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Toward Optimal Error Distributions in Adaptive
Finite-Element Electromagnetic Analysis for
Microelectronic Interconnection Structures

Dennis Giannacopoulos

Abstract—The effectiveness of finite-element refinement criteria
for achieving optimal meshes based on error equidistribution prin-
ciples are investigated with benchmark systems for the electromag-
netic simulation of microelectronic system interconnection (MSI)
features. The usefulness of the criteria are evaluated for adaptive
finite-element electromagnetic analysis of principal device char-
acteristics present in practical MSI structures, which are known
to pose challenging problems in numerical modeling. The criteria
with, potentially, the most significant implications for MSI elec-
tromagnetic simulation, are examined with finite-element solutions
for the fundamental benchmark systems computed from both op-
timal and adaptively refined discretizations.

Index Terms—Adaptive systems, electromagnetic analysis, error
analysis, finite-element methods (FEMs).

I. INTRODUCTION

RECENTLY, the study of error distributions corresponding
to optimized finite-element discretizations has attracted a

good deal of interest in the research community [1]–[3]. An im-
portant incentive for this research focus stems from the poten-
tial benefits of identifying effective and reliable refinement cri-
teria, for adaptive finite-element analysis (AFEA), based ona
priori characterizations of optimal discretization solution prop-
erties. Such refinement criteria could be used in practice for effi-
ciently guiding adaptive finite-element electromagnetic solvers
toward optimal accuracy solutions, without incurring the pro-
hibitive computational costs associated with solving the optimal
discretization problem directly [2]. This may be especially im-
portant for overcoming the computational bottleneck which is,
currently, a key obstacle for practical finite-element electromag-
netic analysis of realistic MSI structures [4].

The main difficulty with computational MSI analysis is that
a very large number of free modeling parameters are needed
to compute accurate and reliable simulations for realistic sys-
tems. Sufficient mathematical degrees-of-freedom (DOF) are
required to both resolve the geometric and material features of
a MSI structure, and represent the fields of the electromagnetic
system. The computational effort required for the electromag-
netic analysis of the complex, dense, and irregularly routed ar-
rays of high-speed interconnections that comprise modern MSI
structures can often be prohibitive [4]. Yet such analyzes are
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critical if MSI system performance is to be simulated with con-
fidence.

In recent years, significant advances have been made on the
electromagnetic modeling, simulation and computer-aided de-
sign of MSI structures [5]. Currently, one promising way to
overcome this type of computational barrier is by usingadaptive
solver technologies which are capable of intelligently evolving
and improving an efficient distribution of DOF over the problem
domain [4]. Such methods begin with relatively inexpensive ini-
tial discretizations, then establish operational solution error dis-
tributions over them, and subsequently add DOF to the model to
correct them [2]. However, the potential additional benefits and
implications of achieving optimal error distributions in AFEA
for MSI simulation have yet to be reported in the mainstream
literature, and are the focus of this work.

Some of the most prominent and enduring contributions to
emerge in the literature on optimal error distributions for nu-
merical methods have been based on the so-calledequidistri-
bution principle(EP) [6]–[8]. According to this principle, the
ideal mesh for a given number of DOF, i.e., the mesh that pro-
duces the most accurate solution, will exhibit a homogeneous
element-wise error distribution over the problem domain. How-
ever, incidental results from recent studies indicate that the EP
may not be a universally valid mesh optimality criterion for
electromagnetic AFEA [1]. In this work, it is shown directly
for the first time that the EP does not, in general, lead to op-
timal error distributions. The implications of these findings are
especially significant for electromagnetic AFEA, since many
feedback control systems used to guide the adaptive refinement
process are currently based on the EP. Moreover, it should be
noted that the experimental evidence supporting the conclusions
presented in this study, are based on error data computed from
optimal finite-element discretizations. Thus, the results com-
puted under these conditions can not be refuted. In contrast, pre-
vious studies published on typical, or nonoptimal meshes, have
not provided the sufficiently rigorous and conclusive experi-
mental evidence required for examining the fundamental value
of the EP. Therefore, the novelty of this work is, in part, the use
of optimally discretized benchmark systems for evaluating the
validity of the EP: a critical component in obtaining the defini-
tive evidence required. The purpose of this contribution is to in-
vestigate the practical value of both previously established and
newly proposed error EPs for the electromagnetic AFEA of key
MSI features, in order to better understand the true impact and
merit of the concepts for overcoming the significant inherent
computational barriers.
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II. EQUIDISTRIBUTION PRINCIPLES

The EP has long held a prominent place in the design of feed-
back control systems used to guide the refinement process for
updating discretizations in AFEA [6]–[8]. Its enduring popu-
larity has been attributed to the simplicity and strength of the
underlying fundamental concept [8]: refining a discretization
based on equidistribution of the solution error over all of the
elements in a mesh, will yield the optimal mesh for a given
problem. Thus, the EP prescribes a conceptually intuitive and
natural approach for determining how to update a discretiza-
tion in order to produce the most accurate solution for a given
number of DOF [9]. Consequently, due to its generality and po-
tentiality, the EP has been used with a range of finite-element re-
finement criteria based on various measures of the solution error
[8]. In most cases, AFEA based on the EP has been shown to re-
sult in good error convergence performance relative to nonadap-
tive uniform refinement approaches. However, in the following
sections it is demonstrated directly that the EP does not, in gen-
eral, correspond to optimal error distributions for finite-element
electromagnetics. Subsequently, a new EP is proposed based on
refinement criteria that are derived expressly from the optimal
discretization principle itself, and its practical value is examined
for AFEA.

A. Previously Established EPs

One of the most general and powerful formulations for an EP
was given in [6], and introduced the concept of thegrading func-
tion. By definition, a grading function is a function whose value
changes by a constant amount over each element in a discretiza-
tion. Mathematically, a grading function is a convenient means
by which to describe, or characterize, the placement of element
vertices in a finite-element mesh. For example, in a one-dimen-
sional (1-D) mesh with elements, a grading function
must satisfy the following:

(1)

where and are the coordinates of adjacent element ver-
tices defining theth element over the subregion of the dis-
cretized problem domain. The general approach taken in [6] is
to derive such a grading function that will minimize the approx-
imation error in a computed finite-element solution for a given
problem. In other words, the optimal discretization will be that
which has element vertices positioned such that (1) is satisfied
for the derived grading function. More specifically, the grading
function derived in [6] is given by

(2)

where: the problem domain is bounded by the interval ;
represents the polynomial order of the approximate finite-ele-
ment solution; is either the known analytical field solution or
an extrapolation of the approximate solution of at least order

; and the approximation error is measured in terms of
the -seminorm. In order to examine the effectiveness of the
EP based on this grading function approach, the-seminorm
form is employed, which is consistent with the variational fi-
nite-element formulation used in this work [6]. Namely, this EP
is analyzed in the following section using a series optimal dis-
cretization results computed for a basic benchmark system.

A second type of error EP based on the residual of the
governing partial differential equation (PDE) of the physical
system, is also considered in this work [8]. Specifically, the
equidistribution of the element-wise PDE residual:

(3)

is analyzed for a free-space Laplace benchmark system in the
following section, where represents the approximate finite-
element solution for theth element over the sub-region of
the discretized problem domain. Unlike the grading function EP
discussed above, equidistributing the residual of the PDE has not
been justified with rigorous theoretical analyzes, but rather, has
most often been employed heuristically. One of the most posi-
tive attributes of PDE residual based refinement criteria is the
direct measure they can provide of how well the computed so-
lutions satisfy the differential equations used to mathematically
model a physical system. This intuitive and simple approach is
often more readily accepted by finite-element engineering com-
munities than more mathematically abstract optimality criteria,
for example, those based on the grading function approach de-
scribed above. Therefore, PDE residual-based refinement cri-
teria have been developed and investigated extensively for elec-
tromagnetic AFEA [8] and are also considered here. The third
type of error EP examined, is based on the simple modification
of scaling the PDE residual (3) over an element by the element
size.

B. Newly Proposed EP

One approach that may prove successful for ensuring an EP
will yield optimal error distributions, is to employ refinement
criteria that are inherently derived from an explicit formulation
for computing optimal finite-element discretizations directly.
Such a formulation has been derived in [10] based on variational
methods for general scalar Helmholtz systems. Namely, in [10]
a set of optimization equations are defined for the geometric dis-
cretization parameters (i.e., the element vertex positions), which
can be used to define AFEA refinement criteria. Specifically, the
relative discretization errors over a nonoptimal finite-element
mesh can be estimated in terms of how well these equations are
satisfied by that discretization. These optimization equations are
defined element-wise, with respect to vertex positions, and they
can be evaluated locally to indicate the relative optimality of the
elements in a mesh. Hence, the optimal discretization based re-
finement criteria are defined implicitly as measures of the resid-
uals of the geometric optimization equations, which will eval-
uate identically to zero for an optimal mesh [10]. Therefore, the
newly proposed EP is based precisely on equidistributing these
residuals over each element in a discretization.
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III. RESULTS

A simple 1-D free-space example is presented in order to ex-
amine the effectiveness of the three previously established EPs
described above for achieving optimal finite-element error dis-
tributions. In addition, the practical significance of using the
newly proposed EP is examined, for a range of AFEA models,
with a 2-D Laplace system incorporating principal device fea-
tures of practical MSI structures.

A. 1-D: Free-Space Point Charge Test System

This static benchmark system was first studied in [11], and
is based on the classical point singularity model in free-space.
The objective for this benchmark system is to compute the func-
tional value based on the resolution of a radial neighborhood
close to the point charge and spanning a 100-fold decay in elec-
tric scalar potential: the point charge, of magnitude C,
is located at the origin, and the two boundaries of the problem
domain are set at radial distances of 0.1 m and 10 m away from
the charge. It may be noted, that the field solution associated
with the free-space point charge model contains the type of sin-
gularity associated with the sharp material corners which are
present in many practical MSI structures [4]. Thus, the primary
feature of this system is the rapid field solution variation close
to the singularity, and has been shown to drastically reduce the
finite-element convergence rate.

The effectiveness of the three previously established error
EPs described in the last section are considered for this example.
All results were computed using standard Lagrangian elements
for the analysis of this 1-D example, and are based on solving
the optimization equations for the geometric discretization pa-
rameters [10]. Therefore, each of the optimal discretization re-
sults computed for this benchmark system represents the ideal
mesh for a given number of DOF, i.e., the mesh that produces
the most accurate solution possible for the variational finite-ele-
ment formulation used [10]. Consequently, the effectiveness of
the error EPs considered, are evaluated directly with respect to
these optimal finite-element solutions.

The average percent errors in the grading function EP com-
puted for optimal second-order discretizations for the 1-D free-
space test system are shown in Fig. 1. The percent errors were
calculated based on satisfying the fundamental EP of (1), where
the -seminorm form of the grading function (2) was analyzed
using optimal discretization results computed for this bench-
mark system. Hence, for each of the optimal second-order so-
lutions considered, the average percent error was calculated as
the mean of the percent error in satisfying this basic definition
over each individual element, and is seen lie in the range from
approximately 22% to 41%. It should be noted that the general
form of the grading function (2) will, by definition, change by
an average amount of over each element inany -element
mesh; however, for anoptimal -element mesh the grading
function should change by the exact amount of over each
element, which is clearly not the case for this system.

The average percent errors in equidistributing the PDE
residual computed for the optimal second-order discretizations
for this benchmark system are also shown in Fig. 1. For each
of the optimal second-order solutions considered, the average

Fig. 1. Equidistribution error versus number of elements for optimal
second-order discretizations of the 1-D free-space test system. The square-,
circle-, and triangle-knot results correspond to the grading function, the PDE
residual and the modified PDE residual EPs, respectively.

percent error in the PDE residual was calculated as the mean of
the percent error in equidistributing the PDE residual over each
individual element, and lies in the range from approximately
90–96%. When the modified PDE residual (based on scaling
by the element size) was evaluated for the same optimal
discretization-based solutions, it was observed that, overall, the
error in equidistributing this modified residual was significantly
reduced compared to the unscaled version considered above.
Fig. 1 shows that the average error in equidistributing the PDE
residual scaled by the element size over each element in a mesh
smoothly converged from 17% down to 0.05% for meshes
ranging from 2 to 16 elements.

The relatively high percent errors reported above for the
EPs evaluated for the 1-D free-space test system, confirm
that they do not correspond to optimal error distributions for
electrostatic finite-element solutions. Furthermore, for each
of the EPs considered for this benchmark system, analogous
first-, fourth-, and eighth-order results were computed that
corroborate the second-order results presented. Although, the
principle of equidistributing the PDE residual scaled by the
element size appears to be more effective for characterizing
optimal finite-element discretizations for the benchmark
system considered, it would not be prudent to recommend this
modified principle without providing theoretical justification,
and without further investigating its effectiveness for a wider
range of problems. Finally, it must be noted that the newly
proposed EP, described in the previous section, is by definition
satisfied identically for each of the optimal discretization
solutions computed; therefore, the practical value of this new
EP is studied next.

B. 2-D: Multipath Transmission Structure

A 2-D test system is examined to illustrate the practical value
of the newly proposed optimal discretization based EP for elec-
tromagnetic AFEA. The test system is a translational multi-path
transmission structure consisting of three rectangular stripline
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Fig. 2. Geometry for the multipath transmission structure.

Fig. 3. An example of anh-adapted mesh (upper left quarter).

TABLE I
DISCRETIZATION LEVEL VS. PERCENTERROR IN ENERGY

conductors, buried within a dielectric substrate, between two
solid conductor planes [12]. A crosssectional view of the ge-
ometry is provided in Fig. 2. The relative permittivity of the
substrate is 2.2, and the dashed vertical lines represent sym-
metry planes in the truncated model. This type of MSI structure
is common in multichip module (MCM) technology [12]; the
primary feature is the highly nonuniform variation of the field
solution over the problem domain. The new EP can be used to
guide AFEA toward optimal meshes, by iteratively refining the
discretizations based on equidistributing the residuals of the op-
timization equations for the geometric discretization parameters
[10]. For the purpose of the following tests, the striplines labeled
A and C were each set to a potential of 25 mV higher than the
two reference planes; and stripline B was set to a potential of
100 mV above the reference planes. The objective of the ana-
lyzes was to resolve the electrostatic energy per unit length.

The performance results for-, - and -adaption strategies,
based on the new EP, are reported in Table I. The uniform-
and -refinement baseline result are included for comparison.
The -adaption results reported are for first-order triangles, and
50% increments in the number of DOF were used to refine the
discretization at each adaptive step; the- and -discretiza-
tions ranged over orders 1 through 5, and a 100% increment in
the number of DOF per adaptive step was used to improve the
discretizations (excluding the uniform refinement procedure).
In each case, compared to the uniform refinement baselines, a

Fig. 4. An example of ap-adapted mesh (upper left quarter).

considerable savings in the number of DOF was achieved using
the new EP for all of the solution accuracy levels reported. Ex-
ample - and -adapted meshes are presented in Figs. 3 and 4,
respectively, to illustrate the sharp focus of DOF produced by
the new EP. The shading intensity in Fig. 4 represents the ele-
ment orders: white 1; dark grey 5.

IV. CONCLUSION

In this paper, previously established EPs were shown, in gen-
eral, not to correspond to optimal error distributions for finite-el-
ement electromagnetic solutions. Moreover, a newly proposed
EP, based on refinement criteria derived expressly from the op-
timal discretization principle itself, was examined for practical
AFEA of the electromagnetic behavior of key MSI device fea-
tures. The new EP was shown to result in improved solution
error convergence compared to uniform refinement procedures.
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