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Abstract

Despite the popularity of Java, problems may arise fromritkdata-raceconditions
during execution of a Java prograrData-racesare considered errors in concurrent pro-
gramming languages and greatly complicate both progragnamma runtime optimization
efforts. Arace-freeversion of Java is therefore desirable as a way of avoidirggcibim-
plexity and simplifying the programming model.

This thesis is part of work trying to buildrace-freeversion of Java. It implements and
optimizesthread-localaccesses and comes up with a new semantics for this langiage.
important part of implementing a language without races gistinguish thread-local data
from shared data because these two groups of data need teabedtdifferently. This is
complex in Java because in the current Java semantics atitelgre allocated on a single
heap and implicitly shared by multiple threads. Furthemsmaevhile Java does provide a
mechanism fothread-localstorage, it is awkward to use and inefficient.

Many of the new concurrent programming languages, such asl@p, UPC, and D,
use “sharing directives” to distinguish shared data fromedd-local data, and have fea-
tures that make heavy use of thread-local data. Our goaliseceapply some of these
language ideas to a Java context in order to provide a sinaplerless error-prone pro-
gramming model. When porting such features as part of a layggeatension to Java,
however, performance can suffer due to the simple, mapdoagglementation of Java’s
built-in ThreadLocal class. We implement an optimized mechanism based on pregram
mer annotations that can efficiently ensure class and iosteariables are only accessed by
their owner thread. Both class and instance variables invedties from the parent thread
through deep copying, allowing all the reachable objectslold threads to have local
copies if syntactically specified. In particular, classiable access involves direct access



to thread-local variables through a localized heap, whidhster and easier than the default
map mechanism defined fdhreadLocal objects. Our design improves performance sig-
nificantly over the traditional thread-local access metfayctlass variables and provides
a simplified and more appealing syntax for doing so. We furgivaluate our approach by
modifying non-trivial, existing benchmarks to make betise of thread-local features, il-
lustrating feasibility and allowing us to measure the perf@ance in realistic contexts. This
work is intended to bring us closer to designs for a complate4free version of Java, as
well as show how improved support for use of thread-locah dauld be implemented in
other languages.



Résum é

Malgré la popularié de JAVA, de potentiels aes concurrents aux doaes peuvent
causer des probinesa I'exécution d’'un programme. Les & concurrents aux doees
sont consiéres comme des erreur par les langages de programmation eliqqoamp gran-
dement le processus de programmation et d’optimisatior.ugnsion de JAVA sans ags
concurrents serait la bienvenue et simplifierait ce pracess

Cette these n’est qu’une partie d’'une recherche plus importansntéetablir une ver-
sion de JAVAsans aces concurrentsElle implemente et optimise les @& enthread
local et introduit une nouvelle &nantique pour ce langage. Une part importante de
'impl émentation d’un langageans concurrenceest de distinguer les doaas locales de
thread des dorées partages car ces 2 types de d@ms doivenétre traiees diferemment.
Ceci est complexe en JAVA, car avec Ensantique actuelle, tous les objets sont a@kan
un seul tas (heap) et implicitement paéagentre plusieurs threads. De plus, kecamisme
de stockage ethread localde Java esttrange et inefficace.

Plusieurs des nouveaux langages concurrents, comme Op&iR@Pet D, utilisent
des “directives de partage” pour distinguer les dmmpartages des dorées locales de
thread, et ont des structures faisant un usage éwdes donees locales de thread. Notre
but ici est d’appliquer certainesads de ces langages dans un contexte JAVA dans le but
de fournir un moéle de programmation plus simple et plus fiable. Cependapbrtgr ces
fonctionnaliés sous forme d’extension a JAVA peut en affecter les pedaoa du fait de
la structure de la clasSthreadLocal de JAVA. Nous impeémentons donc un @anisme
qui garantit efficacement que seul le processus petgire acede aux classes et variables
d’instances. Aussi bien les classes que les variablestdtines Britent des valeurs du
processus parent par copie, ce qui permet aux objets desgrgcenfants d’avoir des copies



locales si peci€ dans la syntaxe. En patrticulier, I'asa des variables de classe utilise un
ac@s direct aux variables du processus local via un tas loeafjut est plus rapide et
facile que le necanisme par&faut de mappageetini pour les objeThreadLocal . Notre
conception ar@liore le performance de faon significative congaata méthode d’aces au
processus local traditionnelle pour les variables de elas$ournit une syntaxe simpkfe

et plus attrayante. Nousvaluons ensuite notre approche en modifiant des outilsae te
(benchmarks) complexes existants pour faire un meilleag@sle leurs fonctionnadis en
processus local, ceci illustrant la faisal@légt nous permettant de mesurer les performances
dans un contexteenliste. Ce travail a pour but de nous rapprocher de la caooegtine
version JAVAsans concurrencaussi bien que de montrer comment un suppoiéleme
des donges en thread local pourréitre impemené dans d’autres langages.
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Chapter 1
Introduction

Java is a general-purpose, object-oriented language wilthitb features for concurrent
programming. The Java programming language and the Jass lddaaries provide basic
concurrency support while high-level concurrency APIsvide more convenient tools.
This feature makes Java convenient for multithreaded progmwhere several threads co-
operate to finish a task. The memory management scheme antuava facilitates com-
munications between threads because all the objects areistimong threads.

Unfortunately, although this is convenient, it makes itadl easy for a programmer to
write programs that contaimata-races Data-racesoccur when two or more threads try to
access the same variable, the accesses are not orderetigiddty synchronization, and
at least one of the operation is a write. Data-races aredifpiconsidered errors in con-
current programming, and greatly complicate optimizagfiorts and language semantics.
A potential solution to this problem is to provide and entoseparation between shared
and unshared, dhread-localdata. The use dhread-localdata in shared-memory concur-
rent programming is typically seen as a performance enimagice but also has important
semantic implications. If threads have their own, uniqueie® of data, unsynchronized
intermediate and local computation is possible, and théstha further important benefit
of reducing or avoiding complex, subtle data-race issi&3A405, BA]. This is a strat-
egy taken in many concurrent languages and libraries; neserurrent languages such as
UPC [UPCO0Y4, OpenMP Ppe0§, and D [DM] allow for extensive thread-local allocation
through declarations, with little or no special data acesgsgax. In other popular concur-
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Introduction

rent languages and environments, such as Java and PThHrea@sger, thread-local storage
is implemented through existing language mechanismsegicdlke of Java requiring object
creation and special method calls to create and use thedtlweal data. This results in
awkward and non-trivial syntax for programmers, as welleatively high runtime over-
head in practice, making the whole mechanism much less apgea

In this work we develop an optimized implementation mecsiemior thread-local data
in a Java dialect. This effort has two major goals. First, wendnstrate that significant
performance improvements are possible for programs thatly use thread-local data
by using a straightforward, specialized implementatiosigiefor thread-local data. Mod-
ern memory management and the JDK implementation alreagly/thsead-specific heaps
for data that can be determined to be thread-specific thranghysis MPJ11, and our
work complements that effort by showing improvements age pbssible for programmer-
specified thread-local data. Our work also aims at the laggef of facilitating and en-
couragingdata-race-free(DRF) language design and adoption. The DRF property has
importance with respect to both programmability and toroation potential; many am-
biguities and complexities found in the current Java Memdogdel [MIPAO5] arise from
the need to define semantics for programs that do not haverthperty, while the presence
or lack of a DRF property has a large impact on compiler opttian of multithreaded pro-
grams PH90, S11, MSM*11, Boel]. Providing strong, language-level, syntactic guar-
antees for thread-local usage thus has great value in tertaaguage design, including
incremental dialects of popular languages such as Javas Inatturally predicated upon
efficient implementation designs.

To further both goals we base our investigation and desigmBRF variant of Java, in
which thread-local access is tdefault modédor all fields and it is shared data that must
be specifically identified through language syntax. Thisvedl us to develop the basic
optimization and to build a context for deeper investigattd DRF Java designs. We used
a modifiedJikesRVM 3.1.1 [ik], wherein we implemented a “thread-local by default”
memory system as well as optimized code-generation foathlecal data access.



1.1. Contributions

1.1 Contributions

This thesis makes the following specific contributions:

e We propose a new method to realize the concept of threadl-diata in a Java Virtual
Machine, as currently provided byreadLocal objects. Our design avoids direct object
allocation and allows for transparent data access, signiiic improving both usability
and access costs.

e To demonstrate and experimentally evaluate and our desgimplement our method in
JikesRVM 3.1.1 [jik]. Thread-local isolation of both the static and heap vaesis taken
care of through aeep-copymechanism during the start-up period of each thread. This
initial design supports baseopy-inmechanisms as found in other concurrent languages,
and is amenable to further optimization through lazy copgimaaisms DG 10).

e We evaluate our design using both micro-benchmarks to meditead-local behavior
itself as well as larger realistic programs. For the latterfransform existing Java bench-
marks to make full use of thread-local data, and experintigreégaluate both memory
costs and runtime performance. Our data shows that white tha significant memory
impact for a program which dynamically creates many, sheetd runtime threads, most
thread-local versions offer performance comparable tethogad-local implementations,
with the added advantage of being trivial to verify as DRF.

1.2 Outline

This thesis contains 7 chapters (including this introdnctthapter). Chapter2 provides
background information for this thesis. This includes acdesion of the overall architec-
ture of JikesRVM and some of its important components. It also includessausgsion
about the meaning of our work which is motivated by our focagochieving a DRF prop-
erty through ubiquitous use of thread-local data. This i®Wed in Chapter3 by discus-
sion of the existing Java thread-local facility and the reguents of a Java dialect context.
Chapter4 gives a full description of our implementation design, vwhigs then experimen-
tally evaluated irChapter5. We describe related work @hapter6. Finally, conclusions

3
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and future work are presented@hapter?.



Chapter 2
Background

This chapter provides background information that is hélpf understanding the re-
mainder of this thesis. We start with a brief descriptionJifes RVM, the open source
Java Virtual Machine (JVM), isection2.1. We will give an overview of some parts of the
JikesRVM architecture and explain how these parts are relateditovork. This thesis
is part of a larger project aiming at providing a complete lenpentation of a JVM for a
race-free Java dialect. We will introduce the larger petarSection2.2.

2.1 Jikes RVM Framework

JikesRVM is a Java virtual machine developed for research pugpoBee most significant
feature of this open source project is that the core ardhitecs implemented in Java. This
feature makes it easier to implement and explore new ideast airtual machines within
theJikesRVM framework. The architecture can be mainly divided iriteee components:
the JIT (Just-In-Time) compilers, the runtime service, tdmemory management system

[iik].

2.1.1 JIT Compiler

Java class files contain an intermediate language callextbgé which can be executed
on any platform that has a JVM. JVMs either use interpreteexécute the code by mim-
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icking the underlying virtual machine or use compilers towrt the bytecode to machine
code to execute directly. In the casedkesRVM, the latter approach is employed and
multiple JITs are used to compile the code: a baseline cemfai rapidly producing sim-
ple compiled code, and an adaptive optimizing compilerpnadluces better code at greater
cost.

The baseline compiler idikes RVM follows a template-based approach and uses a
switch statement to deal with different bytecode instamti generating corresponding
assembly code instructions and further machine code utgins for each case, as is shown
in Figure2.1

machine code
assembly instruction /

,,,,,,,,,,, »| assembly instructionp—— | machine code

assembly instruction \
¢ 0 machine code

bytecode
instruction x

Figure 2.1 Code generation for a bytecode instruction. Here, bytecode “x” is compiled to three
assembly instructions “a”, “b” and “c” which are then used to generate binary ma-
chine code instructions specific to the current architecture.

The baseline compiler does not perform any optimizatiordsthe generated assem-
bly codes behaves very much like the interpreter implemgrdibasic stack machine. An
adaptive optimizing compiler can be used to further optéritze methods observed to be
executed very frequently or which are deemed computatipmaénsive. In our implemen-
tation, we turn off the adaptive optimization compiler aredfprm implementations only
within the baseline compiler. We choose the baseline canpicause it is easy and con-
venient to modify and to change the semantics of a bytecodgust need to take control
of the process of converting one bytecode instruction tersdassembly code instructions,
shown by the dotted arrow in Figugel
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2.1.2 Runtime Service

The runtime service idikesRVM provides an environment for correct execution of Java
application programs. We only introduce in detail the peetated to managing objects and
threads which are most related to our work. Runtime serviee jatovides the following
functions:

e providing a special bootstrap mechanism to start the bagialmachine
e triggering compilation and linking of methods
e managing generated code storage

¢ delivering hardware and software exceptions

Object Model

There are two categories of data-type in the Java languageitige and reference data-
type. Primitive variables like integer and double storegheitive value directly. A vari-
able of reference data type stores the address of the objemints to. The object model
defines how objects are represented in memory. An object ise@ @f memory space
which is separated into header and actual object fields dsoisrsin Figure2.2. Each
partition in the header holds specific information aboutdbgct. Furthermore, because
each partition is at a fixed position within the object theuat machine can easily get the
needed information about the object by adding a certain atafudisplacement to the ob-
ject reference value. This makes accessing object fieldsratldods dispatching fast and
convenient.

One special, important word in the header points to the Tyfsrination Block (TIB)
which applies to all the objects of the same type. The TIB hastaal method tabldor
invoking methods on an object and a pointer to another obggresenting its class. This
will be introduced in the next section.
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object header object content
TIB
e o o pointer e o o
virtual RVMClass
method object
table

Figure 2.2 Object representation in memory

Class Representation

Classes inlikesRVM are represented by &VMClass object. Whenever a new class file
is loaded, the class information is interpreted and starébe corresponding fields of this
object. Figure2.3shows the most important fields of tR&MClass class. The name of a
field clearly tells what information is kept. For exampleg tlontructorMethods field
stores all the constructor methods, andrtieglifiers  field uses a short variable to indicate
the modifier information of the class (final, public/privagtc.). Similarly, each field of a
class is represented by an objecRéMField class extending thRvVMMembeclass giving
information about the represented field. Figard shows part of theRVMField class.
Important to our work, thenodifiers  field can tell whether this field has the “volatile”
modifier or not. Once a class file is loaded and resolvedikes RVM, its information

is stored in form of arRVMClass object and information concerning each of its fields is
stored in form oRVMField objects. Given any object, we can trace taRt&MClass object
following arrows shown in Figur@.2 making it quite convenient to retrieve information
about itself and its fields.
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RVMClass

superClass
interfaces
staticFields
instanceFields
constructorMethods
virtualMethods
staticMethods
modifiers
e o o

Figure 2.3 RVMClass

RVMMember

declaringClass
modifiers
offset
signature
e 0 o

A

RVMField

size
e 0 o

Figure 2.4 RVMMember and RVMField

Thread Management and Representation

All Java threads including application threads and garlzajector threads derive from
RVMThread. EachRVMThread is bounded directly with a native thread which is sched-
uled directly by the underlying operating system. This tyesimplifies the task of Java
threads scheduling sincBkesRVM does not take control of thread-processor mapping.
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What is more of our interest is how Java threads are repraseAreRVMThread object
wraps exactly one Java thread. It has state fields to indibatstates of the Java thread,
such as whether it is running or blocked. TReéMThread objects have their owpublic

final void start() method which will put the Java thread into the queue of an-avai
able processor and call thpeblic void start() method for the actual Java thread.
Given this one-to-one relationship between @ Thread object and the Java thread, we
can easily add thread-specific space by modifying the astsalftVMThread class.

2.1.3 Memory Management

The memory management system takes care of object allacatid garbage collection.
The Memory Manager Toolkit (MMTK) inlikesRVM supports a variety of types of mem-
ory management schemes. Different memory managers dik@®ittual memory into
spaces with different functionality and may choose diiférgarbage collection schemes.
In our implementation, we use the basic semi-space cotlastone of the simplest collec-
tors to modify and thus accommodate the way we generatecditipdi data in supporting
thread-local.

A semi-space collector is a copying collector that stopspitegram during garbage
collection. It divides the space into two partitions. Ondrean spaceand the other is
to space When a program is executing, the objects are allocated ot spaceuntil
this space become full and the collection is triggered. Betbe collection really starts,
theto spacebecomes théom spaceand vice versa. During the collection, the collector
copies all the objects reachable by the program fronfrthva spaceo theto space As a
result, the objects that are not reachable are left irfrtira spaceand get collected. This
whole process is repeated until the garbage collectionigha and the program continues
to execute. The semi-space collector is easy to understaindas the disadvantage of
requiring very large contiguous space.

2.1.4 Linux/IA32 VM Conventions

JikesRVM is fully supported on two main platforms, the AlIX/Pow&®PPowerPC proces-
sors running AIX) and the Linux/IA32 (Intel 32-bit architeice running Linux) ABC02].

10
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Our work is implemented on the Linux/IA32 platform. Linu&B2 has its own stack,
calling and register conventions. Our implementation &heoarefully comply with those
conventions, especially the register convention since mange the generated assembly
code manipulating registers. There are eight general gerpegisters in the Linux/IA32
convention. FordikesRVM, two of them are dedicated registers. Among them, ESI is
the thread register pointing to tiR/MThread object associated with the current thread
which is very important to our implementation since we arelidg with thread specific
spaces. The calling convention defines what should be dotireiprologue and epilogue
of a callee, meaning the way of passing parameters, pasfimg values and jumping back
to the caller. HowJikesRVM passes parameters and the return value matters most to ou
project because our modifications to compiler generate@ @oclude inserting function
calls. For this we use the EAX register for the parameter ahdgm value. This register is
considered &aller saveregister, meaning that it can be used for temporaries anddle

is not preserved across calls.

2.2 Race-Free Language Design

Our work is intended to optimize thread-local variablesanalso that they are easier to
program with and faster to access when compared with themurhreadLocal class.
The actual meaning of this optimization goes beyond imprey@s in execution speed,
and was originally motivated by the need to offer a well-perfing, but also simple and
programmer-friendly data-visibility model for popularreaurrent languages. A larger and
more complete picture of the language design, motivatiod,@ntext is provided in pre-
vious work by the authorsfKZ11] and is summarized below.

2.2.1 Data-Race-Freedom and Optimization of Java Programs

While data-races have been long-recognized as errors oegwm concurrent program-
ming, current interest in ensuring data-race-free behmacdises from recent work in de-
veloping memory model semantics for modern languages.iy@orrectness and estab-
lishing the bounds of allowable compiler optimization ispible in the presence of data-

11
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race-free programs, but is much more complex if this prgpsrabsent. The Java memory
model, for instance, provides attractisequential consistenayuarantees for data-race-
free programs, but brings significant complexity in tryimgbtound the behaviour of racy
programs MPAO5].

Part of the problem is in trying to draw a balance between narogning simplicity,
the ability to reason about program behaviour, and the negi/é hardware and compil-
ers sufficient latitude to perform traditional optimizaitg Take thesequential consistency
(SC) memory model as an example. It is one of the strictest memodels and forces
all the instructions to be executed in a global order as tip@gared in the actual program.
It is quite simple for the programmers to program with thisnmeey model because they
can easily understand the program’s behavior. However, ISCediminates chances for
compiler optimizations which often involve reorderingtimgtions. This is an example of
a memory model that is extremely easy to program with but gepaignificant limits on
optimizations. Ideally, a memory model should be easy tg@m with, while also allow-
ing as much optimization as possible. The recently reviagd Memory Model provides a
weaker consistency model that attempts to do just that. Mbigel gives guarantees of se-
guential consistency faorrectprograms, ones without data-races, and a more complicated
and weaker semantics for programs that do have data-raocbdeties in the latter effort
are in fact a continuing source of concern, and several relses have pointed out that
many very common optimizations, including simple reondgrof statements, are techni-
cally prohibited in the current memory model for Javai(7, SewikAO0S, CKSO07. Avery
important reason for this situation is that many optimi@asi making assumption about
control flow cannot be applied to program blocks involvingugd variables. The main
difficulty comes from the fact that the shared variables atectearly identified in current
Java and therefore, a highly-conservative assumptionsiedak applied to compiler opti-
mization, in the worst case assuming that any code blockspasgntially contain shared
variables. Because so many optimizations are thereby ptetijlvesearchers are trying to
find a more reasonable boundary between the forbidden araditineed optimizations and
there has been no definite solution to this issue yet.

Abstractly, such complexities are reduced for DRF, or “caityesynchronized” pro-
grams, since they provide a well-defined input modei§0]. Optimizing compilers can

12
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use synchronization points as the boundaries of optinoatand thus generate only se-
guential consistent executions. Therefore, a way to bygasdlifficulties in validating
optimization for racy programs is to somehow detect thabgam is race-free and ensure
that this property is preserved throughout optimizationfdunately, this is a very com-
plex problem. Static approaches have been developed Wat fuim accuracy concerns
since the DRF property is essentially a runtime program beha& program as simple as
the one shown in Figur2.5 can cause challenges for static analysis. Dynamic appesach
have also been defined, and can accurately report racesrtiagp@ring execution but add
considerable runtime overhead and of course do not give giarantees of race-freedom.
We discuss this further i@hapter6.

Thread 1 Thread 2
while( conditionl ) y = X
x = 1;

Figure 2.5 Example of a program that may be correctly synchronized depending on the runtime
behavior. If conditionl is always false at runtime, thread 1 will not write to x and
therefore, will not conflict the read of x in thread 2. In this case the program is race-
free. It may, however, not be possible to statically determine that conditionl is
always false.

2.2.2 A Race-Free Execution Model

In contrast to all the efforts that either try to prove thempissible optimizations in order to
comply with the complex memory model or which aim at detegtiace-conditions in an
existing program, we would like to guarantee a data-raee-firogram from scratch. The
ideal model uses a conceptually trivial mechanism to makepbssible for a program to
contain data-races and thus gives an effective method foptamizing compiler to clearly
identify shared and thread-local data. There are two basiciples behind our changes to
the Java language as listed below:

e All the static and heap variables are thread-local by defahlus every thread has its own
copy of these variables. Two threads accessing the “samag §ields through the same
syntax are in fact modifying their own private copies withoanflicts.
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e Shared data is still supported. All shared fields are explitagged with the keyword
volatile, and accesses of different threads reach the same mematyolnc Such data
make use of the current Java volatile syntax.

There are several good reasons for reusing the idea of leotigta. In the current Java
semantics, accesses to volatile data are guaranteed tartsparent to all threads. This
means if one thread modifies a volatile data, all threads baearge the change in the value
right away. This is because a compiler must insert a memanyelodor each access to
a volatile variable and this barrier synchronizes all cacbepies of variables with main
memory. As a result, volatile data will never cause race tmms$. Furthermore, use of
volatile data also has ordering implications. The orderoakasing two volatile data must
be the same for all the threads. This imposes synchronizéioandaries for compiler
optimization.

This execution model provides very useful guarantee. ltdithe sharing variables be-
tween threads to volatile variables which are statically elearly identified. This greatly
simplifies programming effort, and also optimization desighich no longer requires ad-
vanced analysis or strong conservative assumptions taesia-race-freedom is pre-
served throughout optimization.

The starting point of implementing this execution modelastipport default thread-
local data in Java and make sure the more intensive usageeafdtitocal data will not
compromise performance too much. This leads to the nexttehaghere we consider
how the currenThreadLocal class works and present the basic idea for our approach to
optimizing it.
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Chapter 3
Semantics and Implementation Strategy

Basic and existing support for thread-local storage is pleyiin Java through a class
called ThreadLocal . This class requires no special implementation, using eathr
specific map to associahreadLocal objects with specific values. In this way each
thread can store and access unique data (logically) witlirsameThreadLocal  object
by using therhreadLocal object as a map key. Although this design sits nicely withan t
object-oriented paradigm of Java and avoids any specgihgaperformance can be unsat-
isfactory. In this chapter, we will look at both the origirdésign usingrhreadLocal
objects and our new design resulting in new seman8estion3.1gives a detailed exposi-
tion of the original design and our concerns withSection3.2 gives an overview of how
thread-local data is used in the race-free Java variantngetta

3.1 Original Design

In a typical Java Virtual Machine all object data is allochten a heap, a single area of
shared memory. Naturally, and by design, all the variablegatentially accessible to all
the threads. This includes instance data, provided a thseaie to reach the data through
some chain of references, and adsaticclass fields, which can be accessed without holding
any reference to an object of the class. Either mechaniswslllata created in one thread
to reach another, “escaping” a single thread’s contéx®pP9. To store private, thread-
specific data the program can allocataeadLocal objects, which as discussed above
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Semantics and Implementation Strategy

interact with a map-based mechanism in order to simultasigdhold” distinct data for
different threads. A singléhreadLocal object can be shared among threads, but when
a thread reads or writes to it the thread accesses only i Wecsion of the data stored
therein. The map-based approach withiimeadLocal variables is quite flexible, allowing
for thread-specific version of data for all threads, and eoafing with garbage collection

in the sense that a thread’s private data only becomes taidleconce the owning thread
dies.

The map-based approach requires that each thread is aldngtateThreadLocal
objects into specific values. Each Java thread hageadLocals  field which has type
ThreadLocal.ThreadLocalMap . This is aweak referencenap associatinghread-
Local objects with a thread’s values considered to be storednitBasic read and write
access t@hreadLocal data is provided by 2 (generic) methods;T> get() andvoid
set( <T> object) . Whenever a thread-local variable is accessed through otiesé
methods, theéhreadLocals  field is read to get the map, and thiereadLocal object is
then used as a key to retrieve the appropriate value. An deashpsing thread-local data
in Java is given in Prograrhbelow.

Program 1 A program usingrhreadLocal class in Java

class A {
public static ThreadLocal<B> localltem = new ThreadLocal( )
protected synchronized Object initialValue() {
return new B(); [/ * B’s constructor is called */
}
h
}

class C extends Thread(){
public void run()}{
B localvalue = A.localltem().get(); / * read from a
ThreadLocal subclass */
B newValue = new B();
A.localltem.set( newValue ); / * write to a ThreadLocal
subclass =/
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Although this design is quite portable, involving only Jawale, there are several draw-
backs to using th@hreadLocal class for actual thread-local variables:

e The thread-local variables are not actually inherent toJéea language. As a result,
the syntax to use them is complicated, and quite differearthfnormal variable access.
Reading and writing require method calls, and to set a defaitial value a programmer
needs to override theT> initialValue() method.

e The mechanism makes every access to thread-local datastxpeBach time a read or
write is requested, théhreadLocals ~ map must be retrieved from thigaread object,
and the currenthreadLocal object used as key to get the related value. This requires
multiple levels of indirection.

e Initialization of thread local variables for child threackn only be done manually. A pro-
grammer may want a parent thread to define an initial valuznaatically when launching
children threads, a common pattern, given that childregeiths often need an initial value
to complete further tasks. To tackle this problem, a separa&tchanism, using a subclass

of ThreadLocal calledinheritableThreadLocal is then used. This class allows for
a method,Object childValue(Object parentValue) to be implemented to re-
ceive an initial value from parent thread. Prograshows the difference between the use
of ThreadLocal class andnheritableThreadLocal class. In the.ocalExample
class, theid field is of InheritableThreadLocal class and theolor field is of

ThreadLocal class. The child thread inherits the value of ithefield from the parent
thread while theolor field is not initialized.

The main concern here is that while this does indeed enalildreh to receive parent
data, it does not provide any default mechanism to ensurehiteedata is thread-specific
to the child thread—-by default, parent threads pass ancobgference, and are not
required to (deep-)clone the object. This conflicts withspeit of thread-local variables,
which is to guarantee each thread has its isolated threadfspdatum within a given
ThreadLocalobject. The default mechanism allows both parent and chilthize access
to the same object, and is thus an easy source of potentekt@aditions.
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Program 2 A program usingnheritableThreadLocal andThreadLocal class.
class LocalExample extends Thread {
private static InheritableThreadLocal id =
new InheritableThreadLocal();
private static ThreadLocal color = new ThreadLocal();
static int count = 0;

public void run() {
if ( count == 0 ) {
count++;
id.set( new Integer( count ));
color.set( "Green" );
System.out.printin( "Parent " + id.get() + " "
+ color.get() );
LocalExample child = new LocalExample();
child.start();
}
else if ( count > 0 ) {
System.out.printin( "Child " + id.get() + " "
+ color.get() );

}

public class Test {
public static void main(String args[]) {
LocalExample a = new LocalExample( );
a.start();

}

output:
Parent 1 Green
Child 1 null
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3.2 Our Design

Our design is intended to optimize support for thread-Idegh within a new, race-free Java
dialect. Here we summarize details important to understgnihe nature of our thread-
local implementation. Further details of the language astifjcation for it being race-free,
are available inyKz11].

The principle idea behind our approach is to make threadHibe default option. A
programmer wanting different threads to use the same ottjentneeds to explicitly de-
clare the data as shared, for which we repurposedtatile keyword. Non-volatile data, be
it static class variables or general instance variablethareguaranteed to be thread-local.
For instance variables this is afforded by making distiragies of any accessible data at
thread initialization time. Access to thread-local, statass variables is optimized through
a table look-up based mechanism.

This approach overcomes the concerns expressed aboveegfithat to the current use
of ThreadLocal objects in Java described above. That is:

e Thread-local data becomes inherent within the languagasees. All the variables are
thread-local automatically, and both thread-local andeshaata uses the same access
syntax.

e Thread-local instance data is guaranteed to be threatlthyceeachability properties
within the heap, and so requires no extra access overheatic Stread-local data is
stored within a thread-specific look-up table, such thatddwme data is located at the
same offset for each thread. Access thus only requires dticadd indirection to reach
the thread table, with offset values known at (JIT) compilee. This saves a lot of time
compared with searching a map.

e Children threads can automatically inherit object valuesfparent thread when started.
Thread-local properties are easily guaranteed in a reaksey (deep-)copying the data,
ensuring parent and child objects are indeed distinct.

ProgranB shows an example of programming in this paradigm. The dtatttiocal-
Item in classA is not specified byolatile and so a thread of classis operating on a
local copy of that field. In contrast, the thread is operatimga shared copy for field
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shareditem because there is\alatile modifier. The syntax for accessing the two kinds
of fields are the same and the programmer just needs to usettidento tell the compiler
the difference.

Program 3 A program using thread-local static variables in a race-ftesign.
class A {

public static B localltem;

public static volatile D shareditem;

}

class C extends Thread()}{
public void run(){

B localvalue = A.localltem; / * read from thread local
static variable * [
A.localltem = new B(); / * write to a thread local
static variable * [
D sharedValue = A.sharedltem; / * read from shared
static variable * [
A.shareditem = new D(); / * write to shared
static variable * [
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Chapter 4
Optimized Implementation

Our implementation work is performed ikesRVM, allowing us to take advantage of
the full Java Virtual Machine context. In this chapter, Wegibewith a general description
of how to ensure thread-local propertiesSection4.1. We argue for the validity of our
theory by dividing the objects into 4 categories and discigsthe thread-local property
category by category. Next, we provide the implementatideisils for instance fields
and static fields respectively iBection4.2 and Section4.3. In Section4.2, we exploit
reachability for instance fields by tracing class hierarchthread objects and employing
anobject clonerfor deep-copying. This is followed by a discussionSaction4.3 about
static fields for which we not only use aject clonerfor reachability but also maintain a
separate, thread-specifialue heapo speed up accesses.

4.1 Thread-Local Access

Our purpose is to make each variable thread-local by defeldiss the programmer uses
thevolatile modifier to explicitly specify that a variable is shared. Wéwesr a thread starts,
the virtual machine thus goes through every reference feddhable by the instantiated
thread to deep-copy all objects whose references are noifisgeas shared. Note that
not only instance variables are copied but also class Masare copied and stored into
thread-specific memory locations, as described irSietion4.3. In order to do this fully
and effectively, we need to identify all sources of reackaitljects.
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The process of finding reachable objects is not unlike thartgaprocess of mark-
and-sweep garbage collection. We begin from a known roottsatsitively following
references. Figd.1shows this process for one child thread launched by its panesad.
The arrows show the relationship between objects. ObjectdCGbject C represent objects
referenced from static fields accessed by the parent th@gdct B and Object D stand for
objects contained within the instance fields of the parewtatth that are reachable through
parameters passed to the child thread constructor, anetstathin the instance fields of
the child thread object.

In the basic Java implementation, after a thread starts wealefine 4 categories of
reachable objects, corresponding to the tracing roblisn-escaping locaand Escaping
local contain objects created by the current thrdaderitedandPublishedcontain objects
created by other threads but the current thread can reachttiteugh fields accesses. We
will argue how our implementation can make sure that eachexfd categories are thread-
local unless otherwise specified by the programmer. Exawgflidhese categories are given
in Program4. Note that the categories are in view of a single currentithr& hey do not
overlap in one thread but one object may belong to differamegories with respect to
different threads.

Non-escaping localThese are local objects instantiated in heblic void run()
method which are neither passed to another thread nor pedlihrough static class
fields. Those objectsever escapérom the belonged thread. Tlubject ain Pro-
gram4 belongs to this category.

Escaping local These are local objects instantiated in plglic void run() method
which are either passed to another thread or publisheddhrstatic class fields. The
object bin Program¥ belongs to this category from the view of tRarent thread.
It escape$rom theParent thread to aChild thread.

Inherited These are objects whose references are passed as argufrtetthoead con-
structor or instance fields of thehread and/orRunnable object. Theobject bin
Program4 belongs to this category from the view o€aild thread. Itis stored in an
instance field of &hild thread. Therefore, this object is shared betwebarant
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4.1. Thread-Local Access

—» reference

space of parent thread

instance fields static fields

S
object A

object B

aCCD

space of child thread

static fields

instance fields

Figure 4.1 Deep-copying for thread initialization

thread and €hild thread. In another word, th@éhild threadinheritsthose objects
from theParent thread.

Published These are objects published through static fields of anyg claseobject yin
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Programd in bothParent andcChild thread belongs to this category. Béthrent
andChild thread can access these objects. Actually, any other thréakey exist,
can also reach these objects.

For the first category, the objects are instantiated locatigt only the current thread
holds references to them. These objects can never escapedad even in the base version
of Java. Objects ifEscaping localescape the thread in which they are created either by
being stored within a thread instance variable or by beiogest in a static field. The
former becomdnherited objects while the latter beconfeublishedobjects. Objects in
Inherited are shared between parent thread and child thread. Obyeétshlishedare
shared among all the threads. The main requirement is thasetde unique versions
of Inherited and Publishedobjects (and their reachable referents) for the curremtatihr
During the initialization phase at the start of a thread,raodified virtual machine iterates
through all the reference fields and checks fontbkatile modifier. If not found, the object
is deep-copied to ensure there are thread-specific versions

4.2 Application Instance Fields

A limitation of our approach is that we only consider apiica fields defined by devel-
opers here. The fields defined in classes of the original J&lare not copied because we
assume the classes in Java API will not cause race condiftamghermore, objects of most
Java API classes do not refer to objects of the developeratkeiasses or access any fields
of the latter classes because they are not aware of the mogstd the latter classes. Here,
we only consider 2 exceptions among the most commonly used ARl classes whose
fields point to developer defined classes. TheyTdmead Sectiond4.2.1and containers
Sectiord.2.2 A safer method is to check all the used API classes to seeyflihve fields
referring to developer defined classes, but this is leftditure work.

For Inherited objects, we need to iterate through all the applicatioraimse fields of
the current thread to copy the objects that are reachable.trdfe the class hierarchy
for Thread objects and itsunnable field, usingobject clonerto copy bothscalartype
objects and array type objects.
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4.2. Application Instance Fields

Program 4 Four categories

class X {

//static field that can be accessed by any threads
public static Y v;

}

class Parent extends Thread(){
public void run(){

/llocal object that never escapes parent thread
A a = new A();

/lobject which is passed to children thread
B b = new B();

Child child = new Child(b);

child.start();

llaccessing static field
Y y = new Y();

Xy =y,
}
}
class Child extends Thread()}{
B b;
Child( B b 1
super();
this.b = b;
}

public void run(){

/laccessing static field
Y y = new Y();
Xy =y,
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4.2.1 Class Hierarchy for Thread and Runnable

The application fields are defined in different levels of dakees of thehread class.
Therefore, to find out all the objects reachable from instdigtds we need to trace through
the class hierarchy of the curreftiread object. All subclasses that the current thread ex-
tends from are extracted and the objects referenced by fietde are checked and copied.
Furthermore, there ismnnable field of typeRunnable defined in therhread class. A
Thread object may reach &unnable object with a lot of application fields. Similar to
the application fields iThread object, these fields are dispersed among different level of
subclasses ®unnable . These instance fields may hold objects shared with otheattsr

as well. Therefore, we need to use the same method to tracdabe hierarchy of the
Runnable object in order to find all the objects reachable from thispoi

4.2.2 Object Cloner

Each thread is assigned abject clonerat the start. The object cloner is in charge of
cloning every object reachable from its owner. For eachatpibe object cloner first does
a shallow copy which only duplicates the primitive type abites and reference values.
Then, a recursive approach is employed to guarantee thetslgee fully copied; this is
especially important for collection and array type objecsmap is used to prevent an
object from being copied twice, and to properly reconstoagied object references.

Scalar Type Object

A scalar type object is a single object that is not an arrayerfewbject indikesRVM
consists of 2 parts, the header and the fields value. The hpadegives type and garbage
collection information. Figt.2shows the structure for a scalar type object. To copy a single
object, the object cloner first allocates a space and iizéislthe header for the new object.
Next, it does a memory copy from the second part of the origibgect to the new object.
After this shallow copying process, the object cloner wérate through each field of the
current scalar type object. If the field is primitive type, med to do nothing. If the field is

an instance field, thecopyObject( Object fromObj, RVMType type ) method
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will be called recursively.

object header field_0 field_1 e o o

Figure 4.2 Structure of scalar type object

The Java API contains a large group of container classeswanecused to hold multiple
objects. Although containers are also scalar type obje&sieed a special way of copying
them for 2 reasons. First of all, containers are defined ia & but have references to
objects of the developer defined classes. We assume onlyettledferring to developer
defined classes will cause race conditions. Therefore, @&koghcopy rather than deep-
copy other fields which are mostly primitive type data usedhtbcate information like
size and capacity. Note that while it is possible that othedd$i in containers may need to
be deep-copied (such as head-pointer for a linked list), vaat address that issue here
and leave it for future work. Furthermore, in each contatherfield referring to objects of
developer defined classes is an array type field. This armased to buffer all the elements
in a container. The object cloner extracts the array andhesedpying scheme for array
type objects, which we will describe below.

Array Type Object

Fig 4.3 shows the structure for an array type object. Similar to dasdgpe object, the
object cloner allocates the space and initializes the hdadéhe new array type object.
Instead of deep-copying each field as scalar type objectevenvthe object cloner deep-
copies each element object for array type object.

object header length of array element |0 element_1 ¢ o o

Figure 4.3 Structure of array type object
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Map

There are several cases where a naive deep-copying schénoawge problems. Pro-
gram5 will get stuck in an infinite loop because 2 objects reachallenstance fields of

the thread are pointing to each other, as is shown in Figute A naive deep-copying
scheme will continue to deep-copy each field and result iméniie number of copies of
Cobjects and objects. In Prograr, an instance field and a static field are referring to the
same object as is shown in Figutes. A basic deep-copying method will copy this object
twice. The first time is when deep-copying the instance fiedthd the second time is when
deep-copying the static field.b . Because of those cases, we need to take an approach to
make the object cloner know whether an object referred maady got a local copy for the
current thread.

Program 5 Objects referencing to each other
class A extends Thread{

B b;
C ¢
run({
this.b = new B();
this.c = new C();
this.c.b = this.b;
this.b.c = this.c;
}
}
class C{
B b;
}
class B{
C c;
}

Similar to the case where algorithms traversing each nodegraph needs to record
visited node, the deep-copying method need to find a way gfikgdrack of the copied
object. The object cloner realizes this by recording thereskl of the new copy. A map
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—» reference

space of A thread

instance field: h

static fields

instance field: ¢

Figure 4.4 Obijects referring to each other

Program 6 An instance field object referencing to static field object
class A extends Thread{

B b;
run({
this.b = C.b;

}
}
class C{

static B b = new B();
}

is used to keepcold address, new addresgairs. Before copying any object, the object
cloner first searches the map with the old address as a k&g ditject is already copied for
the current thread, a new address value associated thelaidgext is returned. If there no
entry for the old address in the map, the object cloner witittwe to copy this object. The
garbage collection is disabled during this process to miaikeapproach work. Otherwise,
the map will not correctly identify a copied object since igit get a new address by being
moved elsewhere.
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— = reference

space of A thread

instance field: static field: C.b

Figure 4.5 Fields referring to the same object

4.3 Localized Value Heap for Static Fields

For the last category, we leverage the existing mechanisiike6 RVM for storing static
fields. WithinJikesRV M, all static variables are held in a (global) table callde®C (ikes
RVM Table of Content). We duplicate this table, attachingala@opy to the new thread,
while also deep-copying all the references contained witFhis process has the added ad-
vantage of resulting in much faster access than through @imaent staticThreadLocal
reference. Each static variable is already assigned agetoffsen loading and resolving the
corresponding class. This offset indicates the relativatpe with respect to the start of
the table, and is unique for each static variable. Our implaation preserves this property
for all the threads; for a thread to read a static non-veditgld of a class, it merely indexes
its own version of the static variable table using the vdeiahdex already defined during
class load-time. Note that this design does not entirelJaoepthe original, global table
of statics—there is still a global table holding the sharadis variables that are specified
by the programmer to beolatile. Figure4.6illustrates the idea in the case of Program
Thread 1 and thread 2 each have a local copy of static Migtdalltem at the same
offset in their table. If any of the threads would like to asx&.shareditem  they look it
up in the global table.

30



4.3. Localized Value Heap for Static Fields

global table local table local table

for all threads for thread 1 for thread 2
\
offset for
A.sharedltem offset for
A.localltem

A.sharedltem

A.localltem A.localltem

Object of

Obiject of
class B
for thread 1

Object of
class B
for thread 2

Figure 4.6 Local value heap(s) for static fields.

4.3.1 Localized Heap with JTOC

In JikesRVM, the JTOC which is an array of integers, stores pointeralitstatic fields.

Whenever a new class appears in the executed program, itssponding class file is

loaded. The VM will extract the class information concegntlass name, fields, meth-

ods, supper classes and interfaces, storing thedikies RVM format like RVMClass,

RVMField , RVMMethod The class is resolved through this process and each fiekdt is a

signed an unique offset stored in an associ&eMField object. The offset is measured

from the start of the object if this field is an instance fielar Btatic fields, the offset is

measured with respect to the start of the JTOC.

In the original version oflikesRVM, JTOC is a global table shared by all the threads
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and a dedicated machine register (the global JTOC reglstéay the reference pointing to
this table. We make a thread-local copy for JTOC at the staach single thread. When a
thread needs to read and write to a static field, instead dfrrgahe global JTOC register,

it reads theslots field which is added to thRVMThread class and adds the offset to this
reference value to get the reference to its own version ostidwec thread-local fields.

4.3.2 Assembly Code Generation

To change the semantics of the language, we need to chang&ayhibe virtual machine
behaves by modifying the machine code generated accomimgécode instructions. Two
groups of bytecode instructions are involved in static frelads and writes. The first group
involves operations for static fields in resolved classessgltlass information is already
stored in form oRVMClass andRVMField objects. The second group involves operations
for static fields in unresolved classes whose class infeomas not available at this mo-
ment. For both groups, the first step is to tell if the relataticfield is avolatile field. This

is a functionality that should be included in the JVM but hasyet been implemented in
JikesRVM. The second step is to branch to the right path with tHigrmation. The whole
process needs a combination of static and runtime infoomati

Reads and Writes of Resolved Static Fields

For static fields in resolved classes, the virtual machimeged modifier information easily
from theRVMField object and generate only one pass of the assembly code. rbluisgs
is shown in Figure4.7. The generated assembly code instructions for reads atekvarie
shown in Figure4.8 and Figure4.9. After the first instruction, the EAX registegets
the base address of the thread-local table by readingidke field of the RVMThread.
This field is represented by the red rectangle (the one wabhslines) in Figure4.10
After the second assembly code instruction, the virtualhimacgets the location of the slot
associated with the static field by adding the field’s offeg¢ht base address stored in EAX.
The field slots is shown as a green rectangle (the one witlzdwatal lines) in Fig4.10,

La caller-saved register in IA32 systems used by compilarstiring temporary values. Caller-saved
registers are registers whose value may be changed acnasst®h call.
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storing the address for the local object. For read opersitis address is pushed on the
stack. For write operations, the value on top of the stackjgppd and stored into this slot.

get RVMField object

if field is volatile?

asm code for code
for
non volatile field

asm code
for
volatile field

Figure 4.7 Virtual machine behavior for resolved get/putstatic bytecode

mov EAX [ThreadRegister + local heap Offs¢g

push [EAX + field offset to heap

Figure 4.8 Assembly code for resolved getStatic bytecode

Reads and Writes of Unresolved Static Fields

For static fields in unresolved classes, there is no relevdotmation available in the
virtual machine at compile time. Fortunately, the modifrdormation will be available at
run-time when the assembly codes are executed. As is showigune4.11, the first thing
the virtual machine does is to generate code for triggetiegctass loading and resolving
process. We need to insert the assembly codes for retriéeidgnodifier information after
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mov EAX [ThreadRegister + local heap Offsg

pop [EAX + field offset to heap]

Figure 4.9 Assembly code for resolved putStatic bytecode

Thread

thread local table

NSRRI

Figure 4.10 Assembly code illustration

this process. Because the modifier information is absentruntitime execution, assembly
code for both branches should be generated.

Figure4.12shows this process. The logic is almost the same as thatsolvesl fields in
Figure4.7but it is applied to generated assembly code rather than \il\ber at compile
time. The way of extracting modifier information to judge wher a field is volatile is
also different. Rather than getting this information dikg@tom theRVMField object, we
need to call a metho@Volatile with a reference id as a parameter at run-time. Each
field reference inlikesRVM is in form a of FieldReference  object associated with an
unique id and a resolved field in form B\VMField . Therefore, inside the called method
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int isVolatile(int memberld) , we use the id to find the resolved field and check if
this field is volatile or not.

generate dynamic linking sequeng¢

'

asm code

A)

Figure 4.11 Virtual machine behavior for unresolved get/putstatic bytecode

@e parameter @

call isVolatile method

if field is volatile?

asm code
for
volatile field

asm code for code
for
non volatile field

Figure 4.12 Assembly code for resolved getStatic bytecode
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4.3.3 Garbage Collector

A basic semi-space copying garbage collector is chosen atf®er more sophisticated
garbage collectors because its simple structure fa@st@st implementation. As a copying
garbage collector, it needs to determine all the objectshadale and copy these objects to
the other half of the space. The remaining objects in thelfaltof the space are discarded.
The tracing phase starts from objects in root sets which sseraed to be reachable. One
root set is the static root set which contains all the stagid$i. In the case alikesRVM,
this takes the form of the JTOC which is duplicated to holdaxbpies for each thread.
The garbage collector is changed to be aware of these eatra stot sets.

There are multiple garbage collector threaddikesRVM and it is necessary to fairly
distribute among them the slots in the static roots of d#féapplication threads. This is
more complicated than distributing slots from only one Brgjatic root. To begin with,
the garbage collector needs to find out the quota, a heuaigficoximation of tracing load
which is the number of slots one garbage collector is asdignéd it needs to be calculated

like this:
numStaticFieldnumOfT hread

numO fGCT hread
We use the number of static fields (humStaticField) timesitheber of application threads
(numOfThread) to get the total number of slots. Next, wed#vihis total number of
slots by the number of garbage collector threads (numOfG&ad)rto get the quota. The

quota= (4.1)

garbage collector then finds the slot, uniquely identifiedsing both slot index (slotindex)
and thread index (threadIndex). It uses the following daloons:

preSlots= (GCOrdinal— 1) x quota (4.2)
slotindex= (preSlotsmodnumOfGQ + 1 (4.3)
preSlots

threadIndex= (4.4)

numO fGC
Each garbage collector thread is assigned an ordinal nu(@@0Ordinal). Equationt.2
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gets the number of slots that have been processed by garblégstars with ordinal num-
bers smaller than the current one. The result is uséd3and4.4 to identify the starting
point. Then it continues to process the next slot following iow shown in Figuré.13

It checks if the slot contains a valid reference and tracesd¢lachable objects from this
reference. The garbage collector keeps going and stop®aiases. The first case, shown
by the blue edge (the longer dotted edge) in Figude3 is when it finishes its quota. The
second case, shown by the green edge (the shorter dottejliedgigure4.13 is when
the garbage collector reaches the end of the entire root lsiehvis the last slot of the
last thread. During this process, each garbage collecteadhkeeps track of not only the
current slot and but also the current static root being Faee.
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slotindex
threadIndex
counter=0

'

process slot
counter++

if counter < quota?

if slotindex is
the last in
threadlndex?

if this is
the last thread?

slotindex++

exit threadlndex++
slotindex=0
\ v
end of

current loop
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Chapter 5
Experiments

While our design reduces the normal overheadtokadLocal access, it also intro-
duces significant overhead in the deep-copying proceshidichapter, we use both micro
benchmarks and non-trivial benchmarks to experimentaififywand evaluate performance
of our design. InSection5.1, we use micro benchmarks to compare the performance of
currentThreadLocal in Java API with static thread-local data in the new semantio
Section5.1, we use non-trivial benchmarks ported from existing sagitoeour semantics
to show the programmability and functionality of the new saiit.

Programs written in the current Java language are ruikeas RVM 3.1.1 and the
modified versions are run in our modified virtual machine. réh&re two separate code
generation paths: one in the baseline compiler and the atltee adaptive optimization
compiler. In our prototype work we modified only the baseboenpiler for simplicity, and
so we turn off the adaptive optimization compilers on bottiugl machines to be able to
measure comparable results. For garbage collection wethedzhsic semi-space copying
garbage collector in both JVMs, as the easiest to modify tietstand the new root sets
created by the duplicated static variable tables. Compavigth a fully optimized compiler
and the advanced generational collector withikesRVM would be interesting, but is left
for future work.
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5.1 Micro Benchmarks

Micro test cases contain loops that repeatedly perform Isimgad and write operations
on static, thread-local fields. The benchmarks written enrtbw dialect require no effort
other than using the keywomstatic, while the benchmarks written in Java wrap variable
data within aThreadLocal type. Different groups of micro benchmarks emphasize the
performance of different aspects of our design. In the Jatadl Machine, a class needs to
beresolvedhe first time it appears during the program execution. Quaiclass resolution,
the class file is loaded, static initializers are executetisymbolic references are replaced
with direct references. After a class is resolved, infororatibout this class is kept by the
vitural machine. Therefore, retrieving information for @ldi in a unresolved class requires
loading and resolving the class first while a field in a restlelass does not need extra
effort. We need to consider the performance for accessitiy these two kinds of fields.
Micro tests inSection5.1.1include only accesses to resolved static thread-localsfield
Micro tests inSectionb.1.2focus on operations on unresolved static thread-localdield

5.1.1 Accessing Resolved Thread-Local Fields

This group of test cases shows performance for resolveddHoal fields. All the current
released versions afikesRVM do not distinguish volatile data from non-volatile data
This is a fast way of getting the entire JVM working but a futiplementation of JVM
should certainly be capable of telling the two differentadgtoups. Our implementation
of the new semantics adds this functionikesRVM and also brings in some overhead.
As mentioned irSectiord.3.2 retrieving modifier information is very straightforwaralrf
resolved thread-local fields, adding little overhead itirtglvolatile data. Therefore, the
overall performance would be dominated by the actual datessing mechanism. For
this reason, we use this group of benchmarks to fairly deteritne baseline performance
difference between our table-based approach and origme-searching approach. We
change the benchmarks with respect to two aspects, whicthareumber of fields (in
Section5.1.7) and the number of threads (Bection5.1.1). The number of fields in each
thread decides how many entries each map or table will hawaay potentially change
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the accessing time. The number of threads decide how mang arapbles the program
will have. It may also affect data accessing time. Therefoogh of these two aspects are
important.

Number of Fields Increasing versus Time and Memory

Figure5.1 shows the case where there are 3 threads busy reading aimdy\watitthe static
thread-local fields. We increase the number of static figlois1f1 to 29. Unsurprisingly,
the speed of our dialect is much better than that of the algiava using the current
ThreadLocal class. We improve performance by a factor of two despitedbethat our
system needs to determine whether a field is volatile or ndewihe original system does
not do so. As the number of fields in each thread increasemtidleexecution time and the
garbage collection time of benchmarks in both groups irsgeéinearly. Note that the GC
time increases at a slightly slower rate than the total time;version adds only a small
amount of extra data, mainly in terms of an extra table fohahcead, and the amount of
collectable data is minimal in both language variants.

The memory requirement remains at 10MB as the number of fintdeases for the
new semantics while the memory requirement remains at 6MBriginal Java. For both
the new semantics and original Java, more static fields data®quire more table or map
allocations and the memory space required is thereforeamysd.

Number of Threads versus Time and Memory

Table creation implies that for a given amount of static data overhead costs should
increase in proportion to the number of threads. FiguPghus shows micro-tests reading
and writing to 4 thread-local static fields, but varying th&at number of threads created.
As expected, the total execution time increases, altholghesult is not linear. Our op-
timized thread-local static variables easily outperfotims ThreadLocal class version
when there are few threads, but as the number of threadssesehere is also an increase
in the slope of the curve, while the old version of Java mausta linear relationship. The
separate curve for GC time shows that this is primarily duméoeased GC costs. The
local heap for each thread is added to the static root set wbkertions begin, and thus
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Figure 5.1 Time required for 6000000 reads and writes to each of 1 to 30 resolved static,
thread-local fields. The time value is the average of 20 runs.

increases the time spent root scanning. This effect is gdrifi Figure5.3, which shows
execution time subtracting GC time. In this case growth &rmageduced to linear. We ex-
pect improvements to the GC costs would be possible with @ reophisticated collector
that understood and exploited the thread-specific separatir design creates.

Figure5.4 shows the changes in required memory space as the numbeeatishin-
crease. For both the original Java and the new semantiasgh®ry requirement increases
in proportion to the number of threads. In both cases, thegefixed amount of memory
allocated to each thread as it starts. While the original dasaciates a map to each thread
the new semantics associates a table to each thread. Therfapproach is flexible in size
and can be adjusted to the number of entries, while the lastea fixed table size and has
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Figure 5.2 Number of threads versus time for 6000000 reads and writes to 4 resolved static,
thread-local fields. The time value is the average of 20 runs.

a quite large initial size, accommodating 128K entries.sTriesults in the different slope
of the line. The memory requirement for new semantics careloeedised by using a table
that can start small and be dynamically expanded.

5.1.2 Accessing Unresolved Thread-Local Fields

In this case, just to examine the specific cost of accessingsalved fields we show one
benchmark with three threads reading and writing to 10 wived static thread-local
fields. As is mentioned isection4.3.2 retrieving modifier information for those fields
takes more efforts and results in larger overhead. The extrehead to distinguish volatile
field from non volatile will compromise our performance irapements. Therefore, this
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Figure 5.3 Number of threads versus time for 6000000 reads and writes to 4 thread-local static
fields, deducting GC time. The time value is the average of 20 runs.

test is used to show part of the inevitable overhead intredury implementing volatile
data for a fully functional JVM. As is shown in FiguEe5, both our new semantics and the
original Java add some overhead compared to accessingedd$@lds. This is because the
virtual machine first needs to load and resolve the corredipgrelass to access unresolved
data. The garbage collection time does not change for batiiscaAnother observation is
that although the new semantics still outperforms the palglava the degradation of the
former is significant larger than that of latter. This is cadi®y judging whether a static
field is volatile or not. One way to reduce this overhead isge a bit vector to indicate
whether a static field is volatile or not rather than callinfyiaction to read the modifier.
Another way is to reductalse unresolved accesshich means executing code for unre-
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Figure 5.4 Number of threads versus memory for 6000000 reads and writes to 4 thread-local
static fields.

solved fields despite actual accessing resolved fields. @3ticase containing a huge loop
is such case. The code generated for the loop is the sameeangdrtte code for accessing
unresolved field will be executed for 6000000 times whil@ialty only the first access is to
an unresolved field. This can be improved by recompiling tiaeafter the first access so
that only the first access executes expensive code. Thisaditidnal method and although
the baseline compiler alikesRVM does not do that, the adaptive optimization compiler
in JikesRVM can do such optimization.
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Figure 5.5 Comparison between time required for 6000000 reads and writes to both 10 unre-
solved and resolved static, thread-local fields. The time value is the average of 20
runs.

5.2 Non-trivial Benchmarks

Intensive thread-local access does not give a realisticngiof performance differences;

different programs will in practice make greater or less# of shared versus thread-local
data, and the relative impact will depend on how executistscare distributed through-

out a program’s activities. We thus further investigatéqrenance using a suite of larger,

non-trivial test cases. These multithreaded benchmagksedected from various sources.
In all cases changes were required to make the programs gaomihl our new, thread-
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local/shared semantics. We manually identified the shaeddkfin different classes and
tagged them wittvolatile. These changes respected the original program’s use adshar
and private data. Tablg.1 summarizes the benchmarks, giving each benchmark a short
description. Tablé.2 includes dynamic data measuring the relative number otlbgi
accesses (important to understanding how much impact eksdaagariable access method-
ology could possibly have), the total number of threadstedgtaand a basic measurement
of the overhead introduced by the per-thread table allocatie perform.

There are two groups of test cases for non-trivial benchm&&ction5.2.1compares
the performance of the new semantics and the original beadtsmvhich do not make use
of theThreadLocal class. InSectiorb.2.2 we modified theseriesbenchmark to compare
performance of the new semantics and use offtireadLocal class in a real case. The
reason why we choose only tBeriesbenchmark is stated at the beginning of that section.

5.2.1 New Semantics versus Original Benchmarks

Figure5.6 shows the performance in terms of execution time. Here wiiateabehavior
of the modified benchmarks run under our semantics in reldadche execution time of
the original, unmodified benchmark, which is using all sdagtata. We do not introduce
newThreadLocal objects to guarantee thread-local access for original Bamahmarks
because this would require manually changing all the thteeal fields and also each
access to those fields. To compare different benchmarksyclakthe execution times are
normalized to 1.0 by dividing the original execution timen& garbage collection costs
contribute a lot to the total time and our design has a clepaghon GC costs, we separate
normal execution and GC time. In this experiment, we do npeekto see improvements,
and are mainly trying to ensure that using thread-local dgudedoes not introduce too
much cost.

From this data, it can be seen that most benchmarks run onadified virtual machine
at about the same speed as on the original virtual machinexpexcted, there is no perfor-
mance improvements for this group of benchmarks as for nier@hmarks because the
original Java benchmarks here do not leeeadLocal objects to guarantee thread-local
access as do the micro benchmarks. Nevertheless, we dipatgiperformance improve-
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Table 5.1 Benchmarks description and sources.

name

description

sources

P/C

A standard producer/consumer benchmark
producers produce 12000 objects and 3 ¢
sumers consume them. They share the ¢

tainer holding the value and update the value.

SRun Java Tutorialdur
on-
on-

D

traffic

144 drivers and cars will pass through a rot:
intersection. For each round, 1 car thread an

driver thread navigate together around a rotary.

They share fields that give information abg

traffic condition, driver’s decision and car’s lo-

cation as well as speed. They each have

cal copies of data indicating destinations, én-

trances, driver’s driving style, road segments
formation.

argable Research Group
dil

ut

O-

in-

roller

A variation on the classic “roller coaster” co
currency problem; 7 passenger threads com
for 7 seats in 1 roller coaster thread. They sh

fields that indicate ride number and whether

certain seats are taken.

n-Sable Research Group
pete
are

bank

8 threads transfer funds between a checking
count and a savings account. 4 of them dep

and withdraw money from the checking account

while the other 4 use the savings account.

doeug Lea [ea99
osit

series

This benchmark computes the first N=100000ava Grande Forun

Fourier coefficients of the functioh(x) = (x+
1)*. The computation of N coefficients are ind
pendent of each other and are distributed am
3 threads.

Benchmark Suitedrg
e_
ong

mtrt

2 threads render a raytraced image. The threg8BECJIJVM98

share the canvas on which they need to cast

spot, but each thread does raytracing of its gwn

section using independent calculations

the
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Table 5.2 Benchmarks related data. The access columns shows static variable access density
(average number of static variable accesses/millisecond), and the alloc time column
gives the normalized table allocation time as a percentage of total execution time.

name | shared accesslocal access number number alloc
of total | of active| time
threads threads
P/C 0 0 7 7 0.0%
traffic | 455 91 289 3 12.0%
roller | 414 53 9 9 0.0%
bank | O 0 9 9 0.0%
series| 12 0 4 4 0.0%
mtrt | O 0 3 3 0.0%

ments would be possible after this design is ported from &seline compiler implemented
currently to the optimizing compiler, which under our desvwgould allow more aggressive
optimization to those benchmarks with multiple threads.

A clear exception which shows considerable performancerideation in our design
is thetraffic benchmark. The fifth column in Table?2 indicates the crux of the matter
is table allocation which contributes to 12% of executiandi There are 2 factors that
result in this situation, both of which can be understoodnfithe data shown in columns
3 and 4 of Tablé.1. First, we note that this program creates 144 threads feedriand
144 threads for cars (and a main thread). This heavy raterehdhgeneration interacts
poorly with our design choice to eagerly duplicate datamythread initialization. This
accounts for the bulk of the introduced overhead. A secotalt®factor is seen in the field
access density which is defined as number of static variablesaes per millisecond. Static
variable accesses are modified to let the language suppeaittocal variables inherently,
and while this is certainly faster than usimigreadLocal objects it does not out perform
static variable accesses in the original Java. In the @lgersion ofJikesRVM, accessing
static fields is done by accessing all data in a single takletlsis makes the original Java
more data-cache-friendly than the new semantics. Thisrtscpharly true for thetraffic
benchmark, given the large number of short-lived threaalsh evith their separate copies
of static data in the new semantics.

Note that we do not separately measure or account for hesgbl@amaccesses; these
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access costs are the same as in original virtual machinee Tingy be a cache impact from
this duplication as well, but the only extra overhead fotanse data is due to deep-copying
included in the alloc time at thread start.

14 T T T T T T
I new semantics GC
I original Java GC

1.2F I new semantics actual |4

nomalized execution time

‘ I original Java actuall

traffic roller bank series mtrt

1k
0.8
0.6
0.4
0.2
0 p/c

Figure 5.6 Normalized execution time of non-trivial benchmarks, comparing behavior of the
modified benchmarks under our new dialect with their unmodified execution times
under the current Java language. The red portion of each bar identifies the portion
of time spent in garbage collection. The time value is the average of 50 runs.

Heap data is shown in Tabe3. Duplicating data for each thread is expected to in-
crease memory requirements, and this is apparent in thenmiaximemory requirements
measured for our benchmarks. One thing worth noticing istienumber of active threads
rather than number of total threads matters. This can biigusby thetraffic benchmark.
Despite the heavy cost due to table allocation insidertiféc benchmark, the actual mem-
ory requirement are larger but not significantly larger caned with the huge number of
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threads it launches. This is because althoughttiic benchmark creates a lot of new
threads the threads are running in turn and at each momenrtaheonly 3 active threads.

Interestingly, while there is an impact, the data does noivséin increase proportional to
number of active threads, as found in our micro benchmaridividual thread tables con-

tribute to an increase in memory consumption, and overaleisses are significant, but the
relative amount of actual thread-local versus shared dagamore important factor. The

roller benchmark has 9 active thread and quite a lot thread-lotal daerefore it shows a

very high increase memory requirements. This is becausedsto create and hold onto
local copies for all thread-local data for all the threads.

Table 5.3 Memory Usage

name Java(MB) new semantics(MB)
p/c 7 11

traffic 6 9

roller 8 17

bank 6 9

series 21 22

mtrt 13 16

From all the data-sets, it is clear that an important avemmuaniprovement in our
scheme is to reduce the cost of the deep-copying performedgdiinread initialization.
For class variables, a lazy, copy-on-write (or copy-oneasg scheme may be able to help
the situation by delaying the deep-copying process unkiteatd’s first access to this static
field. Implementing this with an additional check beforeesxcwould incur other over-
head, but a coarser scheme using write-barriers as is conmsome GC design$3H04]
could be quite efficient.

5.2.2 New Semantics versus Benchmarks with ThreadLocal

The non-trivial benchmarks targeting shared variables ultithreaded programs do not
really make use of thread-local accesses very often. Taligate the effect of the new se-
mantics on thread-local accesses we need to manually climgpenchmarks so that they
frequently use thread-local data in form of uses oftheeadLocal class. We choose the
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seriesbenchmark in which several threads are calculating Fouadefficients and storing
the result to a shared>21000000 double type matrix. The matrix is divided into difiet
partitions and each thread is in charge of calculating omgtipa. The character of this
benchmarks makes it easier to change shared data accetfseatblocal accesses through
ThreadLocal class. On the one hand, calculation of each partition in ta&ioes is in-
dependent and the shared matrix can be easily replaced evithiad smaller thread-local
matrices. On the other hand, because the benchmark contdingegular accesses to ma-
trix elements the thread-local accesses can be convgnidetitified and replaced with
get() andset( Object object ) methods. The modified Java program we get con-
tains 2000000 thread-local accesses in total.

Table 5.4 New semantics versus original Java with ThreadLocal

name total time (milliseconds) | GC time(milliseconds) | memory(MB)
new semantics | 16610.9 475.05 44
original Java 16820.7 486.85 37

Table 5.4 shows the result of the changedriesbenchmark. The time value is mea-
sured by 50 runs. Disappointingly, there is little improwarhin speed from the original
Java to the new semantics. Despite the large number of &sces$hreadLocal objects
in this CPU intensive benchmark the expensive code gendrgtigéek baseline compiler for
calculation of each datum dominates the execution of thgrpro and dilutes the access
time improvements. An advanced optimization compiler hiastger chance of showing the
reduced overhead that we expect from our design based oniowr benchmarks. The in-
crease in memory has similar justification with previousste®ne interesting observation
is that because we split the shared large matrices into aesmiall matrices the memory
requirements for both the new semantics and the origina dew increased by an amount
around the size of the matrix. We suspect this is an artifattie@GC design of the semi-
space collector ilikesRVM. The unmodified version stores the entire array in a gingl
large-object-spacea special area of memory used for large objects that areaflected
frequently, while partitioned matrices with reduced siz¢he modified code are allocated
into the semi-space, and thus require twice the memory.
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Chapter 6
Related Work

6.1 Related Work

Our work is mainly related to three areas and in this chapganil introduce other people’s
work in those areasSectiort.1.1talks about the efforts in justifying compiler optimizatio
under the Java Memory ModeVl[PA05] and trying to guarantee a race-free property for a
given program. Our work is motivated by the difficulties irthbthese two effortsSection
6.1.2introduces modern concurrent program languages usingnghdirectives to specify
shared data. This is the source of our inspiration to progidenilar language feature for
Java. Our implementation provides threads with privateievddeap and separate object
copies. Other researchers also tried to explore threaal-fmpace features in Java and we
introduce their work irSection6.1.3

6.1.1 Data-Race-Freedom and Optimization

Efforts trying to bound the behavior of racy programs maleXava Memory Model very
complicated and researchers have been focusing on findirexaatly what optimizations
are allowed.Se\ik, for instance, applies semantic techniques on codeftrianation to
validate the correctness of compiler optimizatioé&ﬂ. He attempts to prove that com-
binations of the classes of transformations he defined cawide sequential consistency
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for DRF programs and also guarantee thabntof-thin-airvalues for racy programs are
generated (a central tenet of the IMI@ut-of-thin-airvalues are a consequence of simple
attempts to define semantics for the racy programs in Jamat tfarefully handled memory
model semantics can be used to justify arbitrary data stgpwmnin variables. This obvi-
ously unrealistic and undesirable behaviour is knowmasof-thin-air data. The JMM
spends considerable efforts to avout-of-thin-air data.

Marino and his colleagues argue that relaxed memory modetsotinecessarily lose
the property of preserving sequential-consistency (33N 11]. They find that many
optimizations are either already SC-preserving or can befraddo have this property,
and so the subset of SC-preserving optimizations are suififdeimproving program per-
formance. Nevertheless, some of their benchmarks stilwshperformance gap between
compilers only allowing SC-preserving optimization andstahat use a more complete
optimization suite as well.

One way of avoiding the troubles in validating optimizasamder different memory
models is to determine whether the programs are DRF by deteekisting race condi-
tions. No-overhead, static approaches are possitl& (2, AFFO0€, but tend to suffer
from excessive numbers of false positives, and thereftate-f-the-art race detectors are
principally dynamic ones. Unfortunately, while much moreqise, these bring very non-
trivial runtime overhead, with state-of-the-art dynan@ce-detection currently resulting in
approximately an 8-fold slowdowri-fF09. Faster and more accurate dynamic race detec-
tion requires cooperation from hardware. Margtaal's DRFxsystem, for example, uses
hardware-driven detection, throwing a runtime exceptidrema violation of SC occurs
[MSM™10]. Less specialized hardware is required by Greathaisa’'s performance-
counter-based, demand-driven method, which turns on ratetibn only when there is
likelihood of data-sharing among different threa@$/[F " 11].

Our effort targets the memory model for the Java languagesiidut is different from
all those above. We would like to make sure that no data ragsis® matter how program-
mers program with the language. Many designs have in fadbeegbthis general approach
in the pastGuava for example, a race-free version of Java, uses a type systexplicitly
distinguish between objects that are shared and thoserthaba Bacoret al. define three
disjoint type-classes so the program can tell a compilertindrean object can be moved
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from one thread to another, can only stay in one thread, arcém be shared3ST0(Q.
Chandrasekhar and Matrtin classify objects from anothereatgfting programmers apply
different protection mechanisms to objects by specifyirfigent types BRO1]. These de-
signs do not focus othread-localdata itself, which both guarantees thread-specific data-
values and offers a uniform syntax to access the “same” datauitiple threadsLoci is

a type system for thread-local data in JavdHM " 09]. It does static checking based on
the programmer’s intention for thread-locality expresf#@dugh annotation and change
thread-specific fields intohreadLocal classes. The type system separates the heap into
thread-specific parts and shared parts. There is an impaiifearence between their work
and ours other than exploring thread-specific instead eftiviocal property. When they
find a violation to the programmer’s intention, the programesinot compile. This makes
the method essentially a static approach. In our case, tggan always compiles even if
the resulting program behavior is not quite what the prognamexpects. Like our work,
they also notice the merit of distinguishing thread-spedfta explicitly to allow more
code optimization in multithreaded programs, but the teplnanis more directly aimed at
improving garbage collection.

6.1.2 Thread-local Data and Sharing Directives

Using sharing directives to explicitly specify objectstthee shared is a common conceptin
parallel and multi-process programming. Our interest itdoesupporting thread-local data
in Java is derived from the syntactically and programméyicample design for shared
data found in languages such as UR®[C04, Titanium [YSP"9§], OpenMP Ppe0§, as
well as extensions to C found in the Microsoft compileri¢b] and others. In UPC, for
instance, each thread has a private address space separatedommon, shared memory
area. Objects are allocated by default in the local spadé, ttve same object name used
to reach different data in different threads. Shared datst toel explicitly markedhared

to be accessible by multiple threads. In Microsoft C, the mokéel storage-classttribute
threadis used with _declspec as an annotation to declare a thread local vari&tsheen

1C has a concept of 'storage-class’ defining the scope (litgjoand life time of variables and/or func-
tions. Examples of other storage-class modifiersstaic andexternkeywords.
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a new thread starts, it is allocated some thread specific meimdhe process heap to
hold these variablesifica]l. Our approach here aims to support a similar concept ported
to Java, repurposing theolatile Java keyword to differentiate shared from thread-local
content. This has the advantage of offering a very famibaking environment to Java
programmers, straightforward porting of existing Javagpaes, and close identification
with ideas found in new languages such as UPC and OpenMP.

6.1.3 Thread-local Implementations in Java

While direct, optimized support for thread-local storagdawa is novel to the best of our
knowledge, significant optimization work exists for expiag threadspecificdata proper-
ties. In Java, a basic memory management scheme allocitas abjects in a single heap,
shared among all the threads. Synchronization constrastsjell as garbage collection
algorithms thus have to assume any given data may in factdredhand take appropriate
access precautions. If data can be determined throughsimadybe only accessible by
one thread, however, individual thread data can be alldcatelistinct partitions of the
heap PGK'02] [Ste0(, or objects can allocated within the runtime call stagk[B09].
Most works in this area, however, aim at reducing allocat@&, and synchronization
overhead[/1PJ1], rather than focusing on supporting general race-freeaguiaes.
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Chapter 7
Conclusions and Future Work

Data-race-free (DRF) languages are an important directi@oncurrent language re-
search, eliminating much of the complexity of the memoryststency concerns that affect
existing concurrent languages. In this work we have desdriibw support for a thread-
local by default data-model could be added into a Java \liachine, significantly im-
proving the overhead otherwise incurred by using the exggthreadLocal implementa-
tion design. The intention here is to encourage DRF apprsaahe demonstrate they can
be competitive with current languages, and this is largeigne out by our experimental
work with larger benchmarks. In most cases we are able to shateven when the pro-
gram is modified to use a race-free semantics based on tloealddata, performance is
not reduced over the original, naive and fully shared exeoutUnfortunately, even pro-
grams that us@hreadLocal intensively do not always improve by using our technique
instead. For theeriesbenchmark, there is a little improvement over the origirethdh-
marks withThreadLocal objects. Since micro-benchmarks show the improvement can
be large, we believe this to be an artefact of our initial ptyjpe design—the baseline com-
piler is convenient to modify but also generates expensige ¢hat can dilute the benefits.
In the future, we want to port the mechanism currently appicethe baseline compiler to
the more sophisticated optimizing compiler to generateebebde.

Future work will focus on providing and supporting a full DR&khguage design for
Java based on extensive use of thread-local data. Thisresgmproving our implemen-
tation with respect to the programs that create great nwrifestynamic threads, as well
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as tailoring the garbage collection strategy. Our apprdeek shows feasibility and good
performance are possible, but there are several placegwhedesign introduces signifi-
cant bottlenecks. Lazy copying or more advanced desigresl@svirtual memory would
greatly mitigate our current thread creation overhead, @sldvprecise forms of escape
analysis JWR99 that could better identify data that is already threadespe Memory
costs would also be reduced by making use of more complex myemanagement for
static thread-locals, such as through an expanding taligmeFinally, it seems possible
to also apply our design outside of any novel DRF semantioglgito speed-up existing
uses ofThreadLocal in plain Java programs. Such work may encourage use of safer,
thread-local program design even in existing Java sensarittus would, however, require
additional program analysis to verify that use offaeadLocal wrapper object can be
trivially replaced by direct (thread-local) value access.

Last but not least, a type system is needed to guaranteenlyadltared objects can be
assigned to shared fields. Naively, each class requireseafuatibns: one for thread-local
instances and the other for shared instances with fieldethgith volatile. If an object
will stay with in one thread during its life time, it is dectat as an instance of the thread-
local version of its class. Otherwise, it is declared as atamce of the shared version of
its class. When a thread-local object needs to be shared ataancpoint, it should be
copied to the public space with the shared version of itsscl&oviding a model for the
transformation can be an interesting topic.
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