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ABSTRACT

In this thesis I intend to summarize several theories dealing with dendritic
growth with convection. 1 have also looked into a special case where the con-
vection motion is induced by the density change in phase transition. In terms
of a small parameter «, measuring the relating density change, the second

order approximate solution is obtained by using regular perturbation method.

- i -




e v

TN TRATE T AR N T RS £ T T N OO TR AR P SR S 1 Ay TR,

e ey

a2

RESUME

Dans la thése J'ai l'intention de résumer plusieurs théories sur la croissance de
cristal avec la convection. Je me suit renseigné aussi sur un cas spéeial on la
c‘onvection est provoqué par le changement de densité dans la transition de
phase. Sur le plan de un petit parametre o, mesurant le changement relatif de
densité, la deu:.i®me-ordre solution approximatif est obtenu par utilisant la

méthode de perturbation régulier.
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Chapter 1

INTRODUCTION: A HISTORICAL REVIEW ON
STUDY OF DENDRITIC GROWTH

Dendritic solidification is an important subject in the fiekl of condensed
matter physics. In a variely of solidification systems, solid-liquid interface
becomes morphologically unstable as it grows. At the later stage of growth,
experiments show that the solidification front cvolves into dendrites, which have
a smooth tip moving with a constaut velocity, aud also a growing side-
branching, tree-like micro-structure. There are two central topics involved in
the pattern formation of dendrite growth: (1) How to predict the growth veloei-
ty of dendrite tip; (2) How to explain the formation of the side-branching
structure.  Although these two topics have been studied by many investigators
for more than forty years, a new reasonable approach to these problems was
recently proposed, and needs to be further verified (Ref. [22] - [28]). In the
following I intend to give a brief review on this progress.

For a long period of time, most investigators thought that the dendrite tip
region was steady and monotonic so that it could be described by a steady
state of the system. Hence, many of them have bheen preoccupied by the
study of steady dendrite growth problem.

The first contribution to this subject was made by Ivantsov in 1947,
Ivantsov considered stecady dendrite growth problem with zero surface tension
on the interface between the solid phase and liquid phase; and obtained an

exact similarity soluti. The Ivantsov’s solution shows that the dendrite is
Yy
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isuthermal, its interface shape is paraboloidal. The Ivantsov solution, however,
does not resolve the problem of dendrite growth, as it can not determine the
tip radius and tip velocity separately nor explain the formation of the side-
branching stracture.

To seclect the tip velocity for a realistic dendrite growth, Nash and Glicks-
man studied the steady dendrite growth with the inclusion of the surface ten-
sion. They found that for any given undercooling, the tip velocity in steady
dendrite growth has a maximum value. Thus they proposed that the realistic
steady state of dendnte growth always selects this maximum value. They call
this selection condition the Marimum Velocity Principle (MVP). The maximum
velocity principle was soon 1ejected by experiments by Glicksman et al.

In 1978, based on a rudimentary linear stability analysis, Langer and
Muller-Krumbhaar proposed the Marginal Stability Hypothesis (MSH) as the
selection mechanism for the tip velocity. This hypothesis says that the natural
operating point of steady dendrite growth occurs when the dendrite tip is just
marginally stable and the radius of curvature at the tip is equal to the wave
length of marginal stability. MSH agrees with experimental data. However, its
theoretical base is not strong. Particularly, in Langer’s analysis, the wave length
of marginal stability at the tip adopted is taken from the planar interface case.

Due to the weakness of MSH, Langer eventually abandoned his MSII idea
and with other authors, proposed a completely different theory, the Microscopic
Solvability Condation Theory (MSC) m 1980s. MSC theory attempts to pre-
dict the tip velocity. The MSC theory states that the existence of steady state
of dendrite growth is determined by the anisotropy of surface tension. Without
the anisotropy, according to the MSC theory, the system has no dendritic

prowth type of solution.
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In 1989-1990, Xu published a series of papers, concerning the seleetion of
tip velocity and the origin of pattern formation in 3-D dendritic growth with
the inclusion of surface tension. Xu's results show that (1) dendrite growth
phenomenon is essentially a wave phenomenon. The solution Jor a wealistic den-
drite growth is not stable steady state, but a time-peciodic global neutrally sta-
ble state near the Ivantsov solution. (2) anisotropy of surface tension is not a
necessary condition for dendrite growth. A selection condition of tip velocity
can be found even in the isotropic surface tension case. The condition is called
the Global Neutral Stability Condition. (3) dendrite growth is governed by an
entirely new global stability mechanism, so-called  Global Trapped Wave
(GTW) mechanism. The GTW mechanism determines a discrete set of unstable
GTW modes, which connects to the dynamics of pattern formation; and the
system allows an unique global neutral stable GTW mode. Xu’s theory is now
known as the Interfacial Wave Theory of Solidification (IW'T), which is in good
agreement with the experimental observations ( See [28] ).

Reviewing the above progress of the investigations of dendrite growth, we
can see that these studies are focused on the thermodynamic aspect of the
problem. No convection in melt is involved in the system under consideration.
However, experimental observations have shown that convective motion in melt
may have a profound cffect on all aspects of dendritic growth. It may change
the tip velocity, as well as the micro-structure of dendrite.

Convective motion in melt can be induced by a varicty of sources. But
the major types of convective motions can be classified as follows:

1. convection induced by the density change during phase transition;
2. convection induced by the buoyancy cffect due to the presence of a
body force ficld,;

3. convection induced by external flow;




4. convection induced by other sources.

'I'aking into account of convection, the system becomes even more compli-
cated and difficult. In this case the hydrodynamics must be introduced into the
systemn. The interaction  between convection and solidification  becomes  the
major concern.

IFor the problem of dendrite growth with no convection, according to IWT,
we have scen that the small isotropic surface tension is a determinant parame-
ter for dendritic growth. If one uses the solution for the system with zero sur-
face tension as a basic state, then a solution for dendrite growth with surface
tension contains three parts: (1) the basic state, (2) steady regular perturbation
due to the surface tension, and (3) unsteady singular perturbation also due to
the surface tension.

In order to get the whole picture on the problem of dendrite growth with
the inclusion of convection, it is evident that one must also solve the above
three components for the solution.

Duc to the difficulty of problem, these tasks are far from completion. The
study on this extremely important subject has just started. The major efforts
arc presently only concentrated on finding the basic state solution and the reg-
ular perturbation solution. To my knowledge, only Xu considered the singular
perturbation solution for the case that convection is induced by the density
change (Ref. [27]). It is seen that a good progress has been made along this
line; an increasing number of researchers are involved.

In this thesis, 1 attempt to summarize the recent results obtained for this

problem. The present thesis is arranged as follows:

In chapter 11, 1 summarize some experimental evidences of the significance of

the convection effect.
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In chapter III; 1 derive mathematical formulation for this problem.

In chapter IV, I consider dendritc growth with the convection induced by the
density change and the surface tension. The second-order regular perturbation

expansion solution for the problem is obtained.

In chapter V, I summarize the work by Ananth and Gill on the effect of con-

vection induced by external flow.

In chapter VI, I summarize the work by Canright and Davis on the ecffect of

convection induced by buoyance.
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Chapter II
EXPERIMENTAL OBSERVATIONS OF
CONVECTION EFFECT ON DENDRITIC GROWTH

The growth of shape preserving dendrites in a subcooled melt has been
obsecrved experimentally in detail for succinonitrile by Huang & Glicksman and
for ice by Tirmizi & Gill. A number of researchers has appiied the results of
their experimental data to examine the theoretical results. This chapter gives a

brief summary of their experiments about convection effect on dendritic growth.

2.1 Tip Growth

Fig. 2.1 is the configuration of a dendrite tip. In this picture dendrites of
succinonitrile are bodies of revolution only in the neighborhood of the tip; black
dots are the common parabolic curve; the dendrite is growing parallel to gravi-
ty, i.e. ¢ =0", where ¢ denotes the angle of gravity vector and tip growth
vector. This picture shows that the configuration of the dendrite tip fits to

the parabolic curve.
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Figure 2.1 Configuration of a succinonitrile dendrite tip

2.2 Dendrite Shape

An overall view of a succinonitrile dendrite is shown by Fig. 2.2. The lab-
oratory observations suggest that the slight anisotropy in solid-liquid interface
energy plays an important role in the branching mechanism. Anisotropy in
solid-liquid interface energy provides an additional source for interfacial distor-
tion. But the anisotropy has relatively little effect in changing the growth state

(V,R) of the dendrite tip. where V is the deudritic growth velocity, R is the
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lgure 2.2 An overall view of a succinonitrile dendrite

dendritic tip radivs.  Moreover, anisotropy in growth kinetics may have a simi-




a
lar effect on the branching perturbation sequence as does the anisotropy in the

solid-liquid interfacial energy ( Sec [10] ).

; 2.3 Effect of Natural Convection on Growth Velocities

Figure 2.3: Etfect of natural convection on growth velocity

The influence of natural convection on crystals which grow vertically down-

ward is shown in the series of photographs in Fig. 2.3.! The crystal is ice. In

¢ 9

U Tirmizi, S.H. & Gill. W.N., J. Crystal Growth, Vol. 85 (1957)
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Fig. 2.3(A) t=0 min; 2.3(B) after 10 min; 2.3(C) after 12 min; 2.3(D) after 14
min, Initially, of the emerging crystals, the crystals growing vertically down-
wards ( #=0" ) is bigger than its neighbors growing at angles which is not
equal to 0°. As the dendritic growth process proceeds, the downward growing
crystal grows progressively slower compared to the other, and finally in Fig.
2.3(D), it is much smaller than its neighboring dendrites which obviously are

less influenced by natural convection.
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Figure 2.4: Normalized growth rate versus growth orientation

Denaritic growth velocity, V, was measured in succinonitrile as a function

of growth orientation, ¢, shown in Fig. 2.4,2 in which the velocity is normalized

)
-

Glicksman, M.E. & Huang, S.-C. , Proc. of 3rd European Sump. on Materi-
al Sciences in Space, Grenoble, ESP-142 (1979)
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to the velocity, V,, predicted for diffusion-controlled growth.

2.4 Effect of Natural Convection on Morphological Stability

The presence of buoyance-driven fluid flow causes orientation dependence of
the dendrite morphology, as shown in Fig. 2.5 'This orientation dependence
can be negligible for dendrites growing in spatial orientations within 60° of the
gravity vector. For a dendrite growing upward at orientations greater than
145° to gravity, cf., Fig. 2.5(b), the shape of the tip region is, apparently, no

longer symmetric.

3 Glicksman, M.E. & Huang, S.-C. , Proc. of 3rd European Sump. on Materi-
al Sciences in Space, Grenoble, ESP-142 (1979)
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Chapter III
THE MATHEMATICAL FORMULATION OF THE
PROBLEM

3.1 The Governing Equations and Boundary Conditions

Consider a single dendrite which is growing into an undercooled pure melt
in the negative z-axis direction with a constant tip velocity V. 'I'he undercool-
ing temperature of the melt is T.. The melt, which is considered as incom-
pressible viscous fluid and assumed {o be infinite in extent, flows uniformly
along Z-axis in the far field ahead of the tip with a constant velocity Tfm. The
gravity vector is along the negative Z-axis direction. Assume that the thermal
diffusivity £, and the heat capacity ¢, of the liquid state are the same as
those of the solid state, the mass density of liquid state is p and the mass den-
sity of solid state is p. The subscript "s" refers to the solid state in this prob-
lem. The Boussinesq approximation is applied in the melt.

The governing equations consisting of the Navier-Stokes cquation and the

heat conduction equation are as follows:

1. Mass-conservation equation:
vVU=0 (3.1)
2. Momentum equation:

Applying the Boussinesq approximation, the Navier-stokes equation

becomes
&+ @I = -LvP 0 4 (T-T, e, (3.2)
- 13 .
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The first term in the R.ILS. of (3.2) is the pressure term; the second

term is viscous stress term; the third term is the buoyance force term.
Introducing the vorticity £2 as

N=VxU , (3.3)

then (3.2) becomes

%% + Vx(0xU) = W2 + VR[HT-T )ge ] (3.4)
3. Iinergy equation for the liquid state:

%;? +UVT=x, VT (3.5)
4. Energy equation for the solid state:

0_(;1;_ = 5, V°T, (3.6)

where T and T, denote the temperature fields, 7, denotes interface

shape, U denotes the absolute velocity field of the fluid motion, t
denotes the time and v is the kinematic viscosity, B is the thermal
expansion coefficient, P is the reduced pressure, ¢ is the acceleration of
gravity.

The boundary conditions are given as follows:

1. At far field:

U= _l]mez , (37)
T=T, (3.8)

2. At the interface tip:

U, T, 71-'3 are regular (3.9)
3. At the interface, we assume the system is in the local thermo-
dynamical equilibrium state. Thus we have

(1) Continuily condition of temperature:
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T=T,
(i1) Gibbs-Thomson condition:

T = T —_ _.L "
T, T [1 Y K{n}]

where

v is the surface lension consland,

AH is the lalent heat per umit volume of solid,

-'.f’m is the melting temperature at the flal iterface,

K{n,} s twice of the mean curvature of the inlerfuce.
(i) Enthalpy conservation condition:

AU, ~U,) = ~AHU ;= [pr e, VT) gy — (phge, V), dn
where

U,, is the velocity component of the solud state along the

normal direction at the inlerface,
U,; is the normal component of local growth velocily
of the wmterface,
n s the normal vector of the interface,
(iv) Mass conservation condition:
pUU) = p(U,~U) = =p,U,
where

U, is the normal component of velocily of flurd

at the inlerface.

(v) Continuity condition of tangential component of velocity:

(U'OT—' Url) = (Urs - Url)

then

(33.10)

(3.11)

(3.12)

(3.13)
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(3.14)
where

e 1s the unii tangenlial vecior on the nlerface,

u,is the tangential component of the local growth

velocily of the nterface,

U,, is the langentral component of velocily of the

solid state at the wnterface.

3.2 Scales and the Nondimensional System

To nondimensionalize the governing equations and their boundary condi-
tions, we utilize the thermal length [, =4x,/V as the length scale, the tip

growth velocity V' as the scale of the velocity, and AH/(c,p) as the scale of

T-T
the temperature, so that 7 =

m

AHf(e,p)’

Let (X,Y,Z2) be the laboratory frame of coordinates, (x,y,z) be a moving

nondimensional coordinates fixed at the tip, u be the relative velocity field of
fluid in the moving frame. The required transformation equation are

o 9

o T ateV
u

v

(3.15)
=u-e, (3.16)
Thus, the dimensionless governing equations are obtained immediately
1. Mass-conservation equation: :
Vaua=0 (317)
2, Momentum equation:
—.c_')-l- + (wVw - (wVu+e Vw= Pviw - —G—Vx(Te;) (3.18)
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Energy equation for the liquid state:

T wvT=VT (3.19)
ot
4, Energy equation for the solid state:
(3.20)

aT, . 9,
B +02-V']J= VT,

where Pr=v/k, is the Prandtl number; T,
called  the  Stefan  number;

T, ~T.)e,p] All = — 81,

m

=

the parameter St is  sometime

G=gB(T,~T )./ V is the gravitational parameter; w is the nondi-

mensional vorticity.

The boundary conditions are given as f{ollows:

1. In the far field:
T=T"T, |, (3.21)
. u = (1+U e, (3.22)
i where
U .
U,= —f/’i is the nondimensional velocily of of the exlernal
flow in the far freld
2. At the interface tip:
(3.23)

v, T, T’ are regular

3. At the interface:

(i) Thermo-dynamical equilibrium condition:

T=T (3.24)
(i) Gibbs-Thomson condition:
T, = ~I'k{n} (3.25)
where
- I' is the surface lension parameler
o and




a:; I'= lc

1,

T

[ is called as the capillary length:

| = X TP

7 (am?

(i) Enthalpy conservation condition:

unl - ez'u = “[(1+a)(v’r)sohd - (VT)hqu:d]'n
where
o = ﬁi—’-’-
P

(iv) Mass conservation condition:
un = —au_,+ (l+a)en

(v) Continuity condition of tangential component of velocity:

where

u_, is the normal component of local relative growth

velocily of the interface.

3.3 Expression in the Paraboloidal Coordinates

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

K

(3.31)

In general, solving the system (3.17)-(3.31) is a very difficult problem. But

adopting a paraboloidal systern can make the problem easier. Let us define the

moving paraboloidal coordinate system (&,,0) through the moving coordinate

svstem (x,y,z) as ( See Fig. 3.1 )

r
'y =&

o

-

3 1,.2 2
= = 2(& n)

f ¢

!

(3.32)

(3.33)
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Figure 3.1 Paraboloidal coordinate system

The Lamé coefficients for this paraboloidal coordinate system are

_ Oz2 Oy, Oz [ 22
Hf-«/((%) (G =V E i,

By = (274 (24 (G =V e+

T

_ g2, Oy Oz _ . 2
By=f (4 (G (o <

(3.34)

(3.95)

(3.36)

The transformation of unit vectors between the coordinate systems (&,7,0) and

(x,y,z) are
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w
|
o
e
|
3
W&

] & (3.37)

and

(3.38)

cosﬂcz + sm00y =

§ e + U] e
'/§2+7)2 " \/22_*_”2 £
The normal vector of the interface is found to be

(3.39)

3 77,' e + 1 -

I i .
1 +77_,,2 1 +77’I2

where 7 = 5 (¢,?) is the interface. The tangential vector at the interface is

o = et 8y (3.40)
l+r)"2

T

Each point in the field can be described by the following radius vector in the

moving frame:

py

R= ve + yey+ ze,
= 57)(:0501)3«3I + EnsinOnﬁey + [%(52-—172)173]% (3.41)
So the interface shape can be expressed in the form:
R(E.t) = & coslie, -+ & sindrge, + (€ —n)mile, (342)

Then, the normal velocity of the interface can be calculated as

= __LC')R &) ‘n (3'43)

i
nl ot

We use the stream function @(€,,t) and nondimensional vorticity

w = (C/ng{n)eg as the basic hydro-dynamical quantities. From (3.17) we get

1 4

U = e (3.44)
nien &4

L ov
4, = = (3.45)
¢ e




where u, u, are the nondimensional velocity components of the relative fluid

motion along & and 7 directions, respectively, so that

u= u6e6+ ] e

Substituting (3.32)-(3.45) into (3.17)-(3.31), we can cxpress this system in

the paraboloidal coordinates. Have done this, the governing equations take the

following forms:

L. Kinematic equation;
DM = (" + ')
2. Vorticity equation:

a wl ¥ r
P = ey & 4 2 2O L oug)

0L g AEm)  y2ey OEN)

B G&nng

orT aT
T = +¢

o€ c?n]
3. Energy equation for the liquid state:

2 A2 2@ I  wor war
VT =& )G+ E(anag % o)

4. Energy equation for the solid state:
. 0T, , OT,
VT, = (€’ +n) 2 4 of—2 & "
where
2_, 9 9 10 139
={ =t =
{ag"’ > E% 0’7}

The boundary conditions are
1. Asnp — o0 :

uE-rO

(3.46)

(3.47)

(3.48)

(3.49)

(3.52)
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w, = 1=V (3.53)

¢— 0 (3.54)

T — T, (3.55)
2.Asp — 0

-‘%— =0 (3.56)

T, = 0(1) (3.57)

3. At the interface n =5 (£,1) :
(i) Thermo-dynamical equilibrium condition:
T=T, (3.58)
(ii) Gibbs-Thomson condition:
T, = ~I'K{n (1)) (3.59)

(iii) Enthalpy conservation condition:

aT 0 aT,  oT, ,
Gy 58) = ()2 n/ ) 4 nllen) + nienP) 2 = 0(3.60)

(iv) Mass conservation condition:

o
G+ S = MEIL+aEn) + anle )] (3.61)

(v) Continuity condition of tangential component of velocity:

W I_@-

(..___

oy )t no(En)nn, —€ =0 (3.62)

In the above K{7 (1)} is the curvature operator as

1" 2
LW 0, (n,+2€")—€n, Y
a 2. 3/2 1/2 2 2 2,1/2
v €+, (1413 () )14,

The notation prime represents the derivative with respect to £.

K{n (&9} =~ 3.63)

The  system  (3.46)-(3.63)  contains five parameters in  total:

{To 15 U, G, a}, where the parameters U, G, @ describe the effects of con-
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2
vection, while I' describes the effect of surface tension. In this thesis we shall

discuss three situations separately:

(1) @ #0, U, == G=0: the convection is induced by the density change during

phase transition;

(2) U, #0, a=G=0: the convection is induced by extcrnal flow;

(8) G#0, a=U_=0: the convection is induced by the buoyancy effect.
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Chapter 1V
EFFECT OF FLUID MOTION INDUCED BY
DENSITY CHANGE ON DENDRITIC GROWTH

4.1 Formulation

In this chapter, we will apply the regular perturbation method to solve the
problem of dendritic growth in which convection is induced only by the density
change during phase transition. In this case, we neglect external flow and buo-

yance cffect, ie. G=0, U = 0. The surface tension parameter I' is considered

as a small quantity. Thus, system (3.46)-(3.62) is reduced to

L.
D*0 = ~n(€® + n°)¢ (4.1)
2,
W) 1 ow
PD2=42+2Q£+ 2¢ oW (¥,0) 4.2
rD°¢ ”0(6 n )3t 17;52772 3(6’7’) nzﬁn 6(617’) ( )
3.
VT et T, L 080T _ v T 48
T +1) nz&l(an % " 3 o) (4.3)
4.
. o1, , 9T, , OT,
VT, = (€ +0°) = gk T 1 % (4.4)
with the boundary conditions:
1. Asp — o0 :
U4 = 0 (4'5)
YRR
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u, = -1 (4.6)
(-0 (4.7)
T— T, (1.8)
22 Asnp — 0:
or, =0 T = 0(1) 1.9
&7 - ) s ( ( ")
3. At the interface g =17 (£t) :
(i).
T=T, (4.10)
(i).
T, = -TIK{n,(&1)) (4.11)
(iif).
oT __,dT 6T, 0T, 2 9,
(a,7 -1, 65) (I+e)(—== R —2) + noén) + i€ =2 = (. 12)
(iv).
0
(%g- + n,’%) = n(én,)[na(1+a)(en,) + an3(€2+nf)-£’-] (4.13)
(v).
(G =130+ nien o, - )= (4.14)

According to the Interfacial Wave Theory of Solidification [27], we intro-

duce the dynamical parameter of surface tension defined as

6'—'.'—-2—- (4.15)

In general, the parameter of density change o is a small quantity as ¢. So we
express
o = ae (4.16)

where @ is constant of O(1),
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Furthermore, we use regular perturbation method, where the zeroth order

solution should be Ivantsov’s solution, and write
TEmy) = Ty(n) + Ty (&m) + C TyEm) +
Cemb) = ¢+ €€, + G LEm + -
WENY = Py + B (Em) + ETEN) + (4.17)
n(Emd) = 1+ eny +Eny(E) + 0
T(6m) = Tyo(1) + €T, + € T (6m) + -
By substituting the above expansions into the system (4.1)-(4.14), one can

successively derive each order approximate solution. In the following, I shall

give the approximate solutions up to the second order.

4.2 The Zeroth-order Approximation Solution

The zeroth-order approximaticn solution is the solution for the case
a=¢=0. It turns out that this solution is just the Ivantsov’s solution. To

show this, let us write down the system governing the zeroth order approxima-

tion:
1.

DW= —ny(€" + 1), (4.18)
2.

\ %, men) | AP,
P’ = ”02 62{ o) - a(g; (4.19)
RS M neén & .

3.

. w_9T. b OT

VAT (AP S Nl Nt B (4.20)

,)zg,’ oy 0 o€ Oy

o

Boteescs -




. 2 2, 9Ty o OT

with the boundary conditions:

1. as 7 — 0o
G=0
y = BT
0 2 !
T0=Too

2 as 1=
T’0=0 ,
%%m;g{ )
—a-ng=n3£2 ,

wr T,=0 |,

oT,
R

Suppose

¥, = 7,6 ")

and (, be constant. By (4.3) we get

T, 14T, 2ifn) 4T,
=+ =D 4 =0
dp® N dn 7 dy

Then the zeroth-order approximation solution is solved as:

2 2
2 At g i
2 'y 0 2 g 0
=l 2p (22 optoy
To=e 5 E(5-) ~ e 5 A(5)
Ty 2 )
PR o
~ To == 5 E(5)

(4.22)

(4.23)

(4.24)




[\
o

4

Ty .2 2
W= (4.25)
C0=0,
T, =0

Therefore, the zeroth-order approximate solution is just the Ivantsov’ solu-
tion. The vorticity is zero cverywhere. The fluid motion in zeroth-order is the

uniform flow.

4.3 The First-order Approximation Solution

The equations for the first-order approximation are

1.
¢, %, 8 & & &
oot C4 % 1%, 2 By 2 By ,
A S T (4.26)
2.
o’w, ow o o
1 1 1 9%, 1 9% 4
@ T op EE mam o WL (4.21)
3.
&1, 0T, 10T, 0T, , 8T, , 9T, -'123--—"3%2 2% o
@ o Tt Ty WE e e T U
4,
82Tsl 02Tsl 1 aTsl 1 aTsl 2 aTsl 2 aTsl
o€’ on’ TeTE e T Ty (4:29)
the boundary conditions are
1. as § — 00 :
(=0, (4.30)
w=0 |, (4.31)




-

-

2, at p=1:

T

sl 2
e nolny +€n,') =0

29

(4.32)

(4.33)

(1.34)

(4.35)

(4.36)

(4.37)

To satisfy the equation (4.26), (4.29) and the boundary condition (4.30), (4.33),

we can set
¢, =0,

T.=0

sl

From (4.27), (4.31), and (4.34)-(4.35), we get

_ et
v =~
Letting
T
)
o
-~ Ty
T="9
and
T, = Ty(7)

we can reduce (4.28) into

(4.38)

(4.39)

(1.40)
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1"1;'2 + Tt — yva (4.41)
Solving (4.41) , we have
o2
7;4eT-T -
T(9) = 2 e—din(2D) + doEy(7) (4.42)
4r n
0
and
T,(7) = aTy(7)
where
n
Me? pwr o
5o 0 e z -
T\(f) = -=— f ; —I—ln(;g-)dz — cE(7) (4.43)
where c¢ is a constant; En('f') are the exponential integrals defined by
o ~IS
En(z:)=f e" ds , =n=0,12, (4.44)

1 s

From the condition (4.36) we know that 5 must be a constant, and from

(4.36) and (4.37) we obtain

an

h = on
where
gy 7I2
42 X E(—“—)
- e p® e 2 "y
7, =[—2 f (=2 dz)[— —] (4.45)
wtom Moy 2, 4 Mo, 2

and determine the constant c¢ in (4.43):

_ (g (4.46)

Thus, the first-approximation solution is derived. We list the results as follows:
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¢, =0,
_ e’
1 9 '
T -’—'(,;'j'(‘;') , ‘l."?
1 1
Tsl =0,
h =&61

It is seen that in the first order approximation, the vorticity is still zcro
everywhere; the density change affects the dendrite shape and perturbs the

velocity field and temperature field.

4.4 The_Second-order Approximation Solution

The governing equations for the second-order approximation are

1.
¢, o, 8 a a, a
o8 of €0 o Gy " 0
2.
62% 32!”" a'pz lwz 4,,2 2 (
5 il el vl B NG L D€ (4.49)
7’3 on” § & n O
3.
) V)
6T2_|_6T2 1 07T, 1 87,
o e &% o
2 2 2 2 2 2
g Yo" 62 Mo ¥
or. oT. ——— O, —— P
2 2 2 2 1 2 2 2 0 2 2 4 -2, -
=N f—"> — 7=+ — —_—= — ———e Iny — 9, ca” I (1) (4.50
7’06 66 7’07’ an 6772 e af 1’2 4] {) ( )
4,
) I - - o .
g T, + aT, _1_6132 lalﬂ :qual"‘ _7,2r’_01;2 (4.51)
o ot 6 % mam U a0y
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the boundary conditions are

(i) As p — o0 :

T, = 0 (4.52)
Uy = U, = 0 (4'53)
Cz — 0 (4.54)

(i) Asp— 0 :

ar
817_2 =0 , Tsz = 0(1) (4.55)
(ili) At p=1:
R
Ty = T 17 = Genghy By(H) = —5-(g+g) (4.56)
2,,2
2
Ts? == nO(E +3) (457)
(€*+1)°
i} dn
E;(Tz"Taz) + "2['7;"'2’7?)) + nﬁf—f—
rf ”2 ”2
+ 711[7730; - 7]3‘;030("29‘) - nzach(—Qi)] - ?1[2173 + ﬂg + 772]
=0 (4.58)
o, .
& = 20mné (4.59)
M’J
on 0 (4.60)

The solution for the above system can be split into two parts which are

the solutions of two linear systems, respectively.

(1). The fist part of solution is subject to the following system:

PN L. SR SN LN
a oyt € 8 m on o ap T &

(4.61)




SR ol )

e o TR o

2 {1 2 {1 1 1
1O P e o

—

o€ of | € 0 ' n

2 2.2
1 1 o Mot 1)
2 67(2) 2 07{2) | 7 a'l’(g

= 7}06 € - 7707)‘7(5'7’— + £n2 € ——52—'
pgr Tt
4 -2 »
- ——0;2-—-43 202 gy ngea Ey(7)

015, 010 1015 191 _ o 9T

= =€ + )¢

{1
, 018

e o TEa TyTa e
(i) As = o0 :

£ o

1y _ Q)

“22 ""5,2 =0
@ o

(i) As p—0:

o1
On -

(ili) At 7]=1 .

o, 7=o001)

2 2

-
170’ an

1 1 2 _ - 2 K T, 2, 4
150 = T5) + 0)n — dengn B(5F) ~ <-(g+g)

0
-
7 = 0

d (1)

1.,
gn-(?‘;)* 7&;’) + n§“[n§+2n§] + 1736—72—-

2

2 2
4 - 4 Y 2 7 Y] 2 4 6
+ 171["00 - 7]06\'CE0(—2-0-) - 7’000130(_29')] - —él'[?no + 7, + 7’0]

=0

(4.62)

(4.63)

(4.64)

(4.65)
(4.66)

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)




1)
as = 20”07716
vV
T =0
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(4.72)

(4.73)

By (4.61)-(4.62), (4.66)-(4.67) and (4.72)-(4.73), the flow fields are obtained

as
1) _
G =0,
.p( ) = 0‘"7;’;15
Letting

19 = 18(7)

(4.63) becomes

.
&2 dr dr 27 87 7’3 2 0
Solving (4.76), we get
4.2 6%3_ o2 e";ln-2—27: 6&2802?, _;
B -f':’)-—wr E(7)
and
7‘ =a T('r)
where
o B i B ey
Ty(7) = —1,0(1,0,2« =9 [ m 0 g 4 °° 0o 4 dB,(7)

where d is a constant. By (4.64), (4.68) and (4.70) we have

o _
) =0

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

From (4.69) we know that 7" must be a constant. (4.69) and (4.71) give




D, = A E(~>

D, = A, + (2+n03)4,

and
2 2
"t 24 2139' e-xlng% 4 '1'?' e—x(ln2_;:')2 2 )
_(7’07)1 € - C) e 770 7’0 € o 7’0 N 7’0 ) 1 2
-~ = d ) (o —(1
4 2 f e T, f LT a5+ 5 Ung)
o K
F) F)
2 )

. ) 1
Ay = =iy[1 = (D) (GH)] + 5-(24nitg)

(2). The second part of the solutior is subject to the following system:

62C(22) 62(22) ! o 22) 1 86(22) \ 8C(22) \ 84(22)

Pt 5{2 ¥ (97)2 - —E— o - n On 1= =rgn on 7t 17/3 (4'82)
2 2 )
oy +2 LA L (& + )¢ (4.83)
o | o € % o 0 2
2 (2 a2 {2 2
o> 1 M‘,_,’Jrlaq‘;) 1 1Y
ae o & % n On
) (2) ot 2)
2 ’ e
=172£M(2 -77217012 gel o, (4.84)
-, 4 o an &’ %

“m-




P
» %

2 {2 2, {2) {2 {2) 2) (2)
Y [.12) a Iy 1 0732) ial{sz _ .2 M‘az 2 Maz

o¢* ¥ o’ Tew tuvm TR Ty
(i) As n — o0 :
A

7(2)—>0

2
(i) As -0 :
(2

o1

n
(i) At p=1:

2) _ 2) (2) 2
72 "7{32 + 7,

=0 , 'ISZ) = 0(1)

2, .2
2) _ 770(5 +2)
1« HED

(€+1)?

D191y 4 O] + nzf-d—"("j)- =0
an 2 s2 2 0 ] 0 d{
d
—2 . =0

0¢
D

2 —
an =0
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(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

This system is actually the same as that discussed in Xu’s paper [21]. In

the following, I shall follow the approach described in [21] and give the results,

some typos and algebraic errors in [21] are found, which are corrected hereby.

By (4.82)-(4.83), (4.86) and (4.92)-(4.93), the solution for flow fields is

obtained as

& =0
# = o
Letting

(4.94)

(4.95)




T B S Y

| e S T

T R T =

- -

é=ngg (4.96)
= 1gn (4.97)
the (4.84) and (4.85) can be transformed to
s &P 1 . 01
+ 2 + (= —~ 2 - - ——-—a—2 =0 , 4.98
i Bt S R R (4.98)
o U o 1% o1
52 s2 1 & 52 1 - sd
+ +E a2 LDy 4.99
e o ( 7 £) o (q m P (4.99)

By the method of separation of variables, we write
1(Em) = X@va) (4.100)

and from (4.98) we derive

X't (g = HX +NX=0 (4.101)
r'+(-11;+r})r-,\fy=o (4.102)
Letting
2.2
&t
=9 T

(4.101) becomes the Kummer equation:

. v A
oX'(c) + (1-0)X'(0) + -—21—}(: 0 (4.103)
The fundamental solutions of (4.103) are

,\2
M(—-2L,1,&)
X(o) = N ' (4.104)
U(==-1,0)

where M and U are the confluent hypergeometric functions. M(-—X‘;/Z,l,&) is

regular at £ =o0=0 and U(—Af/?,l,é) has a logarithmic singularity at

f=c=0.
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We choose

. Y
X(o) = M(—-—él—,l,a') (4.105)
M(~Af/2,1,5) has following properties:
As ¢ = o0 |

1) M(=)%/2,1,0) grows algebraically when

8o lv-?‘m?

=n=0,1,2,+:"

2) Otherwise M(—)?/2,1,0) grows exponentially.
We require that the solution does not grow too fast at the far field, therefore,

we must set

22 ,
S =n=012"" (4.106)
hence,
N a2 n2£2
X(6) = M(-n1,6) = (%) = L (-2 (4.107)

where L, are the Laguerre polynomials.

(i) In the liquid- phase region:
To solve (4.102), we let

oS 2 2
. - ﬂ; frd M—
T T
Vi) = e " A7) (4.108)

Then (4.102) becomes the Whittaker equation:

1
Tk
27 + (—-;- + -’\; + Az =0 (4.109)

~2
T

where
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d==(n+3) , =0 (4.110)

We require that the solution Y(7) vanishes exponentially as 7 — oo. Thus, we

have
. -5 Qe o’
i)=e * Uil )= P U(m11,-0) (4.111)
Finally, the solution of (4.84) is
-
o )
1En) = Zﬁ "°£2 T = (4.112)
n=0 Ly

U(n+1,1 ﬁ’-) B

where 8, are arbitrary constants to be determined.

(ii) In the solid-phase region:
We still use the method of separation of variables and write
15 = X (4.113)
It can be shown that the solution X(£) is the same as (4.107). But in order to

solve Y(), we must introduce the new variable:

-2
r= -1 (4.114)
2
Thus, we derive
Y + (1= Y(H) + 1Y =0 (4.115)

The solution of (4.115) satisfying the regular condition at 7=75 =0 is

Y T o ‘
(A= L1y = £,(-=2=) (4.116)

Finally, the solution of (4.85) is
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7)2£2 772"2
0 0
12 =, Ak =g l——5) 4.11
n=0 L 7’0)
2

where «a_ arc arbitrary constants to be determined. The solutions (4.112) and
(4.117) are exactly the same as that derived in [21].
Suppose

2.2
X3

: (4.118)

S GER YR

n=0
where 4, are constants. From the above, it is seen that the solution contains
three sets of arbitrary constants: {e }, {8,}, {7,}, n=0,1,2--, which should be
determined by the houndary conditions (4.89), (4.90) and (4.91).
From the boundary condition (4.89) we get
B, =a,+ 7, (4.119)

F'rom the boundary condition (4.90) we get

© e (€7 42)
Zanl)n( 02 ) = ——2 3 (4.120)
E+1)*

The constants {c } reprecent the effect of surface tension. For the zero surface

tension case, we have a_ =0, n=0,1,2,--. From the boundary condition (4.91)

we get
00 2.2 2,2 2,2
yX3 E 2
Yi(a,-b)L, (-—-) + (2n5+1) E*r )+ 22 m1,LL, (n° - M(l";—)]
n=0 n=0 n=0
=0 (4.121)
where




U(n+2,1 ---) 7
a, = 2ﬂ“[(n+1) —— = (n+1) - -——] (4.122)

b, = 2na,[1 - —— 2] (4.123)

From (4.120) we get

2
Jo
Vr(2n)le ? )
o, =— -—(-—5_i'_.__{‘/— " erf( \/0_ + 2(2n +l)12"+lcfc \/. (4.124)
where
i—z )
i"erfez = f L—-Lnl (4.125)
are repeated integrals of the error functions, which have recurrence relations:
i"erfcz = ——z-z"derfcz + -Lz'"'zerfcz )
n 2n
-1 2 -2
{erferzm ——e = 4,126
for= —= (4.126)
ioerfcz= erfez , which is the error function

From (4.121) we get

(a,~b) + (2173-{—173)7" + 2nn§7ﬂ - 2(n+1)1)§')r“+l =0 (4.127)
(4.127) implies

Tous = T 45, (4.128)
where r, and s, can be obtained by (4.121)-(4.126):

2
U(n+2,1,32‘l)
— =012, (4.129)
U(n+l,l,-'-’2-9-)

r, = (n+l)
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nf!
N ? U(n+2,1,-2) b
9”=__.2':[1+2 0 __ — (nt+1) ~—1- P, 5=0,1,2, (4.130)
y (n+1) T 2(n+1)7,
U(n+1,1,-2—)

Therefore, for any given <, (4.127) will generate the series {7,}. Then the

second-order approximation of the interface 7}22)(70,5) is determined. In order to
determine v, onc can apply the far field condition proposed by Xu in [21].

Namely, we require that
lim 7,”(7,:€) = 0
§=—00
The results about «, B, v, are the same as that in [21], some errors involved

in the formulas (3.35), (3.36), (3.39) in [21] are found and corrected hereby.

Finally, the sccond-order approximation is obtained as
G=60+G"
T,=1" + 1, (4.131)
Tp= Ty + 15
M=y

or

2.2
772172 _'702"
o0 2,2 U(nt+1,1,—2—)e 2, 2
€ ~2,2  Ngh
T6n) = $8,L,(—5-) 2 i) (4.132)

n=0 2 M

. 3
U(n+1,1,-2£)e "




Py,

Ly

13
2,2
168 Nyl
© @ (=)L (———)
2 2
T,g(f)”) = Z 3 »
n=0 L (__'7_0
no2
o0 7]2 2
Ny = Zynl’n( 02 ) + azn:!

ns=
In second-order approximation, the vorticity is still zero everywhere. The densi-
ty change affects the interface shape, velocity ficld and thermal field. The

interface shape and temperature field are also perturbed by the surface tension.

4.5 Discussion

In this chapter, in terms of regular perturbation method, we have obtained
a second-order approximate solution for the problem. The surface tension
parameter ¢ is used as the small parameter. The density change paramcter «
is considered as the same order of small quantity as ¢. The dendritic growth is
perturbed by both the surface tension and the convection induced by density

change.

We found that the solid-liquid interface shape and the temperature ficld

can be expressed in the form:

[+ 2.2
- DA 1}6 DL
n= 1+ o, + @iy 4 o) H G Db () + ) (4.133)
Ty n=0
T=T,+{aT, + o’ T, + ..} + {—-[4;’1‘22) + ..} (4.134)
K

where the first terms in the R.H.5. are the Ivantsov’s solution; the second
terms are the correction by the convection induced by the density change; the

third terms are the correction by the surface tension.
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( The fluid motion is found to be irrotational flow. The velocity components
are given by
=+ o(a®) + . (4.135)
‘/
2
u, = - 1 « 771 e} (4.136)

N A e
The first term in the R.H.S. is uniform flow; the second term is the effect of
the density change. The surface tension does not affect the flow field.

It can be scen, from the above analysis, that some physical effects in den-
drite growth, such as density change and surface tension, can be separately
considered. The tolal effect of these parameters equals the algebraic summation
of cach individual effect, provided these parameters are all small. Thus, in the
following chapters, when we study dendrite growth problem with other type of

( convection motion, we shall put the effect of surface tension away, and only

consider the case of zero surface tension.



» .

Chapter V

SOME SPECIAL SOLUTIONS FOR DENDRITE
GROWTH WITH EXTERNAL FLOW

In 1990 Ananth and Gill considered the situation in which convection is
purely induced by external flow w'th zero surfacc tension (See [3]). In their
papers, it is shown that, in general, the system does not allow a similarity solu-
tion. But, in several limiting cases, they do find the similarity solution for the
system, the interface shape in these cases is paraboloid of revolution. In this

chapter I shall summarize some of their results.

5.1 Formulation

Suppose that surface tension is zero, no densilty change, buoyancy effect is
negligible, namely, ¢ =0 and G= 0. The entire solid phasc in this case will

be isothermal with the temperature 7T . Assume that the melt in the far ficld
flows along z-axis with a constant velocity U_. The mathematical formulation

of this problem can be reduced from (3.46)-(3.62) by setting ¢ =0, (' =0 as

follows:
1.
DW= —ng(€ + 1) (5.1)
2.
2 s a2 ¢ a(w,ner o
PrDY = n(E) % N ngigna (a(g’,f) ) ”315 " ((;%éf’)) (5.2)
3.
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2o A2 2_(?_’1_' 1 oror v orT 5
The boundary conditions are given as follows:
1. Asp — o0 :
u=-(U_ +1e,
{—0 (5.4)
T — Tm

2. At the interface = n,(,1) :

(i).

T=0 (5.5)
(ii).

o o

(G50 + mhen) + my(€+n') 52 = 0 (5:5)
(i),

(G + 7. 50) = Talénen)y (5.7)
(iv).

(—— -1, 58) +mEn)na, =0 (5.8)

Suppose the stream function be following form
v =& fn) (5.9)

n=1 as the solid-liquid interface and T = T(n). Then (3.44) and (3.45) give

the fluid velocity components as

0=t L (5.10)
3 T 27
&+
-2 [ (5.11)
U = .
" ,/62_{_7)2 7

and by (5.1) the vorticity is




Lk

By (5.1) and (5.2) we have the differential equation for f{n)

noF
Pr

1 2 4 .
n[;;(nl"+-;r3ff')] aol (el =0 (5.14)

There is a contradiction to the assumption that f depends on % only

because of the existence of ¢ in (5.14). So only in some special cascs we can

use (5.14) to get the exact solution. In the following sections we shall consider

some important special cases.

By substituting (5.9) into the boundary conditions (5.4)-(5.8), we obtain the

following formulas, respectively,

1) =.;_ , (5.15)
=1, (5.16)
%|"_m= 1+ U, (5.17)
lz-l,,..m=§-+';-"m , (5.18)
1

1) =1, (5.19)
ifl—nT-(l) =7, (5.20)

A note should be made here: the notation used in this thesis is slightly differ-
ent from that used in the papers by Ananth & Gill. With our notations, the

parameters used by Ananth & Gill become: P, = VI /e, =1, the growth

Peclet number; Pe=U]l/r,= U, the flow Peclet number;
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— U
Re= (I v= -1—)“-’-, the Reynolds number.
r

From (5.3) and its boundary conditions given by (5.19) and (5.21) we

obtain the temperature T as

2
2 n 2n.f
oo Teexp(— f len)

) n

7= dn+ T, ' : (5.22)

where

n 2772
o,,77§exp(— f —-—-"fdn)
17 d

® 1 n

n (5.23)

5.2 A Solution for Dendrite Growth with Stokes Flow

Supposc Pr — oo, that means the Reynolds number Re — 0 Then (5.14) is

written as

F 4
—) — F=0 5.24
) o (5.24)

(5.24) is satisfied exactly for all values of ¢ and 7 if
F= [1)(%)']' =0 (5.25)
Solving (5.25) with its boundary conditions (5.15) and (5.16) one gets
fo) = 50 + ol (=) + 2] (5.26)

where s is an arbitrary constant.

Then the velocity components are given immediately by (5.10) and (5.11)

as

0 = ‘/225_‘_-_5(1 + 2slnp) (5.27)
n

w = —--——71——0(1 + 2slny + —82— ) (5.28)

"o Ve 0



The thermal field T is given by (5.22).

5.3 A Solution for Dendrite Growth with Oseen Viscous Flow

One can use Oscen approximation to lincarize (5.14) if the Reynolds num-

ber Re is very small.

Let f=(1+U_)7’/2, its far field value, and substitute it into (5.14) to get

1 4 2
= (nF + noRe,n FY)’ - Eg_';_‘;'[nf' + iRe, ' F] =0 (5.29)
Ui Ui

where
Re, = -1—,17(1100 +1)
The solution of (5.29) for all values of ¢ and 7 is
F +q;RepF =0 (5.30)

The boundary conditions of (5.30) are (5.15)-(5.18).

Solving (5.30) with its boundary conditions one obtains

-1
fln) = ﬂ%—— (5.31)
where
E(n’Re, 2 /2)
fl(z)=zUw[l+-[~]1—+ 12— 2
w U E(7Re,/2)
2 2 2
_ 9 exp(—n,Re, /2) ~ exp(—ngRe,z /2)] (5 32)
zzRelng El(r)zRel/2)
So we can get the velocity components from (5.10) and (5.11):
U E(7°Re n’/2
U, = oof ,,[1 + Ul _ 1('702 e171/ ) , (5.33)
v £2+'7’ P £ (nyRe,/2)
U E(n’Re n’/2
S O S\

ey 2 o
e+’ Vo E,(mRe, /2)




50
2 cxp(-nzl{elﬂ) - cxp(—vzl{elnzﬂ)] (5.34)
"(2)7’2R°1 E'l(anel/?)
By (5.22) the thermal field T is
o, v o v
r= [ n nyexp[— [ l'7(2)f1(2)d2]dy— [ 1 myexp[~ [ 117(2,f,(z)dz']afy (5.35)

5.4 A Solution for Dendrite Growth with Potential Flow

If Pr— 0, that means the Reynolds number Re—o00, the viscous terms in

the Navier-Stokes equation (5.2) are negligible. Then one can obtain

2 e afy
Y - U+ A =0 (5.36)

By observing (5.36) if
F= n({—l)' =0 (5.37)

then (5.36) is satisfied.
The boundary conditions of (5.37) are (5.15) and (5.16). So one can

obtain the fluid field by solving (5.37) and its boundary conditions:

7 U
f= -L2 1L+ U)~ = (5.38)
£
u, = 1+ 0) (5.39)
¢ ,/£2+U2
1 U
U=~ [(1+U)p-—= (5.40)

By (5.22) the temperature is

2
]

2 1 2 U 2 2
T__,,_O_e;ngmum) n,(1+U) - [[1)0U°° 17017(1+U°°)]
T2 2 2 2
2 2
2 NU+U) o Tl 2 2
N, Ty n (14U ) ~——5— U n(1+U
N [’_0(____°°.).] R A I °°)] (5.41)

2 2 2 2

where




v o

[+ 2]
I’(a,z):f e, (5.42)
T

the incomplete Gamma function.

5.5 Discussion
In this chapter I summarize the results derived by Ananth and Gill. We
list the solutions for some special situations, and show that
L. For the limiting cases, Stokes’s flow, Qseen viscous flow and potential
flow, steady similarity solution of dendrite growth can be found. It is
said that the theoretical results agree well with the experimental data
(Ref. [3]).
2. The contradiction in (5.14) implies that the stream funetion does not
have the form ¥ = 7}¢°f(n), namely, the system does not allow a simi-

larity solution.




Chapter VI
EFFECT OF FLUID FLOW DUE TO BUOYANCE

In 1990 Canright and Davis considered the effects of buoyant flow at the
pear-tip regions of dendrites. They presented a theoretical analysis for dendritic
growth in the tip region and obtained a special solution. In this chapter I will

summarize their works.

6.1 Formulation

Suppose that surface tension is zero (e = 0), no density change and no
external flow are in this problem, namely, a =0 and U_ =0, and the entire
solid phasc is isothermal at -’f’m. Due to the buoyancy effect, convective motion
in the melt is produced. Then the system can be reduced from (3.46)-(3.62)

by sctting o =0, U_ =0 as follows:

1.
o= e + (6.1)
2,
) 1 aw
PrD*¢ = (€4 % 4 X - e
D¢ =€) nen &M ey )
Gémy . 9T . oT
- Sl + e (62)
3.

o e T 4 L BUOT _ 00 0T
VT =& +) i + nzﬁn( T % 011) (6.3)




T

BT e PRY bk e TN L AT ISR ¥ TR Y 7

The boundary conditions are

LLAs g — o0

4
v — %9-521]2

(-0
TéTm

2. At the interface n =17,(¢,t) :

(i).
T=0
(ii).
8T 0T , 2 g On,
(—577“71, -5£-) +noén) + no(€ +ng)ﬁ- =0
(ii).
o ., o '
(GE + /5= my(én,)(€n,)
(iv).

('5176{Z - 'l,l%gp') + 1En)(n,n, - € =0

03

(6.4)

(6.5)
(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

As G << 1, we use perturbation method to solve this problem and write

T=TO+GT1+... ,
V=0 + GF + .
C=Co+ G+
n,=1+4+Gn +

where 5=y, is the interface.

(6.11)
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6.2 A Special Tip Solution with Small Buoyancy

Assume T, = T\(n) Then, the zero-order approximation are the Ivantsov

solution:

2;;3' noonn 2 g

e o B By
lzg' o0
T, =-—e¢ - '1(?0) (6.12)
v = 71362712
0 2

G=0

where [, is the exponential integral defined by

E(2) = f(:o c-:s ds , 0=0,1,2,-- (6.13)

S

Considering the first-order approximate, we can get the equation:

1)2!(/] = —-1)40(62 + 1)2)(1 (6.14)
& a,  mmE dT
PTDQ(:‘ = —7)31;-7-317-1- + 1)3{—8?1 - —2’—'———‘77-79- (6.15)
arT oT dT, oW
20 _ 2 12 1 1, %9 9%y
with the boundary condition:
at p=1:
T, 4+9,T =0 (6.17.)
o
= —3-';1- =0 (6.18)
ol + E) = (—a—"l +1,Ty") (6.19)
as 7 — 0o :




where primes denote derivatives with respect to .

Suppose

¢, = €5(n) (6.22)
Then (6.15) becomes

2.2
ds 1d d o _1720 -5~
P ..___.s — __S -+ 277_._5 -— 277 8§ = — 0 6.23

The exponential integrals have the propertics as

—;;En(z) =-E_ (2 , (6.24)

E (@)= [e - z£ ()] (6.25)

So we can obtain the solution of (6.15) as

& nan’ )on By’ ,
¢ = LB —5) + ABy( 55~ =) + ——] (6.26)
T (Pr~1)E("°)
where A and B are arbitrary constants.
Suppose
W, = ¢°g(7) + ch(7) (6.27)
Then (6.14) becomes
(I’qg 1 dg _ s
pr iy —1g s(n) (6.28)
&k _1dr B v 6
R + 8g= —-nyn"s(n) (6.29)

Solving (6.28) and (6.29) we get the strcam function as

2
17T (Pr-1)Ey(T,)

=
|

{a*[g,(P) + Aprg,(-pf;) + B~;— + Cr+ D]
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+ ok, (7) + Apr’hl(PLr) - C7 + 2Dr(1-log?) + E7 + F]} (6.30)
where
g;(;’) = Eg(;) - Ea(‘;') '

h(7) = 2B(r) = E(7) |

and C, D, I, IV are arbitrary constants.

The boundary conditions for ¢(n) and h(n) are

at p=1:
g=g =0 (6.31)
h=# =0 . (6.32)
as 17— 00 !
g— 0 (6.33)
h — 0 (6.34)

By observing (6.30) we can not find a solution that satisfies both the inter-
face conditions and the conditions at infinity. We choose the solution that
ouly satisfies the interface conditions (6.31) and (6.32). So this solution is called
as tip solution.

By (6.31) and (6.32) we can decide the constants with choice of B=0 and
C=0:

UGS
g,'(ry/Pr)
"o
D= —[g‘(‘f‘a) + APrgl(—PTr-)] s (6-35)

.
E=~[h/(r) + APrh'(3x) - 2Dlogr] ,
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F==[hy(ry) + APrh, (=) + 2Dr(1-logry) + Br,] .
Suppose
Ty(o,m) = (e=1)p(7) + o(7) , (6.36)
n,(0) = r[(e—1) W, + W,] (6.37)
where W, and W, are constants to be determined. Then (6.16) becomes
(7)Y + 7 - p=-T/L | (6.38)
LAY
(FeY + 70 = =T + =) (6.39)
Mol 2090
The boundary conditions become
at 7= Ty ¢
p=-1, W, T , (6.40)
g= -1, W, T, , (6.41)
ST, W, =7 + -—V—;Q-To" , (6.42)
W,
oW =4+ T - W, (6.43)
as T — 00 :
p—0 , ¢g=0 (6.44)

Applying variation of parameters for (6.38) and (6.39) we get the solution

given by
)= ~2T, {p,(7) + APrp,(7) + Dpy(7) + JE(T) - E(D)] + KT+ 1) (6.45)
(Pr-1)E|(ry)
iy = T Tl APre(3) + Day() + Ba(7) + bE(H) + M) (6.46)

(Pr1)E(r,)

where J, K, L, M are arbitrary constants and




i and

n(M) = T UL - 25,27)] - 3E,(RIE - E(7)] - 2 (B - 25,7},
() = HIBR) - BAI2PrE(D) ~ (42POB(D) +25(-L) - B(L)]
+ -[%7[%+ 11LG,,(7) = Gy (7) = 2G,,(7) + 2G,,() + Gp(7) = G, (A]}
1o(7) = ={[E(7) = B - loge] + [7+ NE(D} ,
(D) = 3EG) + R - 25,00, (6.47)
() = BOLI-PAE() - @-PB(-D) + B(-L)]
+ 2=[(Pr=D Gy, () + (2= P1)G,,(7) = Gy (AN,

0,(7) = 2{E,(D[1 — log] + ¢ "(log7 — 2) — EXD)},

0D =~
B = [Ty (6.48)
Gl = [ B (B (5)ds (6.49)

T

From (6.44) we get

K=M=20

From (6.40)-(6.43) the constants J and K are determined by

P (1) — p(7) + 7p(1)) =0, .(6.50)

70 () + 7a(r) — p(r) =0 (6.51)

Then W, and W, are determined by

) (6.52)

‘21'0

W, =
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T
m:“f (6.53)
27,
6.3 Discussion

In this chapter I summarize the results given by Canright and Davis. In
this chapter the buoyancy parameter G is considered as a very small parane-
ter. Then the perturbation method is applied to solve the dendritic growth with
convection. This chapter gives a local solution in the near tip region.

The results show that the shape of dendrite can be expressed in the form:

2.2
n,=1+ G[(ﬂ’g——l)wo-k W+ .. (6.51)
where the first terms in the R.ILS. are the Ivantsov solution; the second terms
are the correction by the convection induced by the effect of buoyance.
It is noted by Canright & Davis that their solution for this problem does
not satisfy the far field conditions; their solution has a singularity at the infini-
ty. The uniformly valid global solution for the problem of steady dendrite

growth is still unknown.




Chapter VII
SUMMARY

The present thesis is mainly dealing with the regular solutions for steady
dendritic growth with convection. At first, before I present the theoretical
results on the problem, in chapter II, I summarize some experimental observa-
tions of convection effect on dendritic growth.

In chapter 111, a complete mathematical formulation of the problem, includ-
ing governing equations and their boundary conditions, is specitied. Besides the
undercooling parameter T and the surface tension parameter €, the system
contains three physical parameters that can produce convection: 1) @, measur-
ing the density change; 2) G, measuring the buoyancy effect; 3) U_, measuring
the external flow. We then use regular perturbation method to discuss these
effects, respectively.

In chapter IV, the second-order approximate solution is obtained analytical-
ly for the case a# 0, U = G=0. The results in chapter IV show that the
offects of the density change and the surface tension can be considered sepa-
rately. The solution can be split into three parts: the first part is the Ivantsov
solution; the second part is duc to the effect of the density change; the third
part is due to the effect of the surface tension.

In chapter V, 1 study the case: G=a=0, U_#0, and summarize the works
by Ananth & Gill. Ananth and Gill found the similarity solution for the sys-
tem in some limiting cases, although the system, in general, does not allow a

similarity solution.

- 60 -
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In chapter VI, 1 summarize the work by Canright and Davis, which deals
with the case G# 0 and a = U_=0. Canright and Davis assume the parame-
fer G is very small, and attempt to find the asymptotic expansion solution by
using regular perturbation method. They found a local solution ncar the tip.
Their solution, however, violates the far field conditions.
At the end, we conclude that the study of the dendritic growth with con-
vection is far from completion. There are a lot of problems on this subject,

which remain unsolved, and need a long term of research efforts in the future.
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