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ABSTRACT 
 
The widespread adoption of automated vehicle location systems (AVL) and automatic passenger counters 

(APC) in the transit industry has opened new venues in operations and system monitoring. In 2005, Metro 

Transit, Minnesota, implemented AVL system and partially implemented APC technologies. To date there has 

been little effort to employ the collected data in evaluating transit performance. This research uses such data to 

assess performance issues along a cross-town route in the Metro Transit system. We generate a series of visual 

and analytical analyses to predict run time, schedule adherence and reliability of the transit route at two scales: 

the time point segment and the route level to demonstrate ways of identifying causes of decline in reliability 

levels. The analytical models show that while headways are maintained, schedule revisions are needed to 

improve run time and schedule adherence. Finally, the analysis suggests that many scheduled stops along this 

route are underutilized and recommends stop consolidation as a tool to decrease variability of service through 

concentrating passenger demand along a fewer number of stops. 
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INTRODUCTION 
 
Transit users are demanding more from their transit providers these days. The old practice of sketching out a 

viable bus route, placing service on that route, and hoping that people ride the bus is currently insufficient. Users 

have several demands including but not limited to: fast and reliable service that can compete with the single 

occupancy vehicle, shorter walking distances to stops, low floor buses, inexpensive service, and friendly drivers. 

Transit operators are responding to such demands; they naturally collect and analyze transit operations data as a 

means to inform enhanced service quality. In particular, several agencies are employing automatic vehicle 

location (AVL) technology to aid in monitoring their buses, to better understand causalities of delay and avoid 

operational problems. In 2000 the number of transit systems with operational AVL system was 22. This number 

grew to 157 in 2004, a 614% increase. Adding planned deployments, the number of systems AVL properties 

grew from 86 in 1995 to 257 in 2004, and increase of 199% (Volpe National Transportation Systems Center, 

2005).    

The widespread implementation of AVL and automatic passenger counters (APC) in the transit industry 

has opened new venues in transit operations and system monitoring. Metro Transit, the main transit authority in 

the Twin Cities, Minnesota region, has been testing various intelligent transportation systems (ITS) since 1999. 

In 2005, they fully implemented an AVL system and partially implemented an automated passenger counter 

(APC) system. To date, however, there has been little effort to employ such data to evaluate different aspects of 

performance. This research capitalizes on the availability of such data to better assess performance issues of one 

particular route in the Metro Transit system. We employ the archived AVL and APC data from buses running on 

an example cross-town route between September 20, 2006 and December 1, 2006 to conduct a microscopic 

analysis to understand reasons for performance and reliability problems. We generate a series of analytical 

models to predict run time, schedule adherence and reliability of the transit route at two scales: the time point 

segment and the route level.  

This work builds on the body of research on transit performance by taking a new approach to 

understanding the problem of service reliability. While previous studies have primarily relied on summary 

statistics to understand reliability issues, this research employs detailed statistical analysis to understand the 

reasons for decline in service reliability.  The statistical models we describe examine the impact of multiple 
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route characteristics such as length, number of stops served, and passenger activity on bus travel time and 

schedule adherence.  The models also explore the relationship between variation in these characteristics and 

variation in travel time.  This approach is advantageous over previous efforts because it allows transit planners 

to identify the impact of specific characteristics on a route’s overall performance. Modeling variation in bus 

activity and performance also aids planners and managers to develop specific strategies to improve service 

reliability, which is often suggested as a more efficient and cost-effective way to improve rider satisfaction than 

increasing service frequency (Furth & Muller, 2006).   

 

BACKGROUND 

As of 2000, at least 88 transit agencies in the US had operational AVL systems in place; an additional 142 

agencies were planning to implement AVL systems in the near future (Crout, 2006; Schweiger, 2003). Although 

the data collected by these systems are similar, the manner in which the data collected has been used for analysis 

varies considerably, if it is analyzed at all. For example, many agencies gather the data but spend little effort to 

make sense of it; they continue to rely largely on professional judgment and “rules of thumb” to drive decision-

making processes (Boyle, 2006).  Transit agencies analyzing the data do so with myriad strategies to address a 

variety of applications.  

For example, in Portland, Oregon, ITS technologies were first implemented in 1997 and have been extensively 

evaluated since implementation (Crout, 2006; Kimpel, Strathman, Griffin, Callas, & Gerhart, 2002, 2003; 

Strathman, 2002; Strathman, Dueker, Kimpel, Gerhart, & Callas, 2002; Strathman et al., 2000; Strathman et al., 

1999; Strathman, Kimpel, Dueker, Gerhart, & Callas, 2001).  In 1997, the Ann Arbor Transportation Authority 

implemented an advanced operating and monitoring system and used the data collected to improve schedule 

adherence and increase system performance (Hammerle, Haynes, & McNeil, 2005).  Similarly, in the late 

1990’s the Chicago Transit Authority began installing and operating AVL and APC devices on select buses. 

With the data collected by this system, they evaluated schedule adherence, calculated quality-of-service 

measures and identified where and why bus bunching occurs (Hammerle et al., 2005). Milwaukee County 

Transit (MCT) has also used ITS data to improve communications with operators in efforts to reduce the 

number of off-schedule buses by 40% (Carter, 2002). To our knowledge, however, research is bereft in its 
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application of AVL data to diagnose transit service problems along routes using AVL data. The work developed 

in Portland, Oregon concentrated on evaluating system performance and technology implementations. Recent 

studies that focus on diagnosing a single route largely rely on observation and data visualization (Mazloumi, 

Currie, & Sarvi, 2008; Pangilinan, Wilson, & Moore, 2008) and rarely incorporate statistical analysis. Thus, 

most of the above body of work is largely descriptive in nature, compared to the current study, which relies on 

both statistical analysis and data visualization. The following section provides more specific text explaining 

concepts of transit service reliability and predicting run time of select routes. 

 

Transit Service Reliability 

A primary use of ITS data rests in assessing the reliability of transit service in terms of scheduling. In theory, 

improving transit service reliability has been linked to increases in transit demand for particular routes (Boyle, 

2006) and also should increase service productivity, given accurate schedules.  At issue, however, is that transit 

service reliability is defined in a variety of ways.  Turnquist and Blume (1980) suggest it is “the ability of the 

transit system to adhere to schedule or maintain regular headways and a consistent travel time.”  In other words, 

reliability can be defined as the variability in the system performance measured over a period of time.  Abkowitz 

(1978) offers a broader definition of transit service reliability: the invariability of transit service attributes that 

affects the decisions of both the users and the operators.  Strathman et al. (1999) and Kimpel (2001) relate 

reliability mostly to schedule adherence, keeping schedule related delays (on time performance (OTP), run time 

delay, run time variation, headway delay and headway delay variation) to a minimum, which agrees with 

Levinson (1991) and Turnquist  (1981).  Previous research examining transit service reliability using AVL 

systems concentrated on quantifying the benefits of AVL systems in improving reliability (Kimpel, 2001; 

Strathman et al., 1999); they did not aim to understand causes of decline in reliability along problematic routes. 

In theory, an increase in transit service reliability should lead to an increase in service productivity, given 

accurate schedules.  Several researchers have outlined methods for improving transit service reliability 

(Abkowitz & Engelstein, 1984; Abkowitz & Tozzi, 1987; El-Geneidy, Strathman, Kimpel, & Crout, 2006; Furth 

& Rahbee, 2000; Saka, 2001; Strathman & Hopper, 1993).  These methods include: (1) implementing changes 

in driver behavior (through training), (2) better matches of schedules to actual service, (3) implementing control 
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actions such as bus holding at time points, (4) implementing Transit Signal Priority (TSP), and (5) modifying 

route design (route length, bus stop consolidation, and relocation) . 

Differences also exist between how reliability is perceived by transit agencies versus passengers. A 

reliable service for a passenger is one that: (1) can be easily accessed by passengers at both the origin and 

destination, (2) arrives predictably, resulting in short waiting time, (3) has a short in vehicle time, and (4) has 

low variance in run time (Koenig, 1980; Murray & Wu, 2003).  This means that any deviation from these factors 

results in a decline in reliability; the key difference between the two perspectives is run time.   

 

Run time 

Run time is the amount of time it takes a bus to travel along its route. Abkowitz and Engelstein (1984) found 

that mean run time is affected by route length, passenger activity, and number of signalized intersections.  Most 

research agrees on the basic factors affecting bus run times. However, optimizing run time is challenging for all 

transit agencies because changes in run time have strong and often conflicting effects on service reliability and 

total travel cost (Abkowitz & Engelstein, 1983; Abkowitz & Tozzi, 1987; Guenthner & Sinha, 1983; Levinson, 

1983; Strathman et al., 2000). If the primary goal of an agency is to increase service reliability and on-time-

performance, the agency could conceivably allow for more time between stops along a route, increasing total 

run time.  This increases the probability that the bus will arrive at stops early and, with bus holding at time 

points, increases the likelihood of on-time departure. Unfortunately, this strategy also lowers operating speed 

and increases riding time, which increases both user and operating costs (Furth, 2006).  An alternative strategy is 

to keep run time to a minimum.  This strategy helps agencies to realize savings in recovery time and layover 

time, but can lead to decreases in reliability and subsequent increases in user cost.  The general guideline for 

establishing optimal run times that is suggested by the Transit Capacity and Quality of Service Manual 

(TCQSM) and is supported by several transit planning software packages is to set run time between time points 

equal to the mean observed run time (Furth, 2006; Kittelson & Associates, 2003).  

One indicator of deteriorating transit service reliability that can be identified by performance measures 

is the increase in variance in run time relative to the mean run time.  This variation represents unpredictable 

service from the standpoint of passengers since it increases waiting time and in-vehicle time.  Run time models 
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are fairly common in the transit literature, while run time variation models tend to be rare. Passenger activity 

variables, such as boarding and alighting rates contribute to run time variance (Bertini & El-Geneidy, 2004; 

Dueker, Kimpel, Strathman, & Callas, 2004; Guenthner & Hamat, 1988; Guenthner & Sinha, 1983; Levinson, 

1983; McKnight, Levinson, Ozbay, Kamga, & Paaswell, 2003; Rodriguez & Ardila, 2002; Strathman et al., 

2000).  Agencies try to minimize these delays by consolidating bus stops, promoting smart-card based fare 

media, back door only policies for alightings, front door only policies for boardings, low floor buses, and 

requiring fare payment at the ends of trips.  Headway adherence may also reduce run time delay created by 

passenger clustering and overloading (Shalaby & Farhan, 2004).  

Several researchers have outlined methods to improve transit service reliability, including but not 

limited to: (1) enhancing the training of drivers, (2) matching schedules to actual service, (3) implementing 

control actions such as bus holding at time points, (4) implementing traffic signal prioritization, (5) modifying 

route design (route length, bus stop consolidation, and relocation), and (6) implementing real-time operation 

controls and passenger information systems.   

Recently, Furth et al. (2003) reviewed the potentials of using ITS data and outlined future research in 

this area. His team focused on operations in nine transit agencies to demonstrate best practices in implementing 

ITS technologies.  Metro Transit (Twin Cities, Minnesota) was one of the selected agencies. Metro Transit’s 

system was implemented in 1999 and tested through 2002 under a project named Orion. The Orion system was 

upgraded recently to a fully functional archiving system that enables archiving AVL data. In addition to the 

AVL, the archiving system records passenger, fare box, and lift activities.  Metro Transit’s current AVL system 

offers a unique opportunity for analysis and developing performance standards since it depends mainly on the 

radio system where bus AVL information is being sent every 60 seconds compared to other stop base systems.  

Such information allows one to perform microscopic analysis and better understand factors that affect bus 

service over the course of the trip; accordingly, improvements in reliability can be recommended through 

analyzing this information.   
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DATA AND RESEARCH METHODS 

The primary motivation of this research was to demonstrate a proof-of-concept application for how AVL data 

can be analyzed at a microscopic level to inform matters of transit service reliability. After consulting 

representatives from Metro Transit, the research team decided to examine in detail one bus transit line that has 

been experiencing declines in ridership and has experienced problems with respect to adhering to schedules. The 

selected route can be used as a prototype to develop a methodology for analyzing other routes facing similar 

problems either in the Metro Transit system or in any other agency. 

 

Data  

Route 17 is a cross-town route serving two western suburbs, Hopkins and St. Louis Park, as well as the 

southern, downtown, and northeast sections of Minneapolis. It operates along sections of one of the most 

congested corridors in the Twin Cities region (Hennepin Avenue and Lake Street), proving an interesting route 

for conducting travel time and reliability analysis. Since not all of the Metro Transit bus fleet is equipped with 

APCs, Metro Transit’s service and planning department agreed to direct the maximum possible number of APC 

equipped buses to serve Route 17 during the period between September 20, 2006 and December 1, 2006. During 

the study period no major weather issues were present (i.e., snow storms) that might have an effect on travel 

time and schedule adherence. The data collection process lead to a sample of over 658,000 stop level 

observations.1  

After removing duplicate records, 650,938 stop level observations remained in the sample. Of these 

records, only 150,635 stop level observations (23%) were associated with APC equipped buses that served 

Route 17 during the study period. Only weekday observations and data obtained from APC equipped buses were 

used in this analysis. The stop level data include information related to when the bus arrived at a stop, when it 

                                                            
1 Unfortunately, using the raw data obtained from the Metro Transit data archiving system directly in 
an analysis is not possible. Various problems were identified after carefully observing the data. For 
example, duplicate records exist in the data. The duplication is present when an unscheduled stop 
occurs right before or after a scheduled stop, recording both stops as the same regular scheduled stop 
and assigning the same arrival and departure time to both stops. However, the passenger activity 
variables (boardings, alightings, passenger load) and odometer readings for both records differ. In 
addition, the authors removed any suspicious “outlier” observations from the data since they might 
have occurred to a non-recurring event (e.g., accidents). 
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left the stop, number of passengers on board, and several other variables. Since schedules are written to time 

points, schedule adherence is measured only at these points. It is not possible to interpolate between time points 

in this data set.  

The 150,635 stop level observations included represent data obtained from 2,174 bus trips during peak 

and off peak periods traveling in both east- and west-bound directions. Surprisingly, these trips represent 28 

different trip patterns distributed over the course of a day. A trip pattern is identified as having the same first and 

last stop, running during the same period of time, in the same direction, and serving the same number of stops. 

Due to the variance in the data caused by the large number of trip patterns and their differences, we divide the 

analysis into two sections: (1) the route level for a sample of two specific trip patterns, and (2) the time point 

segment level. A time point segment is identified as the segment between two consecutive time points.  Figure 1 

graphically shows the different levels of analysis. 

Figure 1. Levels of analysis 
 

The data at the time point segment level of analysis were obtained from various trip patterns and are 

combined based on the number of stops being served between each two time points. Figure 2 shows the 34 

different time point segments used in the analysis. The source data were cleaned and aggregated to the trip 

pattern level by summarizing over each of the days in the study period. Assembling the data in this manner 

resulted in a sample of 21,257 records that can be analyzed while controlling for the variations introduced by the 

differences in patterns.  The data was subjected to a detailed observation to remove any extreme travel time that 

might have occurred due to the presence of accidents or any other interruptions along the corridor.  

Start time point  End time pointTime pointTime point 

Route

Time point segmentTime point segmentTime point segment 
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Figure 2. Route 17 time point segments 

 
Route 17 has 28 different trip patterns; conducting a generalized route level analysis without accounting 

for the differences among these patterns would impose a measurement error.  It is also important to note that 

these patterns need to be treated as 49 different patterns based on the peak and off-peak classification. 

Accordingly, we analyzed the route level data considering specific patterns during the course of the day. The 

analysis at the route level allows us to generate different performance measures.   

After cleaning and compiling the Route 17 data for analysis at both the time point segment and trip 

pattern levels, we also generated a series of variables showing variation in passenger activity, travel time, and 

other characteristics at the time point segment and trip pattern levels. This calculation was made possible 

because of the relatively long duration in which the Route 17 data were collected. The headway deviation, travel 

time deviation and coefficient of variation of run time (standard deviation divided by the mean) are used as 
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measures of reliability. The coefficient of variation was calculated based on the time of day along each trip-

segment. For example, data obtained from the trip departing at 8:00 from stop A along segment X in day one is 

combined with data obtained from the same location and the same time from day two and so on. To ensure 

robustness of the generated models, several sample sizes were tested to discern how many days should be 

included to derive the coefficient of variation. A sample size threshold of 30-trip observations was found to be 

the point when the model retains its robustness.  Accordingly, any data used in the headway deviation or the 

coefficient of variation of run time had to be derived from at least 30 observations to ensure stability in the 

variation values. 

   

Research Methodology 

Keeping in mind the two different units of analysis, our aim is to measure reliability and performance at both the 

macro and micro levels. The first section focuses on the trip pattern to analyze run time and scheduling issues. 

The analysis is limited to specific patterns due to the complexity of the route. When selecting trip patterns to 

study, we adopted a criterion that the selected pattern needed to be present over the course of the entire day. 

Limiting the analysis to peak period allows us to make generalizations since the studied patterns are serving at 

least 80% of the stops along the studied route. The number of observations that can be present for this pattern 

was also part of the criteria. The second unit of analysis is the time point-segment (e.g., passenger activity per 

trip per segment).  A time point segment is identified as the section of a trip between two consecutive time 

points.  

We estimate four different multivariate regression models to inform different dimensions of service 

reliability. The first three models concentrate on run time and schedule adherence. Run time and headways vary 

among time point sections and time of the day; measuring both variables directly as headway delay and run time 

delay, without controlling for the variation in the schedule, imposes a measurement error.  Accordingly, we add 

two new variables: run time deviation and headway deviation. Any delay that is measured is relative to the 

associated schedule.  Run time deviation and headway deviation are ratios; for purpose of interpretation they can 

be used as percentages. The fourth model measuring variation in run time, captures the consistency in run time 
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from day to day. Table 1 describes each of the dependent and independent variables used in the models, which 

are specified as follows:  

 

(1) Run time = f (AM, PM, West-bound, Number of physical stops, Number of actual stops, Boardings, 

Boardings squared, Alightings, Alightings squared, Lift usage, Driver’s experience, Schedule delay at 

start, Headway delay at start, Passenger load, Order of first stop, Distance)                                

 

(2)  Run time deviation = f (AM, PM, West-bound, Number of physical stops, Number of actual stops, 

Boardings, Alightings, Lift usage, Driver’s experience, Schedule delay at start, Headway delay at start, 

Passenger load, Order of first stop, Distance)        

 

(3)  Headway deviation = f (AM, PM, West-bound, Number of physical stops, Number of actual stops, 

Boardings, Alightings, Lift usage, Driver’s experience, Schedule delay at start, Headway delay at start, 

Passenger load, Order of first stop, Distance)                                                                                                                

 

(4)  Coefficient of variation (CV) of run time = f (AM, PM, West-bound, Number of physical stops, CV 

number of actual stops, CV boardings, CV alightings, CV lift usage, CV driver’s experience, CV 

schedule delay at start, CV headway delay at start,  CV Passenger load, Order of first stop, Distance)

                                   

 

The first model assesses the quality of the data used in the research and compares it to previous research being 

developed in the transit industry. The covariates in the regressions represent the most theoretically relevant 

variables included in empirical studies of this type. Run time is expected to increase with the number of possible 

stops in a segment, number of actual stops, the use of a passenger lift, and passenger activity; it decreases for 

morning and evening peak trips relative to off peak trips. The square terms that are associated with the 

passenger activity variables are expected to have a negative effect on run time. Headway deviation and schedule 

delay measured at the beginning of the time point segment could be either positively or negatively related to run 
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time. A chronic delay is likely to have a positive effect on run time. Alternatively, if delay is circumstantial and 

operators utilize recovery opportunities, delay could be inversely related to run time.  

For models predicting run time deviation and schedule deviation, we hypothesize that the same 

relationship exists with the independent variables, yet headway delay at the beginning is expected to be more 

crucial in these models. They can also be used to assess the extent to which schedules are well designed to 

accommodate the various operating conditions along the route. If several variables are statistically significant, 

then schedules need to be revised. If the magnitude is small, yet statistical significance still exists, then such a 

route has an efficient schedule and monitoring in the future is recommended. Likewise, it is hypothesized that 

variations in run time will be similarly related to variations in the same set of variables that were specified in the 

run time model. Driver experience variables are added to account for the variability in the performance of 

drivers. It is expected that drivers’ experience would negatively affect run time and reliability measures. A 

dummy variable for the direction of travel is included in the models to control for these variations (going to or 

from downtown). Finally, two dummy variables representing the morning peak and evening peak are included to 

measure the differences between the operating environment among these time periods relative the off-peak time 

period.  
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Table 1. Variable description 

Variable Description 

Run time The travel time between two consecutive time points 
Run time deviation Actual run time divided by the scheduled run time 

Headway deviation end 
Actual headway measured at the end of the segment divided by 
scheduled headway at the end of the segment 

CV run time 
The coefficient of variation of run time between two consecutive time 
points 

Distance 
The distance between two consecutive time points composing the 
segment of analysis 

Number of scheduled stops The number of scheduled stops between two consecutive time points 
West-bound A dummy variable that equals one if the bus direction is West-bound 

Order of first stop 
The order of the first stop in the segment relative to the pattern that this 
stop is affiliated to 

AM peak 
A dummy variable that equals one if the observed trip started during 
the morning peak period 

PM peak 
A dummy variable that equals one if the observed trip started during 
the evening peak period 

Number of actual stops 
The number of actual stops being made by the bus along the studied 
segment 

Boardings The number of passengers boarding the bus along the studied segment 

Boardings square 
The number of passengers boarding the bus along the studied segment 
squared 

Alightings The number of passengers alighting the bus along the studied segment 

Alightings square 
The number of passengers alighting the bus along the studied segment 
squared 

Lift use The number of times the lift was used along the studied segment 
Average Passenger load The average number of passengers onboard the bus during the trip 

Delay at first stop 
The delay relative to the schedule measured at the first time point 
along the studied segment 

Headway delay at first stop 
The headway delay relative to the schedule measured at the first time 
point along the studied segment 

Driver experience The experience of the driver who is operating the bus in years  

CV Number of actual stops 
The coefficient of variation of the number of actual stops being made 
by the bus along the studied segment 

CV Boardings 
The coefficient of variation of the number of passengers alighting the 
bus along the studied segment 

CV Alightings 
The coefficient of variation of the number of passengers alighting the 
bus along the studied segment 

CV Lift use 
The coefficient of variation of the number of times the lift was used 
along the studied segment 

CV passenger load 
The coefficient of variation of the average number of passengers 
onboard the bus during the trip 

CV Delay at first stop 
The coefficient of variation of the delay relative to the schedule 
measured at the first time point along the studied segment 

CV Headway delay at first stop 
The coefficient of variation of the headway delay relative to the 
schedule measured at the first time point along the studied segment 

CV Driver experience 
The coefficient of variation of the experience of the driver who is 
operating the bus in years 
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ANALYSIS 
 
Route-Level Run time Analysis 

Following a methodology developed by Strathman et al. (2002), route level analysis measures the effectiveness 

of the schedule in accommodating recovery time. Scheduled run time along any transit route consists of two 

main components, run time and layover (or recovery) time. The scheduled run time is usually equal to the mean 

or median value of the run time, while the recovery time is set as the difference between the selected benchmark 

(mean or median run time) and the run time associated to the 95th percentile in the frequency distribution of run 

time. Using trip level data, we compare the actual run time for the entire route to the scheduled run time to 

identify scheduling problems.  

The first pattern starts from downtown Minneapolis heading west to the suburbs during the PM peak; 

the second pattern is coming from the suburbs during the morning peak going east to end in downtown 

Minneapolis. The selected AM peak (East-bound) pattern consists of 75 scheduled stops. On average, the bus 

serving this pattern only stopped at 38 stops during the morning peaks, serving an average of 57 passengers per 

trip. These numbers indicate that each time the bus serving this pattern completes a stop during the AM peak 

(East-bound), it serves approximately 1.5 passengers. On the other hand, the selected PM peak (West-bound) 

pattern consists of 77 scheduled stops. On average the bus serving this pattern during the evening peak period 

made 35 actual stops, serving an average of 45 passengers. These numbers indicate that each time the bus 

serving this pattern stops during the PM peak (West-bound) it serves 1.3 passengers. 

Figures 3 and 4 display the run time distributions for the selected Route 17 trip patterns during the AM 

peak (East-bound) and the PM peak (West-bound). For the 121 AM (East-bound) trips run time ranged from 42 

to 66 minutes with a median value of 51.7 minutes. The median observed run time is 3.7 minutes (7%) longer 

than the mean scheduled run time of 48 minutes. This 7% difference in the morning peak requires careful 

revision in the scheduled run time. In addition, the amount of recovery/layover time incorporated into the 

schedule for this trip pattern requires revision.  The observed 95th percentile run time for the selected AM peak 

(East-bound) trip pattern was 60 minutes, meaning that this pattern requires an average of 51.7 minutes of travel 

time and at least 9 minutes of layover and recovery time. Currently, the average actual layover time for this AM 

peak (East-bound) pattern is 2.5 minutes. A total of 6.5 minutes of difference exists between the actual and 
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recommended layovers. These values indicate that at the end of this route, drivers do not have enough recovery 

time and schedules need to be revised. Maintaining a schedule with less recovery and layover time than what is 

recommended, suggests that the bus will be starting new trips already being delayed.  

 
 

 
 
 
 
Figure 3. Route 17 run time distribution sample: AM East-bound. 

 

42 – 66 Min TT 
51.7 Min median TT 
48 Min. Scheduled TT 
60 Min. 95 percentile 
9 Min recovery time 
2.5 Min actual layover
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Figure 4. Route 17 run time distribution sample: PM West-bound. 

 
The selected PM peak (West-bound) pattern observed in Figure 4 included 66 trips with run times 

ranging from 49 to 83 minutes and median value of 57 minutes. Similar to the first selected pattern, the median 

observed run time for this pattern is 4 minutes (7%) longer than the mean scheduled run time of 53 minutes. The 

observed 95th percentile run time is 69 minutes, meaning that this trip pattern (PM peak West-bound) requires an 

average of 57 minutes of travel time and at least 13 minutes of layover and recovery time. Currently there is no 

layover time for this PM peak (West-bound) pattern. Comparing the AM (East-bound) to the PM (West-bound) 

situation, more adjustments are needed for the selected PM peak (West-bound) trip schedules.  

 

Time Point Segment Analysis  

The second analysis focuses on the detailed time point segment data. Actual run times range between 21 and 

8,869 seconds, a large range owed to the variance in the lengths of time point sections and several other factors 

included in the regression model. Run time deviation, which is the actual run time divided by the scheduled run 

49 – 83 Min TT 
57 Min. median TT 
53 Min. scheduled TT 
69 Min. 95 percentile 
13 Min. recovery time 
 Zero Min. actual layover  
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time ranged from 0.18 to 18.48 with a mean value of 1.07. This means that on average actual run time is around 

7% longer than the scheduled run time. On the other hand, headway deviation, the actual headway at the last 

stop divided by the scheduled headway at the last stop, ranged from 0.01 to 2.24 with a mean value of 1.00, 

meaning that on average there is no deviation from headway along the route. Combining the run time deviation 

and the headway deviation together we notice that a scheduling problem exists along the studied route. On 

average, buses are delayed yet the headway is maintained as scheduled. The variation from the mean in run time 

ranged between 8% and 57%. Table 2 includes the output of the regression models; T-statistics are indicated 

between parentheses below each coefficient.
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Table 2. Regression model results 

 Variable 
Run time 

Run time 
deviation 

Headway 
deviation 

CV Run time 

(Constant) 102.601 
(33.59) 

1.072 
(102.91) 

0.996 
(454.82) 

0.059 
(1.61) 

Distance 68.507 
(31.56) 

-0.066 
(-8.62) 

0.003 
(2.06) 

-0.033 
(2.27) 

Number of scheduled stops 5.019 
(10.61) 

0.009 
(5.49) 

-0.001 
(-4.25) 

0.002 
(0.52) 

West-bound -0.281 
(-0.16) 

0.025 
(4.25) 

0.000 
(0.36) 

0.044 
(2.80) 

Order of first stop 0.173 
(4.45) 

0.001 
(6.71) 

0.000 
(3.00) 

0.001 
(2.79) 

AM peak -17.267 
(-7.27) 

-0.006 
(-0.67) 

0.001 
(0.56) 

0.155 
(3.77) 

PM peak 37.73 
(18.46) 

0.055 
(7.68) 

-0.011 
(-7.28) 

0.022 
(1.56) 

Number of actual stops 11.269 
(17.02) 

0.010 
(4.29) 

0.001 
(2.46) 

-- 

Boardings 13.485 
(40.23) 

0.004 
(6.82) 

0.001 
(5.80) 

-- 

Boardings square -0.142 
(-12.52) 

-- -- -- 

Alightings 6.599 
(16.64) 

0.002 
(2.23) 

0.000 
(2.27) 

-- 

Alightings square -0.043 
(-2.90) 

-- -- -- 

Lift use 67.252 
(17.32) 

0.241 
(17.62) 

0.039 
(13.50) 

-- 

Average passenger load -0.34 
(-4.31) 

0.000 
(-0.99) 

0.000 
(3.71) 

-- 

Delay at first stop 0.21 
(31.15) 

0.001 
(21.40)

0.000 
(3.38) 

-- 

Headway delay at first stop 0.028 
(5.27) 

0.000 
(1.35) 

0.000 
(-96.68) 

-- 

Driver experience -0.340 
(-3.05) 

-0.001 
(-1.57) 

0.000 
(-2.65) 

-- 

CV number of actual stops 
-- -- -- 

0.051 
(2.97) 

CV boardings 
-- -- -- 

-0.020 
(-1.18) 

CV alightings 
-- -- -- 

0.026 
(1.47) 

CV lift use 
-- -- -- 

0.003 
(0.97) 

CV average passenger load 
-- -- -- 

0.114 
(1.86) 

CV delay at first stop 
-- -- -- 

-0.034 
(-5.02) 

CV headway delay at first stop 
-- -- -- 

0.000 
(-0.29) 

CV driver experience 
-- -- -- 

-0.056 
(-2.43)

Adjusted R2 0.59 0.07 0.44 0.52 

N 21,275 21,275 21,275 97 
* t-statistics reported in parenthesis        ** Bold indicates statistical significance at the 0.05 level and higher 
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Run time  

The run time model (R-square of 0.59) has almost all variables having a statistically significant effect 

on run time (barring direction). In addition, all variables in the model follow the transit operation theory in terms 

of direction and statistical significance. For example, the distance measured between two consecutive time 

points is found to be statistically significant with a positive effect on run time. Run time increases by 68 seconds 

for every kilometer a bus must travel between time points. This can be translated as showing that buses travel at 

a speed of 51 km/hour (32 miles/hour) when all of the other variables in the equation are held at their mean 

values. Each scheduled stop adds five seconds to the travel time, regardless of a stop. On average, six scheduled 

stops exist along each time point segment, whereas only three stops are actually made. This means that at each 

time point segment an average of 15 seconds are spent at stops where no passenger activity is occurring.  This 

represents approximately 4% of the average travel time along the studied time point segments.  

The order of the starting time point in the segment along its pattern adds 0.17 seconds to the run time. A 

pattern with 80 scheduled bus stops means the run time along the first two time points should be faster by 13 

seconds compared to the run time along the time point segment that starts with stop number 77 in the trip 

sequence, when keeping all variables at their mean values. Morning peak service is found to be faster than off-

peak by 17 seconds. On the other hand, evening peak service is slower than off-peak by 37 seconds. This 

indicates a difference of 64 seconds in run time between the morning peak and the evening peak.  

For each actual stop being made along a time point segment, 11 seconds is added to the run time. Each 

passenger boarding the bus adds 13 seconds to the run time while each alighting passengers adds 6.5 seconds. 

These three numbers are slightly higher than the regular numbers reported in previous research. This is due to 

the absence of a dwell time variable in the Metro Transit data. Accordingly, the time associated to acceleration, 

deceleration, door opening and door closing is included in the actual stops, boardings and alightings variables. 

The squared terms for boardings and alightings indicate that the time associated with passenger boarding and 

alighting decreases with each additional passenger.  For example, the first passenger boarding the bus at a stop 

takes 13 seconds to board; the second passenger boarding the bus will take slightly less time (because they have 
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gotten their fare ready while the first passenger was boarding, etc.). Using the lift during a trip adds 67 seconds, 

while keeping all other variables at their mean values.  

The average passenger load on the bus decreases the travel time by 0.34 seconds. If the bus is delayed 

at the first stop run time is expected to increase by 0.21 seconds for each second of delay, while the headway 

delay at the first stop adds 0.028 seconds of run time for each second of delay. Finally, drivers’ experience has a 

statistically significant negative effect on run time with a value of 0.34 for each year of experience while 

keeping all other variables at their mean values. 

 

Run time Deviation 

The run time deviation model (R square of 0.07) has a relatively large sample size; furthermore the 

variance in run times and lengths of the different time point segments this model is acceptable to be reported. 

The low R square value is not an issue of concern since we are mainly interested in understanding the causes of 

deviation from run time along the studied route. In the remaining section of the interpretation of the models we 

will mainly concentrate on interpreting the statistically significant variables that have higher magnitude and/or 

policy relevance. For each scheduled stop run time is expected to deviate from schedule by 0.9%. On average 

there are 6 scheduled stops per time point segment meaning that a deviation of 5.4% is expected, which can be 

translated to 16 seconds of delay per trip per segment. The distance traveled along the studied segment is found 

to have a statistically significant negative effect on run time deviation. For each kilometer traveled along the 

segment run time deviation is expected to decline by 6%. Run time deviation during the pm peak is found to be 

5% more than the off-peak period. This indicates that PM peak run time is usually behind schedule. For each 

actual stop being made along the studied segment run time deviation is expected to increase by 1%. Each 

boarding adds 0.4% to run time deviation, while each alighting adds 0.2%. Each lift activity along the studied 

segment adds 24% to run time variation. Finally for each second of delay at the first stop in the time point 

segment, run time deviation is expected to increase by 0.1%. This means that if a time point segment has a 

scheduled run time of 310 seconds and the bus arrived 20 seconds delayed at the first stop, run time is expected 

to deviate from schedule by 30 seconds at the end of the segment adding 10 more seconds of delay compared to 

the beginning of the segment.  
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Headway Deviation 

The headway deviation model (R-square of 0.44) revealed that majority of the studied variables have a 

statistically significant effect on headway deviation. In this model, lift activity has by far the strongest effect, 

increasing headway deviation by 3%. This model suggests that headway is well sustained along the studied 

route, which indicates consistency in the amount of delay along the consecutive trips. The buses are delayed in 

terms of run time yet they are maintaining the scheduled headways. 

 

Coefficient of Variation Run time  

Finally, the coefficient of variation of run time model (R-square of 0.52)revealed that distance traveled 

along each time point segment is found to have a statistically and significant negative effect on run time 

variation. Accordingly, designing routes with longer distances between time points is recommended to decrease 

the variability in run time. The variability in run time is larger for buses traveling westbound (away from 

downtown) relative to those traveling eastbound (towards downtown). Morning peak buses experience higher 

levels of variability in run time compared to buses running during the off peak time period. A 1% increase in the 

variability of the number of actual stops being made leads to a 5% increase in the variability of the run time 

between time points, while keeping all other variables at their mean values. The variance in the passenger load 

adds 11% in the variability of the run time. On the other hand, the variance in the delay at the beginning of the 

segment is found to have a statistically significant negative effect on run time variation. Also a 1% variation in 

drivers’ experience leads to 5% decline in the run time coefficient of variation. 

 

CONCLUSIONS AND RECOMMENDATIONS 

Transit agencies are increasing realizing the merits of collecting and analyzing data that automatically record the 

location of buses as a means to enhance service quality. In particular, several agencies are employing automatic 

vehicle location technology to aid understanding such matters. This research focuses on AVL and APC data 

collected along Route 17, traversing the western suburbs to downtown Minneapolis. Currently, this route is 

served by 28 different patterns of bus service. The multiple trip patterns make service evaluation at the route or 
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trip pattern level difficult. Our research presents methods to analyze performance of this route at two levels of 

analysis, the trip-pattern and the trip-time point segment. We conducted statistical analysis at the time point 

segment level, while calculations based on observed run times were derived at the trip-pattern level. We 

recommend that the number of patterns serving this route be reduced. Our examination of two select trip 

patterns shows that in addition to changes in the number of patterns serving Route 17, it may be important to 

consider scheduling changes. The scheduled run times for both the AM peak (East-bound) and PM peak (West-

bound) trip patterns examined in this paper were shown to be 7% shorter than the median observed run times 

and had insufficient layover/recovery time scheduled after their last stops. We therefore recommend increasing 

recovery time for the existing patterns. 

It was also clear that only 50% of the scheduled stops were used in both analyses. Revisiting the number 

of scheduled stops and reevaluating the spacing between stops could possibly lead to substantial savings in run 

time and run time deviations. Each scheduled stop adds 0.9% to the schedule deviation; when translated to 

seconds per trip segment, this equals approximately 3 seconds of additional run time. Since not all stops are 

used, as was made clear from the route and the time point segment analyses, we recommend consolidating bus 

stops.  

The run time model at the trip time point segment level of analysis follows the transit operations theory 

in a manner that data add confidence and reliability to the data being used. For example, run time is longer at the 

end of the pattern even though the distance traveled might be the same. Also, delay at the beginning of the 

segment increases run time and the amount of delay at the end of the segment, which was reflected in the run 

time deviation model.  It is important to note that transit signal priority was not implemented during the data 

collection period and also information related to signal coordination was not present. Knowledge of traffic 

signal location and its cycle can yield to better models, yet we are confident about the generated models since 

they are comparable to previous research.  

In addition to the scheduling problems at the route level addressed above, Route 17 is facing several 

schedule issues at the time point segment level that require revision, especially during the pm peak. According 

to this analysis, the run times assigned to segments along this route are not sufficient and revisions to the 

schedules for this route are a must. The models presented in this paper show that run time, run time deviation, 
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and headway deviation are affected by almost all the same variables. Accordingly, schedulers should consider 

all the variables introduced in this analysis when preparing schedules—a difficult task indeed.   

One other strategy to address some schedule problems includes assigning more experienced bus drivers 

to Route 17. The experience of drivers affects run time, headway deviation, and run time variation. Although 

this is not a strategy that is possible through the current route assignment policies at Metro Transit, it is 

recommended that experienced drivers be assigned to Route 17 in the future.   

Finally, in order to conduct this analysis, Metro Transit agreed on directing APC equipped buses to 

serve this route. We recommend equipping as much of the Metro Transit bus fleet with APC; generating similar 

research without having sufficient APC information is not possible. This research demonstrates the advantages 

of analysis based on such data applied analysis that can be used to directly inform performance related issues for 

Metro Transit in future planning.  
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