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Abstract 
Curved shock theory (CST) has been extended to apply to axisymmetric shocks in 

non-uniform flow.  A general formula has been derived for the vorticity jump across a 

doubly curved shock in non-uniform flow.  Influence coefficient forms of equations for 

the gradients and vorticity show the effect of changing pre-shock conditions.  CST has 

been applied to a series of simple shock flows and to the orientation of the sonic surface 

at the rear face of a doubly curved shock.  This orientation is significant in determining 

the occurrence of embedded shocks in the post-shock flow.  Application of CST to 

curved, concave, normal shocks allowed the derivation of an explicit relationship between 

the shock’s curvature and the length of down-shock subsonic flow.  Investigations of 

conical flows by analysis, CFD and experiment all failed to demonstrate the existence of 

regular reflection of shocks at the centre line of axisymmetric flows.  An analytically 

predicted conical shock, on the calculated streamline, does not extend all the way to the 

centre line but terminates in Mach reflection.  It appears that the existence of an analytical 

Taylor-Mccoll (T-M) solution is not in itself a guarantee of the physical existence of a 

conical flow in all cases.  The T-M equations predict the existence of an axisymmetric 

centered compression fan, analogous to the Prandtl-Meyer fan in planar flow.  A free-

standing conical shock is located downstream of the compression fan.  Both features have 

been shown to exist by CFD as well as experiment.  Busemann flow is the only flow 

where these wave structures can exist; it is possible to reflect an incident, centered 

compression as a conical shock.  Discovery of an inflection point on the Busemann 

streamline has an important implication to spontaneous starting of Busemann intakes.  

Three types of flow can exist behind a doubly curved concave shock; characterized by the 

orientation of the sonic surface which, in turn, is determined by the pre-shock Mach 

number and the shock curvatures ratio.  Shapes of special axial shock surfaces, with 

straight post shock streamlines (Crocco shocks), or vanishing streamwise pressure 

gradient (Thomas shocks) and shocks with specific sound reflectivity (zero, if desired), 

have been calculated and illustrated. Boundary layer generated noise abatement is a 

possibility.  Local flow choking, near the leading edge, leads to shock detachment from a 

curved wedge with such detachment depending on freestream Mach number, the wedge 
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angle, the wedge curvature and the wedge length.  These are new criteria for shock 

detachment with analogies extending to the transition from regular to Mach reflection of 

shock waves.   
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Résumé 

La théorie des ondes de chocs courbées (TOCC; Curved Shock Theory) a été 

généralisée aux chocs axisymétriques dans un écoulement non uniforme.  Une formule 

générale a été dérivée pour les sauts de vorticité à travers un choc à double courbe dans 

un écoulement non uniforme. La forme coefficient d’influence des équations des 

gradients et de la vorticité démontrent l’effet de la variation des conditions en amont. La 

TOCC a été appliquée à plusieurs écoulements simples avec chocs incluant l’orientation 

de la surface sonique à la face arrière d’un choc à double courbe.  Cette orientation est 

importante pour déterminer l’existence d’ondes de choc intégrées à l’écoulement aval. 

L’application de la TOCC aux ondes de choc courbées, concaves et normales permet de 

dériver une relation explicite entre la courbe du choc et la longueur de l’écoulement 

subsonique derrière l’onde. L’étude analytique, numérique et expérimentale des 

écoulements coniques n’a pas permis de démontrer l’existence de réflexions régulières 

des chocs à l’axe de symétrie des écoulements. Un choc conique prédit analytiquement 

sur la ligne d’écoulement n’atteint pas l’axe central, mais se termine en réflexion Mach. Il 

semble que l’existence d’une solution Taylor-McColl (T-M) ne garantit pas l’existence 

physique d’un écoulement conique. Les équations T-M prédisent l’existence d’un train 

d’ondes de compression axisymétrique, analogue au train d’ondes de Prandtl-Meyer dans 

un écoulement planaire. Un choc conique détaché est situé en aval du train de 

compression. L’existence des deux caractéristiques a été démontrée par CFD ainsi 

qu’expérimentalement. L’écoulement Busemann est le seul écoulement où ces structures 

d’ondes peuvent exister : une compression centrée peut être reflétée en onde de choc 

conique. La découverte d’un point d’inflexion dans la ligne d’écoulement de Busemann a 

une implication importante au démarrage spontané de diffuseurs Busemann. Trois types 

d’écoulements  peuvent exister à l’arrière d’un choc concave à double courbure : ils sont 

caractérisés par l’orientation de la surface sonique qui, à son tour, est déterminée par le 

nombre de Mach pré-choc et le ratio de courbures du choc. Des formes de surfaces 

d’ondes de choc axiales particulières, avec écoulement droit en aval (chocs Crocco), ou 

avec un gradient de pression tendant vers zéro dans l’axe d’écoulement (chocs Thomas) 

ainsi que des chocs avec une réflectivité acoustique spécifique (incluant nulle) ont été 

calculées et illustrées.  Une réduction du bruit de couche limite est aussi possible. 
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L’étranglement local au bord d’attaque d’une pointe courbée mène au détachement de 

l’onde de choc, lequel dépend du nombre de Mach de l’écoulement libre, de l’angle, de la 

courbure et de la longueur de la pointe. Ce sont de nouveaux critères pour le détachement 

du choc avec des analogies pouvant s’étendre aux transitions des réflexions régulières aux 

réflexions Mach. 
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Chapter 1 
Introduction 
 

The first hypersonic X-51 scramjet powered long-duration flights…….that tie atmospheric and space 
propulsion will begin as early as May 25 at Edwards Air Force Base.  According to the article (17 May 2011 
issue of Spaceflight Now), scramjet propulsion is the future for spaceflight as even a partially successful test 
would hasten progress on spacecraft that could launch horizontally. Furthermore, this is "an example of the 
type of revolutionary propulsion that …..will be needed for future space operations."  The article noted that 
“there is a bright future for a range of scramjet-powered vehicles" and "scramjet development will proceed no 
matter what happens in the near-term shift to commercial crew and cargo launch to the International Space 
Station."  
     A shortened version from AIAA Daily Launch, March 2011   
 

 Research and development of the scramjet type engine had its beginnings in the  

late 50’s.  A historical review of progress to 1990 is found in [Curran, 1997] and a more 

up-to-date international state-of-the-art summary is found in [Curran and Murthy (ed.), 

2000].  The scramjet engine consists of three main components: the intake, the combustor 

and the exhaust nozzle.  Each component has its very unique and challenging design 

problems.  Scramjet intake design and development has been reviewed by Van Wie 

[2000].  A high performance intake is critical to obtaining even minimal scramjet engine 

performance.  For the aerodynamicist, intake design challenges arise from shock losses, 

boundary layer losses and their interactions, from trade-offs between adequate 

compression and intake starting, from attainment of sufficient performance at off-design 

operation and from obtaining stable and predictable as well as tailored flows at on- and 

off-design conditions. 

 The contents of this thesis is applicable to the design of supersonic and 

hypersonic air intakes. Three aerodynamic features that occur in such intakes are treated 

in detail: Taylor-Maccoll flow of the Busemann type, doubly curved, concave shocks in 

internal flow and detachment of shocks from doubly curved leading edges.  Wherever 

possible, the various flow features of interest are examined by analysis, computational 

fluid dynamics and experiment.  Novel developments of curved shock theory are used 

extensively for the last two topics.            
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Simple flows behind flat shocks, behind conical shocks and in Prandtl-Meyer fans 

have been used as starting points to construct many operational intake flows, e.g. the 

Concorde SST and early MiG series of fighters.  The resulting, essentially external, flows 

do not lead into the axial flow and enclosed flow paths most readily welcomed by a 

tubular combustor.  Two flows which do not suffer from this ‘flatness’ but which are 

equally simple, internal flows, with enclosed circular exit flowpaths, are presented in 

Ch.4. 

Even simple shocks take on compound curvature in intakes at off-design 

conditions.  Such curved shocks are shown to produce post-shock streamline curvatures 

and pressure gradients that may not be compatible with adjacent surfaces.  An extensive 

treatment of curved shock theory and vorticity development is presented in Ch. 2.  Simple 

applications of the theory are in Ch. 3 and a concave, hyperbolic shock is examined with 

curved shock theory in Ch. 5, such a concave shock being representative of curved shocks 

in internal flow.  Verification of analytical flows is provided by comparing the flows and 

surface contours generated by solutions of the Taylor-Maccoll equations against flows in 

the same contours as predicted by finite difference calculations and results of experiments 

in Ch.4.  There is good reason to be suspicious of the influence of lateral surface 

curvature on shock detachment because it is a well-known fact that a shock on a cone 

detaches at a higher cone surface angle than the same strength shock on a wedge.  The 

difference in surface deflection required for shock detachment is made up of the curving 

Taylor-Maccoll flow that exists between the conical shock and the cone.  The 

intermediate case of lateral surface curvature on a ring-wedge should have an 

intermediate effect on shock detachment – by analytic continuity.  Curving flow, although 

not of the Taylor-Maccoll type, also exists between a ring-wedge surface and its shock.   

In Ch. 6 it is demonstrated that local flow choking at the leading edges of curved ducts 

can cause premature shock detachment.  This effect, when applied to shock reflection, 

would cause similar premature cessation of regular reflection on a curved wall.   

All theoretical work is based on a thermally and calorically perfect compressible 

gas.  Although all formulas contain the specific heat ratio as a variable, the numerical 

results are for 1.4γ = throughout. All experiments have been conducted in steady flow of 
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air.  Boundary layer corrections have been applied to the wind tunnel models, otherwise 

the flows are taken as inviscid. 
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Chapter 2 
Curved Shock Theory (CST) 
 
Contents 
 2.0 Introduction 
 2.1 Morphology of axisymmetric shock shapes 

   2.2 Rankine-Hugoniot and Euler Equations 
 2.3 Constant property lines 
 2.4 The curved shock equations 
  2.4.1 Vorticity jump at the shock 
 2.5 Concluding comments 

 

2.0  Introduction  
 A student of descriptive geometry, trying to visualize the shape of a function, can 

evaluate the function at several values of the independent variable.  A slightly more 

sophisticated student gains a better picture of the function’s shape by evaluating its 

derivative and  slope.  An even brighter student will take the second derivative to discover 

curvature and inflection points.  So it is in the aerodynamics of shock waves where a 

basic level of understanding is obtained by examining the ratios of dynamic and 

thermodynamic variables across an oblique shock wave and a deeper grasp of the subject 

comes from an examination of variable gradients when the shock is curved.   

 Research focusing on shock curvature and the resulting flow property gradients 

has a long history and has been largely analytical.  Crocco [1937] showed that, on a 

curved, planarly symmetric (planar) shock wave, there is a shock angle where the 

streamline behind the shock is straight, irrespective of shock curvature.  This shock 

location is called the Crocco point.  Thomas [1947] derived the curved shock equations 

for steady flow of an ideal gas with planar shocks in uniform flow.  He found an 

expression for the curvature of the streamlines and the streamwise pressure gradient 

behind a curved shock.  The shock angle where the pressure gradient along the streamline 

behind the shock is zero we call the Thomas point.  Any influence of upstream vorticity 

was not considered. Lin and Rubinoff [1948] re-derived the equations of Crocco and 

Thomas to show that a normal shock can sit on a continuously curving surface only if the 

Mach number exceeds a certain supersonic value.  Lin and Rubinoff stopped short of 
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considering axisymmetric flows.  Thomas [1949a] extended the study of shock curvature 

to higher derivatives of shock and streamline shape, giving extensive graphs of the first-

derivative relations.  Algebraic complexities prevented Thomas from examining higher 

derivatives in detail.  Today’s computerized algebra manipulators such as Matlab and 

Maple could be used to advance Thomas’ early efforts.  Thomas [1949b, 1950] also 

considered the motion of a shock attached to the leading edge of a planar, curved surface 

and developed total differential equations for the first, second and third approximations 

for the surface pressure.  These methods, although algebraically cumbersome, are more 

versatile than the Method of Characteristics because they can be used in flow regions 

where the flow is locally subsonic; however, they are approximations and not as straight-

forward in application as modern CFD methods.  Truesdell [1952] derived the formula 

for the vorticity jump across a curved shock wave, but erroneously concluded that “when 

a uniform flow of any fluid breaks across a shock the pressure gradient cannot vanish on 

the rear side of the shock at any point where the shock is curved and oblique”.  A simple 

physical argument shows otherwise; so does the correct theory.  Application of CST to 

the propagation and decay of spherical blast waves is found in Thomas [1957b].  

Clutterham and Taub [1953] considered curvature of planar pseudo-stationary shocks in 

Mach reflection.  Bianco, Cabannes and Kuntzmann [1960] used CST for axial flow to 

find pressure gradients at the nose of an axially symmetric body in supersonic flow.  

Gerber and Bartos [1960] presented coefficients for the curved shock equations for 

determining the orientation of constant property lines behind planar and axial shocks in 

steady, irrotational, uniform flow of an ideal gas.  Truly unsteady (i.e. non-pseudo-

steady) flow and shock motion was allowed by Pant [1969] in deriving gradient 

expressions for flow behind a moving shock.  Molder [1970, 1971] presented numerical 

results for curved shocks in regular reflection (RR) and Mach reflection (MR) at a plane 

wall and [in 1972] some results for polar streamline directions behind the triple point of 

Mach reflection.  Pant [1972] presented similar results for planar flow.  Darden [1984] 

derived the spatial derivatives of flow properties behind curved weak shocks with 

applications to sonic boom problems.  All of the above papers have assumed that the gas 

is both thermally and calorically perfect.  Sedney [1961] accounted for vibrational 

relaxation on flow over a wedge.  Hsu [1961] accounted for the effects of non-
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equilibrium dissociation on gradient functions for flow behind a shock. Hornung [1976, 

1998] described many interesting features of real gas effects on curved shocks and 

inferred real gas properties from measurements of shock curvature on plane wedges.   

 A series of papers  by Truesdell [1952], Hayes [1957], Kanwal [1958, 1960] and 

Emanuel [1994] have treated the production of vorticity by a curved shock.  Most of these 

make use of the equation of state and Crocco’s thermodynamic relation when deriving the 

vorticity equation.  Kanwal [1958] and others have shown that the jump in vorticity is 

independent of the energy equation and the form of the equation of state and can be derived 

from strictly kinematic basis.  

The Curved Shock Theory (CST) is derived and embodied in the curved shock 

equations, which relate shock curvature directly to the gradients of flow properties near 

the shock.  The equations are derived by applying the Rankine-Hugoniot and Euler 

equations of conservation to a perfect gas, in steady flow, across a doubly curved shock 

wave. Curved shock theory is introduced and further extended in this chapter to be 

applied in later chapters to investigate flow about doubly curved shock surfaces.    

 

2.1 Morphology of axisymmetric shock shapes  

Most of the curved shock equation applications referred to above are for simple 

shock curvature and a uniform 

upstream flow and so do not 

contain terms reflecting upstream 

vorticity, upstream flow non-

uniformity and compound shock 

curvature. In applying to shock 

reflections, terms must be included 

which account for complex shock 

curvature since the reflected shock, 

advancing into non-uniform and 

rotational flow, becomes doubly 

curved; also one must account for 
Fig. 2.1  Doubly 
curved shock element 
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the upstream flow being both rotational and possibly convergent.  We present equations 

for pressure gradient, flow curvature and vorticity for flow behind a doubly curved shock 

in steady non-uniform flow where the upstream flow can have a pressure gradient, a 

streamline curvature, vorticity and be inclined to the axis.  The equations are valid for 

shocks that possess planar and axial symmetry and, with some restrictions, also to shock 

surfaces in three-dimensional space.    

  Figure 2.1 shows an oblique, doubly curved shock element in supersonic 

flow separating the pre-shock state (1) from the post-shock state (2).  The gas enters the 

shock with a velocity vector 1V  and leaves with a velocity vector 2V . A vector n is 

normal to the shock and points towards the upstream flow.  The plane containing both n 

and V1 is useful in deriving the curved shock 

equations.  Since the shock is normal to n, the 

vector V2 also lies in this plane. Kaneshige and 

Hornung, [1999] call it the flow plane.  The 

coordinate plane (x,y), lies in the flow plane 

and the x-axis is aligned with the freestream 

direction.  In axial flow the x-axis is collinear 

with the axis of symmetry which may not be 

the freestream direction.  The velocity vectors 

are inclined at 1δ  and 2δ  to the x-axis so that 

the net flow deflection through the shock is 

2 1δ δ δ= − . The shock has a trace a-a in the flow plane that is inclined at an angle θ  (the 

shock angle) to the incoming flow vector.  Distance measured along the shock trace is σ  

and distances measured along and normal to the streamline are s  and n . The shock trace 

has a curvature 
12 /aS d dθ σ≡  and a radius of curvature 1 /a aR S≡ −  in the flow plane.  

The flow-normal plane is normal to both the flow plane and the shock surface.  The 

shock has a trace b-b in the flow-normal plane.  The b-b trace has a curvature 
bS  and a 

radius of curvature 1 /b bR S= − . Shock curvature is positive when, moving along the 

shock trace so that the upstream is on the left, the shock angle increases.  A positively 

Fig. 2.2  Trace of 
curved shock wave in 

flow plane 



 9 

curved shock is always concave towards the upstream flow1.  In axisymmetric flow there 

is a third plane, the transverse plane. It is normal to the axis of symmetry and it contains 

the y-coordinate of the (x,y) coordinate system and specifically, the distance, y, from the 

shock to the axis of symmetry.  In axial flow y is the radius of the circular trace of the 

shock in the transverse plane.  In axial flow, the radius of curvature of the shock in the 

flow-normal plane is / cosy θ . We will have occasion to refer to the ratio of shock 

curvatures, /a bS S=R . 

  A shock wave element in three-dimensional space is defined completely by its 

inclination to the pre-shock flow vector, θ, and the two shock curvatures Sa and Sb.  The 

angle θ is measured counter-clock-wise from the pre-shock flow direction to the shock 

surface, in the flow plane. Sa and Sb are the curvatures of the shock traces in two mutually 

perpendicular planes – the flow plane and the flow-normal plane.  Both sign and 

magnitude of Sa are defined by dθ/dσ where σ is distance measured along the shock trace 

while keeping the pre-shock flow on the left.  In axial flow, Sb reduces to -cosθ/y where y 

is the perpendicular distance from 

the symmetry axis.  The 

descriptive terms concave/convex 

are used exclusively with Sa to 

denote positive/negative Sa  and the 

terms acute/obtuse are used to 

describe the location of the shock 

by its angle θs.  For an axial shock, 

all four Sa/Sb  combinations +/+   -

/+   -/- and +/- are possible.  For a 

hyperbolic shock (discussed in Ch. 

5) lying on the x-axis, only two 

combinations are possible, -/- for the 

right lobe and +/+ for the left lobe 

i.e. convex/acute and 

                                                 
1 This definition is unambiguous and does not depend on the chosen coordinate system. 

Fig.2.2
Four types of curved shock surfaces and
               their limiting shapes

Fig. 2.3 
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concave/obtuse.  The signs and values of Sa and Sb and /a bS S=R  are important.  

Concave, convex, acute, obtuse are convenient descriptors.  Because of axial symmetry 

we need to consider only (0 < acute < π/2) and (π/2 < obtuse < π) shock angles. 

  The four generic shock shapes are shown in the (Sa, Sb)-diagram in Fig.2.2.  In 

the first quadrant, where Sa and Sb are both positive, the shock surface is concave and 

obtuse, resembling the inside surface of a spoon.  In the second quadrant Sa is negative 

and Sb is positive (convex/obtuse); the shock surface resembles a spigot.  In the third 

quadrant Sa and Sb are both negative convex/acute producing a water-melon-like shock 

surface as often seen on a blunt body.  In the fourth quadrant Sa is positive and Sb is 

negative,  (concave/acute) producing a spike or saddle-shaped shock surface.  On the two 

axes of this figure the shock surfaces are of single curvature so that, on the positive Sa – 

axis the shock shape resembles a snow-shovel. On the positive Sb-axis the shock shape is 

conical, with the cone vertex pointing downstream.  This conical flow, called M-flow, 

will be dealt with in Chapter four. On the negative Sa - axis the shock shape is found on 

the leading edge of a convex wing surface.  On the negative Sb  axis the shock shape is 

conical, with the cone vertex pointing upstream.  To complete the picture, at the origin 

there is a plane (flat) shock with no curvature in either direction.   

 There are two geometric/mathematical principles that need to be stated, 

understood and used in deriving gradient relations at a surface of discontinuity involving 

conservation laws.    

The first:   For a conserved quantity (e.g. mass flux) that 
remains constant as it crosses a discontinuity the 
derivatives of this quantity, on the up- and 
downstream sides of the discontinuity, along the 
same direction on the surface of the discontinuity, 
must be equal. 

 
The second:  The above principle holds for both steady and 

unsteady motion of the discontinuity. 
 
 
  The first of these is the basis of Curved Shock Theory; it seems 'intuitively obvious'.  

Perhaps less obvious for unsteady flow - but it must still be so since the discontinuities 
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are infinitely thin so that quantities immediately upstream of the shock take no time to 

cross the shock.  The second principle is not crucial to the development of CST however 

it is implicit wherever it is claimed that the CST results apply to unsteady discontinuity 

motion – mostly everywhere.  A rigorous proof of the second principle would be 

necessary for the development of CST for time-dependent flows. 

   

 

2.2 Rankine-Hugoniot and Euler equations 
 Across a stationary normal shock wave the relations expressing conservation of 

mass, momentum/force, energy and state are: [Liepmann and Roshko, 1956, p.56] 

                  
2211 VV ρρ =                                            (2.1) 

                                          2
222

2
111 VpVp ρρ +=+                                       (2.2) 

                               2/2/ 2
22

2
11 VTCVTC pp +=+                            (2.3) 

                                         
22

2

11

1

T
p

T
p

ρρ
=                                      (2.4) 

where the usual density, velocity, pressure and temperature symbols with subscript 1 

refer to the flow entering the shock and the subscript 2 refers to the departing flow in 

Figure 2.1.  For an oblique (acute or obtuse) shock the conservation equations are: 

                           
1 1 2 2N NV Vρ ρ=                                     (2.5) 

          2 2
1 1 1 2 2 2N Np V p Vρ ρ+ + = +                   (2.6) 

                                              
1 1 1 2 2 2N T N TV V V Vρ ρ=                      (2.7) 

                                      2 2 2 2
1 1 1 2 2 2( ) / 2 ( ) / 2p N T p N TC T V V C T V V+ + = + +                             (2.8) 

               
22

2

11

1

T
p

T
p

ρρ
=                                       (2.9) 

The additional subscripts N and T denote velocity components normal and tangential to 

the oblique shock.  For the applications that follow it is important to affirm here that 

these equations relate flow properties immediately up- and downstream of the shock 

surface and they apply locally to plane as well as to smoothly curving shock waves, be 



 12 

the shocks stationary or not, as long as velocities are measured with respect to the shock 

wave.  Equation 2.7, when divided by Equation 2.5, becomes 1 2T TV V= . 

 The Euler equations are used to describe how the flow properties change on 

moving away from the shock surfaces, either upstream or downstream.  They express the 

conservation of mass, momentum/force and energy in directions along (s) and normal (n) 

to a streamline.  For our purposes we make the assumption that the flow is steady and 

homenergic so that the stagnation enthalpy is constant along, as well as across, 

streamlines. In the natural, or intrinsic, streamline coordinates [Hayes and Probstein 

p.482, 1966] the Euler conservation equations are, 

 

mass:    0j jVy Vy
s n

δρ ρ∂ ∂
+ =

∂ ∂
                            (2.10) 

s-momentum:                                           0=
∂
∂

+
∂
∂

s
p

s
VVρ                                           (2.11) 

n-momentum:               02 =
∂
∂

+
∂
∂

n
p

s
V δρ                                              (2.12) 

energy (homenergic flow):        0h VV
s s

∂ ∂
+ =

∂ ∂
       0h VV

n n
∂ ∂

+ =
∂ ∂

               (2.13a,b) 

vorticity is defined as:  VV
s n
δω ∂ ∂

= −
∂ ∂

                                                  (2.14) 

 

In these equations y is the normal distance from the x-axis of symmetry, δ  is the 

inclination of the streamline from the x-axis and ph C T=  is the static enthalpy.  The 

equations apply to continuous steady flow, in smooth flow regions, between the shock 

waves.  s  is measured in the flow direction along the streamline and n is normal to it.  j is 

0 or 1 for planar or axial flow respectively.  For the present theory, the flow has to be 

neither planar nor axial if y is taken as the local radius of curvature of the shock trace in 

the plane normal to the upstream velocity vector.  With this, more general definition of y, 

what follows is applicable to doubly curved shock waves possessing at least left-right 

symmetry with an identifiable y and where s and n are local (intrinsic) coordinates fixed 

in the flow plane at the shock. The direction of the normal coordinate n is well defined 



 13 

only at the shock wave but this poses no difficulties since we are concerned only with the 

flow immediately up- and downstream of the shock. Both (x,y) and (s,n) are in right-hand 

coordinate systems so that the corresponding positive z and t point ‘out-of-the page’.  All 

lengths are eventually non-dimensionalised by a convenient length scale that need not be 

initially specified.  

               For future algebraic neatness and convenience we define the following 

normalized variables: 

          the normalized pressure gradient,  
2

/
V

spP
ρ

∂∂
≡  

          the streamline curvature,                sD ∂∂≡ /δ  

          the normalized vorticity,             / VωΓ ≡   

and note that along a streamline in front of the shock 1
1

siny
s

δ∂  = ∂ 
 and 2

2
siny

s
δ∂  = ∂ 

 

behind. With these definitions, the Euler Equations, 2.10 to 2.14, can be written: 

mass:  2 sin( 1)M P j
n y
δ δ∂

= − − −
∂

                                          (2.15) 

s-momentum:          P
s
p

Vs
V

V
−=

∂
∂

−=
∂
∂

2

11
ρ

                            (2.16) 

n-momentum:   D
sn

p
V

−=
∂
∂

−=
∂
∂ δ

ρ 2

1                                     (2.17) 

energy:         ( )[ ]Γ−+−=
∂
∂ 11 2 γρ

ρ
DM

n
         PM

s
21

=
∂
∂ρ

ρ
                    (2.18,19) 

vorticity:                                Γ−=
∂
∂ D

n
V

V
1                         (2.20) 

where the Mach number, M, is defined from  2 2 /M V pρ γ= . 

These relations are used to eliminate the derivatives of ,  ,  and  V pδ ρ on the left hand 

side in favour of M, P, D and Γ , appearing on the right.  In the above equations all 

variables have either the subscript 1 or 2 depending on whether application is to flow on 

the up- or downstream side of the shock.  The parameter y needs no subscript since it has 

the same value when states 1 and 2 are on opposite sides of the same shock.  The use of j 

to denote flow with planar or axial symmetry will not be carried unless needed.  The 
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effect of dimensionality (planar vs. axial) is obtained by assigning a very large value to y 

when dealing with planar flows.  

 

2.3 Constant property lines 
  The contour lines of constant flow property values provide an insight into 

flow with variable properties; the sonic line being the most useful of the constant 

property lines in interpreting compressible flow fields.  Orientation of contours and their 

properties are derived from equations 2.15 to 2.20.  As an example, the variation of 

pressure along a line l, inclined at an angle α  to the streamline, is, 

                             cos sindp p p
dl s n

α α∂ ∂
= +

∂ ∂
 

If the line is an isobar then / 0dp dl =  and the inclination of the isobar to the streamline 

is pα , such that, 

   2

2
tan p

p
V P Ps

p V D D
n

ρα
ρ

∂
∂= − = − =
∂ −
∂

                   (2.21) 

Similarly for an isotach, a line of constant velocity, 

    
( )

tan v

V
VP Ps

V V D D
n

α

∂
−∂= − = − =

∂ − Γ − Γ
∂

                  (2.22) 

From the energy equation, for adiabatic flow, 

     2 / 2p p tC T V C T+ =   (constant) 

V is constant, along an isotach, T must be constant also, and, so is then the speed of sound 

and the Mach number.  Thus the lines of constant velocity, temperature, speed of sound 

and Mach number are collinear in adiabatic flow.  Equation 2.22 will be used in Chapters 

five and six to find the inclination of the sonic line behind a doubly curved shock.  For an 

isochor, a line of constant density, 

    
( )

tan
1

Ps
D

n

ρ

ρ

α ρ γ

∂
∂= − =
∂ + − Γ
∂

                                         (2.23) 
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For an isocline, a line of constant flow inclination, 

           
( )2

tan
1 sin /

Ds
M P y

n

δ

δ

α δ δ

∂
∂= − =
∂ − +
∂

                            (2.24) 

The constant property line inclinations for V, T, M, ρ , and p are all expressible in terms 

of  ,  and P D Γ .   Eliminating ,  and P D Γ  from Equations 2.21 to 2.23 gives, 

                      
pMTv α

γ
αα

γ
α

γ
α

γ

ρ tan
2

tan
1

tan
1

tan
1

tan
1 −

−=
−

=
−

=
−  

This equation can be used to establish the relative inclinations of the various constant 

property lines in adiabatic flow, particularly in flow behind curved shocks where the 

flow is rotational.  For irrotational flow,  0=Γ , so that, 
                            tan tan tan tan tan /v p T M P Dρα α α α α= = = = =  

showing that all constant property lines, except the isoclines, are collinear for irrotational 

flow.  These results are useful in the interpretation of contours of constant properties on 

interferometer and CFD pictures.  We will develop expressions for P , D  and Γ  in terms 

of shock curvatures Sa, Sb and upstream Mach number so that, in conjunction with the 

flow direction, equations 2.21 to 2.24 can be used to find the directions of the constant 

property lines near curved shock surfaces.  Specifically, these relations can be used to 

find the orientation of the sonic line behind a curved shock and, more generally, the 

orientation of the trace of the sonic surface in the flow plane.  All angles presented above 

are measured counter-clock-wise from the local streamline direction.  

 

2.4 The curved shock equations 
  Consider a segment of a doubly curved shock wave inclined at an angle θ  

to the free stream flow direction, as shown in the first two figures in Section 2.1, above.  

The angle θ  is measured in the plane that contains both the entering and leaving velocity 

vectors.  It is also the minimum angle between the post-shock velocity vector and the 

shock wave.  This is called the flow plane.  This definition of shock angle is very general 

and makes the theory applicable to a curved shock segment at any orientation in flow 

with left-right symmetry.  In the flow plane the curvature of the shock is 1 /aS θ σ= ∂ ∂ , 
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where σ  is the distance measured along the shock trace in the flow plane and 1 1θ θ δ= +  

is the geometric shock angle (as measured from the axis of symmetry).  The curvature of 

the shock trace in a plane normal to the flow plane and normal to the shock surface is bS . 

The corresponding radii of curvature are then 1/a aR S= − and 1/b bR S= − . In 

axisymmetric flow, 1/ cosby R θ=  so that 1cos /bS yθ= − , where y is the normal distance 

from the axis to the shock.  In the flow plane the velocity components, normal and 

tangential to the shock, upstream (1) and downstream (2) of the shock are, 

        normal                            tangential 

upstream:                                      1 1 sinNV V θ=                     1 1 cosTV V θ=     

downstream:                             ( )2 2 sinNV V θ δ= −              ( )2 2 cosTV V θ δ= −  

 

With these substitutions, the Rankine-Hugoniot Equations, 2.5 to 2.9, become: 

         ( )1 1 2 2sin sinV Vρ θ ρ θ δ= −                                            (2.25) 

                                  2 2 2 2
1 1 1 2 2 2sin sin ( )p V p Vρ θ ρ θ δ+ = + −                     (2.26) 

                                              1 2cos cos( )V Vθ θ δ= −                                       (2.27) 

                         ( ) 2 2 2
1 2 * 1

1sin sin cos
1

VV a Vγθ θ δ θ
γ

−
− = −

+
                                     (2.28) 

Where 2
*a  is the sound speed at sonic conditions (a constant in adiabatic flow).   

  The curved shock equations are derived by taking derivatives of both sides 

of each of equations 2.25, 2.26 and 2.27 with respect toσ  (the distance along the shock) 

and equating these pre- and post-shock derivatives for each equation.  This is a subtle yet 

essential step.  It is justified because the derivative of any quantity that does not change 

across the shock does not change also if the derivatives, on the up- and downstream sides, 

are taken with respect to distance, σ , along the same shock.  Taking derivatives of the 

conservation of mass, Equation 2.25, gives,  

                          

( ) ( ) ( )
σ
ρδθ

σ
δθρδθ

σ
ρ

σ
ρθ

σ
θρ

σ
θρ

∂
∂

−+
∂
∂

−+−
∂
∂

=

=
∂
∂

+
∂
∂

+
∂

∂

2
2

2
222

1
1

1
111

sinsinsin

sinsinsin

VVV

VVV  
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and similarly, for Equation 2.26, produces two differentiated conservation equations 

involving the shock curvature terms 1sinθ
σ

∂
∂

 explicitly.      

   In front of the shock, the derivative of any quantity with respect to 

distance along the shock, can be expressed in terms of the two derivatives along and 

normal to the streamline, 

              θθ
σ

sincos
111









∂
•∂

+







∂
•∂

=







∂
•∂

ns
          for ρ , V, T and p 

Similarly, behind the shock, 

                ( ) ( )
2 2 2

cos sin
s n

θ δ θ δ
σ

∂ • ∂ • ∂ •     = − + −     ∂ ∂ ∂     
         (2.29a,b) 

These are used to replace the σ -derivatives, in the just differentiated conservation 

equations, by s and n derivatives and then replacing all derivatives 
s∂
•∂  and 

n∂
•∂ by 

expressions involving P1, D1, 1Γ , D2, P2, Sa, and Sb.2  This produces, with a few pages of 

algebraic manipulation, the curved shock equations, 

                               
ba

ba

SGSCDBPAEDBPA
GSCSDBPAEDBPA

′+′+′+′=Γ′+′+′

+++=Γ++

2222111111

2222111111                (2.30 a and b) 

where the coefficients A, B, E, C, G and their primed and subscripted variants (14 in all) 

are given by,     

        

2 2
1 1

2 2
1 1

3 2
1 1

2

2

2
1

2
1

2cos ((3 4)sin ( 1) / 2) / ( 1)
2sin (( 5) / 2 (4 )sin ) / ( 1)
2sin (( 1) 2) / ( 1)
sin cos / sin( )

sin cos / cos( )
4sin cos / ( 1)
4sin cos sin / ( 1)

4sin cos sin

A M
B M
E M
A
B
C
F
G

θ θ γ γ
θ γ θ γ
θ γ γ

θ θ θ δ
θ θ θ δ
θ θ γ
θ θ δ γ

θ θ δ

= − − − +

= − + − +

= − + +
= −
= − −
= − +
= − +

= ( )1/ ( 1) / cosγ θ δ+ +

      (2.30c) 

 

                                                 
2 A very similar algebraic process, to obtain an expression for vorticity from Eqn. 2.27, is described in more 
detail in the next section. 
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( ) ( ) ( )( )

2 2 2
1 1 1

2 2
1 1

2 2
1 1

2 2
2 2

2

cos cos ( 1)cos(2 )
sin(2 ) sin sin

(2 ( 1) )sin sin

(1 ( 2)sin ( )) sin cos / sin cos

sin(2 )
sin(2 ) / (2cos( ))                                   

A M M
B M
E M
A M

B
C

δ θ θ δ
θ δ δ θ

γ δ θ

θ δ θ θ θ δ θ δ

θ
δ θ δ

′ = − − +
′ = − + −
′ = + −

′ = + − − − −

′ = −
′ = − −

( )3
2 1

1

              (2.30d)
sin cos sin sin sin / sin

/ cos( )
F
G F

θ θ δ θ δ θ δ
θ δ

′ = − −

′ ′= − +

    

where, 

                         
( ) ( )( )

( ) ( )

2 4 2 2 2 2 2
1 1 12

2 2 2 2 2
1 1

2 1

1 sin 4 sin 1 sin 1
2 sin 1 1 sin 2

  and                        

M M M
M

M M
γ θ θ γ θ

γ θ γ γ θ

δ δ δ

+ − − +
=

− − − +      
= −

 

Two extra variables F and F’ , functions of G and G’, are introduced for future utility.  

The two Equations (2.30a,b) relate shock curvature,  and  a bS S  to stream-wise pressure 

gradient, P, and streamline curvature, D, on the up- and downstream sides of a shock 

element while accounting for any upstream vorticity, 1Γ .  The equations, together with 

the coefficients (2.30c,d) constitute the tools for analyzing shock wave curvature and 

flow gradients on the up- (subscript 1) and downstream (subscript 2) sides of a curved 

shock. If we assume that the specific heat ratio ( )γ , the free stream Mach number (M1), 

the flow inclination in front of the shock (δ1) and the shock angle (θ) are known then all 

the coefficients can be calculated.3  Then, with five of the seven variables P1, D1,Г1, D2, 

P2, Sa, and Sb known,  the remaining two can be calculated from the two ‘simultaneous’ 

curved shock equations, (2.30a,b).  If the coordinate system is aligned with the free 

stream then the shock angle, θ, is measured with respect to the free stream direction and 

1 0δ =  so that 2δ δ= .  Various restricted forms of these equations have been 

presented by many authors, Crocco [1937], Thomas [1947], Pant [1972]. However, they 

have not appeared with the degree of generality that includes both upstream vorticity, Г1, 

and transverse shock curvature, Sb.  Both of these are essential in application to axial 

curved shock wave detachment and reflection.  The detailed derivation of the curved 

                                                 
3 Although γ  will appear explicitly in the equations, it will be used with a value of 7/5 throughout. 
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shock equations is not presented because it requires a large number of algebraic steps.  To 

illustrate the derivation procedure, a very similar but simpler derivation of the vorticity 

equation is given in the next section.        

  In a situation where the upstream flow is non-uniform and rotational with 

pressure gradient P1, streamline curvature D1 and vorticity Γ1 and where the shock is 

doubly curved with curvatures Sa and Sb we can calculate the pressure gradient P2 and 

streamline curvature, D2 behind the shock directly from,  

                             

( ) ( )

( ) ( )

2 2
2

2 2 2 2

2 2
2

2 2 2 2

a b a b

a b a b

B C S G S L B CS GS L
P

A B A B
A C S G S L A CS GS L

D
A B A B

′ ′ ′ ′+ − − + −
=

′ ′−

′ ′ ′ ′+ − − + −
= −

′ ′−

                (2.30e)   

where, 

                                        1 1 1 1 1 1

1 1 1 1 1 1

L A P B D E
L A P B D E

= + + Γ
′ ′ ′ ′= + + Γ

                              

These are the most general expressions for pressure gradient and streamline curvature for 

flow behind a doubly curved shock facing a non-uniform upstream flow with pressure 

gradient P1, streamline curvature D1 and vorticity Г1; the upstream non-uniformities being 

contained in the two expressions L and L’. Both L and L’ become zero for a uniform 

upstream. The upstream flow inclination, δ1, is contained in the two coefficients 

  and  G G′ .  G and F as well as  and G F′ ′  are mutually redundant because they multiply 

bS  or 1/y respectively and one would use either the G’s or F’s  depending on which of bS  

or 1/y is being used to define the flow-normal shock curvature. 

    Both P2 and D2 can be written in the influence coefficient form, 

                                  
2 1 1 1

2 1 1 1

p d g a a b b

p d g a a b b

P J P J D J J S J S
D K P K D K K S K S

= + + Γ + +

= + + Γ + +
                              (2.30 f) 

where the influence coefficients are, 
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( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2

2

                 

                  

                 

                   

p p

d d

g g

a a

b

J A B A B AB K A A A A AB

J B B B B AB K B A B A AB

J E B E B AB K E A E A AB

J B C B C AB K A C A C AB

J B

′ ′ ′ ′= − = −

′ ′ ′ ′= − = −

′ ′ ′ ′= − = −

′ ′ ′ ′= − = −

= ( ) [ ] ( ) [ ]2 2 2                   bG B G AB K A G A G AB′ ′ ′ ′− = −

            (2.30 g) 

and   [ ] 2 2 2 2AB A B A B′ ′= − . 

These influence coefficient equations show explicitly how each of P2 and D2 are 

determined by the upstream quantities and the shock curvatures and the shock properties.  

The gas and shock properties (γ , M1, θ, 1δ ) are sufficient to determine the influence 

coefficients.  The influence of pre-shock flow convergence/divergence, as expressed by 

1δ , is unfortunately not as explicit, being embedded in Ja, Jb and Ka, Kb,  through the  

 

 

coefficients ,  ,  ,  C C G G′ ′ .  A similar influence coefficient equation will be derived for 

vorticity behind the shock in Section 2.3.1.  Coefficients with subscripts p, d, and g are 

all zero for a uniform upstream flow.  

 

Figure 2.4 Figure 2.4 
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Fig. 2.4 shows the influence coefficients for the post-shock pressure gradient, 2P  for both 

an acute and obtuse shock facing a Mach 3 air flow.4   The blue curve shows that for 

weak shocks the pre-shock pressure gradient is amplified in the same sense by a factor of 

about 4, whereas for a strong shock the incoming gradient is amplified by as much as 40 

with a sense reversal5.  At some intermediate values of shock angle of about 66 degrees 

and 180-66=114 degrees the incoming pressure gradient has no influence on the post-

shock gradient.  The green curve shows that a pre-shock flow curvature, 1D , causes an 

unlike sense contribution to the post-shock pressure gradient for the acute shock and a 

like sense contribution for the obtuse shock.  Upstream vorticity’s contribution (red 

curve) to post-shock pressure gradient is in the opposite sense to pre-shock flow 

curvature’s but otherwise similar.  The contribution of the flow-plane curvature, aS , to 

the pressure gradient is shown by the cyan coloured curve.  The effect is similar to that of 

pre-shock pressure gradient; sense reversal occurring near a shock angle of 75 and 180-

75 deg.  The black curve shows that the lateral shock curvature, bS , has no influence on 

the post-shock pressure gradient. This appears to be so because we have normalized the 

pressure gradient by y, so that the influence coefficient is calculated for a constant y of 1.  

The physical pressure gradient varies as ( )11/ / cosby S θ δ= − + .            

                                                 
4 The curves, at the right and left extremes, are shown to approach ±∞  when the shock angle equals the 
Mach angle for both acute and obtuse shocks.  This is due to the shock-tangential gradients becoming zero 
while the shock-normal gradients remain finite across a characteristic.  The seeming infinities can be 
eliminated by first passing all the curved shock coefficients to their Mach wave limits before they are used 
as divisors.  However, the infinities pose no problems when the theory is applied to finite strength shocks.  
5 Note that in this case  Ip represents 2 1/P P , the ratio of the non-dimensional pressure gradients.  To get the 

ratio of the physical pressure gradients 
p
s

∂ 
 ∂ 

, multiply by the dynamic pressure ratio, 2 2
2 2 1 1/V Vρ ρ . 



 22 

 
 

Fig. 2.5 depicts the influence coefficients for the pre-shock and shock curvature terms 

affecting the post-shock flow curvature, 2D .  The blue curve shows that a positive pre-

shock pressure gradient contributes negatively to post-shock curvature for a weak acute 

shock and positively to a strong acute shock.  The effect is anti-symmetric for an obtuse 

shock.  The green curve shows that the pre-shock flow curvature causes a positive 

contribution to the post-shock curvature for weak shocks and a negative contribution for 

strong shocks, acute as well as obtuse.  The contribution of pre-shock vorticity (red 

curve) is similar except with an opposite sense.  Cyan and black curves show the anti-    

symmetric effects of the two shock curvatures  and a bS S .  The Ia curve crosses the 

horizontal axis at the Crocco point – to be discussed later. 

  The two graphs, presented above, are either symmetric or anti-symmetric 

for acute and obtuse shocks.  This is because the freestream has been set to be parallel to 

the axis of symmetry ( 1 0δ = ).  A finite value of 1δ  has no effect in planar flow. 

However, in axial flow, it leads to pre-shock flow convergence or divergence effects 

through the ( )1sin / yδ -term in Equation 2.15. 

Fig. 2.5 
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In most aeronautical applications the freestream is specified (and very often 

uniform) and the body shape is given as well and the post-shock conditions are to be 

determined. For such situations we would have the body slope behind the shock δ2, the 

body curvature D2   and the distance from the axis of symmetry y. From these we can 

calculate the shock angle θ and the lateral (flow-normal) curvature of the shock, 

cos /bS yθ= − .  Substituting D2 and Sb in (2.30 a and b) gives two equations for the 

pressure gradient behind the shock, P2, and the shock curvature in the flow plane Sa.  

Before considering other applications of the curved shock equations, we develop the 

equation for the vorticity behind the shock.   

 

2.4.1 Vorticity behind the shock 
Although the effect of pre-shock vorticity on the post-shock flow curvature and 

pressure gradient is included in the curved shock equations (2.30 a and b) the post-shock 

vorticity is not.  The post-shock vorticity is required in the formula for the inclination of 

the sonic line behind the shock, Eqn. (2.2.2) and the constant density line, Eqn. (2.23).   

The vorticity behind a curved shock, as given by Truesdell [1952], and more 

recently by Emanuel [1994] is,                                         

    
2

2 1
2 1

1 2

1 cos aV Sρ ρω θ
ρ ρ

 
= − × 

 
                                  (2.31a) 

The derivation of this relation uses the Crocco relation between vorticity and entropy and 

assumes a uniform upstream flow. The normalized version of  (2.31a) is, 

                         
2

2 1 2 1
2

2 2 1 2

1 cos a

V S
V V
ω ρ ρ θ

ρ ρ
 

Γ = = − × 
 

                 (2.31b) 

  Equation (2.31b) can be further simplified by using the oblique shock relations: 

                                     
2

2

2sin
sin(2 )sin( ) aSδ

θ θ δ
Γ =

−
                                          (2.31c) 

This equation gives the normalized vorticity behind an acute or obtuse shock with 

curvature Sa when the upstream flow is uniform and irrotational.  For both a normal 

shock and a Mach wave 0δ = , and it is clear that neither one of these waves produces 

vorticity.  The function has a maximum at an intermediate shock angle where maximum 
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vorticity is produced for a given shock curvature.  The term multiplying aS , later  

designated Ia, will be shown to be the influence coefficient for Sa in the general equation 

for Г2.  Also it will be shown that if the pre-shock flow is rotational then a term has to be 

added to each of (2.31a, b and c).  For our purposes it is important to acknowledge that 

vorticity can either increase or decrease across a shock depending on the signs of cosθ 

and Sa and that the vorticity behind the shock is influenced by upstream non-uniformity 

and vorticity and is therefore given by a more complicated relation than (2.31), to be 

derived below. 
 We seek an expression for vorticity behind a doubly curved shock for a shock that 

faces a flow that is curved, has a pressure gradient, is vorticial and is converging or 

diverging towards or away from the line of symmetry – altogether a very high degree of 

generality.  As for the previous derivations, the flow is steady and adiabatic of a 

calorically and thermally perfect gas.  Results apply directly to flows that possess axial 

and planar symmetry and with some considerations of symmetry also to curved shock 

elements in three-dimensional flow.  As for 2 2 and P D , in the previous section, we derive 

the rational as well as the influence coefficient forms of the vorticity equation.  The 

derivation is based on the shock-tangential momentum equation, the Euler equations and 

the definition of vorticity for the upstream (subscript 1) and downstream (subscript 2) 

flows.  The following Euler relations are used to eliminate derivatives of velocity in 

favour of expressions containing streamwise pressure gradient, streamline curvature and 

normalized vorticity. 

                                        1 1 1
1 11 1

2 2 2
2 22 2

1 1           

1 1      

V VP D
V s V n

V VP D
V s V n

∂ ∂   = − = − Γ   ∂ ∂   
∂ ∂   = − = − Γ   ∂ ∂   

(2.11, 2.14) 

The geometric shock angle is 1 1θ θ δ= + .  Taking derivatives of 1θ  with respect to σ  

gives the geometric shock curvature in the flow plane, aS , 

                            1 1
aS θ δθ

σ σ σ
∂ ∂∂

= = +
∂ ∂ ∂

                                               (2.32) 

This can be written, 
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                                                    1 1cos sinaS
s n
δ δθ θ θ

σ
∂ ∂∂

= + +
∂ ∂ ∂

 

But                                            ( )21 1
1 1 1 1  and  1 sin /D M P y

s n
δ δ δ∂ ∂

= = − − −
∂ ∂

           (2.15) 

So that,    ( )2
1 1 1 11 sin cos sin sin /aS M P D yθ θ θ θ δ

σ
∂

= + − − +
∂

      (2.33) 

Similarly, starting from 1 2θ δ θ δ− = − ,  gives, 

          ( ) ( ) ( ) ( ) ( )2
2 2 2 21 sin cos sin sin /aS M P D y

θ δ
θ δ θ δ θ δ δ

σ
∂ −

= + − − − − + −
∂

      (2.34) 

In these equations 1δ  and 2δ  are the geometric flow inclinations in front of and behind 

the shock.  2 1δ δ δ= −  is the flow deflection through the shock and θ  is the 

corresponding aerodynamic shock angle. 1θ  is the geometric (physical) shock inclination. 

All inclinations are measured from the axis of symmetry, in the flow plane.  For axial 

flow, y is the perpendicular distance from the shock to the axis of symmetry or, more 

generally, the radius of curvature of the shock trace in the transverse plane.   For planar 

flow y → ∞ .  Equations (2.11), (2.14), (2.33) and (2.34) are needed in the derivation of 

the vorticity equation.  The derivation follows. 

  The momentum equation tangential to the shock is, 

                                    ( )1 2cos cosV Vθ θ δ= −                (2.35) 

Taking derivatives of both sides of this equation with respect to the distance σ  along the 

shock,  gives, 

   ( ) ( )1 2
1 2

coscos cos cosV VV V
θ δθ θ θ δ

σ σ σ σ
∂ −∂ ∂∂

+ = + −
∂ ∂ ∂ ∂

 

Dividing through by V1 and using equation (2.29a,b) gives, 

 ( ) ( )

( ) ( ) ( )

2

1 11 1 1

2

2 21 2 2

1 1sin cos cos sin sin

1 1cos cos sin             

VV V
V s V n V

V V V
V V s V n

θ δθθ θ θ θ θ δ
σ σ

θ δ θ δ θ δ

∂ −   ∂ ∂ ∂   − + = −      ∂ ∂ ∂ ∂      
 ∂ ∂   − − − + −    ∂ ∂    

                   (2.36) 

Using equations (2.11), (2.14), (2.33) and (2.34) from above to replace the velocity and 

angle derivatives and replacing 2 1/V V  by ( )cos / cosθ θ δ−  gives (2.37), 
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( ) { }

( ) ( ) ( ) ( ) ( )

( ) ( ){ }

2 2
1 1 1 1 1 1 1

2
2 2 2 2

2 2 2

sin 1 sin cos sin sin / cos cos sin

cos tan 1 sin cos sin sin /

cos cos sin                          

a

a

S M P D y P D

S M P D y

P D

θ θ θ θ δ θ θ θ

θ θ δ θ δ θ δ θ δ δ

θ θ δ θ δ

 + − − + + − − Γ = 
 − + − − − − + − − 

− − + − − Γ  

     (2.37) 

Dividing through by cosθ  and collecting coefficients of the physical variables P1, D1 etc. 

for the vorticity equation: 

                    1 1 1 1 1 1 2 2 2 2 2 2 a bA P B D E A P B D E C S G S′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′+ + Γ = + + Γ + +               (2.38a) 

where, 
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( )

( )
( )

( ) ( )
( )
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1 1 1

1 1

1 1

2
2 2 2
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: 1 tan sin cos
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: sin

: 1 tan sin cos
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: sin
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1/ : tan sin sin sin tan sin

: / cos
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b

P A M

D B
E

P A M

D B

E

S C

y F

S G F

θ θ θ

θ
θ

θ δ θ δ θ δ

θ δ

θ δ

θ δ θ

θ δ θ δ δ θ θ δ

θ δ

′′= − +

′′= −
′′Γ =

′′ = − − − + −

′′ = − −

′′Γ = −

′′ = − −

′′ = − − −

′′ ′′= − +

        (2.38b) 

Equation (2.38a) can now be written, 

                                              2 2 2 2 2 2 a bL A P B D E C S G S′′ ′′ ′′ ′′ ′′ ′′= + + Γ + +                       (2.38c) 

or                                        2 2 2 2 2 2 /aL A P B D E C S F y′′ ′′ ′′ ′′ ′′ ′′= + + Γ + +                         (2.38d) 

where                         1 1 1 1 1 1L A P B D E′′ ′′ ′′ ′′= + + Γ                (2.38e) 

Either one of the equations (2.38c) or (2.38d) can be used to solve for the post-shock 

vorticity, 2Γ , in terms of the other variables.  The two equations differ in their last terms 

depending on whether the transverse curvature of the shock is specified by bS  or y – a 

choice determined by the problem at hand. bS  and y are themselves interchangeable 

through ( )1cos /bS yθ δ= − + .  Choosing (2.38c) and solving (2.38a) for 2Γ  gives the 

desired expression for the downstream vorticity, 

                      ( )2 2 2 2 2 2/a bL A P B D C S G S E′′ ′′ ′′ ′′ ′′ ′′ Γ = − + + +              (2.38f) 
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This is the generalized vorticity equation in a rational form for Г2, the normalized 

vorticity behind a curved shock facing non-uniform flow.  Together with equation (2.30f) 

it forms three equations for the three unknowns 2 2 2,   and P D Γ  so as to completely 

define the non-uniform post-shock flow.  For a uniform upstream (2.38f) reduces to, 

                                        [ ]
[ ]

[ ]
[ ]

2 2
2

2 2 2
a

BC ACA BC S
E AB E AB E

 ′′ ′′′′
Γ = + − ′′ ′′ ′′  

                                 (2.38g) 

 

 Fortunately 2P  and 2D  are decoupled from 2Γ , leading to explicit solutions for all 

unknowns. 2P  and 2D , appearing in the equations (2.30f), (2.38a) and (2.38f) are found 

from the two curved shock equations (2.30e) which are repeated here: 

                                    

( ) ( )

( ) ( )

2 2
2

2 2 2 2

2 2
2

2 2 2 2

a b a b

a b a b

B C S G S L B CS GS L
P

A B A B
A C S G S L A CS GS L

D
A B A B

′ ′ ′ ′+ − − + −
=

′ ′−

′ ′ ′ ′+ − − + −
= −

′ ′−

                (2.30e)   

Where the L-terms above are  given by, 

                                         
1 1 1 1 1 1

1 1 1 1 1 1

L A P B D E
L A P B D E

= + + Γ
′ ′ ′ ′= + + Γ

                                 

Note that   and L L′  contain the upstream gradients and that  and G G′  contain the 

upstream flow inclination 1δ .  Substituting 2 2 and P D  from Eqn. 2.39a into Eqn. 2.38f 

and collecting terms of the upstream gradients and the shock curvatures gives the 

influence coefficient form of the vorticity equation (2.38f),  

                 2 1 1 1P D G a a b bI P I D I I S I SΓ = + + Γ + +              (2.40a) 

where the I-coefficients, each multiplying their respective variables, appear in the full 

equation for 2Γ  as shown below, 
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    /

    /

    /
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′′ ′ ′ ′′ ′ ′ ′′ ′′Γ = + − − −

′′ ′ ′ ′′ ′ ′ ′′ ′′+ + − − −

′′ ′ ′ ′′ ′ ′ ′′ ′′+ + − − − Γ

′′ ′ ′ ′′ ′ ′ ′′ ′′− + − − −

[ ] ( ) ( ){ } [ ]{ }2 2 2 2 2 2 2    /
a

b

S

AB G B G B G A A G A G B AB E S′′ ′ ′ ′′ ′ ′ ′′ ′′− + − − −

       (2.40b) 

The unprimed and single-primed coefficients ......A G are listed as equations (2.30 c and 

d); the double-primed are in Eq. (2.38b). This equation shows clearly what the role is of 

each upstream non-uniformity 1 1 1,   and P D Γ  and of the  

shock curvatures  and a bS S  in determining the downstream vorticity.  Note that the above 

derivation for vorticity does not need Crocco’s thermodynamic relation between vorticity 

and entropy gradient, and that the resulting equations account for upstream flow non-

uniformity and vorticity as well as flow inclination. Derivation of the 

 
 
 
 
  

 Fig.   2.6 Fig. 2.6 
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 vorticity equation parallels those for the pressure gradient and streamline curvature but it 

is quite a bit simpler.  That is the reason  why the vorticity derivation is presented above 

and the others are not. The use of j to denote planar or axial symmetry has been dropped 

since the equations are uniformly valid for both geometries.  For axial flow, y is the 

radius of the shock’s curvature in the transverse plane, so that the flow is sensitive to 

dimensionality through the parameter y. In the calculations for planar flow, y is set to a 

very large number. Fig. 2.6 above depicts the influence coefficients for vorticity plotted 

against shock angle.  The blue curve shows the influence of pre-shock pressure gradient 

1P , and we see that a positive pressure gradient causes a positive vorticity contribution 

for an acute shock and a negative contribution for an obtuse shock.  The green curve 

shows that a positive pre-shock flow curvature, 1D  produces a positive contribution to 

vorticity.  The red curve is for the effect of pre-shock vorticity itself and it is noted that 

the curve passes through zero at about 43 deg. and also at its supplement 180-43 deg. – 

the pre-shock vorticity is destroyed at these shock angles when the freestream Mach 

number is 3.   At the Mach wave limits the influence coefficient has a value of 1, 

predicting that vorticity passes through Mach waves unchanged.  All other curves are at 

zero so, at Mach wave conditions, there is no vorticity production due to pre-shock 

gradients or Mach wave curvatures.  Stronger shocks tend to amplify and reverse the 

direction of vorticity.  The cyan curve shows that positive vorticity is produced by a 

positive flow-plane shock curvature, aS , for an acute shock and negative vorticity is 

produced by a positively curving obtuse shock.  The black curve is for the effect of the 

transverse shock curvature, bS and it shows that the influence coefficient for the transverse 

curvature is identically zero.  This confirms the fact that the shock produces vorticity 

only by its flow-plane curvature and not by the transverse curvature so that flow behind a 

conical shock is irrotational.   The b bI S  term can be dropped from equations 2.40a and 

2.40b since Ib is identically zero.  Seemingly opposing effects on the acute and obtuse 

shocks are generally due to different shock orientations rather than any differences in the 

underlying fluid mechanics.  
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2.5 Concluding comments 
 This chapter has presented the curved shock theory relating pressure gradient, 

streamline curvature and vorticity on the up- and downstream sides of a doubly curved 

shock surface in terms of the pre-shock Mach number, the shock angle and the two shock 

curvatures.  Equations have been derived for constant property line inclinations for 

pressure, density, temperature and Mach number in terms of pressure gradient, flow 

curvature and vorticity.       

 In the next chapter we apply the curved shock equations to derive various results 

for doubly curved shocks as well as for characteristics and constant property lines for 

flows with planar and axial symmetry.  For all examples, involving an oblique shock 

element, we first need to solve the Rankine-Hugoniot equations (2.25) to (2.28) to obtain 

one of M2, θ, and δ in terms of the other two and the upstream conditions.  These three 

variables are required in order to calculate the coefficients of the curved shock equations 

(2.30 a and b).  Most example flows have a uniform upstream so that all terms on the left 

hand sides of the two curved shock equations are zero and so is G, on the right hand side, 

if we choose to align the free stream with the x-axis ( 1 0δ = ).  This is not the case when 

the equations are applied to the reflected shock in the shock reflection process, for then 

the flow in front of the reflected shock is inclined towards the axis and is possibly also 

non-uniform and rotational.       

 The very general curved shock equations have been derived above because they 

have not been presented with this degree of generality before.  This is true especially for 

the vorticity equation as well as the influence coefficient form of the other equations for 

flow curvature and pressure gradient.  Their full generality may not necessarily be used in 

the applications presented next in Ch. 3.  The purpose of Ch. 3 is to show that the curved 

shock equations give results that make sense for limiting and simple shock geometries. 

 



 31 

Chapter 3 
Applications of Curved Shock 
Wave Theory 
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 3.8.2 Strength of characteristics 
 3.8.3 Reflection coefficient 
3.9 Sonic line orientation 
3.10 Concluding remarks 



 32 

3.0 Introduction 
This chapter describes facts and tools for the analysis of curved shocks, presenting 

simple examples of CST results which point the way to more complicated applications. 

CST is shown to apply for a range of flow situations without pursuing any one example in 

great depth.  Topics such as the flow behind a Mach disk deserve extended studies of 

their own. Comparison of CST results against known flows increases confidence in the 

correctness and applicability of the general CST equations.     

CST, as derived in the previous chapter, is applied to flat shock waves, shocks with 

planar symmetry, shocks with conical symmetry and shocks with axial symmetry.  For 

such cases, expressions are derived for pressure gradient, streamline curvature and 

vorticity on the post-shock sides of symmetric shocks.  Application is also made to 

normal shocks in both a uniform and a non-uniform upstream flow.  Results are produced 

for the stand-off distance of a shock from a bluff body and the stand-back distance of the 

sonic line from a Mach disk.  Shapes of shocks with zero post-shock pressure gradient 

(isobaric) and straight post-shock streamlines (isoclinic) are calculated. Polar streamline 

slopes are illustrated for planar shocks, conical shocks and doubly curved shocks.  CST 

formulae for curvature and strength of characteristics lead to an equation for the reflection 

coefficient of pressure disturbances from the back side of a shock.  This, in turn, leads to 

the discovery of an axial shock surface shape, the back-side of which is uniformly and 

totally absorbing to impinging pressure pulses. Equations are presented, in terms of the 

CST coefficients, for the angle between the sonic line and the streamline for both planar 

and axial flow. These applications are presented here to lend credibility to the CST and to 

show how readily the CST is adapted to the analysis of various flow situations.  About 

one-third of the examples are found in the literature [Lin & Rubinoff, 1948; Chernyi, 

1961; Probstein & Hayes, 1966], while the rest are believed to be novel.  Applications are 

selected on the basis of having some relevance to the design of air intakes for high Mach 

number air-breathing engines.  Some findings are relevant to future study of RR→MR 

transition. 

 

3.1 Shocks with planar symmetry, Sb = 0 occur on solid surfaces that also 

possess planar symmetry such as unswept wing leading edges and air intake ramps.  
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These types of shocks and associated flows are sometimes called two-dimensional.  We 

avoid the use of two-dimensional, using instead the term planar, since axisymmetric flow, 

having two independent space variables, is also two-dimensional.   The classical oblique 

shock and Prandtl-Meyer flows are examples in this category of planar flows. 

 

3.1.1 Plane6 shock in uniform upstream – a limiting case 
 This application is just to demonstrate that the curved shock equations predict no 

flow gradients behind a plane (flat) shock in a uniform stream. In a uniform freestream 

flow all the gradients are zero and the left-hand-sides of the curved shock equations (2.30 

a and b) both reduce to zero.  For a plane shock both Sa and Sb are zero as well so that the 

curved shock equations reduce to, 

                          2 2 2 2

2 2 2 2

0
0

A P B D
A P B D

= +
′ ′= +

                  (3.1) 

 For any values of A2, B2, A2’ and B2’, the only possible solution for these two equations is 

2 2 0P D= = , i.e. the pressure gradient and flow curvature behind a plane shock, in a 

uniform irrotational stream, are both zero.  Not an unexpected result.  The vorticity 

equation (2.31 c) implies that the vorticity is zero behind a plane shock in uniform flow - 

also not surprising. For a flat shock, in a uniform pre-shock flow, the CST equations 

predict a uniform post-shock flow.   

 

 3.1.2 Shock with single curvature Sa in the flow plane, in a uniform 

upstream flow – planar flow (Sb = 0). Such a shock and its 

associated flow exist at the curved leading edge of an unswept wing or a 

circular cylinder placed perpendicular to the flow direction.  Again, 

because of the uniform, irrotational, freestream the left-hand sides of the 

curved shock equations are zero.  The transverse curvature bS  is zero also 

                                                 
6 The term ‘plane’  or ‘flat’ is used to denote a surface with no curvature in any direction; for the case of a 
shock  it means  Sa = Sb = 0.   The term ‘planar’ refers to flow and shocks with planar symmetry where the 
shock curvature Sb = 0  but Sa ≠ 0  and ‘axial’ refers to flow that is axially symmetric.  The term ‘conical 
flow ’ implies’ flow that has no variation along any ray drawn from the apex of a coordinate cone.  In axial 
conical flow  Sa = 0.  Conical shock means that the shock curvature in the flow plane, Sa = 0.  Conical wall 
surface means that the surface curvature in the flow plane, / 0D sδ= ∂ ∂ = . 
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but the curvature in the flow plane has a finite value, 0aS ≠ .  Under these conditions the 

curved shock equations become,  

                                   
a

a

SCDBPA
CSDBPA

'0
0

2222

2222

+′+′=
++=                                        (3.2a) 

such that the pressure gradient and the streamline curvature behind the shock can both be 

expressed in terms of the shock curvature, 

                                                2 2 2 2
2  2

2 2 2 2 2 2 2 2

         a a
B C B C CA C AP S D S
A B A B A B A B

′ ′ ′ ′− −
= =

′ ′ ′ ′− −
                         (3.2b,c) 

We abbreviate the above expressions by the following matrix notation. The square-

bracketed matrix terms appear often in what follows. 

2 2
[ ] [ ]          
[ ] [ ]a a
BC CAP S D S
AB AB

= =                                          (3.2d,e) 

 The equation for downstream vorticity follows from Eqn. (2.28 g), 

     [ ]
[ ]

[ ]
[ ]

2 2
2

2 2 2
a

BC ACA BC S
E AB E AB E

 ′′ ′′′′
Γ = + − ′′ ′′ ′′  

                            

(3.2f) Equations 3.2a-e state that, immediately behind the shock, the pressure gradient 

along the streamline and the streamline curvature and vorticity are all linearly dependent 

on the shock curvature, aS .  The magnitude and sign of the dependence is determined by 

the terms in the square 

brackets.  These terms are 

functions of the freestream 

Mach number and the shock 

angle only, as in Eqns. (3.2 a, 

b and c). P2, D2 and the 

vorticity 2Γ  are plotted, 

(where 2Γ  is denoted by G2) 

in Fig. 3.1 for a freestream 

Mach number of 3 and a 

convex shock with curvature of  Sa=-1.   

For a convex, nearly normal shock, where θ ~ 90 deg, the pressure gradient is 

positive and at weaker shock angles it is negative.  Flow curvature is positive above and 

Fig. 3.1 
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negative below the line of symmetry for the strong shock and opposite to that for weak 

shocks.  The points/angles on the shock wave where P2 and D2 are zero are the Thomas 

and Crocco points respectively.  They are useful guide-posts in the landscape of 

changing flow-fields near curved shocks.  As an example, in the search for reflected 

(embedded) shocks, behind curved incident shocks, it appears that where the flow is 

supersonic behind a convex shock it is also always expansive so that reflected shocks are 

not likely to form.  For concave shocks, however, the flow is compressive, so that 

reflected shocks can form.  This will become evident when considering hyperbolic shocks 

in Ch.5.  It is the Thomas point that separates compressive and expansive flow-fields.  In 

Ch.6 the concepts embodied in Thomas and Crocco points will be broadened to doubly 

curved shocks. The vorticity behind the shock is given by Eqn. (2.29 a,b,c); it is 

uniformly negative for acute convex shocks and positive for obtuse convex shocks.  All 

of the above is consistent with our knowledge of qualitative aspects of flow behaviour 

behind strong shocks on bluff planar shapes. 

 

 3.1.3 The Thomas and Crocco points in planar flow  

The Thomas and Crocco points, described qualitatively above, are set into 

mathematical terms in this section.  First, for the Thomas point, from equation (3.2d) it is 

seen that 2 0P =  occurs when  2 2[ ] 0BC B C B C′ ′= − = , and this condition yields an equation 

relating δ  and θ , 

                                  ( ) ( )21 sin 2 8sin 2 cosγ δ θ θ δ+ = −                          (3.3a) 

This equation has an explicit solution because it does not contain the freestream  Mach 

number explicitly.  

                                  ( )2 2 2 2

3

2 4
tan

2T

a b a b
a b

α α α
δ

− ± −
=                                     (3.3b) 

 where  a = sinθT,  b = cosθT and α = (γ+1)/8.  Having specified a θT and calculated δT, 

from (3.3b), the freestream Mach number can then be found from the usual oblique shock 

relation  [Ames, NACA Rep. 1135; Eqn. 148 a] 

                                        
( )

2
2

1

sin sin1 1sin
2 cos

T T
T

T T TM
θ δγθ
θ δ

+
= −

−
                             (3.3c) 
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 to obtain the condition (M1T, θT, δT) at which the pressure gradient along the streamline 

behind the shock is zero.  There is a unique such condition for every Mach number.    On 

a planar curving shock the zero streamline pressure gradient shock angle lies between the 

angle for maximum flow deflection and the normal shock – on the strong shock side, in 

subsonic downstream flow.  In recognition of Thomas’ [1947 and subsequent] early work 

on curved shock theory, we call Tθ  the Thomas angle, or Thomas point on the shock.  For 

a plane shock, the Thomas point, defined by 2 2[ ] 0BC B C B C′ ′= − = , is where the pressure 

gradient behind the shock is zero but the flow curvature is not.  If both were zero then we 

would have just an uninteresting piece of flat shock that can occur at any combination of 

Mach number and shock angle.  Thomas points are shown in green on the Mach number 

curves in the theta/delta polar diagram, Fig. 3.2, below.   The Thomas point plays a key 

role in the discussion of shock detachment in Ch.6.   

An approach similar to that for the Thomas point, but setting [ ] 0CA = , yields the 

equation, 

                            ( ) ( ) ( )2 2
2

4sin sin 2 2 sin sin 2
1

Mδ θ δ θ δ θ
γ

= − + − −  +
                   (3.4) 

which, with the help of the oblique shock relations (2.25) to (2.28), relates M1 and θ .  

Solving for θ  gives a shock angle Cθ  at which the streamline curvature behind the shock 

is zero. The angle is called the Crocco angle and its location is the Crocco point.  No 

explicit solution has been found for (3.4) so that the Crocco angle has to be found 

iteratively, solving for Cθ  as a function of the freestream Mach number.                                           

G. Emanuel (private communication) has derived a cubic equation for 2 2
1 sin Cw M θ= :         

   3 2 0aw bw cw d+ + + =                            (3.5) 
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where, 

                                            
( )

( )( ) ( )
( )( ) ( )

( )( ) ( )

2 2
1

2
1

2
1

2 1

1 2 1 / 2 2 13 3 / 2

1 5 / 4 4 5

1 1 / 4 5 / 2

a

b M

c M

d M

γ γ

γ γ γ γ

γ γ γ

γ γ γ

= − −

= + − + − +

= + + + −

= − − + + −

  

Since the cubic has an exact solution it is more accurate and faster than any iterative 

solution.  

For every freestream Mach number, in a planar flow, there is then a unique shock 

angle attached to each of: the maximum flow deflection, the post-shock sonic condition, 

the Crocco point and the Thomas point. Figure 3.2 is for shock angle (theta) vs. flow 

deflection (delta) through the shock for a selection of Mach numbers 1.05, 1.1, 1.15, 1.2, 

1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.3, 2.4, 2.6, 2.8,  3, 3.2, 3.4, 3.6, 3.8,  4, 4.5,  

5, 6,  8,  10, 20, 10000 (from left to right). The maximum flow deflection points and the 

sonic points are shown in blue and red, respectively.  For a planarly symmetric (planar) 

curved shock wave the Thomas and Crocco points are shown in green and yellow 

respectively.  The Crocco shock angle lies between the sonic shock angle and the 

maximum flow deflection angle for any Mach number (and any γ).  The Crocco point, 

shown by the yellow points, is not just where the flow curvature behind the shock is zero; 

Fig. 3.2 
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it is a point where the flow curvature is zero but the shock curvature and pressure gradient 

are not.  If all were zero then we would have just an uninteresting piece of flat shock that 

can occur at any combination of M1 and θ.    The Crocco and Thomas shocks, here 

restricted to planar flow, are versions of the more general isoclinic and isobaric shocks 

when the flow is axial and the shock has double curvature.  It will be shown that, for 

doubly curved shocks, both the Crocco and Thomas point locations are a function of the 

shock’s surface curvature ratio as well as the freestream Mach number.  Crocco and 

Thomas point definitions have been generalized, not to lie at specific shock angles, but at 

locations where the post-shock streamline is straight and where the post-shock flow 

properties are constant along the streamline.     

 The Thomas and Crocco points are convenient points of reference when dealing 

with flow gradients’ behavior behind curved shocks.  The Crocco condition [CA] = 0 has 

been suggested as a possible point of transition from RR to MR [Henderson, 1987].  

Mathematically this is apparent from Eqns. (2.33 c, d) where, for a finite D2, the shock 

curvature and pressure gradient will become unbounded when [CA] → 0.  This is in line 

with Henderson’s assertion: “…transition on concave, plane and convex surfaces are 

different,…”.  An infinite pressure gradient behind an attached or reflected shock, be it 

favorable or adverse, is bound to affect the shock as well as the boundary layer.   

 

3.1.4 Polar streamline slope (l) in planar flow  

In studying shock reflections and interactions the set of Rankine-Hugoniot 

conservation equations is often closed by statements regarding pressure and flow 

direction in the downstream flow.  For example, for shock reflection at a plane wall we 

require that the flow be returned to the freestream direction by the reflected shock and for 

a three-shock, free-floating shock interaction (Mach reflection at a triple point) we require 

that the pressures and flow directions match across the slip layer [von Neumann, 1943].  

These pressure/deflection conditions encourage the use of the Rankine-Hugoniot shock 

wave equations in pressure/deflection (p - δ) polar form [Ames Res. Staff, NACA Rep. 

1135, Eqn. 160], and the graphical representation of the shocks on a (p – δ) plane. 
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( ) ( )

( ) ( )

2 2
12

2
1

2 1

2 1 11tan
1 11

where  is the shock pressure ratio, /

M
M

p p

γ γ γ ξξδ
γ ξ γγ ξ

ξ

  − − − +−
=  

+ + −− +           (3.6)  

If the shock is curved then there is a value of P2 and D2 associated with every point on the 

shock polar and the flow ‘direction’ in the (p – δ)-plane can then be written as,     

    [ ]
[ ]

2
2

2
2

1
1

p
BCp PV sl

V D AC
s

ρ
δ ρ δ

∂
∂∂= = = =

∂ ∂
∂

             (3.7) 

This is the slope of the ‘streamline’7 behind the planarly symmetric shock in the ( )p δ− -

plane, here denoted by the symbol l.  A typical ( )p δ− -polar with associated streamlines 

is shown in Fig. 3.3 [Molder, 1972].  The right-hand-side represents acute shocks, with  

 

positive flow deflection and the left-hand-side represents obtuse shocks with negative 

flow deflection.  For a weak acute shock l is positive, representing either P2 and D2 both 

positive or both negative for Sa > 0 or < 0 respectively. At the Crocco point ( )34 deg±  

the slope goes through ±∞  because [CA] = 0.  At the Thomas point (±31 deg) the slope 

                                                 
7 A true streamline exists only in physical space.  In (p-δ)-space there is a curve that relates the pressure and 
flow direction as the flow moves along the true streamline. 

Fig. 3.3 
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goes through another change of sign, this time through zero, because [BC] = 0.  For a 

strong acute shock the streamline slope is positive because both pressure gradient and 

flow curvature are positive behind the shock. The polar streamline slope is independent of 

shock curvature in planar flow.  For an obtuse shock, on the left side of the polar the 

streamline slopes are in the opposite sense because the flow curvatures have opposite 

signs.  If the shock is the incident shock in regular reflection then P2/D2, as given by  

(3.7), will have to equal P3/D3 in front of a reflected shock.  This condition is applied in 

studies of regular shock reflection.  For Mach reflection it means that the quantity M2P/D 

has to match across the slip layer.  Reasons for including the M2-term stem from the 

pressure invariance requirement across the slip layer.   The polar streamline slope is a 

useful ‘higher level’ concept in relating reflection and interaction of curved shocks by 

requiring compatibility of streamline slopes between incident, reflected and Mach shocks. 

 This section has introduced the polar streamline slope and suggested its 

applications to shock interactions. 

 

3.2 Shocks with conical symmetry; Sa = 0  
The flow associated with a conical shock, either upstream or downstream of the  

shock, as governed by the Taylor-Maccoll equations [Owcharek,1964 p.482], will be 

treated further in Ch.4 under Conical flow and the 

Taylor-Maccoll equation(s).  In this section we use CST 

to develop the flow gradient terms for flow behind such conical 

shocks that face a uniform upstream flow, P1 = D1 = Г1 = 0, where 

Sa = 0 and   Sb = -cos(θ+δ1)/y.   The freestream is parallel to the x-

axis so that δ1 = 0.  This makes G = 0 so that the curved shock 

equations become, 

x

y=1

acute

obtuse

cl
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                                                    2 2 2 2

2 2 2 2

0
0 b

A P B D
A P B D G S

= +
′ ′ ′= + +

                                                  (3.8) 

 with the solutions,  

                                  
[ ] [ ]

2 2
2 2cos /                    cos /B G A GP y D y

AB AB
θ θ

′ ′
= − =                   (3.9) 

 

These gradients are plotted in Fig. 3.4 for a Mach number of 3 and for streamlines that 

originate at a point on the shock that is located unit distance from the centre line, y = 1.  

Vorticity behind a conical shock is zero, as shown by the red line G2. 

         

3.2.1 Acute conical shock in uniform flow; cone flow (µ < θ < π/2)  

This section describes the classical flow behind the attached shock (in the first 

quadrant – left half of the Fig. 3.4) that envelops a solid axisymmetric cone in uniform 

supersonic flow at zero angle of attack.  For this flow both P2 and D2 are positive, 

confirming that, in the flow behind an acute conical shock, the pressure increases as does 

the flow inclination. These are both conditions known to exist in flow over a circular cone 

Fig. 3.4 
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at zero angle of attack [Sims, 1964]. We note that both P2 and D2 become very large near 

the apex of the cone as 0y →  in Eqns. (3.9).  This is necessary for the flow, coming from 

the shock, to adjust to the cone surface conditions in a very short 

distance.  Fig. 3.4 above shows P2 and D2 vs θ for Mach 3.  The 

left half of this figure is for a cone with an acute shock angle.  

The right half is for an obtuse conical shock, producing M-flow 

to be discussed further in Ch. 4.   Note that B2, A2 and G’ are 

never zero (except for a normal shock) so the flow gradients 

behind a conical shock are never zero and there is then no 

possibility of a Crocco or Thomas point on a conical shock.   

 

3.2.2 Obtuse conical shock in uniform flow; M-flow;  π/2 < θ <  (π-µ) 
 For this less well-known obtuse conical shock (in the second quadrant), the lateral 

streamline curvature coefficient (Eqn. 3.9) is positive but the pressure gradient coefficient 

is negative while the shock curvature Sb is positive so that the 

pressure decreases but the streamline inclination increases 

along the streamline. 
2 2  and     P D are plotted in Fig. 3.4.  

Gradients for both of these results are confirmed by the 

solution of the Taylor-Maccoll equations for axially 

symmetric conical flow in Ch. 4. From Eqn. (3.9) we see 

again that both the pressure gradient and the flow curvature 

become very large on approaching the axis of symmetry 

( 0)y → . This is the fundamental reason why oblique shocks cannot reach the centre line, 

as in the sketch above [Rylov, 1990] and it is proposed as a cause of the untimely  

RR MR→  transition in all axial internal flows.   
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3.2.3 Polar streamline slope in conical flow 
 Using Eqns. (2.37) for conical flow gives the polar streamline slope,  

    2 2

2 2

P B
D A

= −                           (3.10) 

 This is the slope of the streamline in the (p-δ)-plane for conical flow.  It corresponds to 

Eqn.(3.7) for planar flow.   Examining the nature of B2 and A2 shows that the streamline 

slope in the (p-δ)-plane is a function of freestream Mach number and shock angle only – 

and not of the shock 

curvature, Sb.  Polar 

streamline directions 

are plotted in Fig. 3.5, 

on the right.   We will 

present below an 

equation for the slope 

of polar streamlines 

for shocks with 

compound curvature. 

 

 3.3 Shocks with compound (double) curvature; 0,  0a bS S≠ ≠  

This is the general case of a doubly curved shock with a non-zero surface curvature 

Sa in the flow plane and Sb in the flow-normal plane.  For a uniform freestream, aligned 

with the coordinate axis, the curved shock equations reduce to, 

2 2 2 2

2 2 2 2

0
0

a

a b

A P B D CS
A P B D C S G S

= + +
′ ′ ′ ′= + + +

                                 (3.11) 

 with the solutions, 

         

2
2

2
2

'[ ]
[ ] [ ]

'[ ]
[ ] [ ]

a b

a b

B GBCP S S
AB AB

A GCAD S S
AB AB

= +

= −
                                (3.12 a,b) 

 The first of the two terms, on the right-hand-side, in each of the two expressions above is 

due to the curvature of the shock in the flow plane.  The second term is due to the 

Fig. 3.5 
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curvature in the flow-normal plane.  Flow behaviour due to the second term is sometimes 

called convergence effects. A flow plane [Hornung and Robinson, 1982] can always be 

identified on a doubly curved shock element, even in 3D space, as the plane that contains 

the incoming and outgoing velocity vectors [Figure 2.1]. The shock angle and Sa are 

measured in the flow plane and Sb from the shock trace in the transverse plane.  This 

results in the definition of all quantities on the right-hand sides of  Eqns. (3.2 a,b), leading 

to the determination of P2 and D2.  The polar streamline slope is now,  

                              2
2 2

2

[ ] '/
[ ] '
BC B GP D
CA A G

=
R +
R -

      (3.12c) 

where, /a bS SR = , showing that the slope can have any value depending on the ratio of 

shock curvatures.  These relations will be used throughout most of the subsequent 

developments concerning curved shocks facing a uniform stream. 

 

3.4 Vorticity 
 In intrinsic coordinates, primitive vorticity is defined as,    

      VV
s n
δω ∂ ∂

= −
∂ ∂

 

For dimensional homogeneity and ease of algebraic manipulation it is convenient to use a 

normalized vorticity, 

      1 V
V s V n
ω δ∂ ∂

Γ = = −
∂ ∂

 

For a shock with flow-plane curvature aS , in a rotational upstream flow with normalized 

vorticity 1Γ , which is otherwise uniform, the influence coefficient form (2.40 a) of the 

vorticity equation reduces to, 

      2 1G a aI I SΓ = Γ +  

  If the pre-shock flow is rotational then the term 1GI Γ  must be retained on the right hand 

side of (2.31b and c).  This equation can be used to find the vorticity behind a curved 

shock in a boundary layer where the pre-shock velocity profile is known.  In terms of 

primitive vorticity this can be written, 
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                         ( )2
2 1 1

1
G a a

V I V I S
V

ω ω= +  

So that, for a conical shock where, 0aS = , facing uniform rotational flow, we can write a 

primitive vorticity ratio across the shock, 

   2 2

1 1
G

V I
V

ω
ω

=                                       (3.13) 

 where    [ ] ( ) ( ){ } [ ]{ }1 2 1 2 1 2 2 1 2 1 2 2/GI AB E B E B E A A E A E B AB E′′ ′ ′ ′′ ′ ′ ′′ ′′= + − − − . 

The above illustrates the fact that the vorticity formulas (2.31a,b,c), for calculating the 

vorticity downstream of a curved shock, are applicable only if the upstream flow is 

uniform and irrotational. 

 

 3.5 Normal shocks 
 This section contains an illustration of curved shock theory applied to a curved 

shock wave that is locally perpendicular to its upstream velocity vector.  Typically, this 

normal shock and associated flow appear near the most forward part of a blunt object in 

supersonic flow (‘shell-shock’, Fig. 2.2) and behind the Mach stem in Mach reflection 

(‘spoon-shock’ in Fig. 2.2).  For the blunt body case both curvatures   and  a bS S  are 

negative and the corresponding radii of curvature,  and a bR R , are positive, as shown in 

the sketch below.   For a Mach disk both curvatures are positive.  A less frequently 

encountered, saddle-shaped, normal shock, would have one negative and one positive 

curvature.  Results of this section will be used to estimate the stand-off distance of a blunt 

body shock as well as the downstream extent of the subsonic region behind a concave, 

hyperbolic shock.  Some results for normal shocks facing non-uniform flow are derived 

by allowing the upstream flow to have a pressure gradient and be curved as well so that 

1 10  and   0P D≠ ≠ . For a normal shock,  

                                                0      / 21 2δ δ δ θ π= = =       (3.14)  
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Under these conditions the curved shock coefficients (2.30) become,                               
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      (3.15)  

 

For a normal shock, the curved shock equations reduce to, 

                                                     1 1 1 1 2 2

1 1 2 2 a b

B D E B D
A P A P C S G S

+ Γ =
′ ′ ′ ′= + +

                                     (3.16 a,b) 

 Note that the streamline curvatures, D, and the shock curvatures, S, appear separately in 

the above equations.  The equations are thus decoupled which means that, for a normal 

shock, the streamline curvatures, D, and the shock curvatures, S, do not influence one 

another.  Behind the shock, streamline curvature depends on freestream Mach number 

and upstream vorticity only, whereas pressure gradient depends on shock curvature.  This 

brings about some surprising results for normal shocks at curved wall boundaries.   If the 

freestream is irrotational, which is 

a good assumption for a normal 

shock sitting on top of an airfoil 

in transonic flow, then 1 0Γ =  and 

the first of these equations gives, 

( )
( )

2 2
1 12 1

2
1 2 1

2 3
1 2

M MD B
D B M

γ
γ

− −
= =

− +
  

   (3.17)  

 

Fig. 3.6 
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The black curve in Fig. 3.6 represents D2/D1.  To catch the rapid rise with Mach number, 

(D2/D1)/10 is shown by the blue curve and (D2/D1)/100 by the red curve.  The normal 

shock is a strong amplifier of streamline curvature.  From (3.17) we see further that if 

1 0D =  then 2 0D =  also, implying that a straight streamline, entering a curved normal 

shock, remains straight irrespective of the shock curvature or pressure gradient or value of 

pre-shock Mach number as long as the pre-shock flow is irrotational. Not unreasonable, 

since consideration of axial symmetry has to lead to the same conclusion.  If the term 
2

13 2 0Mγ + − =  then, for 1.4γ = , M1 = 1.485  and  D2 = 0 for all values of D1.  A 

normal shock at this Mach number, whatever its curvature, will straighten out a curved 

flow.  A curious result.  If D1 = D2 then M1 must equal 1.662.  This implies that only for 

this Mach number can a normal shock sit on a surface of constant curvature.  Another 

curious and unexpected result.  These anomalous results were studied by German 

aerodynamicists Zierep [1958], Oswatitsch and Zierep [1960], Gadd [1960] and others. 

Fung [1983] characterizes the problem by: “Such a flow is known to have a multi-valued 

normal pressure gradient and a stream-wise pressure gradient that is logarithmically 

singular”.  It seems that the anomaly appears only when a normal shock, at a specified 

pre-shock Mach number, is required to be attached to a curved wall with preset 

curvatures.  In reality the shock is prevented from being influenced by wall curvature by 

the boundary layer and hence it is not constrained by Eqn. 3.18c.  Away from the 

boundary layer the shock is free to set its own streamline curvatures according to Eqn. 

(3.16 a) so that no anomaly exists.   No other physical descriptions have been proposed.  

The peculiar results are presented for awareness in case similar results appear for oblique 

shocks and shock reflections.  From the second equation (3.16b), 

                                   ( ) ( ) ( )2 1 2 1 2 2/ / /a bP A A P C A S G A S′ ′ ′ ′ ′ ′= − −                        (3.18 a)  

Using the normal shock coefficients (3.15), 

                                      { }2 2
2 2 1 1

2
1 a bM P M P S S

γ
= − − +

+
            (3.18b) 
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 This can be used to obtain the pressure gradient, P2, behind the normal shock, in terms of 

the two principal radii of curvature of the shock surface and the pressure gradient in front 

of the shock8.   

 

  3.5.1 Normal shocks in uniform flow 
 With uniform upstream flow, Eqns. (3.16) and (3.18, b)  reduce to,   

                                                                     
2 0D =                                 (3.19) 

                                          ( )
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γ γ

γ γ
− +  

= + + − +    
                 (3.20) 

 The first of these states that behind a normal shock, in a uniform, irrotational free-stream, 

the streamlines are straight no matter how the shock is curved.  The second states that 

the pressure gradient is proportional to the Gaussian curvature of the shock, 1/Ra + 1/Rb. 

An exploding spherical shock, moving at Mach M1 with radius R, has a post-shock 

pressure gradient given by (3.20) where {1/Ra + 1/Rb} is replaced by {2/R}.  For a 

cylindrical shock in the same situation, the {1/Ra + 1/Rb}-term is replaced by {1/R}.  For 

imploding shocks the gradients are negative. This equation will be applied below to find 

the first approximations to the shock stand off distance on a bluff body and the length of 

the subsonic region behind a Mach disk or Mach stem. 

 

3.5.1.1 Blunt body with convex normal shock 
 We note that for a blunt body shock in a uniform freestream, where the shock 

curvature radii are both positive, the pressure gradient, P2 in Eqn. (3.20) indicates an 

increasing pressure behind the normal shock.  This is known to be the case for blunt body 

flow where the flow along the centre line, behind the shock, has a monotonically 

increasing pressure, eventually stagnating, on the body, at a pressure higher than that 

immediately behind the shock.  From M1 and p1 we can readily calculate p2, the pressure 

                                                 
8 It is a result of differential geometry that the quantity 1 / 1 /a bR R+  remains a constant on a curved 
surface no matter in what planes the radii lie as long as the planes are orthogonal. [Kreyszig, 1991].  This 
must be so since the orientation of coordinate planes can not influence the pressure gradient or any other 
physical variable at the shock surface. 
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behind the shock and pt2, the pressure at the stagnation point (pitot pressure).  This leads 

to a first approximation for the shock stand-off distance, ∆ , from, 

                                                            2 2
2 2

2 2

tp pP
Vρ
−

≈
∆

                                (3.21) 

 This is a linear approximation to the pressure gradient over ∆  and, for axial flow, can be 

written, 
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  and for planar flow              ( ) ( )
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                           (B)    

Another approach to obtaining the stand off distance is to assume that the average 

velocity gradient between the shock and the stagnation point is the same as the post-shock  

velocity gradient, i.e., 2

2

0 V V
s

− ∂ =  ∆ ∂ 
 so that 2

2 2

1 1 V P
V s

∂ = − = ∆ ∂ 
 and  2 1P × ∆ =  

Using (3.20) for axial flow, where 2 / 1/ 1/a bR R R= +  produces, 

         ( )
( )

2
1

2
1

1 21
4 2 1

M
R M

γγ
γ γ
− + ∆ +  =

− +
                                                 (C) 

A very similar result for planar flow, where 0bR =  and 1/ 1/ aR R= , is,  

( )
( )

2
1

2
1

1 21
2 2 1

M
R M

γγ
γ γ
− + ∆ +  =

− +
                                                 (D) 
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 These formulas are plotted in Fig. 3.7.  Most published data on the shock stand off 

distance is in terms of the body radius Rs and not the shock radius Ra, as used above.  To 

facilitate comparison, we have plotted against body surface radius Rs , assuming that Rs = 

Ra - Δ. This is a reasonable approximation especially for axial flow at high Mach numbers 

where the shock lies close to the body surface.  Data points are from various sources 

found in [Liepmann and Roshko, Fig.4.15, 1956].  Except at low Mach numbers there is 

reasonable agreement with experiment and other theories.   

We have here derived a simple equation for the stand off distance of a shock on a 

sphere or a cylinder from general curved shock wave theory.  However, we started with 

the more general, doubly curved, normal shock having two differing curvature radii Ra 

and Rb, as in Eqn. (3.20).  Such a shock would be carried by a nose 

cap body having two differing radii of curvature Rabody = Ra -  Δ and 

Rbbody = Rb -  Δ,  at least to the first 

approximation.  If analytic continuation 

holds between the axial and planar results 

then the theory should predict shock stand-

off distances for intermediate blunt bodies 

with elliptic cross-sections with differing 

curvature radii.  Experimental results of 

stand off distance have not been found in 

the literature for such shapes. 

 For concave shocks Eqn. (3.20) 

indicates a negative post-shock pressure gradient.  Normal shocks with negative 

(concave) curvature are discussed in the next section. 

 

3.5.1.2 Flow behind a normal shock at a concave Mach disk 
 For an axisymmetric Mach disk with radius of curvature R = Ra = Rb, in a uniform 

freestream, Eqn. (3.20) gives a direct relationship between the radius of curvature of the 

disk and the pressure gradient behind the disk, 

Fig. 3.7 
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                                                ( )
( )

2
1

2 2
1

2 14 1
1 1 2

M
P

M R
γ γ

γ γ
− +  =  + − +    

                       (3.21) 

Which can also be written in terms of M2, 

                                                         
( )2 2

2

4
1

P
M Rγ

=
+

                                   (3.22) 

 P2 is defined as, 

                                                       ( ) ( )2 2
2 2 2

2 2 2 2

/ /dp ds dp ds
P

V p Mρ γ
= =                                    (3.23) 

 Eliminating P2 and M2,  
( )

4
1

dp ds
p R

γ
γ

=
+

                        (3.24) 

 In the isentropic flow behind the Mach disk the Mach number and pressure are related 

by, [Shapiro, 1954], 

                                                 
( ) 2

2

1
1

2
MdM dp

M M p

γ

γ

−
+

= −                                        (3.25) 

 Eliminating  dp/p, and separating variables gives, 

                   
( ) ( )2

4
1 11

2

MdM ds
RM

γ γ γ
= −

− +
+

                           (3.26) 

 Integrating, with the conditions that M = M2 at s = 0 and M = 1 at s = s* gives,   

                                       
( ) ( )

( ) 2
2

11 2ln 1
4 1 1 2

s M
R

γγ
γ γ

∗  − +
= +  − +   

                   (3.27) 

 In terms of the freestream Mach number this becomes, 

                                       
( )

( )
( )

2
1

2
1

11 ln
4 1 2 1

Ms
R M

γγ
γ γ γ

∗  ++
=  − − − 

                                 (3.28) 
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This equation gives the length of the subsonic patch, s*, behind the axisymmetric Mach 

disk, in terms of the shock curvature radius (R is negative) and the freestream Mach 

number. The formula is plotted in Fig. 3.8 as a blue line. This is a unique result which 

could be useful in designing axial flows with convergent shocks.  It points to the 

possibility of first constructing a shock structure in Mach reflection and then building the 

supersonic flow around it.  Results of Eqn. (3.28) need to be compared against CFD and 

experiment. 

 For planar flow the shock has only a single curvature, R, where  1/ 1/ aR R= , 

showing that the subsonic region in planar flow is twice as long as in axial flow.  This is 

reasonable since flow convergence for planar flow takes place from two sides whereas 

axial flow converges from all four sides, leading to sonic flow in a shorter distance.  The 

planar flow equation is plotted in Fig. 3.8 as a green line. The above results will be used 

to provide the length of the subsonic region behind hyperbolic shocks in Ch. 5. The ratio 

of patch length to shock curvature reaches a finite limit for both a hypersonic freestream 

as well as a sonic freestream.  In the limit, as 
2 *

1 ,   /R  -0.2231M s→ ∞ →  for axial flow and -0.4462 for planar 

flow.  For both cases, as *
1 1,   /R  0M s→ → . A lower γ leads to 

a longer patch length suggesting that real gas effects lead to a 

longer patch length for the same shock 

radius of curvature. As for the blunt body 

example above, Eqn. (3.20), used above 

to estimate the subsonic patch length for 

axial Mach disks and planar Mach stems, 

can also be used to estimate s* for a 

concave shock having two differing 

curvatures. .   In such a case the sonic 

surface would not be circular but 

somewhat elliptic in shape.  For a flat normal shock where Ra = Rb = ∞, 

                                      2 2
2 1 1 2/ /P P M M= −                 (3.29)  

Fig. 3.8 
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 Since M1 is always greater than M2, a flat normal shock amplifies and reverses the 

normalized  pressure gradient.  Shocks of equal but opposite curvature do so also and, not 

unexpectedly, a flat normal shock in uniform flow has no pressure gradient behind it.  

This concludes the application of curved shock theory to curved and plane normal 

shocks. 

 

  3.5.1.3  Blunt leading edge with sweep 
   A supersonic airfoil profile appears thinner to the approaching airflow if the wing 

is swept back. Making supersonic airfoil profiles appear thinner leads to a decrease in 

wave-drag. Sweep-back also lessens heat transfer to leading edges of hypersonic air 

intakes, promotes weaker leading edge shocks and leads to a higher compression 

efficiency of the internal intake flow.  Flow near the leading edge of such swept leading 

edges is the same as that over a swept cylinder and, in any plane normal to the axis of the 

cylinder, behaves as if the cylinder were placed normal to an air flow with Mach 

number sinM Λ  where M is the freestream Mach number and Λ  is the sweep angle.  If, 

in this normal plane, the leading edge curvature is, Sc, then the shock stand off distance, 

∆ , and curvature Sb can be found, with reasonable accuracy, from Billig’s correlation 

[Billig, 1967].  For constant sweep at the leading edge of the shock Sa = 0 giving the 

curved shock equations,  

                   0 = A2P2 + B2D2 + GSb 

                     0 = A’2P2 + B’2D2 + G’Sb                                    (3.30)                      

such that behind the leading edge of the swept shock the pressure gradient and streamline 

curvature are given by (note that G is zero), 

            2 2
2 2      and      

[ ] [ ]b b

B G A GP S D S
AB AB

′ ′−
= =                                    (3.31) 

 This is a type of conical flow in that there is no variation of conditions along the leading 

edge.  Not surprisingly, the polar streamline slope is the same as that for the cone [Eqn. 

(2.40)], 

                                                     2 2

2 2

P B
D A

= −                                                      (3.32) 

Morphologically this flow lies on the negative Sb axis in Figure 2.2.  If the sweep angle 
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varies along the leading edge so that at any point the lateral curvature is Sd and if Sd << Sc 

then the local flow is again invariant in the spanwise direction so that along the shock 

ridge, 

                    2 2
2 2

[ ] ' [ ] '  and  
[ ] [ ] [ ] [ ]d c d c

BC B G CA A GP S S D S S
AB AB AB AB

= + = −                 (3.33) 

 If the leading edge sweep is decreasing then Sa > 0 and the shock is ‘saddle’ shaped 

appearing in the fourth quadrant in Figure 2.2.  If the leading edge sweep increases then 

Sa < 0 and the shock is ‘shell’ shaped, appearing in the third quadrant.   

The above has shown how the pressure gradient and streamline curvature behind a 

swept leading edge shock can be found from the freestream Mach number, the sweep 

angle and the two leading edge curvatures.   The shock on a swept blunt leading edge is 

three-dimensional in that it has two finite curvatures.  However, there is locally no change 

in the shock angle in the cross-stream direction so that the trace bb (Fig. 2.1) is 

perpendicular to the freestream vector.  This makes CST applicable locally for this 3D 

shock shape.  The shock is a ridge in the flow plane.  Equally well, CST would be 

applicable behind a left-right symmetric col-shaped shock.  The critical feature that 

makes CST applicable in both of these cases is that Rb = - 1/Sb  (Fig. 2.1) stays constant 

along the bb trace. 

 

3.6 Shocks on a circular wedge-annulus; D2 = 0, (a.k.a. Unit Ring -

Wedge) 
 Conical flow does not generally 

flow over conical surfaces and conical 

surfaces do not always produce conical 

flow.  In this section we find the flow 

gradients behind shocks attached to the 

leading edges of conical ducts (no 

streamwise surface curvature) and we find 

that the flow does not possess conical 

symmetry. The circular wedge, or conical 

duct, on the right, presents examples of flow over external and internal truncated conical 
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surfaces. An axisymmetric engine cowl leading edge is a typical example where attached 

shocks appear on the external as well as the internal surfaces and where the surfaces are 

not necessarily curved in the flow direction. For such flow the streamline curvature 

behind the shock, at the surface, is zero, so that D2 = 0.  The transverse shock curvature is 

cos /bS yθ= − , where θ  is the shock angle and y is the leading-edge radius of the ring-

wedge.9 Note that for weak acute shocks (external flow), bS  is negative while, for obtuse 

angled shocks (internal flow), bS  is positive.  For a uniform, parallel, irrotational, 

freestream and D2 = 0, the curved shock equations reduce to, 

   2 2

2 2

0
0

a

a b

A P CS
A P C S G S

= +
′ ′ ′= + +

               (3.34) 

From these we find the pressure gradient on the ring-wedge surface and the shock 

curvature at the leading edge, 

       2
2

cos /cos /               a
A G yCG yP S

CA CA
θθ ′′ −

= =          (3.35a,b)  

2  and aP y S y  are plotted in Fig. 3.9 showing the effects of  varying the shock angle 

on a surface that has only lateral curvature.  At the Crocco point, where |CA| = 

2 2CA C A′ ′−   = 0, both the 

pressure gradient and the shock 

curvature become infinite and 

switch sign.  Some authors have 

suggested that the shock will 

detach from the leading edge at 

this condition. [Guderley, 1962]. 

CFD will be used in Ch. 6 to 

simulate attached shock 

behaviour at the leading edge of a ring-wedge at conditions corresponding to the Crocco 

point.  This will be done by varying the freestream Mach number through the Crocco 

point on a fixed angle ring-wedge.  Equally interesting would be to vary the 

axisymmetric ring-wedge angle through the Crocco point at constant Mach number.  The 

                                                 
9 A ring-wedge with y =  1 is called a unit ring-wedge.  This is the scale length referred to in Chapter 2. 

Fig. 3.9 
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latter is easier to do computationally than with a ‘solid’ model in a wind tunnel.  Even 

computationally it may not be that easy because the Crocco point lies close to the shock 

detachment point. CFD results of flow over and inside the ring-wedge are presented in 

Ch. 6. 

 

3.7 Shock surfaces with up- or downstream uniformity 
In aeronautical flight application the flow conditions upstream of the shock are 

most often uniform, irrotational and the coordinate axis is aligned with the freestream so 

that 1 0δ = .  In an airbreathing engine the combustor requirements may be such as to 

require uniform flow from the last shock in the intake.  For shock reflections off a plane 

wall the flow emerging from the reflected shock must be parallel to the wall and must 

have no curvature so that 2 20 and 0Dδ = = .  Also, for shock reflection, the polar 

streamline direction behind the incident shock must equal the polar streamline direction 

in front of the reflected shock.  This makes it important to have analytical tools suitable 

for uniform flows on the upstream and downstream surfaces as well as for prescribed 

non-uniform conditions.  Shocks with no downstream pressure gradient and with straight 

streamlines will be studied in what follows. 

 

 3.7.1 Doubly curved Thomas and Crocco shocks 
Consider a shock in uniform, irrotational upstream flow that is doubly curved so 

that neither Sa nor Sb is zero.  For these conditions the curved shock equations reduce to, 

                                               2 2 2 2

2 2 2 2

0
0 ' '

a

a b

A P B D CS
A P B D C S G S

= + +
′ ′= + + +

                              (3.36) 

Solving these for pressure gradient and flow curvature, 

                                              
2

2

2
2

[ ] '
[ ] [ ]
[ ] '
[ ] [ ]

a b

a b

BC B GP S S
AB AB
CA A GD S S
AB AB

= +

= −

                                 (3.37 a,b) 
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If the pressure gradient behind the shock is zero then, setting 2 0P = in Eqn. (3.33 a) 

gives,                                    2

[ ]
a

P
b P

S B G
S BC

  ′
≡ = − 

 
R                                (3.37 c) 

so that for this shock curvature ratio we can expect to find a space behind the doubly 

curved shock with relatively constant pressure. Such a point on the shock wave is called a 

Thomas or an isobaric point and the relation expressed by Eqn. (3.37 c) is the isobaric 

condition. For planar flow, where Sb = 

0, the isobaric condition occurs when 

either the shock is flat, Sa = 0, or at the 

Thomas point. Recall that, for planar 

flow, the Thomas and Crocco 

conditions are defined by [BC] = 0 and 

[CA] = 0 respectively. At the Thomas 

condition, where [BC] = 0 on a doubly 

curved shock, the pressure gradient is not generally zero but equal to [ ]{ }2 / bB G AB S′ .   

It is only for a planar shock that the pressure gradient is zero at the Thomas condition.  

 From Eqn. (3.33 b), setting 2 0D =  for straight streamlines behind the shock, gives, 

                           2

[ ]
a

D
b D

S A G
S CA

  ′
≡ = 

 
R                        (3.37d) 

so that for this shock curvature ratio we can expect a space behind the doubly curved 

shock to have straight streamlines. Such a point on the shock wave is called a Crocco or 

an isoclinic point and the 

relation expressed by 

equation (3.33d) is the 

isoclinic condition.  For 

planar flow, where 0bS = , 

the isoclinic condition 

occurs either when the shock 

is flat or at the Crocco point.  

Fig. 3.10a 

Fig. 3.10b 
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At a given γ , Mach number and shock angle the isobaric or isoclinic shock surface can 

be established by proper choice of shock curvature ratio as shown in Figures 3.10a and b.   

Fig. 3.10b shows what the URW leading edge radius of curvature r2 must be to obtain a 

zero pressure gradient on the URW surface at any acute or obtuse shock angle.  Similarly 

the shock radius of curvature, Sa, is plotted to show what the curvature must be to obtain 

a surface of zero curvature.   

 For shocks with axial symmetry in a parallel upstream flow, 

                      sin

cos /

a

b

d d dy dS
d dy d dy

S y

θ θ θ θ
σ σ

θ

= = =

= −

 

For an isobaric shock where 2 0P = , 

using Eqn. (3.33 a), 

2

[ ] tandy BC d
y B G

θ θ= −
′

               (3.38) 

This is a total differential equation 

where the two variables y and θ  have 

been separated so that a simple 

numerical integration is possible for 

the shock shape, ( )y f θ= , giving a 

shock shape that is such that the 

pressure gradient behind it is 

everywhere zero. Equation (2.11) 

implies that if the pressure gradient is zero then so is the velocity gradient and then Eqn. 

(2.13.a) requiresthat  the enthalpy (temperature) gradient is zero also. It follows then that 

the Mach number gradient is also zero.  The isobaric shock then is a surface that produces 

zero gradients not only in pressure but also in velocity, temperature and Mach number. 

With both pressure and temperature gradients being zero, it must be that the density 

gradient is zero also.  Thus the isobaric shock is a particular shock shape that produces 

zero stream-wise gradients in most thermodynamic and dynamic variables. The isobaric 

shock is plotted in Fig. 3.11 for a range of Mach numbers from 2 to 8.  Both acute and 

Fig. 3.11 
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obtuse axisymmetric isobaric shocks can 

be produced.  In planar flow there can be 

no isobaric shock surface, only an isobaric 

point at the Thomas shock angle. 

 A treatment that parallels that for 

the axisymmetric isobaric shock surface 

gives the equation for the axisymmetric 

isoclinic shock surface that has straight 

streamlines behind it everywhere.  

Requiring that 2 0D =  in Eq. (2.67b) 

gives,   

     
2

[ ] tandy CA d
y A G

θ θ= −
′

                       (3.39) 

The expressions on the right hand sides of (3.38) and (3.39) are complicated functions of 

θ  and have to be integrated numerically. The isoclinic shock profile, Fig. 3.12, is very 

similar to that for the isobaric shocks.  Both acute and obtuse shocks can be produced. 

The body shapes that produce these shocks are axisymmetric.  Finding body shapes 

involves some kind of finite difference approach that proceeds from the shock towards 

the body surface.  Such calculations are sometimes badly posed in that the body surface is 

not necessarily unique; it may contain folds and cusps or it may not exist at all.  

 Isobaric and isoclinic shocks are dealt with here because, as incident shocks, they 

present unique flows to any potential reflected shocks.  For example, if the RR MR→  

transition is thought to be influenced by pressure gradient or streamline curvature, then, 

by using incident isobaric and isoclinic shocks, it is possible to study transition when 

these gradients are absent, the notion being that, if neither pressure gradient nor 

streamline curvature is present, then there ought to be no effect of shock curvature on 

transition.  Or, even further, if the gradients produced by the incident shock favour 

attachment of the reflected shock then transition ought to be delayed by their absence and 

conversely.  It is important to realize that the isobaric and isoclinic-points can be made to 

lie anywhere behind the shock where the shock curvature ratio is such as to satisfy (3.37 

c) for the isoclinic point and (3.37 d) for the isobaric point. It is only for planar flow that 

Fig. 3.12 
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the isoclinic point lies between the sonic point and the maximum deflection point and the 

isobaric point lies behind the strong shock between the maximum deflection and normal 

shock points.      

    

3.7.2 Polar streamline slope for shocks with upstream uniformity      
Equations for polar streamline slopes were presented in sections 2.4.4 and 2.5.3 for 

flow behind planar and conical shocks in a uniform freestream.  Equations are presented 

here for shocks with compound curvature, also in a uniform freestream. Using equations 

(3.37 a) and (3.37 b), the polar streamline slope is, 

          22 2

2 2 2

[ ] [ ]
[ ] [ ]

a b

a b

BC S B G SP BC B G
D CA S A G S CA A G

′ ′+ +
= =

′ ′− −
R
R

                           (3.40) 

This relation shows that, for a doubly curved shock, the polar streamline slope is a 

function of the upstream Mach number, the shock angle, and the ratio of shock 

curvatures.  Any value of polar streamline slope between  and +−∞ ∞  can be obtained with 

a suitable choice of R  at a given Mach number and shock wave angle.  Hornung [1997] 

has argued that the stability of steady-flow regular and Mach reflection is associated with 

the slope of the reflected shock pressure-deflection polar locus at the point where the 

locus intersects the pressure axis.     

  

3.7.3  Polar streamlines for uniform post-shock flow 
 All examples of CST applications, presented so far, have involved either uniform 

or specified pre-shock flow as is the case for most aeronautical applications.  However, in 

situations such as the design of air intakes it is useful to be able to specify the down- 

stream or post-shock conditions, as determined by the combustor requirements.    

Typically, a uniform downstream flow is desired and specified as for Busemann flow in 

Ch. 4.  If, in addition, the pre-shock flow is irrotational, such that 1 0Γ = , then the two 

curved shock equations 2.30 a,b become, 

             
( )
( )

1 1 1 1

1 1 1 1

0

0
a b

a b

A P B D CS GS

A P B D C S G S

+ − + =

′ ′ ′ ′+ − + =
                                       (3.41) 

Solving these for P1 and D1, 
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( ) ( )

( ) ( )
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a b a b

B C S G S B CS GS
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A B A B
A C S G S A CS GS

D
A B A B

′ ′ ′− + + +
=

′ ′−

′ ′ ′− + + +
= −

′ ′−

             (3.42) 

The polar streamline slope is then, 

   ( ) ( )
( ) ( )

1 11

1 1 1

B C G B C GPl
D A C G A C G

′ ′ ′− +
= = −

′ ′ ′− +
R + R +

R + R +
                (3.43) 

This is for the polar streamline 

in front of the shock.  The over-

bar is to distinguish the present l 

from the previous l which was 

for the post-shock polar 

streamline for a uniform 

upstream flow.  For a planar 

shock, R → ∞  so that, 

1 1

1 1
planar

B C B Cl
A C A C

′ ′− +
= −

′ ′− +
    (3.44a) 

 For a conical shock R  = 0, 

                              1 1

1 1
conical

B G B Gl
A G A G

′ ′− +
= −

′ ′− +
                    (3.44b) 

The  polar streamline slopes in the pre-shock flow, as given by Eqn. (3.44b) are shown on 

the (p-δ) shock polar as coloured line segments.  Blue segments indicate supersonic post-

shock flow and red segments indicate subsonic post-shock flow.  The right half of the 

graph is for the acute Busemann shock and the left half is for the obtuse W-flow shock , 

both having uniform post-shock flow.  Busemann and W-flows are discussed further in 

Ch. 4.  If the acute shock is thought of as representing a reflected shock then its pre-shock 

streamline slope will have to match the post-shock streamline slope of an obtuse incident 

shock.   
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3.7.4 Conditions behind a reflected shock 
 The conditions P2, D2 and Γ2, behind a curved incident shock, facing a uniform 

stream, are found from (3.12 a and b) and (2.31 c).  These conditions now become the 

pre-shock conditions  P1, D1 and Γ1  for the reflected shock.  If the reflection takes place 

on a surface that has no streamwise curvature (D2 = 0, a flat wall or a straight tube) the 

transverse curvature of the reflected shock is  ( )cos /bS yθ δ= − −   and then the curved 

shock equations for the reflected shock are Eqns. (2.30 a and b), 

                                      
1 1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 2 2

a b

a b

L A P B D E A P CS GS
L A P B D E A P C S G S

= + + Γ = + +

′ ′ ′ ′ ′ ′ ′= + + Γ = + +
   (3.45) 

 These are two simultaneous equations for P2 and Sa.  It will be shown in Ch. 6 that the 

pressure gradient, P2, plays a critical role in causing shock detachment from a wedge by 

local choking .  It remains to be shown that the analogous RR→MR transition is similarly 

affected by the pressure gradient as calculated from Eqn. (3.45).  The lateral surface 

curvature, Sb, will then have an influence on the transition.  In a like manner a specified 

flow-wise curvature, D2, different from zero, would affect the pressure gradient and 

hence, detachment, directly.     

 

3.8 Curvature and strength of characteristics 
 Shock waves form when compressive characteristics overtake one another.  To 

determine if there exist regions behind a curved shock where there is a tendency for an 

embedded reflected shock to form we seek characteristics with positive strength 

(compressive) and positive curvature when acute and negative when obtuse, so as to be 

overtaking one another.  Tools presented here are applied to the hyperbolic shock wave in 

Ch. 5.  

 

3.8.1 Curvature of characteristics 

Let the curvatures of the C+ and C- characteristics be denoted by +

aS , +

bS , −

aS  and 

−

bS .  As before, the a-subscript is for curvature in the flow plane and the b-subscript is 

for curvature in the flow-normal plane.  The C+ and the C- characteristics are inclined at 
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+µ and -µ to the local streamline. In the weak shock limit, shocks become Mach waves or 

characteristics so that, 

    2 10      δ δ δ= =  MMM == 21
 

   1/ 12 =qq   µθ ±=                  (3.46) 

   sin 1/ Mθ = ±   2cos 1 /M Mθ = ± −  

   2 2sin 2 2 1 /M Mθ = ± −  ( )2 2cos2 2 /M Mθ = −  

In reference to the characteristics on the downstream side of the shock, M is the Mach 

number on the back of the supersonic portion of the shock.  With these limiting 

conditions the shock curvature coefficients, (2.30c), become the characteristics’ 

curvature coefficients, 
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2 2
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so that,  

                   
( ) ( )

( )3/222

4 4

18 1 8[ ] 0;      [ ] ;        [ ]
1 1

MMAB BC CA
M Mγ γ

−−
= = − =

+ +
  

The upper sign of  ±   or     is used with  and a bS S+ +   and the lower sign is used  with  

 and  a bS S− − . The subscript 1 variables, in the curved shock equations, are all relevant 

because the characteristics are facing non-uniform flow behind a curved shock.  For 

axisymmetric flow, 

                            2 1cos( ) /b

MS y
My

µ δ± −
= − − =                                   (3.48) 

 

Except for G, the characteristics’ curvature coefficients are all functions of the local 

Mach number only.  For the curved characteristics, using the above coefficients, the 

curved shock equations, (2.30 a,b) become, 

  1 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2           
a bA P B D E A P B D CS GS

A P B D A P B D

± ±
1+ + Γ = + + +

′ ′ ′ ′+ = +
                                (3.49) 

If we apply these to finding the curvature of a characteristic on the downstream side of a 

shock then P1, D1 and Γ1 are the pressure gradient, streamline curvature and vorticity on 

the downstream side of the shock, as determined by the shock’s curvature, and P2 and D2 

are the pressure gradient and streamline curvature on the downstream side of the 

characteristic.  From Eq. (3.49), 

   ( ) ( )12

2/12
12 1 DDMPP −−±=− −                        (3.50)   

This shows that, across a characteristic, both streamline curvature and pressure gradient 

can be discontinuous and that the discontinuities are linearly related in proportions 

determined by the local Mach number.  Note that the upper sign of  or      ±   is used 

with the C+ characteristic and the lower sign with the C- characteristic.  Dividing Eqn. 

(3.50) by 12 2 −M gives, 
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′
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PA                      (3.51) 

Subtracting Equations (3.51) and (3,50) gives, 
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                    ( ) ( )2

2
1 1 12

7 1 8
sin 1

[4 1]a b

M M
S S M P D

M M
γ γ

δ± ±
− − + −    + = − ± −

               (3.52) 

aS ±  and bS ±  are the curvatures of either the positive or negative characteristic depending 

on whether the upper or lower sign is used in the above equation.  The subscript 1 

denotes conditions immediately in front of the characteristic and, for the flow on the back 

side of a shock, M, P1 and D1 are then the values behind the shock, produced by the 

shock.  If the flow is parallel to the axis then 1δ  is zero so that aS ± can be determined 

from a knowledge of M, P1, and D1.  Axisymmetric flow behind a regularly reflecting 

shock on a straight cylinder has both 1δ  and D1 equal zero so that The C+ and C- 

characteristics have the same curvature in the flow behind the reflected shock.  It is 

interesting to note that, for 1.4γ =  the term in the numerator ( ) ( )27 1 8M Mγ γ− − + −    is 

zero when M = 1.4286, so that the characteristic’s curvatures are then very simply related 

by 1sin 0a bS S δ± ±+ = . This is another example where curved shock theory yields a 

singular Mach number with curious properties.  For axisymmetric flow 

( )cos /bS yµ δ± = − ±  so that the curvature of the characteristics in the flow plane is, 

 ( ) ( ) ( )
2

2
1 1 1 12

7 1 8
1 sin cos /

4 1a

M M
S M P D y

M M
γ γ

δ µ δ± − − + −  = − ± + ± −
                            (3.53) 

 

3.8.2 Strength of characteristics  
 In this section we define the strength of one characteristic as the pressure gradient 

in the direction of the other characteristic.  This leads to a convenient formulation in 

terms of the local stream-wise pressure gradient and flow curvature.  Using the formulas 

2.42 for the gradients on the downstream side of a doubly curved shock gives the 

strengths of the incident and reflected characteristics and their ratio behind a shock - the 

reflection coefficient.  The reflection coefficient has been used to gauge the strength of 

waves emanating from the back side of a curved shock as they hit the aft portions of a 

supersonic vehicle [Chernyi, 1961; Hayes and Probstein, 1966]. If the reflections are 

weak then it is possible to apply such approximate techniques as Shock-Expansion, 



 66 

Tangent-Wedge and Tangent-Cone theory to the calculation of flow fields between body 

and shock. 

 The variation of any quantity across the C+ characteristic, in the direction of the 

C- characteristic, is, 

    cos sin
s n

µ µ
η −

∂ • ∂ • ∂ •
= +

∂ ∂ ∂
            (3.54) 

where η −  is the distance along the C- characteristic and μ is the angle between the 

characteristic and the streamline.  Similarly for the C- characteristic,  

   cos sin
s n

µ µ
η +

∂ • ∂ • ∂ •
= −

∂ ∂ ∂
                    (3.55) 

Using these, we define the strengths of the C+ and C- characteristics in terms of their 

cross-characteristic pressure variation as, 

             2 2 2

2 2 2
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1 cos sin

p p p
V V s V n
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µ µπ
ρ η ρ ρ

µ µπ
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+

−

−

+

∂ ∂ ∂
≡ = +

∂ ∂ ∂
∂ ∂ ∂

≡ = −
∂ ∂ ∂

                    (3.56  a,b) 

π  will be positive/negative for a compressive/expansive characteristic.  Using Eqns. 

(2.16) and (2.17) these can be written in terms of the local pressure gradient and 

streamline curvature as, 

           
2

2

1 1

1 1

M P D
M

M P D
M

π

π

+

−

 = − − 

 = − + 

          (3.57  a,b) 

These expressions are general in that they apply wherever the Euler equations are 

applicable.  

 

3.8.3 Reflection Coefficient 
  The relative strength of the characteristics is, 

 2

2

1
1

M P D
M P D

πλ
π

+

−

− −
≡ =

− +
         (3.58) 
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If the C −  characteristic is incident on the back of a shock and the C +  characteristic 

reflects then λ  is called the reflection coefficient.  On the downstream side of a planarly 

symmetric shock with curvature 
aS  the pressure gradient and streamline curvature are 

from Eqn. (2.33),               

2 2
[ ] [ ]          
[ ] [ ]a a
BC CAP S D S
AB AB

= =                      (3.59 a, b) 

so that the reflection coefficient for planar flow is, 

        
2
2

2
2

1[ ] [ ]
1[ ] [ ]planar

M BC CA
M BC CA

πλ
π

+

−

− −
= =

− +
                    (3.60) 

 

This equation is plotted in 

Fig. 3.13.  This is a plot of 

shock angle versus 

freestream Mach number 

showing where the 

reflection coefficient, 

planarλ , is positive - green  

(‘like’ reflection) and 

where it is negative - red 

(‘unlike’ reflection). The lower boundary of the coloured band is for the limiting weak 

shock – the Mach wave.  The upper bound is where the post-shock Mach number M2 = 1,  

the sonic condition. The reflection coefficient is zero at both the Mach wave and the 

sonic shock lines as well as at all boundaries between the green and red areas.  At a very 

low Mach number, below 1.32, the reflection coefficient over the whole post-shock side 

is green – positive.  This means that compression waves reflect as compression waves 

and expansion waves reflect as expansion waves – like reflection at all shock angles.  

Between Mach 1.32 and Mach 2.42 the weaker (red) part of the shock has a negative 

reflection coefficient, implying an unlike reflection, whereas the portion of shock nearest 

the sonic point is still in a like reflection (green) mode.  There is a narrow region between 

Mach 2.42 and 2.55 where the reflection coefficient has four zones (- + - +).  Above 

Fig. 3.13 
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Mach 2.55 there is (+ - +) sequence of zones.  The upper green region, indicating like 

reflection near the sonic shock, becomes very narrow as it extends to higher Mach 

numbers.  For positively curved shocks, be they acute or obtuse, the incident waves are 

compressive so that in this narrow region, next to the sonic shock, the reflected waves are 

also compressive.  If a reflected shock forms here then its formation is compatible with 

the indicated presence of shock-causing compression waves.  This will be applied and 

further discussed in Ch. 5 as it pertains to the formation of embedded shocks behind 

hyperbolic shocks.    

   For a conical shock, 0aS = , and with the curvature cos /bS yθ= −  Eqn. (2.30e) 

gives, 

                 2 2
2 2

2 2 2 2 2 2 2 2

' '           b b
B G A GP S D S

A B A B A B A B
−

= =
′ ′ ′ ′− −

                           (3.61) 

 

This gives, 
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           (3.62 a,b) 

and, 
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1
1conical
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πλ
π

+

−
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= =

− −

                  (3.63) 

In conical flow, strengths of the characteristics both increase as 0y →  but their ratio 

remains constant.  The reflection coefficient in conical flow is uniformly positive for all 

Mach numbers and shock angles. 

 Behind a doubly curved shock wave, 

              2
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2
2

[ ] '
[ ] [ ]
[ ] '
[ ] [ ]

a b
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AB AB
CA A GD S S
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                                   (3.64 a,b) 

Substituting in 3.58 gives the reflection coefficient for a doubly curved shock, 
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         (3.65) 
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where /a bS S=R . This equation reverts to planar flow when → ∞R  and to conical 

flow when 0→R . Equation 3.65 shows that, although the strengths of the characteristics 

behind a doubly curved shock depend explicitly on the shock curvatures, the reflection 

coefficient depends only on the ratio of curvatures.  The dependence on Mach number is 

complex, as seen in the above Fig. 3.13.   The reflection coefficient and the strengths of 

the shock-reflected characteristics are important in the design of shock waves where one 

is concerned with coalescence of characteristics and the formation of embedded shocks 

behind a shock with given curvatures.  Since the formation and existence of shock waves 

can be explained on the basis of overtaking (compressive) characteristics, it is possible 

that the appearance of a reflected shock wave behind a curved shock also comes about 

when the strengths of the reflected characteristics are positive.  Equation (3.65) shows 

that at a sonic line ( )2 1M = , a characteristic reflects with the same strength but opposite 

sign irrespective of the ratio of the characteristic’s curvature.   

 The back surface of a shock is perfectly absorbent to characteristics when 0λ = .  

From Eqn. (3.65) this occurs when the ratio of shock curvatures is, 

          2
2 2 2

0 2
2

-1
-

-1[ ] -[ ]
M B G A G
M BC CAλ=

′ ′+
=R

                     (3.66) 

As with the isobaric and isoclinic shocks, the axisymmetric, perfectly absorbent shock, is 

found by numerically integrating, 

                                             2
2

2
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θ θ

− −
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Such shock shapes are plotted in Fig. 3.14, with the freestream Mach number as 

parameter. Shock shapes for a 

Mach number less than 4 are 

too small to appear on the 

scale of the plot. Sound, 

generated in the turbulent 

boundary layer on a body 

surface, would not be 

reflected from a surrounding, 

perfectly absorbent, shock 

wave, preventing sound 

reverberation between body 

and shock. Chernyi [1961] 

discusses further implications 

of the reflection coefficient at 

some length.  As with the 

isobaric and isoclinic shocks, one is still faced with the task of finding the body shapes 

that produce the absorbent shock shapes. 

 

3.9  Sonic line orientation 
 By its very nature the sonic line, in the post-shock flow, must impinge on the 

shock at the point where the post-shock flow is sonic.  Orientation of the sonic line at the 

shock has an influence on the extent of subsonic flow behind the shock, which, in turn, 

must be compatible with the extent of supersonic flow.  Any conflict, such as overlap of 

the two regions must mean that the proposed flow cannot exist.  It will be shown in Ch. 5 

that the orientation of the sonic line is critical to the existence of a concave smooth shock 

at the sonic point.  Formulas will here be established for the angle between the streamline 

and the sonic line at the sonic point for planar and axial shocks in a uniform freestream in 

terms of the gradients behind the shock.  Hints for developing the formula for the sonic 

line in case of a non-uniform upstream will be indicated. 

Fig. 3.14 
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The angle between a constant Mach number line, in this case the sonic line, and the 

streamline at the sonic point is α* (Eqn. 2.22), where,  

    *tan *
* *
P

D
α =

−Γ
               (2.22)  (3.68) 

and where P*, D* and Г* are the pressure gradient, the streamline curvature and the 

vorticity, all evaluated at the sonic point behind the shock. This formula is valid for both 

planar and axial flows as well as for a non-uniform pre-shock flow. Expressions for the 

terms on the right-hand side of this formula vary, depending on the shock geometry and 

upstream conditions.   

 For a uniform upstream and planar flow (Sa ≠ 0 and Sb = 0), using Eqns. (3.2 

b,c,d,e,f), 

                                              

*
2
*
2

* 2 2
2

2 2 2

[ ] / [ ]

[ ] / [ ]

[ ] [ ]
[ ] [ ]

a

a

a

P BC AB S

D CA AB S

BC A CA BC S
E AB E AB E

= ×

= ×

 ′′ ′′′′
Γ = + + ′′ ′′ ′′ 

 

so that, 
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     (3.69) 

becomes, 2
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   (3.70) 

Note that, for planar flow, Sa cancels out, leaving α* a function of the freestream Mach 

number only.    
 For a uniform upstream and axial flow, behind a doubly curved shock where Sa 

≠ 0 and Sb ≠ 0, using equations (3.12 a and b)  for P*, D* and Eqn. (2.40 b) for Г*, gives, 

{ } { }
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=
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R
R

 (3.71) 

All coefficients on the right are evaluated at the post-shock sonic condition so that 

they are functions of Mach number only.  This makes α* a function of the freestream 

Mach number and *R only.  The angle α* is plotted in Fig. 3.15 against the freestream 

Mach number for a range of * /a bS S=R  as parameter, covering all the possible shock 
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shapes in Fig. 2.2.  Black curves are for positive *R  and red curves are for negative *R .  

The blue curve is for conical shocks and the green curve is for planar shocks.  The green 

curve and its implications for planar shocks have been discussed by Hayes and Probstein 

[1966].  α* and  *R have critical roles in determining the nature of the flow behind 

hyperbolic shocks and shock detachment discussed in Ch. 5 and 6.  Orientation of the 

sonic surface, as depicted by α*, contributes greatly to the visualization of flow structure 

behind curved shocks, as further developed in Ch. 5.   

 
 

 With non-uniform pre-shock flow one would have to use the general expressions  

for P*, D* and Γ* as in (2.30e) and (2.40b) in the formula (3.71).  This situation occurs 

behind a regularly reflecting shock on a curved surface where the incident shock is 

curved.  It occurs also for the reflected shock in Mach reflection with a curved incident 

shock. 

 

 

 

 

  

Fig. 3.15 



 73 

3.10 Concluding remarks  
 This chapter has applied curved shock theory to calculate flow gradients near 

curved shocks on various simple aerodynamic surfaces as well as on shock surfaces with 

very specific properties.    Most topics discussed are open to further investigation and 

elucidation.  The following results have been deduced from curved shock theory: 

 1) The specific heat ratio, γ, upstream Mach number, M1, shock angle, θ, upstream 

flow inclination, δ1 and the two shock surface curvatures, Sa and Sb, uniquely relate the 

flow properties as well as their gradients upstream and downstream of a doubly curved 

shock wave surface in steady flow of an ideal gas. 

 2)  If Sb is constant along an isobar on the back side of the shock then the CST is 

applicable locally to a shock element in three-dimensional space. 

 3)  In homenergic flow lines of constant temperature, velocity, sound speed and 

Mach number are collinear. 

 4)  Lines of constant pressure, temperature, density, velocity, sound speed and 

Mach number are collinear in homenergic, irrotational flow. 

 5)  There are singular positions behind doubly curved shock waves where the 

isoclinic and isobaric lines are collinear with the streamlines.  At these locations the 

stream-wise flow gradients vanish.  At any combination of Mach number and shock angle 

the positions exist for a specific value of shock curvatures ratio. 

 6)   In planar flow the locations of the isoclinic (Crocco) point and the isobaric 

(Thomas) point are independent of shock curvature, being located at shock angles 

determined by Mach number only. 

7)  Curved shock theory predicts some curious results for curved normal shocks.   

8)  Shock stand-off distance and sonic patch extent can be approximated for convex 

and concave shocks.   

 9) Axisymmetric shock shapes are found such that the pressure gradient or 

streamline curvature vanish behind the whole shock surface.  Also, shock shapes are 

found that do not reflect sound from their back surfaces.  In all of these situations the pre-

shock characteristics are those of the uniform free stream and the post-shock inclination 

and shapes of the characteristics are determined explicitly and uniquely by the local 

shock inclination and curvatures.  
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 10) Curved shock theory predicts very high downstream flow gradients for 

oblique shocks approaching the axis of symmetry. 

     11)  Curved shock theory predicts very high downstream flow gradients behind 

shocks near the Crocco point conditions for curved surfaces.      

     12)  Orientation of the sonic surface behind a doubly curved shock is governed by 

the specific heat ratio, the pre-shock Mach number and the shock’s surface curvature 

ratio at the sonic conditions on the shock. 

 13)  It has been shown that CST can be used to find the doubly curved surface 

required to produce a given doubly curved shock or the inverse situation where the 

surface is given and the shock shape is found.  This makes the theory useful as a 

predictive as well as an interpretive tool particularly since the analysis is algebraic in both 

directions.  
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4.1 Introduction 
 A preferred geometry for a scramjet combustor is a circular cross-section duct 

because of its superior ability to withstand both heat and pressure loads.  Frictional losses 

are also at a minimum for such a duct since a cylinder has the smallest surface area for a 

given cross-sectional area.  This leads to a cylindrical (axially symmetric) geometry as 

being desirable also for the intake that is attached to the front of the combustor duct.  The 

same circular exit geometry for the intake is demanded by a gas turbine engine, this time 

because the axial compressor face is circular.  In design selection of a suitable 

aerodynamic flowpath geometry, the requirement of high aerodynamic efficiency leads to 

the selection of intake flow types where any isentropic compression precedes shock 

compression so that the latter can occur at the lowest possible Mach number.  Towards 

these ends, it is wise to study an axisymmetric flow and it is entirely fortuitous that 

axisymmetric, conical, Taylor-Maccoll flow provides a streamtube shape that satisfies the 

above intake design requirements, both geometric/structural as well as aerodynamic.  In 

recognition of A. Busemann’s work on such streamtube shapes, they are called 

Busemann flows and Busemann intakes. Enforcing conical symmetry for Busemann flow 

leads to flow quantities being constant on cones whose apecis all lie on the same point 

and whose axes are all parallel to the free stream. Imposing conicality, restricts 

considerations to this specific class of flow while, at the same time, offering great 

simplicity in flow analysis where a wide variety of intake surfaces is available for 

selection - surface shapes that yield both a high compression and a high efficiency. 

Disappearance of the radial dimension as an independent variable, in conically symmetric 

flow, permits the depiction of results on the single remaining spatial variable – the 

conical angle.  Furthermore, the use of conical flow means that all shocks are also conical 

and therefore of constant strength at any given angular position.  The flows are not only 

uniform but also irrotational – generally, a desirable feature for flow that leaves the 

intake to enter a combustion chamber.  These features of conical flow and, in particular, 

Busemann flow, which is by nature an internal flow, make the Busemann streamline 

shape an attractive candidate for an air intake of a hypersonic flight vehicle’s engine.  
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 This chapter is a self-contained treatment of supersonic conical flow.  Later 

chapters will make reference to its various, seemingly disconnected, results.  Four types 

of flow with conical symmetry are presented: a) cone flow, b) Busemann flow, c) M-flow 

and d) W-flow.  The common feature of all four flows is that they abut uniform and 

parallel flow on either the up- or downstream boundary. In the case of Busemann flow 

both upstream and downstream flows are uniform.  The flows were studied, as a set, by 

Godzowskii [1959].  Cone flow is a well-understood classical supersonic flow treated in 

many textbooks and it is here mentioned briefly for the sake of completeness.  The much-

less familiar W-flow is also treated briefly for completeness.  It starts from an upstream 

singularity, expands and passes through a conical shock to become a uniform 

downstream flow. It has, so far, had no known practical utility in flow-path design. 

Busemann flow contains four unique fluid mechanical features that are treated in this 

chapter, a) internal flow with an inflected surface, b) a free-standing conical shock, c) an 

axisymmetric centered compression fan and d) a flow process from a uniform flow to 

another uniform flow.  M-flow is another type of internal, conical flow that can represent 

part of an intake surface.  It also contains some interesting fluid mechanical features – a) 

a singularity and b) an example of convergent flow with a decreasing pressure.  It is 

suitable as a leading edge shape that produces a conical internal shock wave.  Both 

Busemann and M-flow carry conical shocks that 

either diverge from or converge towards the 

centre line of symmetry.  The study of such 

shocks is important in their applications to 

intake flows as well as to understanding the 

basics of reflection and interaction of curved 

shock waves.  Busemann and M-flow are the 

main subjects of this chapter. 

 The first part of this chapter deals with 

conical flow theory as embodied in the Taylor-

Maccoll equations and as applied to the four 

flows that are bounded on the up- or downstream side by uniform flow. The Taylor-

Maccoll equations are recast and presented in terms of Mach number components; their 
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solution is applied to the calculation of internal, conical, axisymmetric flow.  It is shown 

that the Taylor-MacColl numerical solution cannot be started at the free stream and that 

characteristics of Busemann flow, emanating from the surface, tend to focus close to the 

apex of the internal conical shock so that a substantial length of intake surface is required 

to determine a relatively short segment of the shock. An inflection point on the Busemann 

streamline is shown to have significance for starting of Busemann flows.   The second 

part presents CFD and experimental results of 

Busemann flow and M-flow, the two types of 

conical flow that are significant for air intake 

design as well as to the understanding of shock 

reflection in axisymmetric internal flow.  

 

4.2 The Taylor-Maccoll equation(s) 
 
 Flow which is both axially and conically 

symmetric is best described in spherical polar coordinates (r,θ) where r is distance 

measured radially out from the origin and θ is the angle measured from the downstream 

direction. In all cases the origin is at the apex of the conical shock, on the centre line of 

symmetry (xx). The flow velocity components in the radial and angular directions are 

designated as U and V.  Drawing similar triangles along the streamline in the figure on 

the right gives the streamline equation: 

    VrUddr // =θ                    (4.0) 

The original Taylor-Maccoll equation is a non-linear, second order total differential 

equation with the spherical polar angle, θ , as independent variable and the radial flow 

velocity, U, as dependent variable [Anderson 1982, Emanuel, 1994]. 
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 This is the model equation that governs steady, axisymmetric, conical flow of a perfect 

gas.  No explicit algebraic solution has been found, nor are there any numerical schemes 

for solution of the second order equation (4.1) as given above.  However, the equation 

can be converted to two first order equations, (4.2) and (4.3), at the price of acquiring 
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the additional dependent variable, V. The two equations are now amenable to standard 

numerical solution methods.   Most of these solutions have been done with boundary 

conditions applicable to cone flow [Sims, 1964; Anderson, 1982; Emanuel, 1994;]. 

 

4.2.1 The first order equations 
The first-order versions of equation (4.1) are the momentum equations, in polar 

coordinates, in the r and θ directions, [Thompson, p.488, 1972]: 

    ( )
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θθ        (4.2) 

    VddU =θ/                                            (4.3) 

where a is the speed of sound that can be written in terms of the velocities and the total 

conditions through the energy equation.  The second of these equations is also the 

irrotationality condition, implying that conical flows are necessarily irrotational.  Explicit 

reference to the speed of sound and total conditions can be circumvented if the equations 

are recast so as to have the radial and angular Mach number components as dependent 

variables in place of the corresponding velocity components.  The boundary conditions, 

when expressed as Mach number components at the up- and downstream sides of conical 

shocks are then applicable directly to the solution of the equations. Also, total conditions, 

which have no influence on the Mach number solution, do not have to be invoked.      

 

4.2.2 Mach number variables 
 The Taylor-Maccoll (T-M) equations have been recast in terms of the radial and 

angular Mach numbers u and v, where u = U/a and  v = V/a and a is the local sound 

speed: 
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These two equations seem more complicated than their parents (4.2) and (4.3).  However, 

it will be shown that the use of Mach number components u and v leads to meaningful 

and useful physical interpretations from Eqns. (4.4) and (4.5)  

The streamline equation is:  

                                                   vruddr // =θ                                      (4.6) 
The flow Mach number is: 
                                                  22 vuM +=  
 Having the T-M equations in this form reveals their singular nature at v = ±1 

where the singularity is caused by the (v2 – 1)-term in the denominators above.10  

Absence of any explicit reference to total conditions, as well as the sound speed, leads to 

a more straightforward application of the boundary conditions.  A standard, fourth-order 

Runge-Kutta scheme has been used to integrate the Mach number form of Eqns. (4.4) and 

(4.5).  The solutions are identical, to eight decimal places, to similar solutions of (4.2) and 

(4.3) in the velocity variables.  Previous reference to the T-M equations in Mach number 

form has not been found in the literature. 

 
4.3 Conical flows with uniform upstream and downstream flows 
 
   The four types of Taylor-Maccoll (T-M) flow that are bounded on the up- or 

downstream side by a conical shock and/or uniform flow are of interest because, in each 

case, a uniform flow can be grafted onto the T-M flow to obtain a combined flow with 

some practical flight applications where the flow is joined onto a uniform and parallel 

freestream.  The four flows are also of interest from a more fundamental viewpoint 

because they contain shock waves that appear to be incident on, or reflecting from, the 

centerline of symmetry and such reflections are pertinent to the study of reflection of 

curved shocks.  Conical shocks, being of constant strength, aid in the understanding of 

causes and effects as pertaining to curved shock reflection.  Integration of Eqns. (4.4) and 

(4.5) requires the starting values u and v at some specified value of θ.  It is these boundary 

conditions that lead to the four different flow configurations. 

 

                                                 
10 Such singularities are discussed by Dadliz [1946], Mölder [1967] and Rylov [1990].  Their appearance, in 
any given flow, should be taken as a warning that whatever symmetry assumption(s) have been made may 
not hold in the physical airflow.  
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wall shockarrow   indicates area
of uniform flow

Axisymmetric conical flow with shock   
  reflecting off the inside of a cylinder

 

4.3.1 Cone flow and W-flow 
The most well-known numerical integration of the T-M equations is for the flow 

over an axisymmetric cone at zero angle of attack in supersonic flow. This is of some 

historical interest since it was one of the first applications of the digital computer, some 

60 years ago.   It is a classical 

compressible flow example found in most 

text books.  Consideration of this flow is 

included here because the cone shape is a 

useful surface to form the centre-body of 

an axisymmetric intake.  For an intake this 

is the situation where the shock from the 

centre-body reflects off the inside surface 

of the cowl as would be the situation when 

the engine operates at a Mach number 

higher than the design Mach number. 

Also, for more fundamental uses, the conical shock, produced by the cone, can be 

reflected from the inside surface of an enclosing circular cylinder. In applying CST to 

this reflection, the incident shock is conical so that Sa = 0 and Sb = -cosθ for a unit ring-

wedge.  In this case all primitive variables as well as gradients and vorticity at the 

reflection point are analytically predictable by CST, as is the curvature of the reflected 

shock.   

To calculate cone flow, we specify a free stream Mach number M1 and a conical 

shock with aerodynamic shock angle θ12 where µ1 <  θ12 < π/2. The u and v components 

of Mach number immediately behind the shock are [Anon. NACA Rep. 1135 Eqns. 133 

and 134] 
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These are the starting values, on the downstream side of the shock, for integrating Eqns. 

(4.4) and (4.5) numerically by decreasing θ  until v = 0.  At this value of θ  the cone 

surface has been reached and the integration is complete.  An iteration may have to be 

performed on θ12 if a specific cone half-angle is desired. The details of such integrations 

can be found in [Anderson, 1982 and Emanuel, 1994].  

 

4.3.2 Busemann flow experiments and CFD results 
 Thermodynamic cycle calculations of high Mach number air-breathing engines, 

such as scramjets, have shown that these engines should have air intakes that contract and 

compress the flow by factors of 6 to 10 and 10 to 20 respectively and that this contraction 

and compression be done with the least loss of total pressure. Aside from high contraction 

and compression, the attainment of good intake performance is critically dependent on the 

free stream Mach number and the lateral and stream-wise contours of the intake surface.  

 Busemann [1944] demonstrated, analytically, the possibility of an axially and 

conically symmetric flow that starts as a supersonic and uniform free stream, compresses 

and contracts isentropically, finally passing through a conical shock wave to become 

parallel and uniform flow at a lower Mach 

number. The isentropic compression is 

contained between a Mach cone on the 

upstream side and a shock cone on the 

downstream side.  Mölder and Szpiro 

[1966] proposed the Busemann flow as the 

basis for hypersonic air intake shape 

generation. A Busemann intake 

performance chart was presented which 

relates the intake’s compression, 

contraction and efficiency. Using wave-

rider methodology, Mölder and Romeskie 

[1968] presented the notion of selecting 

portions of the axisymmetric versions of 

Busemann flow to generate modular 
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“Wavetrapper” intake shapes with enhanced flow starting potential .  Experimental results 

were presented for both full and modular (streamline traced) versions of the Busemann 

intake. Experimental performance of a full Busemann intake was compared by Mölder 

et.al. [1992] against a Prandtl-Meyer intake and an Oswatitsch type intake at a free stream 

Mach number of 8.33 and applications to flight vehicles were suggested by VanWie and 

Mölder [1992].  The above work has shown that, Busemann flow, which is axisymmetric, 

conical and bounded on the upstream by a Mach cone and on the downstream by a shock 

cone, does exist; and that it has characteristics which make it suitable for use as a basis 

for the design of supersonic and hypersonic air intakes.  Some new analytical features of 

Busemann flow are presented in the following sections.  Some new experimental results 

of Busemann flow at a freestream Mach number of 3.00 are found in Section 4.3.2.7 and 

4.3.2.9, below.  

 
4.3.2.1 Description of Busemann flow 
 In Busemann flow, compression from the high freestream Mach number is 

initially isentropic. Only at the lowest Mach number does the flow pass through a shock. 

The shock is weak and produces a downstream flow, which is irrotational, uniform and 

parallel to the free stream. High stream-wise pressure gradients occur in the flow as 

opposed to at the walls. High overall compression and substantial Mach number reduction 

is attained with a high efficiency. As an example: A Busemann intake reduces the Mach 

number from 8.33 to 2.8 with a 

total pressure recovery of 91%. In 

choosing a particular design, one 

can start by specifying the desired 

exit conditions and the efficiency – 

an approach suitable for 

preliminary design selection. 

Alternatively, one can start by selecting a shock pressure ratio low enough to keep the 

boundary layer attached at the shock impingement point and then proceeding by 

considering all intakes satisfying this condition. Another virtue of the Busemann design 

approach is that the surface contours and intake operating conditions are very easily 

Fig. 4.0  
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calculable, allowing ready perusal of multiple design options. Recent CFD studies have 

shown that a given Busemann contour seems to produce a uniform exit flow at two 

distinctly different freestream Mach numbers. This discovery makes the intake suitable 

for use on dual-cycle engines that operate with subsonic or supersonic combustion, 

depending on the freestream Mach number.  This possibility needs further analysis.  

 Schematics of Busemann flow contours are shown in Fig. 4.0. Uniform, parallel 

freestream flow, state (1), from the left, is isentropically compressed from a Mach cone 

up to the shock cone, state (2), and then the flow passes through the conical shock to 

become uniform and parallel flow at state (3). The flow is both axially and conically 

symmetric and irrotational throughout. In passing from state (1) to state (3), the flow is 

contracted and compressed and there is a loss of total pressure at the shock. Detailed 

examination of the shape of the Busemann streamline has shown that the upstream part of 

the streamline is curved towards the centre line and that this is followed by a downstream 

part that is curved away from the axis.  These two portions are then separated by an 

inflection point.  The heavy red lines indicate a cone whose base circle is at the inflection 

points of the Busemann streamlines.  This inflection point cone has special significance to 

the starting of supersonic flow in the intake. 

 

4.3.2.2 Busemann flow theory and intake performance 
 
  Busemann flow and its streamline shape are calculated from the T-M equations 

(4.4) and (4.5).  These equations are integrated with respect to θ  from the front of the 

conical shock (station 2) to the free stream (station 1). To do so requires the starting 

values: u2, v2 and θ2. These have to be specified in such a way that the flow downstream 

of the shock will be parallel to the free stream – this is the most common requirement of 

flow entering a combustor.  This condition must be applied to find the appropriate 

combination of u2, v2, and θ2. Using the Mach number in front of the shock, M2, and the 

aerodynamic shock angle, θ23, the radial and circumferential Mach numbers are: 

     2322 cosθMu =                    (4.9) 

     2322 sinθMv −=                  (4.10) 
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 The flow deflection through the shock is obtained from the equation relating Mach 

number, shock angle and flow deflection through the shock [Anon. NACA Rep. 1135, 

1953, Eqn. 139a]: 
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The angular location of the shock which is the starting value for the variable of 

integration, is then: 

      23232 δθθ −=                  (4.12) 

 Equations (4.4) and (4.5) are then numerically integrated from θ2 to θ1 = π–µ1. 

Since θ1 is not known a priori, the integration is continued until the vertical or cross-

stream Mach number (u sinθ + v cosθ) becomes zero, indicating that the free stream has 

been reached. Note that, prior to integration, we could calculate the intake’s efficiency, 

using the total pressure ratio as measure, 
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and the exit Mach number, 
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where 23
22

2
2 sin θMk = . In fact, we could prescribe a desired efficiency; calculate k 

from Eqn. (4.13); prescribe the downstream Mach number M3 and calculate M2 by 

inverting  (4.14).  Then θ23 = sin-1(k/M2), u2 = M2cosθ23 and v2=M2sinθ23. After this, θ2 

and δ23 are found as above and the integration performed until (u + v cotθ) ≥ 0. The 

ability to specify the downstream Mach number and an intake efficiency, before doing 

the integration, makes this approach particularly suitable for preliminary intake design 

selection. Note, however, that all is not roses, since the integration yields a free stream 

Mach number that may not be the desired one. An iteration, on the input conditions, 

pt3/pt2 and M3, has to be performed to arrive at the desired design Mach number of the 

flight vehicle.  This inconvenience is the direct result of, and the price paid for, the 

convenience and simplicity achieved by assuming a conical flow.  At the free stream 
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condition an infinite number of different intakes are possible at any specified Mach 

number.  This is in agreement with the appearance of the singularity at the freestream 

condition which makes it impossible to start the integration at a specific freestream Mach 

number – an infinite number of streamlines are possible. Proper boundary conditions 

cannot be specified for the freestream. 

Proceeding with the integration of the TM-equations from the initial conditions, as 

chosen above, produces a free-stream Mach number M1.   The results of many such 

calculations are shown in the figure below, each case represented by a dot. For each case, 

a value of M2 is selected, in our case between 1 and 8  and k is cycled from 1 to M2.  For 

each M2 and k the total pressure ratio and M3 are calculated; integration of the T-M 

equations then leads to the freestream at M1 and a point is plotted on a graph of M1 vs. M3 

with pt3/pt1 as parameter, determining the point’s colour. 

 
 
Every point in this figure represents a Busemann intake calculation from the downstream 

shock to the freestream. This graph can be used to select a Busemann intake design based 

on the entry and exit Mach numbers and the total pressure ratio.   Any two of these 

parameters can be used to determine the third.   For example, a Busemann intake that 

reduces the freestream Mach number from 7 to 3 does so with a total pressure recovery of 
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0.95.  This graph represents both components of intake performance, the capability by M1 

and M3 and the efficiency by pt3/pt1.   

 
4.3.2.3 Streamlines and radials in Busemann flow 
 
 When integrating equations (4.4) and (4.5) from the shock, in an upstream 

direction with increasing θ, we find the shape of the Busemann streamline, ( )r f θ= ,  by 

integrating the streamline equation, which, in spherical coordinates, takes the form: 

     dr/dθ = ru/v                                        (4.15) 

Equation (4.15) can be integrated separately from (4.4) or (4.5) since r does not appear in 

either (4.4) or (4.5). Although this equation is not coupled it is most conveniently 

integrated alongside (4.4) and (4.5). The integration is started by assigning a boundary 

value r = r2 = 1 at θ = θ2. The streamline (4.15) then originates from (r, θ) = (1, θ2). 

Other streamlines originate from lesser values of r2 and, keeping in mind conical 

symmetry, are geometrically similar to each other, being scaled, at any θ , by their 

respective values of r2. This important property allows the construction of three-

dimensional (modular) intake surfaces11 by scaling the coordinates of a single Busemann 

streamline. [Mölder and Romeskie, 1968]. The inclination of the streamline ahead of the 

shock is δ2 = -δ23, from Eqn. (4.11).  Progressing upstream, the inclination increases by a 

few degrees (typically 6 to 10) to the inflection point and then decreases to zero at the 

free stream.  It is fortunate that all such integrations, done so far, have always terminated 

with a zero flow deflection, i.e. a parallel free stream flow. If this were not so, then the 

Busemann flow streamline surfaces would not be useful for compressing a uniform 

freestream and acting as the generators for air intake surfaces. No a priori reason has 

been discovered for this fortunate happenstance.12 Note that in Eqns. (4.4) and (4.5) the 

term (u sinθ + v cosθ) represents the Mach number component normal to the axis of 

symmetry. In the freestream this component is zero and also on a freestream Mach wave, 

                                                 
11 The geometry of these intakes is such that overboard mass flow spillage is possible - allowing flow 
starting in high contraction intakes  
12 W-flow, which is briefly discussed below, is an example of Taylor-Maccoll flow that is limited in its 
usefulness because its upstream solution does not end at a uniform freestream but at a more-or-less useless 
singularity where the circumferential Mach number becomes sonic.  
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v = 1, so that in both equations the term (u + v cotθ)/(v2 – 1) becomes 0/0 in the 

freestream. Some algebra shows that Eqns. (4.4) and (4.5) then revert to, 

              du/dθ = v                   (4.16) 

                                  dv/dθ = -u             (4.17) 

which have the solution, 

                u = M1cos θ            and          v = -M1sin θ                 (4.18) 

These define a uniform flow in the freestream direction; thus, the Taylor-Maccoll 

equations are seen to allow a smooth mergence of a variable, conical, Busemann flow 

with a uniform parallel flow. It is also apparent that the integration cannot be started in 

the freestream because equations (4.16) and (4.17) would continue giving  the degenerate 

uniform flow represented by Eqns. (4.18). In fact there is an infinity of solutions starting 

from a given Mach number and a uniform parallel freestream and there is no rational way 

of specifying the boundary conditions at the freestream so as to arrive at a desired exit 

flow.  

 

4.3.2.4 Numerical analysis of Busemann flow 
 The theoretical evolution of Busemann flow is determined by the conservation 

equations, equation of state, a high degree of imposed symmetry and flow steadiness, and 

the question arises as to whether such flow actually exists. We try to answer this by 

calculating the flow inside a Busemann intake with an independent method that is free of 

all the symmetry and steadiness assumptions. We have used SolverII which is a 2D, 

locally adaptive, unstructured Euler solver. Discretization has been performed using a 2D 

unstructured grid generator by Galyukov and Voinovich [1993]. The underlying 

numerical scheme and data structure were described by Saito et al. [2001]. This code 

knows nothing about conical symmetry or steady flow and we will examine its ability to 

simulate both of these features of the Busemann flow as well as of M-flow further down. 

We input the geometry of an axisymmetric Busemann intake duct as calculated by the 

Taylor-Maccoll equation integration, along with its calculated freestream Mach number. 

In the SolverII simulation, the duct geometry was inserted instantaneously into the 

supersonic, Mach 5.77, flow.  An unsteady internal flow resulted that eventually settled 

into a supersonic steady internal flow.  Upper half of Fig. 4.1 shows isobars as calculated 
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by SolverII.  The lower half shows the constant property radials as calculated from the T-

M solution.  Similarity of the two sets of radials shows that the time-asymptotic SolverII 

solution has converged to the conical T-M solution, lending credibility to the existence of 

Busemann flow.  Although the shock is straight and in its proper location, a short 

reflected shock emanates from the surface at the corner. This 

reflected wavelet is due to the finite thickness of the incident 

shock because the shock occupies two to three cell widths of 

computational space, some of which is ahead of the corner 

and some is behind. This leads to a reflected compression 

wave followed by a reflected expansion from the corner. The 

net result is a weak, decaying wave, which projects some distance into region (3).  The 

insert is a zoomed-in view of the radials at the focal point showing that there is a loss of 

conicality, in the upstream flow, near the focus. This deficiency, due to the singular 

nature of the focal point, can be reduced, but not entirely eliminated, by progressive grid 

refinement in the SolverII code.  The grid has been purposely left unrefined to show some 

difference between the benchmark Taylor-Maccoll flow and the SolverII results.  

Closeness of the leading radials at the focal point indicates a rapid change of flow 

properties in this area of flow.  This feature of Busemann flow introduces a unique 

centered axial compression fan that will be discussed further below.   

  The results give us some assurance that steady, conical flow, as posed by the 

Taylor-Maccoll equation, exists in the Busemann intake. In a back-handed way, it is also 

reasonable to have confidence in the ability of SolverII to predict steady internal flow 

with freestanding shocks. Although the existence of such flows can conclusively be 

Fig. 4.1  Constant property lines 
in  Busemann flow 
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proven only by experiment, it is not useful to use experimental results to verify CFD, 

because experimental error usually swamps the accuracy and resolution demanded of 

CFD. It is better to verify CFD against such exact solutions as the Busemann flow. 

Numerical integration of the Taylor-Maccoll equation by a technique such as fourth order 

Runge-Kutta can be made to have arbitrarily small errors and, in this sense, Busemann 

flow can be made exact in such features as adherence 

to conicality, irrotationality, shock location at the 

corner, streamline (body) shape and flow uniformity 

in the downstream flow state. The ability of CFD to 

replicate these features can then be used to judge the 

efficacy of the particular CFD technique. 

 Courant and Friedrichs [1948] pictured 

Busemann flow with straight radial lines from the 

focus to the surface, as shown in the Busemann Intake Figure 4.1 above. From our 

experience in dealing with centered Prandtl-Meyer fans, we might presume these radials 

to be characteristics. This is not so; the radials are lines of constant property value, 

isobars, isotherms, etc. – this being a necessary result of conical symmetry. The shape and 

location of characteristics is more complicated – the subject of the next section. 

 
4.3.2.5 Characteristics and a centered axisymmetric compression fan 
 
 Characteristics are two sets of intersecting lines in supersonic flow. The 

characteristics carry a physical significance in that they delineate the region of space that 

influences flow conditions at a particular point as well as the region of space that depends 

on the flow conditions at a point. The characteristic lines are selected such that along 

these lines the governing partial differential equations become total differential, finite 

difference equations, allowing numerical solutions of the flow-field, [Zucrow and 

Hoffman, 1977]. Alternatively, once a supersonic flow has been established by some 

non-characteristic methods the characteristic lines can be calculated and superimposed 

and inferences about influences, causes and effects can be drawn.  The α and β or C+ and 

C- characteristics are inclined at ± µ to the local streamlines where µ = sin-1(1/M).  In 

polar coordinates the α and β characteristics’ shapes are determined by integrating, 
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Where the plus sign is for the α characteristic and minus is for the β characteristic.  For 

x-y plotting one can integrate the α-characteristics: 

 (dx/dθ)α = r cos(δ + µ)/cos(π/2 - δ - µ)  

                                         (dy/dθ)α = r sin(δ + µ)/cos(π/2 - δ - µ)                               

and the β-characteristics, 

 (dx/dθ)β = r cos(δ - µ)/cos(π/2 - δ + µ) 

  (dy/dθ)β = r sin(δ - µ)/cos(π/2 - δ + µ  

Integration of the characteristics is easily performed inside the routine for integrating the 

T-M equations. This method was used to superimpose characteristics on the T-M solution 

above.  Resulting characteristic lines are shown in Fig. 4.2 for the same Mach 5.77 

intake. The characteristics mesh is an overlay on the Busemann flow.  The α-

characteristics all start from the Mach cone and proceed away from the axis to intercept 

either the surface streamline or the front surface of the shock. The β-characteristics start 

at the surface and proceed towards the axis. The first of these is the free stream Mach 

cone itself, having an inclination µ1 at the axis. At the shock the remaining characteristics 

have an inclination δ2 + µ2, different from µ1. Fig. 4.3 is a schematic showing a 

Busemann contour B1 B2 B3 centered at O with a conical shock OB3 and a streamline 

S1S2  passing through the shock.  Characteristics Cα and Cβ emanate from S1 and S1 is so 

located on the streamline that the Cβ characteristic passes through O.  This characteristic 

intercepts the Busemann contour at B2. 

Fig. 4.2 Characteristics in Busemann flow 
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 An examination of the inclinations of the characteristics shows that 2 2 1α µ δ µ= + −  

which must be greater than zero, because 2 1µ µ>  since 2 1M M< .   The angular region 

α is populated by β characteristics that fan out from O to the Busemann contour along 

B1B2. The fan of β characteristics contained in OB1B2 is a centered, axisymmetric 

compression fan analogous to the Prandtl-Meyer fan in planar flow.  The β-

characteristics from the surface B2B3 (not shown) all intercept the shock OB3 and it 

becomes apparent that a very small, near-apex segment of the shock, is determined by a 

relatively long length of the Busemann intake surface. This large surface-to-shock length 

ratio suggests that the leading edge shape is unimportant in determining the overall shock 

shape. We know, however, that a long leading edge surface length contributes to 

boundary layer growth and viscous losses, so that these two facts provide an incentive to 

truncate the leading edge so as to minimize the sum of leading edge shock and boundary 

layer losses on a practical intake surface. The results presented here give an indication of 

the extent (B1B2) to which the conical shock is influenced by a shortening of the intake 

surface. A study of viscous/inviscid efficiency loss tradeoffs is in order.  Any treatment 

of the centered con-focal compression fan or the free-standing conical shock has not been 

Fig. 4.3 
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found in the open literature.13 An experiment, to expressly demonstrate this flow 

structure is described below.    

 Bi is an inflection point on the Busemann streamline and the green line OBi 

contains all such inflection points.  Rotating this line about the axis produces a conical 

surface containing all inflection points. 

 
4.3.2.6 Inflection point on the Busemann streamline 
 

Although the inflection point is mathematically a part of the general T-M flow, it 

is here discussed under Busemann flow because, of the four types of conical flow, it 

occurs only with Busemann type flow.  An equation for the curvature of the T-M 

streamline is derived to show that the streamline can have points of zero and infinite 

curvature. The Busemann streamline has two points of zero curvature where one of these 

points has significance in the starting of a Busemann-type intake.  A point of infinite 

curvature exists in M-flow as discussed below.  The conical surface containing all 

inflection points in a typical Busemann flow is shown in green  in the sketch above. 

The defining equation of the T-M streamline is, 

     vruddr // =θ       (4.15) 

where u and v are the radial and angular components of Mach number as used in the T-M 

equations.  Taking another θ-derivative of (4.15) gives, 
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In polar coordinates the curvature of a planar curve is [Kreyszig, p.34, 1991], 

   

2 2
2

2

3/22
2

2 dr d rr r
d dD

s drr
d

δ θ θ

θ

 + − ∂   = = ∂    +     

      (4.20) 

Eliminating the derivatives of r with Eqns. (4.15) and (4.19) gives, 

                                                 
13 An analog of this flow exists in planar flow where the region B1B2O is a Prandtl-Meyer compression fan, 
the region B2B3O is then uniform, the shock OB3 is plane and the flow in region 3 is again uniform. 
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In this expression the derivatives dv/dθ and du/dθ are given by the T-M equations (4.4) 

and (4.5) so that the curvature can be written, 
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− +
      (4.22)  

This equation gives the curvature of the T-M streamline in terms of the polar coordinates, 

r and θ, and the radial and polar Mach number components, u and v.  A number of very 

interesting and important features, about the T-M streamline, become apparent from an 

examination of its curvature as given by Eqn. (4.22): 

         1)  D is inversely proportional to r so that when r → 0 then D → ∞.  This means 

that streamlines near the origin of T-M flows are highly curved.  This is a necessary 

condition for flow over a cone, where flow, near the tip and just aft of the conical shock, 

has to rapidly adjust to the inclination demanded by the cone since the flow deflection 

produced by the conical shock is insufficient for the flow to be tangent to the cone 

surface.  Similar highly curved streamlines are to be expected near the origin of 

Busemann and M-flows.  Conical flow is not conically symmetric (i.e. independent of r) 

when it comes to gradients of its dependent variables, such as streamline curvature, – the 

dependence being inversely proportional to r.  This extends to other flow property 

gradients as well. 

        2) There is an asymptotic condition, (D = 0) in the T-M streamlines at v = 0.  For 

flow over a cone, v = 0 at the cone surface.  This confirms that the streamlines become 

asymptotic to the cone surface as they approach the surface.  There is no v = 0 or u = 0 

asymptotic condition in W-flow or M-flow and no v = 0 condition in Busemann flow. 

        3) When u = 0 then D = 0.  This means that the streamline has a point of inflection at 

the place where the radial Mach number is zero.  For flow over a cone and for M-flow the 

condition u = 0 never occurs, so that the streamlines are curved monotonically positive  

for these two flows.  However, for Busemann flow there is a location, θo, where the 

streamline changes from being concave towards the axis (negative curvature) to being 
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convex (positive curvature).  Numerical integrations of the T-M equations have shown 

that θo always lies in the interval θ2 to π/2 (first quadrant) somewhat upstream of the 

Busemann shock as shown by the green line in Fig. 4.3.  Every Busemann streamline has 

an inflection point and these points form a conical surface.    At this angular location the 

flow is everywhere normal to the inflected flow cone surface, whose half-angle is θo and 

a conical normal shock can be placed here since the Mach number is supersonic!  The 

shock could be coaxed into taking up this position by allowing enough mass spillage to 

occur upstream of the inflection location, [Fabri,1958] and by restricting the downstream 

contraction to that allowable by the Kantrowitz criterion for flow starting.  Flow just 

downstream of the conical normal shock is inclined towards the axis.  This is tolerable 

everywhere but not right at the axis since at the axis the flow must be aligned with the 

axis.  This (r → 0)-type singularity is similar to the cone-tip singularity described above; 

its existence, in the idealized form, has not seen confirmation by experiment or CFD.  If 

the contraction downstream of the conical normal shock surface does not lead to choking, 

then the shock would move downstream and the intake would start spontaneously.  This 

feature has not been appreciated for Busemann flow and it has some significance in the 

design of self-starting supersonic/hypersonic air intakes.  It is a conical and axisymmetric 

example of the starting criterion proposed by Kantrovitz for one-dimensional flow, 

embodying the same principle of flow choking downstream of a normal shock where, in 

this case, the normal shock has a conical shape.     

       4) There is a point of inflection also when (u + vcotθ) = 0.  The quantity (u + vcotθ) 

is the component of Mach number normal to the flow axis.  For Busemann flow it is zero 

only where the Busemann flow joins the free stream.  Thus the leading edge of the 

Busemann flow has not only zero deflection but also zero curvature.  Aerodynamically 

this means that the leading edge wave is neither compressive nor expansive but is a zero-

strength Mach wave.  The fact that the entering free stream flow is neither deflected nor 

curved by the Busemann leading edge means that the leading edge of a hypersonic air 

intake, based on Busemann flow, is totally ineffective in producing compression. This 

provides a clear incentive to truncate some length of the leading edge surface so as to 

decrease viscous losses without incurring serious inviscid flow losses.  For M-flow the 

potential appearance of the condition (u + vcotθ) = 0 is prevented by the appearance of 
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the (v = 1)-singularity (described below) so that the down-shock flow never becomes 

parallel to the freestream.  This is unfortunate from a practical viewpoint since it presents 

no possibility of grafting on any of the flows that have a uniform upstream such as cone 

or Busemann flows to the downstream of M-flow.  From a fundamental viewpoint it 

presents an obstacle to the possibility of conical shock reflection at the centre line of 

symmetry.  

        5)  When v → ±1 then D → ∞; the curvature is infinite and the streamline has a cusp 

or a corner.  This indicates a singularity or a limit line.  Neither cone nor Busemann flow 

exhibit such a limit line.  However it does occur in both M- and W-flows.   

       6) The quantity (v2 + u2)3/2, appearing in the denominator of (4.22), is just 3M .  It is 

always a positive quantity for all flows and has no drastic characterizing effect on D 

except to force streamlines to lose their curvature, to straighten out, at hypersonic speeds. 

 

4.3.2.7 Wind tunnel tests on Busemann flow 
 
 Busemann flow was tested in the NRC/NAE hypersonic gun-tunnel at a Mach 

number of 8.33 and a Reynolds number of 15x106/m and in the DRDC trisonic tunnel at a 

Mach number of 3.00 and a Reynolds number of 0.5x106/m.  Tests on M-flow were also 

conducted in the NRC/NAE facility.  Experiments on both the Busemann and M-flows 

were conducted in axisymmetric test models whose surface contours were calculated 

from the T-M equations for axisymmetric, conical and steady flow.14  Model contour 

shapes were corrected for laminar compressible boundary layer displacement.  Both 

Busemann flow and M-flow, as modeled by both the T-M equation, as well as CFD 

analysis, predicted local high gradients in flow properties, including density.  These 

density variations should be visible to any of the conventional optical flow visualization 

techniques used in supersonic tunnels. Evidence of such high gradients was sought in 

experiments and CFD results.   
 
                                                 
14 Attainment of flow with axial symmetry is advantageous in aerodynamic testing of internal flows because 
it eliminates the uncertainties caused by ‘end effects’ that plague experiments on shock interactions in 
planar flows.  Its disadvantages are that it offers short optical light paths through density gradients so that 
weak disturbances become hard to detect and the axial solid surfaces are often impediments to optical flow 
visualisations. 
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4.3.2.8 Busemann tests in the gun-tunnel at Mach 8.33 

 
An axisymmetric Busemann intake was constructed and tested in the NRC/NAE 

hypersonic gun-tunnel.  The test 

model was designed for the tunnel 

Mach number of 8.33. It has a 

circular intake of 2.2 in. diameter 

and a Busemann contour length of 

11.8 in.  Its design exit Mach 

number is 5.39 with a 

compression ratio of 15.55 and an 

area contraction ratio of 6.71.15  

Solid curve in Fig. 4.4 shows the 

theoretical surface pressure 

distribution.  “Equation 1” refers 

to the T-M equation result.   

There is a smooth increase in 

pressure along the compression 

surface until the conical chock 

causes a pressure jump at 11.80 

in.  After the jump the pressure 

levels off in the constant area section.  First measurements (open circles) showed a 

higher-than-theoretical surface pressure distribution.  A boundary layer displacement 

correction was applied and the pressures, now shown by solid circles, showed good 

correspondence with theory.  The boundary layer effect on the exit pressure is significant 

in that it causes a pressure rise from 16 to 22 – a rise of 38%.  Although the Busemann 

                                                 
15 This area ratio is far above the spontaneous starting value of 1.67 so that the intake would not start under 
steady-state conditions.  However, the transient starting flow in the gun-tunnel nozzle is such that, in 
sweeping through the model, it causes supersonic flow starting in the model.  This fortunate flow behaviour 
makes it possible to test high contraction intakes in gun-tunnels where they would not start in steady state 
wind tunnels. 
 

Fig. 4.4 
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wave structure had not been seen by any optical means, this was good evidence for 

Busemann type flow to exist.  

 
4.3.2.9 Busemann tests in the wind-tunnel at Mach 3.00 
 
 A solution of the T-M equation for the Busemann flow shows a leading edge 

region of surface that causes a set of compressive confocal characteristics (CCC) to focus 

at the origin of the conical flow. This is followed by a region of non-uniform conical 

flow, in turn followed by a freestanding conical shock (as described above).  Such 

axisymmetric flow structure has not been previously observed, at least not where it has 

been purposefully designed to meet specific criteria.  This section describes an 

experiment to demonstrate the existence of CCC as well as the conical shock, both 

designed to specific criteria.  The aim is to show that a reflected conical shock can exist at 

the centre line even though the incident wave is not a conical shock but a compression 

wave.  Whatever prevents a conical shock/shock reflection is thus absent in the case of a 

CCC/shock reflection and one should then be able to compare the flows produced by a 

conical incident shock and by the CCC to see what prevents a conical reflected shock 

from forming in conjunction with a conical incident shock. 

 A solution of the T-M equations was performed as described above for Busemann 

flow above for the full Busemann intake.  At the upstream side of the conical shock the 

Mach number was set at 1.800 and the aerodynamic shock angle at 42.88 degrees.  These 

produced a normal-to-the-shock Mach number of 1.225.  Integration of Eqns. (4.5) and 

(4.6) produced the Busemann streamline coordinates and the freestream Mach number 

2.998.  The coordinates were corrected for a laminar, compressible, axisymmetric 

boundary layer.  Rotating the corrected streamline around the axis of symmetry created a 

leading edge portion of the Busemann intake surface. 

A length of the leading edge portion of the surface was chosen such that the 

resulting internal contraction would allow the internal flow to start at a tunnel Mach 

number of 3.0 and such that the duct would be short enough to expose the focal point to 

the schlieren beam in the downstream flow.  This required a 20 cm diameter duct with a 

length of 20 cm.  The duct is shown mounted in the DRDC Trisonic Wind Tunnel on four 

swept support arms, Figs. 4.5 and 4.6.  
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Fig. 4.5 

Fig. 4.6 
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Referring to the interpretive sketch, Fig. 4.7, CCC is contained in the region B1B2X1.  All 

the characteristics from B1B2 focus to X1.  Characteristics from B2 to Ba impinge on the 

front of the conical shock from X1 to Sa.  The calculated Busemann streamline is shown 

extending from Ba to B3.  In the experiment there is no such streamline and a wake forms 

instead behind the base of the truncated profile.  The whole flow is axisymmetric and, in 

the whole region B1B2BaSaX2X1, it is conical as well.  The theoretical Mach number 

behind the apex of the shock is 1.48. The static pressure is 10.10 times the free stream 

pressure. The Mach number upstream of the shock is 1.80 (the flow is inclined towards 

the shock and the axis). The total pressure recovery across the shock is 0.992. Normal 

Mach number is 1.22.  Figure 4.8 shows a CFD SolverII simulation of the flow-field in 

and around the model.  At the centre line the shading shows an incident compression 

followed by a distinct conical shock. Figure 4.9 is a schlieren picture of the flow at the 

exit of the model at a tunnel Mach number of 3.00.  Flow is from left to right.  The exit 

diameter covers the height of the picture.  Two X-shaped wave structures are apparent at 

the exit of the duct in the middle of the picture.  The downstream structure has two left 

Busemann ring in Mach cone Fig. 4.7  
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branches that represent the leading portion of an axisymmetric expansion emanating from 

the trailing edge of the Busemann ring.  This wave reflects from the centre line as an 

axisymmetric expansion and it is of no direct interest.  The upstream X-shaped wave 

structure emanates from the Busemann contour.  The upstream branches represent the 

conical confocal compression fan.  The leading wave of this fan originates at the leading 

edge of the Busemann ring and the trailing wave is the last wave of the CCC.  Waves 

downstream of this do not go to the focal point but meet the conical shock along its 

length.  

 

        

 
 
 

 

Fig. 4.8 

Fig. 4.8a 

Figures 4.8a-d are CFD simulations of the Busemann ring as rendered in a simulated colour 

schlieren, constant Mach number contours, pseudo-schlieren and shadowgraph. 

Fig. 4.8b 

Fig. 4.8c 
Fig. 4.8d 
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The long arrow points to the focal point where the converging compression fan and the 

free-standing conical shock meet.  The short arrow points to the centered conical 

compression fan. The analytically predicted Busemann flow and its features have been 

confirmed by both CFD and experiment.  The approach presented here is the only method 

for establishing a centered axial compression and a conical shock at the centre line in a 

steady flow. 

 
4.3.3 M-flow experiments and CFD results 
 
 The leading edges of hypersonic air intakes are designed with some degree of 

bluntness to cope with high rates of heat transfer.  Bluntness causes flow deflection and 

leading edge shock waves, which get captured by the intake, to focus at the centre line, 

producing flow distortion and efficiency losses in the intake flow.  Converging and 

interacting shocks, particularly at centre lines of axisymmetric flow, produce Mach 

reflections and complex flow structures which are difficult to predict and control.  The 

one-to-one correspondence that exists between a shock and its uniform, deflected flow for 

planar shocks does not exist as soon as the shocks become axisymmetric and curved.  

Curved shocks produce curved streamlines and flow property gradients.  Internal flow 

theories of curved shocks are plagued by singularities.  M-flow is a one-parameter, 

axisymmetric, conical, internal flow that has been discussed by Mölder (1967) and Rylov 

(1990).  Its inherent axial and conical symmetry makes it simple to analyze and an ideal 

Fig. 4.9 
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candidate for generating intake leading edge surfaces for non-planar intakes. M-flow is 

examined in some detail because it is an example of flow and shock wave structure 

caused by flow deflection at the internal leading edge of an axisymmetric intake.  A polar 

coordinate system ),( θr  is used where u and v are the Mach number components in the 

r  and θ  direction so that 222 vuM += .  M-flow occurs behind an axisymmetric conical 

shock, with a downstream-pointing apex, sitting in a uniform upstream flow.  It is 

supported by the inside surface of a ring that deflects the flow towards the axis of 

symmetry (see Fig. c in Sec. 4.1). This flow occurs at the sharp leading edge of an intake 

cowl where the leading edge angle is finite.  

Boundary conditions for M-flow are the same 

as those for cone flow except that the shock 

angle now lies in the second quadrant, in the 

angular range π/2 to π - µ1.  The integration 

proceeds with a decreasing θ (clockwise) and, 

for all the cases calculated, always ends up at a 

singularity (limit line) where v = -1.  At this 

value of θ the streamlines have a kink (corner) 

or a cusp where the flow turns back on itself.  

This is a physical impossibility, indicating that the assumptions of conservation of mass 

and energy, the momentum balance, the equation of state, inviscid flow, axisymmetric 

flow, conical flow and a smooth streamline cannot all be locally satisfied at some value of 

θ.  At the singularity, Eqn. (4.22) predicts an infinite curvature – a sharp corner.  A 

centered Prandtl-Meyer fan would normally occur at such a corner.  We have named this 

type of flow ‘M-flow’ because the shock and the surface shape resemble the letter M 

when rotated 90 deg counter-clockwise.     Computational and experimental M-flow 

results are in Sec. 4.3.3. 

 We assume the physical existence of an axisymmetric conical shock, in uniform 

flow, where the apex of the shock points in a downstream direction and the flow is 

directed into the shock cone, Fig. 4.10. Conical M-flow is in the region oad.  Shock is at 

θs.  M-flow streamline ad causes straight shock oa.  Flow accelerates from a to d reaching 

v = -1 at the singularity at θ*.  df+ and df- are the (+) and (–) characteristics through d.  

 

  
 

  

Fig. 4.10 
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Inclination of the shock with respect to the free-stream direction is everywhere the same, 

so that the shock is of uniform strength. Hence, conditions immediately behind the shock 

are everywhere the same and the downstream flow is irrotational and both conically and 

axially symmetric.  Conicality implies that flow quantities remain constant on the surface 

of con-focal cones while changing from cone to cone in a downstream direction.  As 

pointed out above, such flows are governed by the T-M equations and, for M-flow, their 

integration is started at the back of the shock, with θ in the second quadrant, at the shock 

angle θ12 and a free-stream Mach number, M1,. The initial Mach numbers u and v are 

found from Eqns. (4.7) and (4.8) and they are both negative immediately behind the 

shock.  Concurrent integration of the streamline equation, (4.6), produces a smoothly 

curving convex internal M-flow surface ad, with the surface Mach number slowly 

increasing in the downstream direction along the surface from a to d.  All other 

streamlines in the M-flow region are similar to ad and scale geometrically linearly with 

distance from o. As the integration proceeds downstream from the shock, with decreasing 

θ, the v-Mach number soon reaches -1, leading to infinities in both du/dθ and dv/dθ, at an 

angle θ*, as is evident from Eqns. (4.4) and (4.5).  Any forced continuation of the 

integration downstream of the singular cone, θ*, leads to scattered results that depend on 

just exactly how the singularity is numerically over-stepped.  The rapid change in v, at the 

singularity surface, suggests the presence of a shock wave where the Mach number 

component normal to the shock is discontinuous across the shock.  However, the 

singularity surface cannot be a shock because its normal Mach number component is one 

and, furthermore, the rapid change of properties approaching the singularity is expansive 

rather than compressive.  Concurrent integration of the C+ and C- characteristics is 

discussed below.  The characteristics are also self-similar.  The C+ characteristic df+ 

forms one of the boundaries of the region adf+ whose disturbances can influence 

conditions on the surface ad.  It intersects the singularity at an angle 2μ at d.  The C- 

characteristic df- is a boundary to the region adf- whose properties determine the shape of 

the shock af-.  The C- characteristic intersects the surface at the point where the 

singularity intersects the surface and it is tangential to the singularity at this point.  The 

shock from f- to o is determined by the C- characteristics originating on od; these all being 

tangential to od.  In fact, it is the surface singularity point d that determines the shock 
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from o to f- since no characteristics from downstream of d can penetrate the singular line 

od – at least not in conical flow.  This peculiar behavior in supersonic flow casts some 

doubt on the existence of conical flow behind a concave conical shock.  For this reason it 

is suspected that the problematics of the singularity and the questionable existence of 

regular shock reflection at the centre line are causally connected.  If M-flow exists in the 

whole region oad then the conical shock has to proceed to the centre line, as shown in the 

figure above, and for conical flow to exist at the centre line there has to be a conical 

reflected shock there.  Such ‘regular reflections’ are common in flow with planar shocks 

[see Ben-Dor, 2007].  Although regular reflection of shocks has been produced at the 

centre line for cylindrically collapsing shocks, in unsteady flow, and seemingly also for 

weak shocks in steady flow [Hornung (1999)], there are claims that RR is not possible at 

the centre line in steady flow [Rylov (1990)].  

 The first question then is, does the M-flow with a conical shock and a 

downstream conical flow really exist?  In particular, does the shock extend from the 

leading edge all the way to the centre?  The T-M equations pose no objections.  One is 

also prompted to ask whether such singularities with high gradients really exist in the 

flow or are they just some kind of mathematical artifacts arising from the enforced 

symmetry or are the gradients inimical in themselves in forcing an end to the existence of 

downstream continuance of axial or conical symmetry or steady flow.  The remainder of 

this section presents a T-M solution for the ideal M-flow including the surface shape and 

the surface pressure distribution.  This surface shape is then used in the Method of 

Characteristics to calculate a new surface pressure distribution.  As with the Busemann 

flow calculation, the MOC is not aware of the conicality assumption inherent in the T-M 

solution for M-flow.  The Solver II code is used in a similar manner to calculate the 

surface pressure distribution as well as the internal flow over the M-flow contour.  Solver 

II is not informed of either conicality or the existence of a final steady state M-flow.  

Only axial symmetry is imposed. 

 

4.3.3.1 Characteristics on M-flow contour 

 In the previous section a characteristics mesh was superposed on an M-flow flow-

field solution without asking whether such a flow existed in the first place.  In this section 
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an MOC solution is done on an M-flow surface contour.  The purpose is to seek a 

numerical confirmation of M-flow as calculated from the T-M equations.  An M-flow 

surface was first calculated by a T-M solution for a shock angle of 140 degrees at a 

freestream Mach number of 5.    

   The surface coordinates were input into a Method of Characteristics program that 

had been developed by M. L. Snow (1966) of the Applied Physics Laboratory of The 

Johns Hopkins University (JHU/APL) 

especially for the calculation of 

internal supersonic flows.  A similar 

MOC code by V. L. Sorensen (1965) 

was used as well.  The latter method 

had to be adapted for internal flow.  

The Mach number variations on the 

M-flow surface is labeled as ‘Exact’ 

when calculated by solving the T-M 

equations (4.4 and 4.5).  The two 

characteristics methods of Sorensen 

and Snow are shown as circles and 

crosses.  There is excellent 

correspondence between the exact T-M and both MOC results for the surface Mach 

number distribution, differences being no more than 0.02 of a Mach number.  All methods 

terminated at the predicted location of the surface singularity θ = θ*.  The T-M calculation 

stopped because both du/dθ and dv/dθ approached infinity.  The MOC methods stopped 

and the calculation could not proceed because the characteristic from the surface 

singularity overtook the previous characteristic of the same family at the shock wave.  The 

MOC stopped just before – typically 0.1 deg in front of the singularity. The MOC results 

have confirmed the T-M analysis for predicting the M-flow surface shape as well as the 

flow properties on it.  But they have also indicated that there is a problem at the 

singularity – at least in continuing the calculation further with MOC as well as with T-M. 

 

Fig. 4.11 
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 The point, on the shock, (R-), where the overtaking occurred in the MOC methods 

of Snow and Sorensen, was short of the centre line and the singularity.  This indicated that 

the region of influence of the M-flow surface was bounded by the surface s1s2, the last 

calculated characteristic from the singularity, s2R-, and the shock, s1R- as in the figure 

above.  More significantly, only the portion of the shock from s1R- was determined by the 

surface, the remainder, R-o, up to the centre line was not influenced by the M-flow 

surface.  The T-M solution predicted that the shock segment from R-  to o  is determined 

by characteristics similar in shape to s2R-, starting from somewhere on the singularity 

between s2 and o.  Characteristics that started from a surface point just downstream of s2, 

overtook the previous characteristic at the shock, tending to form a secondary shock there.  

This shock would overtake and 

strengthen the straight shock 

coming from the leading edge.  

The leading edge shock would 

become curved and the flow 

behind it would become 

rotational.  The two MOC 

methods were now trying to 

indicate that M-flow could be 

expected to be confined to the 

region s1s2R- and not to extend 

throughout s1s2o as predicted by 

the T-M solution.  It was 

interesting to note that the two 

MOC’s, that ‘knew nothing’ about the singularity proceeded through it without difficulty 

encountering a problem only at the shock.   

 

4.3.3.2 M-flow experiments in the guntunnel at Mach 8.33 and CFD 
results 

A series of experiments were conducted in the Mach 8.33 Gun Tunnel at the 

National Aeronautical Establishment of the National Research Council in Ottawa in an 

attempt to demonstrate the existence of M-flow and to discover the physical nature of the 
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flow near the singularity as well as at the centre line.  The challenge was to discover what 

happens to conical shocks, reflecting off the centre line, at shock angles that produce well 

understood reflections of planar shocks at a plane wall.  Three different M-flow surface 

rings were constructed that, at a free stream Mach number of 8.33, would produce shock 

angles of A = 145.0, B = 153.7 and C = 170.5 degrees with corresponding flow deflection 

angles of a = -30.45 deg, b = -19.27deg, c = -3.69 deg.  Figure 4.12 shows pressure-flow-

inclination polars for regular and Mach reflection at Mach 8.33.  Red polar is for the 

incident shock (I).  Incident shock angles for the other polars are: (A) green 140.3; (B) 

blue 153.7; (C) purple 170.5.  Conditions for regular reflections are indicated where the 

reflected shock polars cross the flow inclination = 0 axis, typically ar.  Mach reflections 

occur where the reflected (A, B, C) and incident (I) polars intersect, typically am.  These 

particular shock angles were chosen to produce for, A, a Mach reflection am; for B, the 

von Neumann reflection condition where both regular and Mach reflection can 

theoretically exist at brm with no flow deflection through the point of reflection; and for 

C, a very weak incident shock reflecting regularly as a very weak shock at cr or as a 

Mach reflection with a strong reflected shock at cm.  The polar intersections are 

representative of conditions that occur with planar shocks.  In our search for conical 

shocks that would regularly reflect at the centre line we would be on the look-out for 

conditions represented by ar, brm and cr since these yield zero net flow deflection as 

demanded by the centre line boundary condition. 

Numerical values for the polar intersections are given in the following table where 

the subscripts 1, 2 and 3 refer to conditions in front of the incident shock, behind the 

incident shock (same as in front of the reflected shock) and behind a reflected shock. In 

all cases the reflected shock is assumed to deflect the flow back to the freestream 

direction.  Conditions are based on reflection of planar shocks where the inter-shock 

space is uniform.  
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4.3.3.2(A) The 145 deg shock 
  An axisymmetric M-flow tunnel model was constructed for a freestream Mach 

number of 8.33 to produce a conical shock with a shock angle of A = 145.0 deg.  The 

model was tested in the National Research Council’s Gun Tunnel.  Polar A in Fig. 4.12 

represents the possible pressure/deflection conditions behind the reflected shock.  Figure 

4.13a shows a schlieren picture of the flow as it emerges from the M-flow ring.  

Freestream flow comes from the left.  The incident shock, generated by the M-flow 

surface, appears to be axisymmetric and conical.  However, it does not extend to the 

centre-line but, rather, terminates at a triple-shock confluence off the flow axis and, 

clearly, the regular reflection condition ar, as demanded by the centre line, does not 

appear.  The triple-point is the intersection of the incident shock, the reflected shock, a 

Mach shock (Mach disc) and a shear layer – a typical Mach interaction designated by am.  

The Mach disc appears to be flat and normal to the flow (more about this later).  Both the 

reflected shock and the shear layer have a definite positive curvature – their angles 

increase with distance from the triple point.  The shear layer is inclined towards the centre 

 SHOCK A B C 

M1 I 8.33 8.33 8.33 

θs (deg) I 145.0 153.7 170.5 

M2 I 2.56 3.97 7.42 

p2/p1 I 32.86 15.72 2.04 

δ1 (deg) I 0 0 0 

δ12 (deg) I -30.45 -19.87 -3.69 

p3/p1  R 200 ar 80 br 4.0 cr 

p3/p1  M 79 am 80 bm 75 cm 

δ2 (deg) Rm -30.45 arm -19.87 brm -3.69 crm 

δ3 (deg)  R 0 ar 0 br 0 cr 

δ3 (deg)  M -16 am 0 bm 34 cm 

δ23 (deg)  R 30.45 ar 19.87 br      3.67 cr 

δ23 (deg)  M 14.45 am 19.87 bm      37.7 cm 
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line.  No sharp density gradient is observed just downstream from the incident wave, 

where the singularity is predicted to lie.  Dark and light shadings in front of the incident 

shock and elsewhere are not indications of density gradients but are merely optical effects 

of schlieren due to the circular shape of the discontinuities.  Fine lines are contours 

produced by the CFD calculations of Solver II.  Conical flow, mostly hidden by the ring, 

seems to come from the leading edge but it clearly breaks down at the centre line.  Since 

the shear layer is angled towards the centre line at the triple point, it must be that the 

Mach disc is angled there as well and it cannot be normal to the free-stream flow.  The 

Mach disc is of the strong shock family.  That is why its inclination is small and hard to 

detect because a strong shock wave angle is close to 90 degrees, even for substantial flow 

deflections through the shock.  The flow appears top-to-bottom symmetric so there is a 

good possibility that it is also axisymmetric. 

 
 

 

 

 

Fig. 4.13(A)  M-flow at a free stream Mach number of 8.33, coming from the left and 
passing through a 145 deg conical shock.  Superimposed contours are calculated 
constant density lines; their coalescence indicates shock waves.  Picture shows a 
prominent Mach reflection with distinctive shear layer around the centre line.  The 
density contours have been zoomed to fit the schlieren picture at the diameter of the 
Mach disk. 
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We conclude that a 145.0 deg conical shock does not reflect regularly off the 

symmetry axis.  Instead, a Mach reflection is formed off the centre line.  Flow at the triple 

point of this Mach reflection is turning towards the axis, as predicted by the triple point 

solution on the shock polar.  There is good agreement between experiment and CFD, both 

showing that RR does not occur at the centre line for a conical incident shock.  

 

4.3.3.2(B) The 153.7 deg shock16  
If we think of moving the triple point closer to the centre line, without changing 

its geometry, then eventually, the inward flow turning at the triple point can no longer be 

tolerated by the centre line because axial symmetry requires that the flow inclination be 

zero right at the centre line.  So, is this the reason for cessation of conical flow and 

regular shock reflection at the centre line?  To answer this, we construct an M-flow 

surface that produces a shock that reflects in von Neumann reflection at the centre line 

(Molder 1967, Henderson 1990, BenDor 2007).  The von Neumann reflection is a unique 

form of Mach reflection where the Mach disc is truly normal to the flow at the triple point 

and the flow deflection behind the triple point is zero, which makes it compatible with the 

zero flow deflection required by the centre line.  

 Von Neumann reflection occurs at a unique shock angle determined by the 

freestream Mach number. For  Mach 8.33 the incident shock angle at the von Neumann 

reflection condition is 153.7 deg.  The incident shock state is represented by polar B in 

the polar diagram Fig. 4.12.  The von Neumann condition is at brm where the flow 

inclination aft of the reflected shock is zero.  In this configuration, the triple point should 

be transportable to any location on the incident shock – including the centre line.  The 

axisymmetric slip layer, now in the shape of a constant radius cylinder, would, in the 

limit, as the triple point is moved to the centre line, become a cylinder of zero diameter, to 

                                                 
16  For any kind of shock reflection to occur the incident shocks must always be in the ‘weak shock’ 
category because the flow behind strong shocks is subsonic and thus unable to sustain a reflected shock.  
That is, they must produce a pressure ratio that lies on the lower pressure branch of the pressure-deflection 
polar.  For our purposes we further divide the lower pressure branch into ‘very weak’ and ‘weak’ shocks.  
The very weak are the shocks which, on Mach reflection, would produce a positive net flow deflection and 
the weak ones would produce a negative deflection.  The two types are separated by the incident shock 
strength that produces no net flow deflection on Mach reflection.  This condition is called the von 
Neumann (vN) condition.  
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merge smoothly with the centre line.  For this as well as the previous case there is nothing 

derivable from the oblique shock relations that would indicate that RR is impossible at the 

centre line.  An M-flow surface for this shock angle was calculated, machined and tested 

in the gun tunnel.  The schlieren picture of the flow is shown in Fig. 4.13(B). 

 
  

The Mach disk is now smaller than for case A, and the flow behind it appears to be less 

inclined to the centre line.  However, there is a noticeable positive curvature on the 

incident shock, as it nears the triple point - it is no longer conical and so the flow behind it 

cannot be conical.  Conical flow has broken down and the higher shock angle has taken 

us away from the von Neumann condition at the triple point.  Axially the flow appears 

symmetric.  Experiment and CFD are in good agreement in indicating that the attempt to 

experimentally coax the triple point to the centre line, by using the von Neumann shock 

interaction condition, has failed and there is still no appearance of any drastic density 

change at the predicted location of the singularity.                         

 A number of questions arise:  Where exactly does the conical flow break down?  

Why and how does it break down?  Conicality does not vanish for cone flow or 

Busemann flow – why does it break down here?  Why does conical and not axial 

symmetry break down? Since a singularity does not appear in cone flow or Busemann 

flow, is the breakdown caused by the singularity that occurs in conical flow theory for M-

flow?   

Fig. 4.13(B) M-flow at Mach 8.33 from the left passes through a shock at 153.7 deg. 
(the von Neumann angle).Contours are lines of constant density calculated by Solver II. 
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So far experiments have shown that both a conical shock of the weak family (A) 

and a von Neumann shock (B) reflect off the axis in Mach reflection.  In both cases a 

Mach shock interaction has appeared at some distance from the flow axis of symmetry.  

The von Neumann shock curves towards the axis and acquires a strength above the von 

Neumann strength so that it deflects the flow toward the axis.  No high flow property 

gradients are observed at the predicted location of the singularity.  There is a definite 

discrepancy between experiment and predictions of the T-M conical flow analysis. 

 

4.3.3.2(C) The 170.3 deg shock     
Schlieren and shadowgraph pictures of supersonic flow exiting from axisymmetric 

nozzles have shown what appears like regular shock reflection at the centre line [Hornung 

(1999)].   Invariably, the nozzles have been fully or near-fully expanded, so that the 

shocks have been weak and the approach flow has been non-uniform.  In a hypersonic air 

intake, the leading edge shocks should be weak also, so that the study of reflection of 

such shocks is relevant to hypersonic intake design.  It was decided to produce a weak M-

flow shock to see if it would reflect regularly at the centre line.  An M-flow surface was 

constructed for Mach 8.33 and a shock angle of 170.5 deg, producing a shock-normal 

Mach number of 8.33sin(170.5) = 1.36 – a weak shock, yet strong enough to show up on 

schlieren.  The pressure-deflection polar, for this shock angle, is the purple curve (C) on 

the (p,δ)-plot in Fig. 4.12.  This polar shows that a very weak, regularly reflecting (zero 

net deflection), shock could occur at cr with an overall pressure ratio of 4.0 or a Mach 

reflection could occur with a net flow deflection of 0.593 rad (34 deg) and a pressure ratio 

of 78 at cm.  The cr point is compatible with the apparent regular reflections at the centre 

line.  The cm point indicates a flow deflection away from the centre line at the triple 

point.  It could be compatible with the experimental observations only if the Mach disc 

would be ‘too small to be seen’.  A Mach disc at cm would require a shock angle less 

than 270 deg at the triple point.  In turn, this would force the Mach disc to be convex 

toward the upstream flow.  We seek to discover what happens at weak conical shock 

reflection at the centre line by both experiment and CFD simulation - specifically to 

determine whether the reflection is regular (cr) or of the Mach type (cm) or possibly 

something else. 
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A schlieren picture of flow produced by the M-flow ring is shown in Fig. 

4.13(C).  The measured incident conical shock is at an angle of 170.3 deg, compared to 

the predicted value of 170.5 deg, showing that the calculated M-flow surface does 

produce the required strength axisymmetric shock.  The calculated Mach number 

behind the shock is 7.42 and the flow deflection through the shock is -3.69 deg.  If a 

planar reflected shock, with this Mach number in front of it, causes a flow deflection of 

+3.69 deg (back to the free stream direction), it would require a shock angle of 10.5 

deg.  The shock angle, measured off the schlieren picture, is 10.6 deg. Thus it appears 

that weak conical shocks reflect off the centre line just as weak planar shocks - at 

least so it appears in the far field where angular measurements of shock inclination can 

be made with some assurance of accuracy. On the schlieren picture, all shock traces 

appeared to meet at a single point and, in the near field, the experiment did not resolve 

a Mach disc.  It remained for high resolution CFD to find the Mach disc, if it existed. 

 

 

 

 

Fig. 4.13(C)  M-flow    Mach 8.33    θ = 170.3 deg 
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SolverII CFD code was used to simulate flow in the M-flow ring for the (C) 

model configuration.  CFD calculations produced a quite straight incident shock cone at 

170.3 deg and a reflected shock cone at 9.7 deg.  The two shock cones appeared to reflect 

regularly at a point on the centre line with no trace of a Mach reflection.  Further 

calculations with SolverII, at several levels of grid refinement, produced a 25,000-fold 

magnified picture of the zoomed-in centre-line region.  This magnification shows a Mach 

reflection with a slightly curving incident shock with an angle of 153.4 deg!  This is the 

von Neumann shock angle for Mach 8.33.  The shear layer does not seem to deviate much 

from being parallel to the flow’s axis of symmetry.  It seems that the reflected shocks and 

the associated flow have by themselves sought out the von Neumann shock reflection 

configuration – the Mach reflection structure that is compatible with the boundary 

condition at the centre line.  This allows us to predict the reflected shock angle for such 

weak shock reflections.  In fact, the reflected shock angle is that predicted by the von 

Neumann triple point solution for the triple point at the von Neumann condition.  Sine the 

von Neumann condition is dependent only on the freestream Mach number, the reflected 

shock angle also does not depend on the initial shock strength for very weak incident 

shock waves in axisymmetric flow.        

In axisymmetric internal flow, shocks approaching the axis of symmetry (centre 

line) always reflect as Mach reflections.  Very weak shocks (those below vN strength) in 

Fig. 4.14 
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axisymmetric flow tend to strengthen as they approach the axis to become of vN strength.  

There they reflect at a very small (‘too small to be seen’) Mach reflection at vN strength, 

very near the axis, to give a reflected shock at the vN strength with a net flow deflection 

close to zero.  Weak shocks, above vN strength, reflect also as Mach reflections but now 

of sizable (visible) proportions off the axis, producing a negative net flow deflection 

(towards the axis).  CFD methods exist for the prediction of both very weak and weak 

shock reflections.  Very fine computational grids have to be used to detect the ‘too small 

to be seen’ reflections of very weak shocks.  No analytical or semi-analytical theories 

exist for predicting reflection of either very weak or weak shocks.     

 
4.4 Concluding remarks   

The Taylor-Maccoll equations are recast and presented in terms of Mach number 

components.  Their solution is applied to the calculation of internal, conical, 

axisymmetric flow, which can be used as the basis for designing air intakes for high 

Mach number air breathing engines.  Computational and experimental proof is presented 

for the existence of internal conical flows in the Busemann and M-flow configurations.  

The assumption of conical symmetry holds for flow over a cone and for Busemann flow, 

but it does not hold for M-flow near the axis of symmetry. 

 Busemann flow contains four unique fluid mechanical features: a) internal flow 

with an inflected surface, b) a free-standing conical shock, c) an axisymmetric centered 

compression fan and d) a flow process from a uniform flow to another uniform flow.  All 

these features are significant if the Busemann streamtube is used as a basis for design of 

engine air intakes.  M-flow is another type of internal flow that can represent part of an 

intake surface.  It also contains two interesting fluid mechanical features: a) a singularity 

and b) an example of convergent supersonic flow with a decreasing pressure.  It is 

suitable as a leading edge shape that produces a conical internal shock wave.  Both 

Busemann and M-flow carry conical shocks that either diverge from or converge towards 

the centre line of symmetry.  The study of such shocks is important in their application to 

intake flows as well as to understanding the basics of reflection and interaction of curved 

shock waves. 
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   The Taylor-Maccoll equations point to the existence of a confocal, conical, 

compression fan - the axisymmetric analogue to a Prandtl-Meyer fan.  Such a fan of 

coalescing characteristics, preceding a free-standing conical shock, is shown to exist 

experimentally as well as by CFD calculations. 

 Despite a focused search, no analytical, computational or experimental evidence 

was found for the possibility of regular shock reflection of incident shocks at the centre-

line of symmetry. 
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Chapter 5 
Hyperbolic Shock wave 
 

Contents 
 5.1   Introduction 
 5.2   Geometry of the concave hyperbolic shock 
 5.3   Flow properties behind a curved shock 
 5.4   Streamlines behind hyperbolic shock 
            5.5   Orientation of sonic line behind the shock 
 5.6   CFD results 
 5.7   Conclusions   
     
  

5.1 Introduction 
 In the design of supersonic airplane and air intake shapes, for specific 

performance, it is useful to begin with a known shock wave shape and flow-field and from 

these deduce the required wall shapes.  These are design methods referred to as “Wave 

Rider” or “Wave Trapper” techniques.  Questions then arise as to the nature and existence 

of flow behind a given known shock shape.  This is particularly pertinent to supersonic air 

intake flows where doubly curved concave shocks are likely to exist and where the quality 

of the downstream flow is of importance but less well understood than external flows. 

     The left lobe of a hyperbola of revolution shape is proposed as a particular 

example of a doubly curved, concave axisymmetric shock surface.  It offers an 

analytically simple surface for the study of pressure gradient and flow curvature effects on 

shock detachment and reflection where the cumulative effects of both shock curvatures are 

present. Such shock shapes are physically plausible for internal, converging flow and 

Mach disk shapes.  Existence of simple analytical expressions describing the inclination 

and curvatures of the hyperbola lead to equally simple, explicit, analytical expressions for 

gasdynamic properties and their gradients downstream of the hyperbolic shock wave. The 

concave, hyperbolically shaped shock in both planar and axial flow is investigated 

analytically with oblique shock theory as well as curved shock theory to discover any 

tendency towards the formation of a shock wave in the flow immediately behind the 

hyperbolic shock.  If such a shock appears, and impinges on the back of the hyperbolic 
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shock, then there would have to be a kink in the originally posed smooth shock and a 

Mach interaction would ensue.  The onset of Mach interaction, at the sonic point is shown 

to depend on the freestream Mach number and the ratio of shock curvatures.   Critical 

roles are attributed to both the subsonic patch of flow behind the strong portion of the 

shock and to the orientation of the sonic surface at the shock.  There is much experimental 

evidence of the existence of strong concave shock waves in the studies of Mach reflection 

where such shocks constitute the Mach stem.  No experimental or CFD examples of 

continuously curved concave shocks that span both the weak and strong shock range have 

been found, probably because the enclosing ducts have to have very special shapes.  Such  

 

surface shapes (both planar and axial) are presented here, together with their analytical 

and CFD-generated shock shapes.  Background material, covering theory related to sonic 

line orientation for convex, planar shocks can be found in [Hayes and Probstein (1966)] 

and [Rusanov(1976)].  

 

5.2 Geometry of the concave hyperbolic shock  

In Fig. 5.1 the hyperbolic shock is shown as a purple surface.  Its enveloping Mach 

cone is in green.  In Cartesian coordinates the equation of a hyperbola of revolution, that 

has two lobes lying on the positive and negative x-axis, is, 

Fig. 5.1 
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2 2

2 2
1x y

a b
− =                                  (5.1) 

The left lobe, which presents a concave surface to the left, towards the oncoming flow, has 

a shape that can be found from, 

2 21 /x a y b= − +                              (5.2) 

Setting,                         2 2
1 11  and  1a M b M= − = −                                   (5.3) 

makes the far-out branches of the hyperbola asymptotic to the freestream Mach cones and 

the radius of curvature of the hyperbola at the horizontal axis equal  to -1 (see Fig. 5.1 

above and cross-section, Fig. 5.2,).  

Each freestream Mach number, 1M , 

thus has a unique shock shape with the 

common radius of curvature -1 at the 

axis and with its extremities asymptotic 

to the Mach waves.  Keeping the radius 

of curvature constant with Mach 

number is for convenience; it sets the 

problem’s scale and facilitates 

comparison between shocks for various 

Mach numbers on the same plot. For 

any one Mach number the hyperbolic 

shock contains all possible shock angles 

for that Mach number, from normal shock to Mach wave. The slope of the hyperbolic 

shock, at any point (x, y) on the hyperbola is (from Eqn. 5.1), 

 2
2

2 2
1

1tan   where  tan
1

dy x bn n
dx y a M

θ µ= = = = =
−

                              (5.4) 

and θ is the shock angle (obtuse in second quadrant).  The second derivative is

    ( )
2 2

2 2

2 2

11 tan tand y n xn
dx y y y

µ θ 
= − = − 

 
               (5.5) 

so that the left-lobe’s  shock curvature is, 

Fig. 5.2 
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                (5.6a) 

This formulation for Sa matches our definition of shock curvature in the flow plane17 

/aS d dθ σ= . Flow-plane shock curvature, aS , is defined to be positive when the shock is 

concave towards the oncoming flow. The curvature in the flow-normal plane is, 

             cos /bS yθ= −                  (5.6b) 

and the ratio of shock curvatures, /a bS S , for obtuse shocks, at any value of hyperbolic 

shock angle, is, 

         ( ) 21 sina

b

S n n
S

θ
 

= = + − 
 

R        (5.6c) 

On the shock surface R  varies from 0 to 1 as θ  varies from µ  to π/2. The shock 

intercepts the x-axis at x = - a and y = 0 so that the shock angle there is π/2 and the ratio of 

curvatures is 1. Using Eqns. (5.1) and (5.2) enables a solution for x and y with the shock 

angle appearing as parameter, 

                                 
2 2

tan 1    and   
tan tan
ax y

n n
θ

θ θ
= =

− −
                       (5.7)            

The (x,y)-location of any significant shock angle, such as the angle for sonic post-shock 

flow, can then be determined directly using Equations (5.7) above.  Positive square roots 

are taken in both cases resulting in a positive y and a negative x value for the upper-left 

branch of the hyperbola. At given value of x or y, on the shock, the steps to calculate the 

flow gradients behind the hyperbolic shock are as follows: 

 1)  from a given M1 calculate a and b using Eqn. (5.3); 

 2x) for a given x a−∞ ≤ ≤ − , calculate y from (5.1), or 

 2y) for a given y−∞ ≤ ≤ ∞ ,  calculate x from (5.2); take the negative value of x for 

   the left branch of the hyperbola; 

 3) find the shock angle θ from (5.4); or 

                                                 
17 The flow plane is the plane surface that contains the smallest angle between the down-shock flow vector 
and the shock surface; it also contains the upstream flow vector. 
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 2) instead of steps 2x, 2y and 3, above, start with a given shock angle and calculate 

   x and y from (5.7) 

 4) find the shock curvature in the flow plane, Sa from (5.6a) 

 5) find the curvature in the flow-normal plane,  Sb = – cosθ/y,  from (5.6b)        

  Since the shock has a vertical slope at the axis, it is better to take evenly spaced values of 

y rather than x, i.e. use option 2y) rather than 2x) above, when plotting or generating a 

CFD grid for the region behind the shock.18  The above has shown that, given a Mach 

number, a hyperbolic shock shape can be calculated and, given any shock angle, locates a 

point on the shock where the shock’s surface curvatures are determinable.  All of this 

applies to planar shocks as well as axial ones. For planar shocks Sb = 0 so that R → ∞ . 

 

5.3  Flow properties behind a curved shock 
  Having defined all relevant geometric properties of the hyperbola we now 

establish relations for flow properties behind the hyperbolic shock.  The properties fall 

into two categories: the ‘zeroth order’ properties such as pressure, Mach number and the 

flow deflection angle; these requiring, as inputs, the ratio of specific heats, the shock angle 

and the freestream Mach number.  The second category, the ‘first order’ properties, such 

as pressure gradient streamline curvature and vorticity, require the previous three inputs 

plus the shock curvature(s).  The zeroth order quantities are obtained from the algebraic 

Rankine-Hugoniot equations and the first order quantities require the use of the Euler 

equations. The zeroth order relations as well as the Euler equations are given in all 

standard textbooks on gasdynamics [Liepmann and Roshko (1956)].  Curved shock theory 

(CST) for planar flow is derived in Ch.2 as well as by [Lin and Rubinoff (1948); Gerber 

and Bartos (1960); Thomas (1947); Truesdell (1952)].  Application of CST to axial flow 

and shocks with compound curvature is found in Ch. 2.    

The streamline curvature, 2D , pressure gradient, 2P  and vorticity, Γ2,  behind the 

hyperbolic shock, are found from the curved shock equations (2.30e) and (2.31b),  

                                                 
18It is possible to study the flow behind a convex hyperbolic shock by taking the positive values of x as 
generated in step 2y above. 



 124 

                    

2
2

2
2

2

2 1
2

2 1 2

[ ] '
[ ] [ ]
[ ] '
[ ] [ ]

1 cos

a b

a b

a a

BC B GP S S
AB AB
CA A GD S S
AB AB

C S S
E

ρ ρ θ
ρ ρ

= +

= −

′′  
Γ = − = − ⋅ ′′  

                               (5.8) 

where the coefficients multiplying  and  a bS S  are all functions of the freestream Mach 

number and the shock angle. These equations are general to any doubly curved, axial 

shock surface.  All coefficient equations are found in Ch. 2. 

 

5.4 Streamlines behind hyperbolic shock 
For a given Mach number, the shock geometry, including the shock curvatures are 

calculated, at selected points, using equations (5.1) to (5.6) by the steps 1 to 5, above. 

Oblique shock theory gives the slope, 2tanδ , of the post-shock streamlines at any point on 

the shock. The curved shock theory equations (5.8) are then used to find the streamline 

curvature, D2, at the selected points, (xs, ys) along the shock and the streamline shape near 

the shock is calculated from a Taylor series approximation,  

                         

( ) ( )2

2 2tan
2

s
s s

x x
y y x x Dδ

−
= + − +              

Fig. 5.3 
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where (xs, ys) is the starting point of the streamline, on the shock. The Figures 5.3 show 

streamline shapes behind a hyperbolic shock for axial and planar flows at Mach 3.  

Streamlines are red where the pressure gradient is negative, blue where the streamline 

curvature is negative and green where both are positive.  The point on the shock where the  

streamline curvature is zero is the Crocco point and the point where the pressure gradient 

is zero is the Thomas point.  The location of both points depends on the ratio of specific 

heats, the shock angle, the freestream Mach number as well as the shock curvatures.  In 

each case, the approximate sonic line (to be further described in Section 4) is shown in 

black.  The two pictures are quite similar because the cross sectional shock shapes are the 

same, the flow deflections are the same and the shock curvature, Sa, is the same at 

corresponding points.  Differences arise from the transverse shock curvature, Sb, being 

zero for planar flow but non-zero for axial flow.  This causes P2, D2 and  Γ2, as they 

appear in equations (5.8)19, to be different for the two flows.   The difference is reflected 

in the not-so-easily discerned difference in streamline curvatures, D2, and the shape of the 

sonic line. The streamlines next to the centre line form a throat around the sonic point – 

indicated by the black dot on the sonic line.  This is encouraging agreement between two 

essentially disparate downstream flow results of CST. 

 

5.5 Orientation of sonic line behind the shock 
   The angle α*, between the sonic line and the streamline is, from [Hayes and 

Probstein Eq.6.1.1 (1966)] and curved shock theory, Eqn. (2.22): 

    ( )
( )

* *
* 2

* * *
2 2

/
tan

/

dM ds P
DdM dn

α = − =
− Γ

                  (5.9) 

This relation applies to both planar and axial flow.  The asterisk indicates that the gradient 

quantities have been evaluated at the post-shock sonic condition. Hayes and Probstein 

present a formula for *α  for acute shocks in planar flow, 
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tan 3 1 tan 5
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               (5.10) 

                                                 
19 For planar flow, these quantities are not functions of shock curvature and for axial flow they are functions 
not of the individual curvatures but of their ratio. 
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Note that the right-hand side is a function of γ and M1  only so that, for planar flow, the 

orientation of the sonic line does not depend on shock curvature.  Eqn. (5.9) is valid for 

both planar and axial flow as are its components. 

 
For a shock with compound curvature, one of three types of flow can exist at the 

sonic point on the shock, depending on the orientation of the sonic line, α*:  Type I for 

α*< 0; Type II for 0 < α* < π/2 and Type III for α* > π/2.  Figure 5.4 illustrates the three 

types where shocks are black, streamlines are blue, sonic lines are green and the C+ 

characteristics are red.  Flow is left-to-right. These three types determine the existence and 

nature of the flow at the sonic point. For Type I, supersonic flow, leaving the shock just 

outboard of the sonic point continues supersonically.  For convex, planar shocks Hayes 

and Probstein [1966] have shown that Type I flow does not exist.  For Types II and III the 

supersonic flow outboard of the sonic point has to cross the sonic line to become subsonic 

and then to accelerate to sonic at its second crossing of the sonic line.  Types II and III are 

themselves further distinguished by the fact that for Type III the C+ characteristics, 

reflecting from the supersonic downstream side of the shock near the sonic line, become 

incident on the sonic line and are thus intercepted and  blocked from coalescing to form a 

reflected shock.  This occurs in the area shaded red on the Type III sketch in Fig. 5.4. 

Fig. 5.4 
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Thus Type III flow may have a continuous incident shock whereas Types I and II are 

likely to develop a reflected shock and Mach reflections. This will become more evident 

when considering the orientation of reflected characteristics and the sonic line.  For planar 

flow, the angle that the sonic line makes with the streamline is sown in Fig. 5.5 which is a 

plot of Eqn. (5.10).  Type III flow exists between Mach 1 and 1.7.  Above Mach 1.7 only 

Type I or II flow is possible.    This means that, in planar flow, a continuous shock can be 

expected only below Mach 1.7 and above that a Mach reflection will occur.  Type I flow is 

not possible for planar flow since the curve never becomes negative.  Shock curvature 

does not affect these results since the flow has planar symmetry.  Similar results have been 

obtained previously for planar flows, involving convex shocks, by [Rusanov (1976)] and  

for planar shocks, Henderson (1987) has shown that Mach reflection cannot exist for very 

weak shocks. 

 
 The picture is more complicated when the shocks are axial (axisymmetric) with 

curvatures Sa and Sb, and curvature ratio * *
ba

S S=R*  at the sonic point.  In this case the 

curved shock theory Eqn. (5.10) for the sonic line orientation,  *α , takes the form,  

                          1 2

3 4
tan *

*
k k
k k

α =
+

R * +
R

                 (5.11) 

Fig. 5.5 
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 where asterisks denote values at the sonic point.  The coefficients k1...4  are all functions of 

the specific heat ratio and the freestream Mach number only. Formulas for the k’s are 

found in Appendix 5A at the end of this chapter.  The shock curvature ratio plays an 

 
important role in determining the character of flow behind a doubly curved shock.  The 

angle from the streamline to the sonic line α* (AlphaStar), is plotted against the 

freestream Mach number in Fig. 5.6 with the shock curvature ratio, /a bS SR* = , at the 

sonic point, as parameter.  The two red, horizontal lines, at zero degrees and 90 degrees, 

separate the regions for the three types of flow.  The top-most curve, for /a bS S  = 1e6 (i.e. 

106) is effectively for planar flow as was presented in the previous figure.  The bottom 

curve, for /a bS S = 0, is for conical flow.  Type I flow, generally above Mach 2, appears 

for curvature ratios below 0.5.   For a curvature ratio of 0.5, above Mach 3, α* is 

approximately zero, indicating that the sonic line and streamline are collinear.  This, in 

turn, means that the isobaric (Thomas) point is at the sonic point and that pressures in the 

supersonic/subsonic regions on either side of the streamline are increasing/decreasing.  

Type II flow is possible for curvature ratios between 0.5 and 106 for all Mach numbers.  

Type III (α* > 90 deg) flow is possible for curvature ratios above 1 and Mach numbers 

Fig. 5.6 
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between 1 and 1.7.  Only for Type III conditions can a smoothly curving incident shock 

wave be expected for the whole range of shock angles from µ  to π/2.  The above 

conclusions apply to concave shocks of any shape - not only hyperbolic.  For planar, 

concave, hyperbolic shocks the top-most curve applies, showing that both Types II and III 

flow are possible and that we can expect a single shock, without a reflected shock, at 

Mach numbers below 1.7.  This lower limit to Mach reflection of 1.7 is only for planar 

incident shocks.  For axial shocks the lower limit depends on the ratio of shock curvatures 

at the sonic point.  For example for a ratio of 2 the lower limit is about Mach 1.4 and for a 

ratio of 1 there is no lower limit – implying that Mach reflection will appear for all Mach 

numbers as long as the ratio of shock curvatures is below 1. The green curve is for 

concave, hyperbolic shocks, showing that only Type II shocks are possible and we should 

not expect a complete hyperbolic axial shock at any Mach number.  At the same time it 

does not mean that complete axial shocks (Type II) do not exist.  If they do, they would 

have to have a ratio of shock curvatures at the sonic point higher than that provided by the 

present type of axial, hyperbolic shock.  Figure 5.7 shows where the three types of sonic 

flow exist in the shock curvature ratio R * (Rstar) vs. Mach number space.  Equations  

 

  

Fig. 5.7 

R *
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(5.8) can be rearranged and substituted into Eqn. (5.9) so as to give, 

                                                ( )
( )

* **
1 1 2 2 1 2* 2

* * * *
2 2 1 2 2

cos
tan

1 cos

a a b a b RP
D b c b R

θ
α

θ

+ −
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where,  
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are all evaluated at the sonic condition.  The angle α* in Equation (5.12) is now in terms 

of Mach number and the streamline radius of curvature behind the shock, *
2R , where *

2R  

has been normalized with respect to y = y* - the distance from the sonic point to the 

centre line.  This shows that the inclination of the sonic line at the back of the doubly 

curved shock is controlled by the post-shock streamline/surface curvature.  Consequently, 

so is also the shock type.  Since the streamline curvature is also the curvature of the 

physical leading edge it is a more physically meaningful and realizable quantity than the 

ratio of shock curvatures, R * .  Inverting Eqn. (5.12) to solve for 2R∗  gives, 
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2 1 2 2 1
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cos tan
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∗
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Fig. 5.8 
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2R∗  is plotted against the freestream Mach number with α ∗  as parameter in Fig. 5.8.  α ∗  is 

/ 2α π∗ = positive on the green curves and negative on the red curves.  It is zero on the 

black curve and ±π/2 on the blue curve.  In the region for Type III the sonic line is angled 

forward so that there is no reflected shock and therefore a smooth curved shock is 

possible in this region. 

 

5.6 CFD Results 
 As described in Section 1, the shape of each concave, hyperbolic shock is defined 

completely by its freestream Mach number.  At any point on the back of the shock a flow 

deflection and a post-shock streamline curvature is fixed and easily calculated.  These are 

used for defining a curved surface as input to a CFD program for calculating the flow and 

the shock inside that annular surface.  These input values of wall/streamline curvature are 

exact only right behind the hyperbolic shock surface so that the constant curvature wall 

surfaces used as input are only approximations to the true streamline/wall surfaces 

required to produce the hyperbolic shock.  The length of curved wall is critical in the 

computations.  Too short and it will not produce the proper hyperbolic shock shape; and 

too long a wall will cause premature Mach reflection - in some cases leading to total 

internal flow unstart (for reasons dealt with in the next chapter).  Reasonably consistent 

results are obtained by selecting curved surface lengths which have one degree less 

turning than that required to produce sonic flow by Prandtl-Meyer turning from the post-

shock conditions at the leading edge.  This results in the trailing edges being just 

supersonic.     

The aim of the CFD calculations is to show that the Type I, II and III flows do or 

do not appear where so predicted in Section 5.4.  A time-asymptotic, finite difference 

scheme with automatic grid refinement, SOLVER II [2004] is used.  Only the top half of 

the top-to-bottom symmetric flow is calculated.  The centre line of symmetry and the top 

wall are shown in red.    In each case the hyperbolic shock is shown as a black curve.  

Calculated shocks take their colour from adjacent contours.  All figures show colour-

coded constant Mach number lines and a black sonic line.  Axial or planar symmetry and 

the freestream Mach number are denoted on the bottom text line of each figure. 
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Figure 5.9 is for planar flow at Mach 3.  The calculated shock follows the 

hyperbola closely near the leading edge of the curved surface tending slightly forward as 

it nears the triple point of the Mach interaction.  At the triple point the reflected shock is 

very weak and there is a small subsonic region between the reflected shock and the shear 

layer.  The sonic flow for this case would be of Type II so that a continuously curving 

shock is not expected.  The sonic line is shown in the flow downstream of the Mach disk. 

 

Figure 5.10 is for axial flow at Mach 3.  The calculated shock agrees well with the 

hyperbola (thin black line) from the leading edge down to the triple point.  The flow at the 

sonic point would be of Type II so that a continuously curving shock is not expected – 

Mach interaction appears, as with the planar flow above. 

Fig. 5.9 
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The zoomed-in Fig. 5.11 is for axial flow at Mach 1.2.  The CFD shock is slightly 

ahead of the CST shock and it is no longer hyperbolic.  The thin, black, kidney-shaped 

line is the sonic line with subsonic flow inside.  A streamline runs through the sonic point 

on the back of the shock at what appears to be at a right angle to the sonic line.    CFD 

shock curvatures measured off the figure, at the sonic point, give *
aS = 2.92 and *

bS = 2.43 

giving  a shock curvatures ratio * */a bS S=R*  = 1.19 at the sonic point.  At Mach 1.2 this 

is just inside the Type III flow region, as confirmed by the lack of a reflected shock and 

the consequent continuously curving incident shock. 

 

Fig. 5.10 
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5.7 Conclusions 
 Analytical and computational results are presented for flow behind concave 

shocks.  The existence of a reflected shock and hence the non-existence of a continuous 

smooth shock depends on the orientation of the sonic surface at the back of the shock.  In 

turn, sonic surface orientation depends on the upstream Mach number and the ratio of 

shock curvatures at the sonic point.  For planar shocks, a single, continuously curved 

shock is possible only below Mach 1.7 such that Mach reflection will occur at higher 

Mach numbers.   For shocks with positive curvature ratio, R * , this Mach number limit is 

reduced until for R * < 1, no continuous concave shock is possible for any Mach number. 

A hyperbolic shock always reverts to Mach reflection. Both analytical and computational 

results show that the shock curvature ratio plays an important role in determining the 

character of flow behind a doubly curved shock.  It is a determining factor, beyond shock 

polar intersections, as to what type of shock reflection can take place at any freestream 

Mach number when the incident shock is doubly curved.  

 

Appendix 5A  – Coefficients for the sonic line inclination 
For axial flow the inclination of the sonic line with respect to the streamline, *α , takes 

the form,                       

                                       1 2

3 4
tan *

*
k k
k k

α =
+

R * +
R

 

where,                         1 2[ ]k E BC′′=                         2 2 2k E B G′′ ′=  
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  Chapter 6 
Shock detachment 
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6.1 Introduction 
 “Transition from a shock attached to the leading edge of the wedge to a 

detached shock appears to introduce such a radical change in the flow field that one 

would expect quite abrupt changes in flow characteristics such as drag.  The analysis 

of this particular change is of particular interest.” 

    G.K. Guderley in The Theory of Transonic Flow 

 

Another reason for the attached-to-detached shock analysis to be of particular 

interest is that the termination of regular reflection of an oblique shock wave can 

have as its cause the same limiting flow conditions (e.g. excessive flow turning) as 

does the detachment of a shock from a wedge, so that the abrupt changes, referred to 
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by Guderley, for the detaching shock, should be expected to occur also at the 

termination of regular reflection.  In the shock reflection situation the flow from the 

incident shock, approaching the reflecting surface, sees the reflecting surface as a 

freestream flow would see a flow-deflecting wedge.  This implies that the fluid-

mechanical process involved in the detachment of an oblique shock from a plane or 

curved surface and the termination of regular reflection on a plane or curved surface 

have the same underlying causes. The two phenomena are governed by the same 

equations and should, at their termination, have the same values of independent 

parameters and boundary conditions. Thus, an investigation of shock detachment from 

a plane or curved wedge should lead to an understanding of the more complicated 

regular reflection termination.  Shock detachment occurs right at the leading edge, 

hence also right at the shock, so that CST, which also applies right at the shock, is the 

appropriate, precise analytical tool for tackling the shock detachment problem.  In the 

study of detachment and transition, some resolution between differences in theory and 

experiment is required as noted by Sudani et al. [2000] who state that “…transition 

from regular to Mach reflection occurs significantly below the maximum 

deflection condition”.  This justifies the study of shock detachment as a lead-in to 

understanding the regular-to-Mach reflection transition process. 

It was the original intent to investigate the RR to MR transition, with CST, by 

using shock detachment from a wedge as a stepping-stone.  However, it has turned out 

that the detachment of a shock from a curved wedge has enough substance and 

complexity to warrant clarification and that the proposed new mechanism needs 

investigation by a study of its own.  

Section 6.2 of this chapter presents two useful concepts: the unit ring-wedge 

with a splitter tube, (URW), and some results of curved shock theory (CST). Section 

6.3 discusses shock detachment from a sharp curved wedge.  The concepts of local 

and global choking are introduced as possible causes for shock detachment.  Section 

6.4 shows the analytical conditions under which the above causes are present.  Section 

6.5 is a CFD confirmation showing flow field computations of shock 

attachment/detachment at the analytically predicted conditions. 
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6.2 Preliminaries 
Two items are introduced to aid the development of discussion, theory and 

computation in subsequent sections: the unit ring-wedge and a short recapitulation of 

curved shock theory.  

 

6.2.1 The Unit Ring-Wedge (URW) and splitter tube is an annular ring 

with a sharp leading edge that is everywhere at unit radius from the axis of symmetry 

(y = 1).  Three such rings are shown in 

Fig 6.1.  At the leading edge, the outer 

surface of the ring turns the flow 

outward by δo and the inner surface 

turns the flow towards the axis by δi.  

The surface curvature, D2, in any 

meridian (flow) plane is zero when 

there is no curvature, positive when the 

flow turns away from the axis and 

negative when the flow turns toward 

the axis, as shown in the sketches a, b and c respectively.  The shock has an acute 

angle on the outside and an obtuse angle on the inside; giving a positive/negative flow 

deflection on the outside/inside.  Shock curvature in the meridian plane is Sa, defined 

as positive when the shock is concave towards the oncoming flow.  In the transverse 

plane the shock curvature, at the leading edge, is Sb = -cosθ/y, which, for the URW, 

becomes simply   -cosθ.  All radii of curvature values such as Ra = -1/Sa, Rb = -1/Sb 

and r2 = -1/D2 are normalized with respect to the unit ring-wedge radius y = 1.  The 

URW thus provides the normalizing dimension and a convenient geometry for the 

study of doubly curved shock waves and surfaces in axial flow.  The term axial is 

synonymous with axisymmetric and what is often called two-dimensional is referred 

to as planar; the latter being a limiting case of the former when y → ∞.  The term 

wedge is used to denote the URW and Mach number means freestream Mach number. 

Fig. 6.1 
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 For some of the CFD calculations an infinitely thin tube is inserted into the 

computational mesh, extending forward from the leading edge into the free stream 

(see Fig. 6.20 and 6.24).   Its purpose is to isolate the outer and inner flow calculations 

so that surface curvature effects appear separately on each side without spillage 

effects from detached flows on either side affecting the flow on the other side - yet the 

outer and inner flows have identical freestream conditions.  Any differences between 

inner and outer flows becomes readily discernible and attributable to the local surface 

geometry only. 

 

6.2.2 Curved shock theory (CST), presented in Ch.2, relates flow gradients on 

the up and downstream sides of a doubly curved shock wave.    The theory is derived 

by taking derivatives of the oblique shock equations with respect to the distance along 

the shock.  Equating the up- and downstream derivatives yields a set of simultaneous 

equations for the gradients of flow properties along the streamlines as a function of 

upstream Mach number, shock angle and the two shock curvatures.  CST is applied in 

this chapter to find the streamwise gradient of Mach number behind a doubly 

curved shock wave. Two major results of CST, applicable to shock detachment  

formulations, are the algebraic expressions for pressure gradient and streamline 

curvature behind a doubly curved shock in terms of the shock’s curvatures (see Eqn. 

3.12 a and b): 

                                
[ ] '2
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2 [ ] [ ]
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                  (6.1 a,b) 

where Sa and Sb are the shock’s curvatures and their coefficients are all functions of 

shock angle and freestream Mach number.  For convenience, write the equations as, 
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D b S b S

= +
= +

                                         (6.2 a,b) 
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 These two equations will be used in Section 6.4 to derive an estimate of the length 

(L*) of a curved surface, required to bring the flow to Mach one behind an attached 

shock.  Coefficient values are plotted in Fig. 6.2, against both acute (<90) and obtuse 

(>90) shock angles, for Mach 3.  The black curve refers to vorticity behind the shock 

from Eqn.  (2.38g) when expressed as,   

2 adSΓ =   

so that,             [ ]
[ ]

[ ]
[ ]

2 2

2 2 2

BC ACA BCd
E AB E AB E

 ′′ ′′′′
= + − ′′ ′′ ′′  

     (6.2 c) 

  

6.3 Shock detachment from a sharp leading edge  

A shock wave will remain attached to a sharp wedge leading edge as long as the 

pressure ratio across the shock and the flow deflection demanded by the leading edge 

surface are related by the (p,δ)-relation for oblique shocks [Anon. NACA Rep.1135, 

Fig. 6.2 
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Eqn. 160].20  A mismatch in pressure ratio and flow deflection will result in shock 

detachment.  This chapter deals with how such mismatches can be produced. 

 

6.3.1 Detachment by excessive flow turning – δmax criterion 
The oblique shock equations readily show that a shock, attached to the leading 

edge of a wedge, is incapable of turning the freestream flow into being parallel with 

the wedge surface beyond a certain maximum wedge angle. [Shapiro, 1954; 

Liepmann and Roshko, 1956; 

Owcharek, 1964].    This maximum 

turning angle, δmax, depends on the 

ratio of specific heats and the 

freestream Mach number.21 Although 

other causes may preempt shock 

detachment at δmax, this must be an 

ultimate cause in that there are no analytical flow constructs for either a wedge-

attached shock or of regular reflection beyond the δmax criterion. Fig. 6.3 shows 

attached weak and strong shocks on a wedge surface and a typical polar diagram 

representing the necessary relation between the wedge angle and the shock pressure 

ratio for the shock to remain attached.  On the red segment of the polar the flow 

behind the shock is supersonic and on the black portion it is subsonic.  The shock will 

detach when either the wedge angle is made greater than δmax or the pressure exceeds 

the top (black) part of the (p,δ)-polar curve.  Since δmax is a function of Mach number, 

shock detachment can also be brought about, on a fixed angle wedge, by a reduction 

of Mach number.  As the Mach number in front of an oblique shock, on a plane 

wedge, is reduced, it becomes sonic behind the straight attached shock.  A further 

reduction causes the shock to become curved and the Mach number to become 
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subsonic.  The shock remains attached as long as the sonic line passes all the flow 

entering the subsonic portion of the shock.  Flow behind the shock takes on the 

characteristics of subsonic flow in a concave corner.  Such flow is shown in Fig. 6.20 

where the shocks are just detaching from a wedge.  Compressible corner flow is 

characterized by near-circulat isobars, centered at the corner stagnation point.  In the 

corner flow region, pressure decreases radially outward, compatibly with the curved 

bow shock which takes up a position that supplies the right mass flow to the sonic line 

downstream.  Corner flow becomes fully established as the shock leaves the wedge at 

δmax.  It provides a smooth transition between attached shock and detached shock flow 

as long as the Mach number or wedge angle vary smoothly. 

 

     6.3.2 Shock detachment by overpressure  
The appearance of detachment 

by excessive back-pressure is more 

likely in internal flows where it is 

easier to apply a back-pressure through 

downstream flow choking.  

Detachment by excessive backpressure 

is not causally dependent on the wedge 

angle but on the pressure that is applied by the downstream flow exceeding the 

pressure indicated by the shock polar for that particular wedge angle.  The 

downstream flow can exert this excessive pressure on the black portion of the polar 

where the flow is subsonic, allowing the increased pressure to be transmitted 

upstream to the attached shock at the leading edge.  Although the detachment 

mechanism is local to the leading edge, the excessive back-pressure mechanism for 

shock detachment is of a global nature because the cause arises from choking of the 

downstream flow.  Positively attributing detachment to the influence of downstream 

global flow requires calculation of the whole flow-field between the shock and the 

sonic line in the downstream flow.  Two types of excessive pressure choking are 

possible in a convergent duct, as shown in Fig. 6.4.  They are here referred to as 

global choking and local choking.  Choking (M = 1) occurs at the green lines. 

Fig. 6.4 



 144 

6.3.2.1 Shock detachment by global choking appears in internal flow when 

the mass outflow at the exit of a streamtube is restricted to such an extent that it is less 

than that passed into the inlet by an attached shock at the entrance.  The excess flow 

must be spilled overboard and this is made possible by the shock detaching and 

moving upstream to allow a gap for flow spillage between the shock and the leading 

edge.  When the shock detaches due to global choking the shape of the duct leading 

edge is immaterial.  If the exit-to-entry area ratio is varied to choke and unchoke the 

flow, there appears a possibility for shock attachment/detachment at two different area 

ratios – a hysteresis is established.  This is part of the shock swallowing/un-

swallowing process associated with 

supersonic air intakes for which 

analytical, one-dimensional flow 

area criteria were originally 

developed by [Kantrowitz and 

Donaldson, 1945]. Kantrowitz’ one-

dimensional theory predicts that the 

normal shock will stand at the 

entrance of the duct when the exit-to-entry area ratio is less than that shown by the 

green curve in Fig. 6.5.  A higher value of area ratio will cause the shock to move 

downstream – be swallowed.  For 

simple axial (conical) or planar 

(double-wedge) convergence of angle δ 

and surface length L it means that Lsinδ  

cannot exceed values that would yield 

an area ratio below the Kantrowitz area 

ratio, (Ae/Ai)K
22.  A simple geometric 

construction shows that if, for planar ducts, Lsinδ  is greater than ( )1 e i K
A A− ,  
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shown by the red curve, and if, for an axial ducts, Lsinδ  is above ( )1 e i K
A A− , the 

blue curve, global choking will take place and shock detachment will follow. The 

geometric relation Lsinδ  gives a rule-of-thumb estimate of global choking, applicable 

best when L is large and δ  is constant and small (Fig. 6.6).   This Lsinδ  relation was 

used to avoid global choking when setting conditions for CFD calculations of locally 

choked flow in Section  6.5. 

 

6.3.2.2 Shock detachment by local choking appears near the leading edge 

when the sonic surface is not able to pass all the mass flow entering the portion of the 

shock between the leading edge and the sonic line behind the shock. As with 

detachment due to global choking, the shock then detaches, opening a gap between 

the leading edge and the shock for excessive flow spillage.  As distinct from global 

choking, the conditions for detachment due to local choking depend on the geometric 

details of the leading edge surface.  It is the purpose of this chapter to use CST to 

predict the conditions for local choking and to verify the predictions by CFD.  

 

6.4 Analysis of detachment by local choking is based on CST.  As such, its 

results are restricted to flow near the shock, i.e. near the leading edge of an attached 

shock.  Local choking is greatly influenced by flow divergence or convergence that 

occurs in axial flow and it is therefore distinctly different from local choking in 

planar flow.  This is the fundamental reason why detachment by local choking is 

different in planar and axial flows.  An approximate analytical method, based on CST, 

is developed in this section for predicting the conditions necessary for shock 

detachment by local choking in axial flow.  Planar flow will be treated as a special 

case.  The underlying premise of local choking is that a sonic line cannot exist on a 

surface if the flow area on that surface is contracting. This principle is the same 

that applies to steady flow in a converging/diverging passage where the sonic surface 

can exist only at the throat and not in a convergent section of the passage.  It is 

assumed that this is the driving mechanism that moves the sonic line forward in its 

attempt to satisfy the mass flow imbalance. Moving in an upstream direction, the 
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sonic line shifts itself and the imbalance  to the leading edge, where detachment then 

occurs by local overpressure.  For a wedge of given angle and curvatures, we attempt 

to find the wedge length required to choke the flow near the leading edge.  Thus the 

conditions, determining shock detachment by local choking, at a given freestream 

Mach number, are: wedge angle, wedge curvatures and wedge length. 

 

6.4.1  Pressure gradient at leading edge of curved surfaces 
The starting point for local choking analysis is the curved shock equations (6.2 

a,b) as applied to the URW.  Using  Sb = -cosθ  for the URW and eliminating Sa from 

the two Eqns. (6.2 a,b) gives, 
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2 2 1 2 2 1 1
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cos /aP D j a b a b b
b

θ= + −       (6.3) 

      where                            2 2
1 2 1 2

[ ] [ ]                 
[ ] [ ] [ ] [ ]
BC B G CA A Ga a b b
AB AB AB AB

′ ′
= = = = −  

 

 
 

Fig. 6.7 
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 This expression gives the normalized pressure gradient at the URW leading edge 

(both outside and inside) in terms of the leading edge curvature, D2, and the Mach 

number and shock angle, which are the only parameters contained in the a and b-

terms in Eqn. 6.3. Outside/inside is determined by specifying the shock angle, θ, as 

acute/obtuse.  The first term on the right hand side of Eqn. (6.3) is the contribution to 

pressure gradient from the streamwise curvature of the surface, D2, and the second 

term, which vanishes for planar flow, is the contribution of lateral surface curvature 

(divergence) in axial flow. The two terms are independent, being determined by the 

URW shape and freestream Mach number so that P2 can be positive, negative, zero 

and infinite. Expressing P2 from Eqn. (6.3) as, 2 1 2 2P c D jc= +  (6.3.1)  makes c1 

represent the curvature contribution to the pressure gradient and c2 represent the 

convergence contribution.  The distributions of the curvature and convergence 

coefficients are plotted against shock angle for Mach 3 in Fig. 6.7.  At the Crocco 

values of shock 

angle [CA] = 0, the 

coefficients go to 

±∞, indicating that 

the pressure 

gradient can 

become very high at 

the Crocco point.  

The red curves cross 

the zero-lines at the 

Thomas points showing that a zero pressure gradient can exist.  The convergence 

contribution (c2) is small in comparison to the curvature effect (c1) over most of the 

Fig.6.8 
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supersonic shock as well as the normal shock.  It is only near the Crocco point where 

the reverse is true.    Considering that D2 also enters as a variable in determining the 

pressure gradient, the possible pressure gradient variation is complex.  Figures 6.8 and 

6.9 are for a supersonic post-shock flow showing the pressure gradient, P2, from Eqn. 

(6.3), at the leading edge of the internal surface of the URWs described in Section 

6.2.1 for three streamwise 

surface curvatures, D2 = +1, 0 

and -1, plotted against wedge 

angle.  The negative curvature 

(concave surface, case (c)) 

causes a positive pressure 

gradient. Such a gradient, 

applied to supersonic flow leads 

towards flow choking.  The zero curvature surface (straight conical duct; case (a)) 

carries a mild positive pressure 

gradient for small wedge 

angles.  A convex surface (case 

(b)) has a negative pressure 

gradient.23  Negative pressure 

gradients, applied to supersonic 

flow, lead towards higher 

supersonic Mach numbers and 

no flow choking for case (b). 

The Figure 6.9 is the same as 6.8 but with an expanded P2-axis for P2 values near zero 

and with D2 ranging from -.5 to +.5 in steps of 0.1.  For negative values of D2 

(concave surfaces) the pressure gradient is positive, making local choking possible. 

For positive curvatures (convex surfaces) the pressure gradient is largely negative, 

hence no local choking occurs.  However, for small positive values of curvature such 

as +0.1,  P2 is negative for small values of δ, becoming positive for δ > 25 deg. 

                                                 
23 Such surfaces can be calculated for conically symmetric M-flow from the Taylor-Maccoll equations. See 
Ch. 4 

Fig. 6.9 

Fig. 6.10 
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showing that, for more steeply converging ducts, local choking is attained by flow 

convergence and not by surface curvature.  Figure 6.10 is for the same URW 

geometries (a), (b), (c), with a strong family attached shock carrying subsonic post-

shock flow.  In this case a negative pressure gradient moves the subsonic flow 

towards choking; again, it is configurations (a) and (c) that allow the internal flow in 

the URW to choke locally.  More complicated behaviour is observed at higher values 

of Flow Deflection where (b) begins to support downstream choking by dipping into 

the negative P2 region of the graph. At the same high values of Flow Deflection  the 

(c) configuration rises into the positive P2  region, showing that it no longer supports 

downstream flow choking.  All curves meet at the Thomas point where 1
[ ]
[ ]
BCa
AB

= = 0 

so that the value of P2 at this point is ( )2 1 2 2 1 1cos /P j a b a b bθ= − . The Thomas point 

occurs at a unique value of wedge angle for each freestream Mach number.  At this 

unique value the pressure gradient and the length of surface required for choking, 

discussed below, are both insensitive to changes in surface curvature.  The practical 

importance of this is unknown. The condition does not exist in planar flow.  

In the investigation of boundary layer flow it may be of interest to examine the 

effects of surface curvature and divergence as isolated from the effects of a 

streamwise pressure gradient.  Setting P2 = 0 in Eqn. 6.3.1 gives the curvature of the 

required surface as,  D2P=0 = -c2/c1.  From Fig. 6.7 it appears that, for weak shocks, c1 

and c2 have opposite signs so that the surface curvature is positive as in Fig. 6.1b.  

Between the two Thomas points c1 and c2 have opposite signs so that the surface 

curvature is negative as for the surfaces in Fig, 6.1c. 

This section has presented the post-shock pressure gradient as the underlying 

cause of local choking near the leading edge of a doubly curved wedge surface and 

how this pressure gradient can be determined from freestream Mach number, wedge 

curvature and wedge angle.  In the next section the pressure gradient is converted into 

a Mach number gradient to derive an approximate distance from the leading edge to 

the sonic point.   
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6.4.2  Mach number gradient and choking length L*  

For the isentropic flow behind the shock (subscript 2), the Mach number gradient 

can be written in terms of the pressure gradient [Zucrow and Hoffman, Eqns. 4.50 and 

4.51, 1977], 

                           ( ) 22
22

2 2
2 2 2

2 1 MdM dp
M M p

γ
γ

+ −  
= −  

 
    (6.4) 

This enables the Mach number gradient to be expressed in terms of the normalized, 

CST, pressure gradient, ( ) ( )2
2 / /P dp ds pMγ=  as, 

                               ( )
2

2 22
2 2 22 1dM M M P

ds
γ = − + −        (6.5) 

where s is the distance along the wedge (streamline) in the flow direction.  The Mach 

number will tend towards one if the flow behind the shock is subsonic and the Mach 

number gradient is positive or if the flow is supersonic and the Mach number gradient 

is negative.  Given enough length, choking will occur behind a curved shock in both 

cases. The Mach number gradient is plotted against shock angle, for a URW with no 

streamwise curvature (D2  = 0; i.e. conical surfaces) at Mach 3, in Fig. 6.11.  Subsonic 

post-shock flow is shown in red and supersonic in blue.  Both curves are rendered 

bold where local choking is possible.  In the left side of the graph, for acute shocks, 

the supersonic flow goes sonic only at a shock angle near 65 deg.  The situation is 

similar to what happens on a pointed cone at high cone angles.  In the right side of the 

graph, for internal flow and obtuse shocks, the supersonic flow always chokes, only a 

short segment of subsonic flow (thin, red), having a negative Mach number gradient, 

does not.  The strong shock curve, passing through the normal shock condition at a 

shock angle of 90 deg, shows that the subsonic flow on the external surface does not 

choke whereas it does choke on the internal surface.  Although there is an obvious 

symmetry for the inside/outside Mach number gradient magnitudes, the flow types, in 

terms of their choking propensity, are quite different.   
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Opportunities for choking increase on a URW that is concave on its outer and inner 

surfaces as in Fig. 6.12. Supersonic flow, both inside and outside, tends to choke 

(bold, blue) except for a narrow band of acute angles in outside flow.  Subsonic  flow 

on the inside chokes, as it does in a narrow region in outside flow.   A normal shock, 

facing uniform flow does not produce a curved streamline behind itself (Sect. 3.).  

Imposing such curvature causes anomalous results  at a shock angle of 90 deg.  There 

is a noticeable lack of symmetry due to divergence on the outside and convergence on 

the inside.  It is this inside convergence that causes the inside flow to choke much 

more readily for all shock conditions.  

Fig. 6.11 
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Opportunities for choking decrease on a URW that is convex on its outer and inner 

surfaces.  The curves, in Fig. 6.13 are for a URW with curved surfaces that are convex 

towards the oncoming flow both outside and inside.  Only a short segment of the 

Fig. 6.12 

Fig. 6.13 
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weak inside shock (bold, blue) and all of the inside strong shock (bold, red) produce 

choking.  There is a noticeable lack of symmetry due to divergence on the outside and 

convergence on the inside.  Convergence causes the inside flow to choke and 

divergence prevents choking on the outside.  For the convex URW choking is 

discouraged also by the expanding surface curvature.   

 This section has described the geometry of curved wedge surfaces that can 

produce shock detachment by local choking. 

 

6.4.3  Curved surface length required for choking, L*  
Making the approximation that the post-shock Mach number gradient equals 

the average gradient to the sonic surface gives, 

                           d 2
2M /ds  =  (1 – 2

2M )/L*                          (6.6) 

where L* is the distance from the shock (at the leading edge) to the sonic point on the 

wedge.24  Using  Eqn. (6.5) and P2 from Eqn. (6.3), gives, 

         ( )
( ) ( )

2
1 2

2 2
2 2 1 2 1 2 2 1

1

2 1 cos

b M
L

M M a D j a b a bγ θ
∗

−
=

   + − + −  
                 (6.7) 

where j = 0/1 for planar/axial flow.  The post-shock Mach number, M2, is expressed in 

terms of 1M  and θ [NACA Rep. 1135, Eqn. 132], 

so that the independent parameters that make up 

the right-hand side of this expression are the 

freestream Mach number, 1M , the shock angle, θ, 

and the wedge curvature, D2. The shock angle can 

be traded for the wedge angle, δ, by the (M, θ, δ)-

relation for oblique shocks [NACA Rep. 1135, 

Eqn. 138] so that the right side becomes an 

expression containing the freestream Mach 

number, 1M , and wedge geometry as specified by 

                                                 
24 An interesting variation would be to assume a linear decrease in Mach number instead of the square of 
the Mach number.  In this case Eqn. (6.6) would read, d 2M /ds  =  (1 – 2M )/L*. This equation would give 
a different value of L*  by at most a factor of 2. 

Fig. 6.14 
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(δ, D2, L*).  Equation (6.7) is the ‘local choking equation’.  It places a limit, L*, on 

the length of curved wedge surface that supports an attached shock, predicting that a 

value of L > L* will cause shock detachment by local choking.  If L* = 0, detachment 

will occur due to local choking conditions right at the leading edge.  Detachment by 

local choking will not occur when L* → ∞.  However, shock detachment can still 

occur by an excessive wedge deflection or by global choking.  Shock detachment will 

also not occur by local choking when Eqn. (6.7) gives a negative value of L*.  A large 

positive surface curvature, D2, leads to local choking near the leading edge and shock 

detachment even for a small value of L.  This will become more evident for planar 

flow where the combination L*D2 appears as a parameter.  Equation (6.7) is the basis 

for judging the onset of local choking and the resulting shock detachment.  Since it is 

based on CST, it applies strictly only right behind the shock for small values of L* ~ 

0.1.  For values of L much larger than 0.1 one should look to global choking as the 

cause of shock detachment. 

 This section has produced an approximate length required to produce local 

choking on a curved wedge.  The next four sections deal with the implications of Eqn. 

(6.7) for four types of leading edge shapes: 

- planar flow over a flat surface where j = 0 and D2 = 0; 

- planar flow over a curved surface where  j = 0 and  D2 ≠ 0; 

- axial flow over a URW with straight generators where j = 1 and D2 = 0  (sketch 

(a) in Section 6.2.1); 

- axial flow inside and outside a curved URW where j = 1 and D2 ≠ 0 (sketches 

(b) and (c) in section 6.2.1). 

6.4.4 Local choking in planar flow over a flat plate (j = 0 and D2 = 0) 
 An examination of Eqn. (6.7) shows that for these conditions the third term in the 

denominator is zero so that L* → ∞.  There is then no reason to expect local choking 

at any Mach number and shock angle, so that detachment would occur only when δ 

exceeds δmax or Lsinδ  is large enough for global choking to occur.  Shock detachment 

by local choking does not occur for flat shocks and wedges.  It is reassuring that CST 
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predicts what is known to be the correct result in the limiting case where surfaces and 

shocks have no curvature. 

 

6.4.5 Planar flow over a curved surface (j = 0 and D2 ≠  0) 
 For this case Eqn. (6.7) reduces to, 

( )
2

1 2
2 2 2

2 1 2 2

1
2 1

L b ML D
r a M Mγ

∗
∗ −

= − =
 + − 

                                                              

where r2 is the radius of curvature of the concave surface.  It states that the ratio of 

length of surface required to choke the post-shock flow to the surface radius of 

curvature is a function of freestream Mach number and wedge angle. So that 

Eqn.(6.8) places a limit on L*/r2 = -L*D2 (rad.) which is just the amount of post-shock 

flow turning. This equation, a function of M1 and δ, is plotted in Fig. 6.15. Both this 

graph and Fig.6.16 plotted for a selection of Mach numbers, from left to right: 1.05, 

1.1, 1.15, 1.2, 1.25, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.3, 2.4, 2.6, 2.8,  3, 3.2, 3.4, 

3.6, 3.8,  4, 4.5,  5, 6,  8,  10, 20, 10000.  This is the same set of Mach numbers that 

appears in the plots of NACA Rep. 1135.  Black curves in Fig. 6.15 represent shocks 

with supersonic post-shock flow; red curves represent shocks with subsonic post-

shock flow. 

(6.8) 

Fig. 6.15 
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 Each Mach number curve has a positive and a negative branch that meet at ±∞ at the 

Thomas point.  The black curves for supersonic post-shock flow all give positive 

values of L*D2 (= - L*/r2) so that the supersonic post-shock flow chokes only when 

L* is positive due to D2 being positive (concave) also.  It appears (black curves) that, 

on a planar wedge, a post-shock flow turning above approximately 0.5 radians will 

produce “supersonic” shock25 detachment by local choking at any Mach number.  All 

supersonic shock curves dip to  L*D2 = 0  at values of their flow deflection angles 

corresponding to sonic post-shock flow.  This indicates that detachment of a 

supersonic shock occurs when the flow behind the shock is sonic at any wedge 

curvature.  Detachment from a planar wedge at δmax  occurs only on a wedge with zero 

or negative curvature.  Detachment of a “subsonic” shock can occur for positive or 

negative D2 on either side of the Thomas point as shown by the red curves.  

Detachment of a “subsonic” shock can not occur at the Thomas point since P2 and 

hence the Mach number gradient, are both zero.  Fig. 6.16 is on the familiar (θ vs. δ) 

polar for oblique shocks.  It shows, by the black curves, where the  L*D2 limit for an 

attached shock is positive and, by the red curves, where it is negative.  A short portion 

                                                 
25 The nature of local choking behind shocks is distinguished by the post-shock flow being either subsonic 
or supersonic. Hence the shocks are denoted as “subsonic” and “supersonic” in the two cases.  

Fig. 6.16 
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of each curve, between the sonic and Crocco points is also red so that   L*D2 is 

negative in this region. 

 

6.4.6  Flow in a URW with conical surface (j  = 1 and D2 =  0)     

This is the URW (a) shown in Fig. 6.1.  For this geometry Eqn. (6.7) becomes, 

( )
( ) ( )

2
1 2

2 2
2 2 1 2 2 1

1

2 1 cos

b M
L

M M a b a bγ θ
∗

−
=

   + − −  
   (6.9) 

 

This equation gives the flow-length of post-shock surface required to choke the 

flow.  Since the outside and inside flows are different; the shocks are acute and 

obtuse respectively giving two different evaluations for L∗ , for the outer and inner  

 

flows.   Figure 6.17 is a plot of Eq. (6.9) for L* (Lstar)26 against M1 with the 

wedge angle as parameter for D2 = 0, i.e an a-type URW, as described in Section 

6.2.1, above with straight conically convergent inner surface.  The various values of 

δ  on the abscissa, where L* = 0, are the δmax values, indicating that, for δ =δmax, 

                                                 
26 L* is normalized by the URW radius of y=1 

Fig. 6.17 
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local choking occurs right at the leading edge, effectively requiring a very short 

duct length to cause detachment.  An examination of this figure shows that moving 

to a smaller duct convergence angle increases the length of duct, L*, required to 

produce local choking and hence detachment at that angle.  At Mach numbers 

below ~2.5 the colour bands for δ are almost vertical so that the effect of local 

choking on shifting shock detachment away from δmax is small.  Figure 6.18 is a 

cross-plot of Eqn. (6.7) for the inside surface of a URW at Mach 3. At Mach 3 the 

deflection angle for sonic flow is -34.00835 deg and the maximum deflection is  (-

34.07344) deg, as represented by the vertical border of the coloured area. The 

surface curvature D2 is plotted against the flow deflection through the shock at the 

leading edge with L*, the distance from the leading edge to the sonic surface, as 

parameter.  Since L* is based on CST, and CST applies strictly only at the shock, 

then only small (fractional) values of L*,  predicted by Eqn. (6.7) , are credible on 

this graph.  Points at A(-33.5, 0) and B(-33.5, -1) are chosen for CFD verification.  

At the A-point, L* = 0.3 and at the B-point, L* = 0.1.  CST predicts that shock 

detachment occurs with L-values larger than these in each case.  The global choking 

measure,  L*sinδ,  is 0.1655 and 0.0552 for points A and B, respectively; both 

values being below the global choking criterion of 0.23.    Note that both of these 

Fig. 6.18 
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points are for a Mach number of 3 and a wedge angle of -33.5 deg, so that 

differences in shock attachment/detachment on the inner surface are due to wedge 

curvature as manifest by local choking.  

 

6.4.7  Flow in a URW with  (j  = 1 and D2 ≠  0)     

This is the general case where the freestream Mach number and the wedge 

geometry, as specified by (M1, δ, D2), are given and L* is then calculated from 

Eqn.(6.7). 

 ( )
( ) ( )
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1 2

2 2
2 2 1 2 1 2 2 1

1

2 1 cos

b M
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M M a D j a b a bγ θ
∗

−
=

   + − + −  
           (6.7) 

     

 
 

Positive values of L*, as given by Eqn. (6.7), are plotted in Fig. 6.19, versus the wedge 

curvature and shock angle on the outside and inside surfaces of a URW, for Mach 2.7.  

Green curves indicate positive surface curvature (turning away from the axis), red curves 

indicate negative curvature (turning towards the axis).  The black curve is for zero 

curvature (conical surface).   Curves at and around a shock angle of 90 deg are anomalous 

because flow curvatures are imposed on a normal shock and a normal shock can not 

produce any curvature in a uniform free stream (see Section 3.5.1).  All curves dip to L* = 

Fig. 6.19 
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0 at the sonic shock angles and L*→∞  at the Thomas shock angles.  A conical inside 

surface will choke whereas a conical outside surface will not.  Both sets of curves 

terminate on the left and right at the Mach angles for Mach 2.7.  At these (weak shock) 

limits the surface curvatures determine the pressure gradients uniquely (see Section 3.8.1, 

Eqn. 3.50); the pressure gradient determines the Mach number gradient and the Mach 

number gradient determines L*.  This is the essence of local choking on a URW at Mach 

2.7. 

 

 

6.5   Computational examples27 
  Curved shock theory (CST) applies exactly only to the curved shock and 

the conditions immediately in front of and behind the shock surface. It is capable of 

depicting conditions at shock detachment as they occur right at the shock.  However, the 

cause of these conditions is not necessarily reachable and detectable by CST when the 

cause is some distance removed from the shock.  Shock detachment by downstream 

choking is an example of where the higher-than-tolerable pressure behind the shock is 

created by conditions further downstream, conditions that are not in themselves 

predictable by CST.  In these situations CFD has to be used to simulate the whole flow-

field so as to include the effect of causes located away from the shock surface.    

 

6.5.1 Grid-independence 
 The grid generator used by the 

CFD code produces a grid that is 

asymmetric with respect to the splitter 

tube.  The code would then produce 

results that could not be compared if 

its calculations were at all grid-

                                                 
27Computer program SolverII is used in this paper to obtain steady state 
flows over URWs. SolverII is a finite-volume unstructured TVD Godunov-type 
Euler code with local grid refinement. 
 

Fig. 6.20 
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dependent.  A test calculation was performed on two plane wedges with no stream-wise 

or cross-stream curvature on the top and bottom.  For grid-independence the flows must 

be identical.  The result is shown in Fig. 6.20 for Mach 1.67 and a wedge angle of 16 deg 

- just larger than the maximum deflection angle.  The top and bottom flows show no grid-

induced dissimilarity so that any grid refinement is unwarranted.  As an added feature, the 

picture shows just-detached shocks where the post-shock flow has characteristics of 

corner flow with concentric near-circular isobars centered at the corner.  Corner flow is 

an intermediate flow between an attached shock flow and detached shock flow.  It allows 

a time-wise smooth transition between the two. 

6.5.2  Local and global choking 
This section illustrates the difference between global and local flow choking in an 

axial converging duct.  Figure 6.21a shows Mach number contours on a URW as 

calculated by the CFD code Solver II.  The freestream Mach number is 2.7 for which the 

maximum deflection angle is 31.7406 deg and the sonic shock deflection is 31.64294 deg. 

The upper (outer) and lower (inner) wedge angles are both 30 deg so that on a plane 

wedge the shocks would both be attached with slightly supersonic post-shock flow.  Flow 

is supersonic on the outer wedge surface and the shock is attached.  However, on the 

lower wedge the flow is subsonic and the shock is very close to detaching.  This is an 

example of shock detachment by local choking where the sonic surface, appearing as a 

thin black line from the shoulder to the shock, is not able to pass the flow entering 

through the shock in front of it.  Shock detachment is caused by the curved shape of the 

inside surface at the leading edge.  Although there is a Mach disk at the centre line, the 

global (inside) flow is not choked and the detached flow is confined to the leading edge 

without being affected by downstream conditions – hence the term ‘local choking’.   

 Fig. 6.21a Fig. 6.21a Fig. 6.21b 
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Figure 6.21b is for a URW at a freestream Mach number of 1.7.  For Mach 1.7 the 

maximum deflection and sonic shock angles are 17.01194 and 16.63108. Both upper and 

lower wedge angles are 16.0000 deg.  The splitter tube appears on this picture.  In this 

case the outer shock is attached whereas the inner shock is detached from the leading 

edge. All of the inner flow is choked at the sonic surface and the shock has assumed a 

steady shape and position in front of the URW. 

 

6.5.3 Attachment/detachment hysteresis by CFD 
At supersonic speeds, two distinctly differing global flows can exist in a given 

converging duct, the so-called started and unstarted flows.  These flows are subject to 

hysteresis when approached by increasing or decreasing Mach numbers.  This section 

describes a similar hysteresis for local flow at the leading edge.  The leading edge of a 

URW is shown in Fig. 6.22a,b with a ±30 deg double wedge leading edge.   

 

In the calculations for the left picture  6.22a the Mach number was very gradually 

brought down to Mach 2.7 from Mach 3.  In the right picture 6.22b the Mach number 

was brought up to 2.7 from Mach 2.5.  At Mach 2.7 the sonic angle is at 31.64294 deg 

and the maximum flow deflection is 31.7406 so it is not surprising that the flow on 

the outside wedges is supersonic with an attached shock for both cases.  On the inside, 

however, the flows are markedly different.  First of all they are different from their 

corresponding external flows because of the lateral curvature and secondly they are 

different from each other – this being the hysteresis.   In the decreasing Mach number 

case the lower shock is attached and concave towards the on-coming flow.  In the 

increasing Mach number case the lower shock is detached and convex with subsonic 

  

Fig. 6.22a Fig. 6.22b 
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downstream flow.   This is in accord with Eqn. (6.7) which predicts differing values 

of L* for weak and strong shocks.  

 

 

6.5.4 CFD vs. CST 
CFD calculations are presented in this section for the CST predictions in 

Section 6.4 of Eqn. (6.7) at conditions for the two points A and B.  All the results are 

for a Mach number of 3 and a wedge angle of 33.5 deg.  At this Mach number the 

flow deflection angle for sonic flow is 34.00835 deg and for maximum deflection it is 

34.07344 deg so that, on a plane wedge, the shock remains attached.  The 0.5 degree 

difference in flow deflection angle  represents a 1.5 degree difference in shock angle 

at this Mach number. CFD result for point B is shown in Fig.6.23b with constant 

Mach number contours.  The axial wedge surface at the top is curved towards the flow 

with a radius of curvature of 1.  The distance from the axis of symmetry at the bottom 

to the top of this figure is also unity.  The doubly curved leading edge supports a 

detached shock with subsonic flow between the 

shock and the surface and a sonic line from the corner to the shock.  The diagram in 

Fig.6.23a is an enlarged view of the subsonic region where the detachment is is 

clearly visible.  This is an example of shock detachment occurring due to local flow 

choking as induced by wedge curvatures in both streamwise and transverse directions.  

Globally, the flow is unchoked.  The conditions for point A led to global choking 

where the shock moved upstream out of the computational region. 

Fig. 6.23a Fig. 6.23b 
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Figure 6.24 shows 

Mach number colour grading 

over the leading edge of a 

URW with outer/inner 

deflection angles ±30 deg in a 

Mach 3 freestream flow.  An 

infinitely thin splitter tube is 

inserted, in the computational 

domain, projecting upstream 

from the leading edge, to keep 

the effects of the upper and 

lower curvatures from 

interacting.  The streamwise curvature for both surfaces is zero, D2 = 0.  For the 

upper/outer surface the lateral curvature is -cos(30) = -.8660 and for the lower/inner 

surface it is -cos(150) = .8660 with curvature radii 1.1547 and -1.1547 respectively.  

The negative and positive curvatures cause expansive and contractive flows on the 

upper and lower surfaces as specified by the second term of Eqn. (6.3).  Expansive 

flow on the upper surface is supersonic whereas compressive flow on the bottom is 

subsonic. The bottom flow  chokes at the corner causing detachment of the lower 

shock.  This is an illustration of shock detachment as caused by lateral surface 

curvature through the action of local choking.    

Fig. 6.24 

Fig.6.24 
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Figure 6.25 is for planar flow at Mach 1.7, with constant Mach number lines, 

where the outer and inner wedge angles are ±16.5 deg.  At this Mach number the 

sonic and maximum deflection angles are 16.6311 and 17.0119, so that, on plane 

wedges the shocks would remain attached. In fact the upper wedge is plane and the 

shock is attached with a sonic line shown between the plane surface and the shock, 

indicating just-supersonic flow.  The bottom wedge is curved towards the flow in the 

streamwise direction by D2 = -1 so that, according to the first term in Eqn. (6.3), the 

flow is compressive.   The thin black line shows where the flow chokes locally by 

streamwise surface curvature, eventually causing shock detachment.  The last two 

figures have demonstrated that local choking can be caused by cross-stream as well as 

streamwise surface curvature  and that local choking leads to shock detachment at 

flow deflection angles below sonic and maxδ  limits. 

      

6.5.5 Abruptness of transition 
 Solver II’s  ability to simulate transient flow provided an opportunity to observe  

detachment evolution in time.  Although, on a fixed geometry wedge, detachment 

occurred in a very narrow range of Mach number, there was no unsteadiness, 

instability or time-dependence in the flow and the detachment process could be 

Fig. 6.25 
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reversed by an increase in freestream Mach number at any point.  The marked change 

in shock geometry was connected by steady corner flow.  Any hysteresis was with 

respect to Mach number and not with respect to time.  Guderlay’s characterization of 

a “radical change” is confirmed but the “abruptness” is only as abrupt as the change in 

freestream Mach number. If the detachment process is fundamental to the RR to MR 

transition then a Mach number driven transition could be expected to be smooth. 

      

6.6 Conclusions  
Detachment by global choking is a flow area effect that occurs in the starting 

and unstarting of air intakes.  It is due to the global mismatch of mass flow passing 

through the shock at intake entry and the sonic surface at the exit.  If it occurs in a 

duct, it preempts local choking, where local choking is due to the same mismatch but 

now occurring at the duct leading edge.  It has been shown that shock detachment can 

occur from a sharp leading edge that is curved either along or transverse to the 

freestream direction by local choking of the post-shock flow.  Detachment by local 

choking is attributed uniquely to the shape of the leading edge and the freestream 

Mach number and occurs when the convergent flow is not globally choked.  Both 

local and global choking can cause shock detachment from a sharp wedge whose 

angle is smaller than the maximum flow deflection angle as well as smaller than the 

angle for sonic down-shock flow.   

Shock detachment from a sharp leading edge, as induced by local choking, 

depends on the freestream Mach number and the shape of the leading edge.  

Detachment by global choking depends on the freestream Mach number and the 

amount of downstream flow contraction, being largely independent of leading edge 

shape.  In summary, a shock will remain attached to a curved leading edge if all of the 

following three conditions are satisfied: 

1)  -  according to oblique shock theory, δ < δmax   

2) - no global choking according to the Kantrowitz criterion and as 

approximately stated by:  

a)  Lsinδ  < 1 /e iA A− ; for planar flow 
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b) Lsinδ  < 1 /e iA A− ; for axial flow    

3)    -  no local choking according to Eqn. (6.7);  L < L* 

 

If the mechanism for RR→MR transition has the same underlying cause as 

shock detachment from a curved wedge then the occurrence of transition depends on 

the curvature of the reflecting surface and hysteresis-induced flow duality becomes a 

possibility. Mach number driven hysteresis is possible for both global and local 

choking.  Extension of present results to studies of the RR→MR transition is straight-

forward to planar flow when a plane (flat) incident shock impinges on a surface that is 

curved behind the shock.  Conditions in front of the reflected shock are uniform and 

all detachment conditions are then applicable.  A curved incident shock causes non-

uniform, vorticial flow ahead of the reflected shock so that a more elaborate version 

of CST has to be applied where the pre-shock flow gradients are finite for the 

reflected shock.  The same local and global choking conditions should be applied to 

flow behind the reflected shock as causes for regular to Mach reflection to 

substantiate Sudani et al. [2000] who state that “…transition from regular to Mach 

reflection occurs significantly below the maximum deflection condition”. 
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Chapter 7 
Claims, Conclusions, Discussion 
and Recommendations 
 
7.1 Claims 
 The Author claims originality in the following specific discoveries, developments 

and applications: 

1) Derivation of the curved shock equations in a general form which makes them 

applicable to doubly curved shocks in non-uniform flow. 

2) Recasting the curved shock equations into an influence coefficient form. 

3) Derivation of the vorticity jump equation in the influence coefficient form for 

a non-uniform upstream flow. 

4) Unique equations (3.3a) and (3.4) for the Thomas and Crocco points in planar 

flow. 

5) An exact solution for Eqn. (3.3a). 

6) Shock polar streamline slopes and their compatibility requirements. 

7) Application of CST to find shock stand-off distances on bluff bodies. 

8) Application of CST to find length of subsonic flow behind concave normal 

shock. 

9) Application of CST to swept leading-edge flow. 

10) Establishing Thomas and Crocco shocks for doubly curved shocks. 

11) Reflection coefficient equation for doubly curved shock. 

12) Sound-absorbent shock shapes. 

13) Sonic line and surface orientation behind doubly curved shocks. 

14) Taylor-McColl equation in Mach number variables. 

15) Application of Busemann flow to air intakes. 

16) An inflection point on the Busemann streamline; its significance to intake 

starting. 
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17) Initiating and monitoring critical wind-tunnel and gun-tunnel experiments to 

prove existence of Busemann flow.  

18) Initiating and monitoring critical wind-tunnel and gun-tunnel experiments to 

prove existence of M-flow. 

19) Discovering (analytically) the focused, axial compression fan and initiating 

experimental work to prove its existence. 

20) Discovering (analytically) the free-standing conical shock and proving its 

existence experimentally. 

21) Initiating and monitoring gun-tunnel experiments to discover regular shock 

reflection at the centre line.  

22) Initiating and monitoring CFD calculations to complement 17) to 21), above. 

23) Suggesting the hyperbolic shock shape for study of flow behind doubly curved 

concave shocks. 

24) Identifying three types of doubly curved concave shocks critical to the 

formation of a reflected shock. 

25) Identifying the shock’s curvatures ratio as a critical parameter for the 

formation of a reflected shock.  

26) Identifying three distinct causes for shock detachment from a doubly curved 

wedge surface. 

27) Presenting local choking as a cause for shock detachment and formulating the 

geometric detachment conditions from curved shock theory. 

28)  Demonstrating by CFD that local choking pre-empts the sonic and 

detachment conditions in causing shock detachment from a doubly curved 

wedge. 

29) Suggesting that, by analogy, local choking causes transition from regular to 

Mach reflection of curved shocks. 

 
7.2 Conclusions 

Detailed conclusions are presented at the end of each of the previous chapters.  

This chapter focuses on aspects of this report that are both novel and significant.  Each 
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such aspect is discussed with respect to its novelty, its potential application and, where 

appropriate, its further development. 

 The historical development (1938 to 2011) of curved shock theory has been 

reviewed.  Extensions have been made for CST to apply to axial shocks in non-uniform 

flow.  A general formula has been derived for the vorticity jump across a doubly curved 

shock in non-uniform flow.  Influence coefficient forms of equations for the gradients and 

vorticity show the effect of changing pre-shock conditions and shock geometry. 

 CST has been applied to a series of simple shock flows including the orientation 

of the sonic surface at the rear face of a doubly curved shock.  This orientation is 

significant in determining the occurrence of embedded shocks in the post-shock flow.  

Application of CST to curved, concave, normal shocks allowed the derivation of an 

explicit relationship between the shock’s curvature and the length of down-shock 

subsonic flow.  This aspect of the structure of Mach reflection and its associated triple-

shock confluence are important components of many air intake flows.  The direct 

relationship deserves further investigation, by a combination of CST and CFD, to help 

construct an incident and reflected shock structure around a given Mach disk/stem – an 

inverse approach to the Mach reflection problem.  

 Investigations of M-flow by analysis, CFD and experiment all failed to 

demonstrate the existence of regular reflection at the centre line of axial flows.  Both 

experiment and CFD have shown that the analytically predicted conical shock, on the 

calculated streamline, does not extend all the way to the centre line but terminates in 

Mach reflection.  It appears that the existence of an analytical Taylor-Mccoll solution is 

not in itself a guarantee of the physical existence of a conical flow in all cases.  

Mathematical singularities appear in the equations of fluid mechanics as a result of 

idealizations of fluid behaviour and imposition of symmetry.  These singularities are not 

approachable by real flow because the mathematical streamlines have cusps or corners at 

the singularities.  Real or artificial viscosity would smooth out singular behaviour.  Of the 

two imposed symmetries, it is the conical symmetry that breaks down whereas 

experiment shows that axial symmetry is preserved. 

 The Taylor-Maccoll equations predict the existence of an axisymmetric centered 

compression fan, analogous to the Prandtl-Meyer fan in planar flow.  A free-standing 
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conical shock is located downstream of the compression fan.  Both features have been 

shown to exist by CFD as well as experiment.  Busemann flow is the only flow where 

these wave structures can exist.  It is seen that, although regular reflection of shocks at the 

centre line is not possible, it is possible to reflect an incident, centered compression as a 

conical shock.  Investigations have also shown that it is possible to place an upstream 

pointing solid cone behind the conical shock, in which case the ‘reflected’ shock becomes 

stronger and the Busemann flow exits through an annulus.  Such flow passages have 

applications to air intakes that feed annular passages of axial compressors.  

 Discovery of an inflection point on the Busemann streamline has an important 

implication to spontaneous starting of Busemann intakes.  If the normal shock, at the 

entry, can be coaxed to come to the inflection point (surface) and if the post-shock flow is 

not contracted beyond the Kantrowitz starting limit, then the shock will move 

downstream from the inflection point and the intake will start – at least so predicts 

inviscid theory..  The shock can be coaxed to move to the inflection point by spilling the 

post- and pre-shock flow.  The performance (attainable compression and contraction) of 

such spontaneously starting intakes needs investigation. 

 Three types of flow can exist behind a doubly curved concave shock.  Only one 

type can exist as a continuously curved shock from the Mach angle to the normal shock.  

The other two develop an embedded reflected shock, most likely reverting to Mach 

reflection.  The three types are characterized by the orientation of the sonic surface which, 

in turn, is determined by the pre-shock Mach number and the shock curvatures ratio.  

Post-shock flows, which in themselves are shock-free, may be applied to avoid the often 

troublesome shock-boundary layer interaction of the reflected shock. 

 Shapes of special axial shock surfaces, with straight post shock streamlines, 

(Crocco shocks) or vanishing streamwise pressure gradient (Thomas shocks), have been 

calculated.  They have no known application but to demonstrate the ability of CST to 

produce “designer shocks”.  Similar calculations produce curved shocks that have post-

shock surfaces with specific sound reflectivity (zero, if desired).  Applicatio to boundary 

layer generated noise abatement is a possibility.     

 Local flow choking, near the leading edge, is shown to lead to shock detachment 

from a curved wedge.  Such detachment depends on freestream Mach number, the wedge 
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angle, the wedge curvature and the wedge length.  It would pre-empt detachment by 

excessive flow deflection.  If the mechanism for regular reflection termination is the same 

as shock detachment from a wedge then there is a need to apply CST to the prediction of 

regular to Mach reflection transition for curved shocks on curved surfaces.   This is 

planned as the Author’s next project. 

CST, as presently formulated, is applicable to shock surfaces with planar and axial 

symmetry.  It also applies at ridge and trough lines of left-right symmetric shocks such as 

would occur on symmetric swept leading edges - even if the sweep is variable.  The 

criterion is that the post-shock, constant property lines be normal to the freestream vector 

so that there be no cross flow derivatives.  For a uniform pre-shock flow it means that 

CST applies locally on a 3D shock wherever the lines of constant shock angle are normal 

to the freestream flow vector.  For a smooth shock element in 3D space, it is possible to 

identify a flow plane as well as a flow-normal plane where the shock traces have 

curvatures Sa and Sb.  These curvatures, together with the pre-shock Mach number and 

the shock angle, are sufficient to calculate the post-shock gradients using CST, as it 

presently stands.  However, this approach is not valid for general 3D flow and shocks 

because the post-shock flow curvature’s osculating plane is no longer in the flow plane 

and there is a pressure gradient across the flow plane.  Dr. Emanuel has spent a 

considerable effort in analyzing this very complicated problem, with the aim of extending 

CST to 3D shock surfaces.  Extension of CST to 3D flow would be an important 

attainment as no 3D CST is known to exist. 
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