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Abstract

Spectra are usually interpreted in terms of transition energies and intensities.

The lineshape is not discussed as often; yet it reveals fluctuations and disorder in the

system. Nowhere is this analysis more powerful than in nonlinear spectroscopy, which

enables resolution of lineshapes along multiple time-frequency axes. In some cases,

the study of multidimensional lineshapes lays bare the origin of dephasing, such as

coupling to coherent vibrational excitation. In the more common case, lineshapes and

their dynamics provide important clues to the dynamics of materials. The interpre-

tation of lineshapes requires solid theoretical foundations, which are introduced. The

spectrometer allowing the observation of lineshape dynamics is then detailed. The

bandwidth of the spectrometer is obtained by self-phase modulation in Argon. The

response of Ar is instantaneous; this simple temporal response enables efficient mod-

eling. The application of broadband two-dimensional spectroscopy to the analysis of

coherent lineshape dynamics in CdSe nanocrystals (NCs) is reported. Two salient

observations are made. First, modulations arising from the LO phonon are observed,

and confirmed to be vibrational in nature by coherence mapping. Second, no elec-

tronic coherence are observed. This runs contrary to the predictions of continuum

models of NCs. The lack of electronic coherence can be explained by the occurrence

of intrinsic disorder present in a realistic NC. Finally, the general application of line-

shape analysis is demonstrated by studying the time-resolved photoluminescence of

dual-emitting NCs. The data suggests the existence of two surface states and electron

transfer dynamics at the surface of the NCs, on a timescale of >10 ns, longer than

previously thought.
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Résumé

Les données spectroscopiques sont généralement interprétées en vue d’obtenir

l’énergie et l’intensité des transitions. Le profil des raies est rarement discuté, bien

qu’il révèle les fluctuations et le désordre du système. L’analyse des profils de raies est

d’une efficacité particulière en spectroscopie bidimensionelle (2D), qui résout ce profil

selon plusieurs axes temp-fréquence. Dans certains cas, la dynamique de profil met à

nu les processus à l’origine du déphasage. C’est le cas du couplage à aux dynamiques

vibrationnelles cohérentes. En général, les profils et leur dynamiques fournissent des

indices supplémentaires sur les dynamiques électroniques. L’interprétation du pro-

fil des raies spectrales requiert une solide fondation théorique, qui ouvre l’ouvrage.

S’ensuit la présentation d’un spectromètre 2D optique permettant d’observer de telles

dynamiques. L’appareil met à profit l’automodulation de phase dans l’Argon, gaz à

réponse instantanée. Le spectromètre 2D à lumière blanche est utilisé afin d’analyser

les dynamiques cohérentes des profils de raie de nanocristaux (NC) de CdSe. Cette

analyse donne lieu à deux observations. Premièrement, une modulation du profil due

au phonon longitudinal optique (LO) est observée. Son origine vibrationnelle est con-

firmée grâce à la méthode de profilage cohérent. Deuxièmement, aucune cohérence

électronique ne peut être observée, en contradiction avec les modèles continus des NC.

Cette criante absence est expliquée par le désordre intrinsèque d’un NC réaliste. Fi-

nalement, la portée générale de l’analyse des profils de raie est démontrée par l’étude

de la photoluminescence résolue en temps (tPL) de NC double-émetteurs. Les don-

nées suggèrent l’existence de deux états de surface ainsi que du transfert d’électrons

à la surface des NC sur une échelle temporelle plus longue que généralement anticipé.
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CHAPTER 1
Introduction: Light-matter interaction

Light is one of the primary media by which humans perceive the external world.

Beyond the almost universal experience of vision, a detailed understanding of the

processes governing light and its interaction with matter enables powerful measure-

ments, both extensive and detailed of things visible and invisible. Microscopes require

an understanding of refraction; lasers, of quantum mechanics. Measurements involv-

ing light permeate most areas of knowledge concerned with the physical world. The

understanding and control of light relatedly enables modern technologies such as

metrology, precision manufacturing and fiber-optics telecommunications. Reflections

on the nature of light itself are a source of fundamental interrogation and innova-

tion, as demonstrated by the theories of relativity and the modern field of quantum

information.

The potential technological or scientific use of a beam of light depends strongly

on the region of the electromagnetic spectrum it occupies. Light visible to the human

eye spans the region known as the visible spectrum. It is usually defined as comprising

light with wavelength from 400 nm to 700 nm, larger than the largest viruses but

smaller than the smallest cells. The corresponding periods are 1.33 fs to 2.33 fs, which

is extremely short. The response of matter to light in the visible range thus reveals

1
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processes occurring on the timescale of a few femtoseconds. As far as the period

of electromagnetic waves are concerned, the human eye can resolve differences of a

fraction of a femtosecond. This duration is unfathomably short to our not-so-humble

brains — albeit this sensitivity suffers from a few constraints.

In order to reliably obtain femtosecond resolution, pulsed lasers need to be used.

Recent advances in the generation, manipulation and measurement of femtosecond

pulses provide the humble physical chemist with an extensive set of tools. It is a

privilege we shall indulge in. Femtosecond pulsed lasers emit a stroboscopic stream

of pulses with individual duration on the order of 10 to 100 fs. Although the av-

erage power is typically low (a few W), the peak power of each pulse easily reach

the GW regime. The amplification of femtosecond pulses to this power regime was a

breakthrough honored by the most recent Nobel prize in physics [1, 2]. The high field

strengths enhance nonlinear light-matter interactions. These nonlinear effects form

the basis of most of the control and measurement of fs pulses. Nonlinear optical pro-

cesses allow control over many properties of light, such as frequency, phase and pulse

duration. Nonlinear interactions also form the basis of nonlinear spectroscopy such

as Transient Absorption (TA) and coherent multidimensional spectroscopy (CMDS).

Perhaps surprisingly, the common fluorescence spectrum is rigorously described as a

third order process. Depending on the point of view and the experiment carried out,

nonlinear light-matter interaction can reveal a lot about matter, or about light.

1.1 Spectroscopy probes the material response.

Spectroscopic experiments probe the response of the materials to electromag-

netic radiation. The strongest interactions occur when the frequency of the light field

is resonant with an excitation in the material. The information obtained using spec-

troscopy thus depends on the region of the spectrum used. Visible, as well as near
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Figure 1.1: Minimal absorption spectrum consisting of a single band. The transition
dipole µeg controls the height of the peak. The position of the peak corresponds to
the energy spacing Eeg = hνeg. The lineshape can be very complex, here a simple
Gaussian is used. A simple measure of the linewidth such as the FWHM is typically
reported.

infrared (IR) and near ultraviolet (UV), probes the dynamics of valence electrons in

semiconductors and molecular systems.

The simplest spectroscopic measurement that can be carried out is the usual

absorption spectrum. This is a first order experiment, linear in the electric field.

An example absorption spectrum for a two-level system is shown in Fig 1.1. Such

a peak can roughly be described using three parameters. The transition dipole µeg

controls the intensity of the response. The peak’s height thus reveals the magnitude of

charge reorganization between the two states. The resonance frequency νeg = ωeg/2π

dictates the position of the peak. It is related to the energy difference between the

two states via the Planck constant Ee − Eg = Eeg = ℏωeg = hνeg. The theoretical

description of the absorption spectrum of Fig 1.1 is usually carried out using a form
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of Fermi’s Golden rule [3, 4]:

ε′′(ω) =
πρ

ε0ℏω
∑
a,b

P (a)ωba |µba|2 [δ(ω − ωba) + δ(ω + ωba)] (1.1)

=
πρ

ε0ℏω
∑
a<b

[P (a)− P (b)]ωba |µba|2 δ(ω − ωba) (1.2)

where ε′′(ω) is the absorption coefficient, ρ is the density of oscillators, ε0 is the

vacuum permittivity, a and b are eigenstates of the system, P (a) is the probability of

the system being in state a, ωba = (Eb − Ea) /ℏ, µab is the transition dipole moment

and δ(ω) is the Dirac delta function. The second equality can be derived from the

first by realizing ωba = −ωab and running the sum over a given pair of states only

once. This can be achieved by considering the set of eigenstates to be arbitrarily

ordered.

Spectroscopy is usually concerned with the position and intensities of the spec-

troscopic bands; the shape of the bands is less often subject to analysis and interpre-

tation. Indeed, it is approximated as an infinitely sharp peak in eq 1.2. In general, a

single resonance can have a complicated shape, called the lineshape. Often, a simple

measurement of the peak width is reported, such as the full width at half maximum

(FWHM). This width depends on fluctuations of the spectroscopic response, both

dynamical and in the ensemble. In the simplest case, fluctuations of the resonance fre-

quency dominates and the width is proportional to the standard deviation ∆ν. Even

a simple linear absorption spectrum thus contains a wealth of information related

to charge reorganization, resonance frequencies and their fluctuations. Information

contained in the lineshape cannot be interpreted unambiguously however. Processes

occurring on multiple timescales can yield similar or even identical signals. For ex-

ample, relaxation back to the ground state can yield a spectrum identical to fast

fluctuations of the resonance frequency.
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Time-resolved spectroscopy can be used to gain further insight into the processes

initiated by light absorption. A common scheme is the pump-probe experiment, in

which two short pulses (pump and probe) interact in succession with the sample. The

change induced by the pump beam is monitored using the probe. The experiment

is repeated for varying interpulse delays, thus recording the ultrafast dynamics in a

manner similar to stop motion. The first famous application of this technique was

to settle a dispute regarding the gallop of horses1. Using this scheme, the resolution

of the experiment is limited by the pulse duration, not by the speed of the detector.

It can be applied with any type of pumps and probe pulses, be they optical pulses,

electron bursts, etc. The all-optical pump-probe experiment is often refered to as

Transient Absorption (TA), which measures changes in the absorption spectrum of

the sample. Time-resolved spectra can reveal changes in any of the previously men-

tioned parameters. Changes in peak heights are typically interpreted as indicative of

population dynamics. Changes in peak positions can be due to nuclear reorganization;

a time-dependent change in ωeg is often called a dynamical Stokes shift. Lineshape

dynamics yield more information about the processes giving rise to line-broadening

and can help discriminate between competing explanations.

Pump-probe spectroscopy has been successfully applied to a wide range of mate-

rials. The common implementation of pump-p Typically, the technique uses a probe

with a broad bandwidth to monitor the absorption spectrum over a wide range. The

pump is usually obtained using optical parametric amplification (OPA), which read-

ily generates high power pulses with a single color (a narrow bandwidth). Control

over the center frequency, bandwidth and fluence of the pump pulse allows the design

1Funding criteria have changed.
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of experiments to extract detailed information about the dynamics of the sample.

The pump pulse is also a source of constraints for the technique: the temporal and

spectral properties of the pump are related by the Fourier Transform. In particular,

the temporal duration and spectral bandwidth are related by the time-bandwidth

product:

∆t∆ν = a (1.3)

where ∆t is the FWHM of the pulse temporal intensity, ∆ν is the FWHM of the

spectral intensity and a is a constant depending on the pulse shape. For a perfect

Gaussian pulse, a=0.44. A shorter pulse thus requires a proportionally broader band-

width. The time-bandwidth product imposes a strong constraint on TA experiments.

The measurement of ever shorter events requires ever shorter pulses, and thus of in-

versely broader spectra. Furthermore, a 10 fs pulse centered at 500 THz (600 nm,

2.07 eV) requires a bandwidth of over 182 meV. A pulse with such a wide spectrum is

difficult to maintain, a source of much experimental frustration. Furthermore, mate-

rials with congested (and thus interesting) spectra will often exhibit multiple bands

of interest in this bandwidth. Broad spectra will thus simultaneously excite multiple

transitions. The observed signal will thus be a mix of all these excitations, and the

data will be hard to understand. Lineshape variations will be nearly impossible to

analyze. Essentially, TA experiments suffer from a trade-off between time resolution

and pump energy resolution. This problem is not academic, it is very real in the

case of semiconductor NCs, which have smooth, congested spectra, which will be

discussed later.

The basic TA experiment described above probes the third order response. The

third order response can be characterized by up to three time or frequency axes. In
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a TA experiment, these can be controlled using the pump center wavelength, pump-

probe delay and probe wavelength. This gives rise to the time-bandwidth product

limit discussed previously. Alternatively, the measurement can be carried out using

an interferometric pulse pair for the pump, carrying out the measurement in the time-

time-frequency domain. Two-dimensional electronic spectroscopy (2DE) is such an

experiment. Upon Fourier transformation to the frequency-time-frequency domain,

this experimental scheme provides resolution along excitation energy without the

limits imposed by time-bandwidth product.

Two-dimensional spectroscopy is a form of coherent multidimensional spec-

troscopy (CMDS) that uses 3 or 4 pulses to measure the third order response. Typ-

ically, the results are presented in the frequency-time-frequency domain, a stack of

2D spectra at varying pump-probe delays. The dataset is essentially a 3 dimensional

volume, and Fourier transformations allow the conversion of any axis between time

and frequency. A single peak thus has lineshapes along all 3 axes, which are not

entirely independent. 2D spectroscopy unravels the lineshape contributions in a way

that is entirely inaccessible to linear spectroscopy.

The results of 2D spectroscopy are usually expressed in the frequency-time-

frequency domain as S(E1, t2, E3). The data can be interpreted as the change in

the absorbance, measured at E3, due to excitation at E1, with duration t2 between

the two events. E1 is often referred as the excitation energy, t2 the waiting time or

population time and E3 the detection or emission energy. There are many related

variants of 2D spectra, and even more conventions on how to represent the data. Here,

we opt to use E1 as the horizontal axis, and E3 as the vertical axis, for a fixed value of

t2. Such a spectrum is represented on Fig 1.2e. The spectrum is dominated by bleach,

a reduction in the absorbance. It is indicated in red. This feature is somewhat square,
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Figure 1.2: The results of a 2D experiment can be viewed along multiple angles.
Shown is the real absorptive 2D spectrum of CdSe NCs. (a) Pseudo-TA slice, at
fixed E1 = 1.94 eV. This data is analogous to the result of a TA experiment. (b)
Pump-resolved absorption spectrum, at fixed E3 = 1.94 eV. (c) Diagonal cut of the
2D spectrum, E1 = E3. (d) Anti-diagonal cut of a 2D spectrum, E3−1.94 = 1.94−E1.
(e) 2D spectrum at fixed t2 = 500 fs. The horizontal axis is E1, corresponding to
excitation energy. The vertical axis is E3, corresponding to detection energy. (f)
FWHM of the slices in panels (a-d). The modulation due to the LO phonon is visible
in 3 cases. The anti-diagonal FWHM is reasonably smaller: 2DE is a hole-burning
experiment.
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as it arises from the two diagonal and two cross peaks of the X1 and X2 transitions,

located at 1.94 and 2.01 eV. An induced absorption feature is visible at higher values

of E3 (≈ 2.05 eV), consistent with results from TA.

The spectrum can also be cut in multiple other planes. Fig 1.2a shows the

spectrum at a fixed value ofE1 = 1.94 eV. This dataset is comparable to the result of a

TA experiment, and is sometimes called a pseudo-TA slice. Panel b shows the data for

fixed E3 = 1.94 eV. It represents the change of absorbance as a function of excitation

energy, a pump-resolved absorption spectrum. This data cannot be obtained any

other way. The spectrum can also be cut at angles. As will be introduced later, the

diagonal and antidiagonal cuts usually reveal the inhomogeneous and homogeneous

broadening, respectively. The diagonal and antidiagonal cuts are shown on Fig 1.2c

and d, respectively.

At first sight, it seems not much is happening; semiconductor NCs are essentially

little rocks which don’t do much. Closer inspection, however, reveals dynamics arising

from the coherent LO phonon. For example, the dynamic FWHM of the slices in

panels a-d are reported on panel f. The widths are all modulated by the LO phonon,

except the diagonal linewidth.

1.2 Lineshape analysis in materials: CdSe Nanocrystals as a model sys-
tem

A good spectroscopy experiment has no use without an interesting sample to

study. As a model sample, this thesis focuses on CdSe colloidal nanocrystals (NC),

also known as quantum dots (QD, CQD: colloidal QD). Colloidal NCs have dimen-

sions on the nanometer scale, down to 1 nm radius. The shape of the NC can be

adjusted using synthesis parameters, although spheres are a common occurrence.

The core material can be surrounded by a shell of a different material. This shell can

play a number of roles, such as protecting the excited charges from environmental
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Figure 1.3: Electronic structure of CdSe Nanocrystals a) Excitons as particle in
a sphere. The glass shell indicates the boundary of the NCs. The exciton orbital
is +1U. b) Bands of bulk CdSe. c) Confinement yields a manifold of hydrogenoid
states of the electrons and holes. Electron-hole interactions yield the exciton basis.
d) Configurations for the ground state exciton X1. The eight possible states mix,
resulting in a fine structure. e) Configurations for the ground state biexciton.

fluctuations or selectively delocalize electrons or holes. In order to maintain colloidal

stability, the surface of the NC is coordinated with organic ligands, often aliphatic

amines or thiols. This layer of grease forms an insulating layer that electrons can

hardly traverse [5–7].

The electronic structure of nanocrystal is related to that of the bulk semicon-

ductor. It is illustrated on Fig 1.3b. Upon optical excitation, the electron is promoted

from the valence to the conduction band. The corresponding vacancy in the valence

band is described as a hole, a quasi-particle. In CdSe NC, the vertical transition

occurs at the Γ point. The electron can occupy a single state in the conduction band

(CB). The valence band contains two bands with different spin states. Different an-

gular momenta of the holes result in bands with different effective masses, called the

heavy hole (HH) and light hole (LH). Due to attractive Coulomb interactions, the

electron and hole can bind to form an exciton. The exciton can be described similarly
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to an Hydrogen atom. Its Bohr radius is dependent on material properties, in bulk

CdSe it is 5.6 nm [8].

In NCs, the charged particles are trapped by the surrounding insulating medium,

enhancing their interaction and thus the occurrence of excitons. For small NCs, the

extent of the exciton can exceed that of its host. When the NC radius is smaller or

comparable to the bulk Bohr radius of the exciton, confinement effects dominate.

This regime is known as strong confinement. As a result, the exciton is confined in

the nanocrystal in a manner similar to the standard problem of a particle in a box.

The electronic structure of nanostructures can thus be obtained by confining the

bulk states in a spherical volume. This standard theoretical treatment is called the

k · p effective mass approximation (EMA) theory [9]. It is conceptually enlightening

and helps in understanding experimental trends, sometimes with good theoretical

treatment. This description is outlined here.

Under the influence of confinement, the conduction and valence bands are split

into hydrogen-like states, shown on Fig 1.3c. Colored arrows indicate optically active

transitions. The system can equivalently be expressed in the exciton basis, with

excitons Xi corresponding to specific electron-hole states. The eigenstates of the

exciton form a discrete set of states similar to atomic orbitals. The band-edge exciton

X1 is formed of the two-fold degenerate 1Se electron state and the four-fold degenerate

1S3/2 hole state, as shown on Fig 1.3d. There is thus a total of 8 possible exciton

states. Exchange interaction and crystal-field splitting results lifts degeneracy and

results in the fine structure indicated on the bottom of panel d.

The formation of another exciton results in the formation of a biexciton XiXj.

Biexcitons can have a coarse structure, as indicated Fig 1.3c, which arises from

the multiple possible combinations of single excitons. Similarly to single excitons,
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biexcitons have a fine structure. The fine structure of the X2

1 biexciton is indicated

on Fig 1.3e. In this case, the conduction band is saturated. The fine structure of the

biexciton thus arises from the six hole configurations: the two holes must be placed in

4 states. Again, exchange and crystal field effects result in the fine-structure indicated

in on the bottom of panel e [10]. Multiexciton states can be formed in a similar way.

We note that the saturation of the conduction band states prevents the formation of

another X1 exciton, such that X3
1 cannot be formed. Interestingly, the X1 exciton is an

8-fold degenerate state that behaves like a two-fold degenerate state in spectroscopic

saturation experiments.

The EMA model treats the nanocrystal as a continuous medium. It entirely

neglects the atomistic structure of NCs. Other treatments built the NC from the

bottom up, using explicit atomic positions and ab initio quantum mechanical tools

to compute the properties of a NC. Multiple groups have reported calculations of the

electronic structure using specialized pseudopotentials or standard density-functional

theory (DFT) [11–14]. These techniques explicitly include atoms, and thus includes

details that are ignored by the EMA theory. As a result, the symmetry of the NC

breaks and the exciton states of the EMA model mix. The exact electronic structure

is sensitive to details of the NC structure, such as facets size and orientation, etc.

Using these approaches, one now contemplates much more directly the difficulty of

the problem: the observed experimental result depends on an ensemble average over

these structural details.

The inclusion of thermal agitation demands the inclusion of dynamical fluc-

tuations of the structure, which renders such atomistic calculations very expansive.

When carried out, ab initio molecular dynamics naturally include the impact of ther-

mal fluctuations on the electronic properties [15, 16]. This approach will be used in
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chapter 5. However powerful atomistic calculations may be, their complexities make

it hard to extract robust trends. As a consequence, the continuum EMA model forms

the standard theoretical model underpinning the work on NC nanocrystals.

Strongly confined NCs exist on a length scale between bulk semiconductor and

molecule. This regime bends the rules, giving rise to novel phenomena arising from

the same physics. In order to relax, a hot electron can transfer its excess energy to

the hole, or to phonons which will be discussed later. The first case is known as

Auger relaxation. Due to confinement, the increased electron-hole interaction opens

up Auger relaxation pathways not normally present in bulk semiconductors. Transfer-

ring the excess energy to the hole circumvents the phonon bottleneck for electrons [14,

17–19]. Accelerated Auger relaxation pathways prove experimentally challenging to

study using transient absorption: studying fast dynamics require short pump pulses.

As previously discussed, short pulses imply broad bandwidth. The broad bandwidth

of the pump pulse precludes the control over the initial population, which in turns

prevent the careful study of Auger pathways. 2DE circumvents this time-bandwidth

problem, and thus should reveal more clearly such Auger pathways1.

Semiconductor NCs are excellent systems in which to study many-body effects.

A NC can host multiple excitons, which can bind to form biexcitons due to stabi-

lizing Coulomb and exchange interactions [10, 20–23]. The energetics and dynamics

of biexcitons in NCs are relatively hard to investigate due to their small binding

energy, typically estimated at around 10 meV in CdSe. Biexcitons can be studied by

spectroscopy, both in absorption and emission. Their spectral signatures are small

peak shifts and subtle lineshape changes due to a biexciton sideband, shifted by

1For relaxation pathways, you have to see in Hélène’s thesis and articles.
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the binding energy. Similarly to single excitons, biexcitons are expected to exhibit

a spectrum of states, with both a coarse and a fine structure. The fast relaxation

of biexcitons, which can undergo both electron-hole recombination to the exciton or

exciton-exciton annihilation to the ground state, further complicates their investiga-

tion. The study of biexciton structure and dynamics by 2DE should be advantageous

compared to TA1, especially at low temperatures.

The surface of semiconductor NCs can be used to adjust their interaction with

light. In particular, major efforts were undertaken to optimize the quantum yield

and linewidth of NCs for light emission [7, 24, 25]. Modifications to the coordinating

ligands affect coupling to the environment, notably by creating trap states lying in

the band-gap of the NC. Electrons and holes in the NC can then relax to these states

which impacts the performance of NCs for applications. This impact can be negative,

as in the case of light emission for displays, or positive as in the case of catalysis or

white-light emission. In all cases, the ligands act as the primary interface between the

environment and the NC, which can potentially open up new dynamics for charges

in these materials [26].

Nuclear motions in semiconductor NCs are rather simple when compared to their

rich electron dynamics. Nuclear excitations are well described by the phonons of the

bulk semiconductor. The prevalent phonon branches in CdSe are the longitudinal

optical (LO, ∼200 cm−1) and longitudinal acoustic (LA, ∼20 cm−1) phonons. Other

phonon modes exist in NCs. The occurrence of surface optical (SO) and transverse

optical (TO) modes is a topic of current investigations [27]. Spheroid modes are

sometimes discussed [28]. Contrary to electronic excitations, phonons in NCs are

1Altough, again, you’ll have to read Hélène’s thesis
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weakly affected by size and other synthesis parameters. The confinement of the LO

phonon can be observed for very small NCs, but the associated frequency shift is

rather minor, ranging from 209 cm−1 for NCs with diameter > 6 nm to 196 cm−1

in pyramidal clusters with an edge length of 1.7 mn [29–31]. The robustness of the

sparse phonon manifold contrasts with their rich and sensitive exciton dynamics.

Electronic excitations and vibrational modes interact: excitons are subject to phonon

dynamics via exciton-phonon coupling. CdSe is a polar lattice, and the coupling to the

LO phonon is mostly mediated by the Fröhlich interaction. The dominant coupling

mechanism to the acoustic phonons is by piezoelectric coupling [8].

As a result of exciton-phonon coupling, electronic excitation of the NCs are

concurrent with phonon excitations. The phonon dynamics then modulate the elec-

tronic properties of the NCs. This results in both coherent and incoherent dynam-

ics. According to the Frank-Condon principle, an electronic transition occurs on a

timescale that is much too short for the nuclei. The electronic excitation thus acts

as an impulsive excitation of the normal vibrational coordinates, where the equilib-

rium position has been abruptly changed. The phonon modes can be modeled as

classical damped harmonic oscillators. In the case of weak damping, the impulsive

excitation will yield long-lived oscillations of the vibrational coordinate. In the linear

spectrum, this phenomenon gives rise to the familiar Frank-Condon progressions. In

time-resolved spectroscopy, this vibrational oscillation will modulate the electronic

transition frequency, yielding coherent lineshape dynamics analogous to frequency

modulation. In the case of overdamped vibrational coordinates, the absorption will

reveal a dynamical Stokes shift due to lattice reorganization. Coherent signatures of

both the LO and LA modes have been observed in the spectroscopic signatures of

CdSe NCs [28, 32–35].
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The investigation of electron-phonon coupling by TA is not always straight-

forward. Clear time-resolved signatures are obtained for underdamped vibrational

modes, with period Tvib = Evib/h. The vibrational period sets an upper limit to the

pulse duration. The associated spectrum must have a bandwidth of Evib. However,

the absorption spectrum consists of a Frank-Condon progression with spacing Evib.

The time-bandwidth trade-off of TA is again an obstacle. As will be made clear in

chapter 5, this can give rise to partial cancellation of the vibrational signatures in

TA. The cancellation can be complete for low energy modes. Furthermore, the vi-

brational sidebands can be obscured by other line-broadening mechanisms, such as

inhomogeneous size distribution, making them hard to study. One has to blindly aim

the pump spectrum into the sample absorption spectrum with the hope of hitting

a vibrational side band. CMDS circumvent both difficulties by providing resolution

within the pump bandwidth, thus yielding an unprecedented view into electron-

phonon coupling. This aspect will be the main topic of chapter 5, central to this

thesis.

1.3 Contents

CMDS spectroscopy is supported by a detailed theoretical framework. It is nec-

essary to present this material first. The discussion will be rather detailed. Theory

is presented in chapter 2. The description applies to coherent spectroscopies of any

order, but special attention is paid to the linear and third order responses, and to

the modeling of lineshapes. The experimental implementation of our 2D spectroscopy

apparatus is described in chapter 3, along with a general description of the femtosec-

ond pulse and a presentation of pulse measurement techniques. The development of

the white light source, which exploits the instantaneous nonlinear response of Argon



1.3. CONTENTS 17

up to 11th order, is presented in chapter 4. The following chapters present exper-

imental results obtained on a model system of CdSe colloidal nanocrystals (NCs).

Coherent lineshape dynamics due to phonons and exciton superposition of states are

investigated in chapter 5. Finally, the broad applicability of lineshape dynamics is

further demonstrated by studying the time-resolved emission spectrum of ultrasmall

CdSe NCs using a streak camera in chapter 6. Concluding remarks and directions

for future work are presented in chapter 7.
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CHAPTER 2
Classical light and quantum matter

Theoretical descriptions of the spectroscopic experiment abound. Indeed, each

scientific community has a favorite description, tailored to explain its conventional

experiments and observables of interest [1]. This chapter introduces the description

most commonly used for nonlinear spectroscopy of molecules and materials. The

material response is usually obtained using a quantum mechanical or semiclassi-

cal treatment. The presentation mostly follows the books of Hamm and Zanni [2],

Mukamel [3] and Cho [4]. An attempt is made at making the presentation compre-

hensive and self-contained as this thesis is part of the initial generation of students

working on 2DE in the Kambhampati group.

The description is anchored in response theory, making it rather convenient

and general. The description of the quantum dynamics of matter are done both in

Hilbert space and in Liouville space, as both are used in the thesis. The concepts

are illustrated by their application to the description of spectroscopy experiments.

The simpler case of linear absorption is covered first in order to introduce advanced

tools such as Double-sided Feynman Diagrams. The case of 2D spectroscopy is then

covered.

22
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2.1 Response theory

Response theory is a well established element of statistical mechanics. It finds

applications in a wide range of fields, from hydrodynamics to electronic circuits

and, of course, spectroscopy [5, 6]. Response theory is concerned with the change

in a macroscopic observable due to the application of an external perturbation. The

standard description is limited to the linear response, where the perturbation is taken

to be very small such that the response is approximately linear. This is essentially an

expansion truncated at the linear term. We cannot afford this luxury and will need

to keep a few more terms in this expansion: up to the 5th order will be discussed in

this thesis. The general form of this expansion can be written as the Volterra series:

∆A(t) =

∫
dτ1f(t− τ1)χ(1)(τ1) +

∫
dτ1

∫
dτ2 f(t− τ1)f(t− τ2)χ(2)(τ1, τ2)

+

∫
dτ1

∫
dτ2

∫
dτ3 f(t− τ1)f(t− τ2)f(t− τ3)χ(3)(τ1, τ2, τ3) +O(f 4), (2.1)

where ∆A is the change in an observable A, f is an external perturbation and χ(n)

is the nth order susceptibility or response. The specific form depends upon whether

the process is described in the time or frequency domain. The nth order response can

take up to n time or frequency arguments. Higher order terms can be expanded into

multiple contributions.

Series expansions such as eq 2.1 can be intellectually unsatisfying. It separates

the components of the response by order, yet they are not independent. It implies

the response to a perturbation of arbitrary magnitude is simply a matter of keeping

terms until convergence, which is obviously a limited approach. For example, the

numerical procedure in chapter 4 uses the nonlinear response up to 11th order in

an attempt to converge the behavior of Argon in a strong electromagnetic field [7,

8]. Other, more complete approaches, do not need to rely on an expansion [9, 10].
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Series expansions enable beancounting of expansion coefficients: quantitatively useful

but conceptually sterile1. It may be tempting to use a non-approximate treatment,

such as direct integration of the time-dependent Schrödinger equation. Indeed, some

problems can be solved that way [11].

Expansions such as the above nevertheless have some very useful characteris-

tics. In the case of light-matter interaction, these advantages clearly outweigh its

shortcomings. First, eq 2.1 neatly separates the applied perturbation f from the

response χ(n) such that they can be treated independently. The response to a dy-

namical perturbation above holds for arbitrary perturbation f(t); the total response

can be derived from the impulse response, the response to f(t) = δ(t). This is to be

contrasted with a full calculation using the time-independent Schrödinger equation

for a molecule subject to an electromagnetic wave, which has to be redone every time

properties of the EM wave are changed significantly.

In the case of nonlinear light-matter interactions, different terms in expansion 2.1

can be associated with different experiments. The higher order terms can also be ex-

panded into multiple contributions which can be isolated experimentally, as will be

outlined in the next chapter. Each of these contributions can thus be studied, inter-

preted or modeled independently using a representation that is the most convenient:

time vs frequency domain; classical vs quantum mechanics (or in between); Hilbert

vs Liouville space; Schrödinger, Heisenberg or interaction picture.

The ability to selectively measure and interpret different terms in eq 2.1 un-

derpins both nonlinear optics and nonlinear spectroscopy. In the case of nonlinear

optics, materials with relatively simple responses χ(n) are used in order to focus on

1Polymer physics can be a good example of this.
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the manipulation or measurement of the EM wave. Examples of this limit include

pulse measurement by nonlinear optics (sections 3.3.1 and 3.3.2) and white-light

generation by self-phase modulation in a noble gas (chapter 4). In the case of spec-

troscopy, the light field should be known in order to accurately measure the nonlinear

responses χ(n).

The expansion presented in eq 2.1 is now studied in the specific case of nonlinear

spectroscopy. The interaction of light with polarizable media induces a time-varying

polarization in the sample. For nonlinear spectroscopy, the polarization is expanded

into a linear and nonlinear parts:

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + . . . , (2.2)

where P (t) is the polarization in the medium, P (1)(t) is the linear polarization and

the rest forms the nonlinear polarization. This equations corresponds to eq 2.1. As

per Maxwell’s equations, the time varying polarization emits an electric field Esig:

Esig(t) = iP (t), (2.3)

which is the experimental observable. The polarization is given by the expectation

value of the dipole operator:

P (t) ∝ ⟨µ̂⟩ = ⟨ψ(t) | µ̂ |ψ(t)⟩ (2.4)

where a statistical average will have to be included.
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Each of the terms in eq 2.2 can be expressed rather inelegantly1 in the time

domain [3]:

P (n)(t) =

∫ ∞

0

dtn

∫ ∞

0

dtn−1· · ·
∫ ∞

0

dt1χ
(n)(tn, tn−1, . . . , t1)

E(t− tn)E(t− tn − tn−1) . . . E(t− tn − tn−1 − · · · − t1), (2.5)

where E(t) is the incident real electric field. It is usually convenient to use a complex

electric field in the time domain: 2E(t) = ℜE(t). For an experiment with m pulses,

we have:

E(t) =
m∑
i

Ei(t) =
1

2

m∑
i

[Ei(t) + E⋆
i (t)] . (2.6)

Inserting eq 2.6 in eq 2.5 results in a large number of terms. Furthermore, the ma-

terial response χ(n) can be expanded in 2n terms χ(n)
j , as will be demonstrated in

the next section. This situation seems hopeless. Luckily, each term of these χ
(n)
j

corresponds to one term (or a few equivalent terms) in the electric field expansion.

All other combinations can be neglected when carrying out the integral. This will be

demonstrated later for the case of linear spectroscopy; nonlinear spectroscopy follows

the same rules. Equation 2.5 is thus tractable when fully expanded.

The ensemble response of dilute NCs is isotropic, such that the the wavevector

dependence can be factored out [3]. Polarization will similarly be disregarded. This

is entirely justified for the linear response of an isotropic medium and for single

pulse experiments, but not so much for multiple pulses experiments such as 2D

spectroscopy. The response of an isotropic medium cannot depend on the absolute

polarizations of the pulses, but their relative angles can be used to isolate specific

1If we were in mathematics, we would have to create a notation just for it. Series expansions
can be inelegant.
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contributions[2, 7, 8, 12, 13]. Nevertheless, polarization shall be ignored and left for

future work.

2.2 Material response

2.2.1 The wavefunction

At the microscopic level, the behavior of molecules and materials is governed by

quantum mechanics. The starting point of the derivation is thus the time-dependent

Schrödinger equation (TDSE). The behavior of a microscopic quantum system af-

fected by an electric field is indeed a case where this equation should apply. Spec-

troscopy of materials does not involve relativity; the TDSE acts as our equation of

everything. However, the sample under study is extended and complicated. It con-

sists of a number of particles close to Avogadro’s number. Solving the TDSE for such

a system is impossible and a number of physical approximations have to be made.

The derivation of the nonlinear response from the TDSE aims to be rigorous enough

to clearly introduce the needed physical approximations and corresponding intuition.

Dynamics of quantum systems are given by the time-dependent Schrödinger

equation:
∂

∂t
|ψ(t)⟩ = − i

ℏ
Ĥ(t) |ψ(t)⟩ , (2.7)

where |ψ(t)⟩ is the wavefunction containing all the information about the system’s

state and Ĥ(t) is the system’s Hamiltonian. The wavefunction is described as a linear

combination of basis states:

|ψ⟩ =
∑
i

ci |i⟩ (2.8)

where |ψ⟩ is the total wavefunction, ci is a complex coefficient and |i⟩ is a basis func-

tion. The basis can be selected according to the task at hand. It is most convenient
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when the set {|i⟩} forms an orthonormal complete basis. In this case,

⟨i|j⟩ = δij (2.9)

⟨i|ψ⟩ = ci (2.10)

⟨ψ|ψ⟩ =
∑
i

|ci|2 = 1, (2.11)

where the last equation is a consequence of the normalization of the wavefunction.

The space spanned by {|i⟩} is called the Hilbert space. It is said to be complete

when: ∑
i

|i⟩ ⟨i| = Î . (2.12)

where Î is the identity operator.

Recall the value of an observable A is given by the expectation value of the

corresponding operator ⟨Â⟩.

⟨Â⟩ = ⟨ψ|Â|ψ⟩ (2.13)

=
∑
i,j

c⋆i cj ⟨i|Â|j⟩ (2.14)

=
∑
i,j

c⋆i cjAij (2.15)

where ⟨Â⟩ is the observable value of A. The value Aij is a matrix element. In this

thesis, operators will be designated with a pointy hat; scalar and Hilbert space vectors

will be undecorated. In spectroscopy, the observable of interest is the polarization,

corresponding to the operator µ̂.

The TDSE as written in eq 2.7 uses both a time-dependent wavefunction |ψ(t)⟩

and Hamiltonian Ĥ(t). This is not necessary: the temporal evolution can be contained

entirely in the wavefunction, yielding the Schrödinger picture, or in the operators,

yielding the Heisenberg picture. When the time-dependence has some component in
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both, this is called the interaction picture. This choice is arbitrary, one can freely

transform from one to the other as this amounts to a change of frame of reference.

It is common to think about the time evolution of a dynamical property as arising

from the evolution of the system, and the Schrödinger picture is often preferred.

The common Schrödinger picture poses problems when discussing spectroscopic

results. It forces the Hamiltonian to be time-independent, thus feeding the entirety

of the time evolution in the coefficients. For a continuous monochromatic wave, this

naturally yields a basis of dressed states made of material wavefunctions in a field1.

We want to interpret spectroscopic results in terms of the material Hamiltonian and

its spectrum, the time-dependent electric field is merely a tool in our hands.

It is thus desirable to separate the Hamiltonian in a time-independent material

part and a time-varying part due to light-matter interaction:

Ĥ(t) = Ĥ0 + ĤE(t) (2.16)

ĤE(t) = −µ̂E(t) (2.17)

where Ĥ(t) is the full Hamiltonian, Ĥ0 is the Hamitonian of matter in the absence of

a field and ĤE(t) arises from light-matter interaction. This separation naturally leads

to the interaction picture. In the interaction picture, both operators and states have

a time-evolution. However, the separation of the Hamiltonian is based on a physical

distinction, and the results will similarly lend themselves to physical intuition.

The preceding considerations naturally lead to the basis formed of the eigen-

states of matter in the absence of an electric field. This choice is useful both concep-

tually and in derivations: Ĥ(t) induces transitions between the natural states of the

1They’re called polaritons.
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system. The eigenstates obey the time-independent Schrödinger equation:

Ĥ0 |i⟩ = Ei |i⟩ , (2.18)

where Ĥ0 is the field-free Hamiltonian defined in eq 2.16 above and Ei is the energy1 of

state i. The set of eigenstates forms a physically complete basis for our spectroscopy

problems.

At the fundamental level, this mathematical toolkit is all that is required. In

practice, however, the TDSE cannot be integrated for a macroscopic system of N

particles and the associated 6N degrees of freedom [14]. The first approximation to

be made is that the response of the microscopic system can be obtained from the

behavior of a localized microscopic system. In the case of the spectroscopy of dilute

chromophores, this approximation is rather solid, and the macroscopic behavior can

be described from the behavior of the microscopic system (eg: a single chromophore)

and statistical mechanics. That is, we can derive the macroscopic response from the

averaged microscopic response:

χ(n)
macro ∝ N

⟨
χ
(n)
micro

⟩
, (2.19)

where the angle brackets ⟨. . . ⟩ denote an ensemble average. The absolute value mat-

ters very little in the current work, we will be interested entirely on relative intensities.

We will not distinguish between the macroscopic and microscopic susceptibilities,

though the average will always be necessary.

1We will use similar symbols for both the electric field and the energy. Sorry.
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2.2.2 The density matrix

The current description operates in Hilbert space and applies to pure states.

In order to take the ensemble average and describe mixed states, it is necessary to

carry out the derivation in Hilbert space first, then take the average. This is feasible

for simple systems, but can become tedious when the variations are not trivial. It is

beneficial to introduce an alternative representation which can include the effect of

an ensemble average directly. This description is based on the density matrix. The

density matrix is defined from matrix elements of the density operator:

ρ̂ =
∑
k

Pk |ψk⟩ ⟨ψk| , (2.20)

where the index k represents a microscopic state as understood in statistical mechan-

ics and Pk is the ensemble probability of state k, a real positive number such that∑
k Pk = 1.

The elements of the density matrix are given by:

ρij =
∑
k

Pk ⟨i|ψk⟩ ⟨ψk|j⟩ (2.21)

=
⟨
cic

⋆
j

⟩
. (2.22)

We can distinguish between the diagonal and off diagonal elements:

ρii = ⟨cic⋆i ⟩ =
⟨
|ci|2

⟩
, (2.23)

ρij =
⟨
cic

⋆
j

⟩
= ⟨|ci| |cj| exp (i∆ϕij)⟩ ∀ i ̸= j, (2.24)

where ∆ϕij = ϕi − ϕj is the difference in the phases of the coefficients.

The diagonal terms, presented in eq 2.23, are known as populations. They are

all positive real numbers such that ρii ≤ 1, which results from the orthonormality of

the basis set {|i⟩} and the normalization of the probabilities Pk. Indeed,
∑

i ρii = 1.
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The populations have a simple physical description. They represent the probability

of finding a system in the ensemble in basis state i. This quantity is very impor-

tant in the understanding of spectroscopy data as it is directly proportional to the

populations found in eq 1.2.

The off-diagonal elements, equation 2.24, are known as coherences. They are

complex numbers such that |ρij| ≤ 1. Their intuitive description is not as straight-

forward as for the population, even if populations have no classical analogue. The

coherences represent the synchronization of the different basis coefficient in the en-

semble. A coherent ensemble requires that all individual oscillators are synchronized,

such that ∆ϕij has a narrow distribution.

An attempt at undersanding the concept of coherences can be made in analogy

with classical oscillators. An ensemble of identical pendulums1, all launched in an

identical fashion will stay synchronized forever. They collectively exhibit a large

degree of coherence. If you can measure the angle of a single pendulum, you know

the angle of all the others with a reasonable accuracy. If instead the pendulums

have slight differences of string length, they will slowly but certainly drift out of

synchronization. After a long enough delay, they will have entirely different angles.

Similarly, if the first set of perfect pendulums is launched in perfect unison, but

in a room with some wind, they will end up being desynchronized. For a perhaps

more remote analogy, imagine the same musical score played by either a symphony

orchestra or an elementary school class. Although they produce the same notes, the

results are rather different; one shows a much better degree of coherence.

1Pendula? — This is proves more contentious than I expected.
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The density operator and its friends will form the basis for much of the discussion

of the dynamics of matter during spectroscopy experiments. The temporal evolution

of the density matrix is given by the Liouville-von Neumann equation:

˙̂ρ =
∂

∂t
ρ̂ = − i

ℏ

[
Ĥ, ρ̂

]
(2.25)

= − i

ℏ

(
Ĥρ̂− ρ̂Ĥ

)
(2.26)

where we have introduced the dot notation for time-derivatives and the commutator[
Â, B̂

]
= ÂB̂−B̂Â. Indeed, the time evolution of any operator can be obtained from

its commutator with the Hamiltonian [4]. The above equation is readily demonstrated

by taking the partial time derivative of the density operator and substitution using

the TDSE, eq 2.7.

The expectation value of an operator can also be obtained directly from the

density matrix. This is derived as follows:

⟨A⟩ =
∑
k

Pk

⟨
ψk

⏐⏐⏐ Â ⏐⏐⏐ψk

⟩
(2.27)

=
∑
k,i,j

Pkc
⋆
i cjAij (2.28)

=
∑
i,j

Aijρji (2.29)

= Tr
[
Âρ̂

]
(2.30)

where we have used the trace of a matrix TrM =
∑

iMii.

The expectation value as written in equation 2.29 is a linear combination. The

density matrix allows both calculation of the dynamics using the Liouville-von Neu-

mann equation (eq 2.25) and the expectation value of operators (eq 2.29). This sug-

gests an alternative formulation of quantum mechanics where everything is expressed

using the density matrix, or elements of the density operator. Indeed, the entirety of
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quantum mechanics can be written using the elements ρij as a basis, forming what is

called Liouville space. Conceptually, this amounts to unraveling the density matrix

into a vector. The order of the elements is arbitrary and doesn’t matter, as long as it

is consistent. However, if we are now to tag each element with a single index, we will

be confused. The convention is to identify vectors with two indices. Matrix elements

will thus require four indices. This is called Tetradic Notation. The corresponding

objects, the Liouville-space analogues of operators, will be called super-operators,

and denoted with a double-hat: ˆ̂L. Apart for this notational nicety, Liouville space

forms a normal linear vector space, much like our initial basis set [3].

The basis vectors in Liouville space are related to the Hilbert space basis as

follows:

|ij)↔ ρij |i⟩ ⟨j| (2.31)

and operators are linear combinations in this space, ie: they are now vectors:

|A) =
∑
i,j

Aij|ij) (2.32)

(A| =
∑
i,j

Aji(ij| = |A)†. (2.33)

The scalar product can be defined as:

(B|A) = Tr
(
B†A

)
(2.34)

which corresponds to computing the statistical correlation between B and A [6].

Every manipulation that can be done in Hilbert space has an equivalent formulation

in Liouville space. We thus have two ways of formulating the same problem, and can

pick whichever is most convenient.
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Why bother with Liouville space then? A basis set of N states in Hilbert space

corresponds to a basis of (N2 + N)/2 density elements in Liouville space, which

seems complicated. However, the Liouville space description already has the ensem-

ble average baked in. This allows the coherences to be treated independently from

the populations. This will be a major element of the discussion going forward: coher-

ences correspond to oscillating dipoles, populations do not. Furthermore, quantum

Liouville space has a direct analogue in the form of a classical Liouville space. This

provides a clear and rigorous path for semiclassical treatments. Finally, time is taken

into account slightly differently in the two spaces. Calculations with multiple time

arguments in Hilbert space require repeating the calculation for all permutations of

the time arguments and thus includes unintuitive time orderings. This is eliminated

in Liouville space, and the theoretical calculation maps directly to the experimental

description of an experiment with multiple pulses.

2.2.3 Dynamics

CMDS experiments are designed to probe the dynamical response of matter.

The temporal evolution of the system is usually expressed using the density matrix,

since it explicitly separates incoherent population dynamics from coherent dynamics.

However, the modeling tools to be introduced later are expressed in Hilbert space.

Quantum dynamics will thus be derived in both Hilbert and Liouville space, yielding

analogous sets of equations. The entire process relies in the separation of the Hamil-

tonian in a material and field part, expressing the problem in the interaction picture

and truncating the resulting expansion to the desired order.

Time evolution in Hilbert space is described using the TDSE (eq 2.7). We can

define a propagator Û such that:

|ψ(t)⟩ = Û(t, t0) |ψ(t0)⟩ . (2.35)
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This operator can be inserted in the TDSE and integrated to yield:

Û(t, t0) = 1− i

ℏ

∫ t

t0

dτĤ(τ)Û(τ, t0), (2.36)

Û(τ, t0) has to be determined using that exact same equation. In a manner analogous

to numerical integration of differential equations, the integration can be carried out

for infinitesimal time steps, and iteratively re-inserted into eq 2.36, yielding a series

expansion:

Û(t, t0) = 1 +
∞∑
n=1

(
− i

ℏ

)n∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1Ĥ(τn)Ĥ(τn−1) . . . Ĥ(τ1). (2.37)

It should be noted that the Hamiltonians do not commute, and thus the order of

the time arguments is very important. Indeed, τm−1 ≤ τm. This series expansion is

expressed in compact form using the following notation:

Û(t, t0) = exp+

(
− i

ℏ

∫ t

t0

dτĤ(τ)

)
, (2.38)

This is called the positive-time ordered exponential; the subscript + indicates the

order of the time arguments matches the above eq 2.37. Its complex conjugate has a

similar notation, called the negative time-ordered exponential:

Û †(t, t0) = exp−

(
i

ℏ

∫ t

t0

dτĤ(τ)

)
(2.39)

= 1 +
∞∑
n=1

(
i

ℏ

)n∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1Ĥ(τ1) . . . Ĥ(τn−1)Ĥ(τn). (2.40)

Note that the order of the time arguments hasn’t changed (τm−1 ≤ τm) but the order

of the Hamiltonians has been reversed. Also note that:

Û(τ2, t0)Û
†(τ1, t0) = Û(τ2, τ1). (2.41)
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An equivalent formalism can be realized in Liouville space. Recalling the Louville

von-Neumann equation 2.25 for a density matrix element:

dρij
dt

= − i

ℏ

[
(Ĥρ̂)ij − (ρ̂Ĥ)ij

]
(2.42)

= − i

ℏ
∑
k

[Hikρkj − ρikHkj] (2.43)

= − i

ℏ
∑
i′,j′

Lij,i′j′ρi′j′ (2.44)

˙̂ρ = − i

ℏ
ˆ̂Lρ̂ (2.45)

where ˆ̂L is the Liouville super-operator. This equation is entirely analogous to the

TDSE with ˆ̂L instead of Ĥ. This yields the following definition of the Liouville

super-operator matrix elements:

Lij,i′j′ = Hii′δjj′ −H†
jj′δii′ . (2.46)

The above mentioned propagator can also be defined in Liouville space. In a

manner entirely analogous to previously:

ˆ̂U(t, t0) = exp+

(
− i

ℏ

∫ t

t0

dτ ˆ̂L(τ)

)
. (2.47)

using the positive time-ordered exponential previously defined in eq 2.37.

The propagators use two time arguments. We will typically be interested in

propagating the system forward for some delay, the absolute value of the time points

will usually not matter. For this, we define the Green function G(t) such that:

|ψ(t+ t0)⟩ = Ĝ(t) |ψ(t0)⟩ (Hilbert space) (2.48)

ρ̂(t+ t0) =
ˆ̂G(t)ρ̂(t0) (Liouville space) (2.49)
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Essentially, the Green function propagates the system forward in time by delay t.

It can be difficult to define G(t) to obey these equation. However, its formulation is

simple in the case of time-independent Ĥ (and ˆ̂L):

G(t) = θ(t)U(t0 + t, t0), (2.50)

Ĝ(t) = θ(t) exp

[
− i

ℏ
Ĥt

]
, (Hilbert space) (2.51)

ˆ̂G(t) = θ(t) exp

[
− i

ℏ
ˆ̂Lt

]
, (Liouville space) (2.52)

where θ(t) is the Heaviside step function. The first equation holds in both spaces, we

have dropped the hats. In particular, in the absence of relaxation it can be demon-

strated that:

ˆ̂G(t) = θ(t)
∑
ij

|ij) exp [−iωijt] (ij| (2.53)

where ωij = (Ei − Ej)/ℏ and thus:

|ij(t+ t0)) =
ˆ̂G(t)|ij(t0)) = e−iωijt|ij(t0)). (2.54)

This states that under a time-independent Hamiltonian an |ij) coherence rotates

with angular frequency ωij. Defining the Green function to include other phenomena

— such as relaxation or lineshapes — is more complicated, but we’ll still use it1.

The equations above perform the expansion on the full Hamiltonian. This is not

what is required for spectroscopic experiments: we want to fully take into account the

Hamiltonian of matter and limit the perturbative treatment to the electric field. The

simple path to demonstrate this is to use the interaction picture. The Hamiltonian

1As experimentalists, we’ll get away with just making it up.
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is split into a time independent material Ĥ0 and a field part, recall eq 2.16:

Ĥ = Ĥ0 + ĤE(t) = Ĥ0 − E(t)µ̂

and the Liouville space analogue:

ˆ̂L = ˆ̂L0 +
ˆ̂LE(t) (2.55)

ˆ̂LE = −E(t)ˆ̂µ (2.56)

This allows the definition of the time-evolution operator due to Ĥ0 and ˆ̂L0 as before:

Û0(t, t0) = exp

(
− i

ℏ
Ĥ0(t− t0)

)
, (Hilbert space) (2.57)

ˆ̂U0(t, t0) = exp

(
− i

ℏ
ˆ̂L0(t− t0)

)
. (Liouville space) (2.58)

The corresponding Green functions are also similarly defined.

In the interaction picture, both operators and vectors are time-dependent. Specif-

ically, we define an interaction picture version of every operator using U0:

Â(t) = Û †
0(t, t0)ÂÛ0(t, t0) (2.59)

where Â(t) is the interaction-picture operator (now time-dependent) corresponding to

the Schrödinger-picture, time-independent operator Â. An entirely analogous equa-

tion exists for super-operators. In particular, the dipole operator and super-operator:

µ̂(τ) = exp

(
i

ℏ
Ĥ0τ

)
µ̂ exp

(
− i

ℏ
Ĥ0τ

)
(Hilbert space) (2.60)

ˆ̂µ(τ) = exp

(
i

ℏ
ˆ̂L0τ

)
ˆ̂µ exp

(
− i

ℏ
ˆ̂L0τ

)
(Liouville space). (2.61)

The interaction picture is used to obtain a version of the time-ordered expansion

(eq 2.37) using only the field part. This demonstration is carried out in Liouville

space, although an equivalent one can also be made in Hilbert space. This is achieved
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by (briefly) defining the field part of ˆ̂LE in the interaction picture:

ˆ̂L′
E(τ) =

ˆ̂U †
0(τ, t0)

ˆ̂LE(τ)
ˆ̂U0(τ, t0) (2.62)

such that

ˆ̂U(t, t0) =
ˆ̂U0(t, t0) exp+

(
− i

ℏ

∫ t

t0

dˆ̂L′
E(τ)

)
(2.63)

ˆ̂U(t, t0) =
ˆ̂U0(t, t0) +

∞∑
n=1

(
i

ℏ

)n∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1

ˆ̂U0(t, τn)
ˆ̂LE(τn)

ˆ̂U0(τn, τn−1)
ˆ̂LE(τn−1) . . .

ˆ̂U0(τ2, τ1)
ˆ̂LE(τ1)

ˆ̂U0(τ1, t0) (2.64)

where eq 2.41 has been used to condense the propagators. (You can now forget about

ˆ̂L′
E(t)).

Using this result to expand the density matrix, we get:

ρ̂(n)(t) =

(
i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1) (2.65)

ˆ̂G(t− τn)ˆ̂µ ˆ̂G(τn − τn−1)ˆ̂µ . . .
ˆ̂G(τ2 − τ1)ˆ̂µρ̂eq (2.66)

where we used the definition of the Green function (eq 2.49) and ˆ̂G(t)ρ̂eq = ρ̂eq by

definition of ρ̂eq.

The response is obtained by computing the resulting polarization:

χ(n)(tn, tn−1 . . . t1) = (µ|ρ(n)(tn, tn−1 . . . t1)) (2.67)

χ(n)(tn, tn−1 . . . t1) = (µ| ˆ̂G(tn)ˆ̂µ ˆ̂G(tn−1)ˆ̂µ . . .
ˆ̂G(t1)ˆ̂µ|ρeq) (2.68)

where tm = τm+1 − τm and tn = t − τn. This formulation forms the basis of the

description of CMDS experiments. Note in particular that the electric field operator

expands to two terms (eq 2.6). The expansion of order n thus expands to 2n terms,

half of which are the complex conjugates of the other half. Furthermore, both ˆ̂µ and
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ˆ̂G are Liouville space matrices. The number of non-zero elements depends on the

number of allowed transitions (off-diagonal elements of ˆ̂µ) as well as the number of

relaxation pathways (off-diagonal elements of ˆ̂G). This compact expression expands

to multiple different interaction terms, and to all possible pathways the system can

take under the action of the pulses. The total number of terms can be very large

(>1000)!

2.2.4 The system and the bath

Spectroscopic experiments reveal only part of the molecular response, the part

that falls in the bandwidth observable to the apparatus. For example, the visible

bandwidth corresponds to excitations of the valence electrons. However, the light-

induced excitation can drive the motion of secondary degrees of freedom if a coupling

exists. The complete response to an optical excitation is thus made of the electronic

resonance and all modes it is coupled to. This is especially important for the under-

standing of lineshapes and their dynamics. Ordering the modes by their direct or

indirect susceptibility can be used to greatly simplify the active space necessary to

a rigorous description of the system. Most modes are entirely uncoupled to both the

visible light field and the resulting excitation of the valence electrons. Core electrons,

rotational motion and spin excitations often fall in this category, as well as subatomic

physics. They can be eliminated directly.

The motion of nuclei is more complicated. Some vibrational modes are strongly

coupled to electronic motion, giving rise to Raman modes. The change of the equi-

librium geometry in the electronic excited state can give rise to slow but large re-

arrangements of the molecule. The nuclear rearrangements following electronic exci-

tation can be so large as to induce photochemical reactions. Vibrational modes can

also be coupled among themselves, further entangling the response. Nuclear motions
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thus have to be taken into account when determining the electronic response. They

cause fluctuations of the electronic response, and thus modulate the linewidth.

It is common to separate the system in two parts, a system and a bath, that are

treated differently. One point that requires emphasis is that the system bath parti-

tioning can be done arbitrarily without any loss of generality [6, 15–17]. There is thus

no physics arising directly from the system-bath partitioning, but also no constraints

to limit the flexibility of said partitioning. One is free to define the system out of

convenience, in order to simplify the description. One rule is commonly obeyed in the

spectroscopy literature: the spectroscopic response must be contained in the system,

and have no response from the bath. This maps well to a spectroscopic experiment

where the response arises from a chromophore and the background signal is absent or

removed through experimental design. Furthermore, it is desirable to select the bath

such that it obeys simple statistics with a well-known analytical description, such as

Gaussian fluctuations. The orthodox system-bath partition of theoretical nonlinear

spectroscopy does not make full use of this flexibility. The system is always taken to

be the spectroscopically active degrees of freedom, and every other mode is in the

bath, even if it is an important component of the dynamics. This results in obscure

jargon, misunderstandings and some confusion1.

The complete set of basis functions for the whole system can be partitioned

with the use of projection operators. Formally, the partitioning requires a pair, the

operator P̂ for the system and Q̂ for the bath:

P̂ =
n∑

i=1

|i⟩ ⟨i| (2.69)

1It can be funny to observe the heated arguments made over ill-defined jargon.
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Q̂ =
∑

i=n+1

|i⟩ ⟨i| (2.70)

where the system is composed of n basis functions and the second sum runs over the

remaining basis vectors. In matrix form, P̂ would have some diagonal elements be

1, everything else would be 0; Q̂ would have 1s in the remaining diagonal elements

and zeros everywhere else. Note that this may require some care when selecting the

basis. The equations above keep every mode in its quantum form, the classical limit

can be taken later. These deceptively simple operators form the basis of a formal

derivation of the reduced equations of motion for an open quantum system subject

to environmental fluctuations.

The projection operators have the following properties:

P̂ + Q̂ = 1 (2.71)

P̂ 2 = P̂ (2.72)

Q̂2 = Q̂ (2.73)

P̂ Q̂ = Q̂P̂ = 0, (2.74)

where eq 2.71 is a completeness relation (no states were forgotten or counted twice),

eqs 2.72 and 2.73 states the operators are idempotent (applying them more than

once doesn’t change anything) and eq 2.74 is an orthogonality relation (no states are

in both system and bath). Using these properties, we can readily see that P̂ and Q̂

partition the wavefunction and the operators into a system and a bath part:

|ψ⟩ =
(
P̂ + Q̂

)
|ψ⟩ (2.75)

= P̂ |ψ⟩+ Q̂ |ψ⟩ (2.76)

= |ψ⟩sys + |ψ⟩bath . (2.77)
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Indeed, conditions 2.71 to 2.74 are all the conditions that a system-bath partitioning

need to obey.

The projection operators can be used to obtain equations of motions specific to

the system. By using the TDSE (eq 2.7) and property eq 2.71 above, we get:

˙|ψ⟩ = − i

ℏ
Ĥ

(
P̂ + Q̂

)
|ψ⟩

P̂ ˙|ψ⟩ = − i

ℏ

(
P̂ ĤP̂ + P̂ ĤQ̂

)
|ψ⟩

P̂ ˙|ψ⟩ = − i

ℏ

(
P̂ ĤP̂ 2 + P̂ ĤQ̂2

)
|ψ⟩

˙|ψ⟩sys = −
i

ℏ

(
P̂ ĤP̂ |ψ⟩sys + P̂ ĤQ̂ |ψ⟩bath

)
˙|ψ⟩sys = −

i

ℏ

(
Ĥsys |ψ⟩sys + Ĥsb |ψ⟩bath

)
(2.78)

where Ĥsys = P̂ ĤP̂ is the system Hamiltonian and Ĥsb = P̂ ĤQ̂ is the Hamiltonian

describing the action of the bath on the system. The second equation is obtained by

multiplying from the left by P̂ and the third is obtained by using eqs 2.72 and 2.73.

This can be used to define arbitrary system bath partitions and rigorously solve for

their dynamics and to partition operators into parts corresponding to the system,

to the bath and to system-bath coupling (both effect of the bath on the system and

effect of the system on the bath).

A similar formulation can be made for the density matrix. The projection oper-

ator is typically defined as:

P̂ ρ̂ = ρ0B TrB ρ̂ = ρ0Bρ̂sys (2.79)

where TrB indicates a trace over the bath modes and ρ0B is the equilibrium density

matrix of the bath modes. This operation defines the reduced density operator ρsys

after both ensemble averaging and averaging over the equilibrium distribution of the

bath modes. The definition used above, however, contains an approximation that
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eq 2.69 doesn’t. Namely, it explicitly assumes the bath distribution is fixed at the

equilibrium distribution, and thus that any force the system applies on the bath is

negligible.

The equations in this section will not be used directly in this thesis, which reports

on experimental work. The inclusion of this section aims at covering the concept of

system-bath partitioning which occurs frequently in the field of spectroscopy. It is the

rigorous framework underlying the theory of quantum open system. These concepts

are used to develop the multimode brownian oscillator model below (sec 2.3.4).

2.3 Linear Spectroscopy

The interpretation and modeling of CMDS experiments involves advanced tools

such as double-sided Feynman diagrams (DSFD) and multi-point correlation func-

tions of the transition dipole. The Liouville space DSFD are a powerful tool of spec-

trocopic assignment applicable to nonlinear spectroscopy. The multi-point correlation

functions enable the rigorous inclusion of lineshapes, including cases that will induce

coherent lineshape dynamics. These concepts are introduced for the simpler case of

linear spectroscopy, in order to focus on the tools themselves.

2.3.1 Linear spectroscopy in Liouville space

The Hamiltonian for an isolated chromophore in an external, time-varying elec-

tric field is given by eq 2.16, Recall:

Ĥ(t) = Ĥ0 + ĤE = Ĥ0 − µ̂E(t).

The previous section shows how this can be used to obtain the series expansion of

the nonlinear polarization from an expansion of the density matrix in terms of ĤE:

P (t) = (µ|ρ(t)) =
∑
n

(µ|ρ(n)(t)) (2.80)
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P (n)(t) = (µ|ρ(n)(t)) (2.81)

In a linear absorption experiment, the emitted signal field propagates along the same

vector as the incident field, and their interference is detected using a square-law

detector:

I(ω) = |E(ω) + Esig(ω)|2 (2.82)

= |E(ω)|2 + |Esig(ω)|2 + 2ℜ
[
E(ω)E⋆

sig(ω)
]

(2.83)

The linear signal arises from the first term1 in this series, P (1)(t). The absorption

spectrum can be computed from:

(µ|ρ(1)(t1)) = (µ| ˆ̂G(t1)ˆ̂µ|ρeq). (2.84)

The perturbative expansion allows for transitions of either the bra or ket. For a

multilevel system, the dipole super-operator can be expressed as:

ˆ̂µ =
∑

µii′δjj′ |ij)(i′j′| − µ⋆
jj′δii′|ij)(i′j′| (2.85)

where the first term comes from operating on the ket and the second term comes

from operating on the bra (remember, it is a commutator). Each dipole operator

gives rise to two terms, one of which is negative. The operator projects populations

into coherences and coherences into either different coherences or into populations,

but only a single index of the density matrix is allowed to change.

1(µ|ρeq) = 0 by definition of the equilibrium.
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For a multilevel system initially in equilibrium such that:

|ρeq) =
∑
g

P (g)|gg) (2.86)

equation 2.80 above can be expanded as follows:

χ(1)(t1) = (µ|ρ(1)(t1)) (2.87)

=
i

ℏ
(µ| ˆ̂G(t1)ˆ̂µ|ρeq) (2.88)

=
i

ℏ
∑
g

P (g)(µ| ˆ̂G(t1)ˆ̂µ|gg) (2.89)

=
i

ℏ
∑
g,a

P (g)
[
µag(µ| ˆ̂G(t1)|ag)− µga(µ| ˆ̂G(t1)|ga)

]
(2.90)

=
i

ℏ
∑
g,a

P (g)θ(t1)
[
µage

−iωagt1(µ|ag)− µgae
−iωgat1(µ|ga)

]
(2.91)

=
i

ℏ
∑
g,a

P (g)θ(t1)
[
µagµgae

−iωagt1 − µgaµage
−iωgat1

]
(2.92)

=
i

ℏ
∑
g,a

P (g)θ(t1) |µag|2
[
e−iωagt1 − eiωagt1

]
(2.93)

= χ
(1)
1 + χ

(1)
2 (2.94)

with ωag = (Ea−Eg)/ℏ = −ωga. This is the sum of two terms, which we denote χ(1)
1

and χ(1)
2 .

Note that there is a difference between the Liouville space superoperator (ρ| ˆ̂µ|ρ)

and the Liouville space vector (Hilbert space operator) (µ|ρ)1. This difference is not

only notational, the last step in this expansion is:

(µ|ga) = ⟨a|µ̂|g⟩ = µag, (2.95)

1In the book of Cho, they are referred to as the cause and effect operators, respectively.
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(µ|ag) = ⟨g|µ̂|a⟩ = µga (2.96)

In matrix notation, it is obvious that it sends the coherence back to the ground state

density matrix element |gg). The demonstration above thus takes the system through

a series of elements in Liouville space:

|gg)→ |ga)→ |gg)

|gg)→ |ag)→ |gg)

where the second path is the conjugate of the first. This string of density matrix

elements is called a Liouville space path. The total response is made of the sum

over all possible such paths, which involve two states. The path needs to start in

the ground state, and end in a population state as the expectation value in Liouville

space is given by a trace.

The discussion started some pages ago with a statement of the spectrum as

typically derived from Fermi’s Golden rule, equation 1.2. It is easily demonstrated

from the above result (eq 2.93):

χ(1)(t1) =
i

ℏ
∑
g,a

P (g) |µag|2ℑe−iωagt1

=
i

ℏ
∑
g,a

P (g) |µag|2 sin (ωagt1)

This equation is readily Fourier Transformed to yield equation 1.2 (up to constant

scaling factors). The second version of eq 1.2 can be obtained by realizing ωga = −ωag,

which flips the sign of the sine:

χ(1)(t1) =
i

ℏ
∑
g<a

[P (g)− P (a)] |µag|2 sin (ωagt1) .
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where it is now required that the energy difference is thermally accessible, and thus

both g and a are potential inital states. This is not the typical case in visible spec-

troscopy1, but is important in the analysis of NMR and far IR spectroscopy. It seems

important to show our analysis applies to well-established spectroscopy techniques.

The next step in deriving the total polarization is now to multiply equation 2.93

by the electric field. The linear polarization for a two-level system of states e, g

initially in the ground state g with unit transition dipole is given by:

P (1)(t) =

∫ ∞

0

dt1E(t− t1)χ(1)(t1) (2.97)

=

∫ ∞

0

dt1 (E(t− t1) + E⋆(t− t1))χ(1)(t1) (2.98)

=
i

ℏ

∫ ∞

0

dt1 [E(t− t1) + E⋆(t− t1)]
(
e−iωegt1 − eiωegt1

)
(2.99)

−iℏP (1)(t) =

∫ ∞

0

dt1E(t− t1)e−iωegt1 +

∫ ∞

0

dt1E
⋆(t− t1)e−iωegt1

+

∫ ∞

0

dt1E(t− t1)eiωegt1 +

∫ ∞

0

dt1E
⋆(t− t1)eiωegt1 (2.100)

= e−iωt

∫ ∞

0

dt1A(t− t1)e−i(ωeg−ω)t1

+ eiωt
∫ ∞

0

dt1A
⋆(t− t1)e−i(ωeg+ω)t1

+ e−iωt

∫ ∞

0

dt1A(t− t1)ei(ωeg+ω)t1

+ eiωt
∫ ∞

0

dt1A
⋆(t− t1)ei(ωeg−ω)t1 (2.101)

using E(t) = A(t)e−iωt. The polarization contains 4 terms, two of which rotate with

frequency ωeg−ω, two with ωeg+ω. Since ω ≈ ωeg, latter two terms can be neglected.

This is called the rotating wave approximation. Note that we are assuming ωeg > 0,

1Trip suggestion: Set the Controls for the Earth of the Sun
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ie: Ee > Eg. This is the case for visible spectroscopy, but may not necessarily be the

case for NMR or far IR. In that latter case, the other two terms will vanish, and the

situation is the same.

The equation above reduces to:

P (1)(t) =
i

ℏ

∫ ∞

0

dt1E(t− t1)χ(1)
1 (t1)−

i

ℏ

∫ ∞

0

dt1E
⋆(t− t1)χ(1)

2 (t1) (2.102)

The second term is the complex conjugate of the first. We have reduced our expansion

to a single term:

P (1)(t) =
1

ℏ

∫ ∞

0

dt1ℜE(t− t1)
(
µ| ˆ̂G(t1)ˆ̂µ|ρeq

)
(2.103)

This tedious derivation was carried out for the linear spectrum for a two-level

system (single transition!). Luckily, this can be generalized to higher orders. The

response of order n will expand into 2n terms. For m states, each of these further

expands into around (m− 1)n possible Liouville pathways. Expanding the field E(t)

into a sum of k pulses also results in a multitude of terms. Despite the large num-

ber of combinations, the total result reduces to a limited number of terms thanks

to the rotating wave approximation. Luckily, the bookkeeping of both the system

and the field can be systematically done using a representation called Double-Sided

Feynmann Diagrams (DSFD).

2.3.2 Double-sided Feynman diagrams

A DSFD represents the evolution of the system in Liouville space. Vertical lines

represent the evolution of the ket and the bra. Incoming and outgoing arrows indicate

excitation or de-excitation. By following a few simple rules which match physical

intuition, these diagrams enable the meticulous exhaustion of all possible responses
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Figure 2.1: Representation of the linear response using double-sided Feynman dia-
grams. (a) The diagram representing the linear response for a two-level system is
dissected. See text. An abbreviated version is shown below. (b) Four terms in the
linear response of a two-level system are reduced to a single term. (c) When multi-
level systems are discussed, it may be useful to use an energy level diagram with
arrows indicating the transitions. In this representation, time runs to the right and
the arrowhead side indicates interaction with the ket (left) or bra (right).

in the system. Despite their nice graphical design, diagrammatic representations such

as DSFD rigorously translate into equations, such as eq 2.104 below [3, 4, 6].

Example DSFD are represented on Fig 2.1. A diagram, corresponding to the

linear absorption eq 2.103 is dissected on panel a. This diagram obeys the following

rules:

1. Vertical lines indicate the evolution of the ket (left) and bra (right).

2. Time goes up.

3. Labels indicate the density matrix elements.

4. Arrows indicate light-matter interactions, which can operate on the ket (left)

or bra (right) but not both.

5. Right-going arrow indicates interaction with E(t), left-going indicates E⋆(t).

6. An arrow pointing towards the system corresponds to absorption and thus an

excitation. Conversely, an arrow pointing away corresponds to de-excitation.
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7. The last arrow is an expectation value, not a light-matter interaction. It cor-

responds to the polarization of matter. It usually has a different style.

8. By convention, last arrow operates on the ket. It is thus an outgoing arrow on

the left side.

9. The measurement corresponds to taking a trace, the final state must be a

population.

10. The diagram has a sign, corresponding to (−1)n where n is the number of

interactions with the bra.

These rules make it easy to write the DSFD: systematically write all the permutations

of arrows and states, and cross out those that do not obey the above rules. With some

practice, it becomes easy to write all the possible valid diagrams without wasting

too much time with the wrong ones1.

The diagrams can be simplified somewhat. Due to rule 4 above, the initial and

final states can be deduced directly from the first and last rows (respectively). Usu-

ally, consecutive arrows correspond to consecutive light-matter interaction. When

this convention is obeyed, we will not indicate the index of the light pulses. For

easy typesetting, the upwards pointing arrow will be converted to the horizontal and

moved up to align with the density matrix elements. This results in the abbreviated

diagram at the bottom of panel 2.1a.

An example of diagram elimination is shown on Fig 2.1b. The four diagrams

represented there correspond to the four terms of 2.101. As demonstrated, two of

them (B, D) vanish due to the rotating wave approximation, corresponding to rule

6 for diagrams. The two remaining diagrams, corresponding to eq 2.102 are mirror

1Hint: start with the final state and work your way backwards.
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images of one another, and thus complex-conjugates. Rule 8 lets us draw only diagram

A as long as we remember to take the real part. This is equivalent to eq 2.103.

As shown in eq 2.93, the response of a multi-level system can be decomposed

into a sum over paths involving two-levels. The DSFD make it easy to inspect the

signal from a given path, but it can quickly become confusing when multiple paths

are available, especially in the presence of relaxation. In this case, it can be useful to

enumerate the possible pathways through the manifold of states on an energy-level

diagram. This formulation is not the subject of a strong convention in the field of

CMDS. In the current work, time will go horizontal to the right, harpoons indicate

light-matter interaction. The side of the arrowhead indicates interaction with the ket

(left) or bra (right). Arrow style can be used to distinguish the types of interactions.

The linear response for a three-level system consisting of a ground state g and two

singly excited states a, b is shown on Fig 2.1c.

The DSFD make it easy to write down the corresponding response. Laser-

induced transitions correspond to transition dipoles, which are read vertically (green,

blue boxes on Fig 2.1a). The different rows of the density matrix correspond to dif-

ferent time intervals. During delay t1, the system evolves in a coherence and the

corresponding Green function (orange). Reading the diagram in Fig 2.1, we can di-

rectly write the susceptibility. We can even add dephasing phenomenologically by

setting:

ˆ̂Geg(t) = exp [−iωegt− t/T2] (Homogeneous dephasing) (2.104)

χ(1)(t) = |µeg|2 exp [−iωegt− t/T2] (2.105)
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which Fourier transforms to a Lorentzian lineshape of width 1/T2. The process stays

similarly straightforward for higher-order responses, allowing us to include the com-

plicated three dimensional lineshapes phenomenologically1.

2.3.3 Cumulant expansion: coherent lineshapes in Hilbert space

The description in terms of Liouville pathways and DSFD dominates the field

of CMDS for good reason. It allows the inclusion of lineshapes using varying levels of

rigor [2, 18]. However, it is unable to represent a coherent evolution of the vibrational

modes and the resulting coherent lineshape dynamics. The reason seems baked in

the orthodox system-bath partition. This partition puts all optically active degrees

of freedom in the system, and everything else in the bath. The Liouville pathway

formulation does not account for the state of the bath, which is thus reset at every

step of the process. This is perfectly fine for incoherent lineshape dynamics, but

prevents the inclusion of coherent vibrational motion. In order to circumvent this

limitation, the calculation is carried out in Hilbert space. This also allows the rigorous

derivation of the origin of lineshapes, within some approximations. The calculation

for linear spectroscopy is reasonably simple, but serves to introduce the concepts.

The linear response, eq 2.103 can be equivalently expressed in Hilbert space

using commutators and the interaction picture transition dipole operator, eq 2.60.

Recall:

χ(1)(τ1) =
i

ℏ
⟨[µ̂(τ1), [µ̂(τ0), ρ(τ0)]]⟩ (2.106)

=
i

ℏ
⟨[µ̂(τ1), µ̂(τ0)] ρeq⟩ (2.107)

=
i

ℏ
⟨µ̂(τ1)µ̂(τ0)ρeq⟩ −

i

ℏ
⟨µ̂(τ0)µ̂(τ1)ρeq⟩ (2.108)

1Easy, isn’t it?
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=
i

ℏ
⟨µ̂(τ1)µ̂(τ0)ρeq⟩ −

i

ℏ
⟨ρeqµ̂(τ0)µ̂(τ1)⟩ (2.109)

=
1

ℏ
ℜ ⟨µ̂(τ1)µ̂(τ0)ρeq⟩ (2.110)

due to the invariance of the trace under cyclic permutation. This formulation also

reduces to a single term, ⟨µ̂(τ1)µ̂(τ0)ρeq⟩, which is known as the two-point correlation

function of the transition dipole moment.

This equation will now be simplified using the so-called cumulant expansion to

second order. The energy of state i is separated in an average and a fluctuating part,

similarly for the angular frequency:

Ei(t) = Ei + δEi(t) (2.111)

ωij(t) = ωij + δωij(t). (2.112)

An important subtlety arises when defining the corresponding Hamiltonian. The

Hamiltonian can be separated in a fixed and a fluctuating part, typically arising

from system-bath interaction:

Ĥmat(t) = Ĥ0 + V̂ (t) (2.113)

where Ĥ0 is the fixed part and V̂ (t) is the fluctuating part, for example the system-

bath Hamiltonian. This Hamiltonian lends itself to another use of the interaction

picture.

The reference frame has to be selected carefully in order to simplify the deriva-

tion. Two possible frames of references are depicted in Fig 2.2. The first panel,

Fig 2.2a, uses the average ground state energy as a reference. Both the ground and

excited states fluctuate. This corresponds to an intuitive picture. The second panel

shows the same trajectories, setting the time-varying ground state Hamiltonian as
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Figure 2.2: Two equivalent frames of reference. (a) The average ground state energy
is taken as a reference. Both the energy of the ground and excited state fluctuate.
(b) The fluctuating ground state energy is taken as a reference. All fluctuations are
in the excited state.

a reference. This way, all the fluctuations are contained in the excited states, the

ground state stays at a fixed energy. This makes no difference for spectroscopy, as

only the energy gap can be probed. The fluctuations involved in our derivations will

always be the fluctuations of the states1. There is an equivalent formulation where

the fluctuations are taken for the energy gaps2. This is simply a change of reference

frame. However, using states is more convenient. A system with N states will require

(N2+N)/2 correlation functions. The same system has M = (N2−N)/2 transitions,

which require (M2 +M)/2 correlation functions, which is a much larger number.

This choice of reference frame yields the excited states Hamiltonian:

Ĥi(t) = Ĥi + V̂ig(t) (2.114)

Ĥi = Ĥg + ℏωig (2.115)

1This work follows the book of Cho.

2In the book of Mukamel. This requires having a different reference for every pair of states...
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V̂ig(t) = V̂i(t)− V̂g(t) (2.116)

V̂gg(t) = 0 (2.117)⟨
V̂ig(t)

⟩
eq

= 0 (2.118)

where the ⟨. . .⟩eq in the last equation indicates the average. V̂ig(t) is thus the instan-

taneous fluctuation of the energy of state i. Usually, the fluctuations are taken to be

due to fluctuating nuclear coordinates, ie: V̂ij(t) = V̂ij(q(t)).

This can be used to define the time-dependent transition dipole moment, now

taking into account the evolution with respect to the ground state Hamiltonian:

µ̂ij(τ) =
⟨
i
⏐⏐⏐ exp(iĤ0τ

)
µ̂ exp

(
−iĤ0τ

) ⏐⏐⏐ j⟩ (2.119)

= µij exp
(
iĤiτ

)
exp

(
−iĤjτ

)
(2.120)

= µij exp (−iωijτ) exp+

[
− i

ℏ

∫ τ

0

dτ ′Vij(τ
′)

]
(2.121)

where we have implicitly assumed that µ̂ has no time-varying part from other sources.

In the context of fluctuations induced by motions from a nuclear bath, this amounts

to assuming the transition dipole does not depend on nuclear coordinates, ie: µij(q) =

µij∀q. This is the Condon approximation.

The result above can be inserted in eq 2.110 to yield the linear response in the

presence of fluctuations:

⟨µ̂(t)µ̂(0)⟩eq =
∑
g,a

⟨µ̂ga(t)µ̂ag(0)⟩eq (2.122)

=
i

ℏ
∑
g,a

|µag|2 e−iωgat

⟨
exp+

[
− i

ℏ

∫ t

0

dτ V̂ga(τ)

]⟩
eq

(2.123)

=
i

ℏ
∑
g,a

|µag|2 e−iωgat

⟨
1− i

ℏ

∫ t

0

dτ V̂ga(τ)
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− 1

ℏ2

∫ t

0

dτ

∫ τ

0

dτ ′V̂ga(τ)V̂ga(τ
′) + . . .

⟩
eq

. (2.124)

The first order term vanishes by definition, see eq 2.118. We can now define the

lineshape function:

gij(t) =
1

ℏ2

∫ t

0

dτ

∫ τ

0

dτ ′
⟨
V̂ig(τ)V̂jg(τ

′)
⟩
eq

(2.125)

=

∫ t

0

dτ

∫ τ

0

dτ ′ ⟨δωig(τ)δωjg(τ
′)⟩eq (2.126)

=

∫ t

0

dτ

∫ τ

0

dτ ′ ⟨δωig(τ
′)δωjg(0)⟩eq (2.127)

=

∫ t

0

dτ

∫ τ

0

dτ ′Cij(τ
′) (2.128)

where Cij(t) = ⟨δωig(τ
′)δωjg(0)⟩eq is known as the frequency-frequency correlation

function (FFCF), and gij(t) is the lineshape function. Using the lineshape function

in eq 2.124, then assuming it is the first term in the series expansion of e−g(t) yields:

⟨µ̂(t)µ̂(0)⟩eq =
i

ℏ
∑
g,a

|µag|2 e−iωagte−gaa(t). (2.129)

This equation can describe complicated lineshapes. The FFCF can be computed using

one’s favorite tools and used to obtain a model linear absorption spectrum, including

the lineshape. The equation above involves only the autocorrelation functions, but

nonlinear spectroscopy will require the inclusion of cross-correlation functions Cij

where i ̸= j. Since this result was obtained using an expansion truncated to the

second order term, the technique is called the cumulant expansion to second order.

The lineshape functions corresponding to common dephasing processes are listed

below.

g(H)(t) = γt (2.130)

g(I)(t) =
1

2
σ2t (2.131)
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Figure 2.3: Common lineshapes functions: Homogeneous dephasing (blue), Inhomo-
geneous dephasing (orange), Kubo ansatz (green), Huang-Rhys coupling to vibra-
tions (red). (a) Correlation functions in the time domain. (b) Spectral densities of
the associated fluctuations. (c) Dephasing envelope e−g(t). (d) Linear spectrum with
νeg = 500 THz. A small amount of inhomogeneous dephasing was added to the
Huang-Rhys case to prevent Fourier leakage.

g(K)(t) = σ2τ 2
(
e−t/τ + t/τ − 1

)
(2.132)

g(HR)(t) = S

(
coth

[
ℏωvib

2kBT

]
[1− cos (ωvibt)] + i [sin (ωvibt)− ωvibt]

)
. (2.133)

These lineshape functions are illustrated on Fig 2.3.

The lineshape g(H) corresponds to homogeneous dephasing; it yields a Lorentzian

lineshape with linewidth parameter γ. A Gaussian distribution of oscillators with

a fixed transition frequency can be modeled using inhomogeneous dephasing g(I),

where σ is the standard deviation of the energy levels, in units of angular frequency.
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Both cases correspond to limits of the Kubo lineshape function, g(K). This lineshape

function can be obtained from the correlation function:

C(K)(t) = σ2e−|t|/τ (2.134)

where σ2 is the variance of the fluctuations and τ is a decorrelation timescale. This

correlation function corresponds to the Ornstein-Uhlenbeck process. This describes

the behavior of an overdamped oscillator subject to random kicks. Taking the limit

of τ ≫ t yields the inhomogenous case, whereas τ ≪ 1/νeg yields the homogeneous

case.

The Huang-Rhys lineshape function g(HR) corresponds to Franck-Condon cou-

pling between the electronic excitation and a vibrational mode. The equation above,

although somewhat long, has only 3 parameters: the Huang-Rhys coupling param-

eter S, the mode frequency ωvib and temperature T . The spectrum obtained using

the Huang-Rhys lineshape function corresponds to the usual Frank-Condon progres-

sion. Inspection of Fig 2.3d reveals the 0-phonon line is slightly red-shifted. This is

a consequence of the definition of our fluctuations: the transition energy entering

in eq 2.129 is the average transition energy, ie: the barycenter, not the pure elec-

tronic gap. Indeed, the inclusion of Frank-Condon transitions shifts the barycenter

of a band by Sℏωvib [19]. In order to keep the 0-phonon line fixed, it is necessary to

blueshift the average transition energy by the same amount.

The red-shift in the Huang-Rhys parameter arises from the imaginary part of

eq 2.133. Contrary to the other cases, this function is complex. Indeed, in general

lineshape functions are complex, a fact that arises from the symmetry properties of

quantum correlation functions, which differ slightly from those of classical correlation

functions (see [3] chap. 8). The real part induces dephasing, whereas the imaginary
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part indicates frequency shifts. The most straightforward way to enforce the symme-

try constraints is to use the spectral density corresponding to the fluctuations. The

correlation function can be computed from the Fourier-domain representation of the

energy fluctuations:

δEi(ω) = FδEi(t) (2.135)

C ′′
ij(ω) =

1

ℏ2
ℏω

2kBT
δEi(ω)δE

⋆
j (ω) (2.136)

Cij(ω) =

[
1 + coth

(
ℏω

2kBT

)]
C ′′

ij(ω) (2.137)

Cij(ω) = FCij(t) (2.138)

where C ′′(ω) is the odd part of C(ω) and δEi(t) is the trajectory the energy of state i.

Equation 2.136 is a statement of the Wiener-Khinchin theorem. The demonstration

of equation 2.137 is not carried out here, it relies on the symmetry properties of

quantum correlation functions. See [3] chapter 8. The lineshape function can be

obtained directly from C(ω) using:

gij(t) = −
1

2π

∫ ∞

−∞
dω

Cij(ω)

ω2

[
e−iωt + iωt− 1

]
. (2.139)

This allows the determination of lineshape from arbitrary spectral densities of the

energy level fluctuations [3, 20]. This approach will be demonstrated in chapter 5.

2.3.4 The Multimode Brownian Oscillator model.

The equations outlined above allow the computation of lineshape functions from

arbitrary sources, such as detailed numerical calculations. It is interesting to establish
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a way to assemble lineshape functions corresponding to common processes. Experi-

mental spectroscopists already do this to make up model energy level diagrams1; it is

desirable to do the same for lineshapes. This can be achieved by using the Multimode

Brownian Oscillator model (MBO), as presented by Mukamel [3].

This model partitions the total system in 3 domains: the electronic system (the

system), primary nuclear coordinates qk and secondary nuclear coordinates xl. Fluc-

tuations of the energy levels arise from coupling to the fluctuating primary nuclear

coordinates, which are themselves coupled to the secondary coordinates:

δEi(t) =
∑
k

ξikδqk(t) (2.140)

mkq̈k(t) = −mkω
2
kqk(t)−mk

∫ t

−∞
dτγk(t− τ)q̇k(τ) + fk(t) (2.141)

fk(t) =
∑

cklδxl(t) (2.142)

γk(t) =
1

2mkkBT
⟨fk(t)fk(0)⟩ (2.143)

where δqk(t) is the fluctuating part of the primary coordinate, ξik is the real coupling

constant between nuclear mode k and state i, mk is the effective mass of mode k,

δxl(t) is the fluctuating part of secondary mode l and ckl is the coupling constant

between qk and xl. The secondary mode act on the first modes as a random fluc-

tuating force fk(t) and the associated coupling constant. The couplings ξik and ckl

are considered constant, ie: invariant with time, q or x. Eq 2.141 is a Generalized

Langevin equation. The behavior of secondary bath modes is of little interest, it mat-

ters only inasmuch as it affects the primary modes through the statistical forces fk(t)

(fluctuation) and γ (dissipation). A common case is to assume the random force has

1We just draw sticks.
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no memory, yielding: ⟨fk(t)fk(0)⟩ ∝ δ(t). This is called the Markov approximation,

the associated dynamics are called Markovian dynamics1.

The MBO model further assumes the primary bath modes are uncorrelated,

which is a common approximation in classical statistical mechanics2.

k ̸= k′ =⇒ ⟨δqk(t)δqk′(0)⟩ = 0 (2.144)

where ⟨. . .⟩ indicate a stationary ensemble average, ie: average over the ensemble

distribution and over initial times. This assumption yields the following expressions

for the correlation functions:

Cij(t) = ⟨δEi(t)δEj(0)⟩ (2.145)

=
∑
k

ξikξjk′ ⟨δqk(t)δqk′(0)⟩ (2.146)

=
∑
k

ξikξjk ⟨δqk(t)δqk(0)⟩ (2.147)

ie: all correlation functions can be expressed as a sum of autocorrelation functions.

They all have the same symmetries. Furthermore, the correlation functions of the

energy levels must obey the Cauchy-Schwarz inequality:

|Cij(t)|2 ≤ |Cii(t)Cjj(t)| . (2.148)

1This term should only be employed in the presence of a well-defined Generalized Langevin
equation. Theoreticians get susceptible otherwise.

2Otherwise you’re in heavy trouble [21, 22].
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This further allows the separation of the lineshape function into multiple independent

components:

gij(t) =
∑
k

ξikξjkg
(k)
ij (t) (2.149)

This equation allows the mix and matching of lineshape functions. We will see an

example of this in chapter 5.

The MBO model separates the nuclear motions into modes with an explicit

treatment, the primary modes qk, and modes which are averaged out, the secondary

modes xl. The primary modes then obey a generalized Langevin equation, with

fluctuations and dissipation arising from their coupling to the secondary modes. This

is the description of a projection operator where the electronic degrees of freedom

and the primary coordinates (and their momenta) are part of the system, and the

secondary coordinates form the bath. This forms a closed set of integro-differential

equations for which the correlation functions are known. This situation is different

from the orthodox system-bath partitioning of quantum open systems, in which all

nuclear motions are part of the bath.1

2.4 2D spectroscopy

The stage has been set to discuss the most advanced experiment contained in

this thesis: 2D spectroscopy. The use of advanced tools like DSFDs will be much more

natural for the description of 2D spectroscopy. Hopefully, the detailed treatment of

linear spectroscopy allows an efficient description of 2DE where the focus is on the

specifics of CMDS instead of formalism. The assignation of features in a 2D spectrum

is usually carried out with the help of DSFD. The modeling of coherent lineshape

1An excellent display of ambiguous jargon. Well done Prof. Mukamel!
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dynamics will be achieved with the help of the cumulant expansion of the 4-point

correlation function and the MBO model.

2.4.1 Third order response pathways in Liouville space

The third order response contains many more terms than the linear response.

The third order response is given by:

χ(3) =
(
µ| ˆ̂G(t3)ˆ̂µ ˆ̂G(t2)ˆ̂µ

ˆ̂G(t1)ˆ̂µ|ρeq
)
. (2.150)

The equation can thus be expanded to where each electric field superoperator µ

expands to two terms, one acting on the bra and one acting on the ket (eq 2.46). As

discussed previously, the expansion results in 8 terms, 4 of which are the complex

conjugates of the others:

χ(3) = R1 +R2 +R3 +R4 + c.c.. (2.151)

The conventional assignment of these terms is presented on Fig 2.4. The anatomy of

a DSFD is recalled on panel a. All the diagrams follow a similar pattern: evolution in

a coherence during t1 then in a population during t2 and finally again in a coherence

during t3. This allows the separation of the four terms in two families of light-matter

interactions and two phase-matching conditions. All the signals have the same sign

(positive).

The physical phenomena correspond to stimulated emission (SE) and ground

state bleach (GSB). The SE pathways have two distinguishing features: the evolution

during t2 corresponds to the excited state population |aa). These diagrams thus

probe the excited state dynamics. Furthermore, the third light-matter interaction is

an emission, as shown by the corresponding arrow. Conversely, the GSB pathways

evolve in the ground state population |gg) during delay t2. The third light-matter
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Figure 2.4: Double sided Feynman diagrams for a two-level system. (a) Dissecting a
third-order DSFD. Transition dipoles correspond to transitions in the bra or ket, read
vertically. Temporal evolution corresponds to the rows of the diagrams, read horizon-
tally. DSFD will be presented in abbreviated form, as shown below. (b) Conventional
DSFD for the third order response of a two-level system, R1 to R4.

interaction corresponds to absorption. These two signal categories correspond to

bleach.

The signals can arise from two different series of interactions with the com-

ponents of the light fields. The rephasing (R) diagrams correspond to interactions

with E⋆
1E2E3. The frequency of the oscillation along t1 is thus reversed with respect

to the evolution during t3. A consequence of this is that some dephasing processes

are reversed, yielding an echo signal. The rephasing signals correspond to photon-

echo experiments [3, 12]. The non-rephasing signals (N) arise from interactions with

E1E
⋆
2E3. The time-reversal does not happen, and this is sometimes called an anti-

echo [23].

The rephasing and non-rephasing signals correspond to different series of light-

matter interactions. As such, they have different phase-matching conditions, enumer-

ated on the right. The phase matching condition can be expressed using coherence
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transfer pathways αj for signal j. The pathways αj are vectors of integers of length

N for N pulses. The components αi,j indicate the total interaction with field i, with

negatives indicating interaction with the conjugate part. Signals with different co-

herence transfer pathways can be separated by relying on the phases or directions

of the input fields. This will be important for the design and understanding of the

experiments.

The situation becomes relatively more complicated for a multi-level system. Each

of the four responses expand into many terms, depending on which paths the system

may take under the influence of any given pulses. In the absence of relaxation, the

pathways can be written as follows:

R1 =
∑
g,a,b,c

(µba| ˆ̂Gba,ba(t3)ˆ̂µba,ca
ˆ̂Gca,ca(t2)ˆ̂µca,cg

ˆ̂Gcg,cg(t1)ˆ̂µcg,gg|gg) (2.152)

R2 =
∑
g,a,b,c

(µcb| ˆ̂Gcb,cb(t3)ˆ̂µcb,ca
ˆ̂Gca,ca(t2)ˆ̂µca,ga

ˆ̂Gga,ga(t1)ˆ̂µga,gg|gg) (2.153)

R3 =
∑
g,a,b,c

(µcb| ˆ̂Gcb,cb(t3)ˆ̂µcb,gb
ˆ̂Ggb,gb(t2)ˆ̂µgb,ga

ˆ̂Gga,ga(t1)ˆ̂µga,gg|gg) (2.154)

R4 =
∑
g,a,b,c

(µcg| ˆ̂Gcg,cg(t3)ˆ̂µcg,bg
ˆ̂Gbg,bg(t2)ˆ̂µbg,cg

ˆ̂Gcg,cg(t1)ˆ̂µcg,gg|gg) (2.155)

where indices a, b, c are any states of the system, including the ground state. The

order of the indices may seem unintuitive, but will be made clearer later. The third

order response can thus be decomposed into a sum of pathways involving 4 states

each.

The inclusion of multiple states generates new types of pathways, illustrated on

Fig 2.5, for a system consisting of a single ground state g, two singly excited states d,

e and three doubly excited states k, l and m. State l can be accessed from both d and

e, but not states k and m. This system is represented on Fig 2.5a. The energy of the

excited states is shifted by their binding energy: Ek = 2Ed−∆k, El = Ed +Ee−∆l,
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Figure 2.5: DSFD for a multi-level system. (a) Energy level diagram with two singly-
excited states and three doubly excited states. (b) Schematic 2D spectrum identify-
ing diagonal peaks D and D′ and cross-peaks X and X′. (c) DSFD. Only diagrams
corresponding to initial transition to d are considered. Pathways with a coherent
oscillation during t2 are highlighted. (d) Double quantum (2Q) diagrams.

Em = 2Ee − ∆m. For the sake of discussion, the binding energies will be assumed

to be small positive numbers causing a redshift in the induced absorption, although

this is by no means necessary.

This scheme gives rise to multiple peaks on a 2D spectrum, illustrated on

Fig 2.5b. Bleach contributions are indicated in red, induced absorption in blue. The

spectrum contains two diagonal peaks, at Ed and Ee. The diagonal peaks arise from

SE and GSB contributions. The diagrams corresponding to this peak are listed in the

corresponding box of Fig 2.5c for initial transitions g → d. The diagrams contain the

four terms discussed previously, which arise from considering the manifolds formed

by g, d or g, e. An extra signal occurs in peak D, where the evolution during t2 is not

in population state |gg) but in a coherent superposition of singly excited states |de).

This evolution does not change the peak’s location on the 2D spectrum which is dic-

tated by the evolution during t1 and t3. However, this signal oscillates during t2 with
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frequency ωde and reveals information about the elusive electronic coherences [24,

25]. This signal is a N-SE contribution; there is no corresponding rephasing signal.

The addition of excited states opens up induced absorption (IA) pathways and

the corresponding peak D′. The manifold of states g, d, k gives rise to an R-IA and

N-IA signal. The induced absorption pathways have an odd number of interactions

on the bra, and thus they are negative. The frequency of the oscillation during t3 is

ωkd = ωdg −∆k/ℏ. The inclusion of states e and l again adds a signal that oscillates

during t2. This is a N-IA signal; along E3 it is located at Ele = Edg −∆l. It is thus

not located exactly at the same position as the other IA contributions, but should

be near if the binding energies are small.

A similar analysis can be repeated for the cross-peaks X and X′. The cross peaks

both contain two R and one N contributions. One of the R contribution oscillates.

There is the same number of positive (GSB, SE) and negative (IA) pathways. If the

features overlap and the contributions have similar amplitudes, the X and X′ peaks

will cancel each other.

The existence of a doubly excited state also adds another set of pathways which

access states k, l,m from a coherence instead of a population. Examples are shown on

Fig 2.5d. The system evolves in a |kg) coherence during t2, with a frequency that is

about double the laser frequency. These pathways are named double-quantum (2Q)

pathways (sometimes the pathways are named 0-quantum). The observation of 2Q

in electronic spectroscopy has proved elusive, but has been achieved using specific

experimental configurations [24, 26–28].

This formalism can also be applied to transient absorption (TA) spectroscopy.

In TA, the first two light-matter interactions occur with the first pulse. For the case

of impulsive δ pulses, this implies t1 = 0. In the Fourier domain, the TA signal
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Figure 2.6: Diagrammatic representation of TA experiments. (a) Simple three-level
system. (b) Comparison of the signals arising from CMDS contributions and TA
signals. TA arising from interactions with pulses 1,3 and 2,3 shown. The TA signals
does not depend on the phase of pulses 1,2 as shown by their phase matching vectors.
TA from pulses 1,2 not shown. Rephasing signals only.

can be obtained from the 2D signal by integration along ω1. This equality can be

demonstrated using the Fourier projection-slice theorem. Delay t2 thus corresponds

rigorously with the pump-probe delay of TA. On DSFD this is often represented

using a pair of arrows interacting at a given time point, as shown on Fig 2.6. Usually,

this is done in the context of signal isolation, for a given experiment. For example, a

three pulse experiment contains the CMDS signals as well as TA signals arising for

any pair of pulses. Every diagram in Figs 2.4 or 2.5 has a two-pulse TA equivalent.

The emblematic observation allowed by TA is relaxation. It is surprising it has

not been discussed yet. Indeed, the focus in the literature is to describe the mech-

anism by which the CMDS signals arise. Relaxation processes are thus a secondary

concern with regards to the theoretical description. There is no such inhibitions in

experimental works, where dynamical peak intensities are routinely used to extract

population kinetics [29–32]. It is a shortcoming of DSFD that they do not repre-

sent incoherent relaxation processes easily. They are tailored to represent dynamics

corresponding to diagonal elements of the Liouville space Green function. Indeed,
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Figure 2.7: Diagrammatic representation of the third order response with relaxation.
(a) Simple three-level system. (b) R-SE diagram including relaxation. (c) Example
representation of the same process on an energy level diagram. Full lines: light-matter
interaction. Dotted lines: incoherent relaxation. Dashed line: Polarization.

equations 2.152 to 2.155 only contain diagonal population dynamics of the form

Gii,ii. Population transfer can be included by considering off-diagonal terms Gjj,ii,

corresponding to i→ j incoherent relaxation.

The case of CMDS including relaxation is shown on Fig 2.7. The DSFD on

panel a contains an extra row, but still three light-matter interactions. It is thus

still a third-order process, since the order is defined in respect to the light-matter

interaction Hamiltonian as defined in equation 2.16. This pathway can be written

using elements of the superoperators:

(µ|Gdg,dg(t3)µdg,ddGdd,ee(t2)µee,geGge,ge(t1)µge,gg|gg), (2.156)

where it is apparent that the process is a third order process with respect to light-

matter interaction. Population relaxation is highlighted by an underline. The compu-

tation of the relaxation Green function Gdd,ee(t) may require integration over one (or

more) delays, but it is a property of the material Hamiltonian. Care has to be taken

when including relaxation. The coherence Green functions need to include relaxation

of the corresponding populations [3]. The different elements of ˆ̂G have to obey the

detailed balance condition, to avoid the spontaneous creation of matter.

It is clumsy to add relaxation to a DSFD; time-evolution during t2 now covers

two rows, which is not the standard notation. Indeed, there seems to be no standard
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notation to describe this. Sometimes dashed lines are added, wiggly arrows, and so

on. It can be helpful in that case to represent the process on an energy level diagram,

as is done on Fig 2.7c. The side of the harpoon indicates interaction with the ket

(left) or bra (right). Line styles can be used to represent different types of interaction,

though this is not subject to a strong convention in the literature1.

The preceding discussion illustrates the use of DSFD to understand and analyze

2DE spectra. Fig 2.5 covers most of the common cases, but is not exhaustive. As

such, a similar analysis has to be carried out on a case-by-case basis. For example, a

system with two ground states would yield a different pattern of peaks. The analysis

is greatly facilitated by the use of DSFD. Studying the DSFD reveal the location of

the signals on a 2D spectrum, as well as the oscillation frequency during t2 — if any.

The analysis of the light-matter interaction reveals the coherence transfer pathways,

which informs experimental design and operation. The transcription of DSFD into

equations can be used to realize quantitative models including transition dipoles,

transition energies, population relaxation and phenomenological lineshapes.

2.4.2 Four-point correlation functions in Hilbert space

We now turn to the rigorous description of lineshapes in 2DE using lineshape

functions as was outlined in section 2.3.3. The derivation follows the same lines. In

Hilbert space, the third order polarization can be written as:

χ(3)(t1, t2, t3) =
i

ℏ3
⟨[µ(t3), [µ̂(t2) [µ̂(t1), µ̂(0)]]]⟩eq . (2.157)

1The diagram on Fig 2.7c has an issue. It does not represent which component of E causes the
interaction as obviously as conventional DSFD.
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Fully expanding the commutators yield 8 terms, 4 of which are complex conjugates

of the other. All terms can be written as the product of 4 dipole operators with

permutations of the arguments. Cast into this form, this equation is known as the

four-point correlation function of the transition dipole:

Φ(τ1, τ2, τ3, τ4) = ⟨µ̂(τ1)µ̂(τ2)µ̂(τ3)µ̂(τ4)⟩ (2.158)

=
∑
g,a,b,c

⟨µga(τ1)µab(τ2)µbc(τ3)µcg(τ4)⟩eq (2.159)

where the second equation is obtained from the first by expanding each µ into a basis

of states. This is valid in the absence of relaxation.

Computing the expectation value for eq 2.159 takes the system through a loop

consisting of four states:

g ↔ a↔ b↔ c↔ g. (2.160)

This path is known as the third-order Hilbert space path (or Hilbert path). This can

be understood by decomposing µ̂ in the basis of states:

µ̂ =
∑
i,j

µij |i⟩ ⟨j| . (2.161)

Using this in the transition dipole operator in Hilbert space:

µ̂(t) = exp−

(
i

∫ t

−∞
dτĤ0(τ)

)
µ̂ exp+

(
−i

∫ t

−∞
dτĤ0(τ)

)
(2.162)

µij(τ) = |i⟩ exp−

(
i

∫ t

−∞
dτĤi(τ)

)
µij exp+

(
−i

∫ t

−∞
dτĤj(τ)

)
⟨j| . (2.163)

Conceptually, µ(t) propagates the system forward in time for duration t, the tran-

sition i → j occurs, and the system is restored back to its initial time position by

the reverse propagator. The net result is the accumulation of a phase factor, due



2.4. 2D SPECTROSCOPY 74

Table 2–1: Correspondence between Hibert and Liouville paths. State g corresponds
to any ground state, e to any first excited state and f to any doubly excited state.

Delays Path

Type τ1 τ2 τ3 τ4 a b c Signal

N-SE t1 t1 + t2 t1 + t2 + t3 0 e g e R1

R-SE 0 t1 + t2 t1 + t2 + t3 t1 e g e R2

R-GSB 0 t1 t1 + t2 + t3 t1 + t2 e g e R3

N-GSB t1 + t2 + t3 t1 + t2 t1 0 e g e R4

R-IA t1 t1 + t2 t1 + t2 + t3 0 e f e −R⋆
1

N-IA 0 t1 + t2 t1 + t2 + t3 t1 e f e −R⋆
2

2Q-IA 0 t1 t1 + t2 + t3 t1 + t2 e f e −R⋆
3

2Q-SE t1 + t2 + t3 t1 + t2 t1 0 e f e R4

to the forward and backwards evolution occurring in different states. Furthermore,

time-dependent system Hamiltonians will induce dephasing.

The correspondence between the Hilbert space description using eq 2.159 and the

Liouville space pathways of eqs 2.152 to 2.155 is presented in Table 2–1. Different

permutations of the time arguments give rise to the different pathways R1 to R4.

The pathway elements a and c are any states with an allowed transition from the

ground state, any singly excited states. The pathway element b is any state accessible

from said singly excited state, thus any ground state or doubly excited state. The

application of conventional rules of DSFD results in the complex conjugation of the

induced absorption pathways.

The complete expansion of eq 2.159 using eq 2.163 is rather tedious. It follows

the procedure outlined in section 2.3.3. The main steps are recalled here. The system

Hamiltonians are separated in an average and fluctuating part Ĥi(t) = ℏωig + V̂ig(t).

The ground state Hamiltonian is taken as a frame of reference and µ̂ expressed in the

corresponding interaction picture. The positive and negative time-ordered exponents

are expanded in a series, up to second order. The products are taken, once again



2.4. 2D SPECTROSCOPY 75

keeping only terms up to second order. Finally, a math trick is required in order to

convert every term to a lineshape function. The lineshape functions are converted

back to exponential assuming they are the first term in a truncated expansion. The

whole process is detailed in section 8A of [3]. The result is as follows:

R1(t1, t2, t3) =
∑
g,a,b,c

µgaµabµbcµcg exp (−ωabt3 − ωact2 − ωagt1)F1(t1, t2, t3) (2.164)

R2(t1, t2, t3) =
∑
g,a,b,c

µgaµabµbcµcg exp (−ωabt3 − ωact2 + ωcgt1)F2(t1, t2, t3) (2.165)

R3(t1, t2, t3) =
∑
g,a,b,c

µgaµabµbcµcg exp (−ωabt3 + ωbgt2 + ωcgt1)F3(t1, t2, t3) (2.166)

R4(t1, t2, t3) =
∑
g,a,b,c

µgaµabµbcµcg exp (−ωcgt3 − ωbgt2 − ωagt1)F4(t1, t2, t3) (2.167)

where ωij is the average transition energy in angular frequency, and Fi is a dephasing

function. The dephasing functions are:

F1(t1, t2, t3) = exp[− g⋆cc(t2)− g⋆bb(t3)− gaa(t1 + t2 + t3)

− g⋆cb(t2 + t3) + g⋆cb(t2) + g⋆cb(t3)

+ gca(t1 + t2)− gca(t1) + g⋆ca(t2 + t3)

− g⋆ca(t3) + gba(t1 + t2 + t3)− gba(t1 + t2)

+ g⋆ba(t3)] (2.168)

F2(t1, t2, t3) = exp[− g⋆cc(t1 + t2)− g⋆bb(t3)− gaa(t2 + t3)

− g⋆cb(t1 + t2 + t3) + g⋆cb(t1 + t2) + g⋆cb(t3)

+ gca(t2) + g⋆ca(t1 + t2 + t3)− g⋆ca(t1)

− g⋆ca(t3) + gba(t2 + t3)− gba(t2)

+ g⋆ba(t3)] (2.169)

F3(t1, t2, t3) = exp[− g⋆cc(t1)− g⋆bb(t2 + t3)− gaa(t3)
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− g⋆cb(t1 + t2 + t3) + g⋆cb(t1) + g⋆cb(t2 + t3)

+ g⋆ca(t1 + t2 + t3)− g⋆ca(t1 + t2)− g⋆ca(t2 + t3)

+ g⋆ca(t2) + gba(t3)− g⋆ba(t2 + t3)

+ g⋆ba(t2)] (2.170)

F4(t1, t2, t3) = exp[− gcc(t3)− gbb(t2)− gaa(t1)

− gcb(t2 + t3) + gcb(t2) + gcb(t3)

− gca(t1 + t2 + t3) + gca(t1 + t2) + gca(t2 + t3)

− gca(t2)− gba(t1 + t2) + gba(t1)

+ gba(t2)]. (2.171)

where gij are lineshape function as defined in section 2.3.3. Contrary to eq 2.129, the

dephasing functions depend on the correlation between the fluctuations of different

states — a critial component of dynamical lineshapes.

The equations 2.164 to 2.171 are rather long and complicated, but straightfor-

ward. The cumulant expansion is easily taught to a computer. A spectroscopic model

can be fully specified by three ingredients:

1. Transition dipoles;

2. Energy levels;

3. Lineshape functions, for all pairs of states.

The lineshape functions are not only necessary for states coupled via a spectroscopic

transition, but for all states. A convenient numerical code can be realized by de-

signing a data structure to contain these ingredients. It is easy for a computer to

compute the responses over a 3-dimensional grid of time delays. The sum over pos-

sible Hilbert space paths is similarly easy to abstract out. A module for the Julia
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programming language has been coded1 and is available online [33]. The modeling of

coherent lineshape dynamics is easily realized with this toolkit. As an added bonus,

the same parameters can be used to compute a model linear absorption spectrum,

PL spectrum, etc.

The numerical calculation of the 2D spectra is a very useful tool. The multiple

terms with opposite signs can give rise to subtle cancellation effects. This can out-

right remove the dependence on some delays2. For example, the 2D lineshapes for

homogeneous (eq 2.130) and inhomogeneous (eq 2.131) dephasing do not depend on

t2 despite the explicit dependence in eqs 2.168 to 2.171. The lineshapes are shown on

Fig 2.8. The 2D spectrum for pure homogeneous dephasing, shown on panel a, has

a star-like shape which should be familiar from NMR. Its projections along E1 and

E3 are Lorentzian lineshapes. The addition of inhomogeneous dephasing stretches

the lineshape along the diagonal, as shown on Fig 2.8b. This behavior can be under-

stood as a Gaussian distribution of oscillators. The spectrum can also be obtained

by the convolution of a 2D Lorentzian with a 1D Gaussian distribution of central

frequencies.

The Kubo lineshape gives rise to spectral dynamics during t2. Figure 2.9 shows

2D spectra obtained with this lineshape function at two values of delay t2. This

spectrum was obtained by using homogeneous and Kubo lineshapes, with parame-

ters γ=10 meV, σ=20 meV, τ=50 fs. The homogeneous term serves to avoid trunca-

tion in the time domain at small values of t2/τ . The spectrum is initially stretched

along the diagonal as in the inhomogeneous case. The different oscillators in the

1Hand-written by yours truly. Hopefully fast, hopefully easy to use.

2I call this Mukamel magic.
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Figure 2.8: Real absorptive 2D spectra for homogeneous and inhomogeneous dephas-
ing. These lineshapes do not change with delay t2. Projections along E1 and E3

shown in black. (a) Homogeneous dephasing only, γ = 10 meV) (b) Homogeneous
dephasing and inhomogeneous dephasing, γ = 10 meV, σ = 20 meV.
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Figure 2.9: The Kubo lineshape gives rise to spectral dynamics. 2D spectrum obtained
using homogeneous dephasing and the Kubo lineshape. Parameters: γ=10 meV, σ =
20 meV, τ = 50 fs. (a) t2=0 fs (b) t2=400 fs.
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ensemble have a distribution of frequencies. As time progresses, the feature rounds

off as the oscillators loose memory of their initial resonance frequency. Each vertical

slice (fixed E1) returns to the equilibrium distribution. This behavior is indicative

of spectral diffusion. The projections are unaffected by this process. Note the long

time spectrum is a round two-dimensional Gaussian, different from the star shape

of the homogeneous case. The feature is not perfectly circular as the homogeneous

contribution distorts the spectrum a bit.

The Huang-Rhys lineshape corresponds to the well known Frank-Condon transi-

tions describing an electronic transition accompanied by a change in the vibrational

number ∆v. The lineshape has 3 parameters: the Huang-Rhys coupling strength S,

vibrational frequency ωvib and temperature T . The impact of these parameters is

well known [19]: S modulates the intensity of the various vibronic lines as a function

of |∆v|, ωvib correspond to the spacing between the bands and T adjusts the rela-

tive intensity of the ∆v > 0 vs the ∆v < 0 bands. Model 2D spectra for two-level

system are shown on Fig 2.10 for two parameter sets. The two cases differ only by

the value of S: 0.2 for panels a and b, 2.0 for panels c and d. In both cases, the

spectra is obtained by summing homogeneous dephasing (eq 2.130, γ=10 meV), in-

homogeneous dephasing (eq 2.131, σ =20 meV) and Huang-Rhys coupling (eq 2.133,

ωvib=103 meV, kT=80 meV). The homogeneous and inhomogeneous contributions

dictate the lineshape of individual bands.

The spectra have rich oscillatory dynamics with period 2π/ωvib=40 fs. The spec-

tra are shown for integer periods (a, c) and half periods (b, d). The behavior of the

spectra is rather complicated, and quite interesting in video format. The two param-

eter sets discussed above show qualitatively distinct dynamics. In the weak coupling

case, the diagonal and off diagonal peaks oscillate out of phase, corresponding to
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Figure 2.10: Model 2D spectra using the Huang-Rhys lineshape. Cases for weak
coupling (S=0.2, top) and strong coupling (S=2.0, bottom) at initial time (left)
and after half a period. The spectra can be interpreted as the Frank-Condon peaks
oscillating with varying phases.
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coupled oscillators. For strong coupling, the entire feature waves out along the diag-

onals and cross-diagonal, in a manner suggestive of wavepacket dynamics. This rich

behavior gives rise to coherent modulations of the 2D lineshape [34]. The result can

be obfuscated depending on the value of the lineshape parameters, motivating the

use of modeling even for simple microscopic models.

Vibrational wavepacket dynamics are one possible source of coherent lineshape

dynamics; the only common source for two-level systems. Coherent oscillations in

the 2D spectrum also arise in the case of electronic coherences between two singly

excited states. A model 2D spectrum for a three-level system (g, e, d) is shown on

Fig 2.11. The DSFD for the signals oscillating as a function of t2 are highlighted

in Fig 2.5. These dynamics contributions oscillate as cos (ωabt2). After half a pe-

riod, the oscillating contributions are negative and reduce the peak amplitudes. The

cancellation is almost perfect for the cross-peak; the residue arises for slight phase

shifts of the oscillation in the E1, E3 plane. The specific lineshape parameters are:

γdd = γee = γde = γ=10 meV, σdd = σee = σde = σ=20 meV.

The duration of the electronic coherence depends on the degree of correlation

between the states involved in the coherence. Using the cumulant expansion approach

detailed here, this is governed by the lineshape functions with mixed indices. Fig 2.12

shows the cross-peak dynamics for two cases: γde =
√
γeeγdd = γ and γde = 0. In the

first case, the correlation is perfect and the interexcitonic coherence never dephases.

This case occurs when eq 2.148 is an equality. In the second case, the |e⟩ ⟨d| coherence

dephases with an homogeneous dephasing rate of γdd + γee. The associated peak

dynamics dampen out on the corresponding time scale. It is interesting to realize

the electronic coherence is present even in the case of uncorrelated fluctuations [35].

For a 3-level system, the electronic coherence has a minimum lifetime related to
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Figure 2.11: Spectral dynamics arising from an electronic coherence. The spectra are
shown of t2=0 and after half a cycle. Lineshape parameters identical to Fig 2.8b for
both states.
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Figure 2.12: Dephasing of electronic coherences. The duration of electronic coherences
is governed by the cross-correlation functions and the associated lineshapes, gij(t).
(a) Model 2D spectrum indicating the regions of interest. (b) Kinetic transients
integrated over the region in (a). Two cases are shown: perfect correlation (pale) and
perfect decorrelation (dark).
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the linewidths of the linear spectra of the individual transitions. This fact will be

important in the discussion of chapter 5.

2.5 Concluding remarks

This concludes the presentation of the theoretical tools commonly used to de-

scribe 2DE experiments. During the derivations, a number of approximations were

made, which will be kept throughout the manuscript.

• The perturbation applied by the EM wave is assumed to be a weak perturba-

tion. Indeed, CMDS experiments are normally tickling the weakest electronic

excitations. This approximation breaks down in the strong field limit, which is

more common in the fields of THz and high harmonic generation.

• The susceptibility can depend on the angle between the wavevectors of the

incident beams, as well as on their polarizations. These aspects were neglected.

• The susceptibility of a macroscopic system was assumed proportional to the

average behavior of microscopic chromophores. This is not the case for extended

coupled systems, although the correction normally requires extending the size

of the microscopic system.

• When nuclear motions are considered, the dynamics are assumed to obey

the Born-Oppenheimer approximation. The description of coupled vibrational-

electronic coherences is possible however [36].

• The vibrational wavepacket dynamics were assumed to change the electronic

energy gap, and not the transition dipole moment. This is the Condon approx-

imation. Corrections to eqs 2.152 to 2.155 are available to treat non-Condon

cases [37].
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• The cumulant expansion explicitly limits the fluctuations to Gaussian pro-

cesses. This is a limit of this specific modeling scheme, certainly not of 2DE in

general1.

• The MBO model considers uncoupled fluctuations of the primary mode coor-

dinates.

These approximations limit the range of application of the theory. I am confident

some features of 2DE are rather robust and hold even when the above approximations

break down. Essentially, a 2D spectrum measures the change in the optical response

at E3 due to the previous excitation at E1, delayed by t2. Resolution along E1 is

obtained using an interferometer, delay t2 uses the finite speed of light and resolution

along E3 is obtained by a spectrometer. None of these experimental features depend

on the above approximations.

The above description applies to common nonlinear optical processes as used

in the design of experiments. Considerations such as phase-matching vectors and

coherence transfer vectors α will be used throughout the presentation of experimental

details in chapter 3. The case of self-phase modulation in Argon will be central to

chapter 4, where the nonlinear response will be expanded up to 11th order.

Semiclassical nonlinear optical response theory was formulated both in Liouville

space and in Hilbert space. The Liouville space representation conveniently tracks

the state of both the bra and the ket during a multi-pulse experiment. It naturally

separates population and coherences, which correspond to different experimental

features. It is the source of the standard description using DSFD which facilitates

1Similarly, the shape of a drop of water is not limited by our inability to compute the exact
value of π.
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assignment of the complicated 2DE spectra. The Hilbert space description is closer

to basic quantum mechanics. It allows the modeling of coherent lineshape dynamics

since it treats all delays equivalently. Both will be used in chapter 5.

These formalisms also apply to other common experiments such as photolumi-

nescence (PL) and Raman spectroscopy. Both are third order experiments. The fact

that PL is a third order experiment with three time/frequency axes explains why PL

can be time-resolved as will be done in chapter 6. The PL lifetime of most optical

chromophores is on the order of a few ps to µs, which is much longer than the lifetime

of electronic coherences (tens of fs). The time-resolved PL dynamics are thus usually

discussed in terms of population dynamics, which greatly simplifies their description.
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CHAPTER 3
Experimental nonlinear spectroscopy.

The nonlinear response of materials forms the basis of both the manipulation of

femtosecond pulses and CMDS spectroscopy experiments. The nonlinear processes

are exploited for both pulse measurement techniques and as light sources for spec-

troscopy. These processes can be described using the formalism covered in the previ-

ous chapter: the response of typical nonlinear media such as doubling crystals can be

described as an instantaneous nonlinear response [1, 2]. The known, simple nonlinear

response is used to manipulate and characterize the femtosecond pulse, which is in

turn used to measure the complicated nonlinear response of an interesting sample.

First, the femtosecond pulse is introduced. Elements of nonlinear optics are then

presented, including phase cycling. This aspect also applies to CMDS experiments.

Nonlinear optics are applied to the measurement of femtosecond pulses. Two such

methods are in use in the Kambhampti lab: FROG and c-scans. The implementation

of 2D spectroscopy in the pump-probe geometry is finally discussed.

3.1 The femtosecond pulse

The description of the spectroscopic response in terms of nonlinear response

theory allows separation of the perturbing electromagnetic field from the molecular
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response. Each can be treated in a regime where it is most convenient. Due to the

large amplitude of the electric field, it will be described classically.

Classical EM waves obeying Maxwell’s equations are real-valued fields depending

on 3 spatial dimensions and time. It is convenient to express them as the real part

of a complex electric field:

E(t) = ℜE(t) (3.1)

E(t) = A(t) exp [i(k · x− ω0t)] (3.2)

for a linearly polarized pulse propagating along x. In eq 3.1, E(t) is the real field and

E(t) is its convenient complex analogue. Femtosecond pulses are typically decom-

posed into a carrier and an envelope, as per eq 3.2. The temporal envelope A(t) is

a complex-valued function describing the pulse, ω0 is a reference angular frequency.

Spatial dimensions have been dropped from the envelope: spectroscopic experiments

described herein are carried out on isolated chromophores in solution, providing a

specific point in space at which to measure the electric field. The polarization was

similarly dropped, the work presented herein does not use it. The envelope A(t) in

eq 3.2 is defined with respect to a reference frequency ω0. It is a complex valued

function of time. Its magnitude gives the time-dependent intensity:

A(t) =
√
I(t) exp [−iϕ(t)] (3.3)

where I(t) is the real positive time-dependent intensity of the pulse and ϕ(t) is the

temporal phase.

The electric field can be discussed in the frequency or time domain. Both rep-

resentations are shown on Fig 3.1. Computation of the emitted polarization is often
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Figure 3.1: Example femtosecond pulse in the time and frequency domains. Intensity
FWHM=7 fs. (a) FTL pulse in the time domain. Real electric field (orange) and
temporal intensity (black). (b) Frequency domain representation of the FTL pulse in
(a): Amplitude (orange), spectral intensity (black) and phase (dashed). (c) Chirped
pulse in the time domain. φ2 = 2000 fs2 The change in frequency is subtle. Inset
shows the oscillation at the two ends of the pulse, highlighted by square brackets.
(d) Chirped pulse in the frequency domain.
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carried out in the time domain, and the time-domain representation is normally pre-

ferred for theoretical work. It was the case in the previous chapter. The spectrum,

however, is more easily measured and forms the basis of much of the experimental

discussion. The temporal phase is typically not discussed, its frequency analogue is

more conventional:

E(ω) = A′(ω) exp [ik · x] (3.4)

A′(ω) =
√
S(ω) exp [−iφ(ω)] (3.5)

where E(ω) = FE(t) is the complex spectral field, S(ω) is the spectral intensity

and φ(ω) is the spectral phase. Note that whereas E(ω) and E(t) are related by the

Fourier transform, this is not the case for A(t) and A′(ω). Instead, A(t) = FA′(ω−ω0)

as a matter of convention. Similarly, I(t) and S(ω) as well as ϕ(t) and φ(ω) form

related pairs, but are not related directly by a mathematical transform. For the full

picture, see the excellent book of Trebino [3].

The spectral phase can be expanded in a series around ω0:

φ(ω) =
∑
n

φn

n!
(ω − ω0)

n (3.6)

The first three of these terms are discussed. The first term φ0 is the absolute phase

or constant phase. It is often said to be unimportant since it vanishes in any single

pulse measurement. For multiple pulses, the difference between φ0 of the pulses can be

observed in an interference pattern. This phase difference will also be used to isolate

signals in 2D experiments, and hence will be used extensively. The description of

phase cycling in the later parts of this chapter will refer exclusively to this term. The

second term φ1 is an absolute delay of the entire pulse. Again, this is unimportant
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for isolated pulses, but will be very important in multiple-pulse experiments, as it

corresponds to interpulse delays.

The higher order terms are known as dispersion or chirp. φ2 is the second order

dispersion or first order chirp. The group delay of the envelope can be obtained from

φ(ω):

tgroup(ω) =
dφ

dω
(3.7)

One can readily see that the terms φ2 and higher result in a frequency dependent

group delay. The different frequencies do not arrive in sync. Chirp thus stretches the

pulse and distorts spectroscopic measurements. The elimination of phase distortions

is desirable in experiments. A pulse with no chirp (ωn = 0 ∀ n ≥ 2) is referred to as a

Fourier-Transform limited (FTL) pulse. It is the shortest pulse that can be obtained

from a given spectrum. The experiments are carried out with FTL pulses as much as

possible in order to avoid chirp-induced distortions and optimize temporal resolution.

Chirp is a constant experimental consideration, impacting the experimental design

and motivating the implementation of pulse measurement techniques.

The short duration of pulsed lasers confers them a very high peak power. For

example, the amplifier of the Kambhampati lab has an output of 8 W at a pulse

repetition rate of 1 kHz. The pulse duration is about 130 fs FWHM, yielding a peak

power of 57.8 GW. The spatial mode has a beam waist (intensity radius 1/e2) of

12 mm, yielding a peak fluence of 25 GW/cm2. The large electric field is just low

enough to propagate trough transparent optics without distortions due to nonlinear

effects. It is very easy, upon slight focusing, to observe nonlinear optical effects arising

from such a beam.
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3.2 Nonlinear optics and phase matching

The nonlinear optical phenomena arising from the large peak fluence of femtosec-

ond pulsed lasers form a rich toolkit for the femtosecond spectroscopist. Nonlinear

processes come in a variety of forms. The commonly used phenomena contain 2nd

order processes: sum-frequency generation (SFG), Optical Parametric amplification

(OPA), and 3rd order processes: Transient-Grating (TG) and self-phase modulation

(SPM). These phenomena allow the manipulation and measurement of the femtosec-

ond pulse. The full picture, as required for the correct design of devices such as optical

parametric amplifiers, is much more complicated than what is covered here [3, 4]. An

aspect that requires immediate discussion, however, is phase matching. The phase

matching conditions are an important aspect of nonlinear processes, applying to both

CMDS experiments and other nonlinear processes.

As detailed in the previous chapter, the nonlinear response can be computed

from a perturbative expansion of the density matrix. Recall that the nonlinear re-

sponse in the time-domain can be expressed as a non-separable n-dimensional con-

volution:

P
(n)
i (t) = E

(n)

i ⊗ χ
(n)
i (3.8)

where χ(n)
i is the jth component of χ(n) and Ei is the corresponding n-dimensional

electric field kernel.

Let us pick a specific term in the expansion of the third order response, corre-

sponding to E1E
⋆
2E3, χ

(3)
1 . The electric field kernel is then:

E
(3)

1 (t1, t2, t3) = E3(t3)E
⋆
2(t3 + t2)E1(t3 + t2 + t1) (3.9)

= e−i[(k3−k2+k1)·x+ϕ3−ϕ2+ϕ1)]A3(t3)A
⋆
2(t3 + t2)A1(t3 + t2 + t1) (3.10)

= exp (−i [ksig,1 · x+ ϕsig,1])Asig(t1, t2, t3) (3.11)
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where eq 3.1 was used, assuming FTL pulses. In this equation, ki is the wavevector

of pulse i and ϕi is the absolute phase of pulse i. The envelope Ai(t) contains the

time and frequency dependent parts of pulse i. Each different signal Esig,j thus has a

specific dependence on the wavevectors and phases of the pulses, a phase-matching

condition. This phase matching condition can be expressed compactly using the

coherence transfer vectors presented in section 2.4, αj:

E
(n)
sig,j(x, t) = exp [−i (ksig,j · x+ ϕsig,j)]E

(n)
sig,j(t) (3.12)

ksig,j = αj · k =
m∑
i

αijki (3.13)

ωsig,j = αj · ω =
m∑
i

αijωi (3.14)

ϕsig,j = αj · ϕ =
m∑
i

αijϕi (3.15)

where αj is the phase matching vector of signal j, k is a matrix of the wavevectors

of the pulses ki and ϕ is a vector of the absolute phases of the pulses.

Every nonlinear signal thus has a specific dependence on the phase of the incident

pulses and their propagation directions. We already mentioned this can be used

to separate the rephasing and non-rephasing contributions to the 2D signal. This

however applies to all nonlinear processes. For example, the sum-frequency generation

(SFG) signal can be described as arising from the second-order response of a two-

pulse experiment with:

αSFG = (1, 1) (3.16)

kSFG = k1 + k2 (3.17)

ωSFG = ω1 + ω2. (3.18)



3.3. PULSE MEASUREMENTS: FROG AND CHIRP-SCANS 98

This results in the sum-frequency signal being emitted between the two incident

pulses. This is depicted on Fig 3.2b. Similar phase matching considerations can be

applied to all nonlinear processes. The transient grating (TG) geometry involving

3 crossed beams is depicted on Fig 3.2c. The signal is emitted at an angle, which

can be thought of as the diffraction of beam 3 off the grating formed by the first

two beams. This geometry can be used to measure the rephasing signals discussed

previously. The phase matching conditions allows for the isolation of the nonlinear

signals, whether for pulse measurement or spectroscopy experiments.

3.3 Pulse measurements: FROG and chirp-scans

The full characterization of a femtosecond pulse requires the determination of

the spectra amplitude and phase. Measurement of the spectrum is relatively easy with

a standard spectrometer. Measurement of the phase, however, is more challenging.

The simplest way is to use spectral interferometry of the unknown pulse with a

reference [5]. This method is reasonably straightforward but requires a phase-locked

reference pulse covering at least the same bandwidth, a rare species. In order to

measure the spectral phase of an unknown pulse, a few methods are available. Two

will be covered here: frequency-resolved optical gating (FROG) and chirp scans.

3.3.1 Frequency Resolved Optical Gating

The standard way to measure the spectral phase in the ultrafast community is

to use FROG. The basic anatomy of a FROG is shown on Fig 3.2. The pulse to be

measured is first sent to an interferometer, which creates pulse replicas with a con-

trollable delay τ . The FROG acts on the pulse envelopes, as such the interferometer

doesn’t need to be phase stable, jitter of the optical path lengths has to be small

when compared to the pulse envelope. The specific form of the interferometer is quite

flexible. The second element of the FROG is the nonlinear mixing process. This is
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Figure 3.2: Working principle of FROG. (a) Scheme of a dispersion-free FROG.
D-shaped cut mirrors are used to split the beam. The mobile arm is subject to a
variable delay τ . The beams are recombined for the nonlinear mixing process, and
the spectrum of the nonlinear signal is recorded. (b) Geometry for the SFG process.
(c) Geometry for the TG process.

3

a core element of a FROG design, but can be picked at convenience. The mixing

is carried out in nonlinear media with an instantaneous response. Different nonlin-

ear processes have different tradeoffs which are described in details in the works of

Trebino [3, 5]. Two processes are used in the laboratory: transient grating (TG) and

sum frequency generation (SFG). The last element of the FROG is the measurement

apparatus, a standard spectrometer which detects the non-linear signal.

The physical implementation of the FROG is presented on Fig 3.3. For the

measurement of very short pulses (<20 fs), the use of transmissive optics inside the

FROG should be avoided. An all-reflective FROG can be realized by using d-shaped

mirrors to split the beam instead of beamsplitters. The process is carried out by

putting a mask in the beam path before the splitting mirrors. The mask is made

of a sheet of black material with a few holes, as illustrated on Fig 3.3c. The masks

can be selected to optimize overall transmission, although a clear vertical separation

line must be present to allow splitting of the paths. Once split into sub-beams, a
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Figure 3.3: Implementation of a FROG, switchable between SFG and TG configu-
rations. (a) Plans of the apparatus in the SFG configuration. Input mask is absent.
(b) Experimental apparatus, missing the nonlinear medium and the input mask. (c)
Input masks for SFG and TG FROG measurements.

d-shaped mirror picks up one side of the resulting pattern1. The beams are sent to

the fixed arm of the interferometer. The undeflected beam propagates to the mobile

arm. Both arms consist of retroreflectors mounted in translation stages for tuning

and alignment. The mobile arm is moved using a motorized actuator. The reflected

beams are then made parallel using a second d-shaped mirror and sent to the focusing

mirror and nonlinear medium. The focusing is currently achieved using an off-axis

parabolic (OAP) mirror. The same mirror is used for all beams. The beams are

focused to overlap in the nonlinear medium, the signal is collected and sent to a

spectrometer. Irises allow the removal of scattered light and other non-linear signals.

The FROG apparatus shown in Fig 3.3 is made modular such that it is possible

to switch between SFG and TG operation. SFG requires the use of a χ(2) crystal with

1Currently the port-side beam. In TG FROG, this is the pair of beams.
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Figure 3.4: Example SFG FROG traces for (a) the output of the amplifier at 800
nm and (b) the output of an OPA at 600 nm. Time marginal, corresponding to
autocorrelation signals, are shown for (c) the amplifier and (d) the OPA output.

a limited phase-matching bandwidth, but has a much higher signal level. It is the

preferred geometry for longer, narrowband pulses such as the output of the amplifier

or OPAs. SFG FROG is also known as frequency-resolved autocorrelation. TG has

a very large phase-matching bandwidth (essentially unlimited for our purposes) and

can thus be used to characterize broadband white-light pulses without distortion. It

is a less efficient process, requiring decently compressed broadband pulses. It is the

preferred means of characterization of pulses for 2D spectroscopy.

Example SFG FROG traces are shown on Fig 3.4 for the output of the amplifier

(left) and of an OPA (right). SFG FROG traces can be quite abstract, and are not

always easy to interpret. The addition of chirp makes the trace wider (along delay),

with higher order dispersion changing the shape of the wings. The autocorrelation

signal can be obtained by integrating the SFG FROG trace along wavelength. This

provides an easily computed metric to estimate the pulse duration.



3.3. PULSE MEASUREMENTS: FROG AND CHIRP-SCANS 102

Figure 3.5: TG FROG. (a) Phase matching is achieved in the boxcars or rectangular
geometry. (b) Phase matching is not achieved if a triangular pattern is used. (c)
Example FROG trace obtained after a hollow-core fiber compressor.

The TG FROG trace results from the interaction of 3 beams, one of which is

delayed. This results in two variants, yielding equations identical to FROGs realized

with self-diffraction (SD) and polarization gating (PG). The geometry implemented

in the lab corresponds to the PG equation where the diffracted beam is delayed,

yielding equation 3.22. TG FROGs are much easier to interpret. For smooth temporal

envelopes, the TG FROG trace can be read as instantaneous frequency vs time. This

makes TG FROG traces easy to read and very helpful in troubleshooting. An example

FROG trace with a rich structure is shown on Fig 3.5c.

The implementation of TG FROG is relatively straightforward: focus the three

beams in a χ(3) material such as a sapphire plate or fused silica. The intensity must

not be increased to the point of white-light generation. However, some attention

must be paid to the phase-matching geometry, as illustrated on Fig 3.5. The signal

field must obey both conservation of momentum, eq 3.13, and conservation of energy,

eq 3.14. The sum of the wavevectors must thus yield ksig with the same length as

the other vectors. This is easily obeyed in the boxcars geometry, or any rectangular
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geometry, but not when input beams are arranged in a triangular pattern. Exper-

imentally, the pattern can be adjusted without changing the pointing by using the

adjustment screws of the retroreflectors assemblies.

The acquisition of a FROG trace proceeds similarly to a TA experiment. First,

it is necessary to ensure the measured spectrum arises from the nonlinear mixing

process. Scatter from the input beams will give rise to interference patterns, and

should be avoided. Once acquisition parameters are set and signal is optimized, a

background is acquired by translating the mobile stage by a large distance. Then, the

delay axis τ is scanned and the spectrum is acquired at every step. The background

is subtracted from every spectrum. The FROG trace is simply the stack of spectra

acquired at different τ . The entire scan is repeated multiple times to average over

fluctuations on longer timescales.

The FROG signal can easily be computed for arbitrary pulses. The FROG pro-

cess can be described as a sonogram, where the electric field of the laser pulse is

modulated by a gate function g(t− τ), also derived from the laser pulse. This modu-

lation is carried out by the non-linear process, which determines the form of the gate

function1. The mathematical description of the FROG trace is given by:

Esig(t, τ) = E(t)g(t− τ), (3.19)

IFROG(ω, τ) = |Esig(ω, τ)|2 , (3.20)

where E(t) is the electric field of the pulse under study, Esig(t, τ) is the emitted

FROG signal and IFROG(ω, τ) is the detected FROG trace. The shape of the gate

1There are interesting extensions of FROG in the case where the gate is derived from a different
beam. It’s called X-FROG. See Trebino
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function is determined by the non-linear process:

gSFG(t) = E(t), (3.21)

gTG(t) = |E(t)|2 . (3.22)

Substitution of these equations in eq 3.19 yields the mathematical description of a

FROG trace.

Inspection of a FROG trace yields indications about the pulse duration. The

time-marginal, computed by integrating the trace along wavelength, gives an indi-

cation of the pulse length. For SHG FROG, this corresponds to the intensity auto-

correlation. With some practice, one can also learn to read a FROG trace. However,

the important advantage of using FROGs is the ability to retrieve the complex spec-

trum from the FROG trace. A FROG trace can be inverted to a complex spectrum

that is essentially unique, ie: a FROG trace corresponds to a single spectrum E(ω).

There are a few exceptions to this rule, for example, SHG FROGs are symmetric

upon inversion of τ and thus the sign of the phase is ambiguous (ie: |E(ω)| e−iϕ(ω)

and |E(ω)| eiϕ(ω) yield the same trace). In practice this is seldom a concern [3]. This

constraint also implies FROG traces with too many experimental artifacts cannot

be inverted, as they correspond to unphysical pulses.

The complex spectrum can be obtained from the FROG trace using a number

of FROG retrieval algorithms [3, 6]. The initial algorithms were derived in analogy

with phase retrieval problems. They tend to be somewhat fragile: small errors in the

precise determination of τ = 0 cannot be compensated and the algorithm will fail to

converge. The calculation of the trace from a given electric field is straightforward

using eqs 3.21 and 3.22. The problem is thus tractable using standard nonlinear

least-squares fitting algorithms, where the parameters are the real and imaginary
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Figure 3.6: Chirp scans. (a) Scheme of a chirp scan. A compressor applies a known
chirp φ2. The chirped pulse is sent to a SHG crystal and the spectrum of the SHG
signal is recorded. (b-d) Experimental c-scan for a white-light pulse. (b) φ3 > 0. (c)
φ3 ≈ 0 (d)φ3 < 0

part of the electric field, for every frequency bin. The parameter space for the opti-

mization problem is rather large (a few hundred parameters). Non-linear least square

otpimization algorithms were made for smaller parameter spaces, and performance

suffers a bit. In the Kambhampati lab, we encountered some success using the Powell

optimization algorithm, as well as using Simplex. Recent approaches try to leverage

modern optimization algorithms, such as differential evolution algorithms1.

3.3.2 Chirp scans

The use of FROG, especially TG FROG, requires the pulse to be already rea-

sonably well compressed. Power decreases with chirp, and thus the nonlinear signal

can be reduced to below measurable levels. In order to measure absolutely unknown

1Prof. Günter Steinmeyer has a conference proceedings out on this, protected behind a paywall.
No paper yet.
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pulses, the use of chirp scans (c-scans) is preferred [7]. A scheme of this method is

illustrated on Fig 3.6. The technique is rather straightforward: the unknown pulse is

sent to a stretcher applying a known amount of chirp φ2. The beam is then sent to

a SHG crystal, the second harmonic is collected and its spectrum is measured. The

result is a map of spectral intensity vs applied chirp. Examples for varying values of

positive, null and negative values of φ3 are shown on Fig 3.6b-d. Indeed, scanning a

compressor while monitoring a SHG signal is a common way to optimize a pulse. The

c-scan realizes the full potential by measuring the spectrum of the nonlinear signal.

While c-scans can be realized using conventional compressors, the use of a pulse

shaper is preferred. A pulse shaper can apply a precise phase mask to the pulse.

The entire assembly can thus be realized very simply. Dazzler acousto-optical pulse

shapers apply a phase mask H(ω), in this case:

H(ω) = exp

[
iφ2

2
(ω − ω0)

2

]
(3.23)

Esig(t, ϕ2) =
[
F−1E(ω)H(ω)

]2 (3.24)

Icscan(ω, ϕ2) = |FEsig(t, ϕ2)|2 (3.25)

where φ2 is the applied chirp. Conceptually, the signal is maximal when the applied

chirp φ2 compensates the second derivative of the spectral phase φ′′(ω). As a result,

a chirp scan is easily read off: the position of the maximum signal vs frequency

corresponds to the chirp in that frequency band, the maximum traces −φ′′(ω). A

vertical trace at a fixed value of φ2 corresponds to a pulse whose only distortion is

chirp, of value φ2. This technique allows scanning of a broad range of chirp values,

and thus allows the measurement of a completely unknown pulse. It is easily read

off, greatly accelerating the adjustment of a pulse shaper.
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Finally, the chirp scans can in theory be used to measure the spectral phase

from only two measurements. If a large amount of chirp is applied (> 5000 fs2), the

pulse is completely stretched in the time domain, and the frequencies are separated

in time. The different frequencies in the pulse do not mix in the SHG crystal, they

are doubled individually. In this limit, the signal follows the far-field equation:

Icscan(2ω, ϕ2) ≈
S(ω)2

|φ2 + φ′′(ω)|
, (3.26)

where S(ω) is the spectrum of the pulse. This equation in principle allows the deter-

mination of the phase φ′′(ω) from only two chirped measurements [6, 8]. In practice,

it can be hard to ensure the far field limit applies while maintaining decent signal

level.

The two techniques covered above, FROG and chirp scans, are used to ensure the

pulses used for a 2D experiment are compressed and well-behaved. The chirp scans

facilitate the tuning of the pulse shapers: the signal is easy to obtain, the traces

are easily read off and map directly to the parameters of the pulse-shapers. The

bandwidth of the SHG crystal can be an issue for broadband pulses, however. Final

pulse characterization is carried out with TG-FROG, which is more sensitive and free

of limits due phase-matching bandwidth. The availability of both SFG and TG FROG

is also generally useful in a femtosecond lab, allowing enhanced troubleshooting vs

the 1D autocorrelation.

3.4 Broadband two-dimensional spectrometer.

The experimental implementation of 2DE maps very well to the theoretical de-

scription involving the perturbative expansion in the interaction picture, eq 2.150.

The use of three pulses corresponds to three light-matter interactions, yielding a
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Figure 3.7: Anatomy of the 2D spectrometer. The regenerative amplifier and Hollow-
core fiber (HCF) supply the light. The pulse shapers control the pump and probe
arms, controlling phase and delay. The signal is detected by a spectrometer. Adapted
with permission from Seiler, H. et al. Investigating exciton structure and dynamics
in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy. The
Journal of Chemical Physics 149, 074702 (Aug. 2018).

third-order polarization. A number of 2D spectrometer configurations have been re-

alized, with varying tradeoffs [9–11]. These designs vary in their experimental com-

plexities, accessible bandwidth and possible signal isolation.

3.4.1 Description of the instrument

The spectrometer presented here is a broadband 2D spectrometer in the pump-

probe geometry using pulse shapers. The anatomy of this 2D spectrometer is shown

on Fig 3.7. In general, a 2D experiment requires 4 parts: a light source, a pulse control

element, a sample and a detector.

The light source is an important factor in determining the performance of the

spectrometer, especially with regards to which samples can be studied. In order to

take full advantage of the detailed overview provided by 2DE, a broad bandwidth
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is necessary. In order to study couplings between two transitions, the bandwidth

should be sufficient to cover the two bands under study. For the quantitative study

of lineshapes by 2DE, the pulse should be broader than the linewidth of the band

of interest. Even that second prerequisite is hard to meet: electrons are strongly

interacting particles, and thus linewidths in the visible range can easily be rather

large. Even bright single-color dyes have FWHM around or in excess of 150 meV:

146 meV for rhodamine B, 186 meV for malachite green and 211 meV for nile blue.

These widths concern only the center of the peak, not the interesting edges. This

motivates the search for white-light sources for 2D spectroscopy. For benchmarking

experiments, or in the rare case where the bandwidth of the sample is very narrow,

an OPA might suffice [13].

The 2D spectrometer of the Kambhampati lab 1 can be run with either OPAs or

a hollow-core fiber (HCF) white-light source. In both cases, light is generated using

a Ti:Sapphire femtosecond oscillator [14] and amplified using a regenerative chirped

pulse amplifier (CPA) — an award wining design [15, 16]. The regenerative amplifier

supplies 8 mJ pulses, at a repetition rate of 1 kHz. The pulse duration is 130 fs

FWHM and the central wavelength is 800 nm. An example SHG FROG trace of the

pulse is shown on Fig 3.4 The beam is split across the multiple experiments. The

oscillator, amplifier and OPAs are commercially available products of mature designs.

They will not be covered in detail here. The HCF generates white-light pulses by

self-phase modulation in Argon. This source will be covered in detail in chapter 4.

The white-light pulses out of the fiber are sent to a pair of GRISMs (Grating-

pRISM) for dispersion management. The GRISMs use both transmission gratings and

1Nickname: Gupta.
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prisms to compensate both second and third order dispersion. They are illustrated

on the inset of Fig 3.7. The assembly is made of two identical units, rotated by 180°.

The beam penetrates through a transmission grating. The first diffraction order then

traverses a glass prism and exits the first sub-unit. After a small air gap (a few mm),

the beam enters the second unit via the prism, traverses to the diffraction grating and

exits. The beam is back-reflected using a right angle prism as a retroreflector. The

returning beam traverses the entire assembly in reverse, parallel to the input beam

but about 1 mm below. The GRISMs have a very compact form factor, compensate

for >104 fs2 of dispersion, but have a low total transmission, typically less than

30 % [17]. The principal role of the GRISMs is to pre-compensate for the second and

third order dispersion of the pulse shapers.

After dispersion management, the beam is split and sent to a pair of acousto-

optical programmable dispersive filters (Dazzlers, Fastlight inc.). One arm is respon-

sible for generating pulses 1 and 2 (the pumps), the other arm generates the probe.

The diffracted beams out of the shapers are then focused and crossed at the sample

position. The spectrum of the probe is measured using a CCD spectrometer. The

experiment is repeated for varying delays t1 and t2. The signal is isolated by a mix of

phase matching and phase cycling, which exploits the capacity of the pulse shapers

to control the phase of the pulses. The pulse shapers are responsible for final adjust-

ment of the spectral amplitude and phase, generation of pulse replicas and control

of the pulses phases. The pulse shaping setup is discussed extensively elsewhere [18,

19]. Some elements will be briefly recalled, others covered in slightly more details.

The great flexibility of the pulse shapers allows fine tuning of the spectral am-

plitude and shape. The amplitude should be adjusted to obtain a smooth spectrum

in the region of spectroscopic interest. The spectral phase is adjusted to obtain a
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FTL pulse, or a good enough approximation thereof. Currently, this is achieved in

two stages. During the pre-adjustment stage, chirp scans (section 3.3.2) are used to

monitor the pulse while iteratively adjusting the phase parameters. Due to hardware

constraints, this operation needs to be realized with two computers, one for the con-

trol of the Dazzlers and one for the acquisition of the spectra. As a consequence, the

process is somewhat tedious and it is not currently possible to automate the com-

pression1. Once satisfactory chirp scans are obtained2, the pulse is measured using

the TG FROG which is more sensitive to small phase distortions. Final adjustments

to the spectral phase are again made by iteratively adjusting the Dazzler parameters.

The process needs to be repeated for both Dazzlers.

Once pulse compression is achieved, the parameters are stored and serve as a ba-

sis for the experiments. During the experiments, the pulse shapers will vary the zero

and first order phases (ie: absolute phase shifts φ0 and delays φ1), but no higher phase

terms. The computer-controlled Dazzlers enable the acquisition sequence of multiple

ultrafast experiments, including phase cycling and amplitude chopping. These mod-

ulation schemes will be discussed later. The entire process is computer-controlled,

and thus rather straightforward.

After the pulse shapers, the pulses are focused on the sample. One of the lines

is equipped with a manual delay stage used to balance the delays in both arms. In

order to avoid both dispersion and aberration at the sample, the beams are focused

using off-axis parabolic mirrors. The first two pulses come from the same path, while

1The USB drivers for the Avantes spectro of the CEP feedback loop would collide with the
actual Avantes drivers. Blame Fastlite.

2By which I mean, once you’re tired of fiddling with parameters...
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the probe and signal beams are collinear. This geometry is known as the pump-

probe geometry, due to its similarity with pump-probe spectroscopy. This geometry

exhibits reduced phase mismatch and geometrical distortions with respect to its

boxcars equivalent [20].

The sample consists of a quartz cuvette containing the solution under study.

The analyte should be dissolved such that the total sample has an OD of about 0.3

(50% transmission). During normal operation, the sample is flowed by using a flow

cell and perstaltic pump. In order to minimize the addition of chirp as the pulse

travels through the sample, a 200 µm optical path length is used.

The spectrum of the probe beam is monitored using a CCD spectrometer ca-

pable of acquisition at 1 kHz. The spectra are stored in the on-board memory. The

number of spectra that can be stored limits the acquisition rate. The pulse sequence

has to be interrupted in order to transfer the spectra from the CCD RAM to the

computer. Each spectrum is saved to the disc for future processing and automatically

synchronized to a data server.

The spectrometer acquiring the signal needs to be synchronized with the pulse

shaper in order to track the various pulses. The triggering chain that achieves this

feat is shown on Fig 3.8. The initial trigger source is the synchronization and delay

generator (SDG) of the amplifier. It emits a 1kHz trigger generated from the oscillator

pulse train in countdown mode. The SDG has a total of 8 outputs, delay 5 is currently

used for the 2DE instrument. This signal is used to trigger the Fastlite Octopuzz,

a computer-controlled delay generator with logical gating. The Octopuzz also has

multiple outputs with controllable delays. Outputs 1 and 2 are sent to trigger the

two Dazzlers (one each). This causes the next pulse of the sequence to be sent. In

order to prevent missed shots, these triggers must be sent only if the Dazzlers are
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Figure 3.8: Triggering chain for the synchronization of the 2D instrument. Arrows
indicate the logical direction. Where applicable, front panels at the bottom, rear
panels at the top. D52 is the pump Dazzler (Master), D53 is the probe Dazzler
(Slave)

ready for the next shot. This is enforced using a logical condition: the triggers are

sent only if both ports In1 and In2 of the Octopuzz are high. The signal to these

ports come from the output ports S5 of the Dazzlers.

The Dazzlers in turn trigger the CCD detector. This duty falls to the Dazzler

controlling the probe beam. Sadly no logical output corresponds directly to the re-

quired trigger signal. It can be obtained by combining programmable output S1 with

an undocumented and unlabeled output port, now called ?. The programmable out-

put S1 is set to behavior [2] GATE. This signal is combined with ? using a logical

AND gate and sent to another programmable delay generator (PDG). This PDG has 2

pairs of controllable delay outputs. The current chain uses the C AND NOT D, denoted

using a little positive pulse symbol. The signal turns high after delay C, and turns

low after delay D, allowing the adjustment of the trigger duration.

Delay C should be set to prevent ghosting of the CCD image. The acquisition

rate of 1 kHz is close to the maximum rate of the CCD; it spends most of the

precious millisecond reading out the charges. If the pulse arrives while the charges

are migrating along the parallel registers, a given laser shot will be split between

two acquisition frames. There is no way to recover the data from this. The proper

procedure to adjust delay C is thus to setup a chopping sequence on the probe
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pulse, without the pump beam or sample. The recorded signal should vanish to the

background level during an OFF shot. A duty cycle of 1/4 (ie: 1-0-0-0) helps the

adjustment: it becomes clear whether the trigger is too early or to late. Delay D

is conveniently set with respect to C and thus sets the trigger duration. It should

simply be set to be long enough for the CCD specifications, 30 µs. The entire chain

operates on 5 V, 50 Ω TTL signals. Using this trigger chain, the acquisition usually

proceeds flawlessly. When a mistake does occur, it results in obvious errors such as

missing or truncated data files. The errors can also be tracked using the acquisition

timestamps supplied by the spectrometer.

3.4.2 Signal isolation

The detection of the 2D signal is carried out by the spectrometer in the pump-

probe geometry. The spectrometer is a square-law detector sensitive to the intensity.

It detects signal emitted along the third pulse direction. Recall the phase matching

condition, and the total signal:

kj =
∑
i

αijki (3.27)

ϕj =
∑
i

αijϕi (3.28)

E
(n)
sig =

∑
j

eiαj ·ϕχ
(n)
j (3.29)

where kj is the wavevector of signal j (ϕj is its phase), ki is the wavevector of

pulse i (ϕi is its phase) and αj is the coherence transfer pathways of signal j. The

total signal E(n)
sig is made of the sum of all signals and has the structure of a discrete

Fourier transform. This equation forms the basis of most of phase cycling theory [21–

24]. Indeed, signal j can be obtained by combining the recorded signals at varying
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values of the phases ϕi in steps, indexed by k:

χ
(n)
j =

∑
k

E
(n)
sig,kWjk (3.30)

Wjk = e−iαj ·ϕk (3.31)

where χ(n)
j is a desired contribution, k indexes different repetitions of the experiment

with varying phases ϕk and Wjk is a weight factor. Using this technique, the weight

factors can be derived systematically.

A phase cycling scheme is noted N1 ×N2 × . . . where Ni indicates the phase of

pulse i is cycled in steps of 2π/Ni. The standard 2-step phase cycling scheme can be

described as either 2 × 1 × 1 or 1 × 2 × 1. It is easy to check the weights will be 1

and -1. A common 4-step scatter removal scheme is 2x2x1.

The use of optical detection adds constraints to the detection process. This can

be both an advantage and a disadvantage. The emitted signal is collected in the

direction of the probe pulse, k3 for a 3 pulse experiment. The spectrometer is a

square-law detector which records the interference pattern formed of the signal and

the third pulse:

Itot(ω) = |E3(ω) + Esig(ω)|2

= |E3(ω)|2 + |Esig(ω)|2 + 2ℜ [E⋆
3(ω)Esig(ω)]

≈ |E3(ω)|2 + 2ℜ [E⋆
3(ω)Esig(ω)] (3.32)

where the total signal intensity |Esig|2 is considered negligible. Note that the inter-

ference process will systematically remove the dependence of the signal on ϕ3. Fur-

thermore, the bandwidth of the spectrometer is limited: the signal frequency must

be close to the single coherence frequency (ie: no SFG). These constraints can be
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cast to equations:

kj = k3 (3.33)∑
i

αij = 1 (3.34)

∑
i

|αij| ≤ K (3.35)

where j indexes signals, and i indexes pulses. Eq 3.33 enforces the detection direction.

Eq 3.34 removes signals in other bandwidths (ie: SFG, THG, DC). Eq 3.35 limits

the signals to those of order K or less. These conditions limit the acquisition of some

signals in the pump-probe geometry. The 2Q signals shown on Fig 2.5 will not obey

condition 3.33 above. Their acquisition is impossible in this geometry. The linear

response to the third pulse as well as TA, R and NR third order signals all obey the

above constraints and can be detected.

The formalism above is inherited from NMR. It is very useful, but has weak-

nesses. First, it has difficulty representing the intricacies of the optical detection

process. Adaptations can be made to correct for this. The second limit, however, is

more difficult to get around [22, 23]. The formalism above cannot represent ampli-

tude modulation. It treats together all signals of the same α, even though they may

have different dependence on the amplitudes. This formalism cannot represent a TA

signal: it will always be "hidden" by the linear response. This motivates the need

for another approach. The tedious expansion of all signals, including their phase and

wavevector dependence can seem untractable except for the most simple problems.

However, the whole thing is just a simple sum, albeit a very long one.

The process can be made tractable with the aid of computer algebra systems

such as Sympy. Sympy is a module for the Python programming language, making

it ideally suited to develop a toolkit. The writing of a specialized signal object and
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helper functions make the whole enterprise rather straightforward1. It allows the

validation of amplitude and phase modulation schemes such as the 8-step scatter

removal cycle [11, 25] and the 32-step collinear scheme from our group [24]. This

latter problem expands to over 200 signals, neglecting signal intensities as in eq 3.32

(over 1000 otherwise...). Amplitude modulation is easily represented by expanding

every electric field as a complex number in polar coordinates:

Ei ∝ aie
iϕi (3.36)

where ai is a real positive amplitude factor and ϕi is the phase, as previously. The

computed-based approach has advantages. Among other things, it makes every ap-

proximation explicit. It supplements standard phase cycling theory very well.

3.4.3 Data acquisition and processing

The data processing for 2D spectroscopy follows rather straightforwardly from

the previous discussion. The experiment is repeated with identical input pulses while

varying delays t1, t2 and phases ϕi. Delay t1 will be subject to Fourier Transform,

as such it should be scanned in constant steps starting from 0. The delay t2 is not

always subject to such constraints, the acquisition of a few time points is perfectly

reasonable. The analysis of coherent lineshape dynamics however will usually require

delay t2 to be scanned in constant steps. The phases ϕi are cycled for every value of

t1 and t2 in order to allow signal isolation.

The isolation of the 2D signal relies on the combination of spectra acquired

with various phases using eq 3.30. The spectral intensity contains a rather large

background due to the probe pulse, eq 3.32. In the dataset discussed in chapter 5, the

1I have not made the code available online yet.
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2D signal corresponds to a 5% modulation of the detected spectrum. Fluctuations in

the spectrum profile can thus negatively affect the subtraction process and introduce

noise. As such, it is preferable to acquire different spectra to be subtracted in rapid

succession to prevent decorrelation of the laser spectrum [26, 27]. As such, the cycling

of the phases should be the innermost cycling loop. A similar consideration applies to

t1: excessive background noise will morph the spectrum, and t1 should be the second

innermost loop.

Each step in this multi-parameter scan is repeated in order to reduce noise by

averaging. The repetition pattern is split in two sequences: pattern repetition and

experiment repetition. The pattern repetition sequence repeats the pulses every 38

shots, due to the structure of the Dazzlers’ memory. The entire experiment is ac-

quired with this fast averaging sequence. The entire experiment is then repeated to

average over fluctuation on a much longer time scale. The pattern repetition sequence

is time efficient and efficiently averages short time noise of the laser spectrum. The

experiment repetition allows averaging over much slower processes such as environ-

mental fluctuations, laser drifts and sample decay. Every spectrum is stored, allowing

troubleshooting and clipping of the acquisition sequence if a problem arises.

The data analysis pipeline needs to carry out the following operations: combi-

nations to isolate the signal, averaging and Fourier transforms. All these operations

are linear mappings, and can be carried out in any order. To limit the amount of

data to be transferred, the averaging is thus often carried out early in the process.

The spectra are transferred to a network-assisted storage (NAS) server during the

acquisition process. The data processing can be carried out directly on the server

in order to avoid unnecessary data transfer. In particular, the averaging reduces the

size of the dataset.
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Figure 3.9: Data structure following acquisition. (a) The acquisition software gen-
erates data files, configuration information and timing information. (b) Example
directory structure following acquisition.

The current data structure at the end of an experiment is shown on Fig 3.9.

The acquisition interface generates data files, in binary format as well as plain text

experimental configuration information and timestamps. The timestamps can be

used to find timing errors, but are otherwise not required for data analysis. The

data is stored in a directory organized as shown in Fig 3.9b. A given trial folder

trial_XXX/ contains a specific experiment. The different values of t2 are stored as

different spectrum_YYY/. This folder contains multiple data files, corresponding to

different experimental repetitions. The data files, named sequence_rep_ZZZ.npy

contain the spectra for different values of t1, ϕi as well as pattern repetition.

The current data analysis pipeline is illustrated on Fig 3.10. The binary data

files are first averaged and reorganized to yield data files, containing the spectra

for varying values of t1 and ϕi. The data files of various spectrum_YYY/ folders are

collected in a compressed multi-array archive, also containing the values of t1, t2,

wavelengths, etc. This archive is easily extended to include all necessary information
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Figure 3.10: Current data analysis pipeline

without having to carry around multiple files. This archive is also easily processed

to yield the frequency axes, the spectra, etc.

An example dataset is shown on Fig 3.11 for CdSe NCs at t2=1200 fs. The

sequence after averaging is shown on panel a. The shots are obtained for increasing

values of t1, in steps of 0.5 fs. Each value of t1 is repeated twice, for ∆ϕ12 = 0 and

∆ϕ12 = π. Small oscillations are visible for the first shots; this is the 2D signal.

The signal is isolated from the background by subtraction using eq 3.30. The result

is shown on Fig 3.11b. The coherence is obtained as a function of both detection

wavelength λ3 and coherence time t1. The projection of the coherence signal is shown

as black dots, the black line is a guide to the eye. The coherence is then Fourier-

transformed along t1 to obtain a 2D spectrum, shown on panel c. The conversion

from detection wavelength λ3 to detection energy E3 is not a linear mapping. The

Jacobian of the transformation needs to be included. In numerical form, this can be

expressed as:

S(Ei)∆Ei = S(λi)∆λi (3.37)
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Figure 3.11: Example dataset during analysis for t2=1200 fs. (a) Averaged sequence
of increasing t1 and two-step phase cycling. (b) Coherence obtained by subtracting
shot 2i+ 1 from shot 2i in panel a. The black dots are the integrated coherence for
all frequencies. Black line as a guide to the eye. (c) Resulting 2D spectrum.

where Ei is the energy of pixel i, S(Ei) is the corresponding intensity, ∆Ei is the

energy bin width, λi is the wavelength of pixel i, S(λi) is the corresponding intensity

and ∆λi is the wavelength bin width.

The real part of the 2D spectrum, shown on Fig 3.11c is known as the real

absorbtive 2D spectrum. The imaginary part corresponds to dispersion, and is usually

not discussed. The signal is dominated by a bleach feature on the diagonal. Two

weaker induced absorption features can be seen at E3 = 1.85 eV and E3 = 2.15

eV. The main bleach feature corresponds to bleach and stimulated emission from

the first two exciton states X1 and X2. This feature has a square-like shape arising

from two diagonal peaks and their cross peaks. The contour line give a glimpse of
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the underlying diagonal lineshapes. The induced absorption signatures correspond

to well-known experimental TA results. This spectrum is really rich. It has been the

subject of a few papers [12, 28, 29]. Its dynamical lineshape will be the main topic

of interest in chapter 5.
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CHAPTER 4
Hollow-core fiber for femtosecond visible

spectroscopy.

Advances in femtosecond visible spectroscopy motivate the investigation into

new pulsed sources of broadband visible light. This section details the performance

of an Ar-filled hollow core fiber for femtosecond visible spectroscopy. This source

is characterized by high overall transmission and good spatial mode. Broadening is

achieved by self-phase modulation. Notably, the uncompressed visible part of the

output is shorter than the input pulse. The design space for this source is explored

and compared with established modeling procedures. The fiber should be amenable

to broadening across the entire visible range, down to 450 nm. This passive design can

provide an interesting alternative to achieve broadband visible pulses for femtosecond

spectroscopy.

4.1 Introduction

Femtosecond time-resolved spectroscopy has many requirements for a broad-

band source. First, the pulse duration should be short to obtain good temporal

resolution. The bandwidth necessary to support a short pulse, however, is typically

not the most stringent requirement: the pulse must also match the absorption bands

127
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of the sample under study. This requirement becomes especially challenging at opti-

cal frequencies, due to the large spectral widths of electronic transitions. Broadband

transient-absorption (TA) and two-dimensional electronic (2DE) spectroscopies are

often limited by insufficient bandwidth to cover multiple spectroscopic transitions

of interest. Indeed, samples such as biological light harvesting proteins and nanos-

tructures possess spectral features located anywhere in the visible range, the near

infrared or the ultraviolet [1–7]. A source that is free of bandwidth limitations arising

from resonance or phase-matching considerations is thus highly desirable.

A pulse with a large bandwidth must be amenable to compression, and thus show

a high level of coherence and noise robustness [8]. A smooth spectral phase consisting

mostly of low order dispersion allows the use of simple pulse compression techniques.

This smooth spectral phase also permits the use of modern pulse shaping devices to

their full potential [9]. Furthermore, a smooth spectral phase indicates minor spatio-

temporal distortions such as spatial chirp [10]. Femtosecond experiments usually

rely on modulation of the amplitude and phase of the pulses to isolate the signal

of interest. This puts a stringent need on the shot-to-shot stability of the spectral

amplitude and phase. Furthermore, demanding femtosecond experiments such as 2DE

spectroscopy often last for many hours [11, 12]. Accordingly, both the spectrum and

phase of the broadband source should be stable over the long-term, and reasonably

robust to unavoidable environmental fluctuations.

Time-resolved spectroscopy probes resonant processes, and as such the power

requirements are typically modest. However, the source is usually the first element

in a series of lossy optical devices. This accentuates the need for pulse energies in the

tens of µJ/pulse range. Tunablity of the pulse energy is also desirable. Varying the

intensity of the laser pulses is a common occurrence in spectroscopy experiments.
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Figure 4.1: Stretched hollow-core fiber setup. Input pulse from regenerative amplifier
enters the fiber through an evacuated chamber. Output chamber is pressurized (Ar).
Collimation telescope and all routing optics shown. Inset: input spectrum (gray) and
typical output spectrum (red).

Furthermore, downstream optical elements have requirements and limits in terms of

powers. Being able to adjust the power output of the source to a range acceptable

to downstream optics simplifies the design and operation of the experiment.

4.2 Methods

Hollow-core fibers are a possible broadband source for optical spectroscopy. A

typical implementation is depicted in Fig 4.1 [13, 14]. Typical input and output

spectra of the fiber are shown as an inset to Fig 4.1. The output of a femtosecond

amplifier is coupled to the entrance of a straight hollow-core fiber. A variable at-

tenuator, consisting of a half waveplate and polarizer, allows for fine control over

the input power. The fiber, which is essentially a flexible glass capillary, is stretched

between two holders which allow for adjustments to the fiber alignment and tension.

Fibers of varying inner diameters can be used, with thinner fibers enhancing the

nonlinear interaction at the expense of overall transmission. The input and output

of the fiber are enclosed in gas chambers to control the pressure and nature of the

gas in the fiber. Best performance is obtained using a pressure gradient. The input

is under vacuum, which reduces plasma defocusing and thus enables efficient and
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stable coupling at the fiber input [13]. The output chamber is pressurized, resulting

in a pressure gradient inside the fiber. Although only Argon is used in this thesis,

the nature of the gas can be varied. The output of the fiber is collimated before

being sent to a home-built all reflective TG-FROG or to the experiment. For visible

spectroscopy, the near-IR part of the continuum is discarded using a short-pass filter

inserted after the output chamber (cutoff 700 nm).

The fiber assembly offers multiple adjustable parameters. Some parameters are

determined by hardware design, such as fiber length L, inner diameter (ID) and gas

type. Input pulse characteristics, such as central wavelength, bandwidth and beam

radius, are similarly constrained by available hardware. The beam should be focused

down such that the waist w = 0.65a, where a is the radius of the fiber [13, 15]. The

gas pressure and input pulse energy can be tuned continuously during operation, and

thus can be finely adjusted. The fiber assembly was tested with up to 4 mJ input

pulses and 3 atm gas pressure. For 2DE experiments, we typically use 580 µJ pulses

from a Ti:Sapphire amplifier with a duration of 130 fs, central wavelength of 800 nm

and repetition rate of 1 kHz. The amplifier output has a beam waist of about 12 mm.

This is focused down to 260 µm at the fiber tip in order to efficiently couple to the

fiber with an ID of 400 µm. The fiber has a length of 2.57 m. Sufficient broadening is

achieved by maintaining a pressure of 3 bar Ar in the output chamber. The output

beam is collimated to 1.06 mm. The total transmission in the differential pumping

scheme is above 80%, with an overall conversion to the visible of 7–10%.

Broadening in inert gases is well-understood and dominated by self-phase mod-

ulation (SPM) of the laser pulse in the gas. The broadening is described by the

nonlinear Schrödinger equation (NLSE) [14, 15]:

∂z ε̃ = D̃ε̃+ ik0T ∆̃nε̃−
α̃

2
ε̃ (4.1)
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where ε̃ is the Fourier-transform of the slowly-varying envelope ε(t, z). This equation

accounts for dispersion (D̃), self-steepening (T = 1+ iτshock∂t, τshock ≈ 1/ω0 and ω0 is

the central frequency of the pulse), instantaneous Kerr effects (∆n) and optical losses

(α). The equation above is called the 1D+1 NLSE (z, time). It is integrated using

the split-step Fourier method [14, 15]. The index of refraction n are obtained using

the Sellmeier equations for Ar at 1 bar. The pressure correction is applied as n(p) =√
1 + p(n(1)2 − 1). In the current case, Kerr coefficients up to n10 are necessary to

reproduce the experimental results. These coefficients have been measured at 800 nm,

and were extrapolated to other frequencies using the Generalized Miller formula [16,

17]. The Kerr coefficients are proportional to pressure. The origin of these so-called

high-order Kerr effect terms has been subject to considerable debate [16, 18–21].

Table 4–1: Characteristic nonlinear lengths obtained for coupling an input pulse
130 fs FWHM, Ein = 580 µJ into a fiber of 400 µm ID under 3 atm Ar.

Nonlinear effect Characteristic length Value (m)

Kerr (3rd order) |c/(ω0n2|ϵ|2)| 0.0538
Kerr (5th order) |c/(ω0n4|ϵ|4)| 1.84
Kerr (7th order) |c/(ω0n6|ϵ|6)| 0.216
Kerr (9th order) |c/(ω0n8|ϵ|8)| 0.643
Kerr (11th order) |c/(ω0n10|ϵ|10)| 15.7
Kerr (full)

⏐⏐c/(ω0

∑5
m=1 n2m|ϵ|2m)

⏐⏐ 0.0472
Self-Steepening

⏐⏐cσt/(∑5
m=1 n2m|ϵ|2m)

⏐⏐ 12.3
Dispersion |σ2

t /β2| 196

The relative importance of the different contributions to eq 4.1 are usually evalu-

ated using characteristic lengths, with shorter lengths indicating a stronger effect [14,

15, 22]. The characteristic lengths for the current experimental configuration are pre-

sented in table 4–1. In that table, c is the speed of light in vacuum, n2m is the Kerr

coefficient at ω0, ϵ is the peak field amplitude, σt is the temporal width of the pulse

(1/e intensity half-width) and β2 is the group velocity dispersion (β2 = d2k(ω)/dω2).
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Assuming Gaussian temporal and transverse envelopes, |ϵ|2 =
√
2πI0/σtw

2 where I0

is the pulse energy and w is the beam waist. These lengths have to be compared

to the effective length of the fiber Leff =
(
1− e−αL

)
/L, where L is the geometri-

cal length of the fiber. In the current case, Leff = 2.13 m. Table 4–1 clearly shows

that Kerr effects dominate. Nevertheless, all effects need to be taken into account to

accurately reproduce the output spectrum.

The duration of the femtosecond white-light pulse is measured using a home-

built dispersion-free transient grating (TG) FROG [23]. In this geometry, chirp is

visible as a tilt in the TG-FROG traces. A Fourier-transform limited (FTL) pulse

shows as a vertical TG-FROG trace. Unless specified, the beam path from the fiber’s

output chamber to the FROG is free of transmissive optics. For ultrafast experiments,

compression is achieved using a GRISM assembly and acousto-optical pulse-shapers

(Dazzlers, Fastlite Inc.). A complete description of the spectroscopy apparatus is

presented in previous work [24].

4.3 Results

The performance of the fiber can be measured through several indicators. Fig 4.2

illustrates the suitability of this fiber for femtosecond optical spectroscopy. The over-

all transmission of the fiber is shown on Fig 4.2a. In operational conditions, the

transmission of the fiber is above 80%. Transmission drops when pressure and input

energy are increased past a certain threshold, consistent with previous work [13].

This is a consequence of ionization of the gas. The collimated output mode is shown

on Fig 4.2b, as imaged by a camera. This high quality of the spatial mode makes

this source suited for spatially resolved femtosecond spectroscopy [5, 25, 26]. The

continuum can readily be compressed for use in a spectroscopy experiment. Fig 4.2c

shows the spectrum after amplitude and phase shaping achieved using GRISMs and
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Figure 4.2: Fiber performance. (a) Transmission is typically above 80%. Plasma gen-
eration at high pressures and powers decreases transmission. (b) Image of the fiber
mode after collimation. (c) Broadband visible pulse obtained from the visible part of
the fiber output after compression. Inset: TG-FROG of the compressed pulse. Time
projection has a FWHM of 16 fs.

an acousto-optical pulse shaper (Dazzlers, Fastlite Inc.) [24]. The main role of the

GRISMs is to compensate the large second and third order dispersion of the pulse

shapers. The compression of the pulse is measured using a dispersion-free TG-FROG.

The inset of Fig 4.2c shows the resulting trace. The temporal projection has a FWHM

of 16 fs.

Nonlinear optical spectroscopy experiments usually take multiple hours to reach

completion [11, 12, 27]. Furthermore, both amplitude and phase modulation of the

pulses can be used to isolate the signal of interest [9, 28–30]. As such, it is desirable for

the source to be stable over both the long and short terms. Variations in the spectrum

of the source are shown on Fig 4.3. Both fast (shot to shot) and slow (over a day)

measurements are shown. Relative fluctuations of the total power and bandwidth
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Figure 4.3: Fluctuations of the visible power and bandwidth. (a) Temporal evolution
of the spectrum shot-to-shot and (b) over 24 h. (c) Fluctuations of the total visible
intensity shot-to-shot and (d) over 24 h. (e) Fluctuations of the visible bandwidth
shot-to-shot and (f) over 24 h.

are also shown. Due to the asymmetric shape of the spectrum, the bandwidth is

measured as the square-root of the second central moment of the spectrum. The

shot-to-shot RMS fluctuation is about 6%, which is remarkable considering the large

bandwidth and highly nonlinear process involved. The laser spectrum is stable over

the course of multiple days, although some sensitivity to environmental fluctuations

is visible for long-term measurements. A modulation with a period of 40 minutes is

visible on panels b, d and f, which is attributed to a temperature control loop in the

laser chillers.

Due to the nature of the nonlinear propagation process, pulses with increased

bandwidth also tend to be increasingly sensitive to fluctuations and thus less stable.

There is a trade-off between bandwidth and stability for large broadening. The fiber

assembly is entirely passive: the instability is due to the amplification of preexisting

fluctuations by the nonlinear SPM process. These fluctuations can be due both to
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power fluctuations in the amplifier as well as pointing fluctuations. The stability

performance displayed in Fig 4.3 were obtained without active pointing stabilization,

and without humidity control of the laser room. Correcting for this is expected to

significantly increase the stability of the source.

Having described the general properties of the fiber, we now look at the impact

of power and pressure on the fiber output. Fig 4.4 shows the fiber output for three

input powers, at a fixed pressure of 1.34 atm for a 2.5 m fiber of 400 µm ID. Both

TG-FROGs and output spectra are shown. The spectra exhibit the signature shape

of SPM broadening. The comparison with model spectra obtained by propagating

eq 4.1 are shown in red. The agreement is excellent. The FROG traces are also

typical of broadening by SPM, with the exception of an elongated tail lasting 1 ps

at around 795 nm. This tail is also present in the direct output of the amplifier,

and does not participate in the broadening process. It is far from the spectral region

used in experiments, and has been safely ignored. Linear chirp shows as a tilt in

TG-FROGs, with increased angle from the vertical indicating increased chirp [23]. It

is remarkable to observe the TG-FROG become increasingly vertical at larger power.

This indicates the bandwidth of the pulse increases at a faster rate than its duration

in this regime.

Fig 4.5 shows the fiber output for three gas pressures, at a fixed input energy

of 800 µJ/p. The general shapes of the FROG traces and spectra are once again

indicative of SPM. The pulse at the highest pressure setting is becoming unstable,

and ionization reduces the visible part of the spectrum. The properties of the traces

are otherwise similar to the previous case. The complete overview of parameter space

is shown on Fig 4.6. Indeed, both gas pressure and power increase the impact of

nonlinear effects and increase broadening. As such, input power and gas pressure are
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Figure 4.4: Pulse energy increases broadening. TG-FROG traces (a,c,e) and output
spectrum (b,d,f) of the full fiber output for increasing input pulse energy. Red lines
are model spectra obtained for the same input conditions. Ar pressure: 1.34 atm.

two degrees of freedom that can be used to obtain a target output bandwidth and

power. This flexibility thus allows the fiber to accommodate the constraints imposed

by other elements of the optical setup, such as operational thresholds.

4.4 Discussion

The reduction of the chirp with increased broadening displayed in Fig 4.4 is inter-

esting. As a consequence, selecting part of the output spectrum using filters yields a

pulse of shorter duration than the input pulse. This self-compression is demonstrated

in Fig 4.7a. The TG-FROG trace obtained after the use of a 700 nm shortpass filter

has a temporal FWHM of 45 fs before compression, compared to 159 fs for the input

pulse. The chirp of the experimental pulse includes contributions from two transmis-

sive filters: neutral density and 700 nm shortpass. The resulting chirp was not taken
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Figure 4.5: Gas pressure increases broadening. TG-FROG traces (a,c,e) and output
spectrum (b,d,f) of the full fiber output for increasing pressure. Input pulse energy:
800 µJ/p.

into account for the model trace. Self-compression has not been reported in fibers of

this kind. Modeling carried out with the NLSE (eq 4.1) qualitatively reproduces this

feature, as shown on Fig 4.7b.

This fiber achieves a stable broadband continuum by relying mostly on a sta-

ble self-phase modulation process. The smooth broadening is illustrated in Fig 4.8,

showing the spectrum as a function of distance obtained from modeling. The band-

width increases almost linearly with distance [15]. No sudden bandwidth changes are

observed, as is the case for soliton propagation or filamentation [8, 31]. The impact

of the fiber length on the output pulse is thus easily assessed.

The tunability of the HCF for visible spectroscopy as a function of input energy

and pressure conditions has been demonstrated. Further tunability can be achieved
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pressure: 3.0 atm, input pulse energy: 550 µJ/p, fiber ID 400 µm.

by varying design parameters, such as fiber length and inner diameter, or charac-

teristics of the input pulse, such as duration and wavelength. This large number of

parameters stimulates the need for an efficient way to evaluate and predict fiber per-

formance as a function of these parameters. The NLSE provides the basis for reliable

modeling of the nonlinear processes at work in the HCF. The code employed for

the nonlinear pulse propagation was benchmarked in previous work [14] as well as in

Fig 4.4 of the present work. The calculations presented in 4.9 were realized efficiently

by naively porting an existing algorithm to a modern high performance language.

Propagation over the length of a 2.5 m fiber takes about 2 minutes on a common

laptop. The code is made available online [32].

Fig 4.9 displays the expected broadening when pumping the HCF with OPAs

available in our laboratory. Fig 4.9a shows typical output spectra for pumping with

150 µJ/p, 100 fs pulses across the visible bandwidth. Fig 4.9b shows the broadening

factor for varying input pulse wavelengths (color) and energies, for two fiber IDs

(symbols). Broadening is computed as the ratio of the spectral FWHM of the output
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Figure 4.8: Modeling of pulse propagation. Normalized spectra as a function of prop-
agation distance. Same conditions as Fig 4.7b.

and input pulses. These simulation results suggest this fiber can be used over the

whole visible bandwidth, down to 450 nm. Broadening in the UV is impossible due

to an increase in plasma generation at 400 nm or bluer wavelengths. This increase in

plasma density causes an important reduction in the transmission, down to ∼10%.

All other parameters yield an identical transmission due to the negligible impact of

plasma. The use of a gas with a larger ionization potential (Ne, He) should extend

the bandwidth accessible to the UV.

4.5 Conclusion

HCFs are fully passive, stable broadband white-light sources with a high overall

transmission and excellent spatial mode. The broadening can be increased by using

smaller fiber inner diameter, longer fiber length, higher gas pressure and higher input

laser energy. The broadening operates mostly through self-phase modulation, yielding

a smooth spectral phase. Selection of the visible part of the fiber output using a

shortpass filter yields a pulse of shorter duration than the input pulse. This behavior

is reproduced by numerical modeling of nonlinear propagation in HCFs. The design

of the fiber is facilitated by the availability of efficient and well-established modeling

techniques.
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CHAPTER 5
Atomic disorder gives rise to dissipation of

electronic coherences in semiconductor nanocrystals.

Coherent femtosecond spectroscopy allows the investigation of coherent elec-

tronic dynamics. The observation of quantum beats, periodic modulation of the line-

shape, have sparked discussion pertaining to the characterization, design and per-

formance of materials. This chapter uses the theory presented in chapter 2 and the

instrument presented in chapter 3 to analyze the coherent optical response of CdSe

semiconductor nanocrystal via two-dimensional electronic spectroscopy (2DE). Co-

herence map analysis reveals the observed oscillations in the 2D spectra arise from co-

herent optical phonons. Contrary to predictions of standard continuum-based models,

no electronic coherences were observed between the first two excitons. The absence

of measurable electronic coherence is modeled using ab initio molecular dynamics of

a single realistic nanocrystal. Rapid dephasing of interexcitonic coherences is due to

the complicated electronic structure intrinsic to a NC represented at an atomistic

level of details. This dephasing mechanism is expected to be of general importance

to nanostructures. The study of coherent dynamics by 2DE is a general and sensi-

tive experiment that allows detailed analysis of the source of electronic disorder in

complex materials.
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5.1 Introduction

Quantum coherences are a fundamental quantum mechanical phenomenon which

occurs whenever two quantum states with a fixed phase relationship interfere. They

can be observed for any quantum degree of freedom: spin, rotational, vibrational or

electronic [1–4]. Such coherences are important spectroscopic probes of structural

and kinetic disorder: magnetic resonance imaging technology manipulates spatial in-

homogeneity to obtain spatial resolution and exploits coherence lifetime to obtain

contrast [5]. Rotational coherences have been controlled to image molecules in their

own reference frame [6, 7]. Vibrational and electronic coherences are more challeng-

ing to observe due to their high frequencies, short lifetimes and exquisite sensitivity

to system details. While electronic coherences can be observed in femtosecond and

attosecond pump-probe measurements, these spectroscopies have typically been con-

fined to clean and cold systems such as dilute gases and metal surfaces [4, 8–11].

The advent of coherent multidimensional spectroscopy enables the investigation of

electronic coherences in condensed matter systems supporting many-body physics

such as biological light-harvesting proteins and nanomaterials [12–18].

In addition to the high frequencies and short dephasing times of electronic coher-

ences, their observation in complex systems is often complicated by the simultaneous

presence of vibrational coherences. This challenge is illustrated by the intense debate

regarding the existence of long-lived coherences in light-harvesting systems [12, 19–

23]. Distinguishing vibrational from electronic oscillations is essential as it completely

changes the interpretation of the signal. Coherent electronic dynamics are profoundly

sensitive to details of the system’s structure and dynamics: any conclusions about

their occurrence remains highly system specific. As such, parameters that impact

the observation and preservation of electronic coherences can vary widely, from gas
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pressure in gas-phase atoms [10] to vibrational structure in biological light harvesting

complexes [12, 24, 25] and exciton-exciton interactions in epitaxial quantum wells [26,

27]. A similar understanding is still in its infancy for colloidal nanostructures.

Semiconductor nanocrystals are an ideal model system to probe electronic co-

herences. These colloidal nanocrystals are characterized by a well-resolved vibra-

tional and electronic structure. Their well understood vibrational manifold enables

the use of coherent phonons as an internal standard for coherent dynamics [28]. These

nanocrystals have a rich electronic structure that has been described at various lev-

els of theory. Inter-excitonic coherences provide a sensitive experimental signature to

test these theories [29–32]. There have been reports of pure electronic coherences in

colloidal semiconductor nanostructures such as nanoplatelets [15, 33] and nanocrys-

tals [34–38]. However, such reports are intermittent, and the coherence signals are

always weak and short-lived. This is surprising: the discrete colocalized exciton states

should yield a long-lived inter-excitonic coherence. This discrepancy underlines a cur-

rent need to identify the phenomena relevant to the observation and preservation of

inter-excitonic coherences in colloidal nanostructures.

Here 2DE spectroscopy is applied to probe coherences in CdSe nanocrystals

(NCs). The implementation of 2DE spectroscopy enables coherence mapping thereby

revealing a detailed view of coherent dynamics. The coherence maps confirm co-

herent optical phonons. In contrast to 1D experiments, these 2D coherence maps

uniquely enable assignment of the microscopic quantum mechanical contributions to

the signals [39, 40]. The experimental signals do not show the presence of electronic

coherences that would have been predicted under standard continuum effective mass

approximation theories. Atomistic ab initio molecular dynamics rationalizes the ab-

sence of electronic coherences due to disorder arising naturally from atomistic details,
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Figure 5.1: Electronic spectroscopy of CdSe NCs. (a) Linear absorption spectrum
(black) and constituent peaks (colors match panel b). Laser spectrum shown as
a dotted line. (b) Minimal energy level diagram. Solid arrows: excitons, dashed:
biexcitons. (c) Representative 2DE spectrum, offering a detailed view of the electronic
response. Inter-excitonic coherences should appear where the dashed lines meet. Red:
bleach (GSB, SE), blue: induced absorption. (d) Pseudo-TA spectrum, shaded region
in c. (e) Schematic diagram of 2DE spectroscopy in the pump-probe geometry.

even in single nanostructures. Results on this model system implies the study of elec-

tronic coherences by 2DE may be used to identify the sources of electronic disorder

in complex materials.

Semiconductor NCs have a rich electronic structure that has been described at

various levels of theory, from continuum to atomistic models [29–32]. Fig 5.1 shows

the electronic structure and spectroscopy of CdSe NCs. The prevailing model of

semiconductors NCs is called the multiband k·p effective mass approximation (EMA).

Despite its simplicity, this model has successfully provided the framework of decades

of spectroscopic investigations, from fluorescence to multidimensional spectroscopy.
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More refined theories are available and mature, but usually unnecessary [29–32, 41,

42]. In the EMA model, the Bloch waves of the bulk semiconductor are confined in

a nanoparticle. As a result, the conduction and valence bands split, yielding discrete

electron and hole states. These in turn yield a manifold of discrete exciton states,

which are more strongly bound than in the bulk. The absorption spectrum reveals

discrete excitonic transitions (Fig 5.1a). The first two exciton transitions and their

electrons and hole states are indicated on Fig 5.1b. Notably, this model predicts the

first two excitons share an electron state (1Se), but have different hole states (X1:

1S3/2, X2: 2S3/2) [29, 35, 43–45]. They should sustain a long lived inter-excitonic

coherence as only hole dynamics contribute to dephase a |X2⟩ ⟨X1| coherence.

Furthermore, the NCs can host multiple excitations, in the form of bound biex-

citons and multiexcitons. First observed in time-resolved photoluminescence, biex-

citons are apparent as red-shifted induced absorption (IA) in the time-resolved ab-

sorption spectra, Figs 5.1c,d [46, 47]. Calculations using the EMA model suggests

this binding is dominated by exchange interactions [30]. Due to the small (∼10 meV)

binding energy of the band edge biexciton, the induced absorption overlaps with the

bleach signal and the contributions are hard to separate [48]. Time-resolved spec-

troscopy of CdSe experiments have reported oscillations due to both the optical and

acoustic phonons [28, 49–51]. Weak and short lived electronic coherences have been

reported by broadband transient absorption (TA) and 2DE for |X1⟩ ⟨X2| [35, 36].

Surprisingly long coherences lasting ∼100 fs have been reported for |X1⟩ ⟨X3| [34].

Coherent dynamics can be studied using 2D spectroscopy, which has been de-

scribed in detail elsewhere [14, 52–57]. A representative 2D spectrum is shown on

Fig 5.1c, experimental scheme on Fig 5.1e. Briefly, this experiment is a three-pulse
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experiment similar to a pump-probe measurement where a pair of phase-stable broad-

band pulses acts as the pump. The first delay t1 is scanned; its Fourier transform

yields a detection axis E1. Delay t2 is analogous to the pump-probe delay of TA.

During this delay, the system can be in a population (eg: |G⟩ ⟨G| or |Xi⟩ ⟨Xi|) or

inter-excitonic coherence (eg: |Xj⟩ ⟨Xi|). It evolves under the field-free Hamiltonian.

The third pulse acts as the probe. Its transmission is monitored using a spectrome-

ter yielding a spectral detection axis E3. The result is a 2D spectrum S(E1, t2, E3).

The 2D spectrum can reveal coupled transitions, relaxation processes, reduce spec-

tral congestion and deconvolve lineshape contributions [13, 53, 58, 59]. Of particular

interest, coherent processes are revealed by oscillations of the peak intensities as a

function of t2. The experiment reported here is carried out in the pump-probe geom-

etry, which can be realized simply by inserting a pulse shaper in the pump arm of

a TA spectrometer. In this geometry, the absorptive 2D spectrum is easily acquired

without the need for delicate phasing and filtering procedures. It is directly related to

the basic phenomena of absorption and dispersion: the intensity of the real absorp-

tive spectrum (shown here) can be interpreted as arising from ground state bleach

(GSB), stimulated emission (SE) and induced absorption (IA) [52, 53, 60–62].

5.2 Methods

5.2.1 Two-dimensional electronic spectroscopy

The experimental setup is identical to previous work [55]. The output of a 1 kHz

130 fs 800 nm Ti:Sapphire regenerative amplifier (Coherent Legend Elite HE+) is

coupled to a 2.5 m long, 400 µm inner diameter hollow core fiber (few-cycle) filled

with Argon (gradient, 3 bar). The visible part of the broadband output is selected us-

ing a low-pass filter (<700 nm). Transmission GRISMs (GRating + prISM, Fastlite)

are used for dispersion management. The visible continuum pulse is split and each
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arm is sent to a pulse shaper (AOPDF, Dazzler, Fastlite) to generate the three pulses

and control their delays, spectral amplitudes and phases. The pulses are characterized

using a home-built all-reflective TG-FROG. Recovered pulse durations are typically

11-13 fs. Spot size is estimated to 100 µm at the sample position using a CCD cam-

era. Pulse energies were 10 nJ/pulse for each of the three pulses. The spectrum of

the transmitted probe was monitored using a spectrometer (Acton 2500i, Pixis 100B

Excelon). A two-step phase cycling scheme was used [56]. CdSe nanocrystals (NCs)

in toluene where purchased from NNLabs. Their band edge absorption was 640 nm

with a Wurtzite lattice and octadecylamine ligands. The experiment was carried out

in a 200 µm optical path length glass flow cell (Starna). The samples were constantly

flowed during the experiment. OD of the samples was 0.3 in the 200 µm cuvette.

5.2.2 Details of AIMD calculation

The simulations were performed on a Cd33Se33 cluster with a diameter of 1.3 nm

constructed using bulk wurtzite lattice. Cd33Se33 is one of the smallest stable CdSe

NCs that support a crystalline-like core making it an excellent model for studying

electronic and vibrational properties of semiconductor NCs [63, 64]. A the plane-wave

density functional theory approach is employed to describe the electronic properties

of the system, as implemented in QUANTUM ESPRESSO [65] program package.

The cluster geometry was optimized using the Perdew-Burke-Ernzerhof (PBE) [66]

exchange-correlation functional with norm-conserving pseudopotential. The kinetic

energy cutoff for wave function was set to 30 Ry. The simulations were performed

in a periodically replicated cubic cell with at least 10 Å of vacuum in each direc-

tion between NC replicas. Following the geometry optimization, the fully optimized

structure was heated to 300 K with repeated velocity rescaling for 1000 fs using the

Andersen thermostat. A 1.5 picosecond-long ground state molecular dynamics (MD)
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Figure 5.2: Unraveling oscillations in the time-resolved spectra. (a,b) Oscillations can
be studied along either E1 (a) or E3 (b). Color indicates amplitude relative to peak
2D signal. (c) Spectrum of the oscillations, amplitude integrated for E1, E3 from 1.85
to 2.10 eV. Expected peaks for the LO phonon, acoustic phonons and |X1⟩ ⟨X2| are
shown for reference.

trajectory at 300 K was then generated using the Verlet algorithm and the Andersen

thermostat with a time step of 1 fs.

5.3 Results

In 2DE, coherent oscillations can be reported as a function E3 (Fig 5.2a) or E1

(Fig 5.2b). The latter is not possible in other techniques. Following common proce-

dures, incoherent dynamics are removed by global analysis using a multi-exponential

decaying model [12, 67–69]. The residuals show a dominant contribution from the

longitudinal optical (LO) phonon, with a period of ∼160 fs. The phase of the oscil-

lations shifts as a function of both detection and excitation energy, consistent with

frequency modulation arising from coupling to the LO phonon [70–74]. The exis-

tence of a substantial phase shift implies that a technique that averages over a large

excitation bandwidth will attenuate the relative amplitude of the oscillations.
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Figure 5.3: Apparent amplitude and phase of oscillations depend on central frequency
and bandwidth of both pump and probe. Two narrowband slices of 12 meV bandwidth
at 1.91 and 1.96 eV show larger relative oscillations than a broadband slice of 200
meV bandwidth at 1.95 eV. Coloured lines are fits to a single damped oscillation.
Curves offset for clarity.

Fig 5.3 shows the oscillations at E3=1.91 eV at two pump energies and for the

broadband case. The two narrowband curves are obtained by integrating over a band-

width of 12 meV. The broadband signal uses a bandwidth of 200 meV. Broadband

transient absorption risks underestimating the amplitude of the phonon oscillation,

depending on their phase shifts which are dependent on the system Hamiltonian.

Pump bandwidth thus further complicates the comparison of TA experiments with

varying bandwidths [36]. This emphasizes the necessity of a technique that com-

pletely characterizes the third order response.

The residual oscillations can be Fourier transformed to study directly their spec-

tral components. This operation yields a 3D spectrum. Fig 5.2c shows the amplitude

of the oscillations integrated over the region spanning 1.85 to 2.1 eV along both E1

and E3. Expected signatures are also shown [34, 51]. The strongest signature arises

from the LO phonon (∼25 meV). Another peak can be seen at lower energies, which
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Figure 5.4: Simulated and experimental coherence maps for the strongest signature,
E2=25 meV. (a) Amplitude and (b) phase for a model electronic coherence. (c)
Amplitude and (d) phase for a model vibrational coherence. (e) Amplitude and (f)
phase for the experimental coherence map at 25 meV, indicating it is of vibrational
origin. Inset in b: color scale for phase.

can be associated with known acoustic phonons [59]. Due to the short time range used

here, it is poorly resolved and will thus not be discussed further. The coherent LO

phonon serves as an internal standard for the measurement of other coherences [75].

Fig 5.2 indicates oscillations of less than 2% of the peak signal amplitude are well

resolved.

A more detailed picture can be obtained by taking projections at fixed E2,

yielding coherence maps [39, 76–79]. Fig 5.4 shows model and experimental coherence

maps for the signal at E2=25 meV. Separating the signal by mixing energy allows the

selection of spectroscopic signatures by their coupling to specific excitations [26, 76,
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77, 80]. Coherence mapping allows the assignation of whether they are electronic or

vibrational coherences without relying on separate acquisitions of the rephasing and

non-rephasing contributions. The distinction is usually carried out using patterns of

peaks on the coherence maps [80, 81]. However, lineshape parameters and induced

absorption obfuscate the pattern of the underlying peaks. As such, simple model

calculations are carried out using the cumulant expansion to second order, neglecting

relaxation [58, 78, 81–83]. This technique allows the modeling of nonlinear spectra

using few parameters: the states’ average energy, the transition dipoles and lineshape

functions.

The calculation was carried out using the methods outlined in sections 2.4.2 and

2.3.4. The code is available online [84]. Throughout the manuscript, Bloch dynamics

are used as model lineshapes (ie: homogeneous dephasing, eq 2.130 and gaussian

inhomogeneous broadening, eq 2.131). Coupling to a vibrational mode is added using

the Huang-Rhys lineshape function, eq 2.133. The choice of these lineshape functions

is justified by the lack of spectral dynamics in NCs [59]. The use of undamped

vibrational modes is justified by the short time window used here, shorter than the

dephasing time of the LO phonon.

The model coherence maps were obtained by considering systems simplified with

respect to previous work by the group of Pullerits [78, 81]. The model coherence map

for electronic coherence is obtained by considering a 4-level system consisting of a

ground state G, two excitons states X1, X2 and a biexciton state XX. The energies of

the two excitons are EX1 and EX2. They are separated by an energy difference ∆E21 =

EX2 −EX1=25 meV. This energy sets the frequency of the oscillation along E2. The

biexciton has an energy EXX = EX1 + EX2 − δE, with small binding energy δE=10

meV. The lineshape functions use the homogeneous and inhomogeneous lineshape
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functions (eqs 2.130 and 2.131) with γ=10 meV and σ= 10 meV. All transition

dipole moments are set to 1.

The model coherence map for vibrational coupling is obtained by considering a

3-level system consisting of a ground state G, a single exciton state X1 and a biexciton

state XX. Coupling to vibrations is modeled as an undamped classical vibrational

bath mode (Evib=25.5 meV) using the Huang-Rhys lineshape function (eq 2.133)

with S=0.2 at 298 K. Vibrational dephasing is neglected since the experimental time

window is much shorter than the lifetime of the vibrational oscillations (>1 ps) [85].

In this model, the lineshape function is made of 3 contributions: homogeneous and

inhomogeneous dephasing (as previously) and Huang-Rhys coupling. It was verified

that using smaller values for the Huang-Rhys parameter doesn’t change the coherence

map shape or phase.

Fig 5.4a,b shows the amplitude and phase of the coherence maps for an elec-

tronic coherence. The amplitude (Fig 5.4a) reveals two symmetric features, with a

relative phase shift of π (Fig 5.4b). This structure arises from the interference of stim-

ulated emission (top) and induced absorption (bottom) [80]. Results for the model

vibrational coherence are shown on Fig 5.4c,d. It shows 4 features on the corners

of a square, roughly separated by twice the beat energy. These correspond to the

diagonal and cross peaks formed by the +1 and -1 phonon line [81]. The diagonal

peaks are π phase shifted with respect to the off-diagonal contributions.

Fig 5.4e,f show the experimental coherence maps obtained for E2= 25 meV. Both

the progression of the intensities and the phases shows an excellent agreement with

the vibrational model coherence maps considering the use of a simplified model.

Using the shape and phase of model coherence maps, it is possible to assign the
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Figure 5.5: No electronic coherences can be observed between the X1 and X2 excitons.
(a) Cross peak dynamics show no oscillations other than the LO phonon. Inset:
location of the cross peaks. (b) Predictions based on the discrete states of the EMA
yields an observable coherence of large magnitude (see text). Biexciton contributions
does not reduce the relative amplitude of the coherence. (c) Atomistic details induce
very fast dephasing. Cross-peak dynamics obtained using AIMD trajectories. Inset:
linear spectrum (line), individual transitions and their transition dipoles (sticks).

nature of an oscillatory component using 2DE in the pump-probe geometry. The use

of model calculations permits this assignment despite overlapping contributions.

5.4 Discussion

The strongest oscillatory component was assigned to the weak LO phonon, in

agreement with the literature [28, 49–51]. Most intriguing is that no signatures can

be assigned to electronic coherence. A more detailed look at the X1, X2 cross peaks

is warranted. Fig 5.5a shows transients over square regions 40 meV across around
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the cross peaks which should reveal oscillations due to electronic coherences. The

data can be fully accounted for by population decay and the LO phonon. There is no

|X1⟩ ⟨X2| coherence in Wurtzite CdSe NCs at room temperature. This observation is

unexpected: the discrete manifold predicted by the EMA should yield an observable

coherence.

5.4.1 Description of model EMA calculation

First, the expected properties of the |X1⟩ ⟨X2| coherence in NCs are estimated

quantitatively. Dephasing of coherences arises from two contributions: incoherent re-

laxation processes and decorrelation of the states participating in the coherence [86].

The X2 → X1 hole relaxation occurs with a timescale of 200 fs, which is much slower

than other dephasing mechanisms and is thus safely neglected [87]. Decorrelation

of the energy of the states is described using lineshape functions, using eqs 2.149,

2.130 and 2.131. Each lineshape function is made of two contributions: homogeneous

dephasing and gaussian inhomogeneous broadening. The lack of spectral dynamics in

NCs justifies the use of Bloch dynamics [53, 58, 83]. The LO phonon is not considered,

due to its different frequency.

The experimental data can be captured by using a single ground state and

two excitons, X1 and X2. The energies of the excitons are made of the constituent

electrons and holes:

EX1 = Ee − Eh1 (5.1)

EX2 = Ee − Eh2 (5.2)

(5.3)
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As such, the fluctuations of the exciton energies can be separated in a hole and

electron part. In order to reduce the number of parameters, a few experimentally

justified assumptions are made.

As a limiting case, the fluctuations of the fast homogeneous dephasing are con-

sidered uncorrelated for all electrons and holes involved. The homogeneous dephasing

of the electron and holes are assumed to be uncorrelated and of equal magnitude γ.

This estimate puts a lower bound on the pure dephasing time of the inter-excitonic

coherence: a first-principles calculation is likely to result in correlation between the

energy fluctuations of the two holes as they share a phonon bath [27, 34, 41, 42].

The correlation functions can be derived as follows, using the homogeneous

dephasing lineshape function g(H) of the X1 exciton as an example:

δE
(H)
X1

(t) = δE(H)
e (t)− δE(H)

h1
(t) (5.4)

C
(H)
X1,X1

(t) = ⟨δEX1(t)δEX1(t)⟩eq (5.5)

=
⟨(
δE(H)

e (t)− δE(H)
h1

(t)
)(

δE(H)
e (0)− δE(H)

h1
(0)

)⟩
eq

(5.6)

= ⟨δEe(t)δEe(0)⟩eq − ⟨δEe(t)δEh1(0)⟩eq

− ⟨δEh1(t)δEe(0)⟩eq + ⟨δEh1(t)δEh1(0)⟩eq (5.7)

C
(H)
X1,X1

(t) = ⟨δEe(t)δEe(0)⟩eq + ⟨δEh1(t)δEh1(0)⟩eq (5.8)

C
(H)
X1,X1

(t) = γeδ(t) + γh1δ(t) (5.9)

yielding:

g
(H)
X1,X1

(t) = (γe + γh1)t. (5.10)

In the above equations, δEi(t) is the fluctuating part of the energy of particle i,

the angular brackets denote averaging over equilibrium conditions (i.e.: stationary
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average), δ(t) is the Dirac delta (the correlation function for homogeneous dephas-

ing). Uncorrelated fluctuations of electrons and holes are used to obtain eq 5.8 from

equation 5.8. Eq 5.10 is obtained from eq 5.9 using eq 2.128. In the same way, the

other lineshape functions are obtained:

g
(H)
X2,X2

(t) = (γe + γh2)t, (5.11)

g
(H)
X1,X2

(t) = g
(H)
X2,X1

(t) = γet. (5.12)

For simplicity, it is assumed that all electrons and holes have identical homogeneous

dephasing rates: γe = γh1 = γh2 = γ.

The inhomogeneous broadening is usually considered to be dominated by size

inhomogeneity, which is perfectly correlated for all states. This has a major implica-

tion: whereas size distribution dominates the dephasing of single excitons, its impact

is reduced for inter-excitonic coherences. Estimation of the effect of inhomogeneous

size distribution relies on well-established values for the size-dependence of the spec-

troscopic transitions, shown to be compatible with the EMA [29, 88]. The energy gap

between the first two excitons is related linearly to the X1 transition energy, such

that δEX2 = rδEX1 and σX2 = rσX1 . Using this quantity, we obtain the following

correlation functions for inhomogeneous broadening:

C
(I)
X1,X1

(t) = ⟨δEX1(t)δEX1(0)⟩eq = σ2
X1

(5.13)

yielding:

g
(I)
X1,X1

(t) =
1

2
σ2
X1
t2 (5.14)

Similarly:

g
(I)
X2,X2

(t) =
1

2
σ2
X2
t2 =

1

2
r2σ2

X1
t2 (5.15)
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Table 5–1: Parameters used for model inter-excitonic coherence under the EMA.

Parameter Value Source

EX1 1.94 eV Linear spectrum
EX2 2.01 eV Linear spectrum
γ 8.75 meV [59, 89]
r 1.3 [29]
σX1 14.86 meV [89]

g
(I)
X1,X2

(t) = g
(I)
X2,X1

(t) =
1

2
rσ2

X1
t2 (5.16)

Using this analysis, the lineshape functions can be entirely described by 3 pa-

rameters: γ, σX1 and r. The complete set of parameters, derived from previous ex-

perimental work, is included in table 5–1. Parameters are estimated from previous

experimental work. A value of 2γX1,X1=35 meV can be extracted from the antidiago-

nal FWHM of the 2D spectrum [59, 89]. From curve b on Figure 4 of ref [29], we can

extract r=1.3. An experimental FWHM of 35 meV for the inhomogeneous linewidth

has been reported [89].

The lifetime of the excitons are minor contributions to dephasing processes.

The lowest exciton X1 has a lifetime of ∼30 ns, measured by time-resolved photo-

luminescence. The X2 exciton relaxes to X1 with a lifetime between 200 and 300 fs

depending on particle size, ligand and shell [87, 89]. Both processes are too slow to

have a measurable impact on the coherences and are neglected (200 fs corresponds

to γ ≈3 meV).

The amplitude of the interfering biexciton induced absorption depends on biex-

citon binding energy, transition dipole moments for the X→XX transitions, and

biexciton lineshape parameters (γ and σ). Biexciton fine structure and degeneracy

potentially have to be taken into account. Such a detailed calculation is beyond the
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Figure 5.6: Cartoon of 2D spectrum indicating contributions to lower cross peak.
Red indicates bleach, blue indicates induced absorption.

scope of this work and does not change the resulting effect: the oscillating and non-

oscillating contributions cancel at the same rate. The biexciton signal presented in

Fig 5.5 has been obtained by assuming a constant binding energy of 10 meV and a

transition dipole moment of 0.8 for all biexciton transitions.

This calculation is carried out using the multimode brownian oscillator model

(see section 2.3.4) and the results are convolved with the experimental instrument

response function (IRF, FWHM=24 fs). The contributions to the cross peaks are

identified on Fig 5.6 and table 5–2. The analysis focuses on early time dynamics, be-

fore X2 → X1 relaxation occurs. Contributions arising from relaxation are neglected.

The amplitude of the oscillating signal is a substantial part of the total cross-peak am-

plitude: the oscillating and non-oscillating contributions contain the same transition

dipole moments. The results are shown as a blue curve in Fig 5.5b. Clearly, taking

into account generous estimates for dephasing, the cross peak should be strongly

modulated by the inter-excitonic coherences for 100 fs. Therefore, the EMA is insuf-

ficient to predict the experimentally observed lack of coherent electronic dynamics

in NCs.
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Table 5–2: Double-sided Feynman diagrams (DSFF) contributing to cross-peaks of
the 2D absorptive spectrum. X1X2 indicates a biexciton formed of the X1 and X2

excitons. Location refers to Fig 5.6.

DSFD Type Amplitude Location

X1 G →
→ X1 X2

G X2 ←

R-SE
oscillating µ2

G,X2
µ2
G,X1

A

→ X1 G
G G →
G X2 ←

R-GSB
incoherent µ2

G,X2
µ2
G,X1

A

→ X1 G
← G G
→ X2 G

NR-GSB
incoherent µ2

G,X2
µ2
G,X1

A

→ X1X2 X2

→ X1 X2

G X2 ←

R-IA
oscillating −µG,X2µG,X1µX2,X1X2µX1,X1X2 B

→ X1X2 X2

→ X2 X2

G X2 ←

R-IA
incoherent −µ2

G,X2
µ2
X2,X1X2

B

→ X1X2 X2

X1 X2 ←
→ X2 G ←

NR-IA
incoherent −µ2

G,X2
µ2
X2,X1X2

B

5.4.2 2D spectrum from AIMD trajectories.

The previous analysis ignored the impact of exciton-exciton interactions. Biex-

citons in NCs give rise to an induced absorption feature on the 2D spectra. The red

curve on Fig 5.5b shows the impact of the IA signal, which also gives rise to quantum

beats. In semiconductor NCs, IA and SE contributions overlap and cancel over most

of the cross-peak [48]. The net result shown in Fig 5.5b is a phase shift of the oscil-

lation, dictated by the biexciton binding energy, transition dipole and degeneracy as

well as the region of integration.

A higher level of theory including atomic details is required to explain the lack

of coherent inter-excitonic dynamics in NCs. Despite its successes, the EMA has
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been criticized for its lack of microscopic details [90, 91]. Fig 5.5c shows the cross-

peak dynamics computed from an atomistic model. Realistic microscopic models of

small semiconductor NCs are within reach of modern ab-initio molecular dynamics

(AIMD) [63, 64, 92, 93]. A 1.5 ps AIMD trajectory of a Cd33Se33 model nanocrystal

was carried out to evaluate the impact of microscopic disorder on the dephasing

time [92–95].

The linear and third order optical responses were computed from the trajectories

using the cumulant expansion [58, 83]. The AIMD calculations yield the energies of

all states as a function of time. In principle, the required correlation functions can

be computed directly using eq 2.128. Normally, the dynamics are repeated with

different initial conditions in order to average out slow modes. This is called the

inhomogeneous cumulant expansion [58]. This requirement is prohibitive: the AIMD

calculation with microscopic details is a very expensive calculation.

Direct application of the cumulant expansion using lineshape functions com-

puted from a single AIMD trajectory causes the third order response to diverge due

to coincidental correlations between slow modes. In order to improve the statistical

properties of the cross-correlation functions, we compute the cross-correlation from

the autocorrelation functions of the states’ energies and their energy separations.

This can be demonstrated as follows. As usual, let:

ωi(t) =
Ei(t)

ℏ
= ωi + δωi(t) (5.17)
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where Ei(t) is the energy of state i. ωi is decomposed in an average value ωi and a

fluctuating part δωi(t). Under the multimode Brownian oscillator model, the fluctu-

ations are caused by fluctuations of classical bath modes:

δωi(t) =
∑
k

ξikδqk(t) (5.18)

where δqk(t) is the fluctuating part of mode k and ξik is a time-independent real

coupling constant.

Let:

εij(t) = ωi(t)− ωj(t) = εij + δεij(t) (5.19)

be the frequency difference between states i and j. Its fluctuating part is given by:

δεij(t) = δωi(t)− δωj(t) =
∑
k

(ξik − ξjk) δqk(t). (5.20)

As for the MBO, we assume uncorrelated bath modes:

k ̸= k′ =⇒ ⟨δqk(t)δqk(0)⟩eq = 0, (5.21)

where ⟨. . .⟩eq designate a stationnary ensemble average. This assumption yields the

following correaltion functions (in the absence of relaxation):

⟨δωi(t)δωi(0)⟩eq =
∑
k

ξ2ik ⟨δqk(t)δqk(0)⟩eq (5.22)

⟨δωi(t)δωj(0)⟩eq =
∑
k

ξikξjk ⟨δqk(t)δqk(0)⟩eq (5.23)

⟨δεij(t)δεij(0)⟩eq =
∑
k

(ξikξjk) ⟨δqk(t)δqk(0)⟩eq . (5.24)

By expanding the square in 5.24 and substituting eqs 5.22 and 5.23, we get:

⟨δωi(t)δωj(0)⟩eq =
1

2

(
⟨δωi(t)δωi(0)⟩eq + ⟨δωj(t)δωj(0)⟩eq − ⟨δεij(t)δεij(0)⟩eq

)
(5.25)
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Thus, the cross-correlation of the fluctuation of the energy levels can be expressed

in terms of autocorrelation functions, which are statistically well-behaved (or better

behaved, at least). The resulting cross-correlation functions all obey the Cauchy-

Schwarz inequality, and the third order response stays finite.

The calculation of the 2DE spectrum from the AIMD proceeds as follows. The

average state energy and the transition dipole moments are obtained from the AIMD

calculation. The correlation functions are computed from state trajectories using

eq 5.25, and the corresponding lineshape functions are computed using eq 2.128. The

total response is computed using equations 2.164 to 2.171. Inhomogeneous dephasing

due to size distribution was added (gij(t) = g
(AIMD)
ij (t) + g

(I)
ij (t)). Inhomogeneous

dephasing was considered perfectly correlated and identical across all states, which

only serves to isolate the effect of the AIMD calculation.

The calculation uses only singly excited states: allowed transitions always involve

the ground state. As such, all Hilbert path require b = g in equations 2.164 to 2.171

(ie: b ̸= g yields µcb = µba = 0). The other two states a and c can be any of the singly

excited state, the sum runs over all possibilities. The calculation was truncated at 21

states, which is the amount necessary to converge the linear spectrum in the region

of interest.

The correlation functions obtained from the AIMD calculations have a time

dependent part, which yield non-Markovian dynamics. One might wonder if this has

a determinant role in reducing the amplitude of observed coherences. In order to

separate the contributions of the electronic structure from the fluctuation dynamics,

a pure dephasing rate is extracted from the covariance matrix of the fluctuations of

the states. This essentially dismisses the dynamic part of the correlation functions.
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Figure 5.7: Separating kinetic vs structure effects in the AIMD calculation. Cross
peak dynamics obtained using the full AIMD results (solid) and using electronic
structure and pure dephasing (dashed). Both curves are convolved with the experi-
mental IRF.

Fig 5.7 compares the results of this calculation, labeled “structure only”, with the full

AIMD results. Both curves have been convolved with the experimental IRF.

The model 2D spectrum obtained from the AIMD trajectories includes the dis-

order arising from an atomistic picture of the nanocrystal. The detailed position of

atoms break the symmetry of the system: a realistic NC is not a sphere. The states

predicted by the EMA mix, degeneracies lift and forbidden transitions become al-

lowed. This results in dense manifolds of transitions [94]. The inset of Fig 5.5c shows

the linear absorption spectrum obtained from this calculation. The first two spectro-

scopic features require taking into account 21 distinct states, an order of magnitude

more than the standard EMA model suggests. This disorder very quickly damps

the oscillations of the cross-peak. Note that this occurs without the introduction of

defects such as extra atoms [95].

The modeling was carried out on a single NC without the introduction of defects

such as extra atoms or surface defects. The rapid dephasing of the inter-excitonic

coherence thus occurs even for single nanocrystals in the absence of ensemble disor-

der. The model NC was built from a perfect lattice; the deviations from the ideal
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shape are thermally accessible and thus inherent to the NC. AIMD studies of multi-

ple chemical composition shows that such an intrinsic electronic disorder is a general

property of quantum-confined NCs. Disorder induced by atomistic details is thus ex-

pected to be a dominant effect in reducing the lifetime of inter-excitonic coherences

in nanostructures.

5.5 Conclusion

CdSe NCs have long been a model system in which to study the impact of many-

body physics on electron dynamics. Here we have studied coherent oscillations in the

time-resolved electronic response of CdSe NCs. Coherence mapping experiments with

high time resolution and high sensitivity failed to observe any electronic coherences.

In contrast, coherence maps containing the expected experimental signatures were

observed for the optical phonon. A strong electronic coherence is predicted using

the standard EMA model, which lacks atomistic details. The absence of electronic

coherence was successfully modeled using time-domain ab initio calculations. In semi-

conductor nanostructures, atomistic details present in single nanostructures play a

dominant role in determining the lifetime of electronic coherences. Application of

coherence mapping on a model system of semiconductor nanocrystals suggests that

electronic coherence may be used as a measure of electronic disorder. This tech-

nique should be generally applicable to discriminate between competing dephasing

processes in complex materials.
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CHAPTER 6
Electron Dynamics at the Surface of Semiconductor

Nanocrystals

In this chapter1, we characterize the dynamics in the lineshape of the photolu-

minescence of CdSe NCs. The time-resolved PL (tPL) experiment differs from TA

and 2D as it exclusively measures emissive states, ie: excited states. The timescale

is also much slower, the lineshape dynamics are mostly due to population transfers.

The tPL dynamics are a potential signature of electron transfer between core and

surface electrons.

Semiconductor nanocrystals emit light from excitons confined to their core, as

well as from their surfaces. Time-resolving the emission from the core yields infor-

mation on the band edge exciton, which is now well understood. In contrast, the

emission from the surface is ill-characterized and remains poorly understood, espe-

cially on long time scales. In order to understand the kinetics of charge trapping to

the surface and electronic relaxation within the surface, time-resolved photolumines-

cence spectroscopy is performed on CdSe nanocrystals with strong surface emission.

1Adapted with permission from Palato, S. et al. Electron Dynamics at the Surface of Semi-
conductor Nanocrystals. The Journal of Physical Chemistry C 121, 26519–26527 (Nov. 2017),
Copyright 2017 American Chemical Society.
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The time-resolved spectra reveal a time scale of electron transfer from core to surface

much slower than previously thought. These spectra also unveil electron dynamics in

the surface band, which gives rise to an average lifetime spectrum. These dynamics

are explained by invoking two surface states. This simple model further rationalizes

the role of ligands in tuning the surface emission of nanocrystals. These experimental

results provide a critical test of our understanding of the electronic structure of the

surface.

6.1 Introduction

The optical properties of colloidal semiconductor nanocrystals (NCs) are tun-

able through many material parameters such as size, chemical composition, crystal

structure, and ligand chemistry. Coupled with cheap solution-based processing com-

patible with flexible substrates, NCs are a promising platform for device develop-

ment. Current applications leverage the emissive properties of the NC, which arise

from confined excitons in the core. These core excitons are well understood. Con-

tinuous wave (CW), time-resolved, and temperature-dependent experiments on core

emission supplied important kinetic information on radiative and non-radiative pro-

cesses. These experiments yielded a detailed understanding of the electronic structure

of the band-edge exciton, revealing the origins of the Stokes shift and the existence of

a dark exciton [2–4]. This understanding has enabled rational development of these

materials for various optoelectronic applications [5].

In addition to the core, NCs also have a surface. In the case of bulk semiconduc-

tors, these surface electronic states are well investigated, typically using time-resolved

photoluminescence, to yield their electronic structure and dynamics [6–9]. In the case

of NCs, the surface is of increased importance by virtue of their sizes [2, 10]. Various

aspects of nanocrystal surface science have recently been reviewed by ourselves and
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others [11–16]. Our group has focused on the steady-state spectroscopy of the sur-

face [17–19]. The main spectroscopic observable is a broad photoluminescence (PL)

band red-shifted from the core band. While PL from the surface of NCs is ubiquitous,

especially at low temperatures, it remains poorly understood. This surface PL shows

a rich dependence upon temperature, size, ligands, and other material parameters.

These observations were rationalized using semiclassical electron transfer theory [17,

20, 21]. Based on steady-state experiment, this theory invokes assumptions for the

electron dynamics that may be tested by time-resolving the PL. Specifically, the

time-resolved PL spectrum can address the time scale for charge trapping from the

core to the surface. In addition, spectral dynamics can reveal electronic processes

at the NC surface. In summary, time-resolved PL can test the nature of the core to

surface exchange, discriminating between the thermodynamic and kinetic regimes.

Time-resolved PL spectroscopy is performed on CdSe NCs that exhibit dual emission

at room temperature, enabling evaluation of the kinetics of both core and surface

spectral bands. The results reveal the kinetics of electron transfer at the surface and

dynamics within the surface band. The core and surface bands decay at different

rates, implying an electron transfer time comparable to or longer than the fluores-

cence lifetime. The spectral dynamics within the surface band unveil dynamics of

the electrons at the surface of semiconductor NCs. Both of these results provide crit-

ical tests of previous understanding of electronic structure and dynamics of surface

electrons in these materials. These kinetic measurements provide an advance in our

understanding of the surface of NCs, and the ways in which the surface may be

exploited for light emissive applications.
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6.2 Background

Spectroscopic investigations into the electronic properties of NCs have yielded

a detailed picture of the core exciton energy levels and the associated relaxation

processes. Figure 6.4a shows the salient features of this microscopic model. The con-

finement of the electrons and holes in the core of the NC gives rise to a manifold of

exciton states (X1,X2, ...) which can be observed by CW absorption measurements.

Temperature-dependent spectral measurements were instrumental in revealing the

exciton fine structure and existence of the dark exciton [4]. This fine structure (a

simplified version is shown as an inset in Figure 6.4a) explains both the large nonres-

onant Stokes shift observed in NC as well as the low-temperature exciton lifetime [2].

Time-resolved techniques, such as transient absorption (TA) and time correlated sin-

gle photon counting (TCSPC), were necessary to disentangle the multiple electronic

relaxation processes in these materials [3, 22–26]. This detailed understanding of the

core electronics has been key to enable the design and synthesis of NCs for a wide

range of applications.

In contrast, direct investigation of the spectroscopic properties of the surface

state have only recently gained interest. A schematic level diagram for such a dual

emitter is shown in Figure 6.4b. The most notable signature of surface electronics

in NCs is a broad photoluminescence (PL) feature, red-shifted from the core PL.

This spectral signature is prevalent in CdS and CdSe NCs with radius < 1.1 nm,

although the PL appears at low temperature for most types of NCs as well as for

other nanostructured materials [17, 27]. Single NC spectroscopic investigations have

also shown the broad surface PL to be present in individual NCs and therefore not

due to a heterogeneous ensemble of emitters, as was initially thought [28, 29]. This is

also consistent with the spectroscopic properties of “atomically precise” CdSe clusters,
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which exhibit similar broad PL despite a very narrow size distribution [30]. Consistent

with these observations, the surface PL is now thought to come from a “shallow

surface state”. This model was used by our group to reproduce the complicated

variation of the relative amplitudes of the two emissive bands down to liquid helium

temperature [31]. The occurrence of a shallow surface state is currently emerging as

the dominant model for NCs across a range of chemical compositions [17, 32–35].

The dual emission from NCs cannot be observed if the transfer between the

two emitting states is unidirectional and fast. This observation is known as Kasha’s

rule. The non-Kasha behavior of small NCs implies either slow electron transfer

or thermodynamic equilibrium between the two emissive states. In previous work

from our group, the electron transfer between the core and surface was assumed

to be fast. This assumption was derived from TA experiments reporting surface

trapping time constants of ∼2 ps in CdSe NCs [3, 36]. The hypothesis of fast surface

trapping is also supported by fluorescence upconversion experiments, reporting PL

rise times as low as <300 fs, with smaller NCs exhibiting faster rates [37, 38]. These

observation, together with the assumption of equilibrium, results in a picture where

the surface and core emitting states are in a thermodynamical equilibrium with a

ps time constant, much faster than the ns timescale of the PL. In a kinetic scheme,

the fast equilibrium would validate the steady-state approximation, where the ratio

of core to surface ratio is constant. This model results in a prediction for the time-

resolved fluorescence: the lineshape of the PL spectrum should not vary with time,

or conversely, the spectrum should show uniform decay kinetics. This behavior is

inconsistent with previous measurements which have shown different behaviors for

the core and surface states. The surface state to be very long-lived, with observable

populations still present >1 µs after excitation [39]. Systematic application of TCSPC
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Figure 6.1: Operating principle of a Streak Camera. The light out of the spectrometer
is sent to a photocathode which converts the photons to electrons. The horizontal
position of the electron encodes the wavelength of the light. The electrons are accel-
erated and imaged to a detector. As they traverse the tube, the electrons are deviated
vertically by a time-varying high voltage ramp. The vertical position of the electrons
out of the streak tube thus encodes the arrival time of the light. The image at the
detector thus measures both the PL wavelength and time.

has already suggested the existence of two surface states in the surface band of CdS

NCs which could resolve this contradiction [33]. Furthermore, the electronic fine

structure of the surface and the dynamic processes of surface electrons are poorly

understood.

Investigations of the surface PL are further complicated by its large spectral

overlap with the core PL. In order to address this difficulty, the time-resolved PL

is obtained using a streak camera which provides simultaneous temporal and spec-

tral resolution. The working principle of this instrument is shown on Fig 6.1. This

experiment is performed on CdSe NCs with radius < 1.2 nm. The easily observed

surface fluorescence makes these systems ideal subjects to investigate the dynamics

of electrons at the surface of semiconductor NCs. A total of four sizes were studied,

with estimated radii of 0.80, 0.89, 1.08, and 1.16 nm [40]. They were dispersed in

toluene with tetradecylphosphonic acid (TDPA) as a capping ligand. Their synthe-

sis has been described elsewhere [41]. Ligand exchange with 1-dodecanethiol (DDT)
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was carried out on the smallest and largest NCs due to the large spectral shifts it

induces [19, 42]. The samples, flowed in toluene, are excited using a femtosecond UV

pulse obtained by frequency doubling the output of a Ti:Sapphire CPA amplifier.

The resulting fluorescence is collected and sent to a streak camera equipped with a

grating spectrometer, operating on a 1 µs time range.

6.3 Experimental methods

6.3.1 Synthesis

The samples are prepared using standard published procedures [19, 40]. The

available samples are described in table 6–1. The nanocrystal sizes are estimated from

their band-edge absorption using standard sizing curves. The absorption spectra are

shown on Fig 6.2.

6.3.2 Time-Resolved Fluorescence Spectroscopy.

The sample is dispersed in toluene and flowed in a 1 mm path length cell (Starna

Type 48) using a peristaltic pump (Masterflex 77390-00). The time-resolved PL setup

is presented on Fig 6.3. The sample is excited using 0.5 µJ pulses at 400 nm of dura-

tion < 100 fs obtained by frequency doubling the output of a Ti:Sapphire regenerative

amplifier (Legend Elite Duo HE+, 1 kHz rep. rate) in a 100 µm BBO. The focusing

conditions are shown on Fig 6.3c. The PL is collected at 90deg and image the streak

camera entrance slit using a pair of off-axis parabolic mirrors. A hole in the collection

mirror allows the use of the backscatter geometry, which is easier to align and yields

higher signal levels, at the cost of increased scatter. The streak camera (Axis TRS,

Axis Photonique Inc.) is equipped with a spectrometer (Acton SP2358i, 50 g/mm,

600 nm blaze), a bilamellar streak tube (Photonis P820), and an air cooled CCD

(Spectral Instruments 1200 Series). The streak tube is electronically triggered, with

an approximately 1 µs time range streak ramp. The triggering chain is shown on
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Table 6–1: Description of the samples.

TDPA Band edge abs. (nm) Est. radius (nm) Ligands

405 0.80 TDPA, DDT
453 0.98 TDPA
480 1.08 TDPA
498 1.16 TDPA, DDT

Figure 6.2: Linear spectra of the small NC samples.
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Figure 6.3: Time-resolved PL using a Streak camera. (a) Diagram of the Streak
camera and collection optics. The collection mirror can be used at 90deg or in the
backscatter geometry. (b) Electronic triggering chain. The trigger buffer serves to
match the impendences. The PDG allows adjustement of the timing for the various
modes. (c) Focusing conditions. Image of the focal spot with projections along x
(top) and y (right). FWHM along x (y): 118 (105) µm.
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Fig 6.3b. Only minor corrections are required for quantitative analysis. The trace

has an average resolution of 2.31 ns and 4.05 nm for time and wavelength, respec-

tively. Each trace is obtained from the average of 10 exposures of 10 s each. Including

CCD readout time, each image was acquired in around 3 min. For each sample, a

background trace is acquired in the same manner but with the pump blocked.

The streak was checked to be free from rotational and barrel distortions. A 1%

shear correction was applied to the trace to correct for the alignment of the electrodes

and detector. This value was obtained by analyzing the trace obtained using a static

bias. The baseline using the part of the trace with t < −10 ns was subtracted. It

consisted only of noise. The signal was corrected for the wavelength dependence of the

detector and grating response using a stabilized Tungsten-Halogen lamp (Thorlabs

SLS201L). The intensity was corrected for the uneven time bins. For plotting, the

trace was converted from wavelength to energy along the spectral axis, including the

jacobian correction [43].

6.4 Results

An example time-resolved PL spectrum is shown in Fig 6.4. The streak trace

shows the two bands have different decay kinetics. Close inspection also suggests

the surface band undergoes previously unreported spectral dynamics. The analysis

proceeds in steps. First, a detailed inspection of the traces is performed by taking

slices at a fixed time or fixed wavelength. This reveals a variation of the lifetime across

the surface band. This is quantified using fluorescence lifetime spectra. Following this,

the underlying spectral dynamics are quantified by extracting spectral parameters of

both core and surface bands as a function of time.

The evolution of the shape and intensities of the two bands can be studied

by taking slices of the time-resolved PL. Figure 6.5a,c,e displays spectra taken at
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Figure 6.4: Kinetics of photoluminescence (PL) from the core and surface bands of
semiconductor nanocrystals (NC). (a) Minimal energy level diagram for the core
excitons. Confinement yields a spectrum of excitons. Further perturbations yield
a fine structure (inset). (b) Minimal energy level diagram for the PL from NCs,
with inclusion of a surface state. (c) Time-resolved PL from ultrasmall CdSe NC,
showing different dynamics for the core and surface bands. Colormap on log scale,
with contours evenly spaced on log scale as a guide to the eye. The CdSe NC has a
band edge exciton absorption peak at 405 nm, corresponding to an estimated radius
of 0.80 nm.
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Figure 6.5: PL spectral dynamics within the surface band are sensitive to particle
size and ligand. (a, c, e) Transient PL spectra, normalized to the core, in 100 ns
increments. (b, d, f) Normalized kinetic transients for the core and across the surface
band. The right column notes the NC radii and ligands. cell

100 ns intervals, normalized to the core PL intensity. Two main observations can

be made about the evolving PL spectra. First, the surface band grows to dominate

the PL lineshape at long times. This implies the core and surface bands undergo

different decay kinetics. Second, the surface band shifts and narrows over hundreds

of nanoseconds. This effect is present for all TPDA capped samples, but absent in

the case of samples capped with DDT. In contrast, the core state shows no spectral

dynamics. Note that both effects seem to stabilize after ∼400 ns. Both observations

contradict the assumptions of fast thermodynamical equilibrium made in previous

work from our group. As previously detailed, thermodynamic equilibrium between

the core and surface states with a time scale of 100 ps would result in identical decay

kinetics for both states on the ns timescale. Furthermore, the spectral dynamics of

the surface band are incompatible with the assumption of a single surface state with

a fixed PL energy.
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Figure 6.6: Impact of nanocrystal size on tPL. (left) Spectra as a function of time,
in 100 ns increments, normalized to core PL intensity. (right) Kinetic transients,
normalized to initial value.

A complementary analysis can be made by taking slices at fixed PL energy.

Figure 6.5b,d,f displays normalized kinetic transients taken for the core peak and

across the surface peak. As expected, the blue edge of the spectrum shows a faster

decay than the red edge, corresponding to the shorter lifetime of the core. Due to the

large spectral overlap of the core and surface emission bands, a kinetic slice at the core

emission peak shows contributions from both core and surface states. Furthermore,

the kinetic transients in the surface band are not identical. This observation implies

the average lifetime varies across the surface band. The average lifetime increases

toward the red edge of the surface band.

The effect of size on the time-resolved PL can be observed by comparing the top

two rows of Figure 6.5, for R = 0.80 nm and R = 1.16 nm. The complete comparison

of all sizes is shown on Fig 6.6. Changing the size impacts the relative amplitude of

the core and surface bands, with smaller NCs showing proportionally larger surface
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Figure 6.7: Impact of ligand on tPL for smallest NC. (left) Spectra as a function of
time, in 100 ns increments, normalized to core PL intensity. (right) Kinetic transients,
normalized to initial value.

emission. However, size seems to have little impact on the spectral dynamics. The

kinetic transients yield a similar picture, although the transition between the faster

decay on the blue edge and the slower decay on the red edge is smoother for smaller

NCs.

The bottom two rows of Figure 6.5 and Fig 6.7 show the results for TDPA

and DDT ligands at a fixed size, which allows an overview of the impact of ligands.

DDT quenches the PL from the core by acting as a hole trap [19, 44]. Inspection

of the time-dependent spectra suggests peak dynamics are less pronounced when

thiol ligands (DDT) are used instead of phosphonic acid. The relative amplitude of

the core and surface peaks still varies on a similar time scale, although the surface

accounts for a larger fraction of the total PL.

This quenching effect can be accounted for by normalizing the kinetic transients

to their initial value. Changing the ligands from TDPA to DDT increases the im-

portance of early time decay but otherwise does not change the overall qualitative

picture. This trend suggests the spectral dynamics are still present in DDT samples

and of similar nature. The observed differences in apparent behavior between ligands



6.4. RESULTS 195

Figure 6.8: Time-resolved PL reveals a lifetime spectrum spanning the core and
surface bands. Average fluorescence lifetime spectra for two sizes and two ligands.
Shown are the time-integrated PL spectra (gray, left axes) and average lifetime spec-
tra (black, right axes) for two sizes and two ligands. See text for details on obtaining
the average lifetime spectra.

are thus an amplitude effect: the reduction in both the overall and core PL intensity

makes the spectral dynamics harder to observe and quantify.

One of the readily observable features of the kinetics of the surface PL is the

dependence of lifetime on emission energy, which gives rise to an average lifetime

spectrum. Figure 6.8 shows the average lifetime spectra for four samples. A compari-

son for all NC sizes is shown on Fig 6.9. These lifetime spectra (black) show features

which correlate with the time-integrated PL intensity (shown in gray). The fluores-

cence lifetime spectra are influenced by changes in both amplitude and lifetime. They

present two distinct regimes: a long-lifetime plateau on the red side, corresponding to

the surface state, and a short lifetime dip associated with PL from the core exciton.

The transition between these two regimes is generally smooth, a crossover regime

extending for most of the spectral range in TDPA capped samples (see Fig 6.9). This

crossover regime can cause changes of a few orders of magnitude in the average life-

time of the surface. The use of a streak camera enables quick and direct observation



6.4. RESULTS 196

Figure 6.9: Impact of size on average lifetime spectra. Total PL intensity, (light gray,
left axis) and average lifetime (black line, right axis). Samples are ordered from
smallest (top) to largest (bottom).
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Figure 6.10: Example DAS analysis for R=0.80nm, TDPA ligands. Index i indicates
spectrum pixel (wavelength), j indicates lifetime component.

of these changes despite the large bandwidth and low quantum yield of the samples.

Note that these lifetime spectra contain contributions from both the core and surface

states which arise due to spectral overlap.

The average lifetime spectrum was obtained from the results of a DAS global

analysis tail fit (t > 10 ns) [45]. Three exponential components were required for

all samples. For every wavelength slice, the average lifetime was computed from the

DAS spectra following standard procedure for multi-exponential decays. For a given

wavelength pixel i with components j:

⟨τ⟩i =
∑

j aijτ
2
j∑

j aijτj
(6.1)

An example of the DAS components for the sample with R=0.80nm, TDPA ligands

is reported on figure 6.10. All samples had only two important singular values, and

required 3 exponential decays. We note that in principle, the DAS analysis can reveal

the spectra of individual emitting species. Sadly, DAS analysis makes the assumption

that individual components exhibit single exponential decays. This assumption is

violated by semiconductor NCs due to a number of processes ranging from blinking

to competitive decay pathways.
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The relative contributions of the two PL features can be separated by fitting the

two PL bands with a pair of peaks. Performing this analysis as a function of time

allows a quantification of the spectral changes of the surface. The dual peak analysis

was performed by fitting a dual Gaussian lineshape independently to each time-slice

of the trace following rebinning by a factor of 15 along wavelength and 30 along time.

The model lineshape function is a pair of gaussians. This model for the lineshape is

converted to a model for the wavelength-dependent PL intensity according to [43]:

I(λ) ∝ E2I(E) ∝ E5f(E) (6.2)

Where I(λ) is the observed wavelength-dependent fluorescence intensity, I(E) is the

energy-dependent fluorescence intensity, E = hc/λ is the emission energy and f(E)

is the model lineshape, a pair of Gaussian peaks. The fit is performed directly in

wavelength. The wavelength-dependent standard deviation of a background trace

was used as a noise estimate.

Figure 6.11a shows an example fit result. This analysis yields a line shape po-

sition, amplitude, and width for each peak, as a function of time. Typical resulting

parameters for the surface state are shown in Figure 6.11b–d for selected samples.

The complete set is shown on fig 6.12

The peak position shows little dynamics. As shown in Figure 6.11b, the surface

PL red shifts by up to 50 meV over the course of the first 200 ns. The core stays at a

fixed position (see Figure S8a). The dynamics are more pronounced for the FWHM,

illustrated in Figure 6.11c. TDPA samples show a large reduction in FWHM (>400

meV), with most of the change happening in the first ∼200 ns, whereas DDT samples

exhibit almost no FWHM reduction. The change is concurrent with the red shift in

the peak position. Interestingly, the surface peaks converge to a similar FWHM,
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Figure 6.11: Surface band undergoes spectral dynamics. (a) The two bands can be
isolated, as shown here for R = 0.89 nm, TDPA ligands at 52 ns. (b) Evolution of
the surface band position for different radii and ligands. (c) Evolution of the PL
linewidth. (d) Evolution of contribution of the surface to the total PL lineshape.
Results for all samples, including core, shown in Figure S8.

irrespective of size and ligand type, suggesting a similar surface band is present at

long times. The relative lack of spectral dynamics for DDT samples suggests their

PL spectrum exhibits mostly this final state. Overall, the surface PL dynamics are

dominated by an FWHM reduction, controlled by ligands, with size playing a minor

role in the initial peak position and FWHM.

Previous understanding of the surface electronic dynamic involved a fast electron

transfer between the core and surface of the NC, which should result in a fixed

relative amplitude of the two bands. Figure 6.11d shows the evolution of the ratio of

the area of the surface band to the total line shape area. According to the previous

assumptions of fast electron transfer rate, this ratio should be a fixed value. This

is not the observed behavior. TDPA samples reach an asymptote > 0.9 on a time

scale > 120 ns. The asymptotic behavior is consistent with a slow equilibrium between

surface and core state. Most importantly, the numeric value of the asymptotic ratio is

different from what steady-state measurements suggest: the NC radius influences only
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Figure 6.12: Complete result set for dual peak deconstruction analysis for both core
(filled) and surface (open). Evolution of the peak position for the (a) core and (b)
surface; (c) FWHM and (d) relative lineshape area, for all samples. The largest dot
studied here (dark red) stands out and seems to show a different trend, although the
Gaussian peaks model used here cannot easily reproduce the extreme breadth and
flatness of this sample’s surface PL at early times.
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the initial values. As a consequence, steady-state measurements are inappropriate in

addressing the thermodynamics of the surface of NCs, as they convolve kinetics and

thermodynamic effects

6.5 Discussion

The previous analysis revealed and quantified spectral dynamics within the sur-

face band of dual-emitting NCs. These dynamics occur on a time scale of >100 ns. In

this section, an explanation for this effect is proposed in terms of two surface states

with a large spectral overlap. This model aims at revealing the cause of these spec-

tral dynamics and focuses on spectral aspects of the salient observables. Quantitative

modeling of the PL kinetics, taking into account all possible phenomena, is beyond

the scope of this work. Using model calculations, we outline the role of kinetic ef-

fects on the fluorescence lifetime spectrum. These calculations are applicable to any

dual emitter. Implications of the proposed model are then discussed in the broader

context of NC nanoscience.

The interesting PL dynamics unraveled by the dual peaks analysis occur on

a time scale comparable to the fluorescence lifetime of the emission bands. This

observation motivates us to explore the existence of multiple spectrally overlapping

states with different lifetimes as the origin for these spectral dynamics. Figure 6.13a,b

illustrates the spectral and kinetic behavior of three bands used to reproduce a

time-resolved PL spectrum. Each time-resolved PL spectrum is fitted with a single

model composed of multiple emission bands with fixed spectra and independent

decay kinetics. Each band i emits a fixed PL spectrum Si(λ), a Gaussian line shape,

whose amplitude decays according to a kinetic model Ki(t), a triple exponential

decay [46]. The triple exponential kinetic model is common in the analysis of time-

resolved PL of NCs and should be thought of simply as flexible enough to fit the
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transient well [46]. In order to eliminate contributions due to hot excitons cooling

or multi-exciton effects, PL from t < 10 ns was eliminated from the analysis. These

effects are known to occur on time scales < 100 ps at room temperature [22, 47]. The

complete time-resolved PL is, for n such states:

I(t, λ) =
n∑

i=1

Si(λ)Ki(t) (6.3)

We note that the lack of a well-defined kinetic model for NC PL decay precludes the

use of standard global analysis schemes such as species associated spectra [45, 48,

49].

The model functions are, respectively, a Jacobian-corrected Gaussian lineshape

and a triple exponential decay, given by:

Si

(
hc

E

)
= E5g(E,Ei0, σi) (6.4)

Ki(t) =
3∑

j=1

aij exp

(
− t

τij

)
(6.5)

where g(E,E0, σ) is a Gaussian function. The Gaussian lineshape model has been

selected for simplicity as the bands’ lineshape is dominated by inhomogeneous broad-

ening. The triple exponential kinetic model is common in the analysis of NC time-

resolved PL [46], and should be thought of simply as flexible enough to fit the tran-

sient well. With 3 states, each streak trace is fit using 24 parameters. This total

is much smaller than for the dual peak model used to quantify spectral dynamics,

which used a total of 6x95=570 parameters for a complete trace.

We find all time-resolved PL spectra can be fit well using three bands: the core

(XC) and two surface bands (XS1, XS2). Compared to spectral deconstruction of

CW PL, this procedure for time-resolved PL separates the states using their kinetic

behavior. This simple three state picture explains not only the spectral dynamics but
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Figure 6.13: Spectral dynamics requires three emission bands: Core exciton XC (blue)
and two surface bands XS1 (green), XS2 (red). (a) Shown is the time-integrated
spectrum for the experimental data (black dot), the three components (colored lines),
and their sum (gray line). (b) Kinetic components of each of the three spectral bands
(see text for details). (c) Average lifetimes for the three bands as a function of NC
size.
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Figure 6.14: Complete parameter set for the triple-peak analysis. (a) Time-integrated
spectrum for the experimental data (black dot), the three components (colored lines),
their sum (gray line). (b) Kinetic components of each of the three spectral bands.
Size and ligand dependence of spectral properties: (c) relative lineshape areas, (d)
peak positions, (e) peak width and (f) average lifetimes. Errors on fit parameters
reported at the 3σ level, obtained from the diagonal of the covariance matrix.

also the differences in behavior between ligands. Moreover, this picture is similar to

models recently suggested by others [33, 39].

This analysis allows disentangling of two surface states, which show different

decay kinetics. Figure 6.13c shows the average lifetimes for all sizes. The most in-

teresting trend is in the average lifetime of the core and XS1 states. Whereas they

are indistinguishable for the smallest NCs size, they separate as size increases: the

XC state becomes progressively shorter lived, while the rmXS1 state becomes longer

lived. This suggests a change in the transfer kinetic between these states, as will be

emphasized later. The XS2 state shows a lifetime of around 230 ns for most samples.

The complete result, shown on Fig 6.14, shows robust trends for the spectral

components. Results for the core PL are consistent with previous results for these

samples. The central position of the XS1 state is close to the core peak, whereas XS2
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is much redder, suggesting a position deeper in the band gap. The two surface bands

have similar widths, consistent with similar sources of broadening.

Figure 6.14c shows the time-integrated lineshape areas, relative to the surface

state XS1. The ratio of the two surface states is roughly constant over the size range

studied. The core monotonously increases, consistent with an increased coupling to

the surface as NC size is reduced. The peak positions redshift with increasing size, as

seen on Figure 6.14d. This is consistent with surface state where one charge carrier

is still confined in the bulk while the second charge carrier is pinned at the surface.

The triple peak target fit was performed directly on the streak trace using a

wavelength-dependent noise estimate as previously described. The fit parameters

were loosely constrained. The surface peaks were allowed to overlap, and the green

surface state was allowed to overlap or go beyond the core peak.

The kinetic exchange between the core exciton XC and first surface state XS1 is

now explored. Figure 6.15a shows a minimal model for a dual emitting nanocrystal

with kinetic coupling between the two states. Let’s consider a system of 4 states:

Ground G, core exciton X, and surfaces S1 and S2. The core and surface states are

excited states and decay spontaneously to the ground state. The intrinsic decay rate

of the population pi from state i to the ground state is:

kd,i = kr,i + knr,i = 1/τd,i (6.6)

with quantum yield:

ηi =
kr,i
kd,i

(6.7)

The two excited states are potentially in equilibrium, with a forward (X to S1)

transfer rate kf and backwards transfer rate kb. If both are non-zero, the equilibrium
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constant is given by:

KX,S1 = pS1/pX = kf/kb (6.8)

The total change in the populations is the sum of all such contributions. The resulting

differential equations are cast in matrix form:

Ṗ = T · P (6.9)

with Tij containing transfer from state j to i. The diagonal terms contain all the

terms withdrawing population from a given state. For the sake of simplicity, the

ground state is not included in these calculations. The decay to the ground state kd,i

is included in the diagonal elements Tii. If we assume S2 to be kinetically uncoupled,

the matrices are:

P =

⎡⎢⎢⎢⎢⎣
pX

pS1

pS2

⎤⎥⎥⎥⎥⎦ (6.10)

T =

⎡⎢⎢⎢⎢⎣
−kd,C − kf kb 0

kf −kd,S1 − kb 0

0 0 −kd,S2

⎤⎥⎥⎥⎥⎦ (6.11)

Given a set of parameters and initial conditions, the equation can be integrated to

yield a trajectory P (t). We note that given the bloc diagonal structure of T , S2 can

be excluded from the equations and integrated separately. The integration is carried

out for duration ∆t with the populations recorded every step δt.

The PL intensities are proportional to the populations, rates and quantum

yields. The quantum yields merely act as a scaling factor for the intensities, they

drop out of all equations used here:

Ii(t) = ηikd,ipi(t). (6.12)
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Table 6–2: Calculation parameters for kinetic model. The forward electron transfer
rate is varied as described in the text. The population of state S2 irrelevant to the
calculation due to the bloc diagonal structure of the transfer matrix T .

Parameter Value

kX 1/50 ns−1

kS1 1/250 ns−1

kS2 1/250 ns−1

KX,S1 2
kf 1/τET

pX(0) 0.8
pS1(0) 0.2
∆t 4 µs
δt 1 ns

The average lifetimes are computed as:

⟨τ⟩i =
∫∞
0

dt tIi(t)∫∞
0

dtIi(t)
=

∫∞
0

dt tpi(t)∫∞
0

dtpi(t)
(6.13)

For multiexponential decays, this yields the well known expression:

⟨τ⟩ =
∑

j ajτ
2
j∑

j ajτj
(6.14)

The results are obtained using the values in table 6–2.

Figure 6.15b shows the resulting average lifetime of the two states as the electron

transfer rate is varied between the limits of fast thermodynamic equilibrium (τET < 1

ns) and uncoupled kinetics (τET > 103 ns). For fast equilibrium, the kinetics of both

states are tightly coupled, and the populations undergo a common evolution. For

slow equilibrium, the states evolve toward their intrinsic, uncoupled kinetics. For fast

equilibrium, the presence of a slowly decaying surface state enhances the effective

lifetime of the surface state: the surface acts as a reservoir for the core state. The

required time scale for electron transfer is rather slow: an equilibrium time τ = 10

ns is sufficient to entirely couple the kinetics, and effects of the coupling can be felt
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beyond τ = 103 ns. These calculations are consistent with the observed behavior

of the average lifetimes of the XC and XS1 bands shown in Figure 6.13c. Thus,

our results are consistent ET rate governed by size: the smallest NCs studied here

show kinetics consistent with τET < 10 ns, increasing to τET ≈ 100 ns in the larger

NCs. Most importantly, these calculations suggest the electron transfer between core

and surface occurs on the time scale of nanoseconds, much slower than previously

assumed.

This transition between fast thermodynamic equilibrium and decoupled kinetics

gives rise to a fluorescence lifetime spectrum. Figure 6.15c shows the lifetime spectra

for a model dual emitter with well separated peaks. For fast equilibrium, the lifetime

is a fixed value across the spectrum. An average lifetime spectrum develops as the

ET time increases. In this case, the spectrum has two regions, one for each band.

The crossover region is narrow: it cannot exceed the width of the narrowest peak.

Thus, the existence of a lifetime spectrum is indicative of an electron transfer that

is on the order of, or slower than, the excited state decay.

The previous model calculation rationalizes the existence of a fluorescence life-

time spectrum for any dual emitter using simple kinetics but does not explain the

spectral dynamics of the surface band. This behavior can be reproduced using two

surface states, one of which is in exchange with the core state. Figure 6.16a shows a

simple level diagram corresponding to such a model. This model can reproduce all

the salient features of the observed lifetime spectra by varying the electron transfer

time τET. As previously, all states have a fixed intrinsic decay rate. For simplicity, this

rate is taken to be the same for both surface states. The core state XC and the first

surface state XS1 are in equilibrium with a time scale given by the forward electron

transfer time τET. The second surface state XS2 is taken to be a deep trap, kinetically
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Figure 6.15: Unraveling the time scale for charge transfer in a dual emissive system. A
dual emissive system may span the limits from thermodynamic (fast electron transfer)
or to decoupled kinetics (slow charge transfer) limit. (a) Minimal level structure for
a dual emitter with fixed intrinsic decay rates but varying electron transfer rate. (b)
Calculated average lifetime of the two states as a function of the electron transfer
time. The thermodynamic limit is approached on the 10 ns time scale in this system.
(c) Development of a PL lifetime spectrum based upon time scale of electron transfer.
The presence of a lifetime spectrum indicates an electron transfer that is not in the
(fast) thermodynamic limit.

decoupled from the other states. Figure 6.16b shows lifetime spectra obtained for var-

ious electron transfer times τET using fixed spectral parameters borrowed from the

previous triple states fit (shown in Figure 6.13a). By varying a single parameter, this

model qualitatively reproduces the complicated features of the experimental lifetime

spectra for all sizes of NCs.

Furthermore, the current dual surface states model rationalizes the influence

of ligands in shaping the surface PL spectrum. Thiols are currently investigated as

hole traps [19, 44]. They reduce the overall quantum yield by quenching emission

from XC and XS1. The observed red shift of the surface PL is thus due to quenching

of a state instead of the shifting of an energy level. The opposite effect has been

demonstrated for amine ligands, which blue shift the surface peak and increase the

quantum yield [18]. This observation is consistent with an elimination of PL from

XS2 while retaining PL from XC and XS1.
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Figure 6.16: Two surface states are required to reproduce the spectral dynamics. (a)
Minimal level structure for an NC with two surface states. The surface state XS1 is
coupled to the core exciton, whereas the red state XS2 is kinetically decoupled from
the other excited states. (b) Two surface states yield lifetime spectra consistent with
experiments.

Here, we have considered competitive kinetics of multiple emissive states as the

source of the spectral dynamics of the surface band in CdSe NCs. Other hypotheses

can be considered. Thermal effects must be considered as an alternative explana-

tion, as the exciting laser deposits 3eV of energy in the absorbing NCs [50]. Low

temperature time-resolved PL measurements on NCs similar to those carried out

here have shown the phonon thermalization to happen well within 100 ps, and to be

governed by heat diffusion to the solvent [51, 52]. This time scale is comparable to

the usual picture for out-of-equilibrium phonon distributions in semiconductors [53].

This leaves the increased temperature of the illuminated volume and ensuing heat

diffusion as a potential source of spectral dynamics on the nanosecond time scale.

The magnitude of this effect would be dependent on the temperature gradient, thus

on the total energy of the pump pulse. In the context of this work, no change could
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be observed with pump energies ranging from 0.25 µJ/pulse to 2 µJ/pulse, thus

disproving this hypothesis.

Alternatively, an inhomogeneous distribution of decay kinetics can yield spec-

tral dynamics. The spectral dynamics of the surface band reported here could be

explained by invoking a correlation between the lifetime and emission energy in this

ensemble distribution. This hypothesis cannot be ruled out using the current ensem-

ble measurements. Size inhomogeneity effects seem unlikely however. Changing the

NC radius from 1.2 nm size down to 0.8 nm results mostly in an enhancement of the

surface PL; the position of the band stays mostly fixed [54]. An argument based on

sample inhomogeneity would thus need to be specific to the NC surface.

Models based on ensemble distributions are easy to invoke on a qualitative level.

However, they turn out to be hard to investigate quantitatively due to difficulty in

specifying the underlying distribution. Recent analysis of the temperature depen-

dence of the PL kinetics of dual-emitting CdS NCs in terms of trap distributions was

carried out by the Jones group [33]. Their analysis requires a bimodal distribution of

trap states, consisting of shallow and deep traps. This is compatible with our current

model.

A direct evaluation of the distribution of emissive states could be done by ac-

cessing the spectroscopic properties of single nanocrystals [25, 26, 55, 56]. This would

allow the assessment of the properties of the underlying distributions of PL energies

and lifetimes. Single NC experiments would also address heterogeneity of the PL

kinetics. NCs are known to exhibit blinking, and there is no reason to expect the

surface state to be exempt of such effects. Single NC spectroscopy studies in this size

regime have found a population of emitters emit from the core only [28]. Further-

more, the degree of correlation between the core and surface blinking is unknown.
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To our knowledge, no extensive study of the statistics of surface PL of small NCs

has been reported in the literature.

The current work suggests the electron transfer rate between the core and surface

can be much slower than normally accepted. Spectral dynamics of the surface PL

on the nanosecond time scale suggest an electron transfer rate on the order of tens

of nanoseconds, whereas femtosecond transient absorption studies have assigned a

< 30 ps decay component to surface trapping [22, 47]. The current work clearly

establishes that this fast transfer rate is not compatible with a shallow trap. This

fast trapping rate could be related to transfer to the deep surface state suggested

here (XS2), or can be an indication of trapping to dark states that cannot be observed

in this experiment. Again, we hope single NC spectroscopy studies would directly

address this issue [25, 56].

The predominant role played by ligands in determining the electronic properties

of the surface state of NCs is already well established. The current work suggests

ligands do not merely tweak these properties: they can select which states are acces-

sible. A shallow surface state in thermodynamic exchange with the core can be a new

tool in the hands of designers. Potential applications of the surface PL for lighting

and sensing have already been demonstrated [12, 18, 57–59]. Shallow surface states

in equilibrium with the core could be leveraged in the design of light-harvesting or

emitting devices as they provide a pathway for charge carriers to be injected into

or extracted from the core, with an ET timescale of 10–103 ns. In NC superlattices,

they could provide a migration path through the device. Due to their long intrinsic

lifetime, shallow surface states can act as reservoirs for charge carriers, enhancing

the lifetime of the core PL [60].
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6.6 Conclusion

We have time-resolved PL from semiconductor nanocrystals that support in-

trinsic dual emission from core and surface. The measurements reveal the time scale

for electron transfer to the surface as well as dynamics within the surface band. The

spectral dynamics gives rise to rich fluorescence lifetime spectra. The evolution of the

relative amplitudes of the PL bands was shown to be incompatible with preceding

theories of nanoscale surfaces. Time-resolved PL provides an estimate for the sur-

face electron transfer time of 10–103 ns, dependent on size. Furthermore, the surface

band exhibits large spectral dynamics on the time scale of hundreds of nanoseconds,

which is indicative of surface electron dynamics. These spectral dynamics have been

explained using a model involving two surface bands with different decay kinetics.

Time-resolved PL reveals a spectrum of states is responsible for surface emission,

and that their dynamics are in the kinetic rather than thermodynamic regime.
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CHAPTER 7
Conclusion and future directions

In this thesis, we have shown how lineshape analysis reveals dynamics in materi-

als. The analysis of dynamical lineshapes complements the more common observables

of dynamical peak shifts and intensity changes. This approach is particularly fertile

for 2D spectroscopy, where the linewidths along all three dimensions are not entirely

independent. Chapter 2 was necessary to introduce the advanced tools necessary to

the dissection of 2D spectra, as well as the modeling of lineshapes. This chapter is

rather long and comprehensive, hopefully it can be built upon by future generation

of students in the Kambhampati group. Experimental aspects of 2DE were covered

in chap 3, with an emphasis on modern pulse measurement methods. These methods

were instrumental in enabling the use of the HCF for 2D spectroscopy, detailed in

chapter 4. Indeed, pulse bandwidth is one of the main obstacles stifling the growth

of 2DE as a method of general use.

Equipped with the theory and 2DE apparatus, it was then possible to submit

CdSe NCs to an increased level of scrutiny. Chapter 5 exemplifies this. The oscil-

latory components of the 2D spectra are extracted and found to be in reasonable

agreement with a simple model of coupling to the LO phonon. The main scien-

tific contribution of this chapter comes from the realization that the dephasing time

221
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along t2 is not independent of the linewidth of the linear spectrum. The absence of

an observable electronic coherence motivated the search for a theoretical description

beyond the EMA. The ability of 2DE to discriminate between a hierarchy of theories

is a testament to the power of this approach. This chapter is perhaps the strongest

contribution in this thesis, bringing together elements from all the preceding chap-

ters. The analysis of coherent lineshape dynamics in other materials will surely yield

similar insights.

The understanding of the electronic properties of materials can hardly be derived

from 2DE alone. Indeed, 2DE is still a challenging experiment with its host of con-

straints — among them a difficult interpretation and a limited audience. The work

on CdSe presented in this thesis could build upon more than a decade of TA work.

The synergistic integration of 2DE with other experiments can provide a smoother

path into the unknown. To this end, a streak camera was installed and used to study

samples of dual emitting NCs in chapter 6. Concurrent dynamics of the linewidth

and peak position on the timescale of 100 ns suggested the occurrence of multiple

overlapping PL bands.

The thesis covered most work done during the installation of a new spectroscopy

lab. The lab is merely a foundation for future students to build on. This can be

provided both by experimental improvements such as ratiometry as well as by the

design of new experiments. For example, fluence and temperature dependence studies

are commonly undertaken in either TA, PL and tPL in order to gather detailed

insight.

7.1 Outlook: biexciton revisited

As a demonstration of possible future research, the study of the biexciton by TA,

tPL and 2DE can be undertaken. Preliminary results of 2D and tPL are presented
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Figure 7.1: DSFD for the bandedge exciton and biexciton in CdSe. (a) Minimal energy
level diagram. ∆ is the biexciton binding energy. (b) Example DSFD for third order
processes for tPL, TA and 2DE. (c) Example DSFD for fifth order processes. The 2Q
spectrum can be obtained by phase cycling. (d) Relaxation restores the third order
signal for all techniques.

here. The band edge biexciton of CdSe NCs has been the subject of extensive study

by our group and others. Despite this, determination of the binding energy of the

biexciton has proved elusive. We can now try to study the biexciton by all three

techniques. Example DSFD corresponding to tPL, TA and 2DE are shown on Fig 7.1,

for third and fifth order signals. In the case of tPL, an increase to higher pump

fluence allows the observation of direct emission from the biexciton via a fifth order

process [1].

The tPL spectrum of CdSe NCs (620 nm BE absorption) are shown on Fig 7.2,

for two values of the pump energy. The long-time behavior is identical in both cases.

Rescaling by this long-time value allows subtraction of the traces, yielding a differen-

tial tPL trace. This differential trace isolates the higher order contributions. In both

cases, the pump power is so strong as to yield large biexciton signals. The dynamics

are rather rich, with likely contribution from exciton cooling, Auger annihilation,

etc. Still, the early IRF limited trace can be selected and analyzed separately. The
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Figure 7.2: Streak traces allow the observation of the biexciton. (a) Streak trace for
lower power. Biexcitons are visible as a transient shoulder to the red edge. IRF limited
PL from hot excitons is also visible around 585 nm. (b) Streak trace at higher power.
XX and MX are more prevalent. (c) Subtraction of the previous traces, isolating the
high-fluence contribution.

early time differential spectrum, integrated for t going from −0.2 to 0.2 is shown on

Fig 7.3 and compared to the single exciton PL, obtained from late time data. The

difference between the peaks is 56 meV.

Two signatures of the biexciton can be observed by TA. At low fluence, the

3rd order TA signal shows an induced absorption feature redshifted from the band-

edge peak [2, 3]. At high fluence, stimulated emission from the biexciton can give

rise to gain in CdSe and related structures [4]. Analogues to all the TA signals

can be observed by 2DE. The third order IA feature has already been subject to

analysis, leveraging the increased resolution of 2DE [5]. The high fluence case is

unexplored however. The DSFD for the fifth order signals are illustrated on Fig 7.1c.

In particular, two interactions with the first pulse can give rise to 2Q coherences

during t1 with coherence transfer vector (−2, 2, 1). The use of a 4 × 1 × 1 phase

cycling scheme allows the simultaneous acquisition of both the 2Q and 1Q signals.

Following the description of chapter 2, this phase cycle consists in the following phases

for the first pulse: 0, π/2, π, 3π/2. The weights allowing the isolation of both signals
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Figure 7.3: Early-time biexciton PL (red) vs single exciton PL (gray). Peak energy
difference ∆=56 meV.

Table 7–1: Phase cycle for the acquisition of 1Q and 2Q signals. The phases of the
pulses are 0, π/2, π, 3π/2.

Signal type Phase matching vectors Weights Rotation frame

1Q (−1, 1, 1), (1,−1, 1) 1,−i,−1, i ωframe

2Q (−2, 2, 1), (2,−2, 1) 1,−1, 1,−1 2ωframe

are shown on table 7–1. The 2Q signals oscillate with approx. twice the frequency

of the regular 2D signal, a finer acquisition grid must be used along t1 to prevent

aliasing of the signal. The resulting 2D spectra are shown on Fig 7.4 for a sample of

CdSe NCs (640nm BE absorption).

There is a lot to be analyzed even in that limited dataset. At late time, the

relaxation to the single exciton should dominate as the detected species should be

mostly X1. The detected spectrum should be very similar in both cases, and more

information is contained in the lineshape along E1. A simple analysis is reported

comparing the 1Q signal at low power, corresponding to single photon absorption, to

the high power 2Q signal, corresponding to two-photon absorption. The spectra inte-

grated for E3 between 1.92 and 1.96 eV are shown on Fig 7.5. Such slices are referred
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Figure 7.4: 1Q (top) and 2Q (bottom) 2D spectra. (a) Early time, low pump power,
2D spectrum. (b) Early time, high pump power spectrum. Elongation along the
diagonal can be indicative of XX. (c) Late time, high power 2D spectrum. Relaxation
is noticeable. (d) 2Q signal is absent at low power. (e) The early time 2Q signal. (f)
Late-time 2Q signal.
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Figure 7.5: Absorption lineshapes for X vs XX. The energy axis has been divided
by two for the 2Q spectrum. Vertical line indicates the position of the band-edge
absorption obtained from the linear spectrum.
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to as pump-resolved absorption spectra (PRA). This reveals the susceptibility as a

function of pump wavelength, a form of action spectrum. Two things can be noticed:

the 2Q exhibits a shoulder redshifted from the linear absorption peak, which seems

to correspond to absorption into XX. Furthermore, the peak of the 2Q spectrum is

blue shifted with respect to the 1Q signal, which can be due mixed X1X2 biexcitons.

This is apparent on the corresponding 2D spectrum on Fig 7.4f. There is likely a

spectrum of biexciton states, arising from both the exciton fine structure and mixed

biexcitons. This preliminary data suggests the biexciton absorption spectrum can be

obtained directly using a 2D instrument in the pump-probe geometry.

The detailed comparison of spectroscopy data acquired in both absorption and

emission, using time resolution spanning a continuous range range from a few fs to µs

is a powerful tool to unravel processes in materials. The application of this toolkit to

the model system of CdSe NCs allows unprecedented observations, despite decades

of investigations. One might hope that their timely application to systems of modern

interest will be similarly enlightening.
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