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ABSTRACT

The Antarctic Circumpolar Current (ACC), long recognized for its importance in

world ocean and climate dynamics, is close to purely zonal in many regions. This means

the majority of meridional transport of heat or other scalars is largely achieved by tran-

sient mesoscale eddies. Many long-running climate models are still unable to resolve the

mesoscale; their effects are parameterized, most commonly using the GM90 parameteriza-

tion which relates mass transport to the slopes of isopycnal layers via an eddy diffusivity,

κ.

In this project, the ACC was modelled using a two-layer quasi-geostrophic model

with idealistic topography. A series of simulations were carried out with a combination of

topography heights and forcing strengths. Time-mean statistics were used to fit several

forms of κ.

A paradox was found in κ0, the cross-jet diffusivity. In a global sense, κ0 increased

as the strength of forcing and jet velocities increased, consistent with higher eddy kinetic

energy. On the other hand, a local definition of κ0 was found to be a local minimum in

the jet core where the velocity peaked, consistent with research suggesting the ACC cores

suppress mixing. In addition, a skew diffusivity, κskew was fitted and found to be globally

non-zero for the higher topography, corresponding to a net eastwards flux.

For the ridge simulations, large-scale variation in κ0 and κskew was noted and at-

tributed to the effect of local bottom topography on baroclinic instability. This motivated

a matrix definition of κ, which included the bottom topography gradient as an additional

parameter to estimate along and cross jet mass fluxes. In all forms the cross-jet diffusivity

showed a large dependence on the density gradient.
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RESUMÉ

Le rôle du Courant Circumpolaire Antarctique (CCA) dans la dynamique mondiale

des océans est reconnu depuis longtemps. L’écoulement du CCA est presque de purement

zonal dans de nombreuses régions, ce qui signifie que la majorité du transport traversant

les jets est effectuée par les remous méso-échelles. La plupart des modèles climatiques

de longue durée sont encore incapables de résoudre la méso-échelle et les effets de ces

remous doivent être paramétrés. Actuellement, le modèle GM90, qui estime le transport

de masse à partir des pistes isopycnales en utilisant une diffusivité turbulente, κ, est le plus

fréquemment employé.

Dans ce projet, le CCA a été représenté par un modèle quasigéostrophique de deux

couches avec de la topographie idéaliste. Une série de simulations a été réalisée en changeant

la hauteur de la topographie et le niveau du forçage. Dans le but d’évaluer plusieurs formes

de la diffusivité turbulente, une analyse des statistiques temporelles a été réalisée.

Dans un sens global, la diffusivité turbulente normale dans la direction méridienne,

κ0, s’est augmentée avec le gradient de densité. Une définition locale de κ0, cependant,

était un minimum dans le noyau de jet, en accord avec des recherches qui suggèrent la

suppression du transport traversant le CCA. Une diffusivité turbulente dans la direction

du débit moyen, κskew, a été également estimée, montrant un flux net vers l’est pour les

topographies et les forçages supérieurs.

Des répartitions spatiales ont été notées dans les champs de κ0 et de κskew. Celles ont

motivé une matrice de diffusion turbulente afin d’essayer de prendre en compte l’effet de la

topographie sur les flux de masse. Cette forme a été appliquée globalement et localement,

et a permis de réduire la variation spatiale observée de κ0 et κskew.
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Chapter 1
Introduction

1.1 Motivation

Ocean transport of scalars, such as heat, fresh water, nutrients and CO2, is of interest

not only for ocean circulation, chemistry and biology, but also for the larger climate system.

Modelling this transport is difficult due to the large range of length-scales that need to be

resolved or parameterized (Washington and Parkinson, 2005). For example, ocean basins

span thousands of kilometres, but ocean currents are typically 100 km or so wide. Moreover,

these currents are unstable; consequently, the currents are associated with meandering

pathways and with a rich field of eddies superimposed on the mean flow. The most energetic

scale of these eddies is the mesoscale, which scales on the order of 100 km (Vallis, 2006).

A further complication is that the length and time scales of both the currents and the

mesoscale eddy field is such that the Coriolis acceleration (or force) is typically large

compared to the advection of momentum. This gives rise to a dynamical balance called

geostrophy, in which the horizontal density gradient force and Coriolis force balance. To

leading order, one thinks of the horizontal ocean flow as the superposition of geostrophic

currents and eddies.

Ideally, models of ocean transport of various chemical and dynamical scalars would

explicitly account for advection by both the mean flow and the eddy field. In practise, how-

ever, eddy transport is often parameterized. This is especially true in climate applications,

where the ocean represents only one component of the total system and where long time

integrations are often needed. In other words, climate models include modules describing

the ocean, atmosphere, and cryrosphere, as well as land surface characteristics, biology,

and inherently sub-grid processes such as radiation and clouds. The biggest challenge in

the coupling of the atmosphere with the ocean lies in the large difference between their

time and spatial scales (Washington and Parkinson, 2005). Ocean dynamics typically occur

at much smaller spatial scales, which would demand a much finer grid size to explicitly

resolve. Such complexity comes at a cost, and it is almost universal in climate modelling
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that the ocean eddy field is parameterized rather than resolved explicitly (Garrison, 2004).

Typically, the eddy transport is assumed to be down the mean gradient, and much at-

tention is given to describing the assumed proportionality constant, or eddy diffusivity

(κ).

A region of particular interest to climate scientists is the Southern Ocean, in which

is located the oceans’ strongest current, the Antarctic Circumpolar Current, or ACC. The

ACC can be thought of as linking together the Atlantic, Pacific and Indian Oceans. It is

dynamically distinct from the other major ocean currents in that it circumnavigates the

globe, stretching 24 000 km (Wolff et al., 1991). The current is composed of several narrow

meandering jets. The regions of strong eastwards flow in the jet cores, reaching surface

velocity magnitudes of up to 33 cm/s (Phillips and Rintoul, 2000), are separated by weaker

return flows to the west. These velocities peak at the surface in the jet cores and decay

rapidly through the upper kilometer (Ferrari and Nikurashin, 2010). The ACC is driven by

a combination of strong westerly winds (Garrison, 2004) and the meridional (north-south)

density gradient in the Southern Ocean (Vallis, 2006; Gille, 2002), which is reinforced by

thermohalocirculation. While the winds are a momentum source, the density structure

supplies potential energy to the flow.

Tracer and heat transport across the ACC is of particular importance to climate

dynamics in that the oceans global overturning cell (in which water sinks mainly in the

North Atlantic and upwelling mainly in the Southern Ocean) must cross the ACC. For

this reason, heat transport in the Southern Ocean is of first order importance in global

heat budgets (Nowlin Jr and Klinck, 1986). However, since the ACC is close to zonal in

many regions, the meridional transport of, say, CO2 or nutrients, is accomplished by the

eddy field. Moreover, ACC jet cores are believed to be inhibitors to meridional transport

(Ferrari and Nikurashin, 2010; Marshall et al., 2006). Often this is believed to be due to the

conservation of a quantity called potential vorticity, which we will explain in Section 2.1.
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As in the entire ocean, transport across the ACC is necessarily parameterized in cli-

mate models. The most common form is that originally proposed by Gent and Mcwilliams

(1990) and, commonly referred to as the GM90 parameterization. Formally it predicts

mass transport between isopycnal surfaces to be proportional to the slope of the layer

thickness (distance between isopycnals separated by a constant density difference, ∆ρ).

The constant of relation is the eddy diffusivity. Often a constant value for κ is used (Eden,

2006), although the various means of estimating κ produce a large range of estimates and

spatial variation in the literature (e.g. Naveira Garabato et al. 2011; Marshall et al. 2006).

Furthermore, in practice κ may often be derived from the resolved large-scale density struc-

ture (Nakamura and Chao, 2000). Given that mass transport across the ACC is achieved

almost entirely by mesoscale eddies, the specification of κ in non-eddy resolving models

dictates cross-jet transport predictions (Farneti et al., 2010; Treguier et al., 1997). This was

evident in the most recent Intergovernmental Panel on Climate Change (IPCC) assessment

in 2007, which published results with ACC transport varying over a factor of close to ten

(Kuhlbrodt et al., 2012).

Evidence suggests that the Southern Ocean has already experienced some warming

in the wake of climate change (Gille, 2002). Furthermore, the IPCC Fourth Assessment

Report predicts a poleward shift and intensification of westerly winds in the Southern

Ocean over the twenty-first century. These new wind patterns are thought to have an

influence over the density structure in the Southern Ocean through changes to Ekman

pumping (downwelling) in the mid-latitudes and upwelling of deep waters in the poles, and

potentially steepening isopycnals (Wang et al., 2011). Several authors have published work

predicting the ACC response to recent and forecast environmental changes (e.g. Hogg et al.

2008; Sen Gupta et al. 2009; Wang et al. 2011), however predictions are heavily reliant on

the choice of sub-grid eddy parameterization (Kuhlbrodt et al., 2012). The interaction

with bottom bathymetry is also still unclear and could play an important role in the ACC

response (Wang et al., 2011).
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In a recent paper, Thompson and Sallée (2012) study cross-jet transport using a two-

layer quasi-geostrophic (QG) model (we will explain QG theory shortly in Section 2.1) of the

ACC and an idealistic 3D ridge topography. The model forcing mirrors the classic Phillips

problem for two-layer baroclinic instability (see Section 2.2) by imposing an inclination on

the interface between the two fluids. They vary the zonal (west-east) extent of the ridge to

explore both the localization of cross-jet transport in the domain and effect on net cross-jet

transport in the domain.

1.2 Project Objectives

Here we will also study the ACC using a two-layer QG model with an idealistic ridge

topography. Although a two-layer approximation is crude, it is commonly used in the

ocean and qualitatively gives good results (Salmon, 1998). We are interested in the effect

of both bottom topography and the strength of the meridional density gradient on eddy

diffusivities in the ACC. To this end, we will vary both the height of our topography and

the strength of the forcing in our model. We will investigate the relationship between

coarse grained fields and eddy transport with the aim to assess the usefulness of eddy-

diffusivity parameterizations. In particular, we hope to develop an understanding of how

these parameterizations are affected by bathymetry and the strength of the imposed forcing.

We will consider several parameterization of increasing complexity. In particular we are

interested in whether the employment of more complex parameterizations adds more value

and is worthwhile.

1.3 Synopsis of the thesis

In Chapter 2 we introduce the background theory of quasigeostrophy (QG) and in-

stabilities in QG flow. In Chapter 3 we review literature pertaining to eddy mass flux

parameterization and then orient the discussion more specifically to parameterization in

the ACC and the effects of topography. Chapter 4 explains the numerical framework we

use to analyze the problem. Results are presented in Chapter 5 and followed by a summary

of the work in Chapter 6.
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Chapter 2
Theoretical Background

Our model of the ACC is based on a two-layer quasigeostrophic (QG) model. In the

first part of this chapter we derive the governing QG equations. We will first show the

derivation for a simple one-layer case, then in the following extend to a two-layer case.

A more rigorous treatment and explanation of the derivations can be found in several

textbooks (e.g. Cushman-Roisin 1994; Salmon 1998). In Section 2.2 we will present types

of instabilities relevant to the problem.

2.1 Quasigeostrophy

2.1.1 Derivations of the QG equations in a one-layer system

For the one-layer case, we consider the system in Figure 2–1 with a constant density

of ρ0 and an average depth H. Variation of the free surface from the average value is

represented by η, measured as positive above the free surface. We define x to be in the

zonal (west-east) direction and positive to the east, y to be in the meridional (north-south)

direction and positive to the north, and z is the vertical coordinate.

Figure 2–1: Representation and notation for one-layer quasi-geostrophic equations

We start with the shallow water Navier-Stokes equations in a rotating reference frame.

Equation 2.1 and 2.2 are the momentum equations in the zonal and meridional directions

respectively and Equation 2.3 is a non-divergence of the velocity field from the continuity
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equation by assuming incompressibility.

∂u

∂t
+ u(∇ · u)− fv = −1

ρ

∂P

∂x
(2.1)

∂v

∂t
+ v(∇ · u) + fu = −1

ρ

∂P

∂y
(2.2)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.3)

The last term on the left-hand sides of equations Equations 2.1 and 2.2 is the Coriolis force

and f is the Coriolis term which is a sinusoidal function of latitude. The typical time and

length scales of ocean circulation mean not only that the Coriolis force is a dominant term

but its variation with latitude is also important. In a Cartesian coordinate system, the

β-plane assumption is commonly used to account for this variation with latitude. It can

be found by taking a Taylor series expansion about the centre of the domain and retaining

only the first two terms, yielding a linear expression. While this introduces quantitative

errors, it often captures the systems qualitative behaviour correctly within the simplicity

of a Cartesian coordinate system.

f = 2Ω sin(θ0) +
2Ω cos(θ0)

R
δy = f0 + βy (2.4)

where f0 is the value of f at the center of the domain and β is the meridional derivative

of f in the center of the domain.

In derivation of the QG equations the following assumptions are made to simplify

Equations 2.1 to 2.3 (Olbers et al., 2012). QG theory assumes all terms to be small but

isn’t biased as to which of the various small parameters is the largest.

• A small Rossby number; Ro = U/ΩL, where Ω is the rotation of the earth and U and

L are a horizontal velocity and a length scale of the fluid motion respectively. This

condition implies a large influence of the Earths rotation.

• The free surface elevation is small compared to the layer depth, η/H � 1 (this also

allows H
H+η ' 1− η/H).
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• The β correction to the Coriolis parameter is assumed small (βL/f0 � 0).

• T ∼ L/U , implying the linear ut term is also small compared to the Coriolis force.

• A small Ekman number, Ek, implying viscous forces are small compared to the

Coriolis force.

The above assumptions reduce the momentum equations to a leading order balance between

the Coriolis force and the pressure term.

−fv = −1

ρ

∂P

∂x
(2.5)

fu = −1

ρ

∂P

∂y
(2.6)

We now consider the pressure gradient term and assume a hydrostatic pressure dis-

tribution within the water column. The pressure difference at any two points at the same

depth is, therefore, simply determined by the difference between η at the two points. This

permits the pressure term to be rewritten in the following way as a function of the free

surface gradient.
1

ρ
∇P = g∇η (2.7)

The substitution of Equation 2.7 into the x and y momentum equations introduces another

variable, η. A third equation is sought to close the system and is obtained from mass-

continuity in Equation 2.3. Shallow water assumptions require that uz, vz = 0, and thus

by taking a z-derivative of the continuity equation it can be shown that wzz = 0. For a

flat bottom, wbottom must be zero by the no-flux condition, and the vertical velocity of a

particle on the surface is therefore the simply the Lagrangian derivative of the free surface

elevation. The following expression is therefore found for wz

∂w

∂z
=

1

H + η

Dη

Dt
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which is substituted back into the continuity equation. Finally we have three governing

equations in u, v and η.

Du

Dt
− fv = −g ∂η

∂x
(2.8)

Dv

Dt
+ fu = −g∂η

∂y
(2.9)

Dη

Dt
+ (H + η)∇ · u = 0 (2.10)

As mentioned in the introduction, we are interested in a quantity called potential

vorticity, and thus now consider the vorticity of the system. Since we are only considering

two-dimensional velocity, then vorticity exists only as a scalar oriented in the z direction.

There are two types of vorticity in a QG model. The first, the relative vorticity, ζ, is the

vorticity associated with the local velocity field. It is defined as the gradient crossed with

the velocity vector, and in two-dimensions oriented in the z-direction.

ζ = ẑ · (∇× u) =
∂v

∂x
− ∂u

∂y
(2.11)

The planetary vorticity, as the name suggests, is the vorticity associated with the solid body

rotation of the Earth. Its z component is given as 2Ω sin(θ), which varies with latitude.

The sum of the two, f+ζ, is the total vorticity. An equation governing the transport of the

total vorticity, Equation 2.12, is found by rearranging Equation 2.9, taking the x-derivative

and subtracting from it the y derivative of Equation 2.8.

D

Dt
(f + ζ) + (f + ζ)∇ · u = 0 (2.12)

Using Equation 2.10, and noting that Ht = 0, we find an equation for ∇·u in terms of the

total height of the water column, H + η.

∇ · u = − 1

(H + η)

D

Dt
(H + η) (2.13)
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Equation 2.13 is substituted into Equation 2.12 to find the result for the shallow water

potential vorticity in a one-layer system.

1

f + ζ

D

Dt
(f + ζ)− 1

H + η

D

Dt
(H + η) = 0

D

Dt
ln(f + ζ)− D

Dt
ln(H + η) =

D

Dt
ln

(f + ζ)

(H + η)
= 0

D

Dt

(
f + ζ

H + η

)
=
Dq

Dt
= 0 (2.14)

where q denotes the potential vorticity (PV). In this one-dimensional shallow water

case it is equal to the total vorticity over the total height of the water column. It can

equivalently be thought of as the circulation per unit volume (Cushman-Roisin, 1994). The

conservation of PV following fluid parcels is an important result and useful for a qualitative

understanding. Typically Equation 2.14 is rewritten in terms of a stream function, which

we present in the following.

Using the leading order balance of the Coriolis and pressure terms in the u and v

momentum equations (Equations 2.1 and 2.2), u and v can be estimated from η. This

permits the relative vorticity, ζ, to be expressed in terms of η.

u = − g

f0
ηy (2.15)

v =
g

f0
ηx (2.16)

ζ =
g

f0
∇2η (2.17)

We use the expression above for ζ and the β-plane approximation (Equation 2.4) for f in

Equation 2.14. Noting that Dt(f0/H) = 0 and retaining only the following three terms in

the expansion with leading order magnitude, the expression in Equation 2.18 is found.

D

Dt

[
f0
H

+
βy

H
+

g

Hf0
∇2η − f0η

H2
− ηβy

H2
− ηg

H2f0
∇2η

]
=

D

Dt

[
βy +

g

f0
∇2η − f0η

H

]
= 0 (2.18)
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Equation 2.18 allows a qualitative interpretation of the influences on the potential vorticity

of a column of fluid. The first term inside the total derivative represents the gain or loss

of planetary vorticity as fluid columns move northward or southward. The second term

accounts for changes in relative vorticity as the local velocity field evolves. The last term

is the vertical stretching or squeezing of fluid columns due to changes in the free surface

elevation. Equation 2.18 is most commonly written in terms of a streamfunction. The

streamfunction, ψ, has its usual meaning where:

v =
∂ψ

∂x
;u = −∂ψ

∂y

Note that η can also be rewritten in terms of ψ using the expressions for u and v in

Equation 2.15 and 2.16.

η =
f0
g
ψ (2.19)

Using the above expressions, Equation 2.18 is found in terms of the stream function below,

where J is the Jacobian operator:

D

Dt

[
∇2ψ − f20

gH
ψ + βy

]
= 0

∂

∂t

(
∇2ψ − f20

gH
ψ

)
+ J(ψ,∇2ψ) + β

∂ψ

∂x
= 0 (2.20)

Equation 2.20 is the quasi-geostrophic potential vorticity equation for a one-layer system.

It is one equation in terms of one unknown, ψ. In principle the system is closed, however

it cannot be solved analytically (in general) in time and requires the use of numerical

methods. These modelling methods isolate the time derivative and integrate the entire

system in time from initial conditions. Each time step involves, both updating the PV and

an elliptic inversion to get ψ, given the PV. We discuss the numerical methods in more

detail in Section 4.2.
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2.1.2 Governing Equations of a Two-Layer System

As mentioned, in this project we use a two-layer model. We now extend the principles

introduced in Section 2.1.1 to a two-layer system with bottom topography. We consider

the system shown in Figure 2–2. The symbols retain their same meanings, where we now

use subscripts 1 and 2 to refer to the upper and lower layers respectively. Note that we

now have two interfaces: one at the free surface, denoted by ηS , and one at the interface

between the two layers of fluid, ηI . Here ρ2 > ρ1 where it is assumed that ρ2 − ρ1 � ρ0.

Bottom topography, ηb(x, y), is introduced into the bottom layer as a function of both x

and y.

Figure 2–2: Representation and notation for two-layer quasi-geostrophic model with bot-
tom topography

The fluid depth in the upper layer, d1, is given by H1 + ηS − ηI , and likewise in the lower

layer d2 = H2 + ηI − ηb. The pertubation at the interface between the two layers, ηI , is

related to the stream functions in the two layers, ψ1 and ψ2.

ηI =
f0
g′

(ψ2 − ψ1) (2.21)

In addition to the QG model assumptions in Section 2.1.1, we note that ηb/H � 1

(Kantha and Clayson, 2000) and ηI/H � 1 (Cushman-Roisin, 1994). Again we arrive at a

leading order balance between the Coriolis force and the pressure term in the momentum

equations in the two layers. Recall that in the one-layer case we derived an expression for

the pressure term in terms of the interface gradient. In the upper layer we find the same
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expression as before for the pressure gradient term although now the pressure gradient in

the lower layer is a function of both ηI and ηS .

1

ρ
∇P1 = g∇ηS (2.22)

1

ρ
∇P2 = g∇ηS + g′∇ηI (2.23)

where g′ is the reduced gravity given by the following.

g′ =
ρ2 − ρ1

ρ
g

Typically the two terms on the right-hand side of Equation 2.23 are roughly the same order

of magnitude. That means to say that, although the reduced gravity is much smaller than

the full g, disturbances at the interface have a much higher amplitude than that at the

surface.

As in the one-layer case, potential vorticity is found to be conserved following fluid

columns in each layer. In other words, Dtqi = 0 where qi is the potential vorticity in layer

i as given below. Note that these can be compared with the one-layer analogy given in

Equation 2.20.

q1 =∇2ψ1 +
f20
g′H1

(ψ2 − ψ1) + f (2.24)

q2 =∇2ψ2 −
f20
g′H2

(ψ2 − ψ1) + f +
f0
H2

ηb (2.25)

Similar to the one layer case, ∇2ψi is the local spin or relative vorticity. In both equations,

the second term on the right-hand side is the stretching term by the other layer. The ratio

in front of this term is related to the Rossby radius of deformation, which we will introduce

in the following section. f again accounts for the changes in the planetary vorticity of fluid

columns. The last term in Equation 2.25 accounts for squashing of fluid columns moving

over elevations in the bottom topography.
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2.2 Barotropic and Baroclinic Instabilities

Ocean circulation is generally conceded to be mainly driven by the large scale, slowly

varying, wind stress. Because typical length scales of associated with atmospheric winds

are large compared to the ocean eddy field, this forcing does little to excite the eddies.

Instead, the mesoscale eddy field results from instabilities of the large scale flow. QG

dynamics admits two classes of instability; barotropic and baroclinic. A barotropic fluid

is formally defined as a fluid in which density is a function of pressure only (Vallis, 2006).

This simply means isopyncnal (constant density) surfaces and isobaric (constant pressure)

surfaces are aligned. Baroclinic fluids encompass anything other than barotropic fluids.

Note, however, that even if the fluid is baroclinic, barotropic instability may still exist.

Essentially one can think of the overall flow as in terms of vertical modes; the gravest of

which corresponds to the depth average. Barotropic instability acts on this mode, whereas

baroclinic instability also involves the depth-dependant part of the flow.

2.2.1 Barotropic instabilities

Barotropic instabilities may develop in fluids of constant density, meaning buoyancy

forces do not play a role in their dynamics McWilliams (2006). In the ocean, sloping sea

floors or the meridional variation of the Coriolis parameter set up background PV gradients.

These ambient gradients are able to sustain waves such as planetary and topographic waves

(see Cushman-Roisin (1994)). As shear currents sustain a similar PV gradient they too

permit the existance of waves. In this case, the baroclinic instabilities extract their energy

from energy in the mean shear flow (Witter and Chelton, 1998).

We mention barotropic instability here mainly for completeness. In our QG model,

the formation of the jets relates to barotropic dynamics but not so much to barotropic

instability per se. The two-layer QG model does, however, admit baroclinic instability

which we explain in following.
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2.2.2 Baroclinic Instabilities

Baroclinic instabilities exist in environments with horizontal slopes in isopyncnal sur-

faces in rotating reference frames. For this reason they can only occur in stratified fluids.

The ocean is stratified at all latitudes. Essentially, the abyss ocean is filled with waters

having been made cold (and therefore dense) as a result of surface cooling, either in the

deep ocean or along continental shelves. Surface waters in the Southern Ocean are also cold

and dense; however, they remain buoyant compared to the abyssal waters. As such, the

Southern Ocean, like all other major oceans is vertically stratified, and can be subject to

baroclinic instability. In addition, horizontal density gradients also exist, being naturally

set up by net heating in the tropic regions and net cooling in the polar regions (Salmon,

1998). The two processes lead to sloping isopycnals.

Consider Figure 2–3, in which isopycnals are sloping down towards the equator as in

the Southern Ocean. The system contains potential energy which increases in magnitude

as the slopes of the layers are increased. The horizontal stratification produces a driving

pressure gradient towards the north. Unlike in classic fluid dynamics, the system may in

fact be stable due to the opposing Coriolis force. The idea is similar to the slope on the free

surface which stabilizes in a swirling bucket of water. However, as the isopycnals become

steeper a critical slope is reached, beyond which the system is no longer stable. In this case

the isopycnals undergo a slight relaxation, releasing some potential energy. It is this energy

which feeds and drives the resulting baroclinic instabilities (Cushman-Roisin, 1994).

Even though the system in Figure 2–3 may have an overall unstable density structure,

the system may be stable to vertical displacements of fluid parcels. Consider a perturbation

swapping fluid parcels “A” and “C”. Just as if the density stratification were horizontal,

the two fluid parcels experience restoring forces and return to their original positions. In

contrast, after swapping “A” and “B”, “A” is both higher and more buoyant relative to

its environment; therefore buoyancy would tend to push it further from its initial position.

The lighter fluid being displaced higher, and the denser fluid being displaced lower means
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Figure 2–3: System giving rise to baroclinic instabilities, convention for southern hemi-
sphere with increasing density towards the pole. Based on figure from Vallis (2006).

the system is now in a state with lower potential energy. This loss in potential energy is

gained by the perturbation, fuelling its growth (Vallis, 2006).

Several approaches exist for baroclinic instabilities including, for example, the consid-

eration of continuously stratified fluids. Given that our model is a two-layer system, we

present here an analytic treatment for a system with two layers of constant density, com-

monly referred to as the Phillips problem. The system is shown in Figure 2–4 (again with

conventions for the Southern hemisphere), where the interface between the two fluids has

a slope uniquely in the meridional direction. As in the derivations of the QG equations, we

assume the pressure to be hydrostatic. Note that this inherently means that any non-zero

slope on the interface leads to a misalignment of isobars and isopycnals, and the flow falls

into a baroclinic classification.

In the upper layer, the horizontal stratification generates a driving pressure gradient to-

wards the south. In contrast, in the lower layer, the direction of the net pressure gradient

depends on a balance between the density difference across the interface and the slope of
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Figure 2–4: Initial state of a two-layer system which may lead to baroclinc instability.
Convention is shown in the Southern hemisphere with the upper warmer layer increasing
in thickness towards the equator.

the interface. If the slope is sufficiently steep then the driving pressure gradient is towards

the south and the system is said to be baroclinically unstable. In this case, in the upper

layer, a flow is initiated towards the south but is deflected towards the east (out of the page

in the diagram) by the Coriolis effect. In the lower layer, a westward flow is generated. The

opposing flows in the two layers produce a shear at the interface and generates baroclinic

instabilities.

To determine this critical slope several textbooks take an approach using linear in-

stability (e.g. Cushman-Roisin 1994; Salmon 1998). The QG equations are linearized to

produce a steady state solution with constant zonal velocities in the two layers. We define

the difference between the two velocities, or the shear velocity at the interface, to be Ushear.

U1 − U2 ≡ Ushear (2.26)

The leading order balance in QG model between the Coriolis force and pressure term

(Equation 2.6) allows the shear velocity to be rewritten in terms of the pressure gradient.

The expression can then be related to the interface slope, ηI , using the relationship be-

tween the pressure gradient and ηI defined in Equation 2.23. This leaves us with a simple
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relationship directly linking Ushear to ηIy .

Ushear = − 1

ρ0f
Py =

g′

f0
η̄Iy (2.27)

As mentioned, the system is unstable if ηIy , or equivalently Ushear, exceeds some critical

value. The critical value represents the point, beyond which the potential vorticity gradient

changes direction across the interface (McWilliams, 2006). The analytical critical value is

simply given in Equation 2.28, while the analytic treatment can be found in Salmon (1998).

Ushear
2

> Ucrit ≡ βL2
D (2.28)

Equation 2.28 introduces LD, the Rossby radius of deformation (or sometimes referred to

as the baroclinic radius of deformation). LD is often interpreted as a length scale of an

eddy resulting from baroclinic instability and in a two-layer system is given by the latter

expression in Equation 2.29,

L2
D ∼

g′D

f20
≡ g′H1H2

f20 (H1 +H2)
(2.29)

where g′ is the reduced gravity term, Hi is the depth of layer i, and f0 is the Coriolis term

evaluated in the centre of the domain. Here it is more correctly the internal deformation

radius as it references the interior stratification. The use of the full gravitational accelera-

tion relates to the free surface and is called the external deformation radius (McWilliams,

2006).

2.2.3 Relationship between baroclinic and barotropic instabilities

In our model, quasi-steady jets are formed by the interaction of both baroclinic and

barotropic modes. To help explain the dynamics of their formation, we first define a

length scale pertaining to the barotropic mode; the Rhines scale, LRhines. Recall that

the barotropic mode can be thought of as a depth averaged flow, or with the absence of

stratification and consider the barotropic equation shown in Equation 2.30.
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∇2ψt + J(ψ,∇2ψ) + βψx = 0 (2.30)

LRhines can be thought of as a scale at which the β effect begins to have an important

influence on the flow (Salmon, 1998). Mathematically, it is a length scale at which the

non-linear advection and β terms in the barotropic equation are roughly equal. Using a

scale analysis we scale the Jacobian term as ∼ U2/L2 and the β-term as ∼ βU , where

U is a representative eddy velocity. Equating the magnitude of the two terms results in

the dimensional argument in Equation 2.31, although sometimes it appears with varying

coefficients of relation. For example, Thompson (2010) quotes a factor of 2π as the con-

stant of relation and interprets it as the extent of meridional eddy mixing within a single

geostrophic jet.

LRhines ∼
(
U

β

)1/2

(2.31)

Quasi-geostrophic jets are essentially formed by a movement of energy to larger scales.

Instabilities are initially generated by baroclinic instability, with a length scale on the

order of the Rossby radius of deformation, LD. Unlike in the energy cascade in classic

turbulence, in the ocean, the mechanism for vortex-stretching cannot exist due to the

two-dimensionality of the flow. As a result energy cannot move to smaller scales and is

shunted into the larger scales (Vallis, 2006), a process termed the inverse energy cascade.

Eventually the eddies grow to a size on the order of the Rhines scale. Further growth is

restricted due to the increasing restoring force provided by the β-effect (Rhines, 1975).

The inverse energy cascade reaches its limit and the anisotropy of the system (due to β)

means the turbulent energy is channelled into a field of zonal waves, or geostrophic jets

(such as the ACC).

This can also be understood by considering the equations. For L� LRhines, β is irrel-

evant and the two-dimensional Navier-Stokes equations in a stationary reference frame are

18



recovered. The non-linear term leads to an upscale of the energy cascade and, eventually,

as the turbulent scales grow, the β term becomes more important. As β becomes even more

important, L� LRhines, leading to a quasi-linear (weakly non-linear) system. Due to this,

long term integrations of freely evolving turbulence tend to organize into quasi-zonal jets.
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Chapter 3
Literature Review

3.1 Mass transport by mesoscale eddies

3.1.1 The role of mesosale eddies

Mesoscale eddies are large rotating stuctures, on the order of 100km (Rhines, 2001),

evolving over time under a strong influence from the Earth’s rotation. They grow over time

scales estimated to be anywhere from 30 days south of Australia to closer to 60 days in

Drake Passage (Phillips and Rintoul, 2000). Mesoscale eddies dominate the kinetic energy

budget. Their total kinetic energy is estimated to often be on the order of ten times that

contained in the mean flow (Vallis, 2012) (note, however, that PE is dominated by the

large scale features). These eddies transport properties such as heat and tracers and act

to fragment and irreversably mix the flow. Specifically in the Southern Ocean, mixing

attributed to mesoscale eddies dominates cross-frontal transport (Eden, 2006).

Mesoscale turbulence is largely non-isotropic owing to the strong stratification (Dukow-

icz and Greatbatch, 1999) and subsequently mixing occurs much more easily along isopyc-

nal surfaces of constant potential density than across them (Gent, 2011). Within isopycnal

layers, the transport of tracers or other properties is realized by an effecive transport ve-

locity which is the sum of mean flow and eddy velocity components (Gent et al., 1995). In

coarse-grained models, the grid size is larger than the Rossby radius and thus unable to

resolve these mesoscale eddies evolving from baroclinic instability. It is common practice to

parameterize this effective eddy transport velocity, particularly in longer running models

(Treguier et al., 1997). This is commonly achieved using an eddy diffusivity.

3.1.2 Mass transport within an isopycnal layer

In the ocean, a large amount of scalar transport can often be attributed to changes

in isopyncal layer thicknesses. Consider an isopycnal layer with a high concentration of

a given scalar. If the thickness of this layer is reduced, then in a global sense, one can

think of the scalar as being effectively “dispersed” horizontally (Dukowicz and Greatbatch,
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1999). Using the same logic, an increase in layer thickness can be thought of as an inward

flux of the scalar. For this reason, changes in isopycnal thicknesses, or equivalently mass

transport within isopycnals, is often considered to be important in scalar transport.

To derive the mass transport within an isopycnal layer consider the velocity and inter-

face elevation to have two components; a time-mean component denoted with an overbar

and a fluctuating eddy component denoted with a prime. The total layer thickness, h, is

given by the sum of the average depth of the layer and the interface pertubation, h = h+η′.

Similarly, the total velocity is the sum of the two components, u = u + u′. Note that both

η′ and u′ are zero. The mean mass transport within a layer can found by multiplying the

velocity by the layer height and taking a time average.

uh = ūh̄+ ūη′ + u′h̄+ u′η′ (3.1)

= ūh̄+ u′η′ (3.2)

In the first expansion, the first term on the right-hand side is mass transport by

the mean flow in the mean layer thickness. The following two terms are zero in taking

a time-average. The final term is a correlation of two fluctuating quantities. It is the

mass transport by the mesoscale eddies. This term is analogous to the Reynolds stress or

turbulent scalar flux in the Reynolds Averaged Navier-Stokes (RANS) equations in classic

turbulence (e.g. Pope 2000; Tennekes and Lumley 1972). In coarse-grained models the

mean flow is resolved; however, the u′η′ is unresolved and requires parameterization. Often

this thickness-velocity correlation is expressed as a velocity. The Bolus velocity of layer

i,ubi , is defined as u′η′ divided by the average layer thickness. The GM90 parameterization

appears in the tracer equation in the form of the Bolus velocity. In these applications,

ubi may be added to the Eulerian time mean, ūi to give an effective advective velocity for

scalar transport.

ubi =
u′iη′

Hi

(3.3)
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3.1.3 GM90 parameterisation of mass fluxes

Here we introduce the most common model to estimate u′η′, or equivalently the Bolus

velocity. Currently, the model proposed by Gent and Mcwilliams (1990) and later clarified

by Gent et al. (1995) is the most commonly employed (Farneti et al., 2010). Often in the

literature it is referred to simply as the GM90 isopycnal tracer mixing parameterization.

Recall that baroclinic instabilities are fed by and reduce the potential energy contained

in sloping isopycnal surfaces (Section 2.2.2). It seems sensible to assume that mesoscale

eddy transport could therefore be related to this energy source. In other words, it predicts

that if baroclinic eddies are generated to relax baroclinically unstable isopycnal surfaces

then the amount of mixing by the baroclinic eddies is related to how much energy is released

by the relaxation of the isopycnals. Steeper isopycnals are therefore able to supply more

energy. It is the relaxation of these isopycnals which is modelled by a down-gradient Fickian

diffusion process. Based on a gradient transport hypothesis (see Pope 2000; Tennekes and

Lumley 1972), the height fluxes can be related to the interface gradient as in Equation 3.4

where κ is the eddy diffusivity.

u′η′ = −κ∇η (3.4)

This eddy diffusivity model is relatively simple to implement in the oceans interior, however

it runs into problems where isopycnals outcrop at the surface (Nurser and Lee, 2004).

Additionally there is some suggestion that κ should be matched to the integration time of

the model (Nakamura and Chao, 2000).

Note that both u′η′ and ∇η are vectors in Equation 3.4. The equation is mathemat-

ically correct if κ is a scalar, but also if κ is written as a tensor. As a scalar, κ could be

taken as a constant or permitted to vary. Often in climate models it is taken as a constant

in space (Eden, 2006). That said, several authors argue that κ varies spatially and should

be diagnosed from the large-scale density structure resolved in the model (e.g. Nakamura

and Chao 2000). In isopycnal coordinates κ can be written as a two-by-two matrix with
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entries, αi. The matrix can be rewritten into four separate matrices which lend themselves

to a physical interpretation.

κ =

α1 α2

α3 α4

 =

κ0 0

0 κ0

+

 0 −κskew

κskew 0

+

α 0

0 −α

+

0 β

β 0

 (3.5)

The κ0 matrix quantifies height diffusivity due to downgradient Fickian diffusion, or alter-

natively also called the across iso-surfaces flux. The second matrix on the right-hand side

with coefficients of κskew is the flux along iso-surfaces or perpendicular to the gradient. It

is often formally called the skew flux (Vallis, 2006). Note in passing that it is the diffusive

flux, oriented in the direction of the gradient which acts to reduce variation (if κ0 >0), in

contrast the skew flux is perpendicular to the gradient. α and β characterize anisotropies

of the two diffusion mechanisms.

3.1.4 Scalar transport in non-eddy resolving models

In coarse grained models, scalar transport is often modelled by Equation 3.7 where Θ

is the mean scalar field.

D

Dt
Θ = ∇ · (κ∇Θ) (3.6)

Θt + v
∼
· ∇Θ+ = κ∇2Θ (3.7)

Gent and Mcwilliams (1990) proposed the effective advective velocity, v
∼

, should be written

as the sum of the mean and an effective eddy velocity, the Bolus velocity.

Θt + u · ∇Θ + ubolus · ∇Θ = κ∇2Θ (3.8)

More formally the expansion of ∇· (κ∇Θ) to κ∇2Θ in Equation 3.7 contains another term,

∇κ·∇Θ. Since it contains the gradient of κ, it is identically zero if κ is non-varying in space.
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To maintain generality the term could be absorbed into the Bolus Velocity. Although we

will not compute this term in the present work, it provides a motivation to test whether κ

varies in space. Modelled using an eddy diffusivity, the Bolus velocity is then rewritten as

the sum of two terms in Equation 3.9 for a two-layer system.

ub
i =

κ∇η̄
Hi

−∇κ (3.9)

We mention the Bolus velocity here for completeness; however, we will present our

results largely in terms of mass fluxes and κ. Nonetheless, Equation 3.9 clearly shows the

strong dependence of turbulent mass transport on κ and potentially its spatial variation.

3.2 ACC dynamics and mixing

We gave a short introduction to the ACC and its importance in Section 1.1. Here

we focus the discussion on the dynamics of the ACC, and in particular the transport

of scalars or other properties. Recall that the ACC is the strongest and only zonally

reconnecting ocean current. The quasi-steady jets which compose the ACC are sustained

by two main energy sources. The first, a momentum source to the current, are the strong

westerly winds over the ocean surface in the Southern Ocean. This wind momentum is

believed to be transferred vertically to deeper waters by isopycnal form drag (e.g. Wolff

et al. 1991; Straub 1993), and secondarily by the horizontal Reynolds stress divergence

(McWilliams and Chow, 1981). Furthermore, a meridional density gradient is maintained

in the Southern Ocean through differential surface heating, freshwater fluxes and wind-

driven Ekman pumping to the north of the ACC and upwelling of cooler water on the

poleward side (Kuhlbrodt et al., 2012). This density gradient is recognized as a source of

potential energy to the current (Gille, 2002; Pedlosky, 1963).

Earlier we introduced the idea that the ACC is believed to be a barrier to mixing.

Most commonly, the inhibition is believed to be due to the conservation of PV. This can

be understood by considering a simple zonal jet with some u(y). Note that one side of the
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jet has positive relative vorticity and the other has negative. In this sense, it is difficult for

Lagrangian particles conserving vorticity to move from one side to the other, and in fact

doing so would disrupt the jet structure. In the ocean it is not relative vorticity but PV

that is conserved (PV for a one-layer system was defined in Equation 2.14). The ideas are

similar although the β-effect now introduces an ambient PV gradient in the y direction.

Literature on ACC mixing and its dynamics is a combination of both observations and

numerical simulations. Early models of the ACC were motivated to confirm observations

in the field. Typically they took the form of a 2-layer quasi-geostrophic model in a zonally-

reentrant channel and bounded by walls to the north and south. These simple two layer

models produced the same flows in the upper layer as that observed at the surface in the

Southern Ocean; peak velocities in the jet cores, alternating with regions of wider and

weaker Eastward flow (McWilliams and Chow, 1981).

Here we gives details about the parameterization of mixing in the Southern Ocean

and its spatial and depth variation. The literature is most often concerned with eddy

transport in the meridional direction as transport in the zonal direction is dominated by

the mean flow. Most commonly, authors try to form a link between the mixing structure,

or equivalently κ, and mean flow properties.

3.2.1 Representation of the ACC in non-eddy resolving models

The majority of non-eddy resolving models use parameterizations for mesoscale eddy

transport based on the ideas initially proposed by Gent and Mcwilliams (1990) and intro-

duced here in Section 3.1.3. In the GM90 parameterization, transport is either a linear

function of the density field or quadratic in the case where κ is time-varying and diagnosed

from the stratification (Wang et al., 2011). The Southern Ocean is particularly sensitive to

parameterization due to its widespread outcropping of isopycnal layers at the surface and

consequently κ is very influential in terms of modelling results. In fact ACC transport is

more strongly correlated with the choice of κ than zonal wind stress maximums (Kuhlbrodt

et al., 2012).

25



The determination of a suitable κ is made even more difficult by the inability to obtain

direct observations of eddy mixing in the oceans’ interior. That said, it is possible to make

estimates of mass fluxes from surface measurements (e.g. Phillips and Rintoul 2000). The

spatial variability of these mass fluxes and κ is even harder to resolve from physical mea-

surements. This means the methods of estimation, and hence resulting estimates, of κ in

the Southern Ocean are very varied in the literature. In the most recent Intergovernmental

Panel on Climate Change assessment in 2007, results were published with ACC transport

varying over a factor of close to 10 (Kuhlbrodt et al., 2012). The next IPCC Fifth Assess-

ment Report begins to allow resolutions as fine as 1/3◦ and resolution of eddies. Even so,

it is still too computationally expensive for flows with a large number of tracers. For this

reason the GM90 parameterization is expected to remain in use at least for the foreseeable

future (Kuhlbrodt et al., 2012).

In modelling, usually the meriodional transport is of principal concern since the zonal

transport is dominated by the mean flow and since one is often interested in the meridional

transport of tracers. Typically κ is taken as a positive constant indicating the relaxation

of isopycnals. A negative κ would be physically interpreted as eddies acting to increase

rather than decrease the available potential energy (Eden et al., 2007). This is contrary to

baroclinic instability theory (see Section 2.2.2). We present some eddy diffusivity values

in the Southern Ocean found in the literature in Table 3–1. Note that in the Southern

Ocean, cooler waters in the polar region and warmer waters in the mid-tropics set up isopy-

cnals sloping down towards the equator. A positive κ therefore corresponds to northward

transport (see Equation 3.4).

Table 3–1 shows eddy diffusivities with a huge variation. We discuss the spatial and depth

distribution of κ on a more local scale within the structure of the jets which make up the

ACC.
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Table 3–1: Eddy Diffusivities in the ACC

Author Means of Estimation Estimated Eddy Diffusivity

Eden 2006 Eddy-resolving MOM2 with
42 vertical layers

Surface Values of 200 m2/s poleward
of polar front, 600 m2/s between 60-
45◦, 3000 m2/s between 45-35◦

Marshall et al.
2006

Numerical advection using
surface velocities from satel-
lite altimetry

Surface Values of 500 m2/s in jet
axes up to 2000 m2/s on Equatorial
flanks

Naveira Garabato
et al. 2011

Application of mixing
length theory (Ferrari
and Nikurashin, 2010) to
altimetric data

200 m2/s in upper kilometer within
ACC jets, 2000 m2/s in inter-frontal
regions

Spatial Variation in κ

The spatial variation of κ in the literature is not clear, with seemingly contradictory

arguments. For example, Sallée et al. (2008) suggest a relationship where a Lagrangian κ is

proportional to the square-root of eddy kinetic energy (EKE). As the mean kinetic energy

(MKE) shows a similar large scale structure to the EKE, they find higher diffusivities

through the ACC than closer to the continents. Shuckburgh et al. (2009) on the other

hand argues EKE can not completely explain κ; they instead find κ to be suppressed in

regions of high mean flow where EKE is high.

This argument of local suppression in the jet cores is supported by other authors.

Marshall et al. (2006) numerically advects a tracer in the ACC’s surface flow determined

by satellite altimetry. They compute eddy diffusivities from the evolution of the tracer

field using a method originally published by Nakamura (1996). The approach amplifies the

molecular diffusivity according to the distortion of scalar contours by the eddies. They find

regions of low eddy diffusivities in regions of high PV gradients and higher eddy diffusivities

in regions of low PV gradient.

27



Ferrari and Nikurashin (2010) takes a more analytical standpoint to look at meridional

mixing across the ACC. They link the eddy diffusivity to the mean current speed using an

idea loosely based on mixing length theory. The mixing length, l, is reduced according to

to the mean flow velocity in which the eddies are advected. Suppressed mixing is predicted

through the jet cores where the mean flow is fast enough to “..advect the tracer out of

the eddy faster than the eddy lifetime and hence reduce the time for which eddies can

stir the tracer.” Naveira Garabato et al. (2011) uses this analytic framework on altimetric

data, predicting κ to be suppressed by an order of magnitude within the ACC compared

to the inter-frontal regions. This large scale variation in κ is derived from the large scale

variation in the mixing length field, l. Although the mixing length theory may seem like

a completely different idea, the same regions in the jet cores of mixing length suppression

are incident with regions of high PV gradient.

3.2.2 Depth Variation of κ

The two-layer model that we will use in this study will limit our ability to look at

the structure of κ in the vertical profile. Nonetheless, a basic understanding of the depth

variation of κ will allow us to compare our results to values of κ in Table 3–1, which

are mainly concerned with surface values. The zonal velocity of the ACC has a vertical

structure with peak velocities near the surface and decaying rapidly within the upper

kilometer or so.

Like the spatial variation, the depth variation of κ is also a little complicated. Overall,

κ is found to be maximum within the upper 500m, dropping to close to zero below 2500

m (Eden, 2006). Recall that κ was related to MKE by Sallée et al. (2008). Given the

higher velocities closer to the surface, then the result that κ is also generally higher close

to the surface is in agreement. The level inhibition through the jet cores also varies with

depth and is maximum where the mean current speed peaks (Abernathey et al., 2010). As

the mean current speed decays with depth there exists a point where it matches the phase
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speed of the eddies. It is suggested that this permits an enhanced level of mixing (Ferrari

and Nikurashin, 2010; Abernathey et al., 2010).

Bottom topography also affects the vertical mixing profile with local peaks in diffu-

sivity occurring where the ACC negotiates topography (Sallée et al., 2008; Thompson and

Sallée, 2012). In the vertical profile, peaks in κ are observed where jets merge together to

negotiate bathymetry (Lu and Speer, 2010). Given that our model includes bottom topog-

raphy it is valuable to discuss in more detail the effect of topography in the following.

3.3 Influence of topography

Early simulations of the ACC with bottom topography were carried out using wind-

driven two-layer quasi-geostrophic models (e.g. Wolff et al. 1991; McWilliams et al. 1978).

These aimed mainly to qualitatively explore the flow field formed under different conditions

and the energy transfer within the system. In these simulations, the eddy field has a large

barotropic component with large eddies in the lower layer (Wolff et al., 1991; McWilliams

et al., 1978). Bottom topography sheds standing eddies which can be seen in the time

mean flow (Wolff et al., 1991). They initiate a bottom form stress which is physically due

to bottom pressure variations which are out of phase with zonal topographical variations

(Olbers et al., 2012). This drag is responsible for a large proportion of the momentum

removal in the ACC (Straub, 1993).

Later modelling efforts includes Merryfield and Holloway (1999) and Witter and Chel-

ton (1998). Again they employ wind-driven two-layer QG models with ridges orientated

perpendicular and parallel to the flow. A zonal ridges steers the jet along contours of

constant f/Hn where Hn is the time mean thickness of the layer n (Witter and Chelton,

1998). This gives rise to a separation of the jet core between the two layers, increasing

baroclinic shear at the interface. At these locations of topographical shifts, increased EKE

is observed. Merryfield and Holloway (1999) impose an idealistic ridge and sea-mount in

their simulations. They do not find their simulation results to support an eddy diffusiv-

ity hypothesis. The imposed topography causes eddies to form mean isopycnals which
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reflected the bottom bathymetry. The eddies drive the system towards a higher-entropy

state consistent with the bottom topography. This is contrary to the thickness diffusivity

approach of Gent et al. (1995), which assumes the system to tend towards zero entropy

through a relaxation of isopycnal surfaces.Their paper suggests that rather, eddy thick-

nesses should be proportional to ∇(Ω− Ω∗) where Ω is the entropy of the system and Ω∗

is the topographically correlated entropy state.

Using smaller scale and more regular topography, Thompson (2010) explores the in-

fluence of bottom bathymetry on jet formation and mixing in the ACC. The influence of

topography is proportional to a ratio between the Rhines scale over a topographic length

scale, LRhines/Lt. When the ratio is greater than unity, the positions of the jets become

largely fixed in space by the topography with little temporal meandering (Thompson, 2010).

More recently, Thompson and Sallée (2012) imposed large scale topographic features

in a two-layer QG model and our work will draw many ideas from theirs, particularly in

terms of the model set-up. Their bottom bathymetry consists of a ridge with variation in

the meridional and zonal direction. The ridge is varied to stretch from 0% of the domain to

the full extent. In the simulations where the ridge occupies only a portion of the domain,

the zonal jets shift northward in the lee of the topography (and vice-versa when the jets

move back up onto the ridge). For the conservation of PV, the meridional meander provides

a change in planetary vorticity to compensate for a change in layer thickness. They show

jet axes to track along streamlines. Although this may seem intuitive, it might also be

possible for a jet core, defined by a maximum local u, to shift relative to streamlines as

streamlines diverge and come together. Whereas, in the case where the centre of the jet

corresponds to a streamline it is much harder to imagine cross-jet transport.

They evaluate cross-jet transport in relation to these large topographic features. Their

numerical analysis takes a different approach to what we will ultimately use in this project,

deriving cross-jet transport from probability distribution functions of instantaneous PV

fields. They find the meridional exchange of fluid parcels is maximum where the jet breaks
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down, and this tends to be in the lee of the topography. They relate this back to the

physical topography along the ACC, predicting that 75% of cross-jet transport is localized

to a mere 20% of the zonal extent of the ACC. Again to assess the localization of cross-jet

transport by topography, Naveira Garabato et al. (2011) evaluates the variation of mixing

suppression in the jets cores using altimetric data and the mixing length method proposed

by (Ferrari and Nikurashin, 2010). Reduced mixing suppression is observed where the

jets undertake sharp meanders to negotiate topography, terming these regions as “leaky

jets”. These two recent studies (Thompson and Sallée 2012; Naveira Garabato et al. 2011)

highlight the importance of these large scale topographic features in mass transport. We

are interested in how these large scale distributions in mass transport map back to large

scale distributions in the GM90 eddy diffusivity.

3.4 Long-term changes in the ACC

Over the twenty-first century the density gradient in the Southern Ocean is predicted to

strengthen. The response of the ACC to future atmospheric changes is of high importance

in climate change studies, particularly to Southern Ocean circulation, global meridional

overturning, global heat and carbon budgets (Wang et al., 2011). Modelling attempts have

produced considerable discrepancies and are heavily reliant on the choice of κ in non-eddy

resolving models. The bottom bathymetry may play a role in spatial shifts of the ACC and

how it may impact the meridional transport under new conditions is also unclear (Wang

et al., 2011; Sen Gupta et al., 2009). An insight into the sensitivity and dependence of κ

on both bottom topography and the meridional density structure is essential for predicting

the evolution and potential feedback mechanisms of mass transport across the ACC.
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Chapter 4
Methods

4.1 Model

4.1.1 Overview

Our model of the ACC is based on the two-layer QG equations derived in Section 2.1.2.

Here we use a re-entrant channel with doubly periodic boundary conditions. Recall that the

theory gives that the PV in each layer, qi, is conserved following fluid parcels. Numerically

it is expressed in Equation 4.1. The rearrangement in Equation 4.2 is used to integrate the

solution in time.

Dqi
Dt

= F −D (4.1)

∂qi
∂t

= −J(ψi, qi) + F −D (4.2)

where F and D are the forcing and dissipation in the model respectively. At statistical

equilibrium, F − D is roughly equal to zero in a global sense, giving Dt(qi) ' 0. Note,

however, that this is typically not true locally due to the differing spatial structures of F

and D. In the first rearrangement we can see that the magnitude of F and D governs the

energy contained in the system at steady state. This in turn affects the size and strength

of the jets formed at steady state; we will talk about this in more detail in Section 5.1.2.

Although the actual ACC is driven by wind and buoyancy, we will consider an idealized

forcing based upon the classic Phillips problem. Rather than imposing a forcing per se, we

impose a base state. Because we specify the base state such that it is unstable, this produces

eddies which are ultimately dissipated in the model via bottom drag and a hyperviscous

term. In other words, the imposed forcing is implicit and represents what is required to

maintain the base state.

For simplification, a rigid lid approximation is applied to the upper surface. Physically,

this means omitting the vortex stretching term caused by displacement at the free-surface
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and is a reasonable assumption in the ocean (Salmon, 1998). It is implemented by ampli-

fying the gravitational acceleration term at the surface.

4.1.2 Forcing

Our forcing imposes a base state by generating an imposed shear at the interface

between the two layers. Equivalently, it can be thought of as inclining the interface between

the two layers. The base-state PV in the two layers, Q1 and Q2, are given below. ζ does

not appear as it is zero by definition and ηb is the bottom topography.

Q1 = βy − f20
g′H1

(ψ1 − ψ2) (4.3)

Q2 = βy − f20
g′H2

(ψ2 − ψ1) +
f0
H2

ηb (4.4)

Noting the shear velocity as Ushear = U1 − U2 and taking the meridional derivative leads

to the following rearrangement. Note that from now on we drop the I superscript on η

indicating the interface between the two fluids. The shear is implemented in the model by

replacing β with an effective term, βeff , which absorbs the effects of the interface gradient.

To emphasize, β has the same magnitude in the two layers, whereas, βeff

Q1y = β +
f20
g′H1

(U1 − U2) = β +
f0η̄

H1
= βeff (4.5)

Q2y = β − f20
g′H2

(U1 − U2) = β − f0η̄

H2
+
f0
H2

ηby = βeff +
f0
H2

ηby (4.6)

In the top layer η̄y acts to reinforce β and Q1y is always positive. In the bottom layer,

the imposed interface gradient acts to oppose β and the overall sign of Q2y depends on

the magnitude of η̄y. According to the Phillips problem, the system is unstable when

〈Q2y〉 < 0. We choose amplitudes of η̄y to meet this condition, causing the growth of

baroclinic instabilities. Note that we later find the system is unstable at small positive

values of 〈Q2y〉 (see below).

We choose to define a variable to describe ”how unstable” the flow is so that we can

cleanly compare results with different forcing levels. We term this the forcing factor and
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denote it as Ff and define it in Equation 4.7. Ff is simply the ratio of the imposed shear

to the critical shear. We will later find that our set-up has a different instability condition

than the classic Phillips problem (see Section 5.1.1) and choose to define Ff based on

the onset of instability Uonset for our parameters. Ff = 1.0 therefore corresponds to a

marginally stable system.

Ushear
2

= FfUonset (4.7)

The induced velocity in each layer is computed as below, so that depth integrated

velocity (or equivalently barotropic mode velocity) is zero. In our case,H1 = H2 and the

velocities are equal and opposite.

U1 =
H2

Htot
UShear (4.8)

U2 =
H1

Htot
UShear

4.1.3 Energy Removal

Energy is removed from the model to maintain stability of an equilibrium state. It is

removed in two ways, the sum of which permits a dynamic balance with the energy added

by the forcing term. Di represents the dissipation in layer i and is given in Equation 4.9.

Di = Ah∇6ψi + δi2r∇2ψ2 (4.9)

where δi2 is the Kronecker delta. The first term on the right hand side represents energy

removal via hyperviscosity in both layers and the latter is bottom drag in the lower layer.

Small scale dissipation is implemented using hyperviscosity, using bi-harmonic friction

like several other authors (e.g. Merryfield and Holloway (1999); Wolff et al. (1991)). The

constant, Ah, in Equation 4.9 is the bi-harmonic viscosity coefficient. Energy is removed

from the small scales to prevent the build up of small scale noise and instability of the

model and of entropy which is transferred towards higher wavenumbers. Whereas viscosity
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scales with the fourth derivative of the streamfunction, hyperviscosity scales with the sixth

derivative. The sensitivity of hyperviscosity at small scales makes it highly effective for

removing the small scale energy.

Energy removal in the bottom layer by bottom drag is modelled using Rayleigh damp-

ing. It scales with the second derivative of the stream function in the bottom layer where

r is the bottom drag coefficient in Equation 4.9. We use a typical value of r of 10−7 s−1

(e.g. Merryfield and Holloway 1999; Nadeau 2011). The bottom Rayleigh drag is not scale

selective; it damps energy equally from all horizontal scales.

4.1.4 Topography

Topography is added to the model using a function adopted from Thompson and

Sallée (2012). Its shape is defined by a sinusoidal shape in the meridional direction and a

hyperbolic tan function in the zonal direction.

ηb(x, y) =
h0
2
X(x)Y (y) (4.10)

Y (y) =

[
1− cos

(
2πy

Ly

)]
X(x) =

[
1− tanh[(x− Lx/2 + γ)/σ]− tanh[(x− Lx/2− γ)/σ]

2 tanh(γ/σ)

]

γ defines the zonal extent of the ridge in the domain. Here we use a constant value of

Lx/4, corresponding to a ridge over half of the domain. σ is a parameter determining the

slope of the tanh function on the two flanks. A value of 5LD is used, equivalent to that

by Thompson and Sallée (2012). h0 is the total amplitude of the ridge from its lowest to

highest point.

We found a topography of the form ηb(x, y) to be preferable over a more simplistic

form with only zonal or meridional dependence, that is ηb(x) or ηb(y), such as that used

by Merryfield and Holloway (1999). Recall that our model uses a periodicity condition
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in the x and y directions to simplify the numerical implementation. Given that the ACC

is almost purely zonal in many regions, the periodicity assumption and our results would

only be valid if our model produced no net mean flow in the meridional direction. An early

test run using a simple one-dimensional ridge, ηb(x), produced a non-zero northward flow

in the upper layer. The adoption of the two-dimensional topography, described here, was

able correct this problem.
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Figure 4–1: Bottom ridge topography used for all simulations. Scale shown is ηb/h0, where
h0 is varied in the simulations.

4.1.5 Model Equations and Parameters

Our domain is doubly periodic with physical dimensions of 4000km zonally by 1000km

in the meridional direction. All simulations are carried out at a resolution of 1024 by 256,

producing a square resolution, i.e. dx = dy. The Rossby radius of Ly/64 means the spatial

resolution can effectively capture baroclinic instabilities. The model equations are shown

below with all parameters given in Table 4–1. The last two parameters in the table are

those varied in the simulations. Note that a further set of simulations will be carried out

for a flat bottom at a larger LD in Section 5.6. For these runs LD and its corresponding

g′ are shown in parentheses.
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q1 = ∇2ψ1 +
f20
g′H1

(ψ2 − ψ1) + f0 + βeffy (4.11)

q2 = ∇2ψ2 +
f20
g′H2

(ψ1 − ψ2) + f0 + βeffy +
f0
H2

ηb (4.12)

Dqi
Dt

= −rδ2i∇2ψ2 −Ah∇6ψi (4.13)

Table 4–1: Model parameters

Parameter Symbol Value Units

Zonal domain width Lx 4000 km
Meridional domain width Ly 1000 km
Rossby radius of deformation LD = Ly/64(Ly/32) 15.6 (31.3) km
Upper layer depth H1 2000 m
Lower layer depth H2 2000 m
Physical resolution dx, dy 3.91 km
Time-step dt 1 hr
Coriolis Parameter f0 -1 x 10−4 s−1

Beta Parameter β 2.0 x 10−11 m−1s−1

Rayleigh Bottom Friction Coefficient r 1 x 10−7 s−1

Upper layer density ρ1 1000 kg.m−3

Reduced Gravity g′ 0.0024 (0.0098) m2/s
Bottom Drag Coefficient r 1 x 10−7 s−1

Bi harmonic dissipation coefficient Ah = βdx5 1.83 x 108 m4/s
Topographic height H0 0 to 400 m
Forcing Factor Ff 1.2 to 1.6 -

4.2 Numerical Methods

The model is implemented using a code written in FORTRAN 90. The main code was

written by Nadeau (2011) and here we adapt it to our set-up. The system is initiated with

random white noise. During the spin-up phase instabilities grow in the field and quasi-

geostrophic jets are formed. Simulations are allowed to spin-up over a minimum period of

16 000 days, or longer where required to reach energy saturation. Time averaged statistics

are then computed over a further 60 000 days.
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4.2.1 Numerical Integration

The numerical integration of the governing equations is carried out using the Adams-

Bashforth third-order numerical scheme (background on numerical methods may be found

in several textbooks such as Gilat and Subramaniam (2011)). As applied to this problem,

the Adams-Bashforth method is given in Equation 4.14.The initial three time steps are

treated differently as the computation of q(n+1) uses values of q at the previous three time

steps.

qn+1 = qn +
∆t

12

[
23RHSn − 16RHSn−1 + 5RHSn−2

]
(4.14)

where RHS refers to the value of the right-hand side of Equation 4.2 at the specified time

steps. Jacobian operators are computed in the same manner as the original code, using the

Arakawa scheme which permits the conservation of kinetic energy and enstrophy (Nadeau,

2011).

At each time step, the integration produces updated values of q in each layer. The

direct back-computation of ψ1 and ψ2 from q1 and q2 is not straightforward due to the

dependence of q in each layer on the stream functions in both layers. Thus the motions

are projected onto the two vertical, baroclinic and barotropic, modes.

qBT =
H1q1 +H2q2
H1 +H2

= βy +∇2ψBT (4.15)

qBC = ∇2ψBC −
f20HT

g′H1H2
ψBC = ∇2ψBC −

1

L2
D

ψBC (4.16)

where

ψBT =
H1

HT
ψ1 +

H2

HT
ψ2 (4.17)

ψBC = ψ2 − ψ1 (4.18)

The conversion results in two elliptic equations for qBT to its stream-function, ψBT , and

similarly for the baroclinic mode. The removal of the cross-dependence permits the elliptic

inversion using the multigrid method (Briggs et al., 2000). The streamfunctions are then
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superimposed to give ψ1 and ψ2 at the next time step.

ψ1 = ψBT −H2/HTψBT (4.19)

ψ2 = ψBT +H1/HTψBT (4.20)

The algorithm then continues.

4.2.2 Computation of Mass Flux

The thickness fluxes are obtained by removing transport by the mean field from the

total transport (see Section 3.1.2 for theory). We compute u′η′ as follows where the overbars

indicate a temporal average.

u′η′ = uη − ūη̄ (4.21)

and η is computed from the stream functions in the two layers.

η =
f0
g′

(ψ2 − ψ1) (4.22)

The first term on the right-hand side in Equation 4.21, uη is simply the instantaneous

values of the u and η fields multiplied together at each grid point and then averaged in

time. The second term,ūη̄, computes first the time-averages of the separate variables and

then multiplies them together. The subtraction of this mean transport term from the total

transport leaves the transport due to mesoscale eddies, u′η′. Averaging computations occur

every 100 time steps and are added to a running average. In addition to averaging mass

fluxes we compute temporal averages of layer stream functions and interface gradients.

4.3 Summary

We carry out a series of simulations based on the two-layer QG model described in

this section. The model is forced by a meridional density gradient and dissipated using

bottom drag and hyperviscosity. We use a set of 25 simulations with varying combinations

of topography and forcing strength throughout the core of our results in the following
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section; we summarize these simulations in Table 4–2. We carry out other simulations

varying LD and further varying Ff which we will introduce for varying motivations.

Table 4–2: Summary of combinations of topography and forcings in main simulations

Topography Ff

Flat 1.2 1.3 1.4 1.5 1.6

100 m ridge 1.2 1.3 1.4 1.5 1.6

200 m ridge 1.2 1.3 1.4 1.5 1.6

300 m ridge 1.2 1.3 1.4 1.5 1.6

400 m ridge 1.2 1.3 1.4 1.5 1.6
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Chapter 5
Results and discussion

We carried out many simulations in total, 25 of which we present in our main results

to assess meridional eddy diffusivities. The simulations vary the level of the imposed Ushear

and use five different topographies; a flat bottom and ridges with heights of 100 m , 200

m, 300 m and 400 m.

This chapter is organized as follows. Section 5.1 decribes characteristics of the forma-

tion and form of quasi-geostrophic jets. We consider the spatial variation of mass transport

in Section 5.2. Section 5.3 looks at the plausibility of an eddy diffusivity model by consid-

ering simple flow statistics. We use the results of this section to propose an eddy diffusvity

model which we explore fitting both globally and locally in Section 5.4. These ideas are

extended to look at the possible usefulness of a matrix diffusivity in Section 5.5. Finally,

we note that our eddy diffusivity estimates are on the lower end of those found in the

literature. Motivated by this we present the results of a further set of simulations with a

larger Rossby radius in Section 5.6.

5.1 Formation of Quasi-steady Jets

5.1.1 Baroclinic Instability of the System

Flat Topography

Recall that the classic Phillips model for 2 layer baroclinic instability (refer Sec-

tion 2.2.2) predicts the critical shear velocity to be βL2
D. In our set-up we found the

onset of instability growth occurred at values of Ushear less than βL2
D. With flat bottom

topography, we find this onset of instability growth, Uonset, to lie at approximately 0.7βL2
D.

A key difference between our model and that in the classically derived critical case

is the presence of bottom drag. It is well understood that increasing bottom drag leads

to more baroclinic flows (e.g. Rivière et al., 2004), but it is certainly not obvious how a

term that removes energy from the flow could cause it to be more unstable. In our system,

the bottom drag does not act on the imposed shear velocity in the two layers, U1 and U2,
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which are held fixed in the model. Nor does it remove energy from the upper layer. It only

removes energy from the perturbation, or model response in the lower layer. The shear

increases if more dissipation occurs in the barotropic mode. This therefore permits the flow

to go unstable at lower levels of Ushear which is what we observe. The classic instability

condition was able to be recovered by setting the bottom drag to zero. One could re-do

the classic Phillips analysis including bottom drag to get an analytic expression for Uonset.

This is beyond the scope of this project so we empirically find Uonset.

We remind the reader here that we chose to define the forcing factor, Ff , based on

Ufonset, where the superscript indicates the flat-bottomed case. For simplicity we present

our results mainly in terms of Ff . An Ff of unity corresponds to a marginally stable case

with flat bottom topography. The shear velocity is found therefore by FfU
f
onset.
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Figure 5–1: Sum of kinetic energy in the two layers during the spin-up phases of flat bottom
simulations with different values of Ff ; the graph shows the exponential growth phase.

The growth of the instability can be seen in the total kinetic energy of the system.

The energy in the system at t = 0 is due to the white noise used to initiate the system

(Section 4.2). This initial energy is predominantly in the small scales and is decays rapidly

towards zero due energy removal by the hyper-viscosity term. After some time, instability
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growth is triggered and energy grows exponentially with a growth rate of α, where we find

α to be proportional to Ushear − Uonset. An example of early energy growth is shown in

log-scale in Figure 5–1 for a range of forcings. The slopes of the curves after approximately

1000 days in log-space are proportional to Ushear − Uonset, equivalently, it is proportional

to (Ff − 1).
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Figure 5–2: The upper layer streamfunction, ψ1, at two different time steps for simulation
with flat bottom and Ff of 1.4. The time-steps are during the exponential energy growth
phase when primarily one mode is growing.

During this exponential growth phase a regular structure is seen as one mode is pre-

dominantly growing. Figure 5–2 shows two ψ1 fields during the exponential growth phase.

It is possible to predict the maximum wavenumber at which there is baroclinic instability,

kcutoff , however the precise result depends on β. Here we make a rough approximation

that kcutoff ∼ 1/LD, and that the wavenumber of maximum growth, kmax, as smaller by an
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order one amount. If for example we take kmax ∼ 0.2kcutoff , then we find the wavelength

of maximum growth is predicted to be approximately 100km, close to the predominant

wavelength we observe in Figure 5–2.This exponential energy growth continues until the

system kinetic energy peaks to a maximum value before falling back down to a lower equi-

librium value. Simulations with lower levels of forcing take longer to reach this saturation

level.

Ridge Topography

For the ridge cases we find the onset of instability to occur at even lower levels of

forcing than Ufonset. We show as an example the instability growth for a 200 m ridge

in Figure 5–3 (analogous to Figure 5–1). We continue to denote the forcing factor as

Ff = Ushear/U
f
onset and note the system is unstable even when Ff < 1. We take the 200 m

ridge here as example as it represents the middle of the topography height range but find

the system unstable for Ff < 1 for all topography heights used. For the 200 m ridge we

find Uonset ∼ 0.5Ufonset.
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Figure 5–3: Sum of KE in the two layers during spin-up for simulations with 200 m high
ridges and varying Ff , showing different growth mode of ridge simulations compared to
flat bottoms.

Figure 5–3 shows almost no resemblance to the flat-bottom analogy in Figure 5–1.

This suggests the early growth regime is not the same with and without topography. We

show a series of instantaneous ψ1 plots in Figure 5–4 during the spin-up phase for one

of the simulations shown in Figure 5–3. A key difference is that the interaction between

the imposed zonal mean flow and the ridge excites a large scale structure. As such, the

initial energy growth is due to both the existence of the large scale topography waves and

baroclinic instability. Additionally the baroclinic instability (wavenumbers comparable

to 1/LD) occurs preferentially in parts of the domain where topography slopes favour

instability.

To explain the initial structure observed in the earliest field in Figure 5–4, recall that

U2 is westwards in the lower layer. Where topography slopes downwards to the east,

fluid columns are pushed upslope. Conversely when the topography slopes upward to the

east, fluid columns are pushed downslope. This creates a ridge in the interface height at

approximately x = 1000km and a trough in the interface at around x = 3000km. This
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occurs very early on and can be seen in the ψ1 field in Figure 5–4 (a). The ridge-trough

structure continues to evolve, both in conjunction with advection by the mean flow and

with topographic Rossby wave propagation. By 200 days (Figure 5–4(b)) we find that the

trough structure has moved into the southern half of the domain and the ridge into the

northern part of the domain.

The growth of the baroclinic instability is finally observed in Figure 5–4(c), but only in

some parts of the domain. In the ψ1 field we see instability growth primarily to the east of

the downward ridge slope at x = 1000km and to the west of the leading edge of the ridge

at x = 3000km. Fields at earlier time-steps show instability first occurs on the southern

tip of the ridge at x = 1000km. This baroclinic instability growth is masked in Figure 5–3

by the large energy contained in the large structure (compare the scales of Figure 5–1 and

Figure 5–3).

Recall that for our ridge topography the meridional gradient of the bottom topography

introduces a PV gradient in the bottom layer (see Section 4.1.2 for further details). The

meridional slope acts as a stabilizing influence if it creates a PV gradient in the same

direction as β or a destabilizing effect otherwise (Cushman-Roisin, 1994). To explain this

consider Equation 5.1.

Q2y = β − f0
H2

ηI +
f0
H2

ηby = βeff +
f0
H2

ηby (5.1)

Instability occurs when the meridional PV gradient reverses direction across the interface.

Since Q1y is always positive, instability occurs when Q2y becomes negative. The orientation

of topography slopes can either increase or reduce instability. On the northern flank of

the ridge ηby < 0 acts to locally increase stability. On the southern flank, ηby works with

the imposed interface gradient to reduce stability. In our case, |ηby| can be locally very

important especially for the higher topographies. At forcings much lower than Ufonset the

local topography gradient on the southern flank can cause Q2y to be negative. Based
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Figure 5–4: ψ1 for ridge of 200 m and Ff of 1.0 during spin-up. The development of
the large-scale structure can be seen at all three time-steps and the start of baroclinic
instability growth in panel (c).

on this we would expect the southern slopes to be the most baroclinically unstable. We

could argue that this is loosely true as we see the first baroclinic instability initiated on

the southern side of the ridge in the lee of the topography. However, what appears more
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obvious from Figure 5–4 is that the x derivative of the topography is more important in

the initial growth phase.

Summary

In this section we showed that the inclusion of bottom drag caused our model to go

unstable at lower shear velocities than expected. With our parameters Uonset for the flat-

bottomed case is approximately 70% of the classic Phillips case. The addition of bottom

topography led to a different growth regime and again reduced Uonset.

5.1.2 Jet Structure in Statistical Equilbrium

Following the initial growth period described in the preceeding section, the energy

pertubation saturates and quasi-steady jets are formed in the domain. These jets are

typical of β-plane turbulence. The energy saturation can be seen in the total KE in the

system. Consider Figure 5–5 which shows the spin-up period over the first 15 000 days

for simulations with a series of forcing and topography combinations. Plot (a) shows the

energy growth for a range of topography heights at the same forcing. We observe the same

exponential growth in the flat bottom case as we saw in Figure 5–1. We find the higher

ridge simulations reach energy saturation the fastest, although all simulations with the

same Ff grow towards the same saturation level energy. In plot (b) we show the spin-up

energy for a range of forcing levels at the middle topography height. All five forcings

show a similar growth regime. We see the total KE in the system at saturation increases

with forcing. This makes sense as the energy in the system at equilibrium is given by the

difference forcing and dissipation terms (see Section 4.1). Generally the spin-up period for

each simulation was 15 000 days, although some simulations were run for longer as they

had not saturated at 15 000 days (the flat bottom case in Figure 5–5 (a) for example). The

simulations were then run for another 60 000 days to obtain time-averaged statistics.

At statistical equilibrium, the size and intensity of the jets are governed by bottom

drag, strength of forcing and LD. In these simulations bottom drag is fixed, however
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Figure 5–5: Sum of kinetic energy in the upper and lower layers during first 15 000 days
of spin-up shown for a range of (a) topography heights at Ff = 1.4, and (b) forcing levels
with the 200 m ridge. Note the y-scale difference between the two plots.

increasing the magnitude of r produces smaller jets. Here r is small enough that it permits

the inverse cascade to grow to the Rhines scale. Further growth is constrained by the β

effect and zonal flows are formed (Vallis, 2006).

Since we vary both forcing and topography, for consistency we show fields mainly for a

reference case. The middle forcing and middle topographical height is used; a 200 m ridge

with Ff of 1.4. We will focus on both the effect or forcing and the effect of topography

height relative to this reference case. The effect of LD is explored later in Section 5.6.

Instantaneous fields

Instantaneous upper and lower streamfunction fields are shown for the reference sim-

ulation in Figure 5–6. ψ1 is predominantly decreasing with y indicating eastwards flows.

Recall that u is equivalent to −ψy; regions of high gradient in the ψ1 field therefore cor-

respond to jet cores in the upper layer. The positions of the jets remain largely fixed

between time intervals as bottom topography varies over scales much larger than the jet

scale (Thompson and Sallée, 2010). In contrast, ψ2 has an overall net increase across the
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Figure 5–6: Instantaneous ψ1 and ψ2 for our reference case, 200 m ridge and Ff of 1.4, at
statistical equilibrium showing meridional excursion taken by the jets.

domain indicating a net westwards flow in this layer. Regions of recirculation are observed

in the valley and, likewise, fluid parcels on the ridge crest do not move into the valley.

In the upper layer we see that the jets follow a meridional excursion to the south. In

fact, in all ridge simulations we see an excursion in the lee of the topography. It can be

explained simply by considering the conservation of PV for a one-layer system. Columns of

water within the jet are vertically stretched as they move into deeper water off the ridge.

To conserve PV, fluid parcels compensate by moving southward to increase the magnitude

of their planetary vorticity. The jets shift northward moving back up onto the ridge for

the opposite reasoning. The same idea can be extended to explain the observations in our
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Figure 5–7: Instantaneous η field and its derivatives for the reference case. Note the
difference in scales between the ηx and ηy fields shown.

two-layer system. As expected, the absence of total fluid depth change in the flat bottomed

topography means the jets remain zonal across the domain.

At the same timestep as in Figure 5–6, we show η and its derivatives in Figure 5–7.

As η is proportional to ψ2 − ψ1, we see a meridional excursion of η-contours in the lee of

51



the topography like ψ1 and ψ2. In the forcing term in the model, η is imposed as a net

downward slope towards the equator (see Figure 2–4). The model response is to create a

staircase like structure in the meridional direction. This can be seen most clearly in ηy

where regions of steeper slopes are separated by regions of flatter slopes. These regions

of step slope are closely related to the position of jet cores in the upper layer as seen in

Figure 5–6 (a). Large negative values of ηx are seen at the end of the ridge at x = 1000 km

and large positive values at the leading edge at x = 3000 km. These are coincident with

the points where the jets take their meridional excursion.

For the reference simulation we show an instantaneous PV field of the upper layer in

Figure 5–8(b). The PV is anti-correlated with η in Figure 5–7 as expected and we observe

the same step-like structure. Bands of constant PV are separated by strong PV gradients

indicating the jet cores. In the upper and lower panels we show how PV fields change with

forcing. Figure 5–8(a) is the most weakly forced regime we use in these simulations and

Figure 5–8(c) is the most strongly forced. As anticipated, we see that in Figure 5–8(c) the

jets are larger and more turbulent compared to those in Figure 5–8(a).

The number of jets in the domain does not vary significantly in our simulations. In the

flat bottomed simulations between five and six jets are formed in the domain, depending

on the forcing level. This corresponds to a jet spacing of 160 to 200 km. We compute the

Rhines scale as LRhines ∼ (U/β)1/2 and find it to vary with forcing level from approximately

20 to 30 km. Note that Thompson and Sallée (2010) define LRhines with an additional

scaling factor of 2π. They interpret this LRhines to be a measure of the meridional eddy

mixing within a single jet. Using this scaling factor, LRhines for our simulations is very

close to the jet spacing.

Time-averaged Fields

After statistical equilibrium was reached we run all simulations for an additional 60

000 days. We will be interested in relating the time-averaged fields to eddy statistics. To
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(c) Ff = 1.6

Figure 5–8: Upper layer instantaneous PV fields for simulations with a 200 m high ridge.
Fields for three different forcings are shown; (a)Ff = 1.2, (b)Ff = 1.4 and (c) Ff = 1.6.
The effect of the forcing strength can be seen in the size of the jets and eddies.

this end, it is useful to first examine the time-averaged flow. In the flat bottom simulations,

a series of quasi-steady zonal jets are formed. In our ridge simulations the jet structures are

a little more complex. We choose this averaging time to be long compared to the time-scale
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of the eddies. Later in Section 5.2.2 we will come back to the averaging time and see that

the structure does evolve somewhat with averaging time.

We now consider the effect of both topography height and forcing level on the structure

of the jets. Figure 5–9 shows a series of ten u1 fields for a combination of forcing strengths

and topographical heights. To the left we show all five topographies at the reference forcing

of Ff = 1.4. To the right we show our reference case topography (a 200 m ridge) at all five

levels of forcing used in this project. In the upper layers shown, jet cores are identified by

peak eastwards velocities alternating with regions of either weaker eastwards or westwards

flows.

Focusing first on the effect of forcing (right-hand panels in Figure 5–9), we see the

stronger forcings produce larger, more widely spaced jets. This is consistent with obser-

vations of the PV fields in Figure 5–8. We note that the jets in the domain are not of

equal strength. Even following the same jet, the core velocity changes notably when the

jet moves off the ridge and again when it moves back up onto the ridge. In our simulations

we find jets have highest core velocities on the northern flanks of the ridge. This is con-

sistent with Thompson and Sallée (2012) who saw stronger jets on their southern flanks

(equivalent to our northern flanks). This is somewhat counter-intuitive since our bottom

topography gradient has a local stabilizing effect on the northern flanks (see Section 5.1.1).

The reason is evident in the mean interface gradient fields presented later in Section 5.2.1.

We will show that on the northern ridge ηy is steeper. This means baroclinic eddies are

relaxing the isopycnals towards a locally steeper critical gradient. This in turn is able to

supply more potential energy to the mean flow and results in stronger jets. Alternatively,

since topography is stabilizing on the northern flank of the ridge, a larger ηy is needed for

instability.

Now focusing on the effect of topography (shown in the fields on the left in Figure 5–9)

we see that a meridional excursion is observed in all ridge simulations. Recall the one-

layer analogy we gave in Section 5.1.2 as a simple explanation. Based on this, we would
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(a) Flat, Ff = 1.4 (b) 200 m ridge, Ff = 1.2

(c) 100 m ridge, Ff = 1.4 (d) 200 m ridge, Ff = 1.3

(e) 200 m ridge, Ff = 1.4 (f) 200 m ridge, Ff = 1.4

(g) 300 m ridge, Ff = 1.4 (h) 200 m ridge, Ff = 1.5

(i) 400 m ridge, Ff = 1.4 (j) 200 m ridge, Ff = 1.6

Figure 5–9: Time-averaged upper layer velocity fields, showing the effect of topography
and forcing strength on the the time-mean jet structure. On the left we vary topography
height relative to the reference case. On the right the forcing strength is varied. The same
colour scale as in Figure 5–10 is used.

expect that a larger depth change requires a larger change in total vorticity. As the ridge

height increases this could be achieved by shifting larger distances southward in a one-layer

scenario. We do not find this to be the case in our two-layer system in the upper layer. In

fact little variation is seen in the meridional excursion of the jets across simulations with
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different topography heights. In the higher topography simulations, a standing eddy is

excited as the jet moves off the ridge. These eddies serve to remove energy from the flow

(Wolff et al., 1991) and decay within roughly 5 wavelengths in our simulations. The same

is seen, although to a lesser extent, at the leading edge of the ridge at 3Lx/4. Information

is not transmitted upstream of the change at either location.

In the lower layer the dynamics are much different. Figure 5–10 shows the time-

averaged lower layer stream function and velocity field for the reference case. Figure 5–

10(a) is the time-averaged analogy to the ψ2 field presented earlier in Figure 5–6 (b). Both

fields in Figure 5–10 show closed recirculations zones on the crest of the ridge and in the

valley. This is seen in (a) by the streamlines which do not track the entire zonal length

of the domain. In (b) the recirculation is seen by regions of eastwards velocity alternating

with regions of westward velocity in the valley between the ridge.

In the lower layer of the flat bottom simulations we find largely westwards flows. Di-

rectly under jets in the upper layer, westward velocities are roughly two orders of magnitude

smaller than those in the upper layer. These regions are separated by wider and stronger

eastward return flows.

Summary

In all of our simulations quasi-steady jets are formed. As expected, we find the the size

and strength of the jets at statistical equilibrium to vary with the strength of forcing. The

addition of bottom topography caused the jets to take a meridional excursion to the south

in the lee of the topography and return northward at the leading edge. Also noteworthy

with the topography cases is that the jets in the domain do not have equal strengths.

Even along the same jet the same core velocity is not maintained and varies with bottom

topography. We will come back to this several times later, particularly when we consider

locally defined eddy diffusivities in Section 5.4.2.
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Figure 5–10: Time averaged ψ1 and u2 showing zones of recirculation in the lower layer in
the valley. Simulation has a ridge height of 200 m and Ff of 1.4.

We find the jets to be far more evident in the upper layer than the lower layer. This

fact confirms that our set-up produces quasi-realistic dynamics in agreement with the fact

that ACC jets are strongest closest to the surface. It also leads us to believe that an

understanding of the mixing of jets in the Southern Ocean will be most meaningful if

derived from the upper layer dynamics. We decide to focus our analysis in the upper layer

and drop the 1 subscripts (unless required) from here on.

5.2 Spatial distribution of mean mass transport and interface gradients

We remind the reader that the GM90 thickness diffusivity suggests that u′η′ ∼ κ∇η.

In this section we discuss qualitatively u′η′ and ∇η fields from our simulations. We will not

consider quantitatively whether this model can be applied to our data until Section 5.3.

Again, we present and explain fields mainly in terms of reference cases using the middle
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forcing strength; Ff = 1.4. We use the 400 m ridge where we wish to accentuate the effects

of the ridge. Later we use the flat bottom case to show small scale variations in the fields

in isolation from bottom topography effects.

5.2.1 Mean interface gradient

We show mean interface gradients for a simulation with a ridge of 400m at the ref-

erence forcing strength in Figure 5–11. These are the time averaged-equivalent of those

in Figure 5–7, although note that the topography height is not the same. The η interface

has a net downward slope towards the equator clearly seen in the y-derivative. Like in

the instantaneous fields in Figure 5–7, the interface has a staircase like profile; regions

of steeper slope alternate with regions of flatter slopes. The jet cores lie close to locally

steep η-contours where the supply of potential energy is maximum. A series of jet cores is

therefore seen in Figure 5–11(a) identified by locally high ηy (η steep) values. These core

alternate with lower values of ηy (flatter η) corresponding to backflow regions between the

jets. The same meridional deflection of the jets is observed in the lee of the topography.

We also find domain-maximum values of ηy are found on the northern flanks of the ridge

- coincident with maximum u1.

We find that ηx is only large in magnitude where the mean velocity has a meridional

component. This occurs on the downslope and upslope of the ridge at approximately

x = 1000km and x = 3000km respectively. We also observe some structure in the lee of the

topography that decays over several wavelengths. This corresponds to the eddy excited

at the end of the ridge identified in Figure 5–9 (note it can also be seen in the ηy field).

Although difficult to see from the scale of the plot, ηx also has some small scale variation

in the zonal direction like in the instantaneous field in Figure 5–7.

The effects of the ridge on ∇η are most apparent in this highest topography case

and less so for the lower ridges. Overall the observations of ∇η are very similar to those

observed in the u1 fields in Figure 5–9. We can therefore say the appearance of this term

in the GM90 eddy diffusivity model gives a representation of the jet structures.
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Figure 5–11: Mean interface gradients for simulation with a ridge of 400m and forcing
factor of 1.4. Jet cores are indicated by steep ηy gradients. Note the two different scales
in the plots.

5.2.2 Mass Fluxes

We now consider time-averaged meridional and zonal mass fluxes in Figure 5–12. For

consistency, the fields are from the simulation with the same parameters as that in Figure 5–

11. In Figure 5–12 (a), u′η′ is positive on the northern side of the jet core and negative

on the southern side. This means η′ is transported eastwards on the northern side and

westwards on the southern side of the jet core. In the meridional profile, this eastwards

transport of η′ is maximum where the shear in the mean flow is at a negative maximum

value. Likewise, the westwards transport of η′ is maximum where the shear in the mean
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Figure 5–12: Time averaged fluxes, u′η′ and v′η′, from a simulation with Ff of 1.4 and a
topographical height of 400m.

flow is a positive maximum. |u′η′| is highest on the northern flanks of the ridge. This is

where the highest jet core velocities are observed (review Figure 5–9).

Obviously, the net flux across any zonally reconnecting contour must be constant at

equilibrium. If there were a net flux in the cores but not between, then mass would pile

up between the jets. Recall that the derivations of the QG model equations assume a

non-divergence of the velocity field to leading order (see Section 2.1.1). In fact, there is a

smaller non-divergent correction the velocity, which scales as ε. It is this order ε correction

to the velocity which makes up the difference. Although it could be calculated, it is beyond

the scope of this work.

In Figure 5–12 (b) v′η′ > 0 in the upper layer. Within the domain, higher v′η′ fluxes

occur in the lee of the topography, in agreement with Thompson and Sallée (2012). Locally
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maximum flux occurs in the jet cores. Comparing with Figure 5–11 (b) we find these regions

of high v′η′ flux are coincident with regions of steep ηy. The increased transport in regions

of steeper isopycnals appear to support the GM90 thickness diffusivity hypothesis. In the

backflow regions v′η′ drops to a minimum, often close to zero. Even more fundamentally, we

note that positive v′η′ flux results from negative ηy, supporting a downgradient hypothesis.

We compare the magnitudes of u′η′ and v′η′. For the fields in Figure 5–12 we compute

the root-mean square of the mass fluxes. We find u′η′rms is 3.52 x 10−2 m2/s and v′η′rms

is 1.13 x 10−2m2/s. In general modellers are more concerned with modelling v′η′ but

we find u′η′ fluxes to be of larger magnitude. In the upper layer, the effective transport

velocity (Bolus velocity) due to mesoscale eddies in the zonal direction is u′η′/H1. The

superposition of this on the mean zonal flow, u gives the effective zonal transport velocity.

Transport by mesoscale eddies in the zonal direction is only significant in modelling terms

if its magnitude is comparable with the mean flow velocity. We find that u′η′/H1 is ±0.5%

of u1 in all runs; that is the zonal transport of mass attributed to the eddies is less than

0.5% of that of the mean flow. In the meridional direction, v is often very close to zero.

This means the only transport in the meridional direction is attributed to these v′η′ fluxes.

Zonal distribution of Mass Fluxes

We discuss zonal distribution of mass transport here. We also use it to demonstrate

the influence of the choice of averaging time as noted in Section 5.1.2. We will consider

the meridional distribution of mass fluxes shortly in Section 5.3.2 where we use it to

quantitatively test a locally defined eddy diffusivity.

For sufficiently long averaging times, one expects u′η′ and v′η′ to be functions of y

alone. In fact, in the flat bottom simulations there is no reason that the jets should remain

physically locked in latitude. In other words, for a very long averaging time, u′η′ and v′η′

should converge to a single value everywhere in the domain. It is well known, however, that

quasi-zonal jets can be remarkably steady. We want to choose an intermediate averaging

time that captures the spatial distribution of mass transport as it relates to the mean jet
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structure. At the same time we want to average sufficiently long to remove small scale

variations due to transient eddies.

From Figure 5–12 we can see that v′η′ varies in the x direction along the jet cores. In

fact we find these small scale variations in the x direction in v′η′ occur in all simulations

with our averaging time of 60 000 days. We want to evaluate the significance of these

fluctuations and their dependence on the averaging time used. For simplicity we take the

flat bottom simulation at the reference forcing (Ff = 1.4) for a series of averaging times.

We take zonal slices aligned with jet cores from the v′η field and evaluate the standard

deviation of fluctuations about the mean along the jet core.

Figure 5–13 shows a cross-section of v′η′ through a portion of the same jet core for

three different averaging times used. We do see the size of the fluctuations reduce with

increasing averaging time although they are slow to do so. This can be seen in both the

raw data in (a) and the standard deviation of the fluctuations in (b). For 60 000 days,

the averaging time used in these simulations, the fluctuations have a standard deviation of

0.0055 ± 0.0006m2/s (equivalent 36 % of the mean value). We could expect that after a

very long averaging time the fluctuations would eventually diminish to zero.

Fluctuations in the u′η′ along the jet core are similar in magnitude; for the same

simulation in Figure 5–13 core values have a standard deviation of 0.0050 m2/s. In regions

of maximum and minimum u′η′ flux on either side of the jet core fluctuations are slightly

smaller but of a similar amplitude. These small scale variations are only evident in v′η′, u′η′

and ηx fields. Fortunately, we don’t find spatial averages to depend on the averaging time

used. This means estimating eddy diffusivities is more-or-less independent of averaging

time. However, one could possibly expect that locally defined eddy diffusivities would vary

with the averaging time. Other fields, such as ηy and ψ, fields do not display such long

residing zonal variations.
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Figure 5–13: (a) Zonal cross-section of v′η′ through most northern jet core for three different
averaging times, tav. (b) Corresponding standard deviation of fluctuations as function tav.
Simulation is for a flat bottom and Ff of 1.4. Note that for clarity only a portion of the
domain length is plotted.

Cross-jet Fluxes

In the flat bottomed simulations ψ1 and η contours are aligned. The jets are zonal

and v′η′ gives the mass flux across the jets. In contrast, in the ridge simulations ∇η ∼

∇ψ2 −∇ψ1. This means streamlines in the upper layer are not necessarily aligned with η

contours. This can be seen by comparing ψ1 in Figure 5–6 to η in Figure 5–7.

We are interested in how mass is fluxed across the jet cores. In the ridge simulations,

u1 has a meridional component in some regions of the domain - particularly often in the

lee of the topography (see Figure 5–9). In these regions the cross-jet direction has a zonal

component. This means v′η′, which is typically of most concern to modellers, may not

completely explain the cross-jet transport. We seek to evaluate how much of the cross-jet

transport in the ridge simulations can be attributed to the zonal fluxes, u′η′. As jet cores

follow streamlines (Thompson and Sallée, 2012), the local cross-jet transport is given by

the dot product between the the mass flux vector and a unit vector locally normal to the

flow direction, n̂. The cross-jet transport is given by u′η′ · n̂ where
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n̂ =
ψ1x

|∇ψ1|
î+

ψ1y

|∇ψ1|
ĵ (5.2)

The fraction u′η′ contributes to cross-jet transport, u′η′ · n̂, increases with forcing

strength and topography height. It peaks to maximum of 4.6% with a 400 m high ridge

and forcing factor of 1.6. The increase in percentage with topography makes sense if we

review Figure 5–9. For the higher topography runs, the oscillation of the mean flow path in

the lee of the topography means more opportunity for mass fluxes to cross as u′η′ fluxes.

Summary

Recalling that the GM90 thickness diffusivity model predicts u′η′ from ∇η fields, we

introduced fields of these variables in this section. We have not considered them in great

detail but will continue to refer back the structures of the mass flux and interface gradient

fields to explain results we find in fitting eddy diffusivities. Qualitatively, we find that

maximum v′η′ transport occurs in the jet cores where ηy is steepest. u′η′ advects upper

layer mass eastwards in negative mean shear in the jet and westwards in positive mean

shear. The majority of cross-jet transport does occur as v′η′ transport although we continue

to include u′η′ for completeness.

5.3 Plausibility of an eddy diffusivity model

Recall the classic eddy diffusion parameterization where u′η′ ∼ −κ∇η. κ could be

thought of as a scalar or as a tensor. In its simplest scalar form, the hypothesis predicts

that v′η′ ∼ −κηy. Globally this means that we should see a linear relationship between

globally averaged v′η′ fluxes and the imposed interface gradient 〈ηy〉. Recall that 〈ηy〉

is related to Ushear, and therefore we could also express mass fluxes in terms of the shear

velocity. We consider whether the GM90 model is applicable to our results in Section 5.3.1.

Likewise, in the zonal direction a simple scalar eddy diffusivity model predicts u′η′ ∼ −κηx.

On a global scale we note that 〈ηx〉 = 0. This traditional scalar hypothesis then predicts
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that 〈u′η′〉 is also equal to zero. We test whether this is true in Section 5.3.1. We consider

whether it makes sense to define κ in all flow regions in Section 5.3.2.

5.3.1 Global mass flux

Global meridional flux

If an eddy diffusivity approach makes sense, then we should see a linear relationship

between 〈ηy〉 and 〈v′η′〉. Figure 5–14 shows that increasing forcing does lead to higher net

meridional mass fluxes for all topographies. Over a range of values a well defined slope

is evident, except at lower values where the data points tail off. The relationship is clear

for the flat bottom but a little less so for the ridge topographies. Overall, these results

support the case for a scalar downward gradient eddy diffusivity hypothesis.
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Figure 5–14: Interface gradient imposed by forcing, 〈ηy〉, versus domain and time averaged
meridional flux, 〈v′η′〉. Data is shown for all simulations and highlights an apparent zero
flux for a non-zero 〈ηy〉.

Note however that the data points do not pass through η̄y = 0. We denote the intersect

value as ηcrity . Furthermore, this leads us to believe that an eddy diffusivity model should
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more appropriately be fitted against [η̄y − η̄ycrit]. An eddy diffusivity hypothesis would

then take the form in Equation 5.3, where κ0 is a normal scalar eddy diffusivity.

Recall that the GM90 thickness diffusivity is based on an idea that baroclinic eddies

are generated to relax isopycnals (See Section 3.1). Increased mixing is predicted where

isopycnals are steep and can supply large amounts of potential energy. If we consider that

baroclinic eddies will only relax isopycnals so that they are baroclinically stable, rather

than flat, then alternatively it makes sense to use some sort of measure of the difference

between these two slopes. This is how η̄y − η̄ycrit can be interpreted physically.

v′η′ = κ0[η̄y − η̄ycrit] (5.3)

We estimate ηcrity from Figure 5–14 for each topography. Since the higher forcings

show a stronger linear relationship we choose to estimate regressions using the four highest

forcings. Extrapolating to 〈v′η′〉 = 0 obtains an estimate of the critical interface gradient.

ηcrity does not vary significantly; between -2.81 x 10−4 for the flat bottom to -3.19 x 10−4

for the 400 m ridge. For the flat case, ηcrity is very close to our empirically derived interface

gradient of -2.80 x 10−4 corresponding to Uonset in Section 5.1.1.

ηy
crit becomes steeper with increasing topography height. This is contrary to Sec-

tion 5.1.1 where topography was seen to trigger instabilities at lower forcings than in the

flat case. Thus for the ridge cases ηcrity is not equivalent to the forcing level at which we

see the onset of eddy generation, Uonset. It should be considered as more of an effective

critical value for the problem which lends itself to the [ηy − ηcrity ] refinement. Note also in

passing that interface slopes can locally be flatter than ηcrity . This problem is addressed in

due course in Section 5.4.

Figure 5–15 is a plot analogous to Figure 5–14 but now plotted with the critical

interface gradient subtracted. The curves for the five different topographies collapse onto
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Figure 5–15: Time averaged meridional flux, 〈v′η′〉, versus 〈ηy〉 − ηcrity , showing validity of
fitting an eddy diffusivity model against 〈ηy〉 − ηcrity .

each other. The data points now pass much closer to zero. However, as ηcrity was estimated

using data points from higher forcings, a linear regression through the more weakly forced

regimes does not appear to pass through the origin.

One may have been tempted to estimate κ from a linear regression in Figure 5–14,

however Figure 5–15 makes a non-linearity in the data more obvious. κ0 appears to be

lower at lower forcing as given by the flatter slopes and higher at higher forcings. We could

estimate κ0 from slopes locally or globally in Figure 5–15 but choose not to. Generally,

Figure 5–15 supports a scalar eddy diffusivity model as per Equation 5.3. The difference

being that κ0 does not appear to be a constant but proportional to ηy.

Global zonal mass flux

As already mentioned, 〈ηx〉 is identically zero. In these simulations it is always at

least eight orders of magnitude than its average magnitude, 〈|ηx|〉. The traditional scalar
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downward gradient eddy diffusivity then predicts that 〈u′η′〉 should also be zero. Figure 5–

16 verifies 〈u′η′〉 = 0 to hold approximately for the flat runs and ridges of 100m ridge. This

means that regions of eastwards advection of u′η′ are approximately balanced by a counter

westwards advection (refer to Figure 5–12). However simulations with larger topography

and higher forcings produce a net westward flux. To put this in perspective, for the 400 m

ridge topography and a forcing factor of 1.6, 〈u′η′〉 is 7.4% of 〈|u′η′|〉. Some of this could

be explained as cross-jet transport occurring as u′η′ fluxes. However as we saw earlier in

Section 5.2.2 the cross-jet transport as u′η′ is only at maximum 5 % of the total cross-jet

transport.
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Figure 5–16: Domain-averaged zonal mass flux, 〈u′η′〉, as a function of imposed meridional
interface gradient, η̄y

I for different topographies, showing presence of a non-zero skew-flux.

As was the case with the meridional fluxes, it is also true here that linear regressions

on the data do not cross through the origin. That is zonal fluxes appear to decrease to

zero for some non-zero ηy. We estimate the intersect point for the 200m, 300m and 400m

ridge, analogous to ηy
crit from Figure 5–14. The intercepts estimated from Figure 5–16

are similar but slightly higher (steeper slope) compared to ηcrity . This again suggests a
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threshold ηy gradient u′η′, below which u′η′ fluxes are not observed. This leads us to

propose an eddy diffusivity model relating u′η′ fluxes to [ηy − ηcrity ]. We choose to use the

original ηcrity estimated. We deem the linear trends in the data in Figure 5–16 to be less

convincing those in Figure 5–14. Additionally, estimating v′η′ and u′η′ from the same ∇η

vector will allow us to write κ in a matrix form later on. We propose a model for a κskew in

Equation 5.4. Note that κskew does not fall out as a scalar down-gradient eddy diffusivity

from the classic model. It is a cross-correlation term in a matrix form of κ.

u′η′ ∼ −κskew[ηy − ηcrity ] (5.4)

5.3.2 Meridional distribution of Mass Fluxes

We have now defined a κ0 and κskew based on ηy − ηcrity . Both make sense from a

global perspective however within the backflow regions, the interface gradient often drops

close to or below ηcrity (revisit Figure 5–12 and consider that ηcrity for this topography is

-3.19 x 10−4). This leads to potential problems, particularly where ηy−ηcrity becomes close

to zero and κ becomes ill-defined. We consider how such κ could be applied by considering

the meridional distribution of v′η′ fluxes in Figure 5–17.

Figure 5–17(a) shows a 〈v′η′〉x profile for a simulation with flat bottom topography at

the reference forcing, where 〈〉x denotes a zonal average. We identify the average maximum

and minimum values in the profile for each flat bottom simulation. Figure 5–17(b) then

quantifies these maximum and minimum as a function of forcing.

A clear linear relationship is seen between 〈v′η′〉xmax and Ff , or alternatively the im-

posed interface gradient. These occur in the jet cores where eddy generation is high, fed

by the steep interface gradients. We expect steeper isopycnals to correspond to increased

eddy kinetic energy (EKE) generation and increased eddy mixing, consistent with what we

see here.
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Figure 5–17: (a) Example of 〈v′η′〉x profile for a flat run with Ff = 1.4, with peaks
corresponding to jet cores. In (b) the minimum, 〈v′η′〉xmin, and maximum, 〈v′η′〉xmax, are
computed from each flat bottom simulation and plotted against Ff .

The story with 〈v′η′〉xmin fluxes is very different. The minimum shows no clear relation-

ship with the imposed interface gradient and suggests an eddy diffusivity approach may

not be justified here. Perhaps this should be unsurprising. Within the backflow regions the

interface gradient often drops close to or below ηcrity . If an eddy diffusivity were valid, it

would either mean eddies are either increasing the available potential energy by steepening

isopycnals (in this case a negative κ) or are further relaxing slopes below critical (a positive

κ). Neither of these cases are readily supported by baroclinic instability theory. Moreover,

v′η′ fluxes in the backflow regions are roughly two orders of magnitude smaller than in

the jet core. As this represents only a small portion of the mass transport, it may not be

valuable parameterizing the fluxes in these backflow regions.

5.3.3 Summary

In this section, we presented simple, domain-averaged, eddy mass transport statistics

to demonstrate that our data appears to support a downward gradient eddy diffusion

model. In addition, the global zonal fluxes, 〈u′η′〉, appear to vary with 〈ηy〉. We find data

for both zonal and meridional fluxes do not pass through the origin; that is, the fluxes
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become zero not for 〈ηy〉 = 0, but instead for 〈ηy〉 = ηy
crit. This leads us to focus on

relating zonal and meridional mass fluxes to ηy − ηycrit . As such, we define a normal, κ0,

and skew, κskew, eddy diffusivity which can be written in a matrix form as in Equation 5.5.

Our global statistics suggest κ0 and κskew have dependence on the strength of the imposed

forcing.

0 κskew

0 κ0

 0

ηy − ηcrity

 =

−u′η′
−v′η′

 (5.5)

The problem arises in how to define κ in the backflow regions where ηy can be flatter

that ηcrity . We use the meridional distribution of v′η′ fluxes to show that v′η′ fluxes here

in these backflow regions are also low. Additionally they show no clear correlation with

forcing level. This leads us to believe that κ0 and κskew should only be defined in the jets.

We proceed in this manner and explore fitting κ0 and κskew on a globally defined and on

a locally defined basis in Section 5.4.

5.4 An eddy diffusivity with ηy − ηcrity

In light of the previous section we define eddy diffusivities according to the model

proposed in Equation 5.5. We can either compute the two κ as global values over the

domain or allow them to be defined at each grid point. The latter approach will allow us

to see spatial variation in the two κ. We first compute the global eddy diffusivities, κg0 and

κgskew. We use the g superscripts to denote the global eddy diffusivities to avoid confusion.

We will then go on to compute κ0 and κskew at each grid point.

5.4.1 A global jet eddy diffusivity with ηy − ηcrity

Computation method for flat topography

Here we explain the computation method for κg0 and κgskew for the flat bottom simula-

tions. It is based on a rearrangement of Equation 5.5, where all variables are replaced with

their spatially-averaged counterparts. In the spatial averages we choose to only include
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regions of the domain where ηy < ηcrity . This is motivated by Figure 5–17 where we only

saw a relationship between v′η′ in the jet core (where ηy < ηcrity ) and the imposed gradient.

Between the jets (where ηy is often flatter than ηcrity ), v′η′ is small and does not appear to

be explained by the interface gradient. It makes sense then that only regions able to be

explained by ηy are included in an eddy diffusivity model.

The two κg are estimated from Equation 5.6 where the two spatial averages in each

equation are restricted to flow areas where ηy < ηcrity . Physically it is a spatially averaged

mass flux divided by the average value of ηy − ηcrity . Since the numerator and denominator

are averaged separately first, we avoid potential problems where ηy becomes close to ηcrity

locally.

κg0 = − 〈v′η′〉
〈ηy − ηycrit〉

κgskew = − 〈u′η′〉
〈ηy − ηycrit〉

(5.6)

We will present the results for all flat bottom simulations shortly alongside those from the

ridge simulations for comparison in Figure 5–18.

Computation method for ridge topography

Keep in mind that we are primarily interested in cross-jet transport. Since for the

ridge cases the jets meander in the domain (review Figure 5–9), if we computed eddy

diffusivities in the model coordinate system, as we did for the flat bottom case, then we

will not quantify cross-jet transport. We therefore choose to compute eddy diffusivities in

jet coordinates. The new along and cross-stream coordinate directions are aligned with

the ψ1 field. Since ψ1 is, in turn, aligned with the jet cores (Thompson and Sallée, 2012),

this new coordinate system will allow us to see transport across the jet cores.

At each grid point the fields are reorientated along axes parallel and perpendicular to

ψ1 using Equations 5.7 to 5.9. Mass fluxes are denoted in jet coordinates as µ′η′ and ν ′η′

corresponding to along-stream and normal directions respectively. Subscripts l and n will

denote derivatives along and normal to these new orientations.
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ν ′η′ = −u′η′.∇ψ1

|∇ψ1|
= −u′η′ ψ1x

|∇ψ1|
− v′η′ ψ1y

|∇ψ1|
(5.7)

µ′η′ = −u′η′.k̂ ×∇ψ1

|∇ψ1|
= −u′η′ ψ1y

|∇ψ|
+ v′η′

ψ1

|∇ψ1|
(5.8)

ηn = −∇η.∇ψ1

|∇ψ1|
= −ηx

ψ1x

|∇ψ1|
− (ηy − ηcrity )

ψ1y

|∇ψ1|
(5.9)

where ψ1y = −ψ1y where U < 0. Firstly this maintains the sign of derivatives of η in

y. Secondly, this means positive ν ′η′ fluxes are always northward, consistent with those

through the jet core. We choose to subtract ηcrity from ηy prior to re-orientating. This

makes sense if ηcrity is considered to relate to baroclinic instability and the β-effect which

acts uniquely in the y-direction. This inherently assumes that an equivalent ηcritx would

be zero and that baroclinic eddies are generated for any non-zero ηx to relax isopycnals

towards ηx = 0. We will check this assumption later in Section 5.5.2 when we parameterize

mass fluxes with both ηy and ηx.

κg0 and κgskew can now be computed in the same way as for the flat bottom simulations,

but now using the reorientated fields. Equation 5.10 is analogous to Equation 5.6 except

that we have substituted fields in the new coordinate system. Since ηcrity is already removed

from ηn, we are now spatially averaging only over grid points where ηn < 0.

κg0 = −〈ν
′η′〉
〈ηn〉

κgskew = −〈µ
′η′〉
〈ηn〉

(5.10)

Given that the fields are reorientated as each grid point using local ψ1 derivatives,

one may be concerned about the sensitivity of this computation to small scale variations

in ψ1. We use this algorithm on the data from the flat bottom cases and compare the two

κg0 given by Equation 5.6 and Equation 5.10. We find the two estimates vary at maximum

by 1.2%.
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κg0 and κgskew for all simulations

We compute κg0 and κgskew for each simulation as per the computation method described

in the preceding two sections. The reorienatation of fields in the topography cases means

that now κg0 is interpreted physically as a cross-jet eddy diffusivity and κgskew as an along-

jet eddy diffusivity. We compare the two κ in Figure 5–18 as a function of forcing. For

clarity we only present the results for three topographies; the flat bottom, the 200m ridge

and the 400m ridge. We find κg0 and κgskew show a dependence on both topography and

forcing strength.
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Figure 5–18: (a) Global cross-jet diffusivity, κg0, and (b) global skew diffusivity, κgskew, as
a function of forcing strength for runs with flat topography, 200 m ridge and 400 m ridge.

Let’s first focus on κg0 presented in Figure 5–18. We find κ0 to increase with forcing,

implying v′η′ ∼ κ|∇η|∇η. This is not unexpected after revisiting Figure 5–15. Here we saw

a non-linear increase in 〈v′η′〉 with 〈ηy〉 − ηcrity . That is, at larger forcings we observed a

steeper slope, representing a higher eddy diffusivity. The relationship with forcing appears

to be linear for the flat bottom topography but for the ridge topography a linear relationship
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is less convincing. The stronger forcing increases the supply of potential energy in the jets,

permitting higher EKE generation and leading to increased mixing (Sallée et al., 2008).

Now consider the dependence of κ0 on topography height. We find in Figure 5–18

that κ0 is highest for the flat bottom and reduces with topography. At first impression

this may seem contradictory to that concluded by Thompson and Sallée (2012) who use

a model similar to ours to show that cross-jet transport is maximum in the lee of the

topography. However, their results show that the effect of the bottom topography is to

localize the transport, rather than increase overall transport which in the domain. In fact,

the domain-averaged κeff they define is infact lower in their ridge simulations (see their

Figure 11), in agreement with what we observe in our results.
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Figure 5–19: Cross-jet diffusivity, κ0, as a function of ηy − ηcrity for all topographies and
forcing levels.

The decreasing trend in κ0 with increasing topography height is also not unexpected

after considering that we saw the same thing with 〈v′η′〉 in Figure 5–14. If you recall,

we were able to remove a large portion of the offset between the curves of the different

topographies by re-plotting the data against 〈ηy〉 − ηcrity in Figure 5–15. We proceed to do

the same here and re-plot κ0 against 〈ηy〉−ηcrity to see if the variation between topography

is mainly due to a variation in ηcrity between topographies. This is shown in Figure 5–19
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where we see that the curves for the different topographies now lie much closer together.

Although not all of the variation between the different topographies is explained by ηcrity

it certainly does explain a large part of the observed variation in Figure 5–18.

We now focus on κskew, shown in Figure 5–18(b). For the flat bottom topography

we find κskew is closely centred around zero, similar to the globally averaged zonal fluxes,

〈u′η′〉 (see Figure 5–16). In contrast, for the ridge topographies we find a non-zero κskew

which appears to diverge with forcing. In other words, κskew increases with the level of

forcing much faster for the higher ridges. This is the same behaviour that can be observed

in 〈u′η′〉.

We could speculate as to the origin of the skew flux, assuming mass flux only occurs

down η contours. For the flat bottom topography, ψ1 and η contours are both zonal. This

means, that any mass flux occurring down η contours is likewise oriented perpendicular to

ψ1 contours and in these simulations we observe no net flux parallel to ψ1 contours. Recall

that η ∼ ψ2 − ψ1, meaning that in the ridge simulations, ψ1 and η are not aligned (review

Figure 5–6 and Figure 5–7). In this case, any mass transport occuring down η contours

would have components perpendicular and parallel to ψ1 contours. The apparent skew

flux could simply be the component of mass flux down η contours oriented parallel to ψ1

contours.

One may be concerned about how much of the mass flux is accounted for by restricting

the eddy diffusivity model to only regions where ηy < ηcrity . We find that across all

simulations, ηy < ηcrity (or alternatively ηn < 0 for the ridge simulations) is met in 61% of

the domain. The percentage varies between 46 - 96 %, increasing with increasing forcing.

Given that the model is only applied in a little more than half of the domain, we want to

make sure that in excluding these regions we are not discounting some of the mass flux.

We find that within these regions lies 90 ± 7% of the total v′η′ flux in the domain. This

supports our notion to only base an eddy diffusivity model in these regions.
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5.4.2 Spatially varying eddy diffusivity with ηy − ηcrity

We now allow κ0 and κskew to vary spatially. The two eddy diffusivities are still defined

as in Equation 5.5, however κ0 and κskew now have a unique value at each grid point. We

remind the reader that within the backflow regions, ηy is often flatter than ηcrity . To define

a κ here would either mean mesoscale eddies are steepening isopycnals or that they are

further relaxing them below a critical slope (see Section 5.3.2); neither of which are logical.

Given that the mass transport within these backflow regions is also small (Figure 5–17), it

seems reasonable to set κ = 0 there. However, we are still faced with the problem of how

to define the two κ when ηy approaches ηcrity . We choose to truncate the computation at a

threshold ηy value before κ tends to infinity. As we describe later, we will only choose to

use jet core κ values to compare to previous results. This value is unaffected by the point

at which we truncate κ.

Flat bottom topography

The estimation of κ0 and κskew for the flat bottom simulation is relatively straight-

forward. The two κ are computed at each grid point according to to Equation 5.11. κ0

is given by the time-averaged meridional mass flux at that point, v′η′, divided by the

difference between the interface gradient and the critical gradient, ηy− ηcrity . For κskew the

computation is the same except using the zonal mass flux, u′η′. The two κ are set to zero

if ηy − ηcrity > 0.

κ0 = − v′η′

ηy − ηcrity

κskew = − u′η′

ηy − ηcrity

(5.11)

We find that along lines of constant latitude, the two κ fluctuate. We compute the

standard deviations of these regular fluctuations and find them to be derived from those

in the mass flux fields (see Figure 5–13). However, zonally averaging produces smooth

profiles of which the general form is shared among all forcing levels. We present 〈κ0〉x and

〈κskew〉x, where 〈〉x denotes a zonal average, in Figure 5–20 for the simulation with an Ff
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of 1.6. We use this simulation as an example as ηy < ηcrity everywhere, i.e., so that κ is

defined at every point in the domain. The κ profiles overlay mean velocity profiles.
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Figure 5–20: 〈κ0〉x and 〈κskew〉x computed for flat bottom topography and Ff of 1.6. The
scale corresponds to κ, shown in red points, and overlying the mean velocity profile in
green (scale not shown).

Both κ show meridional structure over the length scale of jets. In Figure 5–20(b), κ0

is always positive indicating downgradient transport to the north. Within the jet cores κ0

drops to local minima. This is consistent with several other authors (e.g. Marshall et al.

(2006)) who believe jets in the ACC act as a barrier to mixing in the Southern Ocean.

Its value increases outwards from the jet core until it begins to grow rapidly where ηy

approaches ηy
crit and the denominator becomes close to zero. Within the backflow regions

here, κ0 is low due to the low v′η′ fluxes here (review Figure 5–17). This is the only flat
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bottom simulation in which κ0 is defined throughout the meridional profile. For all other

forcings, κ0 tends to infinity at the edges of the jet and is undefined in the backflow regions.

In Figure 5–20b (b), κskew alternates between positive and negative, reflecting the

shape of the u′η′ profile (revisit Figure 5–12). On the northern side of the jet, in negative

mean shear, η′ is transported westward. In positive mean flow shear η′ is transported

eastward. The rotational symmetry about the jet core explains why both 〈u′η′〉 and κgskew

are close to zero for the flat bottom topography (Figure 5–18).

We take the series of 〈κ0〉x profiles for all forcings with flat bottom topography. For

each profile we compute an average value of κ0 in the jet cores, κjc0 , by averaging across

each jet in the domain. As Ff increases so too does u1 in the jet core. As u1 (or Ff )

increases, κjc0 linearly increases with it. On one hand this makes sense. As the forcing

level increases, we expect higher levels of EKE in the jets and more mixing. This is also

in agreement with the observation that κg0 increases with forcing strength (Figure 5–18).

On the other hand, within the jets in Figure 5–20(a) velocity appears to be negatively

correlated with κ0.

We wish to compare the estimates here to the global κ we computed in Section 5.4.1.

Near the edge of the jets in Figure 5–20, κ0 and κskew tend to high values or infinity.

Some sort of spatial average which includes these values would not be robust. Therefore

we choose to compare κjc0 to κg0 from Section 5.4.1. This seems reasonable as the maximum

flux occurs in the jet core and κjc0 value does not lie on a sharp curve.

Figure 5–21 confirms the two methods produce comparable estimates. κjc0 is systematically

less than κg0. Although this is not unexpected it does confirm that the meridional structure

of κ0 (in Figure 5–20) is not simply an artifact in the computation where ηy − ηcrity locally

tends towards zero. Averaged over these runs κjc0 is suppressed to approximately 79% of

the global value, κg0.
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Figure 5–21: Comparison between κ0 in jet core, κjc0 , and the globally computed cross-jet

diffusivity, κg0. Each data point represents a flat-bottom simulation. Dashed line is κg0 = κjc0

Ridge topography

We now wish to compute some sort of analogy to Figure 5–20 for the ridge topography.

In particular, we want to know if the structure of κ0 and κskew in the jets remains the same

when we add bottom topography. Like we did in Section 5.4.1, we will continue to work

in a cross-stream and stream-wise coordinate system. Also like before, ηy
crit is subtracted

prior to re-orientating and subsequently the κ are only defined at grid points where ηn < 0.

To avoid division by zero, in practice we implement ηn < ηcrity /100. We define κ0 and κskew

at each grid point according to Equation 5.12.

κ0 = −µ
′η′

ηn
κskew = −ν

′η′

ηn
(5.12)

Example fields of κ0 and κskew are shown in Figure 5–22. These are for the 200 m

ridge and Ff of 1.4 - the same reference case we used throughout Section 5.1.2. Our first

aim is to test whether the structure of the two κ are the same throughout the jet profile as

those seen with the flat bottom topography. We decided to compute an average following

the jet core axis of the middle jet in the domain. The profile is initially computed along
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Figure 5–22: κ0 and κskew fields in m2/s computed in axes parallel to the mean flow field.
Simulation is ridge of 200 and forcing factor of 1.4.

ψ1 contours and scaled back to an effective y space. For this we take a profile in the mid-

point of the domain of y values and their corresponding ψ1 values. The averaged-profile in

ψ1-space is mapped back to a yeff using the pairing values in the conversion profile. This

eliminates the possibility of a distorted look of the profile as ψ1 contours are not equally

spaced. We show these profiles of κ0 and κskew in yeff space in Figure 5–23.

Figure 5–23, although not as elegant as the flat bottom analogy in Figure 5–20, shows

the same structure in κ0 and κskew relative to the jet. κ0 is minimum in the jet core and

highest on the sides of the jets before dropping to zero in the backflow regions. Although

κ0 in the jet core can be seen to vary between jets in the domain in Figure 5–22, κjc0 is

23 m2/s in the profile in Figure 5–23. This corresponds to 74% of κg0 computed for this
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Figure 5–23: Profiles of κ0 and κskew averaged along lines of constant ψ1. Profiles are for the
middle jet in domain from fields in Figure 5–22 (red data points are the eddy diffusivities
corresponding to the y-axes labelling; green curves are the mean velocity profiles)

simulation. This level of suppression is not unlike that seen in flat bottomed cases in

Figure 5–21 (κjc0 ∼ 79%κg0). κskew has the same structure, positive on the northern side of

the jet and negative on the southern side zero in the jet core. κskew is again zero in the jet

core although we observe some asymmetry in the profile.

Take a step back and review the κ0 and κskew fields in Figure 5–22, corresponding to

the reference case we used early in Section 5.1.2. Recall that we remarked that the jets

in the domain were not homogeneous in terms of their mass transport, velocity, and other

properties shown in Section 5.1.2 and 5.2. Unsurprisingly, we also now see that the jets

are not homogeneous in terms of their diffusivity properties.

In the preceding section, we saw that for the flat-bottom case, κ0 in the jet core

increased as we increased the forcing to produce stronger jets. If the same could be said

here, then we would expect higher diffusivities on the northern flanks of the ridge where

jet velocities are higher. Instead we observe the contrary in Figure 5–22(a), and also in the

raw mass flux fields in Figure 5–12. The result suggests that (ηb)y has an effect on mass

fluxes. To consider a possible explanation, recall that on the northern flank of the ridge,

the topography has a stabilizing effect (Section 5.1.1). If (ηb)y < 0 persisted throughout
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the entire domain, then we could expect that Uonset, and therefore ηcrity to be higher. We

could therefore suppose that the domain-averaged 〈ηcrity 〉 is locally underestimate on the

northern flank, and by this argument we would expect κ0, estimated from Equation 5.12,

to be an underestimate. To remove the inhomogeneity between the jets one could use

a spatially varying ηcrity . A more straightforward approach might be to try absorb the

apparent effects of bottom topography into another parameter.

5.4.3 Summary

κ0 and κskew are computed according to the form proposed in Section 5.3 at both

a global and local scale. We find κg0 increases with forcing and reduces with topography

height over the strengths of forcings we used. κgskew is zero for the flat bottom topography

but increases with topography height and forcing strength. We then allow κ0 and κskew

to vary in the across jet direction. We are able to recover similar profiles for both κ0 and

κskew through the jet with both the flat bottom and ridge topography. We find κ0 is a

local minimum in the jet core, consistent with many authors who believe the jet cores are

barriers to mixing. The κskew profile alternates between positive on the northern side of

jet cores and negative on the southern side of jet cores. This is not unlike the meridional

profile in u′η′ seen earlier in Figure 5–12. In the flat bottom cases, jets in the domain

have equal eddy diffusivity properties. In the ridge cases there is large scale variation in κ

maps. For these ridge cases we are not completely satisfied that all of the variation can be

explained by ηn.

5.5 A Matrix Eddy Diffusivity

We are motivated to see if some of the variation in κ0 and κskew in Figure 5–22 can be

explained by a second variable. The parameterization in the previous section is extended to

a matrix form to include this additional parameter. The eddy diffusivity takes the following

form where m is the second variable and αi are the eddy diffusivity matrix coefficients.

Note that we recover α2 = κskew and α4 = κ0 by setting m = 0.
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α1 α2

α3 α4

m
ηn

 =

−µ′η′
−ν ′η′

 (5.13)

5.5.1 A Second Regression Variable

Correlations with ηx

We first consider whether ηx and ηy−ηcrity could replacem and ηn in the eddy diffusivity

matrix in Equation 5.13. ηx is a natural partner to ηy and variations in ηx occur mainly in

the jet, with little variation between the jets. It also falls out of the GM90 parameterization,

u′η ∼ κ∇η, by taking κ to be a matrix.

Flat bottom topography. κ0 and κskew were estimated using ηy − ηcrity in Sec-

tion 5.4.2. The resultant κ0 and κskew show small scale variation along lines of constant

latitude. This is on the same scale as the variation in ηx, u′η′ and v′η′ fields (see Sec-

tion 5.2.2). One may be tempted to try using ηx to explain the variation. If ηx could

explain this variation then we should see a correlation between mass fluxes and ηx. Us-

ing the flat bottom reference simulation (Ff = 1.4) we show these correlation plots in

Figure 5–24. Unfortunately the lack of correlation does not give hope.
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Figure 5–24: Correlations between ηx and thickness fluxes at each grid point, showing no
correlation in the data. Data is from flat bottom simulation with Ff = 1.4.

Moreover these variations in u′η′, v′η′ and ηx occur on such small scales that they would

not be resolved by any non-resolving eddy model. Therefore the results of any such pa-

rameterizaton would not be meaningful in practise. With this in mind, we decide not to

try fitting a matrix eddy diffusivity model for the flat bottom topography.

Ridge topography. In Section 5.4.2 κ0 and κskew were diagnosed parallel and per-

pendicular to the local mean flow field using ηn. ηy − ηcrity was replaced with ηn (Equa-

tion 5.9) to absorb much of the large scale variation in ηx. Although using ηn makes sense

and is based on the fundamentals, in practise it would require computing jet paths, locally

realigning fields, computing cross and along jet transport before finally superimposing mass

fluxes back into the model coordinate system. It would certainly be much more compu-

tationally efficient to compute fluxes directly in the model coordinate system. A matrix

form with ηx is also suggested by some references (e.g. Vallis 2006). We therefore decide

to try fitting the classic matrix eddy diffusivity form with ηx and ηy − ηcrity in the ridge

simulations in a global sense. We will show the computation approach, followed by the

results of this parameterization in Section 5.5.2.
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Correlations with ηb

Recall that κ0 and κsk fields suggest a negative correlation with the local bottom

topography meridional gradient, (ηb)y. On the northern flanks of the ridge, where jet

velocities are highest, we would have expected κ0 to be high. On the southern flanks

we initially anticipated lower κ0 values. We found that the opposite of what we had

expected was true (refer back to Section 5.4.2 for further details). We suppose that this

variation could be explained by considering a bottom topography parameter in addition

to ηn. Given that we are in along and cross stream coordinates we choose to use (ηb)n for

consistency. (ηb)n here is the bottom topography derivative normal to the flow direction.

On the northern and southern flanks, where the jets are close to zonal (see Figure 5–9),

(ηb)n ∼ (ηb)y.

Summary

For the flat bottom topography, we choose not to extend the eddy diffusivity model to

a matrix form. For the ridge topography we will first attempt an eddy diffusivity matrix

with ηx and ηy, aligned with the model coordinate system. In applications, this would

allow large scale variations in ηx to be taken into account without having to compute mass

transport in jet coordinates. We will then compute the matrix parameterization in jet

coordinates using (ηb)n and ηn. To avoid confusion, in the matrix eddy diffusion model

with ηx and ηy we denote the matrix coefficients, αi, with upper case letters A, B, C and

D. In the matrix form with (ηb)n and ηn we use the lower case letters a, b, c and d.

5.5.2 A Global Matrix Diffusivity

Computation Approach

The same method is used for fitting a global diffusivity matrix using both gradient pairs

in turn which we explain here. For demonstration purposes we describe the method in terms

of the paramterization with ηbn and ηn. For the first matrix eddy diffusion model we will

fit, ηbn and ηn are replaced with ηx and ηy − ηcrity . Mass fluxes, µ′η′ and ν ′η′, are replaced

with their counterparts in Cartesian coordinates, u′η′ and v′η′. As before, only regions
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where ηn < 0 (or equivalently ηy < ηcrity in Cartesian coordinates) are considered. With

only four unknowns and two equations at every grid point the problem is overdetermined.

However if two points are selected at random then the four coefficients can be uniquely

determined using the construction below.


(ηbn)1 (ηn)1 0 0

0 0 (ηbn)1 (ηn)1

(ηbn)2 (ηn)2 0 0

0 0 (ηbn)2 (ηn)2




a

b

c

d

 =


−(µ′η′)1

−(ν ′η′)1

−(µ′η′)2

−(ν ′η′)2

 (5.14)

If another two grid points are randomly selected then another unique solution can be

computed and so on. Eventually a running average of the four coefficients converges to a

non-zero value. This method is able to get around the fact that both 〈ηx〉 and 〈(ηb)n〉 are

identically zero. Figure 5–25 shows an example of the convergence of the four constants to

non-zero values for our reference simulation.
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Figure 5–25: Running average of coefficients a, b, c and d computed for a global matrix,
showing convergence of values to a constant value. This data is from a simulation with
200m ridge and Ff of 1.4.
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If the two chosen points in Equation 5.14 are identical then the matrix is non-invertible

and the system does not have a unique solution. Similarly, if the two points are too simi-

lar the computation contains a large error. For this reason we impose a condition on the

determinant of the matrix to filter the selection of points. Since a measure of a “good” con-

dition for the determinant varies with the magnitudes of the involved fields, we find it more

robust to impose a condition determined by the average determinant for each simulation.

Since a non-invertible matrix has a determinant of zero, we require that the determinant

be greater in magnitude than a percentage of the average absolute determinant. Three

thresholds are tested; 1%, 0.1%, 0.01%. Lower thresholds begin to produce numerically

non-invertible matrices in some cases. Figure 5–26 gives a example comparison of the re-

sults of the three thresholds on two matrix coefficients. The estimates do vary with the

threshold used, although the trend we observe with the forcing is statistically larger than

the error. Generally making the threshold more strict produces estimates closer to zero.

We choose to proceed with 0.01% to avoid unnecessarily excluding data.
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Figure 5–26: Coefficients c and d for 100 m ridge, showing the sensitivity of the estimates
to the condition imposed on the determinant of the matrix.

Global eddy diffusivity matrix fitted with ηx and [ηy − ηcrity ]

Equation 5.15 is fitted as per the method in the preceding section using ηx and ηy−ηcrity .

The four constants are plotted in Figure 5–27 as a function of forcing, where each data

88



point represents a simulation. Both A and D are normal diffusivities as they describe

down-gradient transport. The remaining two constants are skew diffusivities.A B

C D

 ηx

ηy − ηcrity

 =

−u′η′
−v′η′

 (5.15)
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Figure 5–27: Coefficients computed for global eddy diffusivity matrix using ηx and [ηy −
ηcrity ]. For each simulation we plot the 4 constants in the four panels as a function of Ff .

B is a zonal skew flux described by ηy − ηcrity (analogous to κskew). B is close to

zero for the lower topographies and weaker forcings. It is non-zero and positive for the
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higher ridges at higher forcings, suggesting a net eastwards flux. This is exactly the same

behaviour we saw with κskew (see Figure 5–18) and in 〈u′η′〉 (Figure 5–16). Although κskew

was computed in jet coordinates, whereas B is in model coordinates, we will compare the

two in magnitude shortly in Figure 5–31. C is a meridional skew eddy diffusivity; it relates

a meridional mass flux to the zonal interface gradient ηx. For the lower topographies, C

does not show a convincing relationship with the strength of the forcing. For the higher

topographies, the results suggests C decreases (or increases in magnitude) with the level

of forcing although the type of relationship is not clear. The negative sign indicates that

v′η′ is transported up ηx contours. We do see this transport on the downward slope of the

ridge at approximately x = 1000km. ηx is large and negative here (see Figure 5–11), where

we also see high v′η′ fluxes (see Figure 5–12).

The two normal diffusivities, A and D, increase with forcing as κ0 did. D is more

or less independent of topography height whereas A reduces with increases topography

height. Recall that κg0 varied with both topography and forcing (review Figure 5–18).

This suggests the topography dependence of κg0 lies in a difference in transport down ηx

contours. This makes sense as it is the topography height which dictates ηx in the field

whereas ηy is primarily a function of the forcing.

As the jets closely follow η contours, we expect the κg0 we computed earlier in jet

coordinates to be some sort of combination of both A and D. In addition, recall that

in Section 5.4.1 we first introduced the idea of computing eddy diffusivities in along and

cross stream coordinates. We were faced with an uncertainty of how to define the new

interface gradient perpendicular to ψ1 contours, ηn. We assumed that ηcrity was related

uniquely to baroclinic instability in the y-direction and decided to subtract ηcrity from ηy

prior to realigning the axis in Equation 5.9. We noted that this inherently assumed an

equivalent ηcritx was zero and mass fluxes would always be generated for any non-zero ηx.

If this assumption is correct then we should see that η′ is transported just as easily down

ηx as ηy − ηcrity . In other words A and D would be equal in this matrix parameterization.
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Figure 5–28: Comparison of κg0 with A and D coefficients, which both parameterize down-
gradient transport, for each simulation. Triangular points correspond to A coefficients and
square data points to D coefficients. Additionally, data points are coloured according to
the level of forcing, Ff ; red = 1.2, dark blue = 1.3, green = 1.4, light blue = 1.5, magenta
= 1.6.

In Figure 5–28 we see that although A and D are not drastically different in value, the

linear regressions show that D > κg0 while A ∼ κg0 although there is more scatter in this

parameter. It suggests a slight bias in mass transport, that is that mass fluxes are in

general more easily transported down ηy − ηcrity contours than ηx. It could mean that

our initial assumption is flawed or that the estimates of ηcrity we are using are too steep.

However, given that ηcrity was initially estimated only in consideration of ηy and not ηx, it

makes sense to continue to compute ηn in the same way.

Global eddy diffusivity matrix fitted with (ηb)n and ηn

We go back to the reason that initially motivated us to try fitting a matrix eddy

diffusivity model. We want to see if some of the large scale variation in Figure 5–22 can be

91



absorbed by a bottom topography parameter. We return to using jet coordinates to isolate

the effects of the topography so that we can compare the results to previous estimates.

We note this inherently assumes that A ' D which as we see from the preceeding section

does introduce some error. A global matrix of the form in Equation 5.16 is fitted for each

simulation using the method described earlier in this section.

a b

c d

(ηb)n

ηn

 =

−µ′η′
−ν ′η′

 (5.16)

where (ηb)n = ∇ηb.n̂ψ and n̂ψ is the unit vector locally normal to ψ1 contours. The four

coefficients a, b, c and d are shown in Figure 5–29 for each simulation. We consider a

physical interpretation of each of the coefficients in following.

a is a skew diffusivity quantifying the effects on u′η′ of the bottom topography gradient

perpendicular to it. If a were non-zero we would expect to see a difference in the net zonal

flux on the northern and southern flanks of the ridge. Review Figure 5–12(a). We can only

really say that (ηb)n appears to affect the magnitude of u′η′ fluxes but there is no obvious

effect on the net transport. We could expect a local a might be valid, but not on a global

scale. As expected the estimates of a follow no pattern and that the parameter is not roust

computationally; it was much slower to converge compared to the other three coefficients

(review Figure 5–25) and sometimes even non-convergent. Note that the validity of a as

a parameter does not affect estimates obtained of c or d from the computation method in

Equation 5.14.

d always parameterizes the cross-jet transport. Like we did with A and D in Figure 5–

28, we compare d to κg0 in Figure 5–30. Both κg0 and d are computed in stream-wise

coordinates and we see a very good agreement between the two parameters.
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Figure 5–29: Coefficients a, b, c and d computed for eddy diffusivity matrix using (ηb)n
and ηn. For each simulation we plot the 4 constants in the four panels as a function of Ff .

c is a parameter which adjusts the cross-jet transport according to the bottom topogra-

phy gradient. Here we find c to be negative. This translates to suppressed cross-front eddy

diffusivities on negative slopes (in this case on the northern flanks of the ridge) and higher

eddy diffusivities on positive slopes (southern flanks here). This is what we observed and

hypothesized from Figure 5–22. We note that c is only a local correction of the estimated

mass transport. As we saw in Figure 5–30, κg0 ∼ d. This means over the entire domain,

the net effect of c with our topography is not to increase or decrease transport but just to

redistribute it. However we consider the local significance of c as a parameter. Recall that

the total cross jet mass flux from Equation 5.16 is given here as c(ηb)n+dηn = −ν ′η′. From
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Figure 5–30: Comparison of κg0 with d coefficients for each simulation showing good agree-
ment and validating the matrix results for this parameter.

Figure 5–29 c is smaller in magnitude than d and may not seem worth modelling. However

(ηb)n can locally be much larger than ηn making the c(ηb)n term a significant adjustment.

We consider the root-mean square of the two gradients ηn and (ηb)n and the magnitude

of their corresponding contribution to the cross-jet mass flux; c(ηbn)rms and dηnrms. We

do this for the reference case in Table 5–1, considering statistics for both the entire domain

then a portion of the domain. If we consider the entire domain then the |dηnrms| term

dominates in magnitude. If we consider only the first quarter of the domain, with the ridge

in it, then we find |c(ηbn)rms| is 36 % of the magnitude of the |dηnrms| term.

Table 5–1: Comparison between c and d terms estimated for 200m high ridge and Ff of
1.4.

(ηbn)rms |c(ηbn)rms| ηnrms |dηnrms|

Whole Domain 2.27 x 10−4 2.07 x 10−3 3.08 x 10−4 1.23 x 10−2

x = 0 to Lx/4 4.34 x 10−4 3.96 x 10−3 2.74 x 10−4 1.10 x 10−2

94



As the topographic height increases, ηnrms does not change significantly but (ηbn)rms in-

creases. For example, for the 400 m ridge at the reference forcing, (ηbn)rms is almost three

times the size of ηnrms. The c coefficient therefore provides an increasingly important

adjustment on the estimated ν ′η′ for the higher topographies. This makes sense if we re-

consider the argument that the bottom topography gradient affects baroclinic instability.

If the gradient is steeper then we expect is to have a larger impact on the baroclinic insta-

bility and meridional mass transport. When we allow this matrix parameterization to vary

spatially in the following section we will see again that this term can be locally significant.
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Figure 5–31: Comparison of κgskew with B and b coefficients, which both equivalently
characterize the skew flux, for each simulation.

We consider the remaining b coefficient in the matrix parameterization in Figure 5–29.

A non-zero b points again to a net skew flux in the eastwards direction. It peels off the x

axis for larger values of topography and forcing like B and κskew did. We compare κskew

with B and b in Figure 5–31. b and κskew are closely related. The same could be said in

general for B although there is much more scatter in the data. This makes sense as κskew

and b are both estimated in stream-wise coordinates whereas B was computed in the model

coordinate system.
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Summary

The two matrix parameterizations we just saw allowed us to describe mass transport

in terms of two gradients. The first parameterized u′η′ and v′η′ with ηx and ηy − ηcrity . An

important point to take from these results is that we found mass transport occurred almost

equally as easily down ηx as ηy − ηcrity . We used this result to move back into an along

and cross stream coordinate system to parameterize µ′η′ and ν ′η′ with (ηb)n and ηn. The

coefficients we computed suggested that including this bottom topography gradient was

able to account for some of the large scale variations in mass transport we observe in the

ridge simulations. We are still interested in gaining a better insight of the local importance

of bottom topography gradients on mass transport.

5.5.3 Spatially varying matrix eddy diffusivity

We will now allow matrix coefficients from the parameterization using (ηb)n and ηn,

given in Equation 5.16, to vary spatially. This will allow us to see more clearly the local

effects of bottom topography on mass transport. We seek a unique solution at each point

with only two equations so the problem is under-determined. We describe the computation

method in following before discussing the results of the parameterization for the reference

simulation.

Computational Approach

We find the most robust approach is to gain information using surrounding data points.

A 9 by 9 square is drawn around each data point, pi,j , where the square’s corners are

defined by and include pi−4,j−4, pi+4,j−4, pi−4,j+4 and pi+4,j+4. The method from the

previous section is modified and applied. pi,j is paired each in turn with every other data

point in the square to compute a unique solution for the four constants (a, b, c and d).

The immediately surrounding 8 data points are excluded as they are often too similar to

ai,j . Overall, 72 pairings are made at each point.

The solution for the four constants at pi,j is determined by a combination of all pairing

results. Solutions from each pair are weighted in the average according to the distance
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between the two points. As eddy diffusivities vary over a jet length scale we use the

Rhines scale to non-dimensionalize the distance. Here we use LRh ∼ 2π(U/β)1/2 as we

found the constant of 2π (as suggested by Thompson and Sallée (2010)) to give a good

approximation to our jet spacings (see Section 5.1.2). The final solution depends to an

extent on the weighting function used and here we use an exponential function, giving

closer points more weighting. The coefficient vector at each point, Xp = ( a b c d )T , is

computed from Equation 5.17.

Xp =
1∑
k
wk

∑
k

wkXpk (5.17)

wk = exp(−
d2k
L2
Rh

) (5.18)

where dk is the distance between the two points, wk is the weight function and Xpk is the

solution vector of each pairing. In Section 5.5.2 we imposed a condition on the determinant

of the matrix to prevent large errors in computing Xp with two points that were too similar.

We will continue to use the same condition here. We only define the parameterization where

(ηb)n 6= 0 and ηn < 0.

Example fields of the four coefficients for the reference simulation are shown in Ap-

pendix A. The constants which relate mass fluxes to (ηb)n ( a and c ) peak in the domain

at the zonal edges of the ridge. This is consistent with the maximum fluxes observed here

(see Figure 5–12). a alternates between positive just north of jet cores and negative just

south. Its values are highest on the northern flank, predicting higher fluxes. Both these

observations are consistent with observations of mass flux field patterns in Figure 5–12.

In general, b and d show less spatial variation than their corresponding scalar fields, κ0

and κskew (Figure 5–22). We can conclude that consideration of the effects of bottom

topography is able to account for some of the variability seen in diffusivity estimates in

Section 5.4.2.
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Again we are interested in the magnitude of the two terms which parameterize the

cross-jet flux; −c(ηb)n−dηn = ν ′η′. We plot a meridional profile of the these three terms in

Figure 5–32 at an x-position coincident with the ridge. We see in the ν ′η′ a net northward

flux. ν ′η′ is only non-zero where the jets are and close to zero in the backflow regions. The

−c(ηb)n term is generally positive on the southern flanks of the ridge and negative on the

northern flanks. This corresponds to an enhanced eddy diffusivity on the southern flanks

and a suppressed eddy diffusivity on the northern flanks. This is exactly what we saw in

the scalar κ0 we computed for the same simulation in Figure 5–22. This also means the c

coefficient is, for the most part, negative as we found in the corresponding global matrix

parameterization in Figure 5–29.
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Figure 5–32: Profile showing for a spatially varying matrix eddy diffusivity showing the two
terms which estimate the total νη′; −c(ηb)n and −dηn. Profile is taken from the reference
case and averaged between x=70 km and x=140km.

Let us focus on the jet at approximately y=750km in the profile in Figure 5–32.

This is approximately the location of the maximum negative (ηb)n in the profile. If we had

predicted the size of the mass flux ν ′η′ based on ηn alone, then we would have overestimated
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ν ′η′ by more than a factor of 2. In this case, including the effects of bottom topography

led to a significant correction.

5.5.4 Summary

Here we allowed κ in the GM90 parameterization to be defined as a matrix for the

ridge simulations. The first matrix parameterized u′η′ and v′η′ with ηx and ηy − ηcrity .

We found all four coefficients to be non-zero. We then moved back into cross and along

stream coordinates, computing cross and along stream mass transport using ηn and (ηb)n.

We found that globally all parameters were non-zero except a - a parameter predicting

the effects of (ηb)n on µ′η′. We then allowed the four constants of this latter matrix

parameterization to vary spatially and be defined at each grid point. We found the bottom

topography can be locally quite significant in terms of predicting mass transport.

5.6 Sensitivity to LD and comparison of κ in literature

As we explain shortly, we find is that our values tend to be on the lower side of

those in the literature. This motivated us to test the sensitivity of mass transport and

eddy diffusivity parameterization to an important parameter in our model; the Rossby

radius. Our main simulations used a Rossby Radius of Ly/64 (15.6km). We test the

sensitivity to LD by comparing results from the main simulations to those from a second

set of simulations with twice this LD, that is Ly/32 (31.3km). In our model LD is imposed

through the reduced gravity term, g′, thus increasing LD increases the density in the lower

layer (see Section 4.2).

We comment first on the qualitative differences between the solutions at statistical

equilibrium. Recall the instantaneous PV fields presented earlier to demonstrate the effect

of forcing in Figure 5–8. We observed that by increasing Ff , the jets became larger and

more turbulent. To show the effect of LD, in Figure 5–33 we compare two flat-bottom

simulations at the reference forcing (Ff = 1.4) for the two LD. We see that increasing LD

has the same effect as increasing Ff ; that is to make the jets larger and stronger. Physically
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(b) LD = Ly/32

Figure 5–33: Instantaneous upper layer PV fields for simulations with (a) LD = Ly/64 and
(b) LD = Ly/32, showing the effect of LD. Both panels are for flat bottom simulations
with Ff of 1.4.

this makes sense as both parameters affect the amount of energy contained in the forcing

term. For the same imposed interface gradient, increasing g′ increases the density gradient

and is able to supply more potential energy to the flow. As the Rhines scale is linearly

related to the Rossby radius the jets in Figure 5–33(b) are approximately double in size.

Note that although the critical shear velocity is larger in the Ly/32 simulations, the critical

gradient is independent of LD and remains the same.

We decide to quantify the significance of LD on mass transport by comparing global

normal eddy diffusivities for the two sets of simulations. We compute κg0 for the two sets

of simulations as per the method in Section 5.4.1. Recall that we found κg0 increased with

Ff (Figure 5–18). Based on this and the above argument that both Ff and LD increase
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Figure 5–34: Global cross-jet diffusivity, κg0, as a function of Ff for runs with flat bottom
topography. Runs are shown for two Rossby Radii; Ly/32 and Ly/64, to demonstrate the
influence of LD on κg0.

the energy in the forcing term, we may expect that κg0 would also increase with LD. We

find this to be true in Figure 5–34 which compares κg0 for the two LD. The plot shows

a large sensitivity to LD that increases with forcing strength. κ0 are 290-430 % higher

in runs with LD/32, than in runs with LD/64 with corresponding forcing strength. This

indicates a non-linear relationship between κ and LD. Although we do not test the type

of relationship that our data follows, Bryan (1996) suggests κ ∼ L2
D. Nonetheless, these

results show the importance of a correctly defined local Rossby radius.

We will now use Figure 5–34 to compare the size of κg0 we found in this work to

those in the literature. Referring back to Section 3.2.1, we find our results to be notably

lower than the κg0 which we find in our main simulations with LD = Ly/64 (Figure 5–34).

Those given in the literature review are surface values whereas ours could be thought of

as more of a depth integrated value for the upper 2000 km. We know that κ declines with

depth (Eden, 2006). As a simplification we could assume an exponential decay, where κ0

decays to 50% of the surface value by 500 m. Using this profile, a depth-averaged value
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over the upper 2000 m corresponds to 34% of the surface value. We could compare to a

lower-end surface eddy diffusivity quoted in the literature within the ACC of 200 m2/s (e.g.

Naveira Garabato et al. 2011). Using the assumed exponential profile, this surface value

corresponds to a depth-averaged κg0 of 67 m2/s. This falls within the upper range of our

estimates in the main simulations. Whereas, a typical value often adopted throughout the

entire ocean of 1000 m2/s (Eden, 2006) equates to a depth-averaged κ0 of 340 m2/s. This

falls well within the range of κg0 we estimate using a Rossby radius of 32 km. Although

this is a crude comparison it does verify that our values are on a comparable order of

magnitude.

5.7 Summary

In this Chapter we discussed and analyzed the results from our model. In Section 5.1

we discussed the formation of the quasi-steady jets and their structure at statistical equi-

librium. Recalling that the GM90 parameterization predicts that u′η′ ∼ −κ∇η, we looked

qualitatively at the mass flux and interface gradient fields in Section 5.2. In Section 5.3

we quantitatively tested whether the GM90 parameterization made sense for our data. We

found that our data was more appropriately modelled using a gradient of ηy − ηcrity . Based

on this result we proceeded to fit a series of increasingly complex eddy diffusivity models

which we summarize in Table 5–2.

As forcing increases we found the cross-jet eddy diffusivity increases. We also found

a non-zero eastwards flux for the higher topographies at large enough forcings. Although

interesting, in reality the transport in the zonal direction by mesoscale eddies is dwarfed

by the mean flow. Our latter parameterizations included the bottom topography gradient

perpendicular to the flow direction, and aimed to absorb some of the large-scale spatial

variation seen in the κ0 fields. Locally bottom topography gradients were important,

although the addition of the ridge did not have a huge impact on the net transport in

the domain (Figure 5–14). However, we may expect that this would not be the case for

non-symmetric topography, especially given that we found parameters relating bottom
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Table 5–2: Summary of eddy diffusivity models fit in this thesis

Type of Model Mathematical form Section

(1) Global with ηy − ηcrity 〈µ′η′〉 = −κgskew〈ηn〉 ; 〈ν ′η′〉 = −κg0〈ηn〉 5.4.1

(2) Local with ηn µ′η′ = −κskewηn ; ν ′η′ = −κ0ηn 5.4.2

(3a) Global matrix with ηx and ηy − ηcrity

(
u′η′

v′η′

)
= −

(
A B
C D

)(
ηx

ηy − ηcrity

)
5.5.2

(3b) Global matrix with (ηb)n and ηn

(
µ′η′

ν ′η′

)
= −

(
a b
c d

)(
(ηb)n
ηn

)
5.5.2

(4) Local matrix with (ηb)n and ηn

(
µ′η′

ν ′η′

)
= −

(
a b
c d

)(
(ηb)n
ηn

)
5.5.3

topography to mass transport to be non-zero. Finally in comparing our results to previous

work we found that the Rossby radius is very important. At higher LD larger more energetic

eddies are generated and result in more mixing. Typically κ is diagnosed from the density

gradient (Nakamura and Chao, 2000). In our model the density field is a function of both

the imposed interface gradient and the reduced gravity term (inferred from the set Rossby

radius, LD). Steepening the interface gradient or increasing LD, increases the density

gradient. In these results we find both of these to increase κ, consistent with κ ∼ ∇ρ.
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Chapter 6
Conclusions

The work in this thesis explored the parameterization of mesoscale eddy mass transport

in the ACC using a two-layer quasi-geostrophic model. The domain had a physical size of

4000 km by 1000 km and was modelled using doubly periodic boundary conditions. The

model forcing was based on the Phillips problem for baroclinic instability in a two-layer

system and energy removal carried out by hyperviscosity and bottom drag. The forcing

was implemented by maintaining a base state inclination of the interface between the

fluids, such that the flow is baroclinically unstable and permits the generation of baroclinic

eddies. The energy moves to larger scales by the inverse cascade, and finally when energy

saturation is reached, quasi-geostrophic jets are formed in the domain. The strength of the

forcing was increased by increasing the base state inclination of the interface. Our bottom

topography included a flat bottom and idealistic ridge of varying height. Simulations were

carried out over a series of combinations of ridge heights and forcing strengths. Model

outputs of time averaged mass transport and mean flow properties were used to explore

fitting eddy diffusivity relationships. We noted that κ in the GM90 parameterization can

mathematically, in principal, be implemented as a scalar or matrix where in either case it

can be defined globally or locally. We considered five parameterizations for κ ranging from

a global constant to a matrix description of mass transport. Given that our model setup

was highly idealized, we were more concerned about the ways in which κ depended on the

topography height and forcing, rather than the actual numbers themselves per se.

The classic Phillips problem for two-layer baroclinic instability derives a critical in-

stability condition based on the inclination of the interface. For our corresponding flat

bottom topography case, we found an instability condition of approximately 70% of that

of the classic result. This was determined to be the result of the bottom friction in our

model, and the classic condition is recovered when the bottom drag is returned to zero.

Although it is well-known that bottom friction increases the baroclinicity of flows, this
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result was a little counter-intuitive and surprising. A theoretical condition for instability,

taking bottom drag into account, was not derived but could be a part of future work.

Once instability was activated, two completely different growth modes were observed

in the flat bottom and ridge cases. In the flat bottom simulations, kinetic energy in the

system grew exponentially. During this period, primarily one mode was growing which

could be seen by a very regular structure in the fields. Its wavelength was close to one

of the modes of fastest growth predicted by baroclinic instability. In contrast, the total

kinetic energy growth in the system showed no resemblance to that of the flat bottom

case. In these cases, the interaction between the topography and forcing excited a large

scale structure almost instantly. This large scale structure evolved and grew with time.

Baroclinic instability growth began to occur at a later time and preferentially where bottom

topography slopes favoured instability. For both types of topography, energy eventually

reached saturation and statistical equilibrium was attained. At this time quasi-steady jets

were observed in the domain, typical of β-plane turbulence. Once the solutions achieved

statistical equilibrium, or energy saturation, they were averaged in time.

In the upper layer peak eastwards velocities, corresponding to jet cores, alternated

with regions of either weaker eastwards flow or westward flow. As the level of forcing was

increased the jets became larger and stronger. In the ridge simulations, the jets took a

meridional excursion in the lee of the topography. We related this to the conservation of PV

of fluid columns as they are stretched moving off the ridge. Jets were found to be strongest

on our northern flanks of the ridges, where the bottom topography slopes down towards

the equator, and were attributed to the local stabilizing PV gradient of the topography

slope. In the lower layer closed recirculation regions were found in the valley between the

ridges. Since the initial goal of this work was to explore the effect of these quasi-steady jets

on the κ structure, our subsequent analysis was focused on the upper layer mass transport

and dynamics.
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Recall that the GM90 eddy diffusivity model predicts that u′η′ ∼ κ∇η. We first

considered simple, global eddy statistics to show that our data better suited an eddy

diffusivity fitted against ηy − ηcrity . The critical interface slope, ηcrity , can be interpreted as

a slope, below which, no mass flux occurs. For the flat bottom case, ηcrity corresponded to

the empirically derived onset of critical instability. Considering this, it makes sense that

ηy − ηcrity could be understood as a measure of “how unstable” the flow is, or the level of

excess potential energy. When we looked in regions of the flow where ηy was locally flatter

than ηcrity (in the backflow regions), little eddy mass flux was present and the data did not

locally support an eddy diffusivity model. In contrast, mass flux data appeared to locally

follow an eddy diffusivity model where the interface gradient was steeper than ηcrity . This

motivated us to move forward, only defining an eddy diffusivity model where ηy < ηcrity . In

addition, since we were primarily interested in cross-jet transport, eddy diffusivities were

computed in a jet coordinate system which followed ψ1 contours and was aligned with jet

cores.

For each simulation we computed a κ0 and a κskew, which related ν ′η′ (cross-jet mass

transport in jet coordinates) and µ′η′ (along-jet mass transport in jet-coordinates) respec-

tively to ηn (interface gradient normal to jet contours with ηy
crit removed). We computed

the two κ on a global scale before allowing each to have a local definition. The global

cross-jet diffusivity, κg0, increased with forcing strength, consistent with higher levels of

EKE and therefore mixing taking place. A local definition of κ0, in all topography cases,

had a meridional structure consistent with that believed by many others. κ0 dropped to

a local minimum through the jet core, suggesting mixing inhibition, and increased moving

outwards from the core. This led to an apparent conflict, or paradox, between locally and

globally defined cross-jet diffusivities. In a global sense, as the forcing, and therefore jet

core velocities increased, so too did κg0. In a local sense and following the same logic, we

might have expected that as we move into the jet core, into regions of the higher velocity,

that a local κ0 would also increase. Instead we found the contrary to be true. Although
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we did not find a concrete explanation for this, it appears to support both seemingly con-

tradictory arguments in the literature that diffusivities are suppressed in the jet cores but

yet κ0 is positively correlated with EKE.

Mass transport along jet contours is typically given much less attention since along-

stream transport is dominated by the mean flow. Nonetheless, we considered an along-

stream diffusivity, κskew, in the same manner as that for κ0. Within the jets, a local κskew

was found to be positive on the northern sides of jet cores and negative on the southern

sides. This structure was derived from the eastwards transport of η′ on the northern side

of jet cores and westwards transport of η′ on the south. In the flat bottom simulations,

u′η′ was found to average to zero over the domain indicating no net zonal transport of η′.

Subsequently, a global κgskew was found to be zero. In contrast, in the ridge simulations, a

net eastwards transport of η′ and non-zero positive κskew was observed. The value of κskew

increased with both forcing strength and topography height. The source of the skew flux

could have been the result of a misalignment of ψ and η contours in the ridge simulations.

It was noted that the GM90 parameterization could be mathematically correct either

if κ was defined as a scalar or as a matrix. For the ridge simulations, we experimented with

the idea of fitting an eddy diffusivity in matrix form. Given that it may be more practical

to compute mass transport directly in model coordinates rather than in jet coordinates, our

first global matrix parameterized meridional and zonal transport using ηx and ηy − ηcrity .

The coefficients which related zonal fluxes to ηx was approximately equal to those relating

meridional fluxes to ηy − ηcrity . This confirmed our early assumption that an equivalent

critical gradient in the zonal direction, ηcritx , would be zero.

For the ridge simulations, the scalar eddy diffusivity fields, κ0 and κskew, appeared to

be correlated with bottom topography. That is we did not observe the same eddy diffusiv-

ities on the northern flanks of the ridge, as on the southern flanks or in flat regions in the

valley. This motivated a second global eddy diffusivity matrix. This time we reverted back

to jet coordinates and tried to absorb the spatial variation in the two κ by introducing the
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bottom topography gradient as a second regression variable. We found a global eddy diffu-

sivity to be suppressed on our northern flanks, where the gradient sloped down towards the

equator and the gradient has a baroclinically stabilizing effect. This could be interpreted

in several ways, however, we could consider that ηcrity is locally increased and therefore the

flow is “less unstable” and we expect less mass transport; exactly that which we observed in

the raw mass transport fields. For our final eddy diffusivity parameterization, we extended

this same matrix parameterization with bottom topography but now permitting it to vary

locally. The problem was now under-determined as we sought four coefficients with only

two equations and the results could have been expected to vary depending on the method

used to close the system. However, our results showed the matrix coefficients equivalent

to κ0 and κskew showed much less large scale variation than their scalar counterparts.

Our diffusivity values were noted to be on the lower end of those found in the literature,

motivating a further set of simulations at double the Rossby radius. The Rossby radius,

LD, was observed to have a significant impact, both visually in the velocity and PV fields

and quantitatively in terms of mass transport. κ0 was found to have a large and non-linear

dependence on LD, which increased with the strength of forcing. Currently, in practice,

eddy diffusivities are diagnosed from the meridional density gradient. In this thesis, the

meridional density gradient was determined by the separately defined interface gradient

and Rossby radius.

This work was initially motivated to understand the changes of κ with the future

changes to the ACC and the role topography may play in this evolution of κ. From

our idealized model, we could expect the cross-jet diffusivity to increase with an increase

in the meridional density gradient. Our symmetric idealized topography did not have a

significant influence on the net cross-jet transport in the domain. However, based on the

parameterizations with bottom topography gradients, one could expect that asymmetric

topography could have a net effect to either increase or decrease a large scale cross-jet

diffusivity.
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Appendix A
Matrix Eddy Diffusivity Coefficient Fields
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Figure A–1: Coefficients for locally defined matrix paramerization in Section 5.5.3. Data
from a simulation with a 200 m ridge and Ff of 1.4.
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