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ABSTRACT 

 

Modeling soil-structure interaction problems involving granular material and 

large deformation is a challenging task particularly for geotechnical engineering. 

Using standard finite element methods has been found to be inefficient to model 

soil-structure interaction at the soil particle scale. Soil-structure interactions such 

as erosion void around tunnel lining and geogrid reinforcement may not be 

properly captured using the finite element method. The discrete element method, 

on the other hand, has proven its efficiency in modeling the behavior of granular 

soil domains at the microscopic scale. It is however not suitable to model 

structural elements using this numerical method due to the continuum behavior of 

the structure. The coupling of the finite and discrete element methods, which 

takes advantages of the two methods, is a promising approach to model such 

geotechnical engineering problems. This thesis is devoted to develop a coupled 

Finite-Discrete element framework for soil-structure interaction analysis and 

validate the developed algorithm by comparing numerical simulations with 

experimental data. 

The research results have been published in refereed journals and conference 

proceedings amounting to 3 journal papers and 5 conference papers. These papers 

are compiled to produce 7 chapters and 1 appendix in this manuscript-based 

thesis. Experimental and discrete element investigations of earth pressure acting 

on cylindrical shaft are first presented along with a new gravitational packing 

technique that has been used to replicate the real sample packing process. Results 

from the numerical simulation and experimental work are then compared. The 

efficiency of the discrete element method in solving problems involving granular 

material and large deformation is demonstrated. 

The rest of the thesis is devoted to describe the development of a three-

dimensional coupled Finite-Discrete element method and its implementations. To 

analyze a given soil-structure interaction problem using the developed coupled 
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Finite-Discrete element framework, the structure is modeled using finite elements 

while the soil is modeled using discrete elements. Interface elements are used to 

ensure the force transmission between the finite and discrete element domains. 

Explicit time integration is used in both the finite and discrete element 

calculations. Different damping schemes are applied to each domain to relax the 

system. A multiple-time-step scheme is applied to optimize the computational 

cost. The developed coupled Finite-Discrete element framework is used to 

investigate selected soil-geogrid interaction problems including pullout test of 

biaxial geogrid embedded in granular material, strip footing over geogrid 

reinforced sand and geogrid-reinforced fill over strong formation containing void. 

The results of the numerical analysis are compared with experimental data. 

Micro-mechanical behavior of the soil domain is analyzed and displacements, 

stresses and strains developing in the geogrid are investigated. Conclusions and 

recommendations are made regarding the three-dimensional soil-structure 

interaction using the discrete element and coupled Finite-Discrete element 

methods.  
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RÉSUMÉ 

 

La modélisation de l’interaction sol-structure présent plusieurs défis, 

particulièrement dans les sols granulaires et pour des grandes déformations. 

L’analyse par éléments finis est souvent utilisée mais celle-ci ne permet pas une 

modélisation à l’échelle des particules de sol. Ce dernier type d’analyse est requis 

pour la modélisation de problèmes d’interaction complexe tels que ceux de 

l’érosion des sols autour de l’enveloppe d’un tunnel ou du comportement d’une 

membrane géotextile. La méthode de modélisation par éléments discrets est un 

moyen efficace et reconnu pour modéliser le comportement granulaire des sols au 

niveau microscopique. Par contre, cette méthode n’est pas appropriée pour 

modéliser les structures solides et continues. Le couplage entre les éléments finis 

et les éléments discrets est une technique prometteuse qui combine les avantages 

des deux méthodes. Cette thèse est consacrée au développement de l’analyse 

couplée Éléments finis-Éléments discrets pour l’interaction sol-structure et à la 

validation des algorithmes par une comparaison des simulations numériques avec 

des résultats expérimentaux. 

Les résultats de la recherche ont été publiés dans les journaux avec comité de 

lecture (3 articles) m et dans des comptes-rendus de conférence (5 articles).  La 

thèse est soumise sous la forme d’une thèse avec manuscrits et comporte 7 

chapitres principaux et une annexe. Le premier cas étudié est celui de la pression 

des sols sur un cylindre. Un nouvel algorithme de placement des particules par 

gravité et de compaction est proposé afin de mieux représenter le processus de 

préparation des échantillons en laboratoire. Les résultats de simulation sont 

comparés et validés par rapport aux résultats expérimentaux et démontrent 

l’applicabilité de la procédure pour l’analyse du comportement des matériaux 

granulaires pour des grandes déformations.  

Les chapitres suivants sont dédiés au développement d’analyses ridimensionnelles 

couplées et à leur validation. Les éléments structuraux sont modélisés par 
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éléments finis tandis que le sol est modélisé par des éléments discrets. Des 

éléments spéciaux sont développés pour effectuer le couplage entre les deux 

domaines. Une intégration numérique du type explicite est utilisée pour tous les 

calculs dans le domaine temporel. Différents types d’amortissement sont utilisés 

pour chacun des domaines (finis ou discrets) afin de stabiliser le système. Une 

approche avec intervalles de temps multiple est utilisée afin d’optimiser le temps 

de calcul. La procédure est utilisée afin d’analyser la résistance à l’arrachement 

d’une membrane géotextile incorporée dans un milieu granulaire, et le 

comportement d’une semelle de fondation reposant sur un dépôt de sable renforcé 

avec des géotextiles au-dessus d’une cavité profonde. Les résultats des 

simulations numériques sont comparés aux données expérimentales. Les 

déplacements, les contraintes et les déformations dans le géotextile et le sol sont 

analysés. Des conclusions et des recommandations sont formulées pour l’analyse 

tridimensionnelle couplée de l’interaction sol-structure. 

 

 

 

 

 

 

 

 

 

 

 

 

v 
 



 

ACKNOWLEDGMENTS 

 

First of all, I wish to express my great gratitude to my supervisors Prof. Mohamed 

Meguid and Prof. Luc Chouinard for their guidance, support and understanding 

throughout the years. I am truly indebted to both for their motivating enthusiasm 

and leading me to a stimulating research program. 

 

Special thanks to Dr. Kien Dang for his kind help and advice during this research. 

 

Many thanks to my colleagues in the geotechnical group at McGill University who 

directly or indirectly have contributed to the accomplishment of this thesis. 

 

A special thanks is due to the Technical Staff of the Department of Civil 

Engineering and Applied Mechanics at McGill University, notably Dr. Bill Cook 

and Mr. Jorge Sayat. 

 

I would like to acknowledge the financial support of the McGill Engineering 

Doctoral Award. 

 

Above all, I owe deep appreciation and thanks to my parents, Mr. Dong Tran and 

Mrs. Xo Hoang, and my brother, Mr. Nam Tran their prolonged understanding, 

support and encouragement. 

 

And, thank you Kim, for your support, your patience, and your love. 

  

vi 
 



 

PUBLICATIONS TO DATE 

 

Journal papers 

[J1] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "Discrete Element 

and Experimental Investigations of the Earth Pressure Distribution on 

Cylindrical Shafts." ASCE International Journal of Geomechanics (In 

Press), 2012.  

[J2] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "A Finite–Discrete 

Element Framework for the 3D Modeling of Geogrid–Soil Interaction 

Under Pullout Loading Conditions." Geotextiles and Geomembranes, 37 

(1-9), 2013. 

[J3] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "Three Dimensional 

Analysis of Geogrid Reinforced Soil Using Finite-Discrete Element 

Framework." ASCE International Journal of Geomechanics (submitted), 

April 2013. 

Conference papers 

[C1] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "Coupling of 

Random Field Theory and the Discrete Element Method in the Reliability 

Analysis of Geotechnical Problems." Canadian Society for Civil 

Engineering (CSCE) Annual Conference, Edmonton, Canada. Paper No. 

GEN-1022, May 2012. 

[C2] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "A Discrete 

Element Study of the Earth Pressure Distribution on Cylindrical Shafts." 

Tunneling Association of Canada (TAC) Conference, Montreal, Canada. 

Paper No. 112, October 2012. 

[C3]   Tran, V. D. H., Yacoub, T. E., and Meguid, M. A. "On the analysis of 

vertical shafts in soft ground: Evaluating Soil-Structure Interaction Using 

vii 
 



 

Two Different Numerical Modeling Techniques." Submitted to The 66th 

Canadian Geotechnical Conference, Montreal, Canada, October 2013. 

[C4]   Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "Soil-Geogrid 

Interaction Analysis Using a Coupled Finite-Discrete Element Method." 

Submitted to The 66th Canadian Geotechnical Conference, Montreal, 

Canada, October 2013.  

[C5]   Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "The Application of 

Coupled Finite-Discrete Element Method in Analyzing Soil-Structure 

Interaction Problems." Submitted to III International Conference on 

Particle-based Methods– Fundamentals and Application, Stuttgart, 

Germany, September 2013. 

Other 

[P1] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "An Algorithm for 

the Propagation of Uncertainty in Soils using the Discrete Element 

Method." The Electronic Journal of Geotechnical Engineering, 17(V), 

3053-3074, 2012.  

[P2] Tran, V. D. H., Meguid, M. A., and Chouinard, L. E. "Numerical 

Simulation of Shear Tests Using the Discrete Element Method." McGill 

CEGSS Conference, Montreal, Canada. Paper No. GEO-04,  April 2012.  

viii 
 



 

TABLE OF CONTENTS 

 
ABSTRACT........................................................................................................... ii 
RÉSUMÉ .............................................................................................................. iv 
ACKNOWLEDGMENTS .................................................................................... vi 
PUBLICATIONS TO DATE .............................................................................. vii 
TABLE OF CONTENTS .................................................................................... ix 
LIST OF FIGURES ........................................................................................... xiii 
LIST OF TABLES ............................................................................................. xvi 
LIST OF SYMBOLS ........................................................................................ xvii 
Chapter 1: Introduction .................................................................................... 1 
1.1. Introduction ...................................................................................................... 1 
1.2. Research Motivation ........................................................................................ 2 
1.3. Objective and Scope ........................................................................................ 2 
1.4. Contributions of authors .................................................................................. 3 
1.5. Thesis Organization ......................................................................................... 4 
Chapter 2: Literature Review .......................................................................... 6 
2.1. Soil-Structure Interaction Modeling using the Finite Element Method ........... 6 
2.2. Granular Modeling using the Discrete Element Method ................................. 7 
2.3. Coupling the Finite and Discrete Element Methods ...................................... 11 
2.4. Conclusion for the Literature Review ............................................................ 13 
Chapter 3: Discrete Element Simulation and Experimental Study of 
the Earth Pressure Distribution on Cylindrical Shafts .......................... 14 
3.1. Introduction .................................................................................................... 15 
3.2. Experimental Study ........................................................................................ 16 

3.2.1. Model shaft .............................................................................................. 17 
3.2.2. Concrete container................................................................................... 17 
3.2.3. Data recording ......................................................................................... 18 
3.2.4. Testing procedure .................................................................................... 18 

3.3. Discrete Element Simulation ......................................................................... 19 
3.4. DE Sample Generation .................................................................................. 25 
3.5. Model Calibration Using Direct Shear Test ................................................... 28 
3.6. Shaft-Soil Interaction Simulation .................................................................. 34 
3.7. Results and Discussions ................................................................................. 37 

3.7.1. Initial earth pressures .............................................................................. 37 
3.7.2. Earth pressure reduction with wall movement ........................................ 38 
3.7.3. Earth pressure distribution with depth .................................................... 42 

ix 
 



 

3.7.4. Extent of shear failure ............................................................................. 43 
3.7.5. Stress distribution within the soil ............................................................ 48 

3.8. Summary and Conclusions ............................................................................ 52 
Preface to Chapter 4 ........................................................................................ 54 
Chapter 4: Three-Dimensional Modeling of Geogrid-Soil Interaction 
under Pullout Loading Conditions .............................................................. 55 
4.1. Introduction .................................................................................................... 56 
4.2. Coupled Finite-Discrete Element Framework ............................................... 57 

4.2.1. Discrete Elements .................................................................................... 57 
4.2.2. Finite Elements ........................................................................................ 60 
4.2.3. Interface Elements ................................................................................... 62 

4.3. Model Generation .......................................................................................... 66 
4.4. Pullout Test Model ......................................................................................... 72 
4.5. Results and Discussions ................................................................................. 73 

4.5.1. Validation of the numerical model .......................................................... 73 
4.5.2. Response of the Geogrid ......................................................................... 75 
4.5.3. Pullout Resistance ................................................................................... 78 
4.5.4. Response of the Backfill Soil .................................................................. 81 

4.6. Summary and Conclusions ............................................................................ 87 
Preface to Chapter 5 ........................................................................................ 88 
Chapter 5: Three-Dimensional Analysis of Geogrid Reinforced 
Foundation Using Finite-Discrete Element Framework......................... 89 
5.1. Introduction .................................................................................................... 90 
5.2. Model Generation .......................................................................................... 92 
5.3. Numerical Simulation .................................................................................. 100 
5.4. Results and Discussions ............................................................................... 103 

5.4.1. Validation of the Numerical Model ...................................................... 103 
5.4.2. Response of the Geogrids ...................................................................... 103 
5.4.3. Response of the Reinforced Soil ........................................................... 110 

5.5. Summary and Conclusions .......................................................................... 116 
Preface to Chapter 6 ...................................................................................... 117 
Chapter 6: Three-Dimensional Analysis of Geogrid Reinforced Fill 
over Void Using Finite-Discrete Element Framework .......................... 118 
6.1. Introduction .................................................................................................. 119 
6.2. Model Generation ........................................................................................ 120 
6.3. Numerical Simulation .................................................................................. 121 
6.4. Results and Discussions ............................................................................... 125 

6.4.1. Response of the Geogrid ....................................................................... 125 

x 
 



 

6.4.2. Response of the Reinforced Soil ........................................................... 125 
6.5. Summary and Conclusions .......................................................................... 136 
Chapter 7: Conclusions and Recommendations .................................. 137 
7.1. Conclusions .................................................................................................. 137 
7.2. Recommendations for future work .............................................................. 140 
APPENDIX A: User Manual for the Developed 3D Coupled Finite-
Discrete Element Analysis Tool ................................................................. 141 
A.1. INTRODUCTION ...................................................................................... 142 
A.2. INSTALLATION ........................................................................................ 143 
A.3. PYTHON SCRIPTS .................................................................................... 144 

A.3.1. Getting Started ...................................................................................... 144 
A.3.2. Basic Commands .................................................................................. 146 
A.3.3. Sample Generation ............................................................................... 147 

A.3.3.1. Discrete element generation .......................................................... 148 
A.3.3.2. Finite element generation .............................................................. 151 
A.3.3.3. Interface element generation .......................................................... 153 
A.3.3.4. Optional features for DE and FE elements .................................... 154 

A.3.4. Boundary Conditions ............................................................................ 155 
A.3.4.1. Discrete elements ........................................................................... 155 
A.3.4.2. Finite elements ............................................................................... 155 

A.3.5. Assigning Forces and Displacments..................................................... 156 
A.3.5.1. Discrete elements ........................................................................... 156 
A.3.5.2. Finite elements ............................................................................... 156 

A.3.6. Material Models ................................................................................... 157 
A.3.6.1. Discrete elements ........................................................................... 157 
A.3.6.2. Finite elements ............................................................................... 158 
A.3.6.3. Interface elements .......................................................................... 159 

A.3.7. Simulation Engines ............................................................................... 159 
A.3.7.1. DE simulation engines ................................................................... 159 
A.3.7.2. FE simulation engines.................................................................... 164 
A.3.7.3. Interface-DE particle simulation engines ...................................... 167 
A.3.7.4. Additional engines ......................................................................... 172 

A.3.8. Post-processing ..................................................................................... 193 
A.3.8.1. Displacement field ......................................................................... 193 
A.3.8.2. Contact orientation......................................................................... 195 
A.3.8.3. Stresses in soil ............................................................................... 197 
A.3.8.4. Data analysis using GID ................................................................ 199 
A.3.8.5. Post-processing using PARAVIEW .............................................. 200 

xi 
 



 

A.3.8.6. 3D rendering and videos ................................................................ 201 
A.4. C++ ENGINES ........................................................................................... 202 

A.4.1. C++ Codes ............................................................................................ 202 
A.4.2. C++ Framework ................................................................................... 203 
A.4.3. Omega Class ......................................................................................... 204 
A.4.4. Wrapping C++ Classes ......................................................................... 204 

REFERENCES ................................................................................................. 205 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xii 
 



 

LIST OF FIGURES 

 

Figure 3-1 a) An overview of the experimental setup; b) Model shaft during 
assemblage and c) Lower-end section during assemblage (Adapted from 
Tobar, 2009) .................................................................................................. 22 

Figure 3-2 Flowchart of DE simulation ................................................................ 24 
Figure 3-3 Interaction between two DE particles ................................................. 24 
Figure 3-4 The multi-layer gravitational packing procedure ................................ 27 
Figure 3-5 Grain size distributions ....................................................................... 28 
Figure 3-6 a) Three-dimensional direct shear sample and b) Three-dimensional 

contact force network (at shear displacement of 2 m) .................................. 32 
Figure 3-7 Direct shear test results ....................................................................... 33 
Figure 3-8 Boundary conditions and 3D views of the model shaft ...................... 36 
Figure 3-9 Initial earth pressures on the shaft ....................................................... 37 
Figure 3-10 Earth pressures on the shaft at different depths (test T5) .................. 39 
Figure 3-11 Earth pressures on the shaft at different depths (test T6) .................. 39 
Figure 3-12 Earth pressures on the shaft at different depths (test T7) .................. 40 
Figure 3-13 Earth pressures on the shaft at different depths (DEM simulation) .. 40 
Figure 3-14 Normalized pressures on the shaft at the depth 0.24H ...................... 41 
Figure 3-15 Normalized pressures on the shaft at the depth 0.49H ...................... 41 
Figure 3-16 Normalized pressures on the shaft at the depth 0.84H ...................... 42 
Figure 3-17 Comparison between modeled results and theoretical earth pressures 

along the shaft.  a) Shaft movement = 1 mm and b) Shaft movement = 4 mm
....................................................................................................................... 45 

Figure 3-18 Displacement field at shaft movement of 3 mm. .............................. 46 
Figure 3-19 Contact force networks ..................................................................... 47 
Figure 3-20 Stresses acting on a soil element ....................................................... 48 
Figure 3-21 a) Radial stress distribution at the depth 0.49H and b) Radial stress 

distribution in the cross section A-A (s = 3 mm) .......................................... 50 
Figure 3-22 a) Circumferential stress distribution at the depth 0.49H and b) 

Circumferential stress distribution in the cross section A-A (s = 3 mm) ..... 51 
Figure 3-23 Stresses at the depth 0.49H and shaft movement 2 mm .................... 52 

Figure 4-1 Flowchart of dynamic explicit FE simulation ..................................... 61 
Figure 4-2 Coupling FEM and DEM using interface elements ............................ 64 
Figure 4-3 Forces transmitting to FE nodes through DE particle-interface element 

interaction ..................................................................................................... 64 

xiii 
 



 

Figure 4-4 Multi-time step algorithm ................................................................... 65 
Figure 4-5 Flow chart of the coupled Finite-Discrete element method ................ 65 
Figure 4-6 Geometry of the geogrid ..................................................................... 69 
Figure 4-7 Initial DE specimen (partial view for illustration purpose) ................ 71 
Figure 4-8 Pullout response of the geogrid ........................................................... 74 
Figure 4-9 Horizontal Displacement along the geogrid ( vσ = 49 kPa) ................. 74 
Figure 4-10 Geogrid deformation and displacement at ........................................ 76 
Figure 4-11 Geogrid stress Sxx  at Ux = 10 mm and vσ = 49 kPa ......................... 76 

Figure 4-12 Average tensile force Pxx in the longitudinal members ( vσ = 49 kPa)
....................................................................................................................... 77 

Figure 4-13 Components of the pullout resistance ( vσ = 49 kPa) ........................ 80 
Figure 4-14 Accumulated contribution of the transverse members to the total 

bearing resistance at different locations along the geogrid ( vσ = 49 kPa) .... 80 

Figure 4-15 Displacement field of the soil domain at Ux = 10 mm and vσ = 49 kPa
....................................................................................................................... 83 

Figure 4-16 Contact force networks within the soil around the geogrid .............. 84 
Figure 4-17 Strain field within the soil domain at Ux = 10 mm and vσ = 49 kPa 85 

Figure 4-18 Distribution of vertical and horizontal stresses in soil ( vσ = 49 kPa) 86 

Figure 5-1 Plan view of the geogrid ..................................................................... 97 
Figure 5-2 Initial geometry of the geogrid reinforced foundation ........................ 98 
Figure 5-3 Partial view of the DE particle-geogrid interaction ............................ 99 
Figure 5-4 Distributions of the contact orientation at initial condition .............. 102 
Figure 5-5 Load-settlement curves of the geogrid reinforced foundation .......... 105 
Figure 5-6 Geogrid vertical displacement at foundation pressure q  = 125 kPa . 106 
Figure 5-7 Geogrid stress Sxx at foundation pressure q  = 125 kPa .................... 107 
Figure 5-8 a) Vertical displacements of the geogrid (N = 1) .............................. 108 
Figure 5-9 a) Maximum vertical displacements of geogrids .............................. 109 
Figure 5-10 Soil displacement field of the unreinforced foundation .................. 112 
Figure 5-11 Soil displacement field of the reinforced foundation (N = 1) ......... 113 
Figure 5- 12 Contact force networks within the soil ........................................... 114 
Figure 5-13 Vertical stress distributions beneath the strip foundation ............... 115 
Figure 6-1 Initial geometry of the geogrid reinforced fill above void ................ 123 
Figure 6-2 Plan view of the geogrid ................................................................... 124 
Figure 6-3 Vertical displacement and tensile stress of the geogrid .................... 128 
Figure 6-4 Distributions of vertical displacement and tensile stress along the 

geogrid ........................................................................................................ 129 

xiv 
 



 

Figure 6-5 Soil displacement fields .................................................................... 130 
Figure 6-6 Distributions of the contact orientation–unreinforced fill ................. 131 
Figure 6-7 Distributions of the contact orientation–reinforced fill ..................... 132 
Figure 6-8 Percentage porosity changes in the unreinforced and reinforced fills

 .................................................................................................................... 133 
Figure 6-9 Stress distributions in the unreinforced fill ....................................... 134 
Figure 6-10 Stress distributions in the reinforced fill ......................................... 135 

Figure A-1 Linux terminal to start YADE .......................................................... 144 
Figure A-2 Controller and graphical interface .................................................... 145 
Figure A-3 A cloud of spherical particles generated using makeCloud() ........... 149 
Figure A-4 Snapshot of a clump and a wall ........................................................ 151 
Figure A-5 Two DE particles over a FE plate. The plate is covered with triangular 

interface elements to assure its interaction with DE particles .................... 154 
Figure A-6 Typical simulation loop of DE simulation ....................................... 160 
Figure A-7 The box and sphere described in problem 1 ..................................... 163 
Figure A-8 Typical simulation loop of FE simulation ........................................ 164 
Figure A-9 FE simulation of a square footing problem in YADE ...................... 167 
Figure A-10 Flowchart of the coupled FE-DE framework ................................. 168 
Figure A-11 Deformation of a FE plate in interaction with two DE particles using 

the coupled FE-DE framework ................................................................... 171 
Figure A-12 Soil sample in problem 4 before and after compression ................ 175 
Figure A-13 DE used in the three-dimensional direct shear test and b) Three-

dimensional contact force network ............................................................. 179 
Figure A-14 a) Initial geometry of the geogrid reinforced foundation b) Partial 

view of the DE particle-geogrid interaction ............................................... 184 
Figure A-15 Initial DE specimen for the geogrid pulout test  (partial view for 

illustration purpose) .................................................................................... 188 
Figure A-16 Initial sample geometry for problem 8 ........................................... 192 
Figure A-17 Displacement field in the soil domain (problem 6) ........................ 195 
Figure A-18 Distributions of contact orientation (problem 6) ............................ 196 
Figure A-19 Vertical stress distribution (problem 6) .......................................... 199 
Figure A-20 Tensile stress of a geogrid during pullout test (problem 7) ............ 200 
Figure A-21 Deformation of the buried pipe and the FE soil domain (problem 8)

 .................................................................................................................... 200 
Figure A-22 Strain field in the soil domain (problem 7) .................................... 201 
 

 
 

xv 
 



 

LIST OF TABLES 

 

Table 3-1 Soil properties used in the experimental study ..................................... 19 
Table 3-2 Particles' properties for DE simulations ............................................... 31 
Table 4-1 Input parameters for the simulation ...................................................... 68 
Table 5-1 Input parameters for the simulation ...................................................... 96 
Table 6-1 Input parameters for the simulation .................................................... 122 
 

 

 

 

 

 

 

 

 

 

 

  

xvi 
 



 

LIST OF SYMBOLS 

 

Roman Symbols 

a  Radius of the model shaft 

B  Width of the strip foundation 

c   Damping coefficient for the mass proportional damping 

Cu   Soil coefficient of uniformity  

Cc   Soil coefficient of curvature  

D  Model shaft diameter 

d0   Distance between two particle centers 

D5   Particle diameter corresponding to 5 % passing 

D50   Particle diameter corresponding to 50 % passing 

Dr  Relative density 

E  Particle material modulus  

Fbt   Bearing resistance of geogrid transverse members 
jcf ,    Contact force vector at contact point c 

contactF


  Total contact force 

Ff   Geogrid frictional resistance 

NF


   Normal force of a contact 

Fp   Total geogrid pullout resistance  

TF


  Tangential force of a contact 

h  Depth of a earth pressure measurement point 

H  Height of a soil domain 

i, j   Cartesian coordinates 

K  Sum of normal stiffnesses of all particles interacting with a wall 

K  Stiffness matrix 

xvii 
 



 

iK    Per-particle stiffness of contacts in which particle i participates 

Ko  Lateral earth pressure coefficient at-rest  

KN   Normal stiffness at a contact 

Kr   Rolling stiffness of an interaction 

KT  Tangential stiffness at a contact 
( )A
nk    Normal stiffness of particle A 

( )B
nk    Normal stiffness of particle B 

M   Mass matrix 

im    Mass of particle i 

rM


  Resistant moment 

N  Coordination number, number of geogrid layers  

Nc  Number of contacts within a measurement box 

ni   Unit branch vector component in the i direction 

iN    Shape functions 

Np   Number of particles 

p  Active earth pressure acting on a vertical shaft 

P    External force vector 

P0  Initial earth pressure acting on a vertical shaft 

Pxx  Average tensile force 

q  Foundation pressure 

rA, rB  Radii of particles A and B  

s  Shaft radius reduction 

Sxx  Stress in the x-direction within the geogrid 

Ux  Geogrid frontal displacement  

V   Volume of a measurement rectangular box  

x   Displacement vector 

icx ,    Branch vector connecting two contact particles   

xviii 
 



 

( )ix   Coordinate of node i of a quadrilateral 

)(Ox   Temporary center node 

Greek Symbols 

α   The angle that the failure surface makes with the horizontal  

rβ    Rolling resistance coefficient 

γ   Soil unit weight 

TδΔ


   Incremental tangential displacement 

Tδ F


   Incremental tangential force 

Δ   Contact penetration depth  

crt∆   Critical time-step  

FEt∆   Time-step in the finite element domain  

DEt∆   Time-step in the discrete element domain 

NΔ


   Normal penetration between two particles 

rη    A dimensionless coefficient 

λ    Earth pressure coefficient on the radial plane 

mλ   Maximum eigenvalue 

rθ


  Rolling angular vector  

ν  Poisson's ratio  

σ , vσ   Current normal stress acting on a wall 

ijσ   Average stresses within a box 

0σ    Desired normal stress acting on a wall 

xix 
 



 

θσ   Circumferential stress in soil  

rσ   Radial stress in soil  

zσ   Vertical stress in soil  

microϕ    Microscopic friction angle 

φ   Internal friction angle (deg) 

ijΦ   Fabric tensor 

 

 

 

xx 
 



 

CHAPTER 1 

Introduction 

 

 

1.1. Introduction 

The interaction between soil and geotechnical structures has been attracting 

enormous research attention in the last few decades. Beside experimental studies, 

numerical methods have proven to be efficient in modeling the soil-structure 

interaction at the macroscopic scale level.  The finite element method (FEM) has 

been widely used to model soil-structure interaction in many geotechnical 

engineering problems including tunneling process (Mroueh and Shahrour, 2002), 

deep excavation (Zdravkovic et al., 2005) and pile foundation (Karthigeyan et al., 

2007). However, it is challenging for standard finite element methods to properly 

model the soil-structure interaction at the particle scale level. For geotechnical 

engineering problems that involve particle movement such as void erosion around 

tunnel lining (Meguid and Dang, 2009), earth pressure on cylindrical shaft (Tobar 

and Meguid, 2011) and geogrid reinforcement (Michalowski, 2004), the soil-

structure interaction nature may not be properly captured using FEM.  

The discrete element method (DEM) has proven to be promising for modeling 

geotechnical engineering problems which involve granular material and large 

deformation (Herten and Pulsfort, 1999; Cui and O'Sullivan, 2006; Guerrero et 

al., 2006). Although DEM is considered efficient in modeling soil particles, it is 

challenging to properly model the behavior of structural elements using discrete 

particles due to the continuum behavior of the structure. The coupling of the finite 

and discrete element methods, which takes advantages of the two methods, is a 

promising approach for modeling soil-structure interaction.  
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1.2. Research Motivation 

Although the coupling of FEM and DEM was initially used by researchers to 

solve dynamic impact problems (Han et al., 2002; Xiao and Belytschko, 2004; 

Dhia and Rateau, 2005; Bhuvaraghan et al., 2010), little work has been done to 

develop a coupling approach in geotechnical engineering. A two-dimensional 

coupled FE-DE framework was proposed by Onate and Rojek (2004) to solve 

dynamic geotechnical engineering problems. Fakhimi (2009) proposed a 

combined method to simulate triaxial tests by using finite elements to model the 

membrane and discrete elements to model the soil sample. The simulation 

required a very fine FE mesh with a large number of elements to maintain 

numerical stability. Coupled FE-DE simulations reported by Villard et al. (2009), 

Elmekati and Shamy (2010) and Dang and Meguid (2013) were not validated with 

experimental data. 

Thus, the goal of the thesis is to develop a coupled FE-DE framework suitable for 

soil-structure interaction analysis validated using experimental data. This involves 

developing a new DEM packing method, simulating DE problems, and 

conducting soil-structure interaction analysis using the developed FE-DE 

framework.  

1.3. Objective and Scope 

The research presented in this thesis has two major objectives. The first objective 

is to validate the use of the discrete element method in investigating  geotechnical 

engineering problems involving large deformation. This objective is achieved by 

addressing the following: 

1) Develop a gravitational packing method to simulate the soil deposition. 

2) Investigate the earth pressure distribution on cylindrical shaft in soft 

ground using the discrete element method. The numerical simulation is 

validated by comparing the numerical results with experimental data. 
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The second objective is to develop a coupled Finite-Discrete element framework 

and use the framework to investigate geotechnical engineering problems 

involving soil-structure interaction and granular material. This is achieved by 

addressing the following: 

3) Develop a coupled Finite-Discrete element framework and implement the 

developed framework into an open source code. 

4) Analyze pullout test of biaxial geogrid embedded in granular material. 

5) Analyze strip footing over geogrid-reinforced sand. 

6) Analyze geogrid-reinforced fill over strong formation containing void.  

1.4. Contributions of authors 

Papers J1, J2, J3, C1, C2, C3, C4 and C5 listed in the publication list are included 

in the thesis. All papers are the candidate’s original work. 

The coupled Finite-Discrete element framework developed in the thesis is a 

continuation of the original work of Dang and Meguid (2010, 2013). Dang 

developed the initial framework and used it to simulate a tunnelling process. The 

author has moved the original finite element engines into a new version of the 

open source discrete element code YADE. Original C++ codes were modified by 

the author in order to make them compatible with the new version of YADE. 

Bugs detected from the original framework have been fixed.  New C++ engines 

for discrete and finite element as well as coupled Finite-Discrete element analyses 

used in the thesis are written by the author. The author has wrapped all developed 

C++ engines in Python, a scripting language in YADE. This assures rapid and 

flexible simulation process. A manual for the developed coupled Finite-Discrete 

element framework written by the author is presented in the appendix of the 

thesis. 

All the formulation, program coding, and the preparation of the manuscripts were 

completed by the candidate, under the supervision of Prof. Mohamed Meguid and 

Prof. Luc Chouinard, his thesis supervisors. 
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1.5. Thesis Organization 

This thesis consists of seven chapters. The chapters essentially reflect the order in 

which the research was carried out. Chapter 2 presents recent developments in 

modeling soil-structure interaction problems involving granular material and large 

deformation. Chapters 3 and 4 are modified versions of journal papers J1 and J2 

while chapter 5 and 6 are parts of journal paper J3 in the publication list. 

Chapter 3 illustrates the advantages of the discrete element method in modeling 

geotechnical engineering problems involving granular material and large 

deformation. In this chapter, numerical studies that have been conducted to 

investigate the earth pressure distribution on cylindrical shaft in soft ground are 

presented. Previous experimental work conducted by the research group is 

summarized first. The experiment consists of a mechanically adjustable lining 

installed in granular material under axisymmetric condition. The shaft radius is 

gradually reduced and the earth pressure acting on the shaft is measured for 

different induced wall movements. A discrete element analysis is then performed 

to simulate the experiment using a new gravitational packing. Input parameters 

for the simulation are determined using experimental results of direct shear tests. 

The microscopic behavior of the soil domain is obtained from the discrete element 

simulation. The chapter is a modified version of paper J1 in the publication list. 

Chapter 4 presents the coupled Finite-Discrete element framework developed to 

simulate soil-structure interaction. Force transmission between the finite and 

discrete element domains is assured using interface elements. Explicit time 

integration is used in both the finite and discrete element calculations. Different 

damping schemes are applied to each domain to relax the system. A multiple-

time-step scheme is applied to optimize the computational cost. The developed 

coupled Finite-Discrete element framework is used to investigate a pullout test of 

a biaxial geogrid embedded in granular material. The geogrid is modeled using 

finite elements while the soil is modeled using discrete elements. The results of 

the analysis are compared with experimental data. The displacements and stresses 
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developing in the geogrid as well as the micro-mechanical behavior of the soil 

domain are investigated. The proposed coupled Finite-Discrete element method 

has proven its efficiency in modeling pullout test in three-dimensional space and 

capturing the response of both the geogrid and the surrounding material. The 

chapter presents the work carried out in paper J2 in the publication list. 

Chapter 5 investigates the behavior of a strip foundation over geogrid reinforced 

sand using the developed coupled Finite-Discrete element framework. The 

numerical simulation is validated by comparing the numerical results with the 

experimental data and the soil-geogrid interlocking effect is demonstrated. The 

deformation and stress distribution within the geogrid as well as the behavior of 

the soil domain relative to soil displacements, contact orientations, contact forces 

are also analyzed. The proposed coupled Finite-Discrete element method has 

demonstrated its efficiency in investigating the three-dimensional soil-geogrid 

interaction at the microscopic scale. The chapter is part of paper J3 in the 

publication list. 

Chapter 6 presents a numerical simulation of geogrid-reinforced fill over strong 

formation containing void using the proposed coupled Finite-Discrete element 

framework. The backfill soil is modeled using discrete elements while the geogrid 

is modeled using finite elements. The use of geogrid to reinforce a fill over a void 

is proven to be effective in preventing soil from moving toward the void. The 

developed coupled Finite-Discrete element framework efficiently captures the 

deformations and stresses of the geogrid as well as the soil displacements, contact 

orientations, stresses and porosity changes. The chapter is part of paper J3 in the 

publication list. 

Conclusions drawn from this research and recommendations for future research 

are outlined in chapter 7. 
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CHAPTER 2 

Literature Review 

 

 

Literature related to the modeling of soil-structure interaction in geotechnical 

engineering as well as the available techniques to couple the finite and discrete 

element methods are summarized below.   

2.1. Soil-Structure Interaction Modeling using the Finite Element Method 

The finite element method has been widely used to model soil-structure 

interaction in many geotechnical engineering problems such as tunneling, deep 

excavation and pile foundation. Modeling the tunneling process using FEM has 

been performed by researchers including Mroueh and Shahrour (2002), Galli et al. 

(2004), Kasper and Meschke (2004), Meguid and Rowe (2006) and Yoo (2013). 

Soil-wall interaction during excavation process has been studied by Faheem et al. 

(2004), Zdravkovic et al. (2005) and Finno et al. (2007). Similarily, FEM has 

been used to model soil-pile interaction (Pan et al., 2002; Khodair et al., 2005; 

Maheshwari et al., 2005; Karthigeyan et al., 2007). Soil-structure interaction is 

often assured using interface elements (Bfer, 1985; Van Langen and Vermeer, 

1991; Karabatakis and Hatzigogos, 2002). In the above studiess, the soil-structure 

interactions using interface elements were often considered at the macroscopic 

scale.  

In geotechnical engineering problems such as those involving erosion voids next 

to tunnel lining (Zienkiewicz and Huang, 1990; Meguid and Dang, 2009), earth 

pressure on cylindrical shaft (Berezantzev, 1958; Tobar and Meguid, 2011) and 

geogrid reinforced soil (Agaiby et al., 1995; Palmeira, 2004; Michalowski, 2004), 

it is necessary to model the soil-structure interaction at the particle scale level to 

properly capture the soil particle-structure interaction. Voids due to erosion 

around tunnel linings often have irregular shapes and sizes and it is challenging to 

6 
 



 

model the void development using FEM especially when the void size increases 

(Meguid and Dang, 2009). The active earth pressure on a cylindrical shaft is 

generally reached with sufficient shaft wall movement. For the case of a shaft 

surrounded by granular soil, the required shaft movement to reach the full active 

condition was found to range from 2.5% to 4% of the shaft radius (Tran et al., 

2012). The problem involves granular material and large deformation which 

makes it challenging to properly capture the earth pressure acting on the shaft 

wall using traditional FEM. In reinforced soil problems such as geogrid pullout 

test (Palmeira, 2004), geogrid reinforced foundation (Michalowski, 2004) and 

geogrid reinforced fill over void (Agaiby et al., 1995), soil-geogrid interlocking 

effect is considered an important feature. However, it is challenging to model the 

interlocking effect using FEM due to its particle based interaction. Moreover, the 

geogrid geometry is often simplified either as a truss structure (in 2D analysis) or 

a continuous sheet (in 3D analysis) which ignores the interlocking effect.  

Although the above soil-structure interaction problems may be modeled using an 

adaptive remeshing approach (Zienkiewicz and Huang, 1990; Zienkiewicz et al., 

1995) or a multiscale approach (Hughes, 1995; Garikipati and Hughes, 1998), 

numerical simulations involving large soil deformation and unpredictable 

discontinuities using these approaches did not receive much research attention in 

the literature.  

2.2. Granular Modeling using the Discrete Element Method 

The discrete element method has proven to be a promising approach to capture 

the response of granular material experiencing large deformation. The method 

was first proposed by Cundall and Strack (1979) and has been widely used to 

analyze geotechnical problems. In this method, a soil domain is modeled using a 

set of discrete particles interacting at their contact points. Particles can have 

different shapes such as discs, spheres, ellipsoids and clumps.  The real grain size 

distribution can be modeled using particles with variable sizes. The interaction 

between particles is regarded as a dynamic process that reaches static equilibrium 
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when the internal and external forces are balanced. The dynamic behavior is 

represented by a time-step algorithm using an explicit time-difference scheme. 

Newton's and Euler's equations are used to determine particle displacement and 

rotation.   

In a typical simulation step, forces and torques acting on each discrete particle are 

accumulated from the contacts in which the particle participates. These 

generalized forces are the used to update its position (Equation 2-1) and 

orientation (Equation 2-2). 

For position update: 

im/ii Fu =                   (2-1) 

where, mi, iu  and iF  are the mass, the current acceleration and the total force 

acting on particle i, respectively. 

For orientation update (spherical particles): 

iI/ii Tω =                   (2-2) 

where, iω , iI  and iT  are the current angular acceleration, the moment of inertia 

and the total torque acting on particle i, respectively. 

The discrete element method has been used to study different geotechnical 

problems involving granular materials. Laboratory tests have been modeled using 

DEM to investigate the microscopic behavior of soil samples. The force 

distribution and shear band developing during a direct shear test using DEM were 

reported by Thornton et al. (2003). Cui and O'Sullivan (2006) employed DEM to 

investigate macroscopic and microscopic responses of granular soil samples under 

direct shear condition. Park et al. (2009) modeled rock joints under direct shear 

using bonded-particles. Triaxial tests of granular soil samples were modeled by 

Ng (2004), Cui et al. (2007) and Belheine et al. (2009). Similarily, simple shear 

test simulation using DEM was reported by Jiang et al. (2003) and Duriez et al. 

(2011). Numerical results of the above studies show a good agreement with 
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experimental data which demonstrates the efficiency of DEM in simulating 

laboratory tests.   

Large scale geotechnical problems have been also modeled using DEM. Lobo-

Guerrero et al. (2006) investigated the behavior of railtrack ballast degradation 

during cyclic loading. The particle breakage process was visualized and the effect 

of crushing on the behavior of track ballast material was investigated. Bearing 

capacity of driven piles in crushable granular materials was studied by Lobo-

Guerrero and Vallejo (2005) using breakable DE particles. Deluzarche and 

Cambou (2006) employed the same approach to study rockfill dam behavior. 

Those simulations were capable of simulating particle breakage process which is 

difficult to observe using experimental tests. 

Earth pressure acting on vertical shafts was studied by Herten and Pulsfort (1999). 

Spherical particles were used to model the soil domain. The circular shaft was 

assumed to behave as segments made from small flat walls. The shaft wall was 

gradually moved inward and lateral pressures acting on the shaft wall were 

recorded. Results of the numerical simulation were then compared with 

experimental data.  

A simplified DEM model was developed by Maynar et al. (2005) to study the 

underground tunneling process. Input parameters for the numerical simulation 

were determined using triaxial test calibration. The excavation process was 

modeled and the tunnel face stability was analyzed. The thrust and torque 

evolution with respect to the movement of earth pressure balance machine were 

investigated. 

Gabrieli et al. (2009) studied the behaviour of a shallow foundation on a model 

slope. A particle upscale approach was proposed to reduce the number of DE 

particles required for the simulation. Displacement fields and contact force 

networks of the model were obtained at the microscopic level.  

Jenck et al. (2009) employed DEM to model granular fill supported by piles. A 

simplified two-dimensional DE model was developed to investigate soil 
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improvement using vertical rigid piles. Macro scale responses of the platform 

over piles such as soil arching, loads transfer to the piles and platform settlement 

were analyzed. The DE simulation was compared with experimental data. 

Parametric studies were performed to investigate the influence of microscopic 

parameters on the macroscopic response of the model. 

It can be seen that although DE simulations have been reported in the literature, 

the number of DE validations is still limited and needs to be expanded. Moreover, 

the studied DE models were often simplified in 2D space (Lobo-Guerrero and 

Vallejo, 2005; Deluzarche and Cambou, 2006; Lobo-Guerrero et al., 2006; Jenck 

et al., 2009) which limits the capability of DEM to capture the 3D soil behavior at 

the microscopic level.  

The modeling of soil-structure interaction using DEM has been reported by 

Villard and Chareyre (2004), McDowell et al. (2006), Han et al. (2011) and Chen 

et al. (2012). Villard and Chareyre (2004) used two-dimensional DEM to model 

the failure of geosynthetic sheets anchored in trenches. The geosynthetic sheets 

were modeled using "dynamic spar elements" while backfill soil was modeled 

using disk elements. Contact laws between dynamic spar elements and disks were 

introduced to assure their interaction. Pullout strengths of different anchorage 

shapes as well as deformation and failure mechanism of the system were 

investigated.  

McDowell et al. (2006) and Chen et al. (2012) used DEM to model both the 

geogrid and the backfill soil. The geogrid was modeled using a set of spherical 

particles bonded together to form the geogrid shape. The interaction between the 

geogrid and the surrounding soil was obtained through the contact between 

discrete particles. The geogrid was then pulled out to investigate the peak 

mobilised resistance and associated displacement (McDowell et al., 2006). In 

Chen et al. (2012), the behavior of the geogrid-reinforced ballast under cyclic 

loading was investigated and the effectiveness of the geogrid reinforcement was 

examined. 
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Han et al. (2011) used DEM to model geogrid-reinforced embankment over piles. 

The 2D embankment was modeled using disk elements and the 2D geogrid was 

modeled using bonded particles. The changes of stresses, porosities and 

displacements within the embankment fill as well as the behavior of the geogrid 

were investigated. 

In the above soil-structure interaction simulations, the structural elements were 

modeled using dynamic spar elements or bonded particles which do not represent 

the continuous nature of the structure. Moreover, due to the inflexibility of the 

bonded particles and dynamic spar elements, the real deformation as well as 

strains and stresses within the structure may not be accurately captured.  

2.3. Coupling the Finite and Discrete Element Methods 

To take advantage of both FEM and DEM, the coupling of the two numerical 

methods has been proposed. In this approach, the analyzed problem is divided 

into FE and DE domains. Several algorithms have been developed to assure the 

load transfer from the FE domain to DE domain and vice versa. 

A procedure for combining finite and discrete elements to simulate the shot 

peening process was proposed by Han et al. (2002). Spherical shot was modeled 

using rigid discrete elements while the target material was modeled using 

deformable finite elements. The developed algorithm could capture the dynamic 

nature of the shot peening. However, the element size in the impact area should be 

no larger than d/10 where d is the diameter of the shot. This requires a large 

number of finite elements which results in high computational cost. A simulation 

of the shot peening process using a combined finite-discrete element approach 

was also reported by Bhuvaraghan et al. (2010). 

An algorithm for coupling the finite and discrete element methods was reported 

by Fakhimi (2009). The algorithm was capable of modeling deformable 

membrane in a laboratory triaxial test. The membrane was modeled using FE 

while the soil was modeled using DE. The membrane-soil interaction was based 
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on the contact between DE and external face of the FE membrane. Both FE and 

DE computations were integrated explicitly using a central difference scheme. 

Xiao and Belytschko (2004) proposed a bridging domain method for coupling 

continuum models with molecular models. In this approach, the continuum and 

molecular domains were overlapped in a bridging sub-domain. Using the 

linearization of Halmitonian dynamics for both molecular and continuum models, 

this multi-scale method can avoid spurious wave reflections at the 

molecular/continuum interface. A multiple-time-step algorithm was also proposed 

within this framework. Similar techniques to combine the finite and discrete 

element domains were reported by Dhia (1998) and Dhia and Rateau (2005). 

Although the above coupling approaches have shown their efficiency in analyzing 

certain engineering problems, their applications in geotechnical engineering are 

still very limited. Villard et al. (2009) proposed a coupled FE-DE approach to 

model earth structures reinforced by geosynthetic. Interface elements were 

proposed to assure the interaction between the FE and DE domains. The 

framework was used to model the interaction between a geosynthetic sheet and 

surrounding soil. The geosynthetic sheet was modeled using FE while the soil was 

modeled using DE. Elmekati and Shamy (2010) used a similar approach to model 

a rigid pile in contact with granular soil. The near-field zone surrounding the pile 

was modeled using DE whereas FE was used to model far-field zones. The 

interaction between the FE and DE domains was assured using a wall set of 

polygons having the same geometry of finite element surfaces at the interface. 

Dang and Meguid (2013) proposed a coupled FE-DE approach to model soil-

structure interaction problems involving large deformation. The domain involving 

the large deformation was modeled using DE while FE was used to model the rest 

of the domain. Interface elements at the boundary of the two domains were 

introduced to transmit interacting forces between the DE and FE domains. 

Explicit time integration with different damping schemes were applied to each 

domain in order to relax the system and to reach the convergence condition. Since 
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a relatively coarse FE mesh is required, the algorithm reduces the computational 

time. The framework was then used to simulate a soft ground tunneling problem 

involving soil loss near an existing lining.  

2.4. Conclusion for the Literature Review 

Based on the previous literature review and in addition to the review presented in 

the coming chapters, it can be seen that little work has been done to date to 

validate discrete element simulations of problems particularly those involving 

granular material and large deformation. Although the coupled finite-discrete 

element approach has been used in geotechnical engineering to model certain soil-

structure interaction problems, the available validation of the coupling approach is 

still very limited. Therefore, there is a need to model and validate complicated 

soil-structure interaction problems such as those of three-dimensional soil-geogrid 

interaction. It is also necessary to develop an efficient coupled finite-discrete 

element framework that reduces computational cost and modeling effort. Such 

development will be presented in this thesis along with experiments and 

numerical simulations of geotechnical engineering problems. 
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CHAPTER 3 

Discrete Element Simulation and Experimental Study of the 
Earth Pressure Distribution on Cylindrical Shafts * 

 

 

Abstract 

Experimental and numerical studies have been conducted to investigate the earth 

pressure distribution on cylindrical shafts in soft ground. A small scale laboratory 

setup that involves a mechanically adjustable lining diameter installed in granular 

material under axisymmetric condition is first described. The earth pressure acting 

on the shaft and the surface displacements are measured for different induced wall 

movements. A numerical modeling is then performed using the discrete element 

method to allow for the simulation of the large soil displacement and particle 

rearrangement near the wall. The experimental and numerical results are 

summarized and compared against previously published theoretical solutions. 

Conclusions regarding the soil failure and the pressure distributions in both the 

radial and circumferential directions are presented. 

 

Keywords: discrete element method, cylindrical shaft, earth pressure, retaining 

structures. 

 

 

* A version of this chapter has been published in International Journal of 

Geomechanics ASCE, 2012 (in press). 
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3.1. Introduction 

The discrete element method (DEM) has been more and more widely used to 

simulate geotechnical problems. Since it was first proposed by Cundall and Strack 

(1979), the method has proven to be a promising approach to capture the response 

of granular materials. A great number of papers on the DEM have been published 

such as Jiang et al. (2003); Cui and O’Sullivan (2006); Yan and Ji (2010) and 

Chen et.al. (2012). One approach to implement the DEM in geotechnical 

engineering is to investigate the microscopic soil behavior by fitting the macro-

scale response of actual geotechnical problems with the macro-scale response of 

the DE simulations. Although extensive studies have been performed on the 

quantitative validation of standardized laboratory tests including the direct shear 

test and the triaxial test (Liu et al., 2005; Cui and O’Sullivan, 2006; Belheine et 

al., 2009; O’Sullivan and Cui, 2009), the number of DE validations of larger scale 

problems (Jenck et al., 2009; Chen et al.2012) is still limited and needs to be 

expanded. The quantitative validation of such geotechnical problems is therefore 

necessary. 

This study aims at conducting a quantitative validation of a practical geotechnical 

problem and providing an insight into the behavior of the structure and 

surrounding soil. The earth pressure distribution on cylindrical shafts is selected 

since cylindrical structures such as vertical shafts and caissons are widely used in 

practice and the determining the earth pressure on these structures has received 

extensive research attention in the past three decades. Experimental and 

theoretical studies have been conducted to understand the mechanics behind the 

observed lateral pressure distribution along a vertical shaft and calculate the stress 

changes within the soil surrounding the shaft structure. Among the reported 

experimental studies are those of Walz (1973); Lade et al. (1981); Konig et al. 

(1991); Chun and Shin (2006) and Tobar and Meguid (2011) which made 

significant progress in measuring the lateral earth pressure due to the movement 

of a shaft wall. Many theoretical studies on the same topic have been recently 
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reported such as Cheng and Hu (2005); Cheng et al. (2007);  Salgado and Prezzi 

(2007); Andresen et al. (2011) and Osman and Randolph (2012). 

An attempt has been made by Herten and Pulsfort (1999) to apply the DEM to 

simulate a laboratory size shaft construction. Although the study provided useful 

results, the circular shaft was assumed to behave as a small flat wall which has 

lead to an inadequate simulation of the arching effect and the stress distribution 

around the shaft. Furthermore, a quite small segment of the shaft geometry was 

modeled resulting in the presence of rigid boundaries close to the investigated 

area. Therefore, there is a need for an improved DE simulation of the problem 

considering the problem geometry as well as realistic soil properties. 

In this paper, an experimental study of a model shaft installed in granular material 

is first presented. The recorded lateral earth pressures acting on the shaft with 

different wall movements is measured. A DE model that has been developed to 

simulate the shaft model is then introduced. A suitable packing method to 

generate the soil domain is proposed and a calibration test is conducted to 

determine the input parameters needed for the simulation. The results of the 

experimental and numerical studies are then analyzed and conclusions are made 

regarding the distribution of the radial and circumferential stresses around the 

shaft as well as the extent of soil shear failure. 

3.2. Experimental Study 

An experimental study was performed to investigate the active earth pressure on 

circular shafts in dry sand. During the experiment, the shaft diameter was 

uniformly reduced while recording the radial earth pressures at different depths. 

The experimental setup consisted of an instrumented shaft installed in soil 

contained within a cylindrical concrete container. Details of the test setup and 

procedure have been reported elsewhere (Tobar and Meguid, 2011) and are 

briefly summarized below. 
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3.2.1. Model shaft 

The model shaft consisted of six curved lining segments cut from a steel tube with 

101.6 mm in outer diameter and 6.35 mm in thickness. The lining segments were 

fixed in segment holders which in turn, were attached to hexagonal nuts using 

steel hinges (see Figure 3-1). The nuts could move vertically along an axial rod 

which could be rotated using a pre-calibrated handle. The shaft was placed on a 

plexiglass plate attached firmly to the base of the container. The initial diameter 

of the shaft is 150 mm and the length of the shaft is 1025 mm with a surrounding 

soil height of 1000 mm. Shims bent from gauge steel strips were used to cover the 

spaces between the lining segments. They were placed on the outer surface of the 

lining and overlapped the steel segments such that one edge of each shim was 

fixed to one lining segment, whereas the other edge was free to slide over the 

lining segment. This mechanism keeps the shaft segments from colliding to one 

another during the inward movement and the decrease in circumference during 

the inward movement is assured without generating gap between the segments 

(Figure 3-1c). 

In order to reduce the shaft diameter, the axial rod is rotated forcing the hexagonal 

nuts to move vertically; the segment holders and the lining segments are then 

pulled radially inward. These movements force the shaft diameter to decrease 

uniformly. Two additional segment guide disks were also installed to protect the 

shaft linings from rotational movement or sliding out of the segment holders 

(Figure 3-1b). 

3.2.2. Concrete container 

A cylindrical concrete tank with inner diameter of 1220 mm provided the 

axisymmetric condition for the experiment. The tank diameter was chosen to 

minimize the boundary effects on the behavior of the soil-shaft interaction during 

the experiment. Previous experimental results of Chun and Shin (2006) and Prater 

(1977) suggest that soil failure zone extends laterally from 1 to 3 times the shaft 

radius. Therefore, negligible soil movement is expected in the present 
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investigation at a radial distance of 240 mm from the outer perimeter of the shaft. 

The depth of the container is 1070 mm to support the full length of the shaft. The 

interior side of the container was smoothed and lined with plastic sheets to reduce 

the soil-wall friction. In addition, a sand auger system was used to remove sand 

after each test through a circular hole in 150 mm diameter located sideways at the 

base of the container. An overview of the experimental setup and the model shaft 

is shown in Figure 3-1a. 

3.2.3. Data recording 

Load cells and displacement transducers were used to measure the earth pressure 

and wall movement during the test. Three load cells were installed behind the 

lining segments at three locations along the shaft: 840 mm, 490 mm and 240 mm 

below the sand surface, respectively. The load cells were equipped with sensitive 

circular areas of one inch diameter in contact with the soil. Two displacement 

transducers were located near the top and bottom of the shaft lining. All load cells 

and displacement transducers were connected to a data acquisition system and 

controlled though a personal computer.  

3.2.4. Testing procedure 

Before each test, all instruments were examined and the shaft was adjusted to 

have an initial diameter of 150 mm. The concrete container was then filled with 

coarse sand (Granusil silica 2075, Unimin Corp.) through raining process with a 

target depth of one meter from the shaft base. A summary of the sand properties is 

given in Table 3-1. A hopper positioned 1500 mm above the tank was used to 

spread the sand uniformly over the container. Sand was placed in three layers and 

as soon as the sand height reached slightly over 1m, the raining process was 

stopped and extra sand was removed. The sand height was checked using laser 

sensors to ensure consistent initial conditions for each test. The shaft diameter 

was then reduced slowly and readings were taken for each movement increment. 

The test was stopped when the reduction in the shaft radius reached 5 mm.  
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Table 3-1 Soil properties used in the experimental study 

Parameter Value 

Specific gravity 2.65 

Coefficient of uniformity - Cu 3.6 

Coefficient of curvature - Cc 0.82 

Void ratio 0.78 

Unit weight γ (kN/m3) 14.7 

Internal friction angle φ (deg) 41 

Cohesion (kN/m2) 0 

 

3.3. Discrete Element Simulation 

The discrete element method considers the interaction between distinct particles at 

their contact points. Different types of particles have been developed including 

discs, spheres, ellipsoids and clumps. Particles in a sample may have variable 

sizes to represent the grain size distribution of the real soil. The interaction 

between particles is regarded as a dynamic process that reaches static equilibrium 

when the internal and external forces are balanced. The dynamic behavior is 

represented by a time-step algorithm using an explicit time-difference scheme.  

Newton's equations and Euler's equations are used to determine particle 

displacement and rotation. A flowchart illustrating DE simulation is shown in 

Figure 3-2.   

The DE simulations in this study are conducted using the open source discrete 

element code YADE (Kozicki and Donze, 2009; Šmilauer et al., 2010). Spherical 

particles of different sizes are used for this study. The contact law between 

particles is briefly described below (Figure 3-3). 

If two particles A and B with radii rA and rB are in contact, the contact penetration 

depth is defined as: 
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0A Br r d= + −Δ              (3-1) 

where, d0 is the distance between the two centers of particle A and B. 

The force vector F


 which represents the interaction between the two particles is 

decomposed into normal and tangential forces: 

.N N NK=F Δ


           (3-2a) 

.T T TKδ δ= −F Δ


                 (3-2b) 

where, NF


 and TF


 are the normal and tangential forces; KN and KT are the normal 

and tangential stiffnesses at the contact; TδΔ


 is the incremental tangential 

displacement, Tδ F


 is the incremental tangential force and NΔ


 is the normal 

penetration between the two particles. KN and KT are defined by: 

( ) ( )

( ) ( )

A B
n n

N A B
n n

k kK
k k

=
+

                       (3-3) 

where, ( )A
nk  and ( )B

nk  are the particle normal stiffnesses. 

The particle normal stiffness is related to the particle material modulus E and 

particle diameter 2r such that: 

( ) 2A
n A Ak E r=                            (3-4a) 

( ) 2B
n B Bk E r=                            (3-4b) 

KN can be rewritten as: 

2 A A B B
N

A A B B

E r E rK
E r E r

=
+

                       (3-5) 

The interaction tangential stiffness KT is determined as a given fraction of the 

computed KN. The macroscopic Poisson's ratio is determined by the KT/KN ratio 
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while the macroscopic Young's modulus is proportional to KN and affected by 

KT/KN. The tangential force TF


 is limited by a threshold value such that: 

tan( )T
T N micro

T

ϕ=
FF F
F


 

  if  tan( )T N microϕ≥F F
 

        (3-6) 

where, microϕ  is the microscopic friction angle. 

A rolling angular vector rθ


 is implemented to represent the rolling behavior 

between two particles A and B. This vector describes the relative orientation 

change between the two particles and can be defined by summing the angular 

vector of the incremental rolling (Belheine et al., 2009, Šmilauer et al., 2010): 

r rd= ∑θ θ
 

                   (3-7) 

A resistant moment rM


 is computed by: 










≥

<

=
limrrr

r

r
limr

limrrrrr

r  K if 

 K if K

Mθ
θ
θM

Mθθ

M 








                          (3-8)  

where, 

r lim 2
A B

r N
r rη +

=M F
 

             (3-9) 

Kr is the rolling stiffness of the interaction computed by: 

  
2

2
A B

r r T
r rK Kβ + =  

 
                  (3-10) 

where, rβ  is the rolling resistance coefficient and rη  is a dimensionless 

coefficient.  

To record macroscopic stress components, a measurement rectangular box with 

volume V is used. The average stresses within the box are given by: 
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, ,

1

1 cN
c i c j

ij
c

x f
V

σ
=

= ∑                                    (3-11) 

where, cN  is the number of contacts within the measurement box, jcf ,  is the 

contact force vector at contact c,  icx ,  is the branch vector connecting two contact 

particles  A and B, and indices i and j indicate the Cartesian coordinates.  

 

 
Figure 3-1 a) An overview of the experimental setup; b) Model shaft during 

assemblage and c) Lower-end section during assemblage (Adapted from Tobar, 

2009) 
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Figure 3-1 (continued) 
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Figure 3-2 Flowchart of DE simulation 

 

 

Figure 3-3 Interaction between two DE particles 

 

24 
 



 

3.4. DE Sample Generation 

In this study, an appropriate sample generation technique is proposed in order to 

generate DE samples for both the calibration test and shaft simulation. Although 

there are several available methods that can be used to construct DE specimens, 

no agreement has been reached regarding the most suitable approach to generate 

soil specimens. Users have to adopt methods that provide best replication of the 

real packing process while keeping the computational cost acceptable. Since the 

sand used in the physical test was generated in layers under gravity, the 

gravitational approach appears to be a suitable choice in the present study. 

Although other techniques such as the compression method (Cundall and Strack, 

1979), the triangulation-based approach (Labra and Oñate, 2009) and the radius 

expansion method (Itasca, 2004) can minimize the time required to generate 

specimens, they have certain features that are not suitable for this study.  For 

example, the compression method uses pressurized boundaries to maintain the 

equilibrium condition which violates the initial condition in real sand deposit, 

whereas the triangulation-based approach lacks the control of the particle size 

distribution which is necessary to replicate real soil behavior. The radius 

expansion approach tends to generate a specimen with an isotropic stress state 

(O’Sullivan, 2011). 

The gravitational packing technique used in this study is a multi-layer packing 

method. This packing technique originated from the one proposed by Ladd (1978) 

for real specimen preparation and is similar to the Multi-layer with Under-

compaction Method proposed by Jiang et al. (2003). Modifications are made to 

simulate the real packing of the sand around the vertical shaft. The packing 

procedure is described as follow: 

The number of layers is first chosen and the volume of particles for each layer is 

calculated based on the target void ratio of the final soil specimen. The packing 

procedure is illustrated in Figure 3-4. To generate the first layer, a set of non-

contacting particles is first generated inside a box following a pre-determined 
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particle size distribution until the target volume is reached. The height of the box 

is chosen to be larger than the target height of the layer to insure that all particles 

can be generated without overlapping. Gravity is then applied to all particles 

allowing them to move downward and come in contact with each other. The 

interparticle friction angle is set to zero. It is noticed that even when the friction 

angle is zero, the DE generated samples are generally looser than the real ones. 

The same observation is made by Cui and O’Sullivan (2006). To increase the 

density of the packing, lateral shaking movement is applied to the box to help 

small particles move into voids between larger particles. The first layer generation 

is completed when the system reaches equilibrium. For the second layer, the 

height of the box is increased and the second "cloud" of non-contacting particles 

is generated in the area above the existing particles. Gravity and shaking are then 

applied and the system is allowed to come into equilibrium. The procedure is 

repeated until the final specimen is formed. The proposed multi-layer approach 

helps increase the density of the packing while keeping the packing pattern 

realistic. A packing process of about 200,000 particles using 10 packing layers 

requires nearly 48 running hours on a personal computer to reach equilibrium 

which is considered acceptable with respect to DE simulations.  

The behavior of a DE specimen depends not only on the packing structure but 

also on the particle size distribution. It is essential that particle generation follows 

the predefined particle size distribution which has a great influence on the 

behavior of the discrete element system. However, the true replication of grain 

size is usually restricted by the high computational cost caused by the large 

number of particles. Since the volume of a particle with radius r is proportional to 

r3, a large number of small particles are needed to generate a very small volume. 

This leads to an extremely high number of particles required to fill up the soil 

domain which in turn dramatically increases the simulation cost. In addition, the 

high computational cost is also caused by the decrease in critical time step needed 

for stable analysis which is proportional to the mass of the particles.  For these 

reasons, particles smaller than D5 (particle diameter corresponding to 5% passing) 
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are neglected in this study to reduce the computational cost. This is appropriate as 

these particles are assumed to have minor effect on the force chains that transmit 

stresses within the sample (Cheung, 2010; Calvetti, 2008).  

 

 
Figure 3-4 The multi-layer gravitational packing procedure 

 
For the simulation of geotechnical engineering problems, particle up-scaling is 

often used to reduce the number of modeled particles. Careful consideration of 

particle sizes is usually made to keep balance between the computational cost and 

the scaling effects on the sample responses. In this study, the scale factors (ratio 

of a numerical particle size to its real particle size) are chosen as 4 and 25 for the 

direct shear test and the shaft simulation respectively and will be discussed in 

following sections. The particle size distributions used in the DE analysis are 

shown in Figure 3-5. 
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Figure 3-5 Grain size distributions 

 

3.5. Model Calibration Using Direct Shear Test 

In order to determine the input parameters for the numerical model, calibration is 

first conducted using the results of direct shear tests. Numerical simulations of 

direct shear tests are performed and microscopic parameters for the DE simulation 

are identified by comparing the numerical results with the experimental data. 

The apparatus used for the physical tests consists of a shear box (60 mm x 60 

mm) split horizontally into two halves. To apply direct shear to the sample, one 

part of the box was moved with a constant velocity of 0.021 mm/s while the other 

part was kept stationary. Three different normal stresses, 13.6 kPa, 27.3 kPa and 

40.9 kPa were used in this study using vertical loads applied on top of the shear 

box. The initial sample height was about 25 mm with the height to width ratio of 

1: 2.4.  

The numerically simulated shear box consists of two parts and each part 

comprises 5 rigid boundaries: one horizontal boundary and four vertical 

boundaries (Figure 3-6a). The numerical shear box has the same dimensions as 

the actual one to replicate the testing conditions. A specimen is generated using 
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the gravitational method illustrated in the previous section. Since the size of the 

box is relatively small, only one packing layer is necessary and all particles are 

generated and settled at the same time. Using a scale factor of 4, the generated 

specimen consists of over 14,000 particles with diameters ranging from 1.0 mm to 

4.0 mm. This number of particles is sufficient to represent the test and consistent 

with the previous studies (Cui and O’Sullivan, 2006; Yan and Ji, 2010).  

After the sample generation is completed, the specimen is subjected to three 

different vertical stresses of 13.6 kPa, 27.3 kPa and 40.9 kPa. During shearing, 

one part of the shear box is moved with the same velocity used in the actual test 

allowing the upper boundary to move vertically. When the current normal stress 

σ  does not match the desired value 0σ , the upper plate is adjusted by moving it in 

the vertical direction a distance of 0( ) /dy Kσ σ= −  where the stiffness K is 

determined by adding the normal stiffnesses of all active particle-upper plate 

interactions. This method allows for the normal stress to be maintained with an 

error of less than 1%.  

The model calibration is generally a challenging task as the behavior of discrete 

element samples depends not only on the microscopic parameters but also on 

particle shapes, particle size distribution, contact models and packing technique. 

While the adopted packing method and particle size distribution are considered 

realistic, spherical particle shapes and the contact model are somewhat artificial. 

These assumptions are usually overcome by choosing appropriate input 

parameters for the simulation. This calibration approach has been successfully 

used by other researchers (Belheine et al., 2009). 

The most important microscopic parameters that would affect the behavior of the 

direct shear test are the friction angle, the rolling resistance and the contact 

stiffnesses. These parameters are varied to match the results obtained from the 

real test data. Other parameters are identified as follow: particle density is 2650 

kg/m3 following the specific gravity of the sand, particle cohesion is set to zero 

and the KT/KN ratio is fixed to be 0.25 as suggested by Calvetti (2008). It is noted 
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that the friction angle between particles and the upper and lower walls of the box 

is given a value of 45o to reduce the slippage at these boundaries. Frictionless 

contacts at all vertical plates are assumed. 

To perform the calibration, the shear displacement-shear stress curves are plotted 

for the three applied normal stresses. The shear stress is calculated as the sum of 

forces in the x-direction acting on the upper boundary divided by the cross-

sectional area and the normal stress is calculated as the total force acting on the 

upper plate divided by the cross-sectional area. The rolling resistance coefficient 

Rβ  together with the normal and tangential stiffnesses are varied first to match the 

slope of the curve, the friction angle is then modified to match the peak shear 

stress. It is observed that the most appropriate combination is a friction angle of 

34o, Rβ  of 0.05, and a particle material modulus of 38 MPa. A summary of the 

selected parameters is given in Table 3-2. The shear displacement-shear stress 

curves and normal stress-shear stress relationship are given in Figure 3-7. The 

figure shows a good agreement between the numerical and physical direct shear 

tests. The contact force network at shear displacement of 2 mm is illustrated in 

Figure 3-6b. The centers of contacting particles are connected using lines with 

thickness representing the magnitude of the normal contact force. It is apparent 

that contact forces are transmitted diagonally from the lower left to upper right of 

the box. This anisotropic force distribution has been observed by other authors 

(Yan and Ji, 2010, Thornton and Zhang, 2003). 
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Table 3-2 Particles' properties for DE simulations 

Parameter Value 

Particle density (kg/m3) 2650 

Particle material modulus E (MPa) 38 

Ratio KT/KN 0.25 

Friction angle ϕ  (degrees) 34 

Rβ  0.05 

Rη  1 

Damping coefficient 0.2 
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Figure 3-6 a) Three-dimensional direct shear sample and b) Three-dimensional 

contact force network (at shear displacement of 2 m) 
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Figure 3-7 Direct shear test results 
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3.6. Shaft-Soil Interaction Simulation 

The vertical shaft is modeled using a cylinder 1.0 m in height and initial diameter 

of 150 mm that comprises 12 equally distributed segments. Since the modeled 

problem is axisymmetric, only part of the domain is modeled to reduce the 

computational cost. In addition, better representation of the experiment can be 

achieved by simulating one "slice" of the soil domain with a large number of 

particles while keeping the simulation time acceptable. To capture the problem 

geometry, a quarter of the problem is modeled in this study. The model consists of 

a quarter of the shaft and four boundaries including three vertical and one 

horizontal at the bottom of the container (Figure 3-8). Each quarter of the shaft is 

divided into three segments to capture the curved shaft geometry. The friction 

angles between particles and the wall boundaries are set to zero and pressures 

acting on the shaft are recorded at the middle segment to reduce the boundary 

effects. Similar technique has been used by Weatherley et al. (2011) to model 

slope collapse and hopper flow problems.  

The soil domain is generated using the proposed multi-layer packing technique 

with 10 layers. In order to replicate the actual soil generation process, the friction 

coefficient between the particles and the shaft is assumed to have a value of 0.2 to 

account for the frictional contact between the shaft and the soil and is maintained 

during the entire simulation. Using a scale factor of 25 and a total of over 245,000 

particles are generated with diameters ranging from 6.25 mm to 25 mm. The 

average void ratio of the generated soil sample is about 0.85 which is slightly 

greater than the void ratio of the real sand (0.78). This is attributed to the removal 

of excess sand to reach the target sample height.  

The generated soil sample is checked to assure its equivalence (have the same 

characteristics) to the soil specimen used in the direct shear test calibration. The 

fabric tensor and coordination number are determined for the two samples at their 

initial states. The fabric tensor is given by: 
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1

c

ij i j
Nc

n n
N

= ∑Φ                 (3-12) 

where, Nc  is the number of contacts and ni is the unit branch vector component in 

the i direction.  

The coordination number N is defined as: 

2 c

p

NN
N

=                              (3-13) 

where, Np is the number of particles. 

 It is shown that both specimens have almost the same coordination number of 

about 6.3 and the fabric tensor components are also nearly identical ( xxΦ and yyΦ  

of about 0.33, zzΦ  of about 0.34 where z is the gravitational direction) which 

prove the equivalence of the two soil samples. 

The input parameters for the simulation are then assigned to the particles based on 

the results of the calibration test. The scale factors in the calibration and in the 

shaft simulation were examined to make sure that the microscopic parameters 

obtained from the calibration can be used for the simulation. The calibration of 

the direct shear test provides two important microscopic parameters which are the 

particle stiffnesses and friction angle. Since preliminary studies of the shaft 

simulation have shown that the stiffnesses have a very small influence on the 

overall response, only the particle friction angle was considered when 

determining the scale factors. In the direct shear calibration, different scale factors 

were tested to investigate the variability of the macro friction angle with the 

change of particle sizes. It is observed that for scale factors of 2, 3, 4 and 5, the 

macroscopic friction angle varies in a narrow range between 38 and 41.5 degrees. 

The randomness of the generation process at these scale factors has a minor 

influence on the macro response since the number of particles of the specimen has 

become large enough to represent the sample. Larger scale factors lead to a wide 

scattering of the macro friction angle due to the decrease of the number of 
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particles (less than 8,000 particles). The microscopic parameters obtained from 

the direct shear calibration with a scale factor of 4, therefore, can represent the 

actual soil. According to Potyondy and Cundall (2004), when the number of 

particles is large enough (in the shaft simulation is over 245,000 particles with a 

scale factor of 25), the macroscopic response becomes independent of the particle 

sizes. Therefore, the microscopic parameters of the calibration can be used for the 

shaft simulation. 

The diameter of the shaft is incrementally reduced to model the active condition. 

Lateral earth pressures on the shaft and stresses in the soil domain are recorded at 

different wall movements using Equation 3-11. Stresses are obtained using 

measurement boxes with dimensions of 0.08 m x 0.08 m x 0.08 m. The simulation 

process finishes when the reduction in the shaft radius reaches 5 mm. 

         

 
Figure 3-8 Boundary conditions and 3D views of the model shaft 
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3.7. Results and Discussions 

Selected experimental results (tests T5, T6 and T7) are reported in this section at 

three different locations. The measured earth pressure is then compared with the 

DE simulation results.  

3.7.1. Initial earth pressures 

The calculated and measured initial earth pressures on the shaft wall are shown in 

Figure 3-9 along with the conventional at-rest condition (Ko-line where,

1 sinoK φ= − ). The DE results were found to be consistent with the measured 

earth pressure.  

 

 
Figure 3-9 Initial earth pressures on the shaft 
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3.7.2. Earth pressure reduction with wall movement 

Lateral pressures at different locations along the shaft are shown in Figure 3-10 to 

3-13. The pressures are plotted versus the wall movement. Both the DE 

simulation and the experimental results showed a consistent reduction in lateral 

pressures as the wall movement increases. The earth pressure became independent 

of the wall movement when the displacement reached about 3 mm. To study the 

effects of the wall movement on the active earth pressure, the pressure, p, at a 

certain depth is normalized with respect to the initial pressure, p0. 

Normalized earth pressures at the three examined levels (0.24H, 0.49H and 

0.84H) for different shaft wall movements are illustrated in Figure 3-14, 3-15 and 

3-16, respectively. It can be seen that the DE results are in good agreement with 

the experimental data. For a very small wall movement, a large reduction in 

lateral earth pressure is observed. At a wall movement of 0.5 mm, the calculated 

earth pressures decreased from 100% at the initial state to 55% at 0.24H and 

0.49H and to 45% at 0.84H. For the same wall movement, the measured earth 

pressures reached about 65% at 0.24H and 0.49H and about 50% at 0.84H. With 

further increase in wall movement, the DE results were found to be identical to 

the measured values. For movements between 1 mm and 2 mm, the earth pressure 

decreased to 25% of the initial value at 0.24H and 0.49H and to 18% at 0.84H. 

Additional movements larger than 3 mm did not cause significant pressure 

reduction and the lateral pressures became constant when reached approximately 

20% of the initial pressure at 0.24H and 0.49H and approximately 10% at 0.84H. 

It can be concluded that the axisymmetric active earth pressure fully develops 

when the shaft wall moves about 2 to 3 mm or about 2.5% to 4% of the shaft 

radius. Furthermore, the most rapid reduction in the earth pressure is observed 

near the bottom of the shaft. 
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Figure 3-10 Earth pressures on the shaft at different depths (test T5) 

 

 
Figure 3-11 Earth pressures on the shaft at different depths (test T6) 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 1 2 3 4 5 

La
te

ra
l p

re
ss

ur
e 

(k
Pa

) 

Shaft movement (m) 

T5-h=0.24H 

T5-h=0.49H 

T5-h=0.84H 

2a s 

H 
h 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 1 2 3 4 5 

La
te

ra
l p

re
ss

ur
e 

(k
Pa

) 

Shaft movement (m) 

T6-h=0.24H 

T6-h=0.49H 

T6-h=0.84H 

2a 

H 
h 

s 

39 
 



 

 
Figure 3-12 Earth pressures on the shaft at different depths (test T7) 

 

 

 
Figure 3-13 Earth pressures on the shaft at different depths (DEM simulation) 
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Figure 3-14 Normalized pressures on the shaft at the depth 0.24H 

 

 
Figure 3-15 Normalized pressures on the shaft at the depth 0.49H 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 1 2 3 4 5 

p/
p 0

 (%
) 

Shaft movement (mm) 

DEM   h=0.24H 
T5   h=0.24H 
T6   h=0.24H 
T7   h=0.24H 

h=0.24H 

H 

2a 
s 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 1 2 3 4 5 

p/
p 0

 (%
) 

Shaft movement (mm) 

DEM   h=0.49H 

T5   h=0.49H 

T6   h=0.49H 

T7   h=0.49H 

h=0.49H 
H 

s 
2a 

41 
 



 

 
Figure 3-16 Normalized pressures on the shaft at the depth 0.84H 
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It is realized that the pressure distributions following the solutions of Terzaghi 

and Berezantzev with λ  (the earth pressure coefficient on radial planes) equals 1 

are in good agreement with the numerical and experimental results provided that 

enough wall movement is allowed. These two solutions suggest a quite uniform 

pressure distribution with depth. Prater's solution, which is based on Coulomb's 

wedge analysis with the value oKλ = , leads to zero earth pressure at h/a of about 

9. This is inconsistent with the numerical and experimental results. However, the 

solution suggested that the maximum earth pressure can be used for design 

purposes. In the case of small wall movement, the upper bound solution with 

oKλ =  as proposed by Cheng & Hu provides a good agreement with the 

calculated and measured values for the upper half of the shaft. However, the 

method indicates a continuing increase in the lateral pressure with depth which is 

not consistent with the experimental results. The above comparisons suggest that 

there is a strong relationship between lateral earth pressure and soil movement 

around the shaft.  

3.7.4. Extent of shear failure 

Figure 3-18 shows the displacement field around the shaft for a wall movement of 

3 mm. It can be seen that a non-uniform failure zone of conical shape has 

developed along the shaft as illustrated in Figure 3-18b. The zone increased in 

size from the bottom of the shaft up to a region of 0.2 m in radius at the surface 

(about 2.5 times the shaft radius). The angle α  that the failure surface made with 

the horizontal was found to be about 75o. This observed failure region is 

consistent with the stress distributions discussed in the previous sections. 

Figure 3-19 shows a cross-sectional view of the contact force network within the 

DEM domain for the cases of no wall movement (initial state) and a wall 

movement of 3 mm. Each contact force is illustrated by a line connecting the 

centers of two contacting particles while the width of the line is proportional to 

the magnitude of the normal contact force. It can be observed that when the shaft 

radius is reduced, the contact forces within the shear failure zone decrease in the 
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radial direction and increase in the circumferential direction. This visualization 

represents the arching effect generated around the cylindrical shaft. 
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Figure 3-17 Comparison between modeled results and theoretical earth pressures 

along the shaft.  a) Shaft movement = 1 mm and b) Shaft movement = 4 mm 
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Figure 3-18 Displacement field at shaft movement of 3 mm.  

a) Plan view and b) Cross sectional A-A view 
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Figure 3-19 Contact force networks 
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3.7.5. Stress distribution within the soil 

Stresses within the soil mass including the radial, circumferential and vertical 

components (see Figure 3-20) are analyzed at a chosen depth of 0.49H using the 

DEM. The radial stress versus radial distance from the shaft centre is shown in 

Figure 3-21. It can be seen in Figure 3-21a that radial stresses near the shaft wall 

dropped rapidly even for a small wall movement of 1 mm. Increase in wall 

movements from 2 mm to 3 mm caused the radial stress to further decrease. 

However, no significant change in radial stress was observed for movements 

larger than 3 mm. The radial stress in the vicinity of the shaft remained at about 

60% of the initial value for wall movement of 1 mm and about 40% for wall 

movement of 3 mm. The distribution of the radial stress in a cross section is 

shown in Figure 3-21b. It was found that the changes in radial stress mostly 

occurred within 0.3 m from the center of the shaft. The stresses outside this region 

remained close to its initial state despite the wall movement. 

 

 

 
Figure 3-20 Stresses acting on a soil element 
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The relief of radial stresses due to soil movement causes vertical (along the shaft 

height) and horizontal (in the circumferential direction) arching, and results in 

stress redistribution in the vicinity of the shaft. The circumferential stresses versus 

radial distance are shown in Figure 3-22.  From Figure 3-22a, it can be seen that 

the circumferential stresses near the shaft were smaller than the initial value for 

all wall movements. The circumferential stresses increased with distance from the 

shaft due to horizontal arching. At a distance of about 0.2 m from the shaft center, 

the circumferential stress reached a maximum value that is larger than the initial 

value. A decreasing trend was observed with further increase in distance and the 

circumferential stresses returned to its initial state far away from the shaft. It can 

also be seen from Figure 3-22a that larger wall movements lead to slightly larger 

circumferential stresses. The largest circumferential stress was obtained at a wall 

displacement of 4 mm and was found to be about 10% higher than the initial 

circumferential stress. Figure 3-22b illustrates a contour plot of the 

circumferential stress distribution.  It can be seen from the figure that shaft 

movements larger than 3 mm did not cause significant changes to the stress 

distribution. This is attributed to the vertical arching resulting from the established 

failure surface after a certain wall movement (about 2 to 3 mm). At that stage, 

gravity effect dominates leading to the development of a stable arch resulting in 

nearly constant circumferential and radial stresses. 

Figure 3-23 shows the calculated stress components near the middle of the wall 

when the wall movement reached 2 mm. The circumferential stress was found to 

be slightly larger than the radial stress in the close vicinity of the shaft. However, 

at a distance of 0.3 m from the shaft, the circumferential and radial components 

converged and became equal to the lateral stress at rest. The vertical stress 

dropped from the in-situ condition near the shaft to about half of its value. 
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Figure 3-21 a) Radial stress distribution at the depth 0.49H and b) Radial stress 

distribution in the cross section A-A (s = 3 mm) 
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Figure 3-22 a) Circumferential stress distribution at the depth 0.49H and b) 

Circumferential stress distribution in the cross section A-A (s = 3 mm) 
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              Figure 3-23 Stresses at the depth 0.49H and shaft movement 2 mm 

 

3.8. Summary and Conclusions 

In this paper, an experimental study was performed to investigate the lateral earth 

pressure acting on a cylindrical shaft. The axisymmetric geometry of the test 

setup allowed for a proper measurement of the lateral earth pressure. A numerical 

investigation was then performed using a specifically designed DE model. A 

modified multi-layer gravitational packing method that is able to capture some of 

the important properties was proposed to generate the soil domain. The particle 

size distribution of the real sand was considered and a calibration was conducted 

using direct shear test to determine the input parameters needed for the discrete 

element analysis. A quarter of the shaft geometry was numerically modeled and 

the lateral pressures acting on the shaft wall were recorded. Stresses within the 

soil domain were calculated and the arching effect was discussed.  The results of 

the experimental and numerical studies were compared against some of the 

available analytical solutions. 

The DE simulation of the vertical shaft agreed well with the experimental data. 

Based on the physical and numerical studies, a small shaft movement can lead to 
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a rapid decrease in the earth pressure acting on the shaft wall. The required shaft 

movement to reach the full active condition was found to range from 2.5% to 4% 

of the shaft radius or 0.2% to 0.3% of the shaft height. At this wall movement, the 

earth pressure can significantly decrease to a value of 10% of the initial pressure 

and the lateral pressure becomes uniform with depth. The analytical solutions of 

Terzaghi and Berezantzev were found to be in good agreement with the observed 

pressure distribution. 

The movement of the shaft wall resulted in stress redistribution within the soil 

medium. The arching effect has lead to a decrease in radial stresses and increase 

in circumferential stresses within a region of radius 0.3 m from the shaft center. 

The stresses in the soil domain became quite stable when the wall movement 

reached 3 mm. The agreement between the numerical and measured results 

demonstrated the efficiency of the DEM in validating geotechnical problems 

involving granular material and large deformation. 
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Preface to Chapter 4 

 

The results presented in the previous chapter demonstrate the efficiency of the 

discrete element method in investigating the behavior of granular material. In 

these analyses, the soil particles were modeled using spherical particles whereas 

the wall was modeled as a rigid boundary. Therefore, the response of the wall was 

not investigated. In problems involving soil-structure interaction, it is challenging 

to simultaneously model both the 3D discontinuous nature of the soil and the 

continuous nature of the structural elements using traditional discrete or finite 

element method. The coupling of the finite and discrete element methods allows 

for the simulation of such problems. In this chapter, a coupled Finite-Discrete 

framework is presented and then used to investigate the behavior of a biaxial 

geogrid sheet embedded in sand material subjected to pullout loading. 
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CHAPTER 4 

Three-Dimensional Modeling of Geogrid-Soil Interaction 
under Pullout Loading Conditions * 

 

 

Abstract 

The behavior of a geogrid-soil system is dependent on the properties of the 

geogrid material, the backfill soil and the interface condition. Modeling the 

geogrid-soil interaction taking into account the true geogrid geometry is a 

challenging numerical problem that requires the consideration of the 

discontinuous nature of the soil and the different modes of resistance that 

contribute to the pullout capacity of the geogrid layer. In this study, a coupled 

Finite-Discrete framework has been developed to investigate the behavior of a 

biaxial geogrid sheet embedded in granular material and subjected to pullout 

loading. Validation is performed by comparing experimental data and numerically 

calculated results using the proposed model. The detailed behavior of the geogrid 

and the surrounding soil is then investigated. The numerical results indicated the 

suitability of the coupled model to solve this class of problems. 

 

Keywords: soil reinforcement, biaxial geogrid, pullout loading, finite-discrete 

element. 

 

 

* A version of this chapter has been published in Geotextiles and Geomembranes, 

2013, 37: 1-9. 
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4.1. Introduction 

Geosynthetics are extensively used in civil engineering practice to facilitate cost 

effective building, environmental, transportation and other construction projects. 

A geogrid is geosynthetic material used to reinforce soils and improve the overall 

performance of foundations, roadways, walls and slopes. In the past two decades, 

both theoretical and experimental studies have been used to investigate the 

mechanics of reinforced soil systems under pullout loading condition (Farrag et 

al., 1993; Bergado and Chai, 1994; Ochiai et al., 1996; Sugimoto et. al., 2001; 

Palmeira, 2004; Moraci and Recalcati, 2006; Sieira et al., 2009). While it possible 

to track the load-displacement response of geogrid in pullout experiments, the 

behavior of the backfill soil as it interacts with the geogrid material is hard to 

evaluate experimentally and numerical methods are considered more suitable for 

that purpose. 

Finite element method (FEM) is widely used as a numerical tool to model the soil 

reinforcement pullout procedure (Sugimoto and Alagiyawanna, 2003; Khedkar 

and Mandal, 2009). The geogrid geometry is often simplified either as a truss 

structure (in 2D analysis) or a continuous sheet (in 3D analysis). Using this 

approach makes it difficult to separate the contributions of the frictional and 

bearing resistances with respect to the overall pullout capacity of a reinforced 

system. In addition, it makes it also challenging to determine the stress and strain 

distributions in the geogrid members as well as in the surrounding soil material.   

As an alternative to the continuum approach, the discrete element method (DEM) 

has been used by several researchers to model the soil-geogrid interaction. 

McDowell et al. (2006) and Chen et al. (2012) used DE method to model both the 

geogrid and the backfill soil. In this approach, the geogrid is modeled using a set 

of spherical particles bonded together to form the geogrid shape. The interaction 

between the geogrid and the surrounding soil is obtained through the contact 

between discrete particles. Although microscopic parameters of the geogrid 

bonded particles are determined using some index load tests, the complex geogrid 
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deformation during the actual test may not be accurately captured due to the 

inflexibility of the bonded particles. Moreover, since a set of bonded discrete 

particles can roughly capture the geogrid continuous nature, the accuracy of the 

strains and stresses within the geogrid layer may not be obtained.  

To take advantage of both the FE and DE methods, the reinforcement layer can be 

modeled using FE whereas the backfill soil can be modeled using DE method. 

The coupling of the two methods can efficiently model the behavior of the 

geogrid as well as the backfill soil material.  This approach has been used by 

several researchers to solve certain problems such as: geosynthetic-reinforced 

earth structures (Villard et al., 2009), pile installation (Elmekati and Shamy, 

2010) and earth pressure on tunnel linings (Dang and Meguid, 2011). In this 

paper, a coupled Finite-Discrete element (FE-DE) framework is presented. 

Geogrid pullout tests based on laboratory experiments are modeled using the 

developed framework. The results of the numerical simulation including the 

detailed response of the geogrid and the surrounding soil are presented and 

compared with experimental data. Although emphasis is placed in this study on 

the frictional and bearing components of the pullout resistance, displacements, 

stresses, and strain fields in the vicinity of the geogrid layer are also highlighted. 

4.2. Coupled Finite-Discrete Element Framework 

The coupled FE-DE framework used in this study is a continuation of the original 

work of Dang and Meguid (2010, 2013). The developed algorithm is implemented 

into an open source discrete element code YADE (Kozicki and Donze, 2009; 

Šmilauer et al., 2010) and is briefly described in the following sections. 

4.2.1. Discrete Elements 

The contact law between particles used in the framework is briefly described 

below: 
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If two particles A and B with radii rA and rB are in contact, the contact penetration 

depth is defined as: 

0A Br r d= + −Δ              (4-1) 

where, d0 is the distance between the two particle centers. 

The force vector F


 that represents the interaction between the two particles is 

decomposed into normal and tangential forces: 

.N N NK=F Δ


           (4-2a) 

.T T TKδ δ= −F Δ


                 (4-2b) 

where, NF


 and TF


 are the normal and tangential forces; KN and KT are the normal 

and tangential stiffnesses at the contact; TδΔ


 is the incremental tangential 

displacement, Tδ F


 is the incremental tangential force and NΔ


 is the normal 

penetration between the two particles. 

The normal stiffness at the contact is defined by: 

( ) ( )

( ) ( )

A B
n n

N A B
n n

k kK
k k

=
+

               (4-3)  

where, ( )A
nk and ( )B

nk  are the particle normal stiffnesses.  

The particle normal stiffness is related to the particle material modulus E and 

particle diameter 2r such that: 

( ) ( )2 , 2A B
n A A n B Bk E r k E r= =                                (4-4) 

KN can be rewritten as: 

2 A A B B
N

A A B B

E r E rK
E r E r

=
+

                          (4-5) 
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The tangential stiffness KT is defined relative to KN as T NK Kα= . The tangential 

force TF


 is limited by a threshold value such that: 

tan( )T
T N micro

T

ϕ=
FF F
F


 

  if  tan( )T N microϕ≥F F
 

        (4-6) 

where, microϕ  is the microscopic friction angle between particles. 

The rolling resistance between two particles A and B is characterized by the 

rolling angular vector rθ


. This vector describes the relative orientation change 

between the two particles and can be defined by summing the angular vector of 

the incremental rolling (Šmilauer et al., 2010): 

r rd= ∑θ θ
 

                          (4-7) 

The rolling resistance moment rM


 is computed as: 

r r r r r lim

r r
r r r rlim lim

r

K                 if  K  

     if  K  

 <
= 

≥


θ θ M

M θM θ M
θ

  

 
 


                          (4-8) 

where,  

r lim 2
A B

r N
r rη +

=M F
 

             (4-9) 

where, rη is a dimensionless coefficient. 

The rolling stiffness Kr of the interaction is defined as: 

  
2

2
A B

r r T
r rK Kβ + =  

 
                              (4-10) 

where, rβ  is the rolling resistance coefficient. 
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In order to assure the stability of DE simulation, a critical time-step crt∆  is 

determined: 

i

i
icr K

mt 2min=∆           (4-11) 

where, im  is the mass of particle i, iK  is per-particle stiffness of contacts in 

which particle i participates. 

4.2.2. Finite Elements 

In the coupled FE-DE framework, a dynamic relaxation method is used for the 

finite element analysis in which the numerical model is damped until a steady 

state condition is reached (Dang and Meguid, 2010). As the dynamic explicit 

approach is also used in the discrete element analysis, it is possible to couple the 

two compatible approaches. 

For a given structural system, the general equation that needs to be solved using 

the dynamic relaxation approach is: 

PxMxMKx =++ c                            (4-12) 

where, K is the stiffness matrix, c is the damping coefficient for the mass 

proportional damping, M is the mass matrix, P  is the external force vector and x

represents the displacement vector.  

The time-step FEt∆  is calculated based on the element consistent tangent 

stiffness: 

[ ] 2
FE FE

m

t t
λ

∆ ≤ ∆ =                         (4-13) 

where, mλ is the maximum eigenvalue,  

1
max

n
ij

m i j ii

K
M

λ
=

≤ ∑                            (4-14) 
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In Equation 4-14, ijK is an element of the global tangent stiffness matrix and iiM  is 

an element of the diagonal mass matrix. 

The flowchart of the dynamic explicit FE simulation is shown in Figure 4-1. 

 
 
 

 

Figure 4-1 Flowchart of dynamic explicit FE simulation 
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4.2.3. Interface Elements 

In this study, interface elements are used to transmit contact forces between the 

FE and DE domains. Triangular facets are used as interface elements since they 

have the flexibility to represent complex surfaces and can be generated directly 

from coordinates of the finite elements. If an element has a triangular or a 

tetrahedron shape, the triangular facet is directly defined by the three nodes of the 

element located on the interface. In the case of quadrilateral or hexahedral 

elements, the contact interface is divided into four triangular facets by creating a 

temporary center node defined by: 

 
4

( ) ( )

1

1
4

O i

i
x x

=

= ∑                       (4-15) 

where, ( )ix is the coordinate of node i of the quadrilateral. A description of a DE 

particle in contact with a FE domain is shown in Figure 4-2. 

The contact algorithm between a discrete element and an interface element is 

similar to those between discrete particles. By determining the contact between 

discrete particles and interface elements, interaction forces transmitted to the FE 

nodes including the normal force NF


 and tangential force TF


 at contact can be 

achieved (Figure 4-3): 

.i contact iN=F F
 

           (4-16) 

where, contact N T= +F F F
  

 is the total contact force, iN  is the shape functions 

obtained using the natural coordinates of the contact point. 

As the time-step FEt∆  required for FE is much larger than that for DE ( DEt∆ ), 

using a single time-step for both FE and DE based on the smallest time-step was 

found to be uneconomic. Therefore, the coupling framework used in this study 

allows for different time-steps for each domain. The time-step in the FE domain is 

selected as FE DEt n t∆ = ∆ where n is an integer such that 
[ ]FE

DE

t
n

t
∆

≤
∆

. This 
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algorithm has been implemented by executing the FE solver for every n DE 

computations (Figure 4-4). A similar multiple-time-step algorithm is also 

described in Xiao and Belytschko (2004) and Elmekati and Shamy (2010). 

The procedure of the FE-DE coupling is described in Figure 4-5. A typical 

calculation cycle consists of the following main steps: i) Collision detection 

between DE particles and interface elements. ii) Calculation of interaction 

parameters of each contact. iii) Calculation of interaction forces between soil 

particles and between soil particles and interface elements. iv) DE particle 

velocities are calculated and new particle positions are updated. For every n time 

steps, the FE solver is executed and forces acting on FE nodes are updated to 

determine node displacements. v) Repeat the steps (i) - (iv) until convergence is 

reached. For every cycle, the convergence condition based on unbalanced forces 

of the DE and FE domains is checked. 
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Figure 4-2 Coupling FEM and DEM using interface elements 

 

 

 

 

Figure 4-3 Forces transmitting to FE nodes through DE particle - interface 

element interaction 

 

 

Interface elements 

DE particle 
FE domain 

64 
 



 

 

Figure 4-4 Multi-time step algorithm 
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Figure 4-5 Flow chart of the coupled Finite-Discrete element method 
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4.3. Model Generation 

In this study, an experimental pullout test performed on a geogrid type SS-1 

(Alagiyawanna et al., 2001; Sugimoto and Alagiyawanna, 2003) is adopted and 

numerically modeled using the proposed coupled FE-DE model. Details of the 

laboratory test are summarized as follows: 

The soil container was reported to be 0.68 m in length, 0.3 m in width and 0.625 

m in height. The front wall composed of six acrylic plates each of 0.3 m width 

and 0.1 m height to reduce the friction between soil and the wall. The soil used in 

the experiment was Silica Sand No. 5 with D50 = 0.34 mm and a peak friction 

angle of 29.9o (Dr = 70%) as obtained from laboratory triaxial tests. A geogrid 

specimen (Tensar SS-1 with polypropylene material and stiffness 285.6 kN/m at a 

strain of 3%) of 500 mm in length and 300 mm in width was used throughout the 

experiments. The sand was placed in layers using raining technique and the 

pullout load was applied using a clamp attached to the front end of the geogrid 

sheet. Vertical stresses 49 kPa and 93 kPa were applied on the top and bottom of 

the box using air bags to prevent vertical movement of the geogrid during the test. 

The geogrid was pulled out at a constant rate of 1.0 mm/min and both the load 

and lateral movement were measured using load cells and displacement gauges, 

respectively.  

The numerical model has been developed such that it follows the geometry and 

test procedure used in the actual experiment. The geogrid is modeled using FE 

while the soil is modeled using DE, as discussed in section 4.2. Interface elements 

are used to simulate the interaction between the two domains. All components are 

generated inside YADE using two corresponding FE and DE packages. 

The biaxial SS-1 geogrid, which comprises 8 longitudinal elements and 19 

transverse elements, is modeled using 8-noded brick elements with 8 integration 

points (Figure 4-6). A non-deformable clamp is introduced at one end of the 

geogrid. The initial distance between the front wall and the 1st transverse member 

is 30 mm assuring all transverse members are still in the soil domain during the 
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test (the maximum pullout displacement is 25 mm). A linear elastic material 

model is used for the geogrid sheet and its properties are determined by matching 

the experimental load-displacement curve obtained from the conducted index tests 

at a medium strain of 2% (as shown in Table 4-1).  It is noted that the local 

increase in joint thickness is not considered in the geogrid model in order to 

simplify the analysis. The full geometry of the geogrid which comprises over 

1300 finite elements and 20,000 interface elements is shown in Figure 4-6. 

The sand used in the experiment is modeled using spherical particles. Since it is 

numerically prohibitive to simulate millions of particles with true sizes, particle 

up-scaling is necessary to reduce the number of modeled particles. Consideration 

of particle sizes is usually made to keep the balance between the computational 

cost and the scaling effects on the sample response. In this study, the sand is 

modeled using discrete particles with a mean diameter of 5.1 mm (15 times the 

real D50) and a standard deviation of 1.0 mm. Particle properties are determined 

by matching the results of the numerical and experimental triaxial test. The 

packing process of the numerical triaxial test specimen is similar to the one used 

for the soil sample in the pullout test which is described in the following part. The 

matching procedure was as following: the rolling resistance coefficient rβ

together with the normal and tangential stiffnesses were varied first to match the 

slope of the numerical deviator stress – axial strain curve with the experimental 

curve; the friction angle was then modified to match the peak deviator stress. It is 

found that the most appropriate combination corresponds to a friction angle with a 

tangent (tanϕ ) of 0.54 and a particle material modulus (E) of 100 MPa. A 

summary of the selected parameters is given in Table 4-1. 
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Table 4-1 Input parameters for the simulation 

 Type of elements Parameter Value 

 Discrete particles Density (kg/m3) 2640 

  Material modulus E (MPa) 100 

  Ratio KT/KN 0.1 

  Coefficient of friction (tanϕ ) 0.54 

  rβ  0.05 

  rη  1.0 

  Damping coefficient 0.2 

 Finite elements Young modulus E (MPa) 2.8E+3 

  Poisson's ratio ν 0.3 

 Interface elements Material modulus E (MPa) 100 

  Ratio KT/KN 0.1 

  Coefficient of friction (tanϕ )  0.95 
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Figure 4-6 Geometry of the geogrid 
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Several packing algorithms have been developed to generate discrete element 

specimens (Cundall and Strack, 1979; Jiang et al., 2003; Labra and Oñate, 2009; 

Dang and Meguid, 2010). Appropriate methods are selected to provide the best 

replication of the actual packing process. In this study, soil sample is generated 

using the gravitational approach to represent the actual soil placement in layers 

under gravity. This packing technique originated from the one proposed by Ladd 

(1978) for real specimen preparation and is similar to the Multi-layer Under-

compaction Method proposed by Jiang et al. (2003). Some modifications are 

made in the present study to match the actual soil properties as described below:  

Four layers of particles with thicknesses of about 0.15 m each are generated to 

form the soil sample. To build the first layer, a set of non-contacting particles is 

generated until the target volume is reached. This target volume is calculated 

based on the porosity of the real sand, which is 0.39. The initial height of the box 

is chosen to be larger than the target height of the layer to insure that all particles 

can be generated without overlapping. Gravity is then applied to all particles 

allowing them to move downward and come in contact with each other. The 

interparticle friction angle is initially set to zero. It is noticed that even when the 

friction angle is zero, the generated sample is looser than the actual one. To 

increase the density of the packing, lateral shaking is applied to the box to help 

small particles move into the voids located between larger particles. The 

generation of the first layer is considered complete when the system reaches 

equilibrium. For the second layer, the height of the box is increased and the 

second "cloud" of non-contacting particles is generated in the area above the 

existing particles. Gravity and shaking are then applied and the system is allowed 

to come into equilibrium.  

When the second layer is completed, particles above the geogrid level (if any) are 

removed and the finite element used to model the geogrid as well as the interface 

elements are generated. At this stage, the geogrid is assumed to be non-

deformable in order to maintain its initial geometry during the sample generation 

process. The third and fourth layers are then generated using the same procedure. 

70 
 



 

The homogeneous distribution of the contact force after the packing process is 

checked using the fabric tensor. It can be seen that in the vicinity of the geogrid, 

the fabric tensor components are nearly identical ( xxΦ and yyΦ  of about 0.33, 

zzΦ  of about 0.34 where z is the gravitational direction). The 3D geometry of the 

final sample is partially shown in Figure 4-7. 

 
 

 
Figure 4-7 Initial DE specimen (partial view for illustration purpose) 
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4.4. Pullout Test Model 

After the final specimen is formed, the input parameters (Table 4-1) are then 

assigned to the discrete particles and the finite elements. No friction is used for 

the interaction between the particles and the box (smooth rigid) to reduce the 

boundary effects.  A parametric study was conducted to examine the effect of the 

contact parameters between the discrete particles and interface elements on the 

calculated response of the pullout model. Results indicated that the stiffnesses at 

the interface do not have a significant effect on the pullout test results. Therefore, 

the stiffnesses of the interface have been assigned the same values as that of the 

discrete particles. These findings are consistent with those reported by Villard et 

al. (2009) for similar geosynthetic-soil interaction problems. On the other hand, 

the coefficient of friction between the discrete particles and interfaces was found 

to affect the overall response of the soil-geogrid system. In this study, the particle-

interface coefficient of friction is determined to be 0.95 based on matching the 

numerical results with experimental data. This has resulted in a slightly high 

coefficient of friction reflecting the fact that spherical particles usually mobilize 

less frictional contact with structural surfaces as opposed to real sand particles. In 

addition, and since the local increase in geogrid thickness at the joints is not 

explicitly modeled, the contribution of the joints to the overall pullout resistance 

is also considered as part of the geogrid frictional resistance.  

Following the above step, the geogrid is allowed to freely deform and the two 

vertical stresses ( vσ ) 49kPa and 93kPa are applied above and below the soil 

sample. The vertical stress is kept constant during the test using a stress control 

mechanism: when the current normal stress σ  is different from the target value 

vσ , the upper (or lower) plate is moved vertically a distance of ( ) /vdz Kσ σ= −  

where the stiffness K is determined by adding the normal stiffnesses of all active 

particle- plate interactions. This mechanism allows for a constant vertical stress to 

be maintained.  
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The pullout procedure is numerically performed using a displacement control 

approach: lateral displacements were applied to the clamp in 12 steps. In each 

step, the clamp was forced to move with a same rate of the experiment (in 

simulation time scheme) until an increase of displacement of 2.5mm was reached. 

The clamp movement was then stopped until convergence conditions are satisfied 

in both the DE and FE domains. Additional frontal displacements were applied in 

subsequent steps and the procedure continued until the frontal displacement Ux 

reached 25 mm.  

4.5. Results and Discussions 

4.5.1. Validation of the numerical model 

It is noted that both the experiment and the numerical simulation aimed at 

investigating the behavior of the geogrid and surrounding soil prior to failure. The 

relationship between the pullout force and the frontal displacement is shown in 

Figure 4-8 as obtained from both the experimental and numerical models. The 

numerical results generally agreed with the experimental data except for smaller 

pullout forces that are calculated for frontal displacements less than 7 mm. This is 

expected given the limited number of discrete particles used to represent the 

backfill soil resulting in underestimating the interaction between particles and 

interfaces particularly at the early stages of the test. The pullout force at a given 

frontal displacement slightly increased as the vertical stress ( vσ ) changes from 49 

kPa to 93 kPa. Sugimoto and Alagiyawanna (2003) observed a small slippage of 

the geogrid at both stress levels leading to marginal difference in pullout 

resistance.  Figure 4-9 shows the displacement distributions along the geogrid. It 

can be seen that geogrid displacements decrease with distance from the face. For 

all examined frontal displacements the geogrid displacement (Ux) occurs within a 

limited region from the front side to about the middle of the geogrid. Very small 

displacements were calculated outside this region. Figure 4-9 also confirms the 

agreement between the measured and calculated displacement using the proposed 

framework. 
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Figure 4-8 Pullout response of the geogrid 

 

 

 

 

Figure 4-9 Horizontal Displacement along the geogrid ( vσ = 49 kPa) 
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4.5.2. Response of the Geogrid 

The deformed shape of the geogrid for a frontal displacement (Ux) of 10 mm and 

a vertical pressure ( vσ ) of 49 kPa is shown in Figure 4-10. The largest 

deformation of the geogrid is found to occur in the vicinity of the applied load and 

rapidly decreases with distance towards the rear side of the box. The longitudinal 

elements of the geogrid experienced deformation in its axial direction with the 

largest elongation occurring near the loading side. It is also noted that part of the 

geogrid that is connected to the loading clamp has to be in air during the test 

which results in softer behavior and larger elongation in that region. Transverse 

members, on the other hand, showed a dominant bending deformation particularly 

near the loaded side. This bending behavior originates from the frictional forces 

acting at the upper and lower geogrid surfaces as well as the bearing forces acting 

as the geogrid pushed against the soil. 

The stress distribution within the geogrid is shown in Figure 4-11. In consistency 

with the displacement pattern, the stresses Sxx were highest near the front side and 

rapidly decreased to a negligible value at a distance of about 50% of the geogrid 

length. It can be also realized that stresses in the longitudinal members are much 

larger compared to the transverse ones. 

The tensile force distributions in the longitudinal members for different frontal 

displacements are illustrated in Figure 4-12. At a given location along the geogrid, 

the average tensile force (Pxx) in all longitudinal members was found to increase 

with the increase in frontal displacements. For the investigated range of frontal 

displacements, the force Pxx was large near the front end and rapidly decreased 

towards the middle of the geogrid. Beyond the middle zone, Pxx became 

negligible due to the insignificant displacement of the geogrid experienced by the 

rest of the geogrid.    
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Figure 4-10 Geogrid deformation and displacement at 

Ux = 10 mm and vσ = 49 kPa 

 

 

 

 

Figure 4-11 Geogrid stress Sxx  at Ux = 10 mm and vσ = 49 kPa  
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Figure 4-12 Average tensile force Pxx in the longitudinal members ( vσ = 49 kPa) 
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4.5.3. Pullout Resistance 

The used geogrid comprises longitudinal and transverse members as well as joints 

connecting these members. Each of these components contributes to the total 

pullout force. Since the resistance of the joints in this study is numerically 

included in the frictional resistance of the geogrid, the total pullout resistance Fp 

can be written as: 

Fp = Ff  +  Fbt             (4-17) 

where, Ff is the frictional resistance on the geogrid surface and  Fbt is the bearing 

resistance of the transverse members. 

The frictional and bearing resistances are determined numerically based on the 

contact forces between the discrete particles and the corresponding interface 

elements. Contribution of each component to the total pullout resistance is shown 

in Figure 4-13. It can be seen that the contribution of the bearing resistance is less 

than that of the frictional resistance for all considered frontal displacements 

leading to the frictional component (Ff) dominating the pullout resistance Fp. 

However, the rate of increase in Ff became very small when the frontal 

displacements (Ux) reached about 18 mm as slippage of the geogrid started to 

develop and most of the shear forces between the particles and interfaces reached 

their maximum values (see Equation 4-6). The bearing resistance of the transverse 

elements, on the other hand, shows an increase in value for all examined frontal 

displacements.  

The accumulated contribution of the different transverse members to the total 

bearing resistance is shown in Figure 4-14. Transverse members located within 

the first 0.18 m measured from the front side contributed to about 90% of the total 

bearing resistance. It is also noted that more than 50% of the total bearing is 

resisted by transverse members in the first 0.06 m measured from the front side of 

the box. The large bearing contribution from the geogrid transverse members 

close to the front side has also been mentioned by other authors such as 
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Costalonga (1988 and 1990), Milligan et al. (1990) and Palmeira (1987, 2004 and 

2009). 
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Figure 4-13 Components of the pullout resistance ( vσ = 49 kPa) 

 

 

 

Figure 4-14 Accumulated contribution of the transverse members to the total 

bearing resistance at different locations along the geogrid ( vσ = 49 kPa) 
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4.5.4. Response of the Backfill Soil 

Figure 4-15 shows the displacement field across the soil domain at a frontal 

displacement of 10 mm. It can be seen that most of the soil movement developed 

near the front face of the box leading to soil densification in that area. Soil 

movement gradually decreased and became negligible around the middle of the 

geogrid as there is no significant geogrid displacement in this area. Soil in the 

vicinity of the geogrid tends to move horizontally towards the front face whereas 

near the front face soil tends to move vertically away from the geogrid. These 

observations agree well with the results of the X-ray radiographs reported by 

Alagiyawanna et al. (2001). The pattern of soil movement in pullout tests has also 

been reported by Jewell (1980) and Dyer (1985). The movement of the soil 

particles results in a change in the direction of contacts between particles. The 

contact force networks within the soil domain for both a) initial condition; and b) 

for frontal displacement of 10 mm are shown in Figure 4-16. Each contact force is 

illustrated by a line connecting the centers of two contacting elements while the 

width of the line is proportional to the magnitude of the normal contact force. For 

the initial condition, most of the contact forces are oriented vertically in response 

to the applied pressure above and below the soil sample. As the geogrid is pulled 

out, soil particles started to move resulting in an increase in contact forces in the 

horizontal direction while the magnitudes of the contact forces in the vertical 

direction are maintained. This newly introduced horizontal component resulted in 

the development of diagonal contact forces as shown in Figure 4-16b. Contact 

forces that originate from the geogrid have larger values as they transmit forces 

from the geogrid to the surrounding soil. Large contact forces are observed in the 

vicinity of the front face in consistency with the soil densification near the vertical 

boundary. The contact force distribution is in agreement with the distributions 

observed by Dyer (1985) using the photo-elasticity approach (Figure 4-16). 

The strain field of the soil domain is achieved using a tessellation approach (Bagi, 

2006; Šmilauer et al. 2010) and the results are shown in Figure 4-17. It can be 
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seen that most strains generally occurred in the vicinity of the geogrid while the 

largest strain tends to develop near the front face.  

The stress distributions within in the soil around the geogrid are shown in Figure 

4-18. The stresses within a representative volume V are calculated by: 

, ,

1

1 cN
c i c j

ij
c

x f
V

σ
=

= ∑                                 (4-18) 

where, cN  is the number of contacts within the volume V, jcf ,  is the contact 

force vector at contact c,  icx , is the branch vector connecting two contact 

particles  A and B, and indices i and j indicate the Cartesian coordinates. 

It should be noted that the vertical and horizontal stresses presented in Figure 4-

18 are recorded at a distance of 100 mm above the geogrid. For all examined 

frontal displacements, there is an increase in both the vertical and horizontal 

stresses with a maximum increase in the close vicinity of the front face of the box. 

This increase may be due to the use of horizontal plates to control the vertical 

pressure. Beyond approximately half the geogrid length measured from the front 

face, stresses remain close to their initial values. It can be seen that for this pullout 

test, the extent of the affected area of the geogrid and backfill material under 

pullout load is generally limited to no more than 50% of the geogrid length. 
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Figure 4-15 Displacement field of the soil domain at Ux = 10 mm and vσ = 49 kPa 
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Figure 4-16 Contact force networks within the soil around the geogrid 

 

 

 

 

 

 

 

a) Contact-force network at the initial condition ( 49v kPaσ = ) 

b) Contact-force network at Ux = 10 mm ( 49v kPaσ = ) 
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Figure 4-17 Strain field within the soil domain at Ux = 10 mm and vσ = 49 kPa 
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Figure 4-18 Distribution of vertical and horizontal stresses in soil ( vσ = 49 kPa)  
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4.6. Summary and Conclusions 

In this paper, a framework for coupling finite and discrete element methods was 

developed. Interface elements were introduced to ensure the transmission of 

forces between the DE and FE domains. A multiple-time-step scheme was applied 

to optimize the computational cost. Using the developed framework, a three-

dimensional numerical study was performed to investigate the behavior of a 

biaxial geogrid embedded in granular material under pullout loading condition. 

The geogrid was modeled using finite elements while the backfill material was 

modeled using discrete elements. The results of the analysis were compared with 

experimental data. The displacements and stresses developing in the geogrid were 

analyzed and the micro-mechanical behavior of the soil domain was investigated.  

Most of the geogrid stresses and displacements occurred near the front side of the 

box with rapid decrease with distance and reached very small values around the 

middle of the geogrid. For the investigated geogrid and soil conditions, the 

contribution of the frictional resistance to the total pullout resistance was found to 

be larger than the bearing resistance. The contribution of the bearing resistance to 

the overall capacity increased as the geogrid displacement increased.  The soil 

movement and the contact force distribution within the soil domain agreed with 

experimental observations. An increase in soil stresses and strains was observed 

near the front face.  

Finally, the proposed coupled FE-DE method has proven to be efficient to model 

the pullout experiment in three-dimensional space and capture the response of 

both the geogrid and the surrounding backfill material. 
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Preface to Chapter 5 

 

The developed coupled Finite-Discrete element framework has demonstrated its 

efficiency in investigating the 3D response of soil-geogrid interaction under 

geogrid pullout testing condition. To continually demonstrate the robustness of 

the coupled Finite-Discrete element algorithm, the framework is now used to 

analyze a strip footing over geogrid-reinforced sand. Both unreinforced and 

geogrid reinforced foundations are studied from which the efficiency of geogrid 

reinforcement is investigated. The capability of the framework to model the soil-

geogrid interaction at the microscopic scale is demonstrated. 
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CHAPTER 5 

Three-Dimensional Analysis of Geogrid Reinforced 
Foundation Using Finite-Discrete Element Framework * 

 

 

Abstract 

Three-dimensional analysis of soil-structure interaction problems considering the 

detailed response at the particle scale level is a challenging numerical modeling 

problem. An efficient numerical framework that takes advantage of both the finite 

and discrete element approaches to investigate soil-geogrid interaction is 

described in this paper. The method uses finite elements to model the structural 

components and discrete particles to model the surrounding soil to reflect the 

discontinuous nature of the granular material. The coupled framework is used to 

investigate the behavior of strip footing over geogrid-reinforced sand. The 

numerical results are validated using experimental data. New insight into the 

three-dimensional interaction between the soil and the geogrid is presented.   

 

Keywords: geogrid reinforcement, finite-discrete element, strip foundation, 

numerical simulation. 

 

 

 

* A version of this chapter has been submitted to International Journal of 

Geomechanics ASCE, 2013. 
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5.1. Introduction 

Continuum approaches (e.g., Finite Element and Finite Difference) are generally 

used for the numerical analysis of soil-structure interaction problems. The finite 

element method (FE) has proven to be a powerful tool to model both structural 

elements and the surrounding soil. Although FE can be used efficiently to model 

the soil behavior at the macroscopic scale, the discontinuous nature of the soil 

particles is not easy to represent. This discontinuous nature has an important role 

in the behavior of different soil-structure interaction systems such as soil-geogrid 

interlocking (McDowell et al., 2006), soil arching in embankments (Han et al., 

2011) and particle erosion in the vicinity of subsurface structures (Meguid and 

Dang, 2009). The discrete element method (DE) proposed by Cundall and Strack 

(1979) is an alternative approach for the modeling of these systems. While the DE 

method can efficiently model soil discontinuous behavior (Maynar and 

Rodríguez, 2005; Lobo-Guerrero and Vallejo; 2006; Tran et al., 2012), using the 

DE method to model structural elements can lead to inaccurate responses. 

Researches including McDowell et al. (2006), Han et al. (2011) and Chen et al. 

(2012), used sets of discrete particles bonded together to model structural 

components. However, since micro voids generally develop in a structure 

generated by bonded particles, the continuous nature of the structure may not be 

fully captured. 

To take advantage of both FE and DE methods, the structure can be modeled 

using FE whereas the soil can be modeled using the DE method. The coupling of 

the two methods can efficiently model the behavior of both the soil and the 

structure. This approach has been used by several researchers to analyze certain 

geotechnical problems. Elmekati and Shamy (2010) used this approach to model 

pile installation in which the pile was modeled using FE while the surrounding 

soil was modeled using DE. Dang and Meguid (2013) studied the earth pressure 

distribution on tunnel linings by modeling the tunnel lining using FE and 

surrounding soil using DE. Geotextile-reinforced embankment analysis using a 

coupled framework was reported by Villard et al. (2009). Soil-geogrid interaction 
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during the geogrid pullout process was studied by Tran et al. (2013). The geogrid 

was modeled using FE representing the 3D geometry of the geogrid whereas the 

backfill soil was modeled using DE. The soil-geogrid interaction was ensured 

using interface elements. In this paper, a coupled Finite-Discrete element (FE-DE) 

framework that is capable of modeling soil-structure interaction problems at the 

microscopic scale level is used to investigate the behavior of foundation over 

reinforced soil. Literature review of the investigated problem is presented below. 

Over the past three decades, the use of geosynthetics to increase bearing capacity 

of shallow foundations has received extensive research attention. The bearing 

capacity of reinforced soil has been studied experimentally by many researches 

across the world, including Guido et al. (1986), Huang and Tatsuoka (1990), 

Khing et al. (1993), Shin et al. (1993), Das et al.(1994), Yetimoglu et al. (1994), 

Adams and Collin (1997), Dash et al. (2001), DeMerchant et al. (2002), Patra et 

al. (2006), Basudhar et al. (2007), Chen et al. (2007), Chen et al. (2009), Abu-

Farsakh et al. (2008), Ghazavi and Lavasan (2008), Ghosh and Dey (2009), Latha 

and Somwanshi (2009a, b), Sadoglu et al. (2009), Choudhary et al. (2010), 

Mohamed (2010) and Tafreshi and Dawson (2010). Results from these 

experimental studies show that the bearing capacity of a given foundation 

generally increases with the placement of geosynthetic material within the 

supporting ground. The effects of different variables such as geosynthetic length, 

vertical spacing between multiple reinforcing layers, depth to the top layer, 

number of layers and types of  geosynthetics that contribute to the bearing 

capacity were also examined. Analytical solutions were also developed by 

Binquet and Lee (1975a,b), Michalowski (2004), Wayne et al. (1998), Kumar and 

Saran (2003),  Abu-Farsakh et al. (2008), Huang and Menq (1997) and Sharma et 

al. (2009). Numerical simulation is an alternative way to study the stresses and 

strains within soil and in the geosynthetic layers. Finite element modeling of 

reinforced foundations has been reported by Yetimoglu et al. (1994), Kurian et al. 

(1997), Siddiquee and Huang (2001), Yamamoto and Otani (2002), Basudhar et 

al. (2007), Chung and Cascante (2007), Ghazavi and Lavasan (2008), Latha and 
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Somwanshi (2009a, b) and Li et al. (2012). In these studies, the reinforcement 

was often simplified either as a truss structure (in 2D analysis) or a continuous 

sheet (in 3D analysis). This simplification does not represent the true geometry of 

the geosynthetics particularly for geogrids. The interaction between geogrid and 

the surrounding soil was often modeled using interface elements in which contact 

properties were considered while the interlocking effect is not generally 

represented. It is known that the soil-geogrid interlocking in reinforced soils plays 

an important role in the bearing capacity of the foundation (Guido et al., 1986). 

The interlocking of the soil particles through the apertures of the grid mobilizes 

tensile strength in the reinforcing layer and generate anchoring effect in the soil-

geogrid system. This leads to better geotechnical performance compared to 

geotextile-reinforced soil foundations. The coupled FE-DE approach presented in 

this study allows for the interlocking effect to be explicitly simulated considering 

the soils as DE particles while the 3D geometry of the geogrid is represented 

using FE elements. The interaction between the two domains is ensured using 

interface elements.  

5.2. Model Generation 

In this study, the experimental results reported by Das et al. (1994) and Khing et 

al. (1993) of a strip foundation supported by geogrid-reinforced sand is used to 

validate the proposed coupled FE-DE model. The soil container was reported to 

be 1.1m in length, 0.3m in width and 0.9m in height. The walls were polished to 

reduce the friction between the soil and the wall. The strip foundation had a width 

of 76 mm (noted as B) and a length of 300 mm. A rough condition at the base of 

the foundation was generated by cementing a thin layer of sand at the contact 

surface. The soil used in the experiment was medium-grained silica sand with D50 

= 0.51 mm, average dry unit weight of 17.14 kN/m3 and a peak friction angle of 

41o (at Dr = 70%) obtained from laboratory direct shear tests. Biaxial geogrids 

(Tensar SS-0 with PP/HDPE copolymer material and tensile modulus of 182 

kN/m at 2% strain) of 760 mm in length and 300mm in width were used in the 

experiment. The top geogrid layer was installed at a depth 25 mm (0.33B) below 
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the foundation base. The number of geogrid layers installed in soil was varied and 

the distance between two adjacent layers was 25 mm (0.33B). The sand was 

placed in layers of 25mm using raining technique. The geogrid layers were placed 

at predetermined locations. The model foundation was then placed on the soil 

surface and vertical loading was applied using a hydraulic jack. The load and the 

corresponding foundation settlement were measured during the tests using a 

proving ring and two dial gauges. 

The numerical model has been developed such that it follows the geometry and 

test procedure used in the actual experiment. It is noted that due to the high 

computational time required for the coupled FE-DE analysis, up to two geogrid 

layers are considered in this study. The geogrid is modeled using FE while the 

soil is modeled using DE as discussed in the previous sections. Interface elements 

are used to simulate the interaction between the two domains. All components are 

generated inside YADE using two corresponding FE and DE packages. 

The biaxial SS-0 geogrid, which comprises 11 longitudinal elements and 21 

transverse elements, is modeled using 8-node brick elements with 8 integration 

points (Figure 5-1). A linear elastic material model is used for the geogrid sheet 

and its properties are determined by matching the experimental load-displacement 

relationship obtained from the conducted index tests at a strain of 2% (as shown 

in Table 5-1).  It is noted that the local increase in joint thickness is not 

considered in the geogrid model in order to simplify the analysis. The full 

geometry of the geogrid which comprises over 1900 finite elements and 29,000 

interface elements is shown in Figure 5-1. 

The sand used in the experiment is modeled using spherical particles. Since it is 

numerically prohibitive to simulate millions of particles with true sizes, particle 

up-scaling is necessary to reduce the number of modeled particles. Consideration 

of particle sizes is usually made to keep the balance between the computational 

cost and the scaling effects on the sample response. In this study, the sand is 
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modeled using discrete particles with a mean diameter of 10.2 mm (20 times the 

real D50) and a standard deviation of 2.0 mm.  

To generate DE samples, appropriate packing methods are considered to provide 

the best replication of the actual packing process. Several packing algorithms 

have been developed to generate discrete element specimens (Cundall and Strack, 

1979; Jiang et al., 2003; Labra and Oñate, 2009; Dang and Meguid, 2010a; Tran 

et al. 2012). In this study, soil samples are generated using the gravitational 

approach proposed by Tran et al. (2012) to represent the actual soil placement in 

layers under gravity as described below:  

Layers of particles with thicknesses of about 0.05 m each are generated to form 

the soil sample. To build the first layer, a set of non-contacting particles is 

generated until the target volume is reached. This target volume is calculated 

based on the porosity of the sand, which is 0.36. The initial height of the box is 

chosen to be larger than the target height of the layer to insure that all particles 

can be generated without overlapping. Gravity is then applied to all particles 

allowing them to move downward and contact with each other. The interparticle 

friction angle is initially set to zero. It is noticed that the generated sample is 

looser than the actual one even when the friction angle is zero. To increase the 

density of the packing, lateral shaking is applied to the box to help small particles 

move into the voids located between larger particles. The generation of the first 

layer is considered to be completed when the system reaches equilibrium. For the 

second layer, the height of the box is increased and the second "cloud" of non-

contacting particles is generated in the area above the existing particles. Gravity 

and shaking are then applied and the system is allowed to come into equilibrium. 

The geogrids are generated during the packing process to ensure the proper 

interaction with the DE particles. Particles above the geogrid level are removed 

and the geogrid and interface elements are generated. At this stage, the geogrid is 

assumed to be non-deformable in order to maintain its initial geometry during the 

sample generation process. A next cloud of particles is generated and the 

procedure is repeated until the final specimen is formed. The generated assembly 
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is then checked using the fabric tensor and contact orientation as shown in 

following parts. The 3D geometry of the final sample with over 245,000 particles 

is shown in Figure 5-2. A partial view of the particle-geogrid interaction is shown 

in Figure 5-3. It can be seen that the interlocking of the soil through the apertures 

of the grid is properly simulated by allowing the particles to penetrate into the 

geogrid apertures. Furthermore, the particles from one side of the geogrid can 

interact with other particles from the other side which represents closely the real 

behavior of the soil-geogrid interaction. 

Microscopic parameters used for the simulation are identified as follow: particle 

density is 2650 kg/m3 following the specific gravity of the sand, KT/KN ratio is 

fixed to be 0.25, Rβ  is 0.01 and particle material modulus of 38 MPa as suggested 

by Tran et al. (2012). The friction angles of DE particles are determined by 

matching the results of the numerical and experimental direct shear tests. The 

numerically simulated shear box has dimensions of 60 mm x 60 mm. The 

generated direct shear test sample consists of over 100,000 particles with a mean 

diameter of 1.0 mm (double the real D50). The packing process mentioned above 

is used to generate the specimen to ensure its equivalence (same characteristics) to 

the soil sample used in the analysis (Tran et al. 2012). The microscopic friction 

angle is varied to match the peak friction angle of the experiment. A friction angle 

tangent (tanϕ ) of 0.68 is found to provide the best agreement with the experiment. 

It is noted that although the particle size used in the numerical direct shear test 

differs from that used in the simulation, the parameters obtained from the direct 

shear test were found to represent the real soil and can be used in the numerical 

model. The randomness of the generation process at these scale factors was found 

to have a minor influence on the macro response since the number of particles in 

the specimens is large enough to represent the sample (Tran et al. 2012).  
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Table 5-1 Input parameters for the simulation 

 Type of elements Parameter Value 

 Discrete particles Density (kg/m3) 2650 

  Material modulus E (MPa) 38 

  Ratio KT/KN 0.25 

  Coefficient of friction (tanϕ ) 0.68 

  rβ  0.01 

  rη  1.0 

  Damping coefficient 0.2 

 Finite elements Young modulus E (MPa) 1.4E+3 

  Poisson's ratio ν 0.3 

 Interface elements Material modulus E (MPa) 38 

  Ratio KT/KN 0.25 

  Coefficient of friction (tanϕ )  0.42 
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Figure 5-1 Plan view of the geogrid 
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Figure 5-2 Initial geometry of the geogrid reinforced foundation 
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Figure 5-3 Partial view of the DE particle-geogrid interaction 
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5.3. Numerical Simulation 

After the final specimen is formed, the strip footing (76 mm x 300 mm, Figure 5-

2) is numerically generated and initially placed at the surface of the soil layer. The 

input parameters (Table 5-1) are then assigned to the discrete particles and the 

finite elements. No friction is used for the interface between the particles and the 

box walls whereas a high friction angle with tangent of 1.0 is applied for the 

interaction between the foundation base and DE particles to simulate the rough 

foundation base used in the experiment. A parametric study was conducted to 

examine the effect of the DE particle-interface interaction on the response of the 

strip footing model. Results indicated that the stiffnesses of the interface elements 

do not have a significant effect on the simulation results. Therefore, the stiffnesses 

of the interface elements are assigned the same values as the DE particles. These 

findings are consistent with those reported by Villard et al. (2009) for similar 

geosynthetic-soil interaction problems. On the other hand, the coefficient of 

friction between the discrete particles and interface elements was found to affect 

the overall response of the soil-geogrid system. In this study, the particle-interface 

coefficient of friction has to be determined in order to reach a good agreement 

between the numerical and experimental results. It is due to the fact that spherical 

particles usually mobilize less frictional contact with structural surfaces as 

opposed to real sand particles. A parametric study was conducted to investigate 

the influence of the particle-interface friction coefficient on the overall behavior, 

from which a particle-interface coefficient of friction of 0.42 is determined for the 

simulation (Table 5-1).  

Before applying loads to the foundation, the fabric tensor and contact orientation 

are investigated. The fabric tensor is determined by: 

1

c

ij i j
Nc

n n
N

= ∑Φ                              (5-1) 

where, Nc is the number of contacts and ni is the unit branch vector component in 

the i direction. The calculated fabric tensor components are nearly identical ( xxΦ
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and yyΦ  of about 0.33, zzΦ  of about 0.34 where, z is the gravitational direction). 

The distribution of contact orientation is shown in Figure 5-4. It can be seen that 

the contacts are homogeneously distributed in all directions.   

Following the above steps, the geogrids are then allowed to freely deform and 

pressure at the foundation base is applied in small increments using a stress 

control mechanism: for each loading stage, when the current pressure σ  is 

different from the target value vσ , the foundation moves vertically a distance of

( ) /vdz Kσ σ= −  where, the stiffness K is determined by adding the normal 

stiffnesses of all active particle-foundation base interactions. This mechanism 

allows for a constant pressure to be maintained. Each load increment is kept 

constant until convergence conditions are satisfied in both the DE and FE 

domains. The foundation pressure is then increased for the next stage. 
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Figure 5-4 Distributions of the contact orientation at initial condition 
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5.4. Results and Discussions 

5.4.1. Validation of the Numerical Model 

In this section, the use of one or two geogrid sheets to reinforce the soil is 

analyzed and compared to the case of no reinforcement. To validate the model, 

the coupled FE-DE simulation results are first compared with the experimental 

data. Figure 5-5 shows the relationship between the foundation pressure and 

settlement for three cases: no reinforcement (N = 0), one geogrid layer (N = 1) 

and two geogrid layers (N = 2). It can be seen that the numerical results agreed 

well with the experimental data for all cases. For a given settlement, the load the 

foundation can carry increased with the use of geogrid reinforcement. The 

ultimate bearing capacity also increased with the number of geogrid layers (N). It 

is also observed that the increase in the ultimate bearing capacity occurred with an 

increase in the foundation settlement. The ultimate bearing capacity calculated by 

Das et al. (1994) is consistent with the numerical results. This confirms the 

agreement between the experiment and numerical simulations using the proposed 

numerical framework. 

5.4.2. Response of the Geogrids 

The deformed shapes of the geogrid layers for a foundation pressure q = 125 kPa 

are shown in Figure 5-6. The vertical displacement of the geogrid for one 

reinforcement layer (N = 1) is shown in Figure 5-6a whereas the case of two 

geogrid layers (N = 2) is shown in Figure 5-6b.  It can be seen that the vertical 

displacement of the geogrid for N = 1 is generally larger than that for N = 2. In 

addition, the vertical displacement of the upper geogrid sheet is larger than that of 

the lower one. Consistent with the displacement pattern, the tensile stresses in the 

geogrid for N = 1 were found to be larger than that for N = 2 (Figure 5-7). It is 

also noted that the upper geogrid layer experienced higher tensile stresses than the 

lower layer. In both cases, the deformations of the geogrids occurred mainly in a 

region below the foundation and very small deformations were observed outside 

that region. The stresses Sxx were highest below the foundation and decreased 
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with distance from the loading area. The vertical displacement and tensile stress 

distributions of the geogrid for N = 1 are shown in Figure 5-8. It can be seen that 

the vertical displacements and tensile stresses of the geogrid occurred within a 

distance of 1.5B from the foundation center and became negligible outside this 

region. The maximum calculated vertical displacements and tensile stresses in the 

geogrid for different footing pressures are shown in Figure 5-9. It is observed that 

for a given pressure, the vertical displacements and tensile stresses in the geogrid 

were larger for N = 1 than for N = 2. It is also noted from Figure 5-9a and 5-9b 

that the deformation and tensile stresses of the upper geogrid layer were generally 

larger than the lower one for N = 2.  
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Figure 5-5 Load-settlement curves of the geogrid reinforced foundation 
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Figure 5-6 Geogrid vertical displacement at foundation pressure q  = 125 kPa 

a) one geogrid layer and  b) two geogrid layers 
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Figure 5-7 Geogrid stress Sxx at foundation pressure q  = 125 kPa 

a) one geogrid layer and b) two geogrid layers 
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Figure 5-8 a) Vertical displacements of the geogrid (N = 1) 

b) Tensile stresses of the geogrid (N = 1) 
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Figure 5-9 a) Maximum vertical displacements of geogrids 

b) Maximum tensile stresses of geogrids 
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5.4.3. Response of the Reinforced Soil 

The displacement field of the unreinforced soil domain at ultimate bearing 

capacity is shown in Figure 5-10. It can be seen that a general shear failure mode 

occurred and extended to a depth of D = 1.2B. Negligible soil displacements were 

observed outside a region that extends laterally 3.0B from the foundation center 

line. The displacement fields of the reinforced foundation for N = 1 prior to and at 

failure are shown in Figure 5-11a and 5-11b, respectively. It can be seen that prior 

to failure (Figure 5-11a), the horizontal displacement below the geogrid layer was 

small compared to the vertical displacement component. At peak loading (Figure 

5-11b), a punching shear failure occurred above the geogrid followed by a general 

shear failure below the geogrid. With the shear band development under the 

footing, the displacement field at peak loading was limited to the failure zone 

dominated by the horizontal and upward displacements. This failure mode was 

reported by Meyerhof and Hanna (1978)  and Wayne et al. (1998) for a strong soil 

layer overlaying a weaker soil. Similar observations were reported by Schlosser et 

al. (1983), Huang and Tatsuoka (1990) and Huang and Menq (1997) for the "deep 

footing" mechanism: the frictional and interlocking forces due to the interaction 

between the soil and geogrids result in an increase in the soil compressive 

strength, and thus an increase in the bearing capacity of the reinforced foundation. 

Similar soil deformation patterns were also reported by Michalowski and Shi 

(2003) using a digital motion detection technique. 

The contact force network in the soil domain with and without geogrid 

reinforcement is shown in Figure 5-12. The contact force distributions represented 

the transmission of the applied load to the supporting soil. Each contact force was 

illustrated by a line connecting the centers of two contacting elements while the 

width of the line is proportional to the magnitude of the normal contact force. It 

can be seen that large contact forces developed immediately beneath the strip 

foundation as shown in Figure 5-12a, 5-12b and 5-12c for N = 0, 1 and 2, 

respectively. It can also be seen from Figure 5-12a that the contact force network 

of the unreinforced foundation developed diagonally from the foundation base. 
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With the presence of reinforced geogrid layers (Figure 5-12b and 5-12c), the 

contact forces became more vertical particularly above the geogrid layers. Below 

the geogrid layers, diagonal contact forces were observed which are similar to 

those observed beneath the unreinforced foundation. The contact force 

distributions in Figure 5-12 support the failure mode discussed above.  

To calculate the macroscopic stress components within the soil domain, averaging 

windows with dimensions Sx x Sy x Sz = 0.05 m x 0.3 m x 0.025 m were used. 

The average stresses within a box are given by: 

, ,

1

1 cN
c i c j

ij
c

x f
V

σ
=

= ∑                                 (5-2) 

where, cN  is the number of contacts within the box of volume V, jcf ,  is the 

contact force vector at contact c,  icx ,  is the branch vector connecting two contact 

particles A and B, and indices i and j indicate the Cartesian coordinates. 

The distribution of vertical stresses with depth beneath the center of the footing is 

shown in Figure 5-13. In consistency with the large vertical contact forces above 

the geogrids (Figure 5-12), an increase in the vertical stress in the zone can be 

seen. The increase in the number of geogrid layers also resulted in the increase in 

the vertical stress. However, there was no significant change in the vertical stress 

beyond a depth of 1.2B below the geogrids. The vertical stress distribution is in 

good agreement with the displacement fields (Figure 5-11) and contact force 

networks (Figure 5-12). 
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Figure 5-10 Soil displacement field of the unreinforced foundation 
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Figure 5-11 Soil displacement field of the reinforced foundation (N = 1) 
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Figure 5- 12 Contact force networks within the soil 

a) Unreinforced foundation 

b) Reinforced foundation - N = 1 
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c) Reinforced foundation - N = 2 
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Figure 5-13 Vertical stress distributions beneath the strip foundation  

(cross section A-A) 
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5.5. Summary and Conclusions 

This study investigated soil-geogrid interaction using a coupled FE-DE 

framework. The soil was modeled using DE while the geogrid was modeled using 

FE. The interaction between the DE and FE domains was ensured by using 

interface elements. The developed framework was used to investigate the 

behavior of strip foundation over geogrid reinforced sand. The soil-geogrid 

interlocking effect was demonstrated. The 3D geometry of the geogrid, its 

deformation and stress distribution were represented. The microscopic behavior of 

the soil domain relative to soil displacements, contact orientations, contact forces 

were also analyzed. 

The numerical modeling of the geogrid reinforced strip foundation provided a 

very good agreement with the experimental results. Increasing the number of 

geogrid layers resulted in an increase of the ultimate bearing capacity. Geogrid 

deformations and tensile stresses for N = 1 were larger than those for N = 2. 

When two layers of geogrid were used, the upper layer was subjected to larger 

deformations and tensile stresses than the lower layer. At the ultimate load, a 

punching shear failure occurred above the geogrid followed by a general shear 

failure below the geogrid. The use of geogrid reinforcement also resulted in an 

increase in the vertical stresses in the soil. 

The proposed coupled FE-DE method has proven to be effective in capturing soil-

geogrid interaction and analyzing the behavior of both geogrid and surrounding 

material.  
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Preface to Chapter 6 

 

The efficiency of the coupled Finite-Discrete element framework in analyzing 

soil-structure interaction problems has been demonstrated in the previous 

chapters: geogrid pullout test (Chapter 4) and geogrid reinforced strip foundation 

(Chapter 5). A different soil reinforcement problem, which is geogrid-reinforced 

fill over void, is analyzed in this chapter as an example of a condition where soil 

below the reinforced layers experiences large vertical deformation. The 

microscopic behavior of the fill overlying void with and without geogrid 

reinforcement is investigated. The efficiency of the developed coupled program in 

such challenging condition is therefore demonstrated. 
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CHAPTER 6 

Three-Dimensional Analysis of Geogrid Reinforced Fill 
over Void Using Finite-Discrete Element Framework * 

 

 

Abstract 

Three-dimensional analysis of soil-structure interaction problems considering the 

detailed response at the particle scale level is a challenging numerical modeling 

problem. An efficient numerical framework that takes advantage of both the finite 

and discrete element approaches to investigate soil-geogrid interaction is 

described in this paper. The method uses finite elements to model the structural 

components and discrete particles to model the surrounding soil to reflect the 

discontinuous nature of the granular material. The coupled framework is used to 

investigate the behavior of geogrid-reinforced fill over strong formation 

containing void. The numerical results provide a new insight into the nature of the 

three-dimensional interaction between the soil and the geogrid.   

 

Keywords: geogrid reinforcement, finite-discrete element, fill system over void, 

numerical simulation. 

 

 

 

* A version of this chapter has been submitted to International Journal of 

Geomechanics ASCE, 2013. 
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6.1. Introduction 

Fill structures such as embankments and highways are often constructed on 

natural ground. Although site investigation is usually performed before the design 

process, it is possible that existing voids are not detected or cavities may develop 

during the service life of the fill. Cavities are common in coral and karstic 

formations or in rock with soft inclusions (Agaiby and Jones, 1995). These voids 

can collapse and cause severe damage to structures in their vicinity. This problem 

was first studied by Terzaghi (1936). A trap door at the base of a soil-filled 

container was lowered causing the soil to move into the generated void. The trap 

door problem was also modeled numerically by Koutsabeloulis and Grifiths 

(1989) using the FEM. One method to protect the surface structure over voids is 

using reinforcement beneath the foundation of the structure. Reinforcement that 

bridges over voids reduces settlements and protects the structures from failure. 

Kinney and Connor (1987) conducted field tests to investigate the performance of 

road embankments over voids. Results suggested that geosynthetics can be 

beneficial when a fill is placed over voids. The ability of geogrid reinforced 

pavements to provide an early warning system of a void beneath a road was 

reported by Bridle et al. (1994). The efficiency of reinforcement in road 

applications was also reported by Villard et. al (2000). Analytical solutions for 

reinforced systems over voids have been reported by Giroud et al. (1990), 

Poorooshasb (1991), Agaiby and Jones (1995), Wang et al. (1996), Villard et al. 

(2000) and Briançon and Villard (2008). FE modeling of the reinforced systems 

has been reported by Gabr et al. (1992), Gabr and Hunter (1994), Lawson et al. 

(1994), Agaiby and Jones (1995) and Gaetano (2010). In most cases, only 2D 

models were used and the 3D geometry of the geosynthetics was not represented.  

DE modeling of similar problems such as geogrid-reinforced embankments over 

piles (Han et al., 2011) did not consider the 3D geogrid geometry. However, 

Bridle et al. (1994) shown that interlocking mechanism generates a stiffened 

granular layer which prevents collapse into the void. A simplified 2D model of 

the geogrid geometry, may therefore, misrepresent the behavior of the reinforced 
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earth structures. In this study, a fill on a geogrid layer overlying a void is 

simulated using the coupled FE-DE framework. The proposed framework is 

capable of representing the 3D geometry of the geogrid and the interlocking 

mechanism associated with the soil-geogrid interaction. 

6.2. Model Generation 

A granular fill layer reinforced with a geogrid layer overlying a void is analyzed 

in this section using the proposed coupled FE-DE framework. While cavities may 

not be always detected during geophysical investigation, the presence of these 

cavities can have a negative impact on overlying structures such as highway 

embankments. The numerical analysis aims at investigating the soil-geogrid 

interaction mechanism and the behavior of the geogrid and supported soil with the 

presence of small subsurface voids. In this study, a fill layer with a thickness 0.6m 

constructed over a natural soil formation experiencing the development of a 

sudden cavity (width 0.2m and height 0.3m) is simulated (Figure 6-1). It is 

assumed that the void develops in a rigid formation layer and is infinitely long in 

the out-of-plane direction. Previous studies (Giroud et al., 1990; 

Poorooshasb,1991; Agaiby and Jones, 1995; Wang et al., 1996, Villard et al., 

2000; Briançon and Villard, 2008) generally assumed the geosynthetics layers are 

installed right above the rigid surface. This assumption simplifies the analysis 

however it does not always represent the case when a natural soil formation 

overlies bedrock in which voids develop. In this study, both cases have been 

studied using the coupled FE-DE method. The geogrid is simulated using FE 

while the fill (and the underlying soil) is simulated using DE whereas the rigid 

formation is modeled as non-deformable FE domain. The placement of the 

geogrid directly on the rigid formation was found to cause numerical instability in 

the model unless additional restraints are applied to the geogrid. These restraints 

affect the soil-geogrid frictional resistance and interlocking effect as they prevent 

the geogrid from deforming laterally. To ensure proper interaction between the 

geogrid and soil, the geogrid is installed over a thin soil layer of thickness 0.1m 

overlying the non-deformable foundation as shown in Figure 6-1. The geogrid is 
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assumed to be installed on the natural soil surface prior to the construction of the 

fill. A surcharge of 5kN/m2 is applied on top of the fill to simulate surface 

loading. This surcharge is modeled using a DE layer of thickness 0.05m placed on 

top of the fill with high density particles. The cavity is assumed to develop after 

the fill has been constructed.  

6.3. Numerical Simulation 

The soil properties used in the previous reinforced foundation problem in Chapter 

5 are used for the fill material (Table 6-1). The properties of the natural soil and 

the fill are assumed to be the same for the purpose of simplification. The geogrid 

type (Tensar SS-0) from the previous reinforced foundation experiment (Chapter 

5) is also used for the reinforcement. Parametric studies show that a void width of 

0.2m results in negligible deformations of the soil and geogrid outside a region 

0.45 m from the void center line. Therefore, an assemblage of particles with a 

length 1.1m is appropriate to represent the soil domain. The numerical geogrid 

has a length of 1.1 m and a width of 0.3m which represents the placement of the 

reinforcement over the soil layer (Figure 6-2).  

The assembly is generated using the multi-layer packing process mentioned 

previously. The rigid formation is first modeled using non-deformable FE 

elements without voids. The natural soil layer of thickness 0.1m is then generated 

followed by the generation of the geogrid layer. The fill is then generated in 

layers until the target thickness of 0.6 m is achieved. A surcharge of 5kN/m2 is 

applied on top of the fill by generating a 0.05 m thick layer of high density 

particles. The final assemblage consists of over 280,000 DE particles and 2800 FE 

elements. After material properties have been assigned to all FE and DE elements, 

the geogrid is allowed to freely deform. The initial condition of the soil 

assemblage is achieved when the convergence conditions are satisfied (all internal 

and external forces are balanced). The FE elements in the void location are then 

removed to numerically simulate the development of the void.  
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Table 6-1 Input parameters for the simulation 

 Type of elements Parameter Value 

 Discrete particles Density (kg/m3) 2650 

  Material modulus E (MPa) 38 

  Ratio KT/KN 0.25 

  Coefficient of friction (tanϕ ) 0.68 

  rβ  0.01 

  rη  1.0 

  Damping coefficient 0.2 

 Finite elements Young modulus E (MPa) 1.4E+3 

  Poisson's ratio ν 0.3 

 Interface elements Material modulus E (MPa) 38 

  Ratio KT/KN 0.25 

  Coefficient of friction (tanϕ )  0.42 
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Figure 6-1 Initial geometry of the geogrid reinforced fill above void 
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Figure 6-2 Plan view of the geogrid 
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6.4. Results and Discussions 

6.4.1. Response of the Geogrid 

The deformed shape of the geogrid is shown in Figure 6-3. The largest 

deformations and tensile stresses were observed in a region above the void. Due 

to the soil movement toward the void, the geogrid deformed and tensile stress in 

the geogrid developed to balance the loads acting on the geogrid sheet. 

Distributions of the vertical displacements and tensile stresses along the geogrid 

are shown in Figure 6-4. It can be seen that the vertical displacements and tensile 

stresses were small near the two geogrid ends and largest at the geogrid center. 

The interlocking and frictional contact forces contribute to the anchoring 

mechanism. To examine the importance of the interlocking effect, a parametric 

study has been performed by reducing the friction coefficient between the soil and 

geogrid. It was found that when the interface friction coefficient is reduced to 

zero, the geogrid anchoring is still ensured with a small increase in the geogrid 

vertical displacement. This demonstrates the dominant role of the interlocking 

effect in the geogrid anchoring mechanism. A similar observation on the 

importance of the geogrid interlocking effect was reported by Bridle et al. (1994). 

The feasibility of the coupled FE-DE framework to model the interlocking effect 

is therefore verified.  

6.4.2. Response of the Reinforced Soil 

The displacement fields of the fill layer without and with geogrid reinforcement 

are shown in Figure 6-5. In the case of unreinforced fill (Figure 6-5a), downward 

soil movement developed above the void location. However, soil collapse at the 

fill surface did not occur and the fill stability was achieved due to soil arching 

over the void. Figure 6-5b shows the displacement field of the geogrid reinforced 

fill. It can be seen that soil displacements above the geogrid layer were much 

smaller compared to the unreinforced fill and the geogrid efficiently prevented the 

soil from moving toward the void. This demonstrates the efficiency of the 
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interlocking effect in generating a stiffened granular layer above the geogrid 

(Bridle et al., 1994). 

The contact orientations in the unreinforced fill are shown in Figure 6-6. It can be 

seen that with the development of the soil arching within the fill, more contacts 

were seen in the x direction than in the z direction (xz plane view). This strong 

anisotropy induced by the soil arching which demonstrated a stronger contact 

orientation in the horizontal direction than in the vertical direction. The 

distribution of contacts in the yz plane was elliptical, with the z component being 

slightly larger than the y component. Meanwhile, quite uniform distribution of the 

contact orientation was observed in the xy plane. With the placement of a geogrid 

layer above the void, the distribution of contact orientations in the xz plane of the 

reinforced fill (Figure 6-7) showed less arching with only a slightly larger value in 

the horizontal direction compared to the vertical direction. Uniform contact 

distributions in the yz and xy planes were also observed. The geogrid 

reinforcement prevents the rearrangement of contact forces compared to the 

unreinforced fill with the creation of a void.  

The soil deformation in the fill layer can also be evaluated by analyzing the 

change in porosity in the soil domain. Using the DE analysis, the change of 

porosity is obtained by comparing the change in the volume of DE particles 

within a given volume of dimensions Sx x Sy x Sz = 0.1 m x 0.3 m x 0.1m. The 

changes in porosity without and with the geogrid reinforcement are shown in 

Figure 6-8a and 6-8b, respectively. In both cases, there was an increase in 

porosity corresponding to the volumetric dilation in the fill. Maximum dilations 

occurred above the void location. Up to 10% of porosity changes were observed 

in the unreinforced fill while much smaller changes (less than 1.1%) were 

observed in the geogrid reinforced fill. The volumetric dilation in the fill was also 

reported by Costa et al. (2009) and Han et al. (2011).  

Soil arching development results in the stress redistribution within the soil mass. 

Average stresses in the fill were calculated with boxes with dimensions Sx x Sy x 
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Sz = 0.05 m x 0.3 m x 0.05 m. The vertical and horizontal stress components of 

the unreinforced fill are shown in Figure 6-9. The corresponding stress 

distributions in the geogrid reinforced fill are shown in Figure 6-10. A reduction 

of both the vertical and horizontal stresses above the void location was observed 

in both cases. The vertical stresses increased in the regions adjacent to the void 

while the horizontal stresses were largest at the top of the soil layer due to the soil 

arching.  
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Figure 6-3 Vertical displacement and tensile stress of the geogrid 

 
 
 
 
 

 

 

 

a) Vertical displacement 

b) Tensile stress 
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Figure 6-4 Distributions of vertical displacement and tensile stress along the 

geogrid 
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Figure 6-5 Soil displacement fields 
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Figure 6-6 Distributions of the contact orientation–unreinforced fill 
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Figure 6-7 Distributions of the contact orientation–reinforced fill 
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Figure 6-8 Percentage porosity changes in the unreinforced and reinforced fills 

 

 

Distance (m) 

 

   

D
ep

th
 (m

) 

Distance (m) 

 

   

D
ep

th
 (m

) 

a) Unreinforced fill 

   

b) Reinforced fill 

 

 geogrid level  
void   

 geogrid level  void   

133 
 



 

 

Figure 6-9 Stress distributions in the unreinforced fill  
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Figure 6-10 Stress distributions in the reinforced fill 
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6.5. Summary and Conclusions 

This study investigated the 3D soil-geogrid interaction using the developed FE-

DE framework. The soil was modeled using DE while the geogrid was modeled 

using FE. The interaction between the DE and FE domains was ensured by using 

interface elements. The developed framework was used to investigate behavior of 

geogrid reinforced fill over void. The 3D geometry of the geogrid, its deformation 

and stress distribution were represented. The microscopic behavior of the soil 

domain relative to soil displacements, contact orientations, stresses and porosity 

changes were analyzed. 

The use of geogrid to reinforce a fill over a void is effective in preventing soil 

from moving toward the void. The stability of the fill was therefore improved. 

The change in porosity in the geogrid reinforced fill was much smaller than for 

the unreinforced case. The formation of soil arching produced a stress 

redistribution in the fill. A reduction of vertical and horizontal stresses above the 

void location was observed. Vertical stresses increased in the vicinity of the void 

while the largest horizontal stresses were obtained at top of the fill layer.   

The proposed coupled FE-DE method has proven to be effective in capturing soil-

geogrid interaction and analyzing the behavior of both geogrid and surrounding 

material.  
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CHAPTER 7 

Conclusions and Recommendations 

 

 

7.1. Conclusions 

In this thesis, the discrete element method has been used to analyze the earth 

pressure distribution acting on a cylindrical shaft. Numerical results were 

compared with experimental and analytical solutions. The efficiency of the 

discrete element method in analyzing geotechnical problems involving granular 

material and large deformation was demonstrated. Using the validated discrete 

element code, a coupled finite-discrete element framework has been developed to 

allow soil-structure interaction analysis to be performed. The developed coupled 

finite-discrete element method has been implemented and used to analyze selected 

soil-structure interaction problems including geogrid pullout test, strip footing 

over geogrid-reinforced sand and geogrid-reinforced fill over potential void. The 

numerical results of the coupled finite-discrete element simulations were first 

validated using experimental data. New insight into the nature of the three-

dimensional interaction between the soil and the reinforcing layer was provided. 

The following conclusions can be drawn from the thesis: 

1) In chapter 3, a discrete element analysis was performed to investigate the 

lateral earth pressure acting on a cylindrical shaft. A modified multi-layer 

gravitational packing method was proposed to replicate the real soil 

packing procedure. The packing algorithm is capable of representing the 

actual particle size distribution. Both the physical and numerical studies 

demonstrated that even a limited movement of the shaft wall can lead to a 

rapid decrease in the lateral earth pressure acting on the shaft wall. A 

movement equivalent to 2.5% to 4% of the shaft radius was required to 

reach the full active earth pressure on the wall. Analytical solutions 

137 
 



 

proposed by Terzaghi and Berezantzev provided good agreement with the 

observed and calculated pressure distributions. A decrease in radial stresses 

and an increase in circumferential stresses in the vicinity of the shaft due to 

the arching effect were observed. Results obtained in this phase of the 

analysis provided the needed confidence in the discrete element framework 

that has been further used in developing the coupled Finite-Discrete 

element framework.   

2) In chapter 4, a coupled Finite-Discrete element framework was developed 

to simulate the soil-structure interaction. This algorithm allows for the 

coupling of the finite and discrete element methods. The interaction 

between the finite and discrete element domains is assured using interface 

elements. A multiple-time-step scheme was applied to optimize the 

computational cost. The developed algorithm was used to investigate the 

behavior of a biaxial geogrid embedded in granular material and subjected 

to pullout loading. The geogrid was modeled using finite elements while 

the backfill material was modeled using discrete elements. A good 

agreement between numerical results and experimental data was observed. 

For the investigated geogrid and soil conditions, largest displacements and 

stresses in the geogrid occurred near the front side of the box with rapid 

decrease with distance away from the geogrid. The contribution of the 

frictional component to the total pullout resistance was found to be larger 

than the bearing resistance. It was also found that the contribution of the 

bearing resistance to the overall capacity increased as the geogrid 

displacement increased. The soil movement and the contact force 

distribution within the soil domain agreed well with experimental 

observations.  

3) In chapter 5, the developed coupled Finite-Discrete element framework 

was implemented to analyze a strip footing over geogrid-reinforced sand. 

Both unreinforced and geogrid reinforced foundations were studied from 

which the efficiency of geogrid reinforcement was investigated. Validation 
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of the developed method was performed by simulating a laboratory 

experiment and comparing the calculated and measured data. An increase 

in the ultimate bearing capacity of the footing was found to depend on the 

number of reinforcing layers. Geogrid deformation and tensile stress for the 

case of one geogrid layer were found to be larger than those calculated for 

the case of two geogrid layers. The upper geogrid layer experienced larger 

deformation and tensile stress compared to the lower layer. At the ultimate 

load, a punching shear failure occurred above the geogrid followed by a 

general shear failure below the geogrid. An increase in the vertical stresses 

in the soil was also observed with the use of geogrid reinforcement. 

4) In chapter 6, the behavior of a geogrid-reinforced fill over strong formation 

containing void was studied using the developed Finite-Discrete element 

method. The efficiency of the geogrid in protecting the overlying fill layer 

was investigated. The three-dimensional interaction between the soil and 

the geogrid was also analyzed. The use of geogrid to reinforce a fill layer 

over a locally developed void is effective in preventing soil from excessive 

movement and improving the stability of the fill layer. The change in 

porosity in the geogrid reinforced fill was found to be much smaller 

compared to the unreinforced case. The developed soil arching resulted in 

stress redistribution in the fill with a reduction of vertical and horizontal 

stresses above the void location. Vertical stresses increased in the vicinity 

of the void while the largest horizontal stresses were observed at top of the 

fill layer. 

5) The coupled finite-discrete element analysis has proven its efficiency in 

analyzing soil-structure interaction problems. The framework has been 

implemented in an open source code with computational engines written in 

C++ and scripts written in Python.  
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7.2. Recommendations for future work 

Various soil-structure interaction problems can be studied using the developed 

coupled finite-discrete element framework including: 

• Earth pressure distribution on flexible pipes buried in granular backfill 

material. 

• Cyclic loading of geogrid-reinforced ballast. 

• Pile driving in granular material. 

Computational fluid dynamics (CFD) can be coupled with the finite-discrete 

element framework to investigate soil-structure interaction problems involving 

groundwater. Computational engines for CFD can be written and incorporated 

into the existing framework. The coupling can also be performed using an 

external CFD package as an add-on such as OpenFOAM and CCFD.    

The computational parts of the coupled finite-discrete element framework are 

written in C++ with object oriented approach. Scripts are built using Python, 

which assures rapid and flexible simulation construction. However, capability of 

the graphical interface is still limited. Additional effort to improve the graphical 

interface is therefore encouraged. Advanced constitutive models for the finite 

elements can also be added to the framework to allow for a wide range of 

structural elements to be modeled and enhance the capability of the analysis tool.  
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User Manual for the Developed 3D Coupled Finite-Discrete 
Element Analysis Tool 
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A.1. INTRODUCTION 

This appendix presents a user manual for the developed 3D coupled Finite-

Discrete element analysis. The developed framework is implemented in YADE, an 

open source code for DE analysis. Since both FE and DE simulations are handled 

in a common package, the tool provides an efficient approach for solving coupled 

FE-DE geotechnical problems.  

The computational parts of the coupled FE-DE framework are written in C++ 

with object oriented approach. Scripts are built using Python, which assures rapid 

and flexible simulation construction. Users who do not wish to modify C++ 

engines can develop their own analyses using Python scripts. Commands written 

in Python are first presented in the User Manual. C++ framework of the analysis 

tool is briefly presented in latter section. Many of the commands used in the DE 

module are also listed in the YADE’s documentation (https://yade-dem.org/doc/). 

Knowledge of Linux operating system, C++ and Python programming languages 

is strongly recommended for further development of the coupled FE-DE tool. 
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A.2. INSTALLATION 

The developed package can be installed in many Linux distributions. Installations 

in Kubuntu and Ubuntu have been verified. It is required to install some external 

libraries and packages prior to compiling the package. In Kubuntu, required 

libraries and packages can be installed using the following commands: 

sudo apt-get install scons cmake libcgal-dev git freeglut3-dev libloki-dev \ 
libboost-date-time-dev libboost-filesystem-dev libboost-thread-dev \ 
libboost-program-options-dev libboost-regex-dev fakeroot dpkg-dev \ 
build-essential g++ libboost-iostreams-dev liblog4cxx10-dev \ 
python-dev libboost-python-dev ipython python-matplotlib \ 
libsqlite3-dev python-numpy python-tk gnuplot doxygen \ 
libgts-dev python-pygraphviz libvtk5-dev python-scientific bzr \ 
libeigen3-dev binutils-gold python-xlib python-qt4 pyqt4-dev-tools \ 
gtk2-engines-pixbuf python-argparse libqglviewer-qt4-dev python-imaging \ 
libjs-jquery python-sphinx python-git python-bibtex libxmu-dev \ 
libxi-dev libgmp3-dev libcgal-dev help2man libqt3-mt-dev qt3-dev-tools \ 

After all prerequisites have been installed, the coupled FE-DE codes can be 

compiled inside the downloaded directory of the source code: 

scons PREFIX=/home/username/directory 

For example, we can install the tool inside /home/Thomas/YADE folder: 

scons PREFIX=/home/Thomas/YADE  

The directory of the installed package can be defined by editing the profile file 

scons.profile-default of the source code, for example:  

PREFIX=/home/Thomas/YADE 

YADE can now be compiled by simply typing:  

scons 
  

143 
 



 

A.3. PYTHON SCRIPTS 

A.3.1. Getting Started 

The coupled FE-DE analysis tool is mainly controlled from the terminal. In the 

directory of the installed folder, at least two following executable files can be 

seen: yade-unknown and yade-unknown-batch. In a typical simulation, yade-

unknown is used to start the analysis (Figure A-1). If some parameters are defined 

in a separate table, the simulation can be run in accordance with the parameter 

table using batch mode yade-unknown-batch.  

 

Figure A-1 Linux terminal to start YADE 

To run a script example.py from the terminal: 

./yade-unknown example.py  

If users want to exit YADE immediately after running the script, -x is added: 

./yade-unknown –x example.py 

To exit a simulation:  
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exit()  

or  

Exit 

To pause a running simulation:  

O.pause() 

To run a simulation:  

O.run() 

The current time-step can be achieved by:  

O.dt 

To obtain the current iteration:  

O.iter 

To turn on the Controller: 

qt.Controller() 

The Controller can also be activated by pressing F12 (Figure A-2). 

 

 Figure A-2 Controller and graphical interface 
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A.3.2. Basic Commands 

The number of bodies in a simulation is obtained using: 

len(O.bodies) 

Time-step for DE simulation can be determined using utils.PWaveTimeStep(): 

O.dt = 0.5*utils.PWaveTimeStep()   

where 0.5 is a user-determined safety coefficient. 

The current position of a body can be achieved: 

O.bodies[i].state.pos 

where O.bodies[i] is ith body stored in the simulation. 

For example, positions of all bodies are printed to screen using the following 

commands: 

# go through all bodies 
for body in O.bodies:    
 print body.state.pos 

Similarly, the current velocity of a body can be determined: 

O.bodies[i].state.vel 

For example: 

for body in O.bodies:    
 print body.state.vel 

To get information of the shape of a body: 

O.bodies[i].shape 

For example, radii of spherical particles with ids from 20 to 23 are printed:  

for i in range (20, 24):      
 print O.bodies[i].shape.radius    
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Material of a body is achieved by: 

O.bodies[i].mat 

For example: 

for body in O.bodies: 

 # check body's Id 
 if body.id < 5:   

  # print density  
  print body.mat.density    

To investigate forces acting on ith element: 

O.forces.f(i) 

For example: 

# go through all bodies 
for i in range (0, len(O.bodies)):   

 # print the first component of the force  
 print O.forces.f(i)[1]   

The interaction between two particles i and j can be checked using: 

O.interactions[i,j] 

For example: 

# loop through all interactions 
for I in O.interactions:  

 # print ids of the two particles in contact 
 print I.id1, I.id2    

A.3.3. Sample Generation 

The coupled FE-DE framework consists of several types of elements which can 

be categorized as:  

• DE elements: spheres, clumps, walls, boxes and facets.  
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• FE elements: quadrilateral elements, brick elements and shell elements. 

• Interface element: triangular and quadrilateral interface elements. 

The generation of the above elements is described below: 

A.3.3.1. Discrete element generation 

Spherical particle generation 

A spherical particle can be generated and added to a simulation: 

# generate a sphere with center (1, 2, 4) and radius 1.5  
s = utils.sphere(center = (1,2,4), radius = 1.5)  

# add the generated particle to O.bodies   
O.bodies.append(s)      

A set of DE particles can be generated by loading input files: 

load_DE_spheres (filename = "samplefile_nodes.txt") 

• filename: text file from which centers and radii of spherical particles are 

imported. The format of the input file is: 

Particle ID1 center_X center_Y center_Z radius   

Particle ID2 center_X center_Y center_Z radius  
... 

A cloud of spherical particles for loose packing samples can be generated using 

makeCloud(), for example (Figure A-3): 

# Generate a cloud of spheres within a box given by lower corner (0, 0, 0) and 
upper corner (1, 1, 1).  
# Radii of particles follow uniform distribution between 

# rMean*(1 - rRelFuzz) and rMean*(1 + rRelFuzz) 
sp=yade._packSpheres.SpherePack() 
sp.makeCloud(minCorner = Vector3(0, 0, 0), maxCorner = Vector3(1, 1, 1), 
rMean  = 0.06, rRelFuzz = 0.2)   
O.bodies.append([utils.sphere(s[0], s[1]) for s in sp])     

148 
 



 

 

 
Figure A-3 A cloud of spherical particles generated using makeCloud() 

Random dense packing can be achieved by using pack.randomDensePack(): 

pred = pack.inAlignedBox((-3, -3, -3), (3, 3, 3)) 
O.bodies.append(pack.randomDensePack(pred,radius=0.05,rRelFuzz=.2)) 

Dense packing samples can also be generated using a radius expansion method: 

sp.radiusExpansion(minCorner = Vector3(0, 0, 0), maxCorner = Vector3(1, 1, 1), 
rMean = 0.006, rRelFuzz = 0.2, maxMultiplier = 1.05)   
O.bodies.append([utils.sphere(s[0],s[1]) for s in sp])   

Medium packing samples can be generated using a multi-layer gravitational 

packing approach (Tran et al., 2012, 2013): 

sp.multiLayerPacking(minCorner = Vector3(0, 0, 0), maxCorner = Vector3(1, 1, 
1),rMean = 0.006, rRelFuzz = 0.2, targetPorosity = 0.39)   
O.bodies.append([utils.sphere(s[0],s[1]) for s in sp])  

A DE sample can be generated considering the particle size distribution, for 

example: 
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 sieve = [] 

# add a sieve with particle size 0.0075 and % (in mass) of finer particles: 0%  
sieve.append((0.0075,0)) 
sieve.append((0.01,85)) 
sieve.append((0.025,97)) 
sieve.append((0.03,100)) 
sp. makeCloud (minCorner = Vector3(0, 0, 0), maxCorner = Vector3(1, 1, 
1),sieveMass = sieve,  targetPorosity = 0.39)   
O.bodies.append([utils.sphere(s[0],s[1]) for s in sp])  

Clump generation 

Rigid aggregate of individual particles can be generated using appendClumped(), 

for example (Figure A-4): 

s1 = utils.sphere(center = (0, 1, 0), radius = 0.5)    
s2 = utils.sphere(center = (0, 1.6, 0), radius = 0.6)   

#Tie two spheres together and add the generated clump to O.bodies 
O.bodies. appendClumped ([s1, s2])   

Wall generation 

A rigid wall can be generated using utils.box() such as: 

O.bodies.append(utils.box(center=[-1, 0, 1],extents=[1, 1, 0])) 

• center: center point of the box. 

• extents: half lengths of the box sides. 

Box generation 

In order to generate a box, a function aabbWalls() can be used, for example: 

mn, mx=Vector3(0,0,0),Vector3(1,1,1) 
walls=utils.aabbWalls([mn,mx],thickness=0.05) 
O.bodies.append(walls) 

Facet generation 

Facets are generated using utils.facet() such as: 
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# generate a facet with three corners (.2,.2,0), (.2,0,0) and (0,.2,0) 
 O.bodies.append(utils.facet([(.2,.2,0),(.2,0,0),(0,.2,0)])) 

 

Figure A-4 Snapshot of a clump and a wall  

A.3.3.2. Finite element generation 

Finite elements in the coupled FE-DE framework are imported from input files. 

Input files consist of coordinates of FE nodes and node numbering of FE 

elements. These input files can be obtained from external packages. The functions 

built in YADE are compatible with output files exported from GID, a graphical 

user interface for finite element modeling. 

FE nodes are imported using load_FE_nodes():  

load_FE_nodes (filename = "samplefile_nodes.txt", ndim = 3, radius = 0.0005) 

• filename: text file from which coordinates of FE nodes are read. The 

format of the input file is: 

Node ID1 x1 y1 (z1)   

Node ID2 x2 y2 (z2) 
... 
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• ndim: number of dimensions of the simulated problem. 

• radius: radius of FE nodes, for illustration purpose only. 

Solid FE elements are imported using load_solid_elements():  

load_solid_elements (filename = "samplefile_elements.txt", ndim = 3, 
elementType = "Hexahedron8N8I", matFlag = "elastic") 

• filename: text file from which FE elements are imported. The format of 

the file is: 

Element ID1 Node ID1 Node ID2 Node ID3 ...   
Element ID2 Node ID1 Node ID2 Node ID3 ...   

... 

• ndim: number of dimensions of the simulated problem. 

• elementType: type of FE elements. Different FE elements are available in 

the package including: 

 "Quadrilateral": quadratic quadrilateral element with eight integration 

points. 

"Hexahedron8N1I": eight-node quadratic brick element with one 

integration point. 

"Hexahedron8N8I": eight-node quadratic brick element with eight 

integration points. 

"Hexahedron20N8I": twenty-node quadratic brick element with eight 

integration points. 

• matFlag: flag indicating material of FE elements.  

"elastic": elastic material 

"mohrCoulomb": Mohr-Coulomb failure criterion 

Shell elements are imported using load_shell_elements():  

load_shell_elements (filename = "samplefile_shells.txt", thickness = 0.002, 
matFlag = "elastic") 
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• filename: text file from which FE elements are imported. The format of 

the text file is: 

Element ID1 Node ID1 Node ID2 Node ID3 Node ID4  

Element ID2 Node ID1 Node ID2 Node ID3 Node ID4 
... 

• thickness: thickness of shell elements 

A.3.3.3. Interface element generation 

Interface elements are used to assure the interaction between FE and DE domains. 

In the coupled FE-DE framework, both triangular facets and quadrilateral facets 

are available. A quadrilateral facet is directly defined by the four nodes of the 

element (quadrilateral or hexahedron shape) located on the interface. If triangular 

facets are used for quadrilateral and hexahedral elements, the contact interface is 

divided into four triangular facets by creating a temporary center node. In the case 

of triangular or tetrahedron elements, a triangular facet is defined by the three 

nodes of the element located on the interface. 

Interface elements are imported using load_interface_elements():  

load_interface_elements (filename = "samplefile_interfaces.txt", elementType = 
"Tri-interface") 

• filename: text file from which interface elements are imported. The format 

of the file is: 

Element ID1 Node ID1 Node ID2 Node ID3 (Node ID4)  
Element ID2 Node ID1 Node ID2 Node ID3 (Node ID4) 
... 

• elementType: type of interface elements consisting of: 

"Tri-interface": triangular interface 

"Quad- interface": quadrilateral interface 
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Figure A-5 shows an example of FE and DE elements in a simulation. Triangular 

interfaces are used to assure the FE-DE interaction. 

 

Figure A-5 Two DE particles over a FE plate. The plate is covered with triangular 

interface elements to assure its interaction with DE particles 

A.3.3.4. Optional features for DE and FE elements 

Some features can be optionally defined during the generation of DE and FE 

elements. If optional features are not defined, they are assigned default values. 

• color = (x, y, z): determine color of elements (by default, a random color), 

for example: 

# add a sphere with center (1, 2, 4), radius 1.5 and color (0.2, 0.4, 0.6) 
O.bodies.append (utils.sphere(center = (1, 2, 4), radius = 1.5, color = (0.2, 
0.4, 0.6)))     

• wire: determine if an element is illustrated by "wired" or filled shape (by 

default, wire = False), for example: 

# add a sphere with center (1, 2, 4), radius 1.5 and wired shape) 
O.bodies.append(utils.sphere(center = (1,2,4), radius = 1.5, wire = True))     
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• dynamic: determine whether a body will be moved by Newton’s law (by 

default, dynamic = True for DE particles and dynamic = False for FE 

particles). For example: 

# add to O.bodies a non-dynamic sphere 
O.bodies.append (utils.sphere(center = (1,2,4), radius = 1.5, dynamic = 
False))   

A.3.4. Boundary Conditions 

A.3.4.1. Discrete elements 

The motion of DE elements can be restrained in several ways: 

• dynamic: force a DE element to be non-dynamic (not moved by 

NewtonIntegrator) by setting dynamic = False: 

utils.sphere([x, y, z), radius, dynamic = False )  

• fixed: positions of elements will not change in space by setting fixed = 

True, for example: 

O.bodies.append(utils.box(center=[0, 0, 0],extents=[.5,.5,.5],fixed=True)). 

 Note: when fixed = True, DE elements can still be moved manually using 

 commands in Python or C++. 

• blockedDOFs: block any of six degrees of freedom of a particle. For 

example, a sphere that can only move in the yz plane is generated: 

O.bodies.append(utils.sphere( [1, 2, 4], 1.5))     
O.bodies[0].state.blockedDOFs = [‘x’, ‘ry’, ‘rz’] 

Restrained conditions of DE particles during simulation can also be achieved 

using engines such as UniaxialStrainer(), TriaxialStressController(), 

PeriTriaxController(), ForceEngine(), RotationEngine() and TranslationEngine(). 

A.3.4.2. Finite elements 

Movement restraints of FE nodes are assigned using load_restraints(): 
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load_restraint(filename = "samplefile_restraints.txt") 

The format of the input file is: 

Node ID1 Restraint_x1 Restraint_y1 Restraint_z1   
Node ID2 Restraint_x2 Restraint_y2 Restraint_z2  

... 

All restraint values of a FE node are set to  zero as default. If a FE node is 

restrained in a direction, the restraint value corresponding to that direction is set to 

a value of 1. 

A.3.5. Assigning Forces and Displacments 

A.3.5.1. Discrete elements 

Forces acting on DE particles are stored temporarily during one simulation step 

and reset to zero at the beginning of the next step. Forces on DE particles can be 

added in a simulation step: 

# add a force (1, 5, 7) to O.bodies[25] 
O.forces.addF(25, Vector3(1,5,7))    

It is noted that modification of forces using Python is rarely used. It is usually 

done using C++. 

Forcing the wall to move with a certain velocity can be achieved using: 

# translational motion 
O.bodies[i].state.vel = (0, 0.5, 0) 

# rotational motion 
O.bodies[i].state.angVel=(0.1, 0, 0)  

A.3.5.2. Finite elements 

External forces acting on a FE domain are imported from input files using 

load_external_force(): 

 load_external_force(filename = "samplefile_loads.txt", stepLoad = stepLoading) 
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• stepLoad: a user-defined vector which defines simulation load-steps, for 

instance: 

stepLoad =  [0, 100, 200, 300] 

• filename: input file which contains external forces acting on FE nodes. 

The format of the input file is: 

Node ID1 fx fy fz   
Node ID2 fx fy fz  
... 

It is noted that for a certain stepLoad[i], real forces acting on a FE node:  

(fx. stepLoad[i], fy. stepLoad[i], fz. stepLoad[i]) 

For displacement-controlled problems, prescribed displacements can be applied to 

certain FE nodes using command: 

set_displacements (filename = "samplefile_displacement.txt", stepDisp=stepdisp)  

• stepDisp: represents simulation displacement-steps, for instance: 

stepDisp =  [0, 0.05, 0.1, 0.2] 

• filename: the format of the input file is: 

Node ID1 Ux Uy Uz   

Node ID2 Ux Uy Uz  
... 

Pre-determined displacements of a FE node for a certain displacement-step are: 

(fx. stepDisp[i], fy. stepDisp[i], fz. stepDisp[i]). 

A.3.6. Material Models 

A.3.6.1. Discrete elements 

There are many material models available in YADE, some of them are: 

• FrictMat 

• CohFrictMat 
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• NormalInelasticMat 

• ViscElMat 

• CpmMat 

• WireMat 

New materials are added to the simulation using append command, for example: 

O.materials.append(FrictMat(young=4E7,poisson=0.2,frictionAngle=0.5, 
density=2650, label = "sand")) 

A DE particle can be assigned its material properties during generation stage: 

O.bodies.append (utils.sphere(center = (1,2,4), radius = 1.5, material ="sand")) 
load_DE_spheres (filename = "samplefile_nodes.txt", material ="soil") 

A.3.6.2. Finite elements 

Material properties of FE elements are defined: 

For elastic model: 

FE_Elastic(young = 3E9, gamma = 15, v = 0.3, EleID = []) 

For Mohr_Coulomb model (perfect-plasticity): 

FE_MohrCoulomb(young = 3E9, gamma = 15, v = 0.3, c = 2, phi = 0.6, psi = 0, 
EleID = []) 

• young: Young’s modulus 

• gamma: specific weight 

• v: Poisson’s ratio 

• c: cohesion 

• phi: friction angle 

• psi: dilatancy angle 

• EleID: Only FE elements with certain IDs are assigned material 

properties. By default, EleID is an empty list and all FE elements are 

assigned the newest material properties.  
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A.3.6.3. Interface elements 

Material models for DE particles can be used for interface elements. Material 

properties of interface elements are defined during their generation: 

# add a FrictMat material 
O.materials.append(FrictMat(young=4E7,poisson=0.2,frictionAngle=0.5,density=
2650, label = "interface")) 

# Generate interfaces from input file and assign materials.  
load_interface_elements (filename = "samplefile_interfaces.txt", elementType = 
"Tri-interface", material ="interface") 

A.3.7. Simulation Engines 

Main engines of the coupled FE-DE analysis tool can be categorized as follows: 

• DE simulation engines 

• FE simulation engines 

• Interface – DE particle interaction engines 

• Additional engines 

Different engines types are discussed below: 

A.3.7.1. DE simulation engines 

A typical DE simulation loop consists of the following tasks (as shown in Figure 

A-6): 

• Reset forces acting on bodies. 

• Approximate and real interaction detections 

• Determine physical properties of interactions.  

• Calculate forces acting on DE elements from constitutive laws 

• Update total forces acting on DE elements 

• Update DE element positions  
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Figure A-6 Typical simulation loop of DE simulation 

In a python script, essential engines are demonstrated as: 

O.engines=[ 

 # reset forces and from previous step 
 ForceResetter(), 

 # approximate collision detection 
 InsertionSortCollider(...),  

 # handle interactions  
 InteractionLoop([...], [...], [...]), 

 # apply forces and update positions 
 NewtonIntegrator(),    
] 

It is noted that functors are omitted in the above engines. The selection of functors 

depends on particle shapes and interaction types. 

In InsertionSortCollider(), bounding volumes are generated for spheres, boxes 

and facets using corresponding functors: 

160 
 



 

• Bo1_Sphere_Aabb(): for spheres. 

• Bo1_Box_Aabb(): for walls. 

• Bo1_Facet_Aabb(): for facets. 

In consistency with particle shapes and constitutive laws, interaction functions 

determined in InteractionLoop() consist of: 

• Functors that determine potential interactions and generate geometrical 

information about each potential interaction. Some typical functors are 

listed below: 

#  6 Dofs sphere-sphere interaction 
 Ig2_Sphere_Sphere_ScGeom6D() 

#  6 Dofs wall-sphere interaction 
 Ig2_Box_Sphere_ScGeom6D() 

 #  6 Dofs facet-sphere interaction 
 Ig2_Facet_Sphere_ScGeom6D()  

 and: 

 #  6 Dofs sphere-sphere interaction 
 Ig2_Sphere_Sphere_L6Geom()  

 #  3 Dofs wall-sphere interaction  
      Ig2_Wall_Sphere_L3Geom()  

 #  3 Dofs facet-sphere interaction 
 Ig2_ Facet _Sphere_L3Geom()  

• Functors that determine non-geometrical features of interactions, some are 

listed below: 

Ip2_FrictMat_FrictMat_MindlinPhys()   
Ip2_FrictMat_FrictMat_FrictPhys() 
Ip2_2xNormalInelasticMat_NormalInelasticityPhys() 
Ip2_FrictMat_CpmMat_FrictPhys() 
Ip2_ViscElMat_ViscElMat_ViscElPhys() 
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• Functors that determine constitutive laws, for example: 

Law2_ScGeom_MindlinPhys_Mindlin() 
Law2_ScGeom_FrictPhys_CundallStrack() 
Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity() 
Law2_ScGeom_CpmPhys_Cpm() 
Law2_ScGeom_ViscElPhys_Basic() 

NewtonIntegrator() is used to apply forces and update positions of DE particles. 

This engine also defines gravity acting on DE particles and damping ratio, for 

example: 

# Apply NewtonIntegrator() with gravity (0, 0, -9.81) and damping ratio of 0.2 
NewtonIntegrator (gravity = (0,0,-9.81), damping = 0.2) 

Problem 1: A simple script for DE simulation is presented. In the problem, a 

sphere and a solid box are generated. The box is fixed while the sphere can move 

under gravity. The simulation is set to run 20000 steps. 

print "------------Simulation started------------" 

# Omega is the super-class that controls the whole simulation 
O=Omega()   

# add a material FrictMat 
O.materials.append(FrictMat(young=4E7,poisson=0.2,frictionAngle=0.5,density=
2650)) 

# add a fixed box 
O.bodies.append(utils.box(center=[0,0,0],extents=[.5,.5,.5],color=[0,0,1],fixed = 
True)) 

# add a sphere 
O.bodies.append(utils.sphere([0,0,2],1,color=[0,1,0])) 

# Engines which are called consecutively in a calculation step 
O.engines=[ 
 ForceResetter(),  
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
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  Bo1_Box_Aabb(), 
 ]), 
 InteractionLoop(   
  [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],  
  [Ip2_FrictMat_FrictMat_FrictPhys()],   
  [Law2_ScGeom_FrictPhys_CundallStrack()] 
 ),  
 NewtonIntegrator(damping=0.1, gravity=[0,0,-9.81]) 
] 

# set time-step from p-wave speed and multiply it by safety factor of 0.2 
O.dt= .2*utils.PWaveTimeStep()  

# enable graphical interface 
from yade import qt 
qt.View() 
qt.Controller() 

#run the simulation for 20000 steps 
O.run(20000, True) 
print "------------Script ended------------" 

 

 Figure A-7 The box and sphere described in problem 1  
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A.3.7.2. FE simulation engines 

In the developed coupled FE-DE framework, a dynamic explicit approach is used 

for FE simulation. The flowchart of FE simulation is shown in Figure A-8. 

 

Figure A-8 Typical simulation loop of FE simulation 

 A typical FE simulation consists of the following engines: 

• Reset forces acting on FE nodes from previous step: 

FE_ForceResetter() 

• Determine physical properties of FE elements (ex: nodal masses, element 

stiffnesses and restraints): 

# for quadrilateral element 
SetQuadrilateralParameters()    

# for quadratic brick element Hexahedron8N1I 
 SetHexahedron8N1IParameters() 

 # for quadratic brick element Hexahedron8N8I 
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SetHexahedron8N8IParameters()  

 # for quadratic brick element Hexahedron20N8I 
 SetHexahedron20N8IParameters() 

 # for shell element   
 SetShellBT4()     

• Update geometrical properties of FE elements: 

 # for quadrilateral element 
 SetGeoQuadrilateral2D()   

 # for quadratic brick element Hexahedron8N1I and Hexahedron8N8I 
 SetGeoHexahedron()    

 # for quadratic brick element Hexahedron20N8I 
 SetGeoHexahedron20N()  

 # for shell element 
 SetGeoShellBT4()       

• Determine external loads acting on FE nodes: 

 SetMultiStepExternalForce() 

• Determine FE critical time-step and multiply it by a safety factor: 

 GlobalTangentStiffnessTimeStepper(ratio = 0.5) 

• Set FE time-step equal to n times (n >= 1) DE time-step (for coupled FE-

DE problems): 

 setdtFEM(n = 100) 

• Determine damping coefficient: 

 DampingRayleigh()  

• Check convergence conditions: 

 CheckConvergence() 

• Calculate strains and stresses at Gauss points and update body loads: 

 # for quadrilateral and brick elements 
 TangentStiffnessCPPM() 
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 # for shell element 
 ElasticShellSolver()    

• Calculate nodal velocities and update nodal positions 

 CentralDifference() 

• Record outputs 

 OutputRecording() 

Problem 2: This example presents a simple script for FE simulation in which a 

square footing over granular soil is simulated. FE elements, material properties, 

boundary conditions and loading information are imported from corresponding 

input files. Pressure acting on the footing is increased to investigate the 

foundation bearing capacity (Figure A-9). 

print "------------Simulation started------------" 
from yade import plot 
from yade.pack import * 
O=Omega() 

## loading necessary files and generate FEM nodes, elements, loading 
conditions,.. 

# Generate FE nodes 
load_FE_nodes (filename = "squarefooting_nodes.txt", ndim = 3, radius = 0.001) 

# Generate FE elements 
load_solid_elements (filename = "squarefooting_elements.txt", ndim = 3, 
elementType = "Hexahedron8N8I", matFlag = "elastic") 

# Apply boundary conditions 
load_restraint(filename = "squarefooting_restraints.txt") 

# Apply material properties 
FE_Elastic(young = 3E9, gamma = 15, v = 0.3) 

# Apply loading steps 
step =  [0, 100, 200, 300] 
load_external_force(filename = "squarefooting_loads.txt", stepLoad = step) 

## Engines that run during the simulation 
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O.engines= [ 
ForceResetter(), 
SetHexahedron8N8IParameters(), 
SetGeoHexahedron(), 
TangentStiffnessCPPM(), 
CheckConvergence(), 
GlobalTangentStiffnessTimeStepper(ratio = 0.5), 
DampingRayleigh(), 
SetMultiStepExternalForce(), 
CentralDifference(), 
OutputRecording() 
] 
print "------------Script ended------------" 
 

 

Figure A-9 FE simulation of a square footing problem in YADE 

A.3.7.3. Interface-DE particle simulation engines 

Contact forces resulted from particle–interface interactions are transmitted into 

the FE nodes. The contact algorithm used in the coupled FE-DE framework is 
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similar to that used between DE particles. The flowchart of the coupled FE-DE 

framework is shown in Figure A-10.  

 

Figure A-10 Flowchart of the coupled FE-DE framework 

Engines which handles the interaction between DE particles and interface 

elements consist of : 

• Determine bounding volume of interfaces: 

 Bo1_QuadInterface_Aabb() 

• Determine physical properties of interfaces: 

  SetInterfaceParameters() 

• Update geometrical properties of interfaces: 

 SetGeoQuadInterface() 

• Determine potential interactions between DE particles and interfaces: 
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 #  6 Dofs interface-sphere interaction 
 Ig2_ Interface _Sphere_ScGeom6D()   

Problem 3: A coupled FE-DE problem which illustrates the interaction between 

the two domains is presented. Two spheres are generated using DEM while a 

plate is generated using FEM.  The two spheres are then allowed to fall onto the 

plate. The interaction between the DE particles and the FE plate is modeled using 

interface elements (Figure A-11). 

print "------------Simulation started------------" 
from yade import plot 
from yade.pack import * 
O=Omega() 

## Define materials 
# for DE particles 
O.materials.append(FrictMat(young = 10E7, poisson = 0.25, frictionAngle = 0.75, 
density = 2650, label="sphere")) 

#for interfaces 
O.materials.append(FrictMat(young=10E7, poisson = 0.25, frictionAngle = 0.75, 
density = 2650, label="interface")) 

## Load necessary files and generate FEM nodes, elements, loading conditions,.. 
# Generate FE nodes 
load_FE_nodes (filename = "plate_nodes.txt", radius = 0.001) 

# Generate FE elements 
load_solid_elements (filename = "plate_elements.txt", elementType = 
"Hexahedron8N8I", matFlag = "elastic") 

# Generate interface elements 
load_interface_elements (filename = "plate_interfaces.txt", elementType = "Tri-
interface", material ="interface") 

# Apply boundary conditions 
load_restraint(filename = "plate_restraints.txt") 

# Apply material properties for FE elements 
FE_Elastic(young = 3E6, gamma = 16.0, v = 0.25) 
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# Generate 2 spherical DE particles 
O.bodies.append(utils.sphere([0.3, 0.25, 0.1], 0.05, material = "sphere ")) 
O.bodies.append(utils.sphere([0.4, 0.15, 0.12], 0.06, material ="sphere ")) 

# Enable graphical interface 
from yade import qt 
qt.View() 
qt.Controller() 

## Engines that run during the simulation 
O.engines= [  
 ForceResetter(),  

ResetInteractingSphere(), 

 # execute only at the first step 
 SetHexahedron8N8IParameters(), 

 # execute only at the first step  
 SetInterfaceParameters(),        
 SetGeoHexahedron(), 
 SetGeoQuadInterface(), 
 TangentStiffnessCPPM(),  
 CheckConvergence(), 
 DampingRayleigh(), 
 SetMultiStepExternalForce(), 

 # set time-step for DE calculation,  O.dt= 0.9*utils.PWaveTimeStep()  
 setdtDEM(ratio = 0.9),  
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
  Bo1_QuadInterface_Aabb() 
  ]), 
 InteractionLoop([ 

Ig2_Sphere_Sphere_ScGeom6D(), 
Ig2_Interface_Sphere_ScGeom6D() ],  

  [Ip2_2xNormalInelasticMat_NormalInelasticityPhys()], 
  [Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity()]  
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 ), 
 NewtonIntegrator(damping=0.1, gravity = [0,0,-9.81]), 

 # set time-step for FE calculation  = 100 times DE time-sep    
 setdtFEM(n = 10),  
 CentralDifference(), 
 OutputRecording()  
 ] 
print "------------Script ended------------" 
 

 

Figure A-11 Deformation of a FE plate in interaction with two DE particles using 

the coupled FE-DE framework 

It is noted that in the above Python script, the FE time-step is 100 times the DE 

time-step. Since the time-step FEt∆  required for FE is much larger than that for 

DE ( DEt∆ ), it is not efficient to use a common time-step for both FE and DE 

models. Thus, different time-steps for each domain are implemented in the 
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coupling framework to improve the computational efficiency. The time-step in the 

FE domain is selected as FE DEt n t∆ = ∆  where n is an integer such that 
[ ]FE

DE

t
n

t
∆

≤
∆

. 

This algorithm is implemented by executing the FE solver for every n DE 

computations. 

A.3.7.4. Additional engines 

Additional functions can be added to the simulation to handle other required 

tasks. In YADE, users can develop their own functions either in Python or C++. 

Functions written in Python are added to the main engine using PyRunner().    

Problem 4: A loose sample is generated inside a container using makeCloud(). A 

function named vertical_compress() is written in Python to vertically compress 

the top wall until the wall movement reaches a target value of 0.18. Vertical 

position and pressure acting on the top wall are monitored during the simulation 

using a defined function monitor(). The two functions vertical_compress() and 

monitor() are executed for every 100 time-steps (Figure A-12). 

print "------------Simulation started------------" 

# Omega is the super-class that controls the whole simulation 
O=Omega()   

# add a material type FrictMat 
O.materials.append(FrictMat(young = 1E7, poisson = 0.25, frictionAngle = 0.6, 
density = 2650)) 

# Corners of the box 
x_min, y_min, z_min = 0.0, 0.0, 0.0 
x_max, y_max, z_max = 0.5, 0.2, 0.3 

## Generate a container 

# top wall 
O.bodies.append(utils.box(center = [(x_min + x_max)/2, (y_min + y_max)/2, 
z_max], extents = [(-x_min + x_max)/2, (-y_min + y_max)/2, 0], fixed = True, 
wire=True)) 

# bottom wall 
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O.bodies.append(utils.box(center = [(x_min + x_max)/2, (y_min + y_max)/2, 
z_min], extents = [(-x_min + x_max)/2, (-y_min + y_max)/2, 0], fixed=True, 
wire=True))  

# left wall 
O.bodies.append(utils.box(center = [x_min, (y_min + y_max)/2, (z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2, (-z_min + z_max)/2], fixed=True, 
wire=True))  

# right wall 
O.bodies.append(utils.box(center = [x_max, (y_min + y_max)/2, (z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2, (-z_min + z_max)/2], fixed=True, 
wire=True))  

# front wall 
O.bodies.append(utils.box(center = [(x_min + x_max)/2, y_min, (z_min + 
z_max)/2], extents = [(-x_min + x_max)/2, 0, (-z_min + z_max)/2], fixed=True, 
wire=True))  

# behind wall 
O.bodies.append(utils.box(center = [(x_min + x_max)/2, y_max, (z_min + 
z_max)/2], extents = [(-x_min + x_max)/2, 0, (-z_min + z_max)/2], fixed=True, 
wire=True))  

# Generate a cloud of spheres  
sp=yade._packSpheres.SpherePack() 
sp.makeCloud(Vector3(x_min, y_min, z_min), Vector3(x_max, y_max, z_max), 
0.006, 0.2) 
O.bodies.append([utils.sphere(s[0], s[1]) for s in sp]) 

# determine whether the top wall is still moved  
moving_box = True 

# Engines which are called consecutively in a calculation step 
O.engines=[ 
 ForceResetter(),  
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
  Bo1_Box_Aabb(), 
 ]), 
 InteractionLoop(   
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  [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], 
  [Ip2_FrictMat_FrictMat_FrictPhys()],    
  [Law2_ScGeom_FrictPhys_CundallStrack()] 
 ),  
 NewtonIntegrator(damping=0.1, gravity=[0, 0, -9.81]), 
 setdtDEM(ratio = 0.8),  
 PyRunner(iterPeriod=100, command='vertical_compress()'), 
 PyRunner(iterPeriod=100, command='monitor()'), 
] 

# function that compresses the soil sample by moving downward the top wall 
def vertical_compress(): 
 global moving_box  
 if moving_box:        
       O.bodies[0].state.vel = (0, 0, -0.5)  
       if abs(O.bodies[0].state.pos[2] -  z_max) > 0.18:   
   moving_box = False 

   # set velocity of the top wall to zero  
   O.bodies[0].state.vel = (0,0,0.0)  

# Monitor the simulation 
def monitor():   

S_contact=O.bodies[0].shape.extents[0]*O.bodies[0].shape.extents[1]*4 
pressure = abs((O.forces.f(0)[2]) / S_contact/1000) 
vertical_pos = O.bodies[0].state.pos[2] 
print "pressure and vertical pos of top wall: ",pressure,"\t\t", vertical_pos 

print "------------Script ended------------" 

174 
 



 

 
Figure A-12 Soil sample in problem 4 before and after compression 

Problem 5: A python script is presented here to simulate a direct shear test. DE 

particles are imported from an input file. The sample is first vertically compressed 

to reach a target vertical stress.  The lower part of the sample is then horizontally 

moved while the upper part is kept stationary. Vertical stress acting on top of the 

sample is maintained during the simuation. Two addtional engines are used: 

KinemDirectShearCompEngine() and KinemDirectShearMovingEngine() (Figure 

A-13). 

print "------------Simulation started------------" 
O=Omega()   

# add material for DE particles 
O.materials.append(FrictMat(young = 1E7, poisson = 0.25, frictionAngle = 0.6, 
density = 2650)) 

# add material for side walls  
O.materials.append(FrictMat(young = 1E7, poisson = 0.25, frictionAngle = 0.0, 
density = 2650)) 

# add material for top and bottom walls 
O.materials.append(FrictMat(young = 1E7, poisson = 0.25, frictionAngle = 0.8, 
density = 2650)) 

# size of the shear box 

a) before compression b) after compression 
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L_x, L_y, L_z  = 0.06, 0.0125, 0.06 

# names of input and output files 
sphere_input_file_name = "Direct_shear_test_sphere_input.txt" 
out_put_file_name = "Direct-shear-test-ouput.txt" 

## now define boxes 

# lower part, left wall 
left_low_center, left_low_extents  = (0, L_y/2, L_z/2), (0, L_y/2, L_z/2) 

# lower part, right wall 
right_low_center, right_low_extents = (L_x, L_y/2, L_z/2), (0, L_y/2, L_z/2) 

# bottom wall 
bot_center, bot_extents = (L_x/2, 0, L_z/2), (L_x/2, 0, L_z/2) 

# lower part, behind wall 
behind_low_center, behind_low_extents = (L_x/2, L_y/2, 0), (L_x/2,  L_y/2, 0) 

# lower part, front wall 
front_low_center, front_low_extents = (L_x/2, L_y/2, L_z), (L_x/2,  L_y/2, 0) 

# upper part, left wall 
left_upper_center, left_upper_extents = (0, 3*L_y/2 , L_z/2), (0, L_y/2, L_z/2) 

# upper part, right wall 
right_upper_center, right_upper_extents = (L_x, 3*L_y/2, L_z/2), (0,L_y/2, 
L_z/2) 

# top wall 
top_center, top_extents = (L_x/2, 2*L_y, L_z/2), (L_x/2, 0, L_z/2) 

# upper part, behind wall 
behind_upper_center, behind_upper_extents=(L_x/2,3*L_y/2,0),(L_x/2,L_y/2, 0) 

# upper part, front wall 
front_upper_center, front_upper_extents = (L_x/2, 3*L_y/2,L_z), (L_x/2,L_y/2, 
0) 

## generate two additional panels at the middle height of the sample to avoid 
particles from falling out during shearing, the two panels will be expanded 
following shearing process. 
# left panel 
left_panel_center, left_panel_extents = (0, L_y, L_z/2), (0, 0, L_z/2) 
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# right panel 
right_panel_center, right_panel_extents = (L_x, L_y , L_z/2), (0, 0, L_z/2) 

# now add walls to simulation 
leftBox_low = utils.box(center = left_low_center, extents = left_low_extents, 
fixed = True, wire = True, material = O.materials[1]) 
rightBox_low = utils.box(center = right_low_center, extents = right_low_extents, 
fixed = True, wire = True, material=O.materials[1]) 
botBox = utils.box(center = bot_center, extents=bot_extents, fixed = True, wire = 
True, material=O.materials[2]) 
behindBox_low = utils.box(center = behind_low_center, extents = 
behind_low_extents, fixed = True, wire = True, material=O.materials[1]) 
frontBox_low = utils.box(center = front_low_center, extents = front_low_extents 
, fixed = True, wire = True, material=O.materials[1]) 
leftBox_upper = utils.box(center = left_upper_center, extents = 
left_upper_extents, fixed = True, wire = True, material=O.materials[1]) 
rightBox_upper = utils.box(center = right_upper_center, extents = 
right_upper_extents , fixed=True, wire = True, material=O.materials[1]) 
topBox = utils.box(center=top_center, extents = top_extents, fixed = True, wire = 
True, material=O.materials[2]) 
behindBox_upper = utils.box( center = behind_upper_center, extents = 
behind_upper_extents , fixed=True,wire=True,material=O.materials[1]) 
frontBox_upper = utils.box( center = front_upper_center, extents = 
front_upper_extents, fixed=True,wire=True,material=O.materials[1]) 
leftPanel = utils.box( center = left_panel_center, extents = left_panel_extents, 
fixed=True,wire=True) 
rightPanel = utils.box( center = right_panel_center, extents = right_panel_extents, 
fixed=True,wire=True) 

# add to O.bodies 
O.bodies.append([leftBox_low, rightBox_low, botBox, behindBox_low, 
frontBox_low, leftBox_upper, rightBox_upper, topBox, behindBox_upper, 
frontBox_upper,leftPanel, rightPanel])      

# add spheres 
infile = open(sphere_input_file_name,"r") 
lines = infile.readlines() 

177 
 



 

for line in lines: 
    data = line.split() 
    center = Vector3(float(data[0]),float(data[1]),float(data[2])) 
    radius = float(data[3])  
    O.bodies.append([utils.sphere(center,radius,material=O.materials[0])]) 

# engines of the simulation 
O.engines=[ 
 ForceResetter(),  
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
  Bo1_Box_Aabb(), 
  ]), 
 InteractionLoop(   
  [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], 
  [Ip2_FrictMat_FrictMat_FrictPhys()],    
  [Law2_ScGeom_FrictPhys_CundallStrack()] 
 ),  
 NewtonIntegrator(damping = 0.2, gravity = (0, -9.81, 0)), 
 ] 

# set DE time-step  
O.dt=.5*utils.PWaveTimeStep() 

# add a compression engine to generate vertical stress = 50 kPa 
O.engines = O.engines+[KinemDirectShearCompEngine(compSpeed =0.004, 
targetSigma = 50)] 

# run 2000 steps to reach the target vertical stress 
O.run(2000,True) 

# add shearing engine, shearing speed = 0.001, max shearing distance = 0.03 
O.engines=O.engines[:4] + [KinemDirectShearMovingEngine(shearSpeed = 
0.001 ,targetSigma = 50, gammalim=0.03)] 

# now run 
O.run() 
print "------------Script ended------------" 
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Figure A-13 DE used in the three-dimensional direct shear test and b) Three-

dimensional contact force network 

Problem 6: A trip foundation over geogrid reinforced soil is simulated using the 

coupled FE-DE framework. The geogrid is modeled using FEM while the soil is 

modeled using DEM. Interaction between the two domains are assured using 

triangular interface elements. Pressure at the foundation base is applied in small 

increments using a C++ written function FoundationLoadingEngine() (Figure A-

14). 

print "------------Simulation started------------" 
O=Omega() 

## Define materials 
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# for DE particles 
O.materials.append (NormalInelasticMat(young=4E7,poisson=0.2, 
frictionAngle=0.5, density=2650, label="sphere")) 

# for interfaces 
O.materials.append(NormalInelasticMat(young=4E7,poisson=0.2,frictionAngle 
=0.5, density=2650, label="interface")) 

## Load necessary files and generate FEM nodes, elements, loading conditions,.. 
# Generate FE nodes 
load_FE_nodes (filename = "foundation_nodes.txt", ndim = 3, radius = 0.001) 

# Generate FE elements 
load_solid_elements (filename = " foundation _elements.txt", ndim = 3, 
elementType = "Hexahedron8N8I", matFlag = "elastic") 
load_interface_elements (filename = " foundation _interfaces.txt", elementType = 
"Tri-interface", material ="interface") 

# Apply boundary conditions 
load_restraint(filename = " foundation _restraints.txt") 

# Apply material properties for FE elements 
FE_Elastic(young = 3E9, gamma = 15, v = 0.3) 

# Generate spheres from input file 
load_DE_spheres(filename = "sphere_nodes.txt", material ="sphere") 

# generate the container 
x_min, y_min, z_min = 0.0, 0.0, 0.0 
x_max, y_max, z_max = 1.1, 0.3, 0.6  

# add bottom wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2, (y_min + y_max)/2, 
z_min], extents=[(-x_min + x_max)/2, (-y_min + y_max)/2, 0], fixed=True, 
wire=True))  

# add left wall 
O.bodies.append(utils.box(center=[x_min,(y_min + y_max)/2,(z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2,(-z_min + z_max)/2], fixed=True, 
wire=True))  

# add right wall 
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O.bodies.append(utils.box(center=[x_max,(y_min + y_max)/2,(z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2,(-z_min + z_max)/2],fixed=True, 
wire=True)) 

 # add front wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,y_min,(z_min + 
z_max)/2], extents=[(-x_min + x_max)/2 , 0, (-z_min + z_max)/2 ],fixed=True, 
wire=True))  

# add behind wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,y_max,(z_min + 
z_max)/2], extents=[(-x_min + x_max)/2 , 0, (-z_min + z_max)/2 
],fixed=True,wire=True))  

## generate the strip footing 
footing_width = 0.1 
f_x_min = (x_min + x_max)/2 - footing_width/2 
f_x_max = (x_min + x_max)/2 + footing_width/2 
f_y_min = y_min 
f_y_max = y_max 
f_z_min = z_max 

# determine id of the strip footing 
ID = len(O.bodies) 

# add the footing to O.bodies() 
O.bodies.append(utils.box(center=[(f_x_min + f_x_max)/2,(f_y_min + 
f_y_max)/2, f_z_min ],extents=[(footing_width)/2, (-f_y_min + f_y_max)/2, 
0],fixed=True, wire=False)) 

# Loading steps: footing pressure increases from 0 to 200 kPa 
pressure = [] 
for i in range (0,11): 
    pressure.append(i*20) 

# Enable graphical interface 
from yade import qt 
qt.View() 
qt.Controller() 

## Engines that run during the simulation 
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O.engines= [  
 ForceResetter(), 
 FE_ForceResetter(),  
 SetHexahedron8N8IParameters(), 
 SetInterfaceParameters() ,       
 SetGeoHexahedron(), 
 SetGeoQuadInterface(), 
 TangentStiffnessCPPM(),  
 CheckConvergence(), 
 DampingRayleigh(), 
 SetMultiStepExternalForce(), 

 # time-step for DE simulation 
 setdtDEM(ratio = 0.9),  
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
  Bo1_Box_Aabb(), 
  Bo1_QuadInterface_Aabb() 
  ]), 
 InteractionLoop([ 
  Ig2_Sphere_Sphere_ScGeom6D(), 
  Ig2_Box_Sphere_ScGeom6D(),   
  Ig2_Interface_Sphere_ScGeom6D() 
  ],   
  [Ip2_2xNormalInelasticMat_NormalInelasticityPhys()], 
  [Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity()] 
  
 ), 
 NewtonIntegrator(damping=0.1, gravity=[0, 0, -9.81]),  

 ## Moving the strip foundation downward following defined pressure 
steps 
 # compression speed = 0.005 
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 FoundationLoadingEngine(id_top = ID, val = pressure, compSpeed = 
0.005), 
 setdtFEM (n = 100),  
 CentralDifference(), 
 OutputRecording()  
 ] 
print "------------Script ended------------" 
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Figure A-14 a) Initial geometry of the geogrid reinforced foundation b) Partial 

view of the DE particle-geogrid interaction 
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Problem 7: A geogrid pullout test is simulated using the coupled FE-DE 

framework. The geogrid is modeled using FEM while the soil is modeled using 

DEM. Vertical stress acting on top of the sample is kept constant during the test 

using a stress control mechanism. The pullout procedure is numerically performed 

using a displacement control approach in which lateral displacements were 

applied in different increments. Two new C++ built engines are used in the 

simulation: PressureControlEngine() to control the vertical stress and 

GeogridPulloutEngine() to numerically simulate the pullout of the geogrid 

(Figure A-15). 

print "------------Simulation started------------" 
O=Omega() 

## Define materials 
# for DE particles 
O.materials.append(NormalInelasticMat(young=4E7,poisson=0.2,frictionAngle=0
.5, density=2650, label="sphere")) 

# for interfaces 
O.materials.append(NormalInelasticMat(young=4E7,poisson=0.2,frictionAngle=0
.5, density=2650, label="interface")) 

## load necessary files and generate FEM nodes, elements, loading conditions,.. 
# generate FE nodes 
load_FE_nodes (filename = "geogrid_nodes.txt", ndim = 3, radius = 0.001) 

# generate FE elements 
load_solid_elements (filename = "geogrid_elements.txt", elementType = 
"Hexahedron8N8I", matFlag = "elastic") 

# generate interfaces 
load_interface_elements (filename = "geogrid_interfaces.txt", elementType = 
"Tri-interface", material ="interface") 

# apply boundary conditions 
load_restraint(filename = "geogrid_restraints.txt") 

# apply material properties for FE elements 
FE_Elastic(young = 3E9, gamma = 15, v = 0.3) 

# load spheres from input file 
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load_DE_spheres(filename = "sphere_nodes.txt", material ="sphere") 

# generate the box 
x_min, y_min, z_min = 0.0, 0.0, 0.0 
x_max, y_max, z_max = 0.68, 0.3, 0.62 

# determine id of the top wall 
ID = len(O.bodies) 

## add walls of the container 
# top wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,(y_min + y_max)/2, 
z_max], extents=[(-x_min + x_max)/2, (-y_min + y_max)/2, 0],fixed=True, 
wire=True))  

# bottom wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,(y_min + y_max)/2, 
z_min], extents=[(-x_min + x_max)/2, (-y_min + y_max)/2, 0],fixed=True, 
wire=True))  

# left wall 
O.bodies.append(utils.box(center=[x_min,(y_min + y_max)/2,(z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2,(-z_min + z_max)/2],fixed=True, 
wire=True)) 

# right wall  
O.bodies.append(utils.box(center=[x_max,(y_min + y_max)/2,(z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2,(-z_min + z_max)/2],fixed=True, 
wire=True))  

# front wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,y_min,(z_min + 
z_max)/2], extents=[(-x_min + x_max)/2 , 0, (-z_min + z_max)/2 ],fixed=True, 
wire=True)) 
# behind wall  
O.bodies.append(utils.box(center=[(x_min + x_max)/2,y_max,(z_min + 
z_max)/2], extents=[(-x_min + x_max)/2 , 0, (-z_min + z_max)/2 ],fixed=True, 
wire=True))  

# pullout displacement: from 0 to 40 mm 
geogrid_disp = [] 
for i in range (0,11): 
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    geogrid_disp.append(i*0.004) 

# target vertical stress acting on top of the sample (kPa) 
vertical_stress = 50 

# enable graphical interface 
from yade import qt 
qt.View() 
qt.Controller() 

## Engines that run during simulation 
O.engines= [  
 ForceResetter(), 
 ResetInteractingSphere(), 
 SetHexahedron8N8IParameters(),   
 SetInterfaceParameters() ,     
 SetGeoHexahedron(), 
 SetGeoQuadInterface(), 
 TangentStiffnessCPPM(),  
 CheckConvergence(), 
 DampingRayleigh(), 
 SetMultiStepExternalForce(), 
 setdtDEM(ratio = 0.9), #set time-step for DE calculation 
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
  Bo1_Box_Aabb(), 
  Bo1_QuadInterface_Aabb() ]), 
 InteractionLoop([ 
  Ig2_Sphere_Sphere_ScGeom6D(), 
  Ig2_Box_Sphere_ScGeom6D(),   
  Ig2_Interface_Sphere_ScGeom6D() ],   
  [Ip2_2xNormalInelasticMat_NormalInelasticityPhys()], 
  [Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity()]  
 ), 
 NewtonIntegrator(damping=0.1,gravity=[0,0,-9.81]),  
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 # Maintaining the vertical stress acting on top of the sample 
 PressureControlEngine(id_top = ID, stress = vertical_stress), 

 # Moving the geogrid following different lateral displacement 
increments 
 # pullout speed = 0.005 
 GeogridPulloutEngine(val = geogrid_disp, pullSpeed = 0.005), 
 setdtFEM(n = 100),  
 CentralDifference(), 
 OutputRecording()  
 ] 
print "------------Script ended------------" 

 
Figure A-15 Initial DE specimen for the geogrid pulout test  (partial view for 

illustration purpose) 

Problem 8: The problem examines the behavior of a buried pipe in granular fill. 

The pipe with a diameter of 0.15 m is modeled using FE shell elements. Soil 

above the springline is modeled using DE particles while soil below the springline 

is modeled using FE Hexahedron20N8I elements. Mohr-Coulomb material model 

L = 0.68 m 

H = 0.62 m 

W = 0.30 m 

Loading 
direction 
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is used for the FE soil domain while elastic behavior is assumed for the pipe. A 

material NormalInelasticMat() is used for the DE particles. Vertical stresses are 

uniformly applied to top of the fill using PressureControlEngine(). Deformations 

and earth pressures acting on the pipe at different vertical stresses are illustrated 

in Figure A-16.  

print "------------Simulation started------------" 
O=Omega() 

## Define materials 
# for DE particles 
O.materials.append(NormalInelasticMat(young=10E7,poisson=0.3,frictionAngle=
0.65, density=2650, label="sphere")) 
# for interfaces 
O.materials.append(NormalInelasticMat(young=10E7,poisson=0.3,frictionAngle=
0.4, density=2650, label="interface")) 

## load necessary files and generate FEM nodes, elements, loading conditions,.. 
# generate FE nodes 
load_FE_nodes (filename = "fill_nodes.txt", ndim = 3, radius = 0.001) 

# generate FE elements for soil domain 
load_solid_elements (filename = "fill_FE_soil.txt", elementType = 
"Hexahedron20N8I", matFlag = "mohrCoulomb") 

# generate FE shell element for pipe 
load_shell_elements (filename = "fill_FE_shells.txt", thickness = 0.004, matFlag 
= "elastic") 

# generate interfaces 
load_interface_elements (filename = "fill_interfaces.txt", elementType = "Tri-
interface", material ="interface") 
# apply boundary conditions 
load_restraint(filename = "fill_restraints.txt") 

# apply material properties for FE soil elements  
FE_MohrCoulomb(young = 20E6, gamma = 19, v = 0.3, c = 2, phi = 0.6, psi = 0, 
forShell = False) 

# apply material properties for FE shell elements  
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FE_Elastic (young = 450E6, gamma = 15, v = 0.46, forShell = True) 

# load spheres from input file 
load_DE_spheres(filename = "sphere_nodes.txt", material ="sphere") 

# generate the box 
x_min, y_min, z_min = 0.0, 0.0, -0.1 
x_max, y_max, z_max = 0.8, 0.15, 0.4 

# determine id of the top wall 
ID = len(O.bodies) 

## add walls of the container, the bottom wall is not generated letting soil be in 
contact with the FE domain. 

# top wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,(y_min + y_max)/2, 
z_max], extents=[(-x_min + x_max)/2, (-y_min + y_max)/2, 0],fixed=True, 
wire=True))  

# left wall 
O.bodies.append(utils.box(center=[x_min,(y_min + y_max)/2,(z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2,(-z_min + z_max)/2],fixed=True, 
wire=True)) 

# right wall  
O.bodies.append(utils.box(center=[x_max,(y_min + y_max)/2,(z_min + 
z_max)/2], extents=[0, (-y_min + y_max)/2,(-z_min + z_max)/2],fixed=True, 
wire=True))  

# front wall 
O.bodies.append(utils.box(center=[(x_min + x_max)/2,y_min,(z_min + 
z_max)/2], extents=[(-x_min + x_max)/2 , 0, (-z_min + z_max)/2 ],fixed=True, 
wire=True)) 

# behind wall  
O.bodies.append(utils.box(center=[(x_min + x_max)/2,y_max,(z_min + 
z_max)/2], extents=[(-x_min + x_max)/2 , 0, (-z_min + z_max)/2 ],fixed=True, 
wire=True))  

# loading steps:  vertical stress increases from 0 to 500 kPa 
pressure = [] 
for i in range (0,11): 
    pressure.append(i*50) 
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# enable graphical interface 
from yade import qt 
qt.View() 
qt.Controller() 

## Engines that run during simulation 
O.engines= [  
 ForceResetter(), 
 ResetInteractingSphere(),  
 SetHexahedron8N8IParameters(),  

 # physical parameters of shell elements 
 SetShellBT4(),   
 SetInterfaceParameters(),     
 SetGeoHexahedron(), 

 # geometrical parameters of shell elements 
          SetGeoShellBT4(), 
 SetGeoQuadInterface(), 

 # stresses, strains, body loads for brick elements 
 TangentStiffnessCPPM(), 

    # stresses, strains, body loads for shell elements 
 ElasticShellSolver(),  
 CheckConvergence(), 
 DampingRayleigh(), 
 SetMultiStepExternalForce(), 
 setdtDEM(ratio = 0.9),  
 InsertionSortCollider([ 
  Bo1_Sphere_Aabb(), 
  Bo1_Box_Aabb(), 
  Bo1_QuadInterface_Aabb() 
  ]), 
 InteractionLoop([ 
  Ig2_Sphere_Sphere_ScGeom6D(), 
  Ig2_Box_Sphere_ScGeom6D(),   
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  Ig2_Interface_Sphere_ScGeom6D() 
  ],   
  [Ip2_2xNormalInelasticMat_NormalInelasticityPhys()], 
  [Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity()] 
  
 ), 
 NewtonIntegrator(damping=0.1,gravity=[0, 0, -9.81]),  

 # maintaining the vertical stress acting on top of the sample 
 PressureControlEngine(id_top = ID, stress = pressure), 
 setdtFEM(n = 100),  
 CentralDifference(), 
 OutputRecording()  
 ] 
print "------------Script ended------------" 

 

Figure A-16 Initial sample geometry for problem 8  
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In the coupled FE-DE analyis tool, some engines written in C++ have been 

developed and used to model certain geotechnical engineering problems 

including: 

• ThreeDTriaxialEngine(): triaxial test  

• KinemSimpleShearBox(): simple shear test  

• KinemDirectShearBox(): direct shear test  

• PressureControlEngine(): control pressure acting on a wall 

• GeogridPulloutEngine(): geogrid pullout test 

• FoundationLoadingEngine(): foundation bearing capacity  

• TunnellingEngine(): tunnelling simulation. 

A.3.8. Post-processing 

It is necessary to interpret calculated data from export files. Users can use many 

tools to extract required data. In this section, python scripts and external packages 

are discussed. 

A.3.8.1. Displacement field 

Soil displacement fields can be generated by tracking movements of DE particles. 

Displacements of DE particles are calculated using OutputRecording() and saved 

in DEdisplacementField.txt. A displacement field can be plotted using Python, for 

example: 

 
from pylab import * 

# initial x-coordinates of DE particles 
ini_X = [] 

# initial y-coordinates of DE particles  
ini_Y = [] 

# initial z-coordinates of DE particles 
ini_Z = []  
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# x-displacements of DE particles 
Disp_X = []  

# y-displacements of DE particles 
Disp_Y = []  

# z-displacements of DE particles 
Disp_z = []  

# get data from file 
infile = open("DEdisplacementField.txt","r") 
lines = infile.readlines() 
for line in lines: 
    data = line.split() 
    ini_X.append(float(data[0])) 
    ini_Y.append(float(data[1])) 
    ini_Z.append(float(data[2])) 
    Disp_X.append(float(data[3])) 
    Disp_Y.append(float(data[4])) 
    Disp_Z.append(float(data[5])) 
figure() 
Q = quiver( ini_X, ini_Z, Disp_X, Disp_Z,width = 0.01) 
qk = quiverkey(Q, 0.5, 0.92, 0.000,"", labelpos='W', fontproperties={'weight': 
'bold', 'size':52}) 
axis([min(ini_X), max(ini_X), min(ini_Z),max(ini_Z)]) 
xlabel("X (m)",size = 14) 
ylabel("Z (m)",size = 14) 
plt.show() 
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Figure A-17 Displacement field in the soil domain (problem 6) 

A.3.8.2. Contact orientation 

Contact orientations are obtained using OutputRecording() and saved in 

contactOrientation.txt The contact orientations of a DE sample in space are 

plotted using Python: 

import pylab,math 
import numpy as npy 
import matplotlib.cm as cm 
from matplotlib.pyplot import figure, show, rc 
axis = 0 
name = "" 

# determine contacts in which plane will be plotted 
if axis==0: 
    name = "yz" 
elif  axis==1: 
    name = "xz" 
else: 
    name = "xy" 

X (m) 
 

Z 
(m

) 
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# open input file 
Angle = [] 
NumIntr = [] 
infile = "contactOrientation.txt " 
infile = open(infile,"r") 
lines = infile.readlines() 
for line in lines: 
    data = line.split() 
    Angle.append(float(data[0])) 
    NumIntr.append(float(data[1])) 
bins = len(Angle)   
fc=[0,0,0]; fc[axis]=1. 

# now plot 
fig = figure(figsize=(6,6)) 
rect = fig.patch 
rect.set_facecolor('white') 
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True) 
bars = ax.bar(Angle, NumIntr, width=2*math.pi/(1.1*bins),fc=fc)  
for bar in bars:     
    bar.set_facecolor( [1,1,1]) 
    bar.set_alpha(0.5)  
show() 

 

Figure A-18 Distributions of contact orientation (problem 6) 

    xz plane                                 yz plane                        xy plane 
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A.3.8.3. Stresses in soil 

Stresses in soil can be calculated based on contact forces between DE particles. In 

the framework, soil stresses are calculated using OutputRecording() and saved in 

soilStress.txt. Soil stresses can be plotted using Python: 

 

import matplotlib 
import numpy as np 
import matplotlib.cm as cm 
import matplotlib.mlab as mlab 
import matplotlib.pyplot as plt 

# devide the soil domain into grids num_row x num_col 
num_row, num_col = 0, 0 
min_X, max_X  = 0.0, 0.0 
min_Z, max_Z = 0.0, 0.0 

# x-stresses from file 
sX = []   

# z-stresses from file 
sZ = []   
infile = open("soilStress.txt","r") 
lines = infile.readlines() 
count = 0 
for line in lines: 
    count += 1 
    data = line.split() 

    # first line 
    if count == 1:    
 num_row = float(data[0]) 
 num_col = float(data[1]) 
 min_X = float(data[2]) 
 max_X = float(data[3]) 
 min_Z = float(data[4]) 
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 max_Z = float(data[5]) 
    else: 
 sX.append(float(data[0])) 
 sZ.append(float(data[1])) 

# stresses arranged in arrays 
stress_X = [] 
stress_Z = [] 
count = 0 
for i in range (0,  num_row): 
    stress_X.append([])     
    stress_Z.append([]) 
    for j in range (0, num_col): 
 count = i*num_col + j 
 stress_X[i].append(sX[count])  
 stress_Z[i].append(sZ[count])     
x = np.linspace(min_X, max_X, num_col) 
z = np.linspace(min_Z, max_Z, num_row) 
X, Z = np.meshgrid(x, z)  
plt.figure() 
CS = plt.contour(X, Z, stress_Z) 
plt.axis([min_X, max_X, min_Z,max_Z]) 
plt.clabel(CS, inline=1, fontsize=8) 
plt.title('Vertical stress') 
plt.xlabel('X (m)',size = 8) 
plt.ylabel('Y (m)',size = 8) 
plt.show() 
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Figure A-19 Vertical stress distribution (problem 6) 

A.3.8.4. Data analysis using GID 

The FE analysis component can be performed by integrating the external package 

GID. During simulation, FEanalysis_output.post.res is generated using 

OutputRecording(), which can be read directly by GID. Deformed shapes, stresses 

and strains of DE domains can then be analyzed. Figure A-20 shows the deformed 

shape and tensile stress distribution of a FE geogrid during pullout test (problem 

7) generated using GID. The deformations of the buried pipe and FE soil domain 

(problem 8) are presented in Figure A-21. 
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Figure A-20 Tensile stress of a geogrid during pullout test (problem 7) 

 

 

 

Figure A-21 Deformation of the buried pipe and the FE soil domain (problem 8) 

A.3.8.5. Post-processing using PARAVIEW 

The simulation can be visualized using PARAVIEW, which is an open-source, 

multi-platform data analysis and visualization application. The engine 

VTKRecorder() in YADE generates output files with the .vtu extension, which can 

be read by PARAVIEW. VTKRecorder() is added to the simulation loop: 
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O.engines= [  
 #..... 
 VTKRecorder(iterPeriod = 100, recorders = ["spheres", "colors"], 
filename = "paraview-" ) 
 ] 

• iterPeriod: determine how often to save simulation data 

• recorders: determine what data to be saved 

• filename: prefix of saved files 

An example that illustrates the strain field of a soil sample during geogrid pullout 

test (problem 7) is shown in Figure A-22: 

 

Figure A-22 Strain field in the soil domain (problem 7) 

A.3.8.6. 3D rendering and videos 

There are several ways to produce a video of simulation: 

• Use VTKRecorder() and generate videos in PARAVIEW. 

• Capture screen output using the available tools in LINUX such as 

recordMyDesktop and Istanbul.  

• Use SnapshotEngine(): 

 O.engines= [  
  #..... 

201 
 



 

  SnapshotEngine (iterPeriod = 100, fileBase = "video-" ) 
] 

The exported image files can be merged externally to generate videos.  

A.4. C++ ENGINES 

A.4.1. C++ Codes 

Engines of the coupled FE-DE framework are written in C++. Most C++ classes 

are wrapped in Python which allows them to be called from Python scripts. C++ 

codes written in YADE have the following features: 

• Essentials:  

compiler: YADE uses g++ as C++ compiler. 

boost: YADE uses extensively boost library. 

python: python is the scripting language of the coupled FE-DE 

framework. 

• Optional libraries: 

log4cxx 

opengl 

vtk 

openmp 

gts 

cgal 

... 

• Extensions: C++ source files have .hpp extension for headers and .cpp for 

implementation. 

• Pointers: Extensive use of shared pointers shared_ptr.  

• Typecasting: shared pointers can have dynamic (dynamic_pointer_cast) 

or static casting (static_pointer_cast. YADE provides two macros:  

YADE_CAST: expands to static_cast in optimized builds and 

dynamic_cast in debug builds. 
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YADE_PTR_CAST: expands to static_ptr_cast in optimized builds and 

dynamic_ptr_cast in debug builds. 

A.4.2. C++ Framework 

• Scene: is the object containing the whole simulation. All engines and 

functors have a Scene* scene pointer which assures the current scene can 

be accessed from codes. 

• BodyContainer: contains all bodies of a simulation. BodyContainer stores 

bodies using their shared_ptr.  

 A new body can be inserted in C++: 

scene = shared_ptr<Scene>(new Scene); 
shared_ptr<Body> femElement; 
createElement(femElement); //define element   
scene ->bodies->insert(femElement); 

 BodyContainer can be iterated using FOREACH macro: 

FOREACH(const shared_ptr<Body> & body, *scene->bodies) { 
 if (body->groupMask==1)  { 
   //do something 
    } 
} 

• InteractionContainer: stores interactions during simulation. Interactions 

between particles are identified by a pair of ids of the two particles. 

shared_ptr storage  is used by InteractionContainer. Iteration over 

interactions can be handled using FOREACH or: 

 InteractionContainer::iterator ii    = scene->interactions->begin(); 
 InteractionContainer::iterator iiEnd = scene->interactions->end(); 
 for(  ; ii!=iiEnd ; ++ii ) { 
  if ((*ii)->isReal()) { 
   //do something 
  } 
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 } 

• ForceContainer: stores forces and torques of each body. 

 Adding a force to a body in C++ : 

 scene->forces.addForce(id, force); 

 Getting force acting on a body: 

 scene->forces.sync(); //sync before reading 
 Vector3r f = scene->forces.getForce(id); 

• Handling interactions: the following actions are performed to handle 

interactions: 

Potential interactions are identified using Collider. 

InteractionLoop calls appropriate IGeomFunctor based on Shape of both 

bodies. 

InteractionLoop calls appropriate IPhysFunctor based on Material of both 

bodies. 

InteractionLoop calls appropriate LawFunctor based on IGeom and IPhys 

of the interaction. 

A.4.3. Omega Class 

All simulation-related functionality is handled by Omega class. In the current 

scene, Omega.materials corresponds to Scene::materials, which is the same for 

bodies, interactions, engines, iter, dt, time, realtime and stopAtIter.   

A.4.4. Wrapping C++ Classes 

All C++ classes deriving from Serializable can be called from Python. This is 

achieved via YADE_CLASS_BASE_DOC_* macro family. 

 

 

 

204 
 



 

REFERENCES 

 

Abu-Farsakh, Murad, CHEN QIMING, Radhey Sharma, and Xiong Zhang (2008) 

"Large-Scale Model Footing Tests on Geogrid-Reinforced Foundation and 

Marginal Embankment Soils," ASTM geotechnical testing journal, Vol. 31, 

No. 5, pp 413-423. 

Adams, M.T., and Collin, J.G. (1997) "Large model spread footing load tests on 

geosynthetic reinforced soil foundations," Journal of Geotechnical and 

Geoenvironmental Engineering, Vol. 123, No. 1, pp 66-72. 

Agaiby, Sherif W, and Colin JFP Jones (1995) "Design of reinforced fill systems 

over voids," Canadian Geotechnical Journal, Vol. 32, No. 6, pp 939-945. 

Alagiyawanna, AMN, M Sugimoto, S Sato, and H Toyota (2001) "Influence of 

longitudinal and transverse members on geogrid pullout behavior during 

deformation," Geotextiles and Geomembranes, Vol. 19, No. 8, pp 483-507. 

Andresen, Lars, Hans Petter Jostad, and Knut H Andersen (2011) "Finite Element 

Analyses Applied in Design of Foundations and Anchors for Offshore 

Structures," International Journal of Geomechanics, Vol. 11, No. 6, pp 417-

430. 

Bagi, Katalin (2006) "Analysis of microstructural strain tensors for granular 

assemblies," International Journal of Solids and Structures, Vol. 43, No. 10, 

pp 3166-3184. 

Basudhar, PK, Santanu Saha, and Kousik Deb (2007) "Circular footings resting 

on geotextile-reinforced sand bed," Geotextiles and Geomembranes, Vol. 25, 

No. 6, pp 377-384. 

Belheine, N, J-P Plassiard, F-V Donzé, F Darve, and A Seridi (2009) "Numerical 

simulation of drained triaxial test using 3D discrete element modeling," 

Computers and Geotechnics, Vol. 36, No. 1, pp 320-331. 

205 
 



 

Berezantzev, V. G. (1958) "Earth pressure on the cylindrical retaining walls," 

Conference on earth pressure problems, Brussels, pp 21-27. 

Bergado, Dennes T, and Jin-Chun Chai (1994) "Pullout force/displacement 

relationship of extensible grid reinforcements," Geotextiles and 

Geomembranes, Vol. 13, No. 5, pp 295-316. 

Bfer, G (1985) "An isoparametric joint/interface element for finite element 

analysis," International journal for numerical methods in engineering, Vol. 

21, No. 4, pp 585-600. 

Bhuvaraghan, Baskaran, Sivakumar M Srinivasan, Bob Maffeo, Robert D 

McCLain, Yogesh Potdar, and Om Prakash (2010) "Shot peening simulation 

using discrete and finite element methods," Advances in Engineering 

Software, Vol. 41, No. 12, pp 1266-1276. 

Binquet, Jean, and Kenneth L Lee (1975) "Bearing capacity analysis of reinforced 

earth slabs," Journal of the geotechnical Engineering Division, Vol. 101, No. 

12, pp 1257-1276. 

Binquet, Jean, and Kenneth L Lee (1975) "Bearing capacity tests on reinforced 

earth slabs," Journal of the geotechnical Engineering Division, Vol. 101, No. 

12, pp 1241-1255. 

Briancon, LAURENT, and Pascal Villard (2008) "Design of geosynthetic-

reinforced platforms spanning localized sinkholes," Geotextiles and 

Geomembranes, Vol. 26, No. 5, pp 416-428. 

Bridle, R.J., Jenner, C.G., and Barr, B. (1994) "Novel applications of geogrids in 

areas of shallow mineworkings," 5th Int Conf on Geotextiles, Geomembranes 

and Related Products, Singapore, Vol. 1, pp 297-300. 

Calvetti, Francesco (2008) "Discrete modelling of granular materials and 

geotechnical problems," European Journal of Environmental and Civil 

Engineering, Vol. 12, No. 7-8, pp 951-965. 

206 
 



 

Chen, Cheng, GR McDowell, and NH Thom (2012) "Discrete element modelling 

of cyclic loads of geogrid-reinforced ballast under confined and unconfined 

conditions," Geotextiles and Geomembranes, Vol. 35, pp 76-86. 

Chen, Q., Abu-Farsakh, M., Sharma, R., and Zhang, X. (2007) "Laboratory 

investigation of behavior of foundations on geosynthetic-reinforced clayey 

soil," Transportation Research Record: Journal of the Transportation 

Research Board, Vol. 2004, pp 28–38. 

Chen, Qiming, Murad Abu-Farsakh, and Radhey Sharma (2009) "Experimental 

and Analytical studies of reinforced crushed limestone," Geotextiles and 

Geomembranes, Vol. 27, No. 5, pp 357-367. 

Cheng, YM, YY Hu, and WB Wei (2007) "General axisymmetric active earth 

pressure by method of characteristics—theory and numerical formulation," 

International Journal of Geomechanics, Vol. 7, No. 1, pp 1-15. 

Cheng, Y. M., and Hu, Y. Y. (2005) "Active earth pressure on circular shaft lining 

obtained by simplified slip line solution with general tangential stress 

coefficient," Chinese Journal of Geotechnical Engineering, Vol. 27, No. 1, pp 

110-115. 

Cheung, G. (2010) "Micromechanics of sand production in oil wells," Ph.D thesis, 

Imperial College London. 

Choudhary, AK, JN Jha, and KS Gill (2010) "Laboratory investigation of bearing 

capacity behaviour of strip footing on reinforced flyash slope," Geotextiles 

and Geomembranes, Vol. 28, No. 4, pp 393-402. 

Chun, B., and Shin, Y. (2006) "Active earth pressure acting on the cylindrical 

retaining wall of a shaft," South Korea Ground and Environmental 

Engineering Journal, Vol. 7, No. 4, pp 15-24. 

Chung, Wilson, and Giovanni Cascante (2007) "Experimental and numerical 

study of soil-reinforcement effects on the low-strain stiffness and bearing 

207 
 



 

capacity of shallow foundations," Geotechnical and Geological Engineering, 

Vol. 25, No. 3, pp 265-281. 

Costa, Yuri D, Jorge G Zornberg, Benedito S Bueno, and Carina L Costa (2009) 

"Failure mechanisms in sand over a deep active trapdoor," Journal of 

Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 11, pp 1741-

1753. 

Costalonga, M.A.R. (1988) "Geogrid pull-out tests in clay," MSc. Dissertation, 

The University of Alberta, Alberta, Canada. 

Costalonga, M.A.R. (1990) "Geogrid pull-out tests in clay," 4th International 

Conference on Geotextiles, Geomembranes and Related Products, The 

Hague, The Netherlands, Vol. 2. 

Cui, L, and C O'Sullivan (2006) "Exploring the macro-and micro-scale response 

of an idealised granular material in the direct shear apparatus," Geotechnique, 

Vol. 56, No. 7, pp 455-468. 

Cui, L, C O'sullivan, and S O'neill (2007) "An analysis of the triaxial apparatus 

using a mixed boundary three-dimensional discrete element model," 

Geotechnique, Vol. 57, No. 10, pp 831-844. 

Cundall, Peter A, and Otto DL Strack (1979) "A discrete numerical model for 

granular assemblies," Geotechnique, Vol. 29, No. 1, pp 47-65. 

Dang, HK, and MA Meguid (2009) "Algorithm to generate a discrete element 

specimen with predefined properties," International Journal of 

Geomechanics, Vol. 10, No. 2, pp 85-91. 

Dang, HK, and MA Meguid (2010) "Evaluating the performance of an explicit 

dynamic relaxation technique in analyzing non-linear geotechnical 

engineering problems," Computers and Geotechnics, Vol. 37, No. 1, pp 125-

131. 

Dang, HK, and MA Meguid (2013) "An efficient finite–discrete element method 

for quasi‐static nonlinear soil–structure interaction problems," International 

208 
 



 

journal for numerical and analytical methods in geomechanics, Vol. 37, No. 

2, pp 130-149. 

Das, BM, EC Shin, and MT Omar (1994) "The bearing capacity of surface strip 

foundations on geogrid-reinforced sand and clay—a comparative study," 

Geotechnical & Geological Engineering, Vol. 12, No. 1, pp 1-14. 

Dash, Sujit Kumar, NR Krishnaswamy, and K Rajagopal (2001) "Bearing 

capacity of strip footings supported on geocell-reinforced sand," Geotextiles 

and Geomembranes, Vol. 19, No. 4, pp 235-256. 

Deluzarche, R, and B Cambou (2006) "Discrete numerical modelling of rockfill 

dams," International journal for numerical and analytical methods in 

geomechanics, Vol. 30, No. 11, pp 1075-1096. 

Dhia, Hachmi Ben (1998) "Problèmes mécaniques multi-échelles: la méthode 

Arlequin," Comptes Rendus de l'Académie des Sciences-Series IIB-

Mechanics-Physics-Astronomy, Vol. 326, No. 12, pp 899-904. 

Dhia, Hashmi Ben, and Guillaume Rateau (2005) "The Arlequin method as a 

flexible engineering design tool," International journal for numerical methods 

in engineering, Vol. 62, No. 11, pp 1442-1462. 

Duriez, J, F Darve, and F-V Donze (2011) "A discrete modeling-based 

constitutive relation for infilled rock joints," International journal of rock 

mechanics and mining sciences, Vol. 48, No. 3, pp 458-468. 

Dyer, M.R. (1985) "Observations of the stress distribution in crushed glass with 

applications to soil reinforcement," D.Phil. Thesis, University of Oxford, 

Oxford, UK. 

Elmekati, Ahmed, and Usama El Shamy (2010) "A practical co-simulation 

approach for multiscale analysis of geotechnical systems," Computers and 

Geotechnics, Vol. 37, No. 4, pp 494-503. 

209 
 



 

Faheem, Hamdy, Fei Cai, and Keizo Ugai (2004) "Three-dimensional base 

stability of rectangular excavations in soft soils using FEM," Computers and 

Geotechnics, Vol. 31, No. 2, pp 67-74. 

Fakhimi, Ali (2009) "A hybrid discrete–finite element model for numerical 

simulation of geomaterials," Computers and Geotechnics, Vol. 36, No. 3, pp 

386-395. 

Farrag, Khalid, Yalcin B Acar, and Ilan Juran (1993) "Pull-out resistance of 

geogrid reinforcements," Geotextiles and Geomembranes, Vol. 12, No. 2, pp 

133-159. 

Finno, Richard J, J Tanner Blackburn, and Jill F Roboski (2007) "Three-

dimensional effects for supported excavations in clay," Journal of 

Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 1, pp 30-36. 

Gabr, MA, and TJ Hunter (1994) "Stress-strain analysis of geogrid-supported 

liners over subsurface cavities," Geotechnical & Geological Engineering, 

Vol. 12, No. 2, pp 65-86. 

Gabr, M.A., Hunter, T.J., and Collin, J.G. (1992) "Stability of geogrid-reinforced 

landfill liners over sinkholes," Proceedings, Earth Reinforcement practice. 

Edited by H . Ochiai, S. Hayashi and J. Otani. A.A. Balkema, pp 595-600. 

Gabrieli, Fabio, Simonetta Cola, and Francesco Calvetti (2009) "Use of an up-

scaled DEM model for analysing the behaviour of a shallow foundation on a 

model slope," Geomechanics and Geoengineering: An International Journal, 

Vol. 4, No. 2, pp 109-122. 

Gaetano, E.A. (2010) "The response of flexible pavement systems to local 

deterioration of the base layer," Master thesis, McGill University. 

Galli, G, ANTONIO Grimaldi, and A Leonardi (2004) "Three-dimensional 

modelling of tunnel excavation and lining," Computers and Geotechnics, Vol. 

31, No. 3, pp 171-183. 

210 
 



 

Garikipati, K.R. and Hughes, T.J.R. (1998) "A study of strain localization in a 

multiple scale framework—the one dimensional problem," Comput. Methods 

Appl. Mech. Eng., Vol. 159, pp 193–222. 

Ghazavi, Mahmoud, and Arash Alimardani Lavasan (2008) "Interference effect of 

shallow foundations constructed on sand reinforced with geosynthetics," 

Geotextiles and Geomembranes, Vol. 26, No. 5, pp 404-415. 

Ghosh, Ambarish, and Utpal Dey (2009) "Bearing ratio of reinforced fly ash 

overlying soft soil and deformation modulus of fly ash," Geotextiles and 

Geomembranes, Vol. 27, No. 4, pp 313-320. 

Giroud, JP, R Bonaparte, JF Beech, and BA Gross (1990) "Design of soil layer-

geosynthetic systems overlying voids," Geotextiles and Geomembranes, Vol. 

9, No. 1, pp 11-50. 

Guido, Vito A, Dong K Chang, and Michael A Sweeney (1986) "Comparison of 

geogrid and geotextile reinforced earth slabs," Canadian Geotechnical 

Journal, Vol. 23, No. 4, pp 435-440. 

Han, Jie, Anil Bhandari, and Fei Wang (2011) "DEM analysis of stresses and 

deformations of geogrid-reinforced embankments over piles," International 

Journal of Geomechanics, Vol. 12, No. 4, pp 340-350. 

Han, K, DRJ Owen, and D Peric (2002) "Combined finite/discrete element and 

explicit/implicit simulations of peen forming process," Engineering 

Computations, Vol. 19, No. 1, pp 92-118. 

Herten, Markus, and Matthias Pulsfort (1999) "Determination of spatial earth 

pressure on circular shaft constructions," Granular matter, Vol. 2, No. 1, pp 

1-7. 

Huang, CC, and FY Menq (1997) "Deep-footing and wide-slab effects in 

reinforced sandy ground," Journal of Geotechnical and Geoenvironmental 

Engineering, Vol. 123, No. 1, pp 30-36. 

211 
 



 

Huang, Ching-Chuan, and Fumio Tatsuoka (1990) "Bearing capacity of 

reinforced horizontal sandy ground," Geotextiles and Geomembranes, Vol. 9, 

No. 1, pp 51-82. 

Hughes, Thomas JR (1995) "Multiscale phenomena: Green's functions, the 

Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the 

origins of stabilized methods," Computer methods in applied mechanics and 

engineering, Vol. 127, No. 1, pp 387-401. 

Imamura, S., Nomoto, T., Fujii, T.,  and Hagiwara, T. (1999) "Earth pressures 

acting on a deep shaft and the movements of adjacent ground in sand," 

Proceedings of the international symposium on geotechnical aspects of 

underground construction in soft ground. Tokyo, Japan: Balkema, Rotterdam, 

pp 647-652. 

Itasca (2004) "PFC 2D 3.10 Particle Flow Code in two dimensions, theory and 

background volume (third ed.)," Minneapolis, Minnesota. 

Jenck, Orianne, Daniel Dias, and Richard Kastner (2009) "Discrete element 

modelling of a granular platform supported by piles in soft soil–Validation on 

a small scale model test and comparison to a numerical analysis in a 

continuum," Computers and Geotechnics, Vol. 36, No. 6, pp 917-927. 

Jewell, R. (1980) "Some effects of reinforcement on soils," PhD. Thesis, 

University of Cambridge, UK. 

Jiang, MJ, JM Konrad, and S Leroueil (2003) "An efficient technique for 

generating homogeneous specimens for DEM studies," Computers and 

Geotechnics, Vol. 30, No. 7, pp 579-597. 

Karabatakis, DA, and TN Hatzigogos (2002) "Analysis of creep behaviour using 

interface elements," Computers and Geotechnics, Vol. 29, No. 4, pp 257-277. 

Karthigeyan, S, VVGST Ramakrishna, and K Rajagopal (2007) "Numerical 

investigation of the effect of vertical load on the lateral response of piles," 

212 
 



 

Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 5, 

pp 512-521. 

Kasper, Thomas, and Günther Meschke (2004) "A 3D finite element simulation 

model for TBM tunnelling in soft ground," International journal for 

numerical and analytical methods in geomechanics, Vol. 28, No. 14, pp 1441-

1460. 

Khedkar, MS, and JN Mandal (2009) "Pullout behaviour of cellular 

reinforcements," Geotextiles and Geomembranes, Vol. 27, No. 4, pp 262-

271. 

Khing, KH, BM Das, VK Puri, EE Cook, and SC Yen (1993) "The bearing-

capacity of a strip foundation on geogrid-reinforced sand," Geotextiles and 

Geomembranes, Vol. 12, No. 4, pp 351-361. 

Khodair, Yasser A., and Sophia Hassiotis (2005) "Analysis of soil–pile interaction 

in integral abutment," Computers and Geotechnics, Vol. 32, No. 3, pp 201-

209. 

Kinney, Thomas C, and Billy Connor (1987) "Geosynthetics supporting 

embankments over voids," Journal of cold regions engineering, Vol. 1, No. 4, 

pp 158-170. 

Konig, D., Guettler, U., and Jessberger, H. L. (1991) "Stress redistribution during 

tunnel and shaft construction," Proceedings of the International Conference 

Centrifuge 1991, Boulder, Colorado, pp 129-135. 

Koutsabeloulis, NC, and DV Griffiths (1989) "Numerical modelling of the trap 

door problem," Geotechnique, Vol. 39, No. 1, pp 77-89. 

Kozicki, J, and FV Donzé (2009) "Yade-open dem: an open-source software 

using a discrete element method to simulate granular material," Engineering 

Computations, Vol. 26, No. 7, pp 786-805. 

213 
 



 

Kumar, Arvind, and Swami Saran (2003) "Bearing capacity of rectangular footing 

on reinforced soil," Geotechnical & Geological Engineering, Vol. 21, No. 3, 

pp 201-224. 

Kurian, Nainan P, KS Beena, and R Krishna Kumar (1997) "Settlement of 

reinforced sand in foundations," Journal of Geotechnical and 

Geoenvironmental Engineering, Vol. 123, No. 9, pp 818-827. 

Labra, Carlos, and Eugenio Onate (2009) "High‐density sphere packing for 

discrete element method simulations," Communications in Numerical 

Methods in Engineering, Vol. 25, No. 7, pp 837-849. 

Ladd, R. S. (1978) "Preparing test specimens using undercompaction," 

Geotechnical Testing Journal, GTJODJ 1978, Vol. 1, No. 1, pp 16-23. 

Lade, P. V., Jessberger, H. L., Makowski, E., and Jordan, P. (1981) "Modeling of 

deep shafts in centrifuge test," Proceedings of the International Conference 

on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, Vol. 1, 

pp 683-691. 

Latha, G Madhavi, and Amit Somwanshi (2009) "Bearing capacity of square 

footings on geosynthetic reinforced sand," Geotextiles and Geomembranes, 

Vol. 27, No. 4, pp 281-294. 

Lawson, C.R., Jones, C.J.F.P., Kempton, G.T., and Passaris, E.K.S. (1994) 

"Advanced analysis of reinforced fills over areas prone to subsidence," 

Proceedings, 5th International Conference on Geotextiles, Geomembranes 

and Related Products. A.A. Balkema, Singapore, Vol. 1, pp 311-317. 

Li, Fu-Lin, Fang-Le Peng, Yong Tan, W Kongkitkul, and MSA Siddiquee (2012) 

"FE simulation of viscous behavior of geogrid-reinforced sand under 

laboratory-scale plane-strain-compression testing," Geotextiles and 

Geomembranes, Vol. 31, pp 72-80. 

Liu, SH, De’an Sun, and Hajime Matsuoka (2005) "On the interface friction in 

direct shear test," Computers and Geotechnics, Vol. 32, No. 5, pp 317-325. 

214 
 



 

Lobo-Guerrero, S, and LE Vallejo (2005) "DEM analysis of crushing around 

driven piles in granular materials," Geotechnique, Vol. 55, No. 8. 

Lobo-Guerrero, Sebastian, and Luis E Vallejo (2006) "Discrete element method 

analysis of railtrack ballast degradation during cyclic loading," Granular 

matter, Vol. 8, No. 3-4, pp 195-204. 

Madhavi Latha, G, and Amit Somwanshi (2009) "Effect of reinforcement form on 

the bearing capacity of square footings on sand," Geotextiles and 

Geomembranes, Vol. 27, No. 6, pp 409-422. 

Maheshwari, BK, KZ Truman, PL Gould, and MH El Naggar (2005) "Three-

dimensional nonlinear seismic analysis of single piles using finite element 

model: effects of plasticity of soil," International Journal of Geomechanics, 

Vol. 5, No. 1, pp 35-44. 

Maynar, Manuel J, and Luis E Rodríguez (2005) "Discrete numerical model for 

analysis of earth pressure balance tunnel excavation," Journal of 

Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 10, pp 1234-

1242. 

McDowell, G.R., Harireche, O., Konietzky, H., Brown, S.F., Thom, N.H. (2006) 

"Discrete element modelling of geogrid-reinforced aggregates," Proceedings 

of the ICE - Geotechnical Engineering, Vol. 159, No. 1, pp 35-48. 

Meguid, MA, and HK Dang (2009) "The effect of erosion voids on existing 

tunnel linings," Tunnelling and Underground Space Technology, Vol. 24, No. 

3, pp 278-286. 

Meguid, MA, and RK Rowe (2006) "Stability of D-shaped tunnels in a Mohr 

Coulomb material under anisotropic stress conditions," Canadian 

Geotechnical Journal, Vol. 43, No. 3, pp 273-281. 

Meyerhof, GG, and AM Hanna (1978) "Ultimate bearing capacity of foundations 

on layered soils under inclined load," Canadian Geotechnical Journal, Vol. 

15, No. 4, pp 565-572. 

215 
 



 

Michalowski, Radoslaw L (2004) "Limit loads on reinforced foundation soils," 

Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 4, 

pp 381-390. 

Michalowski, Radoslaw L, and Lei Shi (2003) "Deformation patterns of 

reinforced foundation sand at failure," Journal of Geotechnical and 

Geoenvironmental Engineering, Vol. 129, No. 5, pp 439-449. 

Milligan, G.W.E., Earl, R.F., Bush, D.I. (1990) "Observations of photo-elastic 

pullout tests on geotextiles and geogrids," 4th International Conference on 

Geotextiles, Geomembranes and Related Products, The Hague, The 

Netherlands, Vol. 2, pp 747-751. 

Mohamed, MHA (2010) "Two dimensional experimental study for the behaviour 

of surface footings on unreinforced and reinforced sand beds overlying soft 

pockets," Geotextiles and Geomembranes, Vol. 28, No. 6, pp 589-596. 

Moraci, Nicola, and Piergiorgio Recalcati (2006) "Factors affecting the pullout 

behaviour of extruded geogrids embedded in a compacted granular soil," 

Geotextiles and Geomembranes, Vol. 24, No. 4, pp 220-242. 

Mroueh, Hussein, and Isam Shahrour (2002) "Three‐dimensional finite element 

analysis of the interaction between tunneling and pile foundations," 

International journal for numerical and analytical methods in geomechanics, 

Vol. 26, No. 3, pp 217-230. 

Ng, Tang-Tat (2004) "Triaxial test simulations with discrete element method and 

hydrostatic boundaries," Journal of engineering mechanics, Vol. 130, No. 10, 

pp 1188-1194. 

O’Sullivan, C. (2011) "Particulate discrete element modeling, a geomechanics 

perspective," Spon Press. 

Ochiai, Hidetoshi, Jun Otani, Shigenori Hayashic, and Takao Hirai (1996) "The 

pull-out resistance of geogrids in reinforced soil," Geotextiles and 

Geomembranes, Vol. 14, No. 1, pp 19-42. 

216 
 



 

Onate, E, and J Rojek (2004) "Combination of discrete element and finite element 

methods for dynamic analysis of geomechanics problems," Computer 

methods in applied mechanics and engineering, Vol. 193, No. 27, pp 3087-

3128. 

Osman, Ashraf S, and Mark F Randolph (2011) "Analytical Solution for the 

Consolidation around a Laterally Loaded Pile," International Journal of 

Geomechanics, Vol. 12, No. 3, pp 199-208. 

O'Sullivan, Catherine, and Liang Cui (2009) "Micromechanics of granular 

material response during load reversals: Combined DEM and experimental 

study," Powder Technology, Vol. 193, No. 3, pp 289-302. 

Palmeira, E.M. (1987) "The study of soil-reinforcement interaction by means of 

large scale laboratory tests," DPhil. Thesis, University of Oxford, Oxford, 

UK. 

Palmeira, Ennio Marques (2004) "Bearing force mobilisation in pull-out tests on 

geogrids," Geotextiles and Geomembranes, Vol. 22, No. 6, pp 481-509. 

Palmeira, Ennio Marques (2009) "Soil–geosynthetic interaction: Modelling and 

analysis," Geotextiles and Geomembranes, Vol. 27, No. 5, pp 368-390. 

Pan, JL, ATC Goh, KS Wong, and AR Selby (2002) "Three‐dimensional analysis 

of single pile response to lateral soil movements," International journal for 

numerical and analytical methods in geomechanics, Vol. 26, No. 8, pp 747-

758. 

Park, Jung-Wook, and Jae-Joon Song (2009) "Numerical simulation of a direct 

shear test on a rock joint using a bonded-particle model," International 

journal of rock mechanics and mining sciences, Vol. 46, No. 8, pp 1315-

1328. 

Patra, CR, BM Das, M Bhoi, and EC Shin (2006) "Eccentrically loaded strip 

foundation on geogrid-reinforced sand," Geotextiles and Geomembranes, 

Vol. 24, No. 4, pp 254-259. 

217 
 



 

Poorooshasb, Hormoz B (1991) "Load settlement response of a compacted fill 

layer supported by a geosynthetic overlying a void," Geotextiles and 

Geomembranes, Vol. 10, No. 3, pp 179-201. 

Potyondy, DO, and PA Cundall (2004) "A bonded-particle model for rock," 

International journal of rock mechanics and mining sciences, Vol. 41, No. 8, 

pp 1329-1364. 

Prater, EG (1977) "An examination of some theories of earth pressure on shaft 

linings," Canadian Geotechnical Journal, Vol. 14, No. 1, pp 91-106. 

Sadoglu, Erol, Evrim Cure, Berkan Moroglu, and Bayram Ali Uzuner (2009) 

"Ultimate loads for eccentrically loaded model shallow strip footings on 

geotextile-reinforced sand," Geotextiles and Geomembranes, Vol. 27, No. 3, 

pp 176-182. 

Salgado, R, and M Prezzi (2007) "Computation of cavity expansion pressure and 

penetration resistance in sands," International Journal of Geomechanics, Vol. 

7, No. 4, pp 251-265. 

Schlosser, F., Jacobsen, H.M., and Juran, I. (1983) "Soil reinforcement," Genereal 

Report, Eighth European Conference on Soil Mechanics and Foundation 

Engineering, Balkema, Helsinki, pp 83–103. 

Sharma, Radhey, Qiming Chen, Murad Abu-Farsakh, and Sungmin Yoon (2009) 

"Analytical modeling of geogrid reinforced soil foundation," Geotextiles and 

Geomembranes, Vol. 27, No. 1, pp 63-72. 

Shin, E.C., Das, B.M., Puri, V.K., Yen, S.C., and Cook, E.E. (1993) "Bearing 

capacity of strip foundation on geogrid-reinforced clay," Geotechnical 

Testing Journal, ASTM, Vol. 16, No. 4, pp 534–541. 

Siddiquee, MSA, and CC Huang (2001) "FEM simulation of the bearing capacity 

of level reinforced sand ground subjected to footing load," Geosynthetics 

International, Vol. 8, No. 6, p 501. 

218 
 



 

Sieira, Ana Cristina CF, Denise Gerscovich, and Alberto SFJ Sayão (2009) 

"Displacement and load transfer mechanisms of geogrids under pullout 

condition," Geotextiles and Geomembranes, Vol. 27, No. 4, pp 241-253. 

Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., 

Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., and Thoeni, 

K. (2010) "Yade Documentation," The Yade Project 2010. (http://yade-

dem.org/doc/). 

Sugimoto, M, and AMN Alagiyawanna (2003) "Pullout behavior of geogrid by 

test and numerical analysis," Journal of Geotechnical and Geoenvironmental 

Engineering, Vol. 129, No. 4, pp 361-371. 

Sugimoto, M, AMN Alagiyawanna, and K Kadoguchi (2001) "Influence of rigid 

and flexible face on geogrid pullout tests," Geotextiles and Geomembranes, 

Vol. 19, No. 5, pp 257-277. 

Tafreshi, SN, and AR Dawson (2010) "Behaviour of footings on reinforced sand 

subjected to repeated loading–Comparing use of 3D and planar geotextile," 

Geotextiles and Geomembranes, Vol. 28, No. 5, pp 434-447. 

Terzaghi, K. (1936) "Stress distribution in dry and saturated sand above a yielding 

trap door," Proceedings, International Conference of Soil Mechanics, Harvard 

University, Cambridge, Mass., Vol. 1, pp 307-311. 

Terzaghi, K. (1943) "Theoretical soil mechanics," New York: John Wiley & sons 

Inc. 

Thornton, Colin, and Ling Zhang (2003) "Numerical simulations of the direct 

shear test," Chemical engineering & technology, Vol. 26, No. 2, pp 153-156. 

Tobar, T. (2009) "An experimental study of the earth pressure distribution on 

cylindrical shafts," Master’s thesis, McGill University. 

Tobar, Tatiana, and Mohamed A Meguid (2011) "Experimental study of the earth 

pressure distribution on cylindrical shafts," Journal of Geotechnical and 

Geoenvironmental Engineering, Vol. 137, No. 11, pp 1121-1125. 

219 
 



 

Tran, VDH, MA Meguid, and LE Chouinard (2013) "A finite–discrete element 

framework for the 3D modeling of geogrid–soil interaction under pullout 

loading conditions," Geotextiles and Geomembranes, Vol. 37, pp 1-9. 

Tran, VDH, MA Meguid, and LE Chouinard (2013) "Three-Dimensional 

Analysis of Geogrid Reinforced Soil Using Finite-Discrete Element 

Framework," International Journal of Geomechanics (submitted). 

Tran, VDH, MA Meguid, and LE Chouinard (2012) "Discrete Element and 

Experimental Investigations of the Earth Pressure Distribution on Cylindrical 

Shafts," International Journal of Geomechanics (in press). 

Van Langen, H, and PA Vermeer (1991) "Interface elements for singular 

plasticity points," International journal for numerical and analytical methods 

in geomechanics, Vol. 15, No. 5, pp 301-315. 

Villard, Pascal, and Bruno Chareyre (2004) "Design methods for geosynthetic 

anchor trenches on the basis of true scale experiments and discrete element 

modelling," Canadian Geotechnical Journal, Vol. 41, No. 6, pp 1193-1205. 

Villard, P, B Chevalier, B Le Hello, and G Combe (2009) "Coupling between 

finite and discrete element methods for the modelling of earth structures 

reinforced by geosynthetic," Computers and Geotechnics, Vol. 36, No. 5, pp 

709-717. 

Villard, P, JP Gourc, and H Giraud (2000) "A geosynthetic reinforcement solution 

to prevent the formation of localized sinkholes," Canadian Geotechnical 

Journal, Vol. 37, No. 5, pp 987-999. 

Walz, B. (1973) "Left bracket apparatus for measuring the three-dimensional 

active soil pressure on a round model caisson right bracket," Baumaschine 

und Bautechnik, Vol. 20, No. 9, pp 339-344  

Wang, MC, YX Feng, and M Jao (1996) "Stability of geosynthetic-reinforced soil 

above a cavity," Geotextiles and Geomembranes, Vol. 14, No. 2, pp 95-109. 

220 
 



 

Wayne, M.H., Han, J., and Akins, K. (1998) "The design of geosynthetic 

reinforced foundations," Proceedings of ASCE’s 1998 Annual Convention & 

Exposition. ASCE Geotechnical Special Publication, Vol. 76, pp 1–18. 

Weatherley, D., Boros, V., and Hancock, W. (2011) "ESyS - Particle Tutorial and 

User's Guide Version 2.1," The University of Queensland. 

Xiao, SP, and Ted Belytschko (2004) "A bridging domain method for coupling 

continua with molecular dynamics," Computer methods in applied mechanics 

and engineering, Vol. 193, No. 17, pp 1645-1669. 

Yamamoto, Kentaro, and Jun Otani (2002) "Bearing capacity and failure 

mechanism of reinforced foundations based on rigid-plastic finite element 

formulation," Geotextiles and Geomembranes, Vol. 20, No. 6, pp 367-393. 

Yan, Ying, and Shunying Ji (2010) "Discrete element modeling of direct shear 

tests for a granular material," International journal for numerical and 

analytical methods in geomechanics, Vol. 34, No. 9, pp 978-990. 

Yetimoglu, Temel, Jonathan TH Wu, and Ahmet Saglamer (1994) "Bearing 

capacity of rectangular footings on geogrid-reinforced sand," Journal of 

Geotechnical Engineering, Vol. 120, No. 12, pp 2083-2099. 

Yoo, Chungsik (2013) "Interaction between tunneling and bridge foundation–A 

3D numerical investigation," Computers and Geotechnics, Vol. 49, pp 70-78. 

Zdravkovic, L, DM Potts, and HD St John (2005) "Modelling of a 3D excavation 

in finite element analysis," Geotechnique, Vol. 55, No. 7, pp 497-513. 

Zienkiewicz, OC, and GC Huang (1990) "A note on localization phenomena and 

adaptive finite‐element analysis in forming processes," Communications in 

applied numerical methods, Vol. 6, No. 2, pp 71-76. 

Zienkiewicz, O. C., M. Pastor, and Mao-song Huang (1995) "Softening, 

localisation and adaptive remeshing. Capture of discontinuous solutions," 

Computational mechanics, Vol. 17, No. 1-2, pp 98-106. 

221 
 



 

Zienkiewicz, O. C. and Huang, G. C. (1990) "A note on localization phenomena 

and adaptive finite-element analysis in forming processes," Commun. appl. 

numer. methods, Vol. 6, pp 71–76. 

222 
 


	ABSTRACT
	RÉSUMÉ
	ACKNOWLEDGMENTS
	PUBLICATIONS TO DATE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS
	Introduction
	1.1. Introduction
	1.2. Research Motivation
	1.3. Objective and Scope
	1.4. Contributions of authors
	1.5. Thesis Organization
	Literature Review
	2.1. Soil-Structure Interaction Modeling using the Finite Element Method
	2.2. Granular Modeling using the Discrete Element Method
	2.3. Coupling the Finite and Discrete Element Methods
	2.4. Conclusion for the Literature Review
	Discrete Element Simulation and Experimental Study of the Earth Pressure Distribution on Cylindrical Shafts *
	3.1. Introduction
	3.2. Experimental Study
	3.2.1. Model shaft
	3.2.2. Concrete container
	3.2.3. Data recording
	3.2.4. Testing procedure

	3.3. Discrete Element Simulation
	3.4. DE Sample Generation
	3.5. Model Calibration Using Direct Shear Test
	3.6. Shaft-Soil Interaction Simulation
	3.7. Results and Discussions
	3.7.1. Initial earth pressures
	3.7.2. Earth pressure reduction with wall movement
	3.7.3. Earth pressure distribution with depth
	3.7.4. Extent of shear failure
	3.7.5. Stress distribution within the soil

	3.8. Summary and Conclusions
	Preface to Chapter 4
	Three-Dimensional Modeling of Geogrid-Soil Interaction under Pullout Loading Conditions *
	4.1. Introduction
	4.2. Coupled Finite-Discrete Element Framework
	4.2.1. Discrete Elements
	4.2.2. Finite Elements
	4.2.3. Interface Elements

	4.3. Model Generation
	4.4. Pullout Test Model
	4.5. Results and Discussions
	4.5.1. Validation of the numerical model
	4.5.2. Response of the Geogrid
	4.5.3. Pullout Resistance
	4.5.4. Response of the Backfill Soil

	4.6. Summary and Conclusions
	Preface to Chapter 5
	Three-Dimensional Analysis of Geogrid Reinforced Foundation Using Finite-Discrete Element Framework *
	5.1. Introduction
	5.2. Model Generation
	5.3. Numerical Simulation
	5.4. Results and Discussions
	5.4.1. Validation of the Numerical Model
	5.4.2. Response of the Geogrids
	5.4.3. Response of the Reinforced Soil

	5.5. Summary and Conclusions
	Preface to Chapter 6
	Three-Dimensional Analysis of Geogrid Reinforced Fill over Void Using Finite-Discrete Element Framework *
	6.1. Introduction
	6.2. Model Generation
	6.3. Numerical Simulation
	6.4. Results and Discussions
	6.4.1. Response of the Geogrid
	6.4.2. Response of the Reinforced Soil

	6.5. Summary and Conclusions
	Conclusions and Recommendations
	7.1. Conclusions
	7.2. Recommendations for future work
	User Manual for the Developed 3D Coupled Finite-Discrete Element Analysis Tool
	A.1. INTRODUCTION
	A.2. INSTALLATION
	A.3. PYTHON SCRIPTS
	A.3.1. Getting Started
	A.3.2. Basic Commands
	A.3.3. Sample Generation
	A.3.3.1. Discrete element generation
	A.3.3.2. Finite element generation
	A.3.3.3. Interface element generation
	A.3.3.4. Optional features for DE and FE elements

	A.3.4. Boundary Conditions
	A.3.4.1. Discrete elements
	A.3.4.2. Finite elements

	A.3.5. Assigning Forces and Displacments
	A.3.5.1. Discrete elements
	A.3.5.2. Finite elements

	A.3.6. Material Models
	A.3.6.1. Discrete elements
	A.3.6.2. Finite elements
	A.3.6.3. Interface elements

	A.3.7. Simulation Engines
	A.3.7.1. DE simulation engines
	A.3.7.2. FE simulation engines
	A.3.7.3. Interface-DE particle simulation engines
	A.3.7.4. Additional engines

	A.3.8. Post-processing
	A.3.8.1. Displacement field
	A.3.8.2. Contact orientation
	A.3.8.3. Stresses in soil
	A.3.8.4. Data analysis using GID
	A.3.8.5. Post-processing using PARAVIEW
	A.3.8.6. 3D rendering and videos


	A.4. C++ ENGINES
	A.4.1. C++ Codes
	A.4.2. C++ Framework
	A.4.3. Omega Class
	A.4.4. Wrapping C++ Classes

	REFERENCES

