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Abstract

Despite the popularity of Java, problems may arise from potential data-raceconditions

during execution of a Java program.Data-racesare considered errors in concurrent pro-

gramming languages and greatly complicate both programming and runtime optimization

efforts. A race-freeversion of Java is therefore desirable as a way of avoiding this com-

plexity and simplifying the programming model.

This thesis is part of work trying to build arace-freeversion of Java. It implements and

optimizesthread-localaccesses and comes up with a new semantics for this language.An

important part of implementing a language without races is to distinguish thread-local data

from shared data because these two groups of data need to be treated differently. This is

complex in Java because in the current Java semantics all objects are allocated on a single

heap and implicitly shared by multiple threads. Furthermore, while Java does provide a

mechanism forthread-localstorage, it is awkward to use and inefficient.

Many of the new concurrent programming languages, such as OpenMP, UPC, and D,

use “sharing directives” to distinguish shared data from thread-local data, and have fea-

tures that make heavy use of thread-local data. Our goal hereis to apply some of these

language ideas to a Java context in order to provide a simplerand less error-prone pro-

gramming model. When porting such features as part of a language extension to Java,

however, performance can suffer due to the simple, map-based implementation of Java’s

built-in ThreadLocal class. We implement an optimized mechanism based on program-

mer annotations that can efficiently ensure class and instance variables are only accessed by

their owner thread. Both class and instance variables inherit values from the parent thread

through deep copying, allowing all the reachable objects ofchild threads to have local

copies if syntactically specified. In particular, class variable access involves direct access
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to thread-local variables through a localized heap, which is faster and easier than the default

map mechanism defined forThreadLocal objects. Our design improves performance sig-

nificantly over the traditional thread-local access methodfor class variables and provides

a simplified and more appealing syntax for doing so. We further evaluate our approach by

modifying non-trivial, existing benchmarks to make betteruse of thread-local features, il-

lustrating feasibility and allowing us to measure the performance in realistic contexts. This

work is intended to bring us closer to designs for a complete race-free version of Java, as

well as show how improved support for use of thread-local data could be implemented in

other languages.
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Résum é

Malgré la popularit́e de JAVA, de potentiels accès concurrents aux données peuvent

causer des problèmesà l’exécution d’un programme. Les accès concurrents aux données

sont consid́eŕes comme des erreur par les langages de programmation et compliquent gran-

dement le processus de programmation et d’optimisation. Une version de JAVA sans accès

concurrents serait la bienvenue et simplifierait ce processus.

Cette th̀ese n’est qu’une partie d’une recherche plus importante visantà établir une ver-

sion de JAVAsans acc̀es concurrents. Elle implémente et optimise les accès enthread

local et introduit une nouvelle sémantique pour ce langage. Une part importante de

l’impl émentation d’un langagesans concurrenceest de distinguer les données locales de

thread des donńees partaǵees car ces 2 types de données doivent̂etre trait́ees diff́eremment.

Ceci est complexe en JAVA, car avec la sémantique actuelle, tous les objets sont alloués en

un seul tas (heap) et implicitement partagés entre plusieurs threads. De plus, le mécanisme

de stockage enthread localde Java est́etrange et inefficace.

Plusieurs des nouveaux langages concurrents, comme OpenMP, UPC et D, utilisent

des “directives de partage” pour distinguer les données partaǵees des donńees locales de

thread, et ont des structures faisant un usage avancé des donńees locales de thread. Notre

but ici est d’appliquer certaines idées de ces langages dans un contexte JAVA dans le but

de fournir un mod́ele de programmation plus simple et plus fiable. Cependant, apporter ces

fonctionnalit́es sous forme d’extension a JAVA peut en affecter les performance du fait de

la structure de la classeThreadLocal de JAVA. Nous impĺementons donc un ḿecanisme

qui garantit efficacement que seul le processus propriétaire acc̀ede aux classes et variables

d’instances. Aussi bien les classes que les variables d’instances h́eritent des valeurs du

processus parent par copie, ce qui permet aux objets de processus enfants d’avoir des copies
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locales si pŕeciśe dans la syntaxe. En particulier, l’accèsà des variables de classe utilise un

acc̀es direct aux variables du processus local via un tas local, ce qui est plus rapide et

facile que le ḿecanisme par d́efaut de mappage défini pour les objetThreadLocal . Notre

conception aḿeliore le performance de faon significative comparé à la ḿethode d’acc̀es au

processus local traditionnelle pour les variables de classe et fournit une syntaxe simplifiée

et plus attrayante. Nouśevaluons ensuite notre approche en modifiant des outils de test

(benchmarks) complexes existants pour faire un meilleur usage de leurs fonctionnalités en

processus local, ceci illustrant la faisabilité et nous permettant de mesurer les performances

dans un contexte réaliste. Ce travail a pour but de nous rapprocher de la conception d’une

version JAVAsans concurrenceaussi bien que de montrer comment un support amélioré

des donńees en thread local pourraitêtre impĺement́e dans d’autres langages.
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Chapter 1

Introduction

Java is a general-purpose, object-oriented language with built-in features for concurrent

programming. The Java programming language and the Java class libraries provide basic

concurrency support while high-level concurrency APIs provide more convenient tools.

This feature makes Java convenient for multithreaded programs where several threads co-

operate to finish a task. The memory management scheme in current Java facilitates com-

munications between threads because all the objects are shared among threads.

Unfortunately, although this is convenient, it makes it alltoo easy for a programmer to

write programs that containsdata-races. Data-racesoccur when two or more threads try to

access the same variable, the accesses are not ordered (protected) by synchronization, and

at least one of the operation is a write. Data-races are typically considered errors in con-

current programming, and greatly complicate optimizationefforts and language semantics.

A potential solution to this problem is to provide and enforce separation between shared

and unshared, orthread-localdata. The use ofthread-localdata in shared-memory concur-

rent programming is typically seen as a performance enhancement, but also has important

semantic implications. If threads have their own, unique copies of data, unsynchronized

intermediate and local computation is possible, and this has the further important benefit

of reducing or avoiding complex, subtle data-race issues [MPA05, BA]. This is a strat-

egy taken in many concurrent languages and libraries; newerconcurrent languages such as

UPC [UPC05], OpenMP [Ope08], and D [DM] allow for extensive thread-local allocation

through declarations, with little or no special data accesssyntax. In other popular concur-
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Introduction

rent languages and environments, such as Java and PThreads,however, thread-local storage

is implemented through existing language mechanisms, in the case of Java requiring object

creation and special method calls to create and use the thread-local data. This results in

awkward and non-trivial syntax for programmers, as well as relatively high runtime over-

head in practice, making the whole mechanism much less appealing.

In this work we develop an optimized implementation mechanism for thread-local data

in a Java dialect. This effort has two major goals. First, we demonstrate that significant

performance improvements are possible for programs that actually use thread-local data

by using a straightforward, specialized implementation design for thread-local data. Mod-

ern memory management and the JDK implementation already uses thread-specific heaps

for data that can be determined to be thread-specific throughanalysis [MPJ11], and our

work complements that effort by showing improvements are also possible for programmer-

specified thread-local data. Our work also aims at the largergoal of facilitating and en-

couragingdata-race-free(DRF) language design and adoption. The DRF property has

importance with respect to both programmability and to optimization potential; many am-

biguities and complexities found in the current Java MemoryModel [MPA05] arise from

the need to define semantics for programs that do not have thisproperty, while the presence

or lack of a DRF property has a large impact on compiler optimization of multithreaded pro-

grams [AH90, Š11, MSM+11, Boe11]. Providing strong, language-level, syntactic guar-

antees for thread-local usage thus has great value in terms of language design, including

incremental dialects of popular languages such as Java, butis naturally predicated upon

efficient implementation designs.

To further both goals we base our investigation and design ona DRF variant of Java, in

which thread-local access is thedefault modefor all fields and it is shared data that must

be specifically identified through language syntax. This allows us to develop the basic

optimization and to build a context for deeper investigation of DRF Java designs. We used

a modifiedJikes RVM 3.1.1 [jik ], wherein we implemented a “thread-local by default”

memory system as well as optimized code-generation for thread-local data access.
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1.1. Contributions

1.1 Contributions

This thesis makes the following specific contributions:

• We propose a new method to realize the concept of thread-local data in a Java Virtual

Machine, as currently provided byThreadLocal objects. Our design avoids direct object

allocation and allows for transparent data access, significantly improving both usability

and access costs.

• To demonstrate and experimentally evaluate and our design,we implement our method in

JikesRVM 3.1.1 [jik ]. Thread-local isolation of both the static and heap variables is taken

care of through adeep-copymechanism during the start-up period of each thread. This

initial design supports basiccopy-inmechanisms as found in other concurrent languages,

and is amenable to further optimization through lazy copy mechanisms [ZDG+10].

• We evaluate our design using both micro-benchmarks to measure thread-local behavior

itself as well as larger realistic programs. For the latter,we transform existing Java bench-

marks to make full use of thread-local data, and experimentally evaluate both memory

costs and runtime performance. Our data shows that while there is a significant memory

impact for a program which dynamically creates many, short-lived runtime threads, most

thread-local versions offer performance comparable to non-thread-local implementations,

with the added advantage of being trivial to verify as DRF.

1.2 Outline

This thesis contains 7 chapters (including this introductory chapter).Chapter2 provides

background information for this thesis. This includes a description of the overall architec-

ture of Jikes RVM and some of its important components. It also includes a discussion

about the meaning of our work which is motivated by our focus on achieving a DRF prop-

erty through ubiquitous use of thread-local data. This is followed in Chapter3 by discus-

sion of the existing Java thread-local facility and the requirements of a Java dialect context.

Chapter4 gives a full description of our implementation design, which is then experimen-

tally evaluated inChapter5. We describe related work inChapter6. Finally, conclusions
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and future work are presented inChapter7.
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Chapter 2

Background

This chapter provides background information that is helpful in understanding the re-

mainder of this thesis. We start with a brief description ofJikes RVM, the open source

Java Virtual Machine (JVM), inSection2.1. We will give an overview of some parts of the

JikesRVM architecture and explain how these parts are related to our work. This thesis

is part of a larger project aiming at providing a complete implementation of a JVM for a

race-free Java dialect. We will introduce the larger picture inSection2.2.

2.1 Jikes RVM Framework

JikesRVM is a Java virtual machine developed for research purposes. The most significant

feature of this open source project is that the core architecture is implemented in Java. This

feature makes it easier to implement and explore new ideas about virtual machines within

theJikesRVM framework. The architecture can be mainly divided into three components:

the JIT (Just-In-Time) compilers, the runtime service, andthe memory management system

[jik ].

2.1.1 JIT Compiler

Java class files contain an intermediate language called bytecode which can be executed

on any platform that has a JVM. JVMs either use interpreters to execute the code by mim-
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icking the underlying virtual machine or use compilers to convert the bytecode to machine

code to execute directly. In the case ofJikes RVM, the latter approach is employed and

multiple JITs are used to compile the code: a baseline compiler for rapidly producing sim-

ple compiled code, and an adaptive optimizing compiler thatproduces better code at greater

cost.

The baseline compiler inJikes RVM follows a template-based approach and uses a

switch statement to deal with different bytecode instructions, generating corresponding

assembly code instructions and further machine code instructions for each case, as is shown

in Figure2.1.

instruction x
bytecode 

machine code

machine code

machine code

assembly instruction a

assembly instruction b

assembly instruction c

Figure 2.1 Code generation for a bytecode instruction. Here, bytecode “x” is compiled to three
assembly instructions “a”, “b” and “c” which are then used to generate binary ma-
chine code instructions specific to the current architecture.

The baseline compiler does not perform any optimizations and the generated assem-

bly codes behaves very much like the interpreter implementing a basic stack machine. An

adaptive optimizing compiler can be used to further optimize the methods observed to be

executed very frequently or which are deemed computationally intensive. In our implemen-

tation, we turn off the adaptive optimization compiler and perform implementations only

within the baseline compiler. We choose the baseline compiler because it is easy and con-

venient to modify and to change the semantics of a bytecode, we just need to take control

of the process of converting one bytecode instruction to several assembly code instructions,

shown by the dotted arrow in Figure2.1.
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2.1. JikesRVM Framework

2.1.2 Runtime Service

The runtime service inJikesRVM provides an environment for correct execution of Java

application programs. We only introduce in detail the partsrelated to managing objects and

threads which are most related to our work. Runtime service also provides the following

functions:

• providing a special bootstrap mechanism to start the basic virtual machine

• triggering compilation and linking of methods

• managing generated code storage

• delivering hardware and software exceptions

Object Model

There are two categories of data-type in the Java language: primitive and reference data-

type. Primitive variables like integer and double store theprimitive value directly. A vari-

able of reference data type stores the address of the object it points to. The object model

defines how objects are represented in memory. An object is a piece of memory space

which is separated into header and actual object fields as is shown in Figure2.2. Each

partition in the header holds specific information about theobject. Furthermore, because

each partition is at a fixed position within the object the virtual machine can easily get the

needed information about the object by adding a certain amount of displacement to the ob-

ject reference value. This makes accessing object fields andmethods dispatching fast and

convenient.

One special, important word in the header points to the Type Information Block (TIB)

which applies to all the objects of the same type. The TIB has avirtual method tablefor

invoking methods on an object and a pointer to another objectrepresenting its class. This

will be introduced in the next section.
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 virtual

  table
method object

RVMClass

object header object content

TIB
pointer

Figure 2.2 Object representation in memory

Class Representation

Classes inJikesRVM are represented by anRVMClass object. Whenever a new class file

is loaded, the class information is interpreted and stored in the corresponding fields of this

object. Figure2.3shows the most important fields of theRVMClass class. The name of a

field clearly tells what information is kept. For example, the contructorMethods field

stores all the constructor methods, and themodifiers field uses a short variable to indicate

the modifier information of the class (final, public/private, etc.). Similarly, each field of a

class is represented by an object ofRVMField class extending theRVMMemberclass giving

information about the represented field. Figure2.4 shows part of theRVMField class.

Important to our work, themodifiers field can tell whether this field has the “volatile”

modifier or not. Once a class file is loaded and resolved inJikes RVM, its information

is stored in form of anRVMClass object and information concerning each of its fields is

stored in form ofRVMField objects. Given any object, we can trace to itsRVMClass object

following arrows shown in Figure2.2 making it quite convenient to retrieve information

about itself and its fields.
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2.1. JikesRVM Framework

RVMClass

superClass

interfaces

staticFields

instanceFields

constructorMethods

virtualMethods

staticMethods

modifiers

Figure 2.3 RVMClass

RVMMember
declaringClass

modifiers

offset

signature

RVMField

size

Figure 2.4 RVMMember and RVMField

Thread Management and Representation

All Java threads including application threads and garbagecollector threads derive from

RVMThread. EachRVMThread is bounded directly with a native thread which is sched-

uled directly by the underlying operating system. This greatly simplifies the task of Java

threads scheduling sinceJikes RVM does not take control of thread-processor mapping.
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What is more of our interest is how Java threads are represented. An RVMThread object

wraps exactly one Java thread. It has state fields to indicatethe states of the Java thread,

such as whether it is running or blocked. TheRVMThread objects have their ownpublic

final void start() method which will put the Java thread into the queue of an avail-

able processor and call thepublic void start() method for the actual Java thread.

Given this one-to-one relationship between theRVMThread object and the Java thread, we

can easily add thread-specific space by modifying the associatedRVMThread class.

2.1.3 Memory Management

The memory management system takes care of object allocation and garbage collection.

The Memory Manager Toolkit (MMTK) inJikesRVM supports a variety of types of mem-

ory management schemes. Different memory managers divide the virtual memory into

spaces with different functionality and may choose different garbage collection schemes.

In our implementation, we use the basic semi-space collector as one of the simplest collec-

tors to modify and thus accommodate the way we generate duplicated data in supporting

thread-local.

A semi-space collector is a copying collector that stops theprogram during garbage

collection. It divides the space into two partitions. One isfrom spaceand the other is

to space. When a program is executing, the objects are allocated into the to spaceuntil

this space become full and the collection is triggered. Before the collection really starts,

the to spacebecomes thefrom space, and vice versa. During the collection, the collector

copies all the objects reachable by the program from thefrom spaceto theto space. As a

result, the objects that are not reachable are left in thefrom spaceand get collected. This

whole process is repeated until the garbage collection is finished and the program continues

to execute. The semi-space collector is easy to understand but has the disadvantage of

requiring very large contiguous space.

2.1.4 Linux/IA32 VM Conventions

JikesRVM is fully supported on two main platforms, the AIX/PowerPC (PowerPC proces-

sors running AIX) and the Linux/IA32 (Intel 32-bit architecture running Linux) [ABC+02].
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2.2. Race-Free Language Design

Our work is implemented on the Linux/IA32 platform. Linux/IA32 has its own stack,

calling and register conventions. Our implementation should carefully comply with those

conventions, especially the register convention since we change the generated assembly

code manipulating registers. There are eight general purpose registers in the Linux/IA32

convention. ForJikes RVM, two of them are dedicated registers. Among them, ESI is

the thread register pointing to theRVMThread object associated with the current thread

which is very important to our implementation since we are dealing with thread specific

spaces. The calling convention defines what should be done inthe prologue and epilogue

of a callee, meaning the way of passing parameters, passing return values and jumping back

to the caller. HowJikesRVM passes parameters and the return value matters most to our

project because our modifications to compiler generated code include inserting function

calls. For this we use the EAX register for the parameter and return value. This register is

considered acaller saveregister, meaning that it can be used for temporaries and thevalue

is not preserved across calls.

2.2 Race-Free Language Design

Our work is intended to optimize thread-local variables in Java so that they are easier to

program with and faster to access when compared with the current ThreadLocal class.

The actual meaning of this optimization goes beyond improvements in execution speed,

and was originally motivated by the need to offer a well-performing, but also simple and

programmer-friendly data-visibility model for popular concurrent languages. A larger and

more complete picture of the language design, motivation, and context is provided in pre-

vious work by the authors [VKZ11] and is summarized below.

2.2.1 Data-Race-Freedom and Optimization of Java Programs

While data-races have been long-recognized as errors or concerns in concurrent program-

ming, current interest in ensuring data-race-free behaviour arises from recent work in de-

veloping memory model semantics for modern languages. Proving correctness and estab-

lishing the bounds of allowable compiler optimization is possible in the presence of data-
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race-free programs, but is much more complex if this property is absent. The Java memory

model, for instance, provides attractivesequential consistencyguarantees for data-race-

free programs, but brings significant complexity in trying to bound the behaviour of racy

programs [MPA05].

Part of the problem is in trying to draw a balance between programming simplicity,

the ability to reason about program behaviour, and the need to give hardware and compil-

ers sufficient latitude to perform traditional optimizations. Take thesequential consistency

(SC) memory model as an example. It is one of the strictest memory models and forces

all the instructions to be executed in a global order as they appeared in the actual program.

It is quite simple for the programmers to program with this memory model because they

can easily understand the program’s behavior. However, SC also eliminates chances for

compiler optimizations which often involve reordering instructions. This is an example of

a memory model that is extremely easy to program with but imposes significant limits on

optimizations. Ideally, a memory model should be easy to program with, while also allow-

ing as much optimization as possible. The recently revised Java Memory Model provides a

weaker consistency model that attempts to do just that. Thismodel gives guarantees of se-

quential consistency forcorrectprograms, ones without data-races, and a more complicated

and weaker semantics for programs that do have data-races. Subtleties in the latter effort

are in fact a continuing source of concern, and several researchers have pointed out that

many very common optimizations, including simple reordering of statements, are techni-

cally prohibited in the current memory model for Java [Au07, S̆ev̆ćıkA08, CKS07]. A very

important reason for this situation is that many optimizations making assumption about

control flow cannot be applied to program blocks involving shared variables. The main

difficulty comes from the fact that the shared variables are not clearly identified in current

Java and therefore, a highly-conservative assumption needs to be applied to compiler opti-

mization, in the worst case assuming that any code blocks maypotentially contain shared

variables. Because so many optimizations are thereby prohibited, researchers are trying to

find a more reasonable boundary between the forbidden and theallowed optimizations and

there has been no definite solution to this issue yet.

Abstractly, such complexities are reduced for DRF, or “correctly synchronized” pro-

grams, since they provide a well-defined input model [AH90]. Optimizing compilers can
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use synchronization points as the boundaries of optimizations and thus generate only se-

quential consistent executions. Therefore, a way to bypassthe difficulties in validating

optimization for racy programs is to somehow detect that a program is race-free and ensure

that this property is preserved throughout optimization. Unfortunately, this is a very com-

plex problem. Static approaches have been developed but suffer from accuracy concerns

since the DRF property is essentially a runtime program behavior. A program as simple as

the one shown in Figure2.5can cause challenges for static analysis. Dynamic approaches

have also been defined, and can accurately report races happening during execution but add

considerable runtime overhead and of course do not give static guarantees of race-freedom.

We discuss this further inChapter6.

Thread 1 Thread 2
while( condition1 ) y = x;
x = 1;

Figure 2.5 Example of a program that may be correctly synchronized depending on the runtime
behavior. If condition1 is always false at runtime, thread 1 will not write to x and
therefore, will not conflict the read of x in thread 2. In this case the program is race-
free. It may, however, not be possible to statically determine that condition1 is
always false.

2.2.2 A Race-Free Execution Model

In contrast to all the efforts that either try to prove the permissible optimizations in order to

comply with the complex memory model or which aim at detecting race-conditions in an

existing program, we would like to guarantee a data-race-free program from scratch. The

ideal model uses a conceptually trivial mechanism to make itimpossible for a program to

contain data-races and thus gives an effective method for anoptimizing compiler to clearly

identify shared and thread-local data. There are two basic principles behind our changes to

the Java language as listed below:

• All the static and heap variables are thread-local by default. Thus every thread has its own

copy of these variables. Two threads accessing the “same” static fields through the same

syntax are in fact modifying their own private copies without conflicts.
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• Shared data is still supported. All shared fields are explicitly tagged with the keyword

volatile, and accesses of different threads reach the same memory location. Such data

make use of the current Java volatile syntax.

There are several good reasons for reusing the idea of volatile data. In the current Java

semantics, accesses to volatile data are guaranteed to be transparent to all threads. This

means if one thread modifies a volatile data, all threads can observe the change in the value

right away. This is because a compiler must insert a memory barrier for each access to

a volatile variable and this barrier synchronizes all cached copies of variables with main

memory. As a result, volatile data will never cause race conditions. Furthermore, use of

volatile data also has ordering implications. The order of accessing two volatile data must

be the same for all the threads. This imposes synchronization boundaries for compiler

optimization.

This execution model provides very useful guarantee. It limits the sharing variables be-

tween threads to volatile variables which are statically and clearly identified. This greatly

simplifies programming effort, and also optimization design, which no longer requires ad-

vanced analysis or strong conservative assumptions to ensure data-race-freedom is pre-

served throughout optimization.

The starting point of implementing this execution model is to support default thread-

local data in Java and make sure the more intensive usage of thread-local data will not

compromise performance too much. This leads to the next chapter where we consider

how the currentThreadLocal class works and present the basic idea for our approach to

optimizing it.
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Chapter 3

Semantics and Implementation Strategy

Basic and existing support for thread-local storage is provided in Java through a class

called ThreadLocal . This class requires no special implementation, using a thread-

specific map to associateThreadLocal objects with specific values. In this way each

thread can store and access unique data (logically) within the sameThreadLocal object

by using theThreadLocal object as a map key. Although this design sits nicely within the

object-oriented paradigm of Java and avoids any special-casing, performance can be unsat-

isfactory. In this chapter, we will look at both the originaldesign usingThreadLocal

objects and our new design resulting in new semantics.Section3.1gives a detailed exposi-

tion of the original design and our concerns with it.Section3.2gives an overview of how

thread-local data is used in the race-free Java variant we target.

3.1 Original Design

In a typical Java Virtual Machine all object data is allocated on a heap, a single area of

shared memory. Naturally, and by design, all the variables are potentially accessible to all

the threads. This includes instance data, provided a threadis able to reach the data through

some chain of references, and alsostaticclass fields, which can be accessed without holding

any reference to an object of the class. Either mechanism allows data created in one thread

to reach another, “escaping” a single thread’s context [WR99]. To store private, thread-

specific data the program can allocateThreadLocal objects, which as discussed above
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interact with a map-based mechanism in order to simultaneously “hold” distinct data for

different threads. A singleThreadLocal object can be shared among threads, but when

a thread reads or writes to it the thread accesses only its local version of the data stored

therein. The map-based approach withinThreadLocal variables is quite flexible, allowing

for thread-specific version of data for all threads, and cooperating with garbage collection

in the sense that a thread’s private data only becomes collectable once the owning thread

dies.

The map-based approach requires that each thread is able to translateThreadLocal

objects into specific values. Each Java thread has athreadLocals field which has type

ThreadLocal.ThreadLocalMap . This is aweak referencemap associatingThread-

Local objects with a thread’s values considered to be stored within. Basic read and write

access toThreadLocal data is provided by 2 (generic) methods,<T> get() andvoid

set( <T> object) . Whenever a thread-local variable is accessed through one ofthese

methods, thethreadLocals field is read to get the map, and theThreadLocal object is

then used as a key to retrieve the appropriate value. An example of using thread-local data

in Java is given in Program1 below.

Program 1 A program usingThreadLocal class in Java
class A {

public static ThreadLocal<B> localItem = new ThreadLocal( ){
protected synchronized Object initialValue() {

return new B(); / * B’s constructor is called * /
}

};
}

class C extends Thread(){
public void run(){

B localValue = A.localItem().get(); / * read from a
ThreadLocal subclass * /

B newValue = new B();
A.localItem.set( newValue ); / * write to a ThreadLocal

subclass * /
}

}
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Although this design is quite portable, involving only Javacode, there are several draw-

backs to using theThreadLocal class for actual thread-local variables:

• The thread-local variables are not actually inherent to theJava language. As a result,

the syntax to use them is complicated, and quite different from normal variable access.

Reading and writing require method calls, and to set a default, initial value a programmer

needs to override the<T> initialValue() method.

• The mechanism makes every access to thread-local data expensive. Each time a read or

write is requested, thethreadLocals map must be retrieved from theThread object,

and the currentThreadLocal object used as key to get the related value. This requires

multiple levels of indirection.

• Initialization of thread local variables for child threadscan only be done manually. A pro-

grammer may want a parent thread to define an initial value automatically when launching

children threads, a common pattern, given that children threads often need an initial value

to complete further tasks. To tackle this problem, a separate mechanism, using a subclass

of ThreadLocal calledInheritableThreadLocal is then used. This class allows for

a method,Object childValue(Object parentValue) to be implemented to re-

ceive an initial value from parent thread. Program2 shows the difference between the use

of ThreadLocal class andInheritableThreadLocal class. In theLocalExample

class, theid field is of InheritableThreadLocal class and thecolor field is of

ThreadLocal class. The child thread inherits the value of theid field from the parent

thread while thecolor field is not initialized.

The main concern here is that while this does indeed enable children to receive parent

data, it does not provide any default mechanism to ensure thechild data is thread-specific

to the child thread—-by default, parent threads pass an object reference, and are not

required to (deep-)clone the object. This conflicts with thespirit of thread-local variables,

which is to guarantee each thread has its isolated thread-specific datum within a given

ThreadLocalobject. The default mechanism allows both parent and child to have access

to the same object, and is thus an easy source of potential race-conditions.
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Program 2 A program usingInheritableThreadLocal andThreadLocal class.
class LocalExample extends Thread {

private static InheritableThreadLocal id =
new InheritableThreadLocal();

private static ThreadLocal color = new ThreadLocal();
static int count = 0;

public void run() {
if ( count == 0 ) {

count++;
id.set( new Integer( count ));
color.set( "Green" );
System.out.println( "Parent " + id.get() + " "

+ color.get() );
LocalExample child = new LocalExample();
child.start();

}
else if ( count > 0 ) {

System.out.println( "Child " + id.get() + " "
+ color.get() );

}
}

}

public class Test {
public static void main(String args[]) {

LocalExample a = new LocalExample( );
a.start();

}
}

output:
Parent 1 Green
Child 1 null
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3.2 Our Design

Our design is intended to optimize support for thread-localdata within a new, race-free Java

dialect. Here we summarize details important to understanding the nature of our thread-

local implementation. Further details of the language and justification for it being race-free,

are available in [VKZ11].

The principle idea behind our approach is to make thread-local the default option. A

programmer wanting different threads to use the same objectthen needs to explicitly de-

clare the data as shared, for which we repurpose thevolatilekeyword. Non-volatile data, be

it static class variables or general instance variables arethen guaranteed to be thread-local.

For instance variables this is afforded by making distinct copies of any accessible data at

thread initialization time. Access to thread-local, static class variables is optimized through

a table look-up based mechanism.

This approach overcomes the concerns expressed above with respect to the current use

of ThreadLocal objects in Java described above. That is:

• Thread-local data becomes inherent within the language semantics. All the variables are

thread-local automatically, and both thread-local and shared data uses the same access

syntax.

• Thread-local instance data is guaranteed to be thread-local by reachability properties

within the heap, and so requires no extra access overhead. Static thread-local data is

stored within a thread-specific look-up table, such that thesame data is located at the

same offset for each thread. Access thus only requires an additional indirection to reach

the thread table, with offset values known at (JIT) compile-time. This saves a lot of time

compared with searching a map.

• Children threads can automatically inherit object values from parent thread when started.

Thread-local properties are easily guaranteed in a real sense by (deep-)copying the data,

ensuring parent and child objects are indeed distinct.

Program3 shows an example of programming in this paradigm. The staticfield local-

Item in classA is not specified byvolatile and so a thread of classC is operating on a

local copy of that field. In contrast, the thread is operatingon a shared copy for field
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sharedItem because there is avolatile modifier. The syntax for accessing the two kinds

of fields are the same and the programmer just needs to use the modifier to tell the compiler

the difference.

Program 3 A program using thread-local static variables in a race-free design.
class A {

public static B localItem;
public static volatile D sharedItem;

}

class C extends Thread(){
public void run(){

B localValue = A.localItem; / * read from thread local
static variable * /

A.localItem = new B(); / * write to a thread local
static variable * /

D sharedValue = A.sharedItem; / * read from shared
static variable * /

A.sharedItem = new D(); / * write to shared
static variable * /

}
}
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Chapter 4

Optimized Implementation

Our implementation work is performed inJikesRVM, allowing us to take advantage of

the full Java Virtual Machine context. In this chapter, We begin with a general description

of how to ensure thread-local properties inSection4.1. We argue for the validity of our

theory by dividing the objects into 4 categories and discussing the thread-local property

category by category. Next, we provide the implementationsdetails for instance fields

and static fields respectively inSection4.2 and Section4.3. In Section4.2, we exploit

reachability for instance fields by tracing class hierarchyof thread objects and employing

an object clonerfor deep-copying. This is followed by a discussion inSection4.3 about

static fields for which we not only use anobject clonerfor reachability but also maintain a

separate, thread-specificvalue heapto speed up accesses.

4.1 Thread-Local Access

Our purpose is to make each variable thread-local by defaultunless the programmer uses

thevolatilemodifier to explicitly specify that a variable is shared. Whenever a thread starts,

the virtual machine thus goes through every reference field reachable by the instantiated

thread to deep-copy all objects whose references are not specified as shared. Note that

not only instance variables are copied but also class variables are copied and stored into

thread-specific memory locations, as described in theSection4.3. In order to do this fully

and effectively, we need to identify all sources of reachable objects.
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The process of finding reachable objects is not unlike the tracing process of mark-

and-sweep garbage collection. We begin from a known root set, transitively following

references. Fig.4.1 shows this process for one child thread launched by its parent thread.

The arrows show the relationship between objects. Object A and Object C represent objects

referenced from static fields accessed by the parent thread.Object B and Object D stand for

objects contained within the instance fields of the parent thread that are reachable through

parameters passed to the child thread constructor, and stored within the instance fields of

the child thread object.

In the basic Java implementation, after a thread starts we can define 4 categories of

reachable objects, corresponding to the tracing roots.Non-escaping localandEscaping

local contain objects created by the current thread.InheritedandPublishedcontain objects

created by other threads but the current thread can reach them through fields accesses. We

will argue how our implementation can make sure that each of these categories are thread-

local unless otherwise specified by the programmer. Examples of these categories are given

in Program4. Note that the categories are in view of a single current thread. They do not

overlap in one thread but one object may belong to different categories with respect to

different threads.

Non-escaping localThese are local objects instantiated in thepublic void run()

method which are neither passed to another thread nor published through static class

fields. Those objectsnever escapefrom the belonged thread. Theobject ain Pro-

gram4 belongs to this category.

Escaping local These are local objects instantiated in thepublic void run() method

which are either passed to another thread or published through static class fields. The

object bin Program4 belongs to this category from the view of theParent thread.

It escapesfrom theParent thread to aChild thread.

Inherited These are objects whose references are passed as arguments of the thread con-

structor or instance fields of theThread and/orRunnable object. Theobject bin

Program4 belongs to this category from the view of aChild thread. It is stored in an

instance field of aChild thread. Therefore, this object is shared between aParent
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copy
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static fields

static fields

object B
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object B’
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space of parent thread

space  of child thread

instance fields

Figure 4.1 Deep-copying for thread initialization

thread and aChild thread. In another word, theChild threadinheritsthose objects

from theParent thread.

Published These are objects published through static fields of any class. Theobject yin
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Program4 in bothParent andChild thread belongs to this category. BothParent

andChild thread can access these objects. Actually, any other threads, if they exist,

can also reach these objects.

For the first category, the objects are instantiated locallyand only the current thread

holds references to them. These objects can never escape thethread even in the base version

of Java. Objects inEscaping localescape the thread in which they are created either by

being stored within a thread instance variable or by being stored in a static field. The

former becomeInheritedobjects while the latter becomePublishedobjects. Objects in

Inherited are shared between parent thread and child thread. Objects in Publishedare

shared among all the threads. The main requirement is thus tocreate unique versions

of InheritedandPublishedobjects (and their reachable referents) for the current thread.

During the initialization phase at the start of a thread, ourmodified virtual machine iterates

through all the reference fields and checks for thevolatilemodifier. If not found, the object

is deep-copied to ensure there are thread-specific versions.

4.2 Application Instance Fields

A limitation of our approach is that we only consider application fields defined by devel-

opers here. The fields defined in classes of the original Java API are not copied because we

assume the classes in Java API will not cause race conditions. Furthermore, objects of most

Java API classes do not refer to objects of the developer defined classes or access any fields

of the latter classes because they are not aware of the existence of the latter classes. Here,

we only consider 2 exceptions among the most commonly used Java API classes whose

fields point to developer defined classes. They areThread Section4.2.1and containers

Section4.2.2. A safer method is to check all the used API classes to see if they have fields

referring to developer defined classes, but this is left for future work.

For Inheritedobjects, we need to iterate through all the application instance fields of

the current thread to copy the objects that are reachable. Wetrace the class hierarchy

for Thread objects and itsrunnable field, usingobject clonerto copy bothscalar type

objects and array type objects.

24



4.2. Application Instance Fields

Program 4 Four categories
class X {

//static field that can be accessed by any threads
public static Y y;

}

class Parent extends Thread(){
public void run(){

//local object that never escapes parent thread
A a = new A();

//object which is passed to children thread
B b = new B();
Child child = new Child(b);
child.start();

//accessing static field
Y y = new Y();
X.y = y;

}
}

class Child extends Thread(){
B b;
Child( B b ){

super();
this.b = b;

}

public void run(){

//accessing static field
Y y = new Y();
X.y = y;

}
}
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4.2.1 Class Hierarchy for Thread and Runnable

The application fields are defined in different levels of subclasses of theThread class.

Therefore, to find out all the objects reachable from instance fields we need to trace through

the class hierarchy of the currentThread object. All subclasses that the current thread ex-

tends from are extracted and the objects referenced by thosefields are checked and copied.

Furthermore, there is arunnable field of typeRunnable defined in theThread class. A

Thread object may reach aRunnable object with a lot of application fields. Similar to

the application fields inThread object, these fields are dispersed among different level of

subclasses ofRunnable . These instance fields may hold objects shared with other threads

as well. Therefore, we need to use the same method to trace theclass hierarchy of the

Runnable object in order to find all the objects reachable from this point.

4.2.2 Object Cloner

Each thread is assigned anobject clonerat the start. The object cloner is in charge of

cloning every object reachable from its owner. For each object, the object cloner first does

a shallow copy which only duplicates the primitive type variables and reference values.

Then, a recursive approach is employed to guarantee the objects are fully copied; this is

especially important for collection and array type objects. A map is used to prevent an

object from being copied twice, and to properly reconstructcopied object references.

Scalar Type Object

A scalar type object is a single object that is not an array. Every object inJikes RVM

consists of 2 parts, the header and the fields value. The header part gives type and garbage

collection information. Fig4.2shows the structure for a scalar type object. To copy a single

object, the object cloner first allocates a space and initializes the header for the new object.

Next, it does a memory copy from the second part of the original object to the new object.

After this shallow copying process, the object cloner will iterate through each field of the

current scalar type object. If the field is primitive type, weneed to do nothing. If the field is

an instance field, thecopyObject( Object fromObj, RVMType type ) method
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will be called recursively.

�� ������object header field_0              field_1

Figure 4.2 Structure of scalar type object

The Java API contains a large group of container classes which are used to hold multiple

objects. Although containers are also scalar type objects,we need a special way of copying

them for 2 reasons. First of all, containers are defined in Java API but have references to

objects of the developer defined classes. We assume only the field referring to developer

defined classes will cause race conditions. Therefore, we shallow copy rather than deep-

copy other fields which are mostly primitive type data used toindicate information like

size and capacity. Note that while it is possible that other fields in containers may need to

be deep-copied (such as head-pointer for a linked list), we do not address that issue here

and leave it for future work. Furthermore, in each containerthe field referring to objects of

developer defined classes is an array type field. This array isused to buffer all the elements

in a container. The object cloner extracts the array and use the copying scheme for array

type objects, which we will describe below.

Array Type Object

Fig 4.3 shows the structure for an array type object. Similar to a scalar type object, the

object cloner allocates the space and initializes the header for the new array type object.

Instead of deep-copying each field as scalar type object, however, the object cloner deep-

copies each element object for array type object.

����������object header length of array element_0       element_1

Figure 4.3 Structure of array type object
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Map

There are several cases where a naive deep-copying scheme will cause problems. Pro-

gram5 will get stuck in an infinite loop because 2 objects reachableby instance fields of

the thread are pointing to each other, as is shown in Figure4.4. A naive deep-copying

scheme will continue to deep-copy each field and result in an infinite number of copies of

Cobjects andB objects. In Program6, an instance field and a static field are referring to the

same object as is shown in Figure4.5. A basic deep-copying method will copy this object

twice. The first time is when deep-copying the instance fieldb and the second time is when

deep-copying the static fieldC.b . Because of those cases, we need to take an approach to

make the object cloner know whether an object referred has already got a local copy for the

current thread.

Program 5 Objects referencing to each other
class A extends Thread{

B b;
C c;
run(){

this.b = new B();
this.c = new C();
this.c.b = this.b;
this.b.c = this.c;

}
}

class C{
B b;

}

class B{
C c;

}

Similar to the case where algorithms traversing each node ina graph needs to record

visited node, the deep-copying method need to find a way of keeping track of the copied

object. The object cloner realizes this by recording the address of the new copy. A map
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instance of C

static fields
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instance field: b

instance field: c

Figure 4.4 Objects referring to each other

Program 6 An instance field object referencing to static field object
class A extends Thread{

B b;
run(){

this.b = C.b;
}

}

class C{
static B b = new B();

}

is used to keep<old address, new address> pairs. Before copying any object, the object

cloner first searches the map with the old address as a key. If the object is already copied for

the current thread, a new address value associated the copied object is returned. If there no

entry for the old address in the map, the object cloner will continue to copy this object. The

garbage collection is disabled during this process to make this approach work. Otherwise,

the map will not correctly identify a copied object since it might get a new address by being

moved elsewhere.
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instance of B

space of A thread

reference

instance field: b static field: C.b

Figure 4.5 Fields referring to the same object

4.3 Localized Value Heap for Static Fields

For the last category, we leverage the existing mechanism ofJikesRVM for storing static

fields. WithinJikesRVM, all static variables are held in a (global) table calledJTOC (Jikes

RVM Table of Content). We duplicate this table, attaching a local copy to the new thread,

while also deep-copying all the references contained within. This process has the added ad-

vantage of resulting in much faster access than through an equivalent staticThreadLocal

reference. Each static variable is already assigned an offset when loading and resolving the

corresponding class. This offset indicates the relative positive with respect to the start of

the table, and is unique for each static variable. Our implementation preserves this property

for all the threads; for a thread to read a static non-volatile field of a class, it merely indexes

its own version of the static variable table using the variable index already defined during

class load-time. Note that this design does not entirely replace the original, global table

of statics—there is still a global table holding the shared static variables that are specified

by the programmer to bevolatile. Figure4.6 illustrates the idea in the case of Program3.

Thread 1 and thread 2 each have a local copy of static fieldA.localItem at the same

offset in their table. If any of the threads would like to accessA.sharedItem they look it

up in the global table.
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Figure 4.6 Local value heap(s) for static fields.

4.3.1 Localized Heap with JTOC

In JikesRVM, the JTOC which is an array of integers, stores pointers to all static fields.

Whenever a new class appears in the executed program, its corresponding class file is

loaded. The VM will extract the class information concerning class name, fields, meth-

ods, supper classes and interfaces, storing them inJikes RVM format like RVMClass,

RVMField , RVMMethod. The class is resolved through this process and each field is as-

signed an unique offset stored in an associatedRVMField object. The offset is measured

from the start of the object if this field is an instance field. For static fields, the offset is

measured with respect to the start of the JTOC.

In the original version ofJikesRVM, JTOC is a global table shared by all the threads
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and a dedicated machine register (the global JTOC register)holds the reference pointing to

this table. We make a thread-local copy for JTOC at the start of each single thread. When a

thread needs to read and write to a static field, instead of reading the global JTOC register,

it reads theslots field which is added to theRVMThread class and adds the offset to this

reference value to get the reference to its own version of thestatic thread-local fields.

4.3.2 Assembly Code Generation

To change the semantics of the language, we need to change theway the virtual machine

behaves by modifying the machine code generated according to bytecode instructions. Two

groups of bytecode instructions are involved in static fieldreads and writes. The first group

involves operations for static fields in resolved classes whose class information is already

stored in form ofRVMClass andRVMField objects. The second group involves operations

for static fields in unresolved classes whose class information is not available at this mo-

ment. For both groups, the first step is to tell if the related static field is avolatilefield. This

is a functionality that should be included in the JVM but has not yet been implemented in

JikesRVM. The second step is to branch to the right path with this information. The whole

process needs a combination of static and runtime information.

Reads and Writes of Resolved Static Fields

For static fields in resolved classes, the virtual machine can get modifier information easily

from theRVMField object and generate only one pass of the assembly code. This process

is shown in Figure.4.7. The generated assembly code instructions for reads and writes are

shown in Figure.4.8 and Figure.4.9. After the first instruction, the EAX register1 gets

the base address of the thread-local table by reading theslots field of theRVMThread.

This field is represented by the red rectangle (the one with slash lines) in Figure.4.10.

After the second assembly code instruction, the virtual machine gets the location of the slot

associated with the static field by adding the field’s offset to the base address stored in EAX.

The field slots is shown as a green rectangle (the one with horizontal lines) in Fig.4.10,

1a caller-saved register in IA32 systems used by compilers for storing temporary values. Caller-saved
registers are registers whose value may be changed across a function call.
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storing the address for the local object. For read operations, this address is pushed on the

stack. For write operations, the value on top of the stack is popped and stored into this slot.

get RVMField object

if field is volatile?

asm code
 for 

 volatile field

t r u e

asm code for code
 for 

 non volatile field

false

Figure 4.7 Virtual machine behavior for resolved get/putstatic bytecode

mov EAX [ThreadRegister + local heap Offset]

push [EAX + f ield offset to heap]

Figure 4.8 Assembly code for resolved getStatic bytecode

Reads and Writes of Unresolved Static Fields

For static fields in unresolved classes, there is no relevantinformation available in the

virtual machine at compile time. Fortunately, the modifier information will be available at

run-time when the assembly codes are executed. As is shown inFigure4.11, the first thing

the virtual machine does is to generate code for triggering the class loading and resolving

process. We need to insert the assembly codes for retrievingfield modifier information after
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mov EAX [ThreadRegister + local heap Offset]

pop [EAX + field offset to heap]

Figure 4.9 Assembly code for resolved putStatic bytecode
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Thread
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field slot

Figure 4.10 Assembly code illustration

this process. Because the modifier information is absent until run-time execution, assembly

code for both branches should be generated.

Figure4.12shows this process. The logic is almost the same as that for resolved fields in

Figure4.7but it is applied to generated assembly code rather than VM behavior at compile

time. The way of extracting modifier information to judge whether a field is volatile is

also different. Rather than getting this information directly from theRVMField object, we

need to call a methodisVolatile with a reference id as a parameter at run-time. Each

field reference inJikesRVM is in form a ofFieldReference object associated with an

unique id and a resolved field in form ofRVMField . Therefore, inside the called method
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int isVolatile(int memberId) , we use the id to find the resolved field and check if

this field is volatile or not.

generate dynamic l ink ing sequence

asm code

Figure 4.11 Virtual machine behavior for unresolved get/putstatic bytecode

prepare parameter  reg is ters  

call isVolatile method

if field is volatile?

asm code
 for 

 volatile field

t r u e

asm code for code
 for 

 non volatile field

false

Figure 4.12 Assembly code for resolved getStatic bytecode

35



Optimized Implementation

4.3.3 Garbage Collector

A basic semi-space copying garbage collector is chosen overother more sophisticated

garbage collectors because its simple structure facilitates fast implementation. As a copying

garbage collector, it needs to determine all the objects reachable and copy these objects to

the other half of the space. The remaining objects in the firsthalf of the space are discarded.

The tracing phase starts from objects in root sets which are assumed to be reachable. One

root set is the static root set which contains all the static fields. In the case ofJikesRVM,

this takes the form of the JTOC which is duplicated to hold extra copies for each thread.

The garbage collector is changed to be aware of these extra static root sets.

There are multiple garbage collector threads inJikesRVM and it is necessary to fairly

distribute among them the slots in the static roots of different application threads. This is

more complicated than distributing slots from only one single static root. To begin with,

the garbage collector needs to find out the quota, a heuristicapproximation of tracing load

which is the number of slots one garbage collector is assigned and it needs to be calculated

like this:

quota=
numStaticField∗numO f Thread

numO f GCThread
(4.1)

We use the number of static fields (numStaticField) times thenumber of application threads

(numOfThread) to get the total number of slots. Next, we divide this total number of

slots by the number of garbage collector threads (numOfGCThread) to get the quota. The

garbage collector then finds the slot, uniquely identified byusing both slot index (slotIndex)

and thread index (threadIndex). It uses the following calculations:

preSlots= (GCOrdinal−1)∗quota (4.2)

slotIndex= (preSlotsmodnumO f GC)+1 (4.3)

threadIndex=
preSlots

numO f GC
(4.4)

Each garbage collector thread is assigned an ordinal number(GCOrdinal). Equation4.2
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gets the number of slots that have been processed by garbage collectors with ordinal num-

bers smaller than the current one. The result is used in4.3 and4.4 to identify the starting

point. Then it continues to process the next slot following the flow shown in Figure4.13.

It checks if the slot contains a valid reference and traces the reachable objects from this

reference. The garbage collector keeps going and stops at two cases. The first case, shown

by the blue edge (the longer dotted edge) in Figure4.13, is when it finishes its quota. The

second case, shown by the green edge (the shorter dotted edge) in Figure4.13, is when

the garbage collector reaches the end of the entire root set which is the last slot of the

last thread. During this process, each garbage collector thread keeps track of not only the

current slot and but also the current static root being processed.
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slotIndex
 threadIndex
 coun te r=0

process slot
 c o u n t e r + +

i f  counter  < quota?

if slotIndex is 
the last  in

 threadIndex?

Y

exi t

N

if this is
 the las t  thread?

Y

s lo t Index++

N

Y

t h r e a d I n d e x + +
 s lo t Index=0

N

end of
current  loop

Figure 4.13 Assembly code for resolved getStatic bytecode
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Chapter 5

Experiments

While our design reduces the normal overhead ofThreadLocal access, it also intro-

duces significant overhead in the deep-copying process. In this chapter, we use both micro

benchmarks and non-trivial benchmarks to experimentally verify and evaluate performance

of our design. InSection5.1, we use micro benchmarks to compare the performance of

currentThreadLocal in Java API with static thread-local data in the new semantics. In

Section5.1, we use non-trivial benchmarks ported from existing sources to our semantics

to show the programmability and functionality of the new semantic.

Programs written in the current Java language are run inJikes RVM 3.1.1 and the

modified versions are run in our modified virtual machine. There are two separate code

generation paths: one in the baseline compiler and the otherin the adaptive optimization

compiler. In our prototype work we modified only the baselinecompiler for simplicity, and

so we turn off the adaptive optimization compilers on both virtual machines to be able to

measure comparable results. For garbage collection we usedthe basic semi-space copying

garbage collector in both JVMs, as the easiest to modify to understand the new root sets

created by the duplicated static variable tables. Comparison with a fully optimized compiler

and the advanced generational collector withinJikesRVM would be interesting, but is left

for future work.
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5.1 Micro Benchmarks

Micro test cases contain loops that repeatedly perform simple read and write operations

on static, thread-local fields. The benchmarks written in the new dialect require no effort

other than using the keywordstatic, while the benchmarks written in Java wrap variable

data within aThreadLocal type. Different groups of micro benchmarks emphasize the

performance of different aspects of our design. In the Java Virtual Machine, a class needs to

beresolvedthe first time it appears during the program execution. During a class resolution,

the class file is loaded, static initializers are executed and symbolic references are replaced

with direct references. After a class is resolved, information about this class is kept by the

vitural machine. Therefore, retrieving information for a field in a unresolved class requires

loading and resolving the class first while a field in a resolved class does not need extra

effort. We need to consider the performance for accessing both these two kinds of fields.

Micro tests inSection5.1.1 include only accesses to resolved static thread-local fields.

Micro tests inSection5.1.2focus on operations on unresolved static thread-local fields.

5.1.1 Accessing Resolved Thread-Local Fields

This group of test cases shows performance for resolved thread-local fields. All the current

released versions ofJikes RVM do not distinguish volatile data from non-volatile data.

This is a fast way of getting the entire JVM working but a full implementation of JVM

should certainly be capable of telling the two different data groups. Our implementation

of the new semantics adds this function toJikesRVM and also brings in some overhead.

As mentioned inSection4.3.2, retrieving modifier information is very straightforward for

resolved thread-local fields, adding little overhead in telling volatile data. Therefore, the

overall performance would be dominated by the actual data accessing mechanism. For

this reason, we use this group of benchmarks to fairly determine the baseline performance

difference between our table-based approach and original,map-searching approach. We

change the benchmarks with respect to two aspects, which arethe number of fields (in

Section5.1.1) and the number of threads (inSection5.1.1). The number of fields in each

thread decides how many entries each map or table will have. It may potentially change
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the accessing time. The number of threads decide how many maps or tables the program

will have. It may also affect data accessing time. Therefore, both of these two aspects are

important.

Number of Fields Increasing versus Time and Memory

Figure5.1shows the case where there are 3 threads busy reading and writing all the static

thread-local fields. We increase the number of static fields from 1 to 29. Unsurprisingly,

the speed of our dialect is much better than that of the original Java using the current

ThreadLocal class. We improve performance by a factor of two despite the fact that our

system needs to determine whether a field is volatile or not while the original system does

not do so. As the number of fields in each thread increases, thetotal execution time and the

garbage collection time of benchmarks in both groups increases linearly. Note that the GC

time increases at a slightly slower rate than the total time;our version adds only a small

amount of extra data, mainly in terms of an extra table for each thread, and the amount of

collectable data is minimal in both language variants.

The memory requirement remains at 10MB as the number of fieldsincreases for the

new semantics while the memory requirement remains at 6MB for original Java. For both

the new semantics and original Java, more static fields does not require more table or map

allocations and the memory space required is therefore unchanged.

Number of Threads versus Time and Memory

Table creation implies that for a given amount of static data, our overhead costs should

increase in proportion to the number of threads. Figure5.2 thus shows micro-tests reading

and writing to 4 thread-local static fields, but varying the total number of threads created.

As expected, the total execution time increases, although the result is not linear. Our op-

timized thread-local static variables easily outperformsthe ThreadLocal class version

when there are few threads, but as the number of threads increases there is also an increase

in the slope of the curve, while the old version of Java maintains a linear relationship. The

separate curve for GC time shows that this is primarily due toincreased GC costs. The

local heap for each thread is added to the static root set whencollections begin, and thus
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Figure 5.1 Time required for 6000000 reads and writes to each of 1 to 30 resolved static,
thread-local fields. The time value is the average of 20 runs.

increases the time spent root scanning. This effect is verified in Figure5.3, which shows

execution time subtracting GC time. In this case growth is again reduced to linear. We ex-

pect improvements to the GC costs would be possible with a more sophisticated collector

that understood and exploited the thread-specific separation our design creates.

Figure5.4 shows the changes in required memory space as the number of threads in-

crease. For both the original Java and the new semantics, thememory requirement increases

in proportion to the number of threads. In both cases, there is a fixed amount of memory

allocated to each thread as it starts. While the original Javaassociates a map to each thread

the new semantics associates a table to each thread. The former approach is flexible in size

and can be adjusted to the number of entries, while the latterhas a fixed table size and has
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Figure 5.2 Number of threads versus time for 6000000 reads and writes to 4 resolved static,
thread-local fields. The time value is the average of 20 runs.

a quite large initial size, accommodating 128K entries. This results in the different slope

of the line. The memory requirement for new semantics can be decreased by using a table

that can start small and be dynamically expanded.

5.1.2 Accessing Unresolved Thread-Local Fields

In this case, just to examine the specific cost of accessing unresolved fields we show one

benchmark with three threads reading and writing to 10 unresolved static thread-local

fields. As is mentioned inSection4.3.2, retrieving modifier information for those fields

takes more efforts and results in larger overhead. The extraoverhead to distinguish volatile

field from non volatile will compromise our performance improvements. Therefore, this
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Figure 5.3 Number of threads versus time for 6000000 reads and writes to 4 thread-local static
fields, deducting GC time. The time value is the average of 20 runs.

test is used to show part of the inevitable overhead introduced by implementing volatile

data for a fully functional JVM. As is shown in Figure5.5, both our new semantics and the

original Java add some overhead compared to accessing resolved fields. This is because the

virtual machine first needs to load and resolve the corresponding class to access unresolved

data. The garbage collection time does not change for both cases. Another observation is

that although the new semantics still outperforms the original Java the degradation of the

former is significant larger than that of latter. This is caused by judging whether a static

field is volatile or not. One way to reduce this overhead is to use a bit vector to indicate

whether a static field is volatile or not rather than calling afunction to read the modifier.

Another way is to reducefalse unresolved access, which means executing code for unre-

44



5.1. Micro Benchmarks

5 10 15 20 25
5

10

15

20

25

30

35

40

45

50

number of threads

m
em

or
y 

(M
B

)

 

 

new semantics
original Java

Figure 5.4 Number of threads versus memory for 6000000 reads and writes to 4 thread-local
static fields.

solved fields despite actual accessing resolved fields. Our test case containing a huge loop

is such case. The code generated for the loop is the same and the same code for accessing

unresolved field will be executed for 6000000 times while actually only the first access is to

an unresolved field. This can be improved by recompiling the code after the first access so

that only the first access executes expensive code. This is a traditional method and although

the baseline compiler ofJikesRVM does not do that, the adaptive optimization compiler

in JikesRVM can do such optimization.
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Figure 5.5 Comparison between time required for 6000000 reads and writes to both 10 unre-
solved and resolved static, thread-local fields. The time value is the average of 20
runs.

5.2 Non-trivial Benchmarks

Intensive thread-local access does not give a realistic picture of performance differences;

different programs will in practice make greater or lesser use of shared versus thread-local

data, and the relative impact will depend on how execution costs are distributed through-

out a program’s activities. We thus further investigate performance using a suite of larger,

non-trivial test cases. These multithreaded benchmarks are selected from various sources.

In all cases changes were required to make the programs comply with our new, thread-
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local/shared semantics. We manually identified the shared fields in different classes and

tagged them withvolatile. These changes respected the original program’s use of shared

and private data. Table5.1 summarizes the benchmarks, giving each benchmark a short

description. Table5.2 includes dynamic data measuring the relative number of variable

accesses (important to understanding how much impact changes to variable access method-

ology could possibly have), the total number of threads created, and a basic measurement

of the overhead introduced by the per-thread table allocation we perform.

There are two groups of test cases for non-trivial benchmarks. Section5.2.1compares

the performance of the new semantics and the original benchmarks which do not make use

of theThreadLocal class. InSection5.2.2, we modified theseriesbenchmark to compare

performance of the new semantics and use of theThreadLocal class in a real case. The

reason why we choose only theseriesbenchmark is stated at the beginning of that section.

5.2.1 New Semantics versus Original Benchmarks

Figure5.6 shows the performance in terms of execution time. Here we evaluate behavior

of the modified benchmarks run under our semantics in relation to the execution time of

the original, unmodified benchmark, which is using all shared data. We do not introduce

newThreadLocal objects to guarantee thread-local access for original Javabenchmarks

because this would require manually changing all the thread-local fields and also each

access to those fields. To compare different benchmarks clearly, all the execution times are

normalized to 1.0 by dividing the original execution time. Since garbage collection costs

contribute a lot to the total time and our design has a clear impact on GC costs, we separate

normal execution and GC time. In this experiment, we do not expect to see improvements,

and are mainly trying to ensure that using thread-local by default does not introduce too

much cost.

From this data, it can be seen that most benchmarks run on our modified virtual machine

at about the same speed as on the original virtual machine. Asexpected, there is no perfor-

mance improvements for this group of benchmarks as for microbenchmarks because the

original Java benchmarks here do not useThreadLocal objects to guarantee thread-local

access as do the micro benchmarks. Nevertheless, we do anticipate performance improve-
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Table 5.1 Benchmarks description and sources.

name description sources
P/C A standard producer/consumer benchmark: 3

producers produce 12000 objects and 3 con-
sumers consume them. They share the con-
tainer holding the value and update the value.

Sun Java Tutorial [sun]

traffic 144 drivers and cars will pass through a rotary
intersection. For each round, 1 car thread and 1
driver thread navigate together around a rotary.
They share fields that give information about
traffic condition, driver’s decision and car’s lo-
cation as well as speed. They each have lo-
cal copies of data indicating destinations, en-
trances, driver’s driving style, road segments in-
formation.

Sable Research Group

roller A variation on the classic “roller coaster” con-
currency problem; 7 passenger threads compete
for 7 seats in 1 roller coaster thread. They share
fields that indicate ride number and whether
certain seats are taken.

Sable Research Group

bank 8 threads transfer funds between a checking ac-
count and a savings account. 4 of them deposit
and withdraw money from the checking account
while the other 4 use the savings account.

Doug Lea [Lea99]

series This benchmark computes the first N=100000
Fourier coefficients of the functionf (x) = (x+
1)x. The computation of N coefficients are inde-
pendent of each other and are distributed among
3 threads.

Java Grande Forum
Benchmark Suite [gra]

mtrt 2 threads render a raytraced image. The threads
share the canvas on which they need to cast the
spot, but each thread does raytracing of its own
section using independent calculations

SPECJVM98
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Table 5.2 Benchmarks related data. The access columns shows static variable access density
(average number of static variable accesses/millisecond), and the alloc time column
gives the normalized table allocation time as a percentage of total execution time.

name shared accesslocal access number
of total
threads

number
of active
threads

alloc
time

P/C 0 0 7 7 0.0%
traffic 455 91 289 3 12.0%
roller 414 53 9 9 0.0%
bank 0 0 9 9 0.0%
series 12 0 4 4 0.0%
mtrt 0 0 3 3 0.0%

ments would be possible after this design is ported from the baseline compiler implemented

currently to the optimizing compiler, which under our design would allow more aggressive

optimization to those benchmarks with multiple threads.

A clear exception which shows considerable performance deterioration in our design

is the traffic benchmark. The fifth column in Table5.2 indicates the crux of the matter

is table allocation which contributes to 12% of execution time. There are 2 factors that

result in this situation, both of which can be understood from the data shown in columns

3 and 4 of Table5.1. First, we note that this program creates 144 threads for drivers and

144 threads for cars (and a main thread). This heavy rate of thread generation interacts

poorly with our design choice to eagerly duplicate data during thread initialization. This

accounts for the bulk of the introduced overhead. A second notable factor is seen in the field

access density which is defined as number of static variable accesses per millisecond. Static

variable accesses are modified to let the language support thread-local variables inherently,

and while this is certainly faster than usingThreadLocal objects it does not out perform

static variable accesses in the original Java. In the original version ofJikesRVM, accessing

static fields is done by accessing all data in a single table and this makes the original Java

more data-cache-friendly than the new semantics. This is particularly true for thetraffic

benchmark, given the large number of short-lived threads, each with their separate copies

of static data in the new semantics.

Note that we do not separately measure or account for heap variable accesses; these
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access costs are the same as in original virtual machine. There may be a cache impact from

this duplication as well, but the only extra overhead for instance data is due to deep-copying

included in the alloc time at thread start.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

no
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

 

 
new semantics GC
original Java GC
new semantics actual
original Java actual

Figure 5.6 Normalized execution time of non-trivial benchmarks, comparing behavior of the
modified benchmarks under our new dialect with their unmodified execution times
under the current Java language. The red portion of each bar identifies the portion
of time spent in garbage collection. The time value is the average of 50 runs.

Heap data is shown in Table5.3. Duplicating data for each thread is expected to in-

crease memory requirements, and this is apparent in the maximum memory requirements

measured for our benchmarks. One thing worth noticing is that the number of active threads

rather than number of total threads matters. This can be justified by thetraffic benchmark.

Despite the heavy cost due to table allocation inside thetraffic benchmark, the actual mem-

ory requirement are larger but not significantly larger compared with the huge number of
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threads it launches. This is because although thetraffic benchmark creates a lot of new

threads the threads are running in turn and at each moment there are only 3 active threads.

Interestingly, while there is an impact, the data does not show an increase proportional to

number of active threads, as found in our micro benchmarks. Individual thread tables con-

tribute to an increase in memory consumption, and overall increases are significant, but the

relative amount of actual thread-local versus shared data is a more important factor. The

roller benchmark has 9 active thread and quite a lot thread-local data. Therefore it shows a

very high increase memory requirements. This is because it needs to create and hold onto

local copies for all thread-local data for all the threads.

Table 5.3 Memory Usage

name Java(MB) new semantics(MB)
p/c 7 11
traffic 6 9
roller 8 17
bank 6 9
series 21 22
mtrt 13 16

From all the data-sets, it is clear that an important avenue for improvement in our

scheme is to reduce the cost of the deep-copying performed during thread initialization.

For class variables, a lazy, copy-on-write (or copy-on-access) scheme may be able to help

the situation by delaying the deep-copying process until a thread’s first access to this static

field. Implementing this with an additional check before access would incur other over-

head, but a coarser scheme using write-barriers as is commonin some GC designs [BH04]

could be quite efficient.

5.2.2 New Semantics versus Benchmarks with ThreadLocal

The non-trivial benchmarks targeting shared variables in multithreaded programs do not

really make use of thread-local accesses very often. To investigate the effect of the new se-

mantics on thread-local accesses we need to manually changethe benchmarks so that they

frequently use thread-local data in form of uses of theThreadLocal class. We choose the
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seriesbenchmark in which several threads are calculating Fouriercoefficients and storing

the result to a shared 2×1000000 double type matrix. The matrix is divided into different

partitions and each thread is in charge of calculating one partition. The character of this

benchmarks makes it easier to change shared data accesses tothread-local accesses through

ThreadLocal class. On the one hand, calculation of each partition in the matrices is in-

dependent and the shared matrix can be easily replaced with several smaller thread-local

matrices. On the other hand, because the benchmark containsonly regular accesses to ma-

trix elements the thread-local accesses can be conveniently identified and replaced with

get() andset( Object object ) methods. The modified Java program we get con-

tains 2000000 thread-local accesses in total.

Table 5.4 New semantics versus original Java with ThreadLocal

name total time (milliseconds) GC time(milliseconds) memory(MB)
new semantics 16610.9 475.05 44
original Java 16820.7 486.85 37

Table5.4 shows the result of the changedseriesbenchmark. The time value is mea-

sured by 50 runs. Disappointingly, there is little improvement in speed from the original

Java to the new semantics. Despite the large number of accesses toThreadLocal objects

in this CPU intensive benchmark the expensive code generatedby the baseline compiler for

calculation of each datum dominates the execution of the program and dilutes the access

time improvements. An advanced optimization compiler has abetter chance of showing the

reduced overhead that we expect from our design based on our micro benchmarks. The in-

crease in memory has similar justification with previous tests. One interesting observation

is that because we split the shared large matrices into several small matrices the memory

requirements for both the new semantics and the original Java are increased by an amount

around the size of the matrix. We suspect this is an artifact of the GC design of the semi-

space collector inJikes RVM. The unmodified version stores the entire array in a single

large-object-space, a special area of memory used for large objects that are not collected

frequently, while partitioned matrices with reduced size in the modified code are allocated

into the semi-space, and thus require twice the memory.
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Chapter 6

Related Work

6.1 Related Work

Our work is mainly related to three areas and in this chapter we will introduce other people’s

work in those areas.Section6.1.1talks about the efforts in justifying compiler optimization

under the Java Memory Model [MPA05] and trying to guarantee a race-free property for a

given program. Our work is motivated by the difficulties in both these two efforts.Section

6.1.2introduces modern concurrent program languages using sharing directives to specify

shared data. This is the source of our inspiration to providea similar language feature for

Java. Our implementation provides threads with private value heap and separate object

copies. Other researchers also tried to explore thread-local space features in Java and we

introduce their work inSection6.1.3.

6.1.1 Data-Race-Freedom and Optimization

Efforts trying to bound the behavior of racy programs make the Java Memory Model very

complicated and researchers have been focusing on finding out exactly what optimizations

are allowed.S̆ev̆ćık, for instance, applies semantic techniques on code transformation to

validate the correctness of compiler optimizations [Š11]. He attempts to prove that com-

binations of the classes of transformations he defined can provide sequential consistency

53



Related Work

for DRF programs and also guarantee that noout-of-thin-airvalues for racy programs are

generated (a central tenet of the JMM).Out-of-thin-airvalues are a consequence of simple

attempts to define semantics for the racy programs in Java. Ifnot carefully handled memory

model semantics can be used to justify arbitrary data showing up in variables. This obvi-

ously unrealistic and undesirable behaviour is known asout-of-thin-air data. The JMM

spends considerable efforts to avoidout-of-thin-airdata.

Marino and his colleagues argue that relaxed memory models do not necessarily lose

the property of preserving sequential-consistency (SC) [MSM+11]. They find that many

optimizations are either already SC-preserving or can be modified to have this property,

and so the subset of SC-preserving optimizations are sufficient for improving program per-

formance. Nevertheless, some of their benchmarks still show a performance gap between

compilers only allowing SC-preserving optimization and those that use a more complete

optimization suite as well.

One way of avoiding the troubles in validating optimizations under different memory

models is to determine whether the programs are DRF by detecting existing race condi-

tions. No-overhead, static approaches are possible [BLR02, AFF06], but tend to suffer

from excessive numbers of false positives, and therefore, state-of-the-art race detectors are

principally dynamic ones. Unfortunately, while much more precise, these bring very non-

trivial runtime overhead, with state-of-the-art dynamic race-detection currently resulting in

approximately an 8-fold slowdown [FF09]. Faster and more accurate dynamic race detec-

tion requires cooperation from hardware. Marinoet al.’s DRFxsystem, for example, uses

hardware-driven detection, throwing a runtime exception when a violation of SC occurs

[MSM+10]. Less specialized hardware is required by Greathouseet al.’s performance-

counter-based, demand-driven method, which turns on race detection only when there is

likelihood of data-sharing among different threads [GMF+11].

Our effort targets the memory model for the Java language as well but is different from

all those above. We would like to make sure that no data races exist no matter how program-

mers program with the language. Many designs have in fact explored this general approach

in the past.Guava, for example, a race-free version of Java, uses a type systemto explicitly

distinguish between objects that are shared and those that are not. Baconet al. define three

disjoint type-classes so the program can tell a compiler whether an object can be moved
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from one thread to another, can only stay in one thread, or if it can be shared [BST00].

Chandrasekhar and Martin classify objects from another angle, letting programmers apply

different protection mechanisms to objects by specifying different types [BR01]. These de-

signs do not focus onthread-localdata itself, which both guarantees thread-specific data-

values and offers a uniform syntax to access the “same” data in multiple threads.Loci is

a type system for thread-local data in Java [WPM+09]. It does static checking based on

the programmer’s intention for thread-locality expressedthrough annotation and change

thread-specific fields intoThreadLocal classes. The type system separates the heap into

thread-specific parts and shared parts. There is an important difference between their work

and ours other than exploring thread-specific instead of thread-local property. When they

find a violation to the programmer’s intention, the program does not compile. This makes

the method essentially a static approach. In our case, the program always compiles even if

the resulting program behavior is not quite what the programmer expects. Like our work,

they also notice the merit of distinguishing thread-specific data explicitly to allow more

code optimization in multithreaded programs, but the technique is more directly aimed at

improving garbage collection.

6.1.2 Thread-local Data and Sharing Directives

Using sharing directives to explicitly specify objects that are shared is a common concept in

parallel and multi-process programming. Our interest in better supporting thread-local data

in Java is derived from the syntactically and programmatically simple design for shared

data found in languages such as UPC [UPC05], Titanium [YSP+98], OpenMP [Ope08], as

well as extensions to C found in the Microsoft compiler [micb] and others. In UPC, for

instance, each thread has a private address space separate from a common, shared memory

area. Objects are allocated by default in the local space, with the same object name used

to reach different data in different threads. Shared data must be explicitly markedshared

to be accessible by multiple threads. In Microsoft C, the extended storage-class1 attribute

thread is used with declspec as an annotation to declare a thread local variable. When

1C has a concept of ’storage-class’ defining the scope (visibility) and life time of variables and/or func-
tions. Examples of other storage-class modifiers arestaticandexternkeywords.
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a new thread starts, it is allocated some thread specific memory in the process heap to

hold these variables [mica]. Our approach here aims to support a similar concept ported

to Java, repurposing thevolatile Java keyword to differentiate shared from thread-local

content. This has the advantage of offering a very familiar-looking environment to Java

programmers, straightforward porting of existing Java programs, and close identification

with ideas found in new languages such as UPC and OpenMP.

6.1.3 Thread-local Implementations in Java

While direct, optimized support for thread-local storage inJava is novel to the best of our

knowledge, significant optimization work exists for exploiting thread-specificdata proper-

ties. In Java, a basic memory management scheme allocates all the objects in a single heap,

shared among all the threads. Synchronization constructs,as well as garbage collection

algorithms thus have to assume any given data may in fact be shared, and take appropriate

access precautions. If data can be determined through analysis to be only accessible by

one thread, however, individual thread data can be allocated to distinct partitions of the

heap [DGK+02] [Ste00], or objects can allocated within the runtime call stack [MKB09].

Most works in this area, however, aim at reducing allocation, GC, and synchronization

overhead [MPJ11], rather than focusing on supporting general race-free guarantees.
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Conclusions and Future Work

Data-race-free (DRF) languages are an important direction in concurrent language re-

search, eliminating much of the complexity of the memory consistency concerns that affect

existing concurrent languages. In this work we have described how support for a thread-

local by default data-model could be added into a Java Virtual Machine, significantly im-

proving the overhead otherwise incurred by using the existingThreadLocal implementa-

tion design. The intention here is to encourage DRF approaches and demonstrate they can

be competitive with current languages, and this is largely borne out by our experimental

work with larger benchmarks. In most cases we are able to showthat even when the pro-

gram is modified to use a race-free semantics based on thread-local data, performance is

not reduced over the original, naive and fully shared execution. Unfortunately, even pro-

grams that useThreadLocal intensively do not always improve by using our technique

instead. For theseriesbenchmark, there is a little improvement over the original bench-

marks withThreadLocal objects. Since micro-benchmarks show the improvement can

be large, we believe this to be an artefact of our initial prototype design—the baseline com-

piler is convenient to modify but also generates expensive code that can dilute the benefits.

In the future, we want to port the mechanism currently applied to the baseline compiler to

the more sophisticated optimizing compiler to generate better code.

Future work will focus on providing and supporting a full DRF language design for

Java based on extensive use of thread-local data. This requires improving our implemen-

tation with respect to the programs that create great numbers of dynamic threads, as well
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as tailoring the garbage collection strategy. Our approachhere shows feasibility and good

performance are possible, but there are several places where our design introduces signifi-

cant bottlenecks. Lazy copying or more advanced designs based on virtual memory would

greatly mitigate our current thread creation overhead, as would precise forms of escape

analysis [WR99] that could better identify data that is already thread-specific. Memory

costs would also be reduced by making use of more complex memory management for

static thread-locals, such as through an expanding table design. Finally, it seems possible

to also apply our design outside of any novel DRF semantics, simply to speed-up existing

uses ofThreadLocal in plain Java programs. Such work may encourage use of safer,

thread-local program design even in existing Java semantics. This would, however, require

additional program analysis to verify that use of aThreadLocal wrapper object can be

trivially replaced by direct (thread-local) value access.

Last but not least, a type system is needed to guarantee that only shared objects can be

assigned to shared fields. Naively, each class requires two definitions: one for thread-local

instances and the other for shared instances with fields tagged with volatile. If an object

will stay with in one thread during its life time, it is declared as an instance of the thread-

local version of its class. Otherwise, it is declared as an instance of the shared version of

its class. When a thread-local object needs to be shared at a certain point, it should be

copied to the public space with the shared version of its class. Providing a model for the

transformation can be an interesting topic.
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