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i

Abstract

This thesis investigates holographic dualities for three-dimensional spacetimes. We first
consider warped dualities, which involve gravity in a deformed anti-de Sitter space that is
relevant for the description of the near-horizon region of extreme Kerr black holes. Using
the covariant phase space formalism to compute surface charges, we show that the entropy
calculated on the gravity side of the duality in generic theories described by Lagrangians with
higher curvature terms matches with the result obtained in one of its proposed duals, the
warped conformal field theory. In a different perspective, we then apply the linear functional
method to constrain the spectrum of this theory by leveraging the modular transformation
properties of its partition function. In particular, we derive a bound on the dimension of
the lightest states dual to warped black holes, significantly improving known results. We
subsequently enhance this bound by further modular analysis and prove analytically that in
such a theory, consistency requires that charged primary states exist at or below the black
hole threshold. We then generalize this result to a wide variety of such theories with charge,
showing that any chiral conformal field theory with a current algebra contains (Virasoro +
current algebra) primary states with non-trivial charge and dimension h 6 c/24+1, provided
the level is bigger than a certain critical value. We find various examples of algebras for which
this critical level is zero.
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Abrégé

Cette thèse est dédiée à l’examen de dualités holographiques impliquant des espaces-
temps tridimensionnels. Nous considérons tout d’abord les dualités distordues, qui mettent
en jeu une théorie de la gravitation dans un espace anti-de Sitter déformé qui s’avère jouer
un rôle dans la description de la région près de l’horizon du trou noir de Kerr extrême.
En faisant usage du formalisme covariant de l’espace de phase pour calculer les charges
de surface, nous montrons que l’entropie calculée du côté gravité de la dualité, dans des
théories génériques dont la description fait intervenir des lagrangiens contenant des termes
de courbure élevée, correspond au résultat obtenu dans une des théories duales potentielles,
connue sous l’appellation de théorie conforme de champs distordue. En suivant une ap-
proche différente, nous dérivons également une borne sur la dimension des états les plus
légers correspondant aux trous noirs distordus, améliorant ainsi les résultats connus de façon
significative. Nous affinons ensuite cette borne par une analyse modulaire plus poussée et
fournissons une preuve analytique que dans une telle théorie, la cohérence interne requiert
la présence d’états primaires chargés au seuil caractérisant les trous noirs ou en-dessous de
celui-ci. Nous généralisons enfin ce résultat à diverses théories de ce type avec charge, mon-
trant toute théorie conforme de champs chirale avec une algèbre de courant contient des
états primaires (sous l’algèbre de Virasoro + courant) possédant une charge non triviale et
une dimension h 6 c/24+1, pour autant que le niveau soit plus grand qu’une certaine valeur
critique. Nous trouvons différents exemples d’algèbres pour lesquelles ce niveau critique est
égal à zéro.
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7.4.1 Characters of sû(2)k . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.2 Derivation of the bound . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.5 Generic affine algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5.1 Characters of a Lie affine algebra . . . . . . . . . . . . . . . . . . . . 114
7.5.2 Derivation of the bound . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents vii

Conclusion 123
A On-shell conditions for theories without derivatives of the Riemann tensor . . 126
B Corrections to charges for various higher curvature theories in 3d with k = 2 130

B.1 Most general case without derivatives . . . . . . . . . . . . . . . . . . 130
B.2 Lagrangian with �R . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.3 Lagrangian with R�R . . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.4 Lagrangian with �R�R . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.5 Lagrangian with (∇aRbc)2 . . . . . . . . . . . . . . . . . . . . . . . . 134

C Explicit expressions for the expansion of the flavoured chiral partition function136
D Writing f2 in terms of the Hecke operator acting on J . . . . . . . . . . . . . 145
E Full characters for affine Lie algebras . . . . . . . . . . . . . . . . . . . . . . 146

Bibliography 151



This solid object might survive them all. If she
threw it away it would still exist somewhere or
other.

Virginia Woolf – The Years

Life is inevitably holographic and thousands of
brushes have painted us inside and out.

Jim Harrison – Off to the Side
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Introduction

A century ago, the physics community was only just getting acquainted with the brand
new theory of general relativity, which had barely been corroborated by observations of
the solar eclipse made by Eddington’s expeditions. There were more wonders to come, as
the advent of the concept of quantum already indicated. However, as quantum mechanics
was brought into existence and more bewilderment followed, no one imagined that the next
hundred years would see these two theories tested more and more accurately but no solid
bridge built between them. Different avenues towards a quantum theory of gravity have
been convincingly explored, but none has been able to prevail so far.

New theories generally get built on old ones when some notions appear to be in need for
a reinterpretation [1]. With the derivation of Einstein’s equations from crystalline structure
of condensed matter systems [2] or thermodynamics [3, 4], it has been realized that gravity
itself could be an emergent phenomenon and that the fundamental level of explanation was
perhaps not what it was initially thought to be. The local character of field theory and
general relativity can also be considered a relative notion that depends on the quantum
nature of the probes used [5]. This goes hand in hand with a whole new notion of spacetime;
after all, absolute spacetime is a concept best suited to point-like particles. Spacetime itself
is then understood in this perspective to emerge from an underlying quantum structure,
with geometry merely reflecting entanglement and gravity describing the changes caused to
it by matter [6]. In a less fundamental way, holographic dualities may be seen as successfully
generating one dimension of space from d others, and a theory of gravity from one that
has no such notion. Indeed, simply put, the idea of these dualities is that there is a certain
equivalence between a theory of gravity in d+1 dimensions and a d-dimensional gauge theory,
i.e. a field theory without gravity. Using the appropriate “dictionary” relating both sides of



Introduction 2

the duality, one can compute quantities in either one or the other. It may for example be
more convenient to perform computations in a gauge theory in flat space instead of in its
stringy counterpart in curved space, or to use perturbative methods in a higher-dimensional
but weakly coupled classical theory of gravity instead of doing it in its strongly coupled
quantum dual.

In the search for a suitable theory of quantum gravity, gauge/gravity dualities have played
a prominent role. From the first hints [7, 8] to the formulation of the AdS/CFT conjecture
[9, 10, 11] the particular duality relating gravity in anti-de Sitter space (AdS) to conformal
field theories (CFT) gained wide attention, but more general considerations like the holo-
graphic principle, which is the statement that relevant degrees of freedom to describe any
system in a given volume are “projected out” onto the surface enclosing it [12, 13], suggest
that in principle duality may take a variety of forms. Throughout the years there have been
various attempts to extend it beyond the original proposal, such as dS/CFT [14], which
could be more directly relevant for the world we actually live in [15]. Recently, it has been
suggested that a way to go about it could be to build de Sitter space from two copies of
anti-de Sitter cut, warped into hemispheres and (mathematically) glued together [16]. The
holographic dual would then be a pair of conformal field theories. Beyond this example, the
AdS/CFT correspondence could be regarded as a toy model of quantum gravity: even if it
describes a universe unlike our own, it may point in the right direction while allowing to
reach a great level of understanding.

Other possible gauge/gravity dualities include Kerr/CFT [17], which states that the near-
horizon region of the four-dimensional extreme Kerr black hole could be dual to a conformal
field theory, the warped dualities Warped AdS/CFT [18] and Warped AdS/Warped CFT
[19, 20], which bring into play deformations of anti-de Sitter space and their putative du-
als, and BMS/CFT [21] which relates (d+ 2)-dimensional asymptotically flat spacetimes at
null infinity to conformal field theories in dimension d. The latter spacetimes have recently
aroused renewed interest as they appeared to be at the center of a proposed resolution of the
black hole information paradox [22]. The warped duality, for its part, is of special interest
because of its connexion to a realistic model of black holes, namely extreme Kerr mentioned
above.
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Black holes indeed sit at the center of the attempts to formulate a consistent theory of
quantum gravity. Their thoroughly gravitational nature pervaded by intrinsically quantum
behaviour makes them a crucial issue in that respect, more than ever so now that a first
direct experimental detection has been achieved and that a “face” has finally be put on
the name (at least for M87∗). In September 2015, the LIGO-Virgo collaboration observed
a signal consistent with the predicted waveform corresponding to the merger of two black
holes of about 30 solar masses each, colliding at nearly one-half the speed of light [23]. The
equivalent of three solar masses was emitted as gravitational waves in the blink of an eye
(although 1.3 billion years ago), with a peak intensity for the event greater than the combined
power of all light radiated by all the stars in the observable universe. Besides this “acoustic”
rendering, there is now also a “visual” one, which the Event Horizon Telescope delivered just
a few months ago [24]. The Earth-sized radio telescope obtained the first image of a much
larger kind of black hole, namely the galactic supermassive one sitting in the center of M87.
However, much remains to be understood about this most intriguing object that Werner
Israel described as “an elemental, self-sustaining gravitational field which has severed all
causal connection with the material source that created it, and settled, like a soap bubble,
into the simplest configuration consistent with the external constraints” [25].

Using holographic tools to shed some light on specific features of black holes will be the
focus of this thesis. In particular, the sort of thing one can do is compare relevant quantities
on both sides of a proposed duality. If they match, this lends some credit to the duality
and means that one can use it to access previously unattainable knowledge in one of the two
pictures. This is in essence what was done by Strominger and Vafa when they accounted
for the entropy of a five-dimensional string theory black hole by working in the dual theory
[8]. Since then, the matching of black hole entropies is generally the first step in arguing for
a potential duality. However, the quantities computed in the gravity picture depend on the
particular theory of which the spacetime under consideration is a solution. This strongly
restrains the scope of such a check since there can be several such theories, but picking one
is necessary to perform the computations. Being able to do so in more general setups is
then a much better argument in favour of a duality. This is what we will do for Warped
AdS3/Warped CFT2.
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An even more natural approach to get better knowledge of a physical theory is to use the
constraints imposed by its characteristic symmetries. Conformal field theories are particu-
larly interesting in this regard since they transform in a very specific way under the action
of the modular group (i.e., the isometry group of the torus). In particular, the partition
function of the most basic conformal field theories is invariant under such transformations,
while more general cases depart only slightly from that behaviour and the partition func-
tion always has a form of covariance. For a while, these favourable properties have been
put to use to gain some insight on the spectra of conformal field theories and assess which
among them are consistent, in a research program called the modular bootstrap. Non-trivial
constraints on the number of independent operators with a given conformal dimension were
derived using this method [26], as well as bounds on said dimension [27]. We will draw
inspiration from these works as well.

Outline of the thesis

Chapter 1 is devoted to laying out general features of black holes. In particular, it has
been realized that they have thermodynamic properties and that they are actually black bod-
ies emitting thermal radiation [28]. A corresponding statistical description of black holes,
however, is at odds with the field theory description in ways that cannot be simply over-
come: this is the so-called “information paradox”. This designation relates to the most
popular formulation of the problem, where the black hole acts as a sort of black box, con-
taining inacessible information about the star that has collapsed into it but destroying it
upon evaporation via Hawking radiation, which seems to contradict the second law of ther-
modynamics. The very way this puzzle is put forth is tied to our understanding of black
holes’ nature, and this itself depends on the kind of theory of quantum gravity we have in
mind. We give a brief review of the black hole information paradox, and a summary of some
of its proposed resolutions.

In Chapter 2 and 3, we review both sides of the AdS3/CFT2 duality successively before
seeing how they come together. Firstly, we review three-dimensional anti-de Sitter space, and
mention that despite the absence of local degees of freedom of gravity in 2+1 dimensions,
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it is of a certain relevance since in the negative cosmological constant case it possesses
a black hole [29]. We also introduce the Brown-Henneaux boundary conditions [7] that
characterize asymptotically AdS3 spaces, and the computation of surface charges by means
of the ADT method [30, 31]. Secondly, we describe the general features of conformal field
theories with special attention to the two-dimensional case. We go over the double Virasoro
algebra that its generators satisfy, and we construct the partition function on the torus using
the corresponding characters. The modular properties of this partition function are then
exploited to yield the asymptotic density of states following Cardy’s formula [26]. Finally,
in Chapter 4, we use the Chern-Simons formulation of three-dimensional gravity in anti-
de Sitter space to show how it can be rewritten as a gauge theory, paving the way to the
duality. We deliberately choose not to review this topic using any string theory, since no such
notions are used in the rest of the thesis. The utility of the duality is then illustrated with the
matching of entropies on both sides of AdS3/CFT2. We also briefly sketch the holographic
principle, as an argument in favour of the search for other gauge/gravity dualities.

In this perspective, the Warped AdS3/Warped CFT2 duality is reviewed in Chapter 5.
We explain how warped AdS spaces are obtained by means of deforming the anti-de Sitter
metric [32], and what how they come up as solutions of theories of gravity that extend the
classic Einstein-Hilbert action to setups with higher curvature. We then discuss how their
asymptotic symmetry algebra matches the defining algebra of a warped CFT, and how the
partition function is defined in such a theory. The modular properties of the latter are then
investigated, and shown to reproduce an analogue of Cardy’s formula [19].

In Chapter 6 we show that the entropy of the black hole calculated on the gravity side
of the Warped AdS3/Warped CFT2 duality matches with the one computed through gauge
theory methods on the field theory side. Since warped AdS3 spaces appear only in contexts
where the action contains terms involving higher-order derivatives of the Riemann tensor,
this supposes to mobilize an enhanced method to compute the charges and derive the en-
tropy. To this end, we review the covariant phase space formalism [33] and use it to prove
the advertised result. This entropy matching for warped duality was previously tested for
some particular cases of higher-derivative theories, and is now established to hold generically.
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In Chapter 7, we adopt a different approach and derive a bound on the mass of the lightest
warped black holes by putting to work the modular properties of the partition function in
warped CFT. More generally, we argue that such a bound characterizes the spectrum of
chiral conformal field theories with all sorts of charges. We prove our statement analytically
in the simplest case, and provide numerical evidence for various other cases using a thorough
analysis of the Weyl-Kac characters of affine Lie algebras.



Part I

Black holes and holography:
general notions



Chapter 1

Black holes

Black holes are generally thought of as regions of spacetime exerting a gravitational pull
so strong than nothing can escape from it [34]. Even if the emergence of the concept of
black holes is typically associated with general relativity, this idea actually predates it by a
good century. Indeed, in 1783, one John Michell imagined a star so dense that the escape
velocity of a particle of light would exceed its speed [35]. This idea was cast aside with
the corpuscular theory of light upon which it was built, only to resurface at the beginning
of the 20th century in the form of an intriguing solution to Einstein’s equations proposed
by Schwarzschild [36]. In the context of general relativity, black holes are now understood
as regions where spacetime curvature goes to infinity, i.e. singularities, cloaked with an
event horizon which is the surface that separates the region where objects can in principle
escape to infinity (the exterior of the black hole) from the region where things get trapped
(the interior). Singularities were proved to be inevitable in a spacetime where trapped
surfaces exist [37]. More precisely, the Penrose theorems state that under reasonable energy
conditions and provided there is a Cauchy surface, a trapped surface in spacetime, such as
an event horizon, implies the presence of either a Cauchy horizon (i.e. a boundary to the
domain of knowledge of which is accessible from physical data in a given region of spacetime)
or a singularity. Either way, spacetime is geodesically incomplete as long as such a thing as
the weak energy condition holds.

In principle knowledge of the entire structure of spacetime is needed in order to define
an event horizon, future history included. The highly global character of this definition,
with the consequence that local measurements seem to be made irrelevant by it, led many
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prominent physicists to discard the notion of black hole as a “real” object. It is only when
astrophysical mechanisms leading to the production of black holes were described that the
idea started to gain momentum. In particular, the study of white dwarfs and neutron stars
[38, 39] eventually led to the conclusion that black holes could form as a result of the collaps-
ing of stars. If black holes could be the final stage in the life of a star, if they had anything
to do with quasars and if they could provide an explanation for the phenomena happen-
ing at the galaxy’s center [40], they were perhaps more than mere figments of the theorists’
imagination. With observational evidence piling up, the problematic notion of the (classical)
event horizon started to be regarded more and more as an idealization, even if it is one that
led to powerful results. In particular, among these results, the celebrated “no-hair theorem”
[41, 42] states that whatever characteristics the initial star possesses, whether topography or
magnetic field for example, the final black hole into which it collapses is perfectly spherical
(i.e., “bald”). The only properties the black hole owns are its mass, angular momentum and
electric charge, all the others being radiated away. This is precisely what was recently ob-
served experimentally by the LIGO-Virgo collaboration in the event of a black hole merger:
the signal remarkably matched the predicted “smoothing” of both horizons into one [23].

The fate of the notion of event horizon is not settled; recently it has been argued that it
is actually an artefact of a static spacetime, and that it can be dispensed with in a dynamical
framework for collapsing matter [43]. This is related to the classical nature of this feature,
and to the fact that a proper treatment of black holes would involve quantum corrections.
But the taking into account of the quantum mechanical aspects of black holes leads to even
more puzzling considerations, which we address next.

1.1. Hawking radiation and black hole information

When Hawking set out to study scalar field propagation in a non-spherical collapse ge-
ometry, nothing particularly interesting was expected to happen. Yet the result of this
investigation was that there is a steady emission of particles for all frequencies, with or with-
out rotation at the final black hole stage [28]. Furthermore, as seen by a distant observer,
the emitted radiation is thermal. The origin of this flux of particles is understood to be
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pair creation near the horizon, with part of the particles falling into the black hole while
the rest flows away to infinity, carrying with it little by little energy from the black hole.
This evaporation process happens in finite time (typically of order of its cubic mass). This
completed the picture of the black hole as a thermodynamic system, which we describe in
the next section. It was also the beginning of one of the longest-standing conundrums in
theoretical physics, namely the so-called “information paradox”. It is generally expressed in
its most naïve formulation as the inconsistency between information loss resulting from the
black hole’s complete evaporation and the second law of thermodynamics according to which
entropy should never decrease. A more precise picture emerges when we express things in
quantum mechanical terms: since the emitted quanta come from pair creation, they are en-
tangled with the “other half” of the pairs that has been absorbed by the black hole. Hawking
radiation is thus in a mixed state, and when the black hole disappears, there is no trace of
the fine-grained description (i.e., pure state) this mixed state is a coarse-graining of [44]. In
other words, “the Hawking process builds up entanglement between the black hole and its
exterior” [45], and this contradicts unitary time evolution.

One possible way out of this situation would be to simply accept the breakdown of quan-
tum mechanics as we know it. Perhaps in the presence of gravity, we should consider mixed
states to be the fundamental entities, and their evolution in terms of density matrices would
then no longer be given by a unitary S-matrix, but by a “not-S”-matrix or superscattering
operator (or $-matrix) [46]. It has also been argued that unitarity and information preserva-
tion could only be expected on globally-hyperbolic spacetimes, and that only local unitarity
makes sense in the evaporation spacetime [47]. In other words, pure to mixed state evolution
is predicted by quantum mechanics in any situation where the final time is not a Cauchy sur-
face, and therefore does not constitute a violation of it. In this perspective, information loss
need not necessarily be a problem: one can consider that after the black hole has completely
evaporated, Hawking radiation is entangled with the interior observables of the past black
hole [48]. However, a classic objection to this position is that without unitary time evolu-
tion, the relationship between symmetries and conservation laws vanishes, but violations of
conservation laws have not been witnessed [49]. One may nevertheless devise a quantum
mechanical system such that its non-unitary evolution preserves energy conservation [50].
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Yet the worry remains that since quantum mechanics has been tested with an extremely
good precision, any small amendment to unitarity would have non-negligible consequences
at the experimental level.

Another possible way out would be to consider that black holes do not evaporate com-
pletely, and even if the information is kept hidden, it remains there in the end [51]. After
all, Hawking evaporation is a semi-classical process, so it may well be that this description is
no longer reliable when the black hole gets really small. The problem with that conception
is that an arbitrary large quantity of information would end crammed into a Planckian size
remnant. If the remnant interacts with the outside world, this looks hardly compatible with
particle physics and thermodynamics. In the latter case in particular, proliferation of such
objects containing a large amount of states would be entropically favoured [48].

The problem may be not so much that the black hole evaporates completely or that
information is lost, than that according to the field theory calculations, Hawking radiation
is exactly thermal while statistical mechanics predicts it is no longer exactly thermal after
Page time (i.e., halfway through the evaporation process) [47]. This discrepancy arises much
earlier than the end of the black hole’s life. This conflict between two descriptions of the
black hole is illustrated particularly sharply by the following proposed resolution of the
information paradox.

In the black hole complementarity proposal [52], it is argued that the three fundamental
postulates on which a phenomenological description of the black hole by a distant observer
should be based are: (i) the validity of standard quantum theory (existence of a unitary
S-matrix), (ii) the validity of semi-classical gravitation theory (physics outside the horizon
expressed in terms of a set of semi-classical field equations with quantum corrections), (iii)
the validity of black hole thermodynamics (originating from coarse-graining of a complex but
conventional quantum system). Subscribing in addition to (iv) the widespread belief that
an infalling observer notices nothing in particular when she crosses the horizon, the authors
claim that there is in fact a black hole description perfectly consistent with these three postu-
lates, provided that the notion of “stretched horizon” is introduced. The stretched horizon is
viewed as a visible timelike curve sitting in front of the horizon and behaving like a physical
membrane. To an outside observer, it would be seen to respond to perturbation as a viscous
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fluid, and from the point of view of an infalling observer it would simply disappear. These
two conflicting accounts are absolutely irreconciliable and must be seen as complementary,
since the infalling observer’s observations simply cannot be shared and compared with the
distant one’s. In that perspective, the fate of information is the following: it is absorbed,
thermalized and re-emitted by the membrane, to be found in long-time correlations between
quanta emitted at very different times. Similar views were formerly expressed in [53].

However, this was challenged by the firewall proposal [54]. The claim here is that for old
black holes (with respect to Page time), postulates (i), (ii) and (iv) above are inconsistent
with one another. In other words, the contradicting perspectives that were compartmental-
ized by complementarity can in fact become apparent to a single observer [55]. Indeed, full
entanglement of recent radiation with both the older radiation (following from the purity of
Hawking radiation) and the modes behind the horizon (related to the absence of drama at
the horizon) violates strong subadditivity1 of the entropy. In field theory terms, an infalling
observer encounters high-energy modes (the firewall in question) at the horizon unless one
relaxes the semi-classical field theory postulate. In the latter case, this would allow the
novel, possibly non-local dynamics responsible for the re-emission of information to extend a
macroscopic distance from the horizon (instead of being confined to Planckian distance as in
the complementarity proposal). Otherwise, one must face the possibility that there simply
is no spacetime inside the black hole.

But this is not necessarily a problem: in fact, this is precisely what the fuzzball proposal
is about [56]. This approach simply does away with both the event horizon and the black
hole interior, replacing them by a stringy picture of vibrating microstates spreaded over the
transverse region where the horizon was supposed to be. There is thus no singularity for
things to be destroyed at: matter falling “in” is just caught in the fuzz and radiated later with
all its information. The classical intuition is preserved by a form of complementarity typical
of the fuzzball: oscillations of the fuzzball happen at frequencies that are close enough to
those entering the description of infall into a usual black hole. The slight difference between

1 For a tripartite quantum system, in terms of the conditional entropy S(A | B) =̂ S(AB)− S(B), the
strong subadditivity theorem is the statement that

S(A | BC) 6 S(A | B) .
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the two is what allows information to escape. It is noticeable only at low energy, and at high
energy the classical picture is as good an approximation as it ever was2. Of course, since
the “horizon” can be very large, this picture implies that quantum effects are not confined
to Planckian distances [44].

A similar idea underlies another possible way out of the information problem: quantum
gravity effects may indeed become relevant way before the black hole reaches Planck length.
It has been argued, based on loop quantum gravity insights, that energy densities can reach
Planck scale while the black hole is still macroscopic [57]. The leads to a new story for
gravitationally-collapsed objects: when they enter the quantum gravity regime, they expe-
rience a new phase that takes the form of a bounce. In this phase called “Planck star”,
gravitational attraction is balanced by quantum pressure. Due to extreme time dilatation,
from the point of view of the Planck star its lifetime is extremely short and looks more
like a bounce, while as seen from a distance, it looks very long and does not contradict the
black hole picture. In this perspective, the Schwarzschild horizon encloses a second trapping
horizon that delimits the region where Einstein’s equations no longer apply because of how
compressed the Planck star is. With Hawking radiation, the outer horizon slowly shrinks
as expected, and the inner one grows since the negative energy of the infalling pair partner
turns positive. When they meet, they annihilate and since there is no horizon anymore all
the remaining information can escape. The final stage of the collapse is a short-lived, macro-
scopic remnant. In the end, a black hole is nothing more than a collapsing and bouncing
star seen is slow motion, which is reminiscent of Zeldovich and Novikov’s old “frozen star”
picture [58]. However, it has been argued that such a scenario where all the information
comes out at a given time would be highly unstable, and that the energy radiated by the
Planck star is different from Hawking radiation in that it is not experienced as a vacuum by
an infalling observer3 [55].

Up until now, almost every piece of the picture we painted of the black hole to begin
with has been put into question in these various proposals to solve the information problem.
One still remains: their baldness. Yet it is possible to conceive of an alternative solution

2 Unfortunately, there are indications that the fuzzball would nonetheless work as a firewall and destroy
an infalling observer [55].

3 Such effects could alter the shape of the black hole’s accretion halo, and hence be observable with the
Event Horizon Telescope [45].
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where the no-hair theorem is wrong. Indeed, it holds for stationary black holes, but if one
considers time-dependent black holes, things look a bit different: the relevant symmetry
group at the horizon is the Bondi-Metzner-Sachs group, which in addition to the Poincaré
group symmetries contains supertranslations [22]. These are transformations that preserve
the asymptotic form of the metric, and a whole collection of extra gravitational charges are
associated to them. Since they affect only the subleading part of the metric, they are called
“soft hair”. The hope is then that all the information associated with the initial state of the
black hole is described by these charges.

The black hole information paradox is a vastly complex subject, where part of the chal-
lenge lies in the identification of the problem itself. Hopefully this brief (and far from
exhaustive) review gives the reader a sense of what remains to be understood about black
holes, and why it is intimately related to the sort of theory quantum gravity might turn out
to be. In the meantime, Hawking radiation also contributed to paint a thermodynamical
picture of black holes, which is the subject of less debate.

1.2. Black hole thermodynamics

The first hint that black holes were thermodynamical objects was the discovery by Hawk-
ing that, under the null energy condition

Tab k
a kb > 0 , (1.1)

(with T the energy-momentum tensor of infalling matter and k an arbitrary null vector) the
area of the event horizon never decreases [59]. On the other hand, the uniqueness (no-hair)
theorems make the black hole formation process hard to believe from a thermodynamical
point of view: indeed, the collapse of a complex matter system into a comparatively simple
object, characterized by only a very small number of quantities (mass, charge, angular mo-
mentum) seems to disobey the second law. The initial object entropy’s decrease as matter
disappears into the black hole and gets destroyed at the singularity should be compensated
by a corresponding increase in some feature of the final object, and the area of the horizon
seems to be the perfect candidate to play this role. Bekenstein then introduced the concept
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of entropy for the black hole, and suggested that the appropriate relation to the area A

should be (in natural units) [60]
SBH = A

4 (1.2)

or in full units SBH = AkBc
3/(4G~). The second law of thermodynamics is then understood

to hold only for the total system formed by the black hole and its surroundings:

dStot > 0 with Stot = SBH + Smatter . (1.3)

This “generalized second law” [61] is widely held to be valid, but has not yet been proven
[34]. A Gedankenexperiment allowed Bekenstein to derive from this law a bound on the
entropy of the matter in the vicinity of the black hole: allegedly, the entropy of a matter
system of total energy E enclosed in a sphere of radius R cannot exceed

Smatter 6 2πER (1.4)

lest it form a black hole [62]. The validity of this bound is however controversial; see in
particular [63].

In the same spirit, an analogue to the first law of thermodynamics for black holes can be
derived from Einstein’s equations [64]:

dM = κ

8π dA+ Ω dJ + Φ dQ (1.5)

where in addition to the black hole properties (mass M , charge Q and angular momentum
J) the thermodynamic potentials are the angular velocity at the horizon Ω, the electrostatic
potential Φ and surface gravity of the horizon κ. The latter quantity is defined by

ξb∇b ξ
a = κ ξa (1.6)

where ξ is the Killing vector generating the horizon (e.g. ξµ∂µ = ∂t + Ω ∂ϕ for a stationary,
axisymmetric black hole). It is generally understood as a measure of the strength of gravity
at the horizon as seen by a distant observer. For a stationary black hole, it is constant on the
horizon in much the same way the temperature is constant in a body at thermodynamical
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equilibrium. From (1.5), one sees that temperature can be identified as

T = κ

2π (1.7)

which is precisely the temperature of Hawking radiation [28]. For example, for a Schwarzschild
black hole, the Hawking temperature is

T = 1
8πM (1.8)

(up to a factor of ~c3/(GkB) in non-natural units) which is about 10−7K for a black hole of
one solar mass. It is therefore nothing one could measure experimentally for an astrophysical
black hole. With A ∼ M2, and Boltzmann equation for the power emitted by a black body
P = dM/dt = AT 4, one can estimate the lifetime of a black hole

t ∼
∫
dM M2 ∼ M3 (1.9)

which is long, but (as claimed in the previous section) not exponentially long.

Of course, assigning an entropy to black holes raises a number of questions. What kind of
statistical underlying description could it be a coarse-graining of? What does it mean that
this entropy is proportional to a characteristic area rather than to the volume of the whole
object? We will come back to these deep questions in Chapter 4, where we will sketch how
holography can help us understand them. In the following chapters, we will introduce some
background to understand what holography is. In particular, we will review both sides of
the duality in its most common incarnation, namely AdS/CFT. In the next chapter we will
address the gravity side, i.e. anti-de Sitter space, and in the following one the field theory
side, i.e. conformal field theory. Along the way, the reader may gather some hints of how
they are going to come together in the holographic proposal.



Chapter 2

Anti-de Sitter space

Among the solutions of Einstein’s equations, anti-de Sitter space is the one describing an
empty universe with Lorentzian signature and constant negative curvature. To picture such
a space, it is convenient to embed it in a higher-dimensional space as a slice of which we
construct it. For example, embedding d-dimensional AdS in (d+ 1)-dimensional Minkowski
space with two time directions yields a hyperboloid:

−x2
0 − x2

d +
d−1∑
i=1

x2
i = −`2 . (2.1)

The parameter ` is the radius of curvature and is related to the cosmological constant
Λ = −(d− 1)(d− 2)/`2. A system of coordinates covering the entire space is then

x0 = ` cosh ρ cos τ , xd = ` cosh ρ sin τ , xi = ` sinh ρΩi (i = 1, . . . d− 1) (2.2)

where ρ ∈ [0,∞), τ ∈ [0, 2π) and Ωi is a unit vector for the (d − 2)-sphere such that∑d−1
i=1 Ω2

i = 1. One can then write the metric

ds2 = `2 (− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
d−2
)

(2.3)

in these global coordinates (which in three dimensions are analogous to the Euler angles
used to parametrize the sphere) or in Euclidean signature with θ ∈ [0, π/2) defined by
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tan θ = sinh ρ as
ds2 = `2

cos2 θ

(
−dτ 2 + dθ2 + sin2 θ dΩ2

d−2
)
. (2.4)

In the latter case, the metric covers half of Einstein’s static universe.
Since τ is an angle, this metric has closed timelike curves, which is an unsuitable feature

for a physical model of spacetime. One generally unwinds this coordinate setting τ 6= τ+2π,
and works with the resulting universal cover of anti-de Sitter space. In what follows, this
is what we will mean when referring to anti-de Sitter space. By replacing this unwound
coordinate by t/` and setting r = ` sinh ρ, one gets the familiar metric

ds2 = −
(

1 + r2

`2

)
dt2 +

(
1 + r2

`2

)−1

dr2 + r2 dΩ2
d−2 . (2.5)

Three-dimensional gravity is special in the sense that it does not have any local degrees
of freedom. Indeed, it is defined by the Einstein-Hilbert action

SEH [gµν ] = 1
16πG

∫
M
d3x
√
−g (R− 2Λ) + B (2.6)

with G is Newton’s constant, we are working in units where c = 1, Λ is the cosmological
constant (= −1/`2 if the manifold M is anti-de Sitter space), gµν is the metric and R the
trace of the Ricci tensor Rµν . B stands for boundary terms that are present to ensure
that the variational principle is well-defined, but that will not retain our attention for now.
Varying this action yields Einstein’s equations in the vacuum

Rµν −
1
2Rgµν + Λ gµν = 0 . (2.7)

Three-dimensional manifolds have the characteristic feature that their Riemann tensor is
completely determined by the Ricci tensor:

Rµνρσ = gµρRνσ + gνσ Rµρ − gνρRµσ − gµσ Rνρ −
1
2R (gµρ gνσ − gµσ gνρ) , (2.8)

which has the consequence that their curvature is constant. As a result, any solution of
pure Einstein gravity in dimension three is locally isometric to empty space, whether it is
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Minkowski, de Sitter or anti-de Sitter. There are no gravitational waves or gravitons in this
setup. In order to see anything non-trivial, we would need to appeal to a global analysis in
which the topological properties of spacetime are relevant. We might think that this sorts
out the case of three-dimensional gravity, but there is in fact more to it: namely, when
the curvature is negative, it has a black hole. This is what sparked the interest for three
dimensional anti-de Sitter space, as this feature responded to the need to have a simple
model of a black hole, with all the important properties but not the unnecessary intrications
of its higher-dimensional realistic counterpart.

2.1. The three-dimensional black hole

The black hole solution to (2.7) with Λ = −1/`2 discovered by Bañados, Teitelboim and
Zanelli [29], or BTZ black hole, is given by

ds2 = −N2(r) dt2 +N−2(r) dr2 + r2(Nϕ(r) dt+ dϕ
)2 (2.9)

with the lapse and shift functions

N(r) =
√
−8GM + r2

`2 + 16G2J2

r2 , (2.10)

Nϕ(r) = −4GJ
r2 , (2.11)

and t ∈ (−∞,∞), r ∈ (0,∞), ϕ ∈ [0, 2π]. It is stationary and axisymmetric, and exhibits
two horizons at the points where N(r) = 0, namely

r± = `

[
4GM

(
1±

√
1− (J/M`)2

)] 1
2

(2.12)

if M > 0 and |J | 6 M`. The mass M and angular momentum J of the black hole can be
expressed in terms of these horizons as

M =
r2

+ + r2
−

8G`2 , J = r+r−
4G` . (2.13)
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For M = J = 0, this is “massless BTZ”, although there is no black hole left so to speak
since both horizons vanish. If M grows negative or |J | gets too large, r+ disappears and one
is left with naked singularities, which are excluded from the physical spectrum of acceptable
solutions. Thus the condition on |J | plays the role of cosmic censorship in this framework.
There is a notable exception though: for J = 0, M = −1/8G, the line element (2.9) turns
into

ds2 = −
(

1 + r2

`2

)
dt2 +

(
1 + r2

`2

)−1

dr2 + r2dϕ2 (2.14)

which is just (2.5) for d = 3. This is a little strange: one would expect the lightest BTZ black
hole to be empty space, but in dimension three it is separated from anti-de Sitter space by a
mass gap, since there is no way to continuously deform one into the other without running
into forbidden solutions.

Figure 2.1 Mass gap in the BTZ black hole spectrum [65]. BTZ exists for |J | 6M`, M > 0 and
empty AdS3 is recovered for J = 0, M = −1/8G.

Still, as we have seen above, the BTZ black hole is a solution of pure gravity in dimension
three and as such it is of constant (negative) curvature, hence locally isometric to anti-de
Sitter space. One can show that since they only differ by their global properties, it is possible
to recover the black hole as a quotient of anti-de Sitter space. This quotient can be obtained
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through the use of a discrete subgroup of anti-de Sitter’s symmetry group to identify points
of AdS [66]. Moreover, it is easy to see that BTZ is asymptotically anti-de Sitter space:
when r � r+, the metric of the former reduces to the one of the latter.

The BTZ black hole has a number of interesting features that really make it a toy model
for more realistic black holes. To begin with, it has what is called an ergosphere, which is a
region outside its event horizon where a particle is subject to the influence of the black hole
and is dragged along with it but still can escape its pull, possibly with more energy than it
started with. The ergosphere is defined to be the region r > re such that g00(re) = 0. In the
case of BTZ, it is

re = `
√

8GM =
√
r2

+ + r2
− . (2.15)

This is a feature that BTZ shares with its higher-dimensional counterpart, the Kerr black
hole [67]. BTZ also has this in common with the Kerr solution that it has non-trivial
thermodynamical properties: its Hawking temperature is

TH =
~2(r2

+ − r2
−)

2π`2r+
(2.16)

and its Bekenstein-Hawking entropy is

SBH = 2πr+

4~G = A

4~G (2.17)

with A the horizon area. It satisfies the first law of black hole thermodynamics (1.5) with
Q = 0 and angular velocity at the horizon Ω = r−/r+`.

2.2. Boundary conditions

Up to now, we have carefully ignored the boundary term introduced in (2.6). It is nev-
ertheless crucial to the whole construction above, and we need to address it now. When the
Eistein-Hilbert action is varied with respect to the metric, one gets two contributions: the
first one contains the equations of motion and vanishes identically, and the second one is a
boundary term. In order for the action to be well-defined, this term should vanish when the
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action is varied, and that depends on the theory’s behavior at infinity. Therefore we need to
choose appropriate boundary conditions, or resort to modifying the action with extra terms
that cancel the unwanted boundary contributions.

The asymptotic symmetry algebra of a theory is the set of all the allowed gauge transfor-
mations modulo the trivial ones, that is, all the global symmetries minus the redundant ones.
Symmetry properties of Riemannian spaces are characterized by Killing vectors ξµ, which
indicate under what coordinate transformations x′µ = xµ + ε ξµ the metric is left unchanged,
i.e.

Lξ gµν = ξλ ∂λgµν + ∂µξ
λ gλν + ∂νξ

λ gµλ = 0 (2.18)

with Lξ the Lie derivative with respect to ξ. Equivalently, the Killing equation can be
reformulated as

ξµ ;ν + ξν ;µ = 0 . (2.19)

AdS3 is a maximally symmetric spacetime, in the sense that it has the maximum number of
Killing vectors, namely six. These can be written as [32]

ξ1 = x0∂3 − x3∂0 , ξ2 = x1∂2 − x2∂1 , ξ3 = x0∂2 + x2∂0 , (2.20)

ξ4 = x3∂1 + x1∂3 , ξ5 = x0∂1 + x1∂0 , ξ6 = x3∂2 + x2∂3

where indices refer to the general expression (2.1). Upon combining them as

`0 = 1
2(ξ1 + ξ2) ,

`1 = 1
2(ξ3 + ξ4 − iξ5 + iξ6) ,

`−1 = 1
2(ξ3 + ξ4 + iξ5 − iξ6) ,

¯̀0 = 1
2(ξ1 − ξ2) ,

¯̀1 = 1
2(−ξ3 + ξ4 − iξ5 − iξ6) ,

¯̀−1 = 1
2(−ξ3 + ξ4 + iξ5 + iξ6) ,

(2.21)

they obey the algebra

i[`m, `n] = (m− n) `m+n , (2.22)

i[¯̀m, ¯̀
n] = (m− n) ¯̀

m+n ,

i[`m, ¯̀
n] = 0 ,
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for (m,n) = 0,±1. This algebra is sl(2,R) ⊕ sl(2,R) ' so(2, 2), and we will encounter it
again in the next chapter.

In order to be as general as possible, it is then natural to wonder what metrics are
asymptotically anti-de Sitter. It is also preferable not to look for the largest family of such
metrics possible, but only for a minimal amount of relevant metrics. The suggestion of [7] is
to include conical deficits, i.e. metrics of point particles, along with pure AdS. Such metrics
are given by

ds2 = −
(

1 + r2

`2

)
(dt′ − Adϕ′)2 +

(
1 + r2

`2

)−1

dr2 + 4ω2r2dϕ′2 (2.23)

with new coordinates
t′ = t+ A

2ωϕ , ϕ′ = ϕ

2ω . (2.24)

The parameters A ∈ R and ω > 0 describe the identifications needed to cut cones in anti-de
Sitter space, namely (t, r, ϕ) = (t− 2πA, r, ϕ + 4πω). Pure AdS is recovered for A = 0 and
ω = −1/2.

The procedure is then to act with so(2, 2) generators on these metrics and look for fall-off
conditions satisfied by the infinitesimally transformed metric gµν + Lξ gµν with ξ a Killing
vector for AdS3 (but not the conical deficit). One obtains [7]

(gµν) ∼
r→∞

gtt gtr gtϕ

grt grr grϕ

gϕt gϕr gϕϕ

 =

−
r2

`2
+O(1) O(r−3) O(1)

O(r−3) `2

r2 +O(r−4) O(r−3)
O(1) O(r−3) r2 +O(1)

 . (2.25)

These boundary conditions can actually be simplified further by making use of the gauge
freedom we have. As it turns out, the subleading corrections O(r−3), O(r−4) in (2.25) can
be set to zero simply by applying a trivial diffeomorphism [68]. We also notice that when
the spatial coordinate is taken to infinity, the metric (2.14) becomes

ds2 = −r
2

`2 dt2 + `2

r2 dr
2 + r2dϕ2 = `2

r2 dr
2 − r2 dx+dx− (2.26)
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with the light-cone coordinates
x± =̂ t

`
± ϕ . (2.27)

Interestingly, this is the metric of a cylinder; we will come back to that later on. An anti-de
Sitter metric with the Fefferman-Graham gauge choice above and coordinates (r, xi) with
(i = 0, 1) behaves asymptotically as

ds2 = `2

r2 dr
2 + r2

(
g

(0)
ij +O(1)

)
dxidxj . (2.28)

Brown-Henneaux boundary conditions are then expressed as

g
(0)
ij dx

idxj = −dx+dx− . (2.29)

This is what is generally meant by “asymptotically anti-de Sitter metrics”.

2.3. Conserved charges

We have seen in the previous chapter that black holes are characterized by just a few
generic properties: mass, charge and angular momentum. Conserved charges are generally
defined using the Noether procedure, but in the case of gauge theories such as general
relativity, all this leads to is trivial charges. Indeed, a key feature of general relativity is to
place time and space on equal footing, but without a well-defined preferred time coordinate
the very notion of conservation makes no sense. In particular, there is no way to define a
local energy-momentum tensor. Diffeomorphism invariance is associated to the existence of
Killing vectors ξµ, which as we have seen above are the infinitesimal generators of isometries
of the form x′µ = xµ+ε ξµ, and each corresponds to a conserved quantity in the theory under
consideration. The problem with general relativity is that no vector is a Killing vector for
all solutions gµν of Einstein’s equations. Another way to put it is that Noether’s theorems
overlook the non-uniqueness of conserved currents in gauge theories: indeed, the current
Jµ + ∂νk

µν for some antisymmetric (d − 2)-form kµν yields terms that vanish under the
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variation of the action just as well as Jµ does. The associated conserved charge

Qa =
∫

Σ
(dd−1x)µ Jµa (2.30)

may however differ by a surface term

Qk =
∫
∂Σ

(dd−2x)µν kµν (2.31)

and there is no prescription for how to choose kµν . Since in a gauge theory the main
contribution vanishes, one could perfectly define the charge to be (2.31), provided that one
finds a way to build kµν from a symmetry generator. There is an enormous body of work
on this issue and its proposed solutions (see in particular [69] and references therein) which
extend well beyond the scope of this thesis. One of the possible ways out for theories that
admit a common asymptotic structure is to use the linearized theory

gµν = ḡµν + hµν (2.32)

around a background metric ḡµν that verifies the Killing equation Lξ ḡµν = 0. One way to see
this is that it effectively separates the truly dynamical information (hµν) from the coordinate
information (ḡµν). The method was first elaborated for asymptotically flat spacetimes [30],
then expanded to asymptotically AdS spacetimes [31] (see also [70] for a review). Since we
will exclusively be concerned with the latter, we briefly review the so called “ADT method”
just to give a sense of how working in the linearized theory solves our problem.

If we write our initial equations of motion as Eµν = 0, once the theory is linearized they
become

Eµν =̂ Ēµν + δEµν = 0 + δEµν . (2.33)

General covariance requires that ∇µE
µν = 0, which translates upon linearization as

∇̄µ δE
µν (2.34)

at first order in perturbation, on-shell. All barred quantities are defined in terms of ḡ. With
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ξ a Killing vector for the background metric ḡ, the current

Jµ =̂ δEµν ξν is such that ∇̄µJ
µ = 0 (2.35)

i.e. is conserved. We now wish to write it in terms of an antisymmetric tensor potential,
independently from the equations of motion, that is

Jµ = ∇̄νk
µν (2.36)

up to terms vanishing on-shell. Expanding δEµν ξν at first order in h, one gets

δEµν ξν = δEαν ḡ
αµ ξν − Ēµβ hβν ξ

ν − Ēαν hαµ ξν . (2.37)

Since the second and third terms vanish on-shell, we can identify

∇̄νk
µν = δEαν ḡ

αµ ξν (2.38)

and use it to define kµν . The ADT charges are then given by (2.31) for a given ξ.
For example, in the case of pure gravity in anti-de Sitter space,

Eµν = Rµν −
1
2gµν

(
R + 2

`2

)
(2.39)

the charge-defining 2-form is given by

δEαν ḡ
αµ ξν = ḡαµ

(
δRαν −

1
2 ḡανδR

)
− 1

2h
µ
ν

(
R + 2

`2

)
ξν . (2.40)

With a bit of work, one can show that

δEαν ḡ
αµ ξν = 1

2ξ
ν [∇λ,∇ν ]hλµ + 1

2ξ
µRσλh

σλ + hλ[µ∇ν∇λξ
ν] − 1

2h∇ν∇µξν − 1
2h

µ
ν

(
R + 2

`2

)
ξν

+ ∇ν

(
ξ[ν∇λh

µ]λ + ξλ∇[µh
ν]
λ + ξ[µ∇ν]h− hλ[ν∇λξ

µ] + 1
2h∇

[µξν]
)
. (2.41)
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The second line of this expression yields an explicit expression for the object of interest:

kµν = ξ[ν∇λh
µ]λ + ξλ∇[µh

ν]
λ + ξ[µ∇ν]h− hλ[ν∇λξ

µ] + 1
2h∇

[µξν] . (2.42)

We will use a similar technique later on to compute surface charges in three-dimensional
gravity with additional higher curvature terms on asymptotically anti-de Sitter spaces.

We now cross to the other side of the AdS/CFT duality and delve into conformal field
theories, some features of which might look familiar to the careful reader.



Chapter 3

Conformal Field Theories

Conformal field theories1 are relativistic quantum field theories that, on top of Poincaré
invariance

xµ → xµ + aµ (translations) , (3.1)

xµ →Mµ
ν x

ν (Lorentz boosts) , (3.2)

also obey invariance under
xµ → λxµ (dilatations) , (3.3)

xµ → xµ − bµx2

1− 2 b · x+ b2x2 (special conformal transformations) . (3.4)

In particular, special conformal transformations correspond to inversion-translation-inversion
sequences, with the inversion being understood as xµ → xµ/x2. In other words,

x′µ

x′2
= xµ

x2 − b
µ . (3.5)

The conformal group is defined as the set of transformations x → x′(x) that act on the
metric as a Weyl rescaling

gµν(x)→ g′µν(x′) = Ω(x) gµν(x) (3.6)

with Ω(x) arbitrary. Even if the conformal group is larger than the Poincaré group, con-

1This chapter is based on textbooks and reviews such as [71, 72, 73, 74].
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formal field theories can help us understand quantum field theories in that the latter often
exhibit invariance under such a rescaling at long distances [75]. Since quantum field theories
are generally truncated by cut-offs allowing for renormalization procedures, one can think of
a UV-complete theory as a renormalization group flow between conformal field theories in the
UV and in the IR. Indeed, renormalization group flows are controlled by β-functions which
describe the variation of the couplings with respect to energy scales. Fixed points in the
renormalization group flow correspond to vanishing β-functions, and hence to scale-invariant
theories [73]. Conformal field theories thus constitute a powerful tool in understanding the
space of quantum field theories.

If we define the stress-energy tensor as usual through the variation of the d-dimensional
action S under gµν → gµν + δgµν

δS = 1
2

∫
ddx
√
g T µν(x) δgµν , (3.7)

we already know that invariance of the theory under such a general transformation amounts
to having conservation of T µν :

T µν ;µ(x) = 0 . (3.8)

For (infinitesimal) conformal transformations gµν → gµν + ω(x)gµν , the corresponding con-
dition this gives rise to is tracelessness:

T µµ(x) = 0 . (3.9)

In the following we will be exclusively concerned with conformal field theories in flat space.
In that framework, given how a metric transforms by definition, (3.6) can be rewritten as

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Ω(x) ηµν . (3.10)

For infinitesimal transformations xµ → x′µ = xµ + εµ +O(ε2), this yields

∂µεν + ∂νεµ = f(x) ηµν . (3.11)
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Two important equations can be derived from there: first, tracing both sides, one gets
f(x) = 2

d
∂ · ε and

∂µεν + ∂νεµ = 2
d
∂ · ε ηµν . (3.12)

Second, deriving both sides, one gets

(d− 1)∂2f = 0 ⇒ f(x) = A+Bxµ (3.13)

which leads to
εµ = aµ + bµν x

ν + cµνρ x
νxρ . (3.14)

From the analysis of this expression one can retrieve all the components of the conformal
group hinted at above. The generators of these infinitesimal transformations are then

Pµ = −i ∂µ (translations)

Lµν = i(xµ∂ν − xν∂µ) (rotations)

D = −ixµ ∂µ (dilatations)

Kµ = i(x2∂µ − 2xµxν)∂ν (special conformal transformations)

(3.15)

and they verify the conformal algebra

[Lµν , Pρ] = i (ηνρPµ − ηµρPν) , (3.16)

[Lµν , Kρ] = i (ηνρKµ − ηµρKν) ,

[Lµν , Lρσ] = i (ηνρLµσ + ηνσLµρ − ηµρLνσ − ηµσLνρ) ,

[D,Pµ] = iPµ ,

[D,Kµ] = −iKµ ,

[Kµ, Pν ] = 2i (ηµνD − Lµν) .

Incidentally, a quick rewriting of these generators makes the symmetry group explicit. In-
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deed, taking

Jµν = Lµν , (3.17)

J−10 = D ,

J0µ = 1
2 (Pµ +Kµ) ,

J−1µ = 1
2 (Pµ −Kµ) ,

one can check that for m,n = −1, 0, 1, . . . , d − 1 these alternate generators Jmn satisfy the
commutators

[Jmn, Jrs] = i (ηnrJms − ηmrJns + ηmsJnr − ηnsJmr) . (3.18)

For ηmn = diag(−1, 1, . . . , 1) this is the Lie algebra so(d+ 1, 1). A convenient basis of fields
in a conformal field theory is the one made of common eigenfunctions of L+µν , D and Kµ.
For such an operator ϕ evaluated at the origin,

[Lµν , ϕ(0)] = Sµν ϕ(0) , [D,ϕ(0)] = −i∆ϕ(0) , [Kµ, ϕ(0)] = κµ ϕ(0) (3.19)

where Sµν is called the spin matrix of ϕ and ∆ is its (conformal) dimension. One can check
that Kµ is a lowering operator for dimension; for this reason, one distinguishes the ϕ’s that
have κµ = 0 as being primary operators from those that do not and “descend” from them,
in a way analogue to the construction of a tower of states in an irreducible representation
of SU(2) from a highest-weight state – except here the primaries are “lowest-weight states”
instead. The descendants are built by acting with Pµ, which is the corresponding raising
operator, on primaries. in other words, primary fields are defined as fields ϕ(z, z̄) that
respond to a conformal transformation z → f(z) as

ϕ(z, z̄) → ϕ′(z, z̄) = (∂zf)h(∂z̄f̄)h̄ ϕ
(
f(z), f̄(z̄)

)
. (3.20)

Scale invariance has an unexpected side-effect: even if one considers two states infinitely
apart, one can always use the dilatation operator to bring them close together again. This



3. Conformal Field Theories 32

makes it impossible to define an S-matrix in any meaningful sense [76]. All one can do
is study correlation functions of operators, but thanks to the state-operator correspondence
(which we will say more about in the two-dimensional case), this contains all the information
we need about the theory. The underlying idea is that any state in the theory can be created
by acting with a local operator on the vacuum. Fortunately, scale invariance fixes the form
of the two-point function up to a constant C:

〈O1(x1)O2(x2)〉 = C

|x1 − x2|∆1+∆2
. (3.21)

Indeed, Poincaré invariance implies

〈O1(x1)O2(x2)〉 = f(|x1 − x2|) (3.22)

and scale invariance under x→ λx implies

〈O1(x1)O2(x2)〉 = λ∆1+∆2〈O1(λx1)O2(λx2)〉 (3.23)

which, put together, yield the above constraint. The three-point function is also determined
in a similar fashion [77]:

〈O1(x1)O2(x2)O3(x3)〉 = C123

|x1 − x2|∆1+∆2−∆3 |x2 − x3|∆2+∆3−∆1 |x3 − x1|∆3+∆1−∆2
. (3.24)

From there, one knows everything that is needed to compute four- and higher-point func-
tions, so a conformal field theory is completely specified by (i) its primary operators, (ii) the
associated scaling dimensions, and (iii) the three-point coefficients C123. This makes con-
formal field theories particularly easy to constrain using the so-called “bootstrap” methods.
In particular, in Chapter 7, we will derive constraints on (ii) from modular transformation
properties of chiral theories with charge.
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The two-dimensional case

We will mostly be interested in three-dimensional gravity and its two-dimensional dual.
The case of dimension two is especially interesting because there is an infinite number of
generators, which means the symmetry constrains the theory enormously. Going back to
(3.12), with just two spacetime coordinates (x0, x1) it reduces to{

∂0 ε0 − ∂1 ε1 = 0
∂0 ε1 + ∂1 ε0 = 0

(3.25)

in which we recognize the Cauchy-Riemann equations defining holomorphic functions. We
then introduce the complex coordinates

z = x0 + ix1 , z̄ = x0 − ix1 , (3.26)

with ∂ =̂ ∂z = 1
2(∂0 + i∂1) , ∂̄ =̂ ∂z̄ = 1

2(∂0 − i∂1) ,

and similarly for ε, ε̄. The Cauchy-Riemann equations then become{
∂̄ε(z, z̄) = 0 with solution ε(z, z̄) = f(z)
∂ε̄(z, z̄) = 0 with solution ε̄(z, z̄) = f̄(z̄)

(3.27)

with f(z) arbitrary. Under an infinitesimal conformal transformation z → f(z) = z + ε(z),
the metric transforms as

ds2 = dz dz̄ → ∂f

∂z

∂f̄

∂z̄
dz dz̄ (3.28)

which means the scale factor is simply Ω =
∣∣∂f
∂z

∣∣2. We just said that f(z) is arbitrary,
however, it is not expected to have essential singularities or branch points. In order to make
sure that f(z) is invertible, one requires that in addition it does not have poles of order
bigger than one. This means that f(z) is meromorphic and of the form

f(z) = az + b

cz + d
(3.29)
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with ad− bc 6= 0, or ad− bc = 1 up to normalization.

For infinitesimal conformal transformations, ε(z) can also be assumed to be meromor-
phic. One can then use a Laurent series expansion around z = 0 to rewrite the conformal
transformations as

f(z) = z + ε(z) = z +
∑
n∈Z

cn(−zn+1) (3.30)

and similarly for f̄(z̄). Each term of this infinite sum is generated by

`m = −zm+1∂z . (3.31)

Together with the corresponding ¯̀
m, these generators obey

[`m, `n] = (m− n) `m+n , (3.32)

[¯̀m, ¯̀
n] = (m− n) ¯̀

m+n ,

[`m, ¯̀
n] = 0

and so form two commuting copies of the Witt algebra. Since these two copies are indepen-
dent, z and z̄ are generally treated as independent variables. We see that as far as infinitesi-
mal conformal transformations are concerned, the algebra of two-dimensional conformal field
theories is indeed infinite-dimensional. We can however extract a finite-dimensional subalge-
bra {`−1, `0, `1} and their conjugates, which corresponds to the global conformal group as we
will see shortly. These generators are singled out because they are the only ones well-defined
on the Riemann sphere: from (3.31), it is clear that the `m are non-singular at z = 0 only
for m > −1 and at z =∞ for m 6 1. They correspond to the previous expressions (3.15) in
the following way:

P = i (`−1 + ¯̀−1) , P̄ = `−1 − ¯̀−1 , (3.33)

L = −`0 + ¯̀0 , (3.34)

D = i (`0 + ¯̀0) , (3.35)

K = i (`1 + ¯̀1) , K̄ = −`1 + ¯̀1 . (3.36)
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Together they thus generate transformations of the form (3.29) that can also be described
by a matrix (

a b

c d

)
with a, b, c, d ∈ C . (3.37)

We recognize the group SL(2,C), which is isomorphic to the Lorentz group SO(3, 1) =
SO(d+ 1, 1) with d = 2, as expected. Since the condition ad− bc = 1 is invariant under sign
flip of all the variables, we can further identify the conformal group on the Riemann sphere
as the Möbius group SL(2,C)/Z2, or more exactly the product SL(2,C)/Z2×SL(2,C)/Z2.
The correct isomorphism is recovered when we impose the reality condition z̄ = z∗, but most
of the time we will rather work in a space twice too big.

Witt algebras allow for central extensions; if we want to be completely general, we should
then take that property into account. Using Jacobi identities, one can show that the central
extension of the Witt algebra takes the form of a Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12 m
2(m− 1) δm+n . (3.38)

The L̄m generators obeying the same commutation relations, we end up with two copies
of the Virasoro algebra, respectively characterized by central charge c and c̄. Here again,
the subalgebra {L0, L±1, L̄0, L̄±1} generates all the global conformal transformations, as ex-
pected since finite-dimensional algebras do not have non-trivial central extensions.

To quantize a Poincaré-invariant theory, it makes sense to foliate spacetime by dividing it
in surfaces of equal time. With extra scale-invariance though, one could also move from one
foliation to the next using dilatations, rather than time-translations. In d dimensions, one
can then build spacetime as a collection of nested Sd−1 spheres of radius r. The evolution
operator would then be U = eiDτ , with τ = log r and D playing the role the Hamiltonian
used to play in canonical quantization. In this radial quantization, moving from the origin
to the edge of a sphere of infinite radius corresponds to going from infinite “past” to infinite
“future” in terms of τ . Placing a state at a given “moment” thus amounts to inserting an
operator on the sphere of radius corresponding to such a “moment”. The statement is that
each state of a conformal field theory is in one-to-one correspondence with local operators.
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One can then define these operators (acting at the origin) to be eigenstates |∆〉 of the
dilatation operator with eigenvalue equal to the scaling dimension ∆, and identify:

O∆(0) ↔ |∆〉 =̂ O∆(0) |0〉 . (3.39)

In dimension two, it is convenient to define the conformal field theory in Euclidean space,
with periodic boundary conditions in the space direction, in a way analogue to putting a
quantum system “in a box”. If (x0, x1) are the coordinates of Euclidean space, x1 is then
compactified on a circle of radius R = 1 and the theory is defined on an infinite cylinder.
Radial quantization then amounts to projecting this cylinder of coordinates w = x0 + ix1

onto the complex plane via z = ew. As time translations get mapped to dilatations and

Figure 3.1 Radial quantization [74]. Euclidean time x0 = −∞ on the cylinder is mapped to the
center of the circle, and x0 =∞ is mapped to the infinite radius circle.
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space translations to rotations, the Hamiltonian and momentum operator are given by

H = L0 + L̄0 , P = i(L0 − L̄0) . (3.40)

In the complex coordinates (z, z̄), the tracelessness of the stress-energy tensor has the
interesting consequence that

∂z Tz̄z̄ = ∂z̄ Tzz = 0 . (3.41)

The non-trivial components of the stress-energy tensor are then a holomorphic (or chiral)
and an anti-holomorphic (or anti-chiral) field, which we will respectively call T (z) and T̄ (z̄).
One can then relate these to the Virasoro generators above by way of their Laurent expansion
as

T (z) =
∑
n∈Z

Ln z
−n−2 with Ln = 1

2πi

∮
dz zn+1 T (z) . (3.42)

In fact the central extension of the Witt algebra into the Virasoro algebra can be seen as a
quantum feature that emerges when we quantize the classical theory.

Primary states are now defined to be highest-weight states |h〉 of the Virasoro algebra’s
representations, such that

L0 |h〉 = h |h〉 , Lm |h〉 = 0 for m > 0 . (3.43)

As for the Witt generators, the Lm play the role of annihilation operators while the L−m act
as creation operators, the “highest” weight states being actually the ones of lowest energy.
It is indeed natural to expect the L0 eigenvalue to be bounded from below if we are to relate
this conformal field theory to any sort of physical meaning. The descendant states

L−k1L−k2 . . . L−kn |h〉 , ki > 1 (3.44)

are then eigenstates of L0 with eigenvalue

h+
n∑
i=1

ki =̂ h+N . (3.45)
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At each level N , the number of descendants has a simple expression provided c > 1: it is
given by the number p(N) of partitions of N in distinct positive integers. For c 6 1, things
get more complicated since one has to take null states (states with vanishing norm) into
account. We will not need to worry about those, since we are only interested in large central
charge cases.

The Virasoro representation, made of |h〉 and all linear combinations of its descendant
states, is unitary if both h and c > 0. Indeed, at level N the squared norm of a generic state
is

〈h|LNL−N |h〉 = 2N h+ c

12N(N2 − 1) . (3.46)

The condition on h comes directly from the N = 1 case, while the one for c springs from
positivity for large N . The character of an irreducible, unitary representation of the Virasoro
algebra with highest weight h and Hilbert space H is defined as

χh(τ) =̂ TrH
(
qL0−c/24) , q =̂ e2πiτ . (3.47)

The normalization −c/24 is a convention that will prove useful later on. We will see shortly
what meaning can be attributed to τ in the context where we place the theory on the torus.
For h > 0 and c > 1, there are no null states so the L0 spectrum is given by the values of
h+N with multiplicity p(N). The character then reads

χh(τ) = qh−c/24
∑
N>0

p(N) qN , (3.48)

One can show [78] that this is equivalent to

χh(τ) = qh−c/24
∏
n>1

1
1− qn = qh−(c−1)/24

η(τ) , (3.49)

where we have introduced the Dedekind eta function

η(τ) = q1/24
∞∏
n=1

(1− qn) . (3.50)

The case of the vacuum representation h = 0 is a bit particular. Indeed at non-zero
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central charge, one immediately notices that it is impossible to define a state that vanishes
under the action of all Virasoro generators: such a state |h0〉 would have to verify

〈h0|LNL−N |h0〉 = c

12N(N2 − 1) 〈h0 |h0〉 = 0 (3.51)

which is only satisfied for c 6= 0 when N = −1, 0, 1. The best we can get is a vacuum
invariant under the subalgebra generated by L−1, L0 and L1 but not under the full Virasoro
algebra. This makes the vacuum representation non-trivial as it contains all the descendant
states

L−k1L−k2 . . . L−kn |h〉 , ki > 2 . (3.52)

The vacuum is then defined to be the state |0〉 such that

L−1 |0〉 = L0 |0〉 = Lm |0〉 = 0 , for all m > 0 . (3.53)

The character of the vacuum representation is then almost the same as (3.49), except for
L−1 |0〉 that does not enter the sum anymore:

χ0(τ) = q−c/24
∏
n>2

1
1− qn . (3.54)

In particular, it is not simply the h→ 0 limit of the generic h 6= 0 character.

Theory on the torus, modular invariance and the Cardy formula

So far we have deliberately ignored the question of the relation to the physical world. We
have accepted to treat z and z̄ as distinct variables, but we know that physicality requires
that we recombine our chiral and anti-chiral fields via some constraints. Geometry can
help us achieving that while still being able to use the full power of complex analysis with
holomorphic functions. In quantum field theories, a natural way to determine which fields
the theory contains is to consider loop diagrams. Since the complex plane is topologically
equivalent to the Riemann sphere, the next level of complexity (or more precisely, genus)
would be the torus. Studying conformal field theories on the torus is a reasonable way to
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obtain the sort of constraints we are looking for.
With radial quantization, we have already placed our theory on a cylinder; in order to

consider a torus, we just need to impose another periodic boundary condition along the
cylinder. These two boundary conditions can be seen as two lattice vectors α1 and α2 that
define the torus on the complex plane. The ratio of these two complex numbers τ = α2/α1,
or modular parameter, is actually the relevant parameter and plays a major part into what
follows. A convenient choice is (α1, α2) = (1, τ) and τ is generally chosen in the upper half

Figure 3.2 Torus lattice with (α1, α2) = (1, τ) [72].

plane. As it turns out, this lattice is invariant under transformations such as(
a b

c d

)
∈ SL(2,Z)/Z2 (3.55)

and so equivalent tori are obtained by way of τ → aτ+b
cτ+d . The isometry group of the torus,

or modular group, is generated by

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (3.56)

which in particular act on τ as S : τ → −1/τ and T : τ → τ + 1.
One can show that under transformations z → f(z), the stress-energy tensor transforms

as
T ′(w) = (∂wf)2 T

(
f(w)

)
+ c

12 S
(
f(w), w

)
(3.57)
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with the Schwarzian derivative

S(z, w) = 1
(∂wz)2

(
(∂wz)(∂3

wz)− 3
2(∂2

wz)2
)
. (3.58)

When we go from the plane to the cylinder through the map z = ew, we get

T cyl(w) = z2T (z)− c

24 (3.59)

which means the Virasoro generator L0 gets modified as

Lcyl
0 = L0 −

c

24 (3.60)

and similarly for the conjugate quantities. The vacuum energy on the cylider is then

E0 = −c+ c̄

24 . (3.61)

We can now build a partition function for our conformal field theory. Choosing the coordi-
nate system such that the space and time directions coincide respectively with the real and
imaginary axes, we see that moving along the lattice in the time direction also makes us
move a bit along the space direction. Namely, if τ = τ1 + iτ2, a time step of τ2 comes with
a space step of τ1. The partition function is then

Z = TrH
(
e−2πτ2H e2πτ1P

)
(3.62)

which, since (3.40) also works for the generators on the cylinder, we can rewrite as

Z = TrH
(
e2πiτLcyl

0 e−2πiτ̄ L̄cyl
0

)
= TrH

(
qL0−c/24 q̄L̄0−c̄/24

)
. (3.63)

We recognize the Virasoro characters (3.47) and go on to writing

Z(τ) =
∑
h,h̄

Nhh̄ χh(τ) χ̄h̄(τ̄) (3.64)

with some multiplicity factor Nhh̄ for each irreducible representation. This partition function
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is then completely independent of any Lagrangian formulation.

But its most striking feature is that it is invariant under the action of the modular group,
as we have seen above. Modular invariance of a conformal field theory’s partition function on
the torus is precisely the feature that will allow us to constrain the theory and extract useful
information without having to know it all in details. In particular, under S-transformations,

Z(τ, τ̄) = Z

(
−1
τ
,−1

τ̄

)
. (3.65)

This property allows one to relate the behaviors of the theory at high and low tempera-
tures. Indeed, remembering that in thermodynamics the parameter β that appears in the
Boltzmann factor e−βH of the partition function is the inverse temperature, we can identify
it with the imaginary part τ2 of the modular parameter that multiplies H in our partition
function of interest. More generally, one is led to set

τ = 1
2π (iβ + θ) (3.66)

where the angular potential θ can also be written as βΩ, with Ω the angular velocity. The
statement above then translates to

Z(β, β̄) = Z

(
4π2

β
,
4π2

β̄

)
(3.67)

which relates the high and low temperature regimes of the theory. For simplicity’s sake,
we will allow ourselves for a moment to ignore the anti-chiral sector of the theory. At low
temperature the partition function is dominated by the contribution of the ground state,
which we remember is −c/24 in this case:

Z(β) →
β→∞

e
cβ
24 =

(3.67)
e
cπ2
6β . (3.68)

The left-hand side then describes the partition function at high temperatures. Remembering
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the thermodynamic entropy and energy are respectively given by

S = (1− β ∂β) lnZ , E = −∂β lnZ (3.69)

we can conclude
S = 2π

√
c

6E (β → 0) . (3.70)

This is in essence the Cardy formula [26], often also written in terms of the (asymptotic)
density of states ρ(E) defined by

Z(β) =
∑
E

ρ(E) e−βE (3.71)

as
ρ(E) = exp

(
2π
√
c

6E
)

(E →∞) . (3.72)

This important result concludes our overview of conformal field theories. One may have
noticed a few parallels between the material presented here and in the previous chapter: in
particular, the Witt algebra coming up both as the asymptotic symmetry algebra of three-
dimensional anti-de Sitter and as the defining algebra of two-dimensional conformal field
theories, or the cylinder shaped boundary of the former matching the preferred setup for
defining the latter. In the next chapter we will expand on these similarities and make precise
the proposal that they are in fact dual to each other.



Chapter 4

AdS/CFT correspondence

In the previous chapters, we have reviewed the general features of both sides of the most
well-known example of holographic duality, namely the AdS/CFT correspondence. One may
have already spotted hints of why these two theories are thought to be dual. Here we propose
one way to make it explicit without resorting to string theory. We then give some insight
into the holographic principle, and how the correspondence was conjectured, before moving
on to an illustration of the sort of results it can lead to in terms of black holes.

4.1. Chern-Simons formulation

A good way to understand gauge/gravity duality is to simply rewrite gravity as a gauge
theory to begin with. Then, by carefully analyzing the asymptotic symmetries of this gauge
theory, one can see some features of the dual gauge theory (which only belongs on the
boundary of our spacetime) emerge from this picture. This rewriting can be done in the
three-dimensional case by way of the Chern-Simons formulation [79, 80], and is valid for any
sign of the cosmological constant. Instead of having the action depend on the metric gµν ,
one expresses everything in terms of a frame field ea = eaµdx

µ defined such that

gµν(x) = eaµ(x)ηab ebν(x) (4.1)

where ηab is as usual the flat metric. This frame field or vielbein is not unique, but de-
fined modulo Lorentz transformations, and it has an inverse eµa. It sort of translates “flat”
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quantities into “curved” ones. The role of the gauge field is played by the spin connection
ωab = ωabµdx

µ, with ωab = −ωba. As in more familiar gauge theories like Yang-Mills, this
connection is used to build a covariant derivative D = ∂ +ω. We can then proceed with the
definition of all the usual relativistic quantities such as Christoffel symbols

Γρµν = eρa
(
∂µe

a
ν + ω a

µ b e
b
ν

)
, (4.2)

torsion
T a = dea + ωab ∧ eb , (4.3)

and curvature
Rab = dωab + ωac ∧ ωcb , (4.4)

provided that the connection transforms as

ωab → Λ−1 a
c dΛc

b + Λ−1 a
c ωcd Λd

b . (4.5)

Equations (4.3) and (4.4) are the first and second Cartan structure equations. The Einstein-
Hilbert action (2.6) in AdS3 can then be rewritten in these terms as [65]

SEH [ω] = 1
16πG

∫
M

(
2ea ∧Ra + 1

3`2 εabc e
a ∧ eb ∧ ec

)
(4.6)

with
Ra = 1

2 εabcR
bc , ωa = 1

2 εabc ω
bc (4.7)

(this notation only working in dimension 3) and we have used the fact that det(eaµ) =
√
−g.

One can show [80] that this is equivalent to the Chern-Simons action

SCS[A] = k

4π

∫
M

Tr
(
A ∧ dA+ 2

3 A ∧ A ∧ A
)

(4.8)

provided one identifies k as
k = 1

4G . (4.9)
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For three-dimensional anti-de Sitter, the gauge field A = Aµ dx
µ belongs to the Lie algebra

so(2, 2)
[Ja, Jb] = εabc J

c , [Ja, Pb] = εabc P
c , [Pa, Pb] = εabc J

c . (4.10)

In terms of the generators Ja, P a, the gauge field reads

Aµ = 1
`
eaµPa + ωaµJa . (4.11)

Since we know that so(2, 2) ' sl(2,R) ⊕ sl(2,R), it is not surprising that we can actually
split the Chern-Simons action into two similar parts as

SCS[Ã] = SCS[A]− SCS[Ā] (4.12)

(where we denoted our original A by Ã) if we set

A =
(
ea

`
+ ωa

)
Ta , Ā =

(
ea

`
− ωa

)
Ta . (4.13)

The Ta here have nothing to do with the torsion evoked above, but are now the sl(2,R)
generators.

It has been shown [81] that the most general solution of the equations of motion with
Brown-Henneaux boundary conditions (2.29) can be written

ds2 = `2

r2 dr
2 −

(
r dx+ − `2

r
L(x−) dx−

)(
r dx− − `2

r
L̄(x+) dx+

)
(4.14)

where L(x−) and L̄(x+) are two arbitrary chiral functions. In these terms, the Chern-Simons
connections are

A =
(

dr
2r

`
r
L̄(x+) dx+

r
`
dx+ −dr

2r

)
, Ā =

(
−dr

2r
r
`
dx−

`
r
L(x−) dx− dr

2r

)
. (4.15)
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It is convenient to use their r-independent, reduced version

a =
(

0 ` L̄(x+) dx+

dx+/` 0

)
, ā =

(
0 dx−/`

` L(x−) dx− 0

)
(4.16)

obtained by a simple gauge transformation [65]. The charges associated to asymptotic sym-
metries take the form [82]

Qλ = − k

2π

∫ 2π

0

`√
2
λ1 Ldϕ , Q̄λ̄ = − k

2π

∫ 2π

0

`√
2
λ̄0 L̄ dϕ (4.17)

where the λi are parameters describing the asymptotic symmetries

δa = dλ+ [a, λ] , δā = dλ̄+ [ā, λ̄] . (4.18)

Using the Poisson brackets of these charges and defining the modes

Lm =̂ k

2π

∫ 2π

0
eimϕ Ldϕ , (4.19)

one can compute their algebra

i{Lm, Ln} = (m− n)Lm+n + c

12 m
3 δm+n (4.20)

(and similarly for L̄). Upon shifting the zero modes by L0 → L0 − c/24, we get the usual
factor m(m2−1) instead of m3, and switching to ordinary commutators via i{. , .} → [. , .],
we retrieve the Virasoro algebra (3.38) with central charges

c = c̄ = 6k = 3`
2G . (4.21)

Remarkably, this result was derived at a purely classical level, whereas the central extension
in (3.38) typically comes as a quantum feature for the two-dimensional conformal field theory.
The Brown-Henneaux central charge (4.21) was first obtained in [7], where the charges were
computed in the Hamiltonian formalism via the asymptotic Killing vectors, and is generally
considered to be the first hint of the AdS/CFT correspondence.
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4.2. The holographic principle and AdS/CFT

The intuition at the root of the correspondence in question was first formulated as the
holographic principle [12]. Considering some gas, simply constrained by the Schwarzschild
limit and the Bekenstein bound (1.4), ’t Hooft estimated that the number of degrees of free-
dom in a volume of space was given in quantum gravity in terms of the ones of the surface
enclosing it. In this picture, the physical degrees of freedom are projected onto the boundary
in the manner of a hologram. Of course, this statement is not to be taken too literally: “the
image is somewhat blurred because of limitations of the hologram technique, but the blurring
is small compared to the uncertainties produced by the usual quantum mechanical fluctu-
ations” [12]. Similar ideas were expressed in [13]. The upshot is that the theory contains
much less degrees of freedom that we would have expected from the field theory point of
view, making quantum field theory a “highly redundant effective description” [63]. Contrary
to the latter, the holographic picture also gives preference to unitarity over locality; the ques-
tion then remains: should one retain locality and look for a gauge invariance that leaves the
right number of degrees of freedom, or should locality be viewed as an emergent phenomenon?

The AdS/CFT correspondence is considered to be the most concrete realization of the
holographic principle. The original proposal [9] is that N = 4 SU(N) super Yang-Mills
theory is dual to type IIB string theory on an asymptotically AdS5 × S5 space, in the
sense that the low energy dynamics of a stack of D3-branes in both open and closed strings
perspectives match (each one yielding one side of the duality). To be more precise, a stack
of N branes couples to gravity in a way proportional to gsN , with gs the string coupling.
When gsN is small, there are open strings on the branes, described at low energy by a
U(N) gauge theory, and closed strings away from the brane. When gsN is large, the pile
of branes describes a black brane (a generalization of a black hole for extended objects)
with near-horizon geometry AdS5 × S5. At low energy, the strings near the black brane
decouple from the ones far away from it. The same decoupling happens for the small gsN
picture between the open and the closed strings, and it is then natural to conjecture that
these are the same low energy physics, but seen at different values of the coupling [83].
The conjecture is then that the equivalence persists even when the coupling is strong. The
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fact that the symmetry group of AdS5 × S5, which is SO(2, 4)× SO(6), corresponds to the
conformal group in dimension four plus the rotation symmetry of the scalars in the gauge
theory, argues in favour of that conjecture. The “dictionary” relating states on both sides of
a more general AdSd+1/CFTd duality was then further developed to enable the computation
of n-point functions [11]. In particular, masses on the gravity side were related to conformal
dimensions on the gauge side. Various checks of this conjecture have been made; among
these, the Hawking-Page phase transition between thermal AdS (i.e., empty AdS plus a gas
of gravitons) and the black hole was recovered in the gauge theory [84]. Following [11],
gauge/gravity duality is generally understood as an equivalence of partition functions:

Zgauge(ϕ0) ≡ Zgravity(ϕ0) (4.22)

where the gravitational partition function is a function of the boundary values of massless
fields ϕ0, which play the role of sources for the conformal field theory’s correlation functions.
This is the sense in which we will think of it here. Before moving on to other matters, let us
conclude with a quick epistemic point: however convincing the evidence in its favour may
be, holography is a conjecture and remains to be proved. In this thesis we will not discuss
this aspect, but rather take the proposed duality as an assumption and see where it could
lead, were it to prove valid.

4.3. Black hole entropy

As an example of how powerful thinking in terms of holography can be, let us now turn
to the black hole entropy. As we have seen in Section 1.2, black holes have thermodynamical
properties, including an entropy (1.2) which is proportional to the area of their horizon. Since
entropy is proportional to a volume in usual thermodynamics, this suggests that black holes
have fewer states that one would expect1. Nevertheless, this means a statistical mechanical

1 Note however that there are arguments supporting the idea that black holes have in fact more states
than those counted by the Bekenstein-Hawking entropy: the latter can indeed be seen as counting near-
horizon states, whereas additional interior states would not be reflected by it as a consequence of the fact
that a black hole’s effect on its surroundings is independent from its interior [85]. This actually provides yet
another solution to the information paradox.
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description in terms of microscopic degrees of freedom should be available. Indeed, the
entropy of a system is given by the number Ω of microstates this system can be in as

S = kB ln Ω . (4.23)

The question is of course what microstates the entropy is accounting for in the case of a black
hole. Anticipating on the results of [9], in [8] they were identified exactly in the conformal
field theory dual to a five-dimensional extremal black hole in string theory. The computation
of the number of possible configurations allowed to recover the Bekenstein-Hawking entropy
of the corresponding black hole. Without getting too much into the details of that derivation,
which would go well beyond our purpose, let us just note that it relied in part on Cardy’s
result (3.70). In the case of AdS3/CFT2, this formula offers a straightforward connection
between the density of states in the conformal field theory and the BTZ black hole entropy
[86]. From the full Cardy formula

SCardy = 2π
√
c

6

(
h− c

24

)
+ 2π

√
c

6

(
h̄− c

24

)
(4.24)

for a generic two-dimensional conformal field theory, one retrieves the Bekenstein-Hawking
entropy (2.17) by replacing the Brown-Henneaux central charge (4.21) and the BTZ horizon
radius (2.12), which can be rewritten

r2
+ = 16G`

(
h− c

24

)
. (4.25)

Indeed, in the case of the BTZ black hole, the mass and charge are given in terms of the
Virasoro generators by [87]

`M = L0 + L̄0 , J = L0 − L̄0 , (4.26)

where one remembers that the eigenvalues of these generators are shifted by −c/24. The
expression above is easily obtained in the case without rotation, where h = h̄. Incidentally,
we have seen in Section 2.1 that this type of black holes satisfy a cosmic censorship condition
|J | 6M`. Black holes will then be interpreted as conformal field theory primary states with
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both h and h̄ greater than c/24, or

∆ = h+ h̄ >
c

12 . (4.27)

Descendants are understood to be perturbative excitations of primary states, or “boundary
gravitons” in the gravity picture [88].

Realizing the full consequences of the duality with conformal field theories (through
the use of Cardy’s formula) has in this case made the details of the microscopic stringy
description irrelevant. As elegant as it is, this result is nonetheless puzzling: indeed, the
Bekenstein-Hawking entropy is valid in a semi-classical regime with large central charge,
whereas Cardy’s formula holds for fixed central charge, as long as the conformal dimension
is large with respect to it. In other words, the Bekenstein-Hawking regime is c → ∞ with
h/c fixed while the Cardy regime is h/c→∞ with c fixed [89]. One could also say that what
makes a conformal field theory holographic is that it sees the regime of validity of Cardy’s
formula extended into the Bekenstein-Hawking realm. In order to tell these conformal field
theories apart from the others, one needs to understand when this extension of one regime
into the other happens. It was proposed [90] that a necessary and sufficient criterion would
be the sparseness of the light spectrum of the theory, by which one should understand that
the density of states with conformal dimension smaller than h− c/24 does not grow too fast,
i.e.

ρ(h) . exp(2πh) . (4.28)

A different argument was made for chiral two-dimensional conformal field theories, or more
exactly families thereof parametrized with N = c/24, according to which just as the va-
lidity of Cardy’s formula in the Cardy regime outlined above relies on modular invariance,
its validity in the Bekenstein-Hawking regime is related to another symmetry between the
behaviour at large N and at small N [89].

We have thus seen how holography relates theories of gravity in three-dimensional anti-
de Sitter space and two-dimensional conformal field theories. This is the most common
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incarnation of gauge/gravity dualities, but the question remains: can we extend this idea to
spacetimes more relevant for the description of the physical world, and in particular, can it
be used to understand realistic models of black holes? These are the issues we address in
the next chapters.



Part II

Beyond AdS/CFT



Chapter 5

Warped holography

With holography, light has been shed on the microstates of a number of supersymmet-
ric black holes and their entropy. However, these results cannot tell us much about non-
supersymmetric, non-extremal astrophysical black holes. A better candidate for a realistic
model of black hole would be the Kerr black hole [67, 91]. Even in its near-extremal version,
it can be related to known astrophysical black holes like the ones in the X-ray binaries GRS
1915+105 [92] or Cygnus X-1 [93]. Attempts to extend the reach of gauge/gravity dualities
to this realm have been made, with in particular the Kerr/CFT proposal [17] where it was
conjectured that gravity near the horizon of extreme Kerr was dual to a conformal field the-
ory. But as we have seen, conformal field theories are associated to a full SL(2,R)×SL(2,R)
isometry group, while near-horizon extreme Kerr (and actually extremal or near extremal
black holes in any dimension [19, 94]) possesses an SL(2,R)× U(1) isometry group [95]. In
addition, the geometry near the horizon of extreme Kerr is described not by AdS3 but by
a deformation of it (squashed or stretched) [32], called Warped AdS3 [18]. Other dualities
that might be relevant for real black holes have then been explored along these lines, such as
Warped AdS3/CFT [18] or Warped AdS3/Warped CFT [19, 20]. In this second part of the
thesis, we will extend some known results of Einstein gravity to higher-curvature theories
of gravity warped AdS3 are solutions thereof. We will then build on the proximity between
warped conformal field theories and chiral conformal field theories to leverage the latter’s
modular properties and extract information about warped black holes. We start out in this
chapter with a review of Warped AdS3/Warped CFT.
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5.1. Warped anti-de Sitter

Warped AdS3 spaces can be obtained by deforming anti-de Sitter metric (2.3) along one
of its fibers. Starting from AdS3 as a Hopf fibration AdS2 ×R, one multiplies the fiber by a
constant factor, which effectively deforms the geometry in a way analogue to the squashing
or stretching of a sphere. The conventional warping factor is 4ν2/(ν2 + 3) so that AdS3 is
recovered for ν = 1. As a result, the overall `2 factor also gets rescaled, and the spacelike1

warped AdS3 metric is

ds2 = `2

ν2 + 3

[
− cosh2 ρ dτ 2 + dρ2 + 4ν2

ν2 + 3

(
du+ sinh ρ dτ

)2
]
. (5.1)

The introduction of warping parameter ν results in breaking the SL(2,R)×SL(2,R) isometry
group of AdS3 down to a SL(2,R)× U(1) isometry group. For ν2 6= 1, as in the AdS3 case,
black hole solutions exist and are quotients of the warped AdS3 metric [18]. The black hole
metric can be written in the so-called warped black hole coordinates of [96] as:

ds2 = dt2 + dr2

r2

`2
(ν2 + 3)− 12mr + 4j`

ν

+ dϕ2
(

3r2

`2 (ν2 − 1) + 12mr − 4j`
ν

)
+ dt dϕ

(
−4νr
`

)
(5.2)

with r ∈ [0,∞), t ∈ (−∞,∞), ϕ ∈ [0, 2π], and (m, j) are parameters characterizing the
black hole. This black hole possesses two horizons as long as j < 9`m2ν/(3 + ν2). They are
located at

r± = 2`2

ν2 + 3

(
3m±

√
9m2 − j

ν`
(ν2 + 3)

)
. (5.3)

The warped black hole was shown to verify the first law of black hole thermodynamics [97].
We will restrict here to warp parameter ν2 > 1 (the “stretched” solution), which exhibits

no pathologies such as naked closed timelike curves, unlike its “squashed” counterpart with
ν2 < 1. The parameter ν, which we assume to be positive without loss of generality [18],
is determined by the equations of motion of the theory under consideration in terms of its
coupling constants (as is `).

Warped black holes are not asymptotically AdS3 and do not belong to the Brown-
1 We leave aside the related timelike and null cases, where a different form of the anti-de Sitter metric is

deformed to begin with.
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Henneaux phase space. Instead, they satisfy the boundary conditions of asymptotically
warped AdS3 spaces [96, 98, 99, 100, 101]

(gµν) ∼
r→∞


1 +O(r−1) O(r−2) −2νr

`
+O(r0)

O(r−2) `2

ν2+3
1
r2 +O(r−3) O(r−1)

−2νr
`

+O(r0) O(r−1) 3(ν2−1)
`2

r2 +O(r)

 . (5.4)

The infinitesimal diffeomorphisms leaving these boundary conditions invariant are generated
by the asymptotic Killing vectors [96]

lm =
(
eimϕ +O(r−1)

)
∂t +

(
−imreimϕ +O(1)

)
∂r +

(
eimϕ +O(r−2)

)
∂ϕ

pm =
(
eimϕ +O(r−1)

)
∂t. (5.5)

These generators obey the following commutation relations:

i[lm, ln] = (m− n) lm+n, i[lm, pn] = −n pm+n, [pm, pn] = 0 . (5.6)

The conserved charges Lm, Pm associated to these generators lm, pm satisfy a Virasoro-Kac-
Moody algebra

[Lm, Ln] = (m− n)Lm+n + c

12 m(m2 − 1) δm+n (5.7)

[Lm, Pn] = −nPm+n (5.8)

[Pm, Pn] = k

2 mδm+n . (5.9)

The central charge c and level k depend once again on the particular gravitational theory in
which one is working. It is important to note that warped AdS3 spaces do not satisfy Ein-
stein’s equations: they are solutions [102, 103] of extensions of Einstein gravity, like Topolog-
ically Massive Gravity [104, 105] or New Massive Gravity [106, 107]. These extensions have
been introduced to remedy the lack of propagating degrees of freedom in three-dimensional
Einstein gravity and provide a stepping stone towards four-dimensional models [104]. For
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example, the action of Topologically Massive Gravity is

STMG = 1
16πG

∫
d3x
√
−g
(
R + 2

`2

)
+ 1

32πGµ

∫
d3x
√
−g ελµν Γρλσ

(
∂µΓσρν + 2

3 ΓσµτΓτνρ
)

(5.10)
with ε012 = 1/

√
−g the Levi-Civita tensor, and the graviton mass µ is related to the warping

parameter ν as µ = 3ν/`. In this case, the central charge and level are given by [19]

cTMG = 5ν2 + 3
ν(ν2 + 3) , kTMG = −ν

2 + 3
6ν . (5.11)

The New Massive Gravity action, by contrast, is given by

SNMG = 1
16πG

∫
d3x
√
−g
(

(R− 2Λ) + 1
µ2

(
RµνR

µν − 3
8R

2
))

(5.12)

and the central charge and level of the Virasoro-Kac-Moody algebra characterizing the
warped duality then become

cNMG = 96 ` ν3

(ν2 + 3)(20ν2 − 3) , kNMG = − 4ν(ν2 + 3)
`(20ν2 − 3) . (5.13)

In this case, warped black holes are solutions of the theory for the following couplings:

µ2 = 3− 20ν2

2`2 , Λ = 4ν4 − 48ν2 + 9
2`2 (20ν2 − 3) . (5.14)

We will not work in any of these theories specifically, but the results we derive in the next
chapter for generic higher curvature theories apply to these as well.

As a final comment, let us mention that as one could have expected, warped black holes
are related to BTZ black holes (2.9). More specifically, warped AdS3 is related to AdS3 by

ds2
WAdS3 = ds2

AdS3 − 2H2ξ ⊗ ξ (5.15)
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where ξ is a Killing vector2 of AdS3 and H is related to the warping parameter ν as
H2 = 3(1−ν2)

2(ν2+3) . Similarly, warped black holes can be obtained by deforming the BTZ met-
ric as [108]

ds2
WBH = ds2

BTZ − 2H2ξ ⊗ ξ (5.16)

with

ξµ∂µ =

√
`

8(M`− J)(−∂t + ∂ϕ) (5.17)

in terms of BTZ quantities and coordinates (see [108] for an explicit map).

5.2. Warped conformal field theories

As we have seen in the previous chapter, two-dimensional conformal field theories are
characterized by a double Virasoro algebra. We have just seen how the analysis of the
asymptotic symmetries of warped AdS3 reveals the breaking of this symmetry: instead of
a second copy of the Virasoro algebra as in (3.38), one gets a u(1) algebra as in (5.7).
Since this alteration follows the deformation of the AdS3 metric, the field theory the above
algebra describes is dubbed “warped conformal field theory” [19, 20]. These theories share
many features with the now familiar two-dimensional conformal field theory, in particular
the existence of an infinite-dimensional symmetry group, and a notion of modular covariance
that allows for the derivation of a Cardy-like formula [19].

Given two coordinates (z, w) describing a plane, a general warped conformal transforma-
tion can be written as [109]

z → f(z) , w → w + g(w) (5.18)

with f and g arbitrary. A warped conformal field theory, which is invariant under these, is
then non-Lorentz invariant and hence non-relativistic. Such a transformation is generated
by a “right-moving” momentum P (z) and stress-energy tensor T (z), respectively, and the

2 The norm of this Killing (1, 0 or -1) determines which type of warped geometry we are speaking of
(spacelike, null or timelike).
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algebra (5.7) is retrieved through the definition of the charges

Ln = − i

2π

∫
dz zn+1 T (z) , (5.19)

Pn = − 1
2π

∫
dz zn P (z) . (5.20)

In particular, the transformation that takes us to the cylinder (t, ϕ) is

z = e−iϕ , w = t− ϕ . (5.21)

Zero modes on the cylinder are then3

Lcyl
0 = L0 −

c

24 − P0 + k

4 , P cyl
0 = P0 −

k

2 . (5.22)

The global charges, associated respectively to energy and angular momentum, are

H = −i∂t , J = −i∂ϕ (5.23)

or in terms of the modes on the cylinder,

H = P cyl
0 + Lcyl

0 , J = P cyl
0 − L

cyl
0 . (5.24)

and on the plane

H = L0 −
c

24 −
k

4 , J = 2P0 − L0 + c

24 −
3
4k . (5.25)

Defining primary states |h, p〉 as eigenstates of the zero modes L0 and P0, descendants
can be created and destroyed as usual by acting with the ladder operators Ln, Pn. Unitarity

3 This is just the spectral flow

Ln → Lαn = Ln + 2αPn +
(
α2 − c

24

)
k δn0 ,

Pn → Pαn = Pn + αk δn0 .

with parameter α = −1/2 .
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requirements (hermiticity of the operators and positivity of norm of the states) imply [19, 109]

k > 0, p ∈ R, h > p2/k, c > 1 . (5.26)

In particular, the unitarity bound L0 > P 2
0 /k has the interesting consequence that in any

warped conformal field theory, unlike in ordinary conformal field theory, the charge J is
bounded above: indeed,

J 6 2P0 −
P 2

0
k

+ c

24 −
3
4 k (5.27)

and one finds
J 6 Jmax = c

24 −
k

4 . (5.28)

Modular analysis and the partition function

To obtain the theory on the torus, one needs to define the spatial and thermal cycles. In
the case at hand, without Lorentz invariance, different choices of the cycles yield different
tori with their particular modular properties. In all generality, the torus should be defined
by the identifications [109]

(t, ϕ) ∼ (t− 2πa, ϕ+ 2πā) ∼ (t+ 2πz, ϕ+ 2πτ) (5.29)

but it is expected that results obtained with a partition function for one particular choice
can always be derived for another, since the partition functions are all related. We can thus
make the “canonical” choice (a, ā) = (0, 1) and work with the partition function that has
“good” modular properties. The (respectively) spatial and thermal cycles can be taken to
be [110]

(t, ϕ) ∼ (t, ϕ+ 2π) ∼ (t+ 2πz, ϕ+ 2πτ) (5.30)

where τ and z are the potentials appearing in the partition function

Z(τ, z) = Tr
(
e2πiτLcyl

0 e2πizP cyl
0

)
. (5.31)
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This can also be written in terms of plane generators L0, P0 as

Ẑ(τ, z) = Tr
(
e2πiτ(L̂0− c

24)e2πizP̂0
)

(5.32)

with
L̂0 = L0 − 2P0 + k , P̂0 = P0 − k . (5.33)

These “altered” generators result from a choice of the spectral parameter α = −1, and they
correspond to the canonical parametrization of the torus mentioned before. According to
[109], this form of the partition function should be privileged since it leaves the vacuum
neutral under P0.

The transformations defining the modular group (3.56) either interchange the spatial
and thermal cycles (S) or add them to one another (T ). Invariance under S and T imply,
respectively,

Z

(
−1
τ
,
z

τ

)
= e−πik

z2
2τ Z(τ, z) , (5.34)

Z (τ + 1, z) = e−πi
k
2 Z(τ, z) . (5.35)

Modular covariance, and not invariance, of the warped partition function is correlated to the
fact that not all choices of spatial slicing of the torus are equivalent.

It was shown [19] that the asymptotic density of states in a warped conformal field theory
behaves in a way similar to that of conformal field theories. The entropy is given by

S = 2π

√
c

6

(
h− c

24 −
p2

k

)
− 4πi p p0

k
(5.36)

where p0 is the vacuum charge. This is a bit reminiscent of Cardy’s formula; in fact, the
latter can be recovered exactly provided we do some redefinitions. Indeed, through a simple
Sugawara construction our Virasoro-Kac-Moody algebra can be reduced to a double Virasoro
algebra as follows [100, 111]. Defining a new set of operators L−n , L+

n from the original
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generators Ln, Pn by

L−n =̂ 1
k

∑
m

: P−n−mPm : , L+
n =̂ L−n + Ln , (5.37)

one can check that these now obey a pair of commuting Virasoro algebras

[L±m, L±n ] = (m− n)L±m+n + c±

12 m
3 δm+n , (5.38)

[L+
m, L

−
n ] = 0 . (5.39)

with central charges c+ = c + 1, c− = 1. In terms of these new quantities, one can simply
apply Cardy’s formula to recover the entropy

S = 2π
√
c+

6 L
+
0 + 2π

√
c−

6 L
−
0 . (5.40)

However, this comment serves no other purpose than to highlight the affinity between (5.36)
and the original Cardy formula. In what follows, we will not use the generators (5.37) and
when referring to the “warped Cardy formula”, we will mean (5.36).

With this, we have reviewed all the warped holography essentials. Entropies on both
sides of the potential Warped AdS3/Warped CFT duality have previously been computed in
some specific cases, like New Massive Gravity [111] and Topologically Massive Gravity [19]
(that were both briefly evoked at the end of Section 5.1), and they were shown to match.
In the next chapter, we will show that this matching of entropies holds for generic higher
curvature theories admitting the warped black hole as a solution. Then in the following
chapter, we will go back to partition functions on the field theory side, and see how their
transformation properties under the modular group can be leveraged to shed some light on
its spectrum. In particular, we will derive a bound on the mass of the lightest charged
black hole in chiral conformal field theories with charge, of which warped conformal field
theories are one of the simplest cases. We will make the conjecture that this bound, proved
analytically in the warped CFT case, is valid for a whole range of such theories with various
types of charge and provide evidence to support it.



Chapter 6

Warped black holes in higher curvature
theories of gravity

In the perspective of the search for a quantum theory of gravity, it is commonly believed
that Einstein gravity is just the beginning of the story. The full theory, of which general
relativity would be a low-energy effective theory, is expected to contain Planck-suppressed
corrections in the form of higher curvature terms in the Lagrangian. In full generality, the
four-dimensional Lagrangian is

L =
∫
d4x
√
−g F

(
gµν , Rµνσρ,∇λRµνρσ,∇(λ∇π)Rµνρσ, . . .

)
(6.1)

with F a possibly complicated function involving all derivative orders of the Riemann tensor.
As a consequence, the computation of charges has to be modified, and the classic Bekenstein-
Hawking entropy

S = 1
4G~

∫
Σ
V (Σ) (6.2)

is replaced by the Iyer-Wald formula [112]

S = −2π
~

∫
Σ

δcovF

δRµνσρ

εµνεσρ V (Σ) , (6.3)

the details of which will be given below (see in particular (6.23)). As we have seen in the
previous chapter, gravity in warped AdS3 belongs to this class of higher curvature theories.
In this chapter, we show that the matching of entropies on both sides of the warped duality,
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which has so far been verified for specific choices of such theories on the gravity side, is valid
for generic theories with higher-order derivatives. In order to compare the result obtained
by means of the “warped Cardy” formula to the Iyer-Wald entropy above, we will need to
compute surface charges. To this end, we will use a method that relies on the covariant
phase space formalism [33], instead of the ADM formalism outlined in Section 2.3. We will
review it next, and see how it generalizes to higher curvature gravity frameworks.

6.1. Covariant phase space formalism

We start with the Lagrangian written as an n-form L (with n the spacetime dimension).
In order to avoid clutter, we slightly abuse notation and write both a form and its Hodge dual
in the same way, and we will generally omit their indices. The Lagrangian is a local functional
of all fields, but we will be concerned here with the situation where it only depends on the
metric tensor g. The first variation of L yields the equations of motion E[g] = 0 through

δL[g] = E[g] δg + dΘ[δg, g] . (6.4)

The (n− 1)-form Θ[δg, g] is the symplectic potential form and it can always be chosen to be
covariant [112]. The gauge symmetries of the theory are transformations δξg = Lξg under
which the Lagrangian transforms as

δξL = LξL = ξ · dL+ d(ξ · L) = d(ξ · L) (6.5)

where the dot is to be understood as the interior product, i.e. the contraction of the vector
field ξ and the first index of the differential form that follows. The second equality is just
the Cartan formula relating the interior, exterior and Lie derivatives. On the other hand,
for a gauge transformation δ = δξ, the variation (6.4) reads

E[g] δξg = −dJξ[g] (6.6)

where the canonical Noether current is defined as

Jξ[g] = Θ[δξg, g]− ξ · L[g] . (6.7)
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When the equations of motion are satisfied, J is a closed form and there exists an (n−2)-form
Qξ[g] such that, on-shell,

Jξ[g] = −dQξ[g] . (6.8)

Qξ[g] is the Noether charge as defined by Wald [113]. It is not equivalent to the conserved
charge Hξ corresponding to the action of the symmetry generator ξ on the covariant phase
space, but both are closely related. The latter is obtained as follows. The symplectic
structure of our configuration space is defined to be1

Ω[δ1g, δ2g; g] =
∫

Σ
ω[δ1g, δ2g; g] (6.9)

where Σ is a Cauchy surface, and the symplectic current ω is

ω[δ1g, δ2g; g] = δ1Θ[δ2g, g]− δ2Θ[δ1g, g] . (6.10)

The subscripts 1 and 2 denote a two-parameter family of field configurations [33]. In partic-
ular, the Hamiltonian Hξ that generates the flow g → g + εδg satisfies

Ω[δξg, δg; g] = δHξ . (6.11)

One can show [112] that when the equations of motion are satisfied (E = 0) and with the
covariant definition of Θ,

ω[δξg, δg; g] = −δJ + d(ξ ·Θ) . (6.12)

Moreover, when ξ is a symmetry, ω[δξg, δg; g] vanishes, and when the linearized equations of
motion hold (δE = 0), we can substitute δJ = −d δQ. We then get

ω[δξg, δg; g] = dkξ[δg; g] = 0 (6.13)

with
kξ[δg, g] =̂ − δQξ[g]− ξ ·Θ[δg, g] . (6.14)

1 More precisely, Ω is a “pre-symplectic” form, but the correct symplectic form and phase space can be
obtained by a straightforward reduction procedure detailed in [33]. Nevertheless, we will use the shortcut
denomination here.
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This (n − 2)-form provides us with an expression for the conserved charge associated to ξ.
Indeed, using Stokes’ theorem,

δHξ =
∫
∂Σ
kξ[δg, g] . (6.15)

The charge Hξ is then obtained through integration over configuration space. This is well-
defined provided the integrability condition∫

∂Σ
δkξ = 0 (6.16)

is obeyed. The asymptotic symmetry algebra can be represented by a Dirac bracket as

δξHζ =̂ {Hζ , Hξ} = H[ζ,ξ] +
∫
∂Σ
kζ [δξg, g] . (6.17)

This algebra exhibits a central extension that cannot be absorbed in a redefinition of the
generators, which makes kξ the object of interest.

It is important to realize that the Θ defined in (6.4) is not unique, and this ambiguity
reflects on the other quantities used in this formalism. Indeed, one could add an exact
(n − 1)-form to Θ, such as Θ → Θ + dY with Y linear, without compromising the rest of
the analysis. As a result, kξ is defined up to the redefinitions

kξ[δg, g] → kξ[δg, g] + B[δξg, δg] (6.18)

for an arbitrary boundary term B anti-symmetric in δξg and δg. In order to fix this ambiguity,
an alternative definition of the symplectic potential form Θ has been proposed [114, 115].
It involves the use of a homotopy operator, the details of which will not be needed here. In
essence, this operator is the inverse of the exterior derivative d (see e.g. [116] for an explicit
expression). One advantage of this procedure is that it provides a definition of charges
depending only on the equations of motion of the Lagrangian, and not on boundary terms.
We then have

k̃ξ[δg, g] = kξ[δg, g] + B[δξg, δg; g], (6.19)

where B is known explicitly [117]. Remark that this ambiguity is not relevant for exact
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symmetries but may yield distinct results in the asymptotic context (see [117] for one such
example in Kerr/CFT). In the following, we will be using the Iyer-Wald charges, and explic-
itly check that the extra term B does not contribute.

Higher curvature generalization

The method outlined above was generalized in [117] for higher-curvature theories, which
are suitable for our purposes of finding the charges for warped AdS3. It has been shown
[112] that a diffeomorphism-covariant Lagrangian (form) can always be put in a manifestly
covariant form

L = F
(
gab, Rabcd,∇e1Rabcd,∇(e1∇e2)Rabcd, . . . ,∇(e1 . . .∇ek)Rabcd

)
. (6.20)

To deal with the arbitrary number k of derivatives of the Riemann tensor, we will follow
[117] and introduce auxiliary fields R and Z in terms of which our original Lagrangian can
be rewritten without derivatives higher than second order, namely

L = F
[
gab,Rabcd,Rabcd|e1 , . . .Rabcd|e1...ek) + Zabcd (Rabcd −Rabcd) (6.21)

+Zabcd|e1
(
∇e1Rabcd −Rabcd|e1

)
+ Zabcd|e1e2

(
∇(e2Rabcd|e1) −Rabcd|e1e2

)
+ · · ·+ Zabcd|e1...ek

(
∇(ekRabcd|e1...ek−1) −Rabcd|e1...ek

) ]
.

with

Rabcd|e1...es = ∇(e1 . . .∇es)Rabcd , (6.22)

Zabcd =
∑
`=0

(−1)`∇(e1 . . .∇e`)
∂F

∂∇(e1 . . .∇es)Rabcd

=̂ δcov

δRabcd

F , (6.23)
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where s ∈ [1, k] and the symmetrization is over the ei indices only. These expressions come
from solving the recursive equations of motion

Rabcd|e1...es = ∇(esRabcd|e1...es−1) , (6.24)

Zabcd|e1...es = ∂F

∂Rabcd|e1...es

−∇es+1Z
abcd|e1...es+1 . (6.25)

In those terms the charge Qξ admits the decomposition (in dimension three2) [117]

Qξ =
(
Q

(0)
ξ +

∑
s>1

Q
(s)
ξ

)
εabc dx

c (6.26)

where
Q

(0)
ξ =

(
−Zabcd∇cξd − 2ξc(∇dZ

abcd)
)
, Q

(s)
ξ = ξk A

kab
(s) (6.27)

with

Akab(s) = −2
[
Zklcd|e1...es−1aRb

lcd|e1...es−1 + Zalcd|e1...es−1bRk
lcd|e1...es−1

+ Zalcd|e1...es−1kRb
lcd|e1...es−1 + s− 1

2 Z lmcd|e1...es−2kaR b
lmcd| e1...es−2

]
. (6.28)

The boundary term obtained when varying the Lagrangian can be similarly decomposed as

Θ = 1
2

(
Θ(0) +

∑
s>1

Θ(s)

)
εabc dx

b ∧ dxc (6.29)

where

Θ(0) = −2
(
Zabcd∇d δgbc − (∇dZ

abcd) δgbc
)

Θ(s) = 2δgij C ija
(s) − Z

nklm|e1...es−1a δRnklm|e1...es−1 (6.30)

2 In higher dimension, εabc just gets replaced by εabc3...cn for Q, and by εaa2...an for Θ, etc.
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with

C ija
(s) = 2

(
Ziklm|e1...es−1a + Zaklm|e1...es−1i

)
Rj

klm|e1...es−1
− 2Ziklm|e1...es−1jRa

klm|e1...es−1

+ (s− 1)
(
Znklm|e1...es−2iaR j

nklm| e1...es−2
− 1

2Z
nklm|e1...es−2ijR a

nklm| e1...es−2

)
. (6.31)

Both tensors A(s) and C(s) are present only when the Lagrangian has derivatives of the Rie-
mann.

Finally, let us mention the general expression for the central terms. It has been shown
[117] that it can be unwrapped as∫

kζ [δξg, g] =
∫ (

Q[ζ,ξ] − (LζQξ − LξQζ)− ζ · ξ · L
)
. (6.32)

In the case at hand, since both central charges appear in (5.7) along with a δm+n, ξ and ζ
will be (ln, l−n) for the central charge c and (pn, p−n) for the level k. The first term here
can be ignored [117] since one can absorb it into a shift of the Hamiltonian in (6.17). In
addition, we do not need to worry about the extra term Bc[δξg, δζg; g] from (6.19): indeed,
in our case it is [117]

Bc[δξg, δζg; g] = 1
2

(
−3

2Z
abdeδξg

f
d ∧ δζgfe + 2Zadefδξgde ∧ δζgbf

)
εabc (6.33)

and for reasons we detail below, it will never contribute to the charges.

6.2. Higher curvature warped charges

Now that all the background is set up, we can move on to the particular case that we
are interested in: three-dimensional warped anti-de Sitter. In this section we will show that
in any higher-curvature theory, the entropy of the warped black hole (5.2) still matches the
Wald entropy. We start by analyzing in detail how symmetries can be worked to simplify
the expressions for the charges that we have just been reviewing.
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6.2.1. Symmetries and Curvature Tensors

We recall that in dimension three, all Riemann tensors can be expressed in terms of Ricci
tensors. In the case at hand, some products of Ricci tensors are fairly simple [18]:

{R,RµνR
µν , RµνR

νρRρ
µ} = 6

`2

{
−1, ν

4 − 2ν2 − 3
`2 ,

−ν6 − 3ν4 + 9ν2 − 9
`4

}
. (6.34)

This is valid for both warped AdS3 and its black hole, and can be easily verified for the
metric (5.2). Furthermore, in a maximally symmetric spacetime, all curvature tensors (e.g.
products of covariant derivatives of Riemann/Ricci tensors) can be expressed (covariantly)
in terms of the metric tensor. For example, for three-dimensional Einstein gravity,

Rµνρσ = Λ (gµρgνσ − gνρgµσ) . (6.35)

One can extend this sort of argument to the warped AdS3 case. Indeed, any tensor con-
structed out of the metric should respect the SL(2,R) × U(1) isometry. The consequences
have been investigated and exploited in [117]; we will now see how it plays out in our case.
In particular, any scalar curvature invariants constructed out of the metric are constants.
As such, in the case at hand, these constants can only depend on ν and ` and not on the
parameters of the black holes (i.e. m and j), which are parameters of the global quotients.
We will see this in a example below.

For a generic tensor, let us consider what happens in the case of a symmetric-two tensor
Sµν . Due to boost-invariance (which is a consequence of the SL(2,R)×U(1) symmetry), in
a conveniently chosen vielbein basis eî ≡ eîµdx

µ (with i = 0, 1, 2, explicitly given in [117]),
we have

S 0̂0̂ = −S 1̂1̂ , S 0̂1̂ = S 0̂2̂ = S 1̂2̂ = 0 (6.36)

while S 2̂2̂ is arbitrary. This implies that any such tensor only contains two arbitrary compo-
nents. In particular, we can decompose it as

S âb̂ = c1η
âb̂ + c2J

âJ b̂ . (6.37)

where the constants ci only depend on ν and `. The vector Jµ is most usefully chosen to be
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the U(1)R of the SL(2,R)L × U(1)R,

Jµ∂µ = ∂t = p0 , (6.38)

where we work in the warped black hole coordinates in which (5.2) is written and p0 is
the U(1)R Killing vector from (5.5). Note that JµJµ = 1. Translating back into spacetime
indices, we obtain

Sµν = c1g
µν + c2J

µJν . (6.39)

Furthermore, note that
∇µJν = ν

`
εµνσ J

σ (6.40)

where the convention is εtrϕ =
√
−g = 1. Thus, all products of covariant derivatives of S

can in turn be rewritten as products of g, ε and J . Let us give an example where Sµν = Rµν .
Then,

Rµν = ν2 − 3
`2 gµν + 3 1− ν2

`2 JµJν , (6.41)

∇µRνρ = 3ν ν
2 − 1
`3

(
εµνσJρ + εµρσJν

)
Jσ . (6.42)

In order to compute the Wald entropy of the warped black hole, we will need the tensor
Zαβµν defined in (6.23) which has the same index symmetry as the Riemann tensor and is
constructed out of the metric and its derivatives. It also depends on the theory one considers.
By the above argument, we can rewrite it as

Zαβµν = A
[
gµαgβν − gανgβµ

]
+B

[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
(6.43)

for some constants A and B that only depend on (ν, `). In particular, when we replace this
form of Z in (6.33), it is straightforward to show that Bϕ[δξg, δζg; g] vanishes as we integrate
over a (t, r) = constant surface.
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Finally, the equations of motion always take the form

Eµν [gαβ] = 0 (6.44)

where Eµν [gαβ] for a given symmetric two-tensor constructed out of the metric. For example
in pure Einstein theory, it is just the Einstein tensor or the Ricci tensor. Following the above
logic, evaluating Eµν on a warped AdS or warped black hole solution, symmetries allow us
to decompose Eµν into a sum of the metric and the Ricci tensor as3

Eµν = E1Rµν + E2gµν = 0 . (6.45)

where E1 and E2 are constants which only depend on (ν, `) and on the couplings αi of the
theories. Note that the dependence on the couplings of the theories is linear. The equations
of motion then reduce to two independent equations, i.e. setting

E1(ν, `, αi) = E2(ν, `, αi) = 0 . (6.46)

This means that as long as we have a theory with two independent couplings, such as
Topologically Massive Gravity (5.10) or New Massive Gravity (5.12), we will always be able
to solve the equations of motion. The couplings appear linearly in the Ei’s, and for that
reason we can always solve these two decoupled equations (subject to obtaining real ` and ν
as solutions).

6.2.2. Entropy of warped black holes

For any diffeomorphism covariant theory of gravity, the Wald three-dimensional entropy
formula is [112, 118, 119]

SWald = −2π
∫ 2π

0
dϕZabcdεab εcd

√
gϕϕ

∣∣∣
r=r+

. (6.47)

3In the case where the Lagrangian contains only Ricci tensors (and not covariant derivatives of Ricci
tensor), we work this out very explicitly in Appendix A. For example, see (188).
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In this expression, εab is the binormal at the horizon, given by εab = ∇a ξb where ξ is the
generator of the horizon with κ its surface gravity (1.6) normalized to unity. As for Z, we
have encountered it already in (6.23), and we have just seen in the previous section that
by general SL(2,R)× U(1) symmetry arguments, it can be written as (6.43). We can then
compute

Zabcdεab εcd
√
gϕϕ

∣∣∣
r=r+

= −4
(
A+BRa

b n
b
a

)√
gϕϕ

∣∣∣
r=r+

(6.48)

where we have used εabεab = −2 and defined nab ≡ −εcaεcb. Furthermore, using

Ra
bn

b
a

∣∣∣
r=r+

= 2 (ν2 − 3)
`2 (6.49)

and putting (5.2)-(5.3) together to get √gϕϕ
∣∣
r=r+

= −Ω−1 with

Ω = − ν2 + 3
4
(√

` ν (9`m2ν − (ν2 + 3) j) + 3`mν
) (6.50)

the angular velocity at the horizon, one is led to

SWald = −16π2

Ω A

(
1 + B

A

2(ν2 − 3)
`2

)
. (6.51)

We will now show how, by computing the entropy by way of the warped Cardy formula
(5.36) this expression is recovered for theories with higher curvature terms.

Warped Cardy formula at leading order

In order to do that, we need the charges (6.15) appearing in the warped Cardy formula
under the names h and p. Since we would rather avoid confusion with other notations in
this chapter, we will rename these charges after their generators, i.e. L0 and P0 respectively.
We first note that (5.36) can be rewritten in terms of the angular velocity (6.50) as

SWCFT = 2πi
Ω P vac

0 − 8π2

βΩ

(
(P vac

0 )2

k
− c

24

)
, (6.52)
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where β is the inverse temperature [19].

We will first derive the expressions of the charges for the case of a Lagrangian without
derivatives of the Ricci, when they depend only on Q

(0)
ξ and Θ(0), and then take a look at

what sort of corrections they receive from Q
(s)
ξ and Θ(s) once we incorporate such derivatives.

The exact charges are given by (6.15), i.e.

δL0 ≡ −δH∂ϕ = −
∫
∞
δQ∂φ , (6.53)

δP0 ≡ δH∂t =
∫
∞
δQ∂t +

∫
∞
∂t ·Θ (6.54)

where the integral is over the (n − 2)-dimensional sphere (with t, r = constant) at spatial
infinity. There is no term with ∂ϕ · Θ in δL0 because ∂φ is assumed to be tangent to this
sphere.

Using the general form of Zabcd (6.43), an explicit computation yields

L0 = 32π (A`2 + 2B (ν2 − 3))
`2 j + 24πν (ν2 − 1) (A`2 + 2B (5ν2 − 3))

`5 r2 ,

P0 = 48π (A`2 + 2B (ν2 − 3))
`2 m. (6.55)

To obtain the central terms in (6.17) as given by (6.32), it is sufficient to consider the terms
proportional to n (for the level) and n3 (for the central charge), which are

k = 2i
∫
∞
kpn [Lp−ng, g]

∣∣∣∣
n

= −32πν
`

(
A+ 4B (2ν2 − 3)

`2

)
,

c = 12i
∫
∞
kln [Ll−ng, g]

∣∣∣∣
n3

= 192πν
(ν2 + 3)

(
A`+ 2B (ν2 − 3)

`

)
. (6.56)

In all these expressions, A,B are the constants in terms of which Z is expressed in (6.43).
Recall that picking a particular theory in which to consider the warped black hole amounts
to fixing these constants so until we do so, everything we compute here is completely general.
However, on general grounds, the charges associated with exact Killing vectors of a metric
satisfying the equations of motion of a given theory are finite. Therefore, the r-dependence
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of the charges (6.55) is expected to drop out on-shell and we see that a theory admitting
warped AdS3 as a solution must have its constants A and B related in the following way:

B = − A`2

2 (5ν2 − 3) . (6.57)

In other words, the coupling constants of the considered theory should satisfy the above
relation. This requirement is equivalent to satisfying the equations of motion, as expected
(see details in Appendix A).

Using (6.57), the charges have the following expression

L0 = 128 π ν2

5ν2 − 3 Aj , P0 = 192 π ν2

5ν2 − 3 Am, (6.58)

k = −32 π ν (3 + ν2)
` (5ν2 − 3) A , c = 768 ` π ν3

(ν2 + 3) (5ν2 − 3) A (6.59)

with only one constant A depending on the theory under consideration.
Following [19], we pick the warped black hole ground state to be (m = i/6, j = 0) in

order to match with the BTZ ground state (M = −1/8, J = 0) since both are related by
(5.16). The corresponding value of P vac

0 is then

P vac
0 = 32iπν2

5ν2 − 3 A . (6.60)

We substitute these into the warped Cardy formula (6.52) and get

SWCFT = −64π2A

Ω
ν2

(5ν2 − 3) (6.61)

which is precisely the Wald entropy (6.51) with the replacement (6.57). This proves the
matching of entropies

SWCFT = SWald (6.62)

holds for higher curvature theories without derivatives of the Ricci tensor. We now set out
to prove that the corrections attached to the presence of such derivatives do not alter this
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result.

Corrections (and how they do not contribute)

When the Lagrangian contains derivatives of the Ricci, the corrections Θ(s) and Q(s) to
the charges are activated. There will also be new terms appearing in Zabcd as given by (6.43)
but thanks to the symmetries, they can be absorbed in a redefinition of coefficients A and
B as, say, Ã and B̃.

Recall that the corrections in (6.26) and (6.29) were given by

Q
(s)
ξ = ξk A

kab ,

Θ(s) = 2 δgij C ija − Znklm|e1...es−1a δRnklm|e1...es−1 , (6.63)

where both A and C are covariant tensors constructed out of the metric, Akab being anti-
symmetric in (a, b) while C ija is symmetric in (i, j). As it turns out, the second term in
Θ(s) can be incorporated to the first one: indeed, since every covariant tensor built out of a
SL(2,R) metric can be written in terms of polynomials of ε, gµν and Jρ, we have

Rnklm|e1...es−1 =
∑
p

cp(ν, `) t(p)nklm|e1...es−1
(6.64)

where t is some basis tensor built out of polynomials of ε, g and J . Crucially the coefficient
cp only depends on (ν, `) and not on the black hole or quotienting parameters. Note that

δJµ = δεabc = 0, (6.65)

since
√
−g = 1 and Jµdxµ = dt− (2νr/`)dϕ does not contain black hole parameters. There-

fore, we have

δRnklm|e1...es−1 =
∑
p

cp(ν, `) δt(p)nklm|e1...es−1
=
∑
p

cp(ν, `)
δt

(p)
nklm|e1...es−1

δgij
δgij, (6.66)

since variations hit the t-tensor through gµν and t is a polynomial in g. It is important to
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note that no covariant derivatives of gµν appear in this tensor t. Therefore, we obtain[
Znklm|e1...es−1a

∑
p

cp
δt

(p)
nklm|e1...es−1

δgij

]
δgij ≡ Aijaδgij, (6.67)

where Aija = Ajia. Our corrections are now4

Q
(s)
ξ = ξk A

kab , Θ(s) = δgij C
ija . (6.68)

Furthermore, by symmetry arguments there are only four independent non-zero compo-
nents for C ija and three for Akab in the three-dimensional case. This means that we can
decompose these tensors in the following way

Aabk =
((
a1g

ak + a2 ε
akcJc

)
J b − (a↔ b)

)
+ a3 ε

abpJpJ
k

C ija = b1 g
ijJa +

((
b2J

igja + b3 J
i εjakJk

)
+ (i↔ j)

)
+ b4J

iJ jJa (6.69)

where ai and bi are constants depending only on ν and `.

Let us now see how this constrains our corrections, starting with Θ(s). Using the fact
that the only non-zero components of δgij are δgrr and δgϕϕ and that gijδgij = 0, we get

Θ(s) = δgij

( (
b2J

igja + b3J
iεjakJk

)
+ (i↔ j)

)
+ b4J

iJ jJa . (6.70)

This correction only enters the charge generated by ∂t (see (6.53)), and when Jµ∂µ = ∂t

there is no contribution from the first term in this equation since δgtj = 0. Moreover, since
we are computing charges on a constant (t, r) surface, we are interested in the a = r com-
ponent5, which implies the last term does not contribute either since Jr = 0. Thus we have
established that in the computation of δP0, Θ(s) vanishes.

4 We also absorb a factor of 2 in the definition of C.
5 Explicitly, we are computing ∫

ξb Θ(s)
bc εabc dx

c ,

with r, t = cst so c = ϕ, and since b = t the only non-vanishing piece is the one with a = r.
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Next, consider the expression for Q(s)
ξ which becomes

Q
(s)
ξ = ξk

( (
2a1g

k[a + 2a2 ε
pk[aJp

)
J b ] + a3 ε

abpJpJ
k
)
. (6.71)

For δP0, we consider ξµ∂µ = ∂t = Jµ∂µ. By similar arguments, we see that the first and
second term vanish, so that we are left to evaluate∫

∞
Q

(s)
ξ =

∫
∞
ξk
(
a3 ε

abpJpJ
k
)
εabcdx

c = 8πν a3

`
r , (6.72)

where we have used JµJµ = 1 and Jµdx
µ = dt − (2rν/`)dϕ while setting (a, b) = (t, r).

Taking the variation of that expression gives us zero.
Finally, we consider the expression for Q(s)

ξ for ξµ∂µ = ∂ϕ in the computation of δL0.
Direct computation shows∫

∞
Q

(s)
ξ =

(
16 π a3 ν

2 + 4 π a2 (3 + ν2)
`2

)
r2 − (48 a2 m) r + 16 a2 `

ν
j . (6.73)

As for the central charges, a similarly explicit computation of the corrections generated
by Q(s)

ξ and Θ(s) in (6.32) yields

c(s) = 192 (3 a2 π + a2 πν
2 + 4 a3 πν

2) r2

`2 − 1152 a2 mπr ,

k(s) = −16π a3 . (6.74)

Thus the charges are (6.55), (6.56) with A→ Ã and B → B̃ plus the corrections (6.73) and
(6.74). In order to have finite exact charges, the divergences must cancel. This implies

a2 = 0, a3 = −
3 (ν2 − 1)

(
Ã`2 + 2B̃ (5ν2 − 3)

)
2ν `3 . (6.75)

The purpose of the first equation is to cancel the r-divergence. To get rid of the r2-divergence,
the second term in (6.55) for L0 should cancel against the first term in (6.74), which yields
the expression for a3. With this, the form of the charges is left unchanged with respect to
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the case without derivative of the Ricci in the Lagragian. As for the central terms, finiteness
of the Virasoro central charge which is a necessary condition in order to have a well-defined
phase space with these symmetries, requires a3 = 0. This does not change our result, but it
is an additional condition on the coupling constants of the theory (though it is not excluded
that this condition could be derived from requiring the metric to satisfy the equations of
motion). Relation (6.57) then holds between Ã and B̃. In any case, all corrections vanish as
advertised, and the matching of entropies is preserved.

In conclusion, we have shown that the Wald entropy is always reproduced by a warped
Cardy formula using the SL(2,R)×U(1) symmetries and on-shell conditions. We have also
found a general explicit expression for the charges.

6.3. Example

In this section, we see how all this formalism applies to a concrete Lagrangian. More
examples and details can be found in Appendix B.

We take a Lagrangian with the higher curvature term

LHC = ∇aRbc∇aRbc. (6.76)

According to (6.23), the Z-terms entering the charges are given by

Zabcd = ∂L

∂Rabcd

−∇e
∂L

∂∇eRabcd

(6.77)

= −1
2
(
−gac�Rbd + gbc�Rad − gbd�Rac + gad�Rbc

)
and

Zabcd|e = ∂L

∂∇eRabcd

(6.78)

= 1
2
(
gac∇eRbd − gbc∇eRad + gbd∇eRac − gad∇eRbc

)
.
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Using

∇α∇µRαν = ∇α∇νRαµ = −6ν2

`4 gµν −
3ν2

`2 Rµν

�Rµν = 12ν2

`4 gµν + 6ν2

`2 Rµν , (6.79)

we can rewrite the tensor Z as (6.43),

Zabcd = 6ν2

`4

(
−gacgbd + gbcgad − gbdgac + gadgbc

)
+3ν2

`2

(
−gacRbd + gbcRad − gbdRac + gadRbc

)
. (6.80)

The relevant corrections to Θ and Q are

Θ(1)
bc = 2

[
δgij

(
Rj i
k l∇

aRkl +Rj
k(∇aRik −∇iRak)−Ra

k(∇jRik
)
− δRkl∇aRkl

]
εabc

(Q(1)
ξ )c = −2ξk

[
Rb
l∇aRkl +Rk

l∇bRal +Rb
l∇kRal

]
εabc (6.81)

Using the relations (6.40) and (6.41) which imply δRbc = (ν2 − 3/`2) δgbc, together with the
decomposition of the Riemann tensor (2.8), we get

Ra
cR

bc;e = 3ν
`5 (ν2 − 1)

(
(ν2 − 3)J bεeas − 2ν2Jaεebs

)
Js (6.82)

Ra b
d cR

dc;e = 3ν3

`5 (ν2 − 1)
(
J bεeas + Jaεebs

)
Js (6.83)

which corresponds precisely to the expected form for the corrections (6.69). We can then
rewrite

Θ(1)
bc = 6ν

`5 (ν2 − 1)δgij
(
ν2J iεajs − (2ν2 − 3)J jεais − (ν2 − 3)J iεjas + 2ν2J jεias

)
Jsεabc

(Qξ)(1)
c = −ξk

6ν
`5 (ν2 − 1)

[
(ν2 − 3)

(
Jkεabs + Jaεbks + Jaεkbs

)
−2ν2 (J bεaks + Jkεbas + J bεkas

)]
Jsεabc . (6.84)

Since we are going to integrate over ϕ, and we have to contract the correction to Θ with
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∂t, we need to compute Θ(1)
tϕ and (Qξ)(1)

ϕ . We also know that δg only non-zero components
are δgrr and δgϕϕ. It is then straightforward to show that

Θ(1)
tϕ = 0 (6.85)

(Q∂t)(1)
ϕ = −72 r ν

2

`6 (ν2 − 1)2 (6.86)

(Q∂ϕ)(1)
ϕ = 0. (6.87)

Even if (Q∂t)
(1)
ϕ is non-zero, the contribution of this term to the charge vanishes upon taking

the δ of it. The same results are recovered using the general method proposed in [117] (see
Appendix B.5).

In this chapter, we have seen how the matching of entropies on both sides of warped
holography generalizes to higher-curvature contexts. We have reviewed the covariant phase
space formalism and its extension to these sorts of theories, of which warped AdS3 is a
solution, and we have computed the charges of the warped black hole. This allowed us to
use the “Cardy-like” formula to calculate the entropy of the latter on the field theory side,
recovering the result obtained by way of the Iyer-Wald formula on the gravity side and thus
extending previous results derived case by case (NMG, TMG, ...) to generic theories with
arbitrary higher-derivative terms. This argues in favour of the conjectured duality between
warped AdS3 and warped CFT.

In the next chapter, we will have a different take on the field theory dual of warped AdS3.
We will use the so-called “modular bootstrap program” to see how the very specific modular
properties of warped CFT can be used to constrain it and extract information about black
holes in warped AdS3. In a more general perspective, we will then consider chiral conformal
field theories with charge, and mobilize all the powerful resources of modular analysis to dig
deeper into the matter.



Chapter 7

Modular bootstrap for chiral CFT

The modular bootstrap is a program that makes use of conformal field theories’ modular
properties to constrain the possible forms they can take. In two dimensions, consistency
of a theory on arbitrary Riemann surfaces (and hence at all order of perturbation in string
theory) requires two things: (1) crossing symmetry of four-point functions on the sphere,
and (2) modular invariance of both the partition function and the one-point function on
the torus (which corresponds to one-loop string diagrams) [120]. The conformal bootstrap
program, which we will not cover here, focuses on the first one of these conditions, while the
modular bootstrap imposes consistency conditions on the theory through modular invariance
(or covariance). All sorts of conformal field theories have so far been investigated, with or
without charge, with most of the work done along the lines of the linear functional method
developed in [121] and resorting to semi-definite programming [122, 123]. This method
allows to probe the part of the spectrum containing states with lower conformal dimension,
and the outcome is generally a bound on these “light” states’ dimension. In this chapter,
we will focus on conformal field theories that are chiral, in the sense that a single copy of
the Virasoro algebra generates the asymptotic symmetry group [124]. Building up on the
chargeless case analysis developed in [125], we will provide a new method to derive a bound for
charged conformal field theories, fully leveraging the theory’s especially favourable modular
properties. In the simplest case of a u(1) charge, this allows us to tighten the bound to its
maximum in a completely analytical way. We will thus prove that in any consistent chiral
conformal field theory with such a charge, there are charged primary states with dimension
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at or below the black hole threshold; i.e. with

h 6
c

24 + 1 . (7.1)

We then extend this analysis to cases involving generic affine Lie algebras, and our result
can be stated as follows:

For any chiral conformal field theory with a current algebra g, with central charge c,
level k, and dual Coxeter number g, there are (Virasoro + current algebra) primary
states with non-trivial charge and dimension h 6 c

24 + 1, provided k > k∗(c, g). In
particular, we evaluate the critical level k∗(c, g) to be zero numerically for sû(2),
sû(3), sô(10) and G2, and provide an analytic proof for u(1).

Before we derive this result in Sections 7.3, 7.4 and 7.5, we will engage as a preliminary
exploration in applying the original modular bootstrap procedure of [121] to warped CFT,
which as we will see amounts to the case of chiral conformal field theory with u(1) charge.
By choosing a functional wisely, we will be able to lower the bound obtained in previous
works on this sort of theory, and this will be an indication that there is indeed a better result
within reach.

7.1. Hellerman bound for unitary warped CFT

We begin with a non-extensive review of previous results of the modular bootstrap. In
particular, in [121] a lower bound on the weight of the lowest primary state of a completely
general two-dimensional conformal field theory was derived making use only of modular
invariance, together with unitarity and discreteness of the spectrum. The result was that for
any state,

∆ = h+ h̄ 6 ∆B (7.2)

with
∆B = c

6 + 0.474 + O (1/c) . (7.3)
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In [120], Friedan and Keller numerically bettered that bound using semi-definite program-
ming [122, 123], yielding

∆FK
B = c

6 − 0.004 + O (1/c) (7.4)

for bosonic conformal field theories. In [126], a similar technique was applied to conformal
field theories with an extra conserved current. In that case, the analytic bound was found
to be

∆BDFK
B = c

6 + 3
2π +O (1/c) , (7.5)

which practically reproduces the Hellerman bound since 3/2π ' 0.477. In [127], theories with
spin were investigated, and numerical extrapolation lead to a refinement of the Friedan-Keller
bound for large c:

∆CLY
B = c

8 + 1
2 +O (1/c) , (c > 4) . (7.6)

A similar result was found in [128] for theories involving an extra current (abelian or not):

∆DFX
B = c

α
+O (1) , α > 8 . (7.7)

With a somewhat different method but still relying on semi-definite programming, the au-
thors of [129] were able to prove that

c

12 6 lim
c→∞

∆BLS
B <

c

9 . (7.8)

Finally, in [130], a new algorithm was developed that allowed for much more computational
efficiency. The numerical results were extended from up to c ' 100 to c ' 1800, and
extrapolation yielded the estimate

∆AJHT
B = c

9.1 +O(1) , (7.9)

still well away from the black hole threshold (4.27).
In addition, in [126] (and [128]), a bound on the charge-to-mass ratio was found:

Q

m
>

G

4
√
π

(7.10)
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which allowed the authors to make a connection with the Weak Gravity Conjecture. The
idea of this conjecture [131] is that in a consistent theory of quantum gravity, black holes
(including charged ones) should be able to decay via Hawking radiation without leaving
remnants of any kind. There should then be sufficiently light particles in the spectrum in
order for this process to take place, “light” being understood in the broader sense that not
only is the mass of these particles bounded above, but also the mass-to-charge ratio. For
such particles, gravitational attraction is weaker than gauge repulsion – hence the name.
The Weak Gravity Conjecture being motivated by holography and string theory arguments,
it is rather remarkable that an upper bound is recovered using only modular invariance. Ini-
tially, this was proposed as a criterion to discriminate effective theories of quantum gravity
with matter that look consistent at low energy but cannot be completed at high energy in
a consistent way (the “swampland”), from those that can (the “landscape”) [132]. It was
formulated in Minkowski spacetime, then extended to anti-de Sitter space [133] in order to
make a connection with AdS/CFT and allow for the exploitation of conformal field theories’
full potential, as in the works cited above. Interestingly, it has been argued that the Weak
Gravity Conjecture could provide an explanation for weak cosmic censorhip [134]: indeed,
a whole class of counterexamples to the latter conjecture could be ruled out by the very
weakness of gravity. If it is not a complete answer, it is nonetheless an interesting relation
between two apparently disconnected conjectures. In addition, the Weak Gravity Conjecture
could also put a constraint on effective field theory models of inflation and axion inflation
(see e.g. [135, 136]). We thus see that, with possible applications in cosmology, the modular
bootstrap has a rather extensive reach.

Among the previous results listed above, the bootstrap method used in [126] is partic-
ularly straightforward to implement. We will now review it while extending it to warped
conformal field theories. The general idea of the “Hellerman method” developed in [121] is
to consider a finite set of energy levels in the spectrum, characterized by the fact that all
the associated dimensions are bigger than some value h∗. Then, if we can find a functional
(made of combinations of partial derivatives) such that acting on the modular transforma-
tion (5.34) gives only a positive contribution, it means there has to be states in the spectrum
that do not belong to this set we have considered: indeed we need such states to get a nega-
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tive contribution that balances the positive one, in order for the whole expression to vanish.
These states then have dimension smaller than h∗, which gives us the desired bound. This
illustrates how using only very general properties of the field theory, one is able to constrain
it in a non-trivial way. Let us now see how this method works by applying it to warped
conformal field theories.

7.1.1. Linear functional method for warped CFT

Recall that the partition function of warped conformal field theories can be written in
terms of plane generators L0, P0 as (5.32). We have seen that it can also be put in a simpler
form, but for now we will be satisfied with the preferred formulation of [109]. Everything we
will do here will turn out to be valid for the simpler form as well. Primary states |ĥ, p〉 of
the hatted generators (5.33) can be defined such that1 [109]

L̂0 = ĥ+ p2

k
, P̂0 = p (7.11)

with ĥ > 0. We can then expand the partition function (5.32) over a basis of states as

Ẑ(τ, z) =
∑
j

e
−2πiτ

(
ĥj− c

24 +
p2
j
k

)
e2πizpj (7.12)

and as in [121, 126], the descendant states are included in the partition function. The mod-
ular transformation is given by (5.34).

Starting over from (7.12), where we replace hj = ĥj for more readability, the above
modular transformation property can then be written, along the lines of [126], as

e−πik
z2
2τ Ẑ

(
−1
τ
,
z

τ

)
− Ẑ(τ, z) =

∑
j

Fj(τ, z) = 0 (7.13)

with

Fj(τ, z) = e−πik
z2
2τ e

− 2πi
τ

(
hj− c

24 +
p2
j
k

)
e−

2πi
τ
zpj − e

2πiτ
(
hj− c

24 +
p2
j
k

)
e2πizpj . (7.14)

1 This actually follows from the Sugawara construction (5.37).
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In the search for a Hellerman bound, we focus on Z as a function of β, so taking τ = iβ/2π,
this reads:

Fj(β, z) = e
−4π2
β

(
hj− c

24 +
p2
j
k

+zpj
)
e−π

2k z
2
β − e

−β
(
hj− c

24 +
p2
j
k

)
+2πizpj

. (7.15)

We choose a functional similar to the one in [126], which involves first and third derivatives
with respect to β, as in the original Hellerman derivation:

α(Fj) ≡
[
∂β + A∂β ∂

2
z +B ∂3

β +G∂2
z

]
Fj(z, β)

∣∣∣∣
z=0,β=2π

(7.16)

with Fj(z, β) given by (7.15). The conditions we impose on it are the following2:

(i) α(Fvac) > 0 , (7.17)

(ii) α(F ) > 0 if p = 0 , (7.18)

(iii) α(F ) > 0 if h > h∗ , (7.19)

where the vacuum, at which Fvac is evaluated, is chosen to be (h, p) = (0, 0) since we are
only considering unitary theories. This yields a polynomial of degree 6 in p. We have the
freedom to choose the coefficients however we please, so after some trial and error, the best
functional we get is obtained by setting

G = A

2π , A = 2
kπ

+ 3B
4kπ

(
c2π2 + 36(12 + cπ)

)
(12π)2 . (7.20)

Since after acting with the functional α, B then comes as an overall factor, we can put it to

2 which are somewhat different from the ones used in [126], where the first one is α(Fvac) = 1.
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1. Dropping the j indices to avoid clutter, we have

α(F ) = e
−2π

(
h− c

24 + p2
k

)
(24k)3 π2

[
p0(h) + p2 P2(h) + p4 P4(h) + p6 P6

]
with (7.21)

P6 = 2 · 243π2

P4(h) = h
(
6 · 243kπ2)+ 6 · 242kπ(12 + cπ)

P2(h) = h2 (6 · 243k2π2)+ h
(
−12 · 242k2π(12 + cπ)

)
+ 3 · 24k2 (−122 + cπ(12 + cπ)

)
P0(h) = h3 (2 · 243k3π2)+ h2 (−6 · 242k3π(12 + cπ)

)
+ h

(
3 · 24k3 (−122 + cπ(12 + cπ)

))
+ α0

α0 = ck3 (c2π2 + 36(12 + cπ)
)

All terms are positive at large h. Condition (i) is verified by construction (through the choice
(7.20)), and condition (iii) is verified for all p, c > 1, k > 0 with

h > h∗ = c

24 + 3
4π + 1

8π

√
1
6 c

2π2 + 6(10 + cπ) . (7.22)

Condition (ii) turns out to be redundant. At large c, the square root term is slightly domi-
nant:

h∗ = c

24

(
1 +

√
3
2

)
+O(

√
c). (7.23)

This means there must be states in the warped conformal field theory that have dimension

h− c

24 <
c

24

√
3
2 +O(

√
c) . (7.24)

This is a significantly better bound than the ones obtained for regular conformal theories or
flavoured conformal field theories discussed above (even as these bounds need to be divided
by 2 in order to translate to a chiral case such as this one). In particular, the best known
bound for warped conformal field theories [110], though obtained via a simpler form of the
partition function, is not as tight. Let us now comment on this alternative form of the
warped partition function.
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Even though in [109] it is argued that the form (7.12) of the partition function should
be privileged, it is not the only way to write it. In terms of the cylinder generators, the
partition function is simply

Z(τ, z) = Tr
(
e2πiτLcyl

0 e2πizP cyl
0

)
(7.25)

which is the same as the partition function of a chiral conformal field theory with an extra
U(1) charge. This form of the warped partition function is used in [110] to argue that the
bound for the full flavoured conformal field theory obtained in [128] can be straightforwardly
adapted to the case of unitary warped conformal field theory. The Apolo-Song bound is then

h <
c

α
+O(1) , α > 16 . (7.26)

It is easy to check that the bound (7.24) obtained above still holds for this more tractable
form of the partition function, as expected. However, if we had used it to begin with, we
probably would have dismissed the functional (7.16)-(7.20) since in this simpler case the
dependence in the charge p disappears entirely. Working with a slightly more complicated
partition function has allowed us to go to a greater depth in the analysis.

The result (7.24) is a strong hint that one could lower the bound on charged primary
states’ dimension down to the black hole threshold3. This is precisely what we will prove in
the next section, but before we do, we will expand for a bit on how the bound we have found
translates into a statement on the mass of the lightest charged black hole in warped AdS3.

7.1.2. Bound for the warped black hole

At this point, holography may be called into play in order to translate this result into
a statement on the gravity side of the duality. The usual suspect theory dual to warped
CFT is some gravity theory on the warped AdS3 space reviewed in Section 5.1, but all the
candidate gravity theories involve more bulk fields than required by symmetry arguments
[94]. A minimal setup, similar in spirit to Einstein-Hilbert theory in more common contexts,

3 which in the chiral case is c/24, instead of c/12.
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has been built up and dubbed Lower Spin Gravity [94]. It can be written as a (2 + 1)-
dimensional Chern-Simons theory such as the one reviewed in Section 4.1, in terms of an
SL(2,R) gauge field B and a U(1) gauge field B̄ as

S = c

24π

∫
Tr
(
B ∧ dB + 2

3 B ∧B ∧ B
)

+ k

8π

∫
B̄ ∧ dB̄ (7.27)

with c the Virasoro central charge and k the Kac-Moody level. This translates into geometric
terms as [137]

S = 1
2

∫
dτ mẋµGµν ẋ

ν + m

2

∫
dτ + p

∫
dτ Āµ ẋ

µ (7.28)

which is the most general action at lowest non-trivial order for a point particle of mass m
and charge p coupled to the geometry described by a SL(2,R) metric Gµν = AµAν and a
U(1) flat connection Āµ. In the case of spacelike warped AdS3, the fields B and B̄ are related
to the geometric variables A and Ā by [94]

Ā ≡ A0 ≡
√∣∣∣ 48

c d2a

∣∣∣B̄ − 2b
d
ζ0
` B

` , A1 ≡ ζ1
` B

`

√
d
, A2 ≡ ζ2

` B
`

√
d

(7.29)

with the ζi three linearly independent vectors in SL(2)

ζ0 = (0,−1, 1) , ζ1 = (0, 1, 1) . ζ2 = (1, 0, 0) . (7.30)

The parameters a, b, d encode, respectively, arbitrary rescalings of the time coordinate, the
warping factor, and the AdS radius. More precisely, one recovers the metric of the warped
black hole upon setting [138]

a = 16
d2k`2 , b2 = ν2

2`2 , d = ν2 + 3
2`2 . (7.31)

In [137] the dictionary relating the mass m of the bulk particle to its boundary counter-
part’s scaling dimension was worked out, yielding the relation

h =
√
`2 m2 + p2 (7.32)
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with p identified as the charge of the corresponding gauge field. In this framework, the
bound (7.24) obtained above translates into a bound on the mass of the lightest bulk field
in warped AdS3 as

h > h∗ ⇔ m2 <
1
`2

(
h∗ 2 − p2) . (7.33)

Since we expect the black holes to be able to decay via Hawking emission, this also puts a
bound on the mass of the lightest warped black hole.

In this section we have used the warped CFT partition function expressed in terms of
plane generators (5.32) to derive a bound à la Hellerman on the dimension of the lightest
charged states in the theory, and we translated it into a bound on the mass of the lightest
warped black hole. However, there is a more classic take on the warped CFT partition func-
tion, which is to express it in terms of cylinder generators as (5.31). When we do so, warped
CFT is nothing more than a chiral conformal field theory with a u(1) charge. Exploiting
this similarity will lead us to an even better result, which is precisely the one hinted at by
the closeness of (7.24) with c/24. Such a tight bound has already been derived for chiral
conformal field theories by making use of the chiral partition function’s especially favourable
modular properties [125], leading to the conclusion that the lowest possible dimension h

of primary states in such a theory needs to be such that h 6 c/24 + 1 in order to simply
comply with modular invariance requirements. In the rest of this chapter, we will extend
this argument to chiral conformal field theories with current algebra, proving the bound
analytically for the simplest case, the one that corresponds to warped CFT, and providing
evidence supporting the conjecture that it extends well beyond that. Before we do so, we
need to review modular analysis into greater depth, which is the purpose of the next section.
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7.2. A brief introduction to modular forms

A real surface S can be turned into a complex curve Σ = Γ/H̄ where Γ is a discrete
subgroup of SL(2,R) and H̄ is the upper half-plane with its boundary [139]:

H̄ = H ∪ R ∪ {i∞} , H := {τ ∈ C | Im(τ) > 0} . (7.34)

When Γ = SL(2,Z), the functions that live on Σ are called modular functions. By definition,
they are meromorphic functions f : H̄→ C with symmetry

f(Aτ) = f(τ) , ∀τ ∈ H̄ , A ∈ Γ (7.35)

that have at worst a pole at τ = i∞. As we have seen before, the modular group Γ is
generated by

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
. (7.36)

Modular forms are objects that are almost modular functions, but not quite. Instead of
(7.35), they obey

f(Aτ) = f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) , k ∈ Z . (7.37)

The integer k is referred to as the weight of the modular form [140]. A set of generators
for the space of modular forms is given by the Eisenstein series of weight 4 and 6, defined
respectively as4

E4(τ) = 1 + 240
∑∞

n=1 q
n σ3(n) = 1 + 240 q + 2160 q2 + 6720 q3 + · · · , (7.38)

E6(τ) = 1− 504
∑∞

n=1 q
n σ5(n) = 1− 504 q − 16632 q2 − 122976 q3 + · · · , (7.39)

4 Using Lambert series, they can also be expressed as

E4(τ) = 1 + 240
∞∑
n=1

n3 qn

1− qn , E6(τ) = 1− 504
∞∑
n=1

n5 qn

1− qn .
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where q = e2πiτ as previously and σi(n) is the divisor sigma, i.e. the sum of ith powers of
the positive divisors of n. The order 2 Eisenstein series

E2(τ) = 1− 24
∞∑
n=1

qn σ1(n) = 1− 24 q − 72 q2 − 96 q3 − 168 q4 + · · · , (7.40)

for its part, is a quasi-modular function which transforms as

E2(Aτ) = (cτ + d)2 E2(τ) + 6c
πi

(cτ + d) . (7.41)

In our argument we also use the modular discriminant

∆(τ) = E3
4(τ)− E2

6(τ)
1728 , (7.42)

a modular form of weight 12, and the J- function

J(τ) = j(τ)− 744 where j(τ) = E3
4(τ)

∆(τ) (7.43)

which is well-studied Klein’s modular function, in terms of which every modular function
can be expressed [140]. The q-expansions of these modular forms are

∆(q) = q − 24 q2 + 252 q3 − 1472 q4 + · · · (7.44)

J(q) = q−1 + 196884 q + 21493760 q2 + · · · (7.45)

Both these functions are well-known in number theory; in particular, the modular discrimi-
nant is related to Dedekind’s eta function (3.50) as

∆(τ) = (2π)12 η24(τ) . (7.46)
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Klein’s J-function has been studied thoroughly, with special attention devoted to the coef-
ficients cn of its Laurent expansion

J(q) = q−1 +
∞∑
n=1

cn q
n . (7.47)

The cn are all positive integers and have been found to be bounded by [141]

cn = e4π
√
n

√
2 n3/4

(
1− 3

32π
√
n
− 15

2048π2n
+ εn

)
for n > 3 (7.48)

where |εn| 6 3·10−4

n3/2 . The maximum value of this expression yields the asymptotic expression

cn ∼
n→∞

e4π
√
n

√
2 n3/4

(7.49)

For a slightly wider range, there is also the weaker bound [141]

cn 6 e4π
√
n+1 for n > 0 . (7.50)

The coefficients cn are the starting point of Monstrous Moonshine, which unexpectedly con-
nects the two conceptually incommensurable areas of mathematics that are group theory and
number theory. Indeed, the cn can be related to the dimensions of the smallest irreducible
representations of the Monster group, the largest of the exceptional finite simple groups
[142]. From there, a whole new field of research (the so-called Moonshine) opened on the
ties between finite groups and modular forms [139].

Finally, let us mention a useful tool we will resort to: Hecke operators, whose action on
a function F (τ) is defined as [125, 140]

TmF (τ) =̂
∑
δ|m

δ−1∑
n=0

F

(
mτ + nδ

δ2

)
. (7.51)
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In particular, such an operator acts on Klein’s invariant (7.47) in the following way:

TmJ(q) = q−m +
∞∑
n=1

cmn q
n . (7.52)

The coefficients cmn are related to J ’s coefficients cn = c(n) as [143]

cmn =
∑
δ|(m,n)

m

δ
c
(mn
δ2

)
(7.53)

where δ | (m,n) means that δ divides (m,n).

With this, we are now equipped to make the most of modular properties of chiral con-
formal field theories. We will start by reviewing briefly the analysis of the chargeless case
proposed in [125], then we will see how it can be adapted for the case with charge, starting
with the simplest one in the next section before getting to more generic cases in the following
ones.

7.3. Chiral CFT with a u(1) charge

7.3.1. Preliminary observations

Recall from Section 3 that the partition function of a chiral conformal field theory without
charge on a torus of modular parameter τ is

Z(q) = Tr
(
qL0−κ

)
= qh−κ(1− δh0 q)

∏
n>1

1
1− qn , (7.54)

with
q = e2πiτ , κ = c

24 (7.55)
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and the Kronecker delta has allowed us to combine the vacuum and non-vacuum characters
(3.54) and (3.49) in a single expression. Alternatively, this reads

Z(q) =
∞∑
h=0

rh q
−κ+h (7.56)

where r0 = 1 since the vacuum is unique. In [125] it is argued that since the chiral partition
function is meromorphic and has a κ-th order pole at q = 0 (or equivalently τ = i∞), it can
be written in terms of Klein’s modular invariant (7.43) as

Z(q) =
κ∑

n=0

jn J(q)n (7.57)

with jκ = 1. For example, in the κ = 2 case, instead of writing Z(q) as

Z(q) = q−2 + r1 q
−1 + r2 + r3 q + ... (7.58)

we can write it as

Z(q) = J2(q) + j1 J(q) + j0 (7.59)

= q−2 + j1 q
−1 + j0 + 393768 + q (42987520 + 196884 j1) + · · · (7.60)

In this case, one sees immediately that r1 = j1 and so

r3 = 42987520 + 196884 r1 (7.61)

which removes some uncertainty about the coefficients. The expression (7.57) depends on
κ + 1 coefficients, which is exactly the number of coefficients appearing in the polar part
of Z(q). One way to look at it is then to say that the partition function is completely
determined by its polar part. In the expansion (7.56), which tells us which primary states
(with dimension h) we have in our theory and how many (rh) of each of those we have,
everything is fixed once the first κ + 1 coefficients are. We can for instance pick the first
κ + 1 coefficients such that there are no non-vacuum primaries below h = κ + 1, while



7. Modular bootstrap for chiral CFT 97

remaining consistent with our original assumptions. We cannot, however, cancel the rh with
h > κ + 1: this means these states are needed in order for the chiral conformal field theory
to be consistent. We could of course pick our coefficients differently and have a perfectly
consistent chiral conformal field theory with some states below that threshold, but in any
case, the lightest primaries in the theory will have at most h = κ + 1. In other words, the
lightest primaries in the theory have h 6 κ+ 1 or

h 6
c

24 + 1 . (7.62)

With this we see how powerful a constraint we are able to obtain by simply making full use
of the modular properties of the theory.

We can then extend this argument to a partition function with charge Z(τ, z), provided
we show that it is some sort of modular form. Let us start with the simplest case of a single
u(1) charge, in which case the partition function is

Z(τ, z) = Tr
(
qL0−κyJ0

)
=
∑
h,p

e2πiτ(h−κ)e2πizp (7.63)

with
q = e2πiτ , y = e2πiz , κ = c

24 . (7.64)

Under modular transformations5, it obeys [126]

Z

(
aτ + b

cτ + d
,

z

cτ + d

)
= e

πicz2
cτ+d Z(τ, z) . (7.65)

In the following we replace Aτ = aτ+b
cτ+d . Assuming the theory is invariant under charge flip,

the expansion in z has no O (z) term and reads

Z(τ, z) = Z(τ) + z2

2 (2πi)2 Tr
(
J2

0 q
L0−κ

)
+ ... (7.66)

= Z(τ) +
∞∑
n=1

z2n

(2n)!(2πi)
2n f2n(τ) (7.67)

5 with this c having of course nothing to do with the central charge in κ.
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where Z(τ) is the usual modular invariant partition function without charge and we de-
fine f2n(τ) =̂ Tr

(
J2n

0 qL0−κ
)
. In particular, in the second term in the z-expansion, f2(τ)

transforms as
f2(Aτ) = (cτ + d)2 f2(τ) + c

2πi (cτ + d)Z(τ). (7.68)

If not for the second term, f2(τ) would transform as a modular form of weight 2. This reminds
us of the modular properties of the Eisenstein series of order 2, given by (7.41). Furthermore,
we know that the modular discriminant (7.42) has an order q expansion (7.44), so it is easy
to verify that f2(τ) can be rewritten as [144, 145]

f2(τ) = ∆−κ(τ)P12κ+2(τ) + 1
12E2(τ)Z(τ) (7.69)

where P12κ+2 is some modular form of weight 12κ+ 2, that can be expressed in terms of the
basis elements as

P12κ+2(τ) =
κ∑
`=1

a`E
3`−1
4 (τ)E2κ−2`+1

6 (τ) . (7.70)

All the polar behavior is then encoded in the modular discriminant ∆−κ, so P12κ+2 is finite,
and this expression reproduces the transformation (7.69). One can easily work out similar
transformations for all the other f2n (see Appendix C), but it turns out all we need to derive
our bound is the order 2 term f2(τ) in the expansion. The coefficients a` are entirely up to
us to fix as we please; in particular, we may use them to cancel as many terms as possible in
the expansion of Z(τ, z). The question is indeed: how big can we make the gap between the
ground state and the first charged primary state in our theory? As in the argument reviewed
above, we would now like to see how modular properties of the chiral partition function with
charge constrain the answer to that question.

In addition to these modular constraints, we also have to mind positivity constraints:
indeed, the coefficients ri in the expansion (7.56) of Z(τ) are counting the number of states
in each cell of the spectrum; therefore they need to be positive. The same kind of argument
applies to the coefficients appearing in the q-expansion of any f2n(τ): they count the total
J2n

0 charge for each cell, so they cannot be negative either. An explicit study of the cases
for the first few values of κ (see Appendix C) leads to the observation that only a restrained
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number of terms can be made to vanish in a way that is consistent with these positivity
constraints. As soon as we have used all the freedom granted by the coefficients a`, which
brings the partition function from O(q−κ) to O(1), and picked a value for r1 that cancels
the O(1) term, we have no way to pick an r2 that cancels the O(q) term in a consistent way.
This hardly meets the expectation: as κ grows larger, one expects to be able to choose more
and more values for the coefficients, and meet limitations only as we go to higher and higher
order in the expansion of the partition function, but this is what we observe whatever the
value of κ. Let us briefly take a look at an example: for κ = 2, f2 is given by

fκ=2
2 (q) = ∆−2(q)

(
a1 E

2
4(q)E3

6(q) + a2 E
5
4(q)E6(q)

)
+ 1

12E2(q)Z(q)

= q−2
(
a1 + a2 + 1

12

)
+ q−1 1

12 (−24− 11808 a1 + 8928 a2 + r1) + 1
12 (−72− 24 r1 + r2)

+ q
1
3 (10746856 + 516720288 a1 − 503926368 a2 + 49203 r1 − 6 r2) +O(q2). (7.71)

The choices
a1 = −a2 −

1
12 , a2 = − 1

1728

(
80 + r1

12

)
(7.72)

cancel the first two terms to yield

fκ=2
2 (q) =

(
−6− 2 r1 + r2

12

)
+ (4979664 + 32808 r1 − 2 r2) q (7.73)

+ (6576701472 + 4979664 r1 − 6 r2) q2 +O(q3) .

We can go one step further by taking

r1 = −3 + r2

24 (7.74)

as long as r2 > 72 for positivity. Then f2 becomes

fκ=2
2 (q) = 1365 (3576 + r2) q + 207480 (31626 + r2) q2 +O(q3) (7.75)

so there is no way to go further by picking a positive r2. This case is simple, but the fact
that the same logic applies when there are much more coefficient freedom is far from trivial.
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In effect, we see that we run into a contradiction if we try to get rid of all the charged
states with dimension below c/24 + 1. Before proving our statement, we can make this
argument more precise and make explicit how the contradiction arises to get more intuition
about it. In general, if we use all the freedom granted by the coefficients a` of P12κ+2 to
devise a chiral conformal field theory with no charged primaries up to dimension κ, we bring
the partition function from O (q−κ) to O (1). Then the O(1) term in f2 takes the following
form:

f2(q)
∣∣∣
O(1)

= −α0 + ακrκ −
κ−1∑
n=1

αnrn (7.76)

where the αi are given by ακ = 1
12 and6

ακ−1 = 2 , ακ−2 = 6 , ακ−3 = 8 , ακ−4 = 14 , ακ−5 = 12 , ακ−6 = 24 . . . (7.77)

At this point, the O(q) term in f2 has a similarly repetitive form:

f2(q)
∣∣∣
O(q)

= γ0 − 2 rκ +
κ−1∑
n=1

γnrn (7.78)

where the coefficients are known numerically:

γκ−1 = 32808 , γκ−2 = 4979664 , γκ−3 = 243931152 , γκ−4 = 6576635856 ,

γκ−5 = 120749101488 , γκ−6 = 1685248831296 , . . . (7.79)

We will see later on how to explicitly write down this sequence, but at this point we are
satisfied to just notice that γi � αi for all i. Widening the gap a bit more by cancelling the
O(1) term means picking

r1 = 1
α1

(
−α0 + ακrκ −

κ−1∑
n=2

αnrn

)
. (7.80)

6 This is a known sequence: except for ακ, this is just the sum of even divisors of 2n, or 2σ(n).
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Replacing (7.80) into the expression for the O(q) term, we get

O(q) = γ0 − α0
γ1

α1
+
(
γ1

α1
ακ − 2

)
rκ +

κ−1∑
n=2

(
γn −

γ1

α1
αn

)
rn . (7.81)

This is zero if

r2 = − 1
α1γ2 − α2γ1

(
α1γ0 − α0γ1 + (ακγ1 − 2α1) rκ −

κ−1∑
n=3

(αnγ1 − α1γn) rn

)
(7.82)

which now yields7

r̃1 = 1
α2γ1 − α1γ2

(
−α2γ0 + α0γ2 − (ακγ2 − 2α2) rκ +

κ−1∑
n=3

(αnγ2 − α2γn) rn

)
. (7.83)

Since the γi are larger and larger as i is smaller and smaller, the denominator of this latter
expression is positive. Imposing the positivity constraint on r̃1 is equivalent to demanding

κ−1∑
n=3

(αnγ2 − α2γn) rn > α2γ0 + (ακ rκ − α0)γ2 − 2α2 rκ . (7.84)

No matter what rκ is, since the αi are small, for κ > 3 the last term on the right-hand side is
negligible compared to the previous one which involves γ2. We can then recall that positivity
of (7.80) implies

ακ rκ − α0 >
κ−1∑
n=2

αn rn . (7.85)

The condition above becomes

κ−1∑
n=3

αnγ2 rn −
κ−1∑
n=3

α2γn rn > α2γ0 +
κ−1∑
n=2

αnγ2 rn − . . . (7.86)

7 Of course these expressions will not mean anything for κ = 1, 2, but these cases are quite easily worked
out explicitly (see Appendix C) so we can safely ignore them and focus on higher values of κ.
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which boils down to

−
κ−1∑
n=3

α2γn rn > α2γ0 + α2γ2 r2 − . . . (7.87)

The contradiction arises as the left-hand side is negative while the right-hand side is
positive. We can then conclude that for any κ, there is no way to choose r2 such that
the O(q) term in the partition function of a chiral conformal field theory with U(1) charge
cancels out. This is a bit of a hand-waving argument, since we have not made precise how
to define the sequence of γi, but it is a good indication that there must be a way to give a
fully general proof. This is what we set out to do next.

7.3.2. Analytic proof of the bound

A convenient basis to write a modular function is the one made of Hecke operators acting
on the J-function (7.52). As in [125], this will allow some properties of the partition function
to become manifest. The partition function can be written in these terms as

Z(q) =
κ∑

m=0

rκ−m TmJ(q) . (7.88)

We will also need the Eisenstein series of order 2 (7.40), for which in the following we adopt
the shorthand notation σn = 24 σ1(n). Our argument will be formulated in terms of these
coefficients, along with the ones of the J-function cn and the ones from the Hecke operators
cmn , all of which are positive. We also define T0J(q) = 1 (which means all c0

n = 0) and r0 = 1.
We can then rewrite the second-order term (7.69) in the expansion of the partition function
as

f2(q) =
κ∑

m=1

am q ∂q TmJ(q) + 1
12E2(q)Z(q) . (7.89)
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Indeed, one can easily verify that for a modular function F (q), the expression q ∂q F (q)
transforms as a modular form of weight 2 (see Appendix D). We then have

f2(q) =
κ∑

m=1

am q ∂q

(
q−m +

∞∑
n=1

cmn q
n

)
+ 1

12

(
1−

∞∑
n=1

σn q
n

)(
κ∑
`=0

rκ−`

(
q−` +

∞∑
r=1

c`r q
r

))

=
κ∑

m=1

am

(
−mq−m +

∞∑
n=1

cmn n q
n

)
+ 1

12

κ∑
`=0

rκ−`

(
q−` − q−`

∞∑
n=1

σn q
n +

∞∑
r=1

c`r q
r

−
∞∑
r=1

∞∑
n=1

σn c
`
r q

r+n

)
. (7.90)

We proceed as in the previous subsection, trying to make the gap as big as possible by
cancelling as many terms as we can. As before, we start by fixing the coefficients am to get
rid of the polar part of f2, which is just

f2(q)
∣∣∣
polar

=
κ∑

m=0

−mam q
−m + 1

12

κ∑
`=0

rκ−`

(
q−` −

∑̀
n=1

σn q
n−`

)
. (7.91)

Putting it to zero yields an expression for the coefficients am:

am = 1
12m

(
rκ−m −

κ∑
n=m+1

σn rκ−n−m

)
. (7.92)

Next we turn to the O(1) term, which is

f2(q)
∣∣∣
O(1)

= 1
12

(
rκ −

κ∑
n=1

σn rκ−n

)
(7.93)

(since there are no negative indices for r) and putting it to zero yields

rκ =
κ∑

n=1

σn rκ−n . (7.94)
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The O(q) term is then

f2(q)
∣∣∣
O(q)

=
κ∑

m=1

am c
m
1 + 1

12

(
κ∑
`=0

rκ−` c
`
1 −

κ+1∑
n=1

σn rκ−n+1

)
(7.95)

Replacing am and rκ in this expression, we get

12 f2(q)
∣∣∣
O(q)

=
κ∑

m=1

[
rκ−m

(
m+ 1
m

cm1 − σm+1 − σ1σm

)
−

κ∑
`=m+1

cm1
m
σ`−m rκ−`

]
=

κ∑
m=1

rκ−m

(
(m+ 1) cm −

m−1∑
`=1

c` σm−` − σm+1 − 24 σm

)
(7.96)

where we have used (7.53) and noticed that cm1 = mcm. The statement is that this expression
is always positive. Setting

Fm = (m+ 1) cm −
m−1∑
`=1

c` σm−` − σm+1 − 24 σm (7.97)

it turns out that these coefficients appear in the following fairly simple expression:

q ∂qJ(τ) + E2(τ)
(
J(τ) + 24

)
=
∑
m>1

Fm q
m . (7.98)

Since (J(τ) + 24) is the partition function of the theory of 24 chiral bosons on the Leech
lattice, we can identify

q ∂qJ(τ) + E2(τ)
(
J(τ) + 24

)
= 12Tr

(
J2

0 q
L0−1) (7.99)

where J0 is now one of the u(1) currents of that theory. Indeed, both sides of this equa-
tion have the same modular properties, and each of them is uniquely determined by two
coefficients, which match. We then have

12Tr
(
J2

0 q
L0−1) =

∑
m>1

Fm q
m , (7.100)
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which proves the quantity (7.97) is positive. This completes the proof that the partition
function of a chiral conformal field theory with u(1) charge can never be of order lower than
O(q), which means that whatever the specifics of the chiral conformal field theory with u(1)
charge under consideration, the lightest charged primary state will have dimension

h 6
c

24 + 1 . (7.101)

For large c, this bound coincides with the black hole threshold. This result, being completely
analytic, calls for no improvement and is the definite answer as to what sort of states we
can have in the light part of the spectrum. In particular, this result also applies to unitary
warped conformal field theories, and betters the bounds found previously for these theories.

We have thus retrieved the chargeless case bound (7.62) in the simplest charged case. We
now provide evidence that this result still holds for theories with more general symmetries.

7.4. Chiral CFT with a sû(2)k charge

In the next two sections we are going to work with algebras of the type Virasoro plus cur-
rent algebra, with the latter being now an affine Lie algebra instead of just u(1). In general,
an affine Lie algebra ĝ is a central extension of a simple Lie algebra g. The commutation
relations are [

Jan, J
b
m

]
=
∑
c

i fabc J cn+m + k n δabδn+m (7.102)

where fabc are the structure constants of g, which is generated by Ja0 . Affine Lie algebras are
then infinite-dimensional. We will consider these generic algebras in the next section, but
for now let us look at the affine algebra sû(2)k for a trial run. In this case, the commutation
relations are

[J3
m, J

3
n] = k

m

2 δm+n , [J3
m, J

±
n ] = ±J±n+m , [J+

m, J
−
m] = kmδm+n + 2J3

m+n . (7.103)



7. Modular bootstrap for chiral CFT 106

A state in a theory with this symmetry is labeled by eigenvalues of the Virasoro zero-mode
L0 and J3

0 . An important difference with the u(1) case is that descendants of uncharged
primary states can now carry charge: for example, using (7.103), we see that J+

−1 |vac〉,
which is a level 1 descendant of the vacuum, has J3

0 eigenvalue equal to 1. This means we
will not be able to apply the exact same procedure as in the previous section: indeed it does
not make sense to simply cancel off the polar part of the first non-trivial order f2 of the
partition function anymore. Nevertheless, it does not affect the general outcome as we will
see below. But before we adjust our strategy, let us discuss the partition function and in
particular the characters.

7.4.1. Characters of sû(2)k

The partition function of a chiral conformal field theory with affine sû(2)k charge is

Z(τ, z) =
k∑
`=0

∑
h>0

rh` χh(τ)χ(k)
` (τ, z) , (7.104)

with χh(τ) the Virasoro character

χh(τ) = qh−
c

24 (1− δh0 q)
∏
n>1

1
1− qn (7.105)

and the sû(2)k characters [71]

χ
(k)
` (τ, z) = Θ`+1,k+2(τ, z)−Θ−`−1,k+2(τ, z)

Θ1,2(τ, z)−Θ−1,2(τ, z) . (7.106)

In this expression, k is the level appearing in (7.103), ` = 2j ∈ [0, k] is twice the spin and
the generalized theta-function is

Θ`,k(τ, z) =
∑

n∈Z+ `
2k

qkn
2
ykn . (7.107)

For more readability, we set κ = c
24 as usual.
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We will start by assuming that all primaries with h 6 κ+1 are in the spin 0 representation
of sû(2)k (i.e. uncharged), which means that our flavoured partition function takes the form

Z(τ, z) = χ0(τ)χ(k)
0 (τ, z) +

κ+1∑
k=1

rh χh(τ)χ(k)
0 (τ, z) +O(q2) (7.108)

for some positive integers rh which count the number of primaries of dimension h. We can
then expand

Z(τ, z) = Z(τ)− 2π2z2f2(τ) +O(z4) (7.109)

where, as previously,

Z(τ) = Tr
(
qL0−κ

)
, f2(τ) = Tr

(
(J3

0 )2qL0−κ
)
. (7.110)

As in the u(1) case, modular properties of Z(τ) and f2(τ) constrain them so that they are
completely determined by κ coefficients (i.e. they are entirely determined by their polar
parts). We will detail how it all works in the next subsection, but we can already note
that this also means that rκ+1 is determined by r1, ..., rκ. In particular one can use either
Z(τ) or f2(τ) to fix rκ+1. We will show that both expressions for rκ+1 are inconsistent with
respect to one another for any choice of r1, ..., rκ. The contradiction then reveals that our
assumption that all primaries with h 6 κ + 1 are uncharged is wrong, and that on the
contrary we should have charged primaries below that threshold. In order to make this ar-
gument about uncharged primaries, we will then be mostly interested in the spin 0 character.

The character (7.106) can be rewritten

χ
(k)
` (τ, z) = q−ĉ/24

(∑
m∈Z q

(k+2)m2+m(`+1) sin
(
2πz

[
m(k + 2) + `+1

2

])∑
m∈Z q

2m2+m sin
(
2πz

[
2m+ 1

2

]) )
(7.111)



7. Modular bootstrap for chiral CFT 108

where8 ĉ = 3k
k+2 .

For ` = 0, expanding this in z yields

qĉ/24χ
(k)
0 (τ, z) =

∏
n≥1

1
(1− qn)3

∑
m∈Z

(
2m(k + 2) + 1

)
q(k+2)m2+m

− π2z2

6

[∏
n≥1

1
(1− qn)3

∑
m∈Z

(
2m(k + 2) + 1

)3
q(k+2)m2+m (7.112)

−
∏
n≥1

1
(1− qn)6

∑
m∈Z

(
2m(k + 2) + 1

)
q(k+2)m2+m

∑
n∈Z

(4n+ 1)3 q2n2+n

]
+O(z4)

where we have used ∑
m∈Z

(4m+ 1) q2m2+m =
∏
n≥1

(1− qn)3 (7.113)

which derives from Jacobi’s triple product identity.

7.4.2. Derivation of the bound

In what follows, we will work with k > c
24 for simplicity. The more general results of

the next section also apply to this case, but in the meantime this allows us to sketch the
argument. With k > c

24 , the terms at qk+1 are pushed back to at least O(q2) in the partition
function. It turns out we can write∑

m∈Z

(4m+ 1)3q2m2+m = (8 q ∂q + 1)
∏
n≥1

(1− qn)3 = E2(τ)
∏
n≥1

(1− qn)3 (7.114)

8 We call it that way because ĉ is in fact the central charge of the conformal field theory one can build
from the current algebra using a Sugawara construction. The purpose of such a construction is to define an
energy-tensor such that the generators Ja are primaries of dimension one. The modes are then given by

Lm = 1
2(k + g)

dimg∑
a=1

∑
l6−1

Jal J
a
m−l +

∑
l>−1

Jam−lJ
a
l

 .



7. Modular bootstrap for chiral CFT 109

so that our character becomes

qĉ/24χ
(k)
0 (τ, z) =

[∏
n≥1

1
(1− qn)3 +O(qk+1)

]
(7.115)

− 2π2z2

[
1
12
∏
n≥1

1
(1− qn)3 (1− E2(τ)) + O(qk+1)

]
+O(z4) .

Putting this back into the full partition function and comparing with (7.109), we see that

Z(τ) = q−κ

(
(1− q) +

κ+1∑
h=1

rh q
h

)∏
n≥1

1
(1− qn)4 +O(q2) (7.116)

and
f2(τ) = 1

12Z(τ)
(
1− E2(τ)

)
+O(q2) . (7.117)

Note that f2(τ) goes like 2q−κ+1 +O(q−κ+2) as expected. With a bit more work, we get

Z(τ) = q−κ

(
1 +

κ+1∑
m=1

qmRm

)
+O(q2) (7.118)

with

Rm = Am − Am−1 +
m−1∑
`=0

rm−`A` (7.119)

and
Am =

∑
06n1+n2+n36m

ni>0

p(n1) p(n2) p(n3) p(m− n1 − n2 − n3) (7.120)

coming from ∏
n>1

1
(1− qn)4 =

(∑
n>0

p(n) qn
)4

=
∞∑
m=0

qmAm . (7.121)

Note that each of the Rm is positive. The order q piece of Z(τ) is read off as simply

Z(τ)
∣∣∣
O(q)

= Rκ+1 (7.122)
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At this point, we have not made use of the modular properties of our chiral conformal field
theory’s partition function. Doing so will now allow us to constrain some of the coefficients
Rm that appear in both orders of interest Z(τ) and f2(τ) in the z-expansion of Z(τ, z), and
these constraints will be the basis of the extension of our argument to the sû(2)k case.

As in the u(1) case, we can write the partition function uniquely as

Z(τ) =
κ∑

m=0

jκ−m TmJ(τ) (7.123)

provided we identify

j0 = 1, jm = Rm for m = 1, ..., κ . (7.124)

The Hecke operator (7.51) expands as

TmJ(τ) = q−m +mcm q +O(q2) . (7.125)

With this rewriting, the modular properties of the partition function then determine the
coefficient of q1 to be

Z(τ)
∣∣∣
O(q)

=
κ∑

m=1

jκ−mmcm = κ cκ +
κ−1∑
m=1

Rκ−mmcm (7.126)

Comparing (7.122) and (7.126), this yields the requirement

R
(0)
κ+1 = κ cκ +

κ−1∑
m=1

Rκ−mmcm . (7.127)

We have added the superscript (0) to indicate this requirement comes from the O(z0) piece
of the flavoured partition function. We will now examine how the modular properties of
the O(z2) piece constrain the same quantity. Note that Rκ does not appear at all in the
expression above; this will be important later as we can entirely use properties of f2(τ) to
constrain Rκ.
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In the case at hand, the modular properties of f2(τ) give a decomposition into the form

f2(τ) = ∆−κ(τ)P12κ+2(τ) + k

12E2(τ)Z(τ) (7.128)

Comparing to (7.117) gives

∆−κ(τ)P12κ+2(τ) = 1
12Z(τ)

(
1− (k + 1)E2(τ)

)
+O(q2) (7.129)

and putting this together with (7.118) and (7.40), we get

∆−κ(τ)P12κ+2(τ) = (7.130)

q−κ

[
− k

12 +
κ+1∑
`=1

q`

(
2(k + 1) σ1(`)− k

12R` + 2(k + 1)
`−1∑
j=1

R`−j σ1(j)
)]

+O(q2) .

From this expression we see that the order q piece is

∆−κ(τ)P12κ+2(τ)
∣∣∣
O(q)

= 2(k + 1) σ1(κ+ 1)− k

12Rκ+1 + 2(k + 1)
κ∑
j=1

Rκ+1−j σ1(j) . (7.131)

On the other hand, in terms of the J-function

∆−κ(τ)P12κ+2(τ) =
κ∑

m=1

aκ−m
m

q ∂qTmJ(q) (7.132)

= q−κ
κ−1∑
m=0

(
−am qm + am cκ−m q

κ+1)+O(q2) (7.133)

By comparing to our previous expression (7.129) we see that this determines the am as

a0 = k

12 , (7.134)

am = −2(k + 1)σ1(m) + k

12Rm − 2(k + 1)
m−1∑
j=1

Rm−j σ1(j) for 1 6 m 6 κ− 1 .
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Since (7.133) has no q0 piece, we conclude from (7.130) that

Rκ = 24(k + 1)
k

(
σ1(κ) +

κ−1∑
j=1

Rκ−jσ1(j)
)
. (7.135)

Finally, we also get an alternative form for the O(q) piece, which is

∆−κ(τ)P12κ+2(τ)
∣∣∣
O(q)

=
κ−1∑
m=0

amcκ−m (7.136)

= k

12 cκ −
κ−1∑
m=1

cκ−m

(
2(k + 1)σ1(m)− k

12 Rm + 2(k + 1)
m−1∑
j=1

Rm−jσ1(j)
)
.

Equating (7.131) and (7.136) then gives another expression for Rκ+1 which we denote

R
(2)
κ+1 = 24(k + 1)

k
σ1(κ+ 1) + 24(k + 1)

k

κ∑
j=1

Rκ+1−j σ1(j)− cκ

+
κ−1∑
m=1

cκ−m

(
24(k + 1)

k
σ1(m)−Rm + 24(k + 1)

k

m−1∑
j=1

Rm−j σ1(j)
)
. (7.137)

In order for the theory to be consistent, our two expressions (7.122) and (7.126) for Rκ+1

must be equal. We can compute

R
(0)
κ+1 −R

(2)
κ+1 = (κ+ 1)cκ − fk σ1(κ+ 1)− f 2

k σ1(κ)− fk
κ−1∑
m=1

cκ−m σ1(m)

+
κ−1∑
m=1

Rκ−m

(
(m+ 1) cm − fk σ1(m+ 1)− f 2

k σ1(m)− fk
m−1∑
`=1

cm−` σ1(m)
)

(7.138)

where
fk ≡

24(k + 1)
k

= 24
(

1 + 1
k

)
(7.139)

The statement is that this quantity is never zero, hence leading to the contradiction referred
to above. Note that in the limit k → ∞ then this reduces precisely to the u(1) case. A
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numerical check for m from 1 to 1000 (see Figure 7.1) shows that

(m+ 1) cm − fm+1 σ1(m+ 1)− f 2
m+1 σ1(m)− fm+1

m−1∑
`=1

cm−` σ1(`) > 0 (7.140)

which argues in favour of our conjecture that the flavoured partition of a chiral conformal
field theory with sû(2)k charge has its lightest uncharged primaries below the threshold
h 6 c/24 + 1.

0 200 400 600 800 1000
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1033
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10113

10153

m

Figure 7.1 Logarithmic plot of (7.140) with respect to m with m ∈ [1, 1000].

Recall however that this argument was valid in the regime where k > c
24 , but this will

be addressed in the next section. In view of the numerical evidence, we believe we can now
extend this conjecture to chiral conformal field theories with more general affine symmetries.

7.5. Generic affine algebra

In this section, we will elaborate along the same lines as the argument in the sû(2)k
case. Since we will be dealing with more involved partition functions, we start with some
rewriting of the characters for a generic affine Lie algebra. We will then see, as previously,
how modular properties allow us to derive our bound.
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7.5.1. Characters of a Lie affine algebra

In the case of generic affine Lie algebras, for a given representation of highest weight λ̂,
the characters are given by the Weyl-Kac character formula [146]

χλ̂ =
∑

w∈W ε(w) Θw(λ̂+ρ̂)∑
w∈W ε(w) Θwρ̂

(7.141)

where ρ̂ is the Weyl vector and ε(w) is the signature of the element w of the Weyl group W .
The theta functions evaluated at a point (ζ, τ, t) are given by

Θλ̂(ζ, τ, t) = e−2πikt
∑

α∨∈Q∨
exp

[
−πi

(
2k(α∨, ζ) + 2(λ, ζ)− τk

∣∣∣∣α∨ + λ

k

∣∣∣∣2
)]

(7.142)

where the α∨ are the coroots of the representation of highest weight λ in the original algebra
being extended. Q∨ is the (finite) coroots lattice. The hatted quantities are all affine
extensions expressed in terms of the corresponding finite algebra g quantities; in particular
the highest weight of ĝ is λ̂ = (λ; k; 0) and its Weyl vector is ρ̂ = (ρ; g; 0) with g the dual
Coxeter number. As in the previous case, we will adopt an approach by contradiction, so
we will be interested in the uncharged primaries (λ = 0). Generalizing the character to
the non-zero case is completely straightforward and just requires replacing ρ by λ + ρ in
the expression (7.143) below. For the sake of completeness, the full expressions are given in
Appendix E. Since the parameter t is of little relevance as it appears in an overall factor,
it is common to write the character as a function of τ and z only [71]. We will adopt this
notation here by setting t = 0. In the case of interest, the full character is then

χ0̂(ζ, τ, 0) =∑
w∈W ε(w)

∑
α∨∈Q∨ exp

[
−πi

(
2(k + g)(α∨, ζ) + 2(wρ, ζ)− τ(k + g)

∣∣∣α∨ + wρ
k+g

∣∣∣2)]
∑

w∈W ε(w)
∑

α∨∈Q∨ exp
[
−πi

(
2g(α∨, ζ) + 2(wρ, ζ)− τg

∣∣∣α∨ + wρ
g

∣∣∣2)] .

(7.143)
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The parameter ζ is usually taken to be

ζ =
r∑
i=1

ziα
∨
i (7.144)

with r the rank of the algebra; here we will consider the simple case where

ζ = z

|ρ|
ρ ≡ − z̃

2πiρ (7.145)

where we introduce z̃ for ease of notation when writing formulas. This normalization is
chosen so that |ζ|2 = z2. We can rewrite the character using the fact that the argument of
the exponential in Θ is proportional to

2(`α∨ + wρ, ζ)− τ`|α∨ + wρ/`|2 = 2(`w−1α∨ + ρ, w−1ζ)− τ`|w−1α∨ + ρ/`|2

= 2(`α∨ + ρ, w−1ζ)− τ`|α∨ + ρ/`|2 (7.146)

which follows from both the invariance of the scalar product under elements of the Weyl
group, and from the fact that for any fixed element w of the Weyl group the coroot lattice
obeys Q∨ = wQ∨. We then have

χ0̂(ζ, τ, 0) =
∑

α∨∈Q∨
∑

w∈W ε(w) exp
[(
w((k + g)α∨ + ρ), ρ

)
z̃
]
eπiτ(k+g)|α∨+ ρ

k+g |
2

∑
α∨∈Q∨

∑
w∈W ε(w) exp

[(
w(kα∨ + ρ), ρ

)
z̃
]
eπiτg|α∨+ ρ

g |
2 . (7.147)

We can improve on this by making use of the known property [71]

∑
w∈W

ε(w)e(w(`α∨+ρ),z̃ρ) =
∑

w∈W ε(w)e(w(`α∨+ρ),z̃ρ)∑
w∈W ε(w)e(wρ,z̃ρ)

∑
w∈W

ε(w)e(wρ,z̃ρ) (7.148)

=
(∏
α>0

(α, `α∨ + ρ)
(α, ρ)

)(
1 + gz̃2

24
(
|`α∨ + ρ|2 − |ρ|2

)
+O(z3)

) ∑
w∈W

ε(w)e(wρ,z̃ρ)
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and we can then expand our character in z as

χ0̂(z, τ, 0) =
∑

α∨
∏

α>0(α, (k + g)α∨ + ρ) eπiτ(k+g)|α∨+ ρ
k+g |

2

∑
α∨
∏

α>0(α, gα∨ + ρ) eπiτg|α∨+ ρ
g |

2 (7.149)

+ gz̃2

24

∑α∨
∏

α>0(α, (k + g)α∨ + ρ)
(
|(k + g)α∨ + ρ|2 − |ρ|2

)
eπiτ(k+g)|α∨+ ρ

k+g |
2

∑
α∨
∏

α>0(α, gα∨ + ρ) eπiτg|α∨+ ρ
g |

2

−
∑

α∨,β∨
∏

α>0(α, (k + g)α∨ + ρ)
∏

β>0(β, gβ∨ + ρ)
(
|gβ∨ + ρ|2 − |ρ|2

)
eπiτ(k+g)|α∨+ ρ

k+g |
2

eπiτg|β
∨+ ρ

g |
2

(∑
α∨
∏

α>0(α, gα∨ + ρ) eπiτg|α∨+ ρ
g |

2)2

 .

In particular, one can check that this indeed gives the expansion of the sû(2)k character we
had obtained in (7.112).

Similarly, just as in the sû(2)k case, we can simplify these characters further using known
functions. In particular, the equivalent of (7.113) in the generic case would be

∑
α∨

∏
α>0

(α, gα∨ + ρ)
(α, ρ) e

πiτg
(
|α∨+ ρ

g |
2
−| ρg |

2)
= φ(q)dim g (7.150)

where φ(q) is none other than the Euler function
∏

n>1(1 − qn). This relation turns out to
be some form of the Macdonald identities [147]. We also have a generalization of (7.114):

q ∂q
(
φ(q)−n

)
= n

24

(
1− E2(q)

)
φ(q)−n (7.151)

and noting that

(
|`α∨ + ρ|2 − |ρ|2

)
eπiτ`(|α∨+ρ/`|2−|ρ/`|2) = 2` q ∂q eπiτ`(|α

∨+ρ/`|2−|ρ/`|2) (7.152)

we can rewrite the O(z2) and O(z0) pieces of the characters in terms of one another as

qĉ/24χ0̂(τ, z) =
(

1 + (2πiz)2

2
k

12

(
24
ĉ
q ∂q − (1− E2)

)
+O(z4)

)
qĉ/24χ0̂(τ, 0) (7.153)
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where

qĉ/24χ0̂(τ, 0) = φ(q)− dim g
∑

α∨∈Q∨

∏
α>0

(α, (k + g)α∨ + ρ)
(α, ρ) eπiτ(k+g)(|α∨+ρ/(k+g)|2−|ρ/(k+g)|2) .

(7.154)
This expression of the characters is true for a specific combination of chemical potentials
that are all proportional to the complex variable z, as we have seen before. The Sugawara
central charge of the Kac-Moody algebra is now ĉ = k dim g

k+g . In the next subsection, we use
the partition function’s modular properties to constrain these in a fashion similar to the
previous case.

7.5.2. Derivation of the bound

In order to make the equations in this section simpler, we introduce a new notation for
the character’s q-series:

qĉ/24χ0̂(0, τ) =
∞∑
n=0

Fn q
n . (7.155)

By comparing with (7.154), we see that F0 = 1; this substitution will be used frequently in
the following.

We now want to make use of the modular properties of these objects to constrain them,
as we did in the previous cases. Since we cannot simply cancel the polar part of our partition
function, as already mentioned in the sû(2)k case, we will again proceed by contradiction.
Assuming contrary to our conjecture that the lightest charged primary has dimension larger
than κ+ 1, the flavoured partition function takes the form

Z(τ, z) =
κ+1∑
h=0

Rh q
h−κ qĉ/24 χ0̂(z, τ) +O(q2) (7.156)

and using (7.153) and (7.155) we find

Z(τ) =
κ+1∑
h=0

qh−κ
h∑
`=0

Rh−` F` +O(q2) . (7.157)
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This uniquely determines the partition function to be

Z(τ) =
κ∑

m=0

jκ−m TmJ (7.158)

with
jm =

m∑
`=0

F`Rm−` . (7.159)

Using the expansion (7.125) and comparing the coefficients of q1 in both of our expressions,
we find that (7.158) constrains

R
(0)
κ+1 =

κ−1∑
m=0

m∑
`=0

Rm−` F` (κ−m) cκ−m −
κ∑
j=0

Rj Fκ+1−j (7.160)

in terms of the coefficients cm come of the J-function appearing in (7.158). The superscript
(0) is meant to emphasize that this constraint comes from the z0 piece of the flavoured par-
tition function.

We now turn our attention to the function f2 as given previously by (7.128). As in the
sû(2)k case, we focus on

∆−κP12κ+2 = f2(τ)− k

12E2(τ)Z(τ) . (7.161)

Using our ansatz for the flavoured partition function and (7.153) we find that

∆−κP12κ+2 = k

12

κ+1∑
h=0

qh−κ
h∑
`=0

Rh−`

(
24
ĉ
`− 1

)
F` +O(q2) . (7.162)

We can now use the fact that ∆−κP12κ+2 is determined entirely by its polar part to
derive two constraints. The first constraint comes from the fact that ∆−κP12κ+2, rewritten
as previously as

∆−κP12κ+2 =
κ∑

m=1

aκ−m q ∂qTmJ
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has no q0 piece. This yields

Rκ =
κ−1∑
`=0

(
24
ĉ

(κ− `)− 1
)
R`Fκ−` . (7.163)

The second constraint comes from the O(q) piece, which takes the form

R
(2)
κ+1 =

κ∑
`=0

(
24
ĉ

(κ+ 1− `)− 1
)
R` Fκ+1−`

+
κ−1∑
m=0

m∑
`=0

(
24
ĉ

(m− `)− 1
)
R` Fm−` cκ−m (7.164)

with the superscript (2) indicating this constraint comes from the O(z2) piece of the flavoured
partition function.

Our claim, as before, is that these expressions are inconsistent with one another. Indeed,
substituting in the values of Rκ we can calculate

R
(0)
κ+1 −R

(2)
κ+1 = 24

ĉ

κ∑
`=1

Rκ−`
∑̀
m=−1

c̃mF`−m

(
ĉ

24 (m+ 1)− (`−m)
)

(7.165)

where the c̃m come from the expansion

J(τ) + 24
ĉ
F1 =

∞∑
m=−1

c̃mq
m (7.166)

i.e. c̃m = cm for m 6= 0 and c̃0 = 24
ĉ
F1.

We can then see that the conjecture boils down to checking

∑̀
m=−1

c̃mF`−m

[
ĉ

24(m+ 1)− (`−m)
]
> 0 (7.167)

for all integer ` > 0. For various algebras and ranges of κ, and for all values of k, this
constraint checks out. These results are summarized in Table 7.5.2. We explain below how
it suffices to only check (7.167) for a finite number of values of k.
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Algebra Values of κ
sû(2) 1 ≤ κ ≤ 1000
sû(3) 1 ≤ κ ≤ 1000
sô(10) 1 ≤ κ ≤ 100

G2 1 ≤ κ ≤ 1000

Table 7.1 Algebras and range of κ checked

For example, in Figure 7.2 we have plotted the logarithm of (7.167) with respect to ` for
the affine Lie algebra sû3 with values κ ∈ [1, 1000], k = 10. Corresponding plots for other
algebras show a similarly unambiguous growth as ` grows large.
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Figure 7.2 Logarithmic plot of (7.167) with respect to ` for sû3 with κ ∈ [1, 1000], k = 10.

However, there is no way to make sure that the combination in (7.167) cannot be negative
for some algebras. A quick examination of the situation where ` = 1, k > 2 reveals that it
can be negative for values g/k bigger than 25 approximately. This ratio of the parameters
is never reached for the few cases tested, but it is for the affine algebra E8 (which numerics
confirm). Indeed, the E8 conformal field theory at level k = 1 has no charged primaries. This
indicates that our result may not apply for levels below a certain critical value k∗, and the
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E8 conformal field theory provides an example where k∗ > 0. There may be a fair amount
of algebras for which this critical value is zero, as in the cases we tested, but it otherwise
remains to be determined.

One case that we do have analytic control over is the limit k →∞, where the constraint
becomes equivalent to what we have obtained for u(1). To see this we note that (7.167) is
the coefficient of q`−ĉ/24 in the combination

ĉ

24 (q ∂qJ)χ0̂(0, τ)−
(
J + 24

ĉ
F1

)
q ∂qχ0̂(0, τ) . (7.168)

In the limit k →∞ we have ĉ = dim g and χ0̂(0, τ) = η(τ)− dim g (in particular F1 = dim g).
Using the property

q ∂q log η(τ) = 1
24E2(τ) (7.169)

this reduces to the coefficient of q`−ĉ/24 in

dim g

24 η(τ)− dim g
(
q ∂qJ + E2(J + 24)

)
. (7.170)

This expression clearly has positive coefficients at all orders in q as the term in brackets is
simply the u(1) case and η−1 has positive coefficients9.

In addition, as hinted at above, for fixed κ it suffices to only check our conjecture for
a finite number of k. Indeed, at fixed value of κ, (7.167) has to be checked for ` = 1, ..., κ
and this requires computation of Fm for m = 1, ..., κ+ 1. These Fm are computed from the
character as

qĉ/24χ0̂(0, τ) =
∞∑
m=0

Fmq
m (7.171)

= φ− dim g +O(qk+1) (7.172)

9 This follows from the fact that η−1(q) = q−1/24φ(q)−1 and φ(q)−1 is the generating function for the
partitions of integers.
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and we see that the Fm have a fixed form for m < k + 1.
If we consider k > κ + 1 then all of the Fm we need for the constraint come from the

expansion of φ− dim g. The only k dependence of (7.167) is now in the Sugawara central charge,
ĉ = k dim g

k+g , and this dependence is completely analytic. We can then take the derivative of
the left hand side of (7.167) with respect to k and we find that

d

dk

∑̀
m=−1

c̃mF`−m

[
ĉ

24(m+ 1)− (`−m)
]

=
∑̀
m=−1

cmF`−m
m+ 1

24
g dim g

(g + k)2 +24F`
g

k2 ` (7.173)

The right hand side of this expression is a sum of positive terms and hence the derivative is
always positive. Thus for k ≥ κ+ 1 we find that our sum is a strictly increasing function of
k.

For fixed κ we then only need to check that (7.167) holds for k = 1, ..., κ + 1. The fact
that after this point the sum is an increasing function of k results in the conclusion that
(7.167) will also hold for all larger k as well. Together with the large k behaviour of our
constraint, its monotonicity completes the proof of the advertised result:

For any chiral conformal field theory with a current algebra g, with central charge
c, level k, and dual Coxeter number g, there are (Virasoro + current algebra) pri-
mary states with non-trivial charge and dimension h 6 c

24 +1, provided k > k∗(c, g).

In particular, we have evaluated k∗(c, g) to be zero numerically for sû(2), sû(3), sô(10)
and G2, and analytically for u(1). We have thus shown that, by harnessing the full potential
of their modular properties, it is possible to put very tight constraints on the spectrum of
chiral conformal field theories with charge; namely, that the “light” part of the spectrum
necessarily contains charged primaries at or below the black hole threshold.
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Conclusion

We have tried, at our very modest level, to shed light on some aspects of these “solid
objects” that are black holes, through the prism of holography. The first part of this thesis
was devoted to an overview of the latter in its most familiar version, namely AdS3/CFT2,
as well as some general notions about black holes. We have also reviewed the information
paradox in order to make explicit all the complexity surrounding the notion of black hole
and its ties to the search for a theory of quantum gravity. We have then approached the
problem of getting closer to such a theory by extending holography beyond its comfort zone
along two distinct avenues.

Entropy of the warped black hole

We have first discussed a less common holographic scenario which has the perk of be-
ing related to astrophysical black holes without departing too much from the AdS/CFT
correspondence. On the gravity side of this setup, one finds deformations of anti-de Sitter
space (and in particular a black hole), and on the gauge side a field theory with symmetries
characterized by a direct sum of a Virasoro algebra and a u(1) Kac-Moody current alge-
bra. We have seen that since warped AdS spaces are solutions of theories of gravity with
higher curvature terms in the Lagrangian, one has to make sure to calculate all the rele-
vant charges of these theories with the proper corresponding method. We have computed
the warped black hole charges for completely general higher-derivative theories using the
covariant phase space formalism, and shown that the entropy thus obtained matched the
one derived from the Cardy-like formula in the warped conformal field theory. We hope
this result provides further evidence that warped duality may provide insights into realistic
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models of black holes.

Flavoured chiral modular bootstrap

The affinity between warped CFT’s algebra and a chiral conformal algebra with u(1)
charge then inspired us to use the powerful tools of modular analysis to constrain their
spectrum. We started by deriving a tentative bound on the conformal dimension of the
lightest primary states using the linear functional method. The good result obtained by
trial and error indicated that an even tighter bound was attainable by making use of more
number-theoretic properties. We then mobilized modular forms to rewrite the characters
of the theory of interest, and showed analytically that the theory needed to have primary
states with dimension below the threshold h = c/24 (at large central charge) in order to
be consistent with its partition function’s modular properties. We extended this analysis
further with numerical evidence that this result applied to chiral conformal field theories
with charge falling under diverse affine Lie algebras. This led us to the conclusion that any
chiral conformal field theory with a current algebra contains (Virasoro + current algebra)
primary states with non-trivial charge at or below the black hole threshold, provided the
level is bigger than a certain critical value. We found various examples of algebras for which
this critical level is zero, in addition to the simplest case in which we had been able to prove
it analytically.

Weak Gravity Conjecture

Various paths forward open from this point on, the most straightfoward one being the
search for an explicit expression of the critical level in terms of the quantities describing the
Virasoro-Kac-Moody algebra. On the other hand, the same lines of thought that got us to
obtain our bound might be used to constrain the mass-to-charge ratio, thus making contact
with the Weak Gravity Conjecture. One could for example start by adding states with
charge to our analysis, and see how it affects the constraint. Among the vast landscape of
chiral conformal field theories, this would enable one to discriminate those that have particles
allowing the lightest black holes to decay in the dual theory, and hence make sense, from
those that do not. It would be equally interesting to see if our analysis can be generalized to



Conclusion 125

non-chiral theories, in a way similar to what has been done for N = (2, 2) two-dimensional
superconformal field theories [148].

Back to black holes

We have in addition attempted to translate our field theory result into a corresponding
bound on the mass of the lightest warped black holes. This analysis should however be
refined. An obvious way forward would then be to turn this result into a statement about
extreme Kerr. However, this is far from trivial for the following reasons. First, if (self-dual)
warped AdS spaces can be made to emerge seamlessly from extreme Kerr by taking the
near-horizon limit and fixing one coordinate10, it is not yet clear how to make the transition
back upstream. Indeed it would require uplifting warped AdS3 to a four-dimensional solution
of pure Einstein gravity while maintaining appropriate boundary conditions. Even then, it
would just yield a statement regarding near-horizon extreme Kerr and not Kerr itself. Clari-
fying the relation between the warped black hole and the Kerr black hole down to this depth
of detail would seem like the desirable (if not effortless) next step to take.

This thesis has taken us from general relativity to number theory by way of group theory
and thermodynamics. The complex interplay between these various approaches sketches the
broad contours of the black hole, at least from a theoretical perspective. Many aspects of this
elusive object remain to be understood, not the least of which is the way it evaporates, leaving
behind only (to paraphrase Wheeler [149]) not its grin, but more captivating mysteries.

10 That is, upon accepting that one of the remaining coordinates becomes periodic, hence the “self-dual”
nuance.
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Appendices

A. On-shell conditions for theories without derivatives of the
Riemann tensor

In this section, we shall study the consequences of the equations of motion for the most
general theory without derivatives of Riemanns. Moreover, we will show that on-shell con-
ditions imply (6.57). Due to the fact that we are working in three dimensions, the most
general action (without derivatives of Riemanns) is of the form

I =
∫
d3x
√
−g f(Rµν , g

µν) . (174)

The equation of motion is easily derived (see [150] for example) to be

2 ∂f

∂gµν
− fgµν = ∇α∇νPαµ +∇α∇µPαν −�Pµν − gµν∇β∇αPαβ (175)

where
Pµν = gµαgνβ

∂f

∂Rαβ

. (176)

The object of interest Zµναβ in three dimensions is

Zµναβ ≡ ∂L

∂Rµναβ

= ∂Rγδ

∂Rµναβ

∂L

∂Rγδ

= 1
4
[
gµαδδ

βδγ
ν − gανδγµδδβ + gβνδγ

µδδ
α − gβµδγνδδα

] ∂L

∂Rγδ

(177)
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which is related to P µν by

Zµναβ = 1
2
[
gµαgβν − gανgβµ

]
+ 1

4
[
gµαP βν − gναP βµ + gβνPαµ − gβµPαν

]
. (178)

For later purposes, it is useful to note that for a locally warped AdS3 spacetime, due to
SL(2,R)× U(1) symmetry, we have that for q ≥ 1,

(Rq
αβ)µν ≡ Rαβ1R

β1
β2R

β2
β3 . . . R

βq−1
β = Aqg

µν +BqR
µν , (179)

with Aq and Bq constants which are dependent on ` and ν. For example, A1 = 0, B1 =
1, A2 = 2ν2 (ν2 − 3) /`4, B2 = −(3 + ν2)/`2. By definition, the Aq and Bq satisfy the
following recursion relations

Aq = A2Bq−1 = 2ν2(ν2 − 3)
`4 Bq−1 (180)

Bq = Aq−1 +B2Bq−1 = Aq−1 −
3 + ν2

`2 Bq−1 . (181)

As a notational convention, we will denote Tr
(
Rq
αβ

)
≡ (Rq

αβ)µµ. Moreover, it is also useful
to note that

∇α∇µRαν = ∇α∇νRαµ = −6ν2

`4 gµν −
3ν2

`2 Rµν

�Rµν = 12ν2

`4 gµν + 6ν2

`2 Rµν , (182)

and so

∇α∇µRαν +∇α∇νRαµ −�Rµν = −24ν2

`4 gµν −
12ν2

`2 Rµν (183)

while ∇αR
αβ = 0 using the contracted Bianchi identity and the fact that R is a constant.

For illustrative purposes, let us first consider the simple case where for some fixed k ≥ 2,

f = fk ≡ ckR
k + bk Tr

(
Rk
µν

)
. (184)
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In this case,
Pµν = k

[
ckgµνR

k−1 + bk(Rk−1
αβ )µν

]
(185)

while

Zµναβ = k

2
[
ckR

k−1 + bkAk−1
] [
gµαgβν − gανgβµ

]
+ k

4 bkBk−1
[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
(186)

where we have used (179). On the other hand, the equation of motion (175) in this case
reads

k
[
ckR

k−1Rµν + bk(Rk
αβ)µν

]
− 1

2

[
ckR

k + bkTr
(
Rk
αβ

)]
gµν

= 1
2kbk

{
∇α∇ν [(Rk−1

pq )αµ] +∇α∇µ[(Rk−1
pq )αν ]−�[(Rk−1

pq )µν ]− gµν∇β∇α[(Rk−1
pq )αβ]

}
+kck

[
∇µ∇νR

k−1 − gµν�Rk−1] (187)

which upon using (179) and (182)-(183) yields

0 =
[
kckR

k−1 + kbkBk + kbkBk−1
6ν2

`2

]
Rµν

−1
2

[
ckR

k − 2kbkAk + bkTr
(
Rk
αβ

)
− kbkBk−1

24ν2

`4

]
gµν . (188)

By explicitly plugging in the metric and Rµν for a locally warped AdS3 metric, these equations
in turn become two decoupled equations

0 = ckR
k−1 + bkBk + bkBk−1

6ν2

`2 , (189)

0 = ckR
k − 2kbkAk + bkTr

(
Rk
αβ

)
− kbkBk−1

24ν2

`4 . (190)
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Let us now recall from (178), (179) and (185) that in this case we have

Zµναβ = k

2
[
ckR

k−1 + bkAk−1
] [
gµαgβν − gανgβµ

]
+ k

4 bkBk−1
[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
≡ A

[
gµαgβν − gανgβµ

]
+B

[
gµαRβν − gναRβµ + gβνRαµ − gβµRαν

]
, (191)

where
A ≡ k

2
[
ckR

k−1 + bkAk−1
]
, B ≡ k

4 bkBk−1 . (192)

Their ratio is

B

A
= 1

2
bkBk−1

ckRk−1 + bkAk−1
= 1

2
1

−6ν2/`2 + (Ak−1 − Bk)/Bk−1
(193)

where we have used one of the equations of motion (189). Using (181), we obtain

B

A
= − `2

2(−3 + 5ν2) (194)

which is (6.57) as required by finiteness of charges.

One can straightforwardly extend this argument to a more general f = fk;q1,...,qn ≡
c(k, q1, . . . qn)Rk×Tr ((Rµ1ν1)q1)×Tr ((Rµ2ν2)q2)×. . .×Tr ((Rµnνn)qn) or even the most general
action

f =
∑
k,n

∑
q1,...,qn

fk;q1...qn . (195)

The upshot is that eventually similar arguments as above follow through and imply (6.57)
as desired.
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B. Corrections to charges for various higher curvature theories
in 3d with k = 2

B.1. Most general case without derivatives

We first deal with the most general Lagrangian involving no derivatives of the Ricci tensor
and up to cubic order [151], namely

L = aR− Λ + bR2 + cRµν R
µν +m1 R

ν
µR

ρ
ν R

µ
ρ +m2 Rµν R

µνR +m3 R
3 . (196)

The tensor Z is only proportional to ∂/∂Riemann. We have to consider the derivative of the
Ricci scalar and Ricci tensor. After symmetrization, we get

δR

δRabcd

= 1
2
(
gbdgac − gadgbc

)
(197)

δ(RµνR
µν)

δRabcd

= 2
4
(
gbdRac − gadRbc − gbcRad + gacRbd

)
. (198)

So,
Zabcd = A

(
gbdgac − gadgbc

)
+B

(
gbdRac − gadRbc − gbcRad + gacRbd

)
(199)

with

A =
(
a

2 −
6
`

2
b+ 54

`4 m3 + 3ν2(ν2 − 3)
`4 m1 + 3 (3− 2ν2 + ν4)

l4
m2

)
, (200)

B =
(
c

2 −
3

2`2 m2 −
3(3 + ν2)

4`2 m1

)
. (201)

We can make some checks against known quantities in New Massive Gravity for example,
where a = 1

16π , b = −3
16π8µ2 , c = 1

16πµ2 and m1 = m2 = m3 = 0 with µ2 = 3−20ν2

2`2 . In this case,
A and B reduce to

A = 3− 5ν2

8π (3− 20ν2) , B = `2

16π (3− 20ν2) . (202)
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The charges obtained with these values by (6.55) and (6.56) are consistent with their ex-
pressions found by other techniques.

B.2. Lagrangian with �R

Take the Lagrangian with higher curvature terms

LHC = R− 2Λ + kge1e2∇e1∇e2R, (203)

then Z is given by

Zabcd = ∂L

∂Rabcd

+∇e1∇e2

∂L

∂∇e1∇e2Rabcd

(204)

= k

2
(
gacgbd − gbcgad

)
+ k∇e1∇e2g

e1e2
1
2
(
gacgbd − gbcgad

)
= k

2
(
gacgbd − gbcgad

)
and for s = 2 and s = 1 we have:

Zabcd|e1e2 = ∂L

∂Rabcd|e1e2

= k

2g
e1e2
(
gacgbd − gbcgad

)
(205)

Zabcd|e1 = ∂L

∂Rabcd|e1

−∇e2Z
abcd|e1e2 = 0 (206)

The corrections for Θ are then:

Θ(1)
a2a3 =

[
2
(
Zibcd|a + Zabcd|i) δgijRj

bcd − 2Zibcd|jδgijRa
bcd − Zkbcd|aδRkbcd

]
εaa2a3 = 0 , (207)

Θ(2)
a2a3 =

[
2
(
Zibcd|e1a + Zabcd|e1i

)
δgijRj

bcd|e1
− 2Zibcd|e1jδgijRa

bcd|e1 + Zkbcd|iaδgijR j
kbcd|

−1
2Z

kbcd|ijδgijR a
kbcd| − Zkbcd|e1aδRkbcd|e1

]
εaa2a3

= k

[(
2∇aRij + gia∇jR− 1

2g
ij∇aR

)
δgij − δ∇aR + δge1a∇e1R + 2δgbd∇cRbd

]
εaa2a3

= k

[
−1

2g
ij∇aR δgij − δ∇aR

]
εaa2a3 (208)
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where we have used

gkcgbdδ(∇eRkbcd) = δ
(
∇e(gkcgbdRkbcd)

)
− δgbd∇e(gkcRkbcd)− δgkc∇e(gbdRkbcd) . (209)

The corrections for Q are given by:

Q(1)
c3 = 0 , (210)

Q(2)
c3 = −2 ξk

[
Zklcd|e1aRb

lcd|e1 + Zalcd|e1bRk
lcd|e1 + Zalcd|e1kRb

lcd|e1 + 1
2Z

lmcd|kaR b
lmcd|

]
εabc3

= −k ξk gka∇bRεabc3 . (211)

If we assume warped AdS3 is a solution of this theory, all the ∇iR terms vanish and we
are left with:

Θ(1)
a2a3 = 0 (212)

Θ(2)
a2a3 = k 4∇aRij δgij εaa2a3 (213)

Q(1)
c3 = 0 (214)

Q(2)
c3 = 0 (215)

Computing ∇aRij δgij explicitly gives Θ(2) = 0 as well.

B.3. Lagrangian with R�R

Take the Lagrangian with higher curvature terms

LHC = R− 2Λ + kRge1e2∇e1∇e2R . (216)

Then Z is given by
Zabcd = k

2
(
gacgbd − gbcgad

)
[1 + k �R] (217)

and for s = 2 and s = 1 we have

Zabcd|e1e2 = k

2
(
gacgbd − gbcgad

)
ge1e2R = R · Zabcd|e1e2

�R (218)
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Zabcd|e1 = −∇e2Z
abcd|e1e2 = −k2

(
gacgbd − gbcgad

)
∇e1R (219)

where the �R subscript denotes quantities computed for the case treated in the previous
section. The corrections for Θ are

Θ(1)
a2a3 = k ∇aR(−4δgijRij + δR)εaa2a3 , (220)

Θ(2)
a2a3 = R ·Θ(2)

a2a3

∣∣
�R
. (221)

The corrections for Q are given by

Q(1)
c3 = 0 , (222)

Q(2)
c3 = R ·Q(2)

c3

∣∣
�R
. (223)

We see that the same assumptions as in the the �R case leads to the vanishing of all
corrections.

B.4. Lagrangian with �R�R

Take the Lagrangian with higher curvature terms

LHC = R− 2Λ + k(�R)2 . (224)

Z is then given by
Zabcd = k

2
(
gacgbd − gbcgad

)
[1 + k �(�R)] (225)

and for s = 2 and s = 1 we have:

Zabcd|e1e2 = k

2
(
gacgbd − gbcgad

)
ge1e2�R = �R · Zabcd|e1e2

�R (226)

Zabcd|e1 = −∇e2Z
abcd|e1e2 = −k2

(
gacgbd − gbcgad

)
∇e1�R (227)
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The corrections for Θ are

Θ(1)
a2a3 = k ∇a�R(−4δgijRij + δR) εaa2a3 , (228)

Θ(2)
a2a3 = �R ·Θ(2)

a2a3

∣∣
�R
. (229)

The corrections for Q are given by:

Q(1)
c3 = 0 , (230)

Q(2)
c3 = �R ·Q(2)

c3

∣∣
�R
. (231)

Again, in the warped AdS3 case, the only potentially non-vanishing correction is Θ(1);
however, since �R is zero it vanishes as well.

B.5. Lagrangian with (∇aRbc)2

Here we rework the case detailed in section 6.3 using the method in [117] directly instead
of using our symmetry arguments. Recall the Lagrangian has the higher curvature term

LHC = ∇aRbc∇aRbc = gapgbqgcr∇pRqr∇aRbc (232)

and the Z-field and associated corrections are given by (6.77), (6.78) and (6.81) which we
can rewrite in terms of T ade = Ra d

b cR
bc;e and Sabe = Ra

cR
bc;e as

Θ(1)
bc = 2δgij

[
T jia + Sjia − Sjai − Saij − ν2 − 3

l2
Rij;a

]
εabc , (233)

Q(1)
c = −2 ξk

[
Sbka + Skab + Sbak

]
εabc . (234)

Let us first compute the Θ correction. Since we know we are going to integrate over ϕ
and we have to contract the correction to Θ with ∂t, we need to compute the [tϕ] component
of Θ(1). We also know that δg only two non-zero components are [rr] and [ϕϕ], so the object
we need to integrate is

Θ(1)
tϕ = 2

[
δgrr (T rrr − Srrr) + δgϕϕ (Tϕϕr + Sϕϕr − Sϕrϕ − Srϕϕ)− δRbc(∇r +∇ϕ)Rbc

]
.

(235)
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Explicit check shows that all the components of T and S entering Θ(1)
tϕ are zero, as is Rij;aδgij.

There is thus no Θ contribution to P0.

The correction for Q we need to compute is also the ϕ component:

Q(1)
ϕ = −2ξk

(
Srkt + Sktr + Srtk − Stkr − Skrt − Strk

)
, i.e. (236)

= −2ξk
[
Rr
c∇tRkc +Rk

c∇rRtc +Rr
c∇kRtc −Rt

c∇rRkc −Rk
c∇tRrc −Rt

c∇kRrc
]
.

For ξ = ∂ϕ, we get

(Q(1)
∂ϕ

)ϕ = −2
[
Rϕ
cR

tc;r +Rr
cR

tc;ϕ −Rt
cR

ϕc;r −Rt
cR

rc;ϕ] = 0 (237)

because the terms cancel two by two explicitly. For ξ = ∂t, we get

(Q(1)
∂t

)ϕ = −2
[
2Rr

c∇tRtc − 2Rt
c∇tRrc

]
= −4(Srtt − Strt) (238)

= −72 r ν
2

l6
(ν2 − 1)2. (239)

Computations for both tensors hence match previous results (6.85)-(6.87).
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C. Explicit expressions for the expansion of the flavoured chiral
partition function

Comparing the partition function

Z(τ, z) = Z(τ) +
∞∑
n=1

z2n

(2n)!(2πi)
2n f2n(τ) (240)

and its modular-transformed version

Z

(
Aτ,

z

cτ + d

)
= Z(τ) + z2

2

(
2πi
cτ + d

)2

f2(Aτ) + ... (241)

= Z(τ) + z2

2
2πic
cτ + d

Z(τ) + z2

2 (2πi)2 f2(τ) + ... (242)

one can derive a general expression for the f2n(τ) =̂ Tr
(
J2n

0 qL0−κ
)
in terms of known mod-

ular forms ∆, E2, E4 and E6. Setting

f2n(τ) = ∆−κ(τ)P12κ+2n(τ) + α0 E
n
2 (τ)Z(τ) +

n−1∑
m=1

αmE
m
2 (τ)f2(n−m) (243)

where

P12κ+2n =
κ(+1)∑
`=1

a`E
3`−n
4 (q)E2κ−2`+n

6 (q) (244)

with the sum running from 1 to κ if 12κ+2n ≡ 2 (mod 12), and to κ+1 if not11 [140] allows
to recover the proper modular transformation of each piece. In particular,

f2(τ) = ∆−κ(τ)P12κ+2(τ) + 1
12E2(τ)Z(τ) (245)

11The dimension of the space of all modular forms of weight w is dim Mw =
⌊
w
12
⌋
if w ≡ 2 (mod 12), and

dim Mw =
⌊
w
12
⌋

+ 1 if w 6≡ 2 (mod 12).
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correctly reproduces the transformation

f2(Aτ) = (cτ + d)2 f2(τ) + c

2πi (cτ + d)Z(τ) (246)

and
f4(τ) = ∆−κ(τ)P12κ+4(τ)− 1

48E
2
2(τ)Z(τ) + 1

2E2(τ)f2(τ) (247)

correctly reproduces the transformation

f4(Aτ) = (cτ + d)4 f4(τ) + (cτ + d)3 3c
πi
f2(τ) + (cτ + d)2 3

4

( c

2πi

)2
Z(τ) . (248)

Similarly,

f6(τ) = ∆−κ(τ)P12κ+6(τ) + 5
242E

3
2(τ)Z(τ)− 5

16E
2
2(τ)f2(τ) + 5

4E2(τ)f4(τ) (249)

correctly reproduces the transformation

f6(Aτ) = (cτ + d)6 f6(τ)− 15ic
2π (cτ + d)5 f4(τ)− 45c2

4π2 (cτ + d)4 f2(τ) + 15ic3

8π3 (cτ + d)3 Z(τ) ,
(250)

etc.

Coefficients and positivity constraints

Starting with (243), we now detail the first three non-trivial orders in the κ = 1 to 6
cases. In the following, we denote the coefficients of P12κ+2n in f2(τ) by ai, those in f4(τ) by
bi and those in f6(τ) by ci.

For κ = 1, the expansion of f2 is

f2(q) = q−1
(
a+ 1

12

)
+ 1

12 (r1 − 24) + q
1
12 (r2 − 24 r1) +O(q2) . (251)

Putting the O(1/q) term to zero in f2 gives us a1 = − 1
12 and the expansion in (7.117)
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becomes

fκ=1
2 (q) = 1

12 (r1 − 24) + 2 (16404− r1) q + 6 (829944− r1) q2 + 8 (30491394− r1) q3

+ 14 (469759704− r1) q4 + 12 (10062425124− r1) q5 + 24 (70218701304− r1) q6

+ 16 (1193358577344− r1) q7 +O(q8). (252)

Positivity of the coefficients in the expansion of f2 puts both an upper and a lower bound
on r1:

24 6 r1 6 16404 . (253)

We can then put the O(1) term to zero by picking r1 = 24. This should be true also at all
others orders, so we can look at how it constrains the next two orders. Replacing a1 and r1

into f4 and then putting the O(1/q) and O(1) terms to zero yields

b1 = −b2 + 1
48 , b2 = 5

576 . (254)

The expansion for f4 is then

fκ=1
4 (q) = 15120 q + 3265920 q2 + 197043840 q3 (255)

+ 6153960960 q4 + 126602028000 q5 +O(q6) .

All the coefficients in this expansion are positive as they should be. f6 can be put in a similar
form using

c1 = −c2 −
5

576 , c2 = − 25
3456 (256)

and we are left with an O(q) expression with positive coefficients.

The κ = 2 case works the same way: we start with

f2(q) = ∆−2(q)
(
a1 E

2
4(q)E3

6(q) + a2 E
5
4(q)E6(q)

)
+ 1

12E2(q)Z(q)

= q−1
(

80 + 1728 a2 + r1

12

)
+
(
−6− 2 r1 + r2

12

)
+q (−340215552 a2 + 16401 r1 − 2(5385528 + r2)) + O(q2) . (257)
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To get the expression in the second line we have used that the vacuum is uncharged, hence
a1 = −a2 − 1/12, and the fact that in the κ = 2 case Z(q) = J2(q) + j1 J(q) + j0, or

Z(q) = q−2 + j1 q
−1 + j0 + 393768 + q (42987520 + 196884 j1) + · · · (258)

Putting the O(1/q2) and O(1/q) terms to zero in f2 gives us

a1 = −a2 −
1
12 , a2 = − 1

1728

(
80 + r1

12

)
(259)

and f2 is given by

fκ=2
2 (q) =

(
−6− 2 r1 + r2

12

)
+ (4979664 + 32808 r1 − 2 r2) q (260)

+ (6576701472 + 4979664 r1 − 6 r2) q2 + 8 (210656103912 + 30491394 r1 − r2) q3

+ 14 (13095149521032 + 469759704 r1 − r2) q4

+ 12 (958639027600872 + 10062425124 r1 − r2) q5

+ 24 (20319530222906532 + 70218701304 r1 − r2) q6 +O(q7) .

We can go one step further by taking

r1 = −3 + r2

24 (261)

as long as r2 > 72 for positivity. Then f2 becomes

fκ=2
2 (q) = 1365 (3576 + r2) q + 207480 (31626 + r2) q2 (262)

+ 139230 (12098808 + r2) q3 +O(q4)

so there is no way to go further by picking r2. Replacing these values into f4 and then
playing the same trick yields

b1 = −b2 − b3 , b2 = − 1
1728

(
−559

16 + 3456b3 −
r2

1152

)
, (263)
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b3 = − 1
2985984

(
−7425− 5

8 r2

)
(264)

and

fκ=2
4 (q) = 630 (2520 + r2) q + 136080 (22540 + r2) q2 (265)

+ 45360 (21357000 + 181 r2) q3 + 141120 (864655200 + 1817 r2) q4 +O(q5) .

No r2 can be found so as to cancel the O(q) term. Having replaced all of the coefficients
above in f6, we can then make the first three terms vanish using

c1 = −c2 − c3 , c2 = − 1
1728

(
3456 c3 + 5

13824(57528 + r2)
)
, (266)

c3 = − 1
2985984

(
25
48(20520 + r2)

)
. (267)

We then have

fκ=2
6 (q) = 450 (1800 + r2) q (268)

+ 10800 (212400 + 13 r2) q2

+ 340200 (2640600 + 31 r2) q3

+ 28800 (4568050800 + 13333 r2) q4 +O(q5) .

The remaining O(q) expression satisfies positivity and cannot be reduced any further.

The κ = 3 case works in a similar fashion. Writing down all the replacement rules for
the coefficients would be a bit tedious, but in the end after fixing all the ai, we find that

fκ=3
2 (q) = −8− 6 r1 − 2 r2 + r3

12 + (243931152 + 4979664 r1 + 32808 r2 − 2 r3) q

+ 6 (280874805216 + 1096116912 r1 + 829944 r2 − r3) q2 (269)

+ 8 (192145590065616 + 210656103912 r1 + 30491394 r2 − r3) q3 +O(q4) .
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We are allowed to reduce it a bit more by taking

r1 = 1
6

(
−8− 2 r2 + r3

12

)
(270)

but the replacement for r2 that would simplify this expression further is incompatible with
the one for r1. At this point we get

fκ=3
2 (q) = −3640 (−65190 + 447 r2 − 19 r3) q (271)

− 155610 (−10773600 + 14056 r2 − 587 r3) q2 +O(q3) .

Putting to zero the first four terms in f4 by appropriate choices of bi leaves us with

fκ=3
4 (q) = −7560 (−8400 + 70 r2 − 3 r3) q (272)

− 7560 (−84937440 + 135240 r2 − 5653 r3) q2 +O(q3) .

Again we hit a contradiction if we attempt to make the first term vanish by picking r2 =
1
70 (8400 + 3 r3). Going then to f6, we get rid of the first four terms and are left with

fκ=3
6 (q) = −900 (−30000 + 300 r2 − 13 r3) q (273)

− 10800 (−36715200 + 70800 r2 − 2963 r3) q2 +O(q3) .

We are then left with an O(q) expression that no consistent choice of r2 can reduce.

It is actually not even necessary to ask for the numbers of states to be integer to obtain
this result: asking for just positivity yields the same contradictions. Since this happens for
every κ already at the level of f2, without any need to go to higher and higher orders in the
expansion of the partition function as one would have expected, it is worth taking a closer
look at how exactly this works. Since the κ = 1, 2 cases have been made explicit enough, let
us focus on the κ = 3, 4, 5, 6 cases where there is a priori enough parameters to make things
less obvious.
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We have already seen that for κ = 3, the expression for r1 that simplifies f2 is

r1 = 1
6

(
−8− 2 r2 + r3

12

)
(274)

and from the subsequent expression for f2 we know that we would need r2 to be

r2 = 1
447 (65190 + 19 r3) (275)

to simplify it further. This would make r1 become

r̃1 = 1
3576 (−178608− r3) (276)

which is negative for any positive r3.

For κ = 4, with all coefficients replaced f2 is given by

fκ=4
2 (q) =

(
−14− 8 r1 − 6 r2 − 2 r3 + r4

12

)
(277)

+ (6576635856 + 243931152 r1 + 4979664 r2 + 32808 r3 − 2 r4) q +O(q2) .

After replacing r1 by
r1 = 1

8

(
−14− 6 r2 − 2 r3 + r4

12

)
(278)

it becomes

fκ=4
2 (q) = −4095

2 (−3003544 + 86920 r2 + 29768 r3 − 1241 r4) q (279)

− 622440 (−289799672 + 2020050 r2 + 676864 r3 − 28203 r4) q2 +O(q3) .

At this point we know that there is no way to take

r2 = − 1
86920 (−3003544 + 29768 r3 − 1241 r4) (280)

in a way consistent with positivity constraints, but it is not obvious why. The expression for
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r1 would simply become

r̃1 = 1
260760 (−6301644 + 1788 r3 − 76 r4) . (281)

It does not seem impossible at first sight to find r3 and r4 such that this is positive. To
get better intuition, let’s take r4 = 1: then r3 needs to be bigger than 6301568/1788, so for
example r3 = 3525 would do. This is enough to make the term containing r3 in r2 largely
dominant, so that it is negative. And taking r4 larger will only make things worse, since r3

must then be larger too with both parameters coming with opposite signs in r1.

For κ = 5, after all the modular coefficients have been replaced, we have

fκ=5
2 (q) =

(
−12− 14 r1 − 8 r2 − 6 r3 − 2 r4 + r5

12

)
(282)

+ (120749101488 + 6576635856 r1 + 243931152 r2 + 4979664 r3 + 32808 r4 − 2 r5) q

+ O(q2) .

After taking
r1 = 1

14

(
−12− 8 r2 − 6 r3 − 2 r4 + r5

12

)
, (283)

it becomes

fκ=5
2 (q) = −1560 (−73789734 + 2252658 r2 + 1803576 r3 + 602235 r4 − 25094 r5) q

− 59280 (−191405643336 + 1738798032 r2 + 1325309049 r3 + 441806580 r4

− 18408611 r5) q2 +O(q3) . (284)

The value of r2 which would put the first term to zero is

r2 = − 1
2252658 (−73789734 + 1803576 r3 + 602235 r4 − 25094 r5) , (285)

with which r1 would become

r̃1 = 1
3003544 (−58795216 + 86920 r3 + 29768 r4 − 1241 r5) . (286)
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Again, the values of the remaining parameters giving a positive r1 yield a negative r2. If we
want to see that more clearly, we can start by taking r5 = 0 since it then makes it easier
for r̃1 to be positive. Even in this favourable case, with only two parameters to adjust, the
minimal values that make r̃1 positive are still too big to prevent r2 to be negative. It seems
the key fact is that most of the parameters come with opposite signs in both expressions.

In the κ = 6 case, after replacements we have

fκ=6
2 (q) =

(
−24− 12 r1 − 14 r2 − 8 r3 − 6 r4 − 2 r5 + r6

12

)
(287)

+ 2 (842624415648 + 60374550744 r1 + 3288317928 r2 + 121965576 r3

+ 2489832 r4 + 16404 r5 − r6) q +O(q2) .

After replacing r1 by r1 = 1
12

(
−24− 14 r2 − 8 r3 − 6 r4 − 2 r5 + r6

12

)
, we get

fκ=6
2 (q) = −455 (−3173078304 + 295158936 r2 + 176385648 r3 + 132680376 r4

+ 44230368 r5 − 1842935 r6) q +O(q2) . (288)

Replacing r2 by

r2 = − 1
295158936 (−3173078304 + 176385648 r3 + 132680376 r4 + 44230368 r5 − 1842935 r6)

(289)
in r1 yields

r̃1 = 1
73789734 (−1073060640 + 2252658 r3 + 1803576 r4 + 602235 r5 − 25094 r6) . (290)

In conclusion, we observe that each time, once r1 has been chosen so as to simplify f2,
no further simplification can be achieved in a consistent way in either f2, f4 or f6. Numerics
allow to take this even further for higher values of κ (up to 20). This suggests that the
partition function of a chiral CFT will remain of order q no matter what, which means that
the spectrum needs to contain charged states of dimension at most κ+ 1.
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D. Writing f2 in terms of the Hecke operator acting on J

The expression (7.89) relies on the statement that acting with q ∂q on a modular function
F (q) yields a modular form of weight 2. Indeed, expressing things in terms of τ rather than
q, we start with the transformation of a modular form of weight m (7.37) and act on it with
∂τ :

∂τf

(
aτ + b

cτ + d

)
= ∂τ

(
(cτ + d)mf(τ)

)
(291)

⇔ f ′
(
aτ + b

cτ + d

)
1

(cτ + d)2 = mc (cτ + d)m−1f(τ) + (cτ + d)mf ′(τ)

⇔ f ′
(
aτ + b

cτ + d

)
= mc (cτ + d)m+1f(τ) + (cτ + d)m+2f ′(τ) .

For a modular function, m = 0, yielding

f ′
(
aτ + b

cτ + d

)
= (cτ + d)2f ′(τ) (292)

which is the transformation of a modular form of weight 2.
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E. Full characters for affine Lie algebras

We consider a generic simple affine Lie algebra ĝk and the character associated to the
affine weight λ̂ is given by

χλ̂ =
∑

w∈W ε(w)Θw(λ̂+ρ̂)∑
w∈W ε(w)Θwρ̂

(293)

where W is the Weyl group of g, ρ̂ is the affine Weyl vector, g is the dual Coxeter number,
and ε(w) is the signature of the element w of the Weyl group W . The theta functions
evaluated at a point (ζ, τ, t) are given by [71]

Θλ̂(ζ, τ, t) = e−2πikt
∑

α∨∈Q∨
e−πi[2k(α∨,ζ)+2(λ,ζ)−τk|α∨+λ/k|2] (294)

where the α∨ are the coroots of the representation of highest weight λ in the original algebra
being extended. Q∨ is the (finite) coroots lattice. The hatted quantities are all affine
extensions expressed in terms of the corresponding finite algebra g quantities; in particular
the highest weight of ĝ is λ̂ = (λ; k; 0) and its Weyl vector is ρ̂ = (ρ; g; 0).

We will start by computing the sums over the Weyl group in the expression for the
character. To do the sum we note that the argument of the exponential in Θwλ̂ is proportional
to

2k(α∨, ζ) + 2(wλ, ζ)− τk|α∨ +wλ/k|2 = 2k(w−1α∨, w−1ζ) + 2(λ,w−1ζ)− τk|w−1α∨ + λ/k|2

(295)
which follows from the invariance of the scalar product under elements of the Weyl group.
Our sums now take the form∑

w∈W

Θwλ̂ = e−2πikt
∑
w∈W

∑
α∨∈Q∨

ε(w)e−πi[2k(w−1α∨,w−1ζ)+2(λ,w−1ζ)−τk|w−1α∨+λ/k|2] (296)

= e−2πikt
∑
w∈W

∑
α∨∈Q∨

ε(w)e−πi[2k(α∨,w−1ζ)+2(λ,w−1ζ)−τk|α∨+λ/k|2] (297)

= e−2πikt
∑

α∨∈Q∨

(∑
w∈W

ε(w)e−2πi(kα∨+λ,wζ)

)
eπiτk|α

∨+λ/k|2 (298)
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where the middle line follows from the fact that for any fixed element of the Weyl group we
have Q∨ = wQ∨. At this point we will choose ζ proportional to ρ,

ζ = − z̃

2πiρ (299)

for some complex variable z̃. Later we will see that z̃ is proportional to the z used throughout
Chapter 7, but for now the expressions are simpler when written in terms of z̃. As we will
see below, it is common to write the character as a function of τ and z only; we will then
from here on set t = 0 in most expressions. In addition, recall the following identity from
Lie algebras, (see e.g. [71]),

Dρ =
∑
w∈W

ε(w)ewρ =
∏
α>0

(
eα/2 − e−α/2

)
(300)

where the product is taken over the positive roots of the finite Lie algebra root lattice.
Using this notation we recognize our sum over the Weyl group as simply Dρ(z̃(kα∨ + λ)).
Combining everything together back in the character the result is

χλ̂(z̃, τ, 0) =
∑

α∨∈Q∨
∏

α>0 sinh
(
z̃
2(α, (k + g)α∨ + λ+ ρ)

)
eπiτ(k+g)|α∨+(λ+ρ)/(k+g)|2∑

α∨∈Q∨
∏

α>0 sinh
(
z̃
2(α, gα∨ + ρ)

)
eπiτg|α∨+ρ/g|2 . (301)

Expanding out as function of z̃ is now just a matter of expanding the hyperbolic sines
that appear in our expression. Our job can be made a little simpler if we multiply and divide
by Dρ(z̃ρ/2) so that the numerator and denominator both have the form (once again see e.g.
[71])

∏
α>0

sinh (z̃(α, kα∨ + λ+ ρ)/2)
sinh (z̃(α, ρ)/2) =

(∏
α>0

(α, kα∨ + λ+ ρ)
(α, ρ)

)(
1 + gz̃2

24
(
|kα∨ + λ+ ρ|2 − |ρ|2

))
+O(z̃4) .

(302)
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Combining everything into the character gives

χλ̂(z, τ, 0) =
∑

α∨
∏

α>0
(α,(k+g)α∨+λ+ρ)

(α,ρ) eπiτ(k+g)|α∨+(λ+ρ)/(k+g)|2∑
α∨
∏

α>0
(α,gα∨+ρ)

(α,ρ) eπiτg|α∨+ρ/g|2

+ gz̃2

24

[∑
α∨

(∏
α>0

(α,(k+g)α∨+λ+ρ)
(α,ρ)

)
(|(k + g)α∨ + λ+ ρ|2 − |ρ|2) eπiτ(k+g)|α∨+(λ+ρ)/(k+g)|2∑

α∨
∏

α>0
(α,gα∨+ρ)

(α,ρ) eπiτg|α∨+ρ/g|2

−

∑
α∨
∑

β∨

(∏
α>0

(α,(k+g)α∨+λ+ρ)
(α,ρ)

)(∏
β>0

(β,gβ∨+ρ)
(β,ρ)

)
(|gβ∨ + ρ|2 − |ρ|2) eπiτ(k+g)|α∨+(λ+ρ)/(k+g)|2eπiτg|β

∨+ρ/g|2(∑
α∨
∏

α>0
(α,gα∨+ρ)

(α,ρ) eπiτg|α∨+ρ/g|2
)2

]

+O(z̃4) . (303)

This expression can be simplified significantly by noting that

(
|kα∨ + λ+ ρ|2 − |ρ|2

)
eπiτk(|α∨+(λ+ρ)/k|2−|(λ+ρ)/k|2) =(

2k q d
dq

+ |λ+ ρ|2 − |ρ|2
)
eπiτk(|α∨+(λ+ρ)/k|2−|(λ+ρ)/k|2) (304)

and that the expression in each of the denominators is related to a MacDonald identity [147]:

φ(q)dim g =
∑

α∨∈Q∨

∏
α>0

(α, gα∨ + ρ)
(α, ρ) eπiτg(|α∨+ρ/g|2−|ρ/g|2) (305)

where
φ(q) =

∞∏
n=1

(1− qn) . (306)

The last thing we need is the relation between z̃ and z, which will follow from the
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transformation properties of the characters. Under a general modular transform we have[71](
a b

c d

)
: (ζ, τ, t) 7→

(
ζ

cτ + d
,
aτ + b

cτ + d
, t+ c|ζ|2

cτ + d

)
. (307)

If we now consider an S transformation then the characters transform as [71]

χλ̂

(
ζ

τ
,−1

τ
, t+ |ζ|

2

2τ

)
=
∑
µ̂

Sλ̂µ̂χµ̂(ζ, τ, t) (308)

where we have omitted the precise details of the S-matrix. As we can already see from
the above expression, the transformation property of t closely resembles the anomalous
transformation properties of the flavoured partition function. It is common in the literature
to work with characters that are independent of t, usually by setting t = 0. Equivalently we
can note that

χλ̂(ζ, τ, t) = e−2πiktχλ̂(ζ, τ, 0) (309)

so that a t-independent character can be defined by

χ̄λ̂(ζ, τ) = e2πiktχλ̂(ζ, τ, t) . (310)

Then using (308) we see that

χ̄λ̂

(
ζ

τ
,−1

τ

)
= eπik|ζ|

2/τ
∑
µ̂

Sλ̂µ̂χ̄µ̂(ζ, τ) (311)

where the factor of eπik|ζ|2/τ accounts for the anomalous transformation of the flavoured
partition function. In order to use the technology developed for u(1) and sû(2), we want
to normalize everything so that |ζ|2 = z2. We have chosen ζ proportional to ρ so that this
choice of normalization demands

ζ = z

|ρ|
ρ = − z̃

2πiρ . (312)

The expansion of characters only have even powers of z so the relation we need can be nicely
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summarized as
z̃2 = (2πiz)2

|ρ|2
= 12(2πiz)2

g dim g
(313)

where we have used the standard result |ρ|2 = g dim g
12 .

Combining all of this yields a relation between the O(z2) and O(z0) pieces of the char-
acters which is given by

q−mλχλ̂(z, τ, t) =
[
1 + (2πiz)2

2

(
2(k + g)

dim g
q
d

dq
+ (λ, λ+ 2ρ)

dim g
− k

12(1− E2)
)

+O(z4)
]
q−mλχλ̂(0, τ, t)

(314)
where

q−mλχλ̂(0, τ, t) = e−2πiktφ(q)− dim g
∑

α∨∈Q∨

∏
α>0

(α, (k + g)α∨ + λ+ ρ)
(α, ρ) eπiτ(k+g)(|α∨+(λ+ρ)/(k+g)|2−|(λ+ρ)/(k+g)|2)

(315)
and we have defined, following [71], the combination

mλ = |λ+ ρ|2

2(k + g) −
|ρ|2

2g (316)

= hλ −
ĉ

24 . (317)
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