
NOTE TO USERS

This reproduction is the best copy available.

®

UMI

MCGILL UNIVERSITY

DATA INDEXING AND UPDATE IN XML DATABASE

nAFENGWU

MASTER OF SCIENCE

SCHOOL OF COMPUTER SCIENCE

MC GILL UNIVERISTY, MONTREAL

A THESIS SUBMITTED TO MC GILL UNIVERSITY IN

PARTIAL FULFILLMENT OF THE REQUIRMENT OF

THE DEGREE OF MASTER IN SCIENCE

DECEMBER, 2003

©Copyright Jiafeng Wu, 2003

1+1 Library and
Archives Canada

Bibliothèque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de l'édition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell th es es
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

ln compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre référence
ISBN: 0-612-98762-0
Our file Notre référence
ISBN: 0-612-98762-0

L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Table of Contents

Table of Contents ... l

Acknowledgement ... 4

Abstract .. 5

Introduction .. 7

Chapter 1 .. 10

XML ... 10

1.1. Overview .. 10

1.2. History of XML ... 12

1.3. Advantages of XML .. 13

1.4. XML Structure ... 14

1.5. XML Document Object Model (DOM) ... 15

1.6. Document Type Definition (DTD) .. 18

Chapter 2 .. 21

XML Query Languages ... 21

2.1. XPath .. 21

2.2. XQuery ... 23

2.3. Other Query Languages ... 26

2.3.1. LOREL ... 26

2.3.2. XML-QL .. 27

2.3.3. XML-GL .. 27

2.3.4. XQL ... 29

2.4. Comparison of the XML query languages ... 30

Chapter 3 .. 32

XML Update Languages .. 32

3.1. XQuery Extension .. 32

3.2. XUpdate ... 34

3.3. MMDOC-QL ... 36

3.4. Summary .. 37

Chapter 4 .. 38

XML-Enabled Relational Database Systems ... 38

1

4.1. DB2 .. 38

4.1.1. DB2 XML Extender ... 38

4.1.2. DB2 Text Extender .. 39

4.1.3. DB2 WORF ... 39

4.1.4. DB2 SQLlXML Publishing Functions ... 39

4.2. Oracle ... 40

4.2.1. XML Type ... 41

4.2.1. XML Repository .. 42

Chapter 5 .. 43

Native XML Database ... 43

5.1. Overview .. 43

5.2. LORE ... 44

5.2.1. Lore's query language .. 44

5.2.2. Lore's data model .. 44

5.2.3. Other features ... 46

5.3. Natix ... 46

5.3.1. Architecture .. 47

5.3.2. Natix's data storage .. 48

5.3.3. Natix's data model ... 50

Chapter 6 .. 51

XML Database Indexing Structures ... 51

6.1. Three Types of XML Indexing Structures ... 51

6.2. Sorne Indexing Structures .. 52

6.2.1. Lore's Indexing Structures ... 52

6.2.2. Natix's Indexing Structures ... 52

6.2.3. A Hybrid Index Structure ... 54

Chapter 7 .. 56

McXML ... 56

7.1. Overview .. 56

7.1.1. Physical Storage Model ... 56

7.1.2. Data Model. .. 57

2

7.1.3. XML Query & Update Languages ... 57

7.2. ClientiServer Architecture of McXML .. 57

7.2.1. McXML Server .. 58

7.2.1.1. Package Diagram .. 58

7.2.1.2. McXML Server Packages ... 60

7.2.1.3. A Collaboration Diagram .. 67

7.2.2. McXML Client. .. 68

Chapter 8 .. 75

Indexing Structures of McXML ... 75

8.1. Commit Indexing Structure (Clndex) .. 75

8.1.1. A Clndex Example ... 75

8.1.2. McXML.util.DOMLog Object. .. 77

8.1.3. Compatibility to Updates ... 77

8.1.4. Advantages of Clndex .. 79

8.1.5. Performance ... 79

8.2. Query Indexing Structure (Qlndex) ... 82

8.2.1. Difficulties ... 82

8.2.2. Position Path Expression (PPE) ... 83

8.2.3. Relative Position Path Expression (RPPE) .. 84

8.2.3.1. Cormen's number scheme ... 84

8.2.3.2. An Example of Qlndex ... 87

8.2.4. Maintenance Cost. .. 88

8.2.5. Advantages of Qlndex ... 90

8.2.6. Performance ... 91

8.2.6.1. Query-All & Update-All Performances .. 92

8.2.6.2. Query-None & Update-None performance ... 94

8.2.6.3. Query-Part & Update-Part Performance ... 95

8.2.7. Comparison With Other Indexing Structures .. 97

Summary .. 99

References .. 100

3

Acknowledgement

The author would like to express her appreciation to her supervisor Professor Bettina

Kemme for the encouragement and guidance in the graduate studies in the School of

Computer Science, McGill University, also thanks to Professor Bettina Kemme for her

valuable suggestion in the research of this thesis, carefully reading this thesis and

correcting it.

Professor Bettina Kemme has very profound academic attainments in database systems

and XML data manipulation. The author has learned a lot from her supervision in the

study of this project. It is also the author' s pleasure to study and work under Professor

Bettina Kemme's supervision. All these will pro duce deep influence on the future study

and work of the author.

Pinally, the author would like to thank the thesis examiners, department staff, other

people and friends in the School of Computer Science of McGill University.

4

Abstract

XML, the eXtended Markup Language, is weIl believed to be the most common tool of

the future for aIl data manipulation and data transmission. As a result, a lot of research

and work have been done on XML. However, the CUITent efforts on XML only focus on

data queries. So far, there does not exist an XML data manipulation language that has

reached its maturity to be accepted widely. Most of the existing XML databases only

implement sorne kind of XML data query language and do not support data update

operations. This thesis tries to make up the absence of XML data updates, and it begins

with a through study on topics such as XML language features, its history and

development, the existing XML query languages and update languages, XML database

management systems, and XML indexing structures, etc. Based on the research, Mc XML,

a native XML database management system, is proposed, which supports both data

queries and data updates, with emphasis on data updates. In order to optimize the

performance of McXML, sorne indexing structures are developed on it, which overcome

the difficulties incuITed by the support of data updates and make McXML work more

efficiently and flexibly.

5

Résumé

On pense que XML (eXtended Markup Language) va être l'outil du future le plus

commun pour toutes les manipulations et transmissions de données. En conséquence,

beaucoup de recherche et de travaux ont été menés sur XML. Cependant, les efforts

courants sont concentrés seulement sur les requêtes de données. Jusqu'à maintenant, il

n'existe pas un langage de manipulation de données XML assez mature pour être accepté

largement. La plupart des bases de données XML existantes mettent en application un

simple langage de requête de données et ne soutiennent pas des opérations de mise à jour.

Premièrement, dans cette thèse, pour remplir le manque de mise à jour de données XML,

une grande quantité de recherche a été faite pour donner un aperçu sur les caractéristique

du langage, son histoire et développement, les langages d'interrogation et de mise à jour

XML existants, des systèmes de gestion de base de données XML, des structures

d'indexation XML, etc. Basé sur cette recherche, on propose McXML, un système de

gestion de base de données XML primitif, qui soutient des opérations de mise à jour et

d'interrogation de données, dont l'accent est sur les mises à jour. Afin d'optimiser

l'exécution de McXML, quelques structures d'indexation ont été développées, qui

surmontent les difficultés encourues sur le support des opérations de mise à jour de

données et qui rend le travail de McXML plus efficace et plus flexible.

6

Introduction

XML, the eXtended Markup Language, is a meta language that provides a consistent

syntax for describing a variety of documents and their structures. It is weil believed that

XML will be the most common tool for ail data manipulation and data transmission in the

future. In Chapter 1, a tour is given on XML. The history, syntax rules, structures and

advantages of XML are reviewed. The knowledge closely related to XML, such as DOM,

DTD, XSD, are also studied and described here.

A lot of efforts have been given to XML recently. For example, many XML query

languages, such as XQuery, XQL, XML-QL, XML-GL, XPath and LOREL, for

extracting and restructuring the XML content have been proposed, sorne in the tradition

of database query languages, others more closely inspired by XML. Among them,

XQuery, which attempts to combine the best features of the leading XML query

languages, is expected to bec orne the "SQL of XML". In Chapter 2, features of the se

XML query languages are studied and compared with one another.

Surprisingly but understandably, XML update languages are not as much studied as XML

query languages. So far there are no specifications or standards for XML data updating,

and formalisms for XML update languages are currently still underdeveloped. However,

sorne groups have foreseen the need and are working in the field. Tatarinov et.aI. of the

University of Washington have proposed and developed an extension of the XQuery

language to support XML updates, referred as XQuery Extension. Other examples of

XML update languages are XUpdate and MMDOC-QL. In Chapter 3, these XML update

languages are described and analyzed.

The unresisting XML popularity even attracts the database solution providers' attention.

All the well-known ones rapidly XML-enabled their existing products in the hope that

this would help them better position their "new" products in the already strenuously

competitive database market. The marketing departments at IBM, Microsoft, Oracle and

7

others have forecast a flourishing XML scene. However, "XML-enabled" databases are

not XML databases but relational databases with an added XML interface. In Chapter 4,

the research on XML enabled databases is reviewed.

Different from XML enabled databases, native XML databases are designed especially to

store XML documents. They support features like transactions, security, multi-user access,

programmatic APIs, query languages, and so on. Their internaI model is based on XML

only. Natix developed by the University of Manheim and Lore developed by the

University of Stanford are two examples of native XML databases. In the belief that

XML native databases are more promising in manipulating XML data effectively, the

author presents her research on Natix and Lore in Chapter 5.

One thing is common to both XML-enabled database systems and the native XML

database systems. The tradeoff between efficient query performance versus space and

update cost must be considered. Despite the cost of index maintenance, the added storage

and the added complexity in the query engine, indices have shown themselves to be

useful and integral part of aIl database systems. Especially in an XML database system,

many application of XML data is read-intensive, in which case the balance falls towards

maintaining extensive indexing structures to speed up query processing. The research on

the XML indexing structures is presented in Chapter 6. Full-text indices, structural

indices and hybrid indices together with the related techniques such as compression

techniques are described here.

Based on the above-mentioned researches, McXML, the native XML database

management system that the author developed under the supervision of Professor Bettina

Kemme, is proposed in Chapter 7, and 8. McXML supports XML data updates, as weIl as

XML data queries, with emphasis on data updates. It is implemented using JAVA

programming language. It runs on Linux, Solaris and Windows operating systems. The

work on McXML has started since July 2002, recently the version 1.0.1 was released.

8

McXML uses the file systems for physical data storage, XML DOM tree as its logical

data model, XQuery for data queries and XQuery Extension for data updates. McXML

was designed to be a Client/Serve~ system so to be potentially multi-user and multi­

transaction supportive. The McXML Sever handles the business logic. It is powerful in

that it not only supports all the update operations that XQuery Extension XML update

language specifies but also has its own special features, such as it recognizes IDREF

expressions, it handles complex updates containing sub updates weIl, it has fully

implemented functionalities for predicate evaluation, it uses DOM Pooling to make XML

data loading more efficient, it developed its own indexing structures to optimize its

performance on XML data query, update and commit operations, etc. The McXML client

handles application logic. It is very user friendly. The storage, logical data model, XML

manipulation languages, and the Client/Server architecture of McXML is described in

Chapter 7.

Unlike most of the existing XML indexing structures, which are only designed to

optimize XML data queries, and thereof either are not integral to XML database systems

that support data updates or would deteriorate the XML data update performance of the

systems once integrated, CIndex and QIndex, the two indexing structures on McXML, are

both efficient and compatible to XML updates. Their design, implementation and

performance are presented in Chapter 8.

9

1.1. Overview

Chapter 1

XML

To understand the CUITent forces for XML databases, it is instructive to give a brief

outline on the language. XML [WXML03], the eXtended Markup Language, is a meta

language that provides a consistent syntax for describing a variety of documents and their

structures. Due to the great need to share information on the Web, XML is viewed as a

way to describe structured data - the sort of information that lives in rows and tables of

relational database, and this use of XML for data has been growing exponentiaIly. It is

weIl believed that XML will be the most common tool for aIl data manipulation and data

transmission in the future.

Just like HTML [HTML03], XML is a markup language. Unlike HTML, which was

designed to display data and focus on how data looks, XML was designed to describe

data and focus on what data is. HTML file contains the data to be presented and the

information how the data should be presented (bold, italic, etc.). In contrast, an XML

document con tains the real data plus the information about the structure of the data.

HTML uses tags to define the presentation of the data. XML uses tags to structure, store

and send information. HTML uses only a set of predefined tags, while XML aIlows the

author to define his/her own tags and his/her own document structure. Figure 1-1 shows

an example of an XML document, in which tags <bib>, <book>, <title>, <author>,

<publisher>, <editor>, <priees>, <Jirst>, <last>, and <affiliation> are used to

structure and store the information on books. There are two books. The books have author,

publisher, editor and price information related to them.

The syntax rules of XML are simple and strict. To understand them weIl, let's have a

close look at the ex ample in Figure 1-1:

10

• The first line of the XML document is the XML declaration, which defines the XML

version and the character encoding used in the document. In this case, the document

conforms to the 1.0 specification of XML and uses the ISO-8859-1 (Latin-lIWest

European) character set.

• The main building block of an XML document is element represented by a tag, which

may have sorne related attributes and child nodes, which are again elements. In

bib.xml, <book> is an element, and it has one attribute year as weIl as five children

<title>, <author>, <publisher>, <editor>, and <priee>.

• AlI XML elements must have a closing tag. XML tags are case sensitive. AlI XML

elements must be properly nested.

1. <?xml version="1.0" encoding="UTF-8" ?>
2. <!-This is an example XML document -->
3. <!DOCTYPE bib SYSTEM 'bib.dtd'>
4. <bib>
5. <book year="1994">
6. <title>Science Iibrary</title>
7. <author publisher = "pl">
8. <last>Stevens</last>
9. <first> W.</first>
10. </author>
11. <publisher ID = "p1">Addison-Wesley</publisher>
12. <price>65.95</price>
l3. </book>
14. <book year="2000">
15. <title>Data on the Web</title>
16. <author publisher = "p2">
17. <last>Abitebouk/last>
18. <first>Serge</first>
19. </author>
20. <author>
21. <last> Buneman</last>
22. <first>Peter<lfirst>
23. </author>
24. <editor>
25. <last>Gerbarg</last>
26. <first>Darcy<lfirst>
27. <affiliation>CITI</affiliation>
28. </editor>
29. <publisher ID = "p2">MIT</publisher>
30. <price>129.95</price>
31. </book>
32. <lbib>

Figure 1-1: bib.xml

11

• There must be only one root element in an XML document, which is an ancestor to aIl

the other elements in the XML document. In bib.xml, <bib> is the root element.

• In XML, an attribute has a name and a value with it. Attribute values must always be

quoted. As in <book year= "1994" > (Li ne 5 of bib.xml), the attribute of the element

book is named year and its value "1994" is weIl quoted.

• In XML, IDREF is a special attribute that aIlows an element to refer to another

element with the designed key. As in <author publisher = "pl"> (Line 7 of bib.xml),

the element author refers to the element publisher by its id "pl", which is defined in

<publisher 1D = "pl"> (Linell of bib.xml). Note that the designed keys always have

the reserve word 1D as their attribute name.

• Similar to IDREF, IDREFS is a special attribute that aIlows an element to refer to

more than one other elements with their designed keys.

• XML comments are enc10sed between <!-- and -->, as in line 2 of bib.xml.

1.2. History of XML

XML was developed by an XML Working Group (originaIly known as the SGML

Editorial Review Board) formed un der the auspices of the World Wide Web Consortium

(W3C) in 1996.

XML was derived from the other two makeup languages SGML [SGML03], the Standard

Generalized Markup Language, and HTML, the HyperText Markup Language.

Conceived notionaIly in the 1960s - 1970s, SGML, the international standard for marking

up data, has been used since the 80s. SGML is an extremely powerful and extensible tool

for semantic markup, which is particularly useful for cataloging and indexing data.

However, SGML is complex, expensive, and the commercial browsers made it pretty

clear that they did not intend to ever support SGML.

HTML on the other hand waS free, simple and widely supported. HTML was originaIly

designed around 1990 to provide a very simple version of SGML, which could be used by

"regular" people. As everyone knows, HTML spread like wildfire. Unfortunately, HTML

had serious defects, too. There is no single HTML standard. Different browsers support

12

different/unique HTML tags. Different hardware affects final result. As a result, a HTML

based web page design will not neeessarily appear the same on every computer.

Henee in 1996, discussions began on how to define a markup language that combines the

power and extensibility of SGML with the simplicity of HTML in order to meet the

challenges of large-scale electronic publishing. The World Wide Web Consortium (W3C)

decided to sponsor a group of SGML gums including Jon Bosak from Sun.

Essentially, Bosak and his team slieed away aIl of the non-essential, unused, cryptic parts

of SGML. What remained was a lean, mean marking up machine: XML. Nevertheless, aU

the useful things, which could be done by SGML could also be done with XML.

Over the next few years, XML evolved. By the summer of 1997, Microsoft had launched

the Channel Definition Format (CDF) [CEL97] as one of the first real-world applications

of XML. Finally, in 1998, the W3C approved Version 1.0 of the XML specification and a

new language was bom. In October 2002, the W3C released XML Version 1.1.

1.3. Advantages of XML

Compared with SGML and HTML, XML has sorne advantages. Besides being simpler, it

is more flexible, portable, and standardized.

Rather than providing a set of pre-defined tags, as in the case of HTML, XML specifies

the standards with which users can define their own markup languages with their own sets

of tags. The mIes specified by the tags need not be limited to formatting mIes. XML

allows users to define aIl sorts of tags with aIl sorts of mIes, such as tags representing

business mIes or tags representing data description or data relationships. Custom tags

bring meaning to the data being displayed, making data extremely portable because it

carries with it its description rather than its display.

XML is system, platform and vendor independent. It can be transformed to produee

different types of outputs for different media devices (Web browser, paper, CD-ROM)

13

without the need to modify the original content. XML data exists as plain text, which

gives data a longer life span, future readability, and reusability.

XML has open standards.

Due to its advantages, XML is now playing an increasingly important role in the

exchange of a wide variety of data on the Web and elsewhere.

1.4. XML Structure

Each XML document has both a logical and a physical structure.

Physically, an XML document contains text, a sequence of characters. In XML, legal

characters are tab, carriage return, line feed, and the legal characters of Unicode and

ISO/IEC 10646. Text in XML can be parsed (PCDATA) or unparsed (CDATA) data.

Most text in an XML document is parsed data (PCDAT A), and will be parsed by the

parser. When an XML element is parsed, the text between the XML tags is also parsed,

because XML elements can contain other elements, like in bib.xm1, where the <author>

element contains two other elements (<first> and <last». Text like

<author><last>Abiteboul</last><jirst>Serge</first></author> will be parsed and

broken up into sub-elements like this:

< author >
<last> Abitebou1 </last>
<Jirst> Serge <lfirst>

</author>

In the parsed text section, entity references are used to replace illegal XML characters.

For example, if a character like "<" is placed inside an XML element, it will generate an

error because it would be interpreted as the start of a new element. Such "<" character

should be replaced with an entity reference <. There are five predefined entity

references: < for '<' as less than, > for '>' as greater than, & for '&' as

ampersand, ' for '" as apostrophe, and " for "', as quotation mark. The

author may define his/her own entities in the Data Type Definition (DTD) entity list and

reference them in the XML document. Entity references always start with the' &'

character and end with the ';' character. (See Section 1.6 for more information on DTD.)

14

An XML document may contain unparsed text, which belongs to a CDAT A section.

Everything inside a CD AT A section is ignored by the parser. For example, a paragraph of

text (like program code,) that contains a lot of '<' or '&' characters can be defined as a

CDATA section. A CDATA section starts with "<![CDATA[" and ends with "}]>". A

CDATA section cannot contain another CDATA section.

Logically, the document contains one or more nodes, each of which has a type. Node

types are dec1arations, elements, comments, entity references, processing instructions,

notations, etc. As briefly mentioned in section 1.1, element nodes are the main building

blocks that carry the data info. They are identified by name, and may have a set of

attribute specifications in name/value pairs to provide additional information. AU

elements are proper nested. As a consequence, the XML document has a mechanism to

maintain parent-children relationship among the elements. We will have a c10ser look at

the logical structure of XML documents in the next section.

1.5. XML Document Object Model (DOM)

Closely related to XML documents, the XML Document Object Model (DOM) is a

programming interface for XML documents. It defines the way an XML document can be

accessed and manipulated. It is designed to be used with any programming language and

any operating system. With the XML DOM, a programmer can create an XML document,

navigate its structure, and add, modify, or delete its elements.

The DOM represents a logical tree view of the XML document. The root of a DOM tree

is a documentElement, which has one or many childNodes that represent the branches of

the tree. XML elements, texts, attributes, entities, notations, processing instructions, etc,

are represented as nodes in the DOM tree.

The Node object represents a node in the DOM tree. In XML DOM, there are different

types of node objects:

• The Document object is the root element in the node tree. AU nodes in the DOM tree

are childNodes of the Document element. The Document element is required in aU

XML documents.

15

• The DocumentType object in the DOM provides an interface to the list of entities that

are defined for the document.

• The DocumentFragment is a "lightweight" or "minimal" Document abject.

• The Element object represents the elements in the document. If the element contains

text, this text is represented as a Text object.

• The Attr object represents an attribute of an Element object.

• The Text object represents the text inside an element as anode.

• The CDATASection object represents the CDATA sections in a document. The

CDATASection object is used to escape parts of text that normally would be

recognized as markup.

• The Comment object represents the comments in a document.

• The Entity object represents the <!ENTITY .. > declarations in an XML Document

Type Definition (DTD) entity lists (See Section 1.6 for more infomation on DTD).

• The Processinglnstruction object represents a processing instruction, used in XML as

a way to keep processor-specific information in the text of the document.

• The Notation object represents a notation declared in the DTD. A notation either

declares, by name, the format of an unparsed entity [BPS98], or is used for formaI

declaration of processing instruction targets [BPS98] .

• The EntityReference object represents an entity reference in the XML document.

A Node object in DOM has sorne properties, among which the most important are the

name and value properties. Table 1-1 summarizes the name and value properties of

different types of Node objects [WDOMOO].

According to the Table 1-1, a DOM tree view on bib.xml (See Figure 1-1) should be as

shown in Figure 1-2. Note that in the figure, there are two nodes named bib, the first of

which is a documenttype node, while the second of which is an element node.

Sorne methods are defined on the Node object. Table 1-2 summarizes the most basic ones

[WDOMOO].

16

With these methods, it is easy to access, manipulate, and modify the underlying XML

document through its DOM tree.

nodeType nodeName nodeValue

element tagName null

attribute name value

text #text content of node

cdatasection #cdata-section content of node

entityreference entity reference name null

entity entity name nuIl

processinginstruction target content of node

comment #comment comment text

document #document nuIl

documenttype doctype name nuIl

documentfragment #document fragment nuIl

notation notation name nuIl

Table 1-1: nodeName and nodeValue of different nodes in XML DOM

Method Description

appendChild(newChild)
Appends the node newChild at the end of the child nodes for

this node

Returns an exact clone of this node. If the boolean value is

cloneN ode(boolean) set to true, the cloned node contains aIl the child nodes as

weIl

hasChildN odesO Retums true if this node has any child nodes

insertBefore(new N ode,refN ode)
Inserts a new node, newNode, before the existing node,

refNode

removeChild(nodeN ame) Removes the specified node, nodeName

replaceChild(newNode,oldNode) Replaces the oldNode, with the newNode

Table 1-2: methods on Node object

17

on the
Web

#document

man

Figure 1-2 The Logical Structure of bib.xml

1.6. Document Type Definition (DTD)

129.95

A "Valid" XML document is a "Well Formed" XML document, which also conforms to

the rules of a Document Type Definition (DTD). The purpose of a DTD is to define the

legal building blocks of an XML document. It defines the document structure with a list

of legal elements. With DTD, an XML file can carry a description of its own format with

it, and independent groups of people can agree to use a cornmon DTD for interchanging

data. A DTD can be dec1ared inline in the XML document, or as an extemal reference. In

18

DTD, there are mainly DTD element declarations, ATTLIST declarations, and entity

declarations, which declare XML elements, attributes and entity references respectively.

For detailed syntax of these DTD declarations, please refer to [RHJ99].

Line 3 in Figure 1-1 contains an external reference to a DTD file bib.dtd, which is shown

in Figure 1-3. In bib.dtd, the element list declares twelve elements: bib element is the root

element and it contains one or more book eIements as child nodes (Line 3). book elements

also has a sequence of child nodes: one title element, one or more author elements, one

publisher element, zero or one editor element and one priee element (Line 4). author

element has two child nodes: a last element and afirst element (Line 6). editor element

has one last element, one first element and one affiliation element as child nodes (Line 8).

title, publisher, priee, last,jirst, affiliation are leaf elements and an of them contain

parsed text data (Line 5, 7, 9, 10, 11, 12) . The ATTLIST declares one attribute named

year that belongs to the element book (Line 14). The entity list is empty.

1. < !DOCTYPE bib [
2.
3. <!ELEMENT bib (book+»
4. <!ELEMENT book (title,author+,publisher,editor?,price»
5. <!ELEMENT title (#PCDATA»
6. <!ELEMENT author (last,first»
7. <!ELEMENT publisher (#PCDATA»
8. <!ELEMENT editor (last, first,affiliation»
9. <!ELEMENT priee «#PCDATA»
10. <!ELEMENT last (#PCDATA»
11. <!ELEMENT first (#PCDATA»
12. <!ELEMENT affiliation (#PCDATA»
13.
14. <!ATTLIST book year CDATA #REQUIRED>
15.
16.]>

Figure 1-3: bib.dtd

An XML document may have an inline DTD declaration instead, in which case, the DTD

is included in the XML source file. The inline DTD should be wrapped in a DOCTYPE

definition with the syntax:

<IDOCTYPE root-element [
element-declarations
ATTLIST
entity declarations

1>

19

For example, we may substitute Line 3 in bib.xml shown in Figure 1-1 with the entire text

content (Li ne 1 to Line 16) of bib.dtd shown in Figure 1-3 and get a valid XML document

with an inline DTD.

XSD is known as XML Schema Language, also referred as XML Schema Definition.

XSD is a successor of DTD, and recommended by W3C. XSD defines the legal building

blocks of an XML document, just like a DTD. Compared with DTD, XSD has more

advantages. XSD supports data types, it uses XML syntax, it is more secure in data

communication, and it is more extensible. For more information on XSD, please refer to

[XSD99].

20

Chapter2

XML Query Languages

As discussed in Chapter 1, XML is becoming more and more important for data

representation and exchange on Internet. Languages for extracting and restructuring the

XML content have been proposed, sorne in the tradition of database query languages,

others more c10sely inspired by XML. In the chapter, we present a description to sorne of

these XML query languages, with emphasis on XQuery, a Word Wide Web Consortium

recommendation, which attempts to combine the best features of the leading XML query

languages and is expected to bec orne the "SQL of XML".

XML documents are logically tree-structured, so in the discussion we use conventional

terminology for trees. Particularly, except specified otherwise, we refer to each entity in

the XML tree as anode that is identical to itself, and not identical to any other, or by its

type such as element, attribute, etc, as discussed in section 1.5.

2.1. XPath

XPath was released as a W3C Recommendation in 1999 as a language for addressing

parts of an XML document. XPath is designed to be embedded in a ho st language such as

XSLT [XSLT99] or XQuery [MMA03].

XPath uses a path notation as in URLs for navigating through the hierarchical structure of

an XML document. In XPath, a location path can be absolute or relative. An absolute

location path starts with the root node, while a relative location path does not. A location

path returns the set of nodes selected by the path.

A simplified syntax for XPath is as follows (for full details, the reader may refer to the

[JCSD99] paper):

21

LocationPath : = RelativeLocationPath 1 AbsoluteLocationPath
AbsoluteLocationPath:= "1" RelativeLocationPath ? 1"11" AbsoluteLocationPath
RelativeLocationPath := Step 1 RelativeLocationPath "1" Step 1

RelativeLocationPath "II" Step

As ilustrated by the above syntax grammer, an XPath consists of a series of one or more

steps. A step generates a sequence of nodes and then filters the sequence by zero or more

predicates. The value of the step consists of those nodes that satisfy the predicates. This

sequence of steps is then evaluated from left to right. Steps in XPath are separated by "/"

or "/1", and optionaIly beginning with "/" or "/1". A "/" at the beginning introduces a

absolute path that contains the context node. A "/1" at the beginning establish a relative

path that contains aIl nodes in the same tree as the context node.

XPath supports various kinds of expressions such as numerical expressions (+, -, *, div,

mod), equality expressions (=,1=), relational expressions «,>,<=,>=), and Boolean

expressions (or, and). XPath defines a library of standard functions for converting and

translating data, including string functions (eg. concat(), start-with(), substring(), etc.),

number functions (eg. ceiling(), fioor(), etc.), and Boolean functions (eg. not(), false(),

true(), etc.), and node set functions (eg. countO, lastO, idO, etc) that performs on the set

of nodes selected by the location path.

Figure 2-1 shows an XPath example that selects aIl the direct or indirect child elements of

<book> with name author, which has at least one chi Id element <last> valued "Gerbarg"

and at least one child element <tirst> valued "Darcy".

/book//author[last = "Gerbarg" and first = "Darcy"]

Figure 2-1: An XPath Example

22

2.2. XQuery

XQuery [MMA03] is a W3C's proposed standard for an XML query language that started

its life as Quilt [JCFOO], primarily a test vehic1e for user-Ievel syntax. Quilt itself was

spearheaded and it in tum borrowed features from several other languages, inc1uding

XPath [JCSD99], XQL [RLS98], XML-QL [DFFL98], SQL [WSQL03], and OQL

[MPE02]. XQuery tumed out to be a powerful and convenient language in processing

XML data, inc1uding files in XML format, and other data such as databases whose

structure is similar to XML as weIl.

XQuery is in a sense an expression language, for in XQuery everything is an expression,

which evaluates to a value. That is, an XQuery pro gram or script is an expression,

together with sorne optional function and other definitions. There are no updates in the

XQuery standard yet.

The basic syntax of XQuery is summarized as follows (for detailed syntax, please refer to

[MMA03]):

FLWORExpr::= (ForClause 1 LetClause)+ WhereClause? "RETURN" Expr
ForClause ::= "FOR" Variable "IN" Expr ("," Variable "IN" Expr) *
LetClause ::= "LET" Variable ":=" Expr("," Variable ":=" Expr) *
WhereClause :: = "WHERE" Expr
Expr :: = ExprSingle (", " ExprSingle) *
ExprSingle:= FLWORExpr 1 QuantifiedExpr 1 TypeswitchExpr 1 IfExpr 1 OrExpr
IfExpr:= "IF" "(" Expr ")" "THEN" Expr "ELSE" ExprSingle

As an expression language, XQuery supports different type of expressions. Among them:

• The typeswitch expression (TypeswitchExpr) chooses one of several expressions to

evaluate based on the dynamic type of an input value.

• The quantified expression (QuantifiedExpr) supports existential and universal

quantification. An existential predicate over a set of instances is satisfied if at least

one of the instances satifies the predicate. A univers al predicate over a set of instances

is satisfied if aIl the instances satisfy the predicate. The value of a quantified

expression is always true or faise.

23

• A conditional expression (lfExpr) is made up of 3 parts: the expression following the

ifkeyword is called the test expression, and the expressions following the then and

else keywords are called the then-expression and else-expression, respectively. If the

boolean value of the test expression is true, the value of the then-expression is

retumed. Otherwise, the value of the else-expression is retumed.

• A logical expression (OrExpr) is either an and-expression or an or-expression. The

value of a logical expression is always true or false.

• XQuery embeds XPath, using it as its path expressions to locate elements or attribute

nodes within an XML tree (as explained in section 1.4, an XML document is logically

a tree structure).

Now consider a simple XQuery example:

FOR $b IN document("bib.xml")//book
WHERE $b/publisher = "Addison-Wesley" AND $b/@year = "1994"
RETURN $b/title

The XQuery queries on the XML document "bib.xml". It first selects the <book>

elements that have a <publisher> child element whose value is "Addison-Wesley" , and

an attribute year whose values is "1994", then it retums the child elements <title> of such

<book> elements.

The data types used in XQuery are:

• Primiti ve data types

The primitives data types in XQuery are numbers integer or floating-point, the

Boolean values true and false, strings of characters, like "Hello world!", and various

types to represent dates, times, and durations. There are also a few XML-related types.

• Node types

XQuery also has the necessary data types needed to represent XML values. It does

this by using node values, of which there are seven kinds: element, attribute,

namespace, text, comment, processing-instruction, and document (root) nodes.

These are very similar to the corresponding DOM classes such as Node, Element and

so on, as described in section 1.5.

24

• Sequence

The primitive data types and node types are simple values, while sorne XQuery

expressions actually evaluate to sequences of simple values. The comma operator can

be used to concatenate two values or sequences. For example, 3,4,5 is a sequence

consisting of three integers.

XQuery allows defining variables for later references. A variable is a name that may be

bound to a value. In XQuery, a variable is used to represent an instance of data of one of

the above mentioned data types. In XQuery a variable may be defined in ForClause,

LetClause and sorne expressions such as FLWORExpr. Variable names are always

preceded by a $ character to distinguish them from string literaIs.

XQuery supports both standard functions and user defined functions:

• Various standard XQuery functions create, evaluate or retum nodes.

For example, the document function reads an XML file specified by a URL argument

and retums a document root node. The element constructor function creates new node

objects directly in the program. The count function takes a sequence as an argument

and retums the number of values in that sequence. The children function retums the

sequence of the child nodes of the argument. Sortby function takes an input sequence

and one or more ordering expressions and retums the sequence sorted according to the

values of the ordering expressions. As a strongly typed programming language,

XQuery uses instance offunction to check the data types of the input element.

Another convenient function typeswitch matches a value against a number of types.

• XQuery wouldn't be much of a programming language without user-defined functions.

Such function definitions appear in the query prologue of an XQuery program.

The following is an example of use-defined function which does what its name

suggests:

define function descendant-or-self ($x)
(

$x,
for $y in children($x)
return descendant-or-self($y)

}

25

In summary, XQuery is an XML query language that is concise, easily understood and

flexible enough to retrieve and interpret information across diverse data sources. As a

result, it is getting more and more industry-wide attention and support.

2.3. Other Query Languages

2.3.1. LOREL

LOREL [AQMW97] was developed as the query languages of the Lore prototype data

management system at Stanford University, which started as a semi-structured data query

language and now is extended to an XML query language. Semi-structured data is data

with more structure than a conversation, but less structure than a telephone book. A good

ex ample is a resume (curriculum vitae). Semi-structured data is irregular and exhibits

type and structural heterogeneity, so LOREL performs type coercion to overcome the

inappropriateness of strict typing of OOL in the semi-structured data context. LOREL is a

user-friendly language in SQL\OQL style.

LOREL has a powerful support for path expressions to allow flexible navigation access

on data. In other words, LOREL is like SQL plus path expression.

The simplified grammar for LOREL selections is (for details, the reader can refer the

[AQMW97] paper):

Query:= "SELECT" seleccexpr ("FROM" from_expr)? ("WHERE" where_expr)?

Figure 2-2 shows a simple LOREL query:

SELECT X
FROM book.(author 1 editor).last X
WHERE X = "Gerbarg"

Figure 2-2: A LOREL Query

The above query retums all elements under the,path book/authorllast or book/editorllast,

whose value is "Gerbarg".

26

2.3.2. XML-QL

XML-QL [DFFL98] was proposed in 1998 as a query language for XML data by AT &T

labs.

XML-QL can express queries, which extract pieces of data from XML documents, as

weIl as transformations, which integrate XML data from multiple XML data sources and

map XML data using DTDs. XML-QL has a constructor operator that builds the

document resulting from the query and uses element patterns to match data in an XML

document.

A simplified syntax for defining a query in XML-QL is:

Query:= "WHERE" Predicate "CONSTRUCT" "f" Query "l"

Figure 2-3 shows a typical example of XML-QL query:

WHERE <book>
<title>Science Library<ltitle>
<author> $a<lauthor>
<publisher>$p<lpublisher>
<editor>$e<leditor>

<lbook> IN "bib.xml"
CONSTRUCT $n

Figure 2-3: An XML-QL query

InformaIly, this query matches every <book> element in the XML document bib.xml that

has at least one <editor> element, one <author> element, one <pubisher> element, and

one <title> element that equal to "Science Library". For each such match, it binds the

variables a, p and e to every author, publisher and editor group. The result is the list of

books bound to n.

2.3.3. XML-GL

XML-GL was designed at Politecnico di Milano, Dipartimento di Elettronica e

Informazione [CCDF99]. It is a graphical query language for XML documents, which

uses a visual formalism for representing both the content of XML documents (and of their

27

DTDs). Both its syntax and semantics are defined in terms of graph structures and

operations.

The XML-GL Data Model (XML-GDM) consists of three concepts: abjects that indicate

abstract items without a directly representable value, properties that indicate

representable values (e.g., a character data or parsed character data string), and

relationships that indicate semantic associations (e.g., containment or reference), which

are respectively represented by rectangles, labeled circles and directed arcs.

XML-GL permits the formulation of queries for extracting information from XML

documents and for restructuring such information into novel XML documents. An XML­

GL query consists of four parts:

• The extra ct part indicates both the target documents and the target elements inside

these documents. With respect to SQL, the extract part corresponds to the from clause.

• The match part (optional) specifies logical conditions that the target elements must

satisfy in order to be part of the query result. With respect to SQL, the condition part

corresponds to the where clause.

• The clip part specifies the child elements, of the extracted elements that satisfy the

match part, to be retained in the result. With respect to SQL, the clip part corresponds

to the select clause.

• The construct part (optional) specifies the new elements to be included in the result

document and their relationships to the extracted elements. With respect to SQL, the

construct part can be seen as the extension of the create view statement, which

permits the user to design a new relation from the result of a query.

Graphically, an XML-GL query is a pair of XML-GDM graphs, displayed side by side

and separated by a verticalline; the left-side graph visually represents the extra ct and

match parts, while the right-side graph conveys the clip and construct parts.

Figure 2-4 shows an example of XML-GL query, which finds aIl <book> elements with a

child element <affiliation> in a specified document bib.xml, and retums aIl its child

elements <affiliation>.

28

bib.xml BOOK
BOOK

*

1 AFFILIATION 1 AFFILIATION

Figure 2-4: An XML-GL Query

2.3.4. XQL

XQL [RLS98] is a query language for XML documents designed by Texcel Inc.,

webMethods Inc., and Microsoft Corporation.

The basic constructs of XQL correspond directly to the basic structures of XML. XQL is

designed to be syntactically simple and compact, using a syntax that may be used in XML

attributes, embedded in programming languages, or incorporated in URIs. It allows users

to combine information from multiple data sO\lrces, use the relationships expressed in

links as part of a query, and search based on text containment.

A simplified syntax for XQL is (see [RLS98] for complete syntax):

Query:= (".1" l "1" l "I/" l ".I/")? Element ("f" Predicate "l")? Path?
Path:= ("/" l "/")? Element ("f" Predicate "l")? Path?

Figure 2-5 shows an ex ample of XQL query that retums the Ist <author> child

element of <book> element whose attribute year is equal to "2000".

/lbook[@year= '2000]/author [1]

Figure 2-5: An XQL query

29

2.4. Comparison of the XML query languages

In this section, we present a comparison of the six above-mentioned XML query

languages, XQuery, LOREL, XML-GL, XML-QL, XQL, and XPath, highlighting their

common features and differences.

The comparison is done in the following categories:

• Data Model: This category shows whether the XML query languages use their own

special data model or rely on the data-modeling feature of XML.

• Handling IDREFs: IDREFs can be interpreted as references between elements. This

category shows whether the XML query languages define sorne mechanism for

handling IDREFs.

• Support Joins: A join condition compares two or more XML attributes or data

belonging to the same document or to two different documents. This category shows

whether the XML query languages support joins.

• Support partially specified path expressions: It is convenient to use path expressions.

The most powerful form of path expressions does not need to list aIl the elements of

the path, as it uses wildcards and regular expressions. This category shows whether

the XML query languages support such parti aIl y specified path expressions.

• Grouping result elements: The category shows whether the XML query languages

support aggregation or reorganization of elements of the result as specified by means

of special functions such as group by.

• Support aggregate functions: Aggregate functions compute a scalar value out of a

multi-set of values. This category shows whether the XML languages support

aggregate functions like min, max, sum, count, avg, etc.

• Support subqueries: This category shows whether the XML languages support nested

subqueries.

• Support set operations: As in SQL, a query can be binary, composed of the union,

intersection, or differences of subqueries. This category shows whether the XML

languages support such set operations as union, intersect, minus, except, etc.

30

• Order management: Elements of the query result can be ordered differently:

ascending or descending, or in the same way as the original document. This category

shows whether the XML query languages support ordering elements in the result.

• Type coercion: This category shows whether the XML query languages support

implicit data casting among different types as well as the ability to compare the values

represented with different type constructors.

• Support for insert, delete and update of element: This category shows weather the

XML query languages support XML data updates as well.

The comparison result is summarized in Table 2-1:

XQuery Lorel XML-QL XML-GL XQL XPath

Data Model XML Its Own Its Own Its Own XML XML
implied Special Special Special implied implied
Model Data Data Data Model Model Model

Model Model
Handling Yes Yes No No No Yes
IDREFs
Support Yes Yes Yes Yes No Yes
Joins
Support Yes Yes Yes Partially Yes Yes
partially
specified
path
expressions
Support Yes Yes No Yes Parti all y Yes
aggregate
functions
Grouping Yes Yes No Yes No Yes
result
elements
. Support Yes Yes Yes No No Yes
subqueries
Support Set Yes Yes Partially Yes Yes Yes
Operations
Order Yes Yes Yes Yes Partially Yes
Management
Type coercion Yes Yes No No Parti all y Yes
Support Data No Yes No Yes No No
Updates

Table 2- 1: Comparison of Different XML Query Languages

31

Chapter3

XML Update Languages

In order for XML to full Y evolve into a uni vers al data representation and sharing format,

updates to XML documents must be allowed and techniques to process the updates

efficiently must be developed. This calls for XML update languages. So far there are no

specifications or standards for XML data updating and formalisms for XML update

languages are currently still underdeveloped. XML languages are not as much studied as

XML query languages. However, sorne groups have foreseen the need and are working in

the field. In this chapter, we study three XML update languages: XQuery Extension

[TlliWOl], XUpdate [LMAOO] and MMDOC-QL [PLLHOl].

3.1. XQuery Extension

Tatarinovet.aI. [TIHWOl] of University of Washington have proposed and developed an

extension of the XQuery language to support XML updates, and they implemented these

operations using relational technology. (For convenience, in the following discussion we

refer to this extension as Xquery Extension.)

XQuery Extension inc1udes a set of constructs for expressing updates in XML documents.

These constructs are embedded into the syntax of the XQuery language.

XQuery Extension uses the simplified version of the World Wide Web Consortium' s

XML Query Data Model [MFJROO], which views an XML document as a node-labeled

tree with references, and models aIl attributes uniformly, including those with specially

meanings such as IDREFs.

XQuery Extension de scribes a set of update operations on XML documents, which are

aimed to update not simply scalar or leaf-node values (as in Lorel), but also complex,

structured, and irregular types. The update operations take a set of parameters. It also

32

inherits from XQuery the path expression matching operation that binds the variables to

nodes.

In XQuery Extension, an update is a sequence of primitive operations of the foUowing

types. They are always operated in the context of a target node.

• Delete(childnode): delete the childnode from the target node.

• Rename(childnode, newname): rename the childnode of the target node to the

newname.

• Insert(newcontent): in sert the newcontent, which can be PCDATA, element, attribute

or reference, into the target node as a child node.

• InsertBefore(noderej, newcontent): insert the newcontent as a left sibling of the node

referenced by noderef, which is a child node of the target node.

• InsertAfter(noderej, newcontent): insert the newcontent as a right sibling of the node

referenced by noderef, which is a child node of the target node.

• Replace(childnode, newcontent): replace the child node childnode of the target node

with the newcontent.

• Sub-Update(pathPatternMatch, predicates, updateOp): performs sub updates

recursively with updateOp starting at the target node, on aU the qualified bindings

filtered by the predicates invoking the pathPatternMatch.

The above update operations are mapped into the XQuery language syntax. XQuery

Extension extends XQuery with a FOR ... LET ... WHERE ... UPDATE structure for

updates. The foUowing is the basic form of the update syntax:

Update . - FOR $bindingllN path expression, .. .
LET $binding2 := path expression, .. .
WHERE predicate (,predicate) *,
UpdateOp (, UpdateOp) *

UpdateOp:= Update $binding (SubOp (,SubOp}*)
SubOp . - DELETE $child 1

Now consider an example:

RENAME $child TO name 1

INSERTcontent (BEFOReIAFTER $child) 1

REPLACE $child WITH $content 1

For $binding IN path expression,
WHERE predicate list,
UpdateOp (, UpdateOp) *

33

For $b IN document("bib.xml")/lbook
Let $t = $b/title,

$a = $b/author,
$e = $b/editor,
$p = $b/publisher

Where $b/@year = "2000"
UPDATE$b
{

DELETE St,
RENAME $a To "writer",
INSERT < edition > 1 st</edition> BEFORE Se,
REPLACE $p WITH <published>

}

<by> Kluwer Academi
Publishers<lby>

<at> Washington <at>
</published>

The above example updates the <book> in bib.xml whose attribute year is 2000. It deI etes

aIl the child nodes <title>, renames its child nodes <author> to the new name "writer",

inserts a new child node <edition> before each of its child node <editor>, and replace its

chi Id nodes <publisher> with a new child node <published>.

3.2. Jrlll'tfate

XUpdate [LMAOO], also known as Lexus, is developed by XML:DB organization. It is an

XML update language that uses XML format. In other words, an update in the XUpdate is

expressed as a well-formed XML document.

XUpdate makes extensive use of the expression language defined by XPath for selecting

elements for updating and for conditional processing.

In XUpdate, an update is represented by an xupdate:modifications element in an XML

document. An xupdate:modifications element must have a version attribute, indicating the

version of XUpdate that the update requires. The value should always be 1.0. The

xupdate:modifications element may contain the following types of elements:

• xupdate:insert-before

• xupdate:insert-after

• xupdate:append

• xupdate:update:

34

• xupdate: remove

• xupdate:rename

• xupdate :variable

• xupdate:value-of

• xupdate:if

The first seven elements have a required select attribute, which specifies the node selected

by a path expression. This select expression must evaluate to a node-set, which is the

target for update.

xupdate:insert-before and xupdate:insert-after elements are used to de scribes XUpdate

instructions that directly inserts nodes in the XML result tree. A xupdate:insert-before

element inserts the new node as a left sibling of the selected node-set, while a

xupdate:insert-after element inserts the new node as a right sibling. The xupdate:append

element allows anode to be created and appended as a child of the target node. It may

have an optional child integer attribute that specifies the position of the new node to be

appended. By default, the new child is appended as the last child of the selected target

node. The xupdate:update element can be used to update the content of the selected target

nodes. The xupdate:remove element allows anode to be removed from the selected target

nodes. The xupdate:rename element allows an attribute or a child element node of the

selected target nodes to be renamed after its creation.

xupdate:insert-before, xupdate:insert-after and xupdate:append elements may contain the

following types of elements for constructing new nodes:

• xupdate:element: construct a element node

• xupdate:attribute: construct a attribute node

• xupdate:text: construct a text node

• xupdate:processing-instruction: construct a processing instrument node

• xupdate:comment: construct a comment node

The following is an ex ample that inserts a new child node <editor> into the first <book>

element in bib.xml:

35

<?xml version="1.0"?>
<xupdate: modifications version = "1.0"

xmlns:xupdate=''http://www.xmldb.org/xupdate''>
<xupdate: insert-after select= "/bib/book[1 J" >

<xupdate:element name= "editor">
<last>Martin</last>

<first> Lars</first>
</xupdate: element>
</xupdate:insert-after>

<Jxupdate:modifications>

XUpdate supports variable binding by using xupdate:variable and xupdate:variable-of

elements. The xupdate:variable element has a required name attribute, which specifies

the name of the variable. For example, <xupdate:variable name= "editor"

select= "/bib/book[O J/editor"/> binds the selected node to the variable named editor. The

xupdate:variable-of element references a variable by the variable name. For example,

<xupdate:value-of select= "$editor"/> refers to the node bound in the previous example.

XUpdate uses xupdate:if element for condition processing, which is still an open issue.

3.3. MMDOC-QL

MMDOC-QL [PLLHOl] is an XML manipulation language. It has been developed by

Siemens Corporate Research, Inc., USA in 2001. In this section, we focus on the update

aspect of the language.

MMDOC-QL uses DOM tree as data model and uses Path Predicate Calculus as

formalism to support XML update as weIl as XML query. In short, Path Predicate

Calculus uses element predicates as atomic logic formulas and describes XML nodes by

specifying path predicates that the tree nodes must satisfy. Element predicates and path

predicates are designed for asserting logical truth statements about nodes in an XML

DOMtree.

In MMDOC-QL, XML update operations are deletion, insertion, and update of XML

structures and content. There are four clauses: operation clauses (GENERA TE, INSERT,

DELETE, or UPDATE) , among which INSERT, DELETE, and UPDATE are used for

XML update. The PATTERN clause is used to describe the domain constraints of

36

variables by regular expression. The FROM clause is used to describe the source

document for querying. CONTEXT clause is used to describe logic assertions about

nodes. In MMDOC-QL, the variables are indicated by "%".

The following is an MMDOC-QL example that inserts <editor name=" Jerry

Ferentino"> as a child node of <book> element in bib.xml where the attribute year has a

value between 1990 and 1999:

INSERT: «book> with year = %y)
DIRECTLY CONTAINING
«editor> WITH name= "Jerry Ferentino")

PATTERN: {199[0-9]1%y};
FROM: bib.xml
CONTEXT: {TRUE}

3.4. Summary

The three XML update languages XQuery Extension, XUpdate and MMDOC-QL all

support insertion, deletion, update operations on XML documents. By comparison,

XQuery Extension has the advantages of following the styles of XQuery. XUpdate is neat

in that it uses the XML format. MMDOC-QL seems a little complicated in syntax, but it

integrates XML updates easily with XML queries and is sufficiently original in that it

created its own calculus for formalism.

Actually, XML update operations can be categorized according to the target node types

(leaf, or non-Ieaf). Sorne operations can be done only on leaf nodes, such as changing

attribute value, changing text node value, etc, which would only affect the data content

but not the data structure. Other operations must be done on non-Ieaf nodes, such as

changing element name, changing attribute name (this operation has to be done though

the parent node of the attribute), etc., which would affect the XML data structure. Thus

the se operations might invalidate the DTD, and give rise to sorne subtle issues in the

multi-transaction XML data management environment. An XML update language would

be more flexible and integral if it not only implements different XML update operations

but also categorizes them. Regretfully, so far no XML update language has accompli shed

this.

37

Chapter4

XML-Enabled Relational Database

Systems
It is weIl believed that in the future a lot of data will be generated, stored, and maintained

using XML. Solutions that combine the advantages of XML technology with classical

database technology make sense. AlI the welI-known providers of database solutions

rapidly XML-enabled their existing products in the hope that this would help them better

position their "new" products in the already strenuously competitive database market. The

marketing departments at IBM, Microsoft, Oracle and others have forecast a flourishing

XML scene. However, "XML-enabled" databases are not XML databases but relational

databases with an added XML interface.

4.1. DB2

DB2 supports XML in the base DB2 product, in the XML Extender [IDXE03] and Text

Extender [IDTE03], and in its Web services framework (DB2 WORF) [ISVL02]. Support

in DB2 itself consists of support for the publishing functions in SQUXML [ISVL02].

4.1.1. DB2 XML Extender

DB2 XML Extender provides new data types to store XML documents in DB2 databases

and new functions to work with these structured documents.

The XML Extender stores XML documents in the database in one of two ways: "XML

columns" and "XML collections". XML columns store entire documents as VARCHARs,

CLOBs, or files using user-defined types like XML V ARCHAR, XMLCLOB, or

XMLFILE. XML collections map non-XML data to an XML document. Two different

mappings, SQL mapping and RDB node mapping, are supported. The former can be used

only to transfer data from the database to an XML document. It is a template-based

38

language in which the user specifies SELECT statements and states where the results

should be placed within the template. The latter is an object-relational mapping and can

be used to transfer data both to and from the database.

The XML Extender provides stored procedures to store and retrieve complete documents

or individual elements. The major purpose of these procedures is to translate DB2 data to

and from XML documents.

4.1.2. DB2 Text Extender

DB2 Text Extender provides flexible full-text search functionality, using SQL for

linguistic functionality. It enables thorough searching of documents where the need is

complex and the quality and precision of the search results outweigh the retrieval time.

Besides a variety of search technologies such as fuzzy searches, synonym searches, and

searches by sentence or paragraph, it can perform proximity search for words within

structured XML document sections.

4.1.3. DB2 WORF

The Web services object runtime framework (WORF) provides an environ ment to easily

create simple XML based Web services that access DB2 data and stored procedures.

WORF uses Apache Simple Object Access Protocol (SOAP) 2.2 or later and the

Document Access Definition Extension (DADX). A DADX document specifies a Web

Service using a set of operations that are defined by SQL statements or XML Extender

Document Access Definition (DAD) documents. DAD is an XML file that govems the

particular tagging scheme and the shape of the XML document in the database.

4.1.4. DB2 SQLIXML Publishing Functions

SQUXML is an emerging part of the ANSI and ISO SQL Standard, specifying the way

SQL can be used to relate to XML and define the core definitions for an XML data type

in the SQL language. The built-in SQUXML publishing functions offer DB2 users and

application developers ways to publish XML from DB2 data.

39

The key SQLlXML functions are scalar constructor functions to build elements and

attributes (XMLELEMENT and XMLATTRIBUTES), aggregate function to group child

elements (XMLAGG), and subqueries to specify complex nestinglstructuring .

XMLELEMENT constructs an XML ELEMENT item given an SQL identifier for the tag

name, an optionallist of expressions for attribute name/value items, and an optionallist of

values for the content of this element, and retum an XML fragment. XMLATTRIBUTES

is used to produce an attribute for an element. Each attribute is constructed from an

expression and an optional alias. XMLAGG is an aggregate function that can be used to

produce a forest of XML elements, with a specifie ordering, from a collection of

individual elements.

4.2. Oracle

In late 1999, Oracle 8i was released. It was integrated with support for XML to meet the

emerging requirements for exchange of data in XML form. However it was a loose

integration. The content transformation was performed extemally to the database itself.

The XML components, an XSQL Servlet, and XML parser and an XSL transform engine,

aIl ran separate form the database itself.

In June 2001, Oracle9i was released. Oracle added XML support directly to the database,

this time to improve performance. The existing XML components of Oracle8i were

enhanced, and new XML components were added. They enabled the transfers of XML

document into and out of database. In addition, two new data types, XML Type and URI­

Ref were added for direct XML storage. New table functions were added to fragment

XML documents across multiple tables. New SQL operators were introduced to extract

data in XML document format using familiar SQL syntax. However in Oracle9i Release

1, XML datatypes must be stored as binary (as CLOB), which limited the flexibility of

XML data processing.

Oracle9i Database Release 2 became available in early 2002. It is equipped with a new

feature - Oracle XML DB, which is claimed to provide a high-performance, native XML

storage and retrieval technology. With Oracle XML DB, the W3C XML data model is

40

absorbed into the Oracle9i Database, navigated and queried with standard access

methods. Oracle XML DB is implemented at the database server level. It supports two

kinds of XML storage, an XML repository and a native XML Type.

4.2.1. XML Type

In Oracle9i Release 2, the XML Type preserves the structured-data aspect of XML and

supports for XML Schema, XPath, XSL-T, DOM, etc. The XML Type is just like any

other data type. It allows XML Type data to be stored in either of two ways: with object­

relational storage or as CLOB. The storage options are interchangeable. XML data can be

either stored as an XML Type column in a relational table or as an XML object in an

XML Type table. Non-Schema based XML is always stored as CLOB. Schema based

XML can be stored as a CLOB or a set of objects. The constructors of the XML Type

allow XML Type to be created from V ARCHAR and CLOB. Relational and extemal data

can be exposed as XML views. The view can be a relational view containing a column of

XML Type or can be an XML Type view, that is, the view can be constructed over any

data, regardless of whether it is relational data or XML data. Inserting into a table with an

XML Type column is like inserting into any other table.

Oracle XML DB provides sorne new SQL operators for performing SQL queries over

XML content. These operators help view XML data as relational data and vice versa.

extractValueO provides a useful way for viewing XML data as relational data by

retrieving the document fragment matching a path expression as an XML Type object.

schemaValidateO constrains an XML Type column to a particular XML schema.

existsNodeO checks if anode specified by an path expression exists. xmltableO creates a

table from a set of nodes filtered by a path expression, using a table-based mapping.

transformO applies an XSLT stylesheet [XSLT99]. sys_xmlgenO uses a table-based

mapping to create one XML document per row from a result set. xmlelement Ocreates

XML elements.

Figure 4-1 shows an ex ample of XML Type data processing using these SQL operations.

41

SQL> create table BOOK _TABLE
2 {
3 BO_NUMBER number(16),
4 BOOK xmltype
5 }
61

Table created.

SQL> insert into BOOK_TABLE
2 values (1234, xmltype(
3 '<Book year = "1994">

4 <title>Science library<ltitle>
5 <author>
6 <last>Stevens</last>
7 <first>W.</first>
8 <publisher>Addision-Wesley<l publisher >
9 <priee> 65.95<1 priee>

10 <lBook>'»
111

1 row created.

SQL> select extractValue(P.BOOK, '/Bookltitle')
2 from BOOK_TABLE P
3 where existsNodes(P.BOOK, '/Book [publisher = "Addision­

Wesley"]') == 1
4 1

EXTRACTV ALUE(P.BOOK, '/BOOKITITLE)

SCIENCE LIBRARY

SOL>

Figure 4-1 An Example Of processing XML Type data

4.2.1. XML Repository

The Oracle XML DB repository is designated for "content-oriented" (semantic) data

access. It makes it possible to use a familiar file/folder metaphor to store, organize and

access XML content stored in the database. AH meta-data is managed by the Oracle XM

DB repository. AH content, other than schema-based XML, is stored in the repository.

XML Type objects (regardless of whether they actuaHy contain XML data or are just

XML views over relational data) can be assigned a path and a corresponding URL in the

repository hierarchy. These can then be accessed via WebDAV, FTP, JNDI, and SQL.

There are sorne special SQL operators for this purpose. In addition, the repository

maintains properties for each object, such as owner, modification date, version, and

access control.

42

Chapter5

Native XML Database

5.1. Overview

Native XML databases are designed especially to store XML documents. Like other

databases, they support features like transactions, security, multi-user access,

programmatic APIs, query languages, and so on. The only difference from other

databases is that their internaI model is based on XML and not something else, such as

the relational model.

In detail, according to XML:DB Initiative [XDBI03], a Native database is one that:

• Defines a (logical) model for an XML document -- as opposed to the data in that

document -- and stores and retrieves documents according to that model. At a

minimum, the model must inc1ude elements, attributes, PCDATA, and document

order. An ex ample of such models is the models implied by the DOM.

• Has an XML document as its fundamental unit of (logical) storage, just as a relational

database has a row in a table as its fundamental unit of (logical) storage.

• Is not required to have any particular underlying physical storage model. For example,

it can be built on a relational, hierarchical, or object-oriented database, or use a

proprietary storage format such as indexed, compressed files.

Native XML databases differ from XML-enabled databases (as discussed in the previous

chapter) in three main ways:

• Native XML databases can preserve physical structure (entity usage, CDATA

sections, etc.) as weIl as comments, PIs, DTDs, etc. While XML-enabled databases

can do this in theory, this is generally not done in practice.

• Native XML databases can store XML documents without knowing their schema

(DTD), assuming one even exists. Although XML-enabled databases could generate

43

schemas on the fly, this is impractical in practice, especially when dealing with

schema-Iess documents.

• The only interface to the data in native XML databases is XML and related

technologies, such as XPath, the DOM, or an XML-specific API. XML-enabled

databases, on the other hand, offer direct access to the data, such as through ODBC.

It is weIl believed that native XML databases that store XML in "native" form are more

promising in manipulating XML data effectively. In this chapter, we look at two native

database systems: Lore and Natix.

5.2. LORE

Lore [WBGA01] had been under development at Stanford University since 1995 and was

declared as a success in 2000. It is a database originally designed for storing semi­

structured data and has been migrated for use as an XML database, for XML is well­

suited to storing semi-structured data and shares a feature common to many semi­

structured data models: it is self-describing.

5.2.1. Lore's query language

Lore includes a query language LOREL, as described in section 2.3.1.

5.2.2. Lore's data model

Lore has an XML-based data model, an XML element is a pair<eid, value>, where eid is

a unique element identifier, and value is either an atomic text string or a complex value

containing the following four components [GMW99]:

• A string-valued tag corresponding to the XML tag for that element

• An ordered list of attribute-name/atomic-value pairs, where each attribute-name is a

string and each atomic-value has an atomic type drawn from integer, real, string, etc.,

or ID, IDREF, or IDREFS.

• An ordered list of crosslink subelements of the form<label, eid>, where label is a

string. Crosslink subelements are introduced via an attribute of type IDREF or

IDREFS.

44

• An ordered li st of normal subelements of the form<label, eid>, where label is a string.

Normal subelements are introduced via lexical nesting within an XML document.

Following sorne mIes, an XML document can be easily mapped into the Lore data model

and visualized as a directe d, labeled, ordered graph:

• Text between tags is translated into an atomic text element.

• An XML element is translated into a complex data element.

• The tag of the data element is the tag of the XML element.

• The list of the attribute-name/atomic-value pairs in the data element is derived

directly from the XML element' s attribute list.

• For each attribute value i of type IDREF in the XML element, or component i of an

attribute value of type IDREFS, there is one crosslink subelement <label, eid> in the

data element, where label is the corresponding attribute name and eid identifies the

unique data element whose ID attribute value matches i.

• The subelements of the XML element appear, in order, as the normal subelements of

the data elements. The label for each data subelement is the tag of that XML

subelement, or Text if the XML subelement is atomÏc.

With the Lore data model, XML data can be viewed in two modes: semantic or literai.

Semantic mode is used when the user or application wishes to view the database as an

interconnected graph, where attributes of type IDREF or IDREFS are omitted, and the

distinction between cross links and subelements are gone. In literaI mode, the user views

the database as an XML document. Crosslinks are invisible. The database is a tree.

Figure 5-1 shows a sample of XML and the graph representation in Lore data model.

Element identifiers (eids) appear within nodes and are written as &1, &2, etc. Attribute­

name/atomic-value pairs are shown next to the associated nodes and are surrounded by {},

with IDREF attribute in italic. Subelements are solid and crosslinks are dashed. In

semantic mode, the database in Figure 5-1 does not include the IDREF attributes. In

literaI mode, the crosslink are not included.

45

<?xml version="1.0" encoding="UTF-8" ?>
<!-This is an example XML document -->
<!DOCTYPE bib SYSTEM 'bib.dtd'>
<bib>

<book year="1994">
<title>Science Iibrary

</title>
<author publisher="p 1">

<last>Stevens</last>
<first>W.</first>

<lauthor>
<publisher ID = "p 1">
Addison-Wesley

</publisher>
</book>

</bib>

bib

Figure 5-1: An XML document and its Lore data model graph

5.2.3. Other features

"Addision-Wesley"

Lore has four kinds of indexing structures [MW AL98], Vindex, Pindex, Lindex and

Tindex, which we will discuss in Chapter 6. Lore uses its cost-based query optimizer to

piece together the available indices to create efficient query plans. Lorel also has multi­

user support, logging, recovery, and novel technologies such as DataGuides, management

of external data, and proximity search. For detailed information, please see [WBGAOl].

5.3. Natix

Natix [FHKM02] is a database management system for storing and processing XML data.

It is developed by University of Manheim based on several mas ter & PhD thesis. It is

developed in C++ on Unix. The system is quite ambitious. It has an architecture with

different layers. It develops an efficient way of storing data with a B-tree like data

structure. It supports XPath and XQuery query languages. It has two kinds of data

indexing to fasten the data processing. What's more, its transaction management

46

comprises recovery and multi-user synchronization. However, Natix does not support

data updates so far.

5.3.1. Architecture

Natix's components form three layers, as shown in Figure 5-2. The bottommost layer is

the storage layer, which manages aIl persistent data structures. On top of it, the service

layer provides aIl DB MS functionality required in addition to simple storage and retrieval.

These two layers together form the Natix engine. Closest to the application is the binding

layer, which consists of aIl the modules that map application data and requests from other

application programming interfaces to Natix Engine interfaces and vice versa .

.. ~e~ndun8

//

.. ~~ ... J

Figure 5-2: Architectural Overview of Natix

Among the service components that implement the functionality needed for the different

request are:

• The Natix Query Execution Engine (NQE) is used to efficiently evaluate queries. It

contains the Natix Physical Algebra (NPA) and the Natix Virtual Machine (NVM).

47

o NP A exists to support query specification. NP A supports the standard

algebraic operators, such as binding, combination, and selection borrowed

from relational context. From the object-oriented context, it supports sorne

operators like the d-join and the unary join and binary grouping operators.

NP A also provides several scan operations to generate variable bindings for

path expressions.

o NVM interprets commands on register sets. NVM tries to avoid unnecessary

copying as much as possible by managing register sets carefully. NVM can

interpret more than 1500 commands.

• The Query Compiler translates queries expressed in XML query languages into

execution plans for NQE.

• The Transaction Manager contains classes that provide ACID-Style transactions.

Components for recovery and isolation are located here. In my opinion, this is a

feature for the future, for at present, Natix does not support XML updates.

• The Object Manager factorizes the representation-independent management of

documents and their components nodes.

5.3.2. Natix's data storage

There are three approaches to store XML documents, Flat Streams, Metamodeling and

Mixed [FHKM02]:

• In the Flat Stream approach, the documents are serialized into byte streams. For large

streams, sorne mechanism is used to distribute the byte streams on disk pages. This

method is very fast when storing or retrieving whole documents or big continuous

pars of documents. Accessing the documents' structure is only possible through

parsing.

• Metamodeling stores the documents or data trees using sorne conventional DBMS and

its data mode!. In this approach, interacting with structured databases in the same

DB MS is easy, while scanning a whole document is slower. Also complex mapping

operations are needed to reproduce a texturaI representation, as a result query

processing is slowed down.

48

• Mixed approach merges the first two methods in two ways, redundant and hybrid

mergmg:

o In redundant approach, data is held in two redundant repositories, one fiat and

one metamodeled. This allows fast retrieval, but leads to slow updates and

incurs significant overhead for concurrency control.

o In the hybrid approach, a "threshold" is maintained. Structures coarser than

this granularity live in a structured part of the database; finer structures are

stored in a "fiat object" part of the database.

The storage organization of Natix, Native XML Repository, is similar to the hybrid

approach, with two extensions: First, the "fiat" parts of the database are not completely

fiat, but clustered groups of tree nodes treated as atomic records by the lower level of

Natix. Second, the "threshold" can be a dynamic value, adapted to the size and structure

of documents at run time. In Figure 5-3, the different modules of the storage subsystem of

Natix and their calI relationships are shown.

Figure 5-3: Storage Engine Architecture

Storage in Natix is organized into partitions, which represent an abstraction of random­

access block storage devices that can randomly read and write a fixed number of disk

pages.

Disk pages are grouped in segments. Segments implements large, persistent object

collections. Disk pages resident in main memory are managed by the buffermanager,

which is responsible for transferring pages between main and the secondary memory, and

synchronizing page access by multiple threads by means of a latch.

49

The content of disk pages are accessed using page interpreters. While a page resides in

main memory, it is associated with a page interpreter object that abstracts from the actual

data format on the page. The existence of page interpreters separates intra-page data

structure management from inter-page data structure.

5.3.3. Natix's data model

Natix uses ordered trees as logical data model, which is very similar to XML DOM tree

(as discussed in section 1.5). The logical data tree is materialized as a physical data tree,

which contains the originallogical nodes and additional nodes needed to manage the

physical structure of large trees. In a physical data tree, there are three kinds of nodes.

Aggregate nodes are inner nodes of the tree. LiteraI nodes are leaf nodes. Proxy nodes are

nodes that point to different records. They are used in representation of large trees.

In Natix, whole documents (or subtrees of documents) are stored together in one atomic

record. The record size has an upper limit, the page size. So the physical model provides a

mechanism for distributing data trees over several pages. Large documents are

semantically split based on the underlying tree structure. The data tree is partitioned into

subtrees, which are stored in a single record less than a page in size. Proxy nodes, which

consist of the RID of the records, which con tains the subtree they present, are added to

connect subtrees residing in other records. Substituting all proxy nodes by their respective

subtrees reconstructs the original data tree. A sample is shown in Figure 5-4:

Logical trcc

Tl

~--~~--
(·P.I Pl')
'-T~ --r~

Physical trcc 1"2 rI., '/":'1 rI.,
(h.l) (h:! 1

~®~ ~®~
Figure 5-4: One possibility for distribution of logical nodes on records

50

Chapter 6

XML Database Indexing Structures

In any DBMS, the tradeoff between efficient query performance versus space and update

cost must be considered. Indexing allows fast access to data by essentially replicating

portions of the database in special-purpose structures. However, these structures must be

kept up-to-date incrementaIly: each change to the base data must be refIected in aIl

applicable indices. Despite the cost of index maintenance, the added storage and the

added complexity in the query engine, indices have shown themselves to be useful and

integral part of aIl database systems. Especially in an XML database system, many

application of XML data is read-intensive, in which case the balance falls towards

maintaining extensive indexing structures to speed up query processing.

In this chapter, we have a look at various XML data indexing structures: full-text indices,

structural indices and hybrid indices.

6.1. Three Types of XML Indexing Structures

• Full text indexing methodologies, like the inverted file [PEB03] and signature file

approaches [DKM96], enjoy applicability in the modem Information Retrieval (IR)

environment. The inverted file approach is characterized by its efficiency in text

retrieval operations whereas the signature file involves a simple structure and requires

significantly less storage overhead.

• Structural Index is used to support queries of structural XML query languages such

as XQuery or XPath, which makes regular path expressions part of the search criteria.

Indexing the structure of the XML data is import for search engines as weIl as IR.

• Hybrid Index is useful in the environment where it is advantageous to combine fuIl­

text index with structural index.

51

6.2. Some Indexing Structures

6.2.1. Lore's Indexing Structures

Lore has four kinds of indexing structures [MW AL98]:

• Indexing atomic values (Vindex) in the graph-based data model allows the query

engine to quickly locate specific leaf objects. Vindex is implemented as a B+ tree

structural index to support inequality as weIl as equality lookups.

• Taking into consideration that almost aIl queries also explore the data via labeIled

traversaIs through the graph, Lore also introduces two other structural indices:

(Pindex) and link index (Lindex) that efficiently locate paths and edges through the

data.

• Lindex provides a mechanism for retrieving the parents of a node via a given label. A

Lindex takes a child node c and a label l, and retums aIl parents p such that there is an

1-labelled edge from p to c. Lindex is implemented using extendib1e hashing since

Lindex always does equality lookups.

• A Pindex lookup for a path p retums the set of nodes 0 reachable via p. Currently

Pindex does not support regular expressions. Pindex is implemented using Lore's

DataGuide, where the set of reachable nodes for each path are stored. DataGuide is a

"structural summary of aIl paths in the database". Unlike structured databases, in

which the structure is specified first and data is added according to that structure, data

is entered first into Lore and the structure is then summarized.

• Lore also includes a simple full-text indexing system (Tindex) that efficiently supports

information retrieval style predicates within Lore's query language. Tindex is

implemented using inverted list [PEB03], which maps a given word w and label l to a

list of atomic values with incoming edges l that contain word w.

6.2.2. Natix's Indexing Structures

Natix developed powerful indexing structures to support query evaluation [JMIOl]. It

enhanced a traditional full-text index in such a way as to be able to cope with semi­

structured data. It also has a structural index called XSAR (eXtended Access Support

Relations).

52

Natix establishes its full-text index by using inverted files [PEB03] with Elisa Gamma

Coding Compression technique [POJOO]. In Natix, the full-text index framework offers

two major functionalities: bulkLoadO and findO. The former accomplishes an efficient

inserting of large data sets to build indices on words. The latter checks data in the index.

XASR is an index structure proposed by the University of Manheim as a component of a

search engine for XML data called Mumpits [TFGMOO], which supports structural query

on XML data. XASR is also integrated into Natix to fasten data queries.

XSAR works on top of a relational DBMS. It has a XSAR table stored in RDBMS that

has the attributes dacID, eType (name of the tag), ward (search term), dMin, dMax,

parencdMin, etc. Among them, dMin is a number value assigned to a non-text-typed

node when we enter the node for the first time in depth-first traversaI. dMax is the

number value wh en we retum from the traverse back to this node. Each node of the

document tree has an index tuple stored in the XSAR table.

dmin dmax eType docID parent dmin word
0 9 'bib' 'bib.xml' NULL "
1 8 'book' 'bib.xml' 0 "
2 7 'author' 'bib.xml' 1 "
3 4 'last' 'bib.xml' 2 'Stevens'
5 6 'first' 'bib.xml' 2 'W.'

(b) corresponding table

Figure 6-1: XSAR table

A path in a query is translated into a sequence of SQL-joins on the XSAR table. For

ex ample , let X i+l and Xi be two nodes in the same path. Depending on the path

connector ('l'or 'II'), the join predicate of the SQL query is

53

Xi. docID = X i+ 1 . docID and
Xi. dMin = X i+l . parent_dMin, ('l')
Or
Xi. docID = X i+l . docID and
Xi. dMin < X i+l . dMin and
Xi. dMax > X i+l.Max. ('II')

Querying on the XSAR table attribute word, XSAR allows looking for nodes containing.

certain words. Querying on the attribute eType, XSAR allows looking for nodes of

certain type.

6.2.3. A Hybrid Index Structure

In [EK002], a hybrid-indexing mechanism is proposed. The approach combines the

inverted file with a path index:

• Organize index structure by setting up the summary tree, removing any path and text

duplications. The resulting summary tree is similar to and, in principle, smaller than

the original XML DOM tree. Just Like Lore's DataGuide, it is a "structural summary

of aIl paths" of the XML data. Figure 6-2 shows the summary tree of bib.xml (See

Section 1.1).

• Load the summary tree into the index structure. This involves the separation of

content data from path data. The former is raw text data aimed to be stored in the

inverted file and the latter is the structural text aimed to be stored in the path index

(See Figure 6-3).

o Build the path index with path data. The path index is a hierarchy of tags,

which records every single path in the collection.

o Create the inverted file that stores the literaI content of document nodes by

adding aIl the content texts to the vocabulary of the inverted file.

o Establish necessary link between the nodes in the path index with their

corresponding literaI content in the inverted file.

The algorithm of using the hybrid index to fasten the query evaluation is:

• Decompose the received query into its constituent conjunctive and disjunctive terms.

• Separate each term into a path part and a raw text part.

54

• The path is checked against the path index. A candidate list A of documents, which

has matching inverted lists, and a candidate list T, which contains aIl the vocabulary

terms that happens to be at the end of this path, are retumed.

• The literaI part is checked against the candidate terms in T and for those terms that

there is a match, the document entries are retrieved from the inverted lists and a

second candidate set of documents B is retumed.

• The answer is the intersection of A and B. s

•
•

• 1994
• 2000

Figure 6-2: An example of Summary Tree on bib.xml

Path Index

XML
ummar ...
Trec

Figure 6-3: Loading the summary tree into the index structure

55

Chapter7

McXML

-- A Native XML Database Management System

Emphasizing Data Updates

7.1. Overview

McXML, a Native XML database management system, was developed by the author as

the thesis research project. The work on McXML has started in July 2002. Recently,

Version 1.0 was released.

McXML was designed as a ClientiServer system so to be extendable to support multi­

users. It is a breakthrough, because unlike most of the existing native XML databases, it

supports XML data updates, as weIl as XML data queries, with emphasis on data updates.

McXML is also equipped with its own indexing structures, which optimizes its

performance on XML data queries, updates and commits. McXML is implemented using

JAVA programming language. It runs on Linux, Solaris and Windows operating systems.

7.1.1. Physical Storage Model

Most XML DBMS are built on relational DBMS. We prefer to have a native XML

DBMS. Renee, McXML built its physical storage model directly on top of the file

systems. McXML has a root storage directory, under which each user of McXML is

granted a sub directory as user account whose name is the same as the usemame. Under

the user account directory, special system directories and files like HI. index ", H.pswd",

H.quota", etc. are established to store index files, user password, account quota, etc.

respectively. The user is authenticated by the username and password, and may store and

manage XML data in the account. The quota specifies the size limit of the account, that is,

56

the user may only store as much XML data as the quota allows. Besides being simple and

native, this approach is advantageous in that it saves physical data storage space.

7.1.2. Data Model

McXML uses XML DOM tree as its logical data mode!. For detailed information on

XML DOM tree, please refer to Section 1.5.

7.1.3. XML Query & Update Languages

McXML supports both XML data updates and XML data queries. For data queries,

McXML implements the XQuery language. For data updates, McXML implements

XQuery Extension. For detailed information about these two languages, please refer to

Section 2.2 and Section 3.1.

7.2. Client/Server Architecture of McXML

McXML is designed as a ClientiServer architecture. This is to make McXML component­

based, extendable, and enabled to support multiple clients. Figure 7-1 shows the

architecture diagram of McXML:

McXML Client

McXML Client McXML Server

•
•
•

McXML Client

Figure 7-1: Client/Server Architecture of McXML

As a ClientlServer system, McXML supports multiple clients. The McXML clients can

run on various sites. The McXML server and the McXML clients communicate with one

57

another by means of Jave RMI [AWJWOO). AlI the functionalities for XML data

processing including data queries, updates, indexing, storage, etc. are located on the

McXML server. This means the McXML client is rather thin. It provides an interacti ve

user interface. In other words, the McXML server handles business logic, while the

McXML client handles application logic.

7.2.1. McXML Server

The McXML Server is a thick server. It provides aIl the functionalities for data queries,

updates, indexing, storage, etc. Its features include:

• It supports aIl the update operations that XQuery Extension XML update language

specifies (See McXML.stmt in Section 7.2.1.2).

• It recognizes IDREF expressions (See McXML.expr.xpath in Section 7.2.1.2).

• It is capable of executing complex updates containing sub updates (See McXML.stmt

in Section 7.2.1.2).

• It has fully implemented functionalities for predicate evaluation (See

McXML.expr.condition in Section 7.2.1.2).

• It uses DOM Pooling to make XML data loading more efficient (See Section

McXML.server.database.driver & McXML.Util in Section 7.2.1.2).

• It developed its own indexing structures to optimize its performance (See Chapter 8).

7.2.1.1. Package Diagram

Figure 7-2 shows the package diagram of the McXML server that gives a overview of

how it is organized. Briefly, the McXML Server accepts commands (which are XQuery

command or XQuery Extension command strings) from the McXML clients. Upon

receiving a command, it calls the drivers to execute the commando There are two drivers:

the McXML.server.database.driver.KA W ADriver for XML data queries and the

McXML.server.database.driver.xMLDBDriver for data storage, data updates and data

indexing. The drivers invoke worker functionalities provided by the McXML.Util

package to check command syntax, parse commands semanticaIly, bind variables, and

manage XML data accordingly.

58

McXML.
expr.
compare

McXML.
expr.
condition

Mc XML.
expr.
xpath

______ 1

'----1
1

'----1

1 Mc XML. server.
database.
driver

Mc XML.
stmt

- ______ 1

Figure 7-2: Package Diagram of the McXML Server

The McXML.stmt package contains several kinds of McXML.stmt.XMLUStmt objects,

which create, delete, in sert before, insert after, insert into, delete from, rename, or replace

XML data.

The McXML.expr.condition package con tains serveral kinds of

McXML.expr.condition.CondExpr objects, which evaluate different predicate conditions:

the predicates enclosed by '[' and']' and tail the XPath expression in the update

command and those introduced by "where" in the where-clause of the update commando

The McXML.expr.xpath package contains several kinds of

McXML.expr.xpath.xpathExpr objects, which interpret various kinds of XPath

expressions including the IDREF expression. It is useful for variable binding.

And the McXML.exceptions package provides functionalities for both syntax and

semantic error handling.

The McXML.Util package is dependant on these packages.

59

The McXML.User package has a McXML.User.CurrentUser object, which manages

current user information, such as the user account location, the user name, the user

password, the user quota and so on. The McXML.stmt package depends on it to fetch the

concemed XML data from the corresponding user account for processing.

The McXML.expr.compare package contains sorne comparator objects, which act as '<',

'>', '<=', '>=', '= =', and'! ='. And the McXML.expr.condition package depends on it,

for the McXML.expr.condition.CondExpr Objects use these comparators to evaluate

predicate conditions.

7.2.1.2. McXML Server Packages

As described in the previous section, there are several packages used in the McXML

server organization. Sorne of the packages are worth more detailed description:

• McXML.server .database.driver

McXML. server. database. driveJ

KAWADriver 1 XMLDBDriver 1

Figure 7-3: McXML.server.database.driver package

In this package, there are two classes: the KA W ADriver and the XMLDBDriver.

The KA W ADriver uses the XQuery engine of the KA W A compiler [PBRM03] to

perform XML data queries. The KA W A compiler is both a framework for implementing,

compiling, and running programming languages in Java, and also includes

implementations of Scheme, XQuery, Emacs Lisp, etc. KAWA is free software with a

"modified Onu Public License". It was integreted into McXML for XML data queries.

Sorne tiny modifications were made on KAWA to make it more efficient. For instance,

the KA W A compiler loads XML document from disk to memory every time an XQuery

command is issued and discards the memory copy directly after the execution of the

commando If several commands on the same XML document are submitted, this is

60

certainly not efficient. Rence KAWA was modified to use McXML.Util.DOMPooling to

avoid repetitive loading of the same XML documents, which will be described in detail in

the latter part of this section.

We developed the XMLDBDriver on our own. It is responsible for XML data storage,

XML data updates, XML data indexing, etc. The XMLDBDriver works independently of

the KAWADriver. It interpretes the XPath expression, evaluates predicate conditions and

handles the variable binding of the XML update commands on its own. If we had

extended the XMLDBDriver to be able to retum the result data of an XQuery, we could

have used it for XML data queries instead of KA W ADriver. However, XML data queries

are not our main concem, and for now we chose to focus our efforts on XML data updates,

so the aforesaid functionality has not yet implemented. The XMLDBDriver does its job

by using functionalities provided by the McXML.Util package.

• McXML.Util

McXML. Util

CondEvaluator

1 DOMWriter 1

Figure 7-4: McXML.Util Package

This is a very import package that provides very handy functionalities for XML data

processing.

The XMLFetcher object fetches XML nodes according to the XPath expression in the

XQuery Extension command string. It uses the DOMPooling to avoid loading the same

XML document repetitively. Basically, the XML DOM trees of the XML documents are

stored in the DOMPooling the first time they are loaded. When an XML DOM tree is re-

61

asked for updates, instead of being reloaded from the disk, it is fetched from the

DOMPooling. There is a limit on the number of the DOM trees active in the pooling, and

the first-in-first-out rule is applied. The XMLFetcher uses the CondEvaluator to filter the

list of XML nodes it fetched. Only those that satisfy the predicate conditions in the

XQuery Extension command string and evaluated true by the CondEvaluator are retumed.

It is possible that the same XML node may be updated more than once in a commando

Rence, in order to optimize the performance, every XML node fetched by the

XMLFetcher is bound to a variable represented by a VarNode, and stored in the

VarRepositioy for reuse purpose.

The QueryParser object parses the XQuery Extension command string into a

McXML.stmt.XMLUStmt for execution. Firstly, it uses the QueryFormater to delete aIl

the unnecessary white spaces, new line characters, etc. from the command string to make

the command neater and easier for further parsing. Then, it uses the SyntaxChecker to

check wh ether the command string is syntactically correct according to the syntax rules of

the XQuery Extension language. Lastly, it parses the command string into for-clause, let­

clause, where-clause, update-clause, etc., and uses the clauses to compose a

McXML.stmt.XMLUStmt object, which uses the aforementioned XMLFetcher to solve

variable bindings.

The DOMWriter writes DOM trees into strings and saves them as XML documents back

to disk when necessary.

The DOMLog is used to log the index of updated XML nodes. This optimizes commit

and roIlback performance, which we will explain in more details in Section 8.1. of

Chapter 8.

• McXML.expr.condition

62

Mc XML. ex r.conditio

~ SlmpleValueCondExpr 1

SimpleCompleteCondExp! 1

SlmplePathCondExpr 1
"i7 1

1 CondExpr 1 6 ,li>-
LongCondExpr

1
(;

PSBCondExpr 1
1 SBCondExj2r

1 1

b
l-ongSBExj2r 1

Figure 7-5: McXML.expr.condition Package

This package contains sorne objects that represent different kinds of predicates.

According to XPath syntax grarnrnar, where-, for-, let-clauses all rnay contain predicates.

The predicates in for- and let-clauses are enclosed in '[' and']'. In this package, the

predicate expression objects are defined according to the following grarnmar:

SimpleValueCondExpr:= '=' + Value;
SimplePathCondExpr:= XpathExpr;
SimpleCompleteExpr:= XpathExpr + '=' + Value;
LongValueExpr:= ((SimpleCompleteExpr (and 1 or)?)?

(SimplePathExpr (andlor)?)?
(SimplePathExpr (andlor) ? y?) *

SBCondExpr:= '[' + LongValueExpr + "J";
PSBCondExpr:= XPath + SBCondExpr;
LongSBCondExpr:= ((SBCondExpr (andlor) ?)?

(PSBCondExpr (and 1 or)?)?)*

The CondEvaluator object in McXML.util evaluates these predicate expressions on the

corresponding XML nodes.

• McXML.expr.xpath

This package contain several XPathExpr objects, which represents different kinds of

XPath expressions. Arnong thern, the IDRefXPathExpr interprets IDREF, which

recognizes IDREF attributes and treats thern accordingly. The AttrXPathExpr interprets a

string of format "@attrname" into an attribute XPath expression. The DocXPathExpr

63

represents XPath expressions that begin with "document("xmlfilename")". The

ContentXPathExpr intepretes a valid XML content fragment string into a regular XPath

expression. The OrdXPathExpr represents the regular XPath expressions, which deals

with the wildcard 'II' by searching aIl the sub paths of the path preceding "II" and

returning aIl those whose last tag name is the same as the one that follows "II".

Mc XML. expr. xpath

Figure 7-6: McXML.expr.xpath Package

• McXML.stmt

McXML. stmt

Figure 7-7: McXML.stmt package

This package contains sorne objects that do what their name suggests. Among them, the

CommitStmt commits aIl the uncommitted updates, and RollbackStmt aborts aIl the

uncommitted updates. With them, McXML is fully extendable to support transactions.

For instance, in the future, we may implement BeginTransaction and EndTransaction

64

statements which enclose in a transaction aIl the operations in between. We may optimize

the CommitStmt (RoIlbackStmt respectively). When provided with a transaction as

parameter, it only commits (aborts respectively) those operations that belong to the

transaction. We may also set an auto commit flag. When it is set true, any operation that

does not belong to a transaction should be committed immediately after the execution.

Otherwise, the operation has to be explicitly committed.

The CreateStmt creates an XML document from scratch. The DeleteStmt deletes an XML

document from the user account.

Each of the following statements has one or more XML nodes as input parameters. The

EraseStmt removes sorne XML nodes from its parent nodes. The InsertBefStmt

(InsertAfterStmt respectively) inserts a sibling before (after respectively) the indicated

XML node. The InsertStmt appends a child node to the child node li st of the indicated

XML node. The RenameStmt renames the indicated XML node. The ReplaceStmt

replaces sorne content in the indicated XML node with something different.

The relationship (composition & association) between the UpdateStmt and the

UpdateOpStmt is to support sub updates, which is illustrated by the following example:

We have the following XQuery Extension command string that contains a sub update:

Far $b in dacument("bib.xml")//baak,
$t in $b/title

update $b
{

}

delete St,
far $a in $b/authar
update $a
{

rename $a ta "writer"
}

The command is parsed by the McXML.Util.QueryParser into an UpdateStmt as shown in

Figure 7-8:

65

Figure 7-8: A Sub Update

An UpdateStmt has a list of variables and an UpdateOpStmt. When being executed, it

first solves bindings for its variables, and then it executes the UpdateOpStmt to update the

XML data bound to these variables.

An UpdateOpStmt has a sequence of XMLUStmts (XMLUStmt is the supper class in the

McXML.stmt package, see Figure 7-7 for the inheritance relationship). When being

executed, it executes these XMLUStmts one by one.

So, the execution of the above UpdateStmt are carried out smoothly as follows:

1. $b and $t are bound to sorne XML nodes by the McXML.Util.XMLFetcher.

II. The XML nodes bound to $t are iterated and removed from the corresponding

parent XML node bound to $b by the EraseStmt.

III. $a is bound to sorne XML nodes by the McXML.Util.XMLFetcher.

IV. The XML data nodes bound to $a are iterated and renamed by the RenameStmt.

66

7.2.1.3. A Collaboration Diagram

We have got an idea how McXML server is organized. Figure 7-9 shows a simplified

collaboration diagram of the McXML server.

McXMLClIent

2. new XM DBDriver()

McX ML, Server. database, driver. X MLDBDriver

6, new UpdateStmt()

McX ML, E xpr, Condition, CondE xpr

McX ML, E xpr, Com pare, AbstractCmpE xpr

Figure 7-9: A Collaboration Diagram of the McXML Server

It shows a scenario how the McXML components collaborate with one another to execute

an XQuery Extension commando

67

• The McXML server receives an XQuery Extension command from the McXML

client (Step 1).

• It then creates an instance of McXML.server.database.driver.XMLDBDriver to

execute the command (Step 2).

• In executing the command, the driver calls McXML.Util.QueryParser to parse the

command string into a McXML.stmt.UpdateStmt (Step 3-6).

o In the process of parsing, the QueryParser creates a McXML.Util.VarNode for

each variable in the command string, and stores them in the static

McXML.Util.VarRepository. At this point, the variables are not yet bound.

oThe UpdateStmt maintains the list of the VarNodes as well as a

McXML.stmt. UpdateOpStmt.

• The driver then executes the newly created UpdateStmt, which

o first solves bindings for its variables represented by the VarNodes with the

help of McXML.Util.XMLFetcher and McXML.Util.DOMPooling (Step 9-

15),

o and then executes its UpdateOpStmt, which has a sequence of

McXML.Util.XMLUStmts, and executes them one by one to update the bound

XML data (Step 16).

• The result of the execution is retumed by the McXML server to the McXML client

(Step 17).

7.2.2. McXML Client

The McXML client is a thin client. It contains the iterative user interfaces and handles

application logic. It is very user friendly. Figure 7-10 shows its component diagram:

68

ThumbndilPdnel

,
'- -, ,

McXML.User 1 ~

Figure 7-10: Client Component Diagram

• ThumbnailPanel

The ThumbnailPanel shows up wh en the McXML application starts. It serves as a

thumbnail icon of the application.

Figure 7-11: ThumbnailPanel

69

• LoginPanel

Figure 7-12: LoginPanel

The LoginPanel opens as soon as ThumbnailPanel closes. It prompts user for

username and password.

• NavigatorPanel

The NavigatorPanel is the main component of the McXML client (See Figure 7-13). It

consists of the toolbar and the CenterPanel. On the toolbar of the NavigatorPanel,

there are sorne menus, File, Edit, Workspace, Admin, Window, and Help. Among

them, Workspace menu allows the user to specify the working directory, Admin menu

allows the user to change password or login as another user, Window menu allows the

user to hide and show the HistoryPanel, CornrnandPanel and ScriptPanel in the work

place, and Help menu allows the user to go to the documentation websites for

McXML or report bugs through email.

• CenterPanel

The CenterPanel is the work place for the user. As shown in Figure 7-13, the

CenterPanel is located below the toolbar in the NavigatorPanel, and it contains three

panels, the HistoryPanel (the one on the left), the CommandPanel (the one in the

middle) and the ScriptPanel (the one on the right).

• CommandPanel

The CommandPanel is designed for the user to type commands and run commands

one by one. It is very user friendly. The user may type a command after the prompt

sign ». Text after the active prompt sign is editable, while that before it is not. The

user may also user Up and Down keystrokes on the keyboard to retrieve the historical

commands. When the user types a character ';' followed by a enter keystroke, the

70

command gets executed, and the execution result will be shown below the command

(See Figure 7-13).

• ScriptPanel

<7xml version="1.0" encoding="UTF-8" 7>
ult>

<title>SCience library<ltitle>
<title>Advanced Programming in the Unix ",nU'lm"m"''''·1

<title>Data on the Web<ltitle>

document("bîb.xml");
$x in document("bib .xml")/ltitle

return $x;

Update Successfully!

****~*******************************~

<title>SCience Iibrary<ltitle><title>Advanced Progral;

************************************~,

---------------------- Running Script File:

Figure 7-13: NavigatorPanel

The ScriptPanel is designed for the user to run commands in bunch. The user may

create or import a script file containing a list of commands and run it through the

ScriptPanel. There are two round button at the top of the ScriptPanel, the Fast (with

two arrows on it) and Step (with one arrow on it) buttons. A click on the former

executes an the commands in the script file in one run, while clicking the latter

executes one command at a step. The ScriptPanel is also user friendly. It recognizes

and skips comment lines that begin with "II".

• HistoryPanel

71

The HistoryPanel has a HistoryTree in it, which is a tree of recently executed

commands and their execution results (See Figure 7-13). The HistoryPanel is

synchronized with the CommandPanel and the ScriptPanel. Once a command is

executed through the CommandPanel or a script is run through the ScriptPanel, the

command string together with the command execution result is inserted as a tree node

to the HistoryTree. The user may save the whole tree or sorne of the tree nodes into

XML files. The user may also clear the whole tree or delete sorne of the tree nodes

from the tree.

• CommandHeader

The CommandHeader is located at the top of the CommandPanel. It has a dropdown

menu item that shows and allows the user to specify the CUITent working directory.

• CurDirPanel

Figure 7-14: CurDirPanel

The CurDirPanel opens when the user clicks the Current Working Directory menu

item on the Workspace menu on the toolbar of the NavigatorPanel. It allows the

user to change the CUITent working directory.

• PswdPanel

When the user clicks the Change Password menu item on the Admin menu, the

PswdPanel opens. It prompt user for information to change the password.

72

Figure 7-15: PswdPanel

• ReloginPanel

Figure 7-16: ReLoginPanel

McXML supports multi-users. When the user clicks the Login As Another User

menu item on the Admin menu, the ReloginPanel opens. It prompt user for

information to log in as anther user.

• ReportBugPanel

When the user clicks Report Bug menu item on the Help menu, the

ReportBugPanel shows up. It prompt user for information to report the bug by

sending email to the administrator of McXML.

73

Figure 7-17: ReportBugPanel

74

Chapter 8

Indexing Structures of McXML

McXML has two indexing structures in order to offer fast storage and retrieval of XML

data. The first one is the Commit Indexing Structure (CIndex), which is designed

specially to optimize commit performance of McXML. The second one is the

Query/Update Indexing Structure (QIndex), which is designed to optimize XML data

queries in McXML. In this chapter, we describe the purpose, design idea, and the

performances of these two indexing structures.

8.1. Commit Indexing Structure (Clndex)

McXML has developed its own unique Commit Indexing Structure (CIndex) to make the

commit operation efficient. When commit operation is invoked, updated data needs to be

saved by being written back to disk. Without CIndex, the entire XML document in

question has to be rewritten to disk. This includes serializing the entire XML DOM tree.

As a result, the commit time is proportional to the size of the document. This is neither

efficient nor necessary since normally only a small part of the document data is affected

by updates. It makes sense to optimize the commit time to be proportional to the size of

the affected data. CIndex has been developed for this purpose. With CIndex, instead of

the whole data, only the affected data is rewritten to disk.

CIndex con tains a list of document IDs followed by the hierarchical address paths of the

affected nodes in the XML document identified by the document IDs. The address path is

itself a sequence of tag names and ordinal numbers.

8.1.1. A Clndex Example

Figure 8-1 shows an example:

75

The italic underlined numbers after each node indicate its ordinal in the siblings with the

same name. Say the XML document has the identifier bib.xml, and in it an the bolded

nodes (in Line 8, Line 22, and Line 30) are updated, the CIndex would have an entry like

this:

bib.xml
bib , 1 , book, 1 , author , 1 , last 1
bib , 1 , book, 2 , author , 2 ,first 1
bib , 1 , book, 2 , priee, 1

1. <?xml version=" 1.0" encoding="UTF-8" ?>
2. <!-This is an example XML document -->
3. <!DOCTYPE bib SYSTEM 'bib.dtd'>
4. <bib> l
5. <book year="1994"> l
6. <title>SCience library<ltitle> l
7. <author> l
8. <last>Stevens<IIast> l
9. <first> W. </first> l
10. </author>
11. <publisher>Addison-Wesley<lpublisher> l
12. <price>65.95</price> l
13. </book>
14. <book year="2000"> ~
15. <title>Data on the Web</title> l
16. <author> l
17. <last>Abiteboul</last> l
18. <first>Serge</first> l
19. </author>
20. <author> ~
21. <last> B uneman<llast> l
22. <tirst> Peter<ltirst> l
23. <lauthor>
24. <editor> l
25. <last>Gerbarg</last> l
26. <first> Darcy</first> l
27. <affiliation>CITI </ affiliation> 1
28. </editor>
29. <publisher> MIT </publisher> l
30. <priee> 129.95<1priee> l
31. <!book>
32. </bib>

Figure 8-1: An CIndex Example in bib.xml

The first line is the document identifier. The other lines are the hierarchy address paths of

the updated nodes. In this case, the CIndex entry shows that there are three nodes updated

in the XML document identified by bib.xml. For an instance, the third line of the entry

76

indicates that the 1 st of the nodes with tag name first in the 2nd of the nodes with tag name

author in the 2nd of the nodes with tag name book in the 1 st of the nodes with tag name bib

in the document identified by bib.xml is updated and needs to be rewritten to disk when

commits.

8.1.2. McXML.util.DOMLog Object

In McXML, a McXML.util.DOMLog object is implemented to represent Clndex. Each

hierarchy address path of the updated nodes in an Clndex entry corresponds to a log

record in an instance of McXML.util.DOMLog object. Besides the hierarchy address path,

a log record also stores a pointer to the updated node. Any XML document in memory

that has unsaved updates must have an entry in the Clndex, thus, must have sorne log

records in the McXML.util.DOMLog object.

When the commit operation is executed, the disk copy of such an XML documents is

scanned, the locations of the affected nodes in the disk copy are calculated according to

their hierarchy address paths stored in the log records. The memory copies (which are

XML DOM Node objects, see Section 1.5.) of these nodes are fetched through the

pointers stored in the log records. With the help of McXML.util.DOMWriter, these

memory copies are patched to overwrite the corresponding parts of the disk copy of the

XML document.

In the McXML.util.DOMLog, the log records of the affected nodes are sorted according

to the order these nodes are encountered in depth-first traversaI of the XML DOM tree.

This order is the same as the order in which these nodes appear in the textual disk copy of

the XML document, so committing aU the updates in an XML document needs only one

efficient forward disk write.

8.1.3. Compatibility to Updates

Update operations might change the ordinals of right siblings of the updated nodes. For

instance, the delete of an <author> element decreases the ordinals of the right <author>

siblings of the deleted one. Insert, rename and replace have similar affects. In XQuery

77

Extension update language that McXML implements, however, aIl update operations

including insert, delete, rename, replace, etc., are done through the parent node. For

example, in the following XQuery Extension update command, the real target node is Sa,

but the update is done on its parent node Sb. Therefore $b is considered as the updated

node, and if necessary, a log record is created for $b instead of Sa.

for $b in documente "bib.xmZ")//book
Zet $a = $b/author
where $a/first = 'Serge'
update $b
{

deZete Sa;
}

This makes it irrelevant that the update operations affect the ordinals of siblings of the

target node. The update on a target node is embodied by its parent node, for the memory

copy of the child node is a sub set of that of the parent node. Therefore, in case that an

update operation on a parent node exists or happens, it is not necessary any more to keep

track of the update operations on the child nodes. In CIndex of the McXML, if a child

node is updated before its parent nodes is, upon the creation of the log record of the

parent node, the existing log record of the child node is deleted. Otherwise, no log record

is created for the child node. More generaIly, an update operation that is done on a bigger

XML sub-tree overwrites (embodies, respectively) aIl the previous (subsequent,

respectively) update operations that are done on the smaller XML branches. In CIndex of

the McXML, only the updates on the bigger XML sub-trees have update log records.

In the above example, if before the deI ete operation, we already has a log record with the

pair of value {bib, 1, book 2, author, 2 ; a pointer to the <author> element }, upon the

delete operation, the log record becomes invalid, because the ordinal of the <author>

element is decreased from 2 to 1, and the last number 2 in the hierarchy address path is

wrong. It does not matter, for the log record should be deleted anyway. If necessary, a log

record is created for the delete operation, which stores the pair of value {bib, 1, book, 2 ;

a pointer to $b}. Later if there are updates on any of the descendant nodes of Sb, no log

record would be created.

78

8.1.4. Advantages of Clndex

As explained in Section 8.1.2, CIndex is sorted in such a way that committing aIl the

updates in an XML document needs only one forward disk write. It is efficient. As

explained in Section 8.1.3, in CIndex, invalidated log records are deleted immediately.

Furthermore, only necessary log records are created and stored. CIndex contains no

redundant information. It is lean, and small in size.

The other advantages of CIndex are obvious too:

• CIndex is set up on the fly in the process of variable binding. It almost takes no time.

• CIndex is dynamic. Once the commit operation is done, it is simply deleted. It needs

no maintenance.

• CIndex resides in main memory only. No extra disk storage required.

• CIndex is easy to implement.

8.1.5. Performance

CIndex greatly improves the performance of the commit operation in McXML. For an

instance, to commit updates on a 2.4M XML document, without CIndex, it takes about

120 seconds. With CIndex, the commit only takes about 4.5 seconds.

Chart 8-1 shows the comparison between the commit performances of McXML before

and after CIndex is installed. The x-axis shows the size of the XML data. The y-axis

shows the commit time in seconds. The thin line curve shows the commit performance

when CIndex is not used. The thick line curve shows the commit performance when

CIndex is used. It is very clear that without CIndex the commit time is linear to the data

size. With CIndex, the commit performance is much better.

79

Commit Performance Comparison

--Without Clndex --With Clndex 1

140~------------------------------~

~ 120
CI) 100
E 80
1- 60
:::

40
20

E
E
o o O~~----~------~~~----~

-20 -rr----""""""'1"t"rt"r1"t'-------,f')1"ft'l'n"""-----:rrl00

Data Size (K)

Chart 8-1: Commit Performance Comparisons

Chart 8-2 shows the commit performance of McXML with CIndex installed. The tested

XML data is 2.4M in size. The x-axis shows the amount of the updated XML data. The y­

axis shows the commit time in seconds. It is clear that with CIndex, the commit time is

proportional to the updated data size. The intercept of the curve on y-axis is not zero,

which suggests that there is sorne overhead involved. This is inevitable, for sorne time is

spent on scanning the entire XML data. In this case, it takes about 4 seconds to scan the

entire 2.4M XML data.

Chart 8-3 shows the comparison between the commit performance of McXML before and

after CIndex is installed. The tested XML data is 2.4M in size. The x-axis shows the

amount of the updated XML data. The y-axis shows the commit time in seconds. The thin

line curve shows the commit performance without using CIndex. The thick line curve

shows the commit performance when CIndex is used. It is very obvious that with CIndex

the commit performance is much better.

80

_8
en -CI.) 6 E
~ 4
:!::
E

2 E
0
(.)

0

Commit Performance With Clndex
(Data Size = 2.4 M)

0 2000 4000 6000

Updated Data Size

Chart 8-2: Commit Performance With Clndex

Commit Performance Comparison
(Data Size = 2.4 M)

--With Clndex --Without Clndex 1

8000

en 150 --r"""""-------------..........., -CI.) ___

E 100
~
:!::
E 50
E
o (.) O~~~~~~~~~~~~~

o 2000 4000 6000 8000

Updated Data Size

Chart 8-3: Commit Performance Comparison (With Clndex vs. Without Clndex)

81

8.2. Query Indexing Structure (Qlndex)

The Query Indexing Structure (Qlndex) in McXML is designed to optimize XML data

queries. It is a new feature that was added to McXML version 1.0.1 in May 2003.

8.2.1. Difficulties

It is not trivial at aIl to design an indexing structure that optimizes XML data queries in

McXML, for there are sorne extra difficulties.

Unlike many existing XML databases, McXML supports XML data updates as weIl as

XML data queries, which makes it more difficult to build an indexing structure. We have

to guarantee that the indexing structure not only improves the performance of XML data

queries, but also improves, or at least not degrades, the performance of XML updates.

This is difficult, since the indexing structure might be affected by data updates. It requires

sorne index maintenance in order that the index to be up-to-date. This imposes extra

burden to XML data updates and might slow down the update performance to sorne

extent.

Though McXML uses the file system for physical data storage, it uses XML DOM tree as

the logical data model. In other words, disk copies of XML data are aIl fiat .xml files,

while the memory copies of the XML data are XML DOM trees. This design is both

simple and robust. However it leads to another requirement: the indexing structure must

be built on XML DOM trees instead of .xml files, for aIl the XML data processing is done

in memory on the XML DOM trees. This requirement narrows our options, for it

technicaIly exc1udes using signature files or inverted files for implementation.

Also we want the design of the indexing structure to be simple, efficient, and most

importantly, original. Despite the difficulties we came up with Qlndex, which in my

opinion is a great success.

82

8.2.2. Position Path Expression (PPE)

QIndex works very well in improving XML data query performance. One of the reasons

is that it finds a better way of addressing desired XML nodes.

The traditional way of addressing an XML element is to traverse the DOM tree in depth­

first order. To find the desired element, the traversaI usually covers a big portion of the

DOM tree. For example in Figure 8-2, to locate element 18 in Figure 8-2, the traversaI

covers elements 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 and 18.

1

boul man

Ger­
barg

Figure 8-2: A Simplified XML DOM tree on bib.xml

This is not efficient. Instead, QIndex uses a different way of addressing XML elements in

XML DOM tree that requires traversing only a very small portion of the XML DOM tree.

In a DOM tree, the path from the root node to an XML node is unique. For example, in

Figure 8-2, the path in bold is the path from the root node 1 to node 18. In QIndex, a

83

special path expression that we defined as Position Path Expression (PPE) is used to

identify this path. The PPE is a sequence of 'j' delimited numbers. Each number indicates

the ordinal of the node among its siblings. For example, the PPE of node 7 is 1/1/3/2, that

of node 15 is 1/2/3/2, and that of node 18 is 1/2/4/2.

With PPE, to address element 18, we need only visit four nodes: node 1, 10, 16, and 18,

invoking getChildElementAt (int pos) operations, which does what its name suggests, on

the ancestor nodes aU the way down.

PPE is perfect to serve as index on XML DOM tree. However, it is not a good idea to

store PPEs directly in the indexing structure. Firstly, it is difficult to lower the cost of the

maintenance required to keep such an indexing structure up-to-date, for it is susceptible to

XML data updates. An insertion or deletion causes an the right siblings of the inserted or

deleted node and an their descendant nodes to change their PPEs, as a result, a big

portion of the indexing structure needs to be fixed. Secondly, such an indexing structure

is redundant. A PPE might appear in the indexing structure more than once. Once as the

PPE of an XML node, and several times as prefix of the PPEs of the descendant nodes of

that XML node supposing the XML node is not a leaf.

8.2.3. Relative Position Path Expression (RPPE)

In QIndex, we store Relative Position Path Expressions (RPPE) instead. We then use the

RPPEs to construct the PPEs indices. The RPPE contains three numbers: the first one is

the ordinal number at the last level in the corresponding PPE, which indicates the ordinal

of the node among its siblings; the second and third numbers are a Cormen's number pair.

It is easy to construct the PPEs from RPPEs.

8.2.3.1. Cormen's number scheme

Early in 1982, Dietz [PFD82] proposed a numbering scheme to use tree traversaI order to

determine the ancestor-descendant reIationship between any pair of tree nodes:

For two given nodes x and y of a tree T, x is an ancestor of y if and only if x
occurs before y in the preorder traversal ofT and after y in the postorder
traversal.

84

In 1989, Thomas H. Cormen et.aI. [CLRS89] proposes a similar numbering scheme:

For two given nodes x and y of a tree T, x is an ancestor of y if and only ifx is
visited before y is visited and x is exited after y is exited in the depth-first traversaI
ofT.

Compared with the Dietz's numbering scheme, which requires two traversaIs, the

Cormen's numbering scheme is simpler in that it requires only one traversaI on the tree.

Figure 8-3 demonstrates the Cormen's numbering scheme. Each element of the DOM tree

is annotated by a Cormen's number pair: an entry number when the element is first visited

and an exit number when the element is left by the depth-first traversaI.

(2,3)

o
(18, 19)

(39,40)

(29,30) (31,32)

Figure 8-3: Cormen's Number Pair

The Cormen's numbering scheme is elegant and convenient. But it has one disadvantage.

When an insertion or deletion occurs, the Cormen's number pair of aIl the nodes that were

visited successively after the inserted or deleted one in the depth-first traversaI must be

recalculated. This could be costly, especially wh en the XML data is huge.

To get around the problem, we introduce a extending factor EF• Instead of increasing the

entry and exit numbers by one, we increase them by EF, so to reserve extra spaces to

85

accommodate future insertion. Figure 8-4 shows the improved numbering scheme with EF

= 10.

(20,30) (140,150)

Figure 8-4: Improved Cormen's Number Scheming (EF = 10)

After the improvement, the number scheme is more flexible. Now the entry and exit

numbers need not to be recomputed every time an update occurs. For example, to insert a

node before node 3, we may simply assign (13, 17) as the Cormen's number pair of the

newly inserted node and keep those of the others unchanged.

An alternative solution is Li-Moon's proposaI in [QLBMOl]. Q.Li and B.Moon proposed

a numbering scheme that uses an extended preorder and a range of descendants. The

number scheme associates each node with a pair of numbers <order, size> as follows:

• For a tree node y and its parent x, order(x) < order (y) and order(y) + size(y) ~
order(x) + size(x). In other words, interval [order(y), order(y) + size(y)} is contained
in interval [order(x), order(x) + size(x)}.

• For two sibling nodes x and y, ifx is the predecessor of y in preorder traversaI,
order(x) + size(x) < order (y).

• For a tree node x, size(x) can be an arbitrary integer larger than the total number of
the current descendants of x.

86

ln Figure 8-5, the Li-Moon's numbering scheme is illustrated.

(1,100) •

(10,30)/(4~
.11.\. \

(11,5) (17,5) (25,5) (45,5)

Figure 8-5: Li-Moon's Numbering scheme

Both Li-Moon's numbering scheme and our improved numbering scheme accommodate

future insertions gracefully. We choose ours over Li-Moon's because we have already

invented it and applied it to McXML before we explore Li-Moon's numbering scheme.

8.2.3.2. An Example of QIndex

Qlndex is like a map, the keys of which are XPath expressions, and the values of which

are RPPEs. The Qlndex of an XML document is first created in the memory from scratch

by parsing the XML DOM tree. Then it is saved in the disk as an index file for reuse

purpose. Table 8-1 shows an ex ample of Qlndex on bib.xml:

Key Value

bib 1, (0,470)

bib/book 1, (10,160) ; 2, (170,460)

bib/book/year 1,(20,30); 1,(180, 190)

bib/bookltitle 2, (40, 50) ; 2, (200, 210)

bi b/bookl author 3, (60, 110) ; 3 (220, 270) ; 4 (280, 230)

bib/booklauthor/last 1 , (70, 80) ; 1 ,(230, 240) ; 1 (290, 300)

bib/booklauthor/first 2, (90, 100) ; 2 (250, 260) ; 2 (310, 320)

87

Key Value

biblbook/publisher 4, (130, 140) ; 6, (420,430)

biblbook/price 4, (150, 160) ; 7, (440,450)

biblbook/editor 5, (340,410)

bi blbook/editor/last 1, (350, 360)

bi blbook/ edi tor/first 2, (370, 380)

bib/book/editor/affiliation 3, (390, 400)

Table 8·1: An Example of Qlndex

8.2.4. Maintenance Cost

By using RPPEs, QIndex has minimized the maintenance requirement. An update

operation would not cause any Cormen's number pairs in the RPPEs to change assuming

EF is big enough. An update causes only the right siblings of the updated nodes to change

their ordinal numbers in the RPPEs. The maintenance that QIndex needs is of low cost. In

this section, we analyze the cost of the maintenance in terms of time complexity. To keep

it simple, we assume the XML DOM tree involved is a balanced tree (which is usually

true in reality), with n total number of nodes, m as its average scaling factor.

The algorithm to maintain QIndex is presented as follows.

1. MaintainOlndexAfterlnsert(InsertedNode)
2. {
3. RPPExpr f-construct a new RPPE;
4. XPathExpr f-the XPath expression of the InsertedNode;
5. insert {RPPExpr; XPathExpr} into Qlndex;
6.
7. for each right sibling of the InsertedNode
8. do increase the ordinal number in the RPPE by 1;
9. endfor
10. }

1. MaintainQlndexAfterRename(RenamedNode)
2. {
3. RPPExper f- the RPPE of the RenamedNode;
4. OldXpathExpr f-the oldXPath expression of the RenamedNode;
5. delete {OldXPathExpr,. RPPExpr} from Qlndex;
6. NewXPathExpr f- the new XPath expression afthe RenamedNade;

88

7.
8.
9.
10.
11.
12.

insert { NewXPathExpr; RPPExpr} to Qlndex;

for each child node ChildNode of the RenamedNode
do MaintainQlndexAfterRename(ChildNode);
endfor

}

1. MaintainQlndexAfterDelete{ DeletedNode)
2. (
3. delete the Qlndex entry of the DeletedNodefrom Qlndex;
4. for each right sibling of the DeletedNode,
5. do decrease the ordinal number in the RPPE by 1;
6. endfor
7. for each child node ChildNode of the DeletedNode
8. do MaintainQlndexAfterDelete(ChildNode)
9. endfor
10. }

1. MaintainQlndexAfterReplace(NewNode,OldNode)
2. (
3. MaintainQlndexAfterDelete(OldNode);
4. MaintainQlndexAfterlnsert(NewNode);
5. }

1. MaintainQlndex{ UpdateType)
2. (
3. switch(UpdateType)
4. (
5. case Insert:
6. InsertedNode f- the inserted node;
7. MaintainQlndexAfterlnsert(InsertedNode);
8. break;
9. case Delete:
10. DeletedNode f-the deleted node;
11. MaintainQlndexAfterDelete(DeletedNode);
12. break;
13. case Rename:
14. RenamedNode f-the renamed node;
15. MaintainQ1ndexAfterRename(RenamedNode);
16 bœa~
17. case Replace:
18. OldNode f- the node to be replaced;
19. NewNode f-the node to replace the old one;
20. MaintainQlndexAfterReplace(NewNode,OldNode);
21. break;

89

22.
23.
24.
25. }

}

default:
throw WrongUpdateTypeException;

QIndex is implemented as a Hashtable. Looking up a RPPE by an XPath expression takes

0(1) in average case. The total time complexity of searching all the right siblings of a

node is O(n/mh+l), if the node is at the height of h, for at the height of h, there are at

most 1 nlmh+ll nodes. Thus MaintainQlndexAfterlnsert(), in which the most expensive

step is ta increase the ordinal number of the of RPPEs of all the right siblings (Line 7 ta

Line 9), takes 0(1) + O(nlmh+1
) = O(n) time complexity.

MaintainQlndexAfterRename() takes O(logmn
) * m * O(1) = O(log n) time

complexity, for the height of the DOM tree is Llogmn J, and the ma st expensive step in

MaintainQlndexAfterRename() is the recursive call on all the child nodes (Line 9 ta Line

Il). The MaintainQlndexAfterDelete() spends most of the time on the recursi ve call on

the child nodes tao (Line7 ta Line 9). It also spends sorne time on decreasing the ordinal

numbers of the RPPEs of the right siblings (Line 4 ta Line 6). Its total time complexity is

(0(1) + O(n » * (O(log n) * m * O(1)) = O(n log n).

MaintainQlndexAfterReplace() contains MaintainQlndexAfterlnsert() (Line4)and

MaintainQlndexAfterDelete() (Line 3), sa its complexity is O(n) + O(n log n) = O(n log

n). Henee, MaintainQlndex() takes max(O(n) , O(log n) , O(n log n) , O(n log n))

= O(n log n) time complexity. This is very low cast.

8.2.5. Advantages of Qlndex

The advantages of QIndex are obvious:

• It is tight in structure.

QIndex uses XPath expressions as keys. Normally, an XML document is not very

deep in structure. Even very big XML documents are often wide but not deep. Sa, the

number of unique XPath expressions in an XML document are usually not very big,

which means there are not a lot of entries in QIndex.

The values of QIndex are RPPEs. Though there could be a big number of RPPEs, the y

are all grouped by the XPath expressions. Besides, for each XPath expression, the list

of the RPPEs is sorted by the value of their Cormen's number pairs.

90

• It is small in size.

Qlndex stores RPPEs instead of PPEs, as a result, redundantly repetitive information

is avoided. Also, compared with PPEs, RPPEs are much smaller in size.

• It does not require very much maintenance. The time complexity of the maintenance

is only O(n log n), where n is the total number of nodes in the XML DOM tree (See

Section 8.2.4.).

• It improves the efficiency of addressing XML nodes.

With Qlndex, it is simple and efficient to address an XML node:

Step 1: Pind the RPPE of the XML node by looking up Qlndex, using its XPath

expression as the key. In case that wildcards are used in the XPath expressions

of an update command, the XPath expressions are first reinterpreted to regular

XPath expressions.

Step 2: Construct the PPE of the XML node from its RPPE.

Step 3: Locate the XML node in the XML DOM tree, following the path from the root

node to the XML node specified by the PPE.

Step 1 and Step 3 are straightforward. The algorithm of constructing PPEs from

RPPEs is as follows:

String ConstructPPE (String XpathExpr, String RPPExpr)
{

}

if (XpathExpr contains no 'l') then
retum RPPExpr;

XpathExpr = XpathExpr.substring(O, XpathExpr.lastlndexOf('I'));
String [} newRPPExprList = the list of RPPEs stored in Qlndex

under the key XpathExpr;
for each newRPPExpr in newRPPExprList do

if the Cormen's number pair ofnewRPPExpr strictly
contains that of RPPExpr

then retum ConstructPPE(XpathExpr, newRPPExpr) +
'l' + RPPExpr;

throw WronglnputException;

8.2.6. Performance

ln this section, we present sorne test data to show the performance of the Qlndex. The test

on the Qlndex is done on several XML documents. Table 8-2 shows the statistics on these

XML documents.

91

XML document Size (K) Depth Scaling Factor Fan Out
bib.xm1 1 4 2 22
Proj ect. xml 14 4 3 401
Course.xml 36 4 5 1,201
Studentproject.xml 230 4 10 70,00
Student.xml 400 4 7 13,602
Bigstudent.xml 2,400 4 7 70,000

Table 8 - 2: Statistics on The Tested XML Document

8.2.6.1. Query-All & Update-All Performances

Sorne queries retums the results that scatters the whole data, which in this thesis is called

"Query-All" for simplicity. And we calI those updates that affect the whole data set

"Update-AlI". For ex ample, the following query retums a result that spreads the whole

data set, for in bib.xml, the <book> nodes are child nodes of the root:

for $b in documente "bib.xml")//book
return $b

The following update command is an "Update-AlI":

for $b in document("bib.xml")//book,
$a in $b/author

updaie $b
{

rename $a to "writer";
}

Chart 8-4 shows the Query-All performances of McXML before and after Qlndex is

installed. The x-axis shows the size of the XML data being queried. The y-axis shows the

query time in milliseconds. The chart shows that when the data size is big, the Query-All

performance with Qlndex is not as good as that without QIndex. This makes sense, for as

any indexing structure, QIndex does not optimize the performance of Query-All queries.

On the contrary, since using Qlndex enviably adds sorne overheads, the Query-All

performance is even slightly degraded.

92

Query Ali Performance Comparison

j--Without Qlndex With Qlndex 1

1000 -UJ 800
:E 600 -CI)

E 400
i=
>- 200 ...
CI)
j 0 0

-200 0

Data Size (K)

Chart 8-4: Query-All Performance Comparison (With Qlndex vs. Without Qlndex)

Chart 8-5 shows the Update-All performances of McXML before and after QIndex is

installed. The x-axis shows the size of the whole XML data. The y-axis shows the update

time in seconds. For the same reason that we stated in the previous paragraph, the

Update-All performance with QIndex is not as good, though the difference is only slight.

Update-AII Performance Comparison

Without Clndex With Clndex 1

300 -UJ - 200 CI)

E
i= 100
CI) -ca
'0 0 Co
~ 1000 2000 3 0

-100

Data Size (K)

Chart 8-5: Update-All Performance Comparison (With Qlndex vs. Without Qlndex)

93

ln conclusion, for Query-AII and Update-AII cornrnands, we should not use any index

structure including Qlndex. Normal way of execution is better.

8.2.6.2. Query-None & Update-None performance

Sorne queries retum no data, which in this thesis is calIed "Query-None" for sirnplicity.

And we calI those updates that affect no data "Update-None". For exarnple, the folIowing

query asks for data under an non-existing path, and retums no data:

for $x in documente "bib.xml")//booklauthorllast/name
return $x;

The folIowing update cornrnand is a "Update-None":

for $x in document("bib.xml")//booklauthorllast/name,
let $y = $x/alias
update $x

{
delete $x;

}

Chart 8-6 shows the Query-None performance of McXML before and after Qlndex is

instalIed. The x-axis shows the size of XML data being queried. The y-axis shows the

query tirne in rnilliseconds. As we can see, with Qlndex, the result retums irnrnediately,

while without Qlndex, it still takes sorne tirne to figure out that no data is qualified to be

retumed.

Query None Performance Comparison

Without OIndex With Qlndex 1

600

- 500 .!!!

:il 400 -Q) 300
E
j:: 200
>- 100 "-
CIl
:::s
0 0

-100 0

Data Size (K)

Chart 8-6: Query-None Performance Comparison (With Qlndex vs. Without Qlndex)

94

Chart 8-7 shows theUpdate-None performances of McXML before and after QIndex is

installed. The x-axis shows the size of the whole XML. The y-axis shows the update time

in milliseconds. Sirnilarly, with QIndex, the Update-None performance is better.

Update None Performance
Comparison

Without Olndex With Olndex 1

_ 600 -r------------------,
.~ 500

.§. 400
CI) 300
E
j:: 200

100
CI) -ca

X O~--------~--------~------~
::l -1 00 i't----.......:ti:ffitr_--~::H*:r_--~[:J{JO

Data Size (K)

Chart 8-7: Update-None Performance Comparison (With QIndex vs. Without QIndex)

8.2.6.3. Query-Part & Update-Part Performance

Most of the query retums a small part of the data as result, which in this thesis are called

"Query-Part" for simplicity. And we call those updates that affect a small part of the data

"Update-Part". For example, the following query retums only a small XML data branch:

for $f in document("bib.xml")//bookleditor/affiliation
return $f;

The following is an "Update-Part":

for $e in document("bib.xml")//bookleditor
let $f = $e/affilliation
update $e
{

insert <middle>N.A. </middle> before $f;
}

Chart 8-8 shows the Query-Part performances of McXML before and after QIndex is

installed. The x-axis shows the size of the data being queried. The y-axis shows the query

time in milliseconds. The tested query retums one record as result. In this case, the

Query-Part performance with QIndex is optimized.

95

Query-Part Performance Comparison

Without Olndex With Olndex 1

500~--------------------------~ -.!!! 400

~ 300
al
E 200
j::

100

O~------~--------~------~
~
al
:::1 o

Data Size (K)

Chart 8-8: Query-Part Performance Comparison (With Qlndex vs. Without Qlndex)

Chart 8-9 shows the Update-Part performances of McXML before and after Qlndex is

installed. The x-axis shows the size of the whole data. The y-axis shows the update time

is milliseconds. The tested update affects one particular record. As explained in Section

8.2.1., Qlndex requires sorne maintenance to be up-to-date. This is a side affect of Qlndex

that might slow down the update performance to sorne extent. However, in this case, the

update performance with Qlndex is better than that without Qlndex. This is because

update operations contain solving variable binding, which is actually a data query part.

Qlndex works so well in optimizing the data query performance that the overhead of

maintaining Qlndex is not visible.

Update Part Performance Comparison

Without Olndex With Olndex 1

-200 1000 2000 3 0

Data Size (K)

Chart 8-9: Update-Part Performance Comparison (With Qlndex vs. Without Qlndex)

96

Note that in the above charts, the update measurements seem linear wh en Qlndex is used,

whereas, in Section 8.2.4, we have analyzed that computational complexity for update

maintenance for Qlndex is O(n log n). This is simply because the test XML data is not

large enough to show the superlinear curvature.

8.2.7. Comparison With Other Indexing Structures

ln Chapter 6, sorne indexing structures are described. In this section, let' s compare

Qlndex with sorne of those indexing structures to show more clearly the advantages and

disadvantages of Qlndex. Unfortunately, there is not enough information on the

performances of these indexing structures. Especially, there is no information on their

update & maintenance performances. As a result, we are unable to give a comparison in

performance.

Lore has four index structures. One of them, Tindex is a full text index, which will not be

discussed here. The other three are aIl structural indices. Vindex quickly locates specifie

leaf objects. Lindex retrieves the parents of a no de via a given label. Pindex lookups for a

path p retums the set of nodes 0 reachable via p. Qlndex of McXML is like a

combination of Vindex and Pindex. The main functionality of Qlndex is to look up a

XPath expression and retums aIl the nodes under it. What Vindex does is a special case

for Qlndex. What Pindex retums (aIl the nodes reachable by the path) is a super set of

what Qlndex retums (aIl the nodes under the path). As far as data retrieval by path is

concemed, Qlndex is more specific. Lindex of Lore is only useful in Lore's data model.

McXML uses DOM as its logical data model, which itself provides the functionality that

Lindex has except that Lindex is also capable of finding the referencing node. Qlndex is

advantageous in that its functionalities are more specifie and it is integral to aIl the XML

database systems that use DOM or sorne similar data model. Lore's indexing structures

are advantageous in that the y provide more functionalities. Lore's functionalities are

distributed, which could be desirable and undesirable. Lore has a cost-based query

optimizer to piece together aIl the indexing structures to create efficient query plans, in

this sense, it is good to have the functionalities distributed. However, the distribution

makes it very complicated to synchronize aIl the indexing structures in case of XML data

97

updates. Of course, this is not an issue for Lore, for it does not support XML data updates.

But the indexing approach itself is disadvantageous in this sense.

Natix has a structural index, XSAR, too. Like Qlndex, it also uses the Cormen's number

scheme to indicate parent-child relationship among nodes. Actually, Qlndex was to a

great extent enlightened by XSAR. XSAR works on top of a relational database, which

gives it access to the functionalities of the relational database to simplify its work.

However, at the same time, it loses its independency. Besides, XSAR does not reserve

extra number pair space to accommodate future insertions and it does not provide a

mechanism to synchronize itself with update operations. Therefore XSAR is only useful

where update operations are not supported. In actual, XSAR was originally a component

of a XML data search engine called Mumpits [TFGMOO]. Whereas, Qlndex of McXML

is independent, for it creates its own index files instead of relying on relation database

tables. Also, Qlndex improves Cormen's numbering scheme by introducing a factor EF. It

is compatible to update operations and does not require a lot of maintenance. (See Section

8.2.3.1.)

ln [EK002], a hybrid-indexing mechanism is proposed. It is like a combination of Lore's

Pindex and Vindex with inverted file implementation. (In Lore, Vindex is implemented

with B+ tree). It does not provide a way of synchronizing itself with XML update

operations. What is worse, it is almost impossible to be improved otherwise, for inverted

files are too much affected by XML updates. Plus inverted files are often very large in

size. Maintaining them would require far too much effort. It is safe to say, such a hybrid

index structure could not survive XML updates.

ln summary, Qlndex of McXML is advantageous in that it functions weIl where XML

updates are supported. There is a lot for McXML to leam from other indexing structures,

too. For example, it could leam from Lindex of Lore to add the functionality of retrieving

the referencing node of an XML node.

98

Summary

McXML is a successful piece of work, with which, the author showed that her approach

of designing a native XML database management system that supports both XML queries

and XML updates is feasible. Sorne indexing structures were built on McXML. They

were proved by solid test data to be efficient in lowering XML query cost without

increasing XML update cost. This proved that indexing structures are useful and should

be an integral part of XML database systems.

However McXML is just a prototype, which is open to future improvements:

• McXML uses the XQuery engine of the KAWA complier (caIled KA WADriver in

McXML) for XML query commands. McXML has developed its own driver,

XMLDBDriver, which now is only used for handling XML update commands. The

XMLDBDriver is capable of handling XML queries, too. What lacks is a RetumStmt

that retums aIl the XML data found. In the future, such a statement should be added.

Then the XMLDBDriver would deal with aIl commands and the KA W ADriver should

be removed.

• In the future, McXML could develop a cost-based query optimizer, which is

responsible to create efficient query plans that decide, for executing the XML query

or update commands, whether to use an indexing structure or not, and if yes, which

indexing structure should be used.

• As a Client/Server architecture, McXML is extendable to support multiple clients. In

the future, this feature could be added to McXML.

99

References

[AQMW97]: S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener, "The Lorel

Query Language for Semistructured Data", International Journal on

Digital Libraries, 1(1):68-88, April 1997.

[AWJWOO]: Ann Wollrath and Jim Waldo, "Trail: RMI", 2000,

http://java.sun.comldocslbooks/tutorial/rmi.

[BPS98]: Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, "Extensible Markup

Lauguage (XML) 1.0", February. 1998,

http://www.xml.comlaxml/testaxml.htm.

[CCDF99]: Stefano Ceri, Sara Cornai, Ernesto Damiani, Piero Fraternali, etc, "XML­

GL, a Graphical Language for Querying and Restructuring XML

Documents", Technical Report, Universita di Milano, March 1999.

[CEL97]: Castedo Ellerman, "Channel Definition Format (CDF)", March 1997,

http://www.w3.org/TRINOTE-CDFsubmit.html.

[CLRS89]: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff

Stein, "Introduction to Algorithms", MIT Press and McGraw-Hill, 1989.

[DFFL98]: Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, and Dan

Suciu, "XML-QL, A Query Language for XML", August 1998,

http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[DKM96]: D.Dervos, P.Linardis and Y.Manolopoulos, "Perfect Encoding: a

Signature Methodfor Text Retrieval", Proceedings 3rd International

Workshop on Advances in Databases and Information Systems

(ADBIS'96), Moscow, Russia.

[EK002]: Evangelos Kotsakis, "Structured Information Retrieval in XML

documents", SAC 2002.

[FHKM02]: Fiebig, T.; Helmer, S.; Kanne, C.-C.; Moerkotte, G.; Neumann, J.; Schiele,

R.; Westmann, T., "Natix: a technology overview", Web, Web-Services,

and Database Systems. NODe 2002 Web- and Database-Related

Workshops, Oct. 2002.

[GMW99]: R. Goldman, J. McHugh, and J. Widom, "From Semistructured Data to

XML: Migrating the Lore Data Model and Query Language", Proceedings

100

of the 2nd International Workshop on the Web and Databases (WebDB

'99), Philadelphia, Pennsylvania, June 1999.

[HTML03]: W3C, "HyperText Markup Language (HTML)",

http://www.w3.orgiMarkUp.

[IDTE03]:

[IDXE03]:

[ISVL02]

[JCSD99]:

[JMIOl]:

[LMAOO]:

IBM, "", January 2003, "DB2 Text Extender",

http://www-3.ibm.comlsoftware/data/db2/extenders/textlindex.html

IBM, "DB2 XML Extender", January 2003,

http://www-3.ibm.comlsoftware/data/db2/extenders/xmlextl

IBM Silicon Valley Lab, "Database Technology for e-Business",

December 2002

http://www7b.software.ibm.comldmdd/library/techartic1e/0212malaika/02

12malaika.html

James Clark and Steve DeRose, "XML Path Language (XPath) Version

1.0", November 1999, http://www.w3.orgiTR/Xpath.

Julia Mildenberger, "A generic approachfor document indexing: Design,

implementation, and evaluation". Master's thesis, University of Mannheim,

Mannheim, Germany, November 2001 (in German).

Lars Martin, "XUpdate - XML Update Language", November 2000,

http://www .xmldb.orglxupdate/xupdate-req .html.

[MFJROO]: M. Fernandez and J. Robie, "XML query data model, W3C working draft

11 May 2000", Technical report, World Wide Web Consortium, May 2000,

http://www . w3 .orgiTR/2000/WD-query-datamodel-20000511.

[MMA03]: Massimo Marchiori, "XML Query (XQuery)", September 2003,

http://www.w3.orglXMLlQuery.

[MPE02]: Michalis Petropoulos, "OQL Tutorial", February 2002,

http://feast.ucsd.edu/People/michalis/notes/02/0Q LTutorial. htm.

[MWAL98]: J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajaraman, "lndexing

Semistructured Data", Technical Report, January 1998.

[PBRM03]: Per Bothner and R. Alexander Milowski, "Kawa, the JAVA based Scheme

System", June 2003, http://www.gnu.org/software/kawa.

101

[PEB03]: Paul E. Black, "Inverted File Index", April 2003,

http://www.nist.gov/dads/HTMUinvertedFilelndex.html.

[PFD82]: P. F. Dietz. "Maintaining order in a linked list", ACM Symposium on

Theory of Computing, pages 122--127, 1982.

[PLLH01]: Peiya Liu and Liang H. Hsu, "A Logic Approach to XML Document

Update Query Specifications", Internationales Congress Centrum (ICC)

21-15 May 2001.

[POJOO]: Pasi Ojala, "Compression Basics", 2000,

http://www.cs.tut.fi/-albertlDev /pucrunch/packing.html.

[QLBM01]: Quanzhong Li, and Bongki Moon, "Indexing and Querying XML Data For

Regular Path Expressions", 27th VLDB Conference, Roma, Italy, 2001.

[RCFOO]: Jonathan Robie, Don Chamberlin, Daniela Florescu, "Quilt, An XML

Query Language", March 2000,

http://www.almaden.ibm.com/cs/people/chamberlin/quiICeuro.html.

[RHJ99]:

[RLS98]:

Dave Raggett, Arnaud Le Hors, and lan Jacobs, "Document Type

Definition", December 1999,

http://www . w3 .org/TRIREC-htmI40/sgml/dtd.html.

J. Robie, J. Lapp and D. Schach, "XML Query Language (XQL)", Proc. of

the Query Languages workshop, Cambridge, Mass., Dec 1998,

http:://www/w3.orglTandS/QL98/pp/xql.html.

[SGML03]: W3C, "Overview of SGML resources",

http://www.w3.orglMarkUp/SGML.

[TFGMOO]: Thorsten Fiebig, Guido Moerkotte, "Evaluating Queries on Structure with

eXtended Access Support Relations", WebDB (InformaI Proceedings),

pages 41--46, Dallas, Texas, 2000.

[TIHW01]: Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld,

"Updating XML", SIGMOD conference 2001.

[WBGA01]: Jennifer Widom, Andre Bergholz, Roy Goldman, Serge Abiteboul, etc,

"Lore", 200 1, http://www-db.stanford.edu/lore.

[WDOMOO]: W3C, "Document abject Model (DOM) Level2 Core Specification",

November 2000, http://www.w3.orglTRlDOM-Level-2-Core.

102

[WSQL03]: W3Schools, "SQL Tutorial", 2003, http://www.w3schools.comlsqIl.

[WXML03]: W3C, "Extensible Markup Lanaguage", http://www.w3c.org/xml.

[XDBI03]: The XML:DB Initiative, "XML:DB Initiative for XML databases", 2003,

http://www .xmldb.orglindex.html.

[XSLT99]: W3C, "XSL Transformations (XSLT)", November 1999,

http://www.w3.orglTRlxslt.

[XSD99]: W3C, "XSL Transformations (XSLT)", November 1999,

http://www . w3 . org/TRIxslt.

103

