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Abstract

Recent advancements in medical imaging and image acquisition demand the development
of novel analysis methods and algorithms so that appropriate geometric measurements can
be made, information which may not be computable just from the raw data. Through diffu-
sion magnetic resonance imaging, for example, we now have a way to infer the dominant
orientation of fibrous structure in tissue, at the millimeter or sub-millimeter scales. Such
measurements on their own do not answer more complex questions about fiber geometry,
such as whether the fibers lie along specific surfaces, or how the fibers move in dynamic
tissue. Motivated by such considerations, this thesis develops methods and algorithms to
address two specific problems. First, given local measurements of fiber orientation, we
develop and evaluate an algorithm to recover sheets on which these fibers lie, where ap-
propriate. Second, given fiber orientation measurements in deforming tissue, we develop
a moving frame method to recover local spatio-temporal signatures to capture how the
fibers rotate.

Whereas the notions of sheets and cleavage plains have often been the subject of lit-
erature on myocardial tissue geometry, the potential sheet-like organization of fiber tract
systems in the mammalian brain has been a topic of some controversy. We study the exis-
tence of sheet-like organization of fibers in biological tissues by introducing a framework
that, from an oriented vector field representing local fiber directions, is capable of finding
sheets on which they may lie. We apply our method to the cases of ventricular myofibers
and brain tractograms to recover the sheet-like organizations using an efficiently imple-

ii



mented algorithm. For both cardiac fibers and fiber tract systems in the mammalian brain,
our method gives a principled approach to recover sheet-like geometries given a single
dense direction field as input.

Past work on modeling fiber geometry has largely focused on the static case, so few
models presently exist to provide geometric signatures to describe moving fibers. We
contribute to this problem by extending past moving frame methods to the case of dynamic
direction field data so that they are capable of measuring the rotation of cardiac fibers in a
spatio-temporal setup. We validate our approach by providing proof of concept results on
both simulated data, from a computational modeling challenge dataset of canine hearts,
and on new in vivo human heart data.
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Abrégé

Les progrès récents en imagerie médicale et en acquisition d’images exigent le développe-
ment de méthodes et d’algorithmes d’analyse novateurs permettant de réaliser des mesures
géométriques appropriées, mesures qui peuvent ne pas être calculables uniquement à par-
tir des données brutes. Grâce à l’imagerie par résonance magnétique par diffusion, par ex-
emple, nous avons maintenant un moyen de déduire l’orientation dominante de la structure
fibreuse des tissus, à l’échelle millimétrique ou submillimétrique. De telles mesures ne
permettent pas à elles seules de répondre à des questions plus complexes sur la géométrie
des fibres, par exemple si les fibres se trouvent le long de surfaces spécifiques ou comment
les fibres se déplacent dans les tissus dynamiques. Motivée par de telles considérations,
cette thèse développe des méthodes et des algorithmes pour répondre à deux questions
spécifiques. Premièrement, étant donné les mesures locales d’orientation des fibres, nous
développons et évaluons un algorithme permettant de récupérer les feuillets sur lesquelles
reposent ces fibres, le cas échéant. Deuxièmement, étant donné les mesures d’orientation
des fibres dans les tissus en déformation, nous développons une méthode à cadre mobile
pour récupérer les signatures spatio-temporelles locales afin de capturer la rotation des
fibres.

Alors que les notions de feuillets et de plans de clivage font souvent partie de publi-
cations sur la géométrie des tissus myocardiques, l’organisation en forme de feuillet des
systèmes de faisceaux de fibres dans le cerveau des mammifères a fait l’objet de cer-
taines controverses. Nous étudions l’existence d’une organisation en forme de feuillet de
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fibres dans des tissus biologiques, en introduisant un paradigme qui, à partir d’un champ
de vecteurs orienté représentant les directions locales des fibres, est capable de trouver
les feuillets sur lesquels elles peuvent reposer. Nous appliquons notre méthode aux cas
de myofibres ventriculaires et de tractogrammes cérébraux afin de récupérer les organi-
sations en forme de feuillet, en utilisant un algorithme efficace. Notre méthode propose
une approche basée sur des principes permettant de récupérer des géométries en forme
de feuillet, à la fois pour des fibres cardiaques et des systèmes de tractus fibreux dans le
cerveau.

Les travaux antérieurs sur la modélisation de la géométrie des fibres se sont largement
concentrés sur le cas statique. Il existe donc actuellement peu de modèles permettant de
fournir des signatures géométriques décrivant les fibres en mouvement. Nous contribuons
à résoudre ce problème en étendant les méthodes de cadres mobiles précédents au cas
des données de champ de direction dynamique, afin qu’elles soient capables de mesurer
la rotation des fibres cardiaques dans une configuration spatio-temporelle. Nous validons
notre approche en fournissant des résultats de validation du concept à la fois sur des
données simulées, à partir d’un ensemble de données de modélisation informatique des
coeurs canins, ainsi que sur des données in vivo du cœur humain.
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1
Introduction

Oriented elements compose fibrous structures in biological tissue, and their geometry

plays an important role in organ function. In the heart, for example, myocytes are stacked

end on end in a particular fashion to facilitate electrical conductivity and efficient mechan-

ical contraction. In the brain, white matter fiber tracts are neuro-anatomically partitioned

into specific bundles that connect distinct brain regions. In both cases, the local geometry

has been qualitatively described as being sheet-like in particular regimes. Yet, to date, few

if any quantitative methods exist for finding these sheets from imaging data.

Our present understanding of heart wall fiber geometry also suffers from the limitation

that it is based on ex vivo and hence static data, observed through diffusion imaging or

histology. Thus, little is known about the manner in which fibers rotate or are locally dis-

placed when the heart beats. Yet, the geometric organization of moving fibers in the heart

wall is key to its mechanical function and to the distribution of forces within it to effect
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Introduction

efficient, repetitive pumping. Thus far, there has been little work on the computational

modeling of moving fibers in biological tissue.

The first problem that this thesis addresses is that of, given an input vector field, finding

a second one perpendicular to it with which it best spans a sheet-like structure locally.

We develop a computational solution which is based on the iterative minimization of

suitable energy functionals using gradient descent. Given a fixed vector field representing

the input fiber direction, and starting from an arbitrary initialized moving vector field,

we first directly consider the magnitude of the Lie bracket of the two vector fields as

an energy function that indicates the local deviation from being sheet-like. We perturb

the moving vector field iteratively in such a way that the energy reduces at each step

throughout the entire volume, and illustrate this approach for finding sheets from cardiac

ventricular diffusion data.

We then consider the related notion of non-holonomicity as the energy function which

we once again aim to minimize directly. We show that this second approach leads to an

algorithm which converges in theory and in practice, under reasonable assumptions on the

input data, and we provide high quality sheet reconstructions from both heart wall DTI

data and labeled tracts in the human brain, along with a sheet likeliness measure. Whereas

sheet-like geometries have been described qualitatively in past literature, ours is the first

method to provide a reconstruction of them from a single direction field.

The second problem addressed in this thesis is that of modeling moving fibers com-

putationally. Starting with orthonormal vector fields which span the sheet-like structure

of ventricular myocardium, we fit a frame field to the cardiac volume and then develop
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1.1 Objectives of the thesis

a moving frame method to model geometric changes, with a spatio-temporal formulation

of the associated Cartan matrix. This is a direct extension of the moving frame method

developed for the case of static fibers, introduced in [66]. We apply our construction to

simulated (canine) data obtained from the left ventricular mechanics challenge in STA-

COM 2014, and also to in vivo human left ventricular data. The method shows promise

in providing Cartan connection parameters to describe spatio-temporal rotations of fibers,

which in turn could benefit subsequent analyses or be used for diagnostic purposes.

In an application of this method, we consider the challenging problem of recovering

fiber orientation from noisy diffusion data, such as that obtained from in vivo imaging

of the heart. Recovering reliable fiber orientation from in vivo data is considerably dif-

ficult. To this end, we use a geometric approach, with a spatio-temporal Cartan frame

field to model spatial (within time-frame) and temporal (between time-frame) rotations

within a single consistent mathematical framework. The key idea is to calculate the Cartan

structural connection parameters, and then fit probability distributions to these volumetric

scalar fields. Voxels with low log-likelihood with respect to these distributions signal ge-

ometrical “noise” or outliers. With experiments on both simulated (canine) moving fiber

data and on an in vivo human heart sequence, we demonstrate the promise of this approach

for outlier detection and denoising via inpainting.

1.1 Objectives of the thesis

This thesis has two main objectives:

1. Given a vector field that is aligned with the orientation of fibrous structures in bio-
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1.1 Objectives of the thesis

logical tissues, we aim to recover a second vector field such that it has the highest

chance of spanning sheets in the tangent space to the fiber. To this end we:

‚ Define energy functions using the notion of the Lie bracket and non-holonomicity

to locally quantify sheet-likeliness;

‚ Introduce a gradient-descent based energy minimization approach that from a

given vector field, is capable of finding a second vector field perpendicular to

it that spans sheets;

‚ Show that under certain constraints, the algorithm converges for the case of a

non-holonomicity based energy;

‚ Develop an efficient and parallelizable, GPU-based implementation;

‚ Implement a method and a tool to visualize the fitted sheets, and the error of

fit on the input volume; and

‚ Demonstrate the method on different samples of cardiac and brain data.

2. We aim to model the motion of myofibers in the left ventricle and quantify their

rotation in the cardiac beat cycle. To this end we:

‚ Extend the notion of connection forms from the static case in 3D [66] to the dy-

namic case (which is 4D) via the notion of spatio-temporal connection forms;

‚ Consider the motion of material points in the dynamic case and introduce a

parameterization to model it;

‚ Utilize synthetic 4D cardiac simulation data to demonstrate a proof of concept

result;
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1.2 Publications arising from this thesis

‚ Introduce a frame fitting model to the acquired in vivo cardiac data;

‚ Measure the rotation of cardiac fibers locally during the contraction phase for

both human in vivo and canine simulation detests; and

‚ Propose a statistical model to find irregular oriented structures, based on a

population of spatio-temporal connection forms and illustrate the method on

both simulation and real data.

1.2 Publications arising from this thesis

Finding sheets in biological tissues

‚ (Conference) Syed, Tabish A., Babak Samari, and Kaleem Siddiqi. "Estimating

Sheets in the Heart Wall." In International Workshop on Statistical Atlases and

Computational Models of the Heart, pp. 3-11. STACOM 2018, Granada, Spain.

Lecture Notes in Computer Science, vol 11395, Springer.

‚ (Conference) Samari, Babak, Tabish A. Syed, and Kaleem Siddiqi. "Minimizing

Non-holonomicity: Finding Sheets in Fibrous Structures." In International Confer-

ence on Information Processing in Medical Imaging, pp. 183-194. IPMI 2019, Hong

Kong. Lecture Notes in Computer Science, vol 11492, Springer.

Babak Samari, Tabish Syed: Contributed equally to the design and implementation of

the energy minimization algorithms, on implementing the visualization pipeline, on the

proof of convergence, and on writing the article.
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1.2 Publications arising from this thesis

Kaleem Siddiqi: Contributed to methodological development, writing, and interpretation

of results.

Moving frames for moving fibers

‚ (Conference) Samari, Babak, Tristan Aumentado-Armstrong, Gustav Strijkers, Mar-

tijn Froeling, and Kaleem Siddiqi. "Cartan Frames For Heart Hall Fiber Motion.",

Functional Imaging and Modelling of the Heart, pp. 32-41. FIMH 2017, Toronto,

Canada. Lecture Notes in Computer Science, vol 10263, Springer.

‚ (Conference) Samari, Babak, Tristan Aumentado-Armstrong, Gustav Strijkers, Mar-

tijn Froeling, and Kaleem Siddiqi. "Denoising Moving Heart Wall Fibers Using

Cartan Frames." In International Conference on Medical Image Computing and

Computer-Assisted Intervention, pp. 672-680. MICCAI 2017, Quebec City, Canada.

Lecture Notes in Computer Science, vol 10433, Springer.

Babak Samari: Lead this work. Developed and implemented the spatio-temporal algo-

rithms and the visualization pipeline, and carried out the majority of the writing.

Tristan Aumentado-Armstrong: Assisted with the processing of the canine simulation

data, and helped with writing.

Gustav Strijkers and Martijn Froeling: Lead the in vivo cardiac imaging and helped

with writing and interpretation of results.

Kaleem Siddiqi: Contributed to methodological development, writing, and interpretation

of results.
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1.3 Additional publications

1.3 Additional publications

In the course of my doctoral studies, I was fortunate to be able to collaborate actively

with colleagues of mine in the Shape Analysis group at McGill University. This lead to

several publications on which I am a co-author, but which are not in the area of focus of

my thesis.

‚ (Conference) Rezanejad, Morteza, Babak Samari, Ioannis Rekleitis, Kaleem Sid-

diqi, and Gregory Dudek. "Robust Environment Mapping Using Flux Skeletons."

In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 5700-5705. IEEE, 2015.

Morteza Rezanejad: Lead this work, contributing to the design and implementation of

the algorithms, and carrying out the majority of the writing.

Babak Samari: Contributed to the design and implementation of the algorithms, and to

writing the article.

Ioannis Rekleitis, Kaleem Siddiqi, and Gregory Dudek: Contributed to methodological

development, writing and interpretation of results.

‚ (Conference) Wang, Chu, Babak Samari, and Kaleem Siddiqi. "Local Spectral

Graph Convolution For Point Set Feature Learning." In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pp. 52-66. 2018.

Chu Wang: Lead this work, contributing to the design and implementation of the algo-

rithms, and carrying out the majority of the writing.
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Babak Samari: Contributed to the designing and implementation of the algorithms, and

to writing the article.

Kaleem Siddiqi: Contributed to, methodological development, writing, and interpretation

of results.

1.4 Organization of the thesis

This thesis is organized into three main parts. A schematic organization of its contents is

presented in Figure 1.1. First, in Part I, we start by providing a review of relevant back-

ground. In Chapter 2, we briefly review mathematical topics, in particular, the Lie bracket,

holonomicity, and differential forms, all of which are relevant to the main contributions

of the thesis. Then, in Chapter 3, we review a selection of literature on the geometry of fi-

brous structures. In Part II, we start by reviewing sheet-like organizations in the brain and

in the heart in Chapter 4. Then, in Chapter 5, we develop iterative algorithms that from an

input vector field tangent to the direction of fibers, find a second vector field such that the

two span sheets. Later, in Chapter 6, we demonstrate sheet fitting algorithms on cardiac

ex vivo and brain in vivo datasets. Chapters 7, 8, and 9 of Part III focus on modeling the

motion of fibers during the cardiac beat cycle. Here, we develop a spatio-temporal frame-

work to describe this motion using the notion of connection forms. We demonstrate that

this model is capable of measuring the rotation of myofibers during the contraction phase

for both simulation and in vivo data. We then, specialize in the application of this model

and show how it can be useful in distinguishing noise and irregular structures. Finally, in

Chapter 10, we summarize the findings and contributions of this dissertation and discuss
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1.4 Organization of the thesis

Conclusion

Mathematical Background

Related Work

Part I – Background

Introduction

Methods

Experiments and Discussion

Part II – Finding Sheets

Introduction

Introduction

Methods

Experiments and Discussion

Part III – Moving Fibers

Figure 1.1: Organization of the thesis.

directions for future work.
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Part I

Part I: Background
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2
Mathematical Background

In this chapter we provide a mathematical background that is relevant to the sheet finding

and fiber geometry modeling approaches developed later in this thesis. In particular, we

review concepts related to the Lie Bracket, differential forms and texture flows. The reader

familiar with these subjects may proceed directly to Chapter 3.

2.1 The Lie Bracket and non-holonomicity

Given two smooth vector fields a and b on a manifold M , the Lie bracket L “ ra,bs is

their commutator. With f a smooth function defined on M the commutator acts on f as

follows:

Lpfq “ apbfq ´ bpafq.
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2.1 The Lie Bracket and non-holonomicity

In Cartesian coordinates we let a “ ai
B

Bxi
and b “ bi

B

Bxi
(with summation implied over

repeated indices). The Lie bracket is then given by

L “

ˆ

aj
Bbi

Bxj
´ bj

Bai

Bxj

˙

B

Bxi
.

Therefore, given vector fields a and b, we have

L “ Jba´ Jab, (2.1)

where, Ja and Jb are the Jacobians of a and b, respectively. In Cartesian coordinates the

Jacobian of a is defined as

Ja “

¨

˚

˚

˚

˚

˚

˝

Ba1

Bx1
Ba1

Bx2
Ba1

Bx3
Ba2

Bx1
Ba2

Bx2
Ba2

Bx3
Ba3

Bx1
Ba3

Bx2
Ba3

Bx3

˛

‹

‹

‹

‹

‹

‚

. (2.2)

Given the two vector fields a and b, we estimate the value of L, which is itself a vector

field, using Equation (2.1). This equation gives the Lie bracket an interpretation as the

vector displacement while moving along a parallelogram spanned by a and b at a point.

In other words, we start at the point p and then move along streamlines of a, b, ´a and

then ´b. The vector displacement to p is the Lie bracket. The magnitude of L at a point p

can therefore be used as a measure of deviation from a sheet spanned locally by fields a

and b, around p. For vector fields spanning sheets, we expect the parallelograms to close,

and therefore the magnitude of the Lie bracket to be zero. A similar construction based
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2.1 The Lie Bracket and non-holonomicity

on the Lie bracket is used by Tax et al. [86] to estimate sheet probability in the brain from

diffusion data. In Chapter 5, we shall define an energy based on the L2 norm of the Lie

bracket in a local neighbourhood Nppq of point p. Then, given a, we shall estimate the

vector field b that minimizes this energy at every point in space, while constraining the

solution space to vectors b in the plane perpendicular to a. Figure 2.1 illustrates the Lie

bracket operation on two arbitrary vector fields.

!"

#$%

!&

!'

−)$*

!+

!,
), # $.~0$.

)$.

−#$1

Figure 2.1: Conceptual illustration of the Lie bracket operation between two vector fields
u and v, at point p0. See text for a discussion.

Theorem 1 Given a unit vector field n which is orthonormal to a family of surfaces, it

can be shown that xn, curlny “ 0 [102], where we use x¨, ¨y to denote the inner product.

Conversely, any vector field n such that xn, curlny “ 0 is orthonormal to a family of

surfaces and is said to be holonomic.

For a general vector field n, its degree of non-holonomicity ρ is defined as follows
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2.1 The Lie Bracket and non-holonomicity

[102]:

ρ “
A

n, curln
E

.

Consider two orthonormal vector fields u and v such that n “ u ˆ v. It is easy to show

then, that non-holonomicity ρ expressed in terms of u and v reduces to

ρuv “
A

uˆ v, ru,vs
E

,

where ru,vsi “ uj Bv
i

Bxj
´ vj Bu

i

Bxj
is the Lie Bracket of u and v.
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2.2 Differential forms

2.2 Differential forms

We provide a brief overview of differential forms since they will later be used in our

discussion of moving frame methods for modeling fibers. In particular, differential forms

are essential to comprehend the notion of Cartan connections, used by Piuze et al. [66] to

describe the static rotation of cardiac fibers locally as described in Section 3.5. We further

extend it to model the motion of fibers both in space and time in Part III of this thesis.

Definition 1 Let pRnq˚ be a set of linear maps ψ : Rn Ñ R referred to the dual space of

Rn and ΛkpRnq˚ be maps of alternating, and multi-linear k vectors in Rn to R. Then, a

k-form is a map ω : Rn
ˆ ¨ ¨ ¨ ˆ Rn

looooooomooooooon

k times

Ñ ΛkpRnq˚

Note 1 Given a k-form ω : Rn
ˆ ¨ ¨ ¨ ˆ Rn

looooooomooooooon

k times

Ñ R, and vis as vectors in Rn, 1 ď @i ď k: ω

is:

1. alternating if: ωpv1, . . . ,vi, . . . ,vj, . . . ,vkq “ ´ωpv1, . . . ,vj, . . . ,vi, . . . ,vkq.

2. multi-linear if: ω is linear for all of its inputs, i.e.:

‚ ωpv1, . . . , cvi, . . . ,vkq “ cωpv1, . . . ,vi, . . . ,vkq,

‚ ωpv1, . . . ,vi ` v
1
i, . . . ,vkq “ ωpv1, . . . ,vi, . . . ,vkq ` ωpv1, . . . , v

1
i, . . . ,vkq.

Therefore, a k-form is an alternating, multi-linear operator on k vectors where each vector

is in Rn. Now, we define a basis for these k-forms in the following:
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2.2 Differential forms

Let i1, . . . , ik be k numbers between 1 and n and let vjs be vectors in Rn; then, we define:

dxi1,...,ikpv1, . . . ,vkq “ det

»

—

—

—

—

–

v1i1 . . . v1ik

... . . . ...

vki1 . . . vkik

fi

ffi

ffi

ffi

ffi

fl

. (2.3)

To simplify notation, let dxi1,...,ik refer to dxi1,...,ikpv1, . . . ,vkq. Using the definition

of the determinant, we know that dxi1,...,ik is multi-linear and alternating. We also see

that for any two numbers h, l P t1, . . . , ku where h ‰ l and ih “ il, dxi1,...,ik would

be equal to zero. Moreover, if we swap ih with il, we get the negative sign for dxi1,...,ik .

These leads to the idea of defining a basis for k-forms. Assuming I “ i1, . . . , ik where

ij P t1, . . . , nu, i1 ă ¨ ¨ ¨ ă ik, Shifrin [79] shows that tdxIu is a basis for ΛkpRnq˚, i.e.

elements of tdxIu are linearly independent and they span ΛkpRnq˚. Considering {dxIu as

a basis for ΛkpRnq˚, we can summarize a k-form ω as:

ω “
ÿ

I

aIdxI (2.4)

where the aIs, also known as 0-forms, are shortcuts for aIpx1, . . . , xnq, which are real

valued functions in Rn. A k-form is called differentiable if aI are differentiable functions.

We define a wedge product as an operator: ^ : ΛkpRnq˚ ˆ ΛlpRnq˚ Ñ Λk`lpRnq˚. In

order to formulate the wedge product, we first define how it works on the basis of ΛkpRnq˚
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2.2 Differential forms

and ΛlpRnq˚. Assume I “ i1, . . . , ik and J “ j1, . . . , jl where im, jm P t1, . . . , nu:

dxI ^ dxJ “ dxI,J (2.5)

where J has been concatenated to I . Now considering Equations (2.4) and (2.5), a wedge

product on a k-form:
ř

I aIdxI and an l-form:
ř

J bJdxJ can be applied by wedging the

corresponding dxI and dxJ according to the Equation (2.5) and multiplying corresponding

real function coefficients aI , bJ .

Note 2 Let Φ P ΛkpRnq˚, Ψ P ΛlpRnq˚ and Ω P ΛhpRnq˚, Shifrin [79] shows that the

wedge product has the following properties:

‚ skew-communicative, i.e. Φ^Ψ “ p´1qklΨ^ Φ

‚ associative, i.e. pΦ^Ψq ^ Ω “ Φ^ pΨ^ Ωq

‚ distributive, e.g. pΦ`Ψq ^ Ω “ Φ^ Ω`Ψ^ Ω

As has been shown in Equation (2.4), aIpx1, . . . , xnqs are real functions in Rn. From

differential calculus, we know that derivative of a function in Rn is a summation of its

partial-derivatives, i.e. daI “ daIpx1, . . . , xnq “
řn
j“1

BaI
Bxj
dxj . Thus, we now can define

the derivative of a k-form ω in Rn as the following:

dω “
ÿ

I

daI ^ dxI (2.6)

which is a (k+1)-form in Rn.
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2.2 Differential forms

Now that we have defined basic notations for differential forms, we specialize to the

space of R3. In 3D Cartesian space, where x “ x1, y “ x2, z “ x3, the following state-

ments are true:

‚ A 0-form is a function f in R3

‚ A 1-form is fdx` gdy ` hdz

‚ A 2-form is fdxdy ` gdydz ` hdxdz

‚ A 3-form is fdxdydz

‚ pk ą 3q-forms are zero (since an element dx, dy or dz needs to repeat more than

once).

In this thesis, we shall use the notion of 1-forms and their properties in Part III, to

model the motion of cardiac myofibers in a spatio-temporal setup.
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2.3 Texture flows, helicoids and moving frames for modeling fibers

2.3 Texture flows, helicoids and moving frames for mod-

eling fibers

We briefly review the current literature on the use of frame fields attached to curve data,

for modeling texture flows in computer vision and image analysis. This development is at

the heart of the use of the helicoid for texture flow analysis [8]. These methods were later

extended to 3D and used for modeling fiber tracts in diffusion MRI in the brain via the

notion of the generalized helicoid [73, 74]. We shall briefly discuss these developments

and then also show the connection to more general (model-free) moving frame methods

for fiber geometry [65], which provide a foundation for the results of Part III of this thesis.

Definition 2 A curve in R3 is defined as a differentiable function γ : pa, bq Ñ R3 where

a, b P R. The speed function of a curve is then defined as ρptq “ }γ1ptq}.

We refer to a curve as a unit speed curve if @t P pa, bq : }γ1ptq} “ 1. O’Neill [60]

shows that there exists a parametrization β for an arbitrary curve γ where β is a unit

speed curve.

Definition 3 Let O Ă R3 then:

‚ A vector field E on O is defined as a function that assigns to each point p P O a

tangent vector Vppq
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2.3 Texture flows, helicoids and moving frames for modeling fibers

‚ Let E1,E2,E3 be 3 vector fields on O. They. build a frame field if:

@p P O, 1 ď i, j ď 3 : Ei ¨ Ej “

$

’

&

’

%

1 i “ j

0 i ‰ j.

Note 3 We can now define a vector field on a curve γ : pa, bq Ñ R3 as a function that

assigns to each number t P pa, bq a tangent vector T at the point γptq.

We define 3 important vector fields on a curve as follows:

Definition 4 Let β : pa, bq Ñ R3 be a unit speed curve (i.e. @s P pa, bq : }β1psq} “ 1),

then:

1. T “ β1 is a unit tangent vector field on β.

2. Assuming that T is differentiable, T1 is called a curvature vector field on β,

κpsq “ }T1psq} is called a curvature function on s, and N “ T1

κpsq
is called a

principal normal vector field.

3. B “ TˆN is called a binormal vector field.

These 3 vector fields are orthogonal to each other and form a frame field on a curve,

known as the Frenet frame field [60]. Ben-Shahar and Zucker [8] review the organization

of 2D texture flows using a Frenet frame field. Informally, a 2D texture flow can be defined

as a “two-dimensional structure characterized by local parallelism and slowly varying

dominant local orientation” or a set of curves which are dense and locally parallel to each

other [8]. Let q P R2 be an arbitrary point on a texture flow. The local behavior of a texture
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2.3 Texture flows, helicoids and moving frames for modeling fibers

flow can be looked at on a frame field ET,EN at q where T,N are tangent and normal

vectors of a texture flow at the point q. Figure 2.2 shows a texture flow as a frame field

of ET,EN. An orientation function θpx, yq is defined on the neighborhood of the point q,

and then the surface spx, yq “ px, y, θpx, yqq in XY θ is parametrized. In the following,

we introduce definitions and formulations used for surface geometry.

EN

∇VET
∇VEN

q

ET

θ  

Figure 2.2: Illustration of texture flow using tangent and normal frames (adapted from
Ben-Shahar and Zucker [8]).

Definition 5 Assume M Ă R3 is a surface and p is a point on M and U is a unit normal

vector field on M :

1. If we let v be a tangent vector to M on p, then Sppvq “ ´∇vU is called the

shape operator of M at p.

2. If we let u be a unit tangent vector to M on p, then the number kppuq “ Sppuq.u

is called normal curvature of M at p in the u direction.
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2.3 Texture flows, helicoids and moving frames for modeling fibers

3. k1p “ arg min
u

kppuq and k2p “ arg max
u

kppuq are defined as the principal cur-

vatures of M at p.

4. Hp “
k1p`k2p

2
is called the mean curvature of M at p.

5. M is defined as a minimal surface if @p PM : Hp “ 0 i.e. @p PM : k1p “ ´k2p.

Note 4 A normal curvature of a surface at a point p, (kppuq), should not be confused with

the normal curvature of a flow which measures change in the texture flow in the direction

of EN.

Ben-Shahar and Zucker [8] show that if 4θ “ 0 (i.e. θ is a harmonic function) and

spx, yq is a minimal surface, then the frame field has the property of “slowly varying

dominant local orientation”. Furthermore, the plane and the helicoid surfaces are the only

surfaces that are both harmonic and minimal. Equation (2.7) describes the geometry of a

helicoid surface:

θpx, yq “ tan´1p
y

x
q ` C. (2.7)

Without loss of generality, let us assume that q “ p0, 0q and θp0, 0q “ 0 (i.e. frame

ET,EN is aligned with a global coordinate system). Then we have:

∇vθp0, 0q “ p∇vET,∇vENq “ pKT,KNq. (2.8)

Combining Equations (2.7) and (2.8) and simplifying them results in the following equa-

tion for θpx, yq:

θpx, yq “ tan´1p
KTx`KNy

1˘ pKNx´KTyq
q. (2.9)
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2.3 Texture flows, helicoids and moving frames for modeling fibers

The ‘˘‘ sign in Equation (2.9) gives us two different solutions known as the “right heli-

coid” model for the ‘`‘ sign and the “left helicoid” model for the ‘´‘ sign. Considering

the definition of KT,KN, Ben-Shahar and Zucker [8] verified that among these solu-

tions, the right helicoid model is the only one with a constant ratio of curvatures (i.e.

DC P R, @q : KTpqq
KNpqq

“ C); thus, it is the simplest model in terms of co-variation of KT

and KN.

Savadjiev et al. [73, 74, 75] extended the 2D frame by in the helicoid model by adding

the binormal basis, B, to form a 3D cartesian space. They showed that in this setup, the

right helicoid model θpx, yq could be generalized to θpx, y, zq by adding a linear compo-

nent KBz to the Equation (2.9). Then, they argued that the myofibers of the left ventricles

can be fitted to this model. For more detail review of this model please refer to Section

3.4.

It can be shown that θ is a 1-form operator [8], i.e., it is alternating and multi-linear.

Based on this observation and inspired by the notion Connection forms [10], Piuze et al.

[66, 65] further extend this idea by modeling the local rotation of frame fields via 9 con-

nection form scalars. Using these connection forms, they modeled the rotation of cardiac

myofibers by fitting a local coordinate system to them based on the extrinsic geometry of

the heart. The connection form model has more degrees of freedom than the generalized

helicoid model. We shall review this model in Section 3.5 as it is an essential component

to Part III of this thesis.
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3
Related Work

3.1 Biology of cardiac ventricles

A good deal is known about the structure of the mammalian heart and its wall (Figure 3.1).

Past accounts, including [29, 84], report that coronorary arteries and veins are located in

the direction along the epicardial surface. To carry nutrition to the deeper cells in the heart

wall, blood vessels are organized transmurally. While myocardial capillaries are typically

parallel to the long axis of the myocytes, vessels that connect myocardial capillaries to

the veins pass-through muscle layers [82]. In a healthy human heart, the average Ejection

Fraction (EF), which refers to the percentage of the blood pumping out from the left

ventricle (LV) during systole, is measured to be more than 50%. This indicates that at least

half of the ventricular blood volume passes through vessels in each cardiac phase. This

phenomenon is facilitated by an electrical signal diffused by calcium entry and derived by

local motion and rearrangement of myocytes [82].
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LV
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Figure 3.1: Left: A schematic of the anatomy of the human heart. LV stands for the left
ventricle, RV stands for the right ventricle, LA stands for left aorta and RA stands for right
aorta (adapted from Wikipedia contributors [100])). Right: Illustration of a typical muscle
sarcomere bounded by z-lines, which are shown in red (adapted from Ohtsuki [59]).

As illustrated in Figure 3.1, cardiac ventricular walls are comprised of myocytes which

themselves contain sarcomeres, which are the contractile elements. The myocytes change

shape during the muscle contraction phase [59, 50]. Studies indicate that the maximum

length of a cardiac sarcomere under physiologic stretch is bounded by 2.25 microns, com-

pared to its minimum length of 1.5 microns. Therefore, cardiac mechanics are affected

by the contraction of these cells, with the maximum shortening being about one-third in

length. In typical cases, though the shortening is between one-fifth and one-tenth in length

[82]. Measurements via quantitative electron microscopy indicate that these changes in

length are not uniform throughout the heart wall and the change increases moving from

the epicardial to the endocardial wall. A comprehensive study on canine hearts suggests

that mid-wall shortening of sarcomeres by only 13% is what drives the entire cardiac
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3.1 Biology of cardiac ventricles

motion [30].

Quantification of the functionality of the cardiac ventricles can help in the diagnosis of

cardiac diseases and evaluation of invasive cardiac procedures [15, 42, 72]. For instance,

Ejection Fraction (EF), is a very widely used clinical standard to evaluate the health of the

heart. To this end, different imaging modalities including echocardiography, ultrasound,

and MRI sought to unravel the previously unknown structure and function of the LV. There

are at least two different properties that make such analyses difficult. First, as illustrated

in Figure 3.2, the LV is likely the most structurally complex region of the heart. It consists

predominantly of fibrous structures that are geometrically non-symmetric. Regimes of

myocytes at the cellular level are organized end on end, with each myocyte containing

central nuclei and branches which connect them to a number of neighboring cells. This

complex of attached myocytes to form elongated structures is referred to as a myofiber

in the literature [82, 45]. These structures of interest are accompanied by fat, nerves,

veins, arteries and lymphatics [97], which makes their analysis even more challenging.

Second, the heart is not static but rather is a rapidly moving organ, which unlike other

organs such as the lungs, cannot be easily stabilized in a living subject for in vivo imaging

purposes. Static analysis of the heart and particularly the LV is usually possible only ex

vivo. Unfortunately, such studies cannot directly reveal many details regarding cardiac

contraction, particularly the change in the geometry of myofibers as the heart beats. What

makes the analysis of cardiac motion at a micro level even more complicated, is the motion

of the entire heart. Near the valves and the base of the heart, the organ is attached, while

its apex is free to move, and other moving organs including the lungs can affect its shape

during its contraction. Thus, isolating the shape changes in the heart wall that are purely
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3.1 Biology of cardiac ventricles

due to the contraction of myocytes, is not easy.

3.1.1 Ellipsoidal model

We now review the ellipsoidal model of the heart wall, that has been used to facilitate the

characterization of geometric changes [77]. The LV has a unique geometric shape. While

other muscles exhibit an elongated stacking of muscle cells, as shown in Figure 3.3, the

LV can be described as being bounded by two ellipsoids with a ratio of 2{1 corresponding

to long/short axis lengths [82]. The early models approximate the global geometry of the

heart by assuming uniform wall thickness along the axes of the ellipsoids. However, in

reality, there is a variation in the thickness of the heart wall from base to the apex. As

shown in Figure 3.2, the LV wall is much thinner closer to the apex and it does not have a

uniformly varying curvature moving to the base.

The twisting motion of the LV during the contraction phase [82] demands specialized

attention in the study of myofiber arrangement and the dynamics of cardiac contraction.

Simple models of cardiac contraction, such as the ellipsoidal model, usually assume a

symmetric torsion-free motion for a myofiber across the LV during the systolic phase.

Studies of electrical activation through electrophysiology as well as NMR tagging, have

revealed limitations of this assumed motion [47, 38, 42]. In addition, the adjacency of

other structures makes the study of cardiac contraction even more challenging. For in-

stance, papillary muscles and mitral valves work together to control and time the blood

flow into the LV volume. Therefore the orientation of sarcomeres and fibers of papillary

muscles are different from that of LV myofibers.
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3.1 Biology of cardiac ventricles

Figure 3.2: Arrangement of myocytes in the left ventricle of a canine image. Left: a
longitudinal slice of the LV to demonstrate the change in the curvature of the wall from
base (top of the heart) to apex (bottom of the heart). Right: arrangement of myocytes in
the longitudinal section of LV and Bottom: along the short axis slice from epicardium to
endocardium (adapted from Spotnitz [82]).
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3.1 Biology of cardiac ventricles

Spherical coordinate system

A global reference cardiac coordinate system can be defined with respect to the ellipsoidal

model according to the spherical orthonormal bases: the long axis, the radial axis and the

circumferential or the short axis of the ellipsoid. As illustrated in Figure 3.3, these axes

form three orthonormal planes which are often referred to in the literature:

‚ The transverse or circumferential plane spanned by the radial and the circumferen-

tial (short) axes.

‚ The axial or transmural plane spanned by the radial and the long axes.

‚ The tangential plane spanned by the long and circumferential (short) axes.

Two ellipsoids with overlapping axes resemble the surfaces of the epicardium and the

endocardium, respectively. This approach of modeling the LV has the advantage that de-

scribing the geometry and mechanics of the LV easy with respect to the global coordinate

axes, is straightforward. For instance, considering a short axis slice of this model at the

beginning of the contraction phase (end-diastole) versus the one at the end of the con-

traction phase (end-systole) can help us better understand how global geometry changes.

Moreover, NMR tagging measurements of a short axis slice of the heart wall demonstrates

a 36% thickening of it during the contraction phase [82].

Fiber/Helix angle

If we assume a uniform cylindrical (constant) volume for the LV, the 13% sarcomeric

shortening or fiber shortening [84] implies an increase of myocyte thickness by only 6%.

29



3.1 Biology of cardiac ventricles

lon
ga
xis

α

short axis

-./0

1203

short

radial

long

α

radial a
xis

Figure 3.3: Modeling the left ventricle using two ellipsoids. The short and the long axes of
the larger ellipsoid are shown with dashed lines. The transverse or circumferential plane
is shown in yellow, the tangential plane in green and the axial or transmural plane in red.
The fiber or helix angle α is illustrated as the angle between the projection of the fiber
onto the tangential plane (dashed yellow line) and the circumferential plane [27, 67].

The question then is how can a 6% thickness change in each myocyte result in a 36%

thickness change in the heart wall [82]? This is only possible if the myofibers change

in angle moving from the epicardium to the endocardium. Thus, the notion of the helix

angle (see Figure 3.3), which is also referred to in the literature as the fiber angle, is of

significance.

Definition 6 The helix angle α is the angle between the transverse plane and the projec-

tion of the direction of a myofiber onto the tangential plane.
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3.2 Early models of the geometry of myofibers

Achieving the desired wall thickening given the aforementioned criteria requires a

change in the helix angle when moving in from epicardium to endocardium. This property

has been verified by both histology [48] and MRI on ex vivo mammalian hearts [6, 34].

3.2 Early models of the geometry of myofibers

While the two ellipsoid model provides a description of the global geometry of the heart

and permits mathematical analysis, it is at best a coarse approximation to reality. Early

work in the modeling of ventricular macro structures, based on histology, attempted to

introduce geometry-based modeling via intuitive interpretations. In 1953, Rushmer et al.

[68] distinguished a 3 layer pattern for the macro organization of myocytes, namely, the

superficial, middle and deep layers in the short-axis direction of the heart. As illustrated

in Figure 3.4(A), this artificial division is sought to justify the rotation of regimes of my-

ofibers moving from epicardium to endocardium. In 1979, Geiger [26] hypothesized an

LV structure as a series of nested doughnut shaped geodesics. This model assumes that

myocytes follow a helical pattern throughout the left ventricle. Later, Jouk et al. [41] ex-

tended this to the pretzel (nested doughnut) model, which combines two separate sets

of geodesics for the right and the left ventricle (Figure 3.4 (B,C)). A rather controver-

sial proposal by Torrent-Guasp et al. [89] assumes a single continuous band of muscle

for the entire heart wall, which twists into two helices that are looped through the right

and left ventricular volumes. This model of a helical ventricular muscle band (HVMB) is

motivated by a particular manner of slicing the ventricles, which is guided by natural ven-

tricular cleavage planes. Although at first glance this model roughly follows the principal
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3.2 Early models of the geometry of myofibers

A B C

Figure 3.4: Early models of the heart wall. A A three layered model, B A simple
dougnhnut model, and C A pretzel model (adapted from Gilbert et al. [27]).

direction of fibers everywhere, according a critical study by Gilbert et al. [27], it is not

fully compatible with many other known features of myocardial structures.

3.2.1 Laminar structures and sheets in the heart wall

LeGrice et al.’s pioneering work[45] is among the first accounts of a laminar organization

of ventricular myocytes in mammalian hearts. Prior to this work, the geometry of fiber

paths was assumed to be helical from the apex of the heart to its base [53]. In addition,

earlier studies of these structures were mostly limited to qualitative 3D descriptions based

on 2D histology. Appreciating the significance of the 3D organization of myocytes in de-

termining electrical and mechanical properties of the heart, the authors sought to find a

more accurate justification of these characteristics from the geometrical perspective of

myofibers. Moreover, they carried out a thorough analysis of the cellular architecture of

ventricular tissues, regionally and globally, in both a quantitative and qualitative manner.
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3.2 Early models of the geometry of myofibers
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Figure 3.5: Visualization of the laminar structure of an ex vixo canine left ventricle. Mid-
dle: 3 orthogonal surfaces of LV: C Circumferential, T Tangential, A Axial. Red, green
and blue arrows respectively represent short, radial and long axes (adapted from LeGrice
et al. [45]).

To achieve this goal, four dogs were anesthetized and a series of sections from each heart

were selected to be further studied using electron microscopy. The slicing of the ventricu-

lar muscles was carried out in accordance with the direction of fibers, with the short axis

parallel to the mean fiber direction, which forms three orthogonal surfaces, as illustrated in

Figure 3.5: circumferential, tangential, and axial. Several parameters were utilized in this

study to quantify these scans, including, the number of myocyte branchings per unit, the

relative path length of neighboring myocytes, the volume fraction occupied by myocytes,

and the number of muscle cells in each layer.

As illustrated in Figure 3.5, muscle layers consist of a connected stack of myocytes

that are separated via cleavage planes, while branching between the adjacent layers is rel-

atively rare. LeGrice et al. [45] report a relative linear transmural increase in the volume of
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3.3 Emergence of cardiac DTI

myocytes and branches per unit and a decrease in the calculated length of connected fibers

while moving from the inner wall to the outer wall. An abstract and simplified schematic

is then represented to mimic the organization of muscle fibers, with a transmural segment

of the cardiac wall containing layers of tightly linked myocytes running in the radial di-

rection, with scattered circumferential and tangential branching visible between layers.

The transmural organization of laminar sheets separated by cleavage planes is relatively

well accepted in further studies in the cardiac imaging community [67, 34], which helps

explaining the static structure of ventricular muscle tissues.

3.3 Emergence of cardiac DTI

By progress in Nuclear Magnetic Resonance (NMR) imaging, particularly the introduc-

tion of Diffusion Nuclear Magnetic Resonance Imaging (dMRI), a new window has been

opened to the medical imaging community. Primarily, dMRI was developed for static tis-

sues, such as the human brain, for mapping connectivity [4]. Then, it was further applied

to assess the geometry of myofibers for ex vivo hearts [7, 34, 27]. DT-MRI or in short,

DTI is an MRI based 3D imaging modality which models the axes of diffusion of wa-

ter molecules by symmetric 3 by 3 tensor matrices. The three orthogonal eigenvectors of

this matrix are then decomposed and sorted according to the magnitude of their eigen-

values. If there is no physical structure in the corresponding tissue, due to the isotropy

of diffusion, water molecules should be able to move freely in any direction, and thus

the 3 eigenvectors should have relatively close eigenvalues [27, 82]. In contrast, when the

motion is restricted in certain directions, i.e., across fibers, as opposed to along them, a
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3.3 Emergence of cardiac DTI

diffusion tensor fit will exhibit the property that its direction of elongation serves as a

proxy for the direction of highest diffusion (and hence fiber direction) [4]. We refer to the

3 ranked eigenvectors by the corresponding magnitudes of the eigenvalues as the primary,

secondary and tertiary eigenvectors.

In the heart, wherein most regions the assumption of a single direction of dominant

orientation holds, DTI is an accepted method and is favored in most studies [82, 27, 34].

There are, however, more advanced methods such as high angular resolution diffusion

imaging (HARDI) [92, 2], that allow for more complex intra-voxel geometries to be mod-

eled, such as branching or crossing fibers.

3.3.1 Cardiac DTI-based local coordinate system

In the case of ventricular muscle tissues, if we accept the geometry explained by LeGrice

et al. [45], we should expect that the water molecules existing in cardiac myocytes should

have the largest range of motion in the direction of myofibers, the second-largest degree

of motion in the direction within laminar sheets and the least in the direction locally

perpendicular to the sheet plane. There are several studies that validate this hypothesis by

comparing DTI with histology [14, 34, 35, 91].

In several studies of myofiber geometry using DTI [27, 49, 67], the eigenvector direc-

tions are used to define a local coordinate system. Here the principal direction is taken to

be that of the fibers, the second eigenvector is taken to span a sheet with the first, and the

third eigenvector defines the direction of a sheet normal.
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3.3 Emergence of cardiac DTI

3.3.2 Sheet angle

The notion of a sheet angle varies in different papers [25, 45]. For instance, it could depend

on the definition of a local and global coordinate system or on the scaling of this angle

(either between 0 to 180 or -90 to +90 degrees). In attempt to have a unified definition, as

illustrated in Figure 3.6, Gilbert et al. [27], defined the sheet angle β1 as the angle between

the circumferential (transverse) plane and the projection of the second eigenvector of a

DTI reconstruction onto the radial plane spanned in the range of r´90,`90s degrees.

Then, based on this definition, the authors measured the β1 sheet angle across different

samples of DTI scans of 12 canine hearts. This work reported the amount of change in the

sheet angle in different parts of the heart within a specimen and across different species.

These observations led to the introduction of a notion of sheet stacks as a set of stacked

laminar structures, which are separated by hypothetical boundaries. Each stack consists of

a regime of circumferential myofibers. The sheet angle across these boundaries changes

rapidly yet continuously when moving from epicardium to endocardium.

3.3.3 Reconstruction of cardiac myofibers and sheets using DTI

Another study by Rohmer et al. [67] of ex vivo DTI of a human heart also quantitatively

verifies the earlier findings of the literature, regarding the geometry of cardiac myofiber

geometry. Similar to [27], this paper assumes that cleavage planes are a barrier to the

diffusion of water molecules and thus the smallest eigenvector of the diffusion tensor cor-

responds to the direction normal to these planes. More importantly, the authors introduce

a novel model of cardiac myofibers and sheetlets from the eigenvectors decomposed from
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Figure 3.6: Visualization of the sheet angle (adapted from Rohmer et al. [67]). See text
for a discussion.

the diffusion tensors of human cardiac data. To model the cardiac myofiber as a contin-

uous streamline, the authors use a fiber tracking algorithm based on the direction of the

principal eigenvector of the tensor matrices. From the computed fiber tracking system to-

gether with the second and third-ranked eigenvectors of the diffusion tensor, the authors

construct a sheet tracking pipeline assuming that cardiac sheetlets should be oriented ra-

dially (in the direction of the second eigenvector). Then, based on these constructions,

Rohmer et al. [67] calculate the sheet angle and the helix angle. Their findings confirm

the earlier hypothesis based on histology [45], that the fiber angle changes gradually in

the mid-wall section, but the amount of change closer to the epicardial and endocardial

surfaces is more pronounced.
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3.3 Emergence of cardiac DTI

3.3.4 Cardiac DTI limitations

While DTI facilitates the study of cardiac macro structures in intact tissue, it suffers from

certain limitations. The first has to do with the low resolution of MR based techniques.

Even with the latest technology, the spatial resolution of DTI is too low to reflect the

cellular arrangement of the myocardial structure. For instance, each voxel of an MR-

based volume corresponds to 6 to 20 sheets [27] and around 4600 myocytes for the case

of ex vivo human DTI [67].

A second challenge is that current acquisition techniques require that the scanned area

should remain stable. In vivo diffusion imaging of the heart is an area of current research,

and present in vivo imaging technology allows only for low resolution reconstructions

[24, 23, 22, 57]. Having different time samples of in vivo data is particularly important

when studying the mechanics of the heart, and the motion of the heart through the car-

diac cycle. Furthermore, after the data is gathered, it usually has a low signal to noise

ratio. Therefore, different smoothing and averaging techniques [46, 3, 70] are often used

for post processing. On their own, these techniques could be a source of bias leading to

misinterpretations of the original data.

As mentioned in Section 3.3, most of the work of the literature is based on the hypoth-

esis that water molecules can move more freely in the direction of myocytes than in other

directions within the sheet plane and have the least freedom in the orientation normal to

the sheet. While this assumption makes intuitive sense, in practice it may not always be

true for several reasons. For example, unlike in the brain, where tract systems are com-
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3.4 Generalized helicoid model

prised of bundles of axons, the notion of myofibers in cardiac tissue is abstract [45, 82].

While the difference between the first eigenvalue of the diffusion tensor and the other two

is significant, the second and third eigenvalues sometimes have similar values [49]. This

can lead to local perturbation in the ranking result [67, 27], and thus affect the definition

of an eigenvector based sheet plane. This assumption doesn’t account for the motion of

water molecules in other cardiac tissues that exist in the proximity of myocytes, including

blood vessels, fat, and collagen.

3.4 Generalized helicoid model

Early studies in the literature show that the geometry of each fiber of the left ventricle

of a heart is very close to a 3D helical curve [37]. Savadjiev et al. [75] describe one

of the first attempts to model a volumetric bundle of cardiac myofibers together, using

a Generalized Helicoid Model (GHM), as opposed to a single myofiber. Intuitively, this

paper models the geometry of cardiac fibers as a texture flow in 3D space. First, the flows

are parameterized using 3D geometrical coordinates. Thus, the frame field consists of

three orthogonal bases, ET,EN,EB where T,N,B are the tangent, normal and binormal

vectors to an arbitrary point q P R3 of a 3D texture flow. Using the same logic discussed in

Section 2.3, this requires the parameterization of a surface spx, y, zq “ px, y, z, θpx, y, zqq

in XY Zθ, where θ is the orientation function in the neighborhood of the point q. In 3D

space, this has been modeled using a generalized helicoid:

θpx, y, zq “ tan´1p
KTx`KNy

1`KNx´KTy
q `KBz. (3.1)
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3.5 Cartan connection model

As can be seen, this is basically Equation (2.9), plus a linear term modeling rotation

in the direction of the z coordinate. The authors make the assumption that, in the left ven-

tricle of the heart, myofibers follow the geometry of a GHM texture flow. Based on this

assumption, a brute-force search algorithm is run to fit the ground truth input acquired via

diffusion MRI on a GHM. In other words, given that the GHM is a model that describes

myocardial fiber geometry, Savadjiev et al. [75] try to find values of KT,KN,KB which

minimize the difference in orientation between the one predicted via a GHM fit and the

one acquired via diffusion MRI, which are shown to provide accurate representations at

the millimeter and sub-millimeter scales across mammalian species. They also show that

an interesting feature of GHMs is that they are minimal surfaces, i.e., the mean curva-

ture of the GHM is zero everywhere, which could be of significance in the context of

mechanics of cardiac contraction.

3.5 Cartan connection model

We now follow up on the material in Section 2.2 by reviewing the mathematics of Cartan

connection forms [16, 60] for the case of an orthonormal unit frame field F “ rf1, f2, f3sT

defined in R3, which is the construction used in [65] to describe the geometry of myofibers

in a static heart wall. A covariant derivative of this frame field with respect to a vector v

at point p is given by

∇vf1 “ ω11pvqf1ppq ` ω12pvqf2ppq ` ω13pvqf3ppq

∇vf2 “ ω21pvqf1ppq ` ω22pvqf2ppq ` ω23pvqf3ppq

∇vf3 “ ω31pvqf1ppq ` ω32pvqf2ppq ` ω33pvqf3ppq

(3.2)
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3.5 Cartan connection model

where i P t1, 2, 3u, and ωijpvq “ ∇vfi ¨ fj . O’Neill [60] shows that these ωijs satisfy the

definition of 1-forms in R3. For any vector field v in R3

∇vfi “
ÿ

j

ωijpvqfj. (3.3)

Using the alternating property of 1-forms, ω11 “ ω22 “ ω33 “ 0 and ω21 “ ´ω12, ω31 “

´ω13, ω32 “ ´ω23. Let us assume that the frame field F has the following parametrization

in the universal Cartesian coordinate system E “ re1, e2, e3s
T :

f1 “ α11e1 ` α12e2 ` α13e3,

f2 “ α21e1 ` α22e2 ` α23e3

f3 “ α31e1 ` α32e2 ` α33e3

(3.4)

where each αij “ fi ¨ ej is a real valued function. The matrix A “ rαijs is called the

attitude matrix, and dA “ rdαijs is a matrix whose elements are 1-forms. With ω “ rωijs

it can be shown that ωij “
ř

kpdαikqαkj [60], so

ω “ dAAT . (3.5)

Connection forms describe the rate of change of a frame field rf1, f2, f3sT in the direction

of an arbitrary vector v. The dual 1-form of the frame field rf1, f2, f3sT is obtained when

it is itself parametrized via 1-forms, i.e., for each vector v at p, ψipvq “ v ¨ fippq. For the

sake of simplicity we will use the same notation for the frame and its dual representation,
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i.e.,

fipvq “ ψipvq “ v ¨ fippq. (3.6)

From the definition of the 1-form,

dxipvq “
ÿ

j

vj
Bxi
Bxj

ppq “ vi. (3.7)

Combining Equations (3.6) and (3.7) results in

fipejq “ fi ¨ ej “ p
ÿ

k

αikekqej “ αij. (3.8)

From Equations (3.7) and (3.8) we have fi “
ř

j αijdxj which, with F “ rfis
T , can

be written in the dual 1-form representation as F “ Ardx1 dx2 dx3s
T . The Cartan

structural equation is then given by O’Neill [60]:

dfi “
ř

j ωij ^ fj, i.e., dF “ ωF,

dωij “
ř

k ωik ^ ωkj, i.e., dω “ ωω.
(3.9)

Since there are three unique connection forms ω12pvq, ω13pvq, ω23pvq, feeding the

frame field’s unit vectors to them produces nine different connection parameters cijk “

ωijpfkq. Here, for the vector v at a point p, ωijpvq represents the amount of fippq’s turn

toward fjppq when p moves in the direction of v. The estimation of these connection pa-

rameters for frame fields attached to diffusion MRI data of ex vivo hearts was the strategy

proposed in [65] to parametrize the static geometry of heart wall myofibers.
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3.6 Sheets in the mammalian brain

These nine different coefficients are used to estimate the motion of the frame field us-

ing first order approximation of the Taylor expansion of the frame field F in the direction

of the vector v at a point p

fipvq » fippq ` dfipvq. (3.10)

Applying the Cartan structural Equation (3.9) on the Equation (3.10), where v “
ř

k vkfk,

results in:

fipvq » fippq `
ÿ

j

p
ÿ

k

vkcijkqfjppq. (3.11)

This idea is then used to calculate the local rotation of a frame field using connection

forms. Piuze et al. [65] address different approaches to estimate each cijk for an arbitrary

smooth frame field. In several related papers based on this idea [66, 80, 81, 65] apply

algorithms for fitting connection forms to frame fields attached to diffusion MR data of

ex vivo mammalian hearts.

3.6 Sheets in the mammalian brain

The white matter of the mammalian brain consists of bundles of elongated nerve fibers,

called axons [54]. Unlike cardiac ventricle myofibers, which are abstract representations

of interconnected myocytes, brain axons are organized in actual fiber bundles that literally

connect different regions of brains to communicate electric signals between them. These

bundles themselves then form groups which are referred to as white matter fiber tracts

[40]. Knowing the geometry of these fiber bundles or streamlines is particularly important

in neuroscience, e.g., to help neurosurgeons in planning surgeries with minimal possibility
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of damage to important tract systems in order to preserve the functionality of the brain.

Similar to the case of cardiac dMRI, water molecules are assumed to have more free-

dom in their motion in the direction of axons. However, as discussed in Section 3.3.4,

the resolution of MR-based techniques for mapping fiber tract systems in the brain is far

behind the resolution of physical structures in question. In fact, according to [39], a single

voxel acquired via dMRI can contain hundreds of thousands of axons and other neighbor-

ing biological tissues. Furthermore, for the case of neurological dMRI, fiber crossings due

to intersections of axon bundles, make the characterization of their geometry even more

complex than that of cardiac DTI.

While DTI can only provide information regarding a single direction for tracts per

voxel, more advanced dMRI based modalities, such as high angular resolution diffu-

sion imaging (HARDI) [92, 2], account for potential crossing of fibers within a voxel.

Therefore, fiber tracking or the development of tractography algorithms for application to

neuro-dMRI is a complex topic of research that is beyond the scope of this dissertation

[39]. These algorithms can be used to provide navigation maps of cerebral fiber paths

of white matter connections, namely connectomes. In 2009, Van Essen et al. [93], com-

menced a neuro-imaging project in which they gathered comprehensive MR scans of a

population of 1200 healthy adults, making them available to the research community for

further analysis. Their results have been used in the research that followed since then,

including in the Human Connectome Project (HCP) [52]. These results are used in Part II

for proof of concept validation of the sheet finding algorithm we propose.

The notion of sheets in human connectomes has been around in the literature implic-
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Figure 3.7: Visualizing sheets as gridlike structures in the crossing of fiber pathways in
the brain (adapted from Wedeen et al. [99]).

itly for some time [94, 43, 104]. In 2012, Wedeen et al. [99], in a rather controversial

article, reported that fiber pathway crossings have a gridlike pattern in certain areas of

the brain. As illustrated in Figure 3.7, different fiber tracts, which can be visualized as

3D streamlines, appear to form regular grids that cross each other almost orthogonally,

throughout the brain. The authors argue that this is statistically impossible unless there

exists an underlying structure to these areas of interest. They report qualitative results

both on distinct brain regions and on different mammalian species. Catani et al. [12] in

a critical review question the existence of these perpendicular crossings. They argue that

this phenomenon could be the result of the limitation of the tractography algorithm used

in [99] and the image acquisition and reconstruction process itself.

While this research has spawned much discussion [98], the construction of principled

methods for finding sheet-like structures and quantifying them has largely remained an

open question. From another perspective, in a series of publications, Tax et al. [86, 87]
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introduced the notion of a “Sheet Probability Index (SPI)” to quantify the likeliness that

a sheet passes through a query voxel of white matter in a diffusion tensor reconstruction.

This measure is not a probability, strictly speaking. They show that certain regions of the

brain are more likely to have sheet-like structures since the normal component of the Lie

bracket of the 2 principal vector fields of their corresponding voxels has relatively higher

values. They also demonstrate robustness and consistency in their findings over different

specimens, scanners, and imaging techniques.
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Part II

Part II: Finding Sheets in

Biological Tissues
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4
Introduction

The contents of this part are largely based on the articles: “Estimating Sheets in

the Heart Wall”[85], and “Minimizing Non-holonomicity: Finding Sheets in Fi-

brous Structures”[71] which are the result of collaborative work with colleagues

in the Shape Analysis Group at McGill University. This work focuses on finding

sheet-like structures in biological tissues.

Fibrous biological tissues are reported to be organized in sheet-like geometries in

certain regimes. Examples include laminar sheets and cleavage planes in the heart wall

[34, 45], and sheets on which fiber tract systems in the mammalian brain are posited to

lie [99]. Quantitative geometric characterizations of sheets in biological tissue are often

based on orientation measurements from in-vivo or ex-vivo specimens, using diffusion

imaging. Heart wall myofibers are thought to lie within laminar sheets, an organization
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which exerts an important influence on the heart’s mechanical and electrophysiological

properties [55, 20]. In work based on thick tissue sections from excised canine hearts us-

ing scanning electron microscopy, as well as studies based on contrast-enhanced MRI, it

has been shown that these laminar sheets are geometrically prominent, and can be asso-

ciated with large cleavage planes which fall between them [45, 28]. When working with

intact excised hearts, sheet orientation is typically estimated using the three eigenvec-

tors of a diffusion tensor reconstruction. In the majority of such approaches, the principal

eigenvector is assumed to coincide with myofiber orientation and is taken together with

the second eigenvector to span the local sheet. The third eigenvector thus gives the normal

to the sheet, with qualitative justification such as that given in [34]. A typical example is

the tracking and reconstruction algorithm developed by Rohmer et al. for the visualiza-

tion of laminar sheets in a cadaver human heart in [67], as reviewed in Chapter 3, Section

3.3.3.

Once estimated, sheet structure can be the basis for the assessment of normal heart

function. For example, Dou et al. investigate the hypothesis that ventricular thickening in

humans occurs via laminar sheet shear and sheet extension, using diffusion and strain MRI

[18]. In the context of electrophysiology, Young and Panfilov put forth the hypothesis that

an assumption of differing conduction speeds along fibers (vf ), across them but in laminar

sheets (vs), and between the laminar sheets (vn), can reliably predict the time of arrival of

the conduction wave, at any particular location in the heart [101]. This conduction wave

triggers the contraction of myocytes, which in turn determines the timing and dynamic

shape of the heart beat.
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Figure 4.1: The mean eigenvalues of the three eigenvectors of the diffusion tensor for 8
different rat (left) and canine (right) specimens. The data is from the open access reposi-
tory in [76].

Whereas the idea that the principal eigenvector gives a faithful estimate of local my-

ofiber orientation has widespread support, the second and third eigenvectors are associated

with eigenvalues that are sometimes very close to one other. When this happens, these di-

rections are locally ambiguous. Examples of plots of mean eigenvalues are shown for 8

rat and 8 canine heart datasets in Figure 4.1. In one of the first reported studies of similar

canine DTI datasets by Peyrat et al. [62], a statistical analysis framework for atlas con-

struction was proposed. The results showed consistency in fiber orientations associated

with the principal eigenvector, but greater variability in sheet structure derived from the

remaining two. Similar trends in terms of the relative magnitudes of the mean of the three

eigenvalues were observed by Lombaert et al. [49], where an atlas of 10 ex vivo human

hearts were constructed, and detailed tensor statistics were reported. Here the second and

third eigenvalues were found to have greater standard deviations as well as overlap in their

distributions. Thus, in such situations, the directions of the second and third eigenvectors
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can be ambiguous and reliance on them for sheet estimation could be problematic.

The same is true of the mammalian brain; in regions where multiple tract systems

co-exist and cross one another, fiber geometry is not well characterized by a single diffu-

sion tensor. In the human brain, the hypothesis that distinct tract systems lie on 2D sheets

which intersect one another at approximately 90 degree angles to generate a local grid-

like pattern, has been supported by qualitative considerations and visualization in [99].

Others have pointed out that distinct tract systems might span a sheet without being lo-

cally orthogonal to one another [12] and that quantitative measures of sheet geometries

derived from diffusion data are desirable [86, 87, 1]. Yushkevich et al. [103] have fit de-

formable medial models to segmented tract systems to obtain sheet-like representations

of fasciculi where appropriate [104]. Motivated by the property that two vector fields span

an integrable surface when the normal component of the associated Lie bracket goes to

zero, Tax et al. have used this quantity to define a local sheet probability index along with

robust algorithms to estimate it [86, 87]. In their work, the local vector field directions are

chosen from the peaks of a fiber orientation distribution function. The normal component

of the Lie bracket has also been shown to be effective for sheet structure visualization,

via the construction of a sheet tensor in [33], while Ankele and Shultz have applied this

measure directly to diffusion tensor data in [1]. Motivated by these formal approaches to

sheet structure estimation based on the integrability of vector fields, in this part of the

thesis, we study a more general problem, which is the reconstruction of local sheets from

a single direction field. Such a field might arise from the principal eigenvector direction

of a diffusion tensor (e.g. as in the case of the heart wall), or from the tangent vectors to

precomputed streamlines, as in the case of labeled tract systems in the mammalian brain.
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We depart from past approaches by treating sheet structure estimation as an energy mini-

mization problem, where, given the single direction field as input, we find a second vector

field that is optimal with respect to spanning a local sheet with it. The main idea here is to

find the best local vector field orthogonal to the principal eigenvector in the sense of span-

ning a sheet. To accomplish this goal, we first use the Lie bracket along with a suitable

energy function to estimate this vector field via energy minimization. This construction

is reported in Section 5.1. Then, in Section 5.2, we extend this minimization by using a

formal notion of holonomicity. Holonomic vector fields can be shown to be normal to a

family of smooth surfaces. As it turns out, this is equivalent to finding the second field

as a local minimizer of the normal component of a Lie bracket. Based on these ideas, we

present a gradient descent based algorithm to recover sheets, along with a proof of conver-

gence. We also report a very efficient implementation of the algorithm using GPUs. Our

application of this algorithm to mammalian heart wall orientation data from two species,

rat and canine, reveals sheet geometries consistent with what has been reported only in

qualitative descriptions thus far from DTI, or in observations from histological slices of

heart wall tissue. Of more significance are our results on labeled tract systems from the

Human Connectome Project, where we test the sheet hypothesis in a formal way. Given

a tract system described as a collection of streamlines in 3D as input, we recover sheet

geometries where there is support for them. As a by-product of our approach, we pro-

vide high quality visualizations of the sheets in biological structures using the software

we have written. We anticipate that such visualizations will be useful to anatomists when

examining fibrous structures in the context of their local surroundings.
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Methods

First, in Section 5.1, we consider the Lie bracket and develop a heuristic method to min-

imize it in order to find sheet-like structures. This first construction, although effective

in practice, does not provide theoretical convergence guarantees, and the implementa-

tion is computationally expensive. Motivated by these considerations, in Section 5.2 we

consider the formal notion of holonmicity and try to find sheets that directly minimize

a non-holonomicity based energy. We show that our method converges under certain as-

sumptions on the energy functional and we provide an efficient and GPU-based imple-

mentation of it.

5.1 Sheet estimation by Lie bracket energy minimization

As discussed in Chapter 4, laminar sheets, and cleavage planes have been posited to exist

but evidence of them are via 2D histology. The problem of recovering sheet models di-
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5.1 Sheet estimation by Lie bracket energy minimization

rectly from cardiac DTI is of interest since this allows for 3D full heart analysis. In this

section, we design a pipeline that estimates sheets in the heart only from the principal

eigenvector of DTI data. Let u be the unit norm vector field derived from the principal

eigenvector of a cardiac DTI reconstruction aligned with the local direction of myofibers.

This is a common assumption, used in the context of fiber orientation modeling from dif-

fusion data in a variety of methods, as reviewed in [82]. The second and third eigenvectors

can be associated with similar eigenvalues (see Figure 4.1) and thus may not be reliable

for sheet estimation. We use the following alternate strategy to recover the sheet direction,

v, using only the principal eigenvector u. Let vpθq be a vector field in the local plane per-

pendicular to the vector field u. Our objective is to estimate the field v̂pθq, which together

with u spans a local sheet, by minimizing a Lie bracket based energyEppθqwhich at point

p is defined as follows:

Eppθq “
ÿ

qPNppq

Lqpθq
TLqpθq. (5.1)

Here Lqpθq “ Jvqpθqu´ Juqpθqv is the Lie bracket at the point q and vqpθq and uq are the

values of vector fields v and u respectively at the point q. Note that vp is a function of a

single parameter θ - the orientation of the vector in the plane perpendicular to the fixed

field uq. We shall not express vp in terms of θ, since this parameter is not used explicitly

in the algorithm reported in this section.

In order to minimize the energy Epθq, we use gradient descent with respect to θ point-

wise. Rather than using θ explicitly we directly update the vector field v using the follow-
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Figure 5.1: An illustration of a gradient decent step of the Lie bracket energy minimization
algorithm. A: Illustration of two normal vectors u, v that estimate the sheet locally at point
p. B: Visualization of the updated v after a step of gradient decent.

ing update equation:

vt`1p pθq “ vtppθ ´ η
BEpθq

Bθ
q.

The update is performed by rotating vp about the axis up by an angle η
BEpθq

Bθ
. This

method of update allows us to not have to write v explicitly in terms of θ and also ensures

that the vector field v stays in the plane perpendicular to u after the update. This turns

out to be more convenient than explicitly solving the problem for the Cartesian parame-

terization. Figure 5.1 provides a schematic illustration of a gradient decent step of our Lie

bracket energy minimization algorithm.
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5.2 Sheet estimation by non-holonomicity energy mini-

mization

The notion of the Lie bracket has also been used in past approaches in computing sheet

probability indices, such as in the work by Tax et al. [86]. As such, using it to devise an al-

gorithm for sheet estimation by minimizing it was a reasonable start. However, there were

certain limitations, the most serious of which is that there is a lack of theory to support the

direct minimization. In this section, we, therefore, propose an improved method which is

based on the notion of non-holonomicity. It has been shown by Yu [102], that for a pair of

vector fields which span a surface, the non-holonomicity vanishes identically. Thus, one

can directly minimize the non-holonomicity as an objective of the energy minimization.

Similar to Section 5.1, let u be tangent to the direction of fibers and v be the current es-

timate of the vector field such that xu,vy “ 0. Further, let ρuv be the non-holonomicity

function of u and v. We propose a strategy which starts with a single input vector field u,

and estimates an orthonormal vector field v by iterative minimization of an appropriate

energy function.

Consider the non-holonomicity ρpθq corresponding to a perturbed vector field v̂ “

vpθq, where θ is a scalar function which parametrizes the field v̂ with respect to field v

in the plane perpendicular to u. Using the definition of non-holonomicity ρuv given in

Chapter 2, Section 2.1, a straightforward computation shows that ρpθq is given by

ρpθq “ ρuv cos2 θ ` ρun sin2 θ ` αuv sin 2θ `∇uθ “ ρspθq `∇uθ, (5.2)
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5.2 Sheet estimation by non-holonomicity energy minimization

where, αuv “
xn,ru,nsy´xv,ru,vsy

2
and, ρuv and ρun are the non-holonomicity functions of

the unperturbed fields u and v, and u and n.

Notice that for a constant perturbation function θ, ∇uθ “ 0. Therefore ρpθq “ ρspθq,

the sinusoidal part of the ρpθq function which has a period of π. Further, a 180˝ turn of v

leaves ρpθq unchanged. We know that for regions with sheet-like geometry, the spanning

vector fields u and v are such that ρuv “ 0. We, therefore, define an energy function as

follows:

Epu,v, θq “ ρ2pθq. (5.3)

This energy is zero in regions where u and v span a sheet, and high in regions which are

less sheet-like. We can therefore pose the estimation of the vector field v as the following

energy minimization problem:

v˚ “ arg min
v

Epu,v, θq

subject to xu,vy “ 0. (5.4)

5.2.1 Minimization algorithm and analysis

We solve the minimization problem of Equation (5.4) using an iterative gradient descent

approach. Figure 5.2 presents an overview of this approach. We initialize with a v, such

that the orthogonality constraint xu,vy is satisfied. We maintain this constraint in the

subsequent iterations by forcing each update to lie in the plane orthonormal to u. At each
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5.2 Sheet estimation by non-holonomicity energy minimization

A B

C D

Figure 5.2: (Best viewed by zooming-in on the electronic version of this thesis) A: We
assume as input a set of streamlines, in this example those corresponding to the left and
right Fornix tracts from a Human Connectome Project (HCP) atlas. B: We then extract a
local direction field on a discrete grid, using the tangents to the streamlines. C: The local
non-holonomicity value, after convergence of our algorithm, gives a measure of how likely
it is that the streamlines support a sheet-like organization locally. The non-holonomicity
energy increases from light blue to red, using a jet colormap volumetric rendering. D: Our
estimated sheets are overlaid on the streamlines as magenta surfaces, but only in regimes
found to support sheet-like geometries.

step the varying vector field vpθq is updated using the gradient of the energy function

58



5.2 Sheet estimation by non-holonomicity energy minimization

Epu,v, θq. We update θ using a general discrete gradient descent update as follows:

θt`1 ´ θt

η
“ ´

BEpθq

Bθ

ùñ vt`1 “ vpθt`1q,

where η is the size of the time step. The update for v is carried out implicitly by rotating

v about vector u without explicitly using θt`1. To rotate the vector v by an angle β we

use the rotation matrix Ru
β “ cos β I` sin β rusˆ ` p1´ cos βqpuuT q, where rusˆ is the

cross-product matrix corresponding to u. This ensures that the orthonormality constraint

is satisfied at every iteration, without having to explicitly express v as a function of θ in

the local coordinates.

One can observe that the energy E is a function not only of the values of the vector

fields u and v at a point but also of their derivatives. Therefore, the energy at a point

depends on the value of the field at that point and its neighborhood. It is quite possible,

therefore, that a local point wise gradient descent update at a point, as described above,

may increase the energy in the neighbourhood. In fact, a key contribution of our method

is that it converges due to the following property

Proposition 1 For an incompressible smooth vector field u, there exists a positive η such

that a gradient descent update of θ reduces the energy everywhere.

Proof 1 (A more detailed proof is available in Appendix A.) Let u be the fixed input vector

field and v be the current estimate of the second vector field. Consider the gradient of the
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5.2 Sheet estimation by non-holonomicity energy minimization

energy function of Equation (5.3) at time t given by

BEpθq

Bθ
“ 2

´

ρspθq `∇uθ
¯´

pρun ´ ρuvq sin 2θ ` 2αuv cos 2θ ` divu
¯

,

where θ represents the perturbation with respect to the current u and v.

Before the update, θ ” 0, therefore we have

BEpθq

Bθ

ˇ

ˇ

ˇ

θ”0
“ 2ρuvp2αuv

` divuq “ Eρ0 .

Then, θt`1 is given by

θt`1 “ ´ηEρ0 .

To prove our claim, it is sufficient to show that this update reduces the energy, so that

Ep0q ą Ep´ηEρ0 q. (5.5)

For small θ we let sin θ « θ, cos θ « 1. The condition for convergence in Equation (5.5)

for small positive η then reduces to

4αuv
p2αuv

` divuq `∇uEρ0 ą 0.

Since we have assumed that our initial fixed vector field u represents smoothly varying

local orientation in fibrous tissue, we can assume that divu is small, and then the con-
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vergence condition reduces to ∇uEρ0 ' ´8pαuvq2. For a smooth enough vector field with

small divergence, we can choose a positive time step η such that the energy is reduced.

It is possible to consider a stronger smoothness condition: |∇uEρ0 | ă 8pαuvq2, which

helps us improve our energy function and select the additional parameters, as discussed

in the following section.
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6
Experiments and Discussion

In this chapter, in Section 6.1 we first show the findings of our first attempt to develop

a sheet finding algorithm according to the method described in Section 5.1. This imple-

mentation shows the experimental promise of our method and illustrates proof of concept

results. In future work, in Section 6.2, based on the algorithm described in Section 5.2,

we demonstrate more comprehensive experimental results using a more efficient imple-

mentation that is fast and is supported by proof of convergence. While developing our

algorithms,we tested different parts of our implementations using a controlled prototype

for which we had a closed-form solution for our input. For instance, considering a cir-

cumferential vector field in a cylindrical volume, we were able to show that depending on

our initialization, our estimated second vector field was either axial or radial.
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6.1 Sheets estimated by Lie bracket energy minimization

We tested our Lie bracket energy minimization algorithm on ex vivo DTI data of 8 rat

hearts and 8 canine hearts from the open access repository in [76], with an initial step size

of η “ 0.2 and an exponential decay with a decay rate of 0.9 and decay every 20 steps.

Each rat heart dataset is 64ˆ64ˆ128, with a voxel dimension of 0.25ˆ0.25ˆ0.25mm3.

Each canine dataset is 300 ˆ 300 ˆ 333, with a voxel dimension of 0.3125 ˆ 0.3125 ˆ

0.8mm3. The canine specimens are therefore 57 times larger than the rat specimens in

terms of the number of voxels. In practice, our algorithm converges relatively fast, with

the gradient descent loss plateauing after about 150 iterations. We ran each specimen, from

both the rat and canine datasets, for 200 iterations. Our Matlab implementation, which has

not been optimized, took about 50 minutes per rat heart and around a day for each canine

heart on an Intel Core i9-7900x machine. We note that since our energy is local, it would

be possible to get a significant boost in speed by implementing the algorithm on a GPU,

thus making the approach quite practical.

Given the noisy nature of DTI data, in our implementation, we estimate the partial

derivatives using the minimum of central, forward and backward finite differences, as a

simple form of filtering. Using the minimum of these three finite differences helps smooth

the derivatives while preserving local structure in the presence of noise. Further, we also

correct for any random 180˝ flips present in the raw eigenvector directions due to the

directionless nature of DTI tensor measurements.

Figure 6.1 compares our estimated sheet direction vector v̂ (red) with the commonly
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Figure 6.1: (Best viewed by zooming in on the electronic version of this thesis.) Using a
sample slice from a canine heart (middle row) we focus on regions in the left ventricular
wall (top row) and the septum (bottom row). In all panels the principal eigenvector di-
rection e1 is shown in green. In the panels on the left the tensor eigenvector e2 is shown
in blue. For comparison, in the panels on the right our estimated sheet direction vector v̂
is shown in red.
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6.1 Sheets estimated by Lie bracket energy minimization

Figure 6.2: (Best viewed by zooming in on the electronic version of this thesis.) The top
row shows the sheets spanned by e1 and e2 in cyan, with the corresponding normal vector
e3 (blue). The bottom row shows our proposed sheets, spanned by e1 and v̂, in blue, along
with our sheet normal vector n “ e1 ˆ v̂ (red). The middle row shows the zoomed-in
region in the left ventricular wall from a short axis slice of the canine heart being analyzed,
with the principal eigenvector e1 shown in green.
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6.1 Sheets estimated by Lie bracket energy minimization

used second eigenvector e2 (blue) of the DTI tensor data. For clarity, the figures show

a single short axis slice around the middle of a canine heart. In all panels, the principal

eigenvector e1 is shown in green. Observe that in the lower right panel the estimated

vector field v̂ (red) is relatively smooth, resembling the nature of e1 (green), as it should.

In contrast, in the lower left panel the second eigenvector e2 (blue) is considerably noisier,

even in smooth regimes of e1. As such, the sheet structure estimated using e1 and e2 would

be noisy as well.

In Figure 6.2, we use the estimated vector field v̂ to draw sheets spanned by the vector

fields e1 and v̂, and compare them with the sheets spanned by the vector fields e1 and e2.

Local sheets are drawn by fitting a surface to points estimated by following streamlines

along e1 and v̂. Specifically, we start at a grid point, say r, and place it in a queue. We

iteratively dequeue a point, follow the sheet by moving in the directions of ˘e1 and ˘v̂

at the point, and enqueue each neighboring point. In our implementation, we use bilinear

interpolation to estimate the value of vector fields at non-grid points and we fit a sheet

once 40 such points have been obtained.

In fact, even in the relatively smooth region shown in the top half of Figure 6.1, we

observe in Figure 6.2 (top row) that the estimated sheets using e1 and e2 (cyan) are all

oriented in a radial direction despite the varying myofiber orientation in the middle and

border regions of the heart wall. The principal direction of fibers (shown in green in the

middle row) are in the circumferential direction. However, the third eigenvector e3 (blue),

which is normal to the sheets in cyan, does not follow this orientation. Our estimated

normals n “ e1ˆ v̂ (red), shown in the bottom row, are oriented in the long axis direction
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in the middle of the wall and in the radial direction closer to the inner and outer walls. The

sheets estimated using our computed normals better follow the local orientation e1 of the

fibers.

6.2 Sheets estimated by non-holonomicity energy mini-

mization

We begin by providing details about the data that we used and the implementation of

the non-holonomicity energy minimization algorithm described in Section 5.2. Then, we

illustrate our findings using our visualization Software.

Data: In order to validate our method we carried out a few experiments with data ob-

tained from two sources. The first is the same one that we already described in Section

6.1. The second source is a dataset of labeled fiber tract systems in the human brain,

constructed from a fiber bundle atlas generated from data from the Human Connectome

Project, used in the ISMRM 2015 Tractography challenge [52]. This dataset is available

for public download as well. The tangents at a list of points along fiber tracts from the

data were used to generate our fixed direction vector field.

Modifying the energy function: As a corollary of our convergence analysis above, we

infer from the bound on the energy gradient that a smoother energy function will have

better convergence properties. This is, in fact, the case in practice, and we, therefore, used

67



6.2 Sheets estimated by non-holonomicity energy minimization

a modified energy function Ê defined as

Êpu,v, θpxqq “
ÿ

x̂PNbdpxq

ρ2px̂q (6.1)

where Nbdpxq is the neighbourhood of x. We used a neighborhood size of 3 ˆ 3 ˆ 3 in

our experiments, since we are using first order estimates in the computation of derivatives.

This energy converges for a wider range of choices of the step size η. Intuitively one may

understand this modification as increasing the size of the neighborhood while calculating

the deviation from sheet-like geometry at a point.

Choosing η: The convergence bound can also act as a guide to choosing the time step η,

which is the only parameter other than the neighborhood size, in our approach. In accor-

dance with the final convergence condition, we observed empirically that for brain tracts,

the range of feasible η choices is smaller. This can be attributed to the more complex tract

geometry in the brain compared to the heart. In fact, while larger η’s worked well for sim-

ple tracts like the Inferior Longitudinal Fasciculus (ILF), more complex tract systems such

as the corpus callosum (CC) required the use of a smaller η for convergence. Nonetheless,

an η of 0.1, as shown in Figure 6.3, resulted in smooth convergence for every tract system,

as predicted by our analysis.

Convergence rate: As shown by the plots in Figure 6.3, for our 3 datasets, with η “ 0.1,

the mean energy over all voxels in a dataset starts to flatten out after about 500 iterations.

A quantitative analysis of the convergence rate is however beyond the scope of the present
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Figure 6.3: (Best viewed by zooming-in on the electronic version of this thesis.) Mean
energy as a function of iteration number, for all examples reported in this section.

thesis, but we aim to take this up in the future.

Implementation and runtime: We implement our algorithm in the PyTorch framework

[61]. To achieve this the derivatives and the spatial average calculations for the modified

energy function are formulated as convolutions. This allows for GPU-based computation,

which significantly reduces run-time and makes it feasible to analyze large datasets, in

practical exploratory settings. We provide a comparison of run times on a CPU (Intel

Core i9-7900x) and a GPU (Titan Xp), for volumes of different sizes in Table 6.1.

Sample Size (Voxels) CPU (s) GPU (s)
Rat Heart 64ˆ 64ˆ 128 7.9 0.1

Canine Heart 300ˆ 300ˆ 333 279.3 5.6
Human Brain Tracts 90ˆ 108ˆ 90 11.0 0.1

Table 6.1: Time taken in seconds, per iteration, for a CPU based implementation versus
that taken by a GPU based implementation, for different volumes.
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Rat1 Rat 2

Figure 6.4: (Best viewed by zooming-in on the electronic version of this thesis.) Estimates
of sheet-likeliness in short axis slices of two rat hearts, illustrated with a volumetric jet col-
ormap rendering (with the energy increasing from blue to red), along with our estimated
sheets using the non-holonomicity energy minimization algorithm shown as magenta sur-
faces.

6.2.1 Sheet reconstruction and visualization

The output of our algorithm is a vector field v which is locally best in the sense of span-

ning a sheet with u, together with an energy value at each voxel that is proportional to

non-holonomicity. We use this final energy value as a guide for exploring and recon-

structing sheets in the brain and the heart, in an iterative breadth first approach. At each

step, we extend the sheet by a small quadrilateral sheetlet, composed of two triangular

faces. The two triangular faces are generated by moving in the direction of u followed

by v with a step size of around ds “ 0.2 voxels, and then in direction v followed by u.

For sheet-like regions, the two triangular faces are expected to share an edge. In fact, the

gap between the two triangular faces is proportional to the Lie bracket ru,vs at a point. In
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Canine 1

Canine 2

Figure 6.5: (Best viewed by zooming-in on the electronic version of this thesis.) Esti-
mates of sheet likeliness in short axis slices of two canine hearts, illustrated with a volu-
metric jet colormap rendering (with the energy increasing from blue to red), along with
our estimated sheets using the non-holonomicity energy minimization algorithm shown
as magenta surfaces.
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6.2 Sheets estimated by non-holonomicity energy minimization

our visualizations, we only show sheets in locations with low energy. This reconstruction

process is repeated n times (with n « 7) in all four ˘u, ˘v directions, in a breadth-first

traversal manner. Since the reconstructed points are not limited to voxel locations, we use

distance from already drawn vertices, r, as a criterion for adding new points. The parame-

ter r was fixed at half the step size. We developed an OpenGL based visualization tool for

rendering all the results presented in this section. For the heart data, we draw sheets with

uniform sampling in a given box (Figures 6.4 and 6.5), while for the brain data, we draw

sheets, when supported, at locations uniformly sampled along the tracts (Figure 6.7).

Figures 6.4 and 6.5 present sheets reconstructed from diffusion tensor data for two rat

hearts and two canine hearts, respectively. In all sub-figures we show a short axis slice,

with a jet colormap volume rendering of the final sheet fitting energy (energy increases

from cyan to red), and with our reconstructed sheets shown as magenta surfaces. For the

rat hearts we also show the direction of the principal eigenvector as an orientation field.

In both species, there is clear support for both axial sheets in the wall of the left ventricle

(LV), consistent with the laminar organization reported via histology in early work [45],

as well as regimes of more circumferential sheets. The geometry of sheets in the septum is

more complex, being predominantly circumferential, and exhibiting a degree of fanning.

The right ventricle (RV) also shows sheet-like geometries for the canine hearts, while for

the rats the RV is squashed due to imaging conditions. Finally, the LV papillary muscles

are associated with a higher energy, and thus a lower chance of being sheet-like, consistent

with the property that along them muscle cells are oriented in the long axis direction. The

sheet fitting energy is also high at the junctions of the LV and RV.
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CC OR MCP

ICP CB UF

CST SLF ILF

Figure 6.6: The HCP tracts analysed in Figure 6.7, shown in the context of their actual
locations in the brain.
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ILF

Figure 6.7: (Best viewed by zooming-in on the electronic version of this thesis.) Tract
systems from an HCP atlas are shown with green streamlines, with the estimated sheets
(where present) shown as magenta surfaces: corpus callosum (CC), optic radiation (OR),
inferior cerebellar peduncle (ICP), middle cerebellar peduncle (MCP), cingulum bundle
(CB), uncinate fasciculus (UF), corticospinal tract (CST), superior longitudinal fasciculus
(SLF), and inferior longitudinal fasciculus (ILF).

Moving to the human brain, Figure 5.2 (bottom left) shows sheet fitting energy rendered

as a jet colormap for the Fornix tract, with our recovered sheets shown as magenta sur-

faces (bottom right). We then consider many other tract systems, which are shown in the

context of their actual positions in the full brain in Figure 6.6. For several of these we

have chosen the left hemisphere tract to analyze. A number of these tract systems (CC,

CB, SLF, Fornix) have been considered in cross species qualitative investigations of sheet

geometry in [99], but with no explicit sheet reconstruction. Our recovered sheets for these

tracts, where we find support, are depicted as magenta surfaces in Figure 6.7. The corre-

sponding sheet fitting energies are rendered as a volumetric jet colormap in Figure 6.8.

It is clear from Figures 5.2, 6.7, and 6.8, that whereas certain regimes of these tracts are

indeed sheet-like (e.g. the two main arms of the Fornix, and the middle section of the

CC), others, such as the fanning regions, are not. Our method allows for navigation and
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6.2 Sheets estimated by non-holonomicity energy minimization

labeling of a tract by the estimated value of the energy based on non-holonomicity, and for

the quantitative recovery of subtle shape properties that thus far have been described only

qualitatively. For example, the CST is more tube like, providing little local evidence of

sheet geometries in most parts, while the MCP, SLF and ILF have large sheet-like regions.

CC OR

ICP MCP
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ILF Fornix

Figure 6.8: The HCP tracts analysed in Figure 6.7, shown superimposed on the final sheet
fitting energy, visualized using volume rendering with a jet colormap (energy increases
from cyan to red). The value of the final energy is proportional to the fitting error.
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6.3 Discussion

In this part of the thesis, we have presented two methods for estimating a frame field

spanning a sheet locally, from a single vector field. The first method minimizes an energy

based on the Lie bracket, by using a gradient descent approach. We applied this algorithm

to find sheets in ex vivo cardiac DTI data. This implementation demonstrated a promising

proof of concept result. Then we designed an efficient algorithm which directly minimizes

non-holonomicity. We showed that this algorithm converges and provided reconstructions

and high quality visualizations of sheets on which myofibers in the heart are organized,

or sheets on which fiber tract systems in the brain might lie, and provided a local measure

of sheet-likeliness. Such an algorithm could now be used to settle questions concerning

the geometric organization of tract systems as suggested in [99], in a quantitative and

principled way.

Our result of sheet finding for the case of cardiac data is different from the one reported

by Rohmer et al. [67], discussed in Section 3.3.3 of Chapter 3, in a subtle way. Their sheet

tracking approach makes the assumption that sheetlets can only accrue in a radial orien-

tation, in the short axis plane of the heart the wall. This will prevent their method from

recovering other possible sheet orientations by design. As illustrated in Figures 6.2, 6.4,

and 6.5, our sheet finding method does not have this limitation. We are able to recover

sheets that are oriented axially (in the long axis plane of the heart wall) close to the epi-

cardium and the septum, for both canine and rat heart datasets, as well as radial sheets in

the mid-wall.
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Past analyses of tract geometry in the human brain have asked the question whether two

local directions, often taken to be the peak directions of a fiber orientation distribution

function [86, 87], or the first and second principal directions of a diffusion tensor [1],

provide support for sheets. These attempts have had success in designing sheet probability

measures by considering the normal component of the Lie bracket. The problem we have

studied here is different in a subtle way, namely, we have asked whether a single direction

field derived from fibrous tissue supports sheet-like geometries.

Ultimately, a gold standard for validating our sheet estimates would be given by recon-

structions of the sheets revealed by histology. Reconstructing sheet structure from histo-

logical sections and comparing such reconstructions with DTI measurements are worth-

while but challenging goals, which are beyond the scope of the present dissertation.
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Part III: Moving Frames for

Moving Fibers
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7
Introduction

The contents of this part are largely based on the articles: “Cartan Frames For

Heart Wall Fiber Motion”[69], and “Denoising Moving Heart Wall Fibers Us-

ing Cartan Frames”[70]. This part of the thesis develops a spatio-temporal ap-

proach, using moving frames, to model the motion of cardiac myofibers during

the heart beat cycle. The approach is an extension of the method developed in

[65].

Mammalian heart wall muscle is comprised of densely packed elongated myocytes in an

extra-cellular matrix [21, 58]. The geometry of this packing facilitates efficient pump-

ing to optimize ejection fraction while also providing strength. The precise manner in

which fibers move and rotate with the material medium in which they are placed during

the cardiac beat cycle is as yet not known. Current models of heart wall fiber geometry

are mostly derived from diffusion imaging of static ex vivo hearts and from histology.
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Models do exist for such data, such as the rule-based model of [5], and the techniques in

[34]. Studying the 3D structure of an arbitrary collection of 3D streamlines is also pos-

sible by considering their differential form representation. A notion of connection forms

by Cartan [11] introduces a method of moving frames to describe the structure of smooth

manifolds. Ehresmann [19] applies this formalization to abstract the geometry of a col-

lection of streamlines. Piuze et al. [65] use the method of moving frames and associated

connection form parameters to characterize the geometry of fibers with an application to

the myocardium. Although measuring fiber orientation using ex vivo DTI is a well estab-

lished approach, these methods lack a temporal dimension to capture fiber rotation as the

heart beats.

Whereas there is on-going progress in our community towards in vivo cardiac diffusion

imaging, with the possibility to now acquire full heart fiber orientation data in beating

hearts [83, 24], the mathematical tools for analysis lag behind. In this part of the thesis,

we shall develop Cartan connection forms [79, 60] to model both spatial (within a time

sample) and temporal (between time sample) rotations of frame fields attached to heart

wall fibers. This allows one to capture spatial and temporal geometric signatures within

a single consistent framework. In Chapter 2, Section 3.5, we reviewed Cartan connection

forms and their use in moving frame methods. Extending a method for the case of static

fibers, in Chapter 8, we add a temporal dimension to the Cartan matrix. We then special-

ize the model by adapting frames fit to heart wall myofiber orientations recovered from

diffusion data. In Chapter 9, we demonstrate the promise of this method for the recov-

ery of geometric curvature type spatio-temporal signatures for moving myofibers during

a heart beat cycle, using both finite element simulation on canine data [9] and human in
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Figure 7.1: DT reconstruction of fiber orientations with tractography run from a local
region. Left: Ex vivo rat heart (LV and RV). The data is from the open access repository
in [76]. Right: New in vivo human heart (LV).

vivo cardiac diffusion imaging.

In a related application of moving frame methods, we also address the problem of de-

tecting outliers in diffusion MRI based reconstructions of myofiber orientations. In the

context of in vivo diffusion imaging of the human heart, which is an area of active re-

search and ongoing progress [83, 24, 90], the recovered fiber orientations may be locally

incoherent, despite denoising being applied prior to tensor fitting, with the spatial resolu-

tion being poor, as illustrated for the left ventricle in Figure 7.1 (right). We address the

problem of detecting outliers in in vivo mammalian diffusion tensor reconstructions from

a geometrical perspective. We do so by introducing a 4D (spatio-temporal) Cartan frame,

which, when fit to measured data, allows us to characterize the distributions of Cartan

form parameters. Using these distributions, one can then determine the degree to which

a particular local frame fit to the data is predicted by the estimated distributions. This

allows us to both detect outliers, and then remove and in-paint the missing regions. Our

experiments in Chapter 9 on simulated moving fibers in a canine heart wall from the Sta-

tistical Atlases and Computational Models of the Heart (STACOM) 2014 LV mechanics
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challenge show that our statistical approach is capable of robustly and accurately identify-

ing areas with incoherent fiber orientations. We also demonstrate the applicability of our

algorithm to human in vivo heart wall fiber data.
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Methods

In this chapter, we first develop a spatio-temporal model that can describe the motion

of myofibers both in space and time using a moving frame approach. We then construct

two beating heart datasets: a canine dataset obtained by finite element simulation, and

new in vivo human data that is suitable for our spatio-temporal connection form model,

while assuming a notion of correspondences between material points of different time

samples. Finally, to demonstrate an application of our method, we introduce a distribution

fitting method to the calculated connection form parameters, which is able to distinguish

irregular structures, i.e., geometrical outliers in our datasets.

8.1 Spatio-temporal connection forms

Following our discussion in Chapter 3, Section 3.5, we assume that for any query time

t P R we have a stationary state of an orthonormal moving frame field F t “ rf1, f2, f3s
T

fitted to left ventricular myofibers, with the corresponding universal coordinate Et “
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8.1 Spatio-temporal connection forms

re1, e2, e3s
T . We add a 4th dimension to the 3D coordinate system to represent the time

axis. Let E “ re1, e2, e3, e4s
T represent our extended universal coordinate system, R4,

in-which ei ¨ ej “ δi,j , where δi,j is the Kronecker delta, and e4 “ r0, 0, 0, 1s
T is a basis

vector for the time axis in the 4D representation. Thus a query px, y, z, tq P R4, represents

a point px, y, zq in Et. We extend the 3D orthonormal local frame F t as follows:

Definition 7 Let F t “ rf1, f2, f3s
T “

»

—

—

—

—

–

f t1,x f t1,y f t1,z

f t2,x f t2,y f t2,z

f t3,x f t3,y f t3,z

fi

ffi

ffi

ffi

ffi

fl

describe an orthonormal frame

field in R3 at time t, then:
»

—

—

—

—

—

—

—

–

f t1,x f t1,y f t1,z 0

f t2,x f t2,y f t2,z 0

f t3,x f t3,y f t3,z 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(8.1)

is its 4D extension.

This extension preserves the spatial properties of the static case via its 3 ˆ 3 top left

submatrix, while accounting for the temporal motion using its last row and column. Since

we know that F t “ rf1, f2, f3s
T is an orthogonal matrix, it is not hard to show that F “

rf1, f2, f3, f4s
T is also orthogonal, i.e., @i ‰ j, fi ¨ fj “ 0.

Now we can define the notion of spatio-temporal connection forms in 4D. Let F “

rf1, f2, f3, f4s
T be an arbitrary frame field on R4, with the following parametrization in the
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8.1 Spatio-temporal connection forms

extended universal coordinate system E “ re1, e2, e3, e4s
T :

f1 “ α11e1 ` α12e2 ` α13e3 ` α14e4,

f2 “ α21e1 ` α22e2 ` α23e3 ` α24e4,

f3 “ α31e1 ` α32e2 ` α33e3 ` α34e4,

f4 “ α41e1 ` α42e2 ` α43e3 ` α44e4.

(8.2)

A covariant derivative of this frame field with respect to a vector v at point p is given by

∇vf1 “ ω11pvqf1ppq ` ω12pvqf2ppq ` ω13pvqf3ppq ` ω14pvqf4ppq,

∇vf2 “ ω21pvqf1ppq ` ω22pvqf2ppq ` ω23pvqf3ppq ` ω24pvqf4ppq,

∇vf3 “ ω31pvqf1ppq ` ω32pvqf2ppq ` ω33pvqf3ppq ` ω34pvqf4ppq,

∇vf4 “ ω41pvqf1ppq ` ω42pvqf2ppq ` ω43pvqf3ppq ` ω44pvqf4ppq,

(8.3)

where rαijs “ rfi ¨ ejs is the attitude matrix in R4 and ωij “
ř

kpdαikqαkj is a 1-form, as

discussed in Chapter 2, Section 3.5.

Definition 8 Let i ă j and i, j, k P t1, 2, 3, 4u. By using the frame field’s unit vectors

(fis) as arguments to ωijpvq we have

cijk “ ωijpfkq. (8.4)

Note 5 For j “ 4, cijk “ ωijpfkq “ 0, because space and time are independent of each

other.

Note 6 For a point p and with i ă j P t1, 2, 3u, ωijpfkq represents the amount of fippq’s

91



8.1 Spatio-temporal connection forms

turn in the direction of fjppq when taking a step towards fkppq.

Then, given the skew-symmetry property for the 4 ˆ 4 connection form matrix, we build

3ˆ 4 “ 12 different non-zero and unique cijks.

We can use these coefficients to estimate the motion of the frame field using first order

approximation of the Taylor expansion of the frame field F in the direction of the vector

v at a point p

fipvq » fippq ` dfipvq. (8.5)

Finally, by applying the Cartan structural Equation (3.9) on the Equation (8.5), where

v “
ř

k vkfk, we have

fipvq » fippq `
ÿ

j

˜

ÿ

k

vkcijk

¸

fjppq. (8.6)

We now show how to calculate the 1-form coefficients of a given 4D frame. From the

definition of the cijks in [65] and their first order Taylor expansions, for an arbitrary vector

v at point p, and i, j, k, n P t1, 2, 3, 4u we can re-write Equation (3.9) as

cijk “ ωijpfkq “ fj
TJpfiqfk, (8.7)

where Jpfiq “ r
Bfij
Bxk
s is a Jacobian matrix. Given a discretized frame field, we then apply

Equation (8.7) to calculate the connection form coefficients. We illustrate the above ex-

tension by a simulation in Figure 8.1, where we consider an initial fiber direction, with an

attached frame field, and then apply a specific set of cijks to it. Here, f1 is in the direction

of the fiber, f3 is in the in-page direction orthogonal to f1, and f2 “ f3ˆ f1. The figure (left
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𝑓4

𝑓3

𝑓4

𝑓1𝑓3

𝑓2

𝑓1

𝑓3

𝑓2
A B C

Figure 8.1: The application of a specific set of 4D connection parameters cijk to a frame
field attached to a fiber direction. The sequence from left to right represents increasing
time, i.e., steps in the direction f4. See text for the discussion.

to right) shows three samples in time of the orientations in the local neighborhood of the

fiber, generated with the parameters c123 “ 0.5 radians/voxel, c124 “ 0.03 radians/time-

step, and cijk “ 0 for all the remaining connection parameters. The positive c123 value

results in a clockwise rotation of fibers in the in-page direction (panel A) and the positive

c124 value results in an increase in the total in-page rotation of fibers in time (panels B and

C).

8.2 Beating heart fiber data

We construct two data sets for evaluating our moving frame method for modeling fibers

in the heart wall. The first is derived from a finite element simulation applied to canine

hearts from the STACOM 2014 LV mechanics challenge [9]. The second is from new in

vivo diffusion imaging of an entire human heart [23].

8.2.1 Canine data (STACOM 2014)

In this challenge in vivo MRI data from four normal dogs were given as hexahedral

meshes (at the beginning of the beat cycle), with associated local cardiomyocyte fiber
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8.2 Beating heart fiber data

orientations from the first principal eigenvector of ex vivo diffusion tensor MRI data. The

data also included an endocardial pressure curve and the positions of several reference

points on the base of the left ventricle, at three points in the beat cycle. These positional

constraints were interpolated across the LV base by radial basis function interpolation

in space and linearly in time. The participants were asked to build a model that simu-

lates the contraction behavior of the left ventricle and matches its ejection fraction. We

use this data to get pointwise correspondences of material points in time. By rotating the

cardiac frame field arbitrarily in-time in a controlled manner, we then applied our connec-

tion form parameter estimation to measure these changes in a spatio-temporal setup. We

used this data for a finite element simulation of the heart wall based on the transversely

isotropic Holzapfel-Ogden constitutive equations, which describe a non-linearly elastic

incompressible material designed to model the empirical behavior of the cardiac tissue

[36]. This has the following strain energy:

Ψ “
a

2b
exppbrI1 ´ 3sq `

af
2bf
rexppbf rI4f ´ 1s2q ´ 1s

where I1 “ trpCq, I4f “ f1 ¨ Cf1, C “ F TF is the right Cauchy-Green strain tensor, F

is the deformation gradient, f1 is the local fiber direction vector in the reference configu-

ration, and a, b, af , bf P R are constants. The time-varying active contraction of the fibers

was modeled via the formalism of Guccione and McCulloch [31], where a time-dependent

active stress component is added to the passive Cauchy stress above.

The simulation, including the transversely isotropic Holzapfel-Ogden material model

and the enforced fiber rotation (below), was implemented in FEBio [51] as a plugin. We
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fixed a “ 4, b “ 5, af “ 10, bf “ 5, based on parameters from previous work [32]. This

yielded a 3D point cloud moving over time, with a local frame attached to each point that

is amenable to connection form estimation. We then devised a strategy for combining the

finite element simulation with a controlled rotation of the fibers over time, as explained

below.

Generating sample moving frames

In the chronological sequence of my research, for the case of simulation data, I considered

the method described in [65, 75] for fitting frames to the cardiac data. As in the example

in Figure 8.1, let f1 be a unit vector in the direction of a fiber, f3 the component of the heart

wall normal orthogonal to f1 and f2 be f3 ˆ f1. We control the fiber orientations during

simulation by rotating them over time, with a frame field formalized as follows:

f1pxq “ vfibpxq

f3pxq “
f̂3pxq ´ pf̂3pxq ¨ f1pxqqf1pxq

||̂f3pxq ´ pf̂3pxq ¨ f1pxqqf1pxq||2

f2pxq “ f3pxq ˆ f1pxq.

Here vfibpxq is the material fiber orientation at a given position x, and the heart wall

normal f̂3pxq is given by:

f̂3pxq “
1

2
p∇dendopxq ´∇depipxqq.

Let dendopxq and depipxq represent the Euclidean distance from a point x in the myocardium

to the closest points on the endocardium and the epicardium, respectively. We then con-
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8.2 Beating heart fiber data

sider the estimation of wall position Pw of a given material point, ranging from -1 (endo-

cardium) to 1 (epicardium): P̂wpxq “ dendopxq ´ depipxq and then normalized via

Pwpxq “
2
´

P̂wpxq ´min
v
P̂wpvq

¯

max
v

P̂wpvq ´min
v
P̂wpvq

´ 1.

From this, we can apply a rotation to the fiber orientation as a function of time and wall

position. Let tonset be the time of onset of the cardiac contraction, tmax be the time of peak

contraction during systole, and θmax be the largest magnitude of angle change permitted at

the contraction peak. Then we define the angular change over time to be:

θpx, tq “
Pwpxqpt´ tonsetqπθmax

2ptmax ´ tonsetq
.

Notice that the magnitude of angular rotation increases linearly in both time and |Pwpxq|.

This allows us to rotate the fiber rotation over time via Rodrigues’ rotation formula:

f̃1px, tq “ f1pxq cospθpx, tqq`rf1pxqˆf3pxqs sinpθpx, tqq`rf1pxq¨f3pxqsr1´cospθpx, tqqsf3pxq.

8.2.2 In vivo human data

Data of a single healthy volunteer was acquired on a 3T scanner (Philips, Achieva) using a

32-channel cardiac coil. DWI was performed using a SE sequence with cardiac triggering

in free breathing with asymmetric bipolar gradients [83, 24] and additional compensation

for the slice and readout gradients. Data was acquired with 150 and 220 ms delays after

the cardiac trigger and b-values of 0, 10, 20, 30, 50, 100, 200, and 400 s{mm2 with 6,
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3, 3, 3, 3, 3, 3, and 24 gradient-directions, respectively. Imaging parameters were; TE=62

ms; TR = 14 heart beats; FOV = 280 x 150 mm2 (using outer volume suppression using

rest slabs); slices = 14; voxel size = 7 x 2.5 x 2.5 mm3; acquisition matrix = 112 x 48

SENSE factor = 2.5; partial Fourier= 0.85; EPI bandwidth = 42 Hz/pix; averages = 1; fat

suppression = SPAIR; Gmax = 62 mT {m; max slope = 100 mT {m{ms and acquisition

time = 13 min.

Data processing was done using DTITools for Mathematica 10 and included the reg-

istration to correct for subject motion and eddy current deformations, noise suppression

and tensor calculation using weighted linear least squares estimation [22] with the ventri-

cles segmented manually using ITK-SNAP [103]. The primary eigenvector of the tensors

within the left ventricle was extracted and used for subsequent analysis.

To fit a frame field to the in vio DTI, as proposed in Part II, we use the energy minimiz-

ing approach only on e1 and estimate the vector field v normal to it such that it maximizes

sheet-likeliness and therefore minimized the non-holonomicity energy.

Definition 9 Sheet-based coordinate system: Given an estimated vpe1q using the non-

holonomicity energy minimization algorithm of Part II, the local coordinate system with

the bases F “ rf1 “ e1, f2 “ v, f3 “ e1 ˆ vsT plays the role of a sheet-based coordinate

system.

This coordinate system has the benefit that it does not make any explicit assumptions about

the geometry of the heart and at the same time, it is in accordance with the local sheet-like

geometry of myofibers where supported. A more detailed discussion of different methods

of fitting frames to cardiac DTI appears in Appendix B.

97



8.3 Obtaining material point correspondences

8.3 Obtaining material point correspondences

To apply the spatio-temporal connection form method to real data, we need all the time

samples to be registered. In other words, in the process of calculating cijks, for k “ 4,

we assume that the time neighbor of any query point px, y, z, tq is the point at coordinate

px, y, z, t ˘ εq for a small enough ε. This assumption may not always hold, unless we

are able to acquire dense enough time samples which are registered to a template frame.

For the case of simulation data, as described in Section 8.2.1, we are able to control the

temporal resolution to our level of desire. Unfortunately though, for the current state of in

vivo DTI, the temporal resolution is limited to only a few samples for the entire beat cycle

due to the low signal to noise ratio.

To address this problem, one could consider the motion of material points in time by

taking into account the notion of corresponding material points at different time samples.

For an arbitrary point px, y, z, tq P R4 let us assume that we have its corresponding point

px1, y1, z1, t1q where t1 ą t. Then, calculating the connection form parameters in this setup

can be done in a straight-forward manner by re-writing Equations (8.2), (8.3) exactly as

described previously, in the universal coordinate E. However, when calculating connec-

tion form parameters, i.e., ωij “
ř

kpdαikqαkj , we must consider the local derivative in

the direction of f4, i.e., dαik measures the amount of change of a frame at coordinate

px, y, z, tq with respect to its corresponding neighbor in the 4D coordinate px1, y1, z1, t1q.
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8.3 Obtaining material point correspondences

8.3.1 In vivo cardiac registration

By using the notion of correspondences, we have a model that can parametrize any moving

collection of cardiac frames. To obtain these correspondences, one can use a registration

algorithm of choice that can provide a mapping between the material points of consecutive

time samples. In the context of medical image processing, registration is usually referred

to as the “task of finding the spatial relationship between two or more images” [44]. These

algorithms generally aim to find a proper transformation that could deform a query image

to best fit the template image via the minimization of a cost function.

While there is a body of literature on the topic of medical image registration, for the

experiments conducted in this thesis, we use the elastix registration algorithm [44, 78] due

to its applicability to our problem and ease of use. However, other methods, such as the

LDDMM approach of Beg et al. [6], could be used. Such an approach would provide a

diffeomorphism.

Figure 8.2 visualizes the result of applying the elastix registration method to the Frac-

tion Anisotropy map of two time samples of the in vivo human dataset using its free-to-use

and out-of-the-box implementation in the Slicer toolbox [63]. A byproduct of this regis-

tration is a mapping between its two input time samples.

The elastix method is described to be a multi-functional approach which aims to work

for general registration applications for intensity-based images. Klein et al. [44] describe

a general registration for elastix as follows. Having a fixed intensity image IF pxq and a

moving image IMpxq, the goal is to find a coordinate transformation T pxq such that it

minimizes a cost function CpT |IF , IMq. This requires a suitable cost function C which
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A B C

Figure 8.2: An illustration of applying the elastix registration algorithm [44] to the Frac-
tional Anisotropy (FA) map of two slices of human in vivo DTI. A: a short axis slice of
the FA map at 110 ms (moving sample); B: a short axis slice of the FA map at 160 ms
(fixed sample); C: a short axis slice of the output of the elastix registration (A onto B).

properly aligns IMpT pxqq to IF pxq. As mentioned in [44] there are different components

to a generic registration problem, namely: the cost function C, the transformation T , the

iterative energy minimization, and the sampling and interpolation strategy. Elastix is con-

sidered to be a general registration pipeline since it can easily adapt various algorithms for

its different components. For instance, for the transformation, the 3D rigid affine trans-

form or the nonrigid b-spline transform are two of the available options. Therefore in our

experiments, we used elastix as a “collection of parametric intensity-based registration

methods” [44] which can provide us with the notion of corresponding material points

between consecutive time samples.
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8.4 Distribution fitting for outlier detection

8.4 Distribution fitting for outlier detection

Our goal is to use connection form measurements for detecting locations where the esti-

mated fiber orientations may be viewed as outliers. To this end, we fit probability density

functions (PDFs) to the set of observed values of the forms across voxels. To simplify our

calculations, we treat each connection parameter separately. If Ĉijk “ tcijkppqu is the set

of observed connection form measurements for cijk across positions p, we estimate a PDF

fijkpc|θq via fitting to Ĉijk. We considered both non-parametric fitting, via kernel density

estimation using Gaussian kernels for human data, and maximum likelihood fitting with

a normal distribution for simulated data, based on observations in [65]). This provides 12

independent distributions, with which we can compute the probability density of a given

observed connection form value cijk via fijkpcijk|θq.

To detect outliers, we first estimate the probability distributions described above. Then,

for each set of observed connection parameter values Ĉp “ tcijkppqu at a given voxel

position p, we estimate a log-likelihood of the given observed Cartan measurements at that

position via Lθppq “
ř

cijkPĈp
logpfijkpcijk|θqq where we have assumed independence,

in keeping with the previous assumption. We may then label the fiber vector f1ppq at a

given position as an outlier based on the approximate likelihood Lθppq of its observed

connection values.

Once the outliers are labeled, we can perform denoising by removing the noisy fibers

and using an inpainting algorithm to re-estimate them. Here, we use an approach that

separately fills in the x, y, and z components of the fiber vectors directly, utilizing the

global 4D data of each component as a scalar field [95].
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9
Experiments and Discussion

First, given the moving frame method, we provide proof of concept Cartan connection

parameter estimation results on a Canine data set obtained from the LV mechanics chal-

lenge [9]. Then we apply the same method on new in-vivo human DTI data containing

time samples of a beating heart. Finally, we demonstrate an application of using the Car-

tan connection parameters for the detection of irregular local orientation patterns.

9.1 Transmural rotation

In our experiments on both the canine data and the in vivo human data, our frame axes

f1, f2, f3 are chosen in the manner explained in the previous sections. The results from past

fitting of Cartan connection parameters to static ex vivo mammalian heart data in [65] have

shown c123, c131, c232 to be the most significant parameters, with the others being close to

zero. The first of these has to do with the helix angle change in a transmural direction and

the latter two are related to sectional curvatures of the heart wall.
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9.1 Transmural rotation

A B
Figure 9.1: An illustration of the simulated motion of canine heart wall fibers in the left
ventricle at two time points in the systolic phase: 50 ms (A) and 350 ms (B). The fiber
orientations are shown in red and partial tractography provides a visualization of fibers in
a local neighborhood. In this simulation the total transmural increase in applied rotation
(θ) from 0 ms to 400 ms is 20 degrees.

The addition of the temporal dimension in our method now adds the possibility to look

at frame axis rotation in time, i.e., cij4 connection parameters. In the canine data with a

simulated controlled increase in the total epicardium to endocardium rotation (the θ pa-

rameter in Section 8.2) we expect the new parameter c124 to pick up this effect. Figure 9.1

shows two time frames of a canine data set, where the total angular change in orientation

θ is 20 degrees. This choice of enforced rotation was motivated in part by prior biological

work, which suggests a small but measurable increase in the rate of transmural fiber angle

change as systole progresses [17, 13]. The tractography in the visualization shows how

the total epicardium to endocardium turn increases in time.

In Figure 9.2, we show histograms over the entire left ventricle of the connection form

parameter fits to the canine data set in Figure 9.1. The units of cijk are radians/voxel when

k ‰ 4, and radians/10 ms when k “ 4. In our simulations the active contraction begins
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Figure 9.2: The 12 Cartan connection parameters obtained via fits to the canine data set,
illustrated in Figure 9.1. The red, green and blue curves show histograms corresponding
to the 50 ms, 200 ms and 350 ms time samples in the systolic phase from 0 ms to 400 ms.

at around 100ms, so the red curve for the cij4 terms in the right column of the figure is

in fact expected to be very small since it corresponds to 50ms, at which time the fibers

are relatively static. We observe that the c123 and c124 fits show the expected increase in

the magnitude of these parameters as time progresses, with the peaks of the histograms

shifting towards the left (red Ñ blue). The other cijk terms remain close to zero with the

exception of the c121 and c232 terms since they reflect sectional curvatures of the heart

wall, consistent with results on fitting orientation data from static ex vivo hearts [65].
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Figure 9.3: We focus on c123 and c124 and show the effect of different choices for the total
applied additional transmural rotation (θ): 0 degrees (top), 20 degrees (middle) and 90
degrees (bottom) for the same canine data set as in Figure 9.2 (left) and for a second
canine data set (right). The red, green and blue curves show histograms corresponding to
the 50 ms, 200 ms and 350 ms time samples in the systolic phase from 0 ms to 400 ms

In Figure 9.3, we show additional histograms focusing now on the connection parame-

ters with the highest magnitudes: c123 and c124, but adding also a second canine data set.

We also consider the effect of no additional rotation θ (top row) and the extreme case of

θ “ 90 (bottom row). Although the latter case is not biologically realistic, this type of

variation in controlled rotation of fibers gives us a way to evaluate our method. For both

canine datasets we see the clear shift to the left in the c123 histograms (red Ñ blue) as

θ is increased, reflecting our expectation. The variation in the c124 parameters in time is

more subtle, because this reflects the instantaneous (time sample to time sample) in plane
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9.1 Transmural rotation

A B C

Figure 9.4: An illustration of the motion of human in vivo heart wall fibers at 3 time points
in the systolic phase: 110 ms (A), 160 ms (B), and 210 ms (C). The red, green and blue
lines show the notion of correspondences between selected material points, at three time
samples, obtained by the registration method described in Section 8.3.1.

rotation of the fibers. Comparing the green and blue curves, the results suggest that c124

is more uniform in time for the first canine data set, but for the second it is more peaked

later in the systolic phase. The consistent increase in c123 in time and the expected effect

of increasing θ on this connection parameter is evident. The variation of c124 in time is

more subtle and it appears to be non-linear.

Figure 9.4 illustrates a sample slices of our in vivo data on different time samples.

In vivo diffusion imaging presently suffers from many challenges, including low spatial

resolution, a limit on the range of possible timing and low signal-to-noise compared to

ex vivo acquisitions. The data can also contain artifacts which are spatially varying, e.g.,

results near the apex are typically not reliable. As described in Section 8.2 we have applied

an acquisition sequence that is designed for full heart imaging. As such, our time frames

are quite close to each other in the beat cycle and are concentrated at end systole, when

the heart wall is thick and fibers are relatively stationary, facilitating diffusion imaging.
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Figure 9.5: The 12 Cartan connection parameters obtained via fits to the in vivo human
data set using the sheet-based coordinate system described in Section 8.2.2. The red, green
and blue curves show histograms corresponding to the 110 ms, 160 ms and 220 ms time
samples. See text for a discussion.

Despite these limitations, as demonstrated in the histogram plot of the in vivo cardiac

connection forms in Figure 9.5, we observe the role of the non-zero c123 term, capturing

transmural rotation, similar to the results for ex vivo static mammalian hearts reported in

[65]. Moreover, for different time samples, we observe that the magnitude of transmural

angle is shifting slightly to the right (becoming smaller) as time passes. Besides c123, the

histograms of the other spatial cijk terms overlap for the most part, indicating only small

rotations in the non-transmural directions. For the temporal connection form histograms
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9.2 Detection of orientation outliers

c124, c134, and c234, the magnitude of the terms are small and peaked at zero. Amongst

them, c124 which measures the change in transmural rotation of fibers in time, has the

flattest distribution corresponding to more non-zero values. This resonates with the earlier

assumptions of the literature about the change of the fiber angle during the contraction

phase [45, 82].

9.2 Detection of orientation outliers

Given a series of moving heart fiber volumes in time (the canine heart data discussed

in Section 8.2.1), in Section 9.2.1 we add synthetic noise to the fiber field f1, and then

estimate the connection form parameters at each voxel. The methodology described in

Section 8.4 is then used to label statistical outliers as noise. We add two different types

of synthetic noise, as described in Section 9.2.1. The fact that in both cases the noise

is artificial in nature, allows us to empirically measure the detection performance, and

compare it with two alternative approaches. Later, in Section 9.2.2, we apply the same

algorithm to the in vivo human dataset, to perform a type of regularization.

9.2.1 Outlier detection with canine simulation data

The simulated canine data itself is considered to be the ground-truth, to which we add

noise by perturbing orientations, to evaluate our outlier detection.

Artificial vector noise addition

To test the capabilities of our detection algorithm, we added synthetic noise to the fiber

fields of our simulated canine datasets, via two different approaches. Each approach is

applied separately to the heart time slices. The first method utilized the von Mises-Fisher
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9.2 Detection of orientation outliers

Figure 9.6: Visualization of outlier detection method on Canine data. Top row: heart slice
with VMF-based noise. Bottom row: heart slice with random block rotation noise. Left
column: ground truth. Middle column: outliers detected by our algorithm in red. Right
column: slice with outliers detected, removed and inpainted.

(VMF) distribution, which describes a probability density function (PDF) on S2 in R3,

sampled via the Ulrich-Wood rejection sampling approach. There are two parameters: κ,

which inversely controls the noise level per position, and ρ, the probability that a given

voxel will have noise added to it. Given κ and ρ, for each position p, with probability ρ,

we replace f1ppq with a unit vector v from the VMF distribution with density fpv|κ, µq,

where κ ě 0 is the concentration parameter and the mean direction is µ “ f1ppq.

The second type of noise simultaneously alters blocks of data in the fiber field, via a

random rotation matrix. Given a fixed number of noise blocks nB, for each block B, we

generate a random rotation matrix RBpθ, aq P SOp3q, which rotates a given vector by

an angle θ about an axis a. This is done by sampling θ uniformly from the fixed interval

rθmin, θmaxs and choosing a as a uniformly random vector from S2. We then replace every

fiber vector f1ppq with its rotated counterpart RBpθ, aqf1ppq, for every p P B.
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9.2 Detection of orientation outliers

Alternate approaches for comparison

We compare our detection algorithm to two alternative approaches: a rule-based approach

and a local deviation detector. As in the likelihood approach, each method assigns a scalar

value per voxel, which can be used to rank and thus label the associated fiber vector as

noise.

The first measures variation from the fiber vector field generated by the rule-based ap-

proach, using the methods for the left ventricular wall described in [5]. The αendo and

αepi were optimized via grid search, to fit the simulated data at t “ 0 (with total av-

erage undirected angular error „18˝). In this case, a position p is assigned Θruleppq “

δerrpf1ppq, f1,ruleppqq, where δerrpu, vq is the undirected angular error between u and v.

The second is a local method which labels a sudden deviation of the orientation

of a fiber vector from that of its neighbours as noise. Per voxel position p, we con-

sider its spatial neighbourhood Nppq and assign to p the average local error Θ̄ppq “

|Nppq|´1
ř

qPNppq δerrpf1ppq, f1pqqq.

Noise detection results

We demonstrate that our statistical connection form likelihood approach performs better

than the rule-based or local detector algorithms (see Table 9.1). In particular, the method

is more accurate on the block based noise, which may be interpreted as a form of local

structure detection. The neighborhood approach has difficulty with this case, because the

rotational noise is consistent throughout the block. For the VMF noise, the local approach

slightly outperforms the statistical approach when the concentration parameter κ is small,

but the statistical approach is better at high concentrations (small deviations). In general,
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9.2 Detection of orientation outliers

Table 9.1: Performance comparison of detection algorithms across noise types. For VMF
noise, ρ “ 0.35. For block noise, nB “ 10 with blocksize of 5 ˆ 5 ˆ 5, and we fix
θmax ´ θmin “ π{4 and define θ̄ “ pθmax ´ θminq{2. Values shown are detection accuracies
as percentages. There are „106 fiber vectors (i.e. unmasked voxels). For the block noise,
we choose a detection threshold such that „5% of the voxels are chosen; for the VMF
noise, the proportion ρ is chosen.

VMF Noise Detection Block Noise Detection

Method κ “ 102 κ “ 10 κ “ 1 κ “ 0.1 θ̄ “ π
8

θ̄ “ 3π
8

θ̄ “ 5π
8

θ̄ “ 7π
8

Cartan 39.94 56.24 65.32 70.17 38.88 69.45 74.80 68.44
Rule 35.10 36.80 50.67 69.43 8.70 46.66 63.84 45.43

Local 38.10 52.05 66.79 76.12 19.40 46.87 54.69 55.19

Figure 9.7: Visualization of outlier detection method on in vivo human data. Left: heart
slice with outliers labeled as noise by our algorithm coloured in red. Right: slice with
outliers detected, removed and inpainted.

the rule-based approach performs better when the noise is more severe; it has the ad-

vantage of not relying on the measured orientations, but this also means it is unable to

utilize local information. Qualitatively, one can see the results of outlier detection with

our algorithm in Figure 9.6.

9.2.2 Outlier detection with human in vivo data

Our methodology is motivated in part by the significant noise level observed in human in

vivo DTI, which we hope to reduce by our outlier detection methodology. Since ground-
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9.2 Detection of orientation outliers

truth orientations are not known our results are qualitative in the sense that we hope to

correct the most significant errors in the measurements, to obtain a more biophysically

plausible reconstruction. In Figure 9.7, we show a slice of the fiber vector field, with the

noise detected by our statistical algorithm (left), as well as the denoised version (right),

which shows an increase in smoothness and consistency.
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9.3 Discussion

9.3 Discussion

The heart is a dynamic organ and little is known about the manner in which fibers rotate

or move during the beat cycle. Yet, this knowledge is key to heart function and to un-

derstanding the distribution of fiber stress in relation to heart wall mechanics. As in vivo

diffusion imaging advances and is used together with other imaging modalities, the tools

proposed in this part could offer informative spatio-temporal geometric descriptors for

analysis.

We have developed a moving frame method for the modeling of fibers in a dynamic,

beating heart. The construction of the Cartan matrix for spatio-temporally varying fiber

orientations, along with a method for fitting the Cartan connection parameters, shows

promise when applied to simulated canine data with controlled rotations to fibers. In our

experiments, we see that non-linearities in the variation of the (time) sample to (time)

sample transmural rotation, as reflected in the c124 parameter, can arise. We speculate that

such non-linearities may occur in the beat cycle to accommodate the wringing motion

qualitatively seen when viewing the beating left ventricle in echocardiography or cardiac

MRI. Our experiments on in vivo human data, though proof-of-concept at the present

time, demonstrate the ability to recover curvature type signatures in such settings as well.

We anticipate an improvement in in vivo connection form parameter fits if whole heart

diffusion imaging is replaced with an acquisition sequence restricted to a smaller number

of slices, but better optimized for temporal sampling.

We have also devised an algorithm for outlier detection via statistical analysis of ob-

served Cartan connection form parameter values. Its performance and applicability to de-
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noising have been demonstrated in both a synthetic setting, via artificial additive noise in

heart beat cycle simulations of canine heart data, and for in vivo human DT measurements

over time. The use of 4D connection forms represents a principled method to smooth and

denoise moving fiber data in a spatiotemporally consistent manner. Such an approach can

complement the algorithms presently in use, particularly for the lower signal-to-noise ra-

tio of in vivo human DTI.

114



10
Conclusion

The geometry of fibrous structures in biological tissues can play an important role in their

function. For instance, from early images of cardiac ventricular walls, scientists have ob-

served elongated bundles of muscle cells that are locally parallel to each other. These

myofibers have been reported to be separated by cleavage planes and to be stacked in

sheets. Their arrangement in the myocardium plays a key role in cardiac contraction [82]

and also in electrical propagation of the conduction wave [101, 55]. In a different setting,

bundles of axons in the mammalian brain are organized in tract systems, which in turn

connect different regions [39, 93, 86]. Tractography methods have been used to develop

atlases of these tract systems in normal populations [93, 99] and also to study local alter-

ations in these patterns. In recent work by Wedeen et al. [99], it has been argued that these

bundles often intersect transversally and that they lie on specific sheets. Yet, methods to

actually model or recover these sheets from orientation data are scarce.
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Motivated by these considerations, this thesis has presented methods to model the ge-

ometry of structures in fibrous tissue from orientation data. In Part II, we introduced a

method for finding sheets from a single input vector field tangent to the local direction of

fibers. We demonstrated promising results for ex vivo cardiac DTI and for the mammalian

brain. For the case of cardiac sheets, we showed that our findings are in accordance with

the earlier reports in the literature. In particular, we observe a radial orientation for sheets

in the mid-wall region and closer to axial orientation for them at the boundaries of the left

ventricle. For the case of the HCP atlas, we observed that while some regions support the

hypothesis that locally the fibers lie on sheets, others do not. For instance, in the Fornix

tract system, our non-holonomicity energy is relatively low, and thus we were able to fit

sheets with high confidence. Whereas for tracts with a tube-like structure, such as the in-

ferior longitudinal fasciculus (ILF), our non-holonomicity energy is higher and therefore

the fitted sheets are sparser and exhibit lower confidence. Additionally, within a single

tract system, we have illustrated that some regions are more likely to have a sheet-like

structure. A prominent example of this case is the corpus callosum (CC) where its central

region has a more sheet-like structure than its edges.

Whereas modeling methods to capture the geometry of myofibers from diffusion MRI

based orientation measurements in a static heart exist [45, 27, 67, 76, 65], few methods

are available to capture the geometry of fibers when the heart beats. To this end, in Part III

we specialized in developing a model that can locally capture the spatio-temporal motion

of myofibers. We provided applications of our model using a simulation framework as

well as proof of concept results for human in vivo DTI. Additionally, we showed how this

model could be used in related applications to find regions in tissue that are anomalous
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with respect to the orientation statistics of their local neighborhoods, which may arise due

to limitations in current in vivo DTI reconstruction methods, or simply due to noise in the

reconstruction process.

10.1 Software tools

In the course of my doctoral studies, I contributed to the development of several software

tools that were used to implement the methods and to demonstrate the results of my re-

search. These tools are presently within the repository of software packages that are in

use by my colleagues in the Shape Analysis group at McGill.

1. Finding sheets in direction fields: We implemented a parallelizable gradient de-

cent GPU based algorithm for our sheet finding method. We tested our implementa-

tion on several different datasets and verified that it converges experimentally. The

code for this implementation is written in PyTorch 0.4 (Python 3.6).

2. Calculating spatio-temporal connections: We implemented a method to fit spatio-

temporal connection forms, which captures the motion of cardiac frames both in

space and time. We tested our code on simulated cardiac data and also on in vivo

human cardiac data. The code for this implementation is written in Java.

3. Visualization: The visualizations of the results presented in this thesis were imple-

mented using several different programming languages and environments, includ-

ing Matlab, VTK (C++), Python, Java, and OpenGL. In the last two years of my

doctoral research, I built a comprehensive visualization toolbox, based on Java and

OpenGL for rendering vector fields, streamlines, sheets, and scalar volumes. The

majority of the figures in Chapters 6 and 9, that illustrate the results of my meth-
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ods, were generated using this visualization tool. I particularly want to thank Ryan

Eckbo and Emmanuel Piuze for developing prototypes of the heart connection form

software for the static case, which was then extended to reach its present state.

10.2 Limitations and future work

We believe that the methodologies and tools developed in this thesis open many windows

to future research. The following are just a few examples.

For the study of the geometry of cardiac myofibers and mammalian brain tract systems,

one could use the more advanced MR-based imaging modalities, such as high angular

resolution diffusion imaging (HARDI), to better account for the local direction of fibers.

The problem here is that these methods can compute multiple principal directions for

fibers within a voxel. This could reflect the branching of myocytes between cleavage

planes for the case of the heart [45] or the crossing of fiber tracts for the case of the

brain [39]. In their current state, both our sheet finding and moving frame approaches are

limited to work only for a single fiber direction per voxel. A solution to this problem is

to use more advanced tractography techniques that are suitable for higher-order dMRI to

extract different streamlines from the data (both probabilistic and deterministic) [39], and

then apply our methods on individual tract systems, similar to what we did in Chapter 6,

Section 6.2.

As described in Chapter 3, Sections 3.3.4, and 3.6, the spatial resolution of diffusion

imaging is much lower than than the actual cellular dimension of cardiac myocytes or

white matter axons. Moving beyond diffusion imaging, other modalities may benefit from

our approach. For instance, Clarity imaging [88], which is an instance of a family of tis-
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sue clearing methods, provides micro-level information about the tissue by combining

staining for specific cell sub-structures such as WGA for membranes, α-actinin for sar-

comeres, and Dapi for nuclei [96]. This method presents a unique way to look at tissue

structure at the nanometer scale (compared to the millimeter or sub-millimeter scale of

dMRI). One could extract the orientation of fibers using computer vision approaches and

then use our non-holonomicity energy minimization method to fit sheets in these images.

Then, the moving frame method could be applied to the extracted sheet-based coordinates

to calculate connection forms which could provide geometrical and statistical information

about sheets and fibers at a whole new scale.

Similarly, to address the low temporal resolution of the current state of cardiac DTI,

we could consider utilizing the information from other imaging modalities. For example,

with ultrasound, we may be able to take advantage of increased temporal resolution, as

well as latent fiber information, by utilizing information extracted from the modeling of

ex vivo hearts.

While our spatio-temporal connection approach is a natural extension of the methods of

moving frames in space to space and time, there are a number of theoretical and practical

considerations that can be further addressed. In comparison to other models, such as using

regression or spline fits between time points, the use of Cartan forms provides an easily

interpretable and intuitive set of measurements able to characterize the evolution of the

frame fields over time. While it may be possible to obtain equivalent measurements with

other models, we anticipate that this would compromise the elegance, extensibility, and

simplicity of the approach we have taken.
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Presently our moving frame approach uses only first-order Taylor expansion to calcu-

late connection form values. Direct higher-order expansions can give a better estimate

of these values. There are also other indirect approaches based on energy minimization,

such as Nelder-Mead optimization [56], that are currently implemented for the static case

[65]. Applying them to the spatio-temporal case is straightforward extension which could

further improve the accuracy of the computed connection form values.

Furthermore, our connection form values are only based on 1-forms which are able to

describe the rotation of fibers in the direction of frame bases. One could consider using

higher-order forms to provide further statistics about the geometry of fibers.

As cardiac in vivo diffusion imaging advances, Cartan frame spatio-temporal fitting

could offer informative geometric descriptors for analysis. As in the strictly spatial case,

a number of natural applications of this formalism are apparent. Previous methods for at-

las construction to allow inter-species comparison using differential geometric measures

[64], is an example that can readily be extended to the spatiotemporal domain based on the

approach described herein. The statistical properties of connection form values can also

be adapted for use in learning-based approaches (e.g. for segmentation or other medical

imaging tasks). More importantly, these statistics provide means for the analysis of fiber

orientation as the heart beats, which will become increasingly important as in vivo diffu-

sion imaging becomes more common. Our outlier detection method, which is based on a

coarse global summary of the histogram of spatio-temporal connection forms, could be of

significance in clinical applications to assist in providing signals of abnormal geometry,

such as those which might occur in the presence of local cardiac infarcts.
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10.2 Limitations and future work

A by-product of our sheet fitting algorithms is a sheet-based coordinate system. From

this, one could compute connection forms on the fitted frames to the brain fibers for an

individual tract system. The calculated connection form parameters could then be used

for statistical analysis of brain tracts. The temporal evolution of these tracts due to aging

or in the course of a neurodegenerative disease could be studied by applying our spatio-

temporal method to multiple scans of the same subject in the course of time.

Finally, our methods for recovering spatio-temporal signatures for moving oriented

structures, and for recovering sheet-like geometries for such measurements, are not lim-

ited to the case of orientation measurements from biological structures. These methods

could be used to study sheet-like organization in the motion of arbitrary vector fields,

such as the motion of streamlines recovered from computer vision methods, or directional

fields arising in graphics or scientific visualizations.

121



Bibliography

[1] Michael Ankele and Thomas Schultz. A sheet probability index from diffusion
tensor imaging. In Computational Diffusion MRI, pages 141–154. Springer, 2018.

[2] Haz-Edine Assemlal, David Tschumperlé, Luc Brun, and Kaleem Siddiqi. Recent
advances in diffusion mri modeling: Angular and radial reconstruction. Medical

image analysis, 15(4):369–396, 2011.

[3] LJ Bao, YM Zhu, WY Liu, P Croisille, ZB Pu, M Robini, and IE Magnin. De-
noising human cardiac diffusion tensor magnetic resonance images using sparse
representation combined with segmentation. Physics in Medicine & Biology, 54
(6):1435, 2009.

[4] Peter J Basser, Sinisa Pajevic, Carlo Pierpaoli, Jeffrey Duda, and Akram Aldroubi.
In vivo fiber tractography using dt-mri data. Magnetic resonance in medicine, 44
(4):625–632, 2000.

[5] JD Bayer, RC Blake, G Plank, and NA Trayanova. A novel rule-based algorithm
for assigning myocardial fiber orientation to computational heart models. Annals

of biomedical engineering, 40(10):2243–2254, 2012.

[6] M Faisal Beg, Michael I Miller, Alain Trouvé, and Laurent Younes. Computing
large deformation metric mappings via geodesic flows of diffeomorphisms. Inter-

national journal of computer vision, 61(2):139–157, 2005.

[7] Mirza Faisal Beg, Patrick A Helm, Elliot McVeigh, Michael I Miller, and Rai-
mond L Winslow. Computational cardiac anatomy using mri. Magnetic Resonance

in Medicine: An Official Journal of the International Society for Magnetic Reso-

nance in Medicine, 52(5):1167–1174, 2004.

122



BIBLIOGRAPHY

[8] Ohad Ben-Shahar and Steven W Zucker. The perceptual organization of texture
flow: A contextual inference approach. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 25(4):401–417, 2003.

[9] Oscar Camara, Tommaso Mansi, Mihaela Pop, Kawal Rhode, Maxime Sermesant,
and Alistair Young. LV mechanics challenge. In STACOM, volume LNCS, 8896.
Springer, 2014.

[10] Elie Cartan. Les sous-groupes des groupes continus de transformations. In Annales

scientifiques de l’École Normale Supérieure, volume 25, pages 57–194, 1908.

[11] Elie Cartan. La théorie des groupes finis et continus et la géométrie différentielle:

traitées par la méthode du repère mobile. Gauthier-Villars, 1937.

[12] M. Catani, I. Bodi, and Dell’Acqua. Comment on “the geometric structure of the
brain fiber pathways”. Science, 337(6102):1605, 2012.

[13] Junjie Chen, Wei Liu, Huiying Zhang, Liz Lacy, Xiaoxia Yang, Sheng-Kwei Song,
Samuel A Wickline, and Xin Yu. Regional ventricular wall thickening reflects
changes in cardiac fiber and sheet structure during contraction: quantification with
diffusion tensor mri. Am. J. Physiol. Heart Circ. Physiol., 289(5):H1898–H1907,
2005.

[14] Allen Cheng, Frank Langer, Filiberto Rodriguez, John C Criscione, George T
Daughters, D Craig Miller, and Neil B Ingels Jr. Transmural sheet strains in the
lateral wall of the ovine left ventricle. American Journal of Physiology-Heart and

Circulatory Physiology, 289(3):H1234–H1241, 2005.

[15] Benjamin JW Chow, George A Wells, Li Chen, Yeung Yam, Paul Galiwango, Arun
Abraham, Tej Sheth, Carole Dennie, Rob S Beanlands, and Terrence D Ruddy.
Prognostic value of 64-slice cardiac computed tomography: severity of coronary
artery disease, coronary atherosclerosis, and left ventricular ejection fraction. Jour-

nal of the American College of Cardiology, 55(10):1017–1028, 2010.

123



BIBLIOGRAPHY

[16] Manfredo P Do Carmo. Differential forms and applications. Springer Science &
Business Media, 1994.

[17] Jiangang Dou, Timothy G Reese, Wen-Yih I Tseng, and Van J Wedeen. Cardiac
diffusion mri without motion effects. Magnetic resonance in medicine, 48(1):105–
114, 2002.

[18] Jiangang Dou, Wen-Yih I Tseng, Timothy G Reese, and Van J Wedeen. Combined
diffusion and strain mri reveals structure and function of human myocardial laminar
sheets in vivo. Magnetic Resonance in Medicine, 50(1):107–113, 2003.

[19] Charles Ehresmann. Les connexions infinitésimales dans un espace fibré différen-
tiable. Séminaire Bourbaki, 1:153–168, 1948.

[20] Thomas SE Eriksson, AJ Prassl, Gernot Plank, and Gerhard A Holzapfel. Influence
of myocardial fiber/sheet orientations on left ventricular mechanical contraction.
Mathematics and Mechanics of Solids, 18(6):592–606, 2013.

[21] Piero Colli Franzone, Luciano Guerri, and Stefania Tentoni. Mathematical mod-
eling of the excitation process in myocardial tissue: Influence of fiber rotation on
wavefront propagation and potential field. Mathematical biosciences, 101(2):155–
235, 1990.

[22] Martijn Froeling, Aart J. Nederveen, Dennis F.R. Heijtel, Arno Lataster, Clemens
Bos, Klaas Nicolay, Mario Maas, Maarten R. Drost, and Gustav J. Strijkers.
Diffusion-tensor mri reveals the complex muscle architecture of the human fore-
arm. Journal of Magnetic Resonance Imaging, 36(1):237–248, 2012. ISSN
1522-2586. doi: 10.1002/jmri.23608. URL http://dx.doi.org/10.1002/

jmri.23608.

[23] Martijn Froeling, Gustav J Strijkers, Aart J Nederveen, Steven A Chamuleau, and
Peter R Luijten. Diffusion tensor mri of the heart–in vivo imaging of myocardial
fiber architecture. Current Cardiovascular Imaging Reports, 7(7):9276, 2014.

124

http://dx.doi.org/10.1002/jmri.23608
http://dx.doi.org/10.1002/jmri.23608


BIBLIOGRAPHY

[24] Martijn Froeling, Gustav J. Strijkers, Aart J. Nederveen, and Peter R. Luijten.
Whole heart DTI using asymmetric bipolar diffusion gradients. Journal of Car-

diovascular Magnetic Resonance, 17(Suppl 1):15, 2015.

[25] Liesbeth Geerts, Peter Bovendeerd, Klaas Nicolay, and Theo Arts. Characterization
of the normal cardiac myofiber field in goat measured with mr-diffusion tensor
imaging. American Journal of Physiology-Heart and Circulatory Physiology, 283
(1):H139–H145, 2002.

[26] SR Geiger. Gross morphology and fiber geometry of the heart. Handbook of Phys-

iology, Sect. 2, The Cardiovascular System, 1979.

[27] Stephen H. Gilbert, Alan P. Benson, Pan Li, and Arun V. Holden. Regional locali-
sation of left ventricular sheet structure: integration with current models of cardiac
fibre, sheet and band structure. Eur. J. Cardio-Thorac. Surg, 32(2):231–249, 2007.

[28] Stephen H Gilbert, David Benoist, Alan P Benson, Ed White, Steven F Tanner,
Arun V Holden, Halina Dobrzynski, Olivier Bernus, and Aleksandra Radjenovic.
Visualization and quantification of whole rat heart laminar structure using high-
spatial resolution contrast-enhanced mri. American Journal of Physiology-Heart

and Circulatory Physiology, 302(1):H287–H298, 2011.

[29] RA Greenbaum, S Yen Ho, DG Gibson, AE Becker, and RH Anderson. Left ven-
tricular fibre architecture in man. Heart, 45(3):248–263, 1981.

[30] AF Grimm. Myocardial sarcomeres and the functioning mammalian heart, 1976.

[31] JM Guccione and AD McCulloch. Mechanics of active contraction in cardiac mus-
cle: part i - constitutive relations for fiber stress that describe deactivation. Journal

of biomechanical engineering, 115(1):72–81, 1993.

[32] Myrianthi Hadjicharalambous, Radomir Chabiniok, Liya Asner, Eva Sammut,
James Wong, Gerald Carr-White, Jack Lee, Reza Razavi, Nicolas Smith, and David
Nordsletten. Analysis of passive cardiac constitutive laws for parameter estimation

125



BIBLIOGRAPHY

using 3d tagged MRI. Biomechanics and modeling in mechanobiology, 14(4):807–
828, 2015.

[33] Thomas Carolus Johannes Dela Haije. Finsler Geometry and Diffusion MRI. PhD
thesis, Eindhoven University of Technology, 2017.

[34] Patrick Helm, Mirza Faisal Beg, Michael I Miller, and Raimond L Winslow. Mea-
suring and mapping cardiac fiber and laminar architecture using diffusion tensor mr
imaging. Annals of the New York Academy of Sciences, 1047(1):296–307, 2005.

[35] Patrick A Helm, Laurent Younes, Mirza F Beg, Daniel B Ennis, Christophe
Leclercq, Owen P Faris, Elliot McVeigh, David Kass, Michael I Miller, and Rai-
mond L Winslow. Evidence of structural remodeling in the dyssynchronous failing
heart. Circulation research, 98(1):125–132, 2006.

[36] Gerhard A Holzapfel and Ray W Ogden. Constitutive modelling of passive my-
ocardium: a structurally based framework for material characterization. Phil. Trans.

R. Soc. A: Mathematical, Physical and Engineering Sciences, 367(1902):3445–
3475, 2009.

[37] A Horowitz, M Perl, and S Sideman. Geodesics as a mechanically optimal fiber
geometry for the left ventricle. Basic research in cardiology, 88:67–74, 1992.

[38] Neil B Ingels Jr, David E Hansen, GT Daughters 2nd, Edward B Stinson, Edwin L
Alderman, and D Craig Miller. Relation between longitudinal, circumferential, and
oblique shortening and torsional deformation in the left ventricle of the transplanted
human heart. Circulation research, 64(5):915–927, 1989.

[39] Ben Jeurissen, Maxime Descoteaux, Susumu Mori, and Alexander Leemans. Dif-
fusion mri fiber tractography of the brain. NMR in Biomedicine, 32(4):e3785, 2019.

[40] Derek K Jones. Diffusion mri. Oxford University Press, 2010.

126



BIBLIOGRAPHY

[41] P-S Jouk, Yves Usson, Gabrielle Michalowicz, and Laurence Grossi. Three-
dimensional cartography of the pattern of the myofibres in the second trimester
fetal human heart. Anatomy and embryology, 202(2):103–118, 2000.

[42] Hideaki Kanzaki, Satoshi Nakatani, Naoaki Yamada, Shin-ichi Urayama, Ku-
nio Miyatake, and Masafumi Kitakaze. Impaired systolic torsion in dilated car-
diomyopathy: Reversal of apical rotation at mid-systole characterized with mag-
netic resonance tagging method. Basic Research in Cardiology, 101(6):465–470,
Nov 2006. ISSN 1435-1803. doi: 10.1007/s00395-006-0603-6. URL https:

//doi.org/10.1007/s00395-006-0603-6.

[43] Gordon Kindlmann, Xavier Tricoche, and Carl-Fredrik Westin. Delineating white
matter structure in diffusion tensor mri with anisotropy creases. Medical image

analysis, 11(5):492–502, 2007.

[44] Stefan Klein, Marius Staring, Keelin Murphy, Max A Viergever, Josien PW Pluim,
et al. Elastix: a toolbox for intensity-based medical image registration. IEEE trans-

actions on medical imaging, 29(1):196, 2010.

[45] Ian J LeGrice, BH Smaill, LZ Chai, SG Edgar, JB Gavin, and Peter J Hunter. Lam-
inar structure of the heart: ventricular myocyte arrangement and connective tissue
architecture in the dog. American Journal of Physiology-Heart and Circulatory

Physiology, 269(2):H571–H582, 1995.

[46] Karim Lekadir, Matthias Lange, Veronika A Zimmer, Corné Hoogendoorn, and
Alejandro F Frangi. Statistically-driven 3d fiber reconstruction and denoising from
multi-slice cardiac dti using a markov random field model. Medical image analysis,
27:105–116, 2016.

[47] Joao AC Lima, Richmond Jeremy, William Guier, Sophie Bouton, Elias A Zer-
houni, Elliot McVeigh, Maurice B Buchalter, Myron L Weisfeldt, Edward P
Shapiro, and James L Weiss. Accurate systolic wall thickening by nuclear mag-
netic resonance imaging with tissue tagging: correlation with sonomicrometers in

127

https://doi.org/10.1007/s00395-006-0603-6
https://doi.org/10.1007/s00395-006-0603-6


BIBLIOGRAPHY

normal and ischemic myocardium. Journal of the American College of Cardiology,
21(7):1741–1751, 1993.

[48] AJ Linzbach. Heart failure from the point of view of quantitative anatomy. The

American journal of cardiology, 5(3):370–382, 1960.

[49] Herve Lombaert, Jean-Marc Peyrat, Pierre Croisille, Stanislas Rapacchi, Laurent
Fanton, Farida Cheriet, Patrick Clarysse, Isabelle Magnin, Hervé Delingette, and
Nicholas Ayache. Human atlas of the cardiac fiber architecture: study on a healthy
population. IEEE Transactions on Medical Imaging, 31(7):1436–1447, 2012.

[50] Pradeep K Luther. The vertebrate muscle z-disc: sarcomere anchor for structure and
signalling. Journal of muscle research and cell motility, 30(5-6):171–185, 2009.

[51] Steve A Maas, Benjamin J Ellis, Gerard A Ateshian, and Jeffrey A Weiss. Febio:
finite elements for biomechanics. Journal of biomechanical engineering, 134(1):
011005, 2012.

[52] Klaus H Maier-Hein, Peter F Neher, Jean-Christophe Houde, Marc-Alexandre
Côté, Eleftherios Garyfallidis, Jidan Zhong, Maxime Chamberland, Fang-Cheng
Yeh, et al. The challenge of mapping the human connectome based on diffusion
tractography. Nature communications, 8(1):1349, 2017.

[53] Franklin P Mall. On the muscular architecture of the ventricles of the human heart.
American Journal of Anatomy, 11(3):211–266, 1911.

[54] Michael E Moseley, Yoram Cohen, J Kucharczyk, J Mintorovitch, HS Asgari,
MF Wendland, J Tsuruda, and D Norman. Diffusion-weighted mr imaging of
anisotropic water diffusion in cat central nervous system. Radiology, 176(2):439–
445, 1990.

[55] Martyn P Nash and Peter J Hunter. Computational mechanics of the heart. Journal

of Elasticity and the Physical Science of Solids, 61(1-3):113–141, 2000.

128



BIBLIOGRAPHY

[56] John A Nelder and Roger Mead. A simplex method for function minimization. The

computer journal, 7(4):308–313, 1965.

[57] Sonia Nielles-Vallespin, Zohya Khalique, Pedro F Ferreira, Ranil de Silva, An-
drew D Scott, Philip Kilner, Laura-Ann McGill, Archontis Giannakidis, Peter D
Gatehouse, Daniel Ennis, et al. Assessment of myocardial microstructural dynam-
ics by in vivo diffusion tensor cardiac magnetic resonance. Journal of the American

College of Cardiology, 69(6):661–676, 2017.

[58] PM Nielsen, IJ Le Grice, BH Smaill, and PJ Hunter. Mathematical model of ge-
ometry and fibrous structure of the heart. American Journal of Physiology-Heart

and Circulatory Physiology, 260(4):H1365–H1378, 1991.

[59] Iwao Ohtsuki. Localization of troponin in thin filament and tropomyosin paracrys-
tal. The Journal of Biochemistry, 75(4):753–765, 1974.

[60] Barrett O’Neill. Elementary differential geometry. Academic press, 2006.

[61] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[62] J. M. Peyrat, M. Sermesant, X. Pennec, H. Delingette, C. Xu, E. R. McVeigh, and
N. Ayache. A computational framework for the statistical analysis of cardiac dif-
fusion tensors: Application to a small database of canine hearts. IEEE Transac-

tions on Medical Imaging, 26(11):1500–1514, Nov 2007. ISSN 0278-0062. doi:
10.1109/TMI.2007.907286.

[63] Steve Pieper, Michael Halle, and Ron Kikinis. 3d slicer. In 2004 2nd IEEE interna-

tional symposium on biomedical imaging: nano to macro (IEEE Cat No. 04EX821),
pages 632–635. IEEE, 2004.

[64] Emmanuel Piuze, Herve Lombaert, Jon Sporring, Gustav J Strijkers, Adrianus J
Bakermans, and Kaleem Siddiqi. Atlases of cardiac fiber differential geometry. In

129



BIBLIOGRAPHY

International Conference on Functional Imaging and Modeling of the Heart, pages
442–449. Springer, 2013.

[65] Emmanuel Piuze, Jon Sporring, and Kaleem Siddiqi. Maurer-cartan forms for fields
on surfaces: application to heart fiber geometry. IEEE transactions on pattern

analysis and machine intelligence, 37(12):2492–2504, 2015.

[66] Emmanuel Piuze, Jon Sporring, and Kaleem Siddiqi. Moving frames for heart fiber
reconstruction. In International Conference on Information Processing in Medical

Imaging, pages 527–539. Springer, 2015.

[67] Damien Rohmer, Arkadiusz Sitek, and Grant T Gullberg. Reconstruction and vi-
sualization of fiber and laminar structure in the normal human heart from ex vivo
diffusion tensor magnetic resonance imaging (dtmri) data. Investigative radiology,
42(11):777–789, 2007.

[68] Robert F Rushmer, Dean K Crystal, and Clyde Wagner. The functional anatomy of
ventricular contraction. Circulation research, 1(2):162–170, 1953.

[69] Babak Samari, Tristan Aumentado-Armstrong, Gustav Strijkers, Martijn Froeling,
and Kaleem Siddiqi. Cartan frames for heart wall fiber motion. In Interna-

tional Conference on Functional Imaging and Modeling of the Heart, pages 32–41.
Springer, 2017.

[70] Babak Samari, Tristan Aumentado-Armstrong, Gustav Strijkers, Martijn Froeling,
and Kaleem Siddiqi. Denoising moving heart wall fibers using cartan frames. In
International Conference on Medical Image Computing and Computer-Assisted In-

tervention, pages 672–680. Springer, 2017.

[71] Babak Samari, Tabish A Syed, and Kaleem Siddiqi. Minimizing non-holonomicity:
Finding sheets in fibrous structures. In International Conference on Information

Processing in Medical Imaging, pages 183–194. Springer, 2019.

[72] Joern JW Sandstede, Thorsten Johnson, Kerstin Harre, Meinrad Beer, Siegfried
Hofmann, Thomas Pabst, Werner Kenn, Wolfram Voelker, Stefan Neubauer, and

130



BIBLIOGRAPHY

Dietbert Hahn. Cardiac systolic rotation and contraction before and after valve re-
placement for aortic stenosis: a myocardial tagging study using mr imaging. Amer-

ican Journal of Roentgenology, 178(4):953–958, 2002.

[73] Peter Savadjiev, Steven W Zucker, and Kaleem Siddiqi. On the differential geom-
etry of 3d flow patterns: Generalized helicoids and diffusion mri analysis. In 2007

IEEE 11th International Conference on Computer Vision, pages 1–8. IEEE, 2007.

[74] Peter Savadjiev, Jennifer SW Campbell, G Bruce Pike, and Kaleem Siddiqi.
Streamline flows for white matter fibre pathway segmentation in diffusion mri. In
International Conference on Medical Image Computing and Computer-Assisted In-

tervention, pages 135–143. Springer, 2008.

[75] Peter Savadjiev, Gustav J Strijkers, Adrianus J Bakermans, Emmanuel Piuze,
Steven W Zucker, and Kaleem Siddiqi. Heart wall myofibers are arranged in min-
imal surfaces to optimize organ function. Proc. Natl. Acad. Sci. U. S. A., 109(24):
9248–9253, 12 June 2012.

[76] Peter Savadjiev, Gustav J Strijkers, Adrianus J Bakermans, Emmanuel Piuze,
Steven W Zucker, and Kaleem Siddiqi. Heart wall myofibers are arranged in mini-
mal surfaces to optimize organ function. Proceedings of the National Academy of

Sciences, 109(24):9248–9253, 2012.

[77] Partho P Sengupta, Josef Korinek, Marek Belohlavek, Jagat Narula, Mani A Van-
nan, Arshad Jahangir, and Bijoy K Khandheria. Left ventricular structure and
function: basic science for cardiac imaging. Journal of the American College of

Cardiology, 48(10):1988–2001, 2006.

[78] Denis P Shamonin, Esther E Bron, Boudewijn PF Lelieveldt, Marion Smits, Stefan
Klein, and Marius Staring. Fast parallel image registration on cpu and gpu for
diagnostic classification of alzheimer’s disease. Frontiers in neuroinformatics, 7:
50, 2014.

131



BIBLIOGRAPHY

[79] Theodore Shifrin. Multivariable mathematics: linear algebra, multivariable cal-

culus, and manifolds, volume 10. 2005.

[80] Kaleem Siddiqi, Emmanuel Piuze-Phaneuf, and Jon Sporring. Recovery of missing
information in diffusion magnetic resonance imaging data, November 17 2016. US
Patent App. 15/154,404.

[81] Kaleem Siddiqi, Emmanuel Piuze-Phaneuf, and Jon Sporring. Methods of mod-
elling and characterising heart fiber geometry, February 14 2017. US Patent
9,569,887.

[82] H M Spotnitz. Macro design, structure, and mechanics of the left ventricle. J.

Thorac. Cardiovasc. Surg., 119(5):1053–1077, May 2000.

[83] Christian T. Stoeck, Constantin von Deuster, Martin Genet, David Atkinson, and
Sebastien Kozerke. Second order motion compensated spin-echo diffusion tensor
imaging of the human heart. Journal of Cardiovascular Magnetic Resonance, 17
(Suppl 1):81, 2015.

[84] Daniel D Streeter Jr, Henry M Spotnitz, Dali P Patel, JOHN ROSS Jr, and Ed-
mund H Sonnenblick. Fiber orientation in the canine left ventricle during diastole
and systole. Circulation research, 24(3):339–347, 1969.

[85] Tabish A Syed, Babak Samari, and Kaleem Siddiqi. Estimating sheets in the heart
wall. In International Workshop on Statistical Atlases and Computational Models

of the Heart, pages 3–11. Springer, 2018.

[86] Chantal MW Tax, Tom Dela Haije, Andrea Fuster, Carl-Fredrik Westin, Max A
Viergever, Luc Florack, and Alexander Leemans. Sheet probability index (spi):
Characterizing the geometrical organization of the white matter with diffusion mri.
NeuroImage, 142:260–279, 2016.

[87] Chantal MW Tax, Carl-Fredrik Westin, Tom Dela Haije, Andrea Fuster, Max A
Viergever, Evan Calabrese, Luc Florack, and Alexander Leemans. Quantifying the

132



BIBLIOGRAPHY

brain’s sheet structure with normalized convolution. Medical image analysis, 39:
162–177, 2017.

[88] Raju Tomer, Li Ye, Brian Hsueh, and Karl Deisseroth. Advanced clarity for rapid
and high-resolution imaging of intact tissues. Nature protocols, 9(7):1682, 2014.

[89] Francisco Torrent-Guasp, Manel Ballester, Gerald D Buckberg, Francesc Carreras,
Albert Flotats, Ignasi Carrió, Ana Ferreira, Louis E Samuels, and Jagat Narula.
Spatial orientation of the ventricular muscle band: physiologic contribution and
surgical implications. The Journal of Thoracic and Cardiovascular Surgery, 122
(2):389–392, 2001.

[90] Nicolas Toussaint, Christian T Stoeck, Tobias Schaeffter, Sebastian Kozerke,
Maxime Sermesant, and Philip G Batchelor. In vivo human cardiac fibre archi-
tecture estimation using shape-based diffusion tensor processing. Medical image

analysis, 17(8):1243–1255, 2013.

[91] Wen-Yih I Tseng, Van J Wedeen, Timothy G Reese, R Neal Smith, and Elkan F
Halpern. Diffusion tensor mri of myocardial fibers and sheets: correspondence
with visible cut-face texture. Journal of Magnetic Resonance Imaging: An Official

Journal of the International Society for Magnetic Resonance in Medicine, 17(1):
31–42, 2003.

[92] David S Tuch, Timothy G Reese, Mette R Wiegell, Nikos Makris, John W Bel-
liveau, and Van J Wedeen. High angular resolution diffusion imaging reveals in-
travoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine: An

Official Journal of the International Society for Magnetic Resonance in Medicine,
48(4):577–582, 2002.

[93] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa
Yacoub, Kamil Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human
connectome project: an overview. Neuroimage, 80:62–79, 2013.

133



BIBLIOGRAPHY

[94] Anna Vilanova, G Berenschot, and C Van Pul. Dti visualization with streamsurfaces
and evenly-spaced volume seeding. In Proceedings of the Sixth Joint Eurographics-

IEEE TCVG conference on Visualization, pages 173–182. Eurographics Associa-
tion, 2004.

[95] Guojie Wang, Damien Garcia, Yi Liu, Richard De Jeu, and A Johannes Dolman. A
three-dimensional gap filling method for large geophysical datasets: Application to
global satellite soil moisture observations. Environmental Modelling & Software,
30:139–142, 2012.

[96] Zhiwei Wang, Jie Zhang, Guangpu Fan, Hui Zhao, Xu Wang, Jing Zhang, Peide
Zhang, and Wei Wang. Imaging transparent intact cardiac tissue with single-cell
resolution. Biomedical optics express, 9(2):423–436, 2018.

[97] Karl T Weber. Cardiac interstitium in health and disease: the fibrillar collagen
network. Journal of the American College of Cardiology, 13(7):1637–1652, 1989.

[98] Van J Wedeen, Douglas L Rosene, Ruopeng Wang, Guangping Dai, Farzad Mor-
tazavi, Patric Hagmann, Jon H Kaas, and Wen-Yih I Tseng. Response to comment
on “the geometric structure of the brain fiber pathways”. Science, 337(6102):1605–
1605, 2012.

[99] Van J Wedeen, Douglas L Rosene, Ruopeng Wang, Guangping Dai, et al. The
geometric structure of the brain fiber pathways. Science, 335(6076):1628–1634,
2012.

[100] Wikipedia contributors. Heart — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Heart&

oldid=910050612, 2019. [Online; accessed 27-August-2019].

[101] Robert J Young and Alexander V Panfilov. Anisotropy of wave propagation in the
heart can be modeled by a riemannian electrophysiological metric. Proceedings of

the National Academy of Sciences, 107(34):15063–15068, 2010.

134

https://en.wikipedia.org/w/index.php?title=Heart&oldid=910050612
https://en.wikipedia.org/w/index.php?title=Heart&oldid=910050612


BIBLIOGRAPHY

[102] Aminov Yu. The geometry of vector fields. Gordon & Breach Publ, 2000.

[103] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith,
Sean Ho, James C. Gee, and Guido Gerig. User-guided 3d active contour seg-
mentation of anatomical structures: Significantly improved efficiency and relia-
bility. NeuroImage, 31(3):1116 – 1128, 2006. ISSN 1053-8119. doi: http:
//dx.doi.org/10.1016/j.neuroimage.2006.01.015.

[104] Paul A. Yushkevich, Hui Zhang, Tony J. Simon, and James C. Gee. Structure-
specific statistical mapping of white matter tracts. NeuroImage, 41(2):448 – 461,
2008. ISSN 1053-8119.

135



A
Detailed Proof of Convergence of

Minimizing Non-Holonomicity Energy

This is the detailed proof of convergence of the non-holonomicity energy mini-
mization approach described in Chapter 5, Section 5.2, and published in “Min-
imizing Non-holonomicity: Finding Sheets in Fibrous Structures”[71] which is
the result of collaborative work with Tabish Syed in the Shape Analysis Group
at McGill University.

Babak Samari

Lemma 1 For an orthonormal frame field tu,v,n “ u ˆ vu with fixed field u, the

perturbed normal n̂ “ u ˆ Ru
θv corresponding to perturbation θ in v, is given by

cos θ n´ sin θ v.

Proof 2 Consider a fixed vector field u and a variable vector field vptq in R3 in plane

perpendicular to u, such that xu,vy “ 0. Notice that given an initial frame field v “ vp0q,

u, it is sufficient to specify a single scalar function θpx, y, zq to fully describe the perturbed

vector field v̂. So that, we can write v̂px, y, zq “ Ru
θvpx, y, zq. where Ru

θ is a 3ˆ3 rotation
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matrix about axis u by an angle θ. We can decompose Ru
θ by Rodriguez rotation formula

as follows:

Ru
θ “ cos θ I` sin θ rusˆ ` p1´ cos θqpub uq. (A.1)

where,I is the 3 ˆ 3 identity matrix, u b u “ uuT and rusˆ is the cross product matrix

expanded below

rusˆ “

¨

˚

˚

˚

˚

˝

0 ´uz uy

uz 0 ´ux

´uy ux 0

˛

‹

‹

‹

‹

‚

Using Equation (A.1) we have,

n̂ “ uˆ pcos θ I` sin θ rusˆ ` p1´ cos θqpub uqqv

“ uˆ
`

cos θ v ` sin θ puˆ vq ` p1´ cos θqpuuTvq
˘

since u K v, therefore, uTv “ vTu “ 0

n̂ “ uˆ pcos θ v ` sin θ puˆ vqq

“ cos θpuˆ vq ` sin θpuˆ puˆ vqq

“ cos θpuˆ vq ` sin θpuˆ nq where n “ uˆ v

“ cos θ n´ sin θ v (A.2)

Lemma 2 For an orthonormal frame field tu,v,n “ uˆvu with fixed field u, derivative

Drv̂s of perturbed vector field v̂ corresponding to scalar perturbation field θ is given by
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cos θ Jv ` sin θ Jn ´ sin θ vp∇θqT ` cos θ np∇θqT ,

Proof 3

Drv̂s “ Jv̂ “ JRu
θ v

using Lemma 1 we have

rJv̂sij “

„

B

Bxj
cos θ vi



`

„

B

Bxj
sin θ ni



“

„

cos θ
Bvi
Bxj

` vi
B cos θ

Bxj



`

„

sinθ
Bni
Bxj

` ni
B sin θ

Bxj



“ cos θ rJvsij ` sin θ rJnsij ´ sin θ

„

vi
Bθ

Bxj



` cos θ

„

ni
Bθ

Bxj



ùñ Jv̂ “ cos θ Jv ` sin θ Jn ´ sin θ vp∇θqT ` cos θ np∇θqT

Lemma 3 The Lie Bracket ru, v̂s of perturbed vector field v̂ is given by cos θ ru,vs `

sin θ ru,ns `∇uθ pcos θ n´ sin θ vq
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Proof 4

ru, v̂s “ Jv̂u´ Juv̂

“ cos θ Jvu` sin θ Jnu

´ sin θ vp∇θqTu` cos θ np∇θqTu´ Ju pcos θ I` sin θ rusˆ ` p1´ cos θqpub uqqv

“ cos θ Jvu` sin θ Jnu` p∇uθ cos θq n´ p∇uθ sin θq v ´ Ju pcos θ v ` sin θ puˆ vqq

“ pcos θqJvu` psin θqJnu` p∇uθ cos θqn´ p∇uθ sin θqv ´ pcos θqJuv ´ psin θqJun

“ cos θ ru,vs ` sin θ ru,ns `∇uθ pcos θ n´ sin θ vq

Lemma 4 (non-holonomicity of perturbed field) The non-holonomicity ρpθq of perturbed

frame field is given by ρspθq `∇uθ.

Proof 5 Using Equation (A.2) we get,

ρpθq “ xuˆ v̂, ru, v̂sy “ xcos θ n´ sin θ v , ru, v̂sy

“ cos θ
A

n , ru, v̂s
E

´ sin θ
A

v , ru, v̂s
E

(A.3)

From Lemma 3 we have

cos θ
A

n , ru, v̂s
E

“ cos θ
A

n , cos θ ru,vs ` sin θ ru,ns ` p∇uθ cos θqn´ p∇uθ sin θqv
E

“ cos θ
A

n , cos θ ru,vs ` sin θ ru,ns
E

` p∇uθ cos2 θqxn,ny

´ p∇uθ sin θ cos θqxn,vy

“ cos θ
A

n , cos θ ru,vs ` sin θ ru,ns
E

` p∇uθ cos2 θq (A.4)
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Similarly we have,

sin θ
A

v , ru, v̂s
E

“ sin θ
A

v , cos θ ru,vs ` sin θ ru,ns
E

´ p∇uθ sin2 θq (A.5)

Using Equations (A.4) and (A.5) in Equation (A.3) we get ρpθq “

pcos θq
A

n , pcos θqru,vs ` psin θqru,ns
E

´ psin θq
A

v , pcos θqru,vs ` psin θqru,ns
E

`∇uθ

“ cos2 θ
A

n , ru,vs
E

` cos θ sin θ
A

n , ru,ns
E

´ sin θ cos θ
A

v , ru,vs
E

´ sin2 θ
A

v , ru,ns
E

`∇uθ

“ cos2 θ
A

uˆ v , ru,vs
E

` cos θ sin θ
´A

n , ru,ns
E

´

A

v , ru,vs
E¯

` sin2 θ
A

uˆ n , ru,ns
E

`∇uθ

“ ρuv cos2 θ ` ρun sin2 θ ` αuv sin 2θ `∇uθ “ ρspθq `∇uθ (A.6)

where, αuv “
xn,ru,nsy´xv,ru,vsy

2
, and ρab “

A

aˆ b, ra,bs
E

.

Theorem 2 For incompressible vector field u with a smooth energy, there exist a positive

time step η such that gradient descent update decreases the energy at every iteration.

Proof 6 Consider an energy Epθq “ ρ2pθq then derivative of E w.r.t θ is given by

BEpθq

Bθ
“
B

Bθ

`

ρ2pθq
˘

“ 2ρ
Bρpθq

Bθ

“ 2ρ

ˆ

Bρspθq

Bθ
`
B

Bθ
p∇uθq

˙
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B

Bθ
p∇uθq “

B

Bθ

`

p∇θqTu
˘

“
B

Bθ

˜

ÿ

i

ui
Bθ

Bxi

¸

“
ÿ

i

ˆ

Bui
Bθ

Bθ

Bxi
` ui

B2θ

BθBxi

˙

“
ÿ

i

ˆ

Bui
Bxi

˙

“ divu

Therefore we have,

BEpθq

Bθ
“ 2ρ

ˆ

Bρspθq

Bθ
` divu

˙

“ 2
´

ρspθq `∇uθ
¯´

pρun ´ ρuvq sin 2θ ` 2αuv cos 2θ ` divu
¯

At t “ 0, we have θ “ 0 therefore,

BEpθq

Bθ

ˇ

ˇ

ˇ

θ”0
“ 2ρsp0qp2α

uv
` divuq “ 2ρuvp2αuv

` divuq

Using gradient descent to update v we have at time t “ 1

θ1px, y, zq “ ´η
BEpθq

Bθ

ˇ

ˇ

ˇ

θ”0

“ ´2ηρuvp2αuv
` divuq “ ´ηEρ0 (A.7)
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To prove that the algorithm converges it suffices to show that

Epθ0q ě Epθ1q

Ep0q ě E
´

´ ηEρ0 q
¯

ρ2sp0q ě
”

ρs

´

´ ηEρ0
¯

`∇up´ηEρ0 q
ı2

pρuvq2 ě
”

ρs

´

´ ηEρ0
¯

´ η∇uEρ0
ı2

(A.8)

For small angle θ we have from Equation (A.6)

ρspθq « ρuv ` ρunθ2 ` 2αuvθ (A.9)

Using Equation (A.9) in Equation (A.8) we have

”

ρuv ` ρunp´ηEρ0 q2 ` 2αuv
p´ηEρ0 q ´ η∇uEρ0

ı2

ă pρuvq2

”

ρunpEρ0 q2q η2 ´ p2αuvEρ0 `∇uEρ0 q η ` ρuv
ı2

ă pρuvq2

”´ρun

ρuv
pEρ0 q2

¯

η2 ´
1

ρuv
p2αuvEρ0 `∇uEρ0 q η ` 1

ı2

ă 1

”

A η2 ´B η ` 1
ı2

ă 1

Where A,B are appropriately defined. It is therefore sufficient to show that for a small
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positive η if Aη2 ´Bη ă 0 the algorithm converges. where,

B “
1

ρuv
p2αuvEρ0 `∇uEρ0 q (A.10)

A “
ρun

ρuv
pEρ0 q2

Thus we need to show:

Aη ă B

for the case A ą 0 we then we have η ă B
A

so, we need to show B ą 0. Also when

A ă 0, we have η ą B
A

. Hence, there exists a non-negative time step η, B ą 0.

From Equations (A.10) and (A.7) we have:

B “
1

ρuv
p2αuvEρ0 `∇uEρ0 q

“
2αuvρuvp2αuv ` divuq

ρuv
`∇uEρ0

“ 4αuv
p2αuv

` divuq `∇uEρ0 (A.11)

Under the assumption that the vector field u is divergence free have:

B « 8pαuv
q
2
`∇uEρ0

Thus, when∇uEρ0 ą ´8pαuvq2 we have convergence.
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Note 7 If |∇uEρ0 | ă 8pαuvq2 then the convergence condition holds. This bound on the

gradient of energy subsumes a bound on non-holonomicity for the field. We described

above that the reason for an iteration to diverge maybe because the gradient update at

a point may increase the energy in the neighborhood. However, if the gradient of the

energy is not a large negative number, the gradient update a point does not affect the

neighborhood as enough to cause the energy to increase. i.e For gradient update at a point

to effect the surrounding neighbourhood the gradient of energy has to be a large negative

number. A region with high negative∇uEρ0 means that it is the region of streamline where

we suddenly transition from very non-sheet region to a sheetlike region so fast that energy

along u falls off faster than a limit.

Note 8 (The case of non-zero divergence) for a given smoothness level (given Lipschitz

constant for energy), the regions where the update will be most sensitive is the sink regions

in the field.
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B
Different Methods of Fitting Frames to

Cardiac DTI

In this Apendix, we briefly review three different approaches to fitting local

frames F “ rf1, f2, f3sT to cardiac DTI data.

Babak Samari

Transmural (extrinsic geometry) frame The first approach considers f1 to be in the

direction of the principal eigenvector of the tensor matrix (the eigenvector corresponding

to the highest eigenvalue), f3 to be the component of the heart wall normal orthogonal to

f1 (as described in Section 8.2.1), and f2 “ f3 ˆ f1 [76, 65]. In this way, the extrinsic

geometry of the heart wall is combined with the local geometry of the fibers to build up

the cardiac frame field. In this construction, we assume that at each voxel, f1 is tangent

the myofiber passing through that voxel.
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Diffusion tensor based frame The second approach, uses only the local information of

the diffusion tensor matrices to build the entire frame field. Let e1, e2, and e3 represent the

sorted eigenvectors of the tensor matrix according to their corresponding eigenvalue mag-

nitudes. As explained in Section 3.3.1, e1 is commonly taken to be the direction tangent

locally to the direction of a myofiber. From histology, we know that cardiac myofibers

preserve an elongated structure (i.e., they do not cross each other) [45, 82]. Moreover,

myofibers are locally parallel to each other in sheet-like structures [45, 67]. These obser-

vations suggest at each voxel, the water molecules have the least freedom in motion in the

direction represented by the eigenvector with the smallest eigenvalue, i.e., e3. Therefore

we can assume that the orientation of a frame at a particular spatial position is aligned to

the orientation of its tensor eigenvectors, i.e., F “ re1, e3, e3sT . This frame is often used

in the literature to describe local geometry [82, 67, 101, 49].

Sheet-based frame Alternatively, one can use the sheet-based coordiate system con-

structed in Section 8.2.2. Then F “ re1,v, e1 ˆ vsT .

We believe that the sheet-based coordinate system better aligns with the local geometry

of myofibers and resonates with the earlier findings in histology [45, 82]. As discussed in

Part 3.3.4, eigenvalues for the second and third eigenvectors have a smaller magnitude in

comparison with the principle one and are often close to each other, and thus interchange-

able. Moreover, due to the low signal to noise ratio of in vivo DTI acquisitions, the smaller

two eigenvectors are more vulnerable to noise.

Figure B.1 provides the histogram plots of connection form parameters fitted to our

human in vivo dataset by incorporating the extrinsic geometry of the heart (the Trans-
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Figure B.1: The 12 Cartan connection parameters obtained via fits to the in vivo human
data set using extrinsic geometry of the heart. The red, green and blue curves show his-
tograms corresponding to the 110 ms, 160 ms and 220 ms time samples.

mural frame above). If we compare these fitting results with those in Figure 9.5, which

used the sheet-based coordinate system, see that the spatial connection form parameters

across different time samples during the cardiac beat cycle are clearly aligned better for

the latter case. This behavior is expected since the heart has an almost stationary state

during these three scan times.This suggests that our sheet-based coordinate system may

be better suited for fitting frames to cardiac DTI.
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