vy A

T

SPECIFICATIONS OF A SOFTWARE ENVIRONMENT
FOR THE COMPUTER-AIDED DESIGN OF
CONTROL SYSTEMS

Michael Tessler

S

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Engineering

Department of Electrical Engineering
McGill University
Montreal, Canada.

April 1985
- ©

<

ABSTRACT

In this thesis a software environment for the Computer-Aided Design (CAD)
of multivariable control systems is specified. The main requirements for the CAD
package was portability and user friendliness. This was achieved by incorporating
software engineering techniques which determine how software should be specified,

. designed, implemented and documented. In addition, an examination of the target

user and the design procedure was performed.

A portion of the package was implemented in order to validate the design spec-
ifications The scope of the implementation effort was limited to the development of

the necessary software tools and a system identification module.

The result of the specification is a standardization of the structure of the CAD
environment. This has several advantages such as increased maintainability, expand-

ability and reliability, and in addition, eliminates redundant software development

-

2

(24 '

ACKNOWLEDGEMENTS

. =
* I would like to express my sincere appreciation to Dean Pierre R. Bélanger {or

L4

his supervision and guidance of my work. I would, in addition like to thank

him for his continued interest and encouragement in my work.

I am grateful to Michael Blauer for providing constructive, criticism, useful

discussions and support throughout this project. e

[would like to thank several members of the Control Group for their friend-
ship and stimulating discussions. Mark Readman, Alexis” Aloneftis, Patrick

Aboussouan, Michel Habib, Sean Meyn and Youssef Ghoneim.

~ -7 -

[would also like to thank Yvan Leclerc and Mike Parker for proviéing assis«

tance in using the computer facilities throughout this project.

P
-

¢+ This thesis i1s dedicated to Carmen and Eddie Tessler.

¢

3
Y

TABLE OF CONTENTS

ABSTRACT .. oot o o e
RESUME .. i
ACKNOWLEDGEMENTS . oottt ittt e
TABLE OF CONTENTS ... D
CHAPTER 1 INTRODUCTION

CHAPTER 2 COMPUTER AIDED CONTROL SYSTEM DESIGN |
CHAPTER 3 GENERAL DESIGN ISSUES '
CHAPTER 4 PACKAGE SPECIFICATIONS

CHAPTER 5 MODULE ONE [ESETTTTTITITRPRYY L
* CHAPTER 6 INTERACTIVE SESSION e
CHAPTER 7 CONCLUSIONS _......... ...
‘REFERENCES

APPENDIX-A ... 0 o

BT

89

tw

©

design tasks but in addition. provides an environment whereby complex control algo-
rithms are made available to the user unfamiliar with the many software details 4 .
To accomplish this, several fields of study must be drawn from: computer science,

software engineering, applied mathematics and control system engineering.

Presently, the development of CAD \systems,for control applications has followed
the bottom-up philosophy. What this implies is that the emphasis is on the devel-
opment of algorithms and the associated computational subroutines. Therefore. the
development of the CAD system involves first assembling a set of computational sub-
rouitnes and, subsequently constructing a user interaction to contain them. Several
problems arise from this type of development. First, the computational software if
not developed with integration in mind, will be difficult to incorporate in a package,
since the data structures may be inconsistent. Secondly. the user interface may be
difficult to use, since 1t has been designed to satisfy the needs of the computational
software instead of the user’s needs. Thirdly, this tvpe of development leads to re-
dundant development of many functions which are needed throughout the pack'age.
In addition. maintenance and expansion of such a system s quite difficult since they

usually do not have a uniform structure.

- 4 -
“

1

As a result, the main ob;ective;of this- thesis is to specify a software environ-
ment for the computer-aided design and analysis of multivariable cor_ltr(;l 'sysi;en"ls.
In addition. the package should 'havg the following featur;:s: portability, expandabil-,
ity, reliability and user friendliness. Thus is accomplished by‘incorpor(qtlng,software ‘
engineering concépn; a.nci techniques which determine how the software should be

specified, designed, implemented and documented. Furthermore, an examination of

-
» ~

the target user and the design task is required, since the success of the user interface

depends on these features.

The thesis is divided as follows: Chapter 2 examines the use of CAD for control
applications and 'in addition. a set of general package specifications are presented.

Chapter 3 is'an overview of the geneéral design issues of a CAD system for control.

[

L

¢

In chapter 4. the package specifications are detailed. A description of Module One is
provided in Chapter 5. Chapter 6 provides a s:ample interactive session. Conclusions

are provided in Chapter 7. Finally, Appendix A contains the documentation of the

‘software tools developed during this project.

Notation: Throughout this thesis this style of type is used to indicate

gsoftware code.

O e

© e e

-

2

3y

N

This cannot work because the number of equations is missing, and therefore we

need ;
CALL solve (A, X , B, N) /

] . . ®
Some of the shortcoming of this second design are; , /

1. The matrix A must be destroyed; otherwise there is no working space for

the subroutine solve to use.

2. The user is not warned if A°* is singular or if the subroutine solve failed.
3. The dimensions of the Fortran arrays for A, X, B are not given

4. If there are two syst'er\ns of equations Az, =b; and Azy =b, with the

same matrix, then A 1s factored twice.

5. The computation of A~ ! is not efficient because of the lack of storage

space.

.

4 -
Although this is a simple design, it lacks flexibility, error recovery and has For-

tran language problems.

The following design has fewer shortcomin

r

-

: J—
CALL solve (A, X ., B, N .'I,J .%, M.{M) -

~

, - where . - -

I' is the number of rows of A,B 4 ' ‘ .
J is the number of columns of A

and the rowsof X .- oY .
K is the number of columns of X, B
M is a switch to compute A1

M1 is flag for the singularity of A

1

After deciding what level of flexibility to offer to the user the third question is
whether to provide an interactive shell The advantage of the shell i1s that it would
eliminate for the user the wasteful and tedious task of constructing a calling program
whenever he wants to solve a set of equations Therefore an interactive shell is bult

around the computational software and will contain the Global Dimensions of the

%
variables (a Fortran requirement), the interaction or prompts for the data values,

the control data (i.e whether to compute the inverse of A) and error detection.
The error detection ensures that the input data is of at least the right type (integer,
real, character, range ..) which would of course abnormally terrminate the program
and must be avoided at all costs An example of such a program is shown below;
Program InterfaceEquationSolver
. Declarations
Prompts User for A, B, N, M
CALL solve (A, X , B, N, I ,J , K, M M)
IF (M1 NE O) THEN
Print out result
ELSE
Print error message
ENDIF
END ' o
This example détnonstrates the tradeoff between developing powerful software
and software which is easy to use. The more flexability the user 1s allowed the more

powerful the software, however, this also leads to software which is difficult to use

for someone who wants to solve a simple problem.

7 g

Therefore the most important elements for the development of an interactive
shell are the problem definition and the subsequent interpretation of this definition

into specific set of objectives.

It was decided that the main objective of this project would be to concentrate
on the interactive shell instead of the computational software, taking advantage of
the extensive computational resources embodied in available software libraries, such
as LINPACK (6], EISPACK (7|, and RICPACK ([81,,9!). All this software 1s avail-
able commercially. The important characteristics of control computation which are

relevant to an interactive interface shell are |,

1. large data sets
2. heavy computational load
3. requires user ‘decisions’ or expertize

* 4. large input/output requirernents

In terms of computational software, the objective is to use existing software
libraries, and therefore little discussion 1s necessary If algorithms and computational
software were to be designed in house, a quality management system would have to

be designed and implemented to ensure reliability of the software.

2.2 Survey of Existing Control CAD packages

In this section, a survey of the development and use of computer packages in
the field of control and systems engineering is presented. The earliest development
of computer aided control software was initiated by educational institutions in need
of teaching and research tools [10]. The industrial sector with the need for the higher
productivity offered by a control computer aided design package was the second mo-
tivating force for development and by 1980 a great many packages had been designed

and were in use by industry.

10

it allows the user to define his own macro commands. However, the added flexibility

adds complexity to the problem of error detection.

Most existing packages although designed for the expert user are structured as
a compromise between these interfaces. where for example a C/L is used but the
arguments of the command are prompted for. See Table 2.1 for a brief list of existing

CAD packages and their features.

NAME SCOPE INTERFACE LANGUAGE APPLICATION

CLADP Analysis and Q/A Fortran IV industry/
Design of Multivariable academic
Control Systems

MATRIXx Control design, C/L Fortran 77 industry/
System 1dentification, academic
data analysis and
Simulation

ASTROM Modelling, C/L Fortran industry,/
[dentification, academic
Analysis,

Simulation and
Design of MIMO

s Systems
UMIST Analysis, Design Q/A Fortran industry/
and Simulation of ’ academic

MIMO Systems

TABLE 2.1

In brief, the diversity of Control CAD software is great, where the distinguishing
factors are capability and structure. As a result of the large number of packages there
exists a great overlap of software and duplication of effort by many institutions. The
recently published Oak Ridge National Laboratory (ORNL) report [8] cites these
reasons as the main motivators for constructing a standard control systems package

and assembling software from diverse sources.

11

¥

2.3 General Specifications

[}
It

The main objective of the Control CAD package is to create an environment for
the analysis and design of multivariable control systems. After an analysis of existing
CAD packages and the preliminary requirements of the Control CAD package the

following design goals were adopted;

1. Package must be developed so that it can be used easily, efficiently and

confidently by an occasional user, and

2. Allow the user to fully deploy his intuition, skill and experience while making

use of powerful computational tools.

The second step in the design procedure was to derive a set of specific package
guidelines which would be used in the actual development stage In the early stages of
development it was decided that the main characteristics of the CAD package should
be portability, expandability, reliability and user friendliness. After examining these

characteristics the following design guidelines were drafted;

1. Portability: Package should be as portable as possible (written in For-

tran 77).

2. Modular Software : Facilitates changes, extensions, and allows others to

easily understand the structure of the package.

3. Expandability: The package should allow flexibility in adding new algo-

rithms, relevent software and modifications to existing software.

4. Error Detection: Complete error detection should be provided to avoid
frustration and loss of time for the user. Every level of the package should

employ error detection routines and return to the user the source of the

error.

13

Chapter 3

GENERAL DESIGN ISSUES

In the first stages of development an attempt was made to identify the many
issues which would influence the design and implementation of the CAD package.
In this chapter some of the general design issues are presented. The first section
will examine the problem of portability and discuss ways to reduce the effect of non-
portable segments. The question of user friendliness and interaction is discussed in
the second section and 1n addition the error detection problem is examined. The
third section deals with the software design methodology, and furthermore. a list of

guidelines for proper décumentation is included.

3.1 Portability

A program is said to be portable if it can be transported from one computer to
another with relatively little effort. Portability is thus of key importance in software
development. This is of course true in the development of the Control CAD package
because of the varied environments under which the package is expected to operate.
It is therefore the duty of the designer to devise ways to allow programs written for

one computer to run on another.

As a first s};ep in the study of portability let us examine how the application
software interacts with the programming environment. In Figure 3.1 the program-
ming environment is shown to be comprised of several independent layers, forming

a hierarchical structure, where each level communicates to the layers directly below.

14

APPLICATION

LANGUAGE

OPERATING
SYSTEM

Fig 3.1

Fs

The highest layer is the application program which is dependent on the language

layer, which in turn 1s dependent on the operating system services layer.

Although port.ability entails many programming details, a limited directed discussion
of its effects on the package is undertaken. The approach chosen follows the previous
discussion and hence this section is divided into the following areas;

1. programming language

2. operating system services

In addition a brief overview of the special problems related to the portability of

graphical software is presented.

3.1.1 Programming Language

Fortran was the natural choice for the programming language{glven the charac-
teristics of control problems and this selection has been recently substantiated by the
recommendations of the ORNL report :8|. However, two problems of poriability still
exist. The first problem 1s the current standard of the Fortran language is Fortran
77 which 1s no more than a common subset and many installations offer language
extensions, some of which are widely used. Therefore non-standard constructions

must be avoided since they will run on different machines with different effects.

The second problem with respect to portability is the operating system depen-
dent features of Fortran 77 14!. These features are most evident when dealing with
Fortran Input-Output commands. Therefore we shall limit ourselves to the operat-
ing system dependent features which affect the implementation of Fortran 77 ['O
commands. What this means 1s that the designer need not concern himself with the
existence of a particular [;O command since this is well documented the American
National Standards Institute (ANSI) standard. However. the problem that the

designer must address is the one of how the O/S handles the specific Fortran 77 ['O

‘features .

¥

The first feature of the operating systemm which affects the implementation of.
Fortran 77 I/O commands is the dir(:zctory structure used by the O 'S. In order to
minimize the effect of varied director)i structures on portability. the directory struc-
ture of several operating systems are examined. Under the UNIX operating system
the directory structure is tree-like and files are specified by pathnames. This ap-
proach is similar under the VMS (Digital Equipment Corp.) operating system where
the directory structure is again tree-like but of course the descriptors are not the
same. These two systems are completely different from some [BM operating systems
where there 1s no tree structure and the reference to files is completely different. For

example if a Fortran file ‘filename’ was to be stored under these different systems the

three references would look like;

3.1.2 Operating System Services

The operating system offers a wide variety of services and these are available
through the use of system calls resident in application programs. These services
include input-output, error recovery and other general services (e.g random number

generator).

In general to ensure portability the direct usage of operating system calls in
application programs would have to be disallowed. However in some cases where

features cannot be otherwise implemented, their limited use has to be accommodated.

To examine this issue let us examine two important areas of O/S services; run
time error recovery and Input-Output. As specified in Section 2.3 the package should
employ error detection and return to the user the source of the error What this means
is that the package should be equipped with run time error recovery facilities. A run
‘time error is produced when an abnormal event is detected by the processor. for
example, a floating point exception. On most operating systems the default action
is to clean up and abort, however the programmer may on some operating systems
write an alternative error handling routine. However, as a result‘ of th*e inability
of Fortran 77 to trap or recover from run time errors, the use of operating system
services for this purpose is necessary. In addition, it must be remembered that not
only is the error recovery procedure non-portable but the cause of the error 1s machine
dependent. For example, a ﬁoating point exception error can be caused by a floating

1

point overflow which is dependent on the word length of the machine.

Unfortunately, the use of system services for érror recovery introduces a non-
portable portion and the problem is how to minimize its effects on the overall pox;ta-
bility of the CAD package. The solution used was to segment the non-portable system
calls by the creation of dummy subroutines. That is, within the package whenever
error recovery is needed a call is made to a dummy subroutine which in turn contains

the system call. This ensures that the call to the error recovery procedure would

18

not have to modified but only the contents of the dummy subroutine. This sotution
not only segments the non-portable code but in addition minimizes the effect on the

overall package.

The second O/S service to bé considered is [/O. Again asstated in Section 2.3 the
requirement.is to eliminate from the user the duties of file management. However 1n
this case, although Fortran i1s not capable of performing all the necessary functions
that are required, the use of syste;n‘ services cannot be allowed. The solution in
this case is to use the full capabilities of Fortran I/O and in addition leave certain
functions (such as the printing and purging of files) as the responsibility of the
user. This eliminates the need for system calls within the code. The justification
for this solution is that the usage of I/O system calls would further complicate the
portability of the package because of the different directory structures. Therefore
because of the large problems which would be caused with respect to portability the-

usage of system calls for the purpose of I/O must be disallowed.

3.1.3 Graphics

Graphics has been an integral part of control theory as witnessed by the many
classical techniques such as Nyquist , Frequency Response, and Root Locus plots.
Graphical output has always given the control engineer the intuitive information
some}times lost in extensive numerical solutions. Therefore it is realized that computer
graphics can be a useful and powerful aid in the design of control systems. However
graphics represents the greatest barrier to portability because of the present lack
of standardization. In this section we will examine graphics as a special kind of
application program and its related pbrtability problems. As in all other cases where
one deals with poftability problems the goal is to isolate the non-portable segments
from the portable ones. In order to accomplish this an examination of the structure

"of graphics software is undertaken.

In most situations the structure of the graphics software resembles Figure 3.2 .

The CAD sheil calls the graphics shell which in turn calls graphics primitives resident

i

in the support software. The CAD and graphics shell are part of the application layer
as discussed previously. The supporting software is a collection of these primitives
such as "MOVE (X, Y) ' which has the effect of moving the cursor from its present
position to the position (X . Y). These graphics primitives transmit. through the
use of an operating system interface to the graphics device. the control characters

- containing the graphics information.

‘ E . APPLICATION S

' ¥
GRAPHICS SHELL

-

SUPPORTING SOFTWARE

0/8 INTERFACE

!

GRAPHICS DEVICE

' o Fig 3.2

[

Device and O/S dependencies are the two features which results in graphics soft-
ware being non-portable. Device dependency is clear: certain support software was

designed to support certain graphics devices. For example, PLOT 10 was designed to

20

ko

support a series of Tektronix terminals and only those or others which emulate this
series of terminals will function properly. Furthermore, most support systems use
different syntax for their graphics p;rimitives. On the other hand O/S dependency
is a result of the connection between the support software and the graphics device,
which in most cases is accomplished through an O/S interface. As an example under
the UNIX system the writing to a device is synonymous to writing to a special file.
However, under the VMS operating system the link between graphics primitives and

the graphics device entails the use of system calls to assign the output channel.

Two approaches for localizing these non-portable segments were suggested. The
first solution was to adopt a GKS (Graphics Kernel System) [15 standard which
is described in Figure 3.3 . The principle of the GKS solution is that the support .
software 1s device independent and portable. This solution is structured in layers
where the graphics shell calls the device independent support software. In turn, the
support software calls a device driver. Finally, through the use of an O/S interface.
the control sequence (graphics information) is transmitted to the graphics device.

Hence, the GKS solution entails using specific drivers for specific devices and different

interfaces for different operating systems.

n

Another approach and the one which was decided upon, is based on the assump-
tion that a small set of graphics primitives would be adequate to support the graphics
requirements of the CAD package. The solution is to use generic names for the prim-
itives and in this way make calls to dummy subroutines which contam‘g{the call to
the associated primitive in the resident support software. For example, if the dummy
subroutine PLOTTO (X,Y) was created, then this subroutine would simply call the
PLOT 10 subroutine DRAWA (X,Y). As a result, throughout the application layer
the routine PLOTTO would be referenced instead of DRAWA. Therefore with this

solution, the support software would have to be substituted for a device of a different

class by modifying the calls within the dummy subroutines. Of course, this method

GRAPHICS SHELL

RV’

SUPPORTING SOF TWARE

DEVICE
DRIVER 1

still forces the designer to create an operating system interface for each system. -This

DEVICE
DRIVER 2

Fig 3.3

solution is shown in Figure 3.4.

Throughout this section several problems related to portability were examined.

The overall strategy in this respect is:

1. limited use of non-portable features (except when Fortran 77 is unable to ac-

complish desired feature)

DEVICE
DRIVER 3

user attributes such as education. CAD experience and how frequently the svstem
will be used by the target user The following specifications were used to describe

Lhe‘arget user for the CAD package

1. The user is a control engineer with a clear understanding of the theoretical

formulations of the features included in. the package.
2. The user has little CAD experience

3. The user will be an occasional user of the CAD facilities

3.2.2 Interface Dialog

The main problem with respect to interface dialog is complex input requirements
and uninformative output In this section a brief discussion of the factors which
influence the interface dialog are examined and some of the associated design decisions

are presented. This presentation is broken into three areas; type of interface, input

~

and output requirements.

As discussed previously, two commonly used interfaces are, the Question-Answer
(Q/A) and the Command Language (C/L). A feature of the Q/A type dialog
is a hierarchical ordered menu structure which guides the user through the design
procedure. Unfortunately, this interface can overdetermine the sequence of tasks as
shown 1n Figure 3.5 In this scheme, the progression from option X to option Y
involves the traversal of the whole tree. On the other hand a C/L system allows for
easy movement within the system, but of course is hard to use by the novice user.
The choice of which type of interface to employ depends strongly on the user profile

‘and therefore the Q/A dialog was chosen for the package.

The second area to be examined is interactive input requirements. There are

two types of input data, data to be manipulated and parameters to control program

MF\IN|MENU
OPTION | OPTION 2 OPTION 3
X see ees Y
o Fig 3.5

1

operations. One way to simplify things is to set certain control parameters to preas-
signed default values. This is esp(?cially useful for parameters or data which usually
take on certain values, or only used in exceptional cases The ability to modify these
parameters must exist if the user wants an unusual value. In the interactive envi-
ronment of the CAD package the user is given considerable help by the program
to input a series of parameters and/or data values. This help is in the form of a
series of cues or messages which ensures that all input required is provided and is 1n
the correct order Equally important, it also provides a framework for input error

detection where each entry is checked and corrections can be asked for if an error is

detected.

At present most CAD packages allow user interaction via keyboard commands.
An alternative, because of the recent pt;pula.rity of the light pen and the mouse, is
to use mput graphics for manipulating the program flow and perhaps for problem
description input Graphical input offers an alternative to typing c\ommands to de-

termine program action. The user needs to be able to choose any of the many actions

that are appropriate and valid at a given time 1n the program. Graphically, these
possible actions may be displaved as menus or light buttons on the display The user
then merely points at the desired action, rather than typing the analogous command
on the keyboard. In addition, graphical input can be used for problem definition such
as system descriptions (block diagram interconnection) and perhaps to do graphical
design by input constraint functions. However. because of the hardware dependence
of such devices this feature would add greatly to the portability problem. Therefore,

the use of input graphics for the CAD package was not considered.

A discussion of the output requirements of the CAD package 1s the third area
of interest with respect to the interface dialog. Several specifications were used to
describe the output requirements. The first of these is what kind of output 1s required.
The tyvpe refers to the form of the actual output , for example text, graphical. or
machine readable. The second is what is the quality of the output and this refers
to factors such as permanence, availability and convenience. Within the package all

possible output was examned in this context.

One of the major problems designers of CAD systems are faced with is the high
volume of output. Several techniques for reducing the quantity of output were used

and are listed below;

exarmunation of what data is really needed

- refine the problem so that the output expresses more concisely what s

needed
~ remove intermediate output inserted at an earlier stage to aid development

— examine formats of numerical output to determine whether the precision

provided for is required

only output a summary

Another problem specific to output is display capacity. Display capacity is lim-

ited, which implies that when the output is greater than the capacity of the terminal

to
-1

is expected by the software to be an integer and the user responds with a character
‘The user at this point must be warned that he has entered the wrong type of value

and a chance for him to reenter the data is given.

Semantic error detection on the other hand involves analyzing the data to see
if what the user has asked to do makes sense. In some cases this 1s not difficult but
the order of complexity quickly rises if absolute reliability 15 desired. One criterion
which can be used is to ensure that the system never crashes. This criterion although
valid would not inform the user as to the reliability of the answers whxch(/have been
computed. Semantic error detection (meaning of the information) canl be broken
into three classes of detection , limits, flow and computational . The limits are the
easiest to enforce and deal with computational limits such as number of iteration
of a particular procedure. For example in a generah.zed least squares identification
scheme the number of iteration of the identification algorithm would be prompted
from the user. This is a case where a hard limit can be set by the software to disallow
relatively large number of iterations. The flow error detection checks whether ghe
right sequences of things have been done in the right order. The third type of error

detection is computational such as singularity checks of matrices.

The idea of error detection and recovery, which implies that the program recover
from errors by interpreting what the user meant from the incorrect input in its
context, makes considerable demands from the program Therefore in an interactive
environment the best possible way 1s to stop cach time an error 1s detected and give
the user the opportunity of reentering that 1tem or set of items immediately. This

creates a cycle, where the user

ENTERS
./ AN
VALIDATES — CORRECTS
This can be performed in an IF statement which tests for example that a number 1s

positive: the algorithm for handling correct data can then become the THEN clause

(28

while production of a diagnostic becomes the task of the ELSE clause. There are
howevet cases where the input checking is nearly as complex as the algorithm to be

performed and therefore should be included in the algorithm

In summary, the quality of the CAD system an its receptiveness bv users hinges
on the quality of the user profile. Therefore if an attemnpt is made to encompass too
large a set of users the system becomes useless for everyone. In addition. programmers
should make the minimum of assumptions about data coming from a user. Here it
must be remembered that the type clause is also a hidden assumption which a user
may be able to violate (eg alphanumeric characters in a numeric field). Furthermore,
the error messages should be as comprehensible and ilelpful as possible. The type of

error should be reported and the offending item(s) dentified.

3.3 Software Design Methodology

Another of the main objectives 1s to produce a package which 1s easily modified
and maintained. The ease of performing modifications and maintenance depends
®n the (1) structure of the design and (2) the standards of documentation. In this

section these two areas will be examined.

3.3.1 Structure of Design

The main objective of this project 1s to design a flexible interactive CAD pack-
age that would interface to a variety of linear time invariant multivariable control
software. Therefore, the interface can be used to not only implement commonly used
design and analysis methods, but in addition to implement current techniques and
even algorithms which might be developed in the future This results 1n a require-

ment that the package be extremely flexible so that new procedures can easily be

accomodated.

One approach to accomplish the task of creating reliable and flexible software is

to use the structured design approach. Structured design is a method whereby the

1. pr to use the program

2. State of the Project >
3. Overall Specifications |

4. Models used to subdivide the program

5. Computational requirements { storage and time)

6. Flow of Control and Flow of Data through the program
7. Detailed Description of Data

8. Meaning of the error messages

9. Performance Evaluation . ~
In addition, computational software should include the following;

1. Proper explanation of algorithm
2. References for Theory
3. Numerical Stability and Robustness of subroutine

4. Sample graphical output and recommendations for package graphics
bl

These standards must be strictly adhered to, if a reliable and maintainable pack-

age is to be constructed.

Chapter 4

PACKAGE SPECIFICATIONS ™

In this chapter, the design and specifications of the CAD package are presented.
The chapter is divided as follows: The first section provides a description of the
functional structure of the package. The importance of the functional structure is
it can be regarded as how the user perceives the structure of the package. The sec-
ond section presents the software structure. The software tools which were required
and implemented for the package are presented in the third section. The fourth sec-
tion outlines the resource requirements for the CAD package and identifies possible

hardware configurations.

4.1 Functional Structure

The first step in the design of the package was to decompose it into a set of
modules. A requirement for this was that the decomposition should lead. in a logcal
manner, to a package structure which would resembie the control system design
procedure, as closely as possible. This requirement was enforced to ensure that
the package could be easily understood and used by control engineers. In order to
accomplish this, a model for the design procedure was required, and the result is
shown in Figure 4.1. This model represents the procedure as a sequence of functions
with cyclical iterations in going from measured input-output data to a performance

analysis of the plant and)t)he controller.

This model allowed for the decomposition of the package into four distinct modules.

These are;

. |
. o, —— " &

MODULE ONE

H START 2 J

!

) MODULE TWO

MODULé THREE
/

0 / e—— sty 3

/
Moo;fn_s FOUR Y
- ‘

-

Fig 4.2

This structure allows the uger to enter the package at three possible entry points.

These are based on what type of apriori information the user has of the plant and/or

the controller. The requirments for these entry points are:

1. Plant Input-Output Data

. é Model for the Cortroller

where each of these refers to the e\ntry number shown in Figure 4.2.

In addition several iterative paths have been defined to allow the user to modify
options and system data until a satisfactory result 1s achieved. Furthermore, a short-
cut path has been defined, so that the user can manually enter both the plant and a

controller and execute a performance analysis on both.

4.2 Software Structure

This section describes the software structure of the package. Because of the user
interface design decisions reached in Chapter 3 the package has been configured in a

tree structure with a hierarchical menu system. This configuration 1s shown in Figure

4

4.3.

From Figure 4.3 1t can be seen that the software has been divided into five levels
and each of these has been given a specific duties and responsibilities. A list of the

levels along with their assigned responsibilities is given below.

LEVEL RESPONSIBILITY

Overhead Global Declarations
Package Initialization
[nitialization of Error Routines
File Handling
Module Selection

Module Provide Choice of Operations .
Ensure Entry Requirement i1s Fulfilled

Submodule Prompts for all Common Elements
Provide Subchoices

Computational Prompts for Specific Algorithm Information
Overhead Call Computational Routine
Display Results (Numerical and Graphical)
Set up Appropriate Values for Computational Routine

Computational Performs Computation

By enforcing these preassigned responsibilities on each of the levels the under-
standing of the package structure 1s simplified by ensuring uniformity on any partic-

ular level.

g

are data structures which contain the information regarding the realization of the
plant and/or controller Data files are files which contain large data sets which
can be externally provided (e.g measured input-output data) or generated by the
modules.

Along with the creation of these data structures is a need for standardization of
data transfers between modules Therefore, guidelines were specified and are listed
below:

1. Package initialization data 1s available to the modules through named common
blocks.

2. System description data structures are declared in the overhead program (which
serves as the Fortran main program) and passed down to the corresponding
modules (wherever necessary) as subroutine argurments

3. Data files are read into the package and must have a predefined format or may
be generated by the package.

These guidelines must be adhered to ensure consistency and software which can
be easily modified.

To implement the package five intermodule data structures have been defined
and are shown in Figure 4.4 These are:

1. Input-Output Data File

2. Discrete Time Transfer Function

3. Continuous;Discrete Time State Space realization of the Plant

4. Continuous/Discrete Time State Space realization of the plant and the Controller

5. Simulation Data File

le

Figure 4.4 shows which of these structures must be available to particular mod-
ules. (An assumption that has been made 1s that all procedures in Module Three
‘Controller Synthesis’ can be implemented using the state space realization of the

plant..) &

IPUT-0UTPUT DATA FILE

MODULE ONE \

!

DISCAETE TIME TMANOFER FUNCTION

J

MODULE TWO

v

CONTINJOUR/DISCAETE TIME STATE #PaCK

|

MODULE THREE

J ,

- CONTINUOUS/DISCNETE TIME STATE SPACE FLANT & CONTROLLER

!

MODULE FOUR
v

SDARATION DATA FILE

Fig 4.4

4.2.2 Internal File Structure

One of the main features of the package is its interactive nature, which implies
that the terminal (alphanumeric or graphics) is the primary output device. However,
there is a need for a more permanent record of the design results and this is accom-
plished through the use of files. (Note: These files are distinct from the previously

defined data files.)

. usersavefile m3 storage for Module 3
usersavefile.m4 storage for Module ¢
usersavefile dry diary file
usersavefile pnt print file .

The first five of these files are used internally by the package for storage and
restarting of procedures The diary file 1s used to record the design procedure. The
print file 1s used to record the results displayed on the terminal, and therefore serves
as the permanent record of the design results. On any subsequent design session, the
user has the choice of restarting a previous session (by simply selecting his previous
filename) or starting a new session.

The advantage of this implementation 1s 1t reinforces the previously stated porta-
bility objective by respecting the design decisions stated in Chapter 3. In addition.

it 1S easy to use because a large portion of the internal file structure 1s transparent

to the user.

4.3 Software Tools

Once the package structure was specified, an attempt was made to 1dentify some
of the software tools which would be necessary The approach adopted was to consider
the software tools as general-purpose functions, which are defined as functions which
are required repeatedly by the modules 1, such as device interfaces, output functions
and user interfaces As-a result of this approach the construction of the package 1s
reduced to simply using a combination of appropriate general-purpose functions and
necessary special purpose functions. This approach has the advantage of ensuring
uniformity from the user's viewpoint and reduces redundant development of similar
functions. In addition, changes to general-purpose functions can be made without
affecting other parts of the system and development of the package is facilitated.
However, a drawback is the development of the overall package cannot proceed until

development of these functions is complete.

40

In this section some of the software tools which were 1dentified and developed
for the package are examined. These include user interface routines, graphics. error

detection and help facilities. All of these are used extensively and form the core of

the package.

4.3.1 User Interface

The first of the general-purpose functions identified were for the purpose of
user interaction and the development of these was broken into two categories; input
prompts and output formatting functions. In the case of input prompt functions. it

was realized that four routines would be needed and these are;:

1. Yesno
2. Prompt
3. Menudrive (

4. Readmatrix

The yesno routine prompts the user for a yes, no response to a specified ques-
tion. The prompt routine prompts the user for a variable of a specified type (double
precision. real, integer or character) to a specified question. The menudrive dis-
plays a menu of specified choices and prompts the user for his desired selection The
readmatrix routine prompts the user for the values of each entry in a matrix of
specified size and type.

Extreme care was exercised in the design of these routines with respect to syn-
tactic error detection. Therefore all of these routines check twhat the right type of
data has been supplied by the user. If an error is deﬁ}ected an appropriate error
message is displayed and the user s given the opportunity to reenter his response
This feature was one of the motivators for creating general purpose prompting rou-

tines instead of implementing them directly in the code wherever necessary. This

|

41

-

/
T
approach reduces redundancy in the code but of course execution 1s slower because
d
-

""" of the subroutine call. This drawback was considered. but 1t was felt that speed was

a relatively unimportant igsue when dealing with user interaction.

The second category of user interface routines are output formatting functions.

The following three functions were created;
1. Pmatrix
2. Modpmatrix

3. Integerbox

The pmatrix routine displays matrices. In order to handle large matrices this
routine displays the matrix as several submatrices. The modpmatrix is similar but
allows for special characters to be inserted in specified entries in the matrix (This
is used to indicate that an element of a matrix was not calculated.) Integerbox

displays integer variables in tabular form.

Access to all of the user interface routines s through Fortran subroutine calls.

4

4.3.2 Graphics

As discussed in Chapter 3, graphics is one of the major elements in a successful
CAD package. This subsection presents the requirements and capabilities of the
graphics utility.

A preliminary step in the design of the graphics utility was to determine which
features would be required. It was realized that the graphics uulity would have
to have the capability of plotting such functions as, Bode (Magnitude and Phase),

Nichols , Nyquist and Time Functions.
Therefore. several interactive graphical operators would be required. These are:
1. Overlaying
2. Windowing

3. Zooming

one for the graphics display and the second for the interactive dialog with the user
(alphanumeric terminal). The following menu appears on the alphanumeric terminal

after the first default screen is displayed.
1. Go to the previous default Screen
2. Return to the default Screen -
3. Go to the next default Screen
4. Create a screen
5. Alter a graph on the present Screen
6. Zoom in on plot from the present screen
7. Overlay plot on present window
8. Status Sumrmary

9. Stop (Graphics Session)

The first three of these commands allows the user to easily move between default
screens. The ‘create a screen’ command allows the user to select up to four plots and
displaytg:hem on a single screen. The ‘alter’ command provides the user with the
ability to interactively modify the range of the axes, labels and the origin of any plot
on the present screen. The ‘zoom” command takes the specified plot and displays
it on the full screen. The user can overlay several plots on the same set of axes by
selecting the ‘overlay’ command. The ‘status summary’ command provides the user
with information, such as the total number of plots. the number of screen and overlay

information.

The graphics utility, because of its size and complexity, was itself designed using
the approach of general-purpose functions. The previously described interface rou-
tines were used to provide the user with interactive dialog to manipulate the display.
In addition. several graphical general-purpose functions were created such as axis

plotting and labelling

14

Portability was achieved by the approach presented in Chapter 3 Tektronix
Plot 10 was used as the graphical support software and an operating system de-
pendent interface was created. These two features would have to be modified if an

alternate operating system and graphics device were used.

4.3.3 Error Detection and Recovery

The third software tool and a general requirement of the package is run-time error

detection and recovery This utility increases the user’s confidence in the system and
contributes to user friendliness

In general an error detection and recovery utility must attempt to perform as
rn:;ny of the following features as possible.

-~ advise user that an arithmetic error has occurred

advise of where the error has occurred

i

inform of what caused Lthe error

set up the appropriate conditions so that execution can continue

The first of these features s performed by the operating system when executing
the default error handling routine. However, as one tries to replace the default action
by a more comprehensive error handler (increasing reliability) the complexity quickly
rises

To design this utility 1t was decided to divide the problem into designing two
handless, one for arithmetic errors and another for input-output errors The general
scheme with regards to arithmetic errors is to inform the operating system that
an alternate handler exists and therefore upon detection of an error this routine
should be executed. The preliminary objective of the utility was to provide giobal
error detection and recovery for all anithmetic errors. However, it was realized that
because the recovery procedure 1s so closely related to specific algorithms, global

recovery could not be achieved Therefore, it was decided to construct two types

16

pointer from the source menu and opens a specified file which contains the relevant

help text. The text 1s then displayed on the terminal.

The advantage of this implementatl.on is that the help text can be easily modified

since they are not in the program code but in special files. This allows for the simple
maintenance of the help facility.

Throughout this section the software tools which were constructed for the pack-
age are described. The documentation for all these routines specifying the exact

format can be found in Appendix A.

4.4 Computational Software

This section describes the computational software which would be required to
implement an operational package. This is specified by first presenting a list of

proposed features. Secondly, a list of software libraries presently available.

4.4.1 Proposed Features

Module One Identification
Digital Filtering
Statistical Analysis
Least Squares Identification Algorithm
Maximum Likelihood
Cramer Rao , 3
Residuals and Model Output

Module Two Models and Realizations

Model Conversions . /

Matrix Fraction Description = State Space Description

R State Continuous Time = State Sampled Data

Observability and Controllability

Balanced Realizations

Model Entry/Modification
r Poles and Zeros

Model Reduction

L3

Module Three

47

ontroller Synthesis

g State Feedback

Pole Placement {Discrete and Continuous)
Linear Quadratic (Discrete and Continuous)

Nyqu}st & .
T,

Time Responses: deterministic/stochastic

Bode P lot> y

Variance Analysis
ontroller Entry/Modification

Complementary Sensitivity
Sensitivity

Open Loop

Closed Loop

Max/Min Singular Values ?

4.4.2 Software Libraries

) The/following is a list of software subroutines which are required to implement

[r
the prodosed features of the package. This list was constructed from the recommen-

dations/of the ORNL report (8].

|

1.; Linpack This is a software library used to solve linear equations and the

linear /least squares problem. It not necessary to include the whole package. and

|
DGECO
GEFA
GESL
GEDI
POCO
POFA
DPOSL
DPODI

therefIBre a subset which would be adequate for the package is presented. ‘;.)

Solve Az = b, estimate condition, -
A1, detd for general A -
AN

Solve Az = b, estimate condition,
A7 detd for A = AT >0

DHQRORT

DCBAL
DCORTH
DCOMQR
DCOMQR?2
DCBABK2

DTRED!
DTQLRAT
DTRED2
DTQL2
DMINFIT
DSVD
DQZHES
DQIIT
DQZVAL
DQZVEC

49

) Modification to HQR2 to compute
real Schur form (traingular)

Eigenvalues and eigenvectors of)
A = Cn.xn

Eigenvalues and eigenvectors of
A — ‘4T E Rn,(n

} Compute singular value decomposition
of A and/or solve linear least sq. problem

Real generalized eigenvalues and/or
eigenvectors

4, Miscellaneous Laub Software

DFRMG
ZHECO
ZHEFA
ZHESL
DCL1
ZLINRM
DHETR
HQR3
EXCHNG
QRSTEP
SPLIT

4.5 Resources

Double precision frequency response software
given A, B, C compute G(z) = C(zf — A)~'B
ze C

Order real Schur form

g
K

In this section an estimate of the resources'required is presented with the aim

of determining the hardware needed to support the package. To examine this issue

two characteristics of control computation were examined; memory requirements and

computational load.

Memory requirement estimates were prepared for the package and are listed

below (in bytes).

Module Name Fixed Overhead Small Problem Large Problem
Module O 200,000 ni/a n;a
Module 1 100,000 200.000 600.000
Module 2 100,000 200.000 600.000
Module 3 100,000 200.000 600,000
Module 4 100,000 200.000 600.000
Graphics Shell | 160,000 n/a n/a
Plot Ten 26,000 n/a nsa
Eispack (subset) 81,000 n/a ‘n/a
Linpack 6,500 ‘ n/a na
0/S Math Library : 70,000 n/a n’a
Totals 943.500 800.000 2,900,000

(n/a - not applicable, small problem -2 inputs 2 outputs. large problem - 8 inputs
8 outputs) Therefore, the total memory needed varies from I 8 Megabytes to 4.0
Megabytes depending on the size of the problem.

Because of the decision to concentrate on the interactive shell. computaiional
information for the algorithms was not investigated and of course would be highly
dependent on the algorithms chosen. However. the computational load must be
considered in implementation. especially if the package is to be implemented in an
environment where computational resources are scarce. This 1s of great importance
if the interactive nature of the package 1s to be preserved.

Based on this. two possible hardware configurations are presented. depending
on the environment chosen If the ;;ackage is to be used in a multi-user multi-tasking .
environment, a configuration similar to the developmental environment -would be

adequate. The environment consisted of:

]

Chapter 5

» MODULE ONE

In this chapter Module One, the identification module is described. The ap-
proach adopted within this chapter is similar to the one used in Chapter 4 and

therefore, the chapter is divided as follows: The first section presents an overview

of Module One by examining the functional and software structure. The rematning

four sections discuss in detail the structure of each of the submodules.

5.1 Ovex:view of Module One a
. -

5.1.1 Functional Structure

‘ \
The first step in the design of Module One was to decompose the modyle S0

that the structure would resemble the identification procedure. To accomplish this a

model for the procedure was created and is shown in Figure 5.1.

The model represents the procedure as a sequence of functions, using as input
the input-output data and producing as the output a discrete-time model. From this

model it was decided to decompose the identification module into four submodules:
1. Digital Filtering f
2. Statistical Analysis
3. Parameter Estimation \

4. Input-Output Plots

INPUT-QUTPUT PLOTS

FILTERING 1

4

PARAMETER ESTIMATION

STATISTICS

Fig §.1

The second step in specifying the module is to define the functional interconnec-
tion structure. This refers to how the user perceives the structure of the module(i.e.
the interconnection of the submodules). To define this an analysis of the tasks re-
quired to complete an identification procedure was undertaken and the resulting

interconnection structure is shown in Figure 5.2.

This structure allows the user to enter the module at one point and the associated
entry requirement is a data file. In addition, the structure includes several iterative
paths to enable the user to modify certain parameters until a satisfactory result is
achieved. Another path enables the user to filter the measured input-output data%
and to subsequently perform the parameter estimation procedure on the filtered

data. Several additional paths have also been defined to allow the user to apply the

i
O

MODULE ONE
PARAMETER INPUT - QUTPUT
ESTIMATION PLOTS y
<{ STATISTICAL FILTERING
-
Fig 5.3

As described previously, each of the five software levels has certain assigned respon-
sibilities. Let us now examine how these translate into specific features which must
be included at each level of Module One. At the module level, the features which)

must be performed are: ' ‘ i
1. Prompt for name of data file
2. Read input-output data from data file and store in an appropriate array
3. Provide entry to submodules and make available the input-output data

A flow diagram of the module level, demonstrating these features, is shown in
Figure 5.4.

In order to detail the responsibilities of the submodules we must first examine the
input/output requirements of the computational levels. In Figure 5.5 a block diagram
representation of the computational levels is illustrated. The input, as shown, is
composed of data and option parameters and the output is the result of the particular
algorithm. In general, it is the responsibility of the submodule level to prompt the

user for all data not produced by previous computations (i.e. the output of one

h\ 4
PROPT FOR NNE OF DATA FILE

' 4
READ IN DATA FILE

. |mopuLe one | / ,

PARAMETER INPUT - OUTPUT
ESTIMATION : PLOTS
.
STATISTICAL FILTERING
"Fig 5.4

procedure becomes the input to another procedure) and all option parameters. The

specific responsibilities for each submodule are discussed later in this chapter.

The next element in the specification of the software structure is to determine which

internal data structures would be required at the module level. The input to the

§

u, - is the 1 th input of the systém ’
¥, - is the : th output of the system
n - is the number of inputs of the system
m - is the number of outputs of the system
! - is the number of data points
The output of Module One is a discrete-time multivariable transfer function of
the form:

Ay = Bu +Ce

. where A, B and C are matrices whose entries are polynomials in the delay%per-

ator. The main goal of this module is to identify the parameters of these polynomials

and these results are stored in three arrays shown below:

/ aj.i by,1 (1,1
a2 , b1,2 1,2
A= B = C =
4 a1 m . bl,n Cim
Am,m) bm,n \Cm,m}
i
where
.
1 3,
1 (al.J e, 4,)
a
0 1 1]
by = (bw bt.] 1)
' t
1 1
€ (c-.z W) €)
and /
it Ti,2 SN Tim .
r2,1 r2,2 ‘e r2,m
R =

Tmai Tm,2 .-. Tmm

59

51,1 81,2 ~ev S1.n e
) -
52,1 S22 e S2.n
S =
Sm, 1 Sm,2 -eo Smn
tin tiz tim \ .
tza t22 - t2.m
T =
tm 1 tm,2 Lonom 4

5.2 Digital Filtering

The first submodule performs various filtering operations on each input and
output data set and the submodule accepts three types of data as input, original,

filtered and residual In addition, the submodule supports the following types of

filters-

1. Low Pass \\

2. High Pass
3. Band Pass ’ \
4. Band Stop

5. Trend Removal

Furthermore, the filters can be specified in three ways:
1. Default Case (eg. 10th order Chebyshev)

2. Specify Order

3. Specify Ripple Characteristics

To contain the above option parameters an array filtercontrol was defined

and has the following form:

hi
f2

\ filtercontrol = fa

o

o

60

where each f, is a vector of dimension (n + m) and where each each of these

vectors contains the following:

h
f2
f3
Ja
fs
Je
f1
/3
fo

\

1 — -

-

’
/
/

Filter Selection

Sampling Frequency

Cutoff Frequency for Low/High Pass Filters

Lower Cutoff Frequency for Band Pass/Stop Filte}s o a’ -,
Upper Cutoff Frequency for Band Pass/Stop Filters |
Pass Band Ripple s : J .
Stop Band Attenuation

Stop Band Transition Bandwidth

Order of Filters

It is the responsibility of the submodule to provide adequate interaction in order

-

to fill the filtercontrol array.

The results of this submodule are placed in an array filtered dimensioned

(n + m,l) . This array has the same form as original and is shown below:

ful(l) fun(l) fyl(l) fym(l)
Jur(2) ..o Sua(2) fun(2) ..o fum(2)

(3]

filtered =

furll) o fual) fn) oo fum() E

A flow diagram of this submodule is illustrated in Figure 5.6.

5.3 Statistical Analy“sis

The second submodule performs statistical calculations on each input and output

data set of the original or filtered data and/or each residual data set. The features

which are supported include:

3

MODULE ONE ~

o
[~

CHOICE OF DATA SET

PROMPT FOR FILTERS

EXECUTE FILTERING

YES GRAPH

‘GRAPHICS

UTILITY NO

SAVE RESULTS

TO MODULE ONE MENU

Fig 5.6

AV A

Similarly. two other arrays were created:
covarcontroloo of dimension (m.m| which controls the covariance operation

between outputs.
covarcontrolio of dimension (n.m) which controls the covariance operation

between inputs and outputs

5
The results of this submodule are stored in a set of arravs The frst of these

store the results of the mean. variance and standard dev:ation computations

mean 1s a vector of dimension n - m)
variance - 1s a vector of dimension n - m)
standev 1s a vector of dimension 'n - m)

In addition. the following three arrayvs are used to store the results of the c8varn-

ance caiculations
covarianceiy of dimensiorn [{n.n which stores the.results of the covanance
calculation between inputs. {1e the (1.;; thelement s the

covariance between the : th input and the ; th input)
covarianceoo of dimension (m.m) which stores the resuits of the covari-

"ance calculation between outputs
covarianceloc of dimensiorn (n.m: which stores the resujts of the covariance

calculation between inputs and outputs
Furthermore. an array was created to “tore the resulits of the discrete fourier
transform

ats is an array of dimension (/(.n - m;

A flow diagram of this submodule 1s illustrated in Figure 5.7

5.4 Parameter Estimation

¢
i

This submodule performs parameter estimation and uses as input the original

or filtered input-output data sets 17 The submodule in addition. has the following

features:

)

€

1. Least Squares or Maximum Likelihood Algorithms

2. Specify Model Order by Specifying Order of each Polynomial

3. Specify Starting Sample Point for Estimation
4. Multivariable Delays

5. Computation of Residual
6. Computation of Model Output (the output of the identified model when the

same input data set 1s applied) .

7. Computation of Akaike Information Criteria

)

In order to implement this submodule. thre ability to modify the previously de-
fined R. 5 and T matrices mustexist This allows the user to select the order of
each polynomial of the model to be i1dentified In addition. an array delay was cre-

ated to store the delays of each input which eflect each output. and has the following

foruhl.
di, dy2 ... dim
-~ d2y daa2 ... dy g .
delay = .
dpy dna ... dpm
Where »

d,, - isthe delay from the : th inputto the ; th output.

To store the resuits of the identification procedure several arrays are used. First,
the parameters of the model are placed in the previously defined A, B and G

matrices. The results of the residual computation are stored in the following array:

ri{l) ra(1) .o re(1)
~ rl(2) r2(2) r,.,,(2)
residual = : . :
fl(l) rz(l) r,,.(l) ;

The result of the model output computation are stored in an array of the following

form:
my(1) ma(l) ... mu(l)
my(2) ma(2) .. mp(2)
modelout = . . .
mi(l) mal) ... ‘mo(l)

A .flow diagram of this submodule is illustrated in Figure 5.8a,b.

FROM MODULE ONE

E—

PROMPT FOR DELAYS,NSTART, ...

1

PARAMETER ESTIMATION MENU

KV

LEAST SQUARES

LS. & MAX,

L IKEL IHOOD

L

RESIDUAL & MODEL OUTPUT

YES

GRAPHICS UTILITY

GRAPHICS

NO

N

WV

COMPUTE AKAIKE INF.

YES @

CRAMER RAQ

NO

Fig 5.8a

68

SAVE RESULTS

. ']

v .
RETURN TO MODULE DNE

Fig 5.8b L

5.5 Input-Output Plots ! L C

This submodule allows the user to display the input-output data directly from
the main menu of Module One. TP@ submodule uses as input the or:‘iginal array
Wd

and subsequently cills the graphics utility.

| [

[XX N R RRESENREERSEENERE R ENLEL LN N 2 J

- -
- WELCOME TO McGILL s .
. CONTROL C.A D PACKAGE .
. -]
. VERSION 1 O .
. AUGUST 1984 .
L] .
.]

[EXTEAR R RREISEE N NN NN R A EEEE NN]

*s ATTENTION ==
Note you may access the help facility from
any menu Dy simply entering & ? or ‘'h’ or helip
Do you have & user save file 7 '
n
In order to open & new user save file
Enter the usrsavefile along with the airectory

user.d/thestis

MAIN MENU

- 1) IDENTIFICATION

2) MODEL RER, & ANAL.
3) CONTROLLER DESIGN .
4) ANAL TIME and FREQ

5) QuIiT' X

EFMter the Numper corresponding to tne item of your choice
help

ss0ssssssnsssssussUSY

hetpfiles.d/mainmenu
[F XY ESSXNES N FANFT TR RN R D

gnﬂnmnnu
EEERNTALEITIBIBIXZIISZXETIIR h.]pf.c1|1ty RIS I E T AR EEEREERELEEXRIESEREEEZXES
At this point the uirr is able to proceed to one of the 4 modules which
are listed Delow; (

1 Igentification, Filtering amo~»Statistical Oparations

70

.

2

v
(MODULE Q)
{nitialization

nudrive

Lz

N4

nelpfacilt,

3

-

71

& -
- the entry reQquirement s a data-file ’
2. Mode] Representations- Analys s, Entry and Conversions
~ the entry requirement 1S a system representation
3 Control)ller Desygn ’ . '
- must be pregeeded by mod2 '
4 Simulation N ° -
TO CONTINUE HIT CR
\
. - Y/
MAIN MENU menudrive
__________________ .
1) IDENTIFICATION) o ’
.2) MODEL REP & ANAL.) ©
3) CONTROLLER DESIGN
4) ANAL TIME andg FREQ
5) QuIT -
Enter the number corrasponding to the ftem of your choice \VV
1 (MODULE ONE
N A4
Enter the number corresponding to the 1tem of your choice prampt

In oroer to entar MODULE ONE you must provide
a file coMtaining Input/Output DATA
Please enter the name of the datafile prompt
/data o/ iodata

MODY MENU (iocentification) ' manucdrive

1) FILTER . . .
[! b

2) STATISTICS ;

3) PARAMETER ESTIMATION R : .

4) INPUT-OUTPUT PLOTS

S) BACK TO MAIN MENU

YV

Enter the number corresponding to the item of yowur choice
. (SUBMODULE

4

INPUT-0QUTPU"
PLOTS)

mmmem—mmm————— e ——————— e graphics

t1 THE GRAPHICS SHELL ' o~ utility

EXECUTING PLEASE WAIT .
S . -) :
“\;

-—GRAPHICS MENU--—

1) Go to the PREVIOUS default screen -
2) RETURN to the working cefauit screen L‘>
3) Go to the NEXT default screen
' 4) CREATE a scraen
5) ALTER a graph on present screen
6) ZOOM in on plot from the present screen
~7) OVERLAY plot on a present window
B) Status SUMMARY

9) STOP

Enter the numper corresponding to the item of your chaice

MOD1 MENU (identification)

1) FILTER

2) STATISTICS

3) PARAMETER ESTIMATION
4) INPUT-OUTPUT PLOTS

5) BACK TO MAIN MENU

Enter the number corresponding to the 1éom of your choice

Filtered Data

1) ORIGINAL DATA

2) RESIDUAL DATA

73

menudrive

, %

menudrive

V

(SUBMODULE
FILTER)

/

menugrive

3) FILTERED DATA
4) BACK TO MOD1 MENU

On which data set do you wish to filter
Enter the number corresponding to tha item of your choice

1) Default Case
2) Specify Order /
3) Specify Xp

How would you 11ke to specify your filter 7
Enter the number corresponding to the itam of your choice

FILTER OPERATIONS

it \H\L\OW\F‘ASS FILTER

—

2) HIGH PASS FITTER__ - «¥, \
3) ‘BAND PASS FILTER - — -
4) BAND STOP FILTER
. 5) TREND REMOVAL
6) NO OPERATION
w2 Enter the operation desireg for
Enter the number corresponding to the 1tem of your choice
1Please enter the sampling freguency 1n cycles/unit time

Please Enter the cutoff frequency for the LOW PASS FILTER

v

FILTER OPERATIONS

1) LOW PASS FILTER
2) HIGH PASS FILTER

3) BAND PASS FILTER .

)

)

’

¥\ a

input 01

¢

Vo

manudriva

/

menudrive

"

prompt

prompt

/

menudrive

. 76 .
Filter Routinas ’ .
Do you wish grapnica! output ?7 M prompt
n ! .
v
MOD' MENU (icentification) ’ monu/c!r'lve
"""""""""""" i
1) F1LTER '
2) STATISTICS " -
3) PARAMETER ESTIMATION s .
4) INPUT-QUTPUT PLOTS. .
§) BACK TO MAIN MENU v :
[V -
Enter the numoer correspondi to the 11tem of your choice /
3 (SUBMODULE
8 . PARAMETER
N ESTIMATION)
) \
DATA SELECTION MENU menugdrive
1) ORIGINAL IO DATA . :
2) FILTERED 19 DATA '
you can perform parameter estimation on the above cata sets
Enter the numoer corresponding to the 1tem of your choice . V/
2 .
Enter the number of cata points prompt
200 - l ,
Enter tne number of inputs of tne system , prompt
2
Enter the numper of outputs of the system prompt
2
prampt

Enter Starting Sample Number for estimation

integerbox

Are you satisfied with these numbers ? (yes/no)

\4
The following 's a prompt for muitivariable delays \/
These delays are prompted for 1n matraix form. reagmatrix

The element {(1 . 2) represents the delay of 1input 1 which effects .
output 2 and soO oOn

Enter the delays for the appropriate 1nput and output \ 0y , 01)

1 . \

Enter the delays for the appropriate 1nput and output 0y, 02)

o]

Enter the Oelays for the appropriate 1nput and output 02 , 01) .w

+

)
Enter the delays for the appropriate
4]

Deilay Matrix

SO O BNEPIIPTE S S PNNIVE D R NPVIIPITNICIIEI PRI O SIS I DO PINSISPOPIIDIIER SO

! 2
5. 1 [
2 . 1 o
Are you sat>sfred w~1tn trese vaiues °

Y

Enter the order of the A po .ynomia' Co-~esgonding 10 the matr‘x ARMAX
mooe! , <« Ay = 8, < Ce >
'
Enter the order of the correspongding A po yromial oY , 0t)
1
Enter the crder of the corresccnd:ng A pc yromial [+ 02)
2
Enter the order of\ the corresponding A o' yromis: 02 01
k] \
Enter the order of the corrasponding A Do yromial “ 02 02
4 *
The orger of tne & pc yromals
1 2)
[E RS NE RN R R R RN R R RN NN N RN N ENESNE FENNFFIFN NN FNRE NP EN NS NN YN N NY Y]
1 e 1 2 N
2 3 4

Are yOu sati8fied with these values 7

y

Enter the order of the B poliynomia corresponding to the matrix ARMAX
mocel , < Ay = By <+ Ce >
Enter the order of the corresponding B po: ynomial or , 01)
) .
Enter the orcer aof the corresponding B poc ynomia) o , 02)
3
Enter the oroer of tne corresponding B8 poiynomial . c2 Q!)
4
Enter tne order of tne corresponding 8 polynomal 02 Q2)
5 .
e «
The oroer of tha B poiynomals
1 2
DU ST USSPV S TUNINS N S S UBIITI N DS EIN ISR EDIITIU D S ISP OSSN SE P POIRCIINDNSARIOINS
Ve 2 3
2 . 4 5

Are you satisfied with these vaiues 7
\4

VCrout

ano futput c2

‘yes.,"C)

(yes/no)

{yes/no) (‘)

IDENTIFICATION PROCEDURES

1) LEAST SQUARES
2) LEAST SQ - MAXIMUM LIKELIMOOD

3) BACK TO PREVIOUS MENU

-,

N

reacmatr- s

WV

readmatris

menudrive

ay 2

1)
2)
3)
a)

5)

MOD! MENU (identification)

FILTER

STATISTICS

PARAMETER ESTIMATION

INPUT-QUTPUT PLOTS

BACK TO MAIN MENU

L}

Enter the number corresponding to the item of your choice

1)
2)
3)

4)

DATA SELECTION MENU

ORIGINAL
FILTERED

RESIDUAL

BACK TO MAIN MENU MODULE ONE

x

On which data set do you wish to perform statistical calculations on
Enter the number corresponaing to the item of your choice

2

Do you wish to calculate Mean, Variance or Standard Dev

Y

Do
y
Do
M
Do
n
Do
n
Do
y
Do
Y
Do
n

you

you

you

you

you

you

you

wish to calculate
wish to calculate
wish to calculate
wish to caiculate
wish to calculate
wish to calcuiate

wish to calculate

the

the

the

the

the

the

the

MEAN of input 1
MEAN of 1nput 2
MEAN of output 1
MEAN of output 2
VARIANCE of 1nput 1
VARIANCE of 1nput 2

VARIANCE of output 1

N2

meanuarive

\%

(SUBMODULE
STATISTICS)

Y

menudrive

V

prompt

prompt
prompt
prompt
prompt
prompt
prompt

prompt

\/

™

Do
n
Oo
b4
Do
Yy
Do
n
Oo
n
Co
- n

Do
n
Do

Y

you wish to calculate the VARIANCE of output 2
you wisn to calcuiate the STANDARD DE/IATION of input |
you wish to calculate the STANDARD DEVIATION of input 2 °
yOou wish to calculate the STANDARD DEVIATION of 1nput 1
yOu w'shn t0o calculate the STANDARD LEVIATICON of 1nput 2
you wish to caiculate cross variances 7

Statistical Routines

* Calculation of Mean - Inputs
1
‘....O.‘.'."'.‘l"‘.."l."‘.".......‘.'."...“....':.O“."‘.O.‘.."
1* g ar0g
2¢ 0 a+00
prass enter for the naxt page

Calculatron of Mean - Outputs
1

PSS INPS SNBSS INIESNEIITESIBLIRUOGINITRSOIINSESINBIIPENNPOSEIsLISSOIIOIESR
1+ T YT YY)
2 LA AR R RS R

press enter for the next page

Calculation of variance-Inputs
1
B SV ISI RGBS LESITE I C G ENN IS L SN INBOCEIICENFDP PRSP LN PR ENSIEEPEPOPIsssyanens
1® 0 d+00
2+ of a+00
press enter for the next page

Calculation of VARIANCE - Qutputs

1
ISR PR R R N RN R E N NN RN R NN R Y RN R RN RSN R R NN RERYRRSREERESERREY)

1 sesensS
2 ssesssee
press snter for the next page

Calculation of Standard Deviation -Inputs
1

[P EFEN SRR FERARERIRNNERR R RN N RN ENRE R RN ERN SRR ERERERARE R R RERESRENERERNE]
1 0 a+0D0
2» (¢} a+00
prss entar for thae next page

Calculation of Stanoard Deviation -Qutputs
\

T E R FE ISR R B R ET RN RN RE RPN R NN RRRREE NN RN EEEEE R FREESRR R R RREYE R RN RN SRS RN Y]
1. sssssen s
2= asseREES

press enter for the next page
d
you wish to calculate the DiscratefFourier Transform
{ .

you wish to copy these results into your .pnt file ?

MAIN MENU v

80

prompt
prompt
prompt
prompt
prompt

prompt

moopmatrffﬁn*

(4

menudrive

W

-

A 8.2 User Save Files ‘

Print File

\\\\ sessssses user d/thesis pnt (XIS NY]
<t ssessvecscrsece DARAMETER ESTIMATION ®ssssssensssvrssasesns

‘:z::s:::::::z:::::::::::::::=:::::::===================:==::xz=:::=:==
LEAST SQUARES .
2 1 NDATA T nNu T Ny TT NSTRT T
&7 e e A e e — e, ——————
I 200 |1 o2 2 11 5 il)
Delay Matrix
1 2/
0000220050 U0E RO 0SSR EC I PPRITE Y EPIRICENOPELIP S S PIEVECINBOOSCSIRTRBTARCNINSSS
Ve)0
2 * 1 /0
The Order of the A Polynomials
1 2
% [A AR NN] ."l‘.‘."‘..".‘....".‘,t."..l‘.‘.“l‘.l..‘....ll.“‘.‘l.“‘i..
16 0 2
. 3 4
The Order of the B Polymomials
1 L2
“O.‘.’.‘.““‘..."..‘“‘.l.‘."l.l‘..‘..‘.‘..‘.'.““.“'l.‘"‘.'.‘..“
» 1 2 3
N 2. a 5
* ¢tThe Order of the C Polynomials "y
1 2
.‘OIU“.‘.“.“".Q-“'.'l““.‘..O“.‘.‘U"‘-....“O‘.....OO‘.‘.........
1. 0 0
2 * 0 o]
J The A polynomial estimates
i 2 . 3
.../....‘..“.‘.l."'.‘.".“"."...‘.".“....“...‘“.....“““‘..‘..
K ¢] a+00 [EE RELEN] [A XXX LR N]
2+ 0. a+00 0. 000 sssevse
N 3 0. a+00 0. a+00 0. d+00
4 0. a+00 0. a+00 Q a+00
R The A polynomial estimates -
4
(EER RN ANES R R RIS EEENEY R ERE SRR ER SRR SR R RSN R ESRERENEREREERR R XN}
‘/ (X R RN R R b
. [EE S ERNE] s
. IERE R S NN
qs 0. a+00
- The B polynomial estimates
1 2 3
[E I YRR RN EREERER R RN PR RN ER SRR R RS R EEEE RN RN RSN E R REYNR R R R SRR N N D
1 0 d+00 o a+00 sEtse s
2" 0. a+00 0. a+00 v} d+00
3 0. a+00 0. a+00 0 a+00
4 0. d+Uu0 a. a+00 0. d+00
] The B polynomial estimates
a o 4 5
““‘“ll“‘l““‘t“‘“".U“"..“.‘tt““t.“‘.“.“.t“‘.‘#“lt.‘l‘..
1 (XA RS R RN [ERERESRE]
/ 2' (A E R E B XN (IR N R ERNY)

82

-

83

14
)
3. 0 g+00 T Y ERERY] ¢
4 0 a+00 9] a+Q0
NORMAL IZED VARIANCE RESIDUAL
1
LI R A RR RN AR RRRRRER R LSRRI ERNENEERINEREEY RN EREE NN RN EYFRRENN A NN FNNN RNRE N NN]

1 0. a+00

2+ 0 a+00 !
The Axkiake Criterion Number s O
xzzr==z==2=x gnd of parameter estimation results Z=s====

svssses STATISTICAL INFORMATION seesxsaes

Calculation of Mean - Inputs

1
L A A EER AR R RN E R R YRR EEER PR E R R E R R RSN AN R N EE TR RSN RN R RN R N R J

1e 0 d+00
2 0 a+00
Calculation of Mean - Outputs

1
[E R EY RS RN RN NN SRR FREFERNEE SR NERERE RS RN R RN YN R R RN EY R R FR RN RS RN NAENN N NN]

1. ssvsenns '

2. ssdssne s
Caicutlation of variance-lnputs \

1
I E R R SRR E RS L NS N R N AN R R N R RN R R R R R A R R R R R NN P R N R NS RN R R NS AR NN

1 o] a~Qoo -
2 0. a+Q0
Calculation of VARIANCE - Qutputs .

1
[R A R R R NN R RN R RS SRR R RN R R R R RN R R R R R A RN R R E RSN T S AT PRES R R R X)

1. sssssnen
2. ersses ey

-~ Calculation of Standara Daviation —-Inputs
1
[P E I Y I R R R P NP R N R R R P F R R R PN PN R R R RN E P N RS RN AN YSRT YRR RRR SR FE R LR N B J
1e 0. o+00
2+ 0 d+00

Calculation of Standard Deviation —-Qutputs

1
BEDES PSSV CINS SRS EB RIS SR ERSN SR DL EE BRI SIUNIINS SIS IR ITIEIENEBISENBESS

1= “ssasesm
2* LER L L RN
mzxzzx=cs=z END OF STATISTICAL RESULTS =Z=zz==ssz==z=z==z===
‘
- s ’ '
N \\
© N - -
. {
) .

g

“

L

Diary File

[

ssesssssssss ger.d/thesis.ary I YY)

HELP

IDENTIFICATION

INPUT-OUTPUT PLOTS .
STOP - -
FILTER

ORIGINAL DATA

Default Case

LOW PASS FILTER —

LOW PASS FILTER .

LOW PASS FILTER

LOW PASS FILTER

PARAMETER ESTIMATION

FILTERED 10 DATA ’

LEAST SQUARES

STATISTICS

FILTERED .

BACK TOD MAIN MENU . |

QuIT)

N

86

Two aspects of this work may be considered for future research. The first of these
involves completing a working prototype of the package as specified. This would
involve assembling existing computational software and incorporating in into the

structure and developing software which is not available. In addition, an interactive

shell would have to be designed and implemented. The second is the extension of the

present package to include other modules which would perform additional features.
An example of one is to design and implement an input graphics facility to build
systems from block diagrams and compute the closed loop transfer function. This

could be viewed as a preliminary step to Module Two, which expects a single transfer

function for the plant.

/

e

il

2]

19

1]

87

REFERENCE;\\
AN

S.D. Hester. D L. Parnas and D.F. Utter, “Using déqumentation as a software
design medium”, The Bell System Technical Journal, Vol. 60, No. 8, pp. 1941-
1977, October 1981 \

h -

C.L. McGowan, J.R. Kelly, “Top down structured programming technique’,

Mason/Charter Publishers, 1975
V. Begg, “Developing expert CAD systems”, Unipub, 1984

C.J. Herget and A.J. Laub, “Editorial: special issue on computer-aided design
of control systems”, Control Systems Magazine, Vol. 2, No. 4, pp. 2-3, December

1982

’
J R. Rice, “Matrix computations: mathematical software™, McGraw-Hill, 1981
J J Dongarraet al , “LINPACK Users’ Guide”, SIAM, 1979

B.T. Smith et al., “Matrix eigensystem routines- EISPACK™, Springer-Verlag,

1976

Issues 1n the design of a computer-aided systems and control analysis and design

environment, Qak Ridge National Laboratory 1984

W.F. Arnold and A.J Laub, “Generalized eigenproblem algorithms and soft-
ware for algebraic ricatti equations™, Proc. of the I[EEE, Vol. 72, No. 12, pp.

1746-1754, December 1984

W.J.M. Lemmens and A.J.W. Van Den Boom, “Interactive computer programs
for education and research: A survey”, Automatica, Vol. 15, No. 15, pp. 113-
121, 1979

K.J. Astrom, “Computer aided modeling, analysis and design of control sys-
tems - A perspective”, Control Systems Magazine, Vol. 3, No. 2, pp 4-16, May
1983

SN

APPENDIX A

L)

89

-

c---------.----.’.---‘----------------_------__--------------------a---—

C-emme==escecaeMCGl I ~UNIVERSI TV-CONTROL =CAD=~PACKAGE====s===-=nme=c=m

T

MODULE NAME: yesno

g gyt g o QS g QU Armmmmmm e -
»

CALLING SEQUENCE: CALL yesno (massags. result, display, keyboard)

(oL Ll L e D R L L L e L et L LD L LT

PURPOSE :

This subroutine is a yes/no prompter. It displays a message provided
by the calling program and then prompts the user for'-a yes or & no
response.

c------—----—---‘----——-—-----—--- oo - - - I - -
(o b L LD Dbt D et b D - - e - - - L e L
c .. - - ———— - = = - - - -
C CALLED SUDROUTINES:

Crommrrcrm e e mrmcccce = P R L T L T - e s escc e n - —————-- -
[P LT e e L LD L LD etk L D e b it b L L Dt e L Ll e
C COMMON BLOCKS, : ’ L

(oL LT e L LD e P L D D LAl] Ll L R Ll el e il bl d o

¢
c---- - - - - - —— -———— - - - - - - - - - - —

C IMPORTANT VARIABLES, PARAMETERS
CHARACTER®*80 message This string is dispiayed before the
user is prompted for a yes or a no
If the user inputs a yes =3>
result = _TRUE. it the user inputs a
no ==> regult = ,FALSE.
INTEGER cisplay the unit number of the device that

. this routine has to write to.
y kayboarda The unit number of the device that
this routine has to read from.

LOGICAL result

c----- ----- W - —_ SRR, RS G —ES e e e -—-—- - em-.--
Ll
c---------------——----———----- - - = e e W e
C RSFERENCES) .
c sm————— - ——— - S e = D e A e A e e e R e
c-------------_-------—------—-—- - ————— - —————— - - -
C COMMENTS :
L e e e L L L e L e D
«
C AUTHOR ,DATE CREATED : Michae! Tessler sng Babak Dsneshrad
July 1984 .
c-----------t—-—------——---------------—------ --------- - - - - =
o T b bt T R e e -

C UPDATES :

(o R Rl R it LD L DL 2t l Rl DD Santatadakaled - - P m—— - s et e r e — .- ——————-—

Cm==cemeec===cMcG111=UNIVERSITY-CONTROL-CAD~--PACKAGE-~=~===-=-====== -

(e mc e m e e e e accrc e e e e enm - - o = -

MODULE NAME : PROMPT

[« L T — v o

CALLING SEQUENCE,

&
w <

a

et L R R Y L L L PP LR T L

CALL prompt (autol, type, message, dbip.

decimal, whole,
string, display, keyboard)

Lo T gy Sy g gy

This| subroutine prompts the user for an intaeger, real,

Punﬁtjt:
doubte~precision,

with the appropriste format.

is prompted agsi

(e vrcccncnrcanaa

or string variable. It tries to reac tna variable
If an error 18 encountered then ths user

n, unti! the format is satisfied.

-

C CALLED SUBROUTINES:

C COMMON BLOCKS

1

....... B kL R A Y L L T

C-----—-—-—-—-‘--—---------------.’--—---- ————— - - - ————— . ——-——

~

o r e e r e accnatamn e o n e oo - - - - -

C IMPORTANT VARIABLES, PARAMETERS
l'LO('aICAL

CHARACTER® &

CHARACTER®*80

REAL*O

REAL

INTEGER

CHARACTER®=80

autol

type

db &p

decimal

whole

string

H

Upon detect of & <CR> without an
entry the u‘h re~-prompted {f
sutol = FAL . 1If aute0 = ,TRUE.
then the user is asked "Do you wish to
change the variable 7" {f the snswer
to this is ‘yes’ then the user is
reprompted, {f ‘no° then no reag is
sxecuted and thus the variabls that
is supposed to be resd by the routine
is not read.

The typs of variabie that is cesired
types ‘4nt’ s3> integer

‘real’ s==> rea)

‘dbl’ ==> doyble precesion

if type = none of the J above antries
s=> charagter string
This character string is dispilayea
before the user is prompted for an
entry. g

If a double precision number is to be
read {n then the result of the read
is returned to the talling routine by
‘apip’.

If a REAL number is to be read in
then the result of the read fis
returned to the calling routine py
‘decimatl’,

If an INTEGER number is to be read in
then the result of the reada is
reaturned to the calling routine by
‘whole’

If a CHARACTER STRING s to be reag in
then the result of the reag is
returned to the calling routine by

i

I

>

S

v -

“
‘string’
The unit numbar of the device that
this routine has to write to . »

“ » keyboard The unit number §f the devica tnat

this routine has to read from,
C-_-\- _____ A T T S WD R R W SR R D S T S D S D A A B S R S R SR W G A R R e e R R R S P W T an e e v
\ 4

[et e L PP e L L e Lt bttt

C COMPUTING PR!NCIPLE’.M!THOD ALGORITH“ t -'

INTEGER aisplay

(reerercrrrcccarccr e ce e st een e m e ——— S ———————
C REFERENCES :

.c--—-‘---—----—----———--——--—----------------—-------------7---------

[ettt L PP L Y T et detaiaiatat e E L PR S ST LR R T R T

< COMNENTS H

C------_--_—---------------——\- ______ - ————— - -~ - -~ - - -

C AUTHOR,DATE CREATED : Michae! Tessler and Babsk Dageshrad
July 1984

(eerrmcccmer e c e c e e e e m n e A .. . — e~ e e S, ———————— -
(-emmcccean g rmm—a—- e e 2 e o e e o

C UPDATES :

(comecammcemercrccm e e —— - memeem e crc e e ——————— -

c—_——--—-----—--.-———-.--—-----—--------_-_-ﬂh--------—------—---------

Cmmm-- =======-McG{11-UNIVERSITY-CONTROL-CAD=~PACKAGE-==-nnsmmmmncmnas

MODULE NAME: menudrive .

- > A - S W 4 P N A D P SR A TP AR 4 T S A e D e S S e D e D TS O N S s SR D 6 G R e de e

CALLING SEQUENCE: CALL menudrive (message, name, items,
entries, command,)
° display, keyboard, choice)

- - o Y > S s e G D P M e 4 T e R S R S e T e S - Y A o - -

URPOSE:

This subroutine takes a maximum of 8 character strings; which should .
be provided to it by the calfing routine, creates a menu by displaying
them in menu format (placing numbers in front of them). The user is

then asked. t0 enter the number corresponding to his choice. Both the
number of nis choice and the character string that he chosc are then
passed on to the calling routine.

[—————— T L U

(o L ittt - o - - - - - - - e me e e e, ————————--- - - - - - - -

o R L ———————— _———————— e ————————
.

'C CALLED SUBROUTINES: produce

[e L L L L L Y e e L L et et D e el L

Cremmmmmercn——————— B LT T e bt L DT P PR,
€ COMMBN BLOCKS, : ,

Cre——rercrccec——macan

CC—----Q----—-----------’--------—‘--------—----------

C IMPORTANT VARIABLES,PARAMETERS : .

CHARACTER*80 message This string is displayed bDefore the
user is asked to choose ons of the
menu entries,

¥
k
7
3
5

7

T T B et T L

v,

CHARACTER*4Q name The name of the menu.
INTEGER entries '{h. num:r of entriss to the menu .
: max §).
CHARACTER* 40 items (entriss) The entriss to the menu should be
: atored ‘n this vector andg then pluoa
. onto the routine. v
INTEGER . choice Is the number correspanding to :n)
manu item that was chosen by the & ‘r. .
CHARACTERRA0Q command On output command = ftems (cho!co).
INTEGER display . The:urrit number of the device ‘that -
. this routine has to write to .
" keyboard The unit number of the device that
this routine nas to reag from.

N
. ' ‘
(o rm e e e o e o o o o e e e e e e P e e - e
*
.
.

[-----n--------—-----o----------—---.-------—-----

c COﬂPUTING PRINCIPLE, METHOD , ALGORITHM ¢

c----——n--—------.—-u-—-g------—-—-------—--------_---........_-.._..—‘--——-
.

(o mr et et e kst G ccm et e mam e m——— e, ———————————

C REFERENCES

e g e e S T T T

c--—----------—-h.----'—-----—-n-—.--—----d—---——-d.-——-—-------.-%—--

C COMMENTS : -
c--.-----n---—-----.‘—------—--—------——--——---——J.--———o ------------ -

G o e 2 2 om0 e 8 B O 0 W

c AUTHOR.DATE CREATED : Michae! Tesssler and Babak Daneshrad
July 1984

c-u--——,--—-——----------------—-----------------------—u-------—-.-—‘-

Crrm e mcemnnm oo e e maiaim e e e .- e o - - - - - - - - - - -

C UPDATES : ‘

c----——---,--—-b-—-----------—q--—--—h——q——-—-——-—q--———------—-----——
o

N

’
A MR

s

A

%

7]

o

1]
3 %) . A
[y I
G oo o om m on i on o v e o o o 0 1 o T 0 O e e W

R e 1 1L |-uuxveasxw-¢:¢:mmc:L-‘cm:»--Mcm\m------—---—---~-§L

c\.----_-_—-_d---_\-—-- ------------------- -~ - - - - -

c----q--—--------—‘-----——------------..—-..---------..-----—---—--------

T e

MODULE NAME, INT!G%R 80X

C"‘"""“"'""" ----------------- - - - - - - - - - e 2 .- - - -
CALLING SEQUENCE: CALL integerbaox (charsliem, numbert, . N
. number2, numberd, :
numberd, numbers,
numbers, numbere!l em, .
o aisplay)

Crm=mreamecccemccc e amanam——————————————— e m——————————— ————————— -
PURPOSE, [N

This subroutine takes h 6 differant integers and puts them in a box
format for the purpose of displaying data to the user gduring proprum

nﬂ:uﬂon.

c-———- ------------------- e m e -——-- " - - - - n————- 4 —————
c ----- - - ——————— - - - . WD M e B R WS AR SD n W - - - P
C-----------.---————---..-.--------o—-a-.-s---—p--------- ------- - -
C CALLED SUBROUTINES: !)
c--—-----------------.----------—----------------—-----------d--------
4 [- - = e il o o - - e o - -

Commrrcnremericncovrcncdocmcmcac e

C COMMON BLOCKS, :
C

——--e L e LY Y Y L LY P Y T T L L Y Y T T Ty

o v

oo o 0 e m i o e e e e

C IMPORTANT VARIABLES,PARAMETERS ;

o

INTEGER numberi-6 These are the'8 numbers that the
’ program will put into a box format.
- numbers!em Is the total number of items to be
- . put into a box format .
0 < numbsrelem < 8 ,
- . display The unit number nouoc-utod with the

. display on the terminal.
CHARACTER®*S - charelem (8) This is a character array that on the
) input contains the heading for sach
number. This character-string is
. printsd above the number in the box
) to describe h

c--——94-—-‘-——---——-—-----—————---——-—‘ - - D b L -———-—-—
. L

[DI T L LA L L L TR L e L L L S R L L s T L L - -

C COMPUTING PRINCIPLE METHOD ALGORITHM ;

C--O‘.-—‘----C----0—-------‘-----—‘---------—----------q-—----—-. -----

The € integers are put into a vector of gdimension 6 (calleo box).
The elaments of the 2 vectors ‘box’, and ‘charelem’ are printed out
with variable formating to allow for the case of having fewer than
integers to print out. . - i

c------a-----..--..--_- - - - ---.----------------7----
C REPERENCES ; !

[+ - — - - — - -~ - /?‘ - o
C(rewececcreccma~ o e e e o —————— - e o e el o e
C COMMENTS ; ' . tw

[LT TR L etttk L L L LS R P PR L L L X L

94

: B . . RN
) . v < ‘ .
* s B .-
- ¢ \ . ! N . 4
N N N . - u -
- s
- .
. ‘ : 95
-
-
- i @
D - .
5 .
Y (- a .
- - 5
- @) N \
Y
-~ ‘ 4 ‘
c----q-- LI L E L LA I L LT D T Py T e L LY
g - ° C AUTHOR,DATE CREATROD Mike Tessiar
. August 1084
G om0 0 1 0 o o 00 o e o o oy > P 3
.
N e
[« - T > > P A S D R S T A D DS o L D G Y S e G N D D ,
C UPDATES .
’ L= - s s O " P - -~ - > e - - - - -y
. A
. .) 4
i R
< . " o
3 .
3 . -
- " * . : .
i »
A R « .
. - - . N
o .
.
i ' .
% L4
i ' b :
- e ')
- " .o \ .
- -
. . A . |
. -, 4
; - - ;
s .
[r > . ’
> v kd
. . . i \ . .
. ' . . ! ’ %
- - - . v
I .
. M
1 . B -
;,1. L.) . » .. B N
' . f
L - N N N
hid 4 . v ’ 3
" oy
. a 13
4 s B . . 5 * i
5 N L4 ' ~ T
4 ot -~ - ’ . st
) ' L] ~
. - .)
- - o s \OC . .
. B
_ - , “ IR -
3 . ' R :
» - “ t ¥
. . T &2
| . : , ;
4 ‘ ! L] u
Cose -
- !
3 , 3
. b N Al F
. L:
2 > e s
3 Lt s H) . i
! ! M i M ;;,‘
'Y " " B i) . i . x
. | . .
,
[k4 B ; N [' b
~ * b - A4 . ~ v, 4 4
. . . .
- . >, , - &
X P 1. LA - s 13 w o, A 3,
] . e g
s o . .
e s
v £ . > .
4 ¥ ° * - .
R . R
v . oA . 1y .
[. . N % .
] . . . 4 Y }
r . "% , ’
ot . . . N . B .
S
« . N -
' - : . oot
o . s
N - . - a Lyt L
E R - . . - .
3 . i . . ' v = . -
. » il N - -
. . M .
. . . + ¢ e -
L - -~ ’ N
-) - «
- . . .o R ,
. ' vt \ ' ¥ ~ Ve
- ° » - R k! B
. f . ¢ A - 4 ¢ &
. 5 * a » F s
4 - f . “ -
P . -~ .. ~
o s, '
i
- - = ” ” " - " L S >
B - .0 [* -
- - N
. . W N L 2 N - L - B N

“

CFE A

TR £ 2 ST HIGARPR SmeER e T T e E e

. C COMMON BLOCKS, 1 .

-
o

§
! \
v
c—-—s----_----4.-——--------------—--.p- et S L L P e L D L LY L ey D L

CommmmmmmeeoenaMGBi 1 | ~UNIVERSITY-CONTROLACAD-~PACKAGE ===~ ==m=oomaan

g

; ‘

e 0 0 0 0 om0 i D D P W P D L e S e e .

MODULE NAME: READMATRIX

s

[
CALLING SEQUENCE.

CALL reagmatrix (type, —promptmessg, title,
1 heading, headerflag, frme, \
1 fieldalenth, omatrix, rmatrix,
1 imatrix, nrow, ncol,
1 display, heyboard, loweranga,
P | upperange, rangefiapg)

c-----..----------.-;------------------.--------ﬁ------.---7-------—

PURPOSE:

This subroutine wil) read in = matrix, dispiay for the user the
matrix that ne has just entered, and asks {f he wants to correct any
slement. The writting of the matrix onto the screen is done Dy
another subrbdutine called PMATRIX. v

v

(oo c e s s e et a e r e — - o " " o’ o

(e o b et e o £ 1 i e e e e

c-—d--q-—-------—.o-o-.------------------------------o--—---——----—---
.C CALLED .SUBROUTINES : convert, prompt, pmatrix, oblipmatrix

c----------------------.-------.----------------.------.--------------
c_-,--.---;.---4-_----,--_----
c--r------------JL-q---.-----_-------,--—-------------------a—--------

B

[e L T e L CE T TP S

. € IMPORTANT VARIABLES ,PARAMETERS ;

INTEGER display The unit number of the output termina)
e keyboard The unit number of the input terminal
hd nrow The number “rau of ths matrix to

. " - pe read in,
- ncol The number of columns of the matrix
B to be read in.
" lonarangs, The option of restricting tne input

upperangs to a given range is available
fowerange is the lower 1imit of the -
fnputs & upperange is the upper 1imit
of the inputs.

.

LOGICAL rangeflasg If you want to restrict the input to
' A certain rangs ‘rangefliag’ must be
. \?AJ.N .TRUE. .
- headerf)ag tf s eacial set of instructions are
. to be en before prompting the user
' neacerfisg &= ,TRUE. (the
° instructidn itself shoulo be storsd

in hesder). :
CHARACTER*320 heading Is 8 variaple that wil) be displayea
<, headerflage . TRUE.) 1t usually- .
containes a\set of spacial

instruction '

The type of rix that is to be read
in., fe. type ®* Yint’ ; integer matrix
to be read = ‘regi’', or ‘dblp’ mean

\ \
b

after eve 4-8 prompts (only if .

CHARACTER®*4 type

-

S U

Rkt 7

“

w s ot

T eiie ik

i

SRR

-
g AR TR

g

o

L

-

o,

s

/pf

real and double precision matricies
reaspsctivaly.
CHARACTER®80 prompimessage Each time the user s prompted for an
entry this message 1s displayed.
The title of the matrix, ™
The format that you wish the elesments
of the matrix to be presented iIn
te. frmt = °‘110‘, or ‘'D17.8°', or
‘F11.4°, ‘PFG.3
CHARACTER®4 fieldlenth The number of character spaces thst .
- esach element is going to take upon
formated Jdisplay. fielglentn is
cgependant on ‘frmt’ in the following
manner for the examples; fieldlentn
> : s 10X, 17X, ‘1IXC,
¢ ang ‘06X’ respectively

CHARACTER*80 title
CHARACTER® 10 frmt

INTEGER imstrix{ nrow, ncol)
REAL rmatrix(nrow, ncol)
REAL®S amatrix (nrow, ncol)

depanaing on what type of & matrix
you are reading in the result will go
* i into the appropriate matrix
integer ==2> imatrix
resi sm> rmatrix
agouble precision =s> gmatrix
the user must keep in ming that in
not to confuse the passing of arrays
to a subroutine and retrieving them
all three matricies mbet be declareda
in the calling program, sven if thay
. are not used (suggest the using
of scratch arrays).

ro?

Cm= - Y . - i - -
.

[- = - L - 1 o o - - -

C COMPUTING PRINCIPLE METHOD , ALGORITHM

- - — - - - " - - D v -

c-_ -

[

B
[g ettt L e o T T 2

C REFERENCES ;)
C* - - ——————————— - 0 0 2 e e e e
Cmmmemmcrecmctce e —m—mresm sl e e a———————— e memmeec e~ ——dec—— e —————— ———
C COMMENTS

[L L L L D L PP

R - P

G oo om0 o o om0 B e o e PR

C AUTHOR,DATE CREATED : Michae)! Tess!er and Babak Daneshrad
July 1984

Crwmrcosanean crmcmmr e mcrsm e ————— cemmmemerecc e ccsem——————— ————
.
O c e ra s et a e — - 1 1 e e

C UPDATES :

(ommrrecec e rccncam e s e m e e e e Eea e Cam -, ... -
ey gy g iy A P gy g g R Bsmae

c‘-----J-—-‘.---—--&—-hma--‘&Q-—’-———-’~——‘—-"------—-------——---—---

g—-*-~--:------ncﬁilf*uNIVERSXTV CONTROL-CAD--PACKAGE -~~~ ~-~~---~-~~
MODULE NAME; PMATRIX > ' X -
c-—-----h-----------—--------------------—-----_-—-—-_--_..._--_, ———————

CALLING SEOUGNCE: CALL pmatrix (matrix, nrow, ncol fmt, fieldlenth.
tilte, ro-dfl-g. matrxtype, display,’

te -
v
.
°
-

S

e

R

‘(

-

3

keyboard)
Cndnw------_--—-----_-——---------------——--—--ﬁ-------_-----—~-—------

PURPOSE: . N
This subroutine prints out a real or integer matrix with a spetcified

forma rovided by the calling routine. It provides titling, labling -
and ¢ works. The routine canm be used alone or in conjunction with

the readmatrix routine. In the second cise the programmer should

only worry about the pass parameters to the readmatrix routine.

(rvnomnmrrcccr s e tccr et ————————— - - emeceden .- .

G e o o e o e v 0 0 e e e o e W i e > o s s o -

oo arm cm et e e - - —— - - == ———

C CALLED SUBROUTINES: yesno, prompt .

- - - - - - s o - T > - - S - . - -

[of R ettt e T R R P R T - b - .

C COMMON BLOCKS, : . '

C------—--—---—---------—-—-----—---—c—ﬂ—---—---------r—--—b—*—-—--———d
[el et e LT T e
C IMPORTANT VARIABLES, PARAMETERS ;

REAL matrix (nrow, nco!l) -
. The INTEGER or REAL matrix to bDe

printed out.

INTEGER nrow The number of rows of the matrix to
) ‘ be printec. !
- ¥ nco! The number of columns of the matrix
. to De printed.

CHARACTER® 10 fmt The format that you wish the clomontn
. . of the matrix to be presented In
ie. frmt = ‘110', or 'D17.8’, ar ‘
‘F11.4°, P83’ , .
CHARACTER®4 fielcdlenth The number of character spaces that
) each slement s going to take upon
formated display. fleldlienth is
‘ dependant on ‘frmt’ in/ the following
. manner for the exampligs; fielidientn = .
. ‘10X, 17X, C1ixe, B
, ang ‘06X’ respectively '
CHARACTER*80 title ‘ The title of the matrix.
LOGICAL reacflag Because this routine can be used in
conjunction with the resomatrix
routine 1t has some features that are
Memnt to be used with that routine, -

1f reacfisp = .TRUE. then ¢
those featurss are executed. i
Generally when using this routine by -
itse)f set readfipg.= . FALSE -
CHARACTER®4 matrxtype The type of mgtrix to be printed out
. matrxtype = ‘int’ ==> {nteger
matrxtype = ‘rea)l’ =s> rgal
INTEGER display Tne unit numbar of the ocutput terminal -
- keyboard The unit number of the input termjinal. »
C"-";"‘-"-a-"-"""---1“""'“‘-""""""""-'-“‘"““", ’
Cc~ - - - - - - . s) %
C COMPUTING PRINCIPLE,METHOD,ALGORITHM : A '
Crmrrmr o e e c e r e o m e - - - 2 5 0 e e o e e e e e .
Cormwmmm——m—— —————— e e O e e O e O L .
C REP!R!NC!S : ¥
c----_--_----------.---- . L
Q . i%
- L
pi

.

"

. AT 4 & e BTN i

Daew

2 e et e e e o et

Who BT TR e g xR IR M e e o

L
PO

&

.
R
R
-~
»

., p
5 - M
- r
f’ \
B
-
c - s o e 2, = > o - - - -

CM.!NTS :

It should be noted that this routine is oniy designed for the
printing of integer and real! matricies. MHowever {f you woulg like to
print a double-precision matrix you shouid use the dbipmatrix routine
which is tHie exact same thihg except that the matrix is declared as &
double~precision matrix.

.

c - iy -iomd

R R T T e e o O e i 0 e e O 0 O - e
C AUTHOR, DAT! CREATED : Michae! Tessler and Babak Daneshrad . -

July 1984
' - - - - - - e 2 > % e D D o > T > -
c---—------— ---------- - - - P e Y T
g UPDATES :
---r----—----“------‘-- ------- - - - -

c o= e g S e ecace——a
[od McG4 1 1 -UNIVERSITY- CONTROL CAO--PACKAGE--------~-----°-*

* C""""‘“--"'"‘"""’"""""“ --------- ---—-------------------------

r
.
s N

~ o N \

- ey < : ®
- » ? -
"a . - ' '
. &
. ¢
£ ‘

g,

e T R R R

S
4
-
i
wise ppw el
F
B
’
8
+

o de et E

'mem-w e

c----.,----h---a-----_,——--_-_-------_-_—

- - - - - - - -

- -

Com======-—c-=--MCG11 1 =UNIVERS I T¥-CONTROL=CAD~=PACKAGE========m==mmm=m=

Cmm e o o o o e e e 0 e e i e = e o

MODULE NAME: the GRAPHICS_SHELL file

[B e DL B L L Pt T P L DL P

C CALLING SEQUENCE:
praphics_she!'l.f (as well

has the calling sequences:
CALL GRAPHSHELL(A,

L ’ml n.l
& Controlmatrix,
& mt, ne,

R des i rebubb e)

' this calling sequence:
CALL GRAPHSHELL(A,
ma, na,
. Controlmatrix,

me,nc,
des {rebubble.

labe lofuser N

X}
labelsize,
desfrsownligbe!

LY 8

OONONOANOAANON0a000000000000
e » n--/\rp

[

-y - -

There are two similar versions of the
as subs.f) file.
The one located in the dirsctary /usr/nonvisi/control 1/graphics

sgata matrix
=gdimensions of A
=ugser supplied control
matrix 5’
sdimensions Of Controimatrix
=positive -->bubblesott cata
negative -->do not "

The new {(and improved) version of tha graphics shell
routine, located “in /usr/nonvisi/controli/graphics/changes . has

sgita matrix

sdimensions of A

suger suppl1ed contro!
matrix '
sgimensions ‘\of Controlimatrix
=positive -->bubblesort d-ta
negative ~-->do not *“

=A character®*20 array

of size labelsize
asdimension of labslofuser
apogsitive ~=->use user
supplied labels.

negative -->use default
labels.

b Xx)

URPOSE: This f1ile contains interactive routines to be used in

conjunction with the graphics utility routines located in .

the files SUBS.F , MAIN.F

& PDF.F

- -
\

- - - - -

¢ - -

C COMMON BLOCKS, : NONE

o o e r e e c e r am e o e = - o - - —————— -~ e e

. — o — ——— o P - T -

: The following are a listing of

the variables used within the subroutines that compose

REAL.*8: A::This is the data matrix whose columns contain

Controlmatrix: This is the matrix that the user

It usually has only arocund S rows.

and plots a screen full

. C
C IMPORTANT VARIABLES, PARAIETERS
c
[the GRAPHICS SHELL.F fils ::===>
[
C the cata points.
c
C . supplies.
c
[
c
c : be surpressed.
c
[
c
c
c

. e

v

gesirebubple: Thig is an input flag. If it is positive
then the data points will bs bubblesorted ; if
desirebubble is negative, bubblesorting will

Control: This is the internally used control-matrix,
. Ctri: This is a working control-matrix. It is eventually
> sant to the routine GRAPHM which intorpr‘ts it
of graphs.
Ctri2: This is a tampon{{y‘ matrix that usually halds .

s

PR
.

Lt

SIR————

- orem

L

e
.

(o]

C that
c

the contents of Ctrl when it is being redimensioned.

¢ retrnarror: An internally ysed flagh. If positive, then
1 an srror was encountered
xmode: This is a flag that indicates the format of the
graphs on the screen. R
Asdf: This is a 5*5 array containing all the possible
«* screen coordinates that a scraen of plots could have.
4*4 is really enough for this matrix.
INTEGER: ma , na ; These are the dimensions of the ogata matrix, A.
’ mcm , ncm;: These ars the dimensions of the user supp¥1ad
control-matrix, Controlmatrix.
mc , nc: These are the dimensions of the internally used
control-matrix, Control., Note that { nc := ncm }.
nctrl: This is the number of columns of the abbreviated
control-matrix, Ctrl. Note that {1t has mc rows.
nscreens: The total number of screens.
nwindows: The tota! number of windows (or plots (or graphs)).
nextra: The number of windows on the last screen.
screennumber: The present screen’s number,
. Ipoint: This is an integer vector of size nc. It is a pointer
i to, the columns of the matrix Control, giwving
an indication as to the location of each of the
plots. For example if Ipoint = (1, 3, S, 6) this
would mean that the information concerning the
first window starts on column 1 (naturally') and
the control info for the second plot starts at
a column 3, the third plot at column 5 and finally the\
info for the fourth plot starts at coliumn 6 Note
that from this, one an deduce that window aone has
(3-1) or 2 graphs on 1t and simailar1ly window 2
contains (5-3)=2 funcions and the third window
contains only one function. The last plot contains
(nc -~ 6) + 1 plots on it,
N WARNING 'ttt Tt §g important to note that
&ﬁ%@ vector has nothing whatsoever to do with
 th¥"integer vector of the same name that is found
within the files MAIN.f and SUBS.F. The are COMPLETELY
independgent.
windows: The number of windows on the present screen.
plot1,plot2 : Temporary variables used in the OVERLAY routines.
column: a temporary column pointer. .
newctrl (sometimes also called newnctrl): This is the
new value that nctrl! assumas whenever extra columns
are added onto Ctri,
naugectrl: The amount nctr) should be augmented by , or in
other words, the number of extra columns that are
: to be added onto Ctrl.
Lt OGICAL : abort: A flag indicating that a subroutine was aborted.
addmore: A flag used in the CREATESCREEN routines i1ndicating
that the user wishes to add more windows.
result,autgld : Used by Bob's interactive utility routines.
CHAR®*BO.: message: Usaed by the utility routines
Labei(4) : A set of labels for up to four plots an a window
2 that is eventually sent to the GRAPH routine.
CHAR®*4Q0: name,
. item(20), ' .
command : Used by the interactive utility routines,.
CHAR® 15 : Labellist(5) : A set of elementary labels for each of the
five different types of graphs that this package
N is capable of plotting.
CHAR®4 type:VUsed by the utility routines. \

C The following are variables that are used by the new, graphics routines

are located-in {usr/nonvlsi/controlllgraphics/changes

'

i

-

v ovm e

[
3
H
T
I
v
¥
s
¢
t

. 102

t

REAL®*E XMINMAX(2,1000) . This is a COMMON block array
h that s used in the FINDMAX subroutine

It keeps track of the min‘s and max's “

C
[of
o
C of the columns of the data matrix, A,
[so that they do not have to bDe
C recalculated over ancd over again
[desireowniabael: If this flag is positive, then the
Cc graphics program will use the labels
C that the user supplies for the first
c ~N “labelsize” plots,

C CHARACTER®*20: labelofuser: This is a character array of size

(o "labelsize", containing thoﬁlnbols

C that the user desires for the first

C “labelsize” plots.

C INTEGER: labelsize: - The number of labela in the character
C array Labelofuser. ({.e. It is

Cc the dimension of Labelofuser)

C AUTHOR,DATE CREATED : Vasu Iyengar & Ajit Nilakantan ; Summer 1984 ®,

c-IIS-=IIB-‘IlIl“....l."l=====‘3==.I'."....:-'I----IIRIII!SB’IIISB‘l

o

My
.

