteristics

(X1, A1). We want the probability of censoring given that an individual entered the second

stage to further depend on second stage characteristics (X2, A2). We have

P (δ2 = 1|η2 = 1, δ1 = 1, X1, A1)

= P (δ2 = 1 and A2 = 0|η2 = 1, δ1 = 1, X1, A1) + P (δ2 = 1 and A2 = 1|η2 = 1, δ1 = 1, X1, A1)

= P (δ2 = 1|A2 = 0, η2 = 1, δ1 = 1, X1, A1)P (A2 = 0|η2 = 1, δ1 = 1, X1, A1)

+ P (δ2 = 1|A2 = 1, η2 = 1, δ1 = 1, X1, A1)P (A2 = 1|η2 = 1, δ1 = 1, X1, A1)

and

P (δ2 = 1|A2, η2 = 1, δ1 = 1, X1, A1) = EX2 [P (δ2 = 1|X2, A2, η2 = 1, δ1 = 1, X1, A1)]

such that the probability of censoring given that an individual entered the second stage can

further depend on X2 and A2. Similarly, we have

P (A2 = j|η2 = 1, δ1 = 1, X1, A1) = EX2 [P (A2 = j|X2, η2 = 1, δ1 = 1, X1, A1)]

for j = 1, 2. Then, P (δ2 = 0|η2 = 1, δ1 = 1, X1, A1) in (C.9) is replaced by

EX2 [P (δ2 = 0|X2, A2 = 0, η2 = 1, δ1 = 1, X1, A1)]EX2 [P (A2 = 0|X2, η2 = 1, δ1 = 1, X1, A1)]

+ EX2 [P (δ2 = 0|X2, A2 = 1, η2 = 1, δ1 = 1, X1, A1)]EX2 [P (A2 = 1|X2, η2 = 1, δ1 = 1, X1, A1)]

(C.10)

180



The relationships derived above allow to generate a censoring indicator that depends on the

baseline and second stage characteristics by specifying models for P (δ2 = 1|X2, A2, η2 =

1, δ1 = 1, X1, A1) and P (∆ = 1|X1, A1). We now assume parametric models for all random

variables and describe the steps of the corresponding data generating mechanism.

For individual i, the �rst stage treatment was assigned with a Bernoulli distribution with

P (Ai1 = 1|Xi1) = expit(−1 + 2Xi1) where Xi1 was a baseline continuous covariate generated

from a Uniform(0.1, 1.29). The assignment of the second stage treatment was also based on

a Bernoulli distribution with P (Ai2 = 1|Xi2) = expit(2.8−2Xi2) where Xi2 was a continuous

covariate measured at the beginning of the second stage generated from a Uniform(0.9, 2).

Let the probability of being censored at any point during the follow-up be P (∆i = 0|Xi1) =

expit(−0.2 + 2Xi1). Let the probability of entering the second stage given that the patient

was not censored in the �rst stage be P (ηi2 = 1) = 0.8. Let the probability of being censored

in the second stage be P (δi2 = 0|ηi2 = 1, Xi2) = expit(0.3 − 2Xi2). From (C.9) and (C.10),

and given the distribution of X2, we have that the probability of not being censored in the

�rst stage is

P (δi1 = 1) = expit(−0.2 + 2Xi1)/(1− 0.0805× 0.8)

where EXi2 [P (δi2 = 0|η2 = 1, Xi2)] ≈ 0.0805. Note that taking the expectation involved

solving an integral and that this integral was approximated numerically.

We started by generating δi1. Those who were censored in the �rst stage had ηi2 = 0, δi2

was not applicable and ∆i = 0. For those who were not censored in the �rst stage (δi1 = 1),

we generated ηi2. For those who entered the second stage (ηi2 = 1), we generated δi2 and

set ∆i = δi2. For those who did not enter the second stage, we set ∆i = 1. Once the

censoring indicator was generated, the remaining steps of the algorithm were similar to what

was described in the paper (starting on the 3rd paragraph of Section 4.3).

The derivations above yielded approximately 30% censoring. We also considered 60% cen-

soring by specifying P (∆i = 0|Xi1) = expit(−1.8 + 2Xi1), P (δi2 = 0|ηi2 = 1, Xi2) =
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expit(1− 2Xi2) and P (δi1 = 1) = expit(−1.8 + 2Xi1)/(1− 0.1466× 0.8) where EXi2 [P (δi2 =

0|η2 = 1, Xi2)] ≈ 0.1466.

C.3.2 Illustration of the Consistency and Double-robustness

In the article, the accuracy and precision of the blip parameter estimators were only presented

with the data generating mechanism that yielded 30% independent censoring for a sample

size of n=1000. Here, we present more detailed results on accuracy and precision of the

blip estimators by considering dependent censoring, a higher proportion of censoring (60%)

and di�erent sample sizes (n=500, 1000, 10,000). The distribution of the blip parameter

estimators is summarized with �gures and tables for all sample sizes, censoring proportions

and censoring dependencies. Each blip estimator corresponds to one panel in the �gures.

Common y-axes were kept across the di�erent schemes to allow for a fair visual comparison.

Each �gure is followed by a table which describes the distribution of the blip estimators in

terms of mean, standard error (SE), bias and root mean squared error (RMSE). The table

below helps navigate through the results of this section.

Censoring dependency

% censoring n Independent Dependent (baseline) Dependent (time-varying)

Low (30%)

500
Table C.5 Table C.10 Table C.16
Figure C.1 Figure C.6 Figure C.12

1000
Table C.4 Table C.11 Table C.17

Figure 4.1 (article) Figure C.7 Figure C.13

10,000
Table C.6 Table C.12 Table C.18
Figure C.2 Figure C.8 Figure C.14

High (60%)

500
Table C.7 Table C.13 Table C.19
Figure C.3 Figure C.9 Figure C.15

1000
Table C.8 Table C.14 Table C.20
Figure C.4 Figure C.10 Figure C.16

10,000
Table C.9 Table C.15 Table C.21
Figure C.5 Figure C.11 Figure C.17
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Larger sample sizes and lower percentages of censoring yielded more precise estimators. The

distribution of the blip estimators was comparable for independent and dependent (baseline

or time-varying) censoring. The �rst stage estimators were more precise which was ex-

plained by the larger sample size in the �rst stage as not all individuals reached the second

stage.

With independent censoring

In the article, Figure 4.1 illustrates the consistency and double-robustness of DWSurv with

30% independent censoring and n=1000. Table C.4 complements Figure 4.1 in the pa-

per.

anchor
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Table C.4: Mean, standard error, bias and root mean squared error of the blip estimators with
DWSurv and the method by HNW with sample size n=1000 across four scenarios: (1) all the
models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model correctly
speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci�ed, and
(4) all models incorrectly speci�ed. The data were simulated with 30% censoring, with both
the probability of censoring and the censoring times independent of the survival times.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.06) 3.40× 10−3 0.06 0.10 (0.06) 2.30× 10−3 0.06
2 0.10 (0.06) −1.97× 10−4 0.06 0.10 (0.06) −1.06× 10−4 0.06
3 0.10 (0.08) 3.82× 10−3 0.08 0.43 (0.08) 0.33 0.34
4 0.43 (0.08) 0.33 0.34 0.43 (0.08) 0.33 0.34

ψ̂11

1 0.10 (0.08) −3.44× 10−3 0.08 0.10 (0.08) −3.45× 10−3 0.08
2 0.10 (0.08) −6.91× 10−5 0.08 0.10 (0.08) −2.02× 10−4 0.08
3 0.10 (0.12) −2.64× 10−3 0.12 -0.38 (0.11) -0.48 0.50
4 -0.39 (0.12) -0.49 0.50 -0.39 (0.12) -0.49 0.50

ψ̂20

1 -0.90 (0.14) −1.42× 10−3 0.14 -0.90 (0.14) −2.43× 10−3 0.14
2 -0.90 (0.14) 1.75× 10−3 0.14 -0.90 (0.14) 1.79× 10−3 0.14
3 -0.91 (0.14) −9.96× 10−3 0.14 -1.12 (0.14) -0.22 0.26
4 -1.12 (0.15) -0.22 0.26 -1.12 (0.15) -0.22 0.26

ψ̂21

1 0.60 (0.10) 1.60× 10−3 0.10 0.60 (0.10) 2.25× 10−3 0.10
2 0.60 (0.10) −1.01× 10−3 0.10 0.60 (0.10) −1.04× 10−3 0.10
3 0.61 (0.10) 7.61× 10−3 0.10 0.76 (0.10) 0.16 0.18
4 0.75 (0.10) 0.15 0.18 0.75 (0.10) 0.15 0.18

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.1: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey)
with sample size n=500 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 30% censoring, with both the probability of censoring and the
censoring times independent of the survival times.
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Table C.5: Mean, standard error, bias and root mean squared error of the blip estimators with
DWSurv and the method by HNW with sample size n=500 across four scenarios: (1) all the
models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model correctly
speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci�ed, and
(4) all models incorrectly speci�ed. The data were simulated with 30% censoring, with both
the probability of censoring and the censoring times independent of the survival times.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.09) −2.01× 10−3 0.09 0.10 (0.08) −3.19× 10−3 0.08
2 0.10 (0.09) 2.80× 10−3 0.09 0.10 (0.09) 2.86× 10−3 0.09
3 0.11 (0.11) 7.89× 10−3 0.11 0.43 (0.12) 0.33 0.35
4 0.43 (0.12) 0.33 0.35 0.43 (0.12) 0.33 0.35

ψ̂11

1 0.10 (0.12) 1.08× 10−3 0.12 0.10 (0.11) 1.31× 10−3 0.11
2 0.10 (0.12) −3.37× 10−3 0.12 0.10 (0.12) −3.45× 10−3 0.12
3 0.09 (0.18) -0.01 0.18 -0.39 (0.18) -0.49 0.52
4 -0.40 (0.17) -0.50 0.53 -0.40 (0.17) -0.50 0.53

ψ̂20

1 -0.90 (0.20) 2.92× 10−3 0.20 -0.90 (0.20) 1.53× 10−3 0.20
2 -0.89 (0.20) 5.45× 10−3 0.20 -0.89 (0.20) 5.46× 10−3 0.20
3 -0.91 (0.21) −7.75× 10−3 0.21 -1.12 (0.21) -0.22 0.30
4 -1.12 (0.21) -0.22 0.30 -1.12 (0.21) -0.22 0.30

ψ̂21

1 0.60 (0.14) −2.06× 10−3 0.14 0.60 (0.14) −1.10× 10−3 0.14
2 0.60 (0.13) −3.33× 10−3 0.13 0.60 (0.13) −3.33× 10−3 0.13
3 0.61 (0.15) 6.70× 10−3 0.15 0.75 (0.14) 0.15 0.21
4 0.75 (0.14) 0.15 0.20 0.75 (0.14) 0.15 0.20

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.2: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=10,000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 30% censoring, with both the probability of censoring and the
censoring times independent of the survival times.
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Table C.6: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=10,000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with both the probability of censoring and the censoring times independent of the survival
times.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.02) −4.99× 10−4 0.02 0.10 (0.02) −1.27× 10−3 0.02
2 0.10 (0.02) −4.13× 10−4 0.02 0.10 (0.02) −4.17× 10−4 0.02
3 0.10 (0.02) 2.14× 10−4 0.02 0.43 (0.03) 0.33 0.33
4 0.43 (0.02) 0.33 0.33 0.43 (0.02) 0.33 0.33

ψ̂11

1 0.10 (0.03) 1.18× 10−3 0.03 0.10 (0.02) 7.69× 10−4 0.02
2 0.10 (0.03) 6.70× 10−4 0.03 0.10 (0.03) 6.77× 10−4 0.03
3 0.10 (0.04) −3.90× 10−4 0.04 -0.38 (0.04) -0.48 0.49
4 -0.39 (0.04) -0.49 0.49 -0.39 (0.04) -0.49 0.49

ψ̂20

1 -0.90 (0.05) 1.01× 10−3 0.05 -0.90 (0.05) −4.17× 10−4 0.05
2 -0.90 (0.04) −1.75× 10−3 0.04 -0.90 (0.04) −1.75× 10−3 0.04
3 -0.90 (0.05) 1.19× 10−3 0.05 -1.12 (0.04) -0.22 0.22
4 -1.12 (0.05) -0.22 0.22 -1.12 (0.05) -0.22 0.22

ψ̂21

1 0.60 (0.03) −6.72× 10−4 0.03 0.60 (0.03) 2.77× 10−4 0.03
2 0.60 (0.03) 1.03× 10−3 0.03 0.60 (0.03) 1.04× 10−3 0.03
3 0.60 (0.03) −3.95× 10−4 0.03 0.75 (0.03) 0.15 0.15
4 0.75 (0.03) 0.15 0.15 0.75 (0.03) 0.15 0.15

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.3: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey)
with sample size n=500 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 60% censoring, with both the probability of censoring and the
censoring times independent of the survival times.
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Table C.7: Mean, standard error, bias and root mean squared error of the blip estimators with
DWSurv and the method by HNW with sample size n=500 across four scenarios: (1) all the
models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model correctly
speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci�ed, and
(4) all models incorrectly speci�ed. The data were simulated with 60% censoring, with both
the probability of censoring and the censoring times independent of the survival times.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.10) −2.26× 10−4 0.10 0.10 (0.10) −3.42× 10−3 0.10
2 0.11 (0.10) 5.66× 10−3 0.10 0.11 (0.10) 5.61× 10−3 0.10
3 0.11 (0.14) 6.70× 10−3 0.14 0.43 (0.14) 0.33 0.36
4 0.42 (0.14) 0.32 0.35 0.42 (0.14) 0.32 0.35

ψ̂11

1 0.10 (0.14) 2.15× 10−4 0.14 0.10 (0.14) 2.76× 10−3 0.14
2 0.09 (0.14) −7.87× 10−3 0.14 0.09 (0.14) −7.77× 10−3 0.14
3 0.09 (0.21) -0.01 0.21 -0.39 (0.2) -0.49 0.53
4 -0.38 (0.21) -0.48 0.53 -0.38 (0.21) -0.48 0.53

ψ̂20

1 -0.90 (0.24) −4.10× 10−3 0.24 -0.91 (0.24) −5.87× 10−3 0.24
2 -0.89 (0.25) 9.74× 10−3 0.25 -0.89 (0.25) 9.64× 10−3 0.25
3 -0.91 (0.26) −7.29× 10−3 0.26 -1.13 (0.25) -0.23 0.34
4 -1.12 (0.26) -0.22 0.34 -1.12 (0.26) -0.22 0.34

ψ̂21

1 0.60 (0.17) 4.99× 10−3 0.17 0.61 (0.17) 6.37× 10−3 0.17
2 0.59 (0.17) −5.42× 10−3 0.17 0.59 (0.17) −5.37× 10−3 0.17
3 0.61 (0.17) 6.06× 10−3 0.17 0.76 (0.17) 0.16 0.23
4 0.75 (0.17) 0.15 0.23 0.75 (0.17) 0.15 0.23

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.4: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=1000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 60% censoring, with both the probability of censoring and the
censoring times independent of the survival times.

191



anchor

Table C.8: Mean, standard error, bias and root mean squared error of the blip estimators with
DWSurv and the method by HNW with sample size n=1000 across four scenarios: (1) all the
models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model correctly
speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci�ed, and
(4) all models incorrectly speci�ed. The data were simulated with 60% censoring, with both
the probability of censoring and the censoring times independent of the survival times

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.07) −5.00× 10−3 0.07 0.09 (0.07) −6.75× 10−3 0.07
2 0.10 (0.07) −2.15× 10−3 0.07 0.10 (0.07) −2.12× 10−3 0.07
3 0.10 (0.10) 3.28× 10−3 0.10 0.43 (0.09) 0.33 0.34
4 0.43 (0.10) 0.33 0.34 0.43 (0.10) 0.33 0.34

ψ̂11

1 0.11 (0.10) 6.02× 10−3 0.10 0.11 (0.09) 6.17× 10−3 0.09
2 0.10 (0.10) 2.35× 10−3 0.10 0.10 (0.10) 2.30× 10−3 0.10
3 0.09 (0.15) −7.75× 10−3 0.15 -0.39 (0.14) -0.49 0.51
4 -0.39 (0.15) -0.49 0.51 -0.39 (0.15) -0.49 0.51

ψ̂20

1 -0.90 (0.17) 1.49× 10−3 0.17 -0.90 (0.17) −9.81× 10−4 0.17
2 -0.89 (0.18) 7.46× 10−3 0.18 -0.89 (0.18) 7.38× 10−3 0.18
3 -0.90 (0.18) −2.95× 10−3 0.18 -1.12 (0.18) -0.22 0.28
4 -1.11 (0.18) -0.21 0.27 -1.11 (0.18) -0.21 0.27

ψ̂21

1 0.60 (0.11) −5.90× 10−4 0.11 0.60 (0.12) 1.01× 10−3 0.12
2 0.59 (0.12) −5.44× 10−3 0.12 0.59 (0.12) −5.38× 10−3 0.12
3 0.60 (0.12) 2.27× 10−3 0.12 0.75 (0.12) 0.15 0.19
4 0.75 (0.12) 0.15 0.19 0.75 (0.12) 0.15 0.19

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.5: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=10,000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 60% censoring, with both the probability of censoring and the
censoring times independent of the survival times.
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Table C.9: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=10,000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with both the probability of censoring and the censoring times independent of the survival
times.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.02) −6.25× 10−4 0.02 0.10 (0.02) −2.24× 10−3 0.02
2 0.10 (0.02) −6.16× 10−4 0.02 0.10 (0.02) −6.15× 10−4 0.02
3 0.10 (0.03) 1.43× 10−4 0.03 0.43 (0.03) 0.33 0.33
4 0.43 (0.03) 0.33 0.33 0.43 (0.03) 0.33 0.33

ψ̂11

1 0.10 (0.03) 6.67× 10−4 0.03 0.10 (0.03) 3.16× 10−4 0.03
2 0.10 (0.03) 7.97× 10−4 0.03 0.10 (0.03) 7.96× 10−4 0.03
3 0.10 (0.05) 1.04× 10−3 0.05 -0.38 (0.04) -0.48 0.49
4 -0.38 (0.05) -0.48 0.49 -0.38 (0.05) -0.48 0.49

ψ̂20

1 -0.90 (0.05) 2.58× 10−4 0.05 -0.90 (0.05) −2.82× 10−3 0.05
2 -0.90 (0.05) −9.52× 10−4 0.05 -0.90 (0.05) −9.43× 10−4 0.05
3 -0.90 (0.06) 2.02× 10−3 0.06 -1.12 (0.06) -0.22 0.22
4 -1.11 (0.05) -0.21 0.22 -1.11 (0.05) -0.21 0.22

ψ̂21

1 0.60 (0.04) −4.55× 10−4 0.04 0.60 (0.04) 1.58× 10−3 0.04
2 0.60 (0.04) 9.15× 10−4 0.04 0.60 (0.04) 9.08× 10−4 0.04
3 0.60 (0.04) −1.28× 10−3 0.04 0.75 (0.04) 0.15 0.15
4 0.75 (0.04) 0.15 0.15 0.75 (0.04) 0.15 0.15

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.6: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey)
with sample size n=500 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 30% censoring, with both the probability of censoring and the
censoring times conditionnally independent of the survival times given baseline covariates.
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Table C.10: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=500 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with both the probability of censoring and the censoring times conditionally independent of
the survival times given baseline covariates.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.08) −5.09× 10−5 0.08 0.10 (0.08) −2.39× 10−5 0.08
2 0.10 (0.08) −2.13× 10−3 0.08 0.10 (0.08) −1.87× 10−3 0.08
3 0.11 (0.11) 7.21× 10−3 0.11 0.46 (0.12) 0.36 0.38
4 0.48 (0.13) 0.38 0.40 0.48 (0.13) 0.38 0.40

ψ̂11

1 0.10 (0.11) 1.78× 10−3 0.11 0.10 (0.11) 1.72× 10−3 0.11
2 0.10 (0.10) 3.20× 10−3 0.10 0.10 (0.10) 3.38× 10−3 0.10
3 0.09 (0.15) -0.01 0.15 -0.40 (0.16) -0.50 0.53
4 -0.42 (0.17) -0.52 0.54 -0.42 (0.17) -0.52 0.54

ψ̂20

1 -0.91 (0.19) −5.33× 10−3 0.19 -0.91 (0.18) −5.15× 10−3 0.18
2 -0.90 (0.18) −4.26× 10−3 0.18 -0.90 (0.18) −4.93× 10−3 0.18
3 -0.92 (0.19) -0.02 0.19 -1.13 (0.19) -0.23 0.30
4 -1.12 (0.18) -0.22 0.28 -1.12 (0.18) -0.22 0.28

ψ̂21

1 0.61 (0.13) 5.07× 10−3 0.13 0.60 (0.12) 4.69× 10−3 0.12
2 0.60 (0.13) 3.15× 10−3 0.13 0.60 (0.13) 3.55× 10−3 0.13
3 0.61 (0.13) 0.01 0.13 0.76 (0.13) 0.16 0.20
4 0.75 (0.12) 0.15 0.19 0.75 (0.12) 0.15 0.19

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.7: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=1000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 30% censoring, with both the probability of censoring and the
censoring times conditionnally independent of the survival times given baseline covariates.
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Table C.11: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=1000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with both the probability of censoring and the censoring times conditionally independent of
the survival times given baseline covariates.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.06) 7.14× 10−4 0.06 0.10 (0.06) 4.02× 10−4 0.06
2 0.10 (0.06) −1.25× 10−3 0.06 0.10 (0.06) −1.15× 10−3 0.06
3 0.10 (0.08) 1.17× 10−3 0.08 0.46 (0.08) 0.36 0.37
4 0.48 (0.09) 0.38 0.39 0.48 (0.09) 0.38 0.39

ψ̂11

1 0.10 (0.08) −1.86× 10−3 0.08 0.10 (0.08) −1.46× 10−3 0.08
2 0.10 (0.08) 3.29× 10−3 0.08 0.10 (0.08) 3.91× 10−3 0.08
3 0.10 (0.11) −9.37× 10−5 0.11 -0.40 (0.11) -0.50 0.51
4 -0.42 (0.12) -0.52 0.53 -0.42 (0.12) -0.52 0.53

ψ̂20

1 -0.91 (0.13) −5.22× 10−3 0.13 -0.91 (0.13) −5.54× 10−3 0.13
2 -0.90 (0.13) −3.20× 10−3 0.13 -0.90 (0.13) −3.83× 10−3 0.13
3 -0.91 (0.14) −8.93× 10−3 0.14 -1.12 (0.13) -0.22 0.26
4 -1.11 (0.13) -0.21 0.25 -1.11 (0.13) -0.21 0.25

ψ̂21

1 0.60 (0.09) 3.49× 10−3 0.09 0.60 (0.09) 3.76× 10−3 0.09
2 0.60 (0.09) 2.46× 10−3 0.09 0.60 (0.09) 2.88× 10−3 0.09
3 0.61 (0.09) 6.90× 10−3 0.09 0.75 (0.09) 0.15 0.18
4 0.74 (0.09) 0.14 0.17 0.74 (0.09) 0.14 0.17

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.8: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=10,000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 30% censoring, with both the probability of censoring and the
censoring times conditionnally independent of the survival times given baseline covariates.
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Table C.12: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=10,000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with both the probability of censoring and the censoring times conditionally independent of
the survival times given baseline covariates.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.02) −4.86× 10−4 0.02 0.10 (0.02) −2.99× 10−4 0.02
2 0.10 (0.02) 1.02× 10−4 0.02 0.10 (0.02) 5.97× 10−4 0.02
3 0.10 (0.02) −7.49× 10−4 0.02 0.46 (0.03) 0.36 0.36
4 0.47 (0.03) 0.37 0.38 0.48 (0.03) 0.38 0.38

ψ̂11

1 0.10 (0.02) 2.67× 10−4 0.02 0.10 (0.02) 1.33× 10−5 0.02
2 0.10 (0.02) −2.55× 10−4 0.02 0.10 (0.02) −1.18× 10−4 0.02
3 0.10 (0.03) 6.81× 10−4 0.03 -0.40 (0.04) -0.50 0.50
4 -0.41 (0.04) -0.51 0.51 -0.41 (0.04) -0.51 0.51

ψ̂20

1 -0.90 (0.04) 5.27× 10−4 0.04 -0.90 (0.04) 5.94× 10−4 0.04
2 -0.90 (0.04) 1.59× 10−3 0.04 -0.90 (0.04) 9.25× 10−4 0.04
3 -0.90 (0.04) −4.98× 10−4 0.04 -1.12 (0.04) -0.22 0.22
4 -1.12 (0.04) -0.22 0.22 -1.12 (0.04) -0.22 0.22

ψ̂21

1 0.60 (0.03) −2.59× 10−4 0.03 0.60 (0.03) −3.42× 10−4 0.03
2 0.60 (0.03) −1.34× 10−3 0.03 0.60 (0.03) −8.87× 10−4 0.03
3 0.60 (0.03) 5.55× 10−4 0.03 0.75 (0.03) 0.15 0.15
4 0.75 (0.03) 0.15 0.15 0.75 (0.03) 0.15 0.15

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.9: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey)
with sample size n=500 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 60% censoring, with both the probability of censoring and the
censoring times conditionnally independent of the survival times given baseline covariates.
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Table C.13: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=500 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with both the probability of censoring and the censoring times conditionally independent of
the survival times given baseline covariates.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.11 (0.14) 5.14× 10−3 0.14 0.11 (0.13) 6.51× 10−3 0.13
2 0.10 (0.13) 1.60× 10−3 0.12 0.10 (0.13) 2.46× 10−3 0.13
3 0.12 (0.17) 0.02 0.17 0.52 (0.18) 0.42 0.45
4 0.53 (0.19) 0.43 0.47 0.54 (0.18) 0.44 0.47

ψ̂11

1 0.09 (0.17) −9.00× 10−3 0.17 0.09 (0.16) -0.01 0.16
2 0.09 (0.15) −5.35× 10−3 0.15 0.10 (0.15) −4.59× 10−3 0.15
3 0.08 (0.22) -0.02 0.22 -0.44 (0.22) -0.54 0.58
4 -0.44 (0.23) -0.54 0.59 -0.45 (0.22) -0.55 0.59

ψ̂20

1 -0.91 (0.27) -0.01 0.27 -0.91 (0.25) −9.43× 10−3 0.25
2 -0.89 (0.25) 8.29× 10−3 0.25 -0.89 (0.25) 5.92× 10−3 0.25
3 -0.91 (0.28) −7.72× 10−3 0.28 -1.12 (0.26) -0.22 0.34
4 -1.11 (0.25) -0.21 0.33 -1.11 (0.25) -0.21 0.33

ψ̂21

1 0.61 (0.18) 6.10× 10−3 0.18 0.61 (0.17) 5.63× 10−3 0.17
2 0.59 (0.17) −6.23× 10−3 0.17 0.60 (0.17) −4.83× 10−3 0.17
3 0.60 (0.19) 4.05× 10−3 0.19 0.75 (0.17) 0.15 0.23
4 0.75 (0.17) 0.15 0.22 0.75 (0.17) 0.15 0.23

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.10: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=1000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 60% censoring, with both the probability of censoring and the
censoring times conditionnally independent of the survival times given baseline covariates.

203



anchor

Table C.14: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=1000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with both the probability of censoring and the censoring times conditionally independent of
the survival times given baseline covariates.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.10) −3.92× 10−3 0.10 0.10 (0.09) −2.25× 10−3 0.09
2 0.10 (0.09) −5.42× 10−4 0.09 0.10 (0.09) 1.14× 10−3 0.09
3 0.11 (0.12) 8.85× 10−3 0.12 0.51 (0.14) 0.41 0.43
4 0.53 (0.13) 0.43 0.45 0.54 (0.12) 0.44 0.46

ψ̂11

1 0.10 (0.12) 1.98× 10−3 0.12 0.10 (0.11) −3.95× 10−4 0.11
2 0.10 (0.10) 9.63× 10−4 0.10 0.10 (0.10) 5.62× 10−4 0.10
3 0.09 (0.15) -0.01 0.15 -0.43 (0.16) -0.53 0.55
4 -0.44 (0.15) -0.54 0.56 -0.45 (0.15) -0.55 0.57

ψ̂20

1 -0.90 (0.17) 3.44× 10−3 0.17 -0.9 (0.17) 3.10× 10−3 0.17
2 -0.89 (0.17) 0.01 0.17 -0.89 (0.17) 0.01 0.17
3 -0.91 (0.19) −7.04× 10−3 0.19 -1.12 (0.18) -0.22 0.28
4 -1.12 (0.17) -0.22 0.28 -1.12 (0.17) -0.22 0.28

ψ̂21

1 0.60 (0.12) −3.74× 10−3 0.12 0.60 (0.11) −3.55× 10−3 0.11
2 0.59 (0.12) −9.26× 10−3 0.12 0.59 (0.12) −8.32× 10−3 0.12
3 0.61 (0.13) 5.89× 10−3 0.13 0.75 (0.12) 0.15 0.19
4 0.75 (0.12) 0.15 0.19 0.75 (0.12) 0.15 0.19

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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Figure C.11: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv (dark grey) and the method by HNW (light grey) with
sample size n=10,000 across four scenarios: (1) all the models correctly speci�ed, (2) weight
models misspeci�ed but treatment-free model correctly speci�ed, (3) treatment-free model
misspeci�ed but weight models correctly speci�ed, and (4) all models incorrectly speci�ed.
The data were simulated with 60% censoring, with both the probability of censoring and the
censoring times conditionnally independent of the survival times given baseline covariates.
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Table C.15: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv and the method by HNW with sample size n=10,000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with both the probability of censoring and the censoring times conditionally independent of
the survival times given baseline covariates.

dWSurv HNW

Sc. Mean (SE) Bias RMSE Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.03) −7.68× 10−4 0.03 0.10 (0.03) −7.21× 10−4 0.03
2 0.10 (0.03) −1.23× 10−3 0.03 0.10 (0.03) 8.41× 10−4 0.03
3 0.10 (0.04) 5.63× 10−4 0.04 0.50 (0.04) 0.40 0.40
4 0.53 (0.04) 0.43 0.43 0.53 (0.04) 0.43 0.44

ψ̂11

1 0.10 (0.03) 7.24× 10−4 0.03 0.10 (0.03) 5.81× 10−4 0.03
2 0.10 (0.03) 1.32× 10−3 0.03 0.10 (0.03) 7.52× 10−4 0.03
3 0.10 (0.05) −1.99× 10−3 0.05 -0.42 (0.05) -0.52 0.52
4 -0.43 (0.05) -0.53 0.53 -0.44 (0.05) -0.54 0.54

ψ̂20

1 -0.90 (0.06) −1.39× 10−3 0.06 -0.90 (0.05) −5.89× 10−4 0.05
2 -0.90 (0.05) 7.26× 10−4 0.05 -0.90 (0.05) −7.41× 10−4 0.05
3 -0.90 (0.06) −3.79× 10−3 0.06 -1.12 (0.06) -0.22 0.23
4 -1.12 (0.05) -0.22 0.22 -1.12 (0.05) -0.22 0.23

ψ̂21

1 0.60 (0.04) 9.72× 10−4 0.04 0.60 (0.04) 4.42× 10−4 0.04
2 0.60 (0.04) −6.57× 10−4 0.04 0.60 (0.04) 3.06× 10−4 0.04
3 0.60 (0.04) 2.63× 10−3 0.04 0.75 (0.04) 0.15 0.16
4 0.75 (0.04) 0.15 0.15 0.75 (0.04) 0.15 0.16

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1, ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE =
standard error, RMSE = root mean squared error.
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With censoring dependent on time-varying covariates
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Figure C.12: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv with sample size n=500 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with both the probability of censoring dependent on time-varying covariates.
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Table C.16: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv with sample size n=500 across four scenarios: (1) all the models correctly
speci�ed, (2) weight models misspeci�ed but treatment-free model correctly speci�ed, (3)
treatment-free model misspeci�ed but weight models correctly speci�ed, and (4) all models
incorrectly speci�ed. The data were simulated with 30% censoring, with the probability of
censoring dependent on time-varying covariates.

dWSurv

Sc. Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.08) 1.90× 10−3 0.08
2 0.10 (0.08) −5.82× 10−4 0.08
3 0.11 (0.11) 6.87× 10−3 0.11
4 0.47 (0.12) 0.37 0.39

ψ̂11

1 0.10 (0.10) −2.10× 10−3 0.10
2 0.10 (0.10) −1.04× 10−3 0.10
3 0.09 (0.15) −8.94× 10−3 0.15
4 -0.41 (0.16) -0.51 0.54

ψ̂20

1 -0.90 (0.18) 2.96× 10−3 0.18
2 -0.89 (0.18) 7.83× 10−3 0.18
3 -0.91 (0.19) -0.01 0.19
4 -1.13 (0.18) -0.23 0.29

ψ̂21

1 0.60 (0.12) −1.54× 10−3 0.12
2 0.60 (0.12) −3.64× 10−3 0.12
3 0.61 (0.13) 7.01× 10−3 0.13
4 0.75 (0.12) 0.15 0.20

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1,
ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE = stan-
dard error, RMSE = root mean squared error.
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Figure C.13: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv with sample size n=1000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with the probability of censoring dependent on time-varying covariates.
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Table C.17: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv with sample size n=1000 across four scenarios: (1) all the models correctly
speci�ed, (2) weight models misspeci�ed but treatment-free model correctly speci�ed, (3)
treatment-free model misspeci�ed but weight models correctly speci�ed, and (4) all models
incorrectly speci�ed. The data were simulated with 30% censoring, with the probability of
censoring dependent on time-varying covariates.

dWSurv

Sc. Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.06) −2.29× 10−3 0.06
2 0.10 (0.06) −1.38× 10−3 0.06
3 0.11 (0.07) 5.35× 10−3 0.07
4 0.47 (0.08) 0.37 0.38

ψ̂11

1 0.10 (0.08) 1.63× 10−3 0.08
2 0.10 (0.07) −9.77× 10−5 0.07
3 0.09 (0.10) −6.36× 10−3 0.10
4 -0.41 (0.11) -0.51 0.52

ψ̂20

1 -0.90 (0.13) 4.84× 10−3 0.13
2 -0.90 (0.12) −3.30× 10−4 0.12
3 -0.90 (0.13) 3.18× 10−3 0.13
4 -1.12 (0.13) -0.22 0.26

ψ̂21

1 0.60 (0.09) −2.26× 10−3 0.09
2 0.60 (0.08) −2.14× 10−4 0.08
3 0.60 (0.09) −2.58× 10−3 0.09
4 0.75 (0.09) 0.15 0.18

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1,
ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE = stan-
dard error, RMSE = root mean squared error.
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Figure C.14: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv with sample size n=10,000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 30% censoring,
with the probability of censoring dependent on time-varying covariates.
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Table C.18: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv with sample size n=10,000 across four scenarios: (1) all the models correctly
speci�ed, (2) weight models misspeci�ed but treatment-free model correctly speci�ed, (3)
treatment-free model misspeci�ed but weight models correctly speci�ed, and (4) all models
incorrectly speci�ed. The data were simulated with 30% censoring, with the probability of
censoring dependent on time-varying covariates.

dWSurv

Sc. Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.02) −9.29× 10−4 0.02
2 0.10 (0.02) −1.84× 10−4 0.02
3 0.10 (0.02) 8.41× 10−4 0.02
4 0.47 (0.03) 0.37 0.37

ψ̂11

1 0.10 (0.02) −1.28× 10−4 0.02
2 0.10 (0.02) −5.76× 10−4 0.02
3 0.10 (0.03) −1.99× 10−3 0.03
4 -0.40 (0.03) -0.50 0.50

ψ̂20

1 -0.90 (0.04) 2.09× 10−4 0.04
2 -0.90 (0.04) −4.08× 10−4 0.04
3 -0.90 (0.04) −3.45× 10−4 0.04
4 -1.12 (0.04) -0.22 0.22

ψ̂21

1 0.60 (0.03) 5.25× 10−4 0.03
2 0.60 (0.03) 2.76× 10−4 0.03
3 0.60 (0.03) 2.67× 10−4 0.03
4 0.75 (0.03) 0.15 0.15

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1,
ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE = stan-
dard error, RMSE = root mean squared error.
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Figure C.15: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv with sample size n=500 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with both the probability of censoring dependent on time-varying covariates.
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Table C.19: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv with sample size n=500 across four scenarios: (1) all the models correctly
speci�ed, (2) weight models misspeci�ed but treatment-free model correctly speci�ed, (3)
treatment-free model misspeci�ed but weight models correctly speci�ed, and (4) all models
incorrectly speci�ed. The data were simulated with 60% censoring, with the probability of
censoring dependent on time-varying covariates.

dWSurv

Sc. Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.13) −7.19× 10−4 0.13
2 0.10 (0.12) −5.55× 10−4 0.12
3 0.12 (0.18) 0.02 0.18
4 0.53 (0.18) 0.43 0.47

ψ̂11

1 0.10 (0.15) −1.87× 10−4 0.15
2 0.10 (0.15) −3.83× 10−4 0.15
3 0.08 (0.22) -0.02 0.22
4 -0.44 (0.22) -0.54 0.58

ψ̂20

1 -0.90 (0.26) 4.03× 10−3 0.26
2 -0.90 (0.27) −1.02× 10−3 0.27
3 -0.90 (0.27) 3.04× 10−3 0.27
4 -1.13 (0.26) -0.23 0.34

ψ̂21

1 0.60 (0.17) −3.06× 10−3 0.17
2 0.60 (0.18) 1.31× 10−3 0.18
3 0.60 (0.18) −6.95× 10−4 0.18
4 0.75 (0.17) 0.15 0.23

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1,
ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE = stan-
dard error, RMSE = root mean squared error.
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Figure C.16: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv with sample size n=1000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with the probability of censoring dependent on time-varying covariates.
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Table C.20: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv with sample size n=1000 across four scenarios: (1) all the models correctly
speci�ed, (2) weight models misspeci�ed but treatment-free model correctly speci�ed, (3)
treatment-free model misspeci�ed but weight models correctly speci�ed, and (4) all models
incorrectly speci�ed. The data were simulated with 60% censoring, with the probability of
censoring dependent on time-varying covariates.

dWSurv

Sc. Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.08) 4.07× 10−3 0.08
2 0.10 (0.09) −2.44× 10−3 0.09
3 0.11 (0.12) 6.66× 10−3 0.12
4 0.53 (0.13) 0.43 0.45

ψ̂11

1 0.09 (0.10) −5.54× 10−3 0.10
2 0.10 (0.10) 6.85× 10−4 0.10
3 0.09 (0.15) −9.42× 10−3 0.15
4 -0.44 (0.16) -0.54 0.57

ψ̂20

1 -0.90 (0.17) −1.47× 10−3 0.17
2 -0.90 (0.17) −3.48× 10−3 0.17
3 -0.90 (0.18) −2.74× 10−3 0.18
4 -1.12 (0.18) -0.22 0.28

ψ̂21

1 0.60 (0.12) 1.70× 10−3 0.12
2 0.60 (0.12) 1.37× 10−3 0.12
3 0.60 (0.12) 2.14× 10−3 0.12
4 0.75 (0.12) 0.15 0.19

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1,
ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE = stan-
dard error, RMSE = root mean squared error.
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Figure C.17: Distribution of the blip parameter estimates in the �rst stage (upper row) and
second stage (lower row) with DWSurv with sample size n=10,000 across four scenarios: (1)
all the models correctly speci�ed, (2) weight models misspeci�ed but treatment-free model
correctly speci�ed, (3) treatment-free model misspeci�ed but weight models correctly speci-
�ed, and (4) all models incorrectly speci�ed. The data were simulated with 60% censoring,
with the probability of censoring dependent on time-varying covariates.
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Table C.21: Mean, standard error, bias and root mean squared error of the blip estimators
with DWSurv with sample size n=10,000 across four scenarios: (1) all the models correctly
speci�ed, (2) weight models misspeci�ed but treatment-free model correctly speci�ed, (3)
treatment-free model misspeci�ed but weight models correctly speci�ed, and (4) all models
incorrectly speci�ed. The data were simulated with 60% censoring, with the probability of
censoring dependent on time-varying covariates.

DWSurv

Sc. Mean (SE) Bias RMSE

ψ̂10

1 0.10 (0.03) 7.45× 10−4 0.03
2 0.10 (0.03) −2.11× 10−3 0.03
3 0.10 (0.04) 1.28× 10−3 0.04
4 0.53 (0.04) 0.43 0.43

ψ̂11

1 0.10 (0.03) −1.80× 10−3 0.03
2 0.10 (0.03) 1.85× 10−3 0.03
3 0.10 (0.05) −3.21× 10−3 0.05
4 -0.43 (0.05) -0.53 0.53

ψ̂20

1 -0.90 (0.05) 2.95× 10−4 0.05
2 -0.90 (0.06) −1.54× 10−3 0.06
3 -0.90 (0.06) −2.63× 10−3 0.06
4 -1.13 (0.06) -0.23 0.23

ψ̂21

1 0.60 (0.04) 1.13× 10−4 0.04
2 0.60 (0.04) 1.22× 10−3 0.04
3 0.60 (0.04) 1.81× 10−3 0.04
4 0.75 (0.04) 0.15 0.16

True value of the parameters: ψ10 = 0.1, ψ11 = 0.1,
ψ20 = −0.9, ψ21 = 0.6. Sc. = scenario, SE = stan-
dard error, RMSE = root mean squared error.
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C.3.3 Ability to Correctly Identify the True Optimal DTR

The ability to correctly identify the true optimal DTR was quanti�ed with the proportion

of individuals for whom the optimal DTR was indeed identi�ed. Tables C.22�C.24 show the

distribution of the proportion of individuals for whom the stage 1 and/or stage 2 optimal

treatment were correctly identi�ed for 1000 simulated data sets with low (30%) or high

(60%), independent or dependent censoring.

On average, the proportion of individuals for whom the optimal DTR was correctly identi�ed

was high (above 90%) although minimums fell under 50% when censoring was high (60%) and

the sample size was small (n=500). In general, a higher proportion of censoring and smaller

sample sizes resulted in fewer individuals for whom the optimal DTR was correctly identi�ed.

Settings with independent censoring were comparable to settings with dependent (baseline

or time-varying) censoring. The method by HNW yielded similar observations.

Table C.22: Ability to identify the optimal DTR with DWSurv and the method by HNW
when all models are correctly speci�ed with independent censoring.

% correctly identi�ed

stage 1 stage 2 stages 1 & 2

Min Mean Med. Max Min Mean Med. Max Min Mean Med. Max

30% independent censoring

n=500
DWSurv 0.69 0.99 1 1 0.63 0.95 0.96 1 0.63 0.94 0.95 1

HNW 0.68 0.99 1 1 0.64 0.95 0.96 1 0.64 0.94 0.95 1

n=1000
DWSurv 0.88 1 1 1 0.76 0.96 0.97 1 0.76 0.96 0.97 1

HNW 0.88 1 1 1 0.78 0.96 0.97 1 0.78 0.96 0.97 1

n=10,000
DWSurv 1 1 1 1 0.95 0.99 0.99 1 0.95 0.99 0.99 1

HNW 1 1 1 1 0.95 0.99 0.99 1 0.95 0.99 0.99 1

60% independent censoring

n=500
DWSurv 0.60 0.98 1 1 0.54 0.93 0.95 1 0.45 0.92 0.94 1

HNW 0.61 0.98 1 1 0.54 0.93 0.95 1 0.41 0.92 0.94 1

n=1000
DWSurv 0.73 1 1 1 0.70 0.95 0.96 1 0.66 0.95 0.96 1

HNW 0.72 1 1 1 0.68 0.95 0.96 1 0.62 0.95 0.96 1

n=10,000
DWSurv 1 1 1 1 0.95 0.99 0.99 1 0.95 0.99 0.99 1

HNW 1 1 1 1 0.95 0.99 0.99 1 0.95 0.99 0.99 1
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Table C.23: Ability to identify the optimal DTR with DWSurv and the method by HNW
when all models are correctly speci�ed with censoring dependent on baseline covariates.

% correctly identi�ed

stage 1 stage 2 stages 1 & 2

Min Mean Med. Max Min Mean Med. Max Min Mean Med. Max

30% baseline dependent censoring

n=500
DWSurv 0.70 0.99 1 1 0.76 0.95 0.96 1 0.63 0.94 0.95 1

HNW 0.68 0.99 1 1 0.75 0.95 0.96 1 0.64 0.94 0.96 1

n=1000
DWSurv 0.79 1 1 1 0.83 0.97 0.97 1 0.79 0.97 0.97 1

HNW 0.81 1 1 1 0.82 0.97 0.97 1 0.80 0.97 0.97 1

n=10,000
DWSurv 1 1 1 1 0.95 0.99 0.99 1 0.95 0.99 0.99 1

HNW 1 1 1 1 0.95 0.99 0.99 1 0.95 0.99 0.99 1

60% baseline dependent censoring

n=500
DWSurv 0.54 0.97 1 1 0.51 0.92 0.94 1 0.48 0.89 0.92 1

HNW 0.54 0.97 1 1 0.56 0.93 0.94 1 0.51 0.90 0.93 1

n=1000
DWSurv 0.60 0.99 1 1 0.64 0.95 0.96 1 0.57 0.94 0.96 1

HNW 0.59 0.99 1 1 0.69 0.95 0.96 1 0.56 0.94 0.96 1

n=10,000
DWSurv 1 1 1 1 0.93 0.99 0.99 1 0.93 0.99 0.99 1

HNW 1 1 1 1 0.94 0.99 0.99 1 0.94 0.99 0.99 1

Table C.24: Ability to identify the optimal DTR with DWSurv when all models are correctly
speci�ed with censoring dependent on time-varying covariates.

% correctly identi�ed
stage 1 stage 2 stages 1 & 2

Min Mean Med. Max Min Mean Med. Max Min Mean Med. Max

30% time-varying dependent censoring
n=500 0.73 0.99 1 1 0.73 0.95 0.96 1 0.70 0.95 0.96 1
n=1000 0.84 1 1 1 0.84 0.97 0.97 1 0.83 0.97 0.97 1
n=10000 1 1 1 1 0.96 0.99 0.99 1 0.96 0.99 0.99 1
60% time-varying dependent censoring
n=500 0.58 0.97 1 1 0.53 0.93 0.95 1 0.44 0.92 0.94 1
n=1000 0.71 0.99 1 1 0.74 0.95 0.96 1 0.74 0.95 0.96 1
n=10000 1 1 1 1 0.93 0.99 0.99 1 0.93 0.99 0.99 1

220



C.3.4 Comparison of Survival Time Distributions Under Di�erent

Treatment Assignment Schemes

We aimed to assess whether the optimal DTR estimated by DWSurv would yield optimal

(longer) survival times if the treatment assignment followed the estimated optimal DTR.

From an initial sample of size 500 or 1000, we estimated the optimal DTR with DWSurv.

Then, we generated a larger sample (n=10000) with treatment assignment following the

optimal treatment rules estimated by DWSurv. We repeated the same procedure with the

method by HNW. We compared the distributions of the resulting survival times with the

distributions of the survival times generated with treatment assignment following the true

optimal DTR (known from the data generating mechanism) and with treatment assignment

following the four possible �xed treatment strategies i.e. always assign treatment 0 (A1 =

A2 = 0), always assign A1 = 0 and A2 = 1, always assign A1 = 1 and A2 = 0 or always

assign treatment 1 (A1 = A2 = 1).

The distribution of the survival times generated according to the optimal DTR estimated

by DWSurv was comparable to that of the survival times generated from the true optimal

DTR. This conclusion remained true for independent and dependent censoring, for lower or

higher proportions of censoring, and for smaller or larger initial sample sizes. The method

by HNW yielded similar results.
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Figure C.18: Distribution of the log-survival times in a large sample (n=10,000) with treat-
ment assignment following the true optimal DTR, the optimal DTR estimated by DWSurv,
the optimal DTR estimated by HNW, and the four �xed treatment strategies. For the two
schemes relying on the estimation of the optimal DTR by DWSurv or HNW, initial sam-
ple sizes of 500 (white) or 1000 (grey) were used. For the other schemes, it is meaningless
to specify an initial sample size as the strategies are determined by the data generating
mechanism or decided a priori. Data were generated with 30% independent censoring.

Table C.25: Summary of the log-survival time distribution under di�erent treatment assign-
ment schemes with 30% independent censoring

Min Q1 Mean (SD) Median Q3 Max

True optimal DTR 5.58 6.77 7.04 (0.41) 7.07 7.34 8.31

DWSurv
n=500 5.48 6.77 7.04 (0.41) 7.06 7.33 8.52
n=1000 5.41 6.76 7.05 (0.41) 7.07 7.34 8.33

HNW
n=500 5.44 6.77 7.05 (0.41) 7.07 7.34 8.49
n=1000 5.26 6.77 7.05 (0.41) 7.07 7.34 8.39

A1 = A2 = 0 5.30 6.62 6.88 (0.41) 6.90 7.17 8.41
A1 = 0, A2 = 1 5.13 6.61 6.88 (0.42) 6.90 7.17 8.29
A1 = 1, A2 = 0 5.38 6.77 7.05 (0.41) 7.07 7.35 8.53
A1 = A2 = 1 5.36 6.77 7.05 (0.41) 7.07 7.34 8.33
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Figure C.19: Distribution of the log-survival times in a large sample (n=10,000) with treat-
ment assignment following the true optimal DTR, the optimal DTR estimated by DWSurv,
the optimal DTR estimated by HNW, and the four �xed treatment strategies. For the two
schemes relying on the estimation of the optimal DTR by DWSurv or HNW, initial sam-
ple sizes of 500 (white) or 1000 (grey) were used. For the other schemes, it is meaningless
to specify an initial sample size as the strategies are determined by the data generating
mechanism or decided a priori. Data were generated with 60% independent censoring.

Table C.26: Summary of the log-survival time distribution under di�erent treatment assign-
ment schemes with 60% independent censoring

Min Q1 Mean (SD) Median Q3 Max

True optimal DTR 5.37 6.77 7.04 (0.41) 7.07 7.33 8.61

DWSurv
n=500 5.33 6.77 7.04 (0.41) 7.06 7.34 8.38
n=1000 5.48 6.77 7.05 (0.41) 7.06 7.34 8.46

HNW
n=500 5.50 6.78 7.05 (0.41) 7.07 7.34 8.33
n=1000 5.64 6.78 7.05 (0.41) 7.07 7.33 8.39

A1 = A2 = 0 5.31 6.61 6.88 (0.41) 6.90 7.17 8.14
A1 = 0, A2 = 1 5.26 6.61 6.88 (0.41) 6.89 7.16 8.22
A1 = 1, A2 = 0 5.58 6.77 7.04 (0.41) 7.07 7.33 8.46
A1 = A2 = 1 5.63 6.77 7.05 (0.41) 7.07 7.34 8.37
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Figure C.20: Distribution of the log-survival times in a large sample (n=10,000) with treat-
ment assignment following the true optimal DTR, the optimal DTR estimated by DWSurv,
the optimal DTR estimated by HNW, and the four �xed treatment strategies. For the two
schemes relying on the estimation of the optimal DTR by DWSurv or HNW, initial sample
sizes of 500 (white) or 1000 (grey) were used. For the other schemes, it is meaningless to spec-
ify an initial sample size as the strategies are determined by the data generating mechanism
or decided a priori. Data were generated with 30% dependent on baseline covariates.

Table C.27: Summary of the log-survival time distribution under di�erent treatment assign-
ment schemes with 30% censoring dependent on baseline covariates

Min Q1 Mean (SD) Median Q3 Max

True optimal DTR 5.59 6.78 7.05 (0.41) 7.07 7.34 8.38

DWSurv
n=500 5.54 6.78 7.05 (0.41) 7.07 7.34 8.28
n=1000 5.45 6.77 7.05 (0.41) 7.07 7.34 8.47

HNW
n=500 5.51 6.77 7.05 (0.41) 7.07 7.34 8.32
n=1000 5.44 6.78 7.05 (0.41) 7.07 7.34 8.42

A1 = A2 = 0 5.29 6.62 6.88 (0.41) 6.90 7.17 8.14
A1 = 0, A2 = 1 5.35 6.61 6.88 (0.41) 6.90 7.17 8.08
A1 = 1, A2 = 0 5.47 6.78 7.05 (0.41) 7.07 7.34 8.36
A1 = A2 = 1 5.49 6.78 7.05 (0.41) 7.07 7.34 8.53
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Figure C.21: Distribution of the log-survival times in a large sample (n=10,000) with treat-
ment assignment following the true optimal DTR, the optimal DTR estimated by DWSurv,
the optimal DTR estimated by HNW, and the four �xed treatment strategies. For the two
schemes relying on the estimation of the optimal DTR by DWSurv or HNW, initial sample
sizes of 500 (white) or 1000 (grey) were used. For the other schemes, it is meaningless to
specify an initial sample size as the strategies are determined by the data generating mech-
anism or decided a priori. Data were generated with 60% censoring dependent on baseline
covariates.

Table C.28: Summary of the log-survival time distribution under di�erent treatment assign-
ment schemes with 60% censoring dependent on baseline covariates

Min Q1 Mean (SD) Median Q3 Max

True optimal DTR 5.27 6.77 7.04 (0.41) 7.06 7.33 8.37

DWSurv
n=500 5.44 6.78 7.05 (0.41) 7.07 7.34 8.29
n=1000 5.56 6.78 7.05 (0.41) 7.07 7.34 8.37

HNW
n=500 5.47 6.77 7.04 (0.40) 7.06 7.32 8.51
n=1000 5.45 6.78 7.05 (0.41) 7.07 7.35 8.39

A1 = A2 = 0 5.41 6.61 6.87 (0.41) 6.89 7.16 8.16
A1 = 0, A2 = 1 5.42 6.61 6.88 (0.40) 6.90 7.16 8.17
A1 = 1, A2 = 0 5.40 6.78 7.05 (0.41) 7.07 7.33 8.42
A1 = A2 = 1 5.44 6.78 7.05 (0.41) 7.07 7.34 8.37
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Figure C.22: Distribution of the log-survival times in a large sample (n=10,000) with treat-
ment assignment following the true optimal DTR, the optimal DTR estimated by DWSurv,
the optimal DTR estimated by HNW, and the four �xed treatment strategies. For the two
schemes relying on the estimation of the optimal DTR by DWSurv or HNW, initial sam-
ple sizes of 500 (white) or 1000 (grey) were used. For the other schemes, it is meaningless
to specify an initial sample size as the strategies are determined by the data generating
mechanism or decided a priori. Data were generated with 30% dependent on time-varying
covariates.

Table C.29: Summary of the log-survival time distribution under di�erent treatment assign-
ment schemes with 30% censoring dependent on time-varying covariates.

Min Q1 Mean (SD) Median Q3 Max

True optimal DTR 5.38 6.77 7.05 (0.41) 7.07 7.34 8.32

DWSurv
n=500 5.41 6.72 7.02 (0.43) 7.04 7.34 8.37
n=1000 5.58 6.78 7.05 (0.41) 7.07 7.33 8.35

A1 = A2 = 0 5.29 6.61 6.88 (0.41) 6.89 7.17 8.37
A1 = 0, A2 = 1 5.33 6.61 6.88 (0.41) 6.90 7.16 8.21
A1 = 1, A2 = 0 5.51 6.78 7.05 (0.41) 7.07 7.34 8.45
A1 = A2 = 1 5.40 6.77 7.05 (0.41) 7.07 7.34 8.33
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Figure C.23: Distribution of the log-survival times in a large sample (n=10,000) with treat-
ment assignment following the true optimal DTR, the optimal DTR estimated by DWSurv,
the optimal DTR estimated by HNW, and the four �xed treatment strategies. For the two
schemes relying on the estimation of the optimal DTR by DWSurv or HNW, initial sample
sizes of 500 (white) or 1000 (grey) were used. For the other schemes, it is meaningless to spec-
ify an initial sample size as the strategies are determined by the data generating mechanism
or decided a priori. Data were generated with 60% censoring dependent on time-varying
covariates.

Table C.30: Summary of the log-survival time distribution under di�erent treatment assign-
ment schemes with 60% censoring dependent on time-varying covariates

Min Q1 Mean (SD) Median Q3 Max

True optimal DTR 5.23 6.78 7.06 (0.41) 7.07 7.34 8.28

DWSurv
n=500 5.61 6.79 7.06 (0.41) 7.08 7.34 8.37
n=1000 5.53 6.78 7.05 (0.41) 7.07 7.34 8.31

A1 = A2 = 0 5.08 6.62 6.89 (0.40) 6.90 7.17 8.16
A1 = 0, A2 = 1 5.34 6.62 6.88 (0.41) 6.90 7.17 8.11
A1 = 1, A2 = 0 5.62 6.78 7.05 (0.41) 7.07 7.34 8.48
A1 = A2 = 1 5.41 6.77 7.05 (0.41) 7.07 7.34 8.31
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C.3.5 Expected Survival Time Distribution: Comparison With a

Value Search Method

We compare DWSurv to dynamic marginal structural model (dynamic MSM) (Orellana et

al., 2010) in terms of expected survival time under optimal DTR. Dynamic MSM is a value

search approach which directly maximizes the value of a regime, here the overall survival

time, to identify the optimal DTR. The comparison is made in a single-stage setting with

the following data generating mechanism:

� Number of simulated data sets: 1,000

� Sample size n=1000

� X11 ∼ Uniform[0.5, 1.5]

� X12 ∼ Bernoulli(0.6)

� A1 ∼ Bernoulli(expit(2X11 − 1))

� δ ∼ Bernoulli(expit(X12 + 0.1))

� ε ∼ Normal(0, 0.09)

� Log-survival time log(T ) = 3.7 + 1.5X11 − 0.8X12 + A1(ψ1 + ψ2X11) + ε

� For those with δ = 0, de�ne C ∼ Exp(1/300)

The true optimal treatment is given by I[ψ1 +ψ2X11 > 0] which corresponds to I[X11 > θ] =

I[X11 > −ψ1/ψ2]. We considered two sets of blip parameters, (ψ1, ψ2) = (−0.8, 0.9) and

(ψ1, ψ2) = (−0.15, 0.2).

Dynamic MSM estimates the optimal treatment rule as following:

1. Estimate P (A1 = 1|X1) and P (∆ = 1|X12) and calculate the weights

[P (A1 = a1|X)× P (∆ = δ|X12)]−1.
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2. For each θ ∈ {0.5, 0.51, . . . , 1.5}:

2.1 For each observation, determine the optimal treatment from I[x11 > θ].

2.2 Keep only the individuals who complied with their optimal treatment i.e. A1 =

I[x11 > θ], and who experienced an event δ = 1.

2.3 Estimate E[Y opt] in the sample by taking the weighted mean of Yi with normalized

weights wi/
∑
wi.

3. Take θ̂msm which maximizes E[Y opt].

To compare the performance of dynamic MSM to DWSurv in terms of estimating an optimal

treatment that e�ectively improves the survival time, we use a strategy similar to that

presented in Section 4.3 of the article to estimate Eθ[Y opt]:

1. For a large sample size (n=10,000), generate X11, X12 and ε according to the data

generating mechanism above. Set δ = 1 (no censoring).

2. Generate Amsm
1 = I[X11 > θ̂msm] according to the estimated optimal treatment rule by

dynamic MSM and ADWSurv
1 = I[ψ̂1 + X11ψ̂2 > 0] according to the estimated optimal

treatment rule by DWSurv.

3. Generate two sets of log-survival times as presented above, log(Tmsm) with Amsm
1 and

log(TDWSurv) with ADWSurv
1 .

4. Estimate E[log(Y opt)] as the mean of Y .

Figures C.24 and C.25 summarize the distribution of θ̂ and E[Y opt] with dynamic MSM and

DWSurv and the two sets of true blip parameters, (ψ1, ψ2) = (−0.8, 0.9) and (ψ1, ψ2) =

(−0.15, 0.2) across three sample sizes. Summaries of the plotted distributions are presented

in Tables C.31 and C.32. DWSurv identi�es optimal treatment rule that leads to longer

survival time, on average, as compared to dynamic MSM. Moreover, the estimator of θ with

DWSurv is more e�cient than with dynamic MSM. This was expected as DWSurv focuses on

229



estimation and inference for the decison rule parameters. When the true blip parameters are

(ψ1, ψ2) = (−0.15, 0.2), DWSurv sometimes leads to very large estimates for θ, in absolute

value (see Table C.32). This is because θ̂ is obtained as −ψ̂1/ψ̂2 such that ψ̂2 close to zero

lead to very large values of θ̂. This is more problematic in small samples in which the

estimator of ψ2 is more variable.

Figure C.24: Distribution of A) the mean log-survival time under optimal treatment and
B) the estimate for θ across 1000 simulated data sets with three sample sizes with dynamic
MSM and DWSurv with true blip parameters (ψ1, ψ2) = (−0.8, 0.9). The horizontal line
represents the true value of θ. Data were generated in a single-stage setting with 30%
censoring dependent on a baseline covariate.

230



Table C.31: Distribution of θ̂ with DWSurv and dynamic MSM when θ = 0.8/0.9

Method Min. Q1 Median Mean (SE) Q3 Max. Bias RMSE
n=500
Dynamic MSM 0.50 0.70 0.83 0.83 (0.18) 0.96 1.46 -0.06 0.18
DWSurv 0.73 0.86 0.89 0.89 (0.05) 0.92 1.05 −9.43× 10−4 0.05
n=1000
Dynamic MSM 0.50 0.73 0.84 0.84 (0.15) 0.95 1.25 -0.05 0.15
DWSurv 0.77 0.87 0.89 0.89 (0.03) 0.91 1.01 10.00−3 0.03
n=5000
Dynamic MSM 0.51 0.80 0.88 0.86 (0.10) 0.94 1.09 -0.02 0.10
DWSurv 0.83 0.88 0.89 0.89 (0.01) 0.90 0.94 −1.26× 10−4 0.01

Figure C.25: Distribution of A) the mean log-survival time under optimal treatment and
B) the estimate for θ across 1000 simulated data sets with three sample sizes with dynamic
MSM and DWSurv with true blip parameters (ψ1, ψ2) = (−0.15, 0.2). The boxplots B) are
truncated. The horizontal line represents the true value of θ. Data were generated in a
single-stage setting with 30% censoring dependent on a baseline covariate.
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Table C.32: Distribution of θ̂ with DWSurv and dynamic MSM when θ = 0.75

Method Min. Q1 Median Mean (SE) Q3 Max. Bias RMSE
n=500
Dynamic MSM 0.50 0.63 0.86 0.92 (0.32) 1.21 1.50 0.17 0.32
DWSurv -170 0.61 0.79 0.59 (6.08) 0.92 28 -0.16 6.07
n=1000
Dynamic MSM 0.50 0.62 0.77 0.84 (0.28) 1.01 1.50 0.09 0.28
DWSurv -8.54 0.61 0.74 0.83 (3.96) 0.85 123 0.08 3.96
n=5000
Dynamic MSM 0.50 0.61 0.74 0.75 (0.18) 0.87 1.50 9.00× 10−5 0.18
DWSurv 0.27 0.70 0.75 0.74 (0.08) 0.80 0.97 −9.72× 10−3 0.08

C.4 SERA Data Analysis

C.4.1 Inclusion Criteria

Patients were included in our sample if they met the following inclusion criteria: disease

onset less than 1 year prior to baseline with a RA or UA diagnosis at baseline, not already

in remission at baseline and on a valid DMARD monotherapy or combination therapy.

C.4.2 Implementation

We estimated the optimal stage 2 treatment decision rule by modeling the log-transformed

remission time within stage 2 as a function of the baseline covariates age, gender, smoking

status, RA vs. UA diagnosis and treatment received in stage 1 A1, and of the following time-

varying covariates measured at the follow-up visit: disease activity, time since disease onset

and pain score. The tailoring variables were disease activity and A1 such that an interaction

term with the stage 2 treatment was included for these two variables. The probability of

treatment A2 was modeled with a logistic regression as a function of age measured at baseline

and disease activity, time since disease onset and pain score measured at the follow-up visit.
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The probability of being censored within the second stage was also modeled with a logistic

regression with the same subset of covariates, plus smoking status. The optimal stage 1

treatment decision rule was estimated by modeling the log-transformed pseudo-remission

time as a function of age, gender, smoking status, disease activity, time since disease onset,

pain score and RA vs. UA diagnosis, all measured at baseline. Disease activity level at

baseline was the only tailoring variable for the stage 1 treatment rule. Logistic regression

models were used for the probability of treatment A1 and the probability of being censored

at any point during the study period using the same subset of variables as in the second

stage but measured at baseline, plus RA vs. UA diagnosis in the treatment model. In both

stages, we used overlap weights.

C.4.3 De�nitions and Baseline Characteristics

Table C.33: Key terms and drug categories de�nitions

Key terms De�nitions
Low disease activity De�ned as 2.6 < DAS28-ESR ≤ 3.2 or 2.3 < DAS28-

CRP ≤ 3.8 if DAS28-ESR is not available
Moderate or high disease
activity

De�ned as DAS28-ESR > 3.2 or DAS28-CRP > 3.8 if
DAS28-ESR is not available

Remission De�ned with DAS28-ESR ≤ 2.6. If DAS28-ESR is not
available, de�ned as DAS28-CRP ≤ 2.3

DMARD monotherapy MTX, HCQ, SSZ or LEF
Double DMARD therapy MTX + SSZ, MTX + HCQ, SSX + HCQ, or any com-

binations with LEF
Triple DMARD therapy MTX + SSZ + HCQ
TNFi biologics Adalimumab, etanercept, in�iximab
Non-TNF biologics Abatacept, rituximab, tocilizumab
DAS28-ESR: Disease Activity Score 28 erythrocyte sedimentation rate, DAS28-CRP: DAS28 C-
reactive protein level, MTX: methotrexate, HCQ: hydroxychloroquine, SSZ: sulfasalazine, LEF:
le�unomide, TNF: tumor necrosis factor, TNFi: TNF inhibitor
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Table C.34: Patients' characteristics at baseline and follow-up visits

Characteristics Baseline visit (n=488) Follow-up visit (n=236)
Age in years, mean (SD) 60 (14) 60 (13)
Female, n (%) 308 (63%) 151 (64%)
Smoking status, n (%)

Current 116 (24%) 59 (25%)
Ex-smoker 180 (37%) 76 (32%)
Never 192 (39%) 101 (43%)

Days since onset, mean (SD) 170 (81) 373 (89)
Disease activity, n (%)

Low 45 (9%) 90 (38%)
Moderate or high 443 (91%) 146 (62%)

Pain score, mean (SD) 56 (27) 38 (26)
Diagnosis, n (%)

RA 426 (87%) 205 (87%)
UA 62 (13%) 31 (13%)

SD: standard deviation

C.4.4 Sample R Code

library(DTRreg)

model1 <- DWSurv(time = list(~Y1, ~Y2), blip.mod = list(~DA1,

~DA2 + A1), treat.mod = list(A1 ~ age + DA1 + onset1 + pain1 +

RAUA, A2 ~ age + DA2 + onset2 + pain2 + RAUA), cens.mod = list(delta ~

age + DA1 + onset1 + pain1 + RAUA + smoking, delta ~ age +

DA2 + onset2 + pain2 + RAUA + smoking), tf.mod = list(~eta2 +

age + sex + smoking + RAUA + DA1 + onset1 + pain1, ~age +

sex + smoking + RAUA + DA2 + onset2 + pain2 + A1), var.estim = "asymptotic",

data = dat, optimization = "min")

summary(model1)

## DTR estimation over 2 stages:

##

## Blip parameter estimates

## Estimate Std. Error 95% Conf. Int
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## Stage 1 (n = 488)

## (Intercept) 0.0640 0.0754 [-0.0838,0.2118]

## DA1 -0.0992 0.0795 [-0.2550,0.0566]

##

## Stage 2 (n = 236)

## (Intercept) -0.0845 0.1238 [-0.3271,0.1581]

## DA2 0.0813 0.4107 [-0.7235,0.8862]

## A1 0.2795 0.3186 [-0.3449,0.9039]

##

## Warning: possible non-regularity at stage 1 (prop = 1)

## Warning: possible non-regularity at stage 2 (prop = 1)

##

## Recommended dynamic treatment regimen:

## Stage 1: treat if 0.0640 - 0.0992 DA1 < 0

## Stage 2: treat if -0.0845 + 0.0813 DA2 + 0.2795 A1 < 0
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Appendix D

Supplemental Materials for Chapter 5

D.1 Computational Times

Table D.1 compares the mean computational time in seconds across the �ve methods, for

one- and two-stage DTRs. Sample size n=100 is not considered in the two-stage DTR to

ensure computational stability and sample size n=5,000 is omitted in the two-stage DTR to

save computational resources. The naive and adjusted asymptotic variances are the fastest.

In the one-stage DTR, they are approximately 200 times faster than the bootstrap methods.

In the two-stage DTR, they are 400 times faster. The computational cost of the bootstrap

methods compared to the asymptotic variances does not only increase with the number of

bootstrap resamples but also with the number of stages in the DTR.
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Table D.1: Mean computational time in seconds across 1000 simulated data sets with 1000
bootstrap resamples, if applicable

One-stage DTR

Method / Sample size 100 300 500 1000 5000 10,000

Asymptotic (naive) 0.01 0.03 0.02 0.03 0.12 0.25
Asymptotic (adjusted) 0.05 0.03 0.05 0.06 0.15 0.27
Standard bootstrap 9.32 11.11 12.96 17.84 56.34 104.96
Parametric bootstrap 1 9.78 11.87 14.04 19.68 64.51 120.63
Parametric bootstrap 2 9.67 11.79 13.97 19.63 64.16 120.13

Two-stage DTR

Method / Sample size 100 300 500 1000 5000 10,000

Asymptotic (naive) � 0.03 0.04 0.06 � 0.48
Asymptotic (adjusted) � 0.06 0.07 0.10 � 0.51
Standard bootstrap � 22.89 26.50 35.87 � 206.79
Parametric bootstrap 1 � 24.64 28.97 40.20 � 243.50
Parametric bootstrap 2 � 24.50 28.83 39.95 � 242.55

D.2 Additional Simulation Results: Unknown Error Dis-

tribution

Figure 5.1 in the article shows the coverage of 95% con�dence intervals for ψ11 when the

survival times follow a Log-normal or Weibull distribution. Of interest is to evaluate the

performance of the �ve methods when the assumption of mean zero errors is violated. Recall

that the underlying data generating mechanism (see Section 5.4.1 in article) corresponds

to a one-stage DTR with a linear treatment-free model speci�ed as β10 + β11X11 + β12X12

with (β10, β11, β12)T = (4.7, 1.5,−0.8)T . Table D.2 shows the corresponding mean/median

con�dence interval widths across �ve methods, six sample sizes and two survival time distri-

butions. As expected, larger mean widths are associated with higher coverages. For example,

the adjusted asymptotic variance yields relatively larger widths than the other methods for

a given sample size, which is in line with its generally high coverage. Figure D.1 shows the

coverage of 95% con�dence intervals for the main treatment e�ect ψ10. Again, the violation
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of the zero expectation requirement for the errors does not a�ect the performance of the

methods as all methods yield close to nominal coverages when the survival time follows a

Weibull distribution. Compared to inferences for ψ11, the adjusted asymptotic variance does

not yield higher coverage than the other methods.

Coverages and widths are comparable in the simulations with data generating mechanisms

speci�ed with a nonlinear treatment-free model as β10 + β11X11 + β12X12 + β13X
4
11 with

(β10, β11, β12, β13)T = (4.7, 3,−0.9, 0.05)T .

Table D.2: Mean/median width of 95% con�dence intervals for the interaction with treat-
ment ψ11 = 0.1 with a linear treatment-free model.

Distribution Method / Sample size 100 300 500 1000 5000 10,000

Log-normal

Asymptotic (naive) 0.91/0.88 0.54/0.54 0.42/0.42 0.30/0.30 0.14/0.14 0.10/0.10
Asymptotic (adjusted) 1.03/0.99 0.60/0.59 0.47/0.46 0.33/0.33 0.15/0.15 0.10/0.10
Standard bootstrap 1.00/0.97 0.55/0.55 0.43/0.42 0.30/0.30 0.14/0.14 0.10/0.10
Parametric bootstrap 1 1.02/1.00 0.58/0.58 0.45/0.44 0.31/0.31 0.14/0.14 0.10/0.10
Parametric bootstrap 2 0.99/0.98 0.56/0.56 0.43/0.43 0.30/0.30 0.14/0.14 0.10/0.10

Weibull

Asymptotic (naive) 0.97/0.92 0.58/0.56 0.45/0.45 0.32/0.32 0.14/0.14 0.10/0.10
Asymptotic (adjusted) 1.09/1.04 0.64/0.62 0.50/0.49 0.35/0.35 0.16/0.16 0.11/0.11
Standard bootstrap 1.07/1.03 0.59/0.58 0.46/0.45 0.32/0.32 0.14/0.14 0.10/0.10
Parametric bootstrap 1 1.09/1.06 0.62/0.61 0.47/0.47 0.33/0.33 0.15/0.15 0.11/0.11
Parametric bootstrap 2 1.05/1.03 0.60/0.59 0.46/0.46 0.32/0.32 0.14/0.15 0.10/0.10

Figure D.1: Coverage of 95% con�dence intervals for the main treatment e�ect ψ10 with true Log-

normal and Weibull survival times and linear treatment-free model. The horizontal dashed lines

represent the bounds for testing the null hypothesis that the coverage equals the nominal rate.
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D.3 Additional Simulation Results: Model Misspeci�ca-

tion

Figure 5.2 in the article shows the coverage of 95% con�dence intervals for ψ11 under mis-

speci�cation of the treatment-free, treatment or censoring model. Recall that the data are

generated from a one-stage DTR with a linear treatment-free model. Other ways of mis-

specifying the models are considered. In the article, the following misspeci�ed models are

investigated:

� Misspeci�ed treatment-free (1) � data are generated with true treatment-free

model β10 + β11X11 + β12X12 but the treatment-free model is misspeci�ed by omit-

ting X12;

� Misspeci�ed treatment (1) � data are generated with treatment A1 assigned with

probability P (A1 = 1) ∼ X11 but the treatment model is misspeci�ed as P (A1 = 1) ∼

1;

� Misspeci�ed censoring (1) � data are simulated with censoring indicator δ generated

as P (δ = 1) ∼ X12 but the censoring model is misspeci�ed as P (δ = 1) ∼ 1.

The following misspeci�cations were also considered:

� Misspeci�ed treatment-free (2) � data are generated with true treatment-free

model β10 + β11X11 + β12X12 + β13X
4
11 but the treatment-free model is misspeci�ed

by omitting the nonlinear term X4
11;

� Misspeci�ed treatment (2) � data are generated with treatment A1 assigned with

probability P (A1 = 1) ∼ X11 but the treatment model is misspeci�ed as P (A1 = 1) ∼

X12, a variable that does not predict treatment;

� Misspeci�ed censoring (2) � data are simulated with censoring indicator δ generated

as P (δ = 1) ∼ X12 but the censoring model is misspeci�ed as P (δ = 1) ∼ X11, a
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variable that is not associated with censoring.

Figure D.2 shows the coverage of 95% con�dence intervals for the two blip parameters ψ10

and ψ11 under misspeci�cations of the treatment-free model (1), for which partial results

are presented in the article Section 5.4.3, and (2). Table D.3 shows the corresponding

mean/median widths. As for the parameter ψ11, misspeci�cation (1), which ignores an

important confounder in the treatment-free model, also yields low coverages for ψ10 with the

adjusted asymptotic variance. The same pattern in mean and median widths is observed

for ψ10 and ψ11 with the adjusted asymptotic variance, that is, the mean widths are large

despite the low coverage. Additionally, given that the median widths are relatively similar

to that obtained with the other methods, we suspect that the adjusted asymptotic variance

estimates exhibit excessive variability (c.f. Section D.5). Conclusions are di�erent under

misspeci�cation (2), which ignores the nonlinear component in the treatment-free model.

The two asymptotic variances outperform the bootstraps for inferences for ψ11 where all

bootstraps, and especially the two parametric bootstraps, yield a relatively low coverage

across sample sizes.

Figure D.3 shows the coverage of 95% con�dence intervals for the two blip parameters ψ10

and ψ11 under misspeci�cations of the treatment model (1), for which partial results are

presented in the article Section 5.4.3, and (2). All methods perform well under the two

investigated misspeci�cations of the treatment model. Mean and median coverage widths

(not shown) exhibit no pattern.

Figure D.4 shows the coverage of 95% con�dence intervals for the two blip parameters ψ10

and ψ11 under misspeci�cations of the censoring model (1), for which partial results are

presented in the article Section 5.4.3, and (2). All methods perform well under the two

investigated misspeci�cations of the censoring model. Mean and median coverage widths

(not shown) also exhibit no pattern.
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Figure D.2: Coverage of 95% con�dence intervals for ψ10 and ψ11 under two ways of misspecifying

the treatment-free model across multiple sample sizes. The horizontal dashed lines represent the

bounds for testing the null hypothesis that the coverage equals the nominal rate.

Table D.3: Mean/median width of 95% con�dence intervals for ψ10 and ψ11 when the
treatment-free model is misspeci�ed in two di�erent ways.

ψ10 = 0.1

Treatment-free (1) Treatment-free (2)

Method / Sample size 100 500 1000 10,000 100 500 1000 10,000

Asymptotic (naive) 1.09/1.08 0.50/0.50 0.35/0.35 0.11/0.11 0.99/0.98 0.47/0.46 0.33/0.33 0.10/0.10
Asymptotic (adjusted) 2.59/1.25 2.89/0.53 1.08/0.38 0.60/0.11 0.99/0.97 0.46/0.45 0.32/0.32 0.10/0.10
Standard bootstrap 1.18/1.15 0.50/0.50 0.35/0.35 0.11/0.11 1.01/0.99 0.43/0.42 0.30/0.30 0.09/0.09
Parametric bootstrap 1 1.21/1.19 0.53/0.53 0.37/0.37 0.12/0.12 1.08/1.06 0.47/0.47 0.33/0.33 0.10/0.10
Parametric bootstrap 2 1.19/1.18 0.52/0.52 0.37/0.37 0.12/0.12 1.05/1.03 0.46/0.46 0.32/0.32 0.10/0.10

ψ11 = 0.1

Treatment-free (1) Treatment-free (2)

Method / Sample size 100 500 1000 10,000 100 500 1000 10,000

Asymptotic (naive) 1.48/1.45 0.68/0.68 0.48/0.48 0.15/0.15 1.49/1.44 0.72/0.71 0.51/0.51 0.16/0.16
Asymptotic (adjusted) 5.60/1.74 5.99/0.78 2.04/0.55 1.24/0.15 1.57/1.52 0.73/0.72 0.52/0.51 0.16/0.16
Standard bootstrap 1.63/1.59 0.69/0.68 0.48/0.48 0.15/0.15 1.54/1.49 0.66/0.65 0.46/0.46 0.15/0.15
Parametric bootstrap 1 1.67/1.65 0.72/0.72 0.51/0.51 0.16/0.16 1.49/1.45 0.64/0.63 0.45/0.45 0.14/0.14
Parametric bootstrap 2 1.64/1.63 0.71/0.71 0.50/0.50 0.16/0.16 1.44/1.41 0.62/0.62 0.44/0.44 0.14/0.14

241



Figure D.3: Coverage of 95% con�dence intervals for ψ10 and ψ11 under two ways of misspecifying

the treatment model across multiple sample sizes. The horizontal dashed lines represent the bounds

for testing the null hypothesis that the coverage equals the nominal rate.
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Figure D.4: Coverage of 95% con�dence intervals for ψ10 and ψ11 under two ways of misspecifying

the censoring model across multiple sample sizes. The horizontal dashed lines represent the bounds

for testing the null hypothesis that the coverage equals the nominal rate.

D.4 Additional Simulation Results: Non-regularity

Figure 5.3 in the article shows the coverage of 95% con�dence intervals for ψ11 for eight

regular and non-regular scenarios across two sample sizes. Recall that the data are generated

from a two-stage DTR and that the degree of non-regularity is controlled by the values

assigned to the second stage blip parameters ψ2 and by the distribution of X22. Figure

D.5 shows the coverages for ψ10 across the eight scenarios. All methods perform similarly

well across all sample sizes, regardless of the degree of non-regularity. Mean and median

con�dence interval widths (not shown), as well as results for sample sizes 500 and 10,000

with ψ11, do not bring additional information.

243



Figure D.5: Coverage of 95% con�dence intervals for ψ10 in eight regular or nonregular scenarios

across multiple sample sizes. The horizontal dashed lines represent the bounds for testing the null

hypothesis that the coverage equals the nominal rate.
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D.5 Details on the Performance of the Asymptotic Vari-

ance

We further investigate the low coverage but average large width of con�dence intervals con-

structed with the adjusted asymptotic variance formula when the treatment-free model is

misspeci�ed by omitting an important confounder (c.f. Section D.3). This is not observed

when misspecifying the treatment-free model by omitting a nonlinear component. We look

at the distributions of the blip estimator ψ̂11 and of its standard error estimated with the

two asymptotic variance formulae with correctly or incorrectly speci�ed linear or nonlinear

treatment-free models. A sample size of n=1000 is used.

Figure D.6 shows the distribution of the estimator ψ̂11 under correctly speci�ed or misspec-

i�ed treatment-free model, when the treatment-free model is truly linear or nonlinear. As

expected from the double-robustness property, the estimator is unbiased. Its distribution is

more variable under misspeci�cation of the treatment-free model.

Figure D.7 shows the distribution of the standard error for ψ̂11 estimated with the adjusted

and naive asymptotic variances. Recall that all scenarios yield coverages close to the nominal

rate, except the adjusted asymptotic variance which yields a coverage around 0.84 when the

linear treatment-free model is misspeci�ed (c.f. Figure 5.2). In this case, Figure D.7 suggests

that there are at least one very large standard error estimates. In general, the distribution

of the asymptotic standard error estimates is skewed right and is not centered around the

Monte Carlo standard error. Table D.4 shows a summary of the distributions presented

in Figure D.7. In the scenario where the linear treatment-free model is misspeci�ed, the

adjusted asymptotic formula not only estimates a few large standard errors but also smaller

ones as compared to the naive standard error estimates, which explains the low coverage

despite the large con�dence interval widths.
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Figure D.6: Distribution of ψ̂11 across 1000 simulated data sets when the data are generated with

a linear treatment-free model or a nonlinear treatment-free model, and when the treatment-free

model is correctly speci�ed or misspeci�ed. The vertical line corresponds to the true parameter

value.

Figure D.7: Distribution of the standard error of ψ̂11 across 1000 simulated data sets when the

data are generated with a linear treatment-free model or a nonlinear treatment-free model, and

when the treatment-free model is correctly speci�ed or misspeci�ed. The vertical line corresponds

to Monte Carlo standard errors.

Table D.4: Five-number summary for the distribution of the standard error of ψ̂11 when the
treatment-free model is misspeci�ed in two di�erent ways.

Asymptotic (adjusted) Asymptotic (naive)

Model Speci�cation Min Q1 Med Mean Q3 Max Min Q1 Med Mean Q3 Max

Linear
Correct 0.07 0.08 0.08 0.08 0.09 0.11 0.06 0.07 0.08 0.08 0.08 0.10
Incorrect 0.02 0.08 0.14 0.52 0.27 104.75 0.10 0.12 0.12 0.12 0.13 0.15

Nonlinear
Correct 0.07 0.08 0.08 0.08 0.09 0.11 0.06 0.07 0.08 0.08 0.08 0.10
Incorrect 0.11 0.13 0.13 0.13 0.14 0.18 0.10 0.12 0.13 0.13 0.14 0.17
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Appendix E

Supplemental Materials for Chapter 6

E.1 CPRD Database, Linkage and Study Cohort Assem-

bling

Data were obtained by linking the CPRD with the Hospital Episodes Statistics (HES). The

CPRD records good quality patient-level information on more than 13 million patients, cor-

responding to a representative sample of the UK population (Herrett et al., 2015, 2010). The

Figure E.1: Patients �owchart for assembling the study cohort. PCOS: polycystic ovarian
syndrome, yrs: years.
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Table E.1: Outcome and covariates de�nitions

data collected in the CPRD gather anthropometric information, lifestyle variables, medical

information and prescriptions by general practitioners. The HES database contains hospi-

tal admission information, including diagnoses and procedures. Linkage with the CPRD

database is possible from April 1, 1997, onward, for approximately 75% of the practices in

the CPRD (Herrett et al., 2015). Information on mortality and on deprivation were available

from linkages with the O�ce for National Statistics and Index of Multiple Deprivation and

Townsend scores databases, respectively. Figure E.1 shows the patient's �owchart from the
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base cohort (patients with at least one prescription of metformin) to the study cohort.

E.2 Covariates and Outcome De�nitions

Table E.1 shows de�nitions of the outcome and covariates. Table E.2 shows the distribution

of the time (in years) from the most recent record of a covariate before study entry to study

entry. HbA1c appeared to be monitored regularly: 75% of the patients had a record within

approximately one month before study entry. BMI was also monitored regularly for most

of the patients, with 25% of the patients having BMI recorded exactly on the date of study

entry.

Table E.2: Time in years between covariate records and study entry date.

Covariate Mean (SD) Min Q1 Med Q3 Max

Body mass index 0.4 (1.3) 0 0 0.1 0.4 26
HbA1c 0.1 (0.3) 0 0.02 0.04 0.1 11
Smoking status 0.6 (1.4) 0 0.02 0.2 0.6 40
Alcohol misuse 8.3 (8.6) 0 1.6 5.1 13 58
Dyslipidemia 0.2 (0.8) 0 0 0.04 0.1 21
Renal disease 3.3 (4.3) 0 0.9 2.4 4.7 67
Hypertension 0.5 (2.2) 0 0 0.03 0.1 39
Hypoglycemia 4.1 (6.4) 0 0.1 2.0 5.4 42

HbA1c: glycated hemoglobin, Max: maximum, Med: median, Min:
minimum, Q1: �rst quartile, Q3: third quartile, SD: standard devi-
ation

E.3 Implementation

E.3.1 Sample R Code

The R code on the following page shows how to specify DWSurv with all models depending

on linear combinations of all covariates and with the following tailoring variables: categories
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of HbA1c, BMI and history of severe hypoglycemia. The corresponding R output is shown

in Figure E.2.

library(DTRreg)

main1 <- dWSurv(time = list(~Y), blip.mod = list(~HBA1C1cat +

HYPO1 + BMI1), treat.mod = list(TRMT1 ~ AGE1 + GENDER + SES1_imputed +

SMOKING1 + BMI1 + MET1 + HBA1C1cat + RENAL1 + HYPO1 + HYPER1 +

ALCOHOL1 + DYSLIP1), tf.mod = list(~AGE1 + GENDER + SES1_imputed +

SMOKING1 + BMI1 + MET1 + HBA1C1cat + RENAL1 + HYPO1 + HYPER1 +

ALCOHOL1 + DYSLIP1), cens.mod = list(DELTA ~ TRMT1 + AGE1 +

GENDER + SES1_imputed + SMOKING1 + BMI1 + MET1 + HBA1C1cat +

RENAL1 + HYPO1 + HYPER1 + ALCOHOL1 + DYSLIP1), data = mydata,

var.estim = "asymptotic", asymp.opt = "adjusted")

Figure E.2: R output for main analysis.

E.3.2 Assessment of the Estimated Rule

One can informally assess the performance of the estimated treatment rule by looking at the

Kaplan-Meier curves strati�ed by whether the estimated optimal treatment was received or

not (Figure E.3). The Kaplan-Meier curves include only patients who experienced an event.

The dashed lines are Kaplan-Meier curves weighted by |a− E(A|H)|, the numerator in the

overlap weights, to remove confounding between the treatment assignment and the survival
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time. Patients who received their optimal treatment indeed survived longer.

Figure E.3: Kaplan-Meier curves strati�ed by whether patients followed or not their es-
timated optimal treatment. The dashed lines are corresponding weighted Kaplan-Meier
curves.

E.3.3 Model Checking

Residual plots are shown in Figure E.4 for the �tted values and selected covariates. The

plot of �tted values against residuals shows a decreasing trend, which may indicate that the

treatment-free model is not well speci�ed. Transformations about age were tried but did not

improve the model �t.

The double-robustness of the estimators ψ̂1 is exploited to assess the speci�cation of the

treatment-free, treatment and censoring models. If the treatment-free is correctly speci�ed,

then the estimators ψ̂1 would be robust to changes in the speci�cation of the treatment and

censoring models. Conversely, if the treatment and censoring models are correctly speci�ed,

then any speci�cation of the treatment-free model would yield the same estimates of ψ1.

We considered 511 di�erent speci�cations of all three models by including subsets of the
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Figure E.4: Residual plots.

covariates originally included in the models. For the treatment-free model, tailoring variables

(categories of HbA1c, BMI and severe hypoglycemia) were forced into the model. The left-

hand side boxplot in Figure E.5 shows the distribution of the average treatment e�ect (i.e. the

linear combination ψ̂T1 h1) when the censoring and treatment models were held �xed but the

treatment-free model was varied. The distribution shows little variability and is centered

near the average treatment e�ect calculated in the main analysis (horizontal dashed line),
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suggesting that the treatment and censoring models were reasonably well speci�ed. The

right-hand side boxplot in Figure E.5 shows the distribution of the average treatment e�ect

when the censoring and treatment models were varied and the treatment-free model was held

�xed. The distribution shows more variability, suggesting that the treatment-free model is

not well speci�ed.

Figure E.5: Double-robustness plot to assess the (mis)speci�cation of the treatment-free,
treatment and censoring models. The distribution of the average treatment e�ect ψ̂T1 h1 is
shown across 511 di�erent speci�cations of the treatment-free model (left-hand side boxplot)
and of the censoring and treatment models (right-hand side boxplot). The star shows the
mean of the distribution and the thick line points to the 5th and 95th percentiles of the
distribution. The horizontal dashed line shows the average treatment e�ect in the main
analysis.

E.4 Sensitivity Analyses

We considered the following sensitivity analyses:

1. We removed �alcohol misuse� from all models because records about alcohol misuse

were made a long time before study entry, i.e. on average eight years before study
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entry (see Table E.2).

2. We added age as a tailoring variable.

3. We restricted �severe hypoglycemia� to be de�ned with records made from metformin

initiation to study entry.

4. We used the restricted mean survival time (RMST) as the outcome. The RMST

truncates the observed censoring and survival times at τ . We chose τ = 18.6 years

(6800 days).

5. We used more stringent time-windows to record BMI and HbA1c (3 months, 6 months

and 1 year). Only individuals with a record made within the time-window were kept

in the analysis.

6. We restricted study entry to after January 1st, 2007, which corresponds to the date

when DPP-4i were �rst approved in the UK.

Results from the sensitivity analyses are presented in Tables E.3�E.5. The sensitivity anal-

yses 1�4 and 6 all led to similar treatment rules as in the main analysis. The observed

di�erences between the parameter estimates in the main analysis and in these �ve sensi-

tivity analyses were only re�ected in the estimated thresholds about BMI in the rule but

did not change the conclusions. Restricting the time-window to record BMI and HbA1c

signi�cantly changed the point estimates of the treatment rule parameters and changed the

estimated rule. Speci�cally, when restricting BMI and HbA1c measurements within three

months before study entry, the treatment rule still recommended DPP-4i for patients with a

history of hypoglycemia but recommended sulfonylurea for most patients without a history

of hypoglycemia. Only patients with borderline or bad glycemic control and very high BMI

(above 63 and above 75, respectively) were recommended to add DPP-4i. Among the 2,645

patients who were recommended to add DPP-4i in the main analysis, 1,190 patients were

now recommended to add sulfonylurea. However, even if the resulting rule was di�erent, the
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conclusions remained sensibly the same.

Table E.3: Treatment rule parameter estimates in the main analysis and in four sensitivity
analyses based on 35,287 patients.

Without Hypo after
Main analysis alcohola +Ageb metforminc RMSTd

Tailoring variables ψ̂1 95% CI ψ̂1 ψ̂1 ψ̂1 ψ̂1

Intercept -0.99 (-2.48, 0.51) -0.98 -0.94 -0.92 -0.99
HbA1c (ref: ≤ 7%)

7% to 10% -0.87 (-1.75, 0.01) -0.88 -0.87 -0.85 -0.87
> 10% -1.09 (-2.12, -0.07) -1.11 -1.10 -1.06 -1.09

Hypoglycemia 1.69 (0.31, 3.07) 1.71 1.69 1.75 1.69
BMI 0.04 (0.005, 0.08) 0.04 0.04 0.04 0.04
Age -0.001
aremove history of alcohol misuse from all models. badd age as tailoring variable. crecord
hypoglycemia between metformin initiation and study entry. doutcome de�ned as restricted
mean survival time (RMST) with τ = 18.6 year. BMI: body mass index, CI: con�dence
interval, HbA1c: glycated hemoglobin.

Table E.4: Treatment rule parameter estimates in the main analysis based on 35,287 patients
and in three sensitivity analyses varying the time-window to record BMI and HbA1c.

Time-window
Main analysis 1 yr (n=32,473) 6 mo (n=28,036) 3 mo (n=22,909)

Tailoring variables ψ̂1 95% CI ψ̂1 ψ̂1 ψ̂1

Intercept -0.99 (-2.48, 0.51) -0.49 -0.78 -1.21
HbA1c (ref: ≤ 7%)

7% to 10% -0.87 (-1.75, 0.01) -0.56 -0.49 0.40
> 10% -1.09 (-2.12, -0.07) -0.71 -0.53 0.24

Hypoglycemia 1.69 (0.31, 3.07) 1.44 1.35 2.15
BMI 0.04 (0.005, 0.08) 0.02 0.03 0.01

BMI: body mass index, CI: con�dence interval, HbA1c: glycated hemoglobin, yr: year, mo: months.
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Table E.5: Treatment rule parameter estimates in the main analysis and in a sensitivity
analysis restricting study entry after January 1st, 2007.

Main analysis (n=35,287) After 2007 (n=28,463)

Tailoring variable ψ̂1 95% CI ψ̂1 95% CI

Intercept -0.99 (-2.48, 0.51) -1.27 (-2.75,0.20)
HbA1c (ref: ≤ 7%)

7% to 10% -0.87 (-1.75, 0.01) -0.69 (-1.57, 0.19)
> 10% -1.09 (-2.12, -0.07) -0.88 (-1.89, 0.12)

Hypoglycemia 1.69 (0.31, 3.07) 1.91 (0.61, 3.22)
BMI 0.04 (0.005, 0.08) 0.05 (0.02, 0.09)

BMI: body mass index, CI: con�dence interval, HbA1c: glycated hemoglobin.
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