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Front matter 
 

Abstract 

 

Cough is a symptom common to many acute and chronic respiratory diseases, including COVID-

19, tuberculosis (TB), chronic obstructive pulmonary disease, and lung cancer. Its non-specific 

nature makes it difficult for clinicians to diagnose patients based on cough alone, and patients often 

struggle to accurately remember cough duration and characteristics. To address these limitations, 

recent developments in digital health and artificial intelligence (AI) aim to transform cough into 

an objective biomarker for clinical decision-making. These tools analyze cough sounds to screen 

for diseases or explore longitudinal cough counts among patients undergoing treatment. This 

emerging field, termed "acoustic epidemiology", uses technology to detect and analyze bodily 

sounds to better understand disease dynamics. As technologies and AI advance, there is a need to 

understand the clinical utility of cough-based tools, the complexities of cough dynamics, and 

implementation challenges in diverse settings. The objective of this thesis is to advance acoustic 

epidemiology by evaluating cough as a potential biomarker for respiratory diseases. 

 

The first manuscript is a perspective on recent advances in digital cough analysis tools for TB care. 

We explored cough's potential as a biomarker across various stages of the TB care cascade. 

 

The second manuscript is a scoping review of digital cough counting tools for longitudinal cough 

monitoring in respiratory diseases. We identified four key clinical use cases: diagnosis, treatment 

monitoring, outcome prediction, and syndromic surveillance. Moderate correlations between 

objective cough counts and patient-reported outcomes highlight cough's complex nature. Our 

review uncovered implementation challenges, emphasizing the need for real-world validation 

studies. 

 

The third manuscript examined the relationship between daily cough counts and TB bacterial 

burden during the first two weeks of treatment. Among 209 TB-positive individuals, cough counts 

declined over time in all participants. Multivariable analyses showed that participants with lower 

molecular Xpert semi-quantitative groups ('Medium', 'Low', 'Very low') had lower cough counts 
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compared to the 'High' group, with rate ratios (RRs) of 0.79 (95% confidence interval [CI]: 0.59, 

1.05), 0.64 (95% CI: 0.47, 0.87) and 0.61 (95% CI: 0.41, 0.91) respectively. Lower digital chest 

X-ray severity scores were also associated with lower cough frequencies (RR: 0.80; 95% CI: 0.67, 

0.95). These findings showed that cough frequency correlates with markers of bacterial burden 

and declines with treatment. 

 

The fourth manuscript explored the external validity of cough-based COVID-19 triage models 

across populations. We analyzed cough recordings from 605 coughing adults in Lima, Peru and 

Montreal, Canada. Cough feature analyses revealed significant heterogeneity between the cohorts. 

Cough-based machine learning algorithms performed well in Lima, achieving an area under the 

curve (AUC) of 0.71 (standard error [SE]: ± 0.08). Performance was lower within the Montreal 

dataset with an AUC of 0.53 (± 0.04). Both models showed poor external validity (AUC ± SE: 0.5 

± 0.03 for Lima, 0.51 ± 0.01 for Montreal). 

 

The fifth and final manuscript examined the external validity of cough-based TB triage AI models. 

We evaluated models from the CODA TB DREAM Challenge using a cough dataset collected 

from 303 coughing adults in Peru. Model performance decreased from an AUC range of 0.689-

0.743 in the CODA Challenge to a range of 0.480-0.615 in the external validation, emphasizing 

the need for developing and validating cough-based tools using data from the intended use 

populations. 

 

These studies collectively advance our understanding of cough as a biomarker, highlighting its 

potential in disease monitoring and screening while underscoring some of the challenges for 

eventual clinical application.  
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Resumé 

 

La toux est un symptôme fréquent des maladies respiratoires, notamment la COVID-19, la 

tuberculose (TB), la bronchopneumopathie chronique et le cancer du poumon. Sa nature non 

spécifique complique le diagnostic, et les patients peinent à en décrire la durée précise. Les 

développements en santé numérique et en intelligence artificielle (IA) cherchent à transformer la 

toux en biomarqueur objectif pour la décision clinique. Ces outils analysent les sons de toux pour 

dépister les maladies ou suivre leur évolution pendant le traitement. Ce domaine émergent, 

l'"épidémiologie acoustique", utilise la technologie pour analyser les sons corporels et comprendre 

la dynamique des maladies. Avec l'avancement des technologies et de l'IA, il faut évaluer l'utilité 

clinique de ces outils, comprendre la dynamique de la toux et les défis de mise en œuvre. Cette 

thèse vise à faire progresser l'épidémiologie acoustique en évaluant la toux comme biomarqueur 

des maladies respiratoires. 

 

Le premier manuscrit est une perspective sur les récentes avancées des outils d'analyse numérique 

de la toux pour les soins de la tuberculose. Nous avons exploré le potentiel de la toux comme 

biomarqueur à différentes étapes de la cascade de soins de la tuberculose. 

 

Le deuxième manuscrit revoit les outils numériques de comptage de la toux pour le suivi 

longitudinal. Nous avons identifié quatre cas d'utilisation clinique: le diagnostic, le suivi du 

traitement, la prédiction des résultats et la surveillance syndromique. Des corrélations modérées 

entre les décomptes objectifs de la toux et les résultats rapportés par les patients soulignent la 

nature complexe de la toux. Notre revue a révélé des défis de mise en œuvre, soulignant le besoin 

d'études de validation en conditions réelles. 

 

Le troisième manuscrit examine la relation entre les décomptes de toux et la charge bactérienne 

TB durant les deux premières semaines de traitement. Parmi 209 individus TB-positifs, les 

décomptes de toux ont diminué au fil du temps. Les analyses multivariées ont montré que les 

participants avec des groupes Xpert plus faibles ('Moyen', 'Faible', 'Très faible') avaient des 

décomptes de toux plus faibles comparés au groupe 'Élevé', avec des ratios de taux (RT) de 0,79 

(intervalle de confiance [IC] à 95%: 0,59, 1,05), 0,64 (95%: 0,47, 0,87) et 0,61 (95%: 0,41, 0,91). 
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Des scores de gravité plus faibles à la radiographie thoracique étaient aussi associés à des 

fréquences de toux plus faibles (RT: 0,80; 95%: 0,67, 0,95). Ces résultats montrent que la fréquence 

de la toux corrèle avec les marqueurs de charge bactérienne et diminue avec le traitement. 

 

Le quatrième manuscrit explore la validité externe des modèles de triage COVID-19 basés sur la 

toux. Nous avons analysé les toux de 605 adultes à Lima, Pérou et Montréal, Canada. Les analyses 

des caractéristiques de la toux ont révélé une hétérogénéité significative entre les cohortes. Les 

algorithmes d'apprentissage automatique ont bien performé à Lima, atteignant une aire sous la 

courbe (ASC) de 0,71 (erreur standard [ES]: ± 0,08). La performance était plus faible à Montréal 

avec une ASC de 0,53 (± 0,04). Les deux modèles ont montré une faible validité externe (ASC ± 

ES: 0,5 ± 0,03 pour Lima, 0,51 ± 0,01 pour Montréal). 

 

Le dernier manuscrit examine la validité externe des modèles d'IA de triage TB basés sur la toux. 

Nous avons évalué les modèles du CODA TB DREAM Challenge avec des données de toux de 

303 adultes au Pérou. La performance des modèles a diminué d'une plage d'ASC de 0,689-0,743 

dans le CODA Challenge à 0,480-0,615 dans la validation externe, soulignant le besoin de 

développer et valider des outils basés sur la toux avec des données des populations cibles. 

 

Ces études font progresser notre compréhension de la toux comme biomarqueur, soulignant son 

potentiel dans la surveillance et le dépistage tout en révélant les défis d'application clinique. 
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Chapter 1. Introduction 
 

1.1. Introduction 

 

The COVID-19 pandemic transformed how society perceives cough, shifting it from a common, 

often overlooked symptom to a signal that could clear a room.1 This heightened public awareness 

parallels a growth in researchers and clinicians beginning to explore cough's untapped potential in 

clinical care.2 

 

While cough has traditionally been understood as both a vital protective reflex and a troublesome 

symptom,3 it manifests across a spectrum of respiratory conditions, ranging from acute infectious 

diseases to chronic respiratory disorders. Acute cough is commonly associated with viral 

respiratory infections like influenza and COVID-19, bacterial infections such as tuberculosis (TB), 

and community-acquired pneumonia. In contrast, chronic cough, persisting beyond eight weeks, 

characterizes conditions like asthma, chronic obstructive pulmonary disease, and lung cancer.4 

 

Despite the clinical significance of cough across these conditions, clinicians currently rely 

primarily on imperfect patient recall, subjective descriptions and basic characterizations of cough 

for assessment and monitoring.5 However, modern technological advances have revealed another 

dimension in which cough serves as a rich source of diagnostic information. A single cough event 

contains complex acoustic signatures that could indicate underlying pathology,6–8 and the temporal 

patterns of cough frequency, daily distribution of cough episodes, and overall duration of the 

symptom can reflect disease progression, treatment response, and recovery trajectories.9,10 The 

widespread adoption of smartphones and increasing acceptance of digital health tools has made it 

increasingly possible and acceptable to capture data like cough-sounds in real-world settings.11 

When combined with artificial intelligence (AI) algorithms capable of analyzing acoustic features 

and identifying patterns in cough data, this multidimensional information could help clinicians 

differentiate between diseases, assess severity, and monitor treatment response. 

 

These technological advances in cough analysis have given rise to a new field known as acoustic 

epidemiology, which leverages sound-based data to understand disease patterns and improve 
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health outcomes.12,13 This emerging discipline combines digital health technologies, AI, and 

clinical medicine to transform traditionally subjective symptoms into objective, measurable 

biomarkers. However, realizing this potential requires careful consideration of technical 

capabilities, clinical validation, and real-world implementation challenges across diverse 

healthcare settings and populations. 

 

1.2. Research gaps addressed by this thesis 

 

The COVID-19 pandemic catalyzed rapid development of AI algorithms for cough classification 

and accelerated the availability of digital cough monitoring tools. Despite these technological 

advances, this data-rich symptom remains largely reduced to basic present/absent documentation 

in clinical practice. While numerous promising tools and algorithms have been developed, few 

have successfully transitioned from research to routine clinical use. This represents a missed 

opportunity in an era where AI and digital health tools are transforming other areas of medicine.14 

The persistent gap between cough's potential as a biomarker and its current clinical utilization 

suggests fundamental challenges in both analysis and implementation that must be addressed. This 

thesis investigates multiple dimensions of cough analysis—from acoustic signatures to 

longitudinal temporal patterns—to highlight the potential of cough and identify key barriers 

preventing the successful integration of cough-based tools into clinical practice. 

 

I begin this exploration by examining cough monitoring through a disease-specific lens, focusing 

on TB, the leading infectious cause of death globally (Manuscript I). This perspective article 

identifies key opportunities and challenges for implementing cough-based tools in TB care, 

providing a roadmap for researchers and clinicians working in acoustic epidemiology. Building on 

this foundation, I conducted a comprehensive scoping review to map the landscape of existing 

cough counting tools across all respiratory conditions (Manuscript II). This systematic analysis 

allowed me to better understand what cough counting tools are available, how they are being used, 

and the existing challenges for implementing them in a clinical context. 

 

In Manuscript III, I conducted the first comprehensive analysis examining the relationship 

between baseline TB disease bacterial burden and cough patterns during the initial phase of 
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treatment. This study not only revealed important insights into cough dynamics among TB patients 

but also highlighted previously overlooked analytical challenges in processing continuous cough 

data, establishing methodological considerations for future studies that analyze longitudinal cough 

data. 

 

Both Manuscript IV and Manuscript V examine critical limitations in AI-based cough 

classification algorithms for COVID-19 and TB screening, respectively. Early development of 

these algorithms was driven by an assumption that cough acoustic features would be universal 

across populations, leading to efforts to create globally applicable screening tools. Through 

external validation studies, these manuscripts demonstrate that population-specific factors 

significantly influence cough acoustics, challenging the notion of universal cough classification 

models. The findings highlight the need to reconsider how we develop and validate cough-based 

screening tools, suggesting that targeted population-specific approaches may be more appropriate.  

 

1.3. Thesis goal and objectives 

 

The overall goal of this thesis is to advance the clinical utility of digital cough assessment tools by 

examining the potential of cough as objective biomarkers for respiratory disease screening and 

monitoring. This goal is addressed through five manuscripts with the following objectives: 

 

Manuscript I: 

 

1. To explore the potential of acoustic epidemiology and digital cough monitoring tools across 

the TB care cascade, from screening and diagnosis to post treatment care. 

 

Manuscript II: 

 

2. To identify and categorize the various digital cough counting tools and technologies used 

in clinical and public health contexts. 

3. To analyze how digital cough counting tools are currently being used for the diagnosis, 

monitoring, and management of respiratory diseases, and their effectiveness in these roles. 
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4. To investigate the technological and logistical factors that affect the adoption and 

integration of digital cough counting tools into clinical practice and public health strategies. 

 

Manuscript III: 

 

5. To characterize the relationship between cough counts during the first 14 days of treatment 

and markers of baseline TB bacterial burden. 

 

Manuscript IV: 

 

6. To characterize population-level differences in cough acoustic features between distinct 

geographic, demographic, and epidemiologic cohorts. 

7. To assess the external validity of AI and machine learning COVID-19 cough classification 

algorithms between two cohorts. 

 

Manuscript V: 

 

8. To conduct an external validation of COugh Diagnostic Algorithm for Tuberculosis 

Challenge AI cough classification models. 
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Chapter 2. Literature review 
 

2.1. Epidemiology of cough and cough-related diseases 

 

2.1.1. Cough epidemiology 

 

The epidemiology of cough is complex, as it is associated with various respiratory diseases and 

conditions. Cough is typically categorized as either chronic or acute, with chronic cough often 

linked to conditions such as chronic obstructive pulmonary disease (COPD), while acute cough 

may be attributed to infections like COVID-19. Accurately estimating the prevalence of cough 

poses significant challenges due to the heterogeneity in cough types, definitions, and underlying 

aetiologies. A 2015 meta-analysis estimated the global prevalence of chronic cough at 

approximately 9.6%, which aligns closely with the prevalence of associated conditions such as 

asthma and COPD.15 A more recent meta-analysis on cough of any etiology revealed a prevalence 

ranging from 3.8-4.2% in Western countries to 10.3-13.8% in Africa, Asia, and South America.16 

Demographic variations in cough prevalence and cough sensitivity have been observed, with 

women demonstrating a more sensitive cough reflex compared to men,17,18 meaning that the level 

of stimuli needed to illicit a cough is lower compared to men. This biological difference is reflected 

in clinical presentations, as evidenced by a study of 10,000 consecutive patients presenting with 

chronic cough, where approximately 66% were female.19 

 

The epidemiology of cough can be further elucidated by examining the burden of diseases 

associated with this symptom. The 2019 Global Burden of Disease study estimated that chronic 

respiratory diseases accounted for 103.5 million disability-adjusted life years (DALYs), 

representing 4.1% of global DALYs for all causes.20 The geographic distribution of DALYs due to 

chronic respiratory diseases disproportionately affected sub-Saharan Africa, South Asia, and 

South-East Asia (Figure 2.1). Lower respiratory tract infections, including tuberculosis (TB), were 

responsible for 5.7% of global DALYs in 2019.21 
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Figure 2.1. Age-standardized disability-adjusted life years (DALYs) due to chronic 

respiratory diseases. DALYs are highest in sub-Saharan Africa, South Asia, and South-East Asia. 

Main contributing diseases are chronic obstructive pulmonary disease (COPD), asthma, 

pulmonary sarcoidosis, and interstitial lung disease. (Source: Momtazmanesh et al. 2019.20) 

 

2.1.2. COVID-19 epidemiology 

 

In November 2019, a highly infectious coronavirus (SARS-CoV-2) emerged, rapidly spreading 

globally and prompting the World Health Organization (WHO) to declare a pandemic in early 

2020.22 The resulting disease, COVID-19, has since caused widespread devastation, with an 

estimated 7 million cumulative deaths reported worldwide.23 The burden of disease was 

particularly acute during the initial two years (2020-2021) due to limited population-level 

immunity and restricted vaccine availability and vaccine inequities, especially in low- and middle-

income countries (LMICs).24 The profound impact of the COVID-19 pandemic on global health is 

reflected in the 2021 Global Burden of Disease study, which ranked COVID-19 as the leading 

cause of DALYs, accounting for 212.0 million DALYs (Figure 2.2).25 
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Figure 2.2. Global distribution of leading causes of disability-adjusted life years (DALYs) in 

2021. This world map illustrates that COVID-19 (shown in orange) was the leading cause of 

DALYs across many regions, including North and South America, parts of Europe, and significant 

portions of Africa and Asia. (Source: Ferrari et al. 2021.25) 

 

As the pandemic progressed, the virus evolved through mutations, leading to the emergence of 

several variants. The WHO designated certain variants as "variants of concern," including Beta 

(B.1.351), Alpha (B.1.1.7), Delta (B.1.617.2), Gamma (P.1), and Omicron (B.1.1.529).26 These 

new variants altered the virus's transmissibility, with Omicron becoming the dominant variant by 

the end of 2022.27 

 

The evolution of SARS-CoV-2 variants also influenced the symptomatology of COVID-19. One 

study found that the proportion of Omicron-infected individuals reporting myalgia and sore throat 

was more than double compared to those infected with the initial variant.28 Despite these shifts in 

symptom prevalence, cough remained a significant clinical feature across all variants, with studies 

consistently reporting cough in 40-60% of COVID-19 patients, regardless of the infecting 

variant.28,29 Furthermore, cough has emerged as a prevalent symptom in post-acute sequelae of 

SARS-CoV-2 infection, commonly known as 'long COVID'. A comprehensive systematic review 

has revealed that COVID-associated cough can persist for up to 24 weeks in affected individuals, 

underscoring the long-term respiratory implications of the disease.30 
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2.1.3. Tuberculosis epidemiology 

 

Prior to COVID-19, and again in 2023, TB was the leading cause of death due to an infectious 

pathogen. In 2023, it is estimated that over 10.8 million individuals had active TB and 1.25 million 

individuals died due to TB.31 Despite being a global disease, the prevalence of TB is highly 

correlated to social inequities, with individuals living in poverty or with limited access to 

healthcare services being disproportionately affected by the disease.31,32 The burden of TB disease 

is primarily concentrated within 30 high burden countries, all of which are LMICs (Figure 2.3).31 

 

 
Figure 2.3. Estimated incidence of tuberculosis (TB) in 2023. TB is a global disease, present in 

all countries. The incidence and burden of disease is greatest in certain regions, including sub-

Saharan Africa, South Asia, and South-East Asia. (Source: Global Tuberculosis Report, World 

Health Organization, 2024.31) 

 

TB is primarily a disease of the lungs, referred to as pulmonary TB, though it can also manifest in 

other parts of the body, known as extrapulmonary TB. The natural history of pulmonary TB is 

complex and is evolving as more is discovered about the disease.33,34 A “continuum or spectrum 

of TB disease” model has been proposed, highlighting the different stages of disease (Figure 
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2.4).35 Individuals with TB can fall along this continuum and progress forwards (towards active 

TB disease) or backwards (towards TB infection, or “latent” TB).36 As people progress towards 

active TB, the bacterial burden in their lungs typically increases, leading to both greater potential 

infectiousness and the development of more severe symptoms. Cough is a prominent symptom of 

active pulmonary TB disease. Prolonged cough (≥14 days) is often used to triage patients for 

additional confirmatory microbiological testing.37 Additional background information on the 

importance of cough and active pulmonary TB is presented in Chapter 3, Manuscript I. In recent 

years, research has focused on the subclinical presentation of TB, defined as individuals with 

bacteriological evidence of TB but do not report having symptoms.36,38 Individuals with subclinical 

TB may be truly asymptomatic or they may have symptoms that are not recognized or acted upon, 

in terms of care seeking.36 This also may extend to cough, where individuals with subclinical TB 

may not recognize an increase in their cough frequency or misattribute the cough to other 

causes.39,40 

 

 
Figure 2.4. Continuum of tuberculosis (TB) disease. Disease severity progresses from 

Uninfected (left) to Active TB disease (right). Transition between disease states is bi-directional, 

suggesting that individuals may progress to more severe disease states as well as regress to milder 

disease. Subclinical TB can be truly asymptomatic or may be due to the individual not recognizing 

that their symptoms are related to TB. Infectiousness increases as individuals progress from 

Subclinical (no symptoms) to Active TB disease. (Figure adapted from Kendall et al.36) 
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2.2. Cough as a clinically meaningful symptom 

 

2.2.1. Importance for patients 

 

A cough often acts as an indicator of underlying health issues and can significantly impact a 

patient's quality of life, prompting individuals to seek medical attention. In a comprehensive study 

of 13,902 patients with chronic and acute respiratory disorders, cough was reported as the most 

frequent symptom and primary reason for visiting medical facilities.41 However, care-seeking 

behavior related to cough is more likely to occur if the cough is persistent, distressing, or associated 

with other symptoms.42 A survey of 3,333 individuals in the United States revealed that 43% of 

respondents waited until their cough was 'bad enough' to seek care, while 20% waited for 

additional symptoms to present.43 This hesitation in seeking care is even more pronounced in 

certain conditions; for instance, among people with TB, a study found that only 15% sought care 

based on cough alone, compared to 40% when hemoptysis was present.44 Improved awareness of 

cough that persists beyond expected durations, particularly among high-risk populations and in 

TB-endemic regions, could improve appropriate care-seeking behavior and timely diagnosis 

 

2.2.2. Importance for clinicians 

 

For clinicians, the characteristics of a cough, including its type (e.g., wet or dry), duration, 

frequency, and associated symptoms (e.g., hemoptysis), can provide valuable insights into 

potential diseases or clinical states. Numerous clinical guidelines have been developed to assist 

healthcare professionals in evaluating the causes of both chronic and acute cough.40,45–49 

 

The diagnostic significance of cough is evident across a spectrum of respiratory conditions. For 

instance, a persistent and productive cough, especially when accompanied by shortness of breath 

and chest tightness, can be predictive of a decline in lung function associated with COPD.50,51 

Asthma or cough variant asthma may present with a dry or minimally productive cough that 

worsens at night and is triggered by exercise or cold air.52 In the case of Bordetella pertussis 

infections, the paroxysmal phase is characterized by bursts of rapid coughs followed by gasps, 

producing the distinctive 'whoop' sound.53,54 In high-burden TB settings, a persistent cough lasting 
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more than two weeks is commonly used as a screening tool for pulmonary TB.37 Conversely, acute 

coughs, defined as those present for three weeks or less, are often attributed to viral infections of 

the upper and lower respiratory tracts.55 Beyond its diagnostic utility, cough can also serve as a 

prognostic indicator. A study involving patients with idiopathic pulmonary fibrosis demonstrated 

that individuals presenting with cough were more likely to experience adverse health outcomes 

(adjusted odds ratio [OR]: 4.97; 95% confidence interval [CI]: 1.25, 19.80).56 In disease 

management, cough frequency has been observed to be higher among patients with uncontrolled 

asthma compared to those with controlled asthma.57 

 

Despite its clinical significance, cough remains a non-specific symptom, as it is common across 

many respiratory diseases and conditions. This non-specificity poses a significant challenge for 

clinicians attempting to make diagnoses based solely on cough sounds. A study highlighted this 

difficulty, revealing that while healthcare professionals could correctly determine whether a cough 

produced mucus 76% of the time, their ability to identify the underlying clinical diagnosis based 

on cough alone was accurate only 34% of the time.58 

 

Despite these challenges, cough remains an important symptom to consider in a clinical context. 

Efforts to extract meaningful information from cough have led to the development of various 

assessment tools, both subjective and objective. These tools aim to standardize cough evaluation, 

quantify its characteristics, and potentially improve diagnostic accuracy. The following sections 

will explore these assessment methods, beginning with subjective measures that rely on patient-

reported outcomes and clinician judgement, followed by a discussion of emerging objective 

technologies designed to capture and analyze cough sounds and patterns more precisely. 

 

2.3. Subjective cough measurement and assessment tools 

 

Subjective cough assessment tools have been developed to aid clinicians in evaluating the impact 

and severity of cough. These tools, typically in the form of questionnaires or scales, are designed 

to be easily administered in clinical settings. They primarily serve two purposes: assessing cough 

severity and understanding its effect on quality of life.59 
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Cough severity is commonly evaluated using the Visual Analog Scale (VAS) and the Cough 

Symptom Score (CSS). The VAS is a 100-mm linear scale where patients mark their perceived 

cough severity between "no cough" (0 mm) and "worst cough ever" (100 mm) (Figure 2.5A).46 

The CSS, ranging from 0 to 5, considers cough frequency, intensity, and influence during both day 

and night (Figure 2.5B).60 

 

 
Figure 2.5. Example of subjective cough assessment tools. A) Visual analog scale (VAS) for 

reporting cough severity. Patients are asked to make a mark along a 100 mm scale, with a higher 

mark indicative of a worse cough. B) Cough Symptom Score (CSS) scale for cough severity. Based 

on the patient’s reported daytime and nighttime coughing patterns, the clinician can determine the 

severity of their cough on a scale from 0 to 5, with higher numbers indicating worse cough. (Figure 

A is adapted from Morice et al.46; Figure B is adapted from Wang et al.60) 

 

To capture the broader health impacts of cough, including psychological morbidity, health-related 

quality of life questionnaires (HRQLQ) are employed.61 The most widely used are the Leicester 

Cough Questionnaire (LCQ) and the Cough-specific Quality of Life Questionnaire (CQLQ).60,61 

The LCQ, a 19-item questionnaire, covers physical, psychological, and social effects of cough. 

The CQLQ, with 28 items, assesses somatic symptoms, social psychology, functional ability, 

emotional state, extreme somatic symptoms, and personal safety fears. 

 

While these subjective tools offer the advantages of easy administration both at time of 

consultation and repeatedly over time, concerns exist regarding their reliability and potential bias. 



 13 

Recall bias has been found when patients are asked to retrospectively reflect on their cough, with 

one study finding that patients tend to underestimate their cough severity.62 Various forms of 

response bias may also occur. For example, scale-based measurements like the VAS can introduce 

'end-of-scale' bias, where respondents are either more or less likely to use the extreme ends of the 

scale.63 Finally, the subjective nature of these assessments can be influenced by patients' perception 

of their symptoms and the manner in which healthcare providers administer the questionnaires. 

This subjectivity raises questions about the tools' accuracy in reflecting the true clinical picture 

and their effectiveness in guiding treatment decisions. 

 

2.4. Objective cough measurement and assessment tools 

 

The limitations of subjective cough assessment tools have led to the emergence of two distinct 

digital analysis modalities. The first encompasses digital cough counting tools, which facilitate the 

longitudinal tracking of cough counts. The second leverages advances in machine learning (ML) 

and artificial intelligence (AI) to develop sophisticated algorithms capable of extracting important 

audio features from cough sounds, with the intended clinical utility of identifying underlying 

pathologies. Chapter 3, Manuscript II presents a comprehensive scoping review of contemporary 

digital cough counting tools and their clinical applications. In the present section, I focus on the 

latter modality, offering a critical examination of the literature pertaining to cough-based AI 

technologies for disease screening. 

 

2.4.1. Biological plausibility of disease-specific cough sounds 

 

Radiological evidence suggests that biological differences in lung pathologies for various diseases 

can be discerned through imaging techniques.64–67 COVID-19, for instance, exhibits unique 

pulmonary pathologies that could potentially influence the acoustic properties of cough sounds.68–

70 Similarly, TB presents distinct features in radiological images of affected lungs, which may 

impact the acoustic characteristics of TB-related coughing.71–73 Further studies investigating cough 

acoustic differences have indicated that COVID-19 coughs and non-COVID-19 coughs possess 

distinct acoustic features.74,75 A more recent study identified "spectral fingerprints" in cough 

sounds that correlate with different respiratory diseases.76 In this study, asthmatic cough sounds 
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corresponded to frequency bands of 100-800 Hertz (Hz), compared to 1400-2100 Hz for 

pneumonia coughs. These differences have also been captured in cough spectrograms (Figure 

2.6),77 which provide a visual representation of the acoustic properties of coughs over time. A 

spectrogram presents as a heatmap with three dimensions: 1) time on the x-axis representing the 

duration of the cough, 2) frequency in Hz on the y-axis displaying the frequencies present in the 

sound, and 3) intensity as the colour, which indicates the energy of the signal at each time-

frequency point. This is illustrated in Figure 2.6, where three cough spectrograms are presented, 

showing the cough from a healthy, COVID-19 positive, and TB-positive person. These 

spectrograms allow for the visualization and comparison of the unique acoustic signatures 

associated with different respiratory conditions. 

 

 
Figure 2.6. Spectrograms of cough sounds from A) a healthy individual, B) a COVID-19 

positive patient, and C) a TB-positive patient. Time is represented on the x-axis (0-0.4 seconds), 

frequency on the y-axis (0-2000 Hz), and intensity by color (purple for low, yellow for high). A) 

The healthy cough shows a brief, intense burst of energy across a wide frequency range, followed 

by a quick return to baseline. B) The COVID-19 cough exhibits a more prolonged energy 

distribution with less distinct onset and offset, and a more uniform intensity across frequencies. C) 

The TB cough has strong initial burst of energy followed by a prolonged period of energy 

distribution, particularly in the lower to mid-frequency ranges. The energy appears to be more 

striated, with horizontal bands of higher intensity alternating with areas of lower intensity, 

especially in the lower half of the frequency range. 
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2.4.2 Digital cough datasets 

 

The development of AI algorithms capable of detecting disease-specific signals in cough sounds 

necessitates large, annotated datasets of cough recordings. This requirement presents a 

fundamental challenge in AI development: the trade-off between dataset size and quality. In the 

context of cough sound analysis, most efforts have prioritized quantity, resulting in large-scale, 

crowdsourced cough datasets. Table 2.1 provides a comprehensive summary of published cough 

datasets. These datasets predominantly emerged during the peak months of the pandemic, 

reflecting the urgent need for rapid diagnostic tools for COVID-19. A more recent dataset—COugh 

Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM—is a publicly available cough 

dataset for TB.78 CODA TB DREAM and the Virufy South Asia study were the only datasets that 

were not crowdsourced, but instead prospectively enrolled and recorded patient coughs in health 

facilities. 

 

Among the COVID-19 datasets, the COUGHVID, Coswara, and University of Cambridge are the 

most widely utilized due to their extensive sample sizes.74,79,80 The data collection methodology 

for these datasets involved participants recording their coughs via website applications, using 

personal smartphones, or computers in home environments. Importantly, the disease status (e.g., 

COVID-19 positive or negative) in these datasets was self-reported by participants. 

 

The crowdsourcing approach to data collection, while facilitating the rapid accumulation of large 

sample sizes, raises significant concerns regarding data quality and reliability of the assigned 

diagnostic labels.81 Another key issue is selection bias, a common challenge in crowdsourcing and 

big data methodologies.82 The recruitment of participants predominantly through social media 

platforms resulted in datasets skewed towards younger demographics and individuals self-

reporting as asymptomatic or COVID-19 negative. This selection bias potentially undermines the 

representativeness of the data, particularly among people who would be seeking care at health 

facilities for their cough. Geographical representativeness also becomes a concern. Many of these 

datasets position themselves for the generation of globally applicable AI algorithms, and yet they 

collected data from geographically narrow populations. The Coswara dataset obtained 91% of its 

cough sounds from individuals in India.80 COUGHVID reported collected cough data from 125 
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countries, however the proportional distribution of individuals across these countries was not 

reported.79 

 

Another critical concern is the misclassification of outcomes. While some participants self-

reported PCR-confirmed results, the majority of studies relied on self-reported symptomatology 

for COVID-19 classification. The reliability of self-reported health status is often questionable, as 

individuals may misinterpret their symptoms or inaccurately assess their COVID-19 status. This 

subjectivity introduces a significant potential for error in the dataset label. Additionally, the narrow 

focus on COVID-19 in these datasets overlooked the potential presence of other circulating 

pathogens that may have been causing the cough. Consequently, it is highly probable that many of 

these datasets are merely distinguishing between "healthy" and "unhealthy" coughs, rather than 

specifically identifying COVID-19-related coughs. 

 

Variability due to different recording devices used may also introduce a confounding effect. This 

issue was highlighted in the University of Cambridge dataset, where researchers uncovered a 

substantial bias related to inconsistent recording quality.83 Notably, low sample rate recordings 

(below 12 kHz) were found to be disproportionately associated with COVID-19 positive cases. 

This unintended correlation led to artificially inflated classification scores, as the models were able 

to exploit the sample rate bias rather than relying solely on the acoustic characteristics of the 

coughs themselves. 
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Table 2.1. Overview of publicly available cough datasets. 

*The authors analyzed cough sounds from COVID-19 positive patients through publicly available media interviews and recordings. 
BMI, body mass index; NR, not reported; PCR, polymerase chain reaction; TB, tuberculosis 

Dataset Collection 
period 

Data 
collection 

Recording 
platform Disease Label N coughs N people Other data 

CODA TB 
DREAM78 NR Clinical 

study 

Hyfe 
smartphone 

app. 
TB 

Composite 
microbiological 

reference 
(PCR, culture) 

733,756 2,143 

Age, sex, country, 
BMI, HIV, cough 
duration, prior TB, 
symptoms 

Coswara80 Apr. 2020-
Feb. 2022 Crowdsource Web app. COVID-

19 Self-reported 23,700 2,635 

Age, sex, country, 
smoking, symptoms, 
respiratory conditions, 
comorbidities 

COUGHVID79 Apr. 2020-
Dec. 2020 Crowdsource Web app. COVID-

19 
Self-reported & 
expert-labeled >25,000 NR 

Age, sex, fever, muscle 
pain, respiratory 
conditions 

IATos84 Aug. 2020-
Dec. 2020 Crowdsource Smartphone COVID-

19 PCR NR 2,281 Age, sex, symptoms 

NoCoCoDa85 Mar. 2020-
Apr. 2020* Crowdsource Online 

interviews* 
COVID-

19 Self-reported 73 
(positive) 

11 
(positive) Age (estimated), sex 

smarty4covid86 
Available 
as of Jan. 

2022 
Crowdsource smarty4covid 

web app. 
COVID-

19 
Self-reported & 
expert labeled 4,676 NR 

Age, sex, COVID 
vaccination, medical 
history, vital signs, 
symptoms, smoking, 
emotional state, 
working conditions 

University of 
Cambridge74 

Up to May 
2020 Crowdsource Web/Android 

app. 
COVID-

19 Self-reported 9,986 2,261 Age, sex, symptoms, 
medical history 

Virufy Latin 
America87 NR Crowdsource Virufy 

mobile app. 
COVID-

19 
PCR, antibody 

testing NR 31 
Age, sex, smoking, 
symptoms, 
comorbidities 

Virufy South 
Asia87 

Apr. 2020-
May 2020 

Clinical 
study 

Virufy 
mobile app. 

COVID-
19 PCR NR 425 

Age, sex, smoking, 
symptoms, 
comorbidities 
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2.4.3 Artificial intelligence-based cough screening algorithms 

 

AI algorithms for cough screening have gained significant attention in recent years. These 

algorithms, commonly referred to as "cough classification" models, aim to differentiate between 

"disease-positive" and "disease-negative" cough sounds. This approach is distinct from "cough 

detection" algorithms, which focus on distinguishing cough sounds from non-cough sounds.88,89 

The majority of cough classification algorithms have centered on COVID-19 detection, largely 

due to the availability of extensive, crowdsourced datasets labeled with COVID-19 status (Table 

2.1). 

 

Table 2.2 presents a summary of published COVID-19 cough classification algorithms. Initial 

interpretation of the elevated performance metrics suggests that these algorithms demonstrate 

remarkable efficacy in classifying COVID-19 coughs, with many studies reporting accuracy, 

sensitivity, and specificity values exceeding 90%. However, these seemingly impressive results 

warrant scrutiny as they may be artifacts of poor study design and data quality issues rather than 

true indicators of the algorithms' diagnostic capabilities. 

 

Most of these studies utilized publicly available crowdsourced cough datasets, which are 

inherently biased, as previously discussed. These datasets were employed in public challenges, 

such as DiCOVA (using the Coswara dataset) and ComParE COVID-19 (using the University of 

Cambridge dataset), where researchers competed to develop the most effective COVID-19 cough 

classification algorithms.83,90 However, few studies used primary cough data with robust reference 

standard testing. Notably, Bagad et al. conducted the only study to prospectively collect cough 

sounds from individuals who underwent polymerase chain reaction (PCR) testing.91 While Imran 

et al. reported collecting their own cough data from confirmed COVID-19 cases, the confirmation 

method was not specified.92 Ponomarchuk et al. and Tena et al. adopted a hybrid approach, 

supplementing crowdsourced cough sounds with a small sample of PCR-validated cough 

samples.93,94 

 

Several methodological challenges inherent in the collected data and its utilization in algorithm 

development warrant consideration. A common issue in AI datasets is class imbalance. This 
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imbalance was observed across various crowdsourced datasets, manifesting in the 

underrepresentation of COVID-19 positive cough sounds and COVID-19 positive subjects. When 

datasets were split between training and test sets, or in different folds of cross-validation (CV), it 

was not always clear whether the split was performed at the individual or cough level. Best 

practices dictate that all cough sounds belonging to the same individual should remain in the same 

set or CV fold to ensure that samples from each individual are non-overlapping. However, some 

studies simply reported splitting cough sounds without indication that grouping effect was 

accounted for,92,94–102 potentially leading to overestimation of performance metrics as the 

algorithm may recognize individual-level audio signatures and link them to their labels. 

 

The comparison of algorithm performance across studies is further complicated by inconsistent 

reporting of performance metrics. While some studies provided a comprehensive evaluation 

including sensitivity, specificity, area under the curve (AUC), and F1-score, many reported only a 

selection of metrics. Often, the only metric provided was the accuracy of the model,97,103–108 

defined as the proportion of correct predictions among the total number of cases evaluated. 

However, accuracy alone can be misleading, particularly in the presence of class imbalance, as it 

can be artificially inflated by the model's performance on the majority class while masking poor 

detection of the minority class.109 For instance, in a dataset where only 10% of samples are 

COVID-19 positive, a model that indiscriminately classifies all cases as negative would achieve 

90% accuracy despite failing to identify any positive cases. It is therefore important for studies to 

report on different metrics, including those that address imbalance such as the F1-score, which 

provides a balanced measure of precision and recall by calculating their harmonic mean, thus 

accounting for both false positives and false negatives in imbalanced datasets. 

 

Another notable limitation of these models is the infrequent evaluation using independent, external 

test sets. A truly external test set would represent a population whose cough sounds were not 

involved in the initial model training and validation. Only three studies reported testing their 

algorithms in this manner, although the datasets used were crowdsourced and relatively 

small.94,106,110 This highlights the need for more robust external validation in future studies to 

ensure the generalizability and transferability of cough classification algorithms. 
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Table 2.2. Overview of COVID cough classification artificial intelligence algorithms. 

   Sample size Performance* 
Author 
(year) 

Training 
Dataset 

Algorithm 
architecture* 

Training & 
validation Internal test External test Internal External 

Akgun 
(2021)103 Cambridge CNN NR NR Not done Acc.: 86% Not done 

Akman 
(2022)111 Coswara ResNet 1,040 coughs 

Pos.: 75 
234 coughs 
Pos.: blind Not done AUC: 80% Not done 

Alaaeldein 
(2022)108 Coswara CNN NR NR Not done Acc.: 82% 

AUC: 81% Not done 

Awais 
(2023)112 COUGHVID Ensemble NR NR Not done 

Acc.: 98% 
Sens.: 98% 
Spec.: 98% 
Prec.: 98% 
F1: 98% 

Not done 

Bagad 
(2020)91 Own (clinical) CNN NR Not done Not done (Validation) 

AUC: 72% Not done 

Banerjee 
(2021)75 

Coswara + 
Coughvid ResNet 21,112 coughs 

Pos.: 1,085 
234 coughs 
Pos.: blind Not done 

AUC: 76% 
Sens.: 80% 
Spec.: 63% 

Not done 

Brown 
(2021)74 Cambridge SVM 

10-fold nested CV 
86 coughs 
Pos.: 54 

 
52 subjects 

Pos.: 23 

Not done 
AUC: 82% 
Sens.: 72% 
Precision: 80% 

Not done 

Celik 
(2023)113 

COUGHVID CNN 12,865 subjects 
Pos.: 2,998 

3,217 subjects 
Pos.: 727 Not done 

Acc.: 97% 
AUC: 95% 
Sens.: 95% 
Spec.: 95% 
Prec.: 96% 
F1: 95% 

Not done 

Coswara CNN 2,161 subjects 
Pos.: 546 

541 subjects 
Pos.: 132 Not done Acc.: 99% 

AUC: 98% Not done 
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Sens.: 98% 
Spec.: 98% 
Prec.: 100% 
F1: 99% 

COUGHVID + 
Coswara CNN 15,026 subjects 

Pos.: 3,524 
3,758 subjects 

Pos.: 859 Not done 

Acc.: 97% 
AUC: 95% 
Sens.: 95% 
Spec.: 95% 
Prec.: 97% 
F1: 96% 

Not done 

Chang 
(2021)114 

Coswara CNN 1,040 coughs 
Pos.: 75 Not done Not done (Validation) 

AUC: 72% Not done 

Cambridge CNN 517 coughs 
Pos.: 119 

208 coughs 
Pos.: 39 Not done AUC: 70% Not done 

Chowdhury 
(2022)95 

Cambridge + 
Coswara +  
Virufy + 

NoCoCoDa 

Random forest 
10-fold nested CV 

1,599 coughs 
Pos.: 360 

Not done 

Acc.: 84% 
AUC: 83% 
Sens.: 74% 
Spec.: 100% 
Prec.: 100% 
F1: 85% 

Not done 

Despotovic 
(2021)115 

Own 
(crowdsource) Random forest 

5-fold CV 
496 coughs 
Pos.: 249 

 
164 subjects 

Pos.: 92 

Not done 
Acc.: 89% 
Sens.: 87% 
Spec.: 90% 

Not done 

Elizalde 
(2021)116 Coswara Random forest 1,090 coughs 

Pos.: 75 
233 coughs 
Pos.: blind Not done 

AUC: 82% 
Sens.: 80% 
Spec.: 73% 

Not done 

Erdogan 
(2021)117 Virufy SVM 

5-fold CV 
1,187 people 

Pos.: 595 
Not done Not done 

Acc.: 98% 
Sens.: 99% 
Spec.: 97% 
Prec.: 97% 
F1: 98% 

Not done 
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Hamdi 
(2022)96 COUGHVID CNN-RNN 

10-fold CV 
11,624 coughs 

Pos.: 2,666 
Not done Not done 

Acc.: 91% 
Sens.: 91% 
Spec.: 92% 
F1: 91% 
AUC: 91% 

Not done 

Haritaoglu 
(2022)7 

COUGHVID + 
Coswara + 
Virufy + 
IATOS 

CNN 12,823 coughs 
Pos.: 2,709 

3,184 
Pos.: 676 Not done AUC: 78% Not done 

Hemdan 
(2023)107 Coswara KNN 75% 25% Not done Acc.: 97% Not done 

Hoang 
(2022)118 Coswara Gradient 

Boosting 
965 coughs 
Pos.: 172 

471 coughs 
Pos.: blind Not done 

Sens.: 48% 
Spec.: 95% 
Prec.: 59% 
F1: 53% 
AUC: 81% 

Not done 

Imran 
(2020)92 Own (clinical) CNN 

5-fold CV 
543 coughs 

Pos.: 70 
Not done 

Acc.: 93% 
Sens.: 95% 
Spec.: 91% 
Prec.: 91% 
F1: 93% 

Not done 

Islam 
(2022)95 Virufy DNN 

5-fold CV 
16 people 

Pos.: 7 
Not done Acc.: 94% Not done 

Kamble 
(2021)119 Coswara Gradient 

Boosting 
1,040 coughs 

Pos.: 75 
233 coughs 
Pos.: blind Not done 

Sens. :80% 
Spec.: 54% 
AUC: 76% 

Not done 

Kapoor 
(2023)97 Virufy MLP 60% 40% Not done Acc.: 97% Not done 

Laguarta 
(2020)120  

Own 
(crowdsource) CNN 4,256 subjects 1,064 subjects Not done AUC.:97%  Not done 

Lella 
(2021)121 Cambridge CNN NR NR Not done Acc.: 93% 

F1: 97% Not done 
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Liu (2021)122 Cambridge CNN 

699 coughs 
Pos.: 262 

 
218 subjects 

Pos.: 35 

274 coughs 
Pos.: 109 

 
54 subjects 

Pos.: 27 

Not done 

Acc.: 74% 
Sens.: 73% 
Prec.: 74% 
F1: 73% 

Not done 

Loey 
(2021)123 COUGHVID CNN NR NR Not done 

Acc.: 95% 
Sens.: 94% 
Spec.: 95% 
F1: 95% 

Not done 

Manshouri 
(2022)6 Virufy SVM 

CV repeated 1000 times 
121 coughs 

Pos.: 48 
 

16 subjects 
Pos.: 7 

Not done 
Acc.: 96% 
Sens.: 99% 
Spec.: 91% 

Not done 

Melek 
(2021)98 

Virufy + 
NoCoCoDa KNN 

Leave-one-out CV 
180 coughs 
Pos.: 107 

Not done 

Acc.: 98% 
Sens.: 100% 
Spec.: 97% 
F1: 98% 
AUC: 99% 

Not done 

Mitrofanova 
(2021)124 Own (clinical) CNN 300 coughs 48 coughs 

Pos.: 15 Not done 

Acc.: 85% 
Sens.: 73% 
Prec.: 79% 
F1: 76% 

Not done 

Mohammed 
(2021)125 

Virufy + 
Coswara CNN 1,020 coughs 

Pos.: 510 
256 coughs 
Pos.: 128 Not done 

Sens.: 71% 
Prec.: 80% 
F1: 75% 
AUC: 77% 

Not done 

Mouawad 
(2021)126 

Own 
(crowdsource) XGBoost NR NR Not done 

Acc.: 97% 
Prec.: 78% 
F1: 91% 
AUC: 84% 

Not done 

Najaran 
(2023)105 COUGHVID CNN 

4-fold CV 
8,405 coughs 

Pos.: 658 
Not done Acc.: 71% Not done 
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Nasab 
(2023)127 

Own 
(crowdsource) RNN NR NR Not done 

Acc.: 95% 
Sens.: 96% 
Spec.: 94% 
Prec.: 95% 
F1: 95% 

Not done 

Nguyen 
(2023)99 

Covid-19 
Cough CNN 5,738 coughs 

Pos.: 663 1,627 coughs Not done AUC: 93% Not done 

Nguyen-
Trong 

(2023)100 
Coswara CNN 925 coughs 163 coughs Not done 

Acc.: 88% 
Sens.: 100% 
Prec.: 89% 
F1: 88% 
AUC: 93% 

Not done 

Pahar 
(2021)110 Coswara  RNN Nested leave-p-out CV 

1,171 subjects 

Own 
(crowdsource) 

 
44 people 
Pos.: 18 

Acc.: 95% 
Sens.: 91% 
Spec.: 97% 
AUC: 94% 

Acc.: 93% 
Sens.: 91% 
Spec.: 96% 
AUC: 94% 

Ponomarchuk 
(2022)94 

Covid19-Cough 
+ Own 

(clinical) 
CNN 

10-fold CV 
 

1,535 coughs 
Pos.: 910 

Own 
(crowdsource) AUC: 81% AUC: 62% 

Rahman 
(2022)128 Cambridge CNN 

Nested 5-fold CV 
4,209 coughs 
Pos.: 1,996 

Not done 

Acc.: 97% 
Sens.: 96% 
Spec.: 95% 
Prec.: 96% 
F1: 96% 

Not done 

Ren (2022)101 COUGHVID Logistic 
regression 

5-fold CV 
1,231 subjects 

Pos.: 210 
Not done Sens.: 63% 

AUC: 67% Not done 

Schuller 
(2020)129 Cambridge CNN 

Nested 3-fold 
CV 

684 coughs 
350 coughs Not done Sens.: 74% Not done 
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Sobahi 
(2022)130 

COUGHVID CNN 5-fold CV 
NR Not done 

Acc.: 98% 
Sens.: 97% 
Spec.: 99% 
F1: 98% 

Not done 

Virufy CNN 
5-fold CV 

1,187 subjects 
Pos.: 595 

Not done 

Acc.: 98% 
Sens.: 97% 
Spec.: 98% 
F1: 98% 

Not done 

Coswara CNN 5-fold CV 
NR Not done 

Acc.: 98% 
Sens: 88% 
Spec.: 99% 
F1: 89% 

Not done 

Sunitha 
(2021)102 COUGHVID CNN 2200 coughs 

Pos.: 1100 
200 coughs 
Pos.: 100 Not done 

Acc.: 78% 
Sens.: 77% 
Prec.: 76% 
F1: 76% 

Not done 

Tena (2022)93 

Cambridge + 
Coswara + 

Virufy + Own 
(clinical) 

Random forest 
10-fold CV 
813 subjects 

Pos.: 346 
Not done 

Acc.: 90% 
Sens.: 94% 
Spec.: 82% 
Prec.: 91% 
F1: 92% 
AUC: 96% 

Not done 

Ulukaya 
(2023)106 

Coswara + 
COUGHVID CNN 3,330 coughs 370 coughs 

Virufy 
16 subjects 

Pos.: 9 
 

NoCoCoDa 
10 subjects 

Pos.: 10 

Acc.: 75% 
AUC: 80% 

Virufy 
Acc.: 62% 
AUC: 73% 
 
NoCoCoDa 
Acc.: 90% 

*Best performing model if multiple algorithms were tested. 
Acc., accuracy; AUC, area under the curve; CNN, convolutional neural network; DNN, deep neural network; MLP, multi-layer precepton; NR, not reported; Prec., 
precision; ResNet, residual neural network; RNN, recurrent neural network; Sens., sensitivity; Spec., specificity; SVM, support vector machine; XGBoost, eXtreme 
Gradient Boosting 
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2.5. Machine learning and artificial intelligence approaches to cough classification 

 

Detecting disease from cough sounds is typically approached as a binary classification problem 

(COVID-19 positive vs. COVID-19 negative). ML and AI methods are particularly valuable for 

this task due to the complex nature of cough audio data, which contains multiple features across 

time and frequency domains that must be analyzed simultaneously for accurate classification. 

 

As illustrated in Table 2.2, different AI/ML approaches have been used for cough classification. 

These can be broadly categorized into four main groups: 1) linear ML, 2) non-linear ML, 3) 

ensemble methods, and 4) deep learning. Linear ML algorithms, such as Logistic Regression, 

assume that simple linear combinations of features can be used to predict the probability of an 

outcome.131 These algorithms enforce a decision boundary that is a straight line in two dimensions 

or a hyperplane in higher dimensions. Linear ML methods typically offer high interpretability, 

though they may underperform when dealing with complex, non-linear patterns in data. Non-linear 

ML algorithms, such as k-Nearest Neighbors and Decision Trees, can capture more complex 

relationships in the data as they don't assume linear relationships between features and 

outcomes.132 These algorithms create flexible decision boundaries that adapt to intricate data 

patterns. They offer greater flexibility and can identify subtle relationships, though at the cost of 

higher computational demands and potential overfitting.133 Ensemble methods operate on the 

principle that combining multiple learning algorithms produces better predictive performance than 

could be obtained from any single learning algorithm alone.134 These come in two main forms: 

Bagging (like Random Forests), which train multiple models on different subsets of the data and 

averaging their predictions, and Boosting (like XGBoost), which builds models sequentially, with 

each model trying to correct the errors of previous ones. Traditional ML approaches (linear, non-

linear, and ensemble methods) typically rely on manually engineered features extracted from the 

audio signals and presented in tabular format. 

 

Deep learning methods, particularly Convolutional Neural Networks (CNNs) and Deep Neural 

Networks (DNNs), represent a fundamentally different approach.135,136 These models are capable 

of automatically learning hierarchical features from raw or minimally processed data, such as 

spectrograms of cough sounds (Figure 2.6). This automatic feature learning ability makes them 



 27 

particularly powerful when large amounts of training data are available. In cough classification, 

CNNs have become particularly popular as they are well-suited for processing spectrograms, 

effectively learning relevant patterns across both time and frequency domains. 

 

While deep learning approaches have shown promising results, studies continue to demonstrate 

the effectiveness of traditional machine learning methods such as logistic regression, k-nearest 

neighbor (kNN), support vector machine (SVM), XGBoost, and Random Forest in cough 

classification tasks.74,95,115–117,107,6,110,93. The choice of method often depends on factors such as 

dataset size, available computational resources, and the specific requirements of the classification 

task. 

 

2.6. External validation of artificial intelligence models 

 

The development and validation of AI algorithms typically follows a structured process. Internal 

validation involves testing the model on data from the same population used for development, 

often using methods such as cross-validation or train-test splits. External validation 

(generalizability) assesses the model's performance on new, independent data from the same target 

population but collected from different sites or time periods than the development data. Another 

form of external validation (transferability) evaluates the model's performance using datasets from 

distinct populations to assess its applicability across different settings or contexts. The 

achievement of robust performance across external validation studies is often considered a crucial 

benchmark for algorithm deployment readiness, particularly in healthcare settings.137 

 

This aspiration towards developing globally acceptable models is evident in various domains, 

including cough classification algorithms, where developers frequently imply that their algorithms 

possess universal applicability across diverse populations and settings despite being trained on a 

narrowly defined dataset.91,92,113,126,128 The assumption of universality in cough sound features 

across populations underpins many of these algorithms. Yet, this presumption remains largely 

uninvestigated. 
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In recent years, there has been a shift in AI development across different fields, with experts 

increasingly questioning the pursuit of universally generalizable algorithms. Instead, there is 

growing advocacy for hyper-local algorithms that excel in specific populations but may not 

necessarily perform optimally across diverse groups.138 An illustration of this shift is the Epic 

Sepsis Model, an AI prediction tool designed to alert clinicians to patients at risk of developing 

sepsis. Despite its ambitious goals, the model demonstrated poor performance in external 

validation across different hospitals, achieving a mere 33% sensitivity.139 In response to these 

suboptimal results, the developers opted to fine-tune separate models tailored to each specific 

hospital's needs and characteristics.140 

 

This evolving perspective in AI development highlights the complex interplay between algorithm 

performance, population diversity, and the practical implications of deployment in varied settings. 

In the context of cough classification, there is a need for a more nuanced approach to AI validation, 

one that acknowledges population-specific acoustic properties and focuses on optimizing 

performance for well-defined populations or contexts. 
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Chapter 3. Manuscript I: Making cough count in tuberculosis care 
 

3.1. Preface 

 

This perspective article, written at the outset of my PhD, marks the beginning of my exploration 

into the use of cough as a non-traditional biomarker in clinical decision-making for respiratory 

diseases. At the time of writing, the field of acoustic epidemiology was rapidly evolving. 

Longitudinal cough counting tools were available and were being investigated for their potential 

in disease monitoring. Simultaneously, the COVID-19 pandemic had accelerated research into 

artificial intelligence AI algorithms for cough-based respiratory disease screening. 

 

Using TB as a case study, we summarized the current state of cough monitoring in TB care and 

explored the potential of cough as a biomarker for enhancing patient care and public health 

outcomes along the TB care cascade. We also discussed the necessary steps to advance the field of 

acoustic epidemiology in TB management. 

 

The insights gained from this initial exploration laid the foundation for my subsequent PhD 

manuscripts. 

 

This perspective article was published in Nature Communications Medicine in July 2022. 
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3.2. Title page 

 

Making cough count in tuberculosis care 
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2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada 
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3.3. Abstract 

 

Cough assessment is central to clinical management of respiratory diseases, including tuberculosis 

(TB), but strategies to objectively and unobtrusively measure cough are lacking. Acoustic 

epidemiology is an emerging field, using technology to detect cough sounds and analyze cough 

patterns to improve health outcomes among people with respiratory conditions linked to cough. 

This field is increasingly exploring the potential of artificial intelligence (AI) for more advanced 

applications, such as analyzing cough sounds as a biomarker for disease screening. While much of 

the data are preliminary, objective cough assessment could potentially transform disease control 

programs, including for TB, and support individual patient management. Here, we present an 

overview of recent advances in this field and describe how cough assessment, if validated, could 

support public health programs at various stages of the TB care cascade. 
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3.4. Introduction 

 

Prior to the COVID-19 pandemic, tuberculosis (TB) was the leading infectious cause of mortality, 

resulting in approximately 10.0 million new infections and 1.4 million deaths worldwide in 2019.1 

The COVID-19 pandemic and lockdowns have had a devastating impact on TB programs globally, 

as resources and tools used to diagnose and manage TB were diverted to COVID-19.2 To restore 

progress and mitigate the impact of COVID-19 on TB management, it is essential to leverage new 

technologies and innovations to improve TB prevention and care. 

 

TB is an infectious disease caused by the inhalation of droplets containing the bacteria 

Mycobacterium tuberculosis (Mtb).3 TB varies in presentation, ranging from asymptomatic, non-

transmissible TB infection (also known as latent TB infection) to symptomatic, contagious active 

TB disease.4 Between these two extremes are subclinical forms of TB, where people are considered 

asymptomatic but may transmit TB to others.4 

 

While active TB disease most commonly affects the lungs (pulmonary TB), approximately 15-

20% of active TB occurs in other parts of the body, including lymph node TB, abdominal TB, TB 

meningitis, ocular TB, and neurological TB, to name a few.5 The occurrence of TB in the body 

other than the lung is known as extrapulmonary TB (EPTB).3 Active pulmonary TB is most 

commonly diagnosed by microbiological testing on mucus from the lung (sputum) samples. 

Sputum culture is the gold standard for TB testing. However, it is expensive, slow, and requires 

access to centralized biosafety laboratories.6 Sputum smear microscopy is often used in primary 

care facilities in lower-resource settings as a cheaper alternative, but has low sensitivity and is not 

able to detect drug-resistance.7 In recent years, more advanced molecular platforms (e.g., 

GeneXpert PCR machines) have been scaled up as smear-replacement tools that offer greater 

sensitivity and quicker turnaround times for TB diagnosis.8,9 Culture, smear microscopy, and 

GeneXpert are commonly used as reference standards when evaluating the performance and 

accuracy of newer diagnostics. While active TB is curable, the long regimens (6 months for drug-

susceptible TB) and adverse events caused by the antibiotics used, complicate treatment and 

increase the risk of drug-resistance emerging.10,11 
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As coughing is a common TB symptom, it can be used to screen for TB and assess effectiveness 

of treatment. This Perspective discusses advances in acoustic epidemiology and AI-based methods 

to assess cough and how these can be used during TB diagnosis and treatment. 

 

3.5. Using cough as an objective biomarker for TB control and care 

 

Cough is a complex physiological phenomenon as it is both a symptom of, and a defense 

mechanism against, respiratory diseases. Cough is a hallmark symptom of pulmonary TB and is 

clinically assessed throughout the cascade of TB care, for example, as a triage tool to trigger TB 

testing or to monitor response to therapy. Cough patterns vary depending on the amount of Mtb in 

the lungs, and cough tends to regress with successful TB therapy.12-15 

 

While many TB screening programs use cough duration and symptoms to determine when TB 

testing is required, this symptom screening approach lacks sensitivity. In low-resource settings, 

peripheral health centers, and communities, triage tools such as chest X-rays are not available, thus 

symptom-based screening remains the only available strategy to identify people with TB. The 

World Health Organization (WHO) recommends testing people reporting symptoms compatible 

with TB, including prolonged cough (usually interpreted as a cough that lasts two weeks or 

longer).16 According to the 2021 WHO TB screening guidelines, the sensitivity of prolonged cough 

alone is 42% among HIV-negative individuals, well below the WHO community-based triage test 

target product profile (TPP) of ≥90% sensitivity.16,17 

 

It is difficult for people to describe their cough symptoms, and it is as challenging for clinicians to 

identify the cause. Individuals tend to have poor recall of the duration of their symptoms, and 

symptom severity is subjective.18,19 Given our current inability to objectively detect and monitor 

cough sounds, patients and providers systematically reduce this data-rich symptom into subjective 

and dichotomous information (e.g., cough versus no cough, chronic versus acute, getting better 

versus getting worse), precluding rigorous understanding of cough data, and preventing the use of 

cough to its full clinical potential. By making cough an objective and measurable component of 

TB care, either by helping individuals recognize abnormal cough patterns, or by harnessing 

artificial intelligence (AI) technology (using computer systems to recognize and interpret the 
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implications of a cough sound)20 to differentiate types of coughs, we can potentially improve 

patient management and clinical outcomes at different stages during the cascade of TB care. 

 

3.6. Advances in acoustics for objective cough monitoring 

 

Questionnaire-based tools and scales have been used to collect and evaluate the severity of coughs 

of varying etiology in an attempt to transform subjective cough reporting into objective data. Such 

tools include the visual analog scale (VAS), cough symptom score (CSS), and cough diaries.21 

Both the VAS and CSS attempt to quantify the severity of cough based on a patient’s perception 

of their cough. Cough diaries can take various forms, but all depend on patients tracking the 

frequency and severity of their coughs over time. Other questionnaires expand their assessment of 

cough to incorporate questions on health-related quality of life.21 For example, the Leicester Cough 

Questionnaire (LCQ) is a validated self-completed questionnaire that measures the quality of life 

of individuals with a chronic cough, and has previously been used to evaluate cohorts of people 

with TB undergoing anti-TB therapy.22–24 While such tools are easy to use and implement in 

clinical settings, they remain subject to bias related to self-perception of health and attention to 

symptoms, ultimately limiting their clinical application. 

 

Objectivity in cough analysis is improved when using recording devices and computer-assisted 

acoustic interpretation algorithms. As early as the 1960s, Loudon and Spohn used tape recorders 

to record and count the coughs of people with TB at night.25 Other forms of early ambulatory 

cough meters involved the integration of audio recording devices and electromyogram 

electrodes,26 which simultaneously recorded cough sounds and chest muscle contractions when 

the patient coughed. In 2006, Paul et al. developed and evaluated a self-contained cough monitor 

composed of an accelerometer (for measuring cough-related vibrations) that stored data on an 

attached CompactFlash memory card.27 This device was attached to the patient’s neck in the 

suprasternal notch (jugular notch) and demonstrated good agreement with coughing seen on video 

footage. Over the years, more advanced 24h recording devices have been developed. These devices 

typically have a microphone (e.g. free-field microphone necklace or one that attaches to the 

patient’s lapel), which sends the cough sounds to a digital sound recorder, usually attached at the 
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hip of the patient.28 Such recording devices include the Leicester Cough Monitor (LCM), the 

Cayetano Cough Monitor (CayeCoM), and the VitaloJak.29–31 

 

Cough counts and patterns were the first objective markers used to analyze cough severity and 

variation over time. The LCM, CayeCoM and VitaloJak have all been validated for the 

measurement of cough frequency.29–31 The LCM and VitaloJak are currently the most widely used 

cough monitoring tools, with reported cough detection sensitivities of 91% and >99%, 

respectively.28 The LCM uses a largely automated algorithm for detecting cough sounds, requiring 

operator input for calibrating the device (approximately 5 minutes for every 24 hours of 

recording).28 The LCM and the CayeCoM have been used to investigate cough among people with 

pulmonary TB. Turner et al. used the LCM as part of a cross-sectional survey of cough frequency 

among people with TB and their contacts.32 Williams et al. used the LCM to correlate exhaled M. 

tuberculosis with cough frequency.15 The CayeCoM has been used in various studies to measure 

cough frequency among cohorts of people with pulmonary TB undergoing treatment.12–14,33,34 A 

summary of studies that use various tools for objective cough monitoring in the context of TB care 

can be found in Table S3.1.  

 

While ambulatory recording devices have enabled continuous recording of cough, many of the 

devices used to date are bulky and obtrusive. Cough is an obvious and stigmatizing symptom, 

especially among people with TB, and the COVID-19 pandemic has dramatically heightened this 

stigmatization.35 In order to efficiently monitor people with cough, recording strategies must be 

inconspicuous to avoid adding to the stigmatization of respiratory conditions. Smartphones with 

cough detection and recording applications provide a more discreet approach to monitoring TB 

coughs. Several cough recording applications have already been developed, including Hyfe 

Research, AI4COVID-19, and ResAppDx.36–38 

 

3.7. Developments in artificial intelligence allow for rigorous assessment of cough 

 

Advances in machine learning, a subset of AI that enables machines to apply algorithms on 

available data to automatically “learn” and make autonomous decisions,20 has given rise to a 

variety of algorithms for cough monitoring that can be deployed on digital recording devices, 
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including smartphones (see Table S3.1 for examples of the types of algorithms used for cough 

detection and cough classification). This new technology allows the analysis of both the frequency 

and the nature of cough sounds. For example, some algorithms first transform sound recordings 

into spectrograms—a visual representation of the frequency, amplitude, and time characteristics 

of sounds—before running an algorithm on the spectrogram to visually analyze the cough’s 

features (Figure 3.1). 

 

 
Figure 3.1. Digital cough spectrograms for artificial intelligence algorithm analysis. (a) 

Waveform image of a pulmonary TB cough. (b) Spectrogram conversion of the waveform cough. 

On the spectrogram, acoustic information is represented as frequency (y-axis) and amplitude 

(color) over time (x-axis). 

 

These algorithms are being trained to identify human coughs from ambient sounds (cough 

detection), as well as to differentiate coughs from patients with distinct clinical conditions or at 

different stages of disease (cough classification), though the latter use case is yet to be validated.39–

43 Several preliminary cough classification algorithms have been developed for COVID-19 and 

TB. A classification algorithm was reported to detect COVID-19 infections among people with a 

cough with 98% sensitivity and 94% specificity, based on a sample of 5,320 individuals (half of 

whom were COVID-19 positive) and against a reference standard of an “official test” (laboratory 

method accepted as a diagnosis for COVID-19), doctor assessment, or personal assessment.42 

Another group reported that COVID-19 could be diagnosed using cough with 89% sensitivity and 

97% specificity.37 For TB, TimBre is a screening application that leverages machine learning to 
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detect TB coughs with a sensitivity of 80% and specificity of 92% against a composite reference 

standard of sputum smear microscopy, GeneXpert, and chest X-ray, from a sample of 5 

bacteriologically-positive and 469 bacteriologically-negative individuals.44 Another study 

developed a cough-based screening system that could discriminate cough sounds produced by 16 

individuals with TB from those produced by 35 individuals with other lung diseases with 93% 

sensitivity and 95% specificity against a bacteriological (laboratory method not specified) 

reference standard, achieving the WHO’s TPP requirements of 90% sensitivity and 70% specificity 

for a community-based TB triage test.3,45 Botha et al. also developed an AI algorithm for TB cough 

classification from a sample of 17 people with TB and 21 healthy individuals, achieving an 

accuracy of 78% and a sensitivity of 95%, at a specificity of 72% against a sputum culture 

reference standard.46 These early studies demonstrate that digital cough monitoring, including 

detection and classification of cough events, could potentially be used to assist TB screening 

(Table S3.1). However, further development and evaluation is critical to move the field forward. 

 

The accuracy of these AI algorithms is contingent on the characteristics of the training dataset. To 

date, external validation of various AI algorithms has been limited, or has not yet been performed, 

and the sample sizes used to evaluate these algorithms have been relatively small.47 Additionally, 

early diagnostic studies of novel tests, including AI algorithms, tend to overestimate the diagnostic 

accuracy, mainly because of the preferential exclusion of more complicated cases.48 Until 

sufficient replication studies have been completed using large, and diverse cough datasets, 

representative of different populations, the clinical application of these AI algorithms will remain 

limited. 

 

3.8. Using digital cough monitoring to change TB care 

 

Digital cough monitoring has the potential to address multiple gaps in the TB cascade of care 

(Figure 3.2).49 In this section, as an example of the breadth of the potential value of cough data, 

we outline hypothetical ways in which AI-based cough tools could be used. 
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Figure 3.2. Potential use cases for digital cough in the tuberculosis cascade of care. Each step 

in TB care cascade is represented as a bar. The gaps in the cascade are in red between each step. 

Boxes pointing at the gaps represent possible digital cough-based solutions to address various 

gaps. The height of the bar graphs and the length of the gaps are not scaled to represent true values. 

They are intended to help illustrate the different steps of the care cascade and points at which 

people with TB may fail to benefit from care. (Cascade of care adapted from Subbaraman et al.49) 

 

3.8.1. Supporting TB program planning 

 

Finding people with TB, or who have symptoms of TB, requires health systems and TB programs 

to strategically deploy limited resources. In a syndromic surveillance approach (i.e., detection and 

aggregation of individuals and populations’ health indicators such as symptoms prior to 
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establishing a definitive diagnosis) both individuals at risk of developing TB, or people who 

previously had TB, could passively and prospectively monitor their cough. Temporal and 

geospatial aggregations of cough events could in turn be used to better target case-finding activities 

and identify high-risk settings. Spatiotemporal changes in cough frequency at population-level can 

be used as a proxy for incidence of COVID-19, TB or other respiratory diseases.36 Whether 

specifically dedicating public health resources to investigate such cough clusters would accelerate 

the identification of additional prevalent cases and improve disease case notifications needs to be 

investigated. Restricting this cough surveillance analytic approach by monitoring people 

previously diagnosed active pulmonary TB could identify cough hotspots where the risk of TB 

transmission has been, and may still be, even higher. 

 

3.8.2. Improving community-based monitoring and active case finding 

 

Very preliminary data suggests that cough classification algorithms could be developed that meet 

WHO TPPs for a community-based TB screening test.44,45 Further validation is needed using 

cohorts of large sample size and diverse populations before any definite conclusions can be made 

regarding their sensitivities and specificities. AI-based cough screening could complement other 

available community-based screening approaches, such as chest X-rays, increasing the number of 

people with presumed TB appropriately referred to facilities for confirmatory testing in a timely 

manner. Indeed, using cough to predict chest X-ray abnormalities could trigger radiology testing 

for which multiple automated interpretation algorithms have now been thoroughly validated.50 If 

deployed on mobile devices, AI-based cough screening could allow for low-cost remote active 

case finding and self-screening, with subsequent referral to a health facility for confirmatory TB 

testing and linkage to care. The vignette in Figure 3.3 illustrates how a cough tool may help refer 

people with a cough to a physician. 
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Figure 3.3. Example use of smartphone-based cough screening application for community-

based monitoring. In this vignette, a female is experiencing symptoms of disease, including 
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cough. Using a phone with the example Health App (not a real app), she is prompted to cough and 

report any other symptoms she is experiencing. The AI algorithm in the Heath App uses the 

information to provide likely causes of disease (in this case, COVID-19 or TB) and refers her to 

consult a physician for confirmatory testing. (Vignette originally created for The Lancet Citizens' 

Commission on Reimagining India's Health System, by Raghu Dharmaraju, Vijay 

Chandru,Umakant Soni, and Shubraneel Ghosh, AI & Robotics Technology Park (ARTPARK) at 

Indian Institute of Science. "A vignette from 2030 in rural India: How might technology enable 

citizen-centered health journeys?".) 

 

For individuals at higher risk of developing active pulmonary TB, such as household contacts, 

cough detection and longitudinal monitoring could objectively document an increase in TB-

compatible symptoms, prompting early care-seeking and limiting transmission. This approach 

could also help address subclinical pulmonary TB.51 Individuals who have mild symptoms, but do 

not recognize them as being significant, are also considered subclinical.51 In such cases, digital 

cough monitoring could be used to identify the presence or significance of cough that would 

otherwise have gone unrecognized or unreported. However, digital cough monitoring would not 

extend to truly asymptomatic individuals with subclinical TB, limiting its application as an active 

case finding tool in this sub-group. A study of 24 people with TB found that cough frequency may 

not be associated with Mtb output collected on face masks.15 That is, some participants who did 

not cough very often still expelled a lot of Mtb (and vice versa). While further investigations are 

needed, this raises potential limitations of relying on cough monitoring for evaluating active case-

finding and reducing TB transmission. 

 

3.8.3. Enhancing the performance of diagnostic algorithms 

 

Even when people with presumed TB reach the health facility, it is not guaranteed that they will 

access proper confirmatory testing. One reason for this is a lack of awareness and training among 

healthcare workers to recognize key TB symptoms. This problem has been demonstrated by studies 

involving standardized patients (SPs), healthy persons trained to visit health facilities with fake 

TB symptoms, without the healthcare providers being aware that these symptoms are not real.52 A 

systematic review on SPs in India found that only half of healthcare providers knew that prolonged 
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cough (>2 weeks) may be associated with TB.52 Another study in India found that SPs presenting 

with TB symptoms were severely under-tested.53 

 

Similar to community-based screening and active case-finding, health providers may potentially 

use AI-based cough classification applications to help triage people with presumed TB, 

complementing less sensitive symptom-based triage methods and increasing the proportion of 

individuals with presumed TB that undergo confirmatory testing. Because symptom screening is 

also non-specific, it may also help reduce the proportion of people without TB who unnecessarily 

undergo TB testing. 

 

3.8.4. Monitoring the effect of treatment 

 

Smartphones are globally available and can act as recording devices. They are already used for TB 

treatment-adherence monitoring with video Directly Observed Therapy (vDOT), which allows 

people with TB to send videos of themselves ingesting anti-TB treatment to their health provider, 

instead of having to travel to the clinic to take their anti-TB treatment in front of a health provider, 

as required under traditional DOT methods.54 Given that cough symptoms regress with successful 

treatment, cough detection applications could be used as a low-cost, person-centric approach for 

clinicians to remotely monitor people with TB’s clinical response to treatment, or even for people 

to self-monitor their cough as treatment progresses.13 Objectively-documented unfavorable cough 

evolution patterns could prompt patients and providers to investigate whether the treatment 

regimen being used is effective, allowing for early recognition of drug resistance or poor 

adherence. 

 

3.8.5 Achieving relapse-free cures and minimizing long-term lung damage 

 

A significant proportion of people who are successfully cured of TB are at risk of TB recurrence 

within the first year following completion of anti-TB treatment.55 The prospective cough 

monitoring used during treatment could be continued during this high-risk period to identify early 

signs of TB recurrence. Even if people do not experience TB recurrence or relapse, they are at 

increased risk of experiencing post-TB lung damage, an aspect of TB care that is often overlooked 
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in TB management pathways.56 Thus, cough monitoring, if validated, could also be useful as a 

starting point in identifying individuals with post-TB lung disease and related lung function 

decline. 

 

3.8.6. Supporting drug development and TB research 

 

AI-based cough detection technology could also play a role in TB research and development. 

Digital cough monitoring could be used as a secondary endpoint in clinical drug development 

trials. Drug development trials have so far relied on evaluating whether sputum culture test results 

from the person with TB change from positive to negative during the first 8 weeks of therapy as a 

proxy for anti-TB treatment efficacy.57 Such culture methods are resource- and time-intensive, and 

do not allow the monitoring of intermediate outcomes, including patient symptoms. In addition, 

regulatory agencies may request data on patient-reported improvement in cough, though again this 

is subjective and can have variable accuracy.58,59 Similar to symptom-based screening, self-

assessment of cough in the context of experimental therapy-efficacy measurement is unlikely to 

be fully accurate. Objective monitoring of cough may allow for more nuanced monitoring of 

intermediate endpoints by acting as a complement to conventional culture-based endpoints and 

patient-reported outcomes. 

 

3.9. Furthering the clinical use of digital cough monitoring 

 

The recent progress in acoustics and cough analysis, combined with the urgent need to improve 

respiratory disease detection and tracking methods in the context of COVID-19, have accelerated 

applications of acoustic epidemiology in clinical research.37,42,60 This emerging field depends on 

increasingly less obtrusive ways to collect cough data as well as more sophisticated analytics that 

go beyond cough detection to infer clinical etiology based on cough patterns and spectral 

characteristics. 

 

The development, validation, and roll-out of digital cough monitoring tools for TB will require 

global coordinated data collection, curation, and analysis effort. Training and validation cough 

datasets need to be collected from people in the intended use population and settings. They must 
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include large numbers of people with different demographic characteristics (e.g. age, sex, 

ethnicity) as well as different forms of pulmonary TB in clinical settings with variable background 

epidemiology of respiratory diseases. This ‘big data’ approach is mandatory for the development 

and refinement of AI algorithms to achieve high external validity. Since cough is not specific to 

TB, such datasets should not be limited to the development of AI algorithms for TB but should 

also be used to develop and refine cough algorithms for other respiratory diseases and conditions 

that are linked to cough. To accelerate this endeavour, we must avoid the multiplication of isolated 

algorithm development efforts that use data from homogeneous patient populations.47 

 

Collective efforts to aggregate and annotate cough data may accelerate research and tool 

development. For example, Global Health Labs, the Bill and Melinda Gates Foundation, and the 

Patrick J. McGovern Foundation are currently supporting efforts to collect cough data and are 

investing in infrastructure to build an extensive database of cough sounds. Researchers interested 

in cough and acoustic epidemiology—in the context of TB or any other respiratory disease or 

condition linked to cough—can contribute to this growing anonymized database and use the 

existing data to develop and refine AI. While this effort is an important step towards integrating 

cough into TB care, there is still a need for a broader recognition of the potential advantages of 

integrated AI-based cough tools into TB care. As more AI-based cough detection tools and 

applications become available, increased effort should be made to routinely collect cough data 

within TB programs, prevalence surveys, and clinical studies in order to contribute to the growing 

field of acoustic epidemiology. Such efforts will help characterize the natural evolution of TB 

cough, objectively describe the impact of specific interventions on TB symptoms, and iteratively 

improve operational and performance characteristics of cough-based TB solutions. Like other 

biomarkers, collected cough data must be anonymized, annotated with clinical metadata, and 

shared in open-source repositories. TB cough data must also be made available in the same way 

that digital chest X-ray libraries are available for the validation of electronic interpretation 

algorithms, or that TB genomic sequences are available to support novel drug development and 

validation of drug resistance assays.61,62 Through such collective efforts, we can accelerate 

algorithm development and the roll-out of cough-based clinical tools. This data sharing approach 

should also improve partnerships between academia and industry by allowing faster hypothesis-

testing as well as rapid product design and translation into user-friendly tools that can be deployed 
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at scale in TB care. In conclusion, AI and acoustic epidemiology has the potential to revolutionize 

the fight against TB. 
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3.13. Supplementary information 

 

Table S3.1. Summary table of studies investigating cough in the context of TB care, cough detection, and cough classification 

Cough recording 
tool 

Author 
(Year) Ref. Sample size Setting Reference 

standard Study design and objectives Algorithm description 

Objective cough monitoring for TB 

Tape recorder Loudon 
(1969) 1 63 TB patients 

TB patients 
hospitalized in 
Dallas, USA 

N/A 

Prospective cohort 
demonstrating that nighttime 
cough frequency is associated 
with disease severity 

N/A 

Leicester Cough 
Monitor and Visual 
Analog Scale (VAS) 

Turner 
(2014) 2 108 N/A 

Sputum culture, 
sputum smear 
microscopy 

Retrospective review of 
medical records of TB patients’ 
cough 24h prior to commencing 
treatment 

N/A 

Leicester Cough 
Questionnaire 
(LCQ) and Cough 
and Sputum 
Assessment 
Questionnaire 
(CASA-Q) 

Suzuki 
(2019) 3 85 

TB patients 
hospitalized in 
Shizuoka, Japan 

Sputum culture, 
sputum smear 
microscopy 

Prospective observational 
cohort comparing LCQ and 
CASA-Q score on admission 
and at discharge 

N/A 

Leicester Cough 
Monitor 

Turner 
(2018) 4 44 

TB clinics and 
in-patient 
facilities in the 
United Kingdom 

Sputum culture, 
sputum smear 
microscopy, chest 
X-ray 

Cross-sectional survey of cough 
frequency in patients with TB 
and their contacts 

N/A 
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Leicester Cough 
Monitor 

Williams 
(2020) 5 24 

Inpatients 
admitted to one 
of three 
hospitals in 
Pretoria, South 
Africa 

Liquid sputum 
culture (BACTEC 
MGIT 960), 
sputum smear 
microscopy, Xpert 
MTB/RIF, chest X-
ray 

Prospective cohort over a 24h 
period to correlate exhaled TB 
bacillary output with cough 
frequency 

N/A 

Cayetano Cough 
Monitor* 

Tracey 
(2011) 6 62 TB patients 

Public national 
tertiary referral 
hospital in 
Lima, Peru 

MODS culture, 
sputum smear 
microscopy, 
clinical symptoms 

Prospective cohort examining 
cough pattern and frequency 
among TB patients prior to 
treatment and during the first 60 
days of treatment. 

TB cough detection 
algorithm using sequential 
minimal optimization  
 
Sensitivity = 81% 
Specificity = N/A 
Overall accuracy = 86.4% 

Cayetano Cough 
Monitor* 

Larson 
(2012) 7 15 TB patients 

Tertiary referral 
hospital in 
Lima, Peru 

N/A 

Prospective cohort examining 
the change in cough frequency 
during the first 2 weeks of TB 
therapy 

TB cough detection 
algorithm using sequential 
minimal optimization  
 
Sensitivity = 75.5% 
Specificity = 99.6% 

Cayetano Cough 
Monitor* 

Proaño 
(2017) 8 64 TB patients 

Two reference 
tertiary 
academic 
hospitals in 
Lima, Peru 

MODS culture, 
auramine-stained 
smear 

Prospective cohort study 
evaluating cough patterns 
among TB patients prior to 
treatment and during the first 62 
days of treatment. 

Same algorithm as Larson 
(2012)7 

Cayetano Cough 
Monitor* 

Proaño 
(2018) 9 41 

Two tertiary 
hospitals in 
Lima, Peru 

MODS culture 

Prospective cohort study 
examining the relationship 
between cough frequency and 
cavitary lung disease 
throughout the first 60 days of 
TB therapy 

N/A 
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Cayetano Cough 
Monitor* 

Lee 
(2020) 10 71 TB patients 

Two tertiary 
hospitals in 
Lima, Peru 

MODS culture 

Prospective cohort examining 
the change in cough frequency 
among patients with TB during 
the first 60 days of TB therapy 

Same algorithm as Larson 
(2012)7 

Examples of cough detection AI algorithms 

Hyfe Cough Tracker 
smartphone app 

Gabaldon-
Figueira 
(2021) 

11 57 participants 

Community 
members 
located within 
5km of the 
University of 
Navarra, Spain 

N/A 

Prospective observational study 
to assess the value of digital 
acoustic surveillance in 
predicting respiratory disease 
incidence (including COVID-
19) 

Cough detection algorithm 
using Convolutional 
Neural Network model  
 
Sensitivity = 96.34% 
Specificity 96.54% 

AI4COVID-19 
smartphone app. 

Imran 
(2020) 12 543 coughs N/A N/A Development of COVID-19 

cough detection AI model 
Sensitivity = 96.01% 
Specificity = 95.19% 

HealthMode Cough 
smartphone 
application 

Kvapilova 
(2019) 13 20 people 

Online material 
(including 
YouTube videos 
and SoundSnap 
website) 

Manual cough 
counting 

Development of cough 
detection AI model 

Sensitivity = 90% at 
99.5% specificity 
Sensitivity = 75% at 
99.9% specificity 

Examples of TB and COVID-19 cough classification AI algorithms 

TimBre smartphone 
app. 

Pathri 
(2022) 14 

# people 
TB: 5 

Non-TB: 469 

Tertiary hospital 
in Bangalore, 
India 

Sputum smear 
microscopy, Xpert 
(unspecified), chest 
X-ray 

Development of TB cough 
classification AI model 

TB cough classification 
algorithm using RUS 
Boosted Algorithm 
 
Sensitivity = 80% 
Specificity = 92% 

Tascam DR-44WL 
hand-held audio 
recorder and a 
Rhode M3 
microphone 

Botha 
(2018) 15 

# people 
TB: 17 

Non-TB: 21 

Recording done 
in a “specially 
designed 
facility” 

Sputum culture Development of TB cough 
classification AI model 

TB cough classification 
algorithms using fusion by 
logistic regression 
 
Sensitivity = 95% at 72% 
specificity 
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ZOOM F8N field 
recorder and a 
RØDE M3 
condenser 
microphone 

Pahar 
(2021) 16 

# people 
TB: 16 

Control: 35 

Primary health 
care clinic in 
Cape Town, 
South Africa 

“Bacteriological 
TB diagnosis” 

Development of TB cough 
classification AI models 

TB cough classification 
algorithms using logistic 
regression (LR), support 
vector machines (SMV), 
k-nearest neighbor (KNN), 
multilayer perceptron’s 
(ML), and convolutional 
neural networks (CNN) 
 
LR performed best: 
Sensitivity = 93% 
Specificity = 95% 

AI4COVID-19 
smartphone app. 

Imran 
(2020) 12 

# coughs 
COVID: 70 

Non-COVID: 
473 

N/A N/A Development of COVID-19 
cough classification AI model 

COVID-19 cough 
classification algorithms 
using Deep Transfer 
Learning-based Multi-
Class (DTL-MC), 
Classical Machin 
Learning-based Multi 
Class (CML-MC), Deep 
Transfer Learning-based 
Binary Class (DTL-BC) 
classifiers 
 
DTL-MC 
Sensitivity = 89.14% 
Specificity = 96.67% 
 
CML-MC 
Sensitivity = 91.71% 
Specificity = 95.27% 
 
DTL-BC 
Sensitivity = 94.57% 
Specificity = 91.14% 
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MIT Open Voice 
Initiative website 
(opensigma.mit.edu) 

Laguarta 
(2020) 17 

# people 
COVID: 2660 
Non-COVID: 

2660 

Global cough 
collection 
through online 
platform: 

“Official test”, 
doctor assessment, 
or personal 
assessment 

Development of COVID-19 
cough classification AI model 

COVID-19 cough 
classification algorithm 
using a Convolutional 
Neural Network model 
 
Sensitivity = 98.5% 
Specificity = 94.2% 

Android phones and 
web apps by 
University of 
Cambridge 
(covid-19-
sounds.org./en/) 
 

Coppock 
(2021) 18 

# people 
COVID: 62 

Non-COVID: 
293 

Crowdsourced 
participants Self-reporting Development of COVID-19 

cough classification AI model 

COVID-19 cough 
classification algorithm 
using a Deep Neural 
Network model 
 
AUC = 0.846 

*Cayetano Cough Monitor is a Marantz PMD 620 handheld recorder with an Audio-Technica AT899 sub-mini microphone attached at the patient's lapel 
TB, tuberculosis; AI, artificial intelligence; Ctl, control; MODS, microscopic-observation drug-susceptibility; N/A, not available 
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Chapter 4. Manuscript II: Objective cough counting in clinical practice and 

public health: a scoping review 
 

4.1. Preface 

 

Through my work on the previous manuscript, I identified two distinct approaches to digital cough 

monitoring. The first involves autonomous or semi-autonomous cough counting tools that track 

changes in cough frequency over time. The second utilizes advanced AI algorithms to analyze 

cough sounds and identify acoustic features indicative of underlying disease. These approaches 

serve different purposes: cough counting requires longitudinal monitoring to identify meaningful 

changes in cough patterns, while acoustic analysis can be used as a point-of-care screening or 

triage tool with a single measurement. 

 

Between these approaches, cough counting technology has a longer history and more extensive 

evidence base in the literature. Several cough counting tools have achieved commercial status over 

the past decade, though their integration into clinical practice remains unknown. Given the 

maturity and availability of cough counting technology, we sought to understand its current 

applications in clinical and public health contexts. Through a scoping review of the literature, we 

examined the how these tools are used for patient care and explored cross-cutting themes such as 

technological feasibility, user acceptance, and privacy considerations that affect implementation 

across all contexts. 

 

This work is currently under review for publication in The Lancet Digital Health. 
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4.2. Title page 

 

Objective cough counting in clinical practice and public health: a scoping review 

 

Alexandra J. Zimmer1,2, Rishav Das1,2, Patricia Espinoza Lopez3,4, Vaidehi Nafade2,5, Genevieve 

Gore6, César Ugarte-Gil3,4,7, Kian Fan Chung8, Woo-Jung Song9, Madhukar Pai1,2, Simon 

Grandjean Lapierre2,10,11 
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Heredia, Lima, Peru 
5 School of Medicine, McGill University, Montreal, Canada 
6 Schulich Library of Physical Sciences, Life Sciences, and Engineering, McGill University, 

Montreal, Canada 
7 Department of Epidemiology, School of Public and Population Health, University of Texas 

Medical Branch, Galveston, USA 
8 National Heart and Lung Institute, Imperial College London, London, UK 
9 Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan 

College of Medicine, Seoul, Korea 
10 Immunopathology Axis, Centre de Recherche du Centre Hospitalier de l’Université de 

Montréal, 900 Rue Saint-Denis, Montréal, Canada 
11 Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, 

2900 Boulevard Edouard-Montpetit, Montréal, Canada 
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4.3. Abstract 

 

Cough counts are a marker for respiratory disease diagnosis and monitoring. Traditionally, patient-

reported outcomes have provided subjective insights into symptoms. Novel digital cough counting 

tools now enable objective assessments, yet their integration into clinical practice is limited. This 

scoping review aims to bridge this gap by examining automated and semi-automated cough 

counting tools in patient care and public health. Four clinical use cases were identified from the 

literature: disease diagnosis and severity assessment, treatment monitoring, health outcomes 

prediction, and syndromic surveillance. Moderate correlations between objective cough 

frequencies and patient reported outcomes indicate a complex relationship between quantifiable 

measures and patient experiences. Feasibility challenges include device obtrusiveness, monitoring 

adherence, and addressing patient privacy concerns. Comprehensive studies are critically needed 

to validate these technologies in real-world settings and demonstrate their clinical value, and early 

feasibility and acceptability assessments are essential for successful integration. 
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4.4. Introduction 

 

Cough has frequently signaled the need for care-seeking, clinical evaluation, and diagnostic 

testing. The clinical evaluation of cough typically relies on patient reported outcomes (PROs), 

which involves the subjective assessment of cough using tools such as the Leicester Cough 

Questionnaire (LCQ) for cough-related quality of life or the Visual Analog Scale (VAS) for cough 

severity.1,2 These PROs, while straightforward and practical,3 frequently fall short in accurately 

capturing the frequency and nature of cough. 

 

Digital cough monitoring tools and technologies strive to mitigate these shortcomings by using 

autonomous methods for cough detection and tracking changes in cough frequency over time. 

Several cough counting technologies have been developed.4 Prominent among these tools have 

been the Leicester Cough Monitor (LCM) and VitaloJAKTM, two semi-autonomous devices 

which have significantly contributed to the field of cough monitoring over the past 20 years for 

24-hour cough counting.5–7 In recent years, advances in artificial intelligence (AI) as well as the 

heightened focus on respiratory symptoms during the COVID-19 pandemic have accelerated the 

field of digital cough detection and monitoring.8–10 This field of research has recently been coined 

acoustic epidemiology in reference to the use of technology to detect and analyze sounds produced 

by the body (coughing, sneezing, etc.) in order to better understand and predict health outcomes 

for patients.11,12 

 

Despite these advances, digital cough tools are predominantly confined to clinical research trials 

to track cough counts as an outcome measurement for new cough-suppressant treatments.13–15 

While objective cough frequency is considered a critical outcome in cough guideline 

recommendations,16 its use in clinical practice is rare. This discrepancy underscores a significant 

gap between ideal standards and actual practice. While existing commentaries have summarised 

technical aspects of these tools and their conceptual applications,3,4,17–19 a systematic consolidation 

of their practical and clinical applications remains essential to advance the field of cough 

monitoring. Therefore, this scoping review seeks to synthesize the applications of objective cough 

monitoring tools in the clinical and public health management of respiratory diseases, with an 

emphasis on their real-world applicability and potential to transform patient care. 
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Due to the wide range of applications for cough monitoring across various diseases and the use of 

diverse cough monitoring tools, a scoping review methodology was chosen. The specific aims of 

this review are: 1) identify and categorize the various objective cough counting tools and 

technologies used in clinical and public health contexts; 2) analyze how these tools are currently 

being used for the diagnosis, monitoring, and management of respiratory diseases, and their 

effectiveness in these roles; and 3) investigate the technological and logistical factors that affect 

the adoption and integration of digital cough tools into clinical practice and public health strategies. 

 

4.5. Methods 

 

We conducted a scoping review to identify how digital cough counting tools can be used to support 

public health and clinical care. This review was reported in accordance with the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews 

(PRISMA-ScR) guidelines (Table S4.1).20 

 

4.5.1. Definitions 

 

We defined “digital cough counting tools” as devices or systems that utilized automated or semi-

automated methods to detect, quantify, and record cough sounds or events continuously over a 

duration ranging from hours to days. These tools are distinct from subjective measurements, which 

predominantly rely on PROs and personal recollections (e.g., cough questionnaires). 

 

4.5.2. Data sources and search strategy 

 

To guide our scoping review, we developed a “Population, Concept, Context”21 driven research 

question: “How do digital cough counting tools complement and/or enhance standard care for the 

diagnosis, treatment, and monitoring of patients with respiratory diseases?” This question steered 

our search across the following databases: MEDLINE (Ovid), EMBASE (Ovid), CENTRAL 

(Cochrane Library), Web of Science Core Collection, IEEE Xplore, and preprints indexed in 

Europe PMC (e.g., bioRxiv, MedRxiv). Search terms were carefully selected to include a 
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combination of keywords related to 'cough' or ‘tussis’ as well as various descriptors of objective 

measurement, such as 'automated,' biomarker,' 'monitor’, and ‘frequency’, among others. The 

detailed search strategies (Table S4.2) were developed with input from the research team and a 

skilled research librarian (GG). The scope of the search was limited to articles that have been 

published in the last 10 years (January 2013- September 2022) with an updated search performed 

in September 2023. The search was restricted to publications in English, French, and Spanish. 

During the review process, certain references used to the same dataset, such as when a conference 

proceeding was later followed by a peer-reviewed article. In such cases, data was extracted from 

one of the sources, prioritizing peer-reviewed publications when available. 

 

4.5.3. Inclusion and exclusion criteria 

 

Studies were included if they utilized digital cough counting tools to assess cough patterns and 

frequencies with an explicit clinical intent. While studies with a defined clinical purpose was the 

primary focus, studies that addressed feasibility and acceptability issues associated with 

implementing these tools in clinical practice were also included. A broad spectrum of study designs 

were included, such as observational studies, case reports, and case series, all without a minimum 

sample size requirement. Randomized trials were included when the primary investigation was the 

utility of digital cough monitors as an intervention for clinical care. The search was unrestricted 

with respect to patient demographics, settings, geographic locations, or cough treatment. 

 

Conversely, studies were excluded if the aim was the technical development of the tool (e.g., 

developing a cough detection algorithm), rather than the application or validation in a clinical or 

public health context. Studies were also excluded if they used cough counting tools exclusively 

among healthy individuals, as these do not contribute to our understanding of how best those tools 

can be used for decision making in a clinical or public health. Experimental studies or clinical 

trials in controlled settings using cough monitoring as an outcome to evaluate the efficacy of a 

novel therapeutic were also excluded. Studies that exclusively employed subjective cough 

assessment tools such as questionnaires, surveys, or scores were excluded. Publications such as 

reviews, commentaries, editorials, or those lacking primary data or complete publication 
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information were omitted but scanned for relevant citations. Finally, studies not carried out on 

human subjects were excluded. 

 

4.5.3. Study screening and selection 

 

The screening process was conducted in two stages and by two reviewers independently to ensure 

thoroughness and accuracy. During title and abstract screening, all papers were primarily reviewed 

by author AJZ, with RD, PE, and VN serving as secondary screeners. Full-text articles were 

screened in the same way. Throughout both screening stages, any instances of discordance or 

uncertainty were addressed by consulting with SGL for a final decision. 

 

4.5.4. Data extraction 

 

A structured data extraction form was used to systematically gather relevant study information. 

This form captured a range of information, including basic publication data, study design, country, 

patient demographics, and the specific respiratory disease(s) being investigated. Additionally, the 

cough counting tool used was cataloged, as well as the specific clinical application in which it was 

used in each study, taking note of barriers or facilitators. Studies that reported correlation 

coefficients between objective cough frequency and subjective cough scores or questionnaires 

were also extracted. The primary extraction was carried out by AJZ, with a subsequent verification 

process overseen by SGL. 

 

4.5.5. Qualitative synthesis 

 

To systematically categorize the identified literature, an inductive thematic analysis was used to 

group the studies based on their clinical and public health applications. This process resulted in 

the organization of the literature into four main categories: 1) diagnosis and assessment of disease 

severity and activity; 2) monitoring the treatment of diagnosed conditions; 3) predicting health 

outcomes; and 4) conducting syndromic surveillance. A fifth category was designated to papers 

that primarily explored cross-cutting themes, such as the feasibility and acceptability of using 
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cough monitors. Beyond this categorization, no additional qualitative coding methods were 

employed. 

 

4.6. Results 

 

4.6.1. Search results 

 

The search strategy identified 7,631 abstracts. After removing duplicates, 5,175 abstracts were 

screened, of which 534 were selected for full-text assessment (Figure 4.1). From this subset, 68 

met the inclusion criteria. 

 

 
Figure 4.1. PRISMA flow diagram for literature search and study inclusion. 

 

Most publications were excluded because they either solely used subjective cough assessment 

tools or did not measure cough at all. Eighty-three studies focused on developing AI algorithms 
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for cough detection and classification without considering longitudinal cough counts as a marker 

of interest. Additionally, 46 studies used objective cough tools in experimental or trial settings to 

validate anti-tussive therapeutics, 28 studies investigated cough sensitivity reflex, and 24 studies 

examined the application among healthy participants. 

 

4.6.2. Study characteristics 

 

Table 4.1 presents a summary of the included studies. Most studies recruited a small sample of 

individuals with respiratory conditions, with a median of 44 participants, ranging from 1 (case 

report) to 616 participants. Geographically, 63 (93%) of the studies examining the clinical utility 

of digital cough tools were conducted in high-income countries. The five studies (7%) in low- and 

middle-income countries exclusively centered on monitoring outcomes related to tuberculosis 

(TB).22–26 
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Table 4.1. Summary of studies examining the use of digital cough monitoring tools in a clinical or public health context 

Author (Ref.) Country Setting Age group Disease(s) N* Recording time Cough monitor Unit of analysis 
Clinical application: Diagnosis and assessing disease severity 

Bisballe-
Müller 202127 Australia In-patient Pediatric 

Asthma, 
bronchiolitis, 

pneumonia, ARIs 
118 24h 

Sony ICD-PX470 
Digital Voice 

Recorder 

Cough cluster (explosive 
sounds with no more than 
5s between each sound) 
per hour 

Fletcher 
201728 N/A Ambulatory N/A 

Asthma, RCC, 
GORD, 

Rhinosinusitis 
320 24h LCM Cough count per hour 

Grosse-
Onnebrink 
201629 

Germany In-patient Adolescents, 
Adults Cystic fibrosis 21 7h (night) LEOSound Cough count per hour 

Hirai 201930 Japan In-patient Pediatric Asthma, RSV-
bronchiolitis 36 8h (night) Custom Cough count per 30min 

Hirai 202231 Japan In-patient Pediatric Asthma with and 
without PND 8 8h (night) Custom Cough count per 30min 

Imai 201732 Japan In-patient Pediatric Psychogenic 
cough 2 8h (night) Custom Cough count per night 

Key 201933 N/A Ambulatory Adults Bronchiectasis 6 24h N/A Cough counts per 
day/night 

Lindenhofer 
202034 Austria Ambulatory, 

In-patient 
Pediatric, 

Adolescents  

Asthma, Cystic 
fibrosis, 

Pneumonia, Habit 
cough, Chronic 

cough 

39 8-10h (night) LEOSound 

Cough episodes (30s 
period in which at least 
one cough was registered) 
per night 

Radine 201935 Germany Ambulatory 
Pediatric, 

Adolescents, 
Adults 

Cystic fibrosis, 
Primary ciliary 

disease 
49 2 nights (consecutive) LEOSound 

Cough counts and cough 
epochs (continuous 
coughing without a 2s 
pause) per hour 

Sinha 201636 UK Ambulatory Adults Sarcoidosis 32 24h LCM Cough counts per 24h 
Spinou 201737 UK Ambulatory Adults Bronchiectasis 54 24h LCM Cough counts per 24h 
Sumner 201338 N/A Ambulatory Adults COPD 68 24h VitaloJAK Cough counts per hour 

Turner 201339 N/A In-patient Adults Asthma, COPD, 
LRTI 40 24h LCM 

Cough counts per hour and 
cough counts (undefined) 
per 24h 

Vertigan 
201840 Australia Ambulatory Adults RCC, Muscle 

tension 57 24h LCM Cough counts per hour 



 66 

dysphonia, Vocal 
cord dysfunction 

Vertigan 
202041 Australia Ambulatory Adults 

Vocal cord 
dysfunction, 

chronic cough 
90 24h LCM Cough counts per hour 

Wang 201442 UK Ambulatory Pediatric Pertussis 6 24h LCM Cough counts per 24h 

Yousaf 201343 UK Ambulatory Adults 

Asthma, 
Bronchitis, 

Chronic cough, 
COPD 

78 24h LCM Cough counts per 24h 

Clinical application: Disease severity assessment 

Crooks 201644 N/A Ambulatory Adults COPD 18 24h: Baseline, Day 5, 
Day 20, Day 45 

Hull Automated 
Cough Counter Cough count per hour 

Doenges 
202045 Germany Ambulatory Adults Asthma 55 5-9h (night) LEOSound Cough count per hour 

Elghamoudi 
201746 N/A N/A Pediatric, 

Adolescents Asthma 26 
24h: During 

exacerbation, When 
stable 

VitaloJAK Cough count per 
24h/day/night 

Fischer 201847 Germany Ambulatory Adults COPD 30 2 nights (consecutive) LEOSound 

Cough epochs (continuous 
coughing without a 2 s 
pause) per recording 
period 

Harle 201948 N/A Ambulatory Adults Lung cancer 39 24h: Baseline, Day 
60 VitaloJAK Cough count per hour 

Hirai 201649 Japan In-patient Pediatric Asthma 34 8h (night) Custom Cough count per 30min 
Holmes 202250 UK Ambulatory Adults Asthma 61 24h LCM Cough count per hour 

Koehler 
201951 Germany Ambulatory, 

In-patient Pediatric Acute bronchitis 36 10h: Night 1, Night 5, 
Night 9 LEOSound 

Cough epochs (continuous 
coughing without a 2s 
pause) per 10-min 

Krönig 201752 N/A Ambulatory Adults COPD 48 2 nights (consecutive) LEOSound 

Cough period (cough 
events within an interval 
shorter than 15 seconds) 
per hour 

Kulnik 201553 N/A In-patient Adults Stroke 21 24h: Baseline, Week 
1, Week 4 LCM Cough counts per 24h 

Lodhi 201954 N/A N/A Adults Asthma 92 24h VitaloJAK Cough counts per 
hour/4h/24h 

Mackay 
201555 UK Ambulatory Adults COPD 64 24h VitaloJAK Cough counts per 24h 
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Marsden 
201656 UK Ambulatory Adolescents, 

Adults Asthma 89 24h VitaloJAK Cough counts per hour 

Ovsyannikov 
201957 Russia In-patient Adults COPD 110 12h: Baseline, Day 

10 Custom Cough counts per 12h 

Proaño 201823 Peru Ambulatory Adults Tuberculosis 41 
2 weeks 

(consecutive), Day 
21, Day 30, Day 60 

CayeCoM 
Cough episode (continuous 
coughing without a 2s 
pause) per hour 

Rassouli 
202058  Switzerland Ambulatory Adults Asthma 79 29 nights 

(consecutive) 
Clara smartphone 

app. 

Cough counts and cluster 
(a series of at least two 
coughs with a maximum 
time of 2s in between their 
expulsive phases) per night 
& hour 

Rhee 201559 USA Ambulatory Adolescents Asthma 42 7 days (consecutive) ADAM device Cough counts per 6s 

Schwarz 
202160 Germany Ambulatory Adults COPD 40 24h LEOSound 

Cough epochs (among of 
coughing during 30s) per 
day/night 

Turner 201461 N/A N/A N/A Tuberculosis 30 24h LCM Cough counts per 24h 

Turner 201562 N/A Ambulatory N/A 
Chronic cough, 

COPD, 
Tuberculosis 

69 24h LCM 

Cough episodes (a lone 
cough or bout of multiple 
coughs separated by 2s of 
no cough) per 24h 

Turner 201863 UK Ambulatory 
In-patient 

Adolescents, 
Adults Tuberculosis 61 24h LCM Cough counts per hour & 

24h 
Weisser 
202264 N/A N/A Pediatric Asthma 94 2 nights (consecutive) LEOSound Cough episodes 

(undefined) per night 

Winders 
202365 N/A Ambulatory Adults Asthma 108 9h (night) Tablet with 

CurieAI algorithm 

Cough episode (all coughs 
within 10 min after an 
initial cough) per 2h 

Clinical application: Treatment monitoring 

Faruqi 201666 N/A Ambulatory Adults Cystic fibrosis 2 24h: Pre-treatment, 
Post-treatment 

Hull Automated 
Cough Counter Cough counts per hour 

Faruqi 202067 UK Ambulatory Adults 
Severe 

eosinophilic 
asthma 

11 
24h: Baseline, 1 

month, 3 months, 6 
months 

Hull Automated 
Cough Counter Cough counts per 24h 

Fukuhara 
201968 Japan Ambulatory Adults Asthma 73 24h: Pre-treatment, 

Post-treatment 

MP3 sound 
recorder with a 

free-field 
microphone 

Cough counts per hour 
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Huddart 
202322 

India, the 
Philippines, 

South 
Africa, 

Uganda, 
Vietnam 

Ambulatory Adults Tuberculosis 144 14 days (consecutive) Hyfe Cough 
Tracker app. 

Median cough counts per 
hour 

Jung 202369 South Korea Ambulatory N/A 
Asthma, 

Interstitial lung 
disease 

45 

Asthma: 7 days 
(consecutive) 2h 

during daytime & 5h 
during nighttime 
ILD: Baseline, 3 
months 2h during 

daytime & 5h during 
nighttime 

Coughy app. 
Cough epochs (undefined) 
and cough counts per 
recording period 

Kang 202370 South Korea Ambulatory Adults Long-COVID-19 
refractory cough 1 42 days (consecutive) Hyfe Cough 

Tracker app. Cough counts per 24h 

Lee 202025 Peru Ambulatory Adults Tuberculosis 69 
4h: Baseline, Day 3, 
Day 7, Day 30, Day 

60 
CayeCoM 

Cough episodes (series of 
coughs separated by <2s 
between each cough) per 
hour 

Lee 202371 South Korea Ambulatory Adults Chronic cough 43 Up to 14 days 
(consecutive) 

Hyfe Cough 
Tracker app. Cough counts per hour 

Proaño 201724 Peru Ambulatory Adults Tuberculosis 64 

24h: Pre-treatment, 
Day 3, Day 7, Day 

14, Day 21, Day 30, 
Day 60 

CayeCoM 

Cough episodes (series of 
coughs separated by <2s 
between each cough) per 
hour 

Shim 202372 South Korea Ambulatory N/A Asthma 24 
7 days (consecutive) 
2h during daytime & 
5h during nighttime 

Coughy app. Cough counts per hour 

Turner 201573 N/A Ambulatory, 
In-patient N/A Tuberculosis 44 

24h: Baseline, Day 1, 
Day 2-4, Day 5-8, 
Week 2, Week 8, 

Week 26 

LCM Cough counts per hour 

Vertigan 
202174 Australia Ambulatory Adults 

Asthma, RCC, 
Laryngeal 
obstruction 

174 24h: Pre-intervention, 
post-intervention LCM Cough counts per 24h, 

daytime & nighttime 

Zhang 202275 UK Ambulatory Adults Cystic fibrosis 16 24h: Pre-treatment, 1 
month 

Philips Digital 
Record 

Cough counts per 24h, 
daytime & nighttime 

Clinical application: Predicting health outcome 
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Altshuler 
202376 

Canada, 
USA In-patient Adults COVID-19 123 Until discharge/death Hyfe Cough 

Tracker app. Cough counts per hour 

Boesch 202377 Switzerland In-patient Adults COVID-19, 
Pneumonia 46 Until discharge/death Cough detection 

app. (unspecified) 
Cough counts per hour and 
6h; Mean coughs per hour 

Crooks 202178 UK Ambulatory Adults COPD 25 
8 days before & 8 

days after AE-COPD 
(consecutive) 

Stationary 
microphone with 

laptop 
Cough counts per 24h 

den Brinker 
202179 UK Ambulatory Adults COPD 28 90 days (consecutive) Custom Cough counts per hour 

Pekacka-Egli 
202180 Switzerland In-patient Adults Post-stroke 

pneumonia 30 8h (night) LEOSound Cough counts per hour 

Tinschert 
202081 Switzerland Ambulatory Adults Asthma 79 29 nights 

(consecutive) Smartphone app. 
Cough counts during first 
30 min of sleep; Cough 
counts per night 

Public health application: Syndromic surveillance 

Al-Hossain 
202082 USA Ambulatory All ages 

Influenza, 
Influenza-like 

illness 
N/A Daytime FluSense 

Average cough counts per 
hour per day; Total cough 
epoch (coughs occurring 
with less than 3s 
difference) 

Gabaldon-
Figueira 
202283 

Spain Ambulatory Adolescents, 
Adults COVID-19 616 24h: Until 

discontinuation 
Hyfe Cough 
Tracker app. Cough counts per hour 

Rahman 
202384 USA Waiting 

room Adults COVID-19, 
Influenza, RSV N/A 4 months Syndromic 

Logger Cough counts per 24h 

Zürcher 
202226 South Africa Waiting 

room 
Adolescents, 

Adults Tuberculosis N/A Daytime CoughSense Cough counts per 24h 

Cross-cutting and feasibility studies 
Elghamoudi 
201585 N/A Ambulatory, 

In-patient 
Pediatric, 

Adolescents 
Acute cough, 
chronic cough 40 24h VitaloJAK N/A 

Gross 201586 N/A Ambulatory Pediatric, 
Adolescents Asthma 40 8h (night) LEOSound N/A 

Huddart 
202287 

India, the 
Philippines, 

South 
Africa, 

Uganda, 
Vietnam 

Ambulatory Adults Tuberculosis 144 14 days (consecutive) Hyfe Cough 
Tracker app. 

Cough counts per hour, 
Maximum cough counts 
per hour per day, median 
cough counts per hour per 
day 

Rhee 201488 USA Ambulatory Adolescents Asthma 42 7 days (consecutive) ADAM device N/A 
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Urban 202289 Germany In-patient Pediatric, 
Adolescents 

Asthma, 
Bronchitis, 
Pneumonia 

86 8h (night) LEOSound Cough epochs (coughs 
during 30s) per hour 

*N does not include healthy individuals. 
ADAM, automated device for asthma monitoring; CayeCoM, Cayetano Cough Monitor; COPD, chronic obstructive respiratory disease; GORD, gastro-oesophageal 
reflux disease; LCM, Leicester Cough Monitor; LRTI, lower respiratory tract infection; N/A, not available; PND, post-nasal drip; RCC, refractory chronic chough; 
RSV, respiratory syncytial virus; UK, United Kingdom; USA, United States of America 
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Most studies (N=47, 69%) focused on conditions linked to chronic cough. Five studies (7%) 

investigated both chronic and acute respiratory ailments. Regarding specific diseases, asthma was 

the most frequently investigated, accounting for 26 (38%) of studies. This was followed by chronic 

obstructive pulmonary disease (COPD) (N=11, 16%), TB (N=10, 15%), and cystic fibrosis (N=5, 

7%). 

 

Digital cough counting tools predominantly find their application in ambulatory settings, enabling 

remote monitoring as patients take the devices home. Most of these ambulatory studies primarily 

focus on adults over 18 years old. Few studies (N=15, 22%) assessed objective cough counting in 

pediatric populations under 15 years of age. Only contact-based devices were compatible with 

pediatric populations, such as the LEOSound,34,86,89 and a custom cough monitoring system 

developed by Hirai et al. for in-patient pediatric monitoring.30,31,49 Non-contact (e.g., smartphone 

applications) tools were not investigated in pediatric populations. 

 

Contact-based semi-automated systems—those requiring physical proximity or direct interaction 

with the patient—remain the most widely used. These include the LCM (N=15, 22%%), VitaloJAK 

(N=7, 10%), Hull Automatic Cough Monitor (N=3, HACC) (4%), and Cayetano Cough Monitor 

(CayeCoM) (N=3, 4%). The technical specifications of these devices have been well-

documented.3,4 These tools use commercially available digital recorders (e.g., MP3) with free-field 

microphones,4 aside from the VitaloJAK which has a custom built-in microphone.6 We also 

identified several studies that deployed non-contact, autonomous cough detection algorithms on 

smartphones, including Clara,58 Coughy,69,90 Hyfe Cough Tracker,22,70,71,76,83,87 and CurieAI.65 

These algorithms represent a shift towards more accessible and user-friendly cough counting 

solutions, leveraging the widespread availability of smartphones. 

 

The variability also extends to how authors define the unit of analysis, specifically, cough counts. 

Most studies (N=49, 72%) reported coughs counts per unit of time (e.g., per hour or per 24 hours) 

as the primary outcome for measuring cough frequency (Table 4.1). Other studies adopted the 

concept of a “cough epoch” (or “cough bout”) per hour, defined as a continuous coughing episode 

without a pause exceeding two seconds, proposed by the European Respiratory Society guidelines 

for cough evaluation.16 
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4.7. Qualitative synthesis: clinical and public health applications 

 

In line with the thematic analysis, studies were categorized based on their clinical use of cough 

counting (Figure 4.2): 1) disease screening (N=17, 25%), 2) disease severity assessment (N=23, 

34%); 2) treatment monitoring of previously diagnosed conditions (N=13, 19%); 3) health 

outcome prediction (N=6, 9%); 4) syndromic surveillance (N=4, 6%). 

 

 
Figure 4.2. Potential clinical and public health applications of digital cough counting tools. 

 

4.7.1. Disease screening 

 

The potential of cough frequency as a diagnostic biomarker lies in its ability to reveal disease-

specific cough patterns. These patterns can be examined over the course of a single day (circadian 

analysis) or over several days or weeks (longitudinal analysis). 

 

Circadian cough frequency monitoring may offer a non-specific indication of underlying disease. 

Studies have shown differences in circadian cough frequency changes between healthy individuals 
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and those with pulmonary diseases.29,35–37,40,43,54,74 However, distinguishing rates and patterns 

between different diseases is more challenging. While some diseases exhibit different absolute 

cough counts (e.g., cystic fibrosis vs primary ciliary dyskinesia)35 or unique cough patterns (e.g., 

asthma vs acute bronchiolitis),30 other do not.28,39,41,43,62,74 Given the many illnesses that present 

with coughing and the variability in cough patterns, using cough counts alone for diagnosis is 

challenging. Therefore, while increased cough counts may indicate the presence of disease, they 

are not consistently reliable for differential diagnosis. 

 

4.7.2. Disease severity assessment 

 

Longitudinal cough monitoring, which often involved repeated 24-hour intervals, is used to 

observe trends and understand the evolving nature of cough patterns and severity over 

time.23,44,48,51,53,57–59 For example, Crooks et al. documented a decline in cough frequency from 

baseline to day 45 among patients recovering from acute exacerbations of COPD, highlighting the 

natural trajectory of recovery.44 Similarly, Koelher et al. examined nocturnal cough frequency in 

children with bronchitis over three nights (baseline, night 5, night 9) and demonstrated how 

objective cough monitoring can track the evolution of acute respiratory diseases.51 

 

Both circadian and longitudinal cough trends provide valuable information on disease severity in 

patients with established diagnoses. Asthma is the most extensively researched condition in this 

context. Reports suggest that nocturnal coughing among asthmatic individuals can indicate more 

severe asthma.56 Several studies on single-night nocturnal cough patterns discerned variations in 

cough frequency among individuals with varying levels of asthma severity. Notably, those with 

more severe, less controlled asthma demonstrated heightened nocturnal cough 

episodes.45,46,49,50,54,56,64,65 

 

Studies have also examined circadian and nocturnal cough patterns in COPD patients. Unlike 

asthma, no significant differences in circadian and nocturnal cough frequency was observed when 

comparing stable COPD with acute exacerbations of COPD (AECOPD).55,60 Additionally, patients 

in advanced stages (COPD IV) coughed less frequently than those in the moderate stage (COPD 



 

 74 

III) and exhibited a more uniform pattern of nocturnal coughing, showing less variation throughout 

the night compared to patients in earlier stages.47,52 

 

In the realm of respiratory infections, cough trends in TB have been explored.23,61–63 A correlation 

between TB severity and cough frequency has been observed, with patients having positive sputum 

smear results (indicative of a higher bacterial load) showing increased cough frequency.61,63 Proaño 

et al. further supported this by finding a positive association between the severity of pulmonary 

cavitation and a heightened cough rate.23 This underscores cough counts as a potential marker for 

assessing the severity, activity, and progression of TB. 

 

4.7.3. Treatment monitoring of previously diagnosed conditions 

 

Frequent assessments throughout treatment ensure that therapeutic interventions are effective. 

Typically, treatment response uses various indicators, from PROs to objective clinical markers like 

laboratory results or imaging. Amid these different tools and biomarkers, objective cough 

monitoring could offer real-time, non-invasive insights into treatment efficacy. Instead of assessing 

novel treatment efficacy in controlled trials, the studies included in this section primarily evaluated 

patient outcomes in routine clinical practice settings. 

 

Most research has explored cough as a biomarker for monitoring treatment in chronic respiratory 

diseases such as asthma,67–69,74,90 interstitial lung disease,69 cystic fibrosis,66,75 chronic cough,71 

and long-COVID chronic cough.70 These studies consistently observed reductions in cough counts 

during treatment, enabling a more personalized approach to monitoring based on real-time 

feedback from the patient’s cough pattern and frequency. 

 

For infectious respiratory diseases, cough monitoring has primarily been examined as a biomarker 

for TB treatment response.22,24,25,73 The current standard for TB treatment monitoring relies on 

sputum production, which can be challenging for certain populations and during later stages of 

treatment.91 Therefore, objective cough monitoring offers the potential to improve TB treatment 

monitoring by promoting a more patient-centric approach. That said, cough counts are contingent 

on various demographic and clinical factors and thus may not consistently manifest across 
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individuals. For instance, Proaño et al. found that some TB-diagnosed participants did not cough,24 

while Lee et al. observed that 21% of TB patients had pre-treatment cough rates similar to healthy 

individuals.25 Lee et al. also highlighted the difficulty of applying a universal threshold for 

assessing TB treatment response using cough counts. 

 

While reduced cough frequency during treatment appears to correlate with positive therapeutic 

outcomes for many diseases, its use as a solitary measure of treatment success remains uncertain 

due to this variability across patient populations. The current evidence, although promising, is not 

robust enough to support cough counts as the sole indicator of treatment efficacy. Therefore, it is 

more prudent to use objective cough monitoring as an adjunct to a suite of clinical indicators (e.g., 

weight changes) or in combination with cough-specific PROs, particularly when cough is a 

prominent symptom of the disease. 

 

Addressing the heterogeneity of cough may require a personalized approach to monitoring. Various 

demographic and clinical factors influence an individual’s cough rate, including smoking habits, 

sputum production, and airway inflammation.38 Instead of establishing a universal threshold, it 

may be more effective to analyze individual changes in cough frequency relative to a pre-treatment 

baseline. 

 

4.7.4. Health outcome prediction 

 

Telemonitoring, a component of telemedicine that involves the remote collection and transmission 

of patient health data to healthcare providers using digital technologies and telecommunications 

systems, enables real-time tracking of patient health metrics and timely interventions. However, 

evidence of its role in reducing hospitalizations is inconsistent,92 partly due to the generation of 

"false alerts”.93 A growing body of research is exploring the potential of monitoring cough counts 

and patterns as a more precise tool.76–81 

 

Passive cough alert systems have been evaluated for monitoring exacerbations in chronic 

pulmonary diseases such as COPD and asthma.78–80 These studies found that cough monitoring for 

exacerbations is more specific than sensitive. For instance, Crooks et al. discovered that symptom 
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questionnaires predicted 88% of acute COPD exacerbations, while a cough monitor only identified 

45%, though the monitor generated fewer false alerts.78 Similarly, Tinschert et al. observed that 

nocturnal cough events were more specific than sensitive in forecasting asthma attacks.81 They 

proposed that integrating cough monitoring with additional markers, such as sleep quality, could 

enhance predictive accuracy. 

 

In hospitals, there's interest in leveraging cough counts for immediate clinical decision-making. 

This method could avoid more invasive techniques and enable quick responses to disease 

fluctuations. Several studies have investigated the relationship between cough rates and health 

outcomes. For instance, Pekacka-Egli et al. linked frequent coughs to a higher risk of post-stroke 

pneumonia.80 Boesch et al. found a positive correlations between cough frequency and markers 

indicative of disease progression among COVID-19 and pneumonia patients, suggesting that 

increased cough indicates heightened disease activity.77 In contrast, Altshuler et al. found an 

inverse relationship between cough frequency and severe COVID-19 outcomes, implying that a 

higher cough rate was linked to decreased adverse outcomes.76 These findings, when compared to 

Boesch’s, highlight the complexities of interpreting cough dynamics in acute care settings. The 

variability of cough frequency at different disease stages adds another layer of complexity. 

Altshuler's study highlighted disparities in cough frequency between patients in Florida and 

Montreal, attributing these differences to the disease stage: Montreal patients were typically at an 

earlier stage of COVID-19, leading to more frequent coughing than those in Florida.76 

 

4.7.5. Syndromic surveillance 

 

In public health and epidemiology, syndromic surveillance is crucial for early detection and 

response to outbreaks by monitoring symptom patterns within a population. Traditionally, this 

involves using healthcare data like emergency department visits or pharmacy sales to predict 

disease activity. By monitoring population-level changes in cough frequency, researchers are 

beginning to uncover how this unobtrusive measure might serve as a proxy for the incidence of 

infectious respiratory diseases. 
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Gabaldon-Figueira et al. leveraged the widespread availability of smartphones to deploy the Hyfe 

Cough Tracker application to 616 residents in Northern Spain over a 10-month period in 2021.83 

The portability and ubiquity of smartphones streamlined the community-wide deployment. 

However, the study faced challenges with consistent usage among participants, with retention 

gradually declining. The data suggested higher adoption rates among individuals with chronic 

respiratory diseases, who naturally cough more frequently and may bias the results. Additionally, 

the study covered only 1.7% of the intended population, which may not be sufficient to reflect 

population-wide cough dynamics. 

 

Other studies explored stationary approaches to monitoring respiratory health. Al-Hossain et al. 

introduced FluSense, a multi-modal platform (including cough detection) designed to assess the 

influenza burden within a university setting.82 Installed in four clinic waiting rooms, FluSense 

found that cough counts correlated with the number of positive flu tests, with a correlation 

coefficient (ρ) of 0.40. Similarly, Rahman et al. deployed the Syndromic Logger in a tertiary 

hospital’s emergency department waiting room to track respiratory pathogens, including COVID-

19, influenza, and RSV.84 The daily cough counts showed moderate correlation with positive 

COVID-19 (ρ=0.40) and RSV (ρ=0.27) cases, but no association was found for influenza. 

 

Stationary systems like FluSense and the Syndromic Logger offer insights in healthcare 

environments, where understanding the disease burden is crucial. However, a fundamental 

limitation of stationary systems is their confinement to specific settings. These studies primarily 

captured cough sounds from patients seeking care, which might exaggerate the perceived severity 

of respiratory conditions in the broader community. Mobile systems like the Hyfe Cough Tracker 

can potentially capture cough dynamics in the broader community, provided challenges with 

uptake and retention are addressed.  

 

4.7.6. Cross-cutting themes 

 

Continuous cough recording tools, which constantly monitors and records cough sounds, raise 

privacy concerns and may lead to user distrust. Al-Hossain et al. highlighted these privacy 
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concerns in the context of cough surveillance.82 A potential solution is to refine cough detection 

algorithms to selectively record cough sounds, minimizing the risk of recording conversations.78,83 

 

Portable cough monitors can be obtrusive, often requiring both a recorder and an external 

microphone, which can be burdensome for patients in ambulatory settings.22,51,75,85,89 There is a 

trend toward developing more user-friendly, less obtrusive solutions like smartphone-based 

applications. These applications could overcome limitations of wearable devices but introduce new 

challenges, such as battery consumption, potential interference from other applications, and user 

compliance. Patients may need to actively engage with the app, leading to gaps in data collection. 

Lee et al. found that only 66.2% of participants adhered to a smartphone-based cough monitoring 

over one week, with lower adherence observed among older subjects.71 This study further 

highlighted issues affecting ease of use, including the inconvenience of having to carry the device. 

Further studies are needed to understand these emerging challenges related to smartphone-based 

solutions, and how they might impact the widespread the adoption of smartphone-based solutions. 

 

Environmental factors influencing cough detection accuracy remains a pertinent issue, as current 

algorithms do not differentiate between individuals. In crowded spaces or shared living 

environments, cough sounds from others may be inadvertently recorded, potentially skewing the 

patient’s cough data and limiting its clinical utility. This problem is particularly relevant in shared 

domestic settings or public spaces, where multiple cough sources coexist. 24,34,44,77,79,83,89 The 

development of more sophisticated AI models capable of recognizing individual cough signatures, 

referred to as "diarization" in audio data analysis,94 promises to enhance the precision and 

personalization of cough tracking. Until such advancements are realized, the indiscriminate nature 

of cough recording remains a limitation in the field of objective cough monitoring, underscoring 

the need for further refinement in cough detection technology. 

 

Finally, several studies evaluated the relationship between objective cough counts and PROs. 

Studies reported moderate correlations with cough severity PROs, with median unweighted 

correlation coefficients (ρ) of 0.44 (interquartile range [IQR]: 0.36 to 0.55, n=24) for the VAS and 

0.43 (IQR: 0.34 to 0.46, n=10) for the Verbal Category Descriptive scale. These correlations were 

maintained across day and night assessments (Table S4.3). In terms of quality-of-life scales, the 
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LCQ similarly displayed a moderate negative correlation with objective cough counts, with a 

median ρ of -0.49 (IQR: -0.61 to -0.44, n=10). Notably, the association between cough frequency 

and the Parental Cough-Specific Quality of Life (PC-QoL)—a standardized tool for assessing 

cough in young children, with parents serving as proxy assessors—was weaker, with a median 

correlation coefficient of -0.26 (IQR: -0.29 to -0.08, n=7).27,34,51 

 

The moderate associations observed across different studies, each investigating different diseases 

and utilizing different cough measuring tools (Table S4.3), underscore the complex relation 

between an individual’s subjective perception and empirically quantified cough frequency. One 

hypothesis advocates for the primacy of the subjective experience, suggesting that cough 

frequency is only one aspect contributing to an individual’s experience and quality of life and that 

it is important to consider the patient experience as a whole.17 Another hypothesis highlights the 

importance of objective measurements, proposing that individuals may not fully recognize the 

frequency of their coughing and thus underestimate its severity. This is particularly true for proxy 

tools such as the PC-QoL, where reporting is based on a third-party observer. Conversely, as shown 

by Ovsyannikov et al., patients with anxiety might exaggerate their symptoms exhibiting an 

inverse correlation between VAS and cough (r=-0.38 for normal weight individuals with anxiety 

and r=-0.40 for obese individuals with anxiety).57 These hypotheses underscore the need to 

comprehensively document various dimensions of coughs to ensure a holistic understanding and 

management of this symptom within the greater context of the patient’s health profile. 

 

4.8. Discussion 

 

While digital cough counting tools are commonly used in clinical trials to evaluate cough 

suppressant therapies, their integration into everyday clinical practice and public health remains 

underexplored. This review aimed to bridge the gap between rapid technological innovation in 

digital cough counting tools and their practical implementation clinical settings. 

 

Across all identified clinical applications, there is insufficient evidence to support using cough as 

a standalone marker. While cough patterns may change with disease etiology, severity, or treatment 

response, relying solely on this marker could lead to inaccuracies due to the variability in cough 
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patterns between and within individuals. Monitoring over several days or weeks offers a better 

understanding of cough status or treatment response compared to short (24-hour) or intermittent 

monitoring, though this poses feasibility challenges. Despite these challenges, cough counts and 

patterns have potential to support clinical management when used within a broader clinical 

context. Specifically, they should be considered as part of a comprehensive suite of biomarkers 

that provide a complete picture of an individual's disease status. Personalized approaches can 

enhance the diagnostic value of cough monitoring, making it most effective when correlated with 

additional patient-specific health indicators, such as respiratory sounds, cardiac rate, and blood 

pressure. Additionally, PROs are crucial in capturing subjective experiences of cough and its 

impact on quality of life, which may not align with objective cough frequency. Measuring PROs 

acknowledges that a reduction in cough frequency does not necessarily equate to an improved 

patient experience. 

 

Most studies focused on using cough monitoring to identify disease etiology and assess disease 

severity. While cough patterns can consistently signal the presence of disease, their diagnostic 

utility is limited. Combining cough patterns with other cough characteristics, such as type of cough 

(e.g., wet vs dry), could enhance diagnostic accuracy. The development of AI algorithms for 

detecting underlying disease from cough sounds (“cough classification”) takes this application one 

step further.95 It remains important for future studies to characterize cough patterns associated with 

different diseases and across diverse populations. Emphasis should be placed on long-term cough 

monitoring to track fluctuations in chronic disease activity or severity, such as chronic cough, 

asthma, or COPD cough-related exacerbations. 

 

Cough monitors for public health surveillance represent a new yet underexplored opportunity to 

improve disease outbreak management. These tools have the potential to enhance our grasp of 

disease transmission dynamics. An expanding field of research is examining the role of various 

physiological markers gathered from wearable devices to support outbreak management efforts,96 

though the reliability and accuracy of this approach requires further validation. Integrating 

personalized data, including cough monitoring data, into efficient outbreak response strategies is 

still developing, with data privacy and ownership remaining critical concerns. Evolving 

regulations on AI in healthcare, which vary across regions, also affect the adoption of AI systems, 
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including cough monitors. Addressing these issues is essential for leveraging cough monitors and 

other wearable devices as effective tools in disease surveillance and outbreak management. 

 

While clinical performance data for cough monitoring tools are limited, insights into their 

implementation, feasibility, and societal acceptance are even scarcer. Technologies that record 

patient data raise social and ethical concerns, influencing adoption regardless of performance. Few 

studies addressed the patient's perspective on these issues. While some discussed privacy and 

comfort, comprehensive exploration of these concerns was lacking. As clinical validation 

progresses, it is imperative to conduct qualitative research encompassing patient experiences, 

ethical considerations, data governance, and balance of societal values with innovation.97 This will 

ensure that these tools are clinically effective, socially responsible, and aligned with patient 

expectations and norms. 

 

This scoping review has limitations. The clinical application of digital cough counting tools 

remains speculative, primarily inferred from clinical studies rather than grounded in routine 

healthcare practice. Additionally, there is considerable diversity in the studied diseases, evaluated 

technologies, and their clinical applications across studies, which limits direct comparison between 

studies. 

 

This scoping review marks an initial effort to summarize how digital cough monitoring tools could 

enhance clinical and public health outcomes for respiratory conditions. Currently, these tools are 

not integrated into standard clinical practice. While innovation is crucial for addressing challenges 

like accurate cough detection and device ergonomics, there is a pressing need for more extensive 

evaluation of these tools’ effectiveness in clinical environments. This review underscores the 

scarcity of research focused on the clinical application, indicating that technological innovation 

has outpaced clinical validation. Reliable and available digital cough data is not currently guiding 

decision making and clinical management. For effective adoption in routine practice, a deeper 

understanding of end-user acceptability and rigorous clinical validation studies are essential, 

providing clinicians with actionable information. 
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4.12. Supplementary information 

 

Table S4.1. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension 

for Scoping Reviews (PRISMA-ScR) Checklist. 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

TITLE 
Title 1 Identify the report as a scoping review. 57 

ABSTRACT 

Structured summary 2 
Provide a structured summary that includes (as applicable): background, 
objectives, eligibility criteria, sources of evidence, charting methods, results, and 
conclusions that relate to the review questions and objectives. 

58 

INTRODUCTION 

Rationale 3 
Describe the rationale for the review in the context of what is already known. 
Explain why the review questions/objectives lend themselves to a scoping review 
approach. 

59 

Objectives 4 

Provide an explicit statement of the questions and objectives being addressed with 
reference to their key elements (e.g., population or participants, concepts, and 
context) or other relevant key elements used to conceptualize the review questions 
and/or objectives. 

60 

METHODS 

Protocol and 
registration 5 

Indicate whether a review protocol exists; state if and where it can be accessed 
(e.g., a Web address); and if available, provide registration information, including 
the registration number. 

- 

Eligibility criteria 6 Specify characteristics of the sources of evidence used as eligibility criteria (e.g., 
years considered, language, and publication status), and provide a rationale. 61-62 

Information sources* 7 
Describe all information sources in the search (e.g., databases with dates of 
coverage and contact with authors to identify additional sources), as well as the 
date the most recent search was executed. 

60-61; 91-92 

Search 8 Present the full electronic search strategy for at least 1 database, including any 
limits used, such that it could be repeated. 91-92 

Selection of sources of 
evidence 9 State the process for selecting sources of evidence (i.e., screening and eligibility) 

included in the scoping review. 62 

Data charting process 10 

Describe the methods of charting data from the included sources of evidence (e.g., 
calibrated forms or forms that have been tested by the team before their use, and 
whether data charting was done independently or in duplicate) and any processes 
for obtaining and confirming data from investigators. 

62-63 

Data items 11 List and define all variables for which data were sought and any assumptions and 
simplifications made. 62 

Critical appraisal of 
individual sources of 
evidence 

12 
If done, provide a rationale for conducting a critical appraisal of included sources 
of evidence; describe the methods used and how this information was used in any 
data synthesis (if appropriate). 

- 

Synthesis of results 13 Describe the methods of handling and summarizing the data that were charted. 62-63 
RESULTS 

Selection of sources of 
evidence 14 

Give numbers of sources of evidence screened, assessed for eligibility, and 
included in the review, with reasons for exclusions at each stage, ideally using a 
flow diagram. 

63 

Characteristics of 
sources of evidence 15 For each source of evidence, present characteristics for which data were charted 

and provide the citations. 14-19 

Critical appraisal 
within sources of 
evidence 

16 If done, present data on critical appraisal of included sources of evidence (see item 
12). NA 

Results of individual 
sources of evidence 17 For each included source of evidence, present the relevant data that were charted 

that relate to the review questions and objectives. 65-70 

Synthesis of results 18 Summarize and/or present the charting results as they relate to the review 
questions and objectives. 72-79 

DISCUSSION 

Summary of evidence 19 
Summarize the main results (including an overview of concepts, themes, and types 
of evidence available), link to the review questions and objectives, and consider 
the relevance to key groups. 

709-82 

Limitations 20 Discuss the limitations of the scoping review process. 81 

Conclusions 21 Provide a general interpretation of the results with respect to the review questions 
and objectives, as well as potential implications and/or next steps. 81 
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SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
ON PAGE # 

FUNDING 

Funding 22 
Describe sources of funding for the included sources of evidence, as well as 
sources of funding for the scoping review. Describe the role of the funders of the 
scoping review. 

- 

 

Table S4.2. Search strategy and results. 

 Original search* Updated search*‡ 

Platform Database(s) Database 
coverage dates Date # Results Date # Results 

OvidSP Ovid MEDLINE 
ALL(R) 1946 - 2022/09/09 1930 2023/09/19 2131 

OvidSP EMBASE 1996 - 2022/09/09 3191 2023/09/19 3519 

Web of 
Science 

e.g., SCI-EXP, 
CPCI-S, ESCI 1900 - 2022/09/09 3341 2023/09/19 3732 

IEEE IEEEE Xplore Inception - 2022/09/09 645 2023/09/19 783 

Cochrane 
Library 

CENTRAL 
(Trials) Inception - 2022/09/09 1160 2023/09/19 880 

Europe 
PMC Preprints limit Inception - 2022/09/09 68 2023/09/19 77 

TOTAL NUMBER OF RECORDS 10,335 11,122† 
Search was conducted by librarian Genevieve Gore. 
*Limits or filters used: 2013- 
†The update search strategy removed the search terms “feature*” and “classif*” to reduce the number of records that 
were exclusively focused on exploring the use of artificial intelligence algorithms to use cough sounds as a biomarker 
for disease screening (“cough classification”). 
‡Before removing duplicates from the original search. 
 

Ovid MEDLINE(R) ALL <1946 to September 19, 2023> 
Step Search term # Records 
1 ((cough* or tussis) adj2 (objective or signature* or sound* or biomarker* or marker* or count* or 

frequenc* or intensit* or pattern* or assess* or measur* or monitor* or record* or analy* or diagnos* or 
eval* or algorithm*)) 

3180 

2 (*cough/ or (cough* or tussis).ti.) and (objective or signature* or sound* or biomarker* or marker* or 
count* or frequenc* or intensit* or pattern* or assess* or measur* or monitor* or record* or analy* or 
diagnos* or eval* or algorithm*).ti 

2143 

3 1 or 2 4483 
4 limit 3 to yr="2013 -Current" 2131 

 

Embase <1996 to 2023 Week 37> 
Step Search term # Records 
1 ((cough* or tussis) adj2 (objective or signature* or sound* or biomarker* or marker* or count* or 

frequenc* or intensit* or pattern* or assess* or measur* or monitor* or record* or analy* or diagnos* or 
eval* or algorithm*)).mp 

4563 

2 (*exp coughing/ or (cough* or tussis).ti.) and (objective or signature* or sound* or biomarker* or marker* 
or count* or frequenc* or intensit* or pattern* or assess* or measur* or monitor* or record* or analy* or 
diagnos* or eval* or algorithm*).ti 

2139 
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3 1 or 2 5657 
4 limit 3 to yr="2013 -Current" 3519 

 

Web of Science Core Collection: SCI-EXPANDED, ESCI, CPCI-S 
Step Search term # Records 
1 (TS=((cough* OR tussis) NEAR/2 (objective OR signature* OR sound* OR biomarker* OR marker* OR 

count* OR frequenc* OR intensit* OR pattern* OR assess* OR measur* OR monitor* OR record* OR 
analy* OR diagnos* OR eval* OR algorithm*))) OR ((AK=cough* OR KP=cough* OR TI=(cough* OR 
tussis) ) AND TI=(objective OR signature* OR sound* OR biomarker* OR marker* OR count* OR 
frequenc* OR intensit* OR pattern* OR assess* OR measur* OR monitor* OR record* OR analy* OR 
diagnos* OR eval* OR algorithm*) ) 

3732 

2 Limit to 2013- 
 

 

IEEE (IEEE Xplore) 
Step Search term # Records 
1 ("All Metadata":cough* OR "All Metadata":tussis) 783 2 Filters Applied: 2013-2023 

 

CENTRAL (Cochrane Library) 
Step Search term # Records 
1 ((cough*:ti,ab,kw OR tussis:ti,ab,kw) NEAR/2 (objective:ti,ab,kw OR signature*:ti,ab,kw OR 

sound*:ti,ab,kw OR biomarker*:ti,ab,kw OR marker*:ti,ab,kw OR count*:ti,ab,kw OR frequenc*:ti,ab,kw 
OR intensit*:ti,ab,kw OR pattern*:ti,ab,kw OR assess*:ti,ab,kw OR measur*:ti,ab,kw OR 
monitor*:ti,ab,kw OR record*:ti,ab,kw OR analy*:ti,ab,kw OR diagnos*:ti,ab,kw OR eval*:ti,ab,kw OR 
algorithm*:ti,ab,kw))) OR (([mh cough] OR (cough*:ti OR tussis:ti)) AND (objective:ti OR signature*:ti 
OR sound*:ti OR biomarker*:ti OR marker*:ti OR count*:ti OR frequenc*:ti OR intensit*:ti OR 
pattern*:ti OR assess*:ti OR measur*:ti OR monitor*:ti OR record*:ti OR analy*:ti OR diagnos*:ti OR 
eval*:ti OR algorithm*:ti)) with Publication Year from 2013 to 2023, in Trials 

880 

2 #1 NOT "Trial registry record":pt 

 

Preprints (Europe PMC) 
Step Search term # Records 
1 (TITLE:(cough* OR tussis) AND TITLE:(objective OR signature* OR sound* OR biomarker* OR 

marker* OR count* OR frequenc* OR intensit* OR pattern* OR assess* OR measur* OR monitor* OR 
record* OR analy* OR diagnos* OR eval* OR algorithm*)) AND (SRC:PPR) 

77 

 

Table S4.3. Study details for correlation with patient-reported outcomes (PROs) 

PRO Author (Year) Ref. Cough tool Patient group Sample 
size 

Rho 
(p-value) 

V
A

S 

Bisballe-Müller 
(2021) 1 

Sony ICD-PX470 
Digital Voice 

Recorder 

Asthma 24 0.26 (0.16) 
ARIs 25 0.53 (0.003) 

Bronchiolitis 35 0.56 (<0.001) 
Pneumonia 30 0.52 (<0.001) 

Fletcher (2017) 2 LCM Asthma, RCC, GORD, 
Rhinosinusitis 320 0.43 (0.001) 

Ovsyannikov 
(2019) 3 Custom 

COPD, normal weight, 
no anxiety/depression 30 0.42 (0.0231) 

COPD, obese, no 
anxiety/depression 33 0.44 (0.003) 

COPD, normal weight, 
with anxiety/depression 23 -0.38 (0.005) 
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COPD, obese, with 
anxiety/depression 24 -0.40 (0.012) 

Rassouli (2020) 4 Clara app. Asthma 94 0.38 (<0.001) 

Rhee (2015) 5 ADAM device Asthma (day) 42 0.38 (0.02) 
Asthma (night) 42 0.40 (0.02) 

Shim (2023) 6 Coughy app. Asthma (day) 168 0.31 (<0.001) 
Asthma (night) 168 0.34 (<0.001) 

Sinha (2016) 7 LCM Sarcoidosis 32 0.62 (0.001) 
Spinou (2017) 8 LCM Bronchiectasis 54 0.54 (<0.001) 

Sumner (2013) 9 VitaloJAK COPD (night) 89 0.48 (<0.001) 
COPD (day) 89 0.66 (<0.001) 

Turner (2013) 10 LCM Asthma, COPD, LRTI 40 0.33 (0.05) 
Turner (2014) 11 LCM Tuberculosis 108 0.60 (0.001) 

Yousaf (2013) 12 LCM Asthma, Bronchitis, 
Chronic cough, COPD 78 0.66 (<0.001) 

V
CD

 

Bisballe- Müller 
(2021) 1 

Sony ICD-PX470 
Digital Voice 

Recorder 

Asthma (day) 25 0.50 (0.001) 
Asthma (night) 11 -0.36 (0.26) 
ARIs (night) 16 0.39 (0.15) 
ARIs (day) 25 0.34 (0.054) 

Bronchiolitis (day) 34 0.33 (0.04) 
Bronchiolitis (night) 25 0.65 (<0.001) 

Pneumonia (day) 30 0.45 (0.002) 
Pneumonia (night) 26 0.44 (0.02) 

Lindenhofer 
(2020) 13 LEOSound 

Asthma, Cystic fibrosis, 
Pneumonia, Habit cough, 

Chronic cough (night) 
34 0.42 (<0.01) 

Asthma, Cystic fibrosis, 
Pneumonia, Habit cough, 

Chronic cough (day) 
35 0.46 (0.01) 

LC
Q

 

Crooks (2016) 14 HACC COPD 
18 -0.44 (0.001) 

Fletcher (2017) 2 LCM Asthma, RCC, GORD, 
Rhinosinusitis 

320 -0.45 (0.001) 

Lee (2023) 15 Hyfe Cough 
Tracker app Chronic cough 25 -0.57 (0.001) 

Sinha (2016) 7 LCM Sarcoidosis 32 -0.61 (0.001) 
Spinou (2017) 8 LCM Bronchiectasis 54 -0.52 (0.001) 
Sumner (2013) 9 VitaloJAK COPD 89 -0.64 (0.001) 
Turner (2013) 10 LCM Asthma, COPD, LRTI 40 -0.13 (0.48) 

Vertigan (2021) 16 LCM Asthma, RCC, Laryngeal 
obstruction 

112 -0.43 
(<0.001) 

Yousaf (2013) 12 LCM Asthma, Bronchitis, 
Chronic cough, COPD 

78 -0.44 (0.001) 

PC
-Q

oL
 

Bisballe- Müller 
(2021) 1 

Sony ICD-PX470 
Digital Voice 

Recorder 

Asthma 25 -0.08 (0.8) 
ARIs 25 -0.29 (0.16) 

Bronchiolitis 35 -0.17 (0.31) 
Pneumonia 29 -0.05 (0.73) 

Koehler (2019) 17 LEOSound Acute bronchitis (cough 
epochs) 36 -0.43 

(<0.001) 

Lindenhofer 
(2020) 13 LEOSound 

Asthma, Cystic fibrosis, 
Pneumonia, Habit cough, 

Chronic cough 
7 -0.26 (0.56) 
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ADAM, automated device for asthma monitoring; ARI, acute respiratory infection; COPD, chronic obstructive 
pulmonary disease; HAC, Hull Automated Cough Counter; LCM, GORD, gastro-oesophageal reflux disease; 
Leicester Cough Monitor; LRTI, lower respiratory tract infection; PRO, patient-reported outcome; RCC, refractory 
chronic cough 
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Chapter 5. Manuscript III: Baseline tuberculosis bacterial burden as a 

predictor of patient cough trajectory during the first two weeks of anti-

tuberculosis therapy 
 

5.1. Preface 

 

Our scoping review demonstrated that while numerous technologies exist for longitudinal cough 

monitoring across various diseases, their implementation in clinical settings remains limited. A 

key barrier to clinical adoption is our incomplete understanding of longitudinal cough dynamics, 

coupled with insufficient analytical tools to meaningfully interpret the collected data. This 

challenge is further complicated by the substantial heterogeneity in cough patterns, which varies 

both between individuals and within the same individual over time. 

 

Within the reviewed literature, several studies investigated longitudinal cough dynamics among 

TB patients. However, these studies were constrained by intermittent monitoring approaches and 

failed to adequately address the analytical complexities inherent in continuous cough monitoring 

data. More broadly, the field of digital cough monitoring lacks standardized methods for managing 

data quality issues that arise from continuous monitoring. 

 

In this study, we aimed to enhance the understanding of cough dynamics during TB treatment 

through a comprehensive analysis of continuously collected cough data during the initial two 

weeks of anti-TB treatment. Utilizing prospectively collected data from multiple countries, we 

investigated the relationship between cough frequency and TB disease severity while addressing 

key measurement challenges, including missing data, zero-inflation, and potential over-recording 

of coughs from others. This analysis establishes a foundation for future studies seeking to validate 

cough as a biomarker for TB treatment response. 
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5.2. Title page 

 

Baseline tuberculosis bacterial burden as a predictor of patient cough trajectory during the first 

two weeks of anti-tuberculosis therapy 
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5.3. Abstract 

 

Introduction 

 

Cough is a common symptom among people with pulmonary tuberculosis (PTB). Cough counts 

are expected to decrease after the commencement of anti-TB treatment, sparking interest in using 

cough counts as an objective marker of treatment response. Given that cough may be influenced 

by various factors, including TB disease bacterial burden, understanding this relationship could 

help interpret cough dynamics throughout anti-TB treatment. This study aims to characterize the 

relationship between daily cough counts during the first 14 days of treatment and baseline PTB 

burden. 

 

Methods 

 

People with microbiologically confirmed PTB were enrolled from four countries (Madagascar, 

Uganda, Philippines, and Vietnam). Participants continuously recorded their cough counts using 

the Hyfe smartphone application during the first 14 days of anti-TB treatment. The association 

between cough counts and TB bacterial burden—measured by categorical GeneXpert MTB/RIF 

Ultra (Xpert) semi-quantitative results and continuous CAD4TB scores—was analyzed using a 

zero-inflated negative binomial model. Sensitivity analyses examined how measurement error 

from excess coughs recorded by non-participants may have influenced this association. 

 

Results 

 

Among the 209 included participants, baseline cough counts were highest among individuals with 

markers of elevated bacterial burden, as indicated by either a 'High' Xpert result or a high CAD4TB 

score. Cough counts declined over the 14-day period for all participants. Multivariable analyses of 

Xpert semi-quantitative results found a notable decrease in rate ratios (RR) of cough frequency as 

Xpert semi-quantitative results decreased from 'High' to ‘Xpert Trace/Negative but Culture 

Positive’. Similarly, individuals with lower CAD4TB scores coughed less frequently than those 

with higher scores (RR: 0.80; 95% confidence interval: 0.67, 0.95). Sensitivity analyses indicated 
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that accounting for potential measurement errors from excess coughs slightly strengthened the 

association between markers of bacterial burden and cough frequency. 

 

Discussion 

 

Despite its heterogenous presentation, cough appeared to be correlated with markers of baseline 

bacterial burden and declined with TB treatment. This study offers insights into the variability of 

cough counts with respect to important baseline variables, thereby contributing to the advancement 

of cough-based indicators for evaluating treatment response. Future studies should validate cough 

as a TB treatment response marker. 
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5.4. Introduction 

 

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), remains the 

leading infectious disease killer worldwide. Despite diagnostic and treatment advancements, TB 

continues to impose a significant burden, with an estimated 10.8 million incident cases and 1.25 

million deaths globally in 2023.1 

 

Cough is a cardinal symptom of pulmonary TB (PTB). Prolonged cough (≥2 weeks) is commonly 

used as a clinical screening marker.2 Coughing is also widely considered to facilitate the 

transmission of Mtb through aerosolization.3 Moreover, early studies observed a decline in cough 

frequency during the course of anti-TB treatment.4 

 

Current PTB treatment monitoring tools have a limited ability to identify individuals who are not 

responding to treatment. The World Health Organization (WHO) recommends sputum smear 

microscopy and sputum culture conversion as microbiological markers of treatment response,5 but 

these are resource-intensive, require sputum production, and have poor sensitivity and specificity 

for informing treatment outcome.6 There is a need for novel biomarkers that are low-cost, 

minimally invasive, and deployable at multiple time points and in community settings. The WHO 

has published a target product profile that can guide new tool development for this use case.7 While 

many lab-based biomarkers have been evaluated,8 there is growing interest in novel methods to 

objectively monitor clinical signs and symptoms, including cough.9,10 

 

Subjective cough assessment tools, such as the Leicester Cough Questionnaire for assessing cough 

severity and the Cough Quality-of-Life Questionnaire for evaluating quality of life, have been used 

in the context of TB care.4,11,12 The development of semi-autonomous ambulatory cough monitors 

enabled objective cough monitoring. These devices, composed of a microphone and digital 

recorder worn by the patient, include the Leicester Cough Monitor and the Cayetano Cough 

Monitor, both capable of continuous monitoring for up to 24 hours.13–16 Less obtrusive solutions 

have emerged more recently, such as cough-counting smartphone applications.17,18 With these 

advancements, both in terms of hardware and software accuracy and reliability, longer monitoring 

periods can be achieved with greater accuracy. This renewed interest in cough as a TB digital 
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biomarker has spurred artificial intelligence (AI)-based cough classifiers for screening and cough 

counting applications for treatment monitoring.15–21 

 

Given the trend of cough remission observed during PTB treatment, there is substantial interest in 

using cough as a non-intrusive marker for monitoring treatment response. However, to fully 

understand how cough can serve this role, it is necessary to better understand the complexities and 

variability of cough data.22 Cough counts are highly variable both between individuals and within 

the same individual over time, making it difficult to assess treatment response on an individual 

level. This heterogeneity may be influenced by several demographic and clinical factors, such as 

age, sex, comorbidities (e.g., HIV infection or chronic obstructive pulmonary disease), and 

smoking habits. Bacterial burden, referring to the concentration of Mtb bacteria in sputum, may 

correlate with cough frequency.23 Given that bacterial burden influences treatment response and 

outcomes,24 understanding these relationships is essential for optimizing the use of cough as a 

biomarker for treatment monitoring. 

 

This study aims to characterize the relationship between cough frequency during the first 14 days 

of treatment and markers of baseline bacterial burden. Bacterial burden is assessed using 

microbiological (GeneXpert [Xpert] Ultra PCR semi-quantitative results) and radiological (digital 

chest X-rays computer-aided detection [CAD] prediction score) methods. While this study does 

not seek to validate cough as a biomarker for TB treatment monitoring, it aims to deepen the 

understanding of cough dynamics—including persistence, frequency, and temporal patterns—and 

their relationship to underlying disease severity. 

 

5.5. Methods 

 

5.5.1. Setting 

 

Participants were enrolled from the Rapid Research in Diagnostic Development for TB Network 

(R2D2 TB Network) clinical study and an independent cough study in Madagascar. The R2D2 TB 

Network, a multinational study across ten countries, investigates novel TB diagnostic 

technologies, including digital cough monitoring. Study participants were often co-enrolled in 



 

 103 

complementary diagnostic studies.25 This analysis included data from R2D2 TB Network 

participants in Uganda, Philippines, and Vietnam, where sufficiently large cohorts underwent 

longitudinal cough monitoring. Study procedures were standardized across all sites. 

 

5.5.2. Study population and inclusion criteria 

 

The studies recruited adults 18 years or older from outpatient facilities experiencing a new or 

worsening cough for ≥2 weeks. Individuals who lived more than 20 kilometers from a study site, 

had taken anti-TB medication in the last year, or had taken any medication with anti-mycobacterial 

activity within the prior 2 weeks were excluded. For this analysis, only participants who had had 

microbiologically confirmed PTB were included, defined as a positive result from sputum Xpert 

MTB/RIF Ultra (Xpert, Cepheid, USA) and/or sputum culture (MGIT, 7H10 agar, or Löwenstein–

Jensen [LJ]). All participants were initiated on anti-TB therapy and were treated as per national 

TB guidelines with the standard 6-month regimen (2 months of isoniazid, rifampicin, 

pyrazinamide and ethambutol, followed by continuation phase of 4 months of isoniazid and 

rifampicin) for drug susceptible TB. Drug-resistance for rifampicin (RIF) was evaluated using 

Xpert MTB/RIF Ultra. All individuals were RIF negative. 

 

5.5.3. Participant enrollment procedures 

 

Participants that met the inclusion criteria were enrolled in the R2D2 TB Network and Madagascar 

Cough study upon presentation to the health facility. Up to three sputum samples were collected 

for repeated Xpert and culture testing. Cough monitoring was initiated on the day of enrollment. 

For R2D2 sites, TB treatment was initiated a median of 1 (IQR: 0, 2.5) day after study enrollment.17 

For Madagascar, TB treatment was initiated a median of 2 (IQR: 2, 4) days after study enrollment. 

To ensure uniformity in time on treatment, the first day of follow-up was analytically set to the 

treatment initiation date. 
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5.5.4. TB severity assessment 

 

Xpert is a nucleic acid amplification test (NAAT) used to diagnose TB that provides semi-

quantitative estimate of bacterial load (‘High’, ‘Medium’, ‘Low’, and ‘Very low’).26,27 These semi-

quantitative categories correlate with cycle threshold (Ct) values from PCR testing, which detect 

the expression of specific genes in Mtb, including IS6110, IS1081, and at least two rpoB genes.28 

Previous studies have demonstrated that Ct values inversely correlate with semi-quantitative 

categories, with lower Ct values (indicating higher bacterial loads) corresponding to 'High' results, 

and progressively higher Ct values corresponding to 'Medium', 'Low', and 'Very Low' 

categories.26,27,29 'Trace' results occur when one or both probes for IS6110 and IS1081 targets are 

positive (Ct <37), and no more than one rpoB probe shows a Ct <40.28 ‘Trace’ results indicate 

extremely low TB levels and are difficult to interpret.30 Therefore, participants with a ‘Trace’ or 

negative Xpert result but with a positive TB culture result were categorized as ‘Xpert 

Trace/Negative & Culture Positive’. 

 

Participants had their digital chest X-rays taken at time of enrollment, prior to initiating treatment, 

which were analyzed using CAD4TB version 7 software (Delft Imaging Systems, Netherlands). 

CAD4TB is a commercial software that uses deep learning to screen for PTB from chest x-rays.31 

The results are interpreted as a score output, ranging from 0-100, with a higher score representing 

a higher likelihood of PTB. The accuracy of CAD4TB was recently evaluated among R2D2 

participating countries, achieving a specificity of 74% (95% CI: 72%, 75%) at 90% sensitivity.32 

While CAD4TB is primarily a diagnostic tool, some evidence suggests its potential utility as a 

severity indicator. A prior study have shown that higher CAD4TB scores significantly correlate 

with bacterial load (p<0.001), as measured by sputum Xpert semi-quantitative scores.33 Another 

study found that CAD4TB sensitivity improved with higher bacillary burden, indicating a positive 

correlation between TB scores and bacterial load.34 However, it's important to note that these 

correlations do not necessarily establish CAD4TB scores as direct measures of disease severity, as 

radiographic findings may reflect cumulative lung damage rather than current bacterial activity. In 

our study, we explore these relationships further to assess whether these different measurements 

(Xpert semi-quantitative score, CAD4TB score) provide complementary information about TB 

severity and its association with cough frequency over time. 
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5.5.5. Cough monitoring 

 

Participants received a study-provided smartphone with the Hyfe Research application pre-

installed.35,36 The Hyfe Research app continuously listens for explosive sounds like coughs without 

continuously recording every sound. If detected, the embedded AI algorithm records and classifies 

these explosive sounds as cough or not with a sensitivity of 91% and specificity of 98%.36 Less 

than 0.5 seconds of each explosive sound is recorded, ensuring that acoustic environments and 

conversations are not recorded, and that the participant’s privacy is protected.36 

 

Smartphone models varied by country, details of which have been reported for R2D2 participating 

countries.37 In Madagascar, the Motorola G9 Play model was used. The smartphones were 

configured such that only the Hyfe Research app was allowed to run, preventing participants from 

downloading other apps or making calls. For 14 consecutive days, participants were instructed to 

carry the smartphone in a pouch around their neck, directing the microphone towards their face 

(Figure 5.1). They were instructed to keep the device with them as much as possible to ensure 

continuous cough recording, including placing it near their head while sleeping. Participants were 

asked to charge the phone nightly and were shown how to pause and restart recording when 

needed.37 

 
Figure 5.1. Image of participant wearing study smartphone around their neck. Smartphone 

microphone is pointed towards the participant’s face. Participants were instructed to wear the 

smartphone in the pouch as often as possible throughout their day. 
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5.5.6. Cough data preparation and treatment of missing data 

 

All cough sounds detected from the Hyfe app are associated with a timestamp. All cough 

timestamps were adjusted to reflect the local time zone in the country where the data was collected. 

A full day of follow-up was 12pm (noon) until 11:59am the following day in the local time zone. 

Data on recording activity was also available. This data reported timestamps corresponding to 

periods of active and inactive recording sessions by the Hyfe Research app during the 14-day 

follow-up. Cough recording completeness was assessed at the hourly level to address within-day 

missingness and prevent underestimation of daily cough counts. Cough counts were pro-rated if 

≥30 minutes of recording were observed during the hour. Hours with <30 minutes of recording 

were set as missing. Missing hourly cough counts were imputed using multiple imputation by 

chained equation (MICE) (Figure S5.1).38 Imputations were performed at the hourly level to 

account for the missingness that occurred during specific hours of the day. A multi-level multiple 

imputation with predictive mean matching was done using the mice (version 3.16.0) and miceadds 

(version 3.17.44) packages in R.38,39 Within the MICE model, clustering at the individual level was 

accounted for, along with random effects for day, harmonic sine and cosine terms, and interactions 

between day and harmonic terms. Harmonic terms were included to account for the circadian trend 

that cough tends to follow (Figure S5.2).15 Data was also imputed for several person-level 

predictors, including history of TB (0.5% missing), HIV-status (1.5% missing), and baseline CAD 

scores (3.9% missing). Overall, 28% of hourly cough data was missing and a total of 30 datasets 

were imputed and their analytical results combined. Density plots comparing observed and 

imputed distributions are provided in Figure S5.3 

 

5.5.7. Statistical analysis 

 

All statistical analyses were conducted using R software (version 4.3.3). Participants were 

stratified by Xpert Ultra semi-quantitative results and the median coughs per hour (cph) per day 

of follow-up was reported. The metric of median cph was previously used to reported longitudinal 

trends in cough rates.17,40 Spearman’s rank correlation test was used to evaluate the relationships 

between baseline CAD4TB and total cough counts on each day of follow-up. 
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Cough count data is known to be over-dispersed and zero-inflated.22,41 This distribution was also 

observed in this dataset (Figure S5.4), therefore, a zero-inflated negative binomial distribution 

was used for models. Different random effects and correlation structures, including autoregressive 

1 (AR1), exchangeable, and Toeplitz were evaluated using Maximum Likelihood estimation and 

compared.42 The final model was selected based on the Akaike Information Criterion (AIC) and 

residual assessment using the DHARMa package (Table S5.1, Figure S5.5, Figure S5.6).43 

 

: Xpert semi-quantitative result (categorical) and CAD4TB score (continuous). Both models 

employed a random-effects zero-inflated negative binomial generalized linear mixed model 

(GLMM) for daily cough count.42 An AR1 correlation structure was included for the random slope 

of the day, which accounts for the temporal dependence in the data, where observations close in 

time are not independent (Figure S5.7). Participant-level random intercepts were fit to account for 

individual variability in the probability of excess zeros. Participant-level fixed effects adjusted for 

pre-determined confounders between markers of TB severity and cough frequency, including sex, 

age, country, smoking status, HIV status, COVID-19 status, and TB history. A quadratic term for 

day of follow-up was included in both the count and zero-inflation components to account for the 

non-linear progression of cough over time. Final models were fit using restricted maximum 

likelihood (REML) estimation to provide unbiased estimates of the variance components. The 

models output rate ratios (RRs), where lower RRs indicate that lower predictor values (such as 

lower CAD4TB scores or lower Xpert semi-quantitative categories) associated with decreased 

cough frequency. For the Xpert and the CAD4TB models, the glmmTMB (version 1.1.9) package 

was used.44 

 

5.5.8. Sensitivity analysis 

 

Overestimation of cough counts can occur when cough sounds from individuals other than the 

participant are recorded. Differentiating between the participant's cough’s acoustic signature from 

that of other individuals is currently not possible. To address this, a sensitivity analysis was 

conducted to assess the impact of censoring hourly cough frequencies above different percentile 

thresholds. Daily cough counts were capped at the 50th, 75th, and 90th percentile per day within 
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Xpert semi-quantitative groups. These percentiles were chosen to represent a range of censoring 

intensities. Hourly cough counts that were greater than the percentile were right censored at the 

percentile. For instance, the 90th percentile for hourly cough counts on day 1 for the 'High' Xpert 

group was 64 cph. Therefore, any hourly cough counts >64 cph were set as 64 cph. This process 

was repeated for each day and each Xpert group. These right-censored hourly datasets were 

summed to create daily totals. The previously described GLMM, was then applied to these 

censored datasets for evaluating the association between cough frequency and baseline TB burden. 

 

5.5.9. Ethics statement 

 

Ethical approval for this study was obtained from institutional review boards (IRB) in the US 

(University of California San Francisco IRB #20-32670), Canada (Centre de Recherche du Centre 

Hospitalier de l’Université de Montréal IRB #2021-9270, 20.226) and each study site: Vietnam 

(Ministry of Health Ethical Committee for National Biological Medical Research IRB #94/CN-

HĐĐĐ, National Lung Hospital Ethical Committee for Biological Medical Research IRB 

#566/2020/NCKH and the Hanoi Department of Health, Hanoi Lung Hospital Science and 

Technology Initiative Committee IRB #22/BVPHN); India (Christian Medical College IRB 

#13256); South Africa (Stellenbosch University Health Research Ethics Committee #17047); 

Uganda (Makerere University College of Health Sciences School of Medicine Research Ethics 

Committee #2020-182); the Philippines (De La Salle Health Sciences Institute Independent Ethics 

Committee #2020-33-02-A); and Madagascar (Comité d’Éthique à la Recherche Biomédicale 

#IORG0000851 - N°051-MSANP/SG/AMM/CERBM). 

 

5.6. Results 

 

5.6.1. Participant information 

 

A total of 209 individuals with microbiologically confirmed PTB were included in this analysis. 

Baseline demographic and clinical characteristics, categorized by sputum Xpert semi-quantitative 

results, are summarized in Table 5.1. A third of participants (71/209, 34.0%) had a ‘High’ Xpert 

result, indicative of a high baseline TB burden. Of these ‘High’ Xpert result individuals, the 
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majority (40/71, 56.3%) were from Madagascar. Individuals with higher sputum bacterial burden 

presented with more severe baseline clinical symptoms, including lower BMIs, higher 

temperatures, longer duration of cough, and elevated heart rates. The severity of these symptoms 

diminished with decreasing Xpert semi-quantitative result. CAD analyses for TB detection using 

CAD4TB displayed similar trends, with higher CAD scores in the ‘High’ Xpert group. 
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Table 5.1. Baseline demographic and clinical characteristics by GeneXpert semi-quantitative result.  

 High 
(N=71) 

Medium 
(N=48) 

Low 
(N=39) 

Very low 
(N=23) 

Xpert Trace/Neg. & 
Culture pos. 

(N=24) 

Overall 
(N=209) 

Female 28 (39.4) 18 (37.5) 15 (38.5) 8 (34.8) 11 (45.8) 80 (39.0) 

Age (years) 29.0 
(23.0, 41.5) 

40.0 
(25.0, 51.0) 

30.0 
(22.0, 45.5) 

41.0 
(33.5, 59.0) 

43.0 
(29.5, 62.0) 

33.0 
(25.0, 50.0) 

Country 
   Madagascar 
   Philippines 
   Uganda 
   Vietnam 

 
40 (56.3) 
2 (2.8) 

22 (31.0) 
7 (9.9) 

 
13 (27.1) 
5 (10.4) 
18 (37.5) 
12 (25.0) 

 
10 (25.6) 
7 (17.9) 
9 (23.1) 
13 (33.3) 

 
3 (13.0) 
7 (30.4) 
7 (30.4) 
6 (26.1) 

 
5 (20.8) 
7 (29.2) 
6 (25.0) 
6 (25.0) 

 
71 (34.6) 
28 (13.7) 
62 (30.2) 
44 (21.5) 

Smoked in past 7 
days 10 (14.1) 6 (12.5) 8 (20.5) 1 (4.3) 4 (16.7) 29 (14.1) 

HIV positive 
Missing; n (%) 

4 (5.6) 
1 (1.4) 

1 (2.1) 
1 (2.1) 

2 (5.1) 
1 (2.6) 

3 (13.0) 
0 (0.0) 

4 (16.7) 
0 (0.0) 

14 (6.8) 
3 (1.5) 

COVID-19 positive 8 (11.3) 1 (2.1) 5 (12.8) 1 (4.3) 2 (8.3) 17 (8.3) 
Prior TB 
Missing 

4 (5.6) 
0 (0.0) 

6 (12.5) 
0 (0.0) 

7 (17.9) 
1 (2.6) 

2 (8.7) 
0 (0.0) 

3 (12.5) 
0 (0.0) 

22 (10.5) 
1 (0.5) 

BMI (kg/m2) 18.3 
(16.6, 20.2) 

18.7 
(17.5, 20.4) 

18.7 
(17.0, 21.6) 

19.6 
(18.0, 23.2) 

19.8 
(17.6, 21.6) 

18.7 
(17.3, 20.9) 

MUAC (mm) 235 
(220, 250) 

239 
(226, 254) 

227 
(210, 252) 

240 
(232, 266) 

239 
(219, 265) 

235 
(220, 254) 

Temperature (°C) 37.2 
(36.7, 37.5) 

36.8 
(36.6, 37.1) 

36.7 
(36.5, 37.0) 

36.8 
(36.5, 36.9) 

36.8 
(36.4, 37.1) 

36.8 
(36.5, 37.4) 

Cough days 45 
(30, 90) 

45 
(30, 90) 

30 
(30, 90) 

30 
(16, 64) 

29 
(15, 58) 

35 
(25, 90) 

Heart rate (bpm) 98 
(83, 120) 

94 
(75, 105) 

90 
(80, 100) 

91 
(84, 108) 

89 
(82, 95) 

95 
(80, 109) 

 
CAD4TB score 
Missing, n (%) 

83.5 
(73.1, 93.8) 

3 (4.2) 

84.0 
(71.9, 91.7) 

2 (4.2) 

80.6 
(69.3, 90.2) 

3 (7.7) 

45.5 
(15.1, 67.0) 

0 (0.0) 

47.1 
(29.2, 72.7) 

0 (0.0) 

78.4 
(61.9, 90.7) 

8 (3.9) 
Categorical variables are reported as count (percentage) and continuous variables are presented as median (Q1, Q3). 
BMI, body mass index; bpm, beats per minute; C, Celsius; MUAC, mid-upper arm circumference; n, number
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5.6.2. Cough data quality control 

 

The anticipated cumulative number of recording hours was 72,224 hours, representing the 24h of 

recording over 14 days of follow-up for all 209 eligible participants (24*14*209). Of these hours, 

70.7% had complete recording while 27.9% were completely missing. Partial missingness (<1h 

recording) was observed in 1.4% of recording hours. Cough counts were pro-rated if ≥30 minutes 

of recording were observed during the hour (0.9% of recordings). The remaining 0.5% of partial 

hourly cough recordings were set as missing. 

 

Participants recorded for a median of 21 hours a day. Overall, 38% of participants had at least one 

hour of daily recording throughout the entire 14-day follow-up period while 70% of individuals 

achieved one hour or more of recording for at least of 7 days during the study. A gradual increase 

in missing recording hours was observed as the study progressed. The proportion of missing hours 

of recording rose from 16% on the first day of monitoring to 46% by day 14 (Figure S5.1). 

 

5.6.3. Overview of cough trends 

 

Baseline (day 1) cough frequency positively correlated with TB bacterial burden. Individuals with 

a ‘High’ Xpert result had an elevated median baseline frequency of 17.5 cph (interquartile range 

[IQR]: 8.0, 32.0) compared to those with ‘Medium’ (8.0 cph; IQR: 4.0, 17.0), ‘Low’ (6.0 cph; IQR: 

2.0, 20.0), ‘Very low’ (3.0 cph; IQR: 1.0, 11.5), and ‘Xpert Trace/Neg. and ‘Culture pos.’ (2.0; 

IQR: 0.0, 4.5) results. This relationship between cough frequency and TB bacterial burden 

persisted throughout the initial 14 days of anti-TB treatment (Figure 5.2). A general decline in 

cough frequency was observed across all groups during this period and by day 14, all groups 

demonstrated a median cough frequency of fewer than 2 cph. Despite the overall reduction in 

cough frequency, significant heterogeneity in cough trajectories was observed among individuals 

(Figure 5.2). 
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Figure 5.2. Trends in median coughs per hour during the first 14-days of anti-TB treatment 

among patients with microbiologically confirmed pulmonary TB. Participants were grouped 

according to their Xpert semi-quantitative results, which served as a marker of baseline TB 

bacterial burden. Individuals in the ‘Culture pos.’ group were culture positive but either Xpert 

negative or ‘Trace’. Thick lines are locally estimated scatterplot smoothing (LOESS) curves for 

the median coughs per hour, with the shaded regions representing LOESS confidence intervals. 

The thin lines represent individual cough trajectories of different participants. The y-axis has been 

truncated at 25 coughs per hour for visualization. 

 

When assessing the relationship between baseline CAD4TB score and cough frequency at each 

day of follow-up, a moderate positive correlation was observed that remained consistent 

throughout the 14-day period. Correlation coefficients (r) fluctuated between 0.33 (day 13) and 

0.46 (day 6) (Figure 5.3). This finding suggests that despite the overall decrease in cough 

frequency (Figure 5.2), individuals with higher baseline CAD4TB scores maintained relatively 

higher cough rates throughout the study period. 
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Figure 5.3. Correlation coefficient between median coughs per hour during the first 14-days 

of TB treatment and baseline CAD4TB scores. Shaded area represents the 95% confidence 

interval. The graph shows a consistent moderate correlation (around 0.4) between a patient's initial 

CAD4TB score and their coughing frequency throughout the 14-day period. This suggests that 

patients who started with higher CAD4TB scores generally maintained higher coughing rates 

throughout their first two weeks of treatment compared to patients who started with lower 

CAD4TB scores. 

 

5.6.4. Daily cough counts – model results 

 

The results of the regression analysis are presented in Table 5.2. Model 1 presents the RR for the 

multivariable Xpert semi-quantitative result analysis, showing that as the Xpert semi-quantitative 

result decreases, the cough rate also decreases. Model 2 presents the RRs for the CAD4TB 

analysis, illustrating that a decrease in log CAD4TB score results in a decrease in the cough rate 

(RR: 0.80; 95% CI: 0.67, 0.95). Overall, both models indicate that there is a positive association 

between TB bacterial burden (higher Xpert semi-quantitative result or higher CAD4TB score) and 

daily cough frequency.  
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The effect of time (day of follow-up) on cough frequency is illustrated in Figure S5.8. Since the 

coefficients for day and day2 are the same for both Model 1 and Model 2 (Table 5.2), these results 

apply to both models. As participants progress on TB treatment, the cough rate decreases over the 

first 14 days of TB treatment. Results from the logit component of the zero-inflated model 

indicated that as time progressed, the odds of observing a zero cough count (i.e., no coughs 

recorded) increased. Specifically, for each unit increase in time, the odds of a zero count increased 

by 1.14 (95% CI: 1.05, 1.24) in both models. 

 

The random effects in the models reveal individual heterogeneity in cough patterns (Table 5.2). In 

the negative binomial component, the standard deviation of the random slope for day (0.80 for 

Model 1 and 0.77 for Model 2) indicates variability in how cough frequency changes over time 

among participants. The logistic component of the model further illustrates this heterogeneity. The 

elevated standard deviation in random intercepts (7.40 for Model 1 and 7.80 for Model 2) suggests 

marked differences in individuals' propensity to record zero coughs. This large variability indicates 

that some participants are much more likely than others to have days with no recorded cough. 

Finally, the high AR1 correlation (0.94 for Model 1 and 0.95 for Model 2) in this component 

indicates strong day-to-day dependence in cough counts, underscoring the importance of 

accounting for temporal autocorrelation in the analysis. 
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Table 5.2. Results from multivariable zero-inflated negative binomial generalized linear 

mixed models evaluating the relationship between TB severity (Xpert semi-quantitative 

result and CAD4TB) and daily cough counts. 

 Model 1: Xpert* 
RR (95% CI) 

Model 2: CAD4TB† 
RR (95% CI) 

 Negative binomial model 
Xpert semi-quantitative result 
     High 
     Medium 
     Low 
     Very low 
     Xpert Trace/Neg. & Culture Pos. 

 
Ref. 

0.79 (0.59, 1.05) 
0.64 (0.47 0.87) 
0.61 (0.41, 0.90) 
0.43 (0.29, 0.62) 

- 

CAD4TB score (log) - 0.80 (0.67, 0.95) 

Day 0.91 (0.88, 0.94) 0.91 (0.88, 0.94) 
Day2 1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 
Female 1.01 (0.81, 1.26) 1.05 (0.85, 1.33) 
Age (years) 1.00 (0.97, 1.01) 1.00 (0.99, 1.01) 
Country 
     Madagascar 
     Philippines 
     Uganda 
     Vietnam 

 
Ref. 

0.50 (0.33, 0.75) 
0.38 (0.28, 0.51) 
0.69 (0.47, 1.03) 

 
Ref. 

0.43 (0.28, 0.65) 
0.39 (0.28, 0.53) 
0.56 (0.38, 0.82) 

Smoked in past 7 days 1.10 (0.79, 1.54) 1.04 (0.74, 1.46) 
HIV positive 1.06 (0.66, 1.70) 0.95 (0.59, 1.54) 
COVID-19 positive 0.89 (0.59, 1.36) 0.80 (0.52, 1.22) 
Prior TB 1.36 (0.96, 1.92) 1.32 (0.93, 1.87) 

 Logit model 
Day 1.14 (1.05, 1.24) 1.14 (1.05, 1.24) 

CAD, computer-aided detection; CI, confidence interval; EPTB, extrapulmonary tuberculosis; RR, rate ratio; TB, 
tuberculosis 
* Negative binomial: standard deviation random in slope (day) = 0.76; AR1 correlation = 0.94. Logit: standard 
deviation in random intercept = 7.40. 
† Negative binomial: standard deviation in random slope (day) = 0.77; AR1 correlation = 0.95. Logit: standard 
deviation in random intercept = 7.80. 
 

5.6.7. Sensitivity analysis 

 

Sensitivity analyses were conducted to assess the potential impact of cough count overestimation 

on the association between TB severity and cough frequency (Table S5.2; Table S5.3). These 

analyses revealed that censoring hourly cough counts at lower percentiles strengthened this 

association. For instance, when hourly cough counts were right censored at the 90th percentile, the 
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RR for ‘Medium’ semi-quantitative result versus ‘High’ semi-quantitative result decreased to 0.73 

(95% CI: 0.57, 0.94) and to 0.79 (95% CI: 0.68, 0.92) in the CAD4TB model. In the extreme case 

where cough counts were right-censored at the 50th percentile, the association became even 

stronger with a RR of 0.50 (95% CI 0.44, 0.58) for Xpert ‘High’ versus ‘Medium’ and a RR of 

0.72 (95% CI: 0.59, 0.88) for the CAD4TB model. 

 

5.7. Discussion 

 

The frequency of coughing in individuals with TB can provide valuable insights into the 

underlying disease state. Despite significant heterogeneity in longitudinal cough patterns among 

patients, distinct trends emerge over time. These trends correlate with TB bacterial burden at 

baseline, as indicated by markers such as Xpert semi-quantitative results and CAD4TB digital 

chest X-ray prediction scores. Patients with higher TB burden consistently demonstrate elevated 

cough frequencies at diagnosis, aligning with previous research findings.15,23 Recent studies have 

emphasized the potential of monitoring changes in clinical symptoms as indicators of treatment 

response.9,10 Understanding the variability in cough counts and the influence of baseline disease 

severity on cough count trajectories can therefore inform the development and evaluation of future 

cough monitoring tools for TB management. 

 

Aside from TB bacterial burden, the setting where the participant was enrolled also influenced 

cough frequency. Participants in Madagascar exhibited particularly high rates of cough compared 

to those in other countries, even after controlling for other predictors of cough. The variation raises 

questions about the influence of context-specific factors on cough rates, including local 

epidemiology, sources of indoor air pollution, and environmental pollutants (e.g., particulate 

matter).45 From a technical standpoint, there may also be cohort-specific behavioral differences in 

cough recording practice and adherence that may have contributed to observed differences. Further 

studies are needed to better characterize how all of these factors influence cough and modify the 

association with TB burden and eventually clinical response. 

 

This study is the first to model the association between TB bacterial burden and cough counts 

recorded continuously over a sustained monitoring period. Prior studies exploring this association 
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used intermittently monitored 24h cough recordings, which do not capture the significant 

variability in cough over time.35 Additionally, this study accounts for the underlying distribution 

of longitudinal cough counts, acknowledging mechanisms through which cough counts may be 

both underestimated (through the use of a zero-inflated distribution) and overestimated (through 

sensitivity analyses). 

 

Cough counts are a zero-inflated marker, both at the daily and hourly level. The zero-inflation 

occurs through two mechanisms: 1) when the individual has truly not coughed in an hour period 

and 2) when coughs occurred but the monitor was either not recording or not in range. Prior 

analyses of cough data have shown that the expected frequency of 0 cph periods should be similar 

to the frequency 1 and 2 cph periods.22 In this dataset, the proportion of 0 cph was significantly 

higher than the proportion of 1 and 2 cph (Figure S5.4). By extension, when hourly cough counts 

were summed at the daily level, the number of 0 coughs per day was high. While the exact 

contributions of the zero-inflation mechanisms cannot be ascertained without contextual data, 

feasibility challenges for continuous cough monitoring have previously outlined some of the 

factors that may contribute to excess zeros.35,37 These can be related to the ergonomics of carrying 

a smartphone continuously around the neck as well as safety concerns of having a smartphone 

visible, putting individuals at risk of being robbed. Technological innovations (e.g., smartwatches, 

which are more ergonomic and subtle) may address some of these issues, and in turn, improve the 

quality of cough data.  

 

Sensitivity analyses exploring the effect of cough overestimation, due to coughs being recorded 

from other individuals, found that overestimated cough counts may potentially attenuate the 

association between TB burden and cough frequency. However, this analysis was a crude overview 

of the potential impact of measurement error in cough detection. The sensitivity approach used, 

while addressing overestimation, may also inadvertently remove genuine high cough counts from 

severely ill patients, potentially introducing bias in the sensitivity analysis. In the long-term, 

advances in AI and monitoring devices may allow for speaker (cougher) identification algorithms 

that can be applied to cough audio sounds to help overcome this challenge.46 Such technological 

improvements could significantly enhance the accuracy and reliability of cough monitoring in TB 

patients, potentially leading to more precise assessments of disease severity and treatment efficacy. 
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This study has several limitations. First, although it includes the largest sample of TB-positive 

individuals in a longitudinal cough study to date, the number of participants across different Xpert 

semi-quantitative groups remains relatively small. This is particularly evident in the lower semi-

quantitative groups, which had fewer participants than the 'High' group. This imbalance may reflect 

selection bias, as recruitment from healthcare facilities likely favored individuals with more severe 

symptoms who were more likely to seek care and participate in the study. Second, there may be 

some unmeasured confounding between TB burden and cough frequency that was not accounted 

for, such as environmental exposures and cough-related co-morbidities. Third, contextual data on 

participant recording habits and environment was not available, preventing the concrete 

assessment of how under- and overestimation of cough influenced results. Accounting for zero-

inflation in the model as well as performing sensitivity analyses attempted to control for this, 

however future studies may consider having patients self-report on their daily activities and using 

wearable devices which may increase the reliability and completeness of cough time series. Fourth, 

for ethical reasons, the study could not include a control group of untreated TB-positive 

individuals. This limitation makes it difficult to distinguish whether changes in cough frequency 

were due to treatment effects or natural disease progression. Finally, clinical and microbiological 

treatment outcomes were not available for these participants, so it was not possible to associate 

cough trends during the first two weeks of treatment with end of treatment outcomes. This study 

was not intended to determine whether cough could serve as a biomarker for evaluating treatment 

monitoring. Future studies should investigate this association to further assess the potential role of 

cough as a biomarker for treatment response, considering the findings presented here on baseline 

cough heterogeneity. 

 

Overall, cough is an appealing biomarker for TB treatment response since it is low-cost, non-

invasive, and capable of providing real-time data. This work provides insights into the variability 

of cough counts and their association with TB severity, aiding in the development of cough-based 

treatment response markers. 
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5.11. Supplementary information 

 

 
Figure S5.1. Percentage of hourly cough data that are missing over follow-up day. 

The amount of missingness increased as follow-up continued. Overall, 28.4% of hourly cough data 

was imputed. 

 

 

 
Figure S5.2. Circadian trend in cough over each day of follow-up. 

Lines are locally estimated scatterplot smoothing (LOESS) curves for number of coughs per hour. 

Each line colour represents a different day of follow-up. Cough frequency appears to peak in the 

afternoon (14h-15h) and is lowest at night (1h-2h). This trend persists throughout the 14 days of 

follow-up, however the magnitude of coughing decreases with time of follow-up. 
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Figure S5.3. Density plot of observed and imputed daily cough count data by GeneXpert 

semi-quantitative result. Blue lines represent the distribution of the original, unimputed dataset. 

Red lines show the 30 multiple imputations. 

 

 
Figure S5.4. Distribution of cough data among all participants and all follow-up hours. The 

width of each band represents a single increment in cough frequency on the x-axis. Left: Zero-

inflated distribution of hourly cough counts. Right: Zero-inflated distribution of daily cough 

counts. The expected proportion of 0 coughs per hour (cph) should be similar to the number of 1 

cph and 2 cph. In this dataset, 26% of hourly cough counts were 0 cough (18,724/72,224 hours), 

which is greater than the 5% (3,670/72,224 hours) of 1 cph and the 3% of 2 cph (2,493/72,224 

hours). This zero-inflation was also observed when summing hourly cough counts at the daily 

level, with 27% (813/3,010 days) having 0 coughs throughout the day. 
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Table S5.1. Comparative analysis of model structures for daily cough count data for the 

Xpert and CAD4TB multivariable models using the Akaike Information Criterion (AIC). 

# Negative binomial 
count model* Zero-inflation model† Xpert 

Mean AIC 
CAD4TB 

Mean AIC 
Negative binomial 

1 Random intercept N/A 36,162 36,171 

2 Random intercept 
Random slope (day) N/A 35,770 35,777 

3 AR1 covariance structure N/A 35,739 35,754 
Zero-inflated negative binomial 

4 Random intercept Random intercept 35,265 35,272 

5 Random intercept 
Random slope (day) Random intercept 34,975 34,983 

6 Random intercept 
Random slope (day) 

Random intercept 
Random slope (day) Failed§ 34,923 

7 AR1 covariance structure Random intercept 34,932 34,940 

8 Exchangeable covariance 
structure Random intercept Failed§ Failed§ 

9 Toeplitz covariance structure Random intercept Failed§ Failed§ 
10 AR1 covariance structure AR1 covariance structure Failed§ Failed§ 

Maximum Likelihood estimation was employed for all model comparisons. 
Model in bold was used in the final analysis. 
*Fixed effects: Xpert/log(CAD4TB), Day, Day2, Sex, Age, Country, Smoking, HIV status, COVID, Prior TB. 
†Fixed effects: Day 

§Model did not converge. 
AR1, autoregressive 1; CAD, computer-aided detection; Xpert, GeneXpert 
 

Equation S5.1. Equation for final selected model. 

 

Count model (negative binomial): 

log(𝜇!") = 𝛽# + 𝛽$𝑋%&'("/*+, + 𝛽-𝑋,+. + 𝛽/𝑋,+.! + 𝛽0𝑋1'% + 𝛽2𝑋+3' + 𝛽4𝑋*567"(.

+ 𝛽8𝑋195:!73 + 𝛽;𝑋<!= + 𝛽>𝑋*5=!, + 𝛽$#𝑋&(!5(?@ + 𝑢!" 

 

Where: 

𝜇!" = the expected cough count for person i at time (day) t 

𝑢!" = the random effect for subject i at time t with an AR(1) correlation structure 

 

Zero-inflation (logistic regression): 

logit(𝜋!") = 𝛾# + 𝛾$𝑋,+. + 𝑣! 
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Where: 

𝜋!" = the probability of excess zero for persion i at time t 

𝑣! = the random intercept for person i 

 

 

 
Figure S5.5. Residual and autocorrelation analysis for final zero-inflated negative binomial 

model using CAD4TB as a predictor. Using the final model (#7 in Table S5.1). A) Residuals vs. 

Fitted Values, B) Q-Q plot of residuals, C) Partial Autocorrelation Function (Partial ACF), and D) 

Autocorrelation Function (ACF). 

 
 
 

A) B) 

C) D) 
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Figure S5.6. Residual and autocorrelation analysis for final zero-inflated negative binomial model 

using Xpert semi-quantitative score as a predictor. 

Using the final model (#7 in Table S5.1). A) Residuals vs. Fitted Values, B) Q-Q plot of residuals, 

C) Partial Autocorrelation Function (Partial ACF), and D) Autocorrelation Function (ACF). 

 

 
Figure S5.7. Correlation matrix of cough frequency between days of follow-up. Evidence of 

an auto-regressive trend can be observed, with decreasing correlation with increasing time between 

follow-up days. 

A) 

C) 

B) 

D) 
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Figure S5.8. Change in rate ratio (RR) of cough counts over the first 14 days of TB treatment. 

The RR for each day of follow-up is displayed, controlling for additional covariates. The smooth, 

downward-sloping curve demonstrates a steady reduction in the rate of cough counts over time. 

Starting at approximately 0.9 on Day 1, the RR decreases consistently each day, reaching about 

0.23 by Day 14. 

 

Table S5.2. Rate ratios of cough after censoring hourly cough counts at various percentiles 

for Xpert semi-quantitative results. 
 50th percentile 

RR (95% CI) 
75th percentile 
RR (95% CI) 

90th percentile 
RR (95% CI) 

 Negative binomial model 
Xpert semi-quant 
     High 
     Medium 
     Low 
     Very low 
     Xpert Trace/Neg. & Culture Pos. 

 
Ref. 

0.50 (0.44, 0.58) 
0.37 (0.32, 0.43) 
0.28 (0.23, 0.33) 
0.14 (0.12, 0.17) 

 
Ref. 

0.63 (0.52, 0.77) 
0.52 (0.42, 0.65) 
0.43 (0.33, 0.57) 
0.27 (0.21, 0.35) 

 
Ref. 

0.73 (0.57, 0.94) 
0.60 (0.45, 0.77) 
0.54 (0.39, 0.76) 
0.36 (0.26, 0.50) 

Day 0.85 (0.83, 0.87) 0.89 (0.87, 0.91) 0.90 (0.87, 0.92) 
Day2 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.01) 
Female 0.99 (0.90, 1.10) 0.99 (0.85, 1.15) 1.00 (0.82, 1.20) 
Age (years) 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.01) 
Country 
     Madagascar 
     Philippines 
     Uganda 
     Vietnam 

 
Ref. 

0.71 (0.59, 0.86) 
0.67 (0.59, 0.78) 
0.89 (0.75, 1.06) 

 
Ref. 

0.60 (0.46, 0.79) 
0.53 (0.43, 0.65) 
0.80 (0.62, 1.03) 

 
Ref. 

0.53 (0.38, 0.76) 
0.44 (0.34, 0.57) 
0.74 (0.53, 1.03) 

Smoked in past 7 days 1.04 (0.89, 1.21) 1.07 (0.85, 1.34) 1.09 (0.81, 1.45) 
HIV positive 0.89 (0.72, 1.11) 0.95 (0.69, 1.30) 1.00 (0.67, 1.50) 
COVID-19 positive 0.97 (0.80, 1.17) 0.95 (0.71, 1.26) 0.93 (0.65, 1.34) 
Prior TB 1.13 (0.96, 1.33) 1.21 (0.95, 1.53) 1.29 (0.96, 1.74) 

 Logit model 
Day 1.46 (1.36, 1.57) 1.14 (1.05, 1.23) 1.14 (1.05, 1.23) 

CI, confidence interval; cph, coughs per hour; RR, rate ratio; TB, tuberculosis 
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Table S5.3. Rate ratios of cough after censoring hourly cough counts at various percentiles 

for CAD4TB scores. 
 50th percentile 

RR (95% CI) 
75th percentile 
RR (95% CI) 

90th percentile 
RR (95% CI) 

 Negative binomial model 
CAD4TB score (log) 0.72 (0.59, 0.88) 0.77 (0.68, 0.89) 0.79 (0.68, 0.92) 
Day 0.85 (0.81, 0.89) 0.89 (0.87, 0.91) 0.90 (0.87, 0.92) 
Day2 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.01) 
Female 1.03 (0.76, 1.39) 1.02 (0.86, 1.24) 1.04 (0.84, 1.28) 
Age (years) 0.99 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 
Country 
     Madagascar 
     Philippines 
     Uganda 
     Vietnam 

 
Ref. 

0.44 (0.31, 0.62) 
0.62 (0.39, 0.97) 
0.57 (0.43, 0.77) 

 
Ref. 

0.45 (0.33, 0.61) 
0.51 (0.40, 0.66) 
0.58 (0.44, 0.77) 

 
Ref. 

0.44 (0.30, 0.63) 
0.44 (0.33, 0.58) 
0.57 (0.41, 0.79) 

Smoked in past 7 days 1.00 (0.76, 1.32) 1.04 (0.78 1.33) 1.03 (0.76, 1.39) 
HIV positive 0.69 (0.44, 1.07) 0.80 (0.55, 1.16) 0.87 (0.57, 1.33) 
COVID-19 positive 0.75 (0.53, 1.06) 0.80 (0.57, 1.12) 0.81 (0.56, 1.19) 
Prior TB 1.08 (0.80, 1.45) 1.17 (0.88, 1.54) 1.25 (0.91, 1.71) 

 Logit model 
Day 1.45 (1.30, 1.63) 1.14 (1.05, 1.23) 1.14 (1.05, 1.23) 

CI, confidence interval; cph, coughs per hour; RR, rate ratio; TB, tuberculosis  
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Chapter 6. Manuscript IV: Cough acoustics for COVID-19 detection: a 

comparative study of patient cohorts from Lima, Peru and Montreal, Canada 
 

6.1. Preface 

 

While the previous chapters explored cough counts as a biomarker, cough can also be examined 

through lens of its acoustic properties. Since the COVID-19 pandemic, there has been substantial 

interest in developing ML and AI tools for cough sound analysis, particularly for COVID-19 

screening. While early algorithms reported promising results, these were largely based on 

crowdsourced datasets with self-reported diagnoses, raising concerns about their real-world 

applicability. Moreover, these algorithms were typically validated using internal datasets only, 

without assessment of their performance in distinct populations. 

 

In this study, we investigated the challenges of developing AI-based cough screening tools using 

prospectively collected data from two distinct populations in Montreal, Canada and Lima, Peru. 

Unlike previous studies, all participants underwent rigorous reference standard diagnostic testing 

to confirm their COVID-19 status and screen for other respiratory pathogens. By comparing 

acoustic features and model performance across these populations, we examined whether cough-

based screening algorithms developed in one setting could be successfully transferred to another. 

This work addresses critical gaps in our understanding of population-specific differences in cough 

acoustics and their implications for developing globally applicable screening tools. 

 

This project was funded by a CIHR grant for which I was one of the primary grant writers. 
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6.3. Abstract 

 

Introduction 

 

While digital cough screening shows promise for COVID-19 detection, understanding how 

population differences affect both cough acoustics and screening accuracy is crucial. This study 

investigates cough characteristics and COVID-19 screening performance across two populations 

in Lima, Peru and Montreal, Canada. 

 

Methods 

 

Cough recordings and clinical data were collected prospectively from 605 adults with any cough 

across both sites. COVID-19 status was confirmed by nucleic acid amplification testing (NAAT). 

Additional NAAT was conducted to detect other respiratory pathogens common to each site. 

Acoustic features (including spectral and temporal characteristics) were extracted from cough 

recordings and compared between cohorts. COVID-19 classification was performed using 

eXtreme Gradient Boosting (XGBoost) and the Emphasized Channel Attention, Propagation and 

Aggregation Time Delay Neural Network (ECAPA-TDNN), a neural network architecture 

optimized for audio signal processing. Model performances were assessed through within-dataset 

validations (internal validity) and external validations (transferability) both for audio-only, 

clinical-only, and combined audio and clinical models. The areas under the curve (AUCs) were 

reported as averages with standard errors (SE) across 5 independent training iterations. A sub-

analysis investigated differences in XGBoost COVID-19 prediction scores for the within-dataset 

models according to underlying disease status (COVID-19 positive, other disease positive, or 

negative on available tests performed). 

 

Results 

 

Descriptive analyses highlighted significant heterogeneity in cough acoustic features between 

Lima and Montreal cohorts. Audio-based models trained and tested in Lima demonstrated superior 

performance (AUC: 0.71; SE ± 0.08) compared to audio models trained and tested within Montreal 



 

 133 

(AUC: 0.53; SE ± 0.04). Both models showed poor performance during external validation, with 

Lima-trained audio models dropping to an AUC of 0.51 (SE ± 0.01) when tested on Montreal data, 

and Montreal-trained audio models remaining at an AUC of 0.53 (SE ± 0.03) when tested on Lima 

data. ECAPA-TDNN models demonstrated similar trends with superior within-dataset 

performance in Lima and poor external validity across both datasets. In the sub-analysis, 

individuals positive for other respiratory diseases (e.g., influenza, tuberculosis) had higher 

COVID-19 prediction scores in Montreal compared to Peru, suggesting potential variations in 

model performance across different epidemiological contexts. 

 

Conclusion 

 

The findings demonstrate that cough acoustics are population-specific, with distinct cough feature 

distributions between sites. The utility of cough-based classification algorithms may differ 

depending on the setting and epidemiological profile of the population. There was limited 

transferability of COVID-19 cough screening models between different geographical, 

demographic, and epidemiological contexts. This study highlights the challenges in developing 

globally applicable cough-based COVID-19 screening tools when the training data is not 

representative of the target population   



 

 134 

6.4. Introduction 

 

The COVID-19 pandemic catalyzed the development of innovative screening and diagnostic 

solutions,1 including algorithms for cough sound analysis. These efforts have resulted in the 

creation of various algorithms, employing both advanced artificial intelligence (AI) neural network 

approaches,2–5 and more traditional machine learning (ML) methods.6–10 While neural networks 

and deep learning show promise for improving model performance and accuracy with large 

datasets, ML methods provide greater transparency in their decision-making process,11 allowing 

researchers to more easily interpret and explain which acoustic features are most influential in the 

model's predictions. 

 

Early COVID-19 classification algorithms, both AI- and ML-based, reported impressive 

performance metrics, with many achieving an area under the curve (AUCs) or accuracy that 

exceeds 80%.2–10 These algorithms were proposed as rapid, non-invasive screening methods to 

identify individuals who may need further diagnostic testing. However, they used crowdsourced 

cough datasets, such as Coswara,12 Virufy,13 and the Cambridge COVID-19 Sounds.14 While these 

datasets were valuable resources for initial research, they are subject to several biases that may 

impact the generalizability and real-world applicability of the resulting models.15 For instance, 

they rely on self-reported COVID-19 diagnoses rather than gold-standard laboratory confirmation, 

potentially introducing misclassification bias. Second, the variable recording quality inherent in 

crowdsourced data, where participants use their own devices and recording environments, may 

introduce noise and inconsistencies in the recordings. Third, selection biases may be present, as 

participants in these datasets may not represent the broader population of COVID-19 patients who 

would seek care for their cough. Finally, the limited availability and quality of clinical and 

diagnostic labels for other diseases that produce cough in these datasets restrict the ability to assess 

and control for potential confounding factors. Moreover, these datasets were largely generated 

during the early stages of the COVID-19 pandemic when other respiratory viruses were less 

prevalent due to public health measures, and when clinical attention was primarily focused on 

COVID-19, resulting in datasets enriched with or biased toward a single diagnosis. 
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Another limitation of the cough classification literature is its narrow focus on disease state 

differentiation. Studies have focused on distinguishing between various health conditions (e.g., 

healthy versus COVID-19, healthy versus tuberculosis [TB], etc.), without addressing the 

underlying heterogeneity of acoustic features among people with the same disease profile but who 

are from different patient populations. In other words, there is a lack of evidence regarding whether 

populations have different acoustic feature distributions, and how these differences may impact 

the transferability of models developed in one population to others. Additionally, the 

epidemiological profiles of respiratory diseases can vary significantly across regions, affecting 

disease prevalence patterns and, consequently, the population-level distribution of acoustic 

signatures that diagnostic models must distinguish. This variability in disease landscapes across 

settings further complicates the development of universally applicable cough classification 

algorithms. This research gap raises important questions about the feasibility of developing 

“global” cough classification tools that can be generalized to broader populations versus the need 

for localized algorithms that can identify population-specific acoustic trends. 

 

The objective of this study is twofold: 1) characterize population-level differences in cough 

acoustic features between distinct geographical cohorts and 2) assess the external validity of AI 

and ML COVID-19 cough classification algorithms between those cohorts. The study uses 

prospectively collected cough sounds from coughing patients in Lima, Peru and Montreal, Canada 

with gold-standard nuclear acid amplification tests (NAATs) as a reference. By comparing these 

distinct populations from the Global North and the Global South, this study aims to shed light on 

potential variations in cough acoustics and their impact on the performance of classification 

algorithms across different settings. 

 

6.5. Methods 

 

6.5.1. Settings 

 

This study used prospective data collected from Lima, Peru and Montreal, Canada. Participants in 

Lima were recruited from two healthcare settings: Hospital de Huaycán, a public secondary 

referral hospital in the Ate-Vitarte district, and a network of 33 primary health centers in the San 
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Juan de Lurigancho distrtict. Both districts are characterized by high population density, with San 

Juan de Lurigancho being Lima's most populous district. These districts also bear a significant TB 

burden, with San Juan de Lurigancho reporting the highest TB incidence rate in Lima.16,17 Both 

health facilities have clinics dedicated to diagnosing and treating TB patients. During the study 

period, COVID-19 prevalence among patients attending these facilities was notably high at 35%.16 

Recruitment in Lima occurred in two phases. Phase 1 ran from March 2022 to January 2023, where 

participants were recruited from the cohort of an ongoing parent study investigating the diagnostic 

accuracy of integrated TB and COVID-19 testing.16 Phase 2 took place from July 2023 to March 

2024. 

 

In Montreal, recruitment took place at the Centre hospitalier de l'Université de Montréal COVID-

19 screening center between April 2022 and November 2023. During this period, Quebec 

experienced high COVID-19 positivity rates,18 while Canada saw increased circulation of other 

respiratory viruses, particularly during the severe 2022-2023 influenza season when test positivity 

peaked at 24% in November 2022.19 Unlike Lima, Montreal and Canada maintain a low TB 

burden, with a national TB incidence of 5.1 per 100,000 population in 2022.20 

 

6.5.2. Participants 

 

In Lima, consecutive adults presenting with a cough of any duration were enrolled. During Phase 

1, the exclusion criteria of the parent study applied, excluding adults with confirmed COVID-19 

in the last three months or who had taken anti-TB medication in the past six months.16 For both 

phases, participants were excluded from the sub-study if they were currently taking cough-

suppressive medication. 

 

In Montreal, consecutive adults presenting with a cough of any duration were enrolled. Participants 

were excluded if they were taking cough-suppressive medication at the time of enrollment. 
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6.5.3. COVID-19 and other respiratory disease diagnosis 

 

In Lima, nasopharyngeal samples were collected, stored at 2-8°C, and transported to the Humberto 

Guerra Alisson laboratory, a reference laboratory at the Instituto de Medicina Tropical Alexander 

von Humboldt, Universidad Peruana Cayetano Heredia. During Phase 1, samples were tested for 

COVID-19 using Xpert Xpress SARS-CoV-2 cartridges on the GeneXpert automated molecular 

platform (Cepheid, Sunnyvale, CA, USA). During Phase 2, samples were tested using the Xpert 

Xpress SARS-CoV-2/Flu/RSV cartridges (Cepheid, Sunnyvale, CA, USA). Both cartridges 

received emergency-use authorization from the U.S. Food and Drug Administration and have 

demonstrated high diagnostic accuracy for COVID-19 diagnosis.21–24 They are NAATs that run on 

the GeneXpert platform. If the initial NAAT result produced an error or was invalid, the test was 

repeated using the same sample. 

 

In both phases of the study in Peru, participants provided sputum samples for TB testing using the 

WHO-endorsed Xpert MTB/RIF Ultra (Xpert Ultra) (Cepheid, Sunnyvale, CA, USA) and bacterial 

culture (BD BACTEC MGIT, BD, Franklin Lakes, NJ, USA).25 Xpert Ultra tests were repeated if 

initial testing produced an error, indeterminate, or a ‘Trace’ semi-quantitative result. MGIT culture 

was repeated if the initial test was contaminated. Participants were TB positive if either of the 

following conditions were met: a positive sputum Xpert Ultra result, a MGIT positive, or two Trace 

positive results on Xpert Ultra. Participants were considered PTB negative if none of the tests had 

a positive result and at least two sputum tests (Xpert Ultra, Xpert Ultra repeat, MGIT, or MGIT 

repeat) were negative. 

 

Participants recruited in Montreal provided nasopharyngeal samples that were stored at 2-8°C and 

tested at the CHUM using Biofire Multiplex PCR Respiratory Panel 2.1 (Biomerieux, Marcy-

L’Étoile, France).26 This panel tests for common respiratory pathogens, including viruses 

(adenovirus, COVID-19, coronaviruses, influenza A, influenza B, metapneumovirus, 

parainfluenza viruses, rhinovirus, respiratory syncytial virus [RSV]) and bacteria (Bordetella 

parapertussis, Bordetella pertussis, Chlamydia pneumoniae, Mycoplasma pneumoniae). Given the 

low tuberculosis prevalence in Montreal, participants at this site were not tested for TB. 
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6.5.4. Cough recording procedures 

 

Cough recording procedures were standardized across all study sites. Study Android smartphones 

were used to record solicited coughs upon participant enrollment, at the health facility. In Lima, 

the Xiaomi Redmi 9A was used while in Montreal the Motorola G6 smartphone was used. 

 

Cough recordings were performed using the Hyfe Research smartphone app, which has been 

previously validated for cough detection.27 The embedded cough detection algorithm assigns a 

predictive score from 0 to 1, with a higher score indicating that the sound recorded is more likely 

to be a cough. Only cough sounds with a probability score of ≥0.8 were included in this analysis. 

The cough sounds are recorded in 0.5s bursts and only capture the cough sound, preventing the 

recording of conversations. In both settings, a trained research nurse assisted the participant in 

recording their cough sounds. Participants were prompted to cough forcefully into the 

smartphone’s microphone (held approximately 30cm away from their mouth), with instructions to 

produce 5-10 coughs or as many times as was physically comfortable. All recordings were 

performed in an isolated setting to minimize the amount of background noise. Healthcare 

personnel were trained to assist participants with the recording and wore appropriate personal 

protective equipment, including N95 face masks. 

 

The sampling rate was 44.1 Hz and files had a 16-bit PCM format. Cough sound .WAV files were 

uploaded to a secured study server that was only accessible by the study staff. A unique identifier 

was used for recording coughs that could only be linked to the participant’s demographic and 

clinical data by study personnel. 

 

6.5.5. Acoustic feature extraction and descriptive analysis 

 

Prior studies performing cough-based ML classification have used different audio features capable 

of effectively representing acoustic signals.6,28,29 Following literature review and expert 

consultation with co-author GPK, we extracted 75 acoustic features. These characteristics can be 

grouped into two main categories: time-based and frequency-based features. Time-based features 

measured how the sound's intensity changed throughout the duration of the cough, similar to how 
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a volume meter moves up and down while someone is speaking. Frequency-based features 

captured the pitch and tonal qualities of the cough, much like how one can distinguish between a 

deep, rumbling cough and a high-pitched, wheezing one. Features included standard acoustic 

parameters (zero-crossing rate, energy, intensity, and various spectral measurements), 13 MFCCs, 

their 13 first-order temporal derivatives (ΔMFCC), and 40 filter bank (FBank) features. Detailed 

descriptions of these features are provided in Table S6.1. Given the non-stationary nature of cough 

signals and their rapid temporal variations, the features were analyzed using short segments known 

as frames. This processing techniques assumes that the audio signal is stationary over time within 

the analysis frame. To achieve an optimal balance between meaningful feature representation and 

achieving the stationary assumption, frames of 50 milliseconds (ms) in length were used, 

advancing across the cough signal in 25-ms increments (the frame rate), resulting in a 50% overlap 

between consecutive frames. Each frame of the audio signal was processed using a Hamming 

windowing to prevent spectral leakage,30 which can occur when abrupt frame boundaries create 

artificial frequency components that distort the signal's true spectral content. This windowing 

technique assists by gradually attenuating the signal amplitude at frame boundaries while 

preserving the central signal information. 

 

Extracted features from all frames are statistically summarized per cough sound to reduce 

dimensionality. Statistical summaries used were the mean, standard deviation, median, 25th 

percentile (q1), 75th percentile (q3), skewness, kurtosis, minimum, maximum, and range. This 

aggregation effectively reduces the information to a single vector that represents the overall 

statistical behavior of the features across the entire cough signal. 

 

Box plots were used to visualize the distribution of acoustic features extracted from cough 

recordings at both sites (Lima and Montreal). To compare audio features between Lima and 

Montreal, independent Wilcoxon tests of 15 acoustic parameters were performed (only the first 

and last MFCC, ΔMFCC, and FBank were compared). The Bonferroni correction method was 

applied to control the family-wise error rate and reduce the probability of type I errors (false 

positives) that naturally increase when conducting multiple statistical tests. While this conservative 

approach increases the risk of type II errors (false negatives), we prioritized minimizing false 

discoveries given the exploratory nature of these acoustic analyses. Statistical significance was set 



 

 140 

at α=0.05, resulting in an adjusted significance threshold of 0.003 (0.05/15) for individual 

comparisons. Additional comparisons were made within each dataset between COVID-19 positive 

and COVID-19 negative individuals. 

6.5.6. Machine learning approach 

 

An eXtreme Gradient Boosting (XGboost) classifier was employed as the machine learning 

approach for training on the extracted features.31 XGBoost is a non-parametric decision tree 

ensemble algorithm used primarily for classification tasks for complex tabular datasets. The 

ensemble approach combines multiple simpler models (in this case, decision trees) that work 

together to make predictions.32 Each new tree in the ensemble learns from the mistakes of previous 

trees, focusing on correcting misclassified samples by assigning higher weights, ultimately 

producing a robust classifier that is more accurate than any single decision tree could be alone 

(Figure 6.1). This choice of classifier was informed by the complexity of the dataset, expert 

consultation (GPK), and previous cough classification studies, which demonstrated XGboost and 

other ensemble boosting model’s ability to achieve high performance while maintaining 

interpretability.33–35 The model was developed in Python version 3.12 using the package xgboost.31 

Since the study’s objective is not aimed at generating the best performing classifier, but instead to 

investigate differences in acoustic features and model performance between, no other ML classifier 

was tested. 
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Figure 6.1. Schematic representation of the Gradient Boosting (GB) process that occurs as 

part of Extreme Gradient Boosting (XGBoost) architecture. The algorithm sequentially builds 

decision trees where each subsequent tree learns from the errors of previous trees. Initially, data 

points (shown in green) are processed through the first decision tree. For subsequent trees, the data 

is reweighted (shown in different colors) based on prediction residuals. Each tree is a weak 

classifier, but the ensemble combination of all trees' predictions produces a strong classifier, 

demonstrating XGBoost's ensemble boosting principle. In addition to the GB depicted, XGBoost 

has additional regularization terms that reduce overfitting. (Source: Deng et al.36) 

 

XGBoost uses a loss function (Equation 6.1) for optimizing model performance by 

simultaneously minimizing prediction errors and controlling model complexity through 

regularization. The first term, ∑ 𝑙(𝑦4! , 𝑦!)! ,, is the loss function that measures the sum of the 

difference between predicted values (ŷᵢ) and actual values (yᵢ), quantifying how well the model 

makes predictions. The second term, ∑ Ω(𝑓:): , is the regularization component where Ω measures 

the complexity of each individual decision tree (fₖ) in the ensemble, and the sum (Σₖ) accumulates 

these complexity penalties across all trees. The complexity measure Ω considers factors such as 

the number of leaves (prediction outputs), effectively penalizing trees that become too elaborate. 

By adding these complexity penalties to the objective function, XGBoost automatically favors 

simpler tree structures that are less likely to overfit the training data. 
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Equation 6.1.   𝐿(Φ) = ∑ 𝑙(𝑦4! , 𝑦!) + ∑ Ω(𝑓:):!  

 

Hyperparameters are model configuration settings that control the learning process and must be 

set prior to training. Table 6.1 presents the optimized hyperparameters, their functional definitions, 

and the ranges over which they were tuned. These include parameters controlling tree construction 

(n_estimators, max_depth), regularization terms (reg_lambda, reg_alpha), and various 

optimization settings that help prevent overfitting and manage model complexity. 

 
Table 6.1. Hyperparameters optimized in the XGBoost model. 

Hyperparameter Definition Range 
n_estimators The total number of sequential prediction models 

(trees) combined to make the final prediction. 
200, 300, 400, 500 

max_depth The maximum number of sequential decisions 
allowed in each tree model. 

3, 4, 5 

gamma A threshold value that determines if further splitting 
of data is worthwhile. Higher values result in more 
conservative (simpler) models. 

0.3, 0.5, 0.7 

reg_lambda A penalty term that helps prevent extreme 
prediction values, leading to more stable and 
generalizable models. 

3, 5, 7 

reg_alpha A penalty term that helps identify and focus on the 
most important predictive features. 

0.5, 1, 2 

learning_rate Controls how much each new tree contributes to the 
final prediction. Smaller values make the model 
more robust but require more trees. 

0.05, 0.01, 0.1 

colsample_bytree For each tree, randomly uses only a portion of the 
available predictive factors. This helps prevent the 
model from becoming overly dependent on specific 
factors. 

0.5, 0.7, 0.9 

colsample_bylevel At each decision point in a tree, randomly uses only 
a portion of the available predictive factors, 
encouraging the model to consider diverse 
relationships in the data. 

0.5, 0.7, 0.9 

 

The cough sound and clinical datasets were divided into a 4:1 ratio for model training and 

validation, respectively. This split was stratified by participant to ensure that all cough sounds from 

the same individual remained in the same subset. For experiments evaluating models on combined 

Lima and Montreal datasets, the split was additionally stratified by setting. To address class 
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imbalance, Synthetic Minority Over-sampling Technique (SMOTE) was applied to the feature 

space of the training set.37 Hyperparameter tuning (Table 6.1) was then performed using grid 

search with a nested, stratified 5-fold cross-validation on the training set. A final model was 

evaluated on the test set. To enhance robustness, this training and validation process was repeated 

across five different random seeds. 

 

To quantify and interpret the contribution of individual features to the model's predictions, a 

SHapley Additive exPlanations (SHAP) analysis was performed.38,39 SHAP calculates each 

feature's contribution to the model's predictions by systematically evaluating how each feature, 

alone or in combination with others, influences the model's output. This approach allows for 

ranking features by their relative importance and understanding their individual impact on model 

predictions. For this analysis, the shap package was used in Python.40 

 

6.5.7. Neural network approach 

 

For each participant, the raw .WAV cough sound files were concatenated into single audio files in 

temporal order of when the person coughed (Figure 6.2). After testing different audio chunks and 

overlap lengths, the audio files were segmented into 3-second chunks with a 1-second overlap. If 

an audio file was shorter than the chunk length (3 seconds), it was repeated until it reached the 

required length. SMOTE was applied to the feature space of the training set. This approach ensured 

a consistent data format and provided the best balance between longer recording periods and 

sufficient data points for analysis. 
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Figure 6.2. Mel spectrogram visualization of concatenated cough audio recordings. The 

spectrogram shows multiple 3-second chunks of cough audio data with 1-second overlap between 

segments. Each vertical segment represents a 3-second chunk, with darker bands indicating the 

transitions between chunks. The frequency components (y-axis, 0-4096 Hz) and their intensities 

(color scale, -80 to 0 dB) reveal the acoustic characteristics of the cough sounds across time. The 

repetitive patterns visible in some segments likely indicate where shorter audio files were repeated 

to reach the standard 3-second chunk length 

 

The raw audio signals were converted into Mel-spectrograms using the Fbank module from 

SpeechBrain—a PyTorch-powered toolkit specializing in audio AI analyses.33 This process 

includes framing the audio into overlapping windows, applying a short-time Fourier transform 

(STFT) to each window,34 and then mapping the resulting frequency domain representation onto 

the Mel scale using a filter bank. The STFT is configured with a window length of 25 ms, a hop 

length of 10 ms, and 400 Fast Fourier Transform points. 

 

The ECAPA-TDNN (Emphasized Channel Attention, Propagation, and Aggregation Time Delay 

Neural Network) model was employed for COVID-19 cough classification. This architecture, 

known for its state-of-the-art performance in audio recognition tasks,35 is designed to capture 

intricate temporal and spectral patterns in audio data. The ECAPA-TDNN model consists of 

multiple convolutional layers with varying kernel sizes and dilation rates, allowing it to effectively 

model both short-term and long-term dependencies in the audio signal. 
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SpeechBrain was used to train, validate, and test the ECAPA-TDNN algorithms. The segmented 

audio files were split into a ratio of 4:1 for model training and testing. The input features were 

extracted as Fbank representations with 80 Mel-frequency bands, a value determined empirically 

through testing different numbers of frequency bands. This choice represents a balance between 

capturing sufficient spectral information and avoiding model overfitting through excessive 

parameterization, as lower numbers of bands resulted in reduced model performance.36 These 

features are normalized and processed through the ECAPA-TDNN layers to produce a fixed length 

embedding of size 512. This embedding is passed through a fully connected layer followed by 

softmax output layer, which generates probability scores for the COVID-positive and COVID-

negative classes. The model training employed an additive angular margin loss function to enhance 

discriminative power by maximizing the margin between different classes in the feature space. 

 

6.5.8. Classification experiments 

 

A series of experiments were conducted to evaluate the models’ performance and generalizability 

across different datasets (Table 6.2). Various training and testing configurations were explored, 

including within-dataset validation (e.g., training and testing on Lima dataset) and external 

validation (e.g., training on Lima dataset and testing on Montreal dataset). An additional within-

dataset experiment explored the performance of models trained and tested on the combined dataset 

(Lima and Montreal). 

 

Within-dataset validation (e.g., training and testing on Lima dataset) were performed using both 

the LR and ECAPA-TDNN model configurations. For comparison, an additional within-dataset 

model was trained using a combination of data from Montreal and Peru. Features used for this 

analysis derived from the same dataset. 

 

Table 6.2. Summary of classification experiments. 

Experiment Training set Test set 

Within-dataset 
Lima Lima 
Montreal Montreal 
Combined Combined 

External validation Lima Montreal 
Montreal Lima 
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For XGBoost, experiments listed in Table 6.2 were performed three times with different features 

inputs: using only audio features (“Audio”), using only clinical and demographic features 

(“Clinical”), and once using audio and clinical/demographic features (“Audio+Clinical”). The 

clinical and demographic information used includes participant age, sex, smoking status, body 

mass index, cough duration, additional symptoms (e.g., fever, headache), and country (for the 

combined evaluation) that were collected at time of enrollment. For the ECAPA-TDNN, only 

experiments using audio features were performed. 

 

6.5.9. Model evaluation 

 

The primary performance metric utilized for model evaluation was the AUC, computed using the 

pROC package in R.45 The AUC measures the model's ability to discriminate between positive and 

negative classes (e.g., disease present vs. absent) across all possible classification thresholds. This 

is particularly valuable as it assesses model performance independently of any single decision 

threshold, making it robust for comparing models across different populations where optimal 

classification cutoffs may vary. Supplementary performance metrics included the specificity at 

70% and 80% sensitivity, accuracy, and F1 score. Specificity at fixed sensitivity levels (70% and 

80%) indicates the model's ability to correctly identify negative cases while maintaining a 

predetermined rate of correct positive case identification. Accuracy is the proportion of correct 

predictions (both true positives and true negatives) among all predictions made (Equation 6.2), 

providing a general measure of model performance. The F1-score is the harmonic mean of 

precision and recall (Equation 6.3), providing a balanced measure of model performance that 

considers both false positives and false negatives, which is particularly useful when dealing with 

imbalanced datasets. Both accuracy and F1-score were calculated based on a threshold of 0.5, 

meaning that prediction scores >0.5 were COVID-19 positive. To account for variability 

introduced by different random seeds in data partitioning, all metrics were computed for each seed 

iteration. The central tendency of each metric was represented by the mean across all seeds, with 

the accompanying standard error (SE) serving as a measure of dispersion. 

 

Equation 2.   Accuracy = ABCAD
ABCADCEBCED
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Equation 3.   F1	score = -	×	BHIJKLKMN	×	OIJPQQ
BHIJKLKMN	C	OIJPQQ

= AB
ABC	$ -R (EBCED)

 

 

6.5.10. Sub-analysis 

 

To further evaluate the discriminative ability of the XGBoost classifier, a sub-group analysis was 

conducted using prediction scores from the above-motioned within-dataset XGBoost models. 

Based on microbiological test results, participants were categorized into three groups: 1) COVID-

19 positive, 2) positive for other tested respiratory diseases (e.g., TB, influenza, etc.), and 3) 

negative for all tested diseases. The Wilcoxon test was employed to assess statistical differences 

in XGBoost prediction scores among these groups. In alignment with the cough classifier's training 

methodology, individuals co-infected with COVID-19 and other diseases were classified as 

COVID-19 positive. 

 
6.5.11. Ethics 

 

All participants provided written informed consent. In Lima, Peru, the studies involved in the 

recruitment phases received ethical approvals from the Comité Institucional de Ética en 

Investigación at Universidad Peruana Cayetano Heredia (Phase 1: SIDISI 202931/SIDISI 206951, 

and Phase 2: SIDISI 210857) and the McGill University Health Centre Research Ethics Board 

(2021-6866). The studies were registered in the PRISA repository at Instituto Nacional de Salud 

in Peru (Phase 1: EI00000001484/EI00000002576, and Phase 2: EI00000003221). 

 

In Montreal, Canada, ethical approval was obtained from the Comité d’éthique à la recherche du 

Centre de Recherche du Centre Hospitalier de l’Université de Montréal under IRB # MP-02-2022-

10470, 21.351. 
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6.6. Results 

 

6.6.1. Participants 

 

Overall, 610 participants were enrolled in the study, of whom 310 were recruited in Lima and 300 

in Montreal. In Lima, 150 individuals were recruited in Phase 1 and an additional 160 were 

recruited during Phase 2. Four individuals were excluded from Lima due to a loss of cough 

recording data (n=1; Phase 1) or because both COVID-19 tests produced invalid results (n=3; 

Phase 2). In Montreal, one person was excluded due to a loss of cough recording data. The final 

sample size for this study was 605 participants. From these participants, 10,721 individual cough 

recordings were used for model training and evaluation: 5,889 from Lima and 4,832 from 

Montreal. 

 

Baseline demographic and clinical features are summarized in Table 6.3 by setting. In general, 

participants recruited in Lima presented with more severe symptoms, including longer cough 

duration days and a higher prevalence of symptoms. COVID-19 was more prevalent in Montreal, 

with 34.1% of participants receiving a positive diagnosis compared to 11.8% of participants in 

Lima. In Lima, all individuals enrolled in Phase 1 and Phase 2 were additionally tested for TB. A 

total of 94 (94/306; 31.3%) had a positive TB diagnosis. During Phase 2 of recruitment (n=157), 

additional testing was performed for influenza A, influenza B, and RSV. Nine (9/157; 5.7%) 

individuals were influenza A positive and two (2/157; 1.3%) were RSV positive. In Montreal, the 

multiplex panel was performed on all participants. The most common other infections were due to 

rhinovirus (n=50; 16.7%) followed by influenza A (n=10; 3.3%). Of the 605 participants, 11 (1.8%) 

were co-infected with COVID-19 and another pathogen: 5/306 (1.6%) in Lima and 6/299 (2.0%) 

in Montreal. 
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Table 6.3. Baseline demographic and clinical characteristics of participants recruited in 

Lima and Montreal. 

 Lima Montreal Total 
 n=306 n=299 n=605 
Age (years), 
median (IQR) 36 (24, 52) 40 (30, 53) 38 (27, 52) 

Sex, n (%)    
  Female 135 (44.1) 218 (72.9) 353 (58.3) 
  Male 171 (55.9) 81 (27.1) 252 (41.7) 
Smoking status, n (%)    
  Current 10 (3.3) 38 (12.7) 48 (7.9) 
  Former 23 (7.5) 42 (14.0) 65 (10.7) 
  Never 273 (89.2) 219 (73.2) 492 (81.3) 
BMI, median (IQR) 23.9 (21.7, 26.8) 25.7 (22.1, 29.3) 24.8 (21.9, 27.8) 
Cough duration (days), 
median (IQR) 21 (10, 35) 3 (2, 7) 8 (3, 25) 

Symptoms, n (%)    
  Headache 241 (78.8) 143 (47.8) 384 (63.5) 
  Fever 161 (52.6) 66 (22.1) 227 (37.5) 
  Sore throat 237 (77.5) 154 (51.5) 391 (64.6) 
  Loss of smell/taste 25 (8.2) 15 (5.0) 40 (6.6) 
  Muscle pain 218 (71.2) 80 (26.8) 298 (49.3) 
  Fatigue 145 (47.4) 130 (43.5) 275 (45.5) 
  Nausea 87 (28.4) 9 (3.0) 96 (15.9) 
  Diarrhea 68 (22.2) 15 (5.0) 83 (13.7) 
COVID-19, n (%) 36 (11.8) 102 (34.1) 138 (22.8) 
Other diagnoses 
  Adenovirus 
  Bordetella parapertussis 
  Bordetella pertussis 
  Chlamydia pneumoniae 
  Influenza A 
  Influenza B 
  Metapneumovirus 
  Mycoplasma pneumoniae 
  Other coronavirus** 
  Parainfluenza virus 
  Rhinovirus 
  RSV 
  TB 

NA 
NA 
NA 
NA 
9 (5.7)* 
0 (0.0)* 

NA 
NA 
NA 
NA 
NA 
2 (0.4)* 
94 (31.3) 

1 (0.3) 
0 (0.0) 
0 (0.0) 
0 (0.0) 
10 (3.3) 
0 (0.0) 
6 (2.0) 
0 (0.0) 
11 (3.7) 
7 (2.3) 
50 (16.7) 
2 (0.7) 
NA 

 
1 (0.2) 
0 (0.0) 
0 (0.0) 
0 (0.0) 
19 (3.1) 
0 (0.0) 
6 (1.0) 
0 (0.0) 
11 (1.8) 
7 (1.2) 
50 (8.3) 
2 (0.3) 
94 (15.5) 

*Influenza A, Influenza B, and RSV testing was only performed for participants recruited during Phase 2 in Lima 
(n=157 participants). 
**Coronavirus HKU1, coronavirus NL63, Coronavirus 229E, Coronavirus OC43. 
BMI, body mass index; IQR, interquartile range; NA, not available; n, number; RSV, respiratory syncytial virus; TB, 
tuberculosis 
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6.6.2. Feature distribution 

 

Differences in mean acoustic features among individuals recruited in Lima and Montreal are 

illustrated in Figure 6.3. Detailed definitions for each acoustic feature are presented in Table S6.1. 

While a statistically significant difference can be seen between most features, some features show 

more pronounced differences. For instance, the box plots for spectral features (centroid, spread, 

entropy, flux, rolloff) all show minimal overlap. These differences between populations are more 

pronounced than within-dataset differences between COVID-19 positive and COVID-19 negative 

individuals, as illustrated for Lima in Figure S6.1 and Montreal in Figure S6.2. 

 

 
Figure 6.3. Comparison of mean acoustic cough feature distributions among participants in 

Lima, Peru (red; N=306 participants) and Montreal, Canada (blue; N=299 participants). 

Only the first and last MFCC, ΔMFCC, and FBank are illustrated. Statistically significant 

differences (P<0.001) based on t-tests with Bonferroni correction are observed for all features 

except the ΔMFCC1. ZCR, zero-crossing rate; MFCC, Mel-frequency cepstral coefficients; 

FBank, filter-bank. Definitions for all features are presented in Table S6.1. 
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6.6.3. Classifier results 

 

Model performance varied across datasets (Figure 6.4). When using the same dataset for training 

and testing (Figure 6.4A), distinct patterns emerged between Lima and Montreal cohorts. In the 

Lima dataset, audio-based models showed superior performance, with the 'Audio' and 

'Audio+Clinical' models achieving mean AUCs of 0.71 (standard error [SE] ± 0.08) and 0.73 (SE 

± 0.06), respectively, both outperforming the 'Clinical' model (0.63; SE ± 0.07). In contrast, the 

Montreal dataset showed different trends, where models incorporating clinical features performed 

better: both the 'Audio+Clinical' (0.66; SE ± 0.05) and 'Clinical' (0.64; SE ± 0.06) models achieved 

higher AUCs compared to the 'Audio' model alone (0.53; SE ± 0.04). SHAP analyses revealed 

distinct combinations of audio features that enhanced predictive performance across the “Audio” 

models (Figure S6.3). The “Audio+Clinical” models demonstrated similar variations in audio 

feature importance (Figure S6.4), while clinical parameters including cough duration, age, and 

BMI remained consistently important predictors across Lima, Montreal, and the combined dataset 

analyses. 

 

All three within-dataset models in Lima demonstrated poor F1-scores <0.25 (Table S6.2), 

indicating poor performance in detecting the minority case when the threshold for COVID-19 

positive was set at >0.5. Unlike the Peru dataset, the Montreal cohort demonstrated more balanced 

performance metrics, with F1-scores approximating 0.50 across all three models, reflecting the 

more balanced distribution of COVID-19 cases in the Montreal dataset. 

 

When model training combined the Montreal and Lima datasets, the mean AUC for the “Audio” 

model was 0.67 (SE ± 0.03). Combined “Clinical” and “Audio+Clinical” improved with a mean 

AUC of 0.71 (SE ± 0.03) and 0.72 (SE ± 0.03) respectively. However, when disaggregating the 

combined results by setting (Figure S6.5), a difference in AUCs was observed between sites. For 

the “Audio” model, the AUC in Lima remained the same as the overall AUC (0.67; SE ± 0.04) 

however the AUC in the Montreal dataset decrease to 0.59 (SE ± 0.09). This reduction occurred 

for both Lima and Montreal in the “Audio+Clinical” model with AUCs of 0.62 (SE ± 0.09) and 

0.53 (SE ± 0.05) respectively. 
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Figure 6.4. Comparison of model performance using three feature sets in XGBoost classifiers 

using datasets from Lima, Peru and Montreal, Canada. A) Within-dataset validation 

demonstrates AUC scores across Lima, Montreal, and Combined datasets. B) External validation 

results show generalizability of models across different testing populations. Models were 

evaluated using Area Under the Curve (AUC) metrics averaged across five independent seeds, 

with error bars indicating the standard error across seeds. 

 

External validations (Figure 6.4B) revealed substantial performance decreases. Models optimized 

and trained on one dataset performed poorly when applied to the other. “Audio” models trained in 

Montreal and validated in Lima achieved a mean AUC of 0.53 (SE ± 0.03) while the “Audio” 

models trained in Lima and validated in Montreal achieved a mean AUC of 0.51 (0.01). Models 

that used “Clinical” and “Audio+Clinical” variables reported similar poor performance. 

 

Results from the neural network ECAPA-TDNN assessment of “Audio” models are presented in 

the Table S6.3. As observed in the XGBoost “Audio” model, the mean AUC was higher in the 
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Lima dataset (0.60; SE ± 0.07) compared to the Montreal dataset (0.54; SE ± 0.02). External 

validation in the counterpart dataset resulted in a decrease in performance in both models as was 

observed in the XGBoost models. 

 

6.6.4. Sub-analysis: Logistic regression COVID-19 prediction score based on underlying disease 

 

The distribution of COVID-19 prediction scores from the XGBoost within-dataset models (models 

presented in Figure 6.4A) reveals distinct patterns across settings, underlying disease status, and 

model configurations (“Audio”, “Clinical”, and “Audio+Clinical”) (Figure 6.5). The prediction 

scores for the XGBoost models ranged from 0 to 1.0, with a higher score indicating that the 

observation is more likely to be labeled as COVID-19 positive. 

 

Prediction scores in the Lima dataset were predominantly below 0.50 across all three models, 

reflecting the previously-mentioned low F1-score. For the "Audio" model, COVID-19 positive 

cases showed the highest median prediction score (0.49; IQR: 0.46, 0.55), which was significantly 

higher than both other diseases (0.44; IQR: 0.35, 0.49; p=0.001) and disease-negative cases (0.46; 

IQR: 0.39, 0.51; p=0.04) (Figure 6.5A). While statistically significant, these differences were 

modest in absolute terms. The Montreal dataset showed even smaller distinctions between disease 

groups, with identical median scores for COVID-19 positive cases and other diseases (0.50; IQR: 

0.48, 0.49 and 0.50; IQR: 0.49, 0.52 respectively; p=0.101). 
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Figure 6.5. Distribution of COVID-19 prediction scores from the XGBoost classifier's within-

dataset validation, stratified by disease status (COVID-19 positive, other disease positive, 

and negative for all diseases tested) and study site. The XGBoost models were trained and tested 

on the same dataset. A) “Audio” models only used audio features as inputs. B) “Clinical” models 

only used clinical and demographic features as inputs. C) “Audio+Clinical” models combined 

audio features with clinical and demographic features. P-values from Wilcoxon tests with 

Bonferroni correction for multiple comparisons indicate statistical significance of between-group 

differences. Horizontal bars show pairwise comparisons, with p-values displayed above each 

comparison. Statistical significance was set at p<0.05. 

 
The "Clinical" models demonstrated greater spread in prediction score distributions (Figure 6.5B). 

In Lima, the increased overlap between distributions reduced the statistical significance compared 

to the "Audio" models. Montreal's results showed higher prediction scores for COVID-19 positive 

cases compared to negative cases (0.56; IQR: 0.45, 0.59 versus 0.41; IQR: 0.15, 0.53; p<0.001), 

though no significant difference emerged between COVID-19 positive and other disease cases 

(0.53; IQR: 0.41, 0.60; p=1.000). 

 

The combined "Audio+Clinical" model (Figure 6.5C) enhanced performance in Lima, most 

notably between COVID-19 positive and other disease groups (0.53; IQR: 0.44, 0.61 versus 0.35; 
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IQR: 0.28, 0.43 respectively; p<0.001), with a less pronounced difference between COVID-19 

positive and disease-negative groups (0.40; IQR: 0.30, 0.51; p=0.012). Montreal's results 

paralleled the "Clinical" model pattern, showing better discrimination between COVID-19 and 

disease-negative groups (0.52; IQR: 0.47, 0.56 vs 0.44; IQR: 0.27, 0.53; p<0.001) but no 

significant difference between COVID-19 positive and other disease groups (0.52; IQR: 0.48, 0.57; 

p=1.000). 

 

6.7. Discussion 

 

This study demonstrates that cough acoustic features display significant heterogeneity between 

individuals recruited in Lima, Peru and Montreal, Canada. These differences underscore the 

potential influence of population-specific demographic and physiological characteristics on cough 

acoustics; an aspect of cough classification research that to date has been largely unexplored. 

Consideration must also be given to the impact of technological variability between smartphones 

used for recording in different settings, as differences in audio capture capabilities could 

significantly affect the measurement of acoustic features. The heterogeneity between cohorts is 

further reflected in the SHAP analyses of XGBoost models. Although both datasets predominantly 

relied on features derived from Mel-frequency analysis (specifically FBanks and MFCCs), 

consistent with previous research,9,46,47 the relative importance of specific acoustic features for 

optimal COVID-19 classification differed between the two populations. 

 

A critical finding from this study is the poor transferability of cough-based COVID-19 detection 

models between settings, regardless of the analytical approach used (machine learning or neural 

networks). This limitation aligns with previous studies examining model transferability across 

crowdsourced datasets.48 Notably, the addition of clinical features to audio data did not improve 

external validation performance, suggesting that factors such as demographics and clinical 

presentations influence model transferability. 

 

Models that combined the Lima and Montreal datasets resulted in relatively high AUC scores. 

However, when the results from the combined model were disaggregated by study site and 

analyzed separately, differences in performance metrics were observed between sites. COVID-19 
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prediction scores assigned to the observations from the combined dataset also differed: Montreal 

participants received higher COVID-19 prediction scores compared to Lima participants, even 

when using only audio features without any location information. This bias suggests the model 

may be detecting subtle recording characteristics specific to each site and incorrectly associating 

them with COVID-19 status, possibly influenced by Montreal's higher COVID-19 prevalence. 

Rather than learning true acoustic signatures of COVID-19, the model might be learning to 

recognize site-specific recording artifacts and erroneously using these to make predictions. These 

findings highlight critical technological challenges for developing globally applicable cough-

based diagnostic algorithms, as variations in smartphone hardware specifications, microphone 

quality, and ambient recording conditions across different settings can introduce systematic biases 

to the classifier. 

 

Analysis of the COVID-19 classifier performance across different disease profiles revealed distinct 

patterns between the two cohorts. In Lima, participants with other diseases (predominantly TB) 

received notably lower COVID-19 prediction scores compared to both COVID-19 positive and 

disease-negative individuals. In contrast, the Montreal cohort showed similar prediction scores 

between COVID-19 positive cases and those with other diseases, which were primarily viral 

respiratory infections. These findings align with previous research suggesting that algorithms can 

more effectively distinguish COVID-19 coughs from bacterial infections than from other viral 

infections, likely due to distinct pathological mechanisms.49–53 The observed differences highlight 

how local disease prevalence patterns may influence cough classifier performance, particularly 

when deploying models across settings with varying epidemiological landscapes. 

 

This study has several limitations. It is important to note that the primary objective of this study 

was to investigate audio features across different populations rather than to develop the best-

performing COVID-19 classifier. As such, only one AI and one ML approach were explored. While 

this focused approach served our research goals, it also presents a limitation. Additional work 

would be necessary to explore alternative models and potentially achieve higher classification 

performance both within dataset and in external validation. There was also a risk of overfitting, 

which is particularly concerning when working with limited datasets and complex models. 

However, the study's use of nested cross-validation for hyperparameter tuning helped mitigate this 



 

 157 

risk by providing unbiased performance estimates and ensuring that the validation data remained 

truly independent from the hyperparameter optimization process. Class imbalance emerged as a 

significant issue, particularly pronounced in the Lima dataset. While obtaining larger, more 

balanced datasets would undoubtedly lead to improved models, this solution may not always be 

feasible due to resource constraints. An alternative could involve applying advanced generative AI 

techniques to create synthetic cough sounds for the minority class.54 The use of different 

smartphones between the two sites with varying microphone qualities may have influenced the 

recorded cough sounds and, more critically, affected model performance in external validation 

scenarios. Although this presents a challenge for developing globally applicable algorithms, it's 

important to note that the phones selected were appropriate for local deployment, considering 

pricing and availability in each context. A notable limitation of this study lies in the sub-analysis 

evaluating the impact of co-circulating diseases on model performance across different sub-

groups. Potential misclassification of participants may have occurred, particularly when labeling 

individuals as disease negative. This is because participants could not be comprehensively tested 

for all possible infectious diseases. This limitation was especially pronounced in the Peru cohort, 

where only four other diseases were considered in Phase 2, and only TB was additionally tested in 

Phase 1. Consequently, some participants classified as 'negative' may have had undetected 

respiratory infections, potentially influencing the interpretation of the model's performance and 

the true impact of co-circulating diseases on cough classification accuracy. 

 

In conclusion, this study provides evidence that cough acoustics are population-specific, with 

models generated in one setting demonstrating poor external validity in another. These findings 

underscore the significant challenges in developing globally applicable algorithms for cough-

based COVID-19 detection. Instead, our results suggest that efforts should be focused on 

developing and implementing local algorithms in settings where the epidemiological landscape 

presents clearer distinction between disease profiles. This local approach is already recommended 

for AI algorithms for reading chest X-rays,55 and would likely yield more accurate and reliable 

screening tools for COVID-19 and potentially other respiratory diseases. Moving forward, there is 

a pressing need to transition from reliance on crowdsourced datasets with patient-reported 

outcomes to more robust reference standard testing. By addressing these aspects, researchers can 

enhance the validity and clinical applicability of cough-based diagnostics. 
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6.11. Supplementary information 

 

Table S6.1. Definition of extracted temporal and spectral acoustic features. 

Feature Description 
Zero-crossing rate (ZCR) The rate of sign-changes (positive to negative or negative to 

positive) within a frame. Higher frequencies have a high number 
of zero crossings while a low frequency should have a low number 
of zero crossings. ZCR is a temporal feature. 

Energy The energy of a frame is a measure of the audio signal’s strength 
or magnitude. It captures the overall power distribution within the 
temporal structure of the audio signal. Energy is a temporal 
feature. 

Energy entropy A measure of the changes and distribution of energy in an audio 
signal over time. It helps distinguish between steady, consistent 
sounds and those with more variation or abrupt changes. Energy 
entropy is a temporal feature. 

Intensity Acoustic intensity is a physical quantity that represents the amount 
of sound energy flowing through a unit area per unit time. In the 
context of audio signal processing, intensity is often expressed in 
decibels (dB) relative to a reference level, typically the threshold 
of human hearing. Intensity is a temporal feature. 

Spectral centroid A measure that indicates where the "center of mass" of the 
spectrum is located. Higher values correspond to brighter sounds 
with more high-frequency content, while lower values indicate 
more bass-heavy sounds. Spectral centroid is a spectral feature. 

Spectral spread Measures how the frequency components of a sound are 
distributed around the spectral centroid. A larger spread indicates a 
more diverse range of frequencies, while a smaller spread suggests 
more focused frequency content. Spectral spread is a spectral 
feature. 

Spectral entropy Quantifies the complexity or unpredictability in the frequency 
content of a sound. Higher values indicate more random, noise-
like sounds, while lower values suggest more organized, tonal 
sounds. Spectral entropy is a spectral feature. 

Spectral flux Measures the frame-to-frame change in the frequency spectrum of 
a sound. Higher values indicate rapid or significant changes in the 
spectral content, while lower values suggest more stable, 
consistent sounds. Spectral flux is a spectral feature. 

Spectral rolloff The frequency below which a specified percentage (usually 85-
95%) of the total spectral energy is contained. This helps 
differentiate between harmonic content and noisy components in 
the signal. Spectral rolloff is a spectral feature. 

Mel-Frequency Cepstral 
Coefficients (MFCCs) 

A set of 13 coefficients that represent the short-term power 
spectrum of sound, based on a linear cosine transform of a log 
power spectrum on a nonlinear mel scale of frequency. These 
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coefficients capture the general shape of the spectral envelope in a 
way that approximates human auditory perception. 

MFCCΔ The first-order temporal derivatives of the MFCC features, 
representing how MFCC values change over time. These features 
capture the dynamic aspects of speech and help in distinguishing 
between similar sounds with different temporal patterns. 

Filter banks (FBanks) A set of 40 frequency bands that divide the audio spectrum into 
regions that approximate how human hearing processes different 
frequencies. Each filter bank coefficient represents the energy 
present in its corresponding frequency band. 

 

 
Figure S6.1. Comparison of mean acoustic cough feature distributions among participants 

in Lima, Peru who were COVID-19 negative (blue; N=270 participants) and COVID-19 

positive (red; N=36 participants). Statistically significant differences (P<0.001) based on t-tests 

with Bonferroni correction are observed for all features except the ΔMFCC1. ZCR, zero-crossing 

rate; MFCC, Mel-frequency cepstral coefficients; FBank, filter-bank. 
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Figure S6.2. Comparison of mean acoustic cough feature distributions among participants 

in Montreal, Canada who were COVID-19 negative (blue; N=197 participants) and COVID-

19 positive (red; N=102 participants). Statistically significant differences (P<0.001) based on t-

tests with Bonferroni correction are observed for all features except the ΔMFCC1. ZCR, zero-

crossing rate; MFCC, Mel-frequency cepstral coefficients; FBank, filter-bank. 

 

Table S6.2. Table of model performance metrics for the XGBoost models. 

 5-seed average (standard error) 

Configuration Test set Features AUC Spec. at 
Sens.=0.70 

Spec. at 
Sens.=0.90 Accuracy* F1* 

Within-dataset 

Lima 

Audio 0.71 
(0.08) 

0.67 
(0.13) 

0.42 
(0.11) 

0.85 
(0.08) 

0.21 
(0.20) 

Clinical 0.63 
(0.07) 

0.53 
(0.17) 

0.20 
(0.18) 

0.71 
(0.07) 

0.17 
(0.06) 

Audio + 
Clinical 

0.73 
(0.06) 

0.69 
(0.12) 

0.33 
(0.17) 

0.78 
(0.02) 

0.24 
(0.07) 

Montreal 

Audio 0.53 
(0.04) 

0.38 
(0.12) 

0.21 
(0.11) 

0.52 
(0.01) 

0.33 
(0.03) 

Clinical 0.64 
(0.06) 

0.51 
(0.09) 

0.33 
(0.11) 

0.53 
(0.09) 

0.49 
(0.04) 

Audio + 
Clinical 

0.66 
(0.05) 

0.52 
(0.14) 

0.38 
(0.11) 

0.56 
(0.06) 

0.49 
(0.09) 
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Combined 

Audio 0.67 
(0.03) 

0.59 
(0.02) 

0.25 
(0.12) 

0.64 
(0.06) 

0.40 
(0.11) 

Clinical 0.71 
(0.03) 

0.60 
(0.07) 

0.32 
(0.10) 

0.64 
(0.05) 

0.46 
(0.03) 

Audio + 
Clinical 

0.72 
(0.03) 

0.65 
(0.05) 

0.37 
(0.11) 

0.65 
(0.04) 

0.49 
(0.03) 

External val. 

Lima 

Audio 0.53 
(0.03) 

0.31 
(0.078) 

0.15 
(0.07) 

0.86 
(0.01) 

0.04 
(0.04) 

Clinical 0.53 
(0.04) 

0.35 
(0.06) 

0.12 
(0.02) 

0.88 
(0.00) 

0.00 
(0.00) 

Audio + 
Clinical 

0.50 
(0.04) 

0.47 
(0.89) 

0.25 
(0.08) 

0.88 
(0.00) 

0.00 
(0.00) 

Montreal 

Audio 0.51 
(0.01) 

0.32 
(0.04) 

0.10 
(0.03) 

0.65 
(0.04) 

0.11 
(0.08) 

Clinical 0.52 
(0.04) 

0.32 
(0.04) 

0.11 
(0.01) 

0.66 
(0.00) 

0.00 
(0.00) 

Audio + 
Clinical 

0.51 
(0.03) 

0.27 
(0.05) 

0.10 
(0.02) 

0.46 
(0.13) 

0.35 
(0.21) 

*Used a threshold of 0.5, where observations >0.5 are classified as COVID-19 positive. 
AUC, area under the curve; Sens., sensitivity; Spec., specificity; val., validation 
 

 
Figure S6.3. analysis of features used in the “Audio” analysis for Peru (left), Montreal 

(middle), and Combined (right). The features are ranked vertically by their impact on model 

predictions. The most common features were MFCCs and FBanks, though their relative ranking 

between analyses differed. Positive SHAP values (x-axis) indicate stronger prediction towards 

COVID-19 positive status. Color intensity represents feature values, with red indicating higher 

values (e.g., higher mean cough energy) and blue indicating lower values. Features showing mixed 

colors in their SHAP values indicate their effects on predictions are dependent on other feature 

values, revealing complex feature interactions in the model. MFCC, Mel-Frequency Cepstral 

Coefficients ; SHAP, SHapley Additive exPlanations 
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Figure S6.4. SHAP analysis of features used in the “Audio+Clinical” analysis for Peru (left), 

Montreal (middle), and Combined (right). The features are ranked vertically by their impact on 

model predictions, with cough duration, age, and BMI consistently emerging as the top 

contributors. Positive SHAP values (x-axis) indicate stronger prediction towards COVID-19 

positive status. Color intensity represents feature values, with red indicating higher values (e.g., 

older age) and blue indicating lower values. Features showing mixed colors in their SHAP values 

indicate their effects on predictions are dependent on other feature values, revealing complex 

feature interactions in the model. Notably, shorter cough durations (blue) are associated with 

COVID-19 positive predictions. The wider spread of SHAP values for clinical variables (cough 

duration, age, BMI) indicates these features can more strongly influence predictions in either 

direction, while the narrower spread of audio features suggests their individual effects are more 

modest and might work better in combination. BMI, body mass index; SHAP, SHapley Additive 

exPlanations 
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Figure S6.5. Conditional areas under the curve (AUCs) from the combined model stratified 

by setting (Lima, Peru and Montreal, Canada). The model shows varying performance between 

sites, with generally higher AUCs observed in Lima compared to Montreal for the “Audio” and 

“Audio+Clinical” feature set. Dots represent seed averages with error bars representing the 

standard error. 

 

Table S6.3. Table of model performance metrics for the ECAPA-TDNN models. 

 5-seed average (standard error) 

Configuration Test set Features AUC Spec. at 
Sens.=0.70 

Spec. at 
Sens.=0.90 Accuracy* F1* 

Within-dataset 

Lima Audio 0.60 
(0.07) 

0.49 
(0.30) 

0.07 
(0.05) 

0.34 
(0.13) 

0.20 
(0.10) 

Montreal Audio 0.54 
(0.02) 

0.39 
(0.12) 

0.15 
(0.07) 

0.39 
(0.10) 

0.49 
(0.04) 

Combined Audio 0.64 
(0.07) 

0.52 
(0.26) 

0.19 
(0.25) 

0.32 
(0.23) 

0.35 
(0.17) 

External val. 
Lima Audio 0.52 

(0.01) 
0.35 

(0.04) 
0.14 

(0.03) 
0.28 

(0.05) 
0.32 

(0.01) 

Montreal Audio 0.52 
(0.01) 

0.33 
(0.03) 

0.13 
(0.02) 

0.44 
(0.11) 

0.45 
(0.09) 

*Used a threshold of 0.5, where observations >0.5 are classified as COVID-19 positive. 
AUC, area under the curve; Sens., sensitivity; Spec., specificity; val., validation 
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Chapter 7. Manuscript V: External validation of cough-based algorithms for 

pulmonary tuberculosis triage from the CODA TB DREAM Challenge using 

cough data from Peru 
 

7.1. Preface 

 

The previous manuscript demonstrated that COVID-19 cough screening models trained on one 

population transferred poorly to other settings, highlighting the challenges of developing globally 

applicable AI tools for cough sound analysis. Building on these insights about the external validity 

of cough classification models, this manuscript examines similar questions in the context of TB 

triage models. We utilized models that were developed as part of the COugh Diagnostic Algorithm 

for Tuberculosis (CODA TB) DREAM Challenge using cough data from seven countries in Asia 

and Africa and externally validated them on a cough dataset collected in Peru. This work adds to 

the growing evidence that cough-based AI algorithms may be inherently population-specific, 

suggesting that future development efforts should focus on creating and validating models for local 

contexts rather than pursuing a one-size-fits-all approach. 
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7.2. Title page 
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7.3. Abstract 

 

Introduction 

 

The COugh Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM Challenge recently 

evaluated the performance of artificial intelligence (AI) algorithms for tuberculosis (TB) triage 

using cough sounds. The CODA Challenge developed and internally validated 11 AI models using 

a dataset of 733,756 cough sounds collected from 2,143 adults from seven countries in Africa and 

Asia. This study externally evaluates the 11 AI models developed using the CODA Challenge with 

an external cough dataset from Peru. 

 

Methods 

 

Cough recordings from 303 coughing adults were collected from health facilities in Lima, Peru, 

using the Hyfe Research smartphone application. Eleven AI models from the CODA Challenge 

were evaluated using this independent dataset. Model performance was assessed using area under 

the curve (AUC) and compared to the original CODA Challenge results. 

 

Results 

 

The AUCs of the models ranged from 0.480 to 0.615, showing a decrease in performance 

compared to the model’s performance when internally validated using the CODA Challenge, which 

ranged from 0.689 to 0.743. The best performing model in the CODA Challenge was also the best 

performing model in this external validation. Sub-group analyses revealed that models performed 

better in older (≥35 years) populations and among people with prior TB. No difference in model 

performance was observed between sex and whether the person presented with a fever. 

 

Conclusion 

 

The external validation revealed limitations in the generalizability of the CODA Challenge models 

to other settings. While some models showed promise, the overall performance decline highlights 
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the need for continued model validation on completely external datasets. It also underscores the 

importance of developing context-specific models as a viable alternative strategy. Such an 

approach could potentially yield higher accuracy in local settings, accounting for population-

specific factors that influence cough characteristics and TB prevalence. 
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7.4. Introduction 

 

Advances in artificial intelligence (AI) and digital health have sparked interest in the use of cough 

sounds as a biomarker for screening and monitoring respiratory diseases.1,2 The emerging field of 

acoustic epidemiology applies methods in AI to detect signals in sound recordings, including 

cough, that may indicate underlying respiratory condition. 

 

Pulmonary tuberculosis (PTB), a bacterial infectious disease, continues to pose significant global 

health challenges, with over 2.7 million people with TB remaining undetected or not notified in 

2023.3 To address this critical gap in detection, innovative diagnostic and screening tools are 

needed. Among these, AI-based cough screening tools have emerged as a promising solution for 

point-of-care triage.4,5 These advanced technologies, accessible via smartphone applications, offer 

a novel approach that could improve TB screening by making it more readily available to both 

healthcare providers and patients. 

 

Several AI models have been developed for PTB triage from cough sounds.6–9 The most recent and 

largest initiative is the COugh Diagnostic Algorithm for Tuberculosis (CODA TB) DREAM 

Challenge (hereafter referred to as the CODA Challenge).10,11 This public challenge, hosted on 

Synapse (www.synapse.org/tbcough), invited academics and companies with an interest in 

developing AI models for TB triage using cough sounds to participate. The CODA Challenge ran 

from October 2022 until February 2023. The top-performing model for cough-only (i.e., without 

using any other clinical data) challenge was the ‘Blue Team’ from Flywheel.io, achieving an area 

under the curve (AUC) of 0.743 (95% confidence interval [CI]: 0.703, 0.780).11 

 

While these findings are promising, it is not clear how these models would perform on independent 

datasets from distinct populations, particularly from countries not involved in the models’ original 

development. Factors such as the variability in human phenotypes, differences in recording devices 

and environments, and the local epidemiology of PTB and other respiratory diseases are expected 

to impact cough-based triage models’ performance. To address this, the present study is an external 

evaluation of models submitted to the CODA Challenge that only used cough sounds for PTB 

classification (referred to as sub-challenge 1 in the CODA Challenge results manuscript).11 In this 
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context, classification refers to the process of categorizing individuals as either likely to have PTB 

or not, based on their cough sounds. This evaluation employs cough data from a cohort of people 

with presumed PTB who were recruited in Lima, Peru, using the Hyfe Research application. By 

assessing these algorithms’ performance on an independent and geographically distinct dataset, 

this study aims to provide insights into the transferability and real-world applicability of cough-

based PTB screening tools. 

 

7.5. Methods 

 

7.5.1. Enrollment setting and timeline 

 

Participants for the external validation dataset were prospectively enrolled from Hospital de 

Huaycán, a public secondary referral hospital in the Ate-Vitarte district, and a network of 33 

primary health centers of the San Juan de Lurigancho district. Enrollment took place in two phases. 

Phase 1 ran from March 2022 to January 2023, where participants were recruited from the cohort 

of a parent study investigating the diagnostic accuracy of integrated TB and COVID-19 testing.12 

Phase 2, conducted from July 2023 to March 2024, was an independent cohort study that enrolled 

new participants to record their coughs at the same health facilities.  

 

7.5.2. Inclusion and exclusion criteria 

 

The study consecutively enrolled adults aged 18 years and older who presented with a new-onset 

cough. For Phase 1, the exclusion criteria from the parent diagnostic accuracy study were applied. 

This meant that individuals with a confirmed COVID-19 diagnosis within the previous three 

months or those who had taken anti-tuberculosis medication in the past six months were not 

eligible for enrollment. Additionally, for both phases of the study, participants were excluded from 

the sub-study if they were currently using cough-suppressive medications. 
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7.5.3. Microbiological reference standard 

 

Sputum samples were tested for TB using Xpert MTB/RIF Ultra (Xpert Ultra) (Cepheid, 

Sunnyvale, CA, USA) and bacterial culture (BD BACTEC MGIT, BD, Franklin Lakes, NJ, USA) 

at the Humberto Guerra Alisson Laboratory, a reference laboratory at the Instituto de Medicina 

Tropical Alexander von Humboldt at the Universidad Peruana Cayetano Heredia. Xpert Ultra tests 

were repeated if initial testing produced an error, indeterminate, or a ‘Trace’ semi-quantitative 

result. MGIT culture was repeated if the initial test was contaminated. Participants were TB 

positive if either of the following conditions were met: a positive sputum Xpert Ultra result, a 

MGIT positive, or two Trace positive results on Xpert Ultra. Participants were considered PTB 

negative if none of the tests had a positive result and at least two sputum tests (Xpert Ultra, Xpert 

Ultra repeat, MGIT, or MGIT repeat) were negative. Participants had an indeterminate TB status 

if both sputum Xpert Ultra results were ‘Trace’ and culture was negative. Indeterminate TB status 

participants were not included in the analysis. 

 

COVID-19 testing was also performed among all participants. During Phase 1, this was done using 

the Xpert Xpress SARS-CoV-2 cartridges (Cepheid, Sunnyvale, CA, USA). During Phase 2, this 

was done using Xpert Xpress SARS-CoV-2/Flu/RSV cartridges (Cepheid, Sunnyvale, CA, USA). 

Both cartridges run on the GeneXpert PCR platform. 

 

7.5.4. Cough recording procedures 

 

The Hyfe Research application (Hyfe) was used for all cough recording activities. Hyfe has an 

embedded AI algorithm that can accurately differentiate cough sounds from non-cough sounds. 

This model was previously reported to be 96% sensitive and 96% specific for cough detection (i.e., 

differentiating a cough sound due to any reason from ambient noise or non-cough sounds) using 

human-labeled sounds as a reference standard.13 The algorithm assigns a score from 0 to 1, 

reflecting the probability that the sound recorded was a cough. The cough sounds and their 

probability score were stored on a secured server only accessible by the study team. Recordings 

with a probability ≥0.8 of being a cough sound were included for downstream analysis. 
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Hyfe only records and stores up to 0.5 seconds of sounds, preventing the recording of 

conversations or background acoustic environments. Cough recording was performed by a trained 

study nurse at the time of enrollment at the health facility. All nurses conducting the recordings 

wore appropriate PPE, including N95 masks, to ensure safety during the data collection process. 

The unique ID of each participant was entered into the app by the study nurse. Participants were 

instructed to hold the study smartphone (Xiaomi Redmi 9A) with the microphone approximately 

30cm away from their mouth. The study nurse instructed the participant on how to use the 

application to record each cough sound. If the participant was not familiar with using a smartphone, 

the study nurse supported the patient by activating the recording of each cough sound. Then they 

purposively coughed 5-10 times (or as many times as was physically comfortable) holding the 

smartphone while the Hyfe application recorded. Some participants coughed more than 10 times 

due to coughing fits, and these coughs were included in the analysis (as was done for the original 

CODA Challenge). All recordings were performed in a private, ventilated tent or at the sample 

collection area to minimize background noise. 

 

7.5.5. CODA TB DREAM Challenge 

 

The data used as part of the CODA Challenge was collected from two multi-country TB diagnostic 

studies. The Rapid Research in Diagnostic Development TB Network (R2D2 TB Network) 

enrolled participants from outpatient facilities in India, the Philippines, South Africa, Uganda, and 

Vietnam. The Digital Cough Monitoring Project enrolled participants from outpatient facilities in 

Madagascar and Tanzania. In both studies, participants were eligible if they were 18 years or older 

and had a new or worsening cough in the past two weeks. 

 

The cough data for the CODA Challenge was collected using the Hyfe application. Overall, 

733,756 cough sounds were recorded from 2,143 participants across all countries. The cough data 

included 18,834 “solicited” coughs from all participants, which were purposefully collected at the 

time of enrollment by a healthcare worker (the same process as described in the Peru data 

collection). The remaining 714,922 coughs were “longitudinal” coughs, meaning that a subset of 

participants carried the smartphone with the Hyfe app continuously for two weeks to passively 

record any cough sounds. Approximately 25% (553/2,143) of the participants recruited were TB 
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positive based on a microbiological reference standard. Data was split at the participant level into 

training (n=1,105) and internal validation (n=1,308), meaning that all cough sounds belonging to 

the same individual were either in the training and internal validation set. Longitudinal cough 

sounds were only used for model training, not validation. Additional information on the CODA 

Challenge dataset has been published.10 

 

The CODA Challenge put forth two sub-challenges for TB classification: the first used cough 

sounds alone and the second used cough sounds and basic demographic and clinical variables.11 

In this study, we exclusively validated the first sub-study as not all clinical and demographic 

variables used in the second CODA Challenge were available in the Peru dataset. Docker images 

from the 11 teams that publicly participated in the challenge were used to run all pre-processing 

steps and models on the Peru cough dataset. Docker is a platform that allows developers to package 

applications with all their dependencies into standardized units called containers, ensuring 

consistent performance across different computing environments. These files were saved in an 

Open Neural Network Exchange format. The model architectures and sound features used from 

the 11 teams have been summarized in Table S7.1 Docker images were run by the data collection 

team and not the model developers. 

 

7.5.6. Model evaluation 

 

The same model ranking approach used by the CODA Challenge was applied. All models produced 

an output prediction score reflecting the probability of an individual participant having TB based 

on their cough sounds. The AUC was calculated for each model using the pROC package in R 

Software version 4.3.3.14 The partial AUC (pAUC) that was presented in the CODA Challenge 

results was not calculated as the performance of the models were too low to achieve the set targets 

of sensitivity of 80% and specificity of 60%, which are both 10% less than the minimum World 

Health Organization (WHO) target product profile (TPP) for a TB triage tool which aims for 90% 

sensitivity and 70% specificity.15 Additional analyses evaluated the models’ specificity when the 

sensitivity was set to 80% and to 90% and the results were compared with the CODA Challenge 

evaluation set. Confidence intervals for the AUC, sensitivity, and specificity were calculated using 

bootstrap resampling (n=1000). Sub-analyses examined the distribution of AUCs across levels of 
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demographic and clinical predictors: age (<35 years vs. ≥35 years), sex, prior TB, and body mass 

index (BMI) (<25 kg/m2 years vs. ≥25 kg/m2), and self-reported fever (present vs. not). Fever was 

included as a non-specific symptom of disease. 

 

7.5.7. Ethics 

 

All participants provided written informed consent. The studies involved in the recruitment phases 

received ethical approval from the Comité Institucional de Ética en Investigación at Universidad 

Peruana Cayetano Heredia (Phase 1: SIDISI 202931/SIDISI 206951, and Phase 2: SIDISI 210857) 

and the McGill University Health Centre Research Ethics Board (2021-6866). The studies were 

registered in the PRISA repository at Instituto Nacional de Salud in Peru (Phase 1: 

EI00000001484/EI00000002576, and Phase 2: EI00000003221). 

 

7.6. Results 

 

7.6.1. Participant information 

 

A total of 310 adults were enrolled in Lima. Seven individuals (2.3%) had an indeterminate TB 

status and were excluded from the analysis. Of the 303 included participants, 97 (32.0%) were TB 

positive and 206 (68.0%) were TB negative according to the microbiological reference standard 

(Table 7.1). The overall median age was 36 years (interquartile range [IQR]: 24, 52) and 135 

(44.6%) were female. Approximately half of all individuals (53.1%) reported a fever at time of 

enrollment. Among all participants, 36 (12.0%) tested positive for COVID-19, with 5 of these 

cases being TB co-infection. Forty-two (13.9%) individuals reported a history of prior TB, of 

whom the majority (40/42) had prior pulmonary TB and 2/42 had extrapulmonary TB. 
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Table 7.1. Demographic and clinical characteristics stratified by TB diagnosis. 

 TB positive TB negative Total 
 n=97 n=206 n=303 
Age 
  <35 years 
  ≥35 years 

 
57 (58.8) 
40 (41.2) 

 
84 (40.8) 
122 (59.2) 

 
141 (46.5) 
162 (53.5) 

Sex    
  Female 31 (32.0) 104 (50.5) 135 (44.6) 
  Male 66 (68.0) 102 (49.5) 168 (55.4) 
Smoking status    
  Current 3 (3.1) 7 (3.4) 10 (3.3) 
  Former 12 (12.4) 11 (5.3) 23 (7.6) 
  Never 82 (84.5) 188 (91.3) 270 (89.1) 
BMI 
  <25 
  ≥25 

 
78 (80.4) 
19 (19.6) 

 
103 (50.0) 
103 (50.0) 

 
181 (59.7) 
122 (40.3) 

Cough duration 
  <20 days 
  ≥25 days 

 
15 (15.5) 
82 (84.5) 

 
120 (58.3) 
86 (41.8) 

 
135 (44.6) 
168 (55.4) 

Symptoms    
  Headache 70 (72.2) 167 (81.1) 237 (78.2) 
  Fever 57 (58.8) 104 (50.5) 161 (53.1) 
  Sore throat 68 (70.1) 166 (80.6) 234 (77.2) 
  Loss of smell/taste 4 (4.1) 20 (9.7) 24 (7.9) 
  Muscle pain 64 (66.0) 152 (73.8) 216 (71.3) 
  Fatigue 41 (42.3) 103 (50.0) 144 (47.5) 
  Nausea 34 (35.1) 52 (25.2) 86 (28.4) 
  Diarrhea 21 (21.7) 46 (22.3) 67 (22.1) 
COVID-19 5 (5.3) 31 (15.1) 36 (12.0) 
Prior TB* 8 (8.3) 34 (16.5) 42 (13.7) 

*Includes pulmonary and extrapulmonary TB. 
All datra are presented as N (%). 
BMI, body mass index; TB, tuberculosis 

 

7.6.2. Model performance 

 

The AUCs from the CODA Challenge internal validation ranged from 0.645 to 0.743 (Figure 

7.1A). For the external validation on the Peru dataset, the AUCs ranged from 0.480 to 0.615 

(Figure 7.1B, Table 7.2). The performance of all models decreased compared to the reported 

performance in the CODA Challenge. The models with the highest and lowest performance in the 

Peru validation were ranked similarly in the CODA Challenge. However, the order of the other 

models was not the same. The highest performing model in CODA Challenge was by the ‘Blue 
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Team’, with an AUC of 0.743 (0.703, 0.780). In the external Peru validation, the ‘Blue Team’s’ 

model performed best, however the AUC declined to 0.615 (0.550, 0.680).  

 

   
Figure 7.1. Comparison of 11 CODA Challenge algorithm performance in A) the internal 

validation of CODA Challenge models, using cough data from the CODA Challenge and B) 

the external validation, using cough data from Peru. Team names are ranked in order of their 

performance in the respective evaluations. The Blue Team model performed best in both the 

internal and external evaluation. Overall, performance was decreased for all models in the external 

evaluation. (Figure A is adapted from Jaganath et al.)11 

 

For all models, there was a decrease in the specificity when setting the sensitivity to 80% and 90% 

(Table 7.2). Importantly, none of the models achieved the target WHO TPP for a triage test of 70% 

specificity at 90% sensitivity in the original CODA Challenge dataset. Thus, it was not expected 

to do the same in the external validation. The highest observed specificity when the sensitivity was 

set at 90% was 0.243 (95% CI: 0.102, 0.364) for the Blue Team, which decreased from a specificity 

of 0.350 (95% CI: 0.254, 0.487) in the original CODA Challenge dataset. 

 

A) B) 
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Table 7.2. Model performance for cough-based TB classification using the external Peru test set compared to the CODA 

challenge test set. 

 Peru test dataset CODA Challenge test dataset11 

Team AUC 
(95% CI) 

Sensitivity = 0.800: 
Specificity (95% CI) 

Sensitivity = 0.900: 
Specificity (95% CI) 

AUC 
(95% CI) 

Sensitivity = 0.800: 
Specificity (95% CI) 

Sensitivity = 0.900: 
Specificity (95% CI) 

Blue Team 0.615 
(0.550, 0.680) 0.393 (0.267, 0.476) 0.243 (0.102, 0.364) 0.743 

(0.703, 0.780) 0.555 (0.466, 0.640) 0.350 (0.254, 0.487) 

LCL 0.604 
(0.540, 0.671) 0.364 (0.248, 0.485) 0.185 (0.087, 0.350) 0.689 

(0.644, 0.733) 0.412 (0.287, 0.548) 0.193 (0.126, 0.299) 

Raghava 
India TB 

0.601 
(0.533, 0.665) 0.350 (0.228, 0.466) 0.175 (0.087, 0.340) 0.730 

(0.690, 0.773) 0.504 (0.407, 0.612) 0.343 (0.208, 0.422) 

Clare 0.584 
(0.517, 0.648) 0.335 (0.228, 0.413) 0.214 (0.141, 0.320) 0.699 

(0.655, 0.746) 0.469 (0.376, 0.561) 0.235 (0.141, 0.398) 

sasgarian 0.556 
(0.487, 0.624) 0.228 (0.136, 0.389) 0.141 (0.034, 0.214) 0.689 

(0.647, 0.732) 0.429 (0.356, 0.509) 0.313 (0.198, 0.370) 

Metformin-
121 

0.555 
(0.483, 0.622) 0.272 (0.194, 0.354) 0.189 (0.083, 0.272) 0.704 

(0.660, 0.746) 0.476 (0.387, 0.558) 0.281 (0.180, 0.390) 

Sakb 0.549 
(0.477, 0.619) 0.233 (0.146, 0.398) 0.141 (0.029, 0.228) 0.695 

(0.654, 0.739) 0.474 (0.363, 0.526) 0.323 (0.222, 0.383) 

AI-Campus 
High School 
Team 

0.541 
(0.471, 0.610) 0.238 (0.141, 0.354) 0.126 (0.049, 0.218) 0.731 

(0.691, 0.771) 0.571 (0.472, 0.629) 0.299 (0.207, 0.481) 

chsxashoka 0.533 
(0.467, 0.600) 0.243 (0.165, 0.364) 0.136 (0.073, 0.238) 0.693 

(0.651, 0.736) 0.437 (0.336, 0.533) 0.277 (0.192, 0.345) 

Yuanfang 
Guan Lab 
Team 

0.530 
(0.463, 0.606) 0.185 (0.087, 0.354) 0.073 (0.029, 0.160) 0.727 

(0.685, 0.768) 0.560 (0.427, 0.661) 0.289 (0.224, 0.415) 

yhwei 0.480 
(0.412, 0.551) 0.217 (0.130, 0.320) 0.105 (0.065, 0.184) 0.645 

(0.601, 0.687) 0.435 (0.368, 0.496) 0.299 (0.210, 0.382) 

AUC, area under the curve; CI, confidence interval; CODA, COugh Diagnostic Algorithm for Tuberculosis 
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7.6.3. Sub-group analyses 

 

The median model performance did not differ by sex or the presence of fever (Figure 7.2). 

However, there does appear to be greater variation in how models performed when patients present 

with fever. The models performed better among older participants (AUC: 0.579; IQR: 0.564, 0.614 

for age ≥35) compared to their younger counterparts (AUC: 0.529; IQR: 0.494, 0.577 for age <35). 

The most pronounced difference was observed when comparing individuals with and without a 

history of TB disease, where models achieved substantially higher accuracy in those with prior TB 

(AUC: 0.702; IQR: 0.640, 0.713) versus those without (AUC: 0.554; IQR: 0.534, 0.601). A smaller 

but notable difference was also seen with BMI, where lower BMI scores were associated with 

slightly better model performance (AUC: 0.547; IQR: 0.534, 0.580 vs AUC: 0.518; IQR: 0.498, 

0.586 for higher BMI). 

 

 
Figure 7.2. Area under the curve distribution of 11 CODA Challenge cough-only models in 

an external validation using data from Peru, stratified by demographic and clinical factors. 

Boxplots indicate the median and interquartile distribution of all models. Model-specific 

performance is indicated by markers. AUC, area under the curve; BMI, body mass index; TB, 

tuberculosis 
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7.7. Discussion 

 

This external validation of the CODA Challenge models, which exclusively used cough sounds for 

TB classification, revealed a consistent decrease in performance compared to their original 

evaluations. This decline was anticipated, given that the original models were not trained using 

data from Peru. While there were some variations in model rankings between the CODA Challenge 

and this external evaluation, the best and worst performing models maintained their relative 

positions. Additionally, despite the overall performance drop, some models still achieved AUCs 

exceeding 0.600 in the external validation, with lower bound confidence intervals surpassing the 

0.500 threshold. 

 

It is important to note that this validation study utilized the CODA Challenge models as they were 

originally configured, without any further optimization. The hyperparameters remained unchanged 

from those tuned during the initial model training for the CODA Challenge. This approach was 

necessitated by the lack of access to the underlying model structures within the provided Docker 

files. Consequently, the potential for improving model performance through additional tuning 

remains unexplored. It is plausible that all 11 models could benefit from further optimization 

tailored to the specific characteristics of the Peru dataset. That said, this limitation mirrors real-

world deployment scenarios, where pre-trained models are often applied to new data without 

modification. In practice, end users rarely have the expertise, resources, or access to retrain or fine-

tune models for their specific use cases. 

 

Sub-analyses revealed that the models' performance is not uniform across demographic and 

clinical subgroups. Notably, cough classification demonstrated superior performance among older 

individuals (≥35 years) and those with a history of prior TB compared to their respective 

counterparts. These differences may be attributed to physiological variations that modulate cough 

sounds, such as post-TB lung disease potentially altering cough characteristics.16 However, it may 

also be attributed to characteristics of the dataset used to train the models. The training data from 

the CODA Challenge had a higher median age (40 years; IQR: 28, 53).10 This composition could 

explain the better performance among older individuals and those with a TB history. Additionally, 

class imbalance within subgroups may have influenced model performance, which is particularly 
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evident among people with a history of prior TB, where only 8 out of 42 individuals had a positive 

TB diagnosis. Understanding the cause and patterns of heterogeneous performance across different 

subgroups is crucial for identifying potential biases and ensuring equitable model performance 

among different demographics. In the field of AI, this is often referred to as “aggregation bias” 

where assumptions about sub-groups are made based on observations made at the population 

level.17 Further analyses on model performance in specific patient populations is needed to 

systematically map performance variations, understand their underlying causes, and develop 

strategies to mitigate potential disparities in model accuracy across different demographic and 

clinical subgroups.  

 

A strength of this study is the utilization of the same Hyfe cough recording application employed 

by the CODA Challenge, ensuring comparable input data format and length, and thus enhancing 

the validity of comparisons with the CODA Challenge results. Additionally, the microbiological 

reference standard used for determining TB status resembled that of the CODA Challenge, further 

strengthening the comparative analysis. 

 

There were several limitations with this external validation. The analysis was restricted to the sub-

challenge involving only cough sounds due to the absence of certain clinical and demographic 

variables in the Peru dataset that were utilized in the second CODA sub-challenge, precluding the 

evaluation of those models. The CODA Challenge reported significant performance improvements 

when these variables were included, with some models approaching the WHO TPP sensitivity and 

specificity targets for a triage test. Future analyses should evaluate potential performance 

enhancements when combining the Peru cough data with available clinical and demographic 

variables. Despite using the same cough recording application, differences in smartphone hardware 

may have affected audio quality, potentially impacting model performance. However, the CODA 

Challenge stipulated that algorithms should be developed to ensure compatibility across different 

smartphones.11 Further, cough data used in the CODA Challenge itself were recorded on different 

phones in the different countries.10 Finally, while the microbiological reference standards were 

similar, some differences existed, notably the inclusion of urine samples for GeneXpert testing and 

solid Löwenstein–Jensen culture in the CODA Challenge dataset, which were not used in Peru. 
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Nevertheless, the risk of misclassification is minimal given the comprehensive array of other 

microbiological tests performed in Peru. 

 

In conclusion, this external validation using cough data from a geographically distinct population 

reveals limitations in the generalizability of the CODA Challenge cough classification models. 

These findings underscore the critical importance of collecting cough data from diverse 

populations to develop robust, globally applicable models. Alternatively, efforts could be 

redirected towards developing and refining country-specific models, which may yield higher 

accuracy in local contexts. 
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7.11. Supplementary information 

 

Table S7.1. Overview of model architecture and audio features used for the 11 models from 

the cough-only CODA Challenge. 

Team Model type Audio features used 
Blue Team Convolutional neural network Spectrogram  

LCL 
Convolutional neural network, 
Light gradient-boosting 
machine 

Zero-crossing rate, Mel frequency 
cepstral coefficients, chromagram, 
mel spectrogram, root mean 
square 

Raghava India TB Convolutional neural network Mel spectrogram 

Clare Artificial Neural Network 
Top 300 features extracted via 
OpenSMILE identified via 
principal component analysis 

sasgarian Artificial Neural Network 
Top 1,024 features extracted via 
OpenSMILE identified via 
principal component analysis 

Metformin-121 MetforNet Z-score normalization of cough 
recordings 

Sakb Artificial Neural Network 
Top 1,024 features extracted via 
OpenSMILE identified via 
principal component analysis 

AI-Campus High 
School Team 

Gradient Boosting Decision 
Tree 

Mel-Frequency Cepstral 
Coefficients (MFCC), 
chromagram 

chsxashoka Artificial Neural Network Mel Frequency Cepstral 
Coefficients, Mel spectrogram 

Yuanfang Guan Lab 
Team 

Light gradientboosting 
machine 

Mel Frequency Cepstral 
Coefficients, first and second 
order time derivatives of MFCC, 
magnitude of pitch tracking, total 
number of coughs recorded 

yhwei Convolutional Neural Network Spectrogram 
Adapted from Jaganath et al.1 
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Chapter 8. Summary and conclusions 
 

8.1. Summary of results 

 

The five manuscripts presented in this thesis provide a comprehensive overview of advances made 

in acoustic epidemiology and independently contribute novel research findings to the field. Across 

these manuscripts, I examined two distinct applications of digital cough monitoring—cough 

counting for longitudinal disease monitoring and cough sound analysis for disease screening—

with a particular focus on TB and COVID-19. 

 

Manuscript I was a commentary on the use of cough as a biomarker for TB across the care 

cascade. Through review of the literature, we found that cough is a poorly utilized clinical 

symptom in TB care that could be transformed into an objective biomarker through emerging 

digital tools and technologies. While early studies demonstrate promise, there remains a critical 

need to develop well-annotated cough datasets and rigorously validate the clinical utility of these 

tools across. 

 

In our scoping review (Manuscript II), we identified four clinical use cases for digital cough 

counting tools: disease diagnosis and severity assessment, treatment monitoring, health outcome 

prediction, and syndromic surveillance. Several factors impact the clinical application of tools, 

including privacy concerns regarding recordings and ergonomics of the cough monitors. Objective 

cough counts must be considered as part of a patient’s broader clinical profile that involves other 

symptoms, biomarkers, and PROs. 

 

In Manuscript III, we investigated the relationship between initial TB bacterial burden and cough 

frequency during the first two weeks of TB treatment. We assessed bacterial burden using two 

distinct markers: Xpert semi-quantitative results and CAD4TB scores. Our analysis revealed a 

clear dose-response relationship between bacterial burden and cough frequency. Compared to 

patients with 'High' Xpert results, those with lower semi-quantitative results demonstrated 

progressively decreasing cough frequencies: 'Medium' (RR: 0.79; 95% CI: 0.59, 1.05), 'Low' (RR: 

0.64; 95% CI: 0.47, 0.87), and 'Very Low' (RR: 0.61; 95% CI: 0.41, 0.91). This association was 
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further corroborated by the CAD4TB model, where lower scores were significantly associated 

with reduced cough frequency (RR: 0.80; 95% CI: 0.67, 0.95). The robustness of these findings 

was confirmed through sensitivity analyses that accounted for potential cough count 

overestimation from neighboring participants, which strengthened the observed associations. 

 

Manuscript IV and Manuscript V investigated the external validity of AI-based cough 

classification models across different populations, focusing on COVID-19 and TB detection, 

respectively. In Manuscript IV, our COVID-19 classifiers demonstrated strong internal validation 

performance in Lima. However, when these models were cross-validated on each other's datasets, 

their performance deteriorated significantly, with AUCs falling below 0.5 in both cases. 

Manuscript V revealed comparable challenges in model generalizability for TB detection. When 

we externally validated 11 audio-only TB classifiers from the CODA TB DREAM Challenge using 

our Peruvian dataset, we observed a substantial decline in performance, with AUCs dropping from 

0.48 to 0.62 in the original challenge to 0.69 to 0.74 in our external validation. 

 

8.2. Significance of the work 

 

The digital health and AI landscape is experiencing unprecedented growth, with technological 

innovations transforming various sectors of society. However, healthcare has notably lagged in 

adopting these digital solutions,141 largely due to justified concerns about reliability and the critical 

nature of medical decision-making. The successful implementation of digital health tools 

ultimately depends on their ability to meet end-user needs while maintaining clinical validity 

across diverse populations. The situation is especially concerning in lower-resource settings and 

the Global South, where a growing digital divide has resulted in limited validation and application 

of these technologies, despite their potential benefit in these regions.142 

 

Despite the proliferation of AI algorithms for cough classification, there remains a significant gap 

between algorithm development and practical clinical implementation. This challenge is 

particularly evident in the field of digital cough counting technologies, where even long-standing 

tools like cough counters lack comprehensive validation across different populations and disease 

groups. 



 

 190 

 

Our work began by examining digital cough tools through the lens of TB care, highlighting the 

untapped potential of cough-based technologies to improve TB outcomes. This perspective served 

to spotlight for the broader research community how digital innovations in cough monitoring and 

analysis could impact an underserved disease such as TB, particularly in resource-limited settings 

where such technologies are most needed yet least studied. Following this, our scoping review of 

cough counting tools revealed a crucial gap between technology development and clinical 

validation. Despite the long-standing availability of these tools, we found limited evidence of their 

validation across different settings and populations, highlighting the pressing need to translate 

promising technologies into validated tools that can meaningfully impact patient care. 

 

To advance the field empirically, we investigated cough counts as a biomarker for TB treatment 

monitoring. Through analysis of prospectively collected data from high-burden TB countries, we 

identified established a relationship between cough counts and baseline TB bacterial burden. This 

work not only advanced our understanding of cough as a clinical indicator but also highlighted 

important methodological considerations for analyzing cough data, contributing to more robust 

research practices in this field. 

 

Finally, our work challenged a fundamental assumption that underscored the field of cough-based 

AI classification: the universality of cough sounds across populations. Through external validation 

studies of both COVID-19 and TB classification models, we demonstrated that these algorithms 

may not generalize well across populations with different acoustic, demographic, and 

epidemiological profiles. This finding has important implications for future research and 

development in this field, suggesting a need for more localized approaches to model development 

and validation. 

 

8.3. Strength and limitations 

 

This thesis demonstrates notable strengths in both its scope and methodological diversity. The 

research spans multiple dimensions of cough as a biomarker, investigating both quantitative 

aspects (cough counts) and acoustic characteristics (cough sounds). The methodological approach 
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was comprehensive, encompassing literature reviews, primary data collection across 

geographically and demographically distinct locations, advanced statistical analyses of complex 

longitudinal data, and the application of machine learning and AI techniques to novel data types. 

This methodological breadth was supported by a truly interdisciplinary approach, bringing 

together expertise from epidemiology, biostatistics, machine learning, clinical medicine, and 

global health, resulting in a holistic examination of cough as a digital biomarker. Overall, this work 

underscores the importance of more cross-sectional research between public health and AI/ML 

sectors to ensure that technological developments are aligned with public health needs and can be 

effectively implemented in real-world settings. 

 

Despite its broad methodological scope, this thesis has several important limitations. First, while 

the research explored multiple aspects of cough analysis, it focused primarily on two diseases: TB 

and COVID-19. This narrow disease focus, while allowing for depth of investigation, means that 

findings may not generalize to other respiratory conditions where cough is a prominent symptom. 

 

A significant methodological challenge emerged in the longitudinal analysis of TB-related cough 

counts. The issue of measurement error in individual health data collection, particularly in the 

context of cough recordings, presented unique challenges. While missing data is not a unique issue, 

cough recording studies face the additional challenge of environmental contamination. 

Specifically, the inadvertent recording of coughs from individuals other than the target participant. 

While our study made important methodological advances by explicitly addressing this challenge 

through carefully designed sensitivity analyses, this remains an ongoing challenge in the field that 

will require continued technological innovation and methodological development. 

 

The primary data collection efforts in Lima and Montreal for the fourth and fifth manuscripts also 

faced important limitations. The timing of data collection, which began in spring 2022, missed the 

major COVID-19 waves of 2020 and 2021, resulting in lower-than-anticipated COVID-19 

prevalence rates among study participants. This timing issue, which diverged from the original 

expectations outlined in the 2021 grant proposal, resulted in a lower number of COVID-19 positive 

cases than anticipated, leading to more imbalanced comparison groups in our analyses. 

Additionally, the data collection in Peru was complicated by the need to conduct research over two 
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separate time periods. The absence of genetic screening tools further limited our ability to account 

for potential variations in COVID-19 strains, which may have influenced our findings given the 

evolving nature of the virus. 

 

A notable limitation of this thesis is the absence of qualitative research exploring end-user 

experiences with digital cough tools. The successful implementation of any digital health solution 

fundamentally depends on its acceptability to patients and feasibility within local healthcare 

systems, aspects that are often overlooked in both digital health and diagnostic research more 

broadly.143 While we did conduct interviews with patients and healthcare providers about their 

experiences recording cough sounds at health facilities in Lima (forthcoming publication to 

supplement my thesis), the analytical focus of this thesis did not capture these crucial 

implementation considerations. 

 

8.4. Direction for future work 

 

The transition from technological innovation to clinical implementation remains a critical 

challenge in the field of digital cough tools. Despite technological advances, there is a pressing 

need for prospective validation studies in clinical settings and standardized analytical frameworks 

to bridge this implementation gap. 

 

The evolution of AI cough-based disease classification has been particularly instructive. When our 

initial manuscript was published in 2022, the field was characterized by considerable optimism, 

driven by promising early results from cough classification models. However, subsequent research, 

including our own studies, has revealed important complexities and limitations in using AI for 

disease detection through cough sounds. This has fostered a more nuanced and cautious approach 

to the field, highlighting the need for advances across multiple domains: technological innovation, 

model development, analytical methodologies, and real-world implementation. 

 

Our external validation studies of COVID-19 and TB cough classification models revealed 

important implications for future research in this field. AI-based cough classification algorithms 

should prioritize local development and validation within target populations. While 
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methodological insights from local models can inform development in other settings, our evidence 

suggests that direct model transfer across populations is unlikely to be successful. This 

understanding should guide future research approaches in cough-based disease classification. 

Other important considerations for future cough-based classification include investigating how the 

presence of other respiratory diseases may confound binary COVID-19 positive vs. negative 

classification performance. Consideration should also be given towards expanding beyond binary 

classification to develop disease differentiation algorithms capable of distinguishing between 

multiple conditions such as COVID-19, TB, and influenza. As highlighted in Manuscript I, the 

development of such sophisticated classification systems will require large cough datasets with 

rigorous reference standard testing, a logistical challenge that remains a significant barrier to 

advancing this field. 

 

In the specific context of TB treatment monitoring, cough presents a promising non-invasive 

biomarker for disease progression. Our research has established important foundational knowledge 

about the relationship between cough dynamics and key clinical factors such as TB bacterial 

burden. Building on this foundation, several key areas require further investigation. Research 

examining cough patterns throughout the entire treatment period is needed to better understand 

long-term dynamics, while studies investigating the association between cough patterns and 

treatment outcomes are essential to validate cough as a treatment response marker. Advances in 

cough diarization technology are also necessary to address measurement error from environmental 

cough sounds, ultimately improving the accuracy and reliability of cough monitoring for TB 

treatment response. 

 

While this thesis explored two distinct perspectives of cough as a biomarker (longitudinal cough 

counts and cough acoustics) there may be value in integrating these complementary features. For 

example, in the context of TB treatment monitoring, treatment efficacy might be reflected not only 

in changes in cough frequency over time but also in the acoustic properties of the coughs 

themselves. This remains an unexplored area of research that could enhance our understanding of 

disease progression and treatment response for TB and other respiratory disease. 
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More qualitative investigations need to supplement the validation studies. For instance, 

investigation of the feasibility and acceptability of longitudinal cough monitoring among TB 

patients and healthcare providers in real-world settings will be crucial for successful 

implementation. From a technological perspective, feedback from end-users is necessary to aid in 

the development of more user-friendly cough monitoring tools which may in turn help improve 

issues related to data quality.  

 

Box 8.1. Research questions for future directions. 

1. How does the presence of concurrent respiratory infections and conditions affect the 
performance of cough-based disease classification algorithms? 

2. What is the relationship between longitudinal cough patterns during TB treatment and 
end-of-treatment clinical outcomes, including treatment success and failure? 

3. How can the integration of cough frequency metrics and acoustic properties enhance 
our understanding of disease progression and treatment response? 

4. What are the key barriers and facilitators to implementing digital cough monitoring 
tools in routine clinical care from both patient and provider perspective? 

 

8.5. Conclusion 

 

We are entering an era of unprecedented digital innovation and big data analytics, transforming 

various sectors of society including healthcare. As medical practice increasingly embraces digital 

solutions, there is growing interest in leveraging technology to enhance clinical decision-making 

and patient care. Acoustic epidemiology emerges within this context as a novel field that seeks to 

transform subjective symptoms into objective, measurable biomarkers through digital tools and AI 

analytics. While this approach holds theoretical promise, particularly in the context of using cough 

as a biomarker for respiratory diseases, there remains limited evidence supporting its practical 

clinical impact. Our research has demonstrated that despite technological advances in both 

longitudinal cough monitoring and AI-based disease screening, significant challenges persist in 

translating these innovations into clinically meaningful tools. These challenges are particularly 

evident when attempting to validate these technologies across different populations and disease 

contexts, highlighting the need for continued research that rigorously evaluates the real-world 

applicability of these emerging technologies. 
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Overall, while this thesis does not claim to have fully validated cough as a clinical biomarker for 

any disease and all relevant use case, it has made substantial contributions toward this goal. Our 

findings provide crucial insights for researchers, clinicians, and technology developers working to 

bridge the gap between innovative digital health solutions and practical clinical implementation, 

particularly in resource-limited setting. 
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