
0

c

c

VSH: A MULTIPARADIGM FRAMEWORK FOR

GRAPHICAL USER INTERFACES

by

Vipul Jain

School of Computer Science

McGill University

Montreal, Quebec

Canada

April1995

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF MASTER OF SCIENCE

Copyright@ 1995 by Vipul Jain

0

0

Abstract

In this thesis we present a multiparadigm framework vsh for graphical user-interface

design. It provides a powerful and flexible framework that allows programming in

C++ as well as in Tel. Tcl is a scripting language that may be embedded in Cor C++.

Tk is a windowing and graphics toolkit based on Xll, with an associated interpreter

called wish. The vsh library contains classes that provide convenient yet flexible

access to the functionality offered by the Tcl/Tk toolkit and its extensions. Included

in the framework is Wish++, an object oriented extension of the windowing shell

wish based on Tcl/Tk. The library is intended to support the needs of both novice

and experienced (window) programmers. It offers widget and graphics classes with an

easy to use interface, but also allows more experienced programmers to employ the Tcl

scripting language to define the behavior and functionality of widgets and structured

graphics objects. The design of wish++ has been inspired by the InterViews library.

However, both the use of event callbacks, and the functional interface of widget and

graphics classes is significantly simpler. An important advantage of basing vsh on

the Tk toolkit is that existing Tk application written for the Tk interpreter wish can

easily be (re)used in C++ context, virtually without any cost. On the other hand,

programs employing vsh may be used as an enhanced version of the wish interpreter,

allowing the functionality defined in the program to be used in a (wish + +) script.

0

c

c

Dans cette these nous presentons le cadre vsh a paradigmes multiples pour la con­

ception graphique d'interfaces utilisateur. vsh offre un cadre puissant et flexible

permettant la programmation en C++ ainsi qu'en Tel. Tcl est un langage de scripts

qui peut etre incorpore a C ou a C++. Tk est une collection d'outils pour fenetres

et graphiques basee sur Xll, accompagnee d'un interpreteur appele wish. La bi­

bliotheque vsh comprend des classes permettant un acces pratique et flexible aux

outils de Tcl/Tk et a ses extensions. Inclue dans ce cadre de developpement se

trouve wish+ +, une extension orientee-objet de la coquille de fenetre wish, elle­

meme basee sur Td/Tk. La bibliotheque a pour but de subvenir tant aux besoins

des programmeurs (de fenetres) experimentes qu' a ceux de programmeurs debutants.

Elle offre des classes de "widgets" et de graphiques avec une interface facile a utiliser,

mais permet egalement aux programmeurs plus experimentes d'employer le langage

de script Tcl afin de definir le comportement des "widgets" et des objects graphiques

structures. La conception de wish++ est inspiree de la bibliotheque "InterViews".

Cependant !'utilisation d'evenements "callbacks" et !'interface de "widgets" et de

classes graphiques est beaucoup plus facile. Le fait que vsh soit base sur la collec­

tion d'outils Tk presente l'avantage suivant: les applications existantes de Tk ecrites

pour l'interpreteur wish peuvent facilement etre (re)utilisees dans un contexte C++,

a un COllt pratiquement inexistant. De plus, les programmes utilisant vsh peuvent

etre utilises comme une version amelioree de l'interpreteur wish, permittant ainsi aux

raffinements definis dans ce programme d'etre utilises clans un script wish++.

0

Contents

1 Introduction 1

2 Background-Tcl /Tk 6

3 Program structure 10

c 3.1 Employing Tcl/Tk from within C++ 11

3.2 An overview of the vsh class library . 17

3.3 The kit class ... 20

3.4 The session class 22

4 Binding actions to events 24

4.1 Events .. 28

4.2 Handlers . 30

4.3 Actions 33

5 User Interface widgets 87

5.1 Frames and toplevels 39

0 5.2 Buttons . .. "' 40

11

c
5.2.1 Check buttons 42

5.2.2 Radiobuttons 42

5.2.3 Labels . . ~ . 42

5.2.4 Menu buttons 43

5.3 Menus 43

5.3.1 Pull-down menus 46

5.3.2 Pop-up menus . . 46

5.3.3 Cascaded menus 47

5.4 The seal e class .. 47

5.5 The message class 47

0 5.6 List boxes 47

5.7 Entry .. 49

5.8 Scrollbar . 51

6 Configure widgets 53

6.1 Compound widgets 55

6.1.1 Dialogues 57

7 Graphics and Hypertext 60

7.1 The item class . . . 60

7.2 The canvas widget 61

7.3 The Hypertext widget 63

0 8 Employing the scripting language 64

l1l

0

c

0

9 Model Interaction

9.1 The drawtool

9.2 toolbox .

9.3 Menus .

9.4 Defining actions - delegation verses inheritance .

9.5 Creating new widgets .

9.6 Dialogs

9.6.1 The file_handler widget

9.6.2 The file_chooser widget

9. 7 Graphics .

9.8 Hypertext

10 Related Work

10.1 ET++ ...

10.2 InterViews .

10.3 Andrew

10.4 SUIT ..

10.5 Theseus++

10.6 Comparison

11 Conclusion and Future Work

Bibliography

IV

68

69

70

72

73

76

79

80

81

83

84

87

87

90

92

94

95

97

100

104

0

List of Figures

1.1 The Wish++ API. 4

2.1 Tcl/Tk 6

2.2 A Wish example 7

2.3 The Tcl C API . 8

c 3.1 The function newton 11

3.2 The graphical interface for newton 12

3.3 The definition of the interface 12

3.4 Step 1: Preliminaries 13

3.5 Step 2: The generator class 15

3.6 Step 3: The application class 16

3.7 Step 4: The function main . . 16

3.8 An overview of the vsh library . 17

3.9 The wish++ interpreter .. 19

3.10 The kit class ... 21

3.11 The session class 23

4.1 Painting a canvas 25

V

c
4.2 A simple drawing tool 26

4.3 The event class .. 29

4.4 The handler class . 30

4.5 The dispatch and operator() function . 31

4.6 An Example .. 32

4.7 The client class 33

4.8 The action class . 34

4.9 An example ... 35

5.1 vsh Widget Class Hierarchy 38

5.2 The Frames and Toplevel widgets 39

~"""""' 5.3 The frame class 40 '-"
5.4 The button class . 41

5.5 Members of the button family of widgets 41

5.6 The menubutton class 43

5.7 The menu class .. 44

5.8 Examples of menus 45

5.9 The scale class .. 48

5.10 The message class 48

5.11 The entry class 50

5.12 Scrollbar 51

6.1 The widget class 56

,....., 6.2 Example: browse 58
w

Vl

,....
'-'

6.3 The compound widget : Dialog 59

7.1 The item class . . 61

7.2 The canvas class 62

7.3 The hypertext class . 63

8.1 The var class 65

8.2 The script example . 65

8.3 Script example: The install function 66

8.4 Script example: The program function 66

8.5 Script example: The main function 67

9.1 The drawtool interface 69

If*'.
9.2 The drawtool widget hierarchy 69 '-'
9.3 The drawing tool 70

9.4 The toolbox .. 71

9.5 The menu_bar . 73

9.6 The file_menu 74

9.7 The tablet ... 75

9.8 Installing the handlers 76

9.9 The drawtool widget command 77

9.10 The drawtool application . 78

9.11 The file_handler class 80

9.12 The file_chooser class 82

"""" 9.13 file_chooser:install .. 82,
Vll

c

c

c

9.14 file_chooser:list

9.15 The moveJwndler class

9.16 Hypertext help ...

9.17 A Hypertext help file

10.1 Libraries for GUI development .

Vlll

83

84

85

86

88

c

0

Chapter 1

Introduction

In comparison with ordinary programming (in C++) [Str91, Lip91], programming in a

wind()w environment (in C++) [Mye92] introduces a number of additional difficulties.

First of all, the programmer must become acquainted with the various widgets con­

stituting the (graphical) user interface, such as buttons, menus, messages, canvases,

etcetera. And secondly, perhaps the most difficult aspect of window programming,

the programmer must deal with a rather different control structure, involving actions

and callback in response to events generated by the user or windowing environment,

such as mouse button manipulations.

A number of toolkits for Xll environment with an interface to C++ do exist

already. A well known example is the InterViews Library, which offers powerful

features for defining the layout of graphical user interfaces [LVC89]. However, despite

the elegance of its design, InterViews is cumbersome to use and lacks a number of

the features and widgets needed for rapidly implementing a graphical user interface.

Commercial packages for GUI (Graphical User Interface) programming in C++

are available. The disadvantage of these packages, apart form their price, is primarily

they do not offer the flexibility needed in a research environment.

1

c

c

CHAPTER 1. INTRODUCTION 2

A rather different approach to GUI programming has been advocated by Ouster­

hout [Ous9l],[Ous94] which describes the Tcl/Tk toolkit. Tcl is a cshell-like (inter­

preted) script language that may be embedded in Cor C++ [Str91]. Tk is a window

and graphics toolkit based on Xll, partly implemented in Tcl and partly in C. Tk

offers numerous widgets, including a powerful canvas and text widget. Moreover,

the scripting language allows one to rapidly prototype rather complex graphical user

interfaces. These scripts may be executed by using wish, the windowing shell inter­

preter that comes with Tk. Despite being based on Tcl, the performance of Tk (and

wish) is comparable with (and in some respects even better than) Cor C++ based

toolkits.

The Tcl/Tk toolkit has become very popular in a short period of time. The

popularity of Tcl/Tk is partly due to the extensibility of Tel. New functionality,

implemented in C, may easily be added by creating a new version of the wish in­

terpreter, incorporating the additional commands. Numerous extensions to Tcl/Tk

and corresponding interpreters have been made available including extensions offer­

ing facilities for distributed programming dpwish, extensions offering object oriented

features finer tcl}, and extensions offering additional widgets such as barchart and

hypertext widget blLwish.

The possibility of employing interpreted code and the availability of numerous

widgets makes the Tcl/Tk toolkit (and its extensions) an ideal vehicle for implement­

ing user interfaces.

However, Tcl/Tk has its drawbacks as well. One problem, obviously, is to manage

the large number of extensions. Ideally, there is one wish-like shell unifying the

various features. Even better, one should have the opportunity to create such a shell

in a simple manner.

A second problem is that, when an application grows, script code will not always

allow an optimal solution. Generally, script code is not robust and may be hard

to maintain. In particular, when an application contains many components not re­

lated, as it is the case in user interfaces, an efficiently compiled code may be more

appropriate.

c

c

CHAPTER 1. INTRODUCTION 3

For the latter problem, the obvious solution is to employ the C API (Application

Programmer Interface) offered by Tcl and to create a new interpreter including the

functionality needed. In a similar way, the first problem is solved by linking the

appropriate libraries into an extended interpreter.

Nevertheless, this is easier said than done. First of all, the C API offered for

Tcl/Tk is rather demanding for the novice programmer and does not support a style

of programming that can be recommended from the software engineering perspec­

tive. Secondly, although not very difficult, creating a new interpreter with additional

C/C++ code is somewhat cumbersome.

The vsh library has been developed to address the two problem mentioned. The

standard interpreter associated with the vsh library is a shell, called wish++, includ­

ing a number of available extensions of Tcl/Tk and widgets developed by me (such as

a filechooser and an MPEG video widget). The vsh library offers a C++ interface

to the Tcl/Tk toolkit and its extensions. It allows the programmer to employ the

functionality of Tcl/Tk in a C++ program. Moreover a program created with vsh is

itself an interpreter extending the wish interpreter, the wish++.

The vsh library is explicitly intended to support the needs of both novice and

experienced (window) programmers. Its C++ class interface should suffice for most

applications, yet allows for employing Td script code when more is demanded.

The contribution of vsh with respect to Tcl/Tk toolkit is essentially that it pro­

vides type secure solutions for connecting Tcl and C++ code. As an additional

advantage, the vsh library allows the programmer to employ inheritance for the de­

velopment of possibly compound widgets. In particular, it provides the means to

define composite widgets that behave as a standard Tk widgets.

The class structure of the vsh library is reminiscent to class structure of the

InterViews library. However, in comparison with the InterViews library, the widget

class interfaces and event callbacks are significantly easier to use. Also, the vsh library

provides many more ready-to-use graphical interface widgets. However, vsh does not

offer resolution-independent graphics and provides no pre-defined classes for complex

interactions.

c

0

CHAPTER 1. INTRODUCTION 4

Summarizing, vsh supports a multi-paradigm approach to windowing program­

ming, allowing one to combine the robustness of compiled C++ code with the flex­

ibility of interpreted Tcl code. As such, it offers best of both worlds. Or the worst,

for that matter.

However, both the use of event call backs and the functional interface of widget

and graphics classes is significantly simpler. An important advantage of basing vsh

on the Tk toolkit is that existing Tk application written for the Tk interpreter wish

can easily be (re)used in C++ context, virtually without any costs. On the other

hand programs employing wish++ may again be used as (an enhanced version of)

the wish interpreter, allowing the functionality defined in the program to be used in

a (wish++) script. See Figure 1.1.

Wish++ the C++ API
• session,kit,event,action,handler

Widgets for the G UI
• menu,message, text ,filechooser, barchart,xygraph

Graphic Items canvas
• oval,bitmap,text,rectangle,line,polygon

Figure 1.1: The Wish++ API

Structure of Thesis In chapter 2, some background information concerning Tcl/Tk

is given, including a brief example. Chapter 3 sketches the structure of typical wish+

+ program, including the kit and session class. Chapter 4 describes how handler

objects may be defined as event call backs. Chapter 5 illustrates the various widget

classes and their properties. Chapter 6 demonstrates how to construct compound

widgets. In chapter 7 we will look at the facilities offered for structured graphics

and hypertext. Chapter 8 shows how a widget developed in C++ may be made

available as a widget to be used in scripts. Next, chapter 9 presents a drawing tool

c

0

CHAPTER 1. INTRODUCTION 5

application as a medium to depict the functionality offered by the framework to

model interaction. Chapter 10 gives a brief overview of the related work. And finally,

chapter 11 concludes with a brief discussion on the scope of future enhancements.

c

c

Chapter 2

Background-Tcl/Tk

The language Tcl has first been presented in (Ous90]. Tcl was announced as flexible

cshell-like language, intended to be used for developing an Xll-based toolkit. A year

later, the Tk toolkit (based on Tcl) was presented in [Ous9l]. From the start Tcl/Tk

has received a lot of attention, since it provides a flexible and convenient way to

develop rather powerful window applications.

Tcl - an extensible script language
• variables,procedures,built-ins

Tk - an X-window toolkit
• widgets,window management

Figure 2.1: Tcl/Tk

The Tcllanguage offers variables, assignments and a procedure construct. It also

provides a number of control constructs, facilities for manipulating strings and built-in

primitives giving access to the underlying operating system. The basic Tcllanguage

may easily be extended by associating a function written in C with a (new) command

6

0

0

CHAPTER 2. BACKGROUND-TCL/TK 7

name. Arguments given to the command are passed as strings to the function defining

the command.

The Tk toolkit is an extension of Tcl with commands to create and configure

widgets for displaying text and graphics, and providing facilities for window manage­

ment. The Tk toolkit, and the wish interpreter based on Tk, provides a convenient

way to program X-window based applications.

Wish The wish interpreter is an interpreter for executing Tcl/Tk script, look at the

hello world program in Figure 2.2.

Scripts - hello world

button .b -text "hello world"
-command {puts stdout "hello world"}

pack append .. b top

Figure 2.2: A Wish example

The hello world script defines a button that displays hello world to standard output

when it is activated by pressing the left mouse button. The language used to write

this script is simply Tcl with the commands defined by Tk, for example the button

command (needed to create a button) and the pack command (that is used to map

the button on the screen).

0

0

CHAPTER 2. BACKGROUND-TCL/TK 8

The wish program actually provides an example of a simple application based

on Tcl/Tk. It may easily be extended to include example 3D-graphics by linking to

appropriate libraries and defining the functions making this functionality available as

(new) Tcl commands.

Tcl C Application Programmers Interface(API) To define Tcl commands in

C, the programmer has to define a command functions, which has the profile function

aC ommand shown in Figure 2.3, and declare the function to be a command by

invoking the TcLCreateCommand function as indicated.

Defining a command function profile
int aCommand(ClientData, Tcl.Jnterp, int args, char* argv[]);

Declaring a command - creation of binding
TcLCreateCommand(interp, "aco", aCommand, (ClientData) w);

Figure 2.3: The Tcl C API

Creating a command is done with reference to an interpreter, which accounts for

the first argument of TcLCreateCommand. The name of the command, as may be

used in a Tcl script must be given as second argument, and the CJC++ function

defining the command as a third argument. Finally, when declaring a command, the

address of a structure containing client data may be stored, which for example may

be (the address of) the root window.

When the function aCommand is invoked as the result of executing the Tcl com­

mand aco, the client data stored at declaration time is passed as the first argument to

the function. Since the type ClientData is actually defined to be void*, the function

must first cast the client data argument to an appropriate type. Clearly, casting is

error-prone.

Another problem with command functions as used in the Tcl C API is that per­

manent data are possible only in the form of client data, global variables or static

0

c

CHAPTER 2. BACKGROUND-TCL/TK 9

local variables. Both client data and global variables are unsafe by being too visible

and static local data a simply inelegant.

The vsk library has been developed to offer a type secure solution to the problem

of connecting C++ code with Tcl, and to allow for a safe way of maintaining a

(dynamically changing) state.

In vsk the preferred way is to employ handler objects. The obvious solution of

associating class member functions with Tcl commands does not work since pointers

to member functions are different from pointers to ordinary C style functions.

0

0

Chapter 3

Program structure

The vsh library is intended to provide a convenient way to program window-based

applications in C++. There are two considerations that may lead one to employ the

vsh library. When one is familiar with Tcl/Tk and needs to combine Tcl scripts with

C++ code, one may use handler classes to do so in a type-secure way. On the other

hand, when one wants to program graphical user interfaces in C++, one may wish to

employ the vsh widget classes. In the later case one may choose to remain ignorant of

the underlying Tcl/Tk implementation or exploit the Tcl script facility to the extent

one wishes.

As an illustration of the structure of a program using vsh, we look at a simple

program written in C++ that uses a graphical interface defined by a Tcl/Tk script.

After discussing the example, we will look at a brief overview of the classes that

constitute the vsh library. A more detailed description will be given of the kit class,

that encapsulates the embedded Tcl interpreter, and the session class, that shields

of the details of the window environment.

10

0

0

CHAPTER 3. PROGRAM STRUCTURE 11

3.1 Employing Tcl/Tk from within C++

Imagine that a user has written some numerical function, for example a function

employing the Newton method for computing the square root. Such a function may

be defined as in Figure 3.1.

double newton(double arg){

}

double r=arg, x=l, eps=O.OOOl;
while(fabs(r-x) > eps) {

r = x;
x r- (r * r- arg)/(2 * r);

}
return r;

Figure 3.1: The function newton

When such a function is written, one may wish to have a graphical interface to

allow him to experiment with possible inputs in a flexible way. For example, he or she

may wish to have a slider for setting the input value and a message widget displaying

the outcome of the function. Such an interface may look like one in Figure 3.2.

Admittedly, the newton function given above is simple enough to be implemented

directly in Tel. Nevertheless, since C++ is to be considered superior for implementing

numerical functions, we decide to implement the Newton function in C++ and the

graphical interface in Tel. The problem we need to solve then is to connect the

graphical interface with C++ code.

The Tcl script Let us start by defining the interface, where we will use a dummy

function to generate the output. A Tcl script defining our interface is given in Fig­

ure 3.3. The script defines a slider, as a (horizontal) scale widget, and a message

widget, that is used to display the output. The built-in Tcl/Tk bind function is

0

0

CHAPTER 3. PROGRAM STRUCTURE 12

~@) newton
L

7.549835
seed

I I I

57

Figure 3.2: The graphical interface for newton

used to associate the movement of the slider with the invocation of the Tcl function

generate. Note that the function generate is a dummy function, which merely echoes

the value of the scale widget to the message widget.

Now we have developed a graphical interface, which may be tested by using the

wish+ + shell or wish. Next, we need to develop the C++ program embodying the

numerical function and connect it to the interface written in Tel.

wish++ -f{
proc generate {} {

.m configure -text [.s get]
}
scale .s label "seed" -orient horizontal -length 256 -relief sunken
message .m width 256 -aspect 200
pack .m .s -fill x
bind .s <Any-ButtonRelease> {generate}

Figure 3.3: The definition of the interface

The C++ code The structure of this program is best explained in four steps. Each

0

0

CHAPTER 3. PROGRAM STRUCTURE 13

of these steps corresponds with a code fragment. Together, these fragments from the

C++ program of our example. We will first look at these steps. Afterwards it will

be explained why the individual steps are needed.

#include "vsh.h"
double newton(double arg);
char* ftoa(double f);

I I [1 J
I I to convert float to char*

Figure 3.4: Step 1: Preliminaries

Step 1: The functional part is represented by the function newton. We need to

declare its type to satisfy the compiler. The fragment displayed in Figure 3.4, further

shows the inclusion of the vsh.h header file and the declaration of an auxiliary function

jtoa that is used to convert floating point values in to a string.

Step 2: The next step, shown in Figure 3.5, involves the definition of the interfacing

between the Tcl code and the C++ program.

The class generater defines a so-called handler object that will be associated with

the function generate employed in the script, overriding the dummy Tcl function

generate as defined in the script. In order to access the scale and message widgets

defined for the interface, C++ pointers to these widgets are stored in instance vari­

ables of the object. These pointers are initialized when creating a generater object.

The widgets are destroyed when deleting the object. Note that the widgets must first

be destroyed before deleting the corresponding C++ objects.

All one needs to know at this stage is that when the function generate is called

in response to moving the slider, or more precisely releasing the mouse button, then

the operator() function of the C++ generator object is called. In other words,

the operator() function is (by convention) the function that is executed when a Tcl

command that is bound to a handler object is called. The generater :: operator

0

0

CHAPTER 3. PROGRAM STRUCTURE 14

function, which is also displayed in Figure 3.5, results in displaying the outcome of

the newton function applied to the value of the slider, in the message widget.

Step 3: The third step, displayed in Figure 3.6, is to determine an application

class, which is needed for the program to initialize the X-windows main event loop.

An application class needs to be defined as a subclass of session. To initialize the

program, the application class redefines the (virtual) function main inherited from

the session class. The function application :: main takes care of initializing the

interface, creates an instance of the generator class (see Figure 3.5) to the generator

object.

Step 4: Finally, as displayed in Figure 3. 7, the function main is required for each C

or C++ program. It consists merely of creating an instance of the application class

and the invocation of run, which starts the actual program.

Comments The example C++ program illustrates a number of features, some of

which are typical for vsh and some of which are due to programming in window

environment.

In an ordinary C++ program the function main is used to start the computation.

Control is effected by creating objects and calling the appropriate member functions.

When programming a window-based application, at a certain point control is dele­

gated to the window environment. Consequently, there needs to be some kind of main

loop and the dispatching of events, in response to which control may be delegated to

an appropriate component of the program (Figure 3. 7).

To hide the details of activating the main loop and the dispatching of events, the

vsh library provides a class session that allows one to define an application class to

initialize the program (Figure 3.6).

In order to respond to events, the vsh library provides a handler class, that allows

one to associate a C++ object with a Tcl function. Each time the corresponding Tcl

function is invoked, the operator() function of the object is called. The actual object

is an instance of a derived class, redefining the virtual operator() function of the

handler class (Figure 3.5).

CHAPTER 3. PROGRAM STRUCTURE

class generator : public handler {
public:
generator() {

s = (scale*) new widget(" .s");
m= (message*) new widget(" .m");

}
"'generator() {

}

s -+destroy(); m -+destroy();
delete s; delete m;

int operator()();
private:
scale* s·)
message* m;
} .

int generator: :operator()() {
float f = s -+get();

}

m -+text(ftoa(newton(f)));
return OK;

I I [2]

I I to destroy widgets
I I to reclaim resources

I I operator()

Figure 3.5: Step 2: The generator class

15

Handler classes are typical for vsh. Another feature typical for vsh is the use of

a kit object, that may be accessed by using the tk instance variable of the handler

object. The kit object provides access to the Tcl interpreter embedded in the C++

program. In the example it is used to initialize the graphical interface by reading a

script file and to define the association between the Tcl function generate and the

C++ instance of generator.

The widgets defined in the Tcl script are accessed in the C++ program by means of

a scale and message pointer. The vsh library provides for each Tk widget a class of the

same name. Note that not the widgets themselves are created in the constructor of the

CHAPTER 3. PROGRAM STRUCTURE

class application : public session { // [3)
public:
appliaction(int argc, char* argv[]) : session(argc,argv,"newton") {}
void main(kit* tk, int, char*){

}
}

tk ~source("interface.tcl"); // read interface script
handler* g new generator();
tk ~action(" generate" ,g); // declare action

Figure 3.6: Step 3: The application class

void main(int argc, char **argv){ // [4]
session* s = new application(argc,argv);
s ~run();

}

Figure 3.7: Step 4: The function main

16

generator class, but only abstract widget objects that are casted to the appropriate

widget types. Casts are needed to access these objects as respectively a scale and

message widget. Widgets can be created, however, directly in C++ as well, by

employing the appropriate widget class constructors. See section 9.5.

As a final comment, the example illustrates a classical stratagem of software engi­

neering, namely the separation of concerns. On the one hand we have a script defining

the interface that may be independently tested, and, on the other hand we have C++

code embodying the real functionality of our program.

CHAPTER 3. PROGRAM STRUCTURE 17

3.2 An overview of the vsh class library

The example given in the previous section showed what kind of components are typi­

cally used when developing a program with vsh library. However, instead of employing

a Tcl script, the window interface may also be developed entirely by employing vsh

C++ widgets. In this section, a brief overview will be given of the classes offered

by the vsh library. Further it will be shown how to construct wish + + interpreter

re:ffered to in the introduction. In addition, we will take a closer look at the classes

kit and session, which are needed to communicate with the embedded Tcl interpreter

and to initialize the main event loop respectively.

(b) handl~r danes

Figure 3.8: An overview of the vsh library

The library The vsh C++ library consists of three kinds of classes, namely (a) the

widget classes which mimic the functionality of Tk, (b) the handler classes, which are

involved in the handling of events and the binding of C++ code to Tcl commands,

and (c) the classes kit and session, which encapsulate the embedded interpreter and

the window management system.

In the widget class hierarchy depicted in Figure 3.8(a), the class widget represents

an abstract widget, defining the commands that are valid for each of the descendant

concrete widget classes. The widget class, however, is not an abstract class in C++

terms. As shown in the example in the previous section, the widget class allows for

0

0

CHAPTER 3. PROGRAM STRUCTURE 18

creating pointers to widgets defined in Tel. In contrast, employing the constructor

of one of the concrete widget classes results in actually creating a widget. A more

detailed example showing the functionality offered by the widget classes will be given

in chapter 5.

The class hierarchy depicted in Figure 3.8(b) depicts the handler class as a sub­

class of client. The reason for this will become dear in chapter 4. The handler class

may also be considered an abstract class, in the sense that it is intended to be used as

the ancestor of a user-defined handler class. Recall that in the example we defined the

generator class as a descendant of handler. The handler class has two pre-defined

descendant classes, namely the widget class and the class item. This implies, indeed,

that both the widget and the item class (that is treated in chapter 7) may be used

as ancestor han_dler classes as well. The reason for this is that any descendant of

a widget or item class may declare itself to be its own handler and define the ac­

tions that are invoked in response to particular events. This will be illustrated and

discussed in chapter 4 and chapter 5.

The wish++ interpreter In the introduction, vsh and wish++ were respectively

announced as a C++ library and as an interpreter extending the wish interpreter.

The program shown in Figure 3.9 presents their relation in a simple way.

The structure of the program is similar to the C++ example of section 3.1. Part[l]

consists merely of including the vsh.h header file. Part[2] is empty. Part[3] consists

of an application class, derived from session, defining how the wish++ interpreter

deals with command-line arguments (a and d) and the initialization that takes place

when the main event loop is started (c). To understand (a) and (d) it suffices to

know that the vsh library provides a hypertext widget and that the -x option treats

the next argument as the name of a hypertext file. In chapter 9, an example will

be given that involves the hypertext widget. In (b) the "vsh.tcl" is declared to be

initialization file. It contains the Tcl code for installing the extensions loaded in (c).

In (e), a predefined button .quit is packed to the root widget. Part [4] is identical to

its counterpart in the previously given example.

The wish++ interpreter defined by the program extends the wish interpreter by

0

0

CHAPTER 3. PROGRAM STRUCTURE

#include "vsh.h" I I [1]
class application : public session { I I [3]
public:
application(int argc, char* argv[]) : session(argc,argv){

hyper = 0;
if ((argc == 3) && !strcmp(argv[l],"-x")) { I I a

hyper = 0;
strcpy(hyperfile,argv[2]);

}
init(vsh.tcl); I I b

}
V<?id main(kit* tk, int argc, char* argv[J){

init_expect(tk);inititcl(tk);init..dp(tk); I I c
if (hyper) {

hypertext* h = new hypertext(" .help"); I I d
h -+file(hyperfile);
h -+geometry(330,250);
h -+pack();
tk -+pack(".quit"); 11 e

}
}
private:
char hyperfile[BUFSIZ];
int hyper;
};
int main (int argc, char* argv[]) {

}

session* s = new application(argc,argv);
s -+run();

Figure 3.9: The wish++ interpreter

I I [4]

19

0 CHAPTER 3. PROGRAM STRUCTURE 20

loading the Itcl and Dp extensions discussed in the introduction and by allowing for

the display of a hypertext file. The interpreter accepts any command-line argument

accepted by the wish interpreter, in addition to the -x hypertext option. The Tcl

interface script given in Figure 3.3, for example, may be executed using the wish++

interpreter.

3.3 The kit class

V sh is meant to provide a parsimonious C++ interface to Tcl/Tk. Nevertheless,

as with many a toolkit, some kind of API shock seems to be unavoidable. This is

specially true for the widget class (treated in chapter 5) and the class kit defining

the C++ interfQ.ce with the embedded Tcl interpreter. The functionality of the kit

can only be understood after reading this article. However, since an instance of kit

is used in almost any other object (class), it is presented here first. See Figure 3.10.

The reader will undoubtingly gradually learn the functionality of kit by studying the

examples.

To understand why a kit class is needed, recall that each vsh program contains an

embedded Tcl interpreter. The kit class encapsulates this interpreter and provides a

collection of member functions to interact with the embedded interpreter.

The first group of functions (eval, result, evaluate and source may be used to

execute commands in Tcl scripting language directly. A Tcl command is simply

confirming to certain syntactic requirements. The function eval evaluates a Tcl com­

mand. The function result() may be used to fetch the result of the last Tcl command.

In contrast, the function result(char*) may be used to set the result of Tcl command,

when this command is defined in C++ (as may be done with kit::action). The func­

tion evaluate provides a shorthand for combining eval() and result(). The function

source may be used to read in file containing a Tcl script.

Also, we have the kit :: action function that may be used to associate a Tcl

command with a handler object. In section4.3, alternative ways of defining an action

are discussed.

CHAPTER 3. PROGRAM STRUCTURE

The interpreter kit

item interface kit:vcl {
int eval(char* cmd);
void result(char* s);

}

char* evaluate(char* cmd);
int source(char* f);
void after(int msecs,char* cmd);
char* send(char* it, char* cmd);
char* selection(char* options ="");
class event event();
widget* root();
widget* pack(widget* w,char* options= "{top fillx filly}");
widget* pack(char* wp,char* options " {top fillx filly}");
action& action(char* name);
action& action(char* name, handler* h);
action& action(char* name, command f,client* data =0);
action& action(char* name, tclcommand f,clientdata data= 0);
void trace(int level = 1);
void notrace();
void quit();

Figure 3.10: The kit class

21

The next group of functions is related to widgets and events that may occur

to widgets. The function event delivers the latest event. It may only be used in

command that is bound to some particular. When other event occur before accessing

the event object, the information it contains may be obsolete.

The function root gives access to the toplevel root widget associated with that

particular instance of the kit. The function pack may be used to append widgets

to the root widget, in order to map them to the screen. Widgets may be identified

either by a pointer to a widget object or by their path name, which is a string. See

section 5.1.

CHAPTER 3. PROGRAM STRUCTURE 22

Next, we have a group of functions related to X environment. The function

selection delivers the current X selection. The function after may be used set a

timer callback for a handler. Setting a time callback means that the handler object

will be invoked after the number of milliseconds given as the first argument to after.

The function update may be used to process any pending event. For example,

when moving items on a canvas, an update may be needed for making the changes

visible. Also, we have a function send that may be used to communicate with other

Tcl/Tk applications. The first argument of send must be the name of an application,

which may be set when creating a session object.

The function action may be used to associate a Tcl command to a command

function to handler written in C++. See section 4.3 for details.

The function trace() and notrace() may be used to turn on, respectively off,

tracing. The level indicates in what detail information will be given. Trace level zero

is equivalent to notrace(). Finally, the function quit may be used to terminate the

session.

3.4 The session class

Each program written with vsh may contain only one embedded wish++ interpreter.

To initialize an instance of the kit and to start the main (event dispatch) loop an

instance of session must be created. See Figure 3.11.

Consequently, the class session offers functions to initialize and install the func­

tionality needed apart from function to start the main loop. The preffered way of

doing this by defining a descendant class of the session class, redefining the virtual

function session :: main to specify what needs to be done before starting the main

loop. In addition, the constructor of the newly defined class may be used to check

command line arguments and to initialize application specific data, as illustrated in

Figure 3.9. When creating a session object, the name of the application may be

CHAPTER 3. PROGRAM STRUCTURE 23

given as the last parameter. Under this name, the application is known to other

applications, that may communicate with each other by means of send command.

The function init may be used to specify a different initialization script. This

script must include the default wish + + initialization script, which is an adapted

version of the original wish initialization script.

The function install takes a function as a parameter. The function will be called

after the initialization script has been evaluated, but before evaluating a script pro­

vided by the user or executing the program function specified when calling run

The session class

interface session {

}

· session(int argc, char** argv, char* name = 0);
void init(char* fname);
void install(void proc(kit*, int, char**));
int run(void proc(kit*, int, char**) = 0);

Figure 3.11: The session class

Finally, the function run is called to start the main loop. The parameter of run

specifies the program to be executed. It may be zero in case the program will only be

used to execute scripts. To execute both a script and the program function specified

for run, the script must contain the command goback as its last command. In either

case, the main loop must be started by calling run.

Chapter 4

Binding actions to events

In the example in section 3.1 we have seen that handler objects may be bound to Tcl

commands. Handler objects may also be bound to events.

Events are generated by the X window environment in response to actions of

the user. These actions include pressing a mouse button, releasing a mouse button,

moving the mouse, etcectra. Instead of explicitly dealing with all incoming events, the

application delegates control to the environment by associating a callback function

with each event that is relevant to particular widget. This mechanism frees the

programmer from the responsibility to decide to which widget the event belongs and

what action to take.

Nevertheless, from the perspective of program design, the proper organization of

the callback functions is not a trivial matter. Common practice is to write only a

limited number of callback functions and perform explicit dispatching according to

the type of event.

An object oriented approach may be advantageous as a means to organize a collec­

tion of callback functions as a member functions of a single class. One way of doing

this is to define an abstract event handler class which provides a virtual member

function for each of the most commonly occurring events. In effect, such a handler

class hides the dispatching according to the type of the event. A concrete handler

24

CHAPTER 4. BINDING ACTIONS TO EVENTS 25

class may then be defined simply by overriding the member functions corresponding

to the events of interest.

In the following, we will look at how we may define a simple drawing editor by

declaring a handler defining the response to pressing, moving and releasing a mouse

button. After that we will look more closely at the notion of events and the definition

of handlers and actions.

, : .· •".

draw

.....
• JL • I •.:

quit

- . .

Figure 4.1: Painting a canvas

A simple drawing editor Before looking at the program, think of what one would

like a drawing editor to offer him. And, if one has any experience in programming

graphics applications, how would he approach the implementation of a drawing editor?

A drawing editor is a typical example of an interactive program. As a first ap­

proximation, we will define a drawing editor that allows the user to paint a series of

black dots by pressing and moving the mouse button. See Figure 4.1.

The program realizing our first attempt is depicted in Figure 4.2. Again, the

program may be broken up in four components.

Component [1) consists of simply including the vsh.h header file.

Component [2] defines the class drawing_canvas. The class drawing_canvas inherits

from the canvas widget class and consequently allows for drawing figures such as a

circle. See section 7.2 for further details on the canvas class.

Now before looking at the constructor of the drawing_canvas, note that the mem­

ber functions press, motion and release expect a reference to an event. These are

0 CHAPTER 4. BINDING ACTIONS TO EVENTS

#include "vsh.h"
class drawing_canvas : public canvas {
public:
drawing_canvas(char* path) : canvas(path) {

geometry(200,100);
handler(this);
dragging = 0;

}
void press(event&) { dragging = 1 }
void motion(event& e) {

if (dragging) circle(e.x() ,e.y() ,1,"-fill black");
}
void release(event&) { dragging = 0 }
protected:
int dragging;
};

I I [1]
I I [2]

I I (a)

11 (b)

class application : public session { I I [3]
public:
application(int argc, char* argv[]) : session(argc,argv ,"draw"){}
void main(kit* tk, int, char*){

}
};

canvas* c = new drawing_canvas(" .draw");
c -*pack();
tk -*pack(" .quit");

int main(int argc, char* argv[]){

}

session* s = new application(argc,argv);
return s -*run();

Figure 4.2: A simple drawing tool

I I [4]

26

CHAPTER 4. BINDING ACTIONS TO EVENTS 27

precisely the member functions corresponding to the event types for which the canvas

is sensitive. The meaning of these member functions becomes clear when looking at

the role of the instance variable dragging. When dragging is non-zero and motion

event occurs, a black dot is painted on the canvas. Drawing starts when pressing a

mouse button and ends when releasing the button.

Turning back to the constructor (a), we see that it expects a path string, which is

passed to the canvas ancestor class to create an actual canvas widget. Further, the

body of the constructor sets the size of of the widget to 200 by 100 and initializes

the variable dragging to zero. Finally, the drawing_canvas widget is declared to be

its own handler. The member function handler is defined by the class widget and

results in making the widget sensitive to a member of predefined events, that may be

different for each concrete widget class.

Discussion A note on terminology is in place here. The reader may be a bit as­

tounded by the fact that we have a both handler class and a handler function, which

is more properly written as widget ::handler. The situation may become even more

confusing when realizing that the widget class itself is a descendant of the handler

class. Schematically, we have

class widget : public handler {

public:

void handler(class handler* h) { ... }

};

Note that there is no ambiguity here. A handler object is an object that may be

invoked in response to a Tcl command or an event. The handler function declares

a handler object to be responsible for dealing with the events that are of interest to

the widget.

Q CHAPTER 4. BINDING ACTIONS TO EVENTS 28

In other words, a drawing-canvas fulfills the dual role of being a widget and

its handler. This must, however, be explicitly indicated by the programmer, which

explains the occurance of the otherwise mysterious expression handler(this). The

reason not to identify a widget with a handler is simply that some widgets need

separate handlers. Another reason is to avoid the proliferation of the class name space,

which would inevitably occur when forcing the programmer to define the response to

events by defining a descendant class of the particular widget class.

Before studying the abstract handler class in more detail, we will briefly look at

the definition of the event class. Note that in (b), the event reference is only used to

inform after the position of the mouse pointer.

4.1 Events

Events always belong to a particular widget. To which widget events are actually

directed depends on whether the programmer has defined a binding for event type.

When such a binding exists for a widget and the (toolkit) environment decides that the

event belongs to the widget, then the callback associated with the event is executed.

Information concerning the event may be retrieved by asking the kit for the latest

event.

Event objects represent the events generated by the X-window system. Each event

has a type, which may be one of the types listed below. The type of the event can

be inspected with type() which return an integer value or name() which returns a

string representation of the type. For some of the common events types, such as

ButtonPress1 ButtonRelease and MotionNotify, member functions are provided to

facilitate testing. If an integer argument (1,2 or 3) is given to button(), buttonup()

or buttonevent(), it is checked whether the event has occurred for the corresponding

button.

The functions x() and y() deliver the widget coordinates of the event, if appropri-

ate.

0 CHAPTER 4. BINDING ACTIONS TO EVENTS 29

Calling trace() for the event results in printing the type and coordinate infor­

mation for the event. When setting the kit :: trace level to 2 this information is

automatically printed.

Program not satisfied with the interface can check the type and access the under­

lying Xevent at their own risk.

Event

interface event {
int type();
char* name();
int x();

}

int y();
.int x_root();
int y_root();
int button(int i 0);
int buttonup(int i = 0);
int motion();
int keyevent();
int buttonevent(int i = 0);
int keycode();
void trace();
class widget* widget();
XEvent* xevent();

Figure 4.3: The event class

In addition to ordinary event information, an event also contains a reference to

widget for which the event occurred. This information is valid only when the event

is the last event. It may be lost when other event occur.

CHAPTER 4. BINDING ACTIONS TO EVENTS 30

4.2 Handlers

Handler objects provide a type-secure way to deal with client data. Client data are

often needed to share some common resource or to update a global structure. Explicit

coercion, however, are usually error-prone. Handler objects may only be created as

instances of classes derived from the class handler. The (client) information that

needs to be passed around when using plain command function, can conveniently

be stored in the instance variables of the (derived) handler class. A handler object

offers a special member function dispatch that is called directly to execute the action

associated with an event or Tcl command. In this way, explicit coercion are avoided.

Handler
interface handler:client {

virtual int dispatch(kit* _tk, int ...argc, char** ...argv);
virtual int operator()();
virtual void press(event&) { }
virtual void release(event&) { }
virtual void keypress(event&) { }
virtual void keyrelease(event&) { }
virtual void motion(event&) { }
virtual void enter(event&) { }
virtual void leave(event&) { }
virtual void other(event&) { }

protected:

};

int argc;
char** argv;
kit* tk;

Figure 4.4: The handler class

The class handler defines a number of other member functions, corresponding to

events type related common user actions. A class derived from handler may redefine

CHAPTER 4. BINDING ACTIONS TO EVENTS 31

these functions and rely on the original dispatch function to call the proper member

in response to an event.

Dispatching the most important (member) function of a handler object is the

dispatch function. The dispatch function is called when an action is invoked either

to execute a Tcl script command or as a callback in response to an event.

The original handler :: dispatch, shown in Figure 4.4, stores the kit, argc and

argv parameters in the corresponding instance variables of the handler object and

calls the member function dependent on the type of the event. (See section 9.1 for

an example.)

Dispatching
. inline

int handler::dispatch(kit * _tk, int ...argc, char** _argv) {
tk = _tk; argc = ...argc; argv = _argv;
return this -+operator()();

}
int handler::operator()() {

event e = tk -+event();

}

if (e.type() ButtonPress) press(e);
else if (e.type() == ButtonRelease) release(e);
else if (e.type() == KeyPress) keypress(e);
else if (e.type() == KeyRelease) keyrelease(e);
else if (e.type() == MotionNotify) motion(e);
else if (e. type() == Entry Notify) enter(e);
else if (e.type() == LeaveNotify) leave(e);
else other(e);
return OK;

Figure 4.5: The dispatch and operator() function

The handler class knows only virtual functions. Each function, including the

dispatch function may be redefined, according to the programmers need.

CHAPTER 4. BINDING ACTIONS TO EVENTS 32

Example Handler classes may also be conveniently used for actions that do not in­

volve (window) events by redefining the dispatch function. The event related member

functions are then simply ignored.

Example
class application:public handler{

int n;

};

public:
application() { n = 0; }
int dispatch(kit* tk, int argc, char** argv);
void red() {cout <<"red" << n++;}

. int application::dispatch(kit* tk, int argc, char** argv){
argv++;

}

while(argc- > 1) {

}

if (strcmp("red" ,*argv) 0) a -+red();
else cout ii "no such option" jj endl;
argv++;

return OK;

void program(kit* tk, int, char**){
application app;

};

tk -+action(" do-something", f, &a pp);
tk -+eval(" do-something red green blue");
tk -+quit();

Figure 4.6: An Example

In this example a Tcl command is defined, not involving widgets or bindings. The

example is very similar to the example given for action. The action is declared by

means of the kit :: action definition.

CHAPTER 4. BINDING ACTIONS TO EVENTS 33

4.3 Actions

The procedural interface with Tcl is handled by so-called actions, defined by a Tcl

command, a C/C++ command function or a handler object. The most common use

of actions is to execute a command in response to an event. But for the more experi­

enced programmer, actions provide a powerful means to define Tcl script commands

as well.

Client
class client { } ;

Command
typedef command(client*, kit*, int, char**);
typedef tclcommand(clientdata, tclinterp, int, char**);

Figure 4.7: The client class

Data passed to command function must be of type client, which is defined by

an empty class introduced only to please the compiler. Below the type definition

of command is given. Apart from the clienh parameter, a command function

must also declare a kit* parameter and an argc and argv parameter, similar as for

main. The client* data of a command (and similar for the clientdata parameter of

a tclcommand) can be any kind of class. However, it is to be preffered that such

classes are made subclass of client. The client data pointer is declared when creating

an action and passed to the command function when the actual call is made. The

parameters (argc and argv) depend on the actual call. The use of argc and argv

comes from the original C interface of Tel. It proves to be a very flexible way of

communicating data, especially in string-oriented applications.

The class action offers no less than seven constructors. The first constructor,

which takes a (char*) string as a parameter, is merely for convenience. It may be

CHAPTER 4. BINDING ACTIONS TO EVENTS

Action
interface action {

action(char* name);

}

action(char* name, handler* h);
action(char* name, command f, client* data= 0);
action(char* name, tclcommand f, clientdata data 0);
action(handler* h);
action(command f, client* data = 0);
action(tclcommand f, clientdata data = 0);
char* name();

Figure 4.8: The action class

34

used to convert the name of a Tcl script command into an action. The following

three constructors differ from the last three constructors only by their first string

parameter which serves to define the name under which the action will be known

by the Tcl interpreter. The last three constructors, in contrast, creates anonymous

actions, of which the user, however, can ask its name by invoking the function name.

The preffered form of creating an action is giving it (apart form a name) a handler

as parameter. Handler objects are discussed in the next session. They offer a type­

secure way of dealing with client information. In contrast the second constructor of

this group, which takes a command function and possibly a pointer to client data as

parameters, may make (type-insecure) conversions of the client data necessary.

The constructor taking a tclcommand and clientdata as parameter is incorporated

for compatibility reasons only and will further be discussed.

When using any of the last six constructors, as a side-effect an association is

created between the name of action and Tcl command. If such a Tcl command

already exists, the previous association will be overwritten. This is also the case if it

has been defined as a Tcl script command.

CHAPTER 4. BINDING ACTIONS TO EVENTS 35

Example In Figure 4.9, the declaration and use of an action is shown as a simple

example. The command function f communicates with the (client) application object

by checking argc and argv parameters of the call to f. Dependent on the value of the

(argv) string argument(s), an appropriate member function of the application object

is invoked.

Example
class application:public client{

int n;
public:
application() { n = 0; }
void red() {cout <<"red"<< n++;}

};

int f(client* c, kit* tk, int argc, char** argv){
application* a= (application*)c;
argv++;

}

while(argc- > 1) {

}

if (strcmp("red" ,*argv) 0) a ~red();
else cout << "no such option" << endl;
argv++;

return OK;

void program(kit* tk, int, char**){
application app;

};

tk ~action(" do-something", f, &a pp);
tk ~eval(" do-something red green blue");
tk ~quit();

Figure 4.9: An example

The function f is invoked by calling the Tcl scripts command do- something via

0 CHAPTER 4. BINDING ACTIONS TO EVENTS 36

kit :: eval. However, since do something is not a built-in Tcl or Tk command, it

must first be declared as a command by means of the kit :: action function. When

defining the action, the function f is declared to be the command function, with (the

address of) the application object app as the client parameter. To use the (Client)

data in f as an application object, data must be coerced to (application*). A better,

that is type-secure, way to deal with this is to define a handler class.

0

Chapter 5

User Interface widgets

The Tk toolkit·offers numerous built-in widgets. The Tk widget confirm to the look­

and-feel of the OSF /Motif standard. vsh the C++ interface for Tk provides for each

Tk widget a class of the same name, which supports the creation of a widget and

allows the user to access and modify it. In addition to the standard Tk widget, the

vsh library integrates a number of other widgets, such as bar.chart, hypertext, and

photo widget (created by other Tk adapts). Also some others widget are offered, such

as filechooser and MPEG video widget.

The widget classes are organized as a tree, with the class widget at the root.

See Figure 5.1. Each concrete widget class offers the functionality supported by the

(abstract) widget class and many in addition define functions specific to the particular

widget class. The member functions for a widget class have usually a straightforward

correspondence with the command interface defined by the tcl/tk toolkit.

Each function listed in the class interface is public unless it is explicitly indicated

as protected. The interface descriptions start with pseudo-keyword inter face. This

is merely done to avoid the explicit indication of public for both the ancestor and the

member functions of the class.

Each widget class specifies two constructors, one with only a path and one which

allows both for a widget and a path. In the latter case, the actual path consists

37

0 CHAPTER 5. USER INTERFACE WIDGETS 38

Figure 5.1: vsh Widget Class Hierarchy

of the concatenation of the path of the widget and the path specified by the string

parameter. For the concrete widget classes, no widget will be created when the

options parameter is zero. This convention is adopted to allow composite widgets to

inherit from the standard widgets, yet define their own components.

In addition, each widget class has a destructor, which is omitted for brevity. The

destructor may be used to reclaim the storage for a widget object. To remove a widget

from the screen, the function widget ::destroy must be used.

In this section all of the widgets available with vsh library will be described. In

section 9.5 it is explained how to create new widgets in C++ and make them available

for use in a Tcl script.

0 CHAPTER 5. USER INTERFACE WIDGETS 39

flat raised sunken

Figure 5.2: The Frames and Toplevel widgets

5.1 Frames and toplevels

Frames and toplevels are the simplest widgets. They have almost no interesting

properties. A frame appears as a rectangular region with a color and possibly a

border that gives the frame a raised or sunken appearance as shown in Figure 5.2.

Frame serves two purposes. First, they can be used to generate decorations such as

block of color or a raised or sunken border around a group of widgets. Second they

serve as containers for grouping other widgets; most of the non-leaf widgets in the

widget hierarchy are frames.

Toplevel widgets are identical to frames except that, as the name implies, they

are top-level widgets whereas frames (and almost all other widgets) are internal wid­

gets. This means that a toplevel widget can be positioned anywhere on its screen,

independent of its parent in the widget hierarchy, and need not even appear on the

same screen as its parent. Toplevels are typically used as the outermost containers

for panels and dialog boxes. When you create a toplevel you can specify a screen for

it to be displayed on. The class structure for frame is shown in Figure 5.3.

0 CHAPTER 5. USER INTERFACE WIDGETS

interface frame : widget {
frame(char* p, char* options = "");
frame(widget* w,char* p, char* options = '"');
}

Figure 5.3: The frame class

5.2 Buttons

40

Buttons come i~ a number of varieties, such as ordinary (push) buttons, that simply

invoke an action, checkbuttons, that toggle between an on and off state, and radiobut­

tons, that may be used to constrain buttons to allow the selection of only a single

alternative. Checkbuttons and radiobuttons are implemented as subclass of the class

button.

In addition to the constructors, which have the same format for each widget class,

the button class offers the function text to define the text displayed by the button and

the function bitmap, which takes as argument the name of a file containing a bitmap,

to have a bitmap displayed instead. The function state may be used to change the

state of the button. Legal arguments are either normal,active or disabled. Further

the button class defines the function flash and invoke that result respectively in

flashing the button and in invoking the action associated with the button by means

of the widget :: handler function. (Note that button :: install is defines, albeit

protected.)

When a mouse cursor moves over a button, the button lights up. This indicates

that pressing a mouse button will cause something to happen. It is a general property

of Tk widgets that they light up if the mouse cursor passes over them when they are

prepared to respond to button presses. A button or other widget lit up in this way

0 CHAPTER 5. USER INTERFACE WIDGETS

interface button : widget {

}

!Peach Putt!

~lght 91uel

~ea Green!

fVellowl

Push Buttons

button(char* p, char* options = "");
button(widget* w, char* p, char* options = "");
void text(char* s);
void bitmap(char* s);
void state(char *s);
void flash();
char* invoke();
protected:
void install(action& ac, char* args = "");

Figure 5.4: The button class

<>Red [; 0 Wipers OK 0 Green

0 Brakes OK <>Blue

0 Driver Sober 0 Yellow

CheckButtons RadioButtons lconicButtons

Figure 5.5: Members of the button family of widgets

41

it is said to be active. Buttons become inactive again when the mouse cursor leaves

them.

0 CHAPTER 5. USER INTERFACE WIDGETS 42

5.2.1 Checkbuttons

Checkbutton allows users to make binary choices such as enabling or disabling un­

derlining or grid-alignment. They are similar to regular button except fo~ two things.

First, whenever mouse button 1 is clicked over a checkbutton a Tcl variable toggles

between two values representing an "on" state and other representing "off'' state.

The name of the variables and the values corresponding to "on" and "off'' states are

configuration options for the widget. Second, the checkbutton displays a small rect­

angular selector to the left of its text or bitmap. If the variable has the "on" value

then the selector is displayed in a bright color and the button is said to be selected.

If the variable has the "off'' value then selector box appears empty. Each checkbutton

monitors the value of of its associated variable and if the variable's value changes (e.g

because of set command) the checkbutton updates the selector display.

5.2.2 Radiobuttons

The last member of the button family is the radiobutton class. Radiobuttons are

typically arranged in groups and used to select one from among several mutually­

exclusive choices, such as one of several colors or one of several styles of dashed lines.

Radiobuttons are named after the radio selector buttons on older cars, where pressing

the button for one station caused all the other buttons to be released. When mouse

button 1 is clicked over a radiobutton, the widget sets the variable to the "on" value

associated with the radiobutton. All of the radiobuttons in a group will share the

same variable but each will have a different "on" value.

5.2.3 Labels

Labels are the simplest member of the family. One can use labels to display a text

string or a bitmap (see Figure 5.5). Like normal buttons, labels do not normally

respond to the mouse or keyboard; they are simply to provide decoration in the form

of a text string or bitmap.

c CHAPTER 5. USER INTERFACE WIDGETS

interface menubutton : button {
menubutton(char* p, char* options="");
menubutton(widget* w,char* p, char* options = "");
void menu(char* s);
void menu(class menu* m);
}

Figure 5.6: The menubutton class

5.2.4 Menubuttons

43

The menubutton is a specialization of the button widgets. It allows for attaching a

menu that will be displayed when pressing the button. The menubutton Figure 5.6

must be used to pack menus in a menubar.

5.3 Menus

Another, frequently occurring, widget is the menu widget. A menu consists of a

number of button-like entries, each associated with an action. A menu entry may

also consist of another menu, that pops up whenever the entry is selected.

The add function is included to allow arbitrary entries (as defined by Tk) to be

added. We restrict ourselves to simple command and cascade entries.

The entry function (that is used for adding simple command entries) may explic­

itly be given an action to be associated with the entry. Alternatively, if no action is

specified, the default handler action installed by invoking widget :: handler will be

used. The string used as a label for the entries (the first parameter of entry) will be

0 CHAPTER 5. USER INTERFACE WIDGETS

interface menu : public widget {

}

menu(char* p, char* options = "");
menu(widget* w, char* p, char* options="");
menu* add(char* s, char* options = "");
menu* entry(char* s, action& ac, char* args ="", char* options = "");
menu* entry(char* s, char* args ="",char* options= "")A);
menu* cascade(char* s, char* m, char* options="");
menu* cascade(char* s, menu* m, char* options = "");
char* entryconfigure(int i, char* options);
int index(char *s);
int active();
void del(int i);
void del(char* s);
char:' invoke(int i);
char* invoke(char* s);
void post(int x = 500, int y = 500);
void unpost();
protected:
char* name();
void install(action& ac, char* args);

Figure 5. 7: The menu class

44

given as a parameter to the action invoked when selecting the entry. The string given

in the args parameter will be added to the actual parameters for the action invoked.

The cascade function may either be given a menu or a string, containing the

pathname of the menu. In any case the cascaded menu must be descendant of the

original menu.

The function index returns the integer index associated with the string describing

the entry. The function active may be used to enquire which entry has been selected.

See the example below.

Entries may be deleted using the function del and invoked by using invoke. For

CHAPTER 5. USER INTERFACE WIDGETS 45

(a) (b)

(c) {d)

Figure 5.8: Examples of menus

both functions, the entry must be indicated by its numerical index or a string. Menus

are toplevel widgets, they are mapped to the screen either by invoking the function

post, or by embedding the menu in a menubutton.

Unlike most other widgets, menus do not normally appear on the screen. They

0 CHAPTER 5. USER INTERFACE WIDGETS 46

spend their time in an invisible state called unposted. When a user wants to invoke

a menu entry, he or she posts the menu, which makes it appear on the screen. Then

the user moves the mouse over the desired entry and releases button 1 to invoke that

entry. Once the menu has been invoked it is usually unposted until it is needed again.

Menus are posted or unposted by invoking their widget commands, which gives the

interface designer a lot of flexibility in deciding when to post and unpost them. The

subsection below describe four of the most common approaches.

5.3.1 Pull-down menus

Menus are most commonly used in a pull - down style. In this style the application

displays a men~bar near the top of its main window. A menu bar is a frame widget

that contains several menubuttons widgets as shown in Figure 5.8(b). Menubuttons

are similar to button widgets except that instead of executing handler associated

with it they post menu widgets. When a user presses presses mouse button 1 over a

menubutton it posts its associated menu underneath the menubutton widget. Then

the user can slide the mouse down over the menu with the button still down and

release the mouse button over the desired entry. When the mouse button is released

the menu entry is invoked and the menu is unposted.

5.3.2 Pop-up menus

The second common style of menu usage is called pop - up menus. In this approach,

pressing one of the mouse buttons in a particular widget causes a menu to post next

to the mouse cursor and the user can slide the mouse over the desired entry and

release it there to invoke the entry and unpost the menu. As with pull-down menus,

releasing the mouse button outside the menu causes it to unpost without invoking

any of its entries.

CHAPTER 5. USER INTERFACE WIDGETS 47

5.3.3 Cascaded menus

The third commonly used approach to posting menus is called cascaded menus. Cas­

caded menus are implemented using cascade menu entries in other menus, such as

pull-down and pop-up menus. Each cascade menu entry is similar to a menubutton

in that it is associated with a menu widget. When the mouse cursor passes over the

cascaded entry, its associated menu is posted just to the right of the cascaded entry,

as shown in Figure 5.8. The user can then slide the mouse to the right onto the

cascaded menu and select an entry in the cascaded menu. Menus can be cascaded to

any depth.

5.4 The scale class

The scale widget may be used to obtain numerical input from the user. When a

handler is attached to scale it is called when the user releases the slider. The value

of the scale is passed as an additional parameter when invoking the handler. The

default binding for the scale is the ButtonRelease event. The class structure for scale

is shown in Figure 5.9.

5.5 The message class

The message widget may be used to display a message on the screen. The message

class shown in Figure 5.10 does not define default bindings, but the user is free to

associate events to a message widget by employing widget :: bind.

5.6 List boxes

A listbox is a widget that allows the user to select one or more possibilities from a

range of alternatives, such as a file name from those in the current directory or a

CHAPTER 5. USER INTERFACE WIDGETS

interface scale : public widget {

};

scale(char* p, char * options = "");
scale(widget* w, char* p, char * options = "");
void text(char* s);
void from(int n);
void to(int n);
int get();
void set(int v);
protected:
void install(action& ac, char* args = "");

Figure 5.9: The scale class

interface message : public widget {
public:
char* type();
message(char* p, char* options = "");

I I text to display
11 begin value
I I end value
11 gets the value
11 sets the value

message(widget* w, char* p, char* options = "") : widget(w,p);
void text (char* s);
};

Figure 5.10: The message class

48

0 CHAPTER 5. USER INTERFACE WIDGETS 49

color from a database of defined colors. A listbox contains one or more entries, each

of which displays a one-line string. The widget commands for listboxes allow entries

to be created,destroyed and queried. If there are more entries than there are lines

in the listbox's window then only a few of them are displayed at a time;the user can

control which portion is displayed by using a separate scrollbar widget associated with

the listbox. The view in a listbox can also be controlled by pressing mouse button

2 in the widget and dragging up or down. This is called scanning:it has the effect

of dragging the listbox contents past the window at high speed. Most Tk widgets

that support scrollbars also support scanning. If the string in the listbox are too

long to fit in the window then the listbox can also be scrolled and scanned in the

horizontal direction. Typically listboxes are configured so that the user can select an

entry by clicking on it with mouse button L In some cases the user can also select a

range of entries by pressing and dragging with button 1. Selected Entries appear in

a different color and usually have a raised 3-D effect. Once the desired entries have

been selected, the user will typically use those entries by invoking another widget,

such as a button widget or menu entry. For example, the user might select one or

more file names from a list box and then click on a button widget to delete the selected

files;the TCL command associated with the button widget can read out the strings

from the selected listbox entries. It's also common for listboxes to support double­

clicking,which both selects an entry and invokes some operations on it. For example,

in a file-open dialog box, double-clicking on a file name might cause that file to be

opened by the application.

5.7 Entry

An entry is a widget that allows the user to type in and edit a one-line string. For

example, if a document is being saved to disk for the first time then the user will have

to provide a file name to use. The user might type the file name in an entry widget,

then click on a bottom widget whose Tcl command retrieves the file name from the

entry and saves the document in that file.

CHAPTER 5. USER INTERFACE WIDGETS 50

interface entry:widget {

}

entry(char* p, char* options = '"');
entry(widget* w,char* p, char* options "");
void insert(char* s);
char* get();

Figure 5.11: The entry class

To enter text into an entry the user clicks mouse button 1 in the entry. This

makes a blinking vertical bar appear, called the insertion cursor. The user can then

type characters ·and they will be inserted into the entry at the point of the insertion

cursor. The insertion cursor can be moved by clicking anywhere in the entry's text.

Text in an entry can be selected by pressing and dragging with the mouse button 1,

and it can be selected by pressing and dragging with mouse button 1, and it can be

edited with a variety of keyboard actions; see the reference documentation for details.

If the test for an entry is too long to fit in its window then only a portion of it

is displayed and the view can be adjusted using an associated scrollbar widget or by

scanning with the mouse button 2. Entries can be disabled so that no insertion cursor

will appear and the text in the entry cannot be modified. The text in an entry can

be associated with a Tcl variable so that changes to the variable are reflected in the

entry and changes made in the entry are reflected in the variable.

The entry class shown in Figure 5.11 offers, in addition to the two (standard)

constructors, the functions insert and get, that are used respectively to set and get

the text that will appear in the entry. The text appearing in the entry may be edited

by the user.

c

c

CHAPTER 5. USER INTERFACE WIDGETS 51

Figure 5.12: Scrollbar

5.8 Scroll bar

Scroll bar widgets are used to control what is displayed in other widgets. Each scroll bar

is associated with some other widget such as a listbox or entry. The scrollbar is

typically displayed next to the other widget and when the user clicks and drags on

the scrollbar the view in the associated widget will change. A scrollbar appears as

shown in Figure 5.12 with an arrow at each end and a slider in the middle. The

size and position of the slider correspond to the portion of the associated widget 's

document that is currently visible in its Window. Foe example, if the slider covers

the rightmost 20% of the region between the two arrows as in Figure 5.12 it means

that the rightmost 20% of the document is visible in the window. Scrollbars can be

oriented either vertically or horizontally.

Users can adjust the view by clicking mouse button 1 on the arrows, which moves

the view a small amount in the direction of the arrow, or by clicking in the empty

space on either side of the slider, which moves the view by one screenful in that

direction. The view can also be changed by pressing on the slider and dragging it.

A scrollbar interacts with its associated widget using Tcl scripts. One of a scroll­

bar's configuration options is a Tcl script to invoke to change the view;typically this

script invokes the widget command fir the associated widget. When the user manip­

ulates the scrollbar, the scrollbar invokes the script, including additional information

about the new view that the user requested. The associated widget changes its view

and then invokes another Tcl script(one of its configuration options) that tells the

scrollbar exactly what information is now displayed in the window, so the scrollbar

can display the slider correctly. The scrollbar doesn't update its slider until told to

do so by the associated widget; this makes it possible for the associated widget to

0 CHAPTER 5. USER INTERFACE WIDGETS 52

reject or modify the user's request(e.g. to prevent the user from scrolling past the

ends of the information in the widget).

0

Chapter 6

Configure widgets

Widgets are the element a GUI is made of. They appear as windows on the screen

to display text or graphics and may respond to events such as motioning the mouse

or pressing a key by calling an action associated with that event.

Most often, the various widgets constituting the user interface are (hierarchically)

related to each other, as for instance in a drawing application containing a canvas

to display graphic elements, a button toolbox for selecting the graphic items and a

menubar offering various options such as saving the drawing in a file.

Pathnames Widgets in Tk are identified by a path name. The path name of a widget

reflects its possible subordination to another widget. A pathnames consists of strings

separated by dots. The first character of a path must be a dot.The format of a path

name may be expressed in BNF form as

<path>::='.'!'.'< string> I <path>' .1 <string >

For example"." is the pathname of the root widget, whereas ".quit" is the pathname

of a widget subordinate to the root widget. A widget subordinate to another widget

must have the pathname of that widget as part of its own pathname. For exam­

ple, the widget ".f.m" may have a widget ".f.m.h" as a subordinate widget. Note

that the widget hierarchy depicted in Figure 3.8(a) and Figure 6.1. With respect to

53

0 CHAPTER 6. CONFIGURE WIDGETS 54

the pathname hierarchy, when speaking of ancestors we simply mean superordinates

widgets.

Pathnames are treated somewhat more liberally in vsh. For example, widget

pathnames may simply be defined or extended by a string. The missing dot is then

automatically inserted.

The widget class is an abstract class. Calling the constructor widget as in

widget* w =new widget(".awry 11
);

does not result in creating an actual widget but only defines a pointer to the widget

with that particular name. If a widget with that name exists, it may be treated as an

ordinary widget object, otherwise an error will occur. The constructor widget(widget

w1 char path).creates a widget by appending the pathname path to the argument

widget w.

The function path delivers the pathname of a widget object. Each widget created

by Tk actually defines a Tcl command associated with the pathname of the wid­

get. In other words, an actual widget may be regarded as an object which can be

asked to evaluate commands. For example a widget ".b" may be asked to change its

background color by Tcl command like

.b configure -background blue

The function eval, result and evaluate enable the programmer to apply Tcl com­

mands to the widget directly, as does the con figure command. The function geometry

sets the width and height of the widget.

Packing Naming widgets in a hierarchical fashion does not imply that the widgets

behave accordingly. The widget class interface offers two pack functions. The function

widget::pack(char*) applies to individual widgets. As options may specify for example

-side X, where X is either top, bottom, left or right, to pack the widget to appropriate

side of the cavity specified by the ancestor widget. Other options are-fill x of-f ill

y, to fill up the space in the appropriate dimensions or -padx Nor -pady N, for some

integer N, to surround the widget with some extra space.

c CHAPTER 6. CONFIGURE WIDGETS 55

Alternatively, the function widget::pack(widget*, char*) may be used, which allows

for the same options but applies packing to the widget parameter. This function is

convenient when packing widgets in a frame or toplevel widget.

As a remark, the kit :: pack function may only be used to pack widgets to the

root window.

Binding events Widgets may respond to particular events. To associate an event

with action, an explicit binding must be defined for that particular widget. Some

widgets provide default binding. These may however be overruled.

The function bind is used to associate actions with events. The first string pa­

rameter of bind may be used to specify the event type. Common event types are, for

example, ButtonPress, ButtonRelease and Motion, which are the default events for

the canvas widget. Also keystrokes may be defined as events, as for example Return,

which is the default event for the entry widget.

The function widget :: handler may be used to associate a handler object or

action with the default binding for the widget. Concrete widgets may not override

the handler function itself, but must define the protected virtual function install.

Typically, the install function consists of calls to bind for each of the event types that

is relevant to the widget.

For both the bind and handler functions, the optional args parameter may be

used to specify the arguments that will be passed to the handler or action when it is

invoked. For the button widget for its handler.

6.1 Compound widgets

In addition, the widget class offers four functions that may be used when defining

compound or mega widgets. The function redirect(w) must be used to delegate

the invocation to the widget to which the commands are redirected. After invok­

ing redirect, the function thepath will deliver the path that is determined by self()

•

CHAPTER 6. CONFIGURE WIDGETS 56

Widget

interface widget:handler{
widget(char* p);
widget(widget& w,char* p);
char* type();
char* path();
int eval(char* cmd);
char* result();
char* evaluate();
virtual void configure(char* cmd);
virtual void geometry(int xs, int ys);
widget.* pack(char* options = "top");

I I returns type of the widget
I I returns path of the widget
I I invokes "thepath()" cmd
I I returns the result of eval
I I combines eval and result()
I I invokes 'path() configure cmd'
I I determines width x height y

widget* pack(widget* w, char* options "top");
virtual bind(char* b, handler* h, char* args = "");
virtual bind(char* b, action& ac, char* args = "");
void handler(class handler* h, char* args = '"');
void handler(action& ac, char* args = '"');
void xscroll(scrollbar* s); I I to attach scrollbars
void yscroll(scroll bar* s);
void focus(char* options = "");
void grab(char* options = '"');
void destroy();
TLWindow tkwin();
widget* self();
void redirect(widget* w);

I I removes widget from the screen
I I gives access to Tk_Window
I/ for constructing mega widgets

protected;
char* thepath(); I I delivers the virtual path
virtual install(action&, char* args='"'); I I default binding

}

Figure 6.1: The widget class

0

Chapter 7

Graphics and Hypertext

The Tk toolkif offers powerful facilities and (hyper)text [Con87, Ous93). In this

section we will discuss only the canvas widget offered by Tk. And instead of looking

at text widget provided by Tk, we will (briefly) look at the hypertext widget, which

presents an alternative approach to defining hyperstructure.

7.1 The item class

The canvas widget allows the programmer to create a number of built-in graphics

items. Items are given a numerical index when created and, in addition, they may be

given a (string) tag. Tags allow items to be manipulated in a group-wise fashion. To

deal with items in a C++ context, the vsh library contains a class item of which the

functionality is shown below.

Instances of item may not be created directly by the user, but instead are created

by the canvas widget. For an item, its index may be obtained by casting the item to

int. If the index does not identify any existing item, it will be zero. Existing items

may be moved, in a relative way, by the function move.

In a similar way as for widgets, item may be associated with events, either ex­

plicitly by using item :: bind, or implicitly by using item :: handler. The default

60

0 CHAPTER 7. GRAPHICS AND HYPERTEXT

interface item {
operator int();
void configure(char* cmd);
void tag(char* s);

/I returns item index
I I calls canvas::itemconfigure
I I sets tag for item

61

char *tags(); I I delivers tags set for the item
void move(int x,int y);
virtual bind(char* b, handler* h, char* args = '"');
virtual bind(char* b, action& ac, char* args = "");
void handler(class handler* h, char* args = "") ;
void handler(action& ac, char* args "");

protected;
virtual install(action&, char* args=""); I I default binding

};

Figure 7.1: The item class

bindings for items are identical to the default bindings for the canvas widget, but

these may be overridden by descendant classes.

Similar as the widget class, the item class is derived from the handler class. This

allows the user to define possibly compound shapes defining their own handler.

7.2 The canvas widget

The Tk canvas widget offers powerful means for doing structural graphics. The vsh

class canvas provides merely a simplified interface to the corresponding Tk widget.

Apart from the two standard constructors, it offers the functions tag, tags and

move that merely repeat the functions offered by the item class, expect that move

may also be given a tag to identify the items to be moved.

Currently, the graphic items bitmap, line, oval, polygon and rectangle may be

created and, in addition to,text items and window items consisting of a widget.

CHAPTER 7. GRAPHICS AND HYPERTEXT 62

The function overlapping may be used to retrieve the item overlapping a particular

position.

In addition, the canvas class auxiliary functions needed to support the function­

ality provided by the item class. The canvas may be written as Postscript to a file

with the function canvas :: postscript.

interface canvas : widget {

};

canvas(char* p, char* options="");
canvas(widget* w, char* p, char* options="");
void tag(int id);
void move(int id, int x,int y);
void move(char* id, int x,int y);
item bitmap(int xl, int yl, char* bitmap, char* options "'');
item line(int xl, int yl, int x2, int y2, char* options = "");
i tern line(char* linespec, char* options "");
item oval(int xl, int yl, int x2, int y2, char* options = "");
item polygon(char* linespec, char* options = '"');
item rectangle(int xl, int yl, int x2, int y2, char* options = "");
item text(int xl, int yl, char* txt, char* options = "");
item window(int xl, int yl, char* win, char* options = '"');
item current();
item overlapping(int x, int y);
itemconfigure(int it, char* options);
itemconfigure(char* tag, char* options);
itembind(int it, char* s, action& a, char* args = "");
itembind(char* tag, char*s, action& a, char* args = "");
void postscript(char* file, char* options="");

Figure 7.2: The canvas class

0 CHAPTER 7. GRAPHICS AND HYPERTEXT 63

7.3 The Hypertext widget

Both the Tk canvas and the text widget allow to bind actions to particular items and

hence define dynamically what we call hyperstructures.

A different, in a way more static, approach is offered by the hypertext widget

developed by george.howlett@att.com. The vsh class interface to the hypertext widget

is given below.

interface hypertext : widget {

. }

hypertext(char* p, char* options = "");
hypertext(widget* w, char* p, char* options = "");
void file(char* f); to read in hypertext file

Figure 7.3: The hypertext class

Apart from the standard constructors, it offers the function file to read in a

hypertext file. Such a hypertext file allows to embed widget in the text by inserting

them in escape sequences.

Widgets created when reading in hypertext file may be given a pathname relative

to pathname of the hypertext widget by using the variable this. In addition the

hypertext widget offers the variables thisline and this file to identify the current line

number and current filename.

The hypertext widgets may be used to display textfiles containing embedded Tcl

code. The Tcl code must be placed between escapes. that take the form of%% for

both the begin and end of the code.

Any of the widgets and commands offered by Tcl/Tk or supported by vsh may be

included in a hypertext file. However, this is for more advanced programmers only

since it requires intimate knowledge of the Tcl/Tk intrinsic.

Chapter 8

Employing the scripting language

When developing complex user interfaces, it will often be advantageous to do most of

the work in the scripting languages and to restrict the interaction with the program

written in C++ to a bare minimum. However, occasionally, the (C++) program will

need to access or modify variables defined in the Tcl script. To this end, the vsh

library offers the class var Figure 8.1.

An instance of var may be created as a reference to an already existing variable

or by giving the name of the variable. Creating such a variable in C++ has no side­

effects. It does not create or modify Tcl variable, it merely modifies access to it(if it

exists). A variable may be assigned a value of type char, int, float or the value of

another instance of var. In the future, other value types may be supported as well.

Variables may be associated with an action that is triggered whenever one of the

operations read, write or unset as defined by the options is performed on the variable.

For more details see the Tcl trace command.

The name and (string) value of the variable may be retrieved by respectively

the function name and the application operator. In addition for each value type

supported a type conversion operator is supplied. (No type checking is supported

yet.)

64

CHAPTER 8. EMPLOYING THE SCRIPTING LANGUAGE

interface var:client{
var(var& v);
var(char* s);

}

char* operator = (char* s);
char* operator (int i);
char* operator = (float f);

'd . (t' & h * . " " h * "") vo1 tngger ac wn ac, c ar optwns = rwu , c ar args = ;
char* name();
char* operator();
operator char* ();
operator int ();
operator float ();

Figure 8.1: The var class

int inc(client* data, kit* tk, int argc, char** argv){
var x = * (var*) data;

}

cout < < x.name() < < " = " < < x() < < endl;
X = (int) X + 1 j
return OK;

Figure 8.2: The script example

65

Example The function inc, shown in Figure 8.2, assumes to have a variable (with

value type int) as a client. It prints the name and value of the variable and then

performs an increment.

The function install shown in Figure 8.3 declares a (Tcl) variable X and another

(Tcl) variable (Y). Further, it associates the function inc (with as client the variable

CHAPTER 8. EMPLOYING THE SCRIPTING LANGUAGE

void install(kit* tk, int, char**){
var x("X");

}

var* v =new var("Y");
action ac(browse,v);
x.trigger(ac,"w");
x = 0; (* v) = 0;

Figure 8.3: Script example: The install function

void program(kit* tk, int, char**){
var* v =new var("X");
button* b = new button('' .b");
b -+text("X++");
b -+handler(browse,v);
tk -+pack(" .quit");

Figure 8.4: Script example: The program function

66

Y) with variable X. When X is assigned a value, due to the association, the function

inc will be invoked (for Y). Note that the variable for Y is created dynamically,

otherwise the (client) pointer to Y would be dangling when invoking inc. In contrast,

the variable object created for X may be discarded, since it is merely used to provide

temporary access to the (Tcl) variable X.

The function program (shown in Figure 8.4 also declares a (separate) var object

to give access to (the same) variable X and uses it as the client for an action with X,

incrementing X will result in subsequently incrementing Y.

No doubt, the reader will need to experiment to get a feel for the interaction

0 CHAPTER 8. EMPLOYING THE SCRIPTING LANGUAGE

int main (int argc, char** argv) {

}

session* s = new session(argc,argv,"root");
s -+install(install);
returns -+run(program);

Figure 8.5: Script example: The main function

between C++ functions and Tcl scripts.

67

To complete the example, the function main using install and program is shown

in Figure 8.5.

0

Chapter 9

Model Interaction

In this section we will look at an extension of the simple drawing tool presented in

chapter 4.

The example illustrates how to use the vsh library widgets. It serves to illustrate,

in particular, how handlers may be attached to widgets, either by declaration or by

inheritance, and how to construct compound widgets.

Our approach may be considered object oriented, in the sense that each component

of the user interface is defined by a class derived from a widget class.

It must be pointed out beforehand, that the major difficulty in defining compound

or mega widgets is not the construction of the component themselves, but to dele­

gate the configuration and binding instructions to the appropriate components. In

section 9.5 it will be shown how a compound widget defined in C++ may be made

to correspond to a widget command that may be used in Tcl script. Ideally, defining

a new widget includes both the definition of a C++ class interface and the definition

of the corresponding Tcl command.

68

CHAPTER 9. MODEL INTERACTION 69

9.1 The drawtool

Our drawing tool consists of a tablet, which is a canvas (of which only a part is

displayed), a menu_bar, having a File and an Edit menu, and a toolbox, which is a

collection of buttons for selecting among the drawing facilities. In addition, a help

facility is offered. See Figure 9.1.

@)

draw

move
box

circle

arrow

L,

drawtool

FileiEditl [Help
i-

-f- 0
/\ ... /'v\

'---

<l t7 ();

Figure 9.1: The drawtool interface

.draw.frame.menu

.draw.frame.menu.help

CJ
D
CJ
D

·----------
:oo
: ,----------------~ :
f I I 1
I I
i I I f
t 1 f I
I 1 t I
1 1 1 .draw .frame. tablet.scrolly
I t I I

l U;;;~ ~j~.frame.tablet
I :::.:.:::.:i.::~ --------- -f-------.dra:w.frame.tablet.serlollx

.draw.toolbax .draw.frame

Figure 9.2: The drawtool widget hierarchy

In Figure 9.3 the application class for the drawtool is depicted. Before the main

event loop is started, the components of the drawing tool are created and packed to

CHAPTER 9. MODEL INTERACTION

the root widget. The widget hierarchy is shown in Figure 9.2.

class application : public session { I I I drawtooll
public:
application(int argc, char* argv[]) : session(argc,argv,"drawtool") {}
void main(kit* tk, int argc, char* argv[)) {

}
}

frame* root =new frame(path()); I I (a)
frame* f =new frame(root," .frame");
tablet* c new tablet(f,options);
redirect(c); I I I (b)
toolbox* b =new toolbox(root,c);
menubar* m= new menul>ar(f,c,b);
tk -+pack(m) -+pack(c) -+pack(b,"-side left") -+pack(f,"-side right");

Figure 9.3: The drawing tool

70

In addition to the tablet, menu_bar and toolbox, a frame widget is created to

pack the menubar and tablet together. This is needed to ensure that the geometrical

layout of the widget comes out right.

Each of the component widgets is given a pointer to the root widget. In addition,

a pointer to the tablet is given to the toolbox and a pointer to toolbox is given to the

menu_bar in sections 9.2 and 9.3, respectively. In the example, no attention will be

paid to memory management.

9.2 toolbox

As the first component of the drawing tool, we will look at the toolbox. The toolbox

is a collection of buttons packed in a frame. See Figure 9.4.

0
CHAPTER 9. MODEL INTERACTION

class toolbutton : public button {
public:
toolbutton(widget* w, char* name) : button(w,name){

text(name); bind(w,name); pack();
}
};
class toolbox : public frame {
public:
toolbox(widget* w, tablet* t) : c(t), frame(w,"toolbox"){

button* bO =new toolbutton(this,"draw");
button* bl = new toolbutton(this,"move");
button* b2 new toolbutton(this," box");
button* b3 =new toolbutton(this,"circle");
butt_on* b4 =new toolbutton(this,"arrow");

}
int operator()() { c ---+mode(argv[l]); return OK; }
private:
tablet* c;
};

Figure 9.4: The toolbox

71

//I tool button I

// (a)
I I (b)

I I I toolbox I

I I (c)

I/ (d)

Each individual button is an instance of the class toolbutton. When a tool button

is created (a), the actual button is given the name of the button as its path. Next,

(b) the button is given the name as its text, the ancestor widget w is declared to be

the handler for the button and the button is packed. The function text is a member

function of the class button, whereas both handler and pack are common widget

functions. Note that the parameter name is used as a pathname, as the text to

display, and as an argument for the handler, that will be passed as a parameter when

invoking the handler object.

The toolbox class inherits from the frame widget class, and creates a frame widget

with a path relative to the widget parameter provided by the constructor (c). The

CHAPTER 9. MODEL INTERACTION 72

constructor further creates the four toolbuttons.

The toolbox is both the superordinate widget and handler for each individual

toolbutton. When the operator() function of the toolbox is invoked in response to

pressing a button, the call is delegated to the mode function of the tablet(d)). The

argument given to mode corresponds to the name of the button pressed.

Comments The definition of the toolbutton and toolbox illustrates that a widget

need not necessarily be its own handler. The decision whether to define a subclass

which is made its own handler or to install an external handler depends on what is

considered the most convenient way to access the resources needed. As a guideline,

exploit the regularity of the application.

9.3 Menus

The second component of our drawing tool is the menubar.

The class menu_bar, depicted in Figure 9.5 is derived from the vsh widget menubar.

Its constructor requires an ancestor widget, a tablet to ediLmenu. In addition,

a help_button is created, which provides on-line help in a hypertext format when

pressed. The help facility will be discussed in section 9.8.

A menubar consists of menubuttons to which actual menus are attached. Each

menu consists of a number of entries, which may possibly lead to cascaded menus.

The file_menu class, depicted in Figure 9.6, defines a menu, but is derived from

menubutton in order to attach the menu to its menubar ancestor(a). Its construc­

tor defines the appearance of the button and creates a jileJwndler (which will be

discussed in section 9.6(b)). It then defines the actual menu(c). The menu must

explicitly be attached to the menubutton by invoking the menubar member function

menu. For creating the menu, the keyword class is needed to disambiguate between

the creation of an instance of the class menu and the call of the menubar :: menu

function.

0 CHAPTER 9. MODEL INTERACTION

class menu_bar : public menu bar { I I I menu_bar I
public:
menu.bar(widget* w, tablet* t, toolbox* b) : menubar(w,"bar") {

configure("-relief sunken");

}
};

menubutton* bl =new file..menu(this,t);
menubutton* b2 =new edit..menu(this,b);
button* b3 = new help_button(this);

Figure 9.5: The menu_bar

73

Before defining the various entries of the menu, the Jile_menu instance is declared

as the handler for the menu entries(d). However, except for the entry Quit, which is

handled by calling the kit :: quit function(e), the calls are delegated to the previously

created JileJwndler.

The second button of the menu..har is defined by the edit..menu. The ediLmenu

requires a toolbox and creates a menubutton. It configures the button and defines

a menu containing two entries, one of which is a cascaded menu. Both the main

menu and the cascaded menu are given the toolbox as a handler. This makes sense

only because for our simple application, the functionality offered by the toolbox and

edit..:menu coincide.

9.4 Defining actions - delegation verses inheri­

tance

The most important component of our drawtool application is defined by the tablet

widget class depicted in Figure 9. 7. The various modes supported by the drawing

tool are enumerated in separate class drawmode. The tablet class itself inherits from

0 CHAPTER 9. MODEL INTERACTION

class file..menu : public menubutton {
public:
file..menu(widget* w,tablet* t) : c(t), menubutton(w,"file") {

configure("-relief sunken -text File"); pack(" -side left");
f new file..handler(c);

}

class menu* m= new class menu(this,"menu");
this -+menu(m);
m -+bind(this);
m -+entry(" Open");
m -+entry("Save");
m -+entry(''Quit");

int operator()() {
if (!str:cmp(argv[l],"Quit")) tk -+quit();
else f -+dispatch (tk,argc,argv);
return OK;

}
protected:
tablet* c;
filellandler* f;
};

Figure 9.6: The file..menu

74

I I I file...rnenu I

I I (a)

I I (b)
I I (c)

I I (d)

I I (e)

the canvas widget class. This has the advantage that it offers a function mode, which

sets the mode of the canvas as indicated by its string argument, and a function init

that determines the creation and geometrical layout of the component widgets. As

instance variables, it contains an integer _mode variable and an array of handlers that

contains the handlers corresponding to the modes supported. See section 9. 7 for an

example of a typical canvas handler.

Dispatching Although the tablet must act as a canvas, the actual widget is nothing

but a frame that contains a canvas widget as one of its components. See Figure 9.8.

This is reflected in the invocation of the canvas constructor (a). By convention,

0 CHAPTER 9. MODEL INTERACTION

class drawmode { I I \ drawmode I
public: enum { draw, move, box, circle, arrow, lastmode };
};
class tablet : public canvas {
public:

I I \tablet I
tablet(widget* w, char* options='"');

int operator()() { I I I operator() I
return handlers[..mode] -tdispatch(tk,argc,argv);

}
void mode(char* m);
protected:
void init(char* options);
int ..mode;
class handler* handlers[drawmode::lastmode];
canvas* c·

' };

Figure 9.7: The tablet

75

when the options parameter is 0 instead of the empty string, no actual widget is

created but only an abstract widget, as happens when calling the widget class con­

structor. Instead of creating a canvas rightaway, the tablet constructor creates a top

frame, initializes the actual component widget and redirects the eval,configure,bind

and handler invocations to the subordinate canvas widget(b). It then declares itself

to be its own handler, which results in declaring itself to be handler for the canvas

component (c). Note, that reversing the order of calling redirect and handler would

be disastrous. After that it creates the handlers for the various modes and sets the

initial mode to move.

The operator() function takes care of dispatching calls to the appropriate handler.

The dispatch function must be called to pass the tk, argc and argv parameters.

CHAPTER 9. MODEL INTERACTION

tablet::tablet(widget* w, char* options) : I I I tablet:: tablet l
I I (a)

}

canvas(w,"tablet" ,0) {
widget* top =new frame(path());
init(options);
redirect(c); I I (b)
bind(this); I I (c)
handlers[drawmode::draw] = new draw..handler(this);
handlers[drawmode::move] =new move_handler(this);
handlers[drawmode::box) =new box..handler(this);
handlers[drawmode::circle] = new circlellandler(this);
handlers(drawmode::arrow] = new arrow_handler(this);
_mode= drawmode::draw;

Figure 9.8: Installing the handlers

9.5 Creating new widgets

76

Having taken care of the basic components of the drawing tool, that is the toolbox,

menu_bar, and the tablet widgets, all that remains to be done is to define a suitable

file_handler, appropriate handlers for the various drawing modes and a help_handler.

This will be done in sections 9.6 and 9.8 respectively.

However, before that it will be shown how we may grant the drawtool the status

of a veritable Tk widget, by defining a drawtool handler class and a corresponding

drawtool widget command. See Figure 9.9.

Defining a widget command involves three steps: (I) the declaration of the binding

between a command and a handler, (II) the definition of the operator() action func­

tion, which actually defines a mini-interpreter, and (Ill) the definition of the actual

creation of the widget and its declaration as a TcliTk command.

Step(I) is straightforward. We need to define an empty handler, which will be asso­

ciated with the drawtool command when starting the application. See Figure 9.10(a).

CHAPTER 9. MODEL INTERACTION

class drawtool : public canvas { I I \ drawtool\
public:
drawtool() : canvas() { } I I (I)
drawtool(char* p, char* opts='"') : canvas(p,O) {

}

init(opts);
redirect (c) ;

int operator()(){ I I (II)

}

if (!strcmp("self' ,argv[l])) tk -tresult(self() -tpath());
else if (!strcmp("drawtool" ,*argv)) create(-argc,++argv);
else self() -teval(flatten(-argc,++argv));
return OK;

protected:
tablet* c;
void init(char* options);
void create(int argc, char* argv(]) { I/ (Ill)

}
};

char* name = *argv;
tk -taction(name, new drawtool(name, flatten(-argc,++argv)));

Figure 9.9: The drawtool widget command

77

The functionality offered by the interpreter defined by the operator() function in (II)

is kept rather simple, but may easily be extended. When the first argument of the

call is drawtool, a new drawtool widget is created as specified in (Ill), except when

the second argument is self. In that case, the virtual path of the widget is returned,

which is actually the path of the tablet canvas. It is the responsibility of the writer of

the script that the self command is not addressed to the empty handler. If neither of

these cases apply, the function widget :: eval is invoked for self, with the remaining

arguments flattened to a string. This allows for using the drawtool almost as an

ordinary canvas. See the example hypertext script shown in section 9.8.

CHAPTER 9. MODEL INTERACTION 78

The creation of the actual widget and declaration of the corresponding Tcl com­

mand, according to the Tk convention, is somewhat more involved (Ill).

Recall that each Tk widget is identified by its path, which simultaneously defines a

command that may be used to configure the widget or, as for a canvas, to draw figures

on the screen. Hence, the function create must create a new widget and declare the

widget to the the handler of the command corresponding to its pathname.

class application : public session { //1 drawtool\
public:
application(int argc, char* argv[]) : session{ argc,argv," drawtool") {}
void prelude(kit* tk, int, char**) {

}

iniLht(tk);
tk -+trace();
tk --+action("drawtool", new drawtool());// (a)

void main(kit* tk, int, char**) {
tk -+trace();

}
};

drawtool* d =new drawtool(" .draw");
tk --+action("drawtool" ,d); // (b)
d --+rectangle(30,30,80,80," -fill red");
d -+pack();

Figure 9.10: The drawtool application

The application class depicted in Figure 9.10 will by now look familiar, except for

the function prelude. In the body of the prelude function, the tcl command drawtool

is declared, with an instance of drawtool as its handler(a).

In this way, the drawtool widget is made available as a command when the pro­

gram is used as an interpreter. However, in the function main this declaration is

overridden, in order to allow for a script to address the drawtool by calling drawtool

CHAPTER 9. MODEL INTERACTION 79

self.

Discussion The reader may by now have lost track of how delegation within a com­

pound widget takes place. Perhaps a brief look at the implementation will clarify

this.

Each eval, configure, or bind function call for a widget results in a command

addressed at the path of the widget. By redirecting the command to a different path,

the instructions may be delegated to the appropriate (component) widget. Delegation

occurs, in other words, by directing the commands to the widget 's virtual path is

obtained by the protected function thepath(). In contrast, the function path() delivers

the path of the widget's outer component. Indirection takes place by invoking the

function self(), which relies on an instance variable self that may be set by the

redirect function.

The implementation of thepath() and self() is simply:

char* thepath() return self() ~path();

widget* self() return self?self ~self():this;

Hence, resolving a compound widget's primary inner component relies on simple

pointer chasing, which may be applied recursively to an arbitrary depth at acceptable

costs.

9.6 Dialogs

Interactive applications may require the user to type some input after reading a mes­

sage or to select an item for a list of alternatives. One of the widgets that may be

used in a dialog with the user is the filechooser widget. The filechooser widget con­

sists of a listbox filled with filenames and an entry widget that contains the filename

selected by the user (by double clicking on the name) or which may, alternatively, be

used to type in filename directly. In addition, the filechooser has an OK button, to

CHAPTER 9. MODEL INTERACTION 80

confirm the choice and cancel button, to break off the dialog. Below, the construction

of simplified version of the filechooser will be discussed briefly.

Window based interactive applications differ from ordinary interactive applica­

tions by relying on an event-driven flow of control. The indirection that is typical for

event-driven control is exemplified in the definition of the fileJwndler depicted in

Figure 9.11, that was invoked by file_menu in section 9.3

9.6.1 The file_handler widget

Since the jile_handler does not correspond to an actual widget when created, its

constructor merely stores the canvas pointer, which is actually pointer to the tablet.

class filellandler : public handler {
public:
file_handler(canvas* x) : c(x) {}
int operator()() {

}

if (!strcmp("Open'', argv[l])) launch("OPEN");
else if (!strcmp("Save", argv[l))) launch(" SAVE");
else if (!strcmp("OPEN", argv[l])) open();
else if (!strcmp("SAVE", argv[l])) save();
return OK;

protected:
canvas* c

' file_chooser* f;
void launch(char* args) { f =new file_chooser(); f -+bind(this,args);}
void open() { tk -+source(f -+get()); f -+destroy(); }
void save() { c -+postscript(f -+get()); f -+destroy(); }
};

Figure 9.11: The file_handler class

CHAPTER 9. MODEL INTERACTION 81

In response to the Open or Save menu entries, the file_handler launches a

file_chooser and declares itself to be the handler (with the appropriate arguments).

For example, when selecting the Open entry, the file_chooser is launched which even­

tually calls the file-handler :: dispatch function with OPEN as its argument. The

file-handler then invokes the open function, which results in reading in the file and

destroys the file..chooser. In the similar way, the menu entry Save results in writing

the canvas to a postscript file.

9.6.2 The file_chooser widget

Despite its simple appearance, which is left to the imagination of the reader, the

file..chooser widget has some subtle complexities.

A rudimentary file_chooser class is depicted in Figure 9.12. Typically, a file_chooser

is a toplevel widget, that is a widget that is independently mapped to the screen. To

avoid name clashes the function gensym, which delivers a system-wide unique name,

is used to determine its path. Apart from the operator() function, the file_chooser

has only one public function get, which delivers the name selected or typed in by the

user.

The widget components of the file_chooser, two buttons and the entry and listbox

widgets, are stored in its instance variables. Further, we have a function init to

construct the actual file_chooser widget, in a function list to fill the listbox and

the function install, which is used to install an external handler for the two buttons

widgets. The install function is defined as in Figure 9.13.

Recall, that when declaring a handler for a button, the name of the button is given

as an additional argument when invoking the handler. This enables the fileJwndler

to distinguish between a call due to pressing the OK button and a call due to pressing

the Cancel button.

The interplay between the C++ definition and the underlying Tcl/Tk toolkit is

nicely illustrated by the definition of the list function shown in Figure 9.14.

c CHAPTER 9. MODEL INTERACTION

class file_chooser : public toplevel {
public:
char* type() { return "file_chooser"; }
file_chooser() : toplevel(gensym()) {init(); }
char* get() { return e ~get(); }
int operator()();
protected:
void list();
button* b· button* c·))

entry* e· listbox* 1·
' '

void init();
void list();
};

Figure 9.12: The Jile_chooser class

void file_chooser: :install(action& a, char* args) {
b ~handler(a,args);
c ~handler(a,args);

}

Figure 9.13: file...chooser:install

82

Calling list results in filling the listbox with the filename in the current directory.

Its corresponding definition in C++ would, no doubt, be much more involved.

The init function constructs the various component widgets and an auxiliary frame

widget to obtain the desired layout. It further defines the appropriate event binding

for the listbox, letting the double clicks results in setting the entry.

c

0

CHAPTER 9. MODEL INTERACTION

void file_chooser::list() {
sprintf(buf,"foreach i [exec Is -a]

}

9. 7 Graphics

{ %s insert end $i }", 1 -+path());
tk -+eval(buf);

Figure 9.14: Jile_chooser:list

83

The Tk canvas widgets offers powerful means for doing structured graphics. The vsh

class canvas provides merely a simplified interface to the corresponding Tk widget.

As an example of the use of a canvas, consider the definition of the moveJwndler

class in Figure 9.15. The move_handler class is derived from the class handler. It

makes use of the dispatch and operator() function defined for handler, but redefines

the (virtual) functions press, motion and release.

When creating an instance of a move_handler, a pointer to the canvas must be

given to the constructor. In addition, the class has data members to record position

coordinates and whether a particular item is being moved. Actually moving an item

occurs by pressing the (left) mouse button on an item and dragging the item along.

When the mouse button is released, moving stops. To identify the item, the function

overlapping is used. The movement is determined by the distance between the last

recorded position and the current position of the cursor.

In an analogous manner, a box_handler may be defined. The box_handler sets

dragging to true when the button is pressed and creates a rectangle of zero width

and height. Each time the function motion is called, the item created in the previous

round is deleted and a new rectangle is created by calling

c->rectangle(x,y,e.x(),e.y());

c

CHAPTER 9. MODEL INTERACTION

class move..handler : public handler {
public:

move..handler(canvas* cv) { c = cv; dragging = 0; }

void press(event& e) {
x = e.x(); y = e.y();

}

id = c -toverlapping(x, y);
if (id) dragging = 1;

void motion(event& e) {
if (dragging) {

}
}

id.move(e.x() x, e.y() - y);
x = e.x(); y = e.y();

void release(event&) { dragging = 0; }
protected:
canvas* c; int dragging; item id; int x,y;
};

Figure 9.15: The moveJwndler class

84

Where c is a pointer to the canvas and x and y the button pointer coordinates

stored when dragging began. For circles and lines, it suffices to replace the call to

rectangle with a call to the appropriate figure creation function.

9.8 Hypertext

As described in section 7.3 the hypertext widget may be used to display text files

containing embedded Tcl code. The Tcl code must be place between escapes, that

c CHAPTER 9. MODEL INTERACTION 85

take the form %% for both the begin and end of the code. A screen shot of a fragment

of the on-line help for drawtool is given in Figure 9.16. Notice that the on-line help

provides a replica of the drawtool application, surrounded by text. When looking at

(again as fragment of) the hypertext file specifying the contents of the on-line help,

given in Figure 9.17, you see that the drawtool command defined in section 9.5 is

employed to create the embedded widget.

Figure 9.16: Hypertext help

When specifying the hypertext file, widgets may be given a pathname relative to

the pathname of the hypertext widget by using the variable this. In addition the

hypertext widget offers the variables thisline to identify the current line number and

the current file name.

0 CHAPTER 9. MODEL INTERACTION

Rubber banding: press the left mouse button
and release when the rectangle is of appropriate
SlZe

%%
drawtool $this.draw
$this append $this.draw

$this.draw create rectangle 20 20 80 80
$this.draw create rectangle 10 30 70 90
$this.draw create oval 40 40 90 90
%%

For additional information click on the %%
button $this.goto -text instruction

-command "global EOT; $this gotoline $EOT"
$this append $this.goto
%%
button. Press%%
button $this. quit -command "destroy .help" -text quit -bg pink
$this append quit
%%to remove the window.
%%
global EOT
set EOT [expr $thisline-1]
%%
Additonal information ...

Figure 9.17: A Hypertext help file

86

c

c

0

Chapter 10

Related Work

The two most popular window environment nowadays are X-windows (which operates

under Unix) and MS-windows (which provides a window environment on top of DOS).

Although both environments provide a C interface (as a collection of low-level library

functions), most application developers prefer a library that provides a higher-level

functionality and pre-defined widgets.

The credo of the consortium supporting X-windows may be expressed as the wish

to offer mechanism instead of policy. Two standards have been developed which

do support policy (that is, conventions with respect to the graphical layout of the

user interfaces) as well, namely the Motif standard (that is adhered to by many

X-window library vendors) and Openlook standard. The following sections of this

chapter present an overview of the toolkits (See Figure 10.1) based on these standards

and their comparison with V sh.

10.1 ET++

One of the earliest graphic user interface development libraries for C++ is ET++

[WGM88). Originally developed for Sunview, ET++ is now also available for X­

windows. It is part of a programming environment PE++, which includes program

87

c

0

CHAPTER 10. RELATED WORK 88

. User Interface development

• ET++ general

• InterViews- interaction

• Suit - portable

• Andrew,Thesesus++- hypermedia

• V sh - multi paradigm

Commercial

• Xv++, StarView, Zinc Interface Library

Figure 10.1: Libraries for GUI development

support tools such as browsers and editors. ET++ is a class library which aims

to provide most of the facilities found in the standard Smalltalk class library. It

is structured as a single-rooted inheritance hierarchy, with many virtual functions

available to provide flexibility and opportunities for extension.

ET stands for "Editor Toolkit" and the original aim of ET++ was to make it easy

to build highly interactive tools such as drawing programs. CASE diagrams editors,

source code browsers, etc. Many of the ideas from Apple's MacApp system were also

borrowed and used. This gives ET++ applications a strong "Macintosh feel".

All classes in ET++ inherit from class Object, which defines the protocol for

actions common to all classes. These include comparison of objects, object in­

put/output, status flags and object dependency. Most of the member functions in

Object do nothing and exist purely to be over-ridden in subclasses. Each Object

can have a collection of dependents, so that whenever it calls the member functions

0

CHAPTER 10. RELATED WORK 89

Changed(), all dependents receive a call to Update(), because it is embedded at the

root of the hierarchy. This mechanism was borrowed from Smalltalk-80, and simplifies

many problems in interactive systems, such as displaying of multiple views of model

objects, or re-sizing containers when their contents alter in shape.

Another feature that ET++ has borrowed from Small talk is the MetaClass con­

cept. It can be very useful in object-oriented systems to be able to ask any object

what class it is, or to know what instance variable it possesses. Unfortunately, C++

gives no access, at run-time, to this information, so ET++ implements a class Class,

analogous to Smalltalk's MetaClass. Besides this ET++ implements a rich set of

container classes akin to those found in Smalltalk: Set, Bag, OrdCollection, ObjList,

Dictionary and so on. Each one is derived from the abstract class Collection. Collec­

tion deals with instances of any class derived from Object, so no compile-time type

checking is possible, and users of Collections must type-cast objects extracted from

them. This is contrary to the spirit of C++. The IsKindOf() member function pro­

vided by ET++'s metaclass system makes it possible to check the types of contained

objects at run-time, and to perform" guarded casts", which flags an error if the object

is not of the intended type.

To go through each of the elements of a collection, ET++ provides a class Iterator

which overrides the () operator to return the next object. This is similar to the

system described by Stroustrup, but is considerably more useful because more than

one Iterator at a time can be active over a Collection. Each Collection subclass has a

corresponding iterator subclass which knows the internal structure of the Collection

class, and is a friend of it.

All drawing in ET++ is done through a Port, which defines member functions to

draw lines, ovals, text, etc. This Port may be an instance of a Sun Window Port, an

XWindowPort or a NeWSWindowPort., without the application caring at all, and the

same mechanism is used to implement device-independent printing with a Postscript­

Port and PicPort provided. Another class, WindowSystem, is sub-classed by each

actual window system implementation to provide management facilities, create win­

dows etc.

0 CHAPTER 10. RELATED WORK 90

Porting ET++ to a new window system is a relatively simple job, with around 35

member functions from Port and WindowSystem to be overridden, plus Font, Bitmap

and ClipBoard support. The system is somewhat slanted to Sun Windows, the basis

for the first ET++ implementation. This doesn't pose any real structural problem

but the look and feel of ET++ is hard-wired making it difficult to accommodate a

standard user-interface definition such as Motif or OpenLook.

Another concern related to ET++ applications is the large size of binaries. This

is because most classes use several other classes to get their jobs done. For example a

Cluster uses a Collection to hold its VObjects, and Collection relies on the inherited

behaviour of Object for most of its functions, and so on. This is a good evidence

for ET++'s reusability, but it means that it is impossible to use one part of ET++

without needing to link in the whole system, and so the smallest ET++ programs

are over one megabytes in size. The largest programs are not a lot larger, however,

as they reuse more of the core system.

10.2 InterViews

Another important library for developing user interfaces (under X-windows) in C++

is the InterViews library [LVC89]. Intended as a research vehicle, the InterViews

library provides an important example of designing an object-oriented library. The

name InterViews comes from Interactive Views, as it is a library of C++ classes that

can be used to construct a graphical user interface from interactive components. It

supports object interaction mechanism related to the Model-View-Controller (MVC)

paradigm [KP88]. Like MacApp [Sch86] and Smalltalk [Gol84], the approach used in

InterViews separates interactive behaviour from abstract behaviour. An interactive

object, called a view, defines the user interface to an abstract object, called the

subject. The separation of subject and view supports different views of the same

subject to suit the particular application or to customize interactive style. A view

can be customized dynamically using a metaview, a view of another view's internal

c

CHAPTER 10. RELATED WORK 91

state. For example a metaview might allow the user to interactively modify the

mapping from keystrokes commands in a text view.

Building graphical interfaces from reusable components requires the ability to

define an interactive object that can be used in variety of contexts. To fulfill this

requirement, one must consider the way in which the characteristics of a component

and its context affect each other.

In Inter Views, each interactive component, called an interactor, has a preferred

shape and size. The preferred shape and size of composition of components, called

a scene, is calculated from those of the components. However, the actual display

space allocated to an interactor is responsible for making best use of the space it has

been allocated. Different scenes allocate display space to component inter actors using

different algorithms. For example, a box tiles its components, but a tray allows them

to overlap.

In extension to existing components there is a set of "flyweight" components,

called Glyphs, that are simple and efficient. The glyph base class defines a protocol

for drawing; subclasses define specific appearances such as graphic primitives (lines

and circles), textual primitives (characters and spaces), and composite objects (tiling

and overlays). Applications define their appearance by building hierarchies of glyphs.

InterViews primitive class operations make direct X library calls to implement

their semantics. The key issues in interfacing to X were managing X windows and

translating X input events into Inter Views events. Each canvas is represented as an

X-window. The world's canvas is the root window for a display. The scene class

contains operations to handle the creation, mapping and configuration of windows.

It also includes a library, Unidraw [VL90] for structured graphics and even provides

a user interface builder, lbuild [VT91].

Experience however shows that, although it is written in C++ and claims to be

object-oriented, the primary benefit of the system comes from its support for compo­

sition (mechanism for assembling independent widgets into interesting arrangements)

along with a variety of predefined object to use, instead of providing inheritance.

c

0

0

CHAPTER 10. RELATED WORK 92

10.3 An drew

The Andrew toolkit [Pal88] is an object-oriented system based on a minimal protocol

that allows components to communicate with each other about user interface policies,

while allowing the developer maximum freedom to determine the actual interactions

between components.

The Andrew Toolkit was built using an object-oriented system called the Andrew

Class System. This system provides the ability to dynamically load and link code,

which in turn provides a powerful extension capability for applications. Furthermore,

the dynamic loading facility can be used to add additional components to the basic

Toolkit without having to rebuild applications. This feature has been used to build

a generic, multi-media editor, EZ, that can edit a wide variety of components by

loading the appropriate code when needed.

The Andrew Toolkit is based on the development of components that can be used

as building blocks for applications as well as more complex components. The Data

objects and Views are the Toolkit's basic object types; a Toolkit component is usually

made of a view/data object pair. While the data object contains information that

is to be displayed, the view contains information about how data is to be displayed

and how the user is to manipulate the data object. For example, the text data object

contains the actual characters, style information, and pointers to embedded data

objects, as well as ways to alter the data, such as inserting and deleting characters.

The text view is made of information such as the location of the text, what portion

of text is currently visible, and what piece of text is currently selected. The text

view provides ways to draw the text, handle various input events, and manipulate

the visual representation of the text.

The contents of a data object can be saved in a file, but the contents of a view

cannot. The information associated with a view is transient and is valid only while

the application is running. When the application terminates, that information has

no further meaning. However, views do provide the facility for printing within the

Andrew Toolkit.

c

0

CHAPTER 10. RELATED WORK 93

While it is often the case that a view has an underlying data object, there are

many cases when a view is used solely to provide a user interface function. In such a

case, there is no underlying data object. The scrollbar is one such example; it only

adjusts the information contained in another view.

The view/data object distinction has been made to provide a system where mul­

tiple views can simultaneously display information contained in a single data object.

The design is similar to the Model-View-Controller design used in Small talk systems.

Despite its advantages, there is a cost to separating information into data objects

and views. Two particular areas of difficulties are coordinating data objects and

views, and maintaining a stable view state. The system does not encourage a close

connection between the changing of the information contained in a data object and the

update of the visual appearance provided by the view. Since only one view causes the

data object to change, and multiple views may have to reflect the change, a delayed

update mechanism must be used. When the user issues a command to a view to alter

the underlying data object, the view first requests that the data object modify itself,

then requests that the data object inform all its views of the change. When a view is

informed that the underlying data object has changed, it must determine what the

change is and appropriately update its visual image.

The delayed update mechanism is the trickiest challenge in building a data ob­

ject/view pair. The developer must create a mechanism with which the view can

determine what portion of the data object has changed. This method is normally

provided by a set of methods exported by the data object. However, it is not consid­

ered proper for the data object to have detailed knowledge of a specific type of view.

While this is one way to handle the delayed update, it precludes the development of

other kinds of views on the same type of data object.

The Toolkit provides the usual set of simple components, such as menus and

scrollbars, and a number of higher-level, editable components, including multi-font

text, tables and spreadsheets, drawings, equations, rasters, and simple animations.

The text and table components are multi-media; they allow the embedding of other

components within their description.

c

0

CHAPTER 10. RELATED WORK 94

In addition to the editor, a number of basic applications have been developed,

including a mail system, a help system, a typescript facility that provides an enhanced

interface to the C-shell, a ditroff previewer, and a system monitor, Console, that

displays status information such as the time, the date, the CPU load, and file system

information. Since both the mail and help applications use the text component for

the display of information, they automatically inherit the multi-media functionality

of the text component.

The Andrew Toolkit has been designed to be window-system independent. It

currently runs on two window systems, including X.ll, and can be ported easily to

others.

10.4 SUIT

SUIT, the Simple User Interface Toolkit, is subroutine library which helps C pro­

grammers create graphical user interfaces that may be modified interactively. SUIT

acts as a window manager for screen objects such as buttons, scroll bars, and menus.

As a SUIT-based program execute, user may change attributes of the screen objects

including an object's location and appearance. The changes to these attributes are

then saved with the program.

The model of computation, in SUIT, is based on external control, that is commonly

used in event driven scenarios. The thread of control lies in the hands of the user; the

main loop is the server that handles the mouse and keyboard events and dispatches

them to the appropriate widgets.

The SUIT library was developed at the University of Virginia to help C program­

mers create sophisticated mouse based interfaces without the lengthy learning period

associated with traditional user interface toolkits. Ease of learning and fast ramp up

time is central to SUIT's design. The SUIT tutorial is designed to make the user

productive in under two hours.

c CHAPTER 10. RELATED WORK 95

Also central to SUIT design is portability. SUIT programs currently run without

changes to the source code on the following platforms:

• IBM PC

• Macintosh

• Sun3

• Sun4 (SparcStation)

• SGI (Silicon graphics IRIS workstations)

• DECstation

• HP

The simplicity of the toolkit has its cost associated too. Each time when the

user quits a SUIT application, the properties associated with each of the widgets are

saved in a file called an ".sui" file. Not only does this file contain all the information

necessary to display the user's application's interface (all the widget location and

sizes) but it also keeps a record of the state the program was in when he or she

last left it (the values of all the bounded values, the choices that were selected for

each radio button in the interface etc.). If a SUIT program starts up without an

accompanying" .sui" file, the widgets appear on the screen in random locations with

all properties given default values. This hard wiring of interface affects considerably

on the performance of the application.

10.5 Theseus++

Theseus++ [Din90] is an object oriented high level user interface toolkit designed to

ease development of application-specific interaction with 21/2D graphics.

0

0

0

CHAPTER 10. RELATED WORK 96

The basic building blocks of Theseus++ for creating user interfaces are objeds.

Objects can be used for modeling interactions, presentations and graphical con­

straints. Each object is an instance of its corresponding Theseus++ class.

Interactions, which are the instances of the interaction classes, describe basic

interaction techniques and mechanism to structure interaction techniques. The root

class of the Theseus++ class tree, called U I I nteractionObj ect, defines a general

frame for any kind of interaction. This includes components, attributes, and working

scheme for the user input.

Components connect application-specific and dialogue-specific functionality (real­

ized as methods) to interconnections, attribute control and behaviour of interactions.

Each dialogue can be seen as a hierarchy of subdialogues. From the leaves to the

root of that hierarchy, the degree of abstraction increases. Theseus++ provides the

concept of the complex interactions to model the existing abstraction levels in the dia­

logue in a direct way. Complex interactions control other interactions (subdialogues).

These subdialogues are called elements of the complex interaction. An arbitrary

amount of dialogues and subdialogues can be active at any time. Interactions that

can be triggered with a single, atomic action are basic interactions. Basic interactions

are buttons, dragging of graphical objects and input via keyboard.

The presentation manager provides presentations and constraints to the applica­

tion as well as to the output related to interaction components (prompt and feedback).

Presentations can be used by application programmers and dialogue designers to com­

pose both domain-specific pictures and visual feedback of interactions. Constraints

model dynamic layout relations without invoking the application.

There are two main classes for presentations: Basic presentations correspond to

the Primitives of graphical standards like GKS or PHIGS. Basic presentations are

Lines, Fill Areas, Text and Marker objects. The structural relations in pictures are

modeled by using complex presentations. They allow to express Part-Of-Hierarchies.

The incremental creation of new levels in the picture hierarchy by using complex

presentations results in a tree presentations. There can be many such trees at any

time, while the root of every tree has to be a screen window.

0

c

0

CHAPTER 10. RELATED WORK 97

The main feature of Theseus++ is to enforce the separation between the appli­

cation and user interface in a flexible way. Parts of a dialogue, those don't require

application-specific knowledge, can be described on a higher level of abstraction,

while semantic feedback on a low level is possible for those dialogue cycles needing

application knowledge. This is accomplished by the following features:

• A description model for the separate specification of interaction components

like prompt, feedback, and semantics on each level of the interaction hierarchy.

• A dynamic composition mechanism both for definition of complex interactions

(dialogue hierarchy) and for complex graphical objects (picture hierarchy).

• The support for constraint based direct manipulation-defined graphics including

continuous interactions like dragging and stretching.

• A mechanism to support extensibility by new classes of domain-specific inter­

action techniques and graphical objects.

Theseus++ is implemented in C++ on top of OSF /Motif and the X-Windows

system. The Theseus++ library also provides a collection of classes for developing

hypermedia systems.

10.6 Comparison

Lastly I mention the vsh library, which provides a multiparadigm framework for

user interfaces operating under X-windows. There are similarities between V sh and

InterViews and Andrew toolkits in that all support some sort of widget-like notation

to decompose applications and support for underlying application object structures.

The most significant difference between vsh and the other toolkits is the presence

of Tcl in vsh. Run time languages are starting to appear in other systems, such as

Ness, which is used to embed executable programs into documents in the Andrew

c

0

CHAPTER 10. RELATED WORK 98

toolkit [Han90], and UIL, which is used to specify interfaces in Motif [OSF90]. How­

ever, these languages have three disadvantages relative to Tel. First, they are less

dynamic. For example, UIL programs must be compiled before being processed by

running applications, and Ness appears to require many decisions to be made stati­

cally. In contrast, Tcl is interpretive, so any available operation can be invoked any

time. Second, the other languages are less complete. For example, UIL does not in­

clude control constructs such as if and while, and Ness functions are not first-class

objects. In contrast, Tcl is a complete programming language that even provides

access to its own internals (e.g. it is possible to retrieve the body of a Tcl procedure

or a list of all defined variable names (Chapter 8)). Third, the other languages are

special-purpose: they only control a portion of an application's functions. In con­

trast, Tcl is used for virtually all aspects of an application, which makes it possible

to compose all of those aspects to work together.

Another difference between vsh and other toolkits is Tcl's send command for inter­

application communication. I know of no equivalent construct in other X toolkits.

The closest existing facility is Microsoft Windows's Dynamic Data exchange protocol

(DDE), which allows applications to communicate in several ways including passing

commands for remote executions [Mic90]. However, for remote execution to be most

useful it must access to all the internals of the remote application. For this to happen,

the language used by the remote execution facility should be the same as the language

used to control the user interface and internals of the target application, as it is with

Tcl and in turn vsh. Unfortunately, the Windows environment does not include a

universal command language. Although a standard syntax is suggested for remote

commands, there is no built-in connection between these remote commands and the

internals of the remote application. Each application must provide special code to

parse and execute all the remote commands it wishes to support. This will probably

limit the use of of remote execution in DDE to small set of functions. In contrast, send

command provides access to all aspects of other Tk-based or vsh based applications

without any extra effort on the part of applications' developers.

One final difference between vsh and other toolkits is the level of object-orientation.

c

CHAPTER 10. RELATED WORK 99

Et++ and Andrew are strongly object-oriented with support for hierarchical classes

and inheritance. In contrast, vsh is not strongly object-oriented, although it has a

class mechanism, and provides inheritance in widgets implementation. It focuses on

composition. In my opinion composition is more important for a toolkit than inher­

itance. There isn't enough commonality between widgets for inheritance to provide

much benefit. As experience with some of the toolkit shows deep hierarchy and inheri­

tance adds complexity (to understand one widget you must understand all the widgets

it inherits from), whereas composition mechanism allow any user to create new in­

terface elements out of existing widgets. Further support for this comes from the

InterViews system: although it is written in C++ and claims to be object-oriented,

the primary benefit claimed for the system is its support for composition [LVC89].

For the commercial libraries a distinction may be made between the libraries that

claim to be platform-independent and the libraries associated (such as StarView and

the Zinc Interface Library) provide an interface that is portable across X-windows

and MS-windows environment. For example, StarView even supports OS/2, MS­

Windows, OSF /Motif, OPENLOOK and the Macintosh window system.

c

Bibliography

[Con87J J. Conklin. Hypertext: An introduction and survey. IEEE Computer,

20(9):17-41, 1987.

[Din90] Dennis Dingeldein. Theseus++: A high level user interface toolkit for

graphical applications. TH Darmstadt, FB Informatik, FG Graphisch­

Interaktive Systeme, pages 6-21, December 1990.

[Gol84] A. Goldberg. Smalltalk-80: The Interactive Programming Environment.

Addison-Wesley, Reading, Massachusetts, 1984.

[Han90] W. Hansen. Enhancing documents with embedded programs: How ness

extends insets in the andrew toolkit. In Proc. 1990 International conference

on Computer languages, pages 1-17, March 1990.

[KP88] G.E. Krasner and S.T. Pope. A cookbook for using the model-view­

controller user interface paradigm in smallta.lk-80. JOOP, pages 26-49,

1988.

[Lip91] S. Lippman. A C++ Primer. Addison-Wesley, 2nd edn, 1991.

[LVC89] M. Linton, J. Vlissides, and P. Calder. Composing user interfaces with

interviews. IEEE Computer, 22(2):8-22, 1989.

[Mic90] Microsoft Windows Software Development Kit, Guide to Programming,

Version 3.0. Microsoft Corporation, 1990.

102

c

0

BIBLIOGRAPHY 103

[Mye92] Brad A. Myers. Languages for Developing User Interfaces. editor, Jones

and Bartlett, 1992.

[OSF90) OSF/Motif Programmer's Guide, Revision 1.0. Prentice Hall, Englewood

Cliffs, NJ, 1990.

[Ous90] John Ousterhout. Tcl : An embeddable command language. In Inpro­

ceedings of the winter 1990 USENIX Conference, pages 133-146, Berkeley

(CA), USA, January 1990. Usenix Association.

[Ous91] John Ousterhout. An xll toolkit based on tcllanguage. In Proceedings

of Winter 1991 USENIX Conference, pages 105-115, Berkely (CA),USA,

January 1991. Usenix Association.

[Ous93) John Ousterhout. Hypertext and hypermedia. Usenix Conference, October

1993.

[Ous94) John Ousterhout. Tcl and the Tk toolkit. Addison-Wesley, 1994.

[Pal88)

[Sch86]

[Str91]

[Str93]

[VL90]

Andrew Paley. The andrew tollkit- an overview. In Proc. USENIX Winter

Conference, pages 133-146, January 1988.

K. J. Schmucker. Object-Oriented Programming for the Macintosh. Hay­

den, Hasbrouck Heights, New Jersey, 1986.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,

2nd edn, 1991.

H. Strickland. Odmg-93 -the object database standard for c++. In 0++

Report, pages 45-70, October 1993.

J. Vlissides and M. Linton. Unidraw: A framework for building domain­

specific graphical editors. AGM Transactions of Information Systems,

8(2):237-268, 1990.

0

0

BIBLIOGRAPHY 104

[VT91] J. Vlissides and S. Tang. Ibuild: A unidraw-based user interface builder.

In Proceedings AGM SIGGRAPH Symposium on User Interface Software

amd Technology, 1991.

[WGM88] A. Weinand, E. Gamma, and R. Marty. Et++, an object-oriented appli­

cation framework in c++. In OOPSLA '88, pages 56-77, 1988. Springer.

