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Abstract

A non-asymptotic approach to simultaneous model and state estimation is discussed
in this thesis. Specifically, given a cloud of measurement points presumed to represent
a dynamical system output trajectory, a linear model is constructed to fit it best. The
approach is somewhat similar to variational data assimilation in that it employs a cost
functional as a measure of model fitness and computes its gradient by solution of an adjoint
sensitivity problem. A kernel system model is first constructed and viewed as a linear
finite dimensional subspace of a reproducing kernel Hilbert space (RKHS). The subspace
is linearly parametrized by the unknown system constants whose values determine the
subspace “orientation” vis á vis the cloud of measurement points. The system constants are
found simultaneously with reconstructing the system state. A geometrical interpretation
of this process is particularly appealing as it can be visualized as subspace re-orientation
in the RKHS by way of minimizing the residual of the modelling error.

The method does not employ numerical differentiation techniques. The joint model
and state estimation does not require any information about boundary conditions of the
presumed dynamical system nor the measurement noise characteristic. Additionally, as the
optimization process searches for the best estimates of the system parameters the “empir-
ical” statistical distribution of the modelling residual error can be tested for congruence
with a priori knowledge about the measurement noise. The non-parametric Kolmogorov
probability density test is used in this thesis to test such congruence. Examples confirm
high accuracy of adaptive estimation, but the algorithm is computationally expensive as it
employs optimization by iterative search.

The fifth chapter of the thesis presents a radical re-formulation of the problem that
directly employs the basis functions of the RKHS. Such formulation bypasses the evalu-
ation of the fundamental solutions of the system model and does not require variational
techniques. Numerical results pertaining to the latest problem statement will be presented
in a forthcoming publication.



Résumé

Cette thèse présente une approche non-asymptotique d’estimation simultanée du modèle du
système et de son état. Plus précisément, un modèle linéaire est construit afin de s’ajuster
à une trajectoire de sortie de système dynamique représentée par un nuage de points de
mesure. L’approche est quelque peu similaire à l’assimilation variationnelle des données en
ce sens qu’elle utilise un coût fonctionnel pour obtenir un ajustement de modèle et calcule
son gradient par la résolution d’un problème de sensibilité adjoint. Un modèle de système à
noyau est d’abord construit et considéré comme un sous-espace linéaire de dimension finie
d’un espace de Hilbert à noyau de reproduction (RKHS). Le sous-espace est paramétré
de manière linéaire par les constantes inconnues du système dont les valeurs déterminent
l’orientation du sous-espace par rapport au nuage de points de mesure. Les paramètres
du système sont trouvées simultanément avec la reconstruction de l’état du système. Une
interprétation géométrique de ce processus est particulièrement attrayante car elle peut
être visualisée comme une réorientation du sous-espace dans le RKHS en minimisant le
résidu de l’erreur de modélisation.

La méthode n’utilise pas de techniques de différentiation numérique. Le modèle conjoint
et l’estimation d’état ne nécessitent aucune information sur les conditions limites du pré-
sumé système dynamique ni sur la caractéristique de bruit de mesure. De plus, pendant que
le processus d’optimisation recherche les meilleures estimations des paramètres du système,
la distribution statistique empirique de l’erreur résiduelle de modélisation peut être testée
pour la congruence, avec la connaissance a priori du bruit de mesure. Le test de densité de
probabilité non paramétrique de Kolmogorov est utilisé dans cette thèse pour tester une
telle congruence. Les exemples confirment la haute précision de l’estimation adaptative,
mais l’algorithme est coûteux en calcul car il utilise un processus itératif d’optimisation.

Le cinquième chapitre présente une reformulation radicale du problème qui utilise di-
rectement les fonctions de base du RKHS. Une telle formulation contourne l’évaluation des
solutions fondamentales du modèle de système et ne nécessite pas de techniques variation-
nelles. Les résultats numériques relatifs au dernier énoncé du problème seront présentés
dans une prochaine publication.
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Chapter 1

Introduction

In an attempt to improve existing technologies, Control Systems has become one of the
most important areas of research interest. Since technology has entered our lives rapidly,
automatic controllers are all around us, now more than ever. They are at work in our homes,
our cars, our factories, our transportation systems, our defense systems, everywhere we look
[7]. A control system is a system by which any quantity of interest in a machine, mechanism
or other equipment is maintained or altered in accordance with a desired manner [8]. For
example, the automobile driving system, comprising of its accelerator, fuel injectors and
the engine, constitute a control system because it works to maintain a desired speed.

A control law or controller is a set of rules that allows us to determine the commands
to be sent to the governed plant (via an actuator) to achieve the desired evolution. These
rules can be described as either open-loop control or closed-loop (feedback) control [6].

An open-loop control system is a system which cannot correct variations in the output
because it does not employ feedback. A traffic light system with fixed intervals of time at
which the lights change colors is an open loop system.

Figure 1.1 An open loop control system [6]
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A closed-loop control , on the other hand, is a type of system which employs a feedback
loop. An error detector compares a signal, a function of the output, obtained from a sensor,
with a reference input. The difference between these signals is used by the controller to
determine a control action and reduce the error.
Considering the previous example of the traffic system; if an arrangement was made to

Figure 1.2 A closed loop control system [6]

take into account the traffic flow , it would be a closed loop system.
Feedback is a mechanism to command a system to evolve in a desired fashion so that

the states, and outputs, exhibit a desired evolution (e.g., to track a reference trajectory)
or stay at a prescribed equilibrium. Feedback can also be used to stabilize the state of a
system, while also improving its performance [6].
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1.1 Parameter Estimation in Linear Systems

A mathematical model of “the plant” is viewed as one of the most essential parts of a
control system. Defining a model by a finite number of parameters leads to a parametric
model, which is necessary to be known in order to implement a model based controller.
This makes the problem of parameter estimation to be of equal, if not more important,
than state estimation.

Parameter estimation is the experimental determination of values of parameters that
govern the dynamic behavior of the system, assuming that the structure of the system
is well known [6]. One of the most important early contributions in this area was the
statistical view of the parameter identification problem, proposed by Gauss [9] and known
as the “inverse problem of computing the response of a system with known characteristics”,
and the maximum likelihood procedure introduced by Fisher [10].

An example of a parameter estimation problem would be the following; consider a
continuous-time (CT) linear time-invariant (LTI) system, whose order n is known, de-
scribed by:

an
dnx

dtn
+ an−1

dn−1x
dtn−1

+ · · ·+ a0x(t) = bm
dmu

dtm
+ bm−1

dm−1u
dtm−1

+ · · ·+ u(t) (1.1)

A noise corrupted version of x is measured, z(tk) = x(tk) + ε(tk), k = 1, 2, ...,M where,
ε(tk) is Gaussian noise with mean 0 and variance σ2, M is the number of samples taken.
The goal of identification is to estimate the parameters an, an−1, ..., a1, a0, bm, bm−1, ..., b1
from the input-output data i.e., (u(tk), z(tk); k = 1, 2, ...,M . [11]

The parameter estimation of a homogeneous system can be viewed as the identification
of a differential invariant I (I ≡ 0)under the action of the flow of some closed loop system
(such as its characteristic equation) [12]:

I(t, y(t), y(1)(t), · · · , y(n)(t)) ≡ y(n)(t) + an−1y(n−1)(t) + · · ·+ a0y(t); t ≥ 0 (1.2)

This thesis adopts the same method of parameter estimation using the Kernel function,
as mentioned in [1]. But then it shows that these parameters aren’t the BEST estimates
for the system and develops the need for simultaneous denoisifcation and model shaping.
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1.2 State Estimation in Linear Systems

The importance of state estimation is evident from figure 1.2. States x(t) and parameters θ
of the system model are required to produce the final output y(t). The state of a system is a
minimum set of variables (state variables) whose present values, together with the values of
the input signals in the future, completely determine the future behavior of the system [6].
A feedback controller requires the states of the system to generate a control law in order
to drive the final output to a desired output value y∗(t). It can also be seen from the
figure that the system is plagued by external input disturbances and measurement noise;
hence, the controller needs to be robust to these “exogenous” signals. Hence, accurate state
availability becomes even more important.

Unfortunately all the state variables are not measurable; hence, we need to build a state
estimator as a first step to building a feedback controller. This problem has been tackled
in depth by Kalman and Luenberger , which leads to an extensive theory development on
Observers as mentioned in [13], [14], [15], [16], [17], [18], [19]. An observer for a linear
system is readily feasible whenever the system is observable, that is, when its observability
matrix has full rank. If the observer gains are optimized for the noise input to the system
and to the sensor(s), the observer is called a Kalman filter. If the gains are not so optimized,
and the setting is deterministic, the observer is called a Luenberger observer [6].

Time derivative estimators can also be used to estimate states of a dynamical system. If
a system is observable, the state-space can be reconstructed from a set of measurements of
the input, the output, and a finite number of their time derivatives. One way to reconstruct
the state-space via time derivatives is by exploiting the property of differential flatness of
systems [6].

1.2.1 Flat systems

A variable of a system is said to be endogenous if it can be expressed as a differential
function of the input, the output and a finite number of their time derivatives. A system
is said to be flat, if there exists an endogenous variable, called the flat output f , such that
the input u and the output y can be expressed as linear combinations of the flat output
and finite number of its time derivatives.
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Consider a LTI SISO system described by:

y(s) =
bms

m + bm−1sm−1 + · · ·+ b0
sn + an−1sn−1 + · · ·+ a0

u(s), m < n (1.3)

with the numerator and the denominator being co-prime. A flat output, f can be considered
to be

f(s) =
κ

sn + an−1sn−1 + · · ·+ a0
u(s), κ �= 0 (1.4)

Thus, the original system can now be represented as:

dnf

dtn
+ an−1

dn−1f
dtn−1

+ · · ·+ a0f = κu

y =
1

κ

[
bm

dmf

dtm
+ bm−1

dm−1f
dtm−1

+ · · ·+ b0f

] (1.5)

indicating that the system in (1.3) is a differentially flat system [20].

According to [21], a system variable is said to be algebraically observable if it can be repre-
sented in terms of the input, the output, and a finite number of their time derivatives, as
expressed above. Thus, observer design is reduced to the design of a numerical differentia-
tor [22], [23] . One problem which is encountered while estimation using time derivatives
is that a typical differentiator is affected by noise. Thus, if we choose this estimation tech-
nique, an additional filtering algorithm has to be implemented in the estimation procedure
to obtain reasonable results under noisy measurement conditions. Notable work in opti-
mal filtering was done by Norbert Wiener [24] and also by Rudolf Kalman, in the form of
Kalman-Bucy filter [14], [16].

1.2.2 Algebraic Methods in Control Theory

Algebraic Methods are an identification methodology used to estimate states, but not
limited to it. They belong to the class of Time-derivative estimators and have the following
advantages [6]:

1. Robust State estimators can be designed even in the presence of noise corrupting the
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data.

2. No statistical knowledge of the noise is required for the estimation.

3. They are robust with respect to different initial conditions provided to the system.

4. Unlike classical observers as mentioned in this section, this methodology features
faster convergence than an asymptotic one and does not focus on Lyapunov Stability
theory for design.

This work focuses on using the kind of methods as contained by 1.2.2, specifically, based
on the attenuation of noise achieved by the integration operation.

1.3 Thesis Objectives and Organization

The primary objective of the thesis is to develop a new method for system modelling and
estimation which is non-asymptotic and can be applied to time windows of arbitrary length.
It endeavours to extend the previous work on algebraic approaches to state and parameter
estimation of linear systems as in [1]. Additionally, this work aims at:

• finding the best possible parameters to fit a linear model to a data cloud. [3]

• increasing the accuracy of the state estimation over the whole time window. [3]

• representing the system in an alternative form in RKHS.

• formulation of linear modelling problem in RKHS.

Summary of Thesis Content
Chapter 1 of the thesis introduces Control Systems while differentiating between Open-

Loop and Closed-Loop control; stressing on the importance of feedback. The primary
goal of the chapter is to introduce the concept of parameter and state estimation. A
general problem is formulated to explicitly convey the meaning of parameter estimation.
This chapter also contains a short section on Flat Systems, which is necessary for the
understanding of algebraic estimation techniques mentioned in the later chapters.

Chapter 2 almost entirely focusses on the derivation of the double-sided kernel as devel-
oped in [1]. This chapter also states the “Joint State and Parameter Estimation” problem
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which is being treated in this entire work. An example is also considered to demonstrate
parameter estimation and the need for using Optimisation techniques in Simultaneous De-
noisification and Model Shaping is established. In that, it serves as a critique to the work
presented in [1].

Chapter 3 tackles the shortcomings of the state estimation method expressed before.
A more radical, non-asymptotic approach to simultaneous model and state estimation is
adopted in this chapter. This approach employs a cost functional as a measure of model
fitness and computes its gradient by solution of an adjoint sensitivity problem. Broyden’s
method is also discussed as an alternative to the gradient calculation as described in the
former approach.

The appendix provides some important concepts and results from Calculus of Variations
and can be referred to for assistance.

Chapter 4 presents the results after application of the simultaneous denoisifcation and
model shaping method as developed in Chapter 3. Most of the results consider white
Gaussian noise with Signal to Noise Ratio(SNR) of 30dB but the method is also tested
against a white Gaussian noise of SNR 10dB. The non-parametric Kolmogorov probability
density test is used to assess congruence of the modelling residual errors with the (in this
case assumed) statistical density of the measurement noise.

Chapter 5 aims at a theoretical construction of modelling of systems using RKHS. It
delves into a detailed study of theory involving Reproducing Kernel Hilbert Spaces. It
describes classical construction of a RKHS space and moves onto application of the theory
to our specific problem of simultaneous denoisifcation and model shaping. This chapter
formulates a Tikhonov Regularization problem pertaining to the original application of
model shaping but does not contain results and is thus viewed as a potential area of future
work.

Chapter 6 of the thesis provides a conclusion of the work presented in the previous
chapters, reiterates the results and suggests future work.
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Chapter 2

A Double Sided Kernel approach to
Model and State Estimation

2.1 Introduction

The double sided kernel approach was developed and discussed in [1] but will be produced
here.

2.2 An Overview of the Double Sided Kernel [1]

In this approach, the state equations are replaced with an output reproducing property on
an arbitrary time [ta, tb] which follows directly from the knowledge of the system character-
istic equation. The behavioural model is derived from the differential invariance which is
characteristic of the system and eliminates the need of initial conditions and is in the form of
a homogeneous Fredholm integral equation of the second kind with a Hilbert-Schmidt ker-
nel [2]. The mathematical interpretation as a Reproducing Kernel Hilbert Space (RKHS)
of the behavioral model allows us to extract signal and its time derivatives that confirm
the system invariance from output measurement subject to noise. The details concerning
the RKHS interpretation of the problem are presented in the Chapter 5.
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2.3 Development of the Double Sided Kernel [2]

Before proceeding with the discussion of the actual development of the method, let us first
describe the system whose states we are estimating. We are using this extremely simple
model only for simplicity and brevity of exposition. For higher order systems the procedure
is identical and its general validity can be proved by mathematical induction.

2.3.1 System Description

Consider the following third order LTI system:

ẋ(t) = Ax(t)

y(t) = Cx(t)
(2.1)

where A, C, x(t), ẋ(t) and y(t) are given as follows

A =

⎡
⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦ (2.2)

C =
[
c11 c12 c13

]
(2.3)

x(t) =

⎡
⎢⎢⎢⎣
x1(t)

x2(t)

x3(t)

⎤
⎥⎥⎥⎦ (2.4)

ẋ(t) =

⎡
⎢⎢⎢⎣
ẋ1(t)

ẋ2(t)

ẋ3(t)

⎤
⎥⎥⎥⎦ (2.5)

y(t) =

⎡
⎢⎢⎢⎣
y1(t)

y2(t)

y3(t)

⎤
⎥⎥⎥⎦ (2.6)
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det(A− λI) = det

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
λ 0 0

0 λ 0

0 0 λ

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

The characteristic equation for the above system is det(A− λI) = 0, i.e.

λ3 + a2λ
2 + a1λ+ a0 = 0 (2.7)

Using Cayley Hamilton Theorem, we can rewrite (2.7) as follows.

A3 + a2A
2 + a1A+ a0 = 0 (2.8)

Now, if we multiply (2.8) by x(t) from the right and by C from the left, we get,

CA3x(t) + a2CA2x(t) + a1CAx(t) + a0Cx(t) = 0 (2.9)

Differentiating (2.1) with respect to time yields,

y(t) = Cẋ(t) (2.10)

Substituting the first part of equation (2.1) into (2.10)

y(1)(t) = CAx(t) (2.11)

Differentiating (2.11) and substituting again two more times we get,

y(2)(t) = CA2x(t) (2.12)

and
y(3)(t) = CA3x(t) (2.13)

Now using (2.11) , (2.12), (2.13) and substituting them in (2.9) we finally arrive at,

y(3)(t) + a2y
(2)(t) + a1y

(1)(t) + a0y(t) = 0 (2.14)
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2.3.2 Derivation of the Double Sided Kernel

We shall now derive the double-sided kernel for a general third order characteristic poly-
nomial described in the previous subsection

y(3)(t) + a2y
(2)(t) + a1y

(1)(t) + a0y(t) = 0 (2.15)

on an interval [a, b].
Let us consider the following two equations obtained from (2.15) by multiplying (ξ−a)3

and (b− ζ)3

(ξ − a)3y(3)(t) + a2(ξ − a)3y(2)(t) + a1(ξ − a)3y(1)(t) + a0(ξ − a)3y(t) = 0 (2.16)

(b− ζ)3y(3)(t) + a2(b− ζ)3y(2)(t) + a1(b− ζ)3y(1)(t) + a0(b− ζ)3y(t) = 0 (2.17)

Now we integrate (2.16) and (2.17) thrice on the interval [a, a + τ ] and [b − σ, b]. This
effectively means that we would be integrating the (2.15) in the forward direction during
the interval [a, a+ τ ] and in the backward direction on the interval [b, b− σ].
Integrating the first term in (2.16) for the first time,

a+τ∫
a

(ξ − a)3y(3)(ξ) dξ = (ξ − a)3y(2)(ξ) |a+τ
a −

a+τ∫
a

3(ξ − a)2y(2)(ξ) dξ

= τ 3y(2)(a+ τ)−
[
3(ξ − a)2y(1)(ξ) |a+τ

a −
a+τ∫
a

6(ξ − a)y(1)(ξ)dξ

]

= τ 3y(2)(a+ τ)− 3τ 2y(1)(a+ τ) + 6(ξ − a)y(1)(ξ) |a+τ
a −

a+τ∫
a

6y(ξ) dξ

= τ 3y(2)(a+ τ)− 3τ 2y(1)(a+ τ) + 6τy(a+ τ)−
a+τ∫
a

6y(ξ) dξ

(2.18)

When we integrate again, the upper limit on the integral becomes a ‘dummy variable’, that
is we set ξ′ = a+ τ then,
τ 3y(2)(a+ τ) is integrated as (ξ′ − a)3y(2)(ξ′)
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3τ 2y(1)(a+ τ) is integrated as 3(ξ′ − a)2y(1)(ξ′)

6τy(a+ τ) is integrated as 6(ξ′ − a)y(ξ′)

Integrating (2.18) again,

a+τ∫
a

ξ′∫
a

(ξ − a)3y(3)(ξ) dξdξ′ =

a+τ∫
a

(ξ′ − a)3y(2)(ξ′) dξ′ −
a+τ∫
a

3(ξ′ − a)2y(1)(ξ′) dξ′

+

a+τ∫
a

6(ξ′ − a)y(ξ′) dξ′ −
a+τ∫
a

ξ′∫
a

6y(ξ) dξdξ′

= (ξ′ − a)3y(1)(ξ′) |a+τ
a −

a+τ∫
a

3(ξ′ − a)2y(1)(ξ′) dξ′

−
[
3(ξ′ − a)2y(ξ′) |a+τ

a −
a+τ∫
a

6(ξ′ − a)y(ξ′) dξ′
]

+

a+τ∫
a

6(ξ′ − a)y(ξ′) dξ′ −
a+τ∫
a

ξ′∫
a

6y(ξ) dξdξ′

= τ 3y(1)(a+ τ)−
[
3(ξ′ − a)2y(ξ′) |a+τ

a −
a+τ∫
a

6(ξ′ − a)y(ξ′) dξ′
]

− 3τ 2y(a+ τ) +

a+τ∫
a

12(ξ′ − a)y(ξ′) dξ′ −
a+τ∫
a

ξ′∫
a

6y(ξ) dξdξ′

= τ 3y(1)(a+ τ)− 6τ 2y(a+ τ) +

a+τ∫
a

18(ξ′ − a)y(ξ′) dξ′ −
a+τ∫
a

ξ′∫
a

6y(ξ) dξdξ′

(2.19)

As shown earlier, the upper limit again becomes a ‘dummy variable’ and now we set ξ′′ =
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a+ τ . Integrating again for the third time we get,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

(ξ − a)3y(3)(ξ) dξdξ′dξ′′ =

a+τ∫
a

(ξ′′ − a)3y(1)(ξ′′) dξ′′ −
a+τ∫
a

6(ξ′′ − a)2y(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

18(ξ′ − a)y(ξ′) dξ′dξ′′ −
a+τ∫
a

ξ′′∫
a

ξ′∫
a

6y(ξ) dξdξ′dξ′′

= τ 3y(a+ τ)−
a+τ∫
a

3(ξ′′ − a)2y(ξ′′) dξ′′ −
a+τ∫
a

6(ξ′′ − a)2y(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

18(ξ′ − a)y(ξ′) dξ′dξ′′ −
a+τ∫
a

ξ′′∫
a

ξ′∫
a

6y(ξ) dξdξ′dξ′′

= τ 3y(a+ τ)−
a+τ∫
a

9(ξ′′ − a)2y(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

18(ξ′ − a)y(ξ′) dξ′dξ′′ −
a+τ∫
a

ξ′′∫
a

ξ′∫
a

6y(ξ) dξdξ′dξ′′

(2.20)

Integrating the second term in (2.16) first time,

a+τ∫
a

a2(ξ − a)3y(2)(ξ) dξ = a2(ξ − a)3y(1)(ξ) |a+τ
a −

a+τ∫
a

3a2(ξ − a)2y(1)(ξ) dξ

= a2τ
3y(1)(a+ τ)−

[
3a2(ξ − a)2y(ξ) |a+τ

a −
a+τ∫
a

6a2(ξ − a)y(ξ) dξ

]

= a2τ
3y(1)(a+ τ)− 3a2τ

2y(a+ τ) +

a+τ∫
a

6a2(ξ − a)y(ξ) dξ

(2.21)

Using the guidelines as shown previously, we introduce a ‘dummy variable’ again and
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integrating (2.21) again,

a+τ∫
a

ξ′∫
a

a2(ξ − a)3y(2)(ξ) dξdξ′ =

a+τ∫
a

a2(ξ
′ − a)3y(1)(ξ′) dξ′ −

a+τ∫
a

3a2(ξ
′ − a)2y(ξ′) dξ′

+

a+τ∫
a

ξ′∫
a

6a2(ξ − a)y(ξ) dξdξ′

= a2(ξ
′ − a)3y(ξ′) |a+τ

a −
a+τ∫
a

3a2(ξ
′ − a)2y(ξ′) dξ′

−
a+τ∫
a

3a2(ξ
′ − a)2y(ξ′)dξ′ +

a+τ∫
a

ξ′∫
a

6a2(ξ − a)y(ξ) dξdξ′

= τ 3a2(a+ τ)−
a+τ∫
a

6a2(ξ
′ − a)2y(ξ′) dξ′

+

a+τ∫
a

ξ′∫
a

6a2(ξ − a)y(ξ) dξdξ′ (2.22)

Integrating the third time we have,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

a2(ξ − a)3y(2)(ξ) dξdξ′dξ′′ =

a+τ∫
a

a2(ξ
′′ − a)3y(ξ′′) dξ′′ −

a+τ∫
a

ξ′′∫
a

6a2(ξ
′ − a)2y(ξ′) dξ′dξ′′

+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

6a2(ξ − a)y(ξ) dξdξ′dξ′′ (2.23)

Integrating the third term in (2.16) first time,

a+τ∫
a

a1(ξ − a)3y(1)(ξ) dξ = a1(ξ − a)3y(ξ) |a+τ
a −

a+τ∫
a

3a1(ξ − a)2y(ξ) dξ

= a1τ
3y(a+ τ)−

a+τ∫
a

3a1(ξ − a)2y(ξ) dξ

(2.24)
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Integrating (2.24) second time yields,

a+τ∫
a

ξ′∫
a

a1(ξ − a)3y(1)(ξ) dξdξ′ =

a+τ∫
a

a1(ξ
′ − a)3y(ξ′) dξ′ −

a+τ∫
a

ξ′∫
a

3a1(ξ − a)2y(ξ) dξdξ′

(2.25)

Integrating (2.25) the last time,

a+τ∫
a

ξ′′∫
a

ξ′∫
a

a1(ξ − a)3y(1)(ξ) dξdξ′dξ′′ =

a+τ∫
a

ξ′′∫
a

a1(ξ
′ − a)3y(ξ′) dξ′

−
a+τ∫
a

ξ′′∫
a

ξ′∫
a

3a1(ξ − a)2y(ξ) dξdξ′dξ′′

(2.26)

Finally, integrating the last term thrice, we get

a+τ∫
a

ξ′′∫
a

ξ′∫
a

a0(ξ − a)3y(ξ) dξdξ′dξ′′ (2.27)

Collecting the terms in (2.20) to (2.27) we have,

−τ 3y(a+ τ) =

a+τ∫
a

[
− 9(ξ′′ − a)2 + a2(ξ

′′ − a)3
]
y(ξ′′) dξ′′

+

a+τ∫
a

ξ′′∫
a

[
+ 18(ξ′ − a)− 6a2(ξ

′ − a)2 + a1(ξ
′ − a)3

]
y(ξ′) dξ′dξ′′

+

a+τ∫
a

ξ′′∫
a

ξ′∫
a

[
− 6 + 6a2(ξ − a)− 3a1(ξ − a)2 + a0(ξ − a)3

]
y(ξ) dξdξ′dξ′′

(2.28)

This can be further simplified by recalling Cauchy formula for repeated integration. Let f
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be a continuous function on the real line, then the nth repeated integral of f based at a.

f (−n)(x) =
∫ x

a

∫ σ1

a

· · ·
∫ σn−1

a

f(σn)dσn · · · dσ2dσ1 (2.29)

is given by single integration

f (−n)(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f(t)dt (2.30)

Now we apply the Cauchy formula for repeated integration stated above on (2.28) while
letting a+ τ = t, getting τ = t− a. Now we get,

−(t− a)3y(t) =

t∫
a

[
− 9(τ − a)2 + a2(τ − a)3

]
y(τ) dτ

+

t∫
a

(t− τ)

[
18(τ − a)− 6a2(τ − a)2 + a1(τ − a)3

]
y(τ) dτ

+
1

2

t∫
a

(t− τ)2
[
− 6 + 6a2(τ − a)− 3a1(τ − a)2 + a0(τ − a)3

]
y(τ) dτ

�
t∫

a

KF (t, τ)y(τ) dτ

(2.31)

with KF (t, τ) defined by,

KF (t, τ) �
[
− 9(τ − a)2 + a2(τ − a)3

]
+ (t− τ)

[
18(τ − a)− 6a2(τ − a)2 + a1(τ − a)3

]

+ (t− τ)2
[
− 6 + 6a2(τ − a)− 3a1(τ − a)2 + a0(τ − a)3

]
(2.32)

We now turn our attention to the equation (2.17). We start by integrating the first term
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in (2.17) first time,

b∫
b−σ

(b− ζ)3y(3)(ζ) dζ = (b− ζ)3y(2)(ζ) |bb−σ +

b∫
b−σ

3(b− ζ)2y(2)(ζ) dζ

= −σ3y(2)(b− σ) +

[
3(b− ζ)2y(1)(ζ) |bb−σ +

b∫
b−σ

6(b− ζ)y(1)(ζ), dζ

]

= −σ3y(2)(b− σ)− 3σ2y(1)(b− σ) + 6(b− ζ)y(1)(ζ) |bb−σ +

b∫
b−σ

6y(ζ) dζ

= −σ3y(2)(b− σ)− 3σ2y(1)(b− σ)− 6σy(b− σ) +

b∫
b−σ

6y(ζ) dζ

(2.33)

When integrating again the upper limit on the integral becomes a ‘dummy variable’ as
shown previously, i.e. we set ζ ′ = b− σ then,
σ3y(2)(b− σ) is integrated as (b− ζ ′)3y(2)(ζ ′)

3σ2y(1)(b− σ) is integrated as 3(b− ζ ′)2y(1)(ζ ′)

6σy(b− σ) is integrated as 6(b− ζ ′)y(ζ ′).
We also flip the limits of the integration from (ζ ′ −→ b) to −(b −→ ζ ′) and hence

a negative sign is introduced. And when we differentiate (b − ζ)n with respect to ζ, we
get −n(b − ζ)n−1, again a negative sign is introduced. We have to keep these two critical
concepts in mind when evaluating the second and third integrals.
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Integrating (2.33) again,

b∫
b−σ

ζ′∫
b

(b− ζ)3y(3)(ζ) dζdζ ′ =

b∫
b−σ

(b− ζ ′)3y(2)(ζ ′) dζ ′ +

b∫
b−σ

3(b− ζ ′)2y(1)(ζ ′) dζ ′

+

b∫
b−σ

6(b− ζ ′)y(ζ ′) dζ ′ −
b∫

b−σ

ζ′∫
b

6y(ζ) dζdζ ′

= (b− ζ ′)3y(1)(ζ ′) |bb−σ +

b∫
b−σ

3(b− ζ ′)2y(1)(ζ ′) dζ ′

+

[
3(b− ζ ′)2y(ζ ′) |bb−σ +

b∫
b−σ

6(b− ζ ′)y(ζ ′) dζ ′
]

+

b∫
b−σ

6(b− ζ ′)y(ζ ′) dζ ′ +

b−σ∫
b

ζ′∫
b

6y(ζ) dζdζ ′

= −σ3y(1)(b− σ) +

[
3(b− ζ ′)2y(ζ ′) |bb−σ +

b∫
b−σ

6(b− ζ ′)y(ζ ′) dζ ′
]

− 3σ2y(b− σ)−
b−σ∫
b

12(b− ζ ′)y(ζ ′) dζ ′ +

b−σ∫
b

ζ′∫
b

6y(ζ) dζdζ ′

= −σ3y(1)(b− σ) +

[
− 3σ2y(b− σ) +

b∫
b−σ

6(b− ζ ′)y(ζ ′) dζ ′
]

− 3σ2y(b− σ)−
b−σ∫
b

12(b− ζ ′)y(ζ ′) dζ ′ +

b−σ∫
b

ζ′∫
b

6y(ζ) dζdζ ′

= −σ3y(1)(b− σ)− 6σ2y(b− σ)−
b−σ∫
b

18(b− ζ ′)y(ζ ′) dζ ′

+

b−σ∫
b

ζ′∫
b

6y(ζ) dζdζ ′ (2.34)
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As explained earlier, the upper limit becomes a ‘dummy variable’ and now we set ζ ′′ = b−σ.
Now integrating (2.34) third time,

b∫
b−σ

ζ′′∫
b

ζ′∫
b

(b− ζ)3y(3)(ζ) dζdζ ′dζ ′′ =

b∫
b−σ

(b− ζ ′′)3y(1)(ζ ′′) dζ ′′ +

b∫
b−σ

6(b− ζ ′′)2y(ζ ′′) dζ ′′

−
b−σ∫
b

ζ′′∫
b

18(b− ζ ′)y(ζ ′) dζ ′dζ ′′ −
b−σ∫
b

ζ′′∫
b

ζ′∫
b

6y(ζ) dζdζ ′dζ ′′

=

[
(b− ζ ′′)3y(ζ ′′) |bb−σ +

b∫
b−σ

3(b− ζ ′′)2y(ζ ′′) dζ ′′
]

−
b−σ∫
b

6(b− ζ ′′)2y(ζ ′′) dζ ′′ −
b−σ∫
b

ζ′′∫
b

18(b− ζ ′)y(ζ ′) dζ ′dζ ′′

−
b−σ∫
b

ζ′′∫
b

ζ′∫
b

6y(ζ) dζdζ ′dζ ′′

= −σ3y(b− σ)−
b−σ∫
b

9(b− ζ ′′)2y(ζ ′′) dζ ′′

−
b−σ∫
b

ζ′′∫
b

18(b− ζ ′)y(ζ ′) dζ ′dζ ′′ −
b−σ∫
b

ζ′′∫
b

ζ′∫
b

6y(ζ) dζdζ ′dζ ′′

(2.35)
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Integrating the second term in (2.17) first time,

b∫
b−σ

a2(b− ζ)3y(2)(ζ) dζ = a2(b− ζ)3y(1)(ζ) |bb−σ +

b∫
b−σ

3a2(b− ζ)2y(1)(ζ) dζ

= −a2σ
3y(1)(b− σ) +

[
3a2(b− ζ)2y(ζ) |bb−σ +

b∫
b−σ

6a2(b− ζ)y(ζ) dζ

]

= −a2σ
3y(1)(b− σ)− 3a2σ

2y(b− σ)−
b−σ∫
b

6a2(b− ζ)y(ζ) dζ

(2.36)

Using ‘dummy variable’ again and integrating (2.36) again,

b∫
b−σ

ζ′∫
b

a2(b− ζ)3y(2)(ζ) dζdζ ′ =

b∫
b−σ

a2(b− ζ ′)3y(1)(ζ ′) dζ ′ +

b∫
b−σ

3a2(b− ζ ′)2y(ζ ′) dζ ′

−
b∫

b−σ

ζ′∫
b

6a2(b− σ)y(ζ) dζdζ ′

= a2(b− ζ ′)3y(ζ ′) |bb−σ +

b∫
b−σ

3a2(b− ζ ′)2y(ζ ′) dζ ′

−
b−σ∫
b

3a2(b− ζ ′)2y(ζ ′)−
b∫

b−σ

ζ′∫
b

6a2(b− ζ)y(ζ) dζdζ ′

= −σ3a2(b− σ)−
b−σ∫
b

6a2(b− ζ ′)2y(ζ ′) dζ ′

−
b∫

b−σ

ζ′∫
b

6a2(b− ζ)y(ζ) dζdζ ′

(2.37)
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Integrating third time we have,

b∫
b−σ

ζ′′∫
b

ζ′∫
b

a2(b− ζ − a)3y(2)(ζ) dζdζ ′dζ ′′ =

b∫
b−σ

a2(b− ζ ′′)3y(ζ ′′) dζ ′′

+

b∫
b−σ

ζ′′∫
b

6a2(b− ζ ′)2y(ζ ′) dζ ′dζ ′′

+

b∫
b−σ

ζ′′∫
b

ζ′∫
b

6a2(b− ζ)y(ζ) dζdζ ′dζ ′′

= −
b−σ∫
b

a2(b− ζ ′′)3y(ζ ′′) dζ ′′

−
b−σ∫
b

ζ′′∫
b

6a2(b− ζ ′)2y(ζ ′) dζ ′dζ ′′

−
b−σ∫
b

ζ′′∫
b

ζ′∫
b

6a2(b− ζ)y(ζ) dζdζ ′dζ ′′

(2.38)

Integrating the third term in (2.17) first time,

b∫
b−σ

a1(b− ζ)3y(1)(ζ) dζ = a1(b− ζ)3y(ζ) |bb−σ +

b∫
b−σ

3a1(b− ζ)2y(2)(ζ) dζ

= −a1σ
3y(b− σ)−

b−σ∫
b

3a1(b− ζ)2y(2)(ζ) dζ

(2.39)
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Integrating (2.39) second time,

b∫
b−σ

ζ′∫
b

a1(b− ζ)3y(1)(ζ) dζdζ ′ =

b∫
b−σ

a1(b− ζ)3y(ζ ′) dζ ′ −
b∫

b−σ

ζ′∫
b

3a1(b− ζ)2y(ζ) dζdζ ′

= −
b−σ∫
b

a1(b− ζ)3y(ζ ′) dζ ′ +

b−σ∫
b

ζ′∫
b

3a1(b− ζ)2y(ζ) dζdζ ′

(2.40)

Integrating (2.40) the final time,

b∫
b−σ

ζ′′∫
b

ζ′∫
b

a1(b− ζ)3y(1)(ζ) dζdζ ′dζ ′′ =

b∫
b−σ

ζ′′∫
b

a1(b− ζ ′)3y(ζ ′) dζ ′

+

b∫
b−σ

ζ′′∫
b

ζ′∫
b

3a1(b− ζ)2y(ζ) dζdζ ′dζ ′′

= −
b−σ∫
b

ζ′′∫
b

a1(b− ζ ′)3y(ζ ′) dζ ′

−
b−σ∫
b

ζ′′∫
b

ζ′∫
b

3a1(b− ζ)2y(ζ) dζdζ ′dζ ′′

(2.41)

Integrating the last term in (2.17) thrice we have,

b∫
b−σ

ζ′′∫
b

ζ′∫
b

a0(b− ζ)3y(ζ) dζdζ ′dζ ′′ = −
b−σ∫
b

ζ′′∫
b

ζ′∫
b

a0(b− ζ)3y(ζ) dζdζ ′dζ ′′ (2.42)
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Collecting the thrice integrated terms from (2.34) to (2.42):

σ3y(b− σ) =

b−σ∫
b

[
− 9(b− ζ ′′)2 − a2(b− ζ ′′)3

]
y(ζ ′′) dζ ′′

+

b−σ∫
b

ζ′′∫
b

[
− 18(b− ζ ′)− 6a2(b− ζ ′)2 − a1(b− ζ ′)3

]
y(ζ ′) dζ ′dζ ′′

+

b−σ∫
b

ζ′′∫
b

ζ′∫
b

[
− 6− 6a2(b− ζ)− 3a1(b− ζ)2 − a0(b− ζ)3

]
y(ζ) dζdζ ′dζ ′′

(2.43)

Now, applying the Cauchy formula for repeated integration stated earlier and simultane-
ously, while letting b− σ = t and σ = b− t. We get:

(b− t)3y(t) =

t∫
b

[
− 9(b− σ)2 − a2(b− σ)3

]
y(σ) dσ

+

t∫
b

(t− σ)

[
− 18(b− σ)− 6a2(b− σ)2 − a1(b− σ)3

]
y(σ) dσ

+
1

2

t∫
b

(t− σ)2
[
− 6− 6a2(b− σ)− 3a1(b− σ)2 − a0(b− σ)3

]
y(σ) dσ

(2.44)
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Rewriting (2.44) after flipping the limits on the integrals,

(b− t)3y(t) = −
b∫

t

[
− 9(b− τ)2 − a2(b− τ)3

]
y(τ) dτ

−
b∫

t

(t− τ)

[
− 18(b− τ)− 6a2(b− τ)2 − a1(b− τ)3

]
y(τ) dτ

− 1

2

b∫
t

(t− τ)2
[
− 6− 6a2(b− τ)− 3a1(b− τ)2 − a0(b− τ)3

]
y(τ) dτ

�
t∫

b

KB(t, τ)y(τ)dτ (2.45)

with KB(t, τ) defined by,

KB(t, τ) �
[
9(b− τ)2 + a2(b− τ)3

]

+ (t− τ)

[
18(b− τ) + 6a2(b− τ)2 + a1(b− τ)3

]

+
1

2
(t− τ)2

[
6 + 6a2(b− τ) + 3a1(b− τ)2 + a0(b− τ)3

] (2.46)

Redefining the partial kernels as: ’forward ’ & ’backward ’

KF (t, τ) � μ(τ − a)

[
9(τ − a)2 − a2(τ − a)3

]

+ (t− τ)

[
− 18(τ − a) + 6a2(τ − a)2 − a1(τ − a)3

]

+
1

2
(t− τ)2

[
6− 6a2(τ − a) + 3a1(τ − a)2 − a0(τ − a)3

] (2.47)



2 A Double Sided Kernel approach to Model and State Estimation 25

KB(t, τ) � μ(b− τ)

[
9(b− τ)2 + a2(b− τ)3

]

+ (t− τ)

[
18(b− τ) + 6a2(b− τ)2 + a1(b− τ)3

]

+
1

2

t∫
a

(t− τ)2
[
6 + 6a2(b− τ) + 3a1(b− τ)2 + a0(b− τ)3

] (2.48)

With,

μ(τ − a) =

{
1 : τ ≥ a

0 : τ < a

and

μ(b− τ) =

{
1 : τ ≤ b

0 : τ > b

Now (2.47) and (2.48) can be compactly written as :

(t− a)3y(t) =

t∫
a

KF (t, τ)y(τ) dτ (2.49)

(b− t)3y(t) =

b∫
t

KB(t, τ)y(τ) dτ (2.50)

Now we define:

KDS(t, τ) �
{

KF (t, τ) : τ ≤ t

KB(t, τ) : τ > t
(2.51)

Combining (2.50) and (2.51) side by side while dividing both sides by [(t− a)3 + (b− t)3]

which is always greater than zero. This results in the following expression:

y(t) =
1

[(t− a)3 + (b− t)3]

b∫
a

KDS(t, τ)y(τ) dτ (2.52)

The recursive expressions of the derivatives can be derived by proceeding similarly as
we used to derive the KDS. To obtain the expression for y(1)(t) the equations (2.16) and
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(2.17) are integrated twice. We now get,

(t− a)3y(1)(t) = 6(t− a)2y(t)− a2(t− a)3y(t)

+

∫ a

t

[
− 18(τ − a) + 6a2(τ − a)2 − a1(τ − a)3

]
y(τ)dτ

+

∫ a

t

(t− τ)

[
6− 6a2(τ − a)2 − 3a1(τ − a)2 − a0(τ − a)3

]
y(τ)dτ

(2.53)

and

(b− t)3y(1)(t) = −6(b− t)2y(t)− a2(b− t)3y(t)

+

∫ b

t

[
18(b− τ) + 6a2(b− τ)2 − a1(b− τ)3

]
y(τ)dτ

+

∫ b

t

(t− τ)

[
6− 6a2(b− τ)2 − 3a1(b− τ)2 − a0(b− τ)3

]
y(τ)dτ

(2.54)

The final expression for y(1)(t) is obtained by adding the results of (2.53) and (2.54) and
dividing by [(t− a)3 + (b− t)3].

To get the expression for y(2)(t), (2.16) and (2.17) are integrated once. We get the
following expression:

(t− a)3y(2)(t) = 3(t− a)2y(1)(t)− a2(t− a)3y(1)(t)

− 6(t− a)y(t) + 3a2(t− a)2y(t)− a1(t− a)3y(t)

+

∫ a

t

[
6− 6a2(τ − a) + 3a1(τ − a)2 − a0(τ − a)3

]
y(τ)dτ

(2.55)

and

(b− t)3y(2)(t) = −3(b− t)2y(1)(t)− a2(b− t)3y(1)(t)

− 6(b− t)y(t)− 3a2(b− t)2y(t)− a1(b− t)3y(t)

+

∫ b

t

[
6 + 6a2(b− τ) + 3a1(b− τ)2 + a0(b− τ)3

]
y(τ)dτ

(2.56)

the expression for y(2)(t) is obtained by adding (2.55) and (2.56) while dividing by a factor
of [(t− a)3 + (b− t)3].
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2.4 Model and State Estimation [3]

2.4.1 Joint Estimation Problem

Given a data cloud of time-tagged measurements, a linear model can be sought to best
explain the local output behavior of a presumed dynamical system. For simplicity of
exposition, consider single output, zero-input, LTI systems as candidates of such dynamical
system models. The order of the model being fitted is not of critical importance as it can
also be determined during the estimation process; see [25].

The goal of simultaneous model parameter and state estimation is then stated as follows:

Linear Simultaneous State and Parameter Estimation
Assuming an LTI SISO system model :ẋ = Ax; y = Cx of order n, identify the values of
the parameters ai, i = 0, .., n− 1, in its characteristic equation

y(n)(t) + an−1y(n−1)(t) + · · ·+ a1y
(1)(t) + a0y(t) = 0 (2.57)

from a noisy system output measurement ỹ(t) over a finite, but arbitrary, interval of time
t ∈ [0, T ], T > 0. No assumption is made about the noise characteristic. Also, provide the
estimates of the noise-free output y(t) and all output derivatives : y(i)(t), i = 1, · · · , n− 1,
for t ∈ [0, T ].

What makes this estimation problem different is the lack of any assumptions about the
initial conditions of the system as well as its non-asymptotic nature - the observation in-
terval is not only finite but, in principle, can be arbitrarily short. The left hand side of
(2.57) is clearly a differential invariant for the system as it results from the validity of the
Cayley-Hamilton’s theorem, a quantity that remains invariant under the action of the flow
of the system.

2.4.2 A Kernel Model Representation

The following kernel representation of the system model of Section 2.4.1 was introduced
and derived in [12]:

Theorem 1. There exist Hilbert-Schmidt kernels KDS, Ki
DS, i = 1, · · ·n− 1, such that the
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output function y in (2.57) is reproduced on the interval [a, b] in accordance with the action
of the evaluation functional

y(t) =

∫ b

a

KDS(t, τ)y(τ) dτ ; ∀t ∈ [a, b] (2.58)

and the derivatives of the output y(1), · · · y(n−1) can be computed recursively by way of output
integration, so that for i = 1, · · ·n− 1 and for all t ∈ [a, b]:

y(i)(t) =
i−1∑
k=0

bk(t)y
(k)(t) +

∫ b

a

Ki
DS(t, τ)y(τ) dτ (2.59)

where y(0) ≡ y and bk(·) are rational functions of t. Hilbert-Schmidt kernels are square
integrable functions on L2[a, b]× L2[a, b].

The kernel in (2.58) induces a reproducing kernel Hilbert space (RKHS) uniquely cor-
responding to the symmetric, positive-type kernel function
K(t1, t2) � 〈KDS(t1, ·)|KDS(t2, ·)〉2
for all t1, t2 ∈ [a, b] where 〈·|·〉2 denotes the scalar product in L2[a, b]. The RKHS, here
denoted by HK , is then simply defined as the image of the space L2[a, b] under the integral
transform defined by the double-sided kernel KDS of (2.58) with a K-weighted norm as
defined in [26]. The reproducing equality (2.58) has then yet another useful interpretation
- that of a linear subspace of HK :

SI � {y ∈ HK | y satisfies (2.58) } (2.60)

More importantly, by construction of the kernel, the behavioral system model of Theo-
rem 1 is equivalent to the differential model as described by the invariance equation (2.57).
This fact is stated as follows:

Corollary 1. An output function y : [a, b] → R satisfies the invariance equation (2.57) on
the interval [a, b] if an only if it is reproduced by the evaluation functional in (2.58).

The proof of this fact is redundant as the multiple iterated integration in the deriva-
tion of the reproducing kernel can be reversed by multiple differentiation to retrieve the
original invariance equation; see [2]. Clearly, at this point, the initial conditions of the
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original system play no role as the behavior of the system is fully characterized in terms
of its “trajectory behavior” over [a, b]. The filtering problem for the system output and its
derivatives of any order then amounts to a "output trajectory reconstruction" that best
fits the noisy measurement while preserving the system invariant.

2.4.3 Parameter Estimation and Practical Identifiability

Model parameter estimation, as described briefly below; see also [12], is obviously a com-
ponent of the joint estimation approach as proposed here.

The proof of Theorem 1 ; see [12], shows that the kernel KDS is in fact linear with
respect to the system parameters ai, i = 0, · · · , n− 1, i.e. one can write

y(t) =

∫ b

a

KDS(t, τ)y(τ) dτ =
n∑

i=1

ãigi(t, y) (2.61)

where gi(t, y)
def
=

∫ b

a

K
(i)
DS(t, τ)y(τ) dτ ; t ∈ [a, b] (2.62)

where the K
(i)
DS; i = 1, . . . , n are “component kernels" of KDS and ãi = ai−1 for notational

convenience.

Given distinct time instants t1, · · · , tm ∈ (a, b], m ≥ n, equation (2.61) is now re-written
point-wise in the form of a linear algebraic system of equations

q(y) = P (y)a ; mapping trajectories y : [0, t] → R (2.63)

(2.64)

q(y)
def
=

⎡
⎢⎢⎣
y(t1)

...
y(tm)

⎤
⎥⎥⎦ ; a

def
=

⎡
⎢⎢⎣
ã1
...
ãn

⎤
⎥⎥⎦ ;

P (y)
def
=

⎡
⎢⎢⎣
g1(t1, y) · · · gn(t1, y)

. . .

g1(tm, y) · · · gn(tm, y)

⎤
⎥⎥⎦ (2.65)

As no assumptions are made about the noise which may determine the existence of solutions
to the linear system (2.63), we give the following practical definition of linear identifiability.
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2.4.4 Practical Linear Identifiability

Definition 1. The homogeneous system (2.57) is practically linearly identifiable on [a, b]

with respect to a particular realization of the output measurement, y(t), t ∈ [a, b], if and
only if there exist distinct time instants t1, · · · , tm ∈ (a, b] such that rankP (y) = n. By
analogy with the nomenclature used in [27] output trajectories which render rankP (y) = n

will be called persistent.
In practical applications the m distinct time instants needed to generate (2.65) can be

placed equidistantly over the interval (a, b] or else generated randomly. Since no assump-
tions are made about system perturbations or measurement noise, the estimation equation
(2.65) is best solved in terms of a pseudo-inverse P † of P :

a = P †(y)q(y) (2.66)

Finally, note that the output reproducing property, as written in (2.61), implies that the
model representing subspace (2.60) has explicit linear expression in terms of the system
model parameters. This fact is important in further development of the joint estimation
approach.

2.5 Example

The third order LTI system as mentioned below is considered:

ẋ =

⎡
⎢⎣
0 1 0

0 0 1

1 −10 0

⎤
⎥⎦ x ; y = x1 ; x(0) = [1, 1, 0] (2.67)

with its corresponding characteristic equation

y(3)(t) + a2y
(2)(t) + a1y

(1) + a0y(t) = 0 (2.68)

All the parameters a0, a1, a2 were assumed to be unknown, but the “nominal" reference
values used for comparison are however given in Table 1 as True values.

The system output was first quantized using Lloyd’s algorithm. Gaussian noise of 30dB
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SNR was added to the quantized signal and the so deformed “raw measurement data” was
then used to compute initial estimates of the parameters a0, a1, a2 as in section 2.4.3 . The
initial estimation result is shown in Table 2.1. The quantized, noisy “raw measurement” is
shown in Figure 2.1. Note that quantization is not necessary for parameter estimation.

0 1 2 3 4 5 6 7 8 9 10

Time(seconds)

0.5

1

1.5

2

2.5

3

Noisy y

True y

Figure 2.1 Quantized, noisy measurement vs. the “true” output signal

Comparing the estimated parameter values to their true counterparts could be very
misleading (the absolute differences seem small as seen in Table 2.1).

When these estimates were subsequently used in the following kernels corresponding to
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a0 a1 a2
True values -1 10 0
Initial estimates -1.0601 10.5965 0.0541

Table 2.1 Initial estimates for parameter values (prior to denoisification and
model shaping).

the example system (2.67) via Theorem 1 (as derived before):

y(t) =

b∫
a

KDS(t, τ)y(τ) dτ (2.69)

with

KDS(t, τ) �
1

[(t− a)3 + (b− t)3]

{
KF (t, τ) : τ ≤ t

KB(t, τ) : τ > t
(2.70)

KF (t, τ) �
[
9(τ − a)2 − a2(τ − a)3

]
(2.71)

+ (t− τ)

[
− 18(τ − a) + 6a2(τ − a)2 − a1(τ − a)3

]

+
(t− τ)2

2

[
6− 6a2(τ − a) + 3a1(τ − a)2 − a0(τ − a)3

]

KB(t, τ) �
[
9(b− τ)2 + a2(b− τ)3

]
(2.72)

+ (t− τ)

[
18(b− τ) + 6a2(b− τ)2 + a1(b− τ)3

]

+
(t− τ)2

2

[
6 + 6a2(b− τ) + 3a1(b− τ)2 + a0(b− τ)3

]

they failed to reproduce the system output correctly as proved by Figure 2.2. The need
for further refinement of the initial estimates was then transparent.
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0 1 2 3 4 5 6 7 8 9 10

Time(seconds)

0.5

1

1.5

2

2.5

3

3.5

True y

Estimated y

Figure 2.2 Comparison of the true and estimated outputs prior to denoisi-
fication and model shaping.
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Chapter 3

Simultaneous Denoisification and Model
Shaping

3.1 Formulation [3]

With essentially no information about the system model nor measurement noise the task
of output differentiation requires a special treatment.

While the first step of the approach will use raw data to deliver the initial estimate
of the system parameters as outlined in 2.4.3, the latter estimate must be further refined
during an exhaustive search for an optimal orientation of the model representing subspace
H of (2.60) to best fit the data cloud. Such a refinement process will be referred to as
“simultaneous denoisification and model shaping”. To pose this problem in a mathematical
form, it is convenient to re-write (2.57) in state space form:

ẋ = AKx ; y = Cx; x ∈ R
n (3.1)

⎡
⎢⎢⎣
x1

...
xn

⎤
⎥⎥⎦ def

=

⎡
⎢⎢⎣

y
...

y(n−1)

⎤
⎥⎥⎦ ; AK

def
=

⎡
⎢⎢⎢⎢⎣

0 1 0 · · ·
0 0 1 · · ·
0 0 0

. . .

−a0 −a1 · · · −an−1

⎤
⎥⎥⎥⎥⎦

K
def
=

[
k1 k2 · · · kn

]
def
=

[
−a0 −a1 · · · −an−1

]
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C
def
=

[
1 0 · · · 0

]
;

with an unknown initial condition x(0) = x0. The simultaneous denoisification and param-
eter estimation problem is now cast as an optimization problem

min{Q(K, x0) | ẋ = AKx ; x(0) = x0; y = Cx} (3.2)

Q(K, x0)
def
=

1

2

∫ T

0

(y − ỹ)2dt (3.3)

where the cost Q represents the model residual error. As the initial condition is unknown the
problem is equivalently re-formulated in terms of fundamental solutions of (3.1) as follows.
Let, xe

i , i = 1, · · · , n denote the solutions of the system equation ẋ = AKx corresponding to
the initial conditions x(0) = ei, respectively, where ei are unit canonical basis vectors in R

n.
All solutions of ẋ = AKx then form an n-dimensional subspace Sx

def
= span{xe

i ; i = 1, · · · , n}
i.e. any solution of the system equation (3.1) is a linear combination

x =
n∑

i=1

cix
e
i ; c

def
=

[
c1, · · · , cn

]
(3.4)

and (3.2) - (3.3) takes a form of a finite dimensional optimization problem with equality
constraints which is, however, free of any initial conditions

min{J(K, c) | ẋe
i = AKx

e
i ; i = 1, · · · , n} (3.5)

J(K, c)
def
=

1

2

∫ T

0

(C
n∑

i=1

cix
e
i − ỹ)2dt (3.6)

J : Rn × R
n → R

It is now easy to see that for any fixed value of the vector K the minimum of J is attained
for a vector ĉ ∈ R

n which renders the orthogonal projection

ŷ =
n∑

i=1

ĉiy
e
i ; yei

def
= Cxe

i (3.7)
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of the output measurement function ỹ(·) onto the n-dimensional subspace

Sy
def
= span{yei ; i = 1, · · · , n} ⊂ L2[0, T ]; (3.8)

so that

(ŷ − ỹ) ⊥ Sy (3.9)

i.e. (
n∑

i=1

ĉiy
e
i − ỹ) ⊥ yek for all k = 1, · · · , n (3.10)

=⇒ ĉ = G(yei )
−1h(ỹ, yei ); (3.11)

G(yei )
def
=

⎡
⎢⎢⎢⎢⎣
(ye1|ye1) · · · (yen|ye1)
(ye1|ye2) · · · · · ·
· · · . . . · · ·

(ye1|yen) · · · (yen|yen)

⎤
⎥⎥⎥⎥⎦ ;h(ỹ, yei )

def
=

⎡
⎢⎢⎣
(ỹ|ye1)

...
(ỹ|yen)

⎤
⎥⎥⎦

where the Gram matrix G(yei ) is invertible as the fundamental set spanning Sy is linearly
independent.

Remark 1. Note that if the system parameters in vector K are known then equations
(3.7) and (3.11) deliver a denoisified measurement corresponding to ỹ in the form of y(t) =
ŷ(t), t ∈ [0, T ].

Importantly, the optimization problem (3.5) - (3.6) has infinitely many solutions if the
noisy measurement is identically zero (i.e. when ỹ ≡ 0). This is because then the orthogonal
projection (3.7) is also identically zero, i.e. ŷ ≡ 0. Consequently, ŷ(i) ≡ 0 for i = 1, · · · , n−
1, so the system homogeneous equation (2.57) is satisfied for any set of parameters ai; i =

0, · · · , n− 1. The system (2.57) is then non-identifiable. As such a situation is unlikely to
occur the minima of (3.5) - (3.6) can be sought by iterative search direction optimization
methods. Computation of such search directions requires evaluation of the gradient of the
cost index J at any given parameter pair (K, c). This is a complex task as the computation of
∂J
∂K

(K̄, c̄) at any given point (K̄, c̄) requires calculation of the sensitivities of the fundamental
solutions of ẋe

i = AK̄x
e
i with respect to variation of the parameters in K̄. The solutions xe

i

depend on the parameters K non-linearly and a direct forward calculation of sensitivities
(via the solution of the respective variational equations; [28] ) is not helpful especially that
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the sensitivities enter not only the cost index J but also the constraints. The adjoint method
is used instead as explained next.

3.1.1 Necessary Conditions of Optimality and Gradient Computation

The adjoint gradient method for dynamical systems was provided rigorously in [29] and less
formally in [30]. It will be explained here with strict reference to our particular problem.

The gradient of the cost index in the optimization problem (3.5) - (3.6) is efficiently com-
puted in a dual approach by incorporating a Lagrangian function:

L(K, c)
def
=

1

2

∫ T

0

(C
n∑

i=1

cix
e
i − ỹ)2dt

+

∫ T

0

n∑
i=1

ciλ
T
i (ẋ

e
i − AKx

e
i )dt (3.12)

where the Lagrangian multipliers are linearly independent vector functions λT : [0, T ] → R
n.

The Lagrange multipliers constrain the dynamical system to variations around the path
of ẋe

i = AKx
e
i . Clearly, once the constraint equation ẋe

i = AKx
e
i is satisfied the Lagrange

multiplier term will disappear leaving

∂L(K, c)

∂kj
=

∂J(K, c)

∂kj
; j = 1, · · · , n (3.13)

Therefore, in the dual representation of the constrained problem the contribution of the
derivative dxe

i

dK
to the gradient dL

dK
can be “annihilated" by choosing λT (·) in a specific way (in

effect circumventing the need for explicit forward calculation of dxe
i

dK
). Such adjoint procedure

is explained as follows. Calculating the derivatives with respect to the components of K

yields

∂L(K, c)

∂kj
=

∫ T

0

(C
n∑

l=1

clx
e
l − ỹ)TC

n∑
i=1

ci
dxe

i

dkj
dt

+

∫ T

0

n∑
i=1

ciλ
T
i (

dẋe
i

dkj
− AK

dxe
i

dkj
− dAK

dkj
xe
i )dt (3.14)
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for all kj, j = 1, · · · , n, where explicit evaluation gives the sensitivity of the matrix AK

with respect to parameter kj

dAK

dkj
= IK ; IK

def
=

⎡
⎢⎢⎣
0 · · · 0

0
. . . 0

0 1 0

⎤
⎥⎥⎦ (3.15)

where IK ∈ R
n × R

n is a matrix with a single non-zero element in the last row and k-th
column : I

(k,n)
K = 1. Using integration by parts allows to write

∫ T

0

λT
i

dẋe
i

dkj
dt = λT

i

dxe
i

dkj

∣∣∣T
0
−
∫ T

0

dλT
i

dt

dxe
i

dkj
dt (3.16)

Since the Lagrangian multiplier functions have no effect on the value of the Lagrangian
when the constraint is satisfied; see (3.13), and the initial conditions needed to compute
the fundamental solutions xe

i ; i = 1, · · ·n do not depend on the parameters kj then we can
set, without the loss of generality

λT
i (T ) = 0;

dxe
i

dkj
(0) = 0; i, j = 1, · · · , n (3.17)

for an immediate simplification

∫ T

0

λT
i

dẋe
i

dkj
dt = −

∫ T

0

dλT
i

dt

dxe
i

dkj
dt (3.18)

Substituting (3.15) and (3.18) into (3.14) yields

∂L(K, c)

∂kj
=

∫ T

0

n∑
i=1

ci

[
(C

n∑
l=1

clx
e
l − ỹ)TC

dxe
i

dkj
(3.19)

− λ̇T
i

dxe
i

dkj
− λT

i AK
dxe

i

dkj

]
dt−

∫ T

0

n∑
i=1

ciλ
T
i Ijx

e
idt (3.20)
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It is now time to select a “trajectory" for the Lagrange multipliers that best serves the goal
of removing excessive computational burden by imposing that

λ̇T
i = −λT

i AK + (C
n∑

l=1

clx
e
l − ỹ)TC (3.21)

λT
i (T ) = 0; i = 1, · · · , n

The remaining term of (3.20) then constitutes the essential part of the gradient with respect
to the parameters in K:

∂L(K, c)

∂kj
= −

∫ T

0

n∑
i=1

ciλ
T
i Ijx

e
idt; j = 1, · · · , n (3.22)

It is also easy to see that the gradient of J with respect to the parameters ci that replace
the influence of the initial conditions is given by

∂J(K, c)

∂ci
=

∫ T

0

(C
n∑

l=1

clx
e
l − ỹ)TCxe

idt; i = 1, · · · , n (3.23)

It is now possible to state:

Theorem 2. The necessary conditions for optimality in the simultaneous state and param-
eter estimation optimization problem (3.5) - (3.6) are given by

∂J(K, c)

∂kj
= −

∫ T

0

n∑
i=1

ciλ
T
i Ijx

e
idt = 0; (3.24)

∂J(K, c)

∂ci
=

∫ T

0

(C
n∑

l=1

clx
e
l − ỹ)TCxe

idt = 0; (3.25)

λ̇T
i = −λT

i AK + (C
n∑

l=1

clx
e
l − ỹ)TC; (3.26)

ẋe
i = AKx

e
i ; (3.27)

λT
i (T ) = 0; xe

i (0) = ei; (3.28)

for all i = 1, · · · , n; j = 1, · · · , n

The above conditions can readily be used in a gradient-search direction based iterative
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optimization procedure. For clarity, the gradient of the cost function with respect to
parameters K at a nominal value K̄ (say, a current value in iteration k), ∂J(K̄,c)

∂K
, is calculated

via the following procedure:

Gradient Calculation

(1) For the current value of the parameter K̄ solve the system equations (3.27) obtaining
the corresponding set {xe

i ; i = 1, · · · , n} of fundamental solutions;

(2) Calculate the optimal coefficients ĉi; i = 1, · · · , n from equation (3.25) or, equivalently
use formula (3.11);

(3) solve the adjoint equations (3.26) backwards in time as indicated by (3.28);

(4) Calculate the components of the gradient from the formula

∂J(K̄, ĉ)

∂kj
= −

∫ T

0

n∑
i=1

ĉiλ
T
i Ijx

e
idt; j = 1, · · · , n

A steepest descent Armijo type of optimization algorithm can be applied directly emloying
a gradient calculation outlined above, but will converge too slowly. We therefore suggest
employing a quasi-Newton algorithm known under the name of Broyden’s method that
converges much faster (super-linearly). The Broyden algorithm is a version of a secant
algorithm and is given here for completeness of exposition.

3.1.2 Broyden’s Method for Simultaneous State and Parameter Estimation

Broyden’s method is a type of secant algorithm which can be applied to our problem by
solving the gradient equation ∂J(K,ĉ)

∂K
= 0 ; see [31] for an improved version of the algorithm.

We adopt the following notation for the algorithm to be stated succinctly.

F (K)
def
=

[
∂J(K,ĉ)

∂k1
· · · ∂J(K,ĉ)

∂kn

]T
(3.29)

F : Rn → R
n; F : K �→ F (K)

Let K0 denote an initial parameter for the solution of the vector equation F (K) = 0 and
let B0 denote an initial finite difference approximation of the Jacobian of F at K0, also
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denote

sj
def
= Kj+1 −Kj

dj
def
= F (Kj+1)− F (Kj); j = 1, 2, · (3.30)

Broyden’s Algorithm

For j = 0, 1, 2, · · · until convergence criterion is met

Solve Bjsj = −F (Kj) for sj

Set Kj+1 = Kj + sj

Set dj = F (Kj+1)− F (Kj)

Update Bj+1 = Bj + (dj − Bjsj)
sTj
sTj sj

It should be noted that the Broyden iteration need to be performed only with respect to
the parameter Kj because the update/calculation of the corresponding optimal parameter
ĉj is done as part of the Gradient Calculation (i.e. the calculation of F (Kj)). No step size
needs to be calculated, but invertibility of the Jacobian approximation Bj is implied. If
Bj is singular the method should be restarted. If the initial guess for the parameter value
K0 is not distant from the minimum the Jacobian will be non-singular by local convexity
of the cost index.

As already pointed out, convergence of any iterative optimization algorithm benefits
from an good initial choice of the optimization parameter. As already suggested, initial
values for the system parameters K can be obtained from raw data by application of the
parameter estimation procedure of 2.4.3.

The latter can be used in terms of a starting parameter in Broyden’s algorithm. Once
satisfactory precision is achieved during the iterative search for the minimum in (3.5) -
(3.6) the algorithm is exited. The latest values of the iterated parameters ĉ and K̂ are then
used in the next stage of the estimation process in which flatness-based estimates of the
system states requires prior estimation of all the output derivatives. Their calculation is
described next.
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3.1.3 Estimation of Output Derivatives and System States

Estimation of the output y(t) is immediately obtained in terms of the optimized values ĉ,
K̂, as found at the exit from the optimization algorithm of the previous section ,i.e.

ŷ(t) =
n∑

i−1
ĉix̂

e
i (t); t ∈ [0, T ] (3.31)

where x̂e
i ; i = 1, ·, n are is the fundamental set of solutions corresponding to the optimal

parameter K̂. The estimate of the state of the system is then calculated in terms of all the
derivatives of the output y(1), · · · y(n−1) explicitly using the integral transform formula as
delivered by Theorem 1 of 2.4.2; see (2.59) .

The advantage of using integral transforms to compute derivatives in place of con-
ventional numerical differentiation methods should be clear as such an approach provides
additional robustness with respect to computational noise.
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Chapter 4

Results

Simultaneous denoisification and model shaping was subsequently applied to the example
in 2.5 in an attempt to eliminate the drawbacks as depicted before. Two cases are presented
below: in both the cases the output of the dynamical system in 2.5 is distorted by White
Gaussian noise of known SNR.

Case 1: Additive White Gaussian Noise with 30dB SNR

Figure 4.1 shows the refinements of the output trajectory estimates in three iterations of
the model shaping process as it converges through the use of a simple gradient descent
method.

Figure 4.2 shows the estimated output trajectories obtained in five iterations of the model
shaping process as it was forced to start from arbitrarily chosen parameter values a0 =

1, a1 = 1, a2 = 1 while omitting the initial parameter estimation step of section 2.4.3. The
parameters are clearly far away from both the true and the initial estimates of Table 2.1.
Still, the model shaping process converges very well to the true output trajectory of the
system. This test condition is important to assess the robustness of the method developed
in the previous chapter.

Figures 4.3, 4.4 and 4.5 show the y, y(1), y(2) estimates after convergence was achieved in
denoisification and model shaping. These estimates are the same in both cases: with and
without prior parameter estimation from raw data.

Figure 4.6 shows that the system parameters estimated after initial parameter estimation, as
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Estimated y

Figure 4.1 Model shaping process gradually converging as preceded by ini-
tial parameter estimation. Convergence is shown in terms of output trajecto-
ries.

mentioned in 2.4.3, undergo variation when subjected to denoisification and model shaping.
A geometrical interpretation of this process is particularly appealing as it can be visualized
as re-orientation of subspace containing estimated y by way of minimizing the residual of
the modelling error (i.e. the cost functional in this case). The final estimated parameters
after application of this method can be seen in Table 4.1 and the quantitative as well as
qualitative difference between the values from that of Table 2.1 is thus ascertained.

It is not hard to notice that convergence of state trajectories is more accurate with the
application of Simultaneous denoisification and model shaping. Comparisons can be made
with relevant graphs in [1].
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Figure 4.2 Model shaping process gradually converging while skipping initial
parameter estimation. Convergence is shown in terms of output trajectories.

Case 2: Additive White Gaussian Noise with 10dB SNR

An additional case of 10dB SNR is considered in this work to highlight the high noise
attenuation property of this algorithm, see Figure 4.7. Only the convergence of y estimate
to the actual output of the dynamical system is presented here.
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a0 a1 a2
True values -1 10 0
Final estimates -1.0009 9.9978 -0.0106

Table 4.1 Final estimates for parameter values (after denoisification and
model shaping).

4.0.1 Kolmogorov Smirnov test

The Kolmogorov Smirnov test can be used to test whether two samples come from the
same distributions. The KS statistic in this case is given by :

Dn,m = sup
x

|Fn(x)−Gm(x)|

where Fn(x) and Gn(x) are empirical distribution functions of the two samples of size n

and m respectively.
The null hypothesis, that data in the two samples comes from the same distribution, is
rejected at significance level α if

Dn,m > c(α)

√
n+m

nm

A built-in function for K-S test offered by a standard numerical computing software was
used to perform the two-sample test employing the empirical samples from ỹ− y and ỹ− ŷ

, where ỹ is the noise signal, y is the true system trajectory, ŷ is the estimated trajectory.
The null hypothesis was not rejected at a 5% significance level, indicating a good fit of

the residual, confirming successful model shaping.
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Figure 4.3 Estimated system output y after convergence is achieved.(30dB
SNR)
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Figure 4.4 Estimated first derivative of the output y(1) after convergence is
achieved.
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Figure 4.5 Estimated second derivative of the output y(2) after convergence
is achieved.
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Figure 4.6 Variation of the system parameters
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Figure 4.7 Estimated system output y after convergence is achieved.(10dB
SNR)
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Chapter 5

Reproducing Kernel Hilbert Spaces

5.1 Introduction

Given a set X, if we equip the set of all functions from X to F,F(X,F) with the usual
operations of addition, (f + g)(x) = f(x) + g(x), and scalar multiplication, (λΔf)(x) =

λΔ(f(x)), then F(X,F) is a vector space over F [32].

Definition 1. A Hilbert Space is an inner product space that is complete and separable
with respect to the norm defined by the inner product.

Examples of Hilbert spaces include:

1. The vector space R
n with 〈a, b〉 = a′b, the vector dot product of a and b.

2. The space l2 of square summable sequences, with inner product 〈x, y〉 = ∑∞
i=1 xiyi

3. The space L2 of square integrable functions (i.e.,
∫
s
f(x)2dx < ∞), with inner product

〈f, g〉 = ∫
s
f(x)g(x)dx < ∞) [33]

Definition 2. Given a set X, we will say that H is a reproducing kernel Hilbert space(RKHS)
on X over F, provided that:

1. H is a vector subspace of F(X,F)

2. H is endowed with an inner product, 〈., .〉 making it into a Hilbert space,

3. or every y ∈ X, the linear evaluation functional, Ey : H �→ F, defined by Ey(f) =

f(y), is bounded [32].
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For instance, the L2 space is a Hilbert space, but not an RKHS because the delta function
which has the reproducing property:

f(x) =

∫
s

δ(x− u)f(u)du (5.1)

does not satisfy the square integrable condition, that is,
∫
s

δ(u)2du �< ∞ (5.2)

thus the delta function is not in L2 [33].

5.2 Reproducing Kernels for Modelling of LTI Systems [4]

The class of systems considered here comprises linear time invariant systems described in
terms of their characteristic equations :

Dmy(t) = am−1Dm−1y(t) + am−2Dm−2y(t) + ...+ a1D
1y(t) + a0D

0y(t), (5.3)

with the usual definition of the differential operators :

D0y(t) = y(t); D1y(t) =
d

dt
y(t); Dky(t) =

dk

dtk
y(t); k = 1, ...,m (5.4)

that are satisfied by the system "output functions" y on some interval of time t ∈ [a, b] ⊂ R,
where ai ∈ R, i = 1, ..,m− 1, as real coefficients.

As mentioned in 2.3.2 and with a change of notation from KDS to KDS, it will be assumed
that a double-sided kernel KDS : (t, ξ) �→ KDS(t, ξ), (t, ξ) ∈ [a, b]×[a, b], can be constructed
such that every solution of (5.3) on an interval [a, b] satisfies

y(p) =

∫ b

a

KDS(p, ξ)y(ξ)dξ ; p ∈ [a, b] (5.5)

Since the output variable y is assumed to be measured, and hence is likely to be corrupted
by noise, it is convenient to regard it as a member of the Hilbert space L2[a, b]. It fol-
lows from the construction the double-sided kernel that KDS is also an L2 function, so
KDS ∈ L2[a, b]×L2[a, b]. For brevity it will be convenient to adopt the following shorthand
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notation:

KDS
p (ξ) := KDS(p, ξ); KDS

p ∈ L2[a, b]; i.e. KDS(p, ·) ∈ L2[a, b]; for all p ∈ [a, b] (5.6)

allowing to re-write (5.5) in terms of the scalar product on L2[a, b]:

y(p) = 〈y,KDS
p 〉2, p ∈ [a, b] (5.7)

i.e. y = 〈y,KDS〉2 ; where KDS : p �→ KDS
p ∈ L2[a, b] ; p ∈ [a, b] (5.8)

where 〈·, ·〉2 is the scalar product in L2[a, b]. It should be noted that with these definitions,
the functions KDS

p , although considered as members of L2[a, b] are point wise defined. The
reproducing property (5.7) holds for any functions y satisfying (5.3) .
Since the reproducing property is linear in the reproduced signal y, the condition (5.44)
already holds on a linear vector subspace of L2[a, b] comprising all solutions of the charac-
teristic equation on the interval [a, b] (regardless of their initial conditions).

5.2.1 Classical Construction of RKHS Spaces

In classical theory of reproducing kernel Hilbert spaces there are two approaches of con-
structing such spaces: (a) "from the inside of an RKHS", and (b) "from the outside of
an RKHS". In the "inside" approach one starts with a given Hilbert space in which there
already are defined: (i) a scalar product, (ii) a symmetric positive definite "kernel" that is
"generating it". In the inside approach no reference is made to any outer space in which
the given RKHS may be embedded as a subspace.

On the other hand, the "outside" approach starts from a given linear operator in a larger
Hilbert space and proceeds to define the RKHS as a range space of this operator - a closed
subspace of the larger space. The outside approach seems particularly useful when projec-
tions of functions from the larger space onto the RKHS as its subspace are required. Such
is the situation when one wishes to "filter" a noisy signal y. Below, we shall review the
"outside" approach to see how it can serve in achieving our objectives.

To characterize the HK that satisfies all the "canons" of the classical theory of the RKHS
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spaces while adopting the "outside approach", one starts with a given linear operator, act-
ing in the space of noisy signals (say in L2[a, b] ). At such a starting point, the construction
of this operator is nebulous if one already has a class of functions that one requires to lie in
the constructed RKHS. Ignoring this difficulty for now, let us review how any given linear
and bounded operator in L2[a, b] can generate an RKHS subspace. The operator, referred
here by the symbol L, is defined point-wise, in terms of a "kernel" function h:

h : [a, b] → L2[a, b] ; with h(p, ·) := hp ∈ L2[a, b] for any p ∈ [a, b] (5.9)

where L is explicitly given by

L : L2[a, b] → Ran(L) ⊂ L2[a, b]; (5.10)

(Lf)(p) := 〈f ,hp〉2 :=
∫ b

a

h(p, ξ)f(ξ)dξ ; f ∈ L2[a, b], p ∈ [a, b] (5.11)

the value of L is thus a function f := Lf (5.12)

where Ran(L) denotes the range of the operator L while its domain is clearly D(L) :=

L2[a, b]. The norm on the domain vector space is considered to be induced by the scalar
product 〈·, ·〉2, so for all f ∈ D(L), ‖ f ‖22= 〈f , f〉2. However, let the norm on the range
space R(L) be introduced differently by the expression

‖ f ‖R:= inf{‖ f ‖2 s.t. f = Lf } (5.13)

The details of this setting will be clear later.
Induced by the norm (5.13) is the scalar product on Ran(L):

〈f1, f2〉R := 〈f1, f2〉2, for any f1, f2 ∈ Ran(L) (5.14)

where fi, i = 1, 2 are such that (5.15)

‖ fi ‖R:= inf{‖ fi ‖2 s.t. fi = Lfi }, i = 1, 2 (5.16)
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Further, define a function called the kernel for the RKHS associated with the reproducing
property (5.7) by the product

K(p, q) := 〈hq,hp〉2 =
∫ b

a

h(p, ξ)h(q, ξ)dξ for all p, q ∈ [a, b] (5.17)

we shall also write

Kq :=

∫ b

a

h(·, ξ)h(q, ξ)dξ := K(·, q) ∈ L2[a, b] as a function of p (5.18)

and Kq(p) := K(p, q) ∈ R (5.19)

The properties of the kernel K and its link with the operator in (5.11) are discussed in the
following.

Proposition 1.
(1) The kernel as a function of two variables is symmetric; i.e. for all p, q ∈ [a, b] we
have K(p, q) = K(q, p) ;
(2) The function K is positive definite in the sense of Moore; i.e. for any finite sets of
numbers cp, cq ∈ R

∑
p,q

cpcqK(p, q) ≥ 0 for all p, q ∈ [a, b] (5.20)

(3) The functions Kq, q ∈ [a, b], are all members of the range of the operator L; i.e.
Kq ∈ Ran(L). As Ran(L) is a linear vector space, it follows that

span{Kq, q ∈ [a, b]} ⊂ Ran(L) (5.21)

where span denotes the usual linear span of vectors in a vector space.

Proof:

Property (1) follows from symmetric property of the scalar product in (5.17).
Property (2) is shown as follows. For any finite sets of numbers (of equal cardinality)
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cp, cq ∈ R

∑
p,q

cpcqK(p, q) =
∑
p,q

cpcq〈hq,hp〉2 =
∑
p,q

〈cqhq, cphp〉2

〈
∑
q

cqhq,
∑
p

cphp〉2 =‖
∑
p

cphp ‖22 ≥ 0 for all p, q ∈ [a, b] (5.22)

Property (3) also follows from (5.17) because, according to this definition the function Kq

is the result of hp acting on hq i.e.

Lhq =

∫ b

a

h(·, ξ)h(q, ξ)dξ = Kq , for any q ∈ [a, b] , so Kq ∈ Ran(L) (5.23)

This completes the proof.

�

Proposition 2.
(1) The domain of the operator L can be represented as a direct sum of subspaces :

D(L) = L2[a, b] = Ker(L)⊕Ker(L)⊥

where Ker(L) denotes the null space of L and Ker(L)⊥ is its orthogonal
complement in L2[a, b].

(2) The null space of L and its orthogonal complement are given by

Ker(L) = span{hp, p ∈ [a, b]}⊥ and (5.24)

Ker(L)⊥ = [span{hp, p ∈ [a, b]}⊥]⊥ = span{hp, p ∈ [a, b]} (5.25)

where S denotes the closure of a set S in the topology of the space containing it.
(3) The range space of L is given by

Ran(L) = span{Kq, q ∈ [a, b]} (5.26)

(4) The restricted mapping LK : Ker(L)⊥ → Ran(L) is an isometry in that

‖ L(PK⊥f) ‖R=‖ PK⊥f ‖2 ; for all f ∈ L2[a, b] (5.27)

where PK⊥ denotes the projection operator on Ker(L)⊥ and ‖ · ‖R denotes the



5 Reproducing Kernel Hilbert Spaces 58

norm introduced in Ran(L). In terms of scalar products the latter means

〈L(PK⊥f), L(PK⊥g)〉R = 〈PK⊥f , PK⊥g〉2 ; for all f ,g ∈ L2[a, b] (5.28)

Proof: [4]
(1) The operator L is linear, hence its null space is closed so the result is implied by the
Orthogonal Projection Theorem.
(2) The null space of L, Ker(L), is characterized as follows:

if f ∈ Ker(L) then Lf = 0 i.e. (Lf)(p) = 〈f ,hp〉2 = 0 for all p ∈ [a, b] (5.29)

As L is linear the above implies that

if f ∈ Ker(L) then f ⊥ span{hp, p ∈ [a, b]} i.e. f ∈ span{hp, p ∈ [a, b]}⊥ (5.30)

Conversely,

if f ∈ span{hp, p ∈ [a, b]}⊥ = {hp, p ∈ [a, b]}⊥ (5.31)

then (Lf)(p) = 〈f ,hp〉2 = 0 for all p ∈ [a, b] and so f ∈ Ker(L) (5.32)

which proves (5.24) and (5.25) follows as double orthogonal complement induces closure
of the subspace involved.
(3) By definition the operator L is linear, mapping Lhq = Kq, for all q ∈ [a, b], thus the
image under L satisfies

L(span{hq, q ∈ [a, b]}) = span{Kq, q ∈ [a, b]} ; i.e. span{Kq, q ∈ [a, b]} ⊂ Ran(L)

(5.33)

The operator L is obviously bounded in L2[a, b] because, by Cauchy-Schwartz inequality

|Lf(p)| = |〈f ,hp〉2| ≤‖ hp ‖2 · ‖ f ‖2 ; for all p ∈ [a, b], f ∈ L2[a, b] (5.34)
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By continuity of L, we get

L(span{hq, q ∈ [a, b]}) = span{Kq, q ∈ [a, b]} ; i.e. span{Kq, q ∈ [a, b]} = Ran(L)

(5.35)

because any f /∈ span{hq, q ∈ [a, b]} satisfies Lf = 0 and hence contributes trivially to the
range Ran(L).
(4) The restricted mapping LK : Ker(L)⊥ → Ran(L) is linear and bounded because the
unrestricted L is linear and bounded. It is one-to-one because Ker(LK) = {0} by virtue
of part (1). The mapping LK is also onto by virtue of part (3), i.e. (5.35). Hence LK is a
bijective and linear mapping between vector spaces. To show that it is an isometry we
need to demonstrate that it preserves scalar products. To this end, let

f , g ∈ span{hq, q ∈ [a, b]} ; i.e. f =
∑
q

αqhq ; g =
∑
r

βrhr (5.36)

Then

〈L(PK⊥f), L(PK⊥g)〉R = 〈Lf , Lg〉R = 〈
∑
q

αq〈hq,hp〉2,
∑
r

βr〈hr,hp〉2〉R (5.37)

= 〈
∑
q

αqKq,
∑
r

βrKr〉R = 〈
∑
q

αqLhq,
∑
r

βrLhr〉R (5.38)

However, by definition of the scalar product in Ran(L)

〈Lhq, Lhr〉R = 〈hq,hr〉2 for all q, r (5.39)

Hence

〈L(PK⊥f), L(PK⊥g)〉R = 〈
∑
q

αqLhq,
∑
r

βrLhr〉R (5.40)

=
∑
q,r

αqβr〈hq,hr〉2 = 〈
∑
q

αqhq,
∑
r

βrhr〉2 = 〈f ,g〉2 = 〈PK⊥f , PK⊥g〉2 (5.41)

because for f ,g satisfying (5.36), f = PK⊥f and g = PK⊥g; see (5.24). Also, note that in
the above, we used the definition of the scalar product on Ran(L) as given by (5.16) and
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the fact that any hq is already a function of minimal norm satisfying Lhq = Kq because
hq ∈ Ker(L)⊥ and

inf{‖hq‖2 s.t. Lhq = Kq} (5.42)

= inf{‖hq + g‖2 s.t. Lhq = Kq and g ∈ Ker(L)} (5.43)

The invariance of the scalar product extends to the closed subspaces Ker(L)⊥ and
Ran(L) by continuity of LK . The isometric equality (5.27) follows readily by setting
g = f in the above. The proof is complete.

�

Let us now investigate if f is reproductive on Ran(L). The following result explains how
f ∈ Ran(L) is reproduced inside Ran(L) in terms of the scalar product 〈·, ·〉R on Ran(L) .

Theorem 1
Any f ∈ Ran(L) is reproduced inside Ran(L) by the action of K. More precisely, the
reproducing property is stated in terms of the scalar product 〈·, ·〉R on Ran(L) as

〈f,Kq〉R = f(q) ; for all q ∈ [a, b] (5.44)

Equivalently, for any f ∈ Ker(L)⊥ such that Lf = f

〈f ,hq〉2 = (Lf)(q) = f(q) ; for all q ∈ [a, b] (5.45)

Proof:
If f ∈ Ran(L) then there exists an f ∈ Ker(L)⊥ such that Lf = f . Note that
f ∈ Ker(L)⊥ is already a function of minimal norm satisfying Lf = f because

inf{‖f‖2 s.t. Lf = f} = inf{‖f + g‖2 s.t. Lf = f and g ∈ Ker(L)} (5.46)

Since for any q ∈ [a, b] , hq ∈ Ker(L)⊥ and Lhq = Kq in a one-to-one way (the restricted
operator LK is bijective) then hq is also a function of minimal norm. From the isometry
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property (5.41) it follows that the scalar product of f and Kq satisfies:

〈f,Kq〉R = 〈Lf , Lhq〉R = 〈LPK⊥f , LPK⊥hq〉R = 〈PK⊥f , PK⊥hq〉2 (5.47)

= 〈f ,hq〉2 = (Lf)(q) = f(q) ; for all q ∈ [a, b] (5.48)

as claimed. Finally, it is worth noting that (5.45) holds ( by the very definition of L ) on
the entire space L2[a, b].

�

Definition (RKHS generated by L)
The reproducing kernel Hilbert space induced by the reproductive mapping L is defined as

HK := Ran(L) ; with scalar product 〈·, ·〉R (5.49)

This definition is correct as Ran(L) is a closed subspace of a Hilbert space L2[a, b] and
hence is also complete. The space HK is separable for the same reason.

5.2.2 From Theory to Practice

It is now the aim to investigate how the above theoretical construction can be put to
work with reference to our objectives.

To this end, assume that hp := KDS
p , for all p ∈ [a, b] , so that

L : L2[a, b] → Ran(L) ⊂ L2[a, b]; (5.50)

(Lf)(p) := 〈f , KDS
p 〉2 ; f ∈ L2[a, b], p ∈ [a, b] (5.51)

the value of L is thus a function f := Lf (5.52)

Explicitly

(Lf)(p) :=

∫ b

a

KDS
p (ξ)f(ξ)dξ =

∫ b

a

KDS(p, ξ)f(ξ)dξ ; f ∈ L2[a, b], p ∈ [a, b] (5.53)

By definition, our RKHS space is then Ran(L) = HK and is endowed with a scalar
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product defined by (5.16), re-stated here

〈f1, f2〉R := 〈f1, f2〉2, for any f1, f2 ∈ Ran(L) (5.54)

where fi, i = 1, 2 are such that (5.55)

‖ fi ‖R:= inf{‖ fi ‖2 s.t. fi = Lfi }, i = 1, 2 (5.56)

where the RKHS kernel is computed as

K(p, q) := 〈KDS
q , KDS

p 〉2 =
∫ b

a

KDS(p, ξ)KDS(q, ξ)dξ ; p, q ∈ [a, b] (5.57)

i.e. Kq := K(·, q) =
∫ b

a

KDS(·, ξ)KDS(q, ξ)dξ ; q ∈ [a, b] (5.58)

Continuing to draw on the results stated by Proposition 2, we have

Ker(L) = span{KDS
p , p ∈ [a, b]}⊥ and (5.59)

Ker(L)⊥ = [span{KDS
p , p ∈ [a, b]}⊥]⊥ = span{KDS

p , p ∈ [a, b]} (5.60)

Ran(L) = span{Kq, q ∈ [a, b]} = span{
∫ b

a

KDS(·, ξ)KDS(q, ξ)dξ, q ∈ [a, b]} (5.61)

It is now apparent that characterizing the range of an RKHS is one of the biggest
challenges of the RKHS theory. The set of spanning functions in (5.61) is amazingly rich.
It is, however, quite clear that any solution of the characteristic equation (5.3) belongs to
that range, despite that an explicit expression of it in terms of the spanning vectors in
(5.61) is not readily available. To see that y ∈ Ran(L) simply recall that y satisfies (by
our construction)

y(p) =

∫ b

a

KDS(p, ξ)y(ξ)dξ = 〈y,KDS
p 〉2 = (Ly)(p) ; p ∈ [a, b] (5.62)

which directly yields

y = Ly ∈ Ran(L) (5.63)



5 Reproducing Kernel Hilbert Spaces 63

Re-interpreting the isometry property (5.41) is necessary to understand in detail how Kq

reproduce functions f ∈ Ran(L) and thus also y. To this end, consider arbitrary
f, g ∈ Ran(L). There exist vectors f ,g ∈ Ker(L)⊥ of minimal norm that generate them
which can be expressed as a point-wise limits of functions in the span (5.60)

fi =
∑
q

αi
qK

DS
q ; gi =

∑
r

βi
rK

DS
r ; i ∈ I (5.64)

with Lfi = fi ; Lgi = gi ; i ∈ I (5.65)

and with fi(p) → f(p) ; gi(p) → g(p) ; for all p ∈ [a, b] as i → ∞ (5.66)

where there exist αq , βr s.t. f =
∑
q

αqK
DS
q ; g =

∑
r

βrK
DS
r (5.67)

Note that since fi and gi are already taken to be of minimal norm and hence satisy
fi,gi ∈ Ker(L)⊥, this also means that PK⊥fi = fi and PK⊥gi = gi, for all i ∈ I. Then, by
virtue of the definition of the scalar product in Ran(L); see (5.56) ,

〈fi, gi〉R = 〈fi,gi〉2 = 〈PK⊥fi, PK⊥gi〉2 =
∫ b

a

∑
q

αi
qK

DS(q, ξ) ·
∑
r

βi
rK

DS(r, ξ) dξ (5.68)

=
∑
q,r

αi
qβ

i
r

∫ b

a

KDS(q, ξ)KDS(r, ξ) dξ =
∑
q,r

αi
qβ

i
rK(q, r) (5.69)

By continuity we obtain in the limit as i → ∞

〈f, g〉R = 〈f ,g〉2 = 〈PK⊥f , PK⊥g〉2 (5.70)

=
∑
q,r

αqβr

∫ b

a

KDS(q, ξ)KDS(r, ξ) dξ =
∑
q,r

αqβrK(q, r) (5.71)

The above also finally delivers a concrete formula for computation of scalar products in
our RKHS. Clearly, to compute 〈f, g〉R one has to know their expansions in (5.67) which
are not usually available. The scalar product itself is given in terms of the RKHS kernel
function; a fact that is touted by the standard theory of RKHS.
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To understand the reproducing property on our HK , assume that f ∈ Ran(L), i.e.

∫ b

a

KDS(q, ξ)f(ξ) dξ = f(q) for all q ∈ [a, b] (5.72)

where f has the minimum norm expansion (5.67). Remembering that the reproducing
property is originally defined from "within" Ran(L) and via "scaling " by the RKHS
kernel (see (5.69)), one writes

〈f,Kq〉R = 〈Lf , Lhq〉R = 〈LPK⊥f , LPK⊥hq〉R = 〈PK⊥f , PK⊥hq〉2 (5.73)

= 〈f ,hq〉2 =
∫ b

a

KDS(q, ξ)f(ξ) dξ = f(q) ; for all q ∈ [a, b] (5.74)

Slight confusion arises when the function f is actually a solution of our characteristic
equation, i.e. f = y. In this case the reproducing property should really be written as

∫ b

a

KDS(q, ξ)y(ξ) dξ = y(q) ; for all q ∈ [a, b] (5.75)

where the boldface y signifies the "expansion" of y in terms of the KDS functions, but
does not differ from it, otherwise. It should also be clear how the functions Kr, for
r ∈ [a, b], reproduce themselves within Ran(L):

〈Kr, Kq〉R = 〈Lhr, Lhq〉R = 〈LPK⊥hr, LPK⊥hq〉R = 〈PK⊥hr, PK⊥hq〉2 (5.76)

= 〈hr,hq〉2 =
∫ b

a

KDS(q, ξ)KDS(r, ξ) dξ = K(q, r) = K(r, q) = Kr(q) ; for all q ∈ [a, b]

(5.77)

while it is seen that symmetricity of the kernel function is essential for this to occur.

Finally, we need to determine what happens if one starts from an arbitrary g ∈ L2[a, b]

and wishes to "isolate" its best approximation within HK . Denoting by PHg ∈ HK the
orthogonal projection of g onto HK , (the de-noisified signal closest to the observed g),
and using (5.60), the latter must satisfy the orthogonality condition

(g − PHg) ⊥ HK i.e. ⇐⇒ (g − PHg) ⊥ Kr for all r ∈ [a, b] (5.78)
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where orthogonality is understood in the sense of L2[a, b] as HK was constructed here as a
subspace of the latter. If PHg =

∑
q ηqKq is the expansion of PHg in HK then it follows

that the above orthogonality condition can be rewritten as

∫ b

a

K(r, ξ)g(ξ)dξ −
∫ b

a

∑
q

ηqK(q, ξ)K(r, ξ)dξ = 0 for all r ∈ [a, b] (5.79)

so that
∫ b

a

K(r, ξ)g(ξ)dξ =

∫ b

a

∑
q

ηqK(q, ξ)K(r, ξ)dξ (5.80)

=
∑
q

ηq〈Kr, Kq〉R =
∑
q

ηq〈hq,hr〉2 =
∑
q

ηqKq(r) = PHg(r) ; for all r ∈ [a, b] (5.81)

by virtue of the self-reproducing property (5.76) - (5.77). The above directly states that
the desired projection onto HK is given point-wise by

PHg(r) =
∫ b

a

K(r, ξ)g(ξ)dξ ; for all r ∈ [a, b] (5.82)

To re-state this expression in more detail,

PHg(r) =
∫ b

a

K(r, ξ)g(ξ)dξ =

∫ b

a

〈hr,hξ〉2 g(ξ)dξ =

∫ b

a

∫ b

a

h(r, ζ)h(ξ, ζ)dζ g(ξ)dξ

(5.83)

=

∫ b

a

h(r, ζ)

∫ b

a

h(ξ, ζ)g(ξ)dξ dζ for all r ∈ [a, b] (5.84)

5.2.3 Projection by Tikhonov Regularization

Calculating projections at every point in the interval [a, b] is not practical, and it is in fact
not necessary if the characteristic equation is known as the exact model that produces the
measured data. The process of function reconstruction from noisy data is known as
Tikhonov regularization. In the case at hand the regularization problem is formulated as
follows.

Define a finite set of discrete points pi, i = 1, ..., n, pi ∈ [a, b], calculating corresponding
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values yi, i = 1, ..., n, along a "measured trajectory" f(ξ), ξ ∈ [a, b], by evaluating:

yi :=

∫ b

a

KDS(pi; ξ)f(ξ)dξ , i = 1, ..., n (5.85)

Consider an optimization problem of finding a function f ∈ HK that best approximates
the noisy point-wise data given in (5.85) :

inf

{
1

2

n∑
i=1

(yi − f(pi))
2 +

λ

2
‖ f ‖2R ; w.r.t. f ∈ HK

}
(5.86)

where λ ∈ R, λ ≥ 0 is a regularization parameter to be fixed a priori and HK is an RKHS
containing all solutions of our characteristic equation.

First, since the RKHS HK is closed, and the cost function is convex, the minimum exists
in (5.86) so we denote it by f̂ ∈ HK . Next, Representer Theorem states that the optimal
solution of (5.86) can be sought in the form

f̂(·) =
n∑

j=1

cjK(·, pj) =
n∑

j=1

cj

∫ b

a

KDS(·, ξ)KDS(pj, ξ)dξ (5.87)

f̂(pi) =
n∑

j=1

cjK(pi, pj) , i = 1, ..., n (5.88)

for some coefficients cj, j = 1, ..., n. The square of the norm in HK is then re-written as

‖ f ‖2R= 〈f, f〉R = 〈
n∑

i=1

ciKpi ,
n∑

j=1

cjKpj〉R (5.89)

=
n∑

i=1

n∑
j=1

cicj〈KpiKpj〉R =
n∑

i=1

n∑
j=1

cicjK(pi, pj) := cTKc (5.90)

where we define for brevity:

Kpi := K(·, pi) , cT := [c1, ..., cn]
T ∈ R

n ; K := [K(pi, pj)]i,j=1,...,n ∈ R
n × R

n (5.91)

and also yT := [y1, ..., yn]
T ∈ R

n (5.92)
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Substituting (5.87) and (5.90) into (5.86) yields

min
{
1

2
‖ y −Kc ‖22 +

λ

2
cTKc ; w.r.t. c ∈ R

n

}
(5.93)

The unique stationary point for (5.93) is found from the equation

∂

∂c

{
1

2
‖ y −Kc ‖22 +

λ

2
cTKc

}
= 0 =⇒

−K(y −Kc) + λKc = 0 ⇐⇒ (K+ λI)c = y ⇐⇒ c = (K+ λI)−1y (5.94)

Note that the matrix in (5.94) is invertible for λ > 0 and it can be found by solving a set
of linear equations using e.g. Cholesky factorization. If ĉ denotes the stationary point in
(5.94) then the optimal f̂ ∈ HK is given by

f̂(q) =
n∑

j=1

ĉjK(q, pj) = KT
q c , for all q ∈ [a, b] (5.95)

with Kq := [K(q, pj)]j=1,...,n (5.96)

The solution of the regularization problem f̂(q), q ∈ [a, b], can next be used as "data
curve" to calculate the corresponding initial conditions of our characteristic equation

y(a),
d

dt
y(a) and

d2

dt2
y(a) while using the kernel KDS. Finally, the so retrieved initial

conditions can be employed to explicitly integrate the characteristic equation to deliver an
exact trajectory y(q), q ∈ [a, b] that satisfies this equation. The latter is in fact a
de-noisified reconstruction of the system trajectory that fits it exactly and hence satisfies
the reproducing property employing KDS.
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Chapter 6

Conclusion and Future Work

Model estimation, adaptive filtering, and joint parameter and state estimation are topics
of paramount importance to applications in almost all disciplines of science. The
literature is overwhelmingly vast and diverse, ranging from general estimation
methods, [34], [35], [36], through recursive stochastic filtering approaches [14], [37] to
system modeling via data assimilation [38], [39]. Recursive stochastic approaches prevail
due to their elegance, simplicity, and capability of efficient noise attenuation. Most
filtering techniques, maybe with the exception of the Wiener filters [40], assume at least
partial information about the initial state of the system and measurement noise
characteristics. Convergence of such classical methods is conditioned by the validity of
the assumptions made.

New trends in system estimation and modelling are rapidly developing and include:
algebraic dead-beat observers based on the concept of differential flatness, algebraic
parameter estimation [27], [41], [6], [42], and invariant observers [43], [44].The algebraic
dead-beat methods are increasingly important as many applications, such as target
tracking, call for finite time reliable estimation.

This work addresses the problem of simultaneous state and parameter estimation in linear
systems from the measurement of its output over a finite interval of time, focusing on
algebraic dead-beat methods. Additionally, the output measurement is subject to noise of
an unknown characteristics. Chapter 2 studies the development of the double-sided kernel
needed for the integral transform which reconstructs the state. But the inaccuracy of this
reconstruction is shown at the conclusion of this chapter. Chapter 3 then proposes a new
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method,by adopting a variational approach, of refining the system parameters and
increasing the accuracy of estimation. Results of the application of this method can be
seen in Chapter 4. The fitness of the estimated curves to the true curve is unarguably
improved in all the three states : y,y(1) and y(2) as can be seen from the results and the
KS test.

As noise is habitually represented by stochastic processes that also posses kernel
representations, it is not hard to see the importance of the above approach. The two
kernel representations: that of the hypothetical model and that of the stochastic process
noise give rise to two objective functions: the value of the model residual error and the
distance measure between two statistical distributions, that of the presumed noise and
that of the observed residual. The need of a trade-off between model fitness to data and
fitness of residual to noise statistics is apparent. Such and other probabilistic approaches
to the problem will be explored elsewhere. Finally, the method is shown to be remarkably
accurate and raises hopes for application in nonlinear flatness-based non-asymptotic
estimation that relies on accurate computation of system output derivatives [3].

In Chapter 5, a kernel system model to be constructed is viewed as a linear finite
dimensional subspace of a reproducing Hilbert space. Since, the subspace is linearly
parametrized by the unknown system constants, their values determine the subspace
“orientation” with respect to the cloud of measurement points. A “good orientation” is
then aimed to be achieved by posing a problem stated in this chapter in the form of
Tikhonov Regularization, constructing the best estimate of true y from the available
noisy data. But the results of this will be discussed elsewhere.
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Appendix A

Calculus of Variations

A.1 Introduction [5]

In optimal control problems, the objective is to determine a function that minimizes a
specified functional -the performance measure. The analogous problem in calculus is to
determine a point that yields the minimum value of a function. This section introduces
the concept of Variational Calculus.

Functionals
A functional J is a rule of correspondence that assigns to each function x in a certain
class Ω a unique real number. Ω is called the domain of the functional, and the set of real
numbers associated with the functions in Ω is called the range of the functional.
For example,

J(x) =

∫ tf

t0

x(t)dt (A.1)

is a functional J , assigning to each function x, defined on [t0, tf ] a real number given by
the area under the x(t) curve.

Linear Functionals
J is a linear functional of x if and only if it satisfies the principle of homogeneity

J(αx) = αJ(x) (A.2)



A Calculus of Variations 72

for all x ∈ Ω and for all real numbers α such that αx ∈ Ω, and the principle of additivity

J(x1 + x2) = J(x1) + J(x2) (A.3)

for all x1,x2 and x1 + x2 in Ω.

Function Norms
The norm of a function is a rule of correspondence that assigns to each function x ∈ Ω,
defined for t ∈ [t0, tf ], a real number. The norm of x, denoted by ‖ x ‖ satisfies the
following properties:

1.

‖ x ‖≥ 0 and ‖ x ‖= 0 (A.4)

if and only if x(t) = 0 ∀t ∈ [t0, tf ]

2.

‖ αx ‖= |α|. ‖ x ‖ ∀α ∈ R (A.5)

3.

‖ x1 + x2 ‖≤‖ x1 ‖ + ‖ x2 ‖ (A.6)

Intuitively speaking, the norm of the difference of two functions should be zero if the
functions are identical, small if the functions are “close”, and large if the functions are “far
apart”.

Increment
If x and x+ δx are functions for which the functional J is defined, then the increment of
J , denoted by ΔJ , is

ΔJ(x, δx) � J(x+ δx)− J(x) (A.7)

δx is called the variation of the function x.
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The Variation of a Functional
The variation of a functional plays the same role in determining extreme values of
functionals as the differential does in finding maxima and minima of functions.
The increment of a functional can be written as

ΔJ(x, δx) = δJ(x, δx) + g(x, δx). ‖ δx ‖ (A.8)

where δJ is linear in δx. If

lim
‖δx‖→0

g(x, δx) = 0

then J is said to be differentiable on x and δJ is the variation of J evaluated for the
function x.

Maxima and Minima of Functionals
A functional J with a domain Ω has a relative extremum at x∗ if there is an ε > 0 such
that for all functions x in Ω that satisfy ‖ x− x∗ ‖< ε the increment of J has the same
sign. If

ΔJ = J(x)− J(x∗) ≥ 0 (A.9)

J(x∗) is a relative minimum;if

ΔJ = J(x)− J(x∗) ≤ 0 (A.10)

J(x∗) is a relative maximum.
If (A.9) is satisfied for arbitrarily large ε, then J(x∗) is a global minimum. Similarly, if
(A.10) is satisfied for arbitrarily large ε, then J(x∗) is a global maximum. x∗ is called an
extremal and J(x∗) is called an extremum.

The fundamental theorem of the Calculus of Variations
The fundamental theorem used in finding extreme values of functions is the necessary
condition that the differential vanish at an extreme point (except extrema at the
boundaries of closed regions). In variational problems, the analogous theorem is that the
variation must be zero on an extremal curve, provided that there are no bounds imposed
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on the curves.

Let x be a vector function of t in the class Ω, and J(x) be a differentiable functional of x.
Assume that the functions in Ω are not constrained by any boundaries. The fundamental
theorem of the calculus of variations is:
If x∗ is an extremal, the variation of J must vanish on x∗;that is

δJ(x∗, δx) = 0 (A.11)

for all admissible δx. By admissible δx we mean that x+ δx must be a member of the
class Ω; thus, if Ω is the class of continuous functions, x and δx are required to be
continuous.

Figure A.1 An extremal and two neighboring curves
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A.2 Variational Problems [5]

A Simple Variational Problem
Let x be a scalar function in the class of functions with continuous first derivatives. It is
desired to find the function x* for which the functional

J(x) =

∫ tf

t0

g(x(t), ẋ(t), t)dt (A.12)

has a relative extremum. It is assumed that the integrand g has continuous first and
second partial derivatives with respect to all of its arguments; t0 and tf , are fixed,and the
end points of the curve are specified as x0 and xf . Curves in the class Ω which also satisfy
the end conditions are called admissible. Several admissible curves are shown in A.2. We

Figure A.2 Admissible curves

wish to find the curves (if any exist) that extremize J(x). The search begins by finding
the curves that satisfy the fundamental theorem. Let x be any curve in Ω, and determine
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the variation δJ(x, δx) from the increment:

ΔJ(x, δx) = J(x+ δx)− J(x)

=

∫ tf

t0

g(x(t) + δx(t), ˙x(t) + δ ˙x(t), t)dt

−
∫ tf

t0

g(x(t), ˙x(t), t)dt

(A.13)

Combining the intergrals gives

ΔJ(x, δx) =

∫ tf

t0

[g(x(t) + δx(t), ẋ(t) + δẋ(t), t) − g(x(t), ẋ(t), t)]dt (A.14)

Expanding the integrand of A.14 in a Taylor series about the point x(t), ẋ(t) gives

ΔJ =

∫ tf

t0

[g(x(t), ẋ(t), t) +
∂g

∂x
(x(t), ẋ(t), t)δx(t)

+
∂g

∂ẋ
(x(t), ẋ(t), t)δẋ(t) − g(x(t), ẋ(t), t)]dt

(A.15)

where the expansion is limited to the first order.
δx(t) and δẋ(t) are related by

δx(t) =

∫ tf

t0

δẋ(t)dt+ δx(t0)

thus, selecting δx uniquely determines δẋ. Integrating by parts to express (A.15) entirely
in δx:

δJ(x, δx) = [
∂g

∂ẋ
(x(t), ẋ(t), t)]δx(t)

∣∣∣tf
t0
+

∫ tf

t0

[
∂g

∂x
(x(t), ẋ(t), t)δx(t)

− d

dt
[
∂g

∂ẋ
(x(t), ẋ(t), t)]δx(t)

]
dt

(A.16)

Since x(t0) and x(tf ) are specified, all admissible curves must pass through these points;
therefore, δx(t0) = 0, δx(tf ) = 0 and the terms outside the integral vanish. If we now
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consider an extremal curve, applying the fundamental theorem yields:

δJ(x∗, δx) = 0 =

∫ tf

t0

[
∂g

∂x
(x∗(t), ẋ∗(t), t)

− d

dt
[
∂g

∂ẋ
(x∗(t), ẋ∗(t), t)]

]
δx(t)dt

(A.17)

Using the fundamental lemma of calculus of variations a [45], the integrand must be zero
as well. Hence:

∂g

∂x
(x∗(t), ẋ∗(t), t)− d

dt
[
∂g

∂ẋ
(x∗(t), ẋ∗(t), t)] = 0 ∀t ∈ [t0, tf ] (A.18)

which is called the Euler equation. Thus, we see that to obtain the optimal trajectory x∗,
a nonlinear, two-point boundary-value problem (because we know x(t0) and x(tf )) must
be solved. The problem is difficult because of the combination of split boundary values
and the non-linearity of the differential equation.

Constrained Minimization of Functionals using Lagrange Multipliers
In control problems the state trajectory is determined by the control u; thus, we wish to
consider functionals of n+m functions, x and u, but only m of the functions are
independent-the controls. So, let us consider the presence of point constraints in
variational problems. Let us determine a set of necessary conditions, as before, for a
function w∗ to be an extremal for a functional of the form:

J(w) =

∫ tf

t0

g(w(t), ẇ(t), t)dt (A.19)

where w is a dimension n+m vector of functions that satisfies fi(w(t), t) = 0 i = 1, 2, ..n

which are called point constraints. The first step is to form the augmented functional by
adjoining the constraining relations to J , which yields:

Ja(w) =

∫ tf

t0

[
g(w(t), ẇ(t), t) + p(t)T [f(w(t), t)

]
dt (A.20)

where p is a vector of pi’s which are functions of time because the constraints need to be
satisfied ∀t ∈ [t0, tf ]. Similarly, f is a vector of fi’s. Notice that if the constraints are
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satisfied, Ja = J for any function p. The variation of the functional Ja,

δJa(w, δw,p, δp) =

∫ tf

t0

([
∂gT

∂w
(w(t), ẇ(t), t) + p(t)T [

∂f

∂w
(w(t), t)]

]
δw(t)

+
∂gT

∂ẇ
(w(t), ẇ(t), t)δẇ(t) + fT (w(t), t)δp

)
dt

(A.21)

where
∂f

∂w
denotes a n× (n+m) matrix:

⎡
⎢⎢⎢⎢⎣
∂f1
∂w1

· · · ∂f1
∂wn+m

...
...

...
∂fn
∂w1

· · · ∂fn
∂wn+m

⎤
⎥⎥⎥⎥⎦

Integrating by parts the term containing δẇ(t) and retaining only the terms inside the
integral, we obtain:

δJa(w, δw,p, δp) =

∫ tf

t0

([
∂gT

∂w
(w(t), ẇ(t), t) + p(t)T [

∂f

∂w
(w(t), t)]

− d

dt
[
∂gT

∂ẇ
(w(t), ẇ(t), t)]

]
δw(t) + fT (w(t), t)δp

)
dt

(A.22)

On an extremal, the variation must be zero; that is, δJa(w
∗, p) = 0. In addition, the point

constraints must also be satisfied by an extremal; therefore, f(w∗(t), t) = 0, ∀t ∈ [t0, tf ].
Also, the coefficient of δp in (A.22) is zero. Since the constraints are satisfied, we can
select the n Lagrange multipliers arbitrarily-let us choose the p’s so that the coefficients of
n of the components of δw(t) are zero throughout the interval [t0, tf ]. The remaining
(n+m)− n = m components of δw are then independent; hence, the coefficients of these
components of δw(t) must be zero. The final result is that, in addition to the
constraints, the equations:

∂g

∂w
(w∗(t), ẇ∗(t), t) + p∗(t)T [

∂f

∂w
(w∗(t), t)]− d

dt
[
∂g

∂ẇ
(w∗(t), ẇ∗(t), t) = 0 (A.23)

must be satisfied.
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