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ABSTRACT
Curved shock theory (CST) has been extended to apply to axisymmetric shocks in

non-uniform flow. A general formula has been derived for the vorticity jump across a
doubly curved shock in non-uniform flow. Influence coefficient forms of equations for
the gradients and vorticity show the effect of changing pre-shock conditions. CST has
been applied to a series of simple shock flows and to the orientation of the sonic surface
at the rear face of a doubly curved shock. This orientation is significant in determining
the occurrence of embedded shocks in the post-shock flow. Application of CST to
curved, concave, normal shocks allowed the derivation of an explicit relationship between
the shock’s curvature and the length of down-shock subsonic flow. Investigations of
conical flows by analysis, CFD and experiment all failed to demonstrate the existence of
regular reflection of shocks at the centre line of axisymmetric flows. An analytically
predicted conical shock, on the calculated streamline, does not extend all the way to the
centre line but terminates in Mach reflection. It appears that the existence of an analytical
Taylor-Mccoll (T-M) solution is not in itself a guarantee of the physical existence of a
conical flow in all cases. The T-M equations predict the existence of an axisymmetric
centered compression fan, analogous to the Prandtl-Meyer fan in planar flow. A free-
standing conical shock is located downstream of the compression fan. Both features have
been shown to exist by CFD as well as experiment. Busemann flow is the only flow
where these wave structures can exist; it is possible to reflect an incident, centered
compression as a conical shock. Discovery of an inflection point on the Busemann
streamline has an important implication to spontaneous starting of Busemann intakes.
Three types of flow can exist behind a doubly curved concave shock; characterized by the
orientation of the sonic surface which, in turn, is determined by the pre-shock Mach
number and the shock curvatures ratio. Shapes of special axial shock surfaces, with
straight post shock streamlines (Crocco shocks), or vanishing streamwise pressure
gradient (Thomas shocks) and shocks with specific sound reflectivity (zero, if desired),
have been calculated and illustrated. Boundary layer generated noise abatement is a
possibility. Local flow choking, near the leading edge, leads to shock detachment from a

curved wedge with such detachment depending on freestream Mach number, the wedge
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angle, the wedge curvature and the wedge length. These are new criteria for shock
detachment with analogies extending to the transition from regular to Mach reflection of

shock waves.



RESUME

La théorie des ondes de chocs courbées (TOCC; Curved Shock Theory) a été
généralisée aux chocs axisymétriques dans un écoulement non uniforme. Une formule
générale a été¢ dérivée pour les sauts de vorticité a travers un choc a double courbe dans
un ¢écoulement non uniforme. La forme coefficient d’influence des équations des
gradients et de la vorticité démontrent 1’effet de la variation des conditions en amont. La
TOCC a été appliquée a plusieurs écoulements simples avec chocs incluant ’orientation
de la surface sonique a la face arriére d’un choc a double courbe. Cette orientation est
importante pour déterminer 1’existence d’ondes de choc intégrées a I’écoulement aval.
L’application de la TOCC aux ondes de choc courbées, concaves et normales permet de
dériver une relation explicite entre la courbe du choc et la longueur de 1’écoulement
subsonique derricre [’onde. L’¢étude analytique, numérique et expérimentale des
¢coulements coniques n’a pas permis de démontrer 1’existence de réflexions réguliéres
des chocs a I’axe de symétrie des écoulements. Un choc conique prédit analytiquement
sur la ligne d’écoulement n’atteint pas I’axe central, mais se termine en réflexion Mach. Il
semble que I’existence d’une solution Taylor-McColl (T-M) ne garantit pas 1’existence
physique d’un écoulement conique. Les équations T-M prédisent 1’existence d’un train
d’ondes de compression axisymétrique, analogue au train d’ondes de Prandtl-Meyer dans
un écoulement planaire. Un choc conique détaché est situé en aval du train de
compression. L’existence des deux caractéristiques a été démontrée par CFD ainsi
qu’expérimentalement. L’écoulement Busemann est le seul écoulement ou ces structures
d’ondes peuvent exister : une compression centrée peut étre reflétée en onde de choc
conique. La découverte d’un point d’inflexion dans la ligne d’écoulement de Busemann a
une implication importante au démarrage spontané de diffuseurs Busemann. Trois types
d’écoulements peuvent exister a I’arriere d’un choc concave a double courbure : ils sont
caractérisés par 1’orientation de la surface sonique qui, & son tour, est déterminée par le
nombre de Mach pré-choc et le ratio de courbures du choc. Des formes de surfaces
d’ondes de choc axiales particulieres, avec écoulement droit en aval (chocs Crocco), ou
avec un gradient de pression tendant vers zéro dans 1’axe d’écoulement (chocs Thomas)
ainsi que des chocs avec une réflectivité acoustique spécifique (incluant nulle) ont été

calculées et illustrées. Une réduction du bruit de couche limite est aussi possible.
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L’étranglement local au bord d’attaque d’une pointe courbée mene au détachement de
I’onde de choc, lequel dépend du nombre de Mach de I’écoulement libre, de 1’angle, de la
courbure et de la longueur de la pointe. Ce sont de nouveaux critéres pour le détachement
du choc avec des analogies pouvant s’étendre aux transitions des réflexions réguliéres aux

réflexions Mach.
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CHAPTER 1
INTRODUCTION

The first hypersonic X-51 scramjet powered long-duration flights....... that tie atmospheric and space
propulsion will begin as early as May 25 at Edwards Air Force Base. According to the article (17 May 2011
issue of Spaceflight Now), scramjet propulsion is the future for spaceflight as even a partially successful test
would hasten progress on spacecraft that could launch horizontally. Furthermore, this is "an example of the
type of revolutionary propulsion that ..... will be needed for future space operations." The article noted that
“there is a bright future for a range of scramjet-powered vehicles" and "scramjet development will proceed no
matter what happens in the near-term shift to commercial crew and cargo launch to the International Space
Station."

A shortened version from AIAA Daily Launch, March 2011

Research and development of the scramjet type engine had its beginnings in the
late 50°s. A historical review of progress to 1990 is found in [Curran, 1997] and a more
up-to-date international state-of-the-art summary is found in [Curran and Murthy (ed.),
2000]. The scramjet engine consists of three main components: the intake, the combustor
and the exhaust nozzle. Each component has its very unique and challenging design
problems. Scramjet intake design and development has been reviewed by Van Wie
[2000]. A high performance intake is critical to obtaining even minimal scramjet engine
performance. For the aerodynamicist, intake design challenges arise from shock losses,
boundary layer losses and their interactions, from trade-offs between adequate
compression and intake starting, from attainment of sufficient performance at off-design
operation and from obtaining stable and predictable as well as tailored flows at on- and
off-design conditions.

The contents of this thesis is applicable to the design of supersonic and
hypersonic air intakes. Three aerodynamic features that occur in such intakes are treated
in detail: Taylor-Maccoll flow of the Busemann type, doubly curved, concave shocks in
internal flow and detachment of shocks from doubly curved leading edges. Wherever
possible, the various flow features of interest are examined by analysis, computational
fluid dynamics and experiment. Novel developments of curved shock theory are used

extensively for the last two topics.



Simple flows behind flat shocks, behind conical shocks and in Prandtl-Meyer fans
have been used as starting points to construct many operational intake flows, e.g. the
Concorde SST and early MiG series of fighters. The resulting, essentially external, flows
do not lead into the axial flow and enclosed flow paths most readily welcomed by a
tubular combustor. Two flows which do not suffer from this ‘flatness’ but which are
equally simple, internal flows, with enclosed circular exit flowpaths, are presented in
Ch.4.

Even simple shocks take on compound curvature in intakes at off-design
conditions. Such curved shocks are shown to produce post-shock streamline curvatures
and pressure gradients that may not be compatible with adjacent surfaces. An extensive
treatment of curved shock theory and vorticity development is presented in Ch. 2. Simple
applications of the theory are in Ch. 3 and a concave, hyperbolic shock is examined with
curved shock theory in Ch. 5, such a concave shock being representative of curved shocks
in internal flow. Verification of analytical flows is provided by comparing the flows and
surface contours generated by solutions of the Taylor-Maccoll equations against flows in
the same contours as predicted by finite difference calculations and results of experiments
in Ch.4. There is good reason to be suspicious of the influence of lateral surface
curvature on shock detachment because it is a well-known fact that a shock on a cone
detaches at a higher cone surface angle than the same strength shock on a wedge. The
difference in surface deflection required for shock detachment is made up of the curving
Taylor-Maccoll flow that exists between the conical shock and the cone. The
intermediate case of lateral surface curvature on a ring-wedge should have an
intermediate effect on shock detachment — by analytic continuity. Curving flow, although
not of the Taylor-Maccoll type, also exists between a ring-wedge surface and its shock.
In Ch. 6 it is demonstrated that local flow choking at the leading edges of curved ducts
can cause premature shock detachment. This effect, when applied to shock reflection,
would cause similar premature cessation of regular reflection on a curved wall.

All theoretical work is based on a thermally and calorically perfect compressible
gas. Although all formulas contain the specific heat ratio as a variable, the numerical

results are for y =1.4 throughout. All experiments have been conducted in steady flow of
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air. Boundary layer corrections have been applied to the wind tunnel models, otherwise

the flows are taken as inviscid.






CHAPTER 2
CURVED SHOCK THEORY (CST)

Contents
2.0 Introduction
2.1 Morphology of axisymmetric shock shapes
2.2 Rankine-Hugoniot and Euler Equations
2.3 Constant property lines
2.4 The curved shock equations
2.4.1 Vorticity jump at the shock
2.5 Concluding comments

2.0 Introduction

A student of descriptive geometry, trying to visualize the shape of a function, can
evaluate the function at several values of the independent variable. A slightly more
sophisticated student gains a better picture of the function’s shape by evaluating its
derivative and slope. An even brighter student will take the second derivative to discover
curvature and inflection points. So it is in the aerodynamics of shock waves where a
basic level of understanding is obtained by examining the ratios of dynamic and
thermodynamic variables across an oblique shock wave and a deeper grasp of the subject
comes from an examination of variable gradients when the shock is curved.

Research focusing on shock curvature and the resulting flow property gradients
has a long history and has been largely analytical. Crocco [1937] showed that, on a
curved, planarly symmetric (planar) shock wave, there is a shock angle where the
streamline behind the shock is straight, irrespective of shock curvature. This shock
location is called the Crocco point. Thomas [1947] derived the curved shock equations
for steady flow of an ideal gas with planar shocks in uniform flow. He found an
expression for the curvature of the streamlines and the streamwise pressure gradient
behind a curved shock. The shock angle where the pressure gradient along the streamline
behind the shock is zero we call the Thomas point. Any influence of upstream vorticity
was not considered. Lin and Rubinoff [1948] re-derived the equations of Crocco and
Thomas to show that a normal shock can sit on a continuously curving surface only if the

Mach number exceeds a certain supersonic value. Lin and Rubinoff stopped short of
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considering axisymmetric flows. Thomas [1949a] extended the study of shock curvature
to higher derivatives of shock and streamline shape, giving extensive graphs of the first-
derivative relations. Algebraic complexities prevented Thomas from examining higher
derivatives in detail. Today’s computerized algebra manipulators such as Matlab and
Maple could be used to advance Thomas’ early efforts. Thomas [1949b, 1950] also
considered the motion of a shock attached to the leading edge of a planar, curved surface
and developed total differential equations for the first, second and third approximations
for the surface pressure. These methods, although algebraically cumbersome, are more
versatile than the Method of Characteristics because they can be used in flow regions
where the flow is locally subsonic; however, they are approximations and not as straight-
forward in application as modern CFD methods. Truesdell [1952] derived the formula
for the vorticity jump across a curved shock wave, but erroneously concluded that “when
a uniform flow of any fluid breaks across a shock the pressure gradient cannot vanish on
the rear side of the shock at any point where the shock is curved and oblique™. A simple
physical argument shows otherwise; so does the correct theory. Application of CST to
the propagation and decay of spherical blast waves is found in Thomas [1957b].
Clutterham and Taub [1953] considered curvature of planar pseudo-stationary shocks in
Mach reflection. Bianco, Cabannes and Kuntzmann [1960] used CST for axial flow to
find pressure gradients at the nose of an axially symmetric body in supersonic flow.
Gerber and Bartos [1960] presented coefficients for the curved shock equations for
determining the orientation of constant property lines behind planar and axial shocks in
steady, irrotational, uniform flow of an ideal gas. Truly unsteady (i.e. non-pseudo-
steady) flow and shock motion was allowed by Pant [1969] in deriving gradient
expressions for flow behind a moving shock. Molder [1970, 1971] presented numerical
results for curved shocks in regular reflection (RR) and Mach reflection (MR) at a plane
wall and [in 1972] some results for polar streamline directions behind the triple point of
Mach reflection. Pant [1972] presented similar results for planar flow. Darden [1984]
derived the spatial derivatives of flow properties behind curved weak shocks with
applications to sonic boom problems. All of the above papers have assumed that the gas
is both thermally and calorically perfect. Sedney [1961] accounted for vibrational

relaxation on flow over a wedge. Hsu [1961] accounted for the effects of non-



equilibrium dissociation on gradient functions for flow behind a shock. Hornung [1976,
1998] described many interesting features of real gas effects on curved shocks and
inferred real gas properties from measurements of shock curvature on plane wedges.

A series of papers by Truesdell [1952], Hayes [1957], Kanwal [1958, 1960] and
Emanuel [1994] have treated the production of vorticity by a curved shock. Most of these
make use of the equation of state and Crocco’s thermodynamic relation when deriving the
vorticity equation. Kanwal [1958] and others have shown that the jump in vorticity is
independent of the energy equation and the form of the equation of state and can be derived
from strictly kinematic basis.

The Curved Shock Theory (CST) is derived and embodied in the curved shock
equations, which relate shock curvature directly to the gradients of flow properties near
the shock. The equations are derived by applying the Rankine-Hugoniot and Euler
equations of conservation to a perfect gas, in steady flow, across a doubly curved shock
wave. Curved shock theory is introduced and further extended in this chapter to be

applied in later chapters to investigate flow about doubly curved shock surfaces.

2.1 Morphology of axisymmetric shock shapes

Most of the curved shock equation applications referred to above are for simple
shock curvature and a uniform
upstream flow and so do not
contain terms reflecting upstream
vorticity, upstream flow non-
uniformity and compound shock
curvature. In applying to shock

reflections, terms must be included R ok —\\

which account for complex shock : . S

curvature since the reflected shock,

advancing into non-uniform and

rotational flow, becomes doubly jan€ | Fig. 2.1 Doubly

a
w P
curved; also one must account for y curved shock element
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the upstream flow being both rotational and possibly convergent. We present equations
for pressure gradient, flow curvature and vorticity for flow behind a doubly curved shock
in steady non-uniform flow where the upstream flow can have a pressure gradient, a
streamline curvature, vorticity and be inclined to the axis. The equations are valid for
shocks that possess planar and axial symmetry and, with some restrictions, also to shock
surfaces in three-dimensional space.

Figure 2.1 shows an oblique, doubly curved shock element in supersonic
flow separating the pre-shock state (1) from the post-shock state (2). The gas enters the

shock with a velocity vector ¥, and leaves with a velocity vector V,. A vector n is

normal to the shock and points towards the upstream flow. The plane containing both n
and V; is useful in deriving the curved shock
equations. Since the shock is normal to n, the a

vector V) also lies in this plane. Kaneshige and

Hornung, [1999] call it the flow plane. The Ra

coordinate plane (x,y), lies in the flow plane g V2
and the x-axis is aligned with the freestream n 5% S
direction. In axial flow the x-axis is collinear *~ ="~ 7 oo R S
with the axis of symmetry which may not be V1 o

the freestream direction. The velocity vectors 05{"$§ Fig. 2.2 Trace of
are inclined at o, and &, to the x-axis so that =) Curvegsaogi(arlave mn
the net flow deflection through the shock is a

0 =0, —0,. The shock has a trace a-a in the flow plane that is inclined at an angle & (the

shock angle) to the incoming flow vector. Distance measured along the shock trace is o
and distances measured along and normal to the streamline are S and 71. The shock trace

has a curvature S =db,/do and a radius of curvature R =-1/8 in the flow plane.

The flow-normal plane is normal to both the flow plane and the shock surface. The

shock has a trace b-b in the flow-normal plane. The b-b trace has a curvature S and a
radius of curvature R =-1/8,- Shock curvature is positive when, moving along the

shock trace so that the upstream is on the left, the shock angle increases. A positively
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curved shock is always concave towards the upstream flow'. In axisymmetric flow there
is a third plane, the transverse plane. It is normal to the axis of symmetry and it contains
the y-coordinate of the (x,y) coordinate system and specifically, the distance, y, from the
shock to the axis of symmetry. In axial flow y is the radius of the circular trace of the
shock in the transverse plane. In axial flow, the radius of curvature of the shock in the

flow-normal plane is y/cos@. We will have occasion to refer to the ratio of shock

curvatures, R = Sa / Sh.

A shock wave element in three-dimensional space is defined completely by its
inclination to the pre-shock flow vector, 6, and the two shock curvatures S, and S;. The
angle 6 is measured counter-clock-wise from the pre-shock flow direction to the shock
surface, in the flow plane. S, and S, are the curvatures of the shock traces in two mutually
perpendicular planes — the flow plane and the flow-normal plane. Both sign and
magnitude of S, are defined by dd/do where o is distance measured along the shock trace
while keeping the pre-shock flow on the left. In axial flow, S, reduces to -cosé'y where y

is the perpendicular distance from
convex Sp concave

the symmetry axis. The
descriptive terms concave/convex

are used exclusively with §, to

denote positive/negative S, and the

terms acute/obtuse are used to SPIGOT =
wing-shock

describe the location of the shock
by its angle 6. For an axial shock,
all four S,/S, combinations +/+ -
/+ -/- and +/- are possible. For a
hyperbolic shock (discussed in Ch.

5) lying on the x-axis, only two

convex concave
combinations are possible, -/- for the Fig. 2.3
right lobe and +/+ for the left lobe  Foyr types of curved shock surfaces and
ie. convex/acute and their limiting shapes

" This definition is unambiguous and does not depend on the chosen coordinate system.
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concave/obtuse. The signs and values of S, and S, and R = S /S, are important.

Concave, convex, acute, obtuse are convenient descriptors. Because of axial symmetry
we need to consider only (0 < acute < 1/2) and (7/2 < obtuse < 1) shock angles.

The four generic shock shapes are shown in the (S,, Sp)-diagram in Fig.2.2. In
the first quadrant, where S, and S, are both positive, the shock surface is concave and
obtuse, resembling the inside surface of a spoon. In the second quadrant S, is negative
and S is positive (convex/obtuse); the shock surface resembles a spigot. In the third
quadrant S, and S, are both negative convex/acute producing a water-melon-like shock
surface as often seen on a blunt body. In the fourth quadrant Sa is positive and S} is
negative, (concave/acute) producing a spike or saddle-shaped shock surface. On the two
axes of this figure the shock surfaces are of single curvature so that, on the positive S, —
axis the shock shape resembles a snow-shovel. On the positive Sp-axis the shock shape is
conical, with the cone vertex pointing downstream. This conical flow, called M-flow,
will be dealt with in Chapter four. On the negative S, - axis the shock shape is found on
the leading edge of a convex wing surface. On the negative S, axis the shock shape is
conical, with the cone vertex pointing upstream. To complete the picture, at the origin
there is a plane (flat) shock with no curvature in either direction.

There are two geometric/mathematical principles that need to be stated,
understood and used in deriving gradient relations at a surface of discontinuity involving

conservation laws.

The first: For a conserved quantity (e.g. mass flux) that
remains constant as it crosses a discontinuity the
derivatives of this quantity, on the up- and
downstream sides of the discontinuity, along the
same direction on the surface of the discontinuity,
must be equal.

The second: The above principle holds for both steady and
unsteady motion of the discontinuity.

The first of these is the basis of Curved Shock Theory; it seems 'intuitively obvious'.

Perhaps less obvious for unsteady flow - but it must still be so since the discontinuities
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are infinitely thin so that quantities immediately upstream of the shock take no time to
cross the shock. The second principle is not crucial to the development of CST however
it is implicit wherever it is claimed that the CST results apply to unsteady discontinuity
motion — mostly everywhere. A rigorous proof of the second principle would be

necessary for the development of CST for time-dependent flows.

2.2 Rankine-Hugoniot and Euler equations

Across a stationary normal shock wave the relations expressing conservation of

mass, momentum/force, energy and state are: [ Liepmann and Roshko, 1956, p.56]

pV, = pV, (2.1)
p+pVi=p+pV: (2.2)
CT+V/2=CT +V}/2 (2.3)
PP (2.4)
P  pl,

where the usual density, velocity, pressure and temperature symbols with subscript 1
refer to the flow entering the shock and the subscript 2 refers to the departing flow in

Figure 2.1. For an oblique (acute or obtuse) shock the conservation equations are:

PV =PV, (2.5)
pApVit=p,+pV,, (2.6)
PV, =pV. Y, (2.7)
CT+(V,+V)/2=CT+(V,+V;)/2 (2.8)
po_ P (2.9)

Pl pl,

The additional subscripts N and 7 denote velocity components normal and tangential to
the oblique shock. For the applications that follow it is important to affirm here that
these equations relate flow properties immediately up- and downstream of the shock

surface and they apply locally to plane as well as to smoothly curving shock waves, be
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the shocks stationary or not, as long as velocities are measured with respect to the shock

wave. Equation 2.7, when divided by Equation 2.5, becomes V,, =V, .

The Euler equations are used to describe how the flow properties change on
moving away from the shock surfaces, either upstream or downstream. They express the
conservation of mass, momentum/force and energy in directions along (s) and normal (n)
to a streamline. For our purposes we make the assumption that the flow is steady and
homenergic so that the stagnation enthalpy is constant along, as well as across,
streamlines. In the natural, or intrinsic, streamline coordinates [Hayes and Probstein

p-482, 1966] the Euler conservation equations are,

mass: épVy/ +pVy’@=0 (2.10)
os on
s-momentum: % v b _ 0 (2.11)
Os Os
n-momentum: pV? @ + @ =0 (2.12)
O0s On
energy (homenergic flow): oh + Val =0 oh n Val -0 (2.13a,b)
os os on on
vorticity is defined as: D — V@ _or (2.14)
0s On

In these equations y is the normal distance from the x-axis of symmetry, & is the

inclination of the streamline from the x-axis and h=C,T is the static enthalpy. The

equations apply to continuous steady flow, in smooth flow regions, between the shock
waves. s is measured in the flow direction along the streamline and # is normal to it. j is
0 or 1 for planar or axial flow respectively. For the present theory, the flow has to be
neither planar nor axial if y is taken as the local radius of curvature of the shock trace in
the plane normal to the upstream velocity vector. With this, more general definition of y,
what follows is applicable to doubly curved shock waves possessing at least left-right
symmetry with an identifiable y and where s and # are local (intrinsic) coordinates fixed

in the flow plane at the shock. The direction of the normal coordinate » is well defined
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only at the shock wave but this poses no difficulties since we are concerned only with the
flow immediately up- and downstream of the shock. Both (x,y) and (s,n) are in right-hand
coordinate systems so that the corresponding positive z and ¢ point ‘out-of-the page’. All
lengths are eventually non-dimensionalised by a convenient length scale that need not be
initially specified.

For future algebraic neatness and convenience we define the following

normalized variables:

the normalized pressure gradient, pP= op/ 0s
pV:

the streamline curvature, D=06/0s

the normalized vorticity, '=w/V

and note that along a streamline in front of the shock (Z—yj =sin ¢, and (Z—yj =sinJ,
S S /2

behind. With these definitions, the Euler Equations, 2.10 to 2.14, can be written:

mass: @:_(Mz _l)P_jSil’l5 (215)
on y
s-momentum: tor 1 op_ , (2.16)
V Os pV? Os

n-momentum: L op_ 096 __ D (2.17)
pV? on Os

energy: L% wripei-nr] L Poaep (2.18,19)
p On p Os

vorticity: lor -D-T (2.20)

V on

where the Mach number, M, is defined from M*=pV?*/yp.

These relations are used to eliminate the derivatives of o, V', p and p on the left hand

side in favour of M, P, D and I', appearing on the right. In the above equations all
variables have either the subscript 1 or 2 depending on whether application is to flow on
the up- or downstream side of the shock. The parameter y needs no subscript since it has
the same value when states 1 and 2 are on opposite sides of the same shock. The use of j

to denote flow with planar or axial symmetry will not be carried unless needed. The
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effect of dimensionality (planar vs. axial) is obtained by assigning a very large value to y

when dealing with planar flows.

2.3 Constant property lines

The contour lines of constant flow property values provide an insight into
flow with variable properties; the sonic line being the most useful of the constant
property lines in interpreting compressible flow fields. Orientation of contours and their
properties are derived from equations 2.15 to 2.20. As an example, the variation of

pressure along a line /, inclined at an angle o to the streamline, is,

d—pza—pcosa+a—psina

dl Os on

If the line is an isobar then dp/dl =0 and the inclination of the isobar to the streamline

isa iy such that,

p
Ao : 2.21
tang =—05 = _ ’OVP:E @21
" op  -pV’D D
on
Similarly for an isotach, a line of constant velocity,
oV
Ao - 2.22
tana:—@:— P = P ( )
© oV y(b-TI) D-T
on

From the energy equation, for adiabatic flow,

CT+V?*/2=CT (constant)
V' is constant, along an isotach, 7' must be constant also, and, so is then the speed of sound
and the Mach number. Thus the lines of constant velocity, temperature, speed of sound
and Mach number are collinear in adiabatic flow. Equation 2.22 will be used in Chapters
five and six to find the inclination of the sonic line behind a doubly curved shock. For an

isochor, a line of constant density,

& P (2.23)
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For an isocline, a line of constant flow inclination,

96
tang, =—95 = D 2.24)
06 (M’-1)P+sind/y
on

The constant property line inclinations for V, 7, M, p, and p are all expressible in terms

of P,DandI'. Eliminating P, D and I from Equations 2.21 to 2.23 gives,

y-1 _y-1 _y-1 1  2-y
tang, tang, tang, tana, tana,

This equation can be used to establish the relative inclinations of the various constant
property lines in adiabatic flow, particularly in flow behind curved shocks where the
flow is rotational. For irrotational flow, I =0, so that,

tana =tana, =tana, =tana, =tana, =P/D

showing that all constant property lines, except the isoclines, are collinear for irrotational
flow. These results are useful in the interpretation of contours of constant properties on
interferometer and CFD pictures. We will develop expressions for P, D and I' in terms
of shock curvatures S,, S, and upstream Mach number so that, in conjunction with the
flow direction, equations 2.21 to 2.24 can be used to find the directions of the constant
property lines near curved shock surfaces. Specifically, these relations can be used to
find the orientation of the sonic line behind a curved shock and, more generally, the
orientation of the trace of the sonic surface in the flow plane. All angles presented above

are measured counter-clock-wise from the local streamline direction.

2.4 The curved shock equations

Consider a segment of a doubly curved shock wave inclined at an angle @
to the free stream flow direction, as shown in the first two figures in Section 2.1, above.
The angle € is measured in the plane that contains both the entering and leaving velocity
vectors. It is also the minimum angle between the post-shock velocity vector and the
shock wave. This is called the flow plane. This definition of shock angle is very general
and makes the theory applicable to a curved shock segment at any orientation in flow

with left-right symmetry. In the flow plane the curvature of the shock is S, =06, /00,
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where o is the distance measured along the shock trace in the flow plane and 6 =6+,

is the geometric shock angle (as measured from the axis of symmetry). The curvature of

the shock trace in a plane normal to the flow plane and normal to the shock surface is S, .
The corresponding radii of curvature are then R, =-1/S,andR, =-1/§,. In

axisymmetric flow, y/ R, =cos@, so thatS, =—cos@, /y, where y is the normal distance

from the axis to the shock. In the flow plane the velocity components, normal and

tangential to the shock, upstream (1) and downstream (2) of the shock are,

normal tangential
upstream: Viy =V,sin@ Viy =V, cos@
downstream: Vyy =V,sin(6-5) Vyr =V, cos(0-5)

With these substitutions, the Rankine-Hugoniot Equations, 2.5 to 2.9, become:

pVysind = p,V,sin(6-5) (2.25)

p,+pVisin® @ = p, + p,V; sin® (- 5) (2.26)

Vi cos@ =V, cos(6-0) (2.27)

ViV, sinfsin(0-5)=a: —7—_11/12 cos’ 0 (2.28)
Y+

Where af is the sound speed at sonic conditions (a constant in adiabatic flow).

The curved shock equations are derived by taking derivatives of both sides
of each of equations 2.25, 2.26 and 2.27 with respect to o (the distance along the shock)
and equating these pre- and post-shock derivatives for each equation. This is a subtle yet
essential step. It is justified because the derivative of any quantity that does not change
across the shock does not change also if the derivatives, on the up- and downstream sides,
are taken with respect to distance, o, along the same shock. Taking derivatives of the
conservation of mass, Equation 2.25, gives,

pr]Lsmé’_Fpl sinHaV‘ +Vlsint98’0‘ =
oo oo oo

=pV, ﬁsin(9-5)+ o, sin(9—5)aV2 +V, sin(9—5)%
oo oo oo
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and similarly, for Equation 2.26, produces two differentiated conservation equations

involving the shock curvature terms Osin 6 explicitly.
oo

In front of the shock, the derivative of any quantity with respect to

distance along the shock, can be expressed in terms of the two derivatives along and

normal to the streamline,

(80) :(80) cost9+(6.j sin for p,V, Tandp
oo ), os ), on ),

Similarly, behind the shock,

(2;1 = [a'l cos(6-35)+ (‘2'1 sin(6-5) (2.29a,b)

Os n

These are used to replace the o -derivatives, in the just differentiated conservation

equations, by s and n derivatives and then replacing all derivatives 0® and J¢ by
os on

expressions involving P; D;, r, D, P, S, and S;,.Z This produces, with a few pages of

algebraic manipulation, the curved shock equations,

AP +BD +EI =AP +BD,+CS, +GS, (2.30 a and b)
A'P+BD +ET =AP +BD,+C'S, +G'S,

where the coefficients 4, B, E, C, G and their primed and subscripted variants (14 in all)
are given by,

A =2c0sO((BM? —4)sin’ 0 —(y—1)/2)/ (y +1)

B =2sin0((y —5)/2+(4—-M)sin’ )/ (y +1)

E =2sin’ 0((y — )M’ +2)/ (y +1) (2.30¢)

A, =sinfcosf /sin(6 - o)

B, =—sinfcosf/cos(0 - 9)

C=—-4sinBcosO/(y+1)

F =—4sin’ @cosfsind / (y +1)

G =4sin’ Gcossins, / (y +1)/ cos(6+6,)

2 A very similar algebraic process, to obtain an expression for vorticity from Eqn. 2.27, is described in more
detail in the next section.
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A'=M'cosdcos’@—(M; —1)cos(26 +0)
B/ =—-sin(20+5)— M sindsin’ 0
E'=Q2+(y-1)M})sindsin’ 6
A =(1+(M; =2)sin’ (0 - 5))(sinfcos )/ (sin(6 - 5 )cos (6 - 5))
B! =—sin(20)
C'=-sin(28)/ (2cos(6 - 0)) (2.30d)
F'"=sinfcosOsind, —sin’ @sin 4, / sin(6 - )
G'=-F'"/cos(0+0))

where,

(7 +1) M;}sin’ @—4(M;sin’ @ —1)(yMsin’ 0 +1)
- [27Mf sin’ @ —(y — 1)][(7/ —1)Msin’ 6 + 2]
and 0=0,-0,

2

Two extra variables F' and F’, functions of G and G’, are introduced for future utility.

The two Equations (2.30a,b) relate shock curvature, S and S, to stream-wise pressure

gradient, P, and streamline curvature, D, on the up- and downstream sides of a shock
element while accounting for any upstream vorticity, I';. The equations, together with
the coefficients (2.30c,d) constitute the tools for analyzing shock wave curvature and
flow gradients on the up- (subscript 1) and downstream (subscript 2) sides of a curved

shock. If we assume that the specific heat ratio ( 7/), the free stream Mach number (M)),

the flow inclination in front of the shock (d;) and the shock angle (6) are known then all
the coefficients can be calculated.’ Then, with five of the seven variables P; D, I'y, D,,
P, S, and S, known, the remaining two can be calculated from the two ‘simultaneous’
curved shock equations, (2.30a,b). If the coordinate system is aligned with the free

stream then the shock angle, 6, is measured with respect to the free stream direction and
O, =0 so that 6 =3J,. Various restricted forms of these equations have been

presented by many authors, Crocco [1937], Thomas [1947], Pant [1972]. However, they
have not appeared with the degree of generality that includes both upstream vorticity, Iy,
and transverse shock curvature, S,. Both of these are essential in application to axial

curved shock wave detachment and reflection. The detailed derivation of the curved

* Although y will appear explicitly in the equations, it will be used with a value of 7/5 throughout.
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shock equations is not presented because it requires a large number of algebraic steps. To
illustrate the derivation procedure, a very similar but simpler derivation of the vorticity
equation is given in the next section.

In a situation where the upstream flow is non-uniform and rotational with
pressure gradient P;, streamline curvature D; and vorticity I'; and where the shock is
doubly curved with curvatures S, and S, we can calculate the pressure gradient P, and

streamline curvature, D, behind the shock directly from,

B,(C'S, +G'S, —L')—B,(CS, +GS, — L)
T Aszr _Az'Bz
4,(C'S, +G'S, —L')— 4, (CS, +GS, — L) (2.30)
P A2B2, B Az'Bz

where,

L=AP+BD +ET,

L'=APR+BD+ET,
These are the most general expressions for pressure gradient and streamline curvature for
flow behind a doubly curved shock facing a non-uniform upstream flow with pressure
gradient Pj, streamline curvature D; and vorticity I';; the upstream non-uniformities being
contained in the two expressions L and L’. Both L and L’ become zero for a uniform
upstream. The upstream flow inclination, J;, is contained in the two coefficients

G and G'. G and F as well as G' and F' are mutually redundant because they multiply

S, or 1/y respectively and one would use either the G’s or F'’s depending on which of S,

or 1/y is being used to define the flow-normal shock curvature.
Both P, and D, can be written in the influence coefficient form,

p=JR+J,D,+J, +J,S, +J,S,

D,=K A+K,D,+K I +KS,+K,S,

(2.30 )

where the influence coefficients are,
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AB,—

/48]

B,)
BBy - BB )/[AB]

» =
a=(
¢ =(EB; ~EiB,)/[4B]
«=(
»=(

\K
I

B,C' - )/[AB]
B,G'-B;G)/[4B]

and [A4B]=4,B} - 4B, .

K, = (A4~ 4.4,) [ B]
K,=(B 4, - B/4,)/[4B]
K, =(E 4, —E/4,)/[4B]
K, =(4,C"-4)C)/[4B]
K, =(4,G'- 4,G)/[ AB]

(2.30 g)

These influence coefficient equations show explicitly how each of P, and D, are

determined by the upstream quantities and the shock curvatures and the shock properties.

The gas and shock properties (y, M;, 6, o,) are sufficient to determine the influence

coefficients.

The influence of pre-shock flow convergence/divergence, as expressed by

0;, 1s unfortunately not as explicit, being embedded in J,, J, and K, K}, through the

30 :
Jp is blue INFLUENCE COEFFICIENTS FOR PRESURE GRADIENT
Jd is green §
20 | Jgisred:
Ja is cyan :
Jb is black l
10 :
0 L— " el
~\ R LT )
-10 \
UPSTREAM \ /
20 M1 ="3 :
\ / Figure 2.4
-30
y=1
_40 Shock Angle
0 30 60 90 120 150

PRESSURE GRADIENT,

FLOW CURVATURE AND VORTICITY

behind doubly curved shock in non-uniform flow

coefficients C, C', G, G'.

vorticity behind the shock in Section 2.3.1.

all zero for a uniform upstream flow.

A similar influence coefficient equation will be derived for

Coefficients with subscripts p, d, and g are

180
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Fig. 2.4 shows the influence coefficients for the post-shock pressure gradient, P, for both
an acute and obtuse shock facing a Mach 3 air flow.* The blue curve shows that for
weak shocks the pre-shock pressure gradient is amplified in the same sense by a factor of
about 4, whereas for a strong shock the incoming gradient is amplified by as much as 40
with a sense reversal’. At some intermediate values of shock angle of about 66 degrees
and 180-66=114 degrees the incoming pressure gradient has no influence on the post-
shock gradient. The green curve shows that a pre-shock flow curvature, D,, causes an
unlike sense contribution to the post-shock pressure gradient for the acute shock and a
like sense contribution for the obtuse shock. Upstream vorticity’s contribution (red
curve) to post-shock pressure gradient is in the opposite sense to pre-shock flow
curvature’s but otherwise similar. The contribution of the flow-plane curvature, S, , to
the pressure gradient is shown by the cyan coloured curve. The effect is similar to that of
pre-shock pressure gradient; sense reversal occurring near a shock angle of 75 and 180-
75 deg. The black curve shows that the lateral shock curvature, §,, has no influence on
the post-shock pressure gradient. This appears to be so because we have normalized the
pressure gradient by y, so that the influence coefficient is calculated for a constant y of 1.

The physical pressure gradient varies as 1/y =—S, /cos(6+4, ).

* The curves, at the right and left extremes, are shown to approach 00 when the shock angle equals the
Mach angle for both acute and obtuse shocks. This is due to the shock-tangential gradients becoming zero
while the shock-normal gradients remain finite across a characteristic. The seeming infinities can be
eliminated by first passing all the curved shock coefficients to their Mach wave limits before they are used
as divisors. However, the infinities pose no problems when the theory is applied to finite strength shocks.

> Note that in this case [, represents P,/ P, the ratio of the non-dimensional pressure gradients. To get the

0,
ratio of the physical pressure gradients (a—p , multiply by the dynamic pressure ratio, p,p;> / p¥;*-
A}
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Fig. 2.5 depicts the influence coefficients for the pre-shock and shock curvature terms
affecting the post-shock flow curvature, D,. The blue curve shows that a positive pre-
shock pressure gradient contributes negatively to post-shock curvature for a weak acute
shock and positively to a strong acute shock. The effect is anti-symmetric for an obtuse
shock. The green curve shows that the pre-shock flow curvature causes a positive
contribution to the post-shock curvature for weak shocks and a negative contribution for
strong shocks, acute as well as obtuse. The contribution of pre-shock vorticity (red
curve) is similar except with an opposite sense. Cyan and black curves show the anti-
symmetric effects of the two shock curvaturesS, andS,. The I, curve crosses the
horizontal axis at the Crocco point — to be discussed later.

The two graphs, presented above, are either symmetric or anti-symmetric
for acute and obtuse shocks. This is because the freestream has been set to be parallel to

the axis of symmetry (6, =0). A finite value of ¢, has no effect in planar flow.
However, in axial flow, it leads to pre-shock flow convergence or divergence effects

through the (sin o,/ y) -term in Equation 2.15.
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In most aeronautical applications the freestream is specified (and very often
uniform) and the body shape is given as well and the post-shock conditions are to be
determined. For such situations we would have the body slope behind the shock d,, the
body curvature D, and the distance from the axis of symmetry y. From these we can
calculate the shock angle 6 and the lateral (flow-normal) curvature of the shock,
S, =—cos@/y. Substituting D, and S, in (2.30 a and b) gives two equations for the
pressure gradient behind the shock, P,, and the shock curvature in the flow plane S,.
Before considering other applications of the curved shock equations, we develop the

equation for the vorticity behind the shock.

2.4.1 Vorticity behind the shock

Although the effect of pre-shock vorticity on the post-shock flow curvature and
pressure gradient is included in the curved shock equations (2.30 a and b) the post-shock
vorticity is not. The post-shock vorticity is required in the formula for the inclination of
the sonic line behind the shock, Eqn. (2.2.2) and the constant density line, Eqn. (2.23).

The vorticity behind a curved shock, as given by Truesdell [1952], and more

recently by Emanuel [1994] is,

o, = lez(l—p‘] cos@ xS (2.31a)
P, P,

The derivation of this relation uses the Crocco relation between vorticity and entropy and
assumes a uniform upstream flow. The normalized version of (2.31a) is,
2:@:5& 1—& cosd xS (2.31b)
A A2
Equation (2.31b) can be further simplified by using the oblique shock relations:

r—— 2si1?25 g (2.31c)
sin(26)sin(€ - o) *

This equation gives the normalized vorticity behind an acute or obtuse shock with
curvature S, when the upstream flow is uniform and irrotational. For both a normal
shock and a Mach wave 6 =0, and it is clear that neither one of these waves produces

vorticity. The function has a maximum at an intermediate shock angle where maximum
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vorticity is produced for a given shock curvature. The term multiplying S,, later

designated 1,, will be shown to be the influence coefficient for S, in the general equation
for I';. Also it will be shown that if the pre-shock flow is rotational then a term has to be
added to each of (2.31a, b and c¢). For our purposes it is important to acknowledge that
vorticity can either increase or decrease across a shock depending on the signs of cosf
and S, and that the vorticity behind the shock is influenced by upstream non-uniformity
and vorticity and is therefore given by a more complicated relation than (2.31), to be
derived below.

We seek an expression for vorticity behind a doubly curved shock for a shock that
faces a flow that is curved, has a pressure gradient, is vorticial and is converging or
diverging towards or away from the line of symmetry — altogether a very high degree of
generality. As for the previous derivations, the flow is steady and adiabatic of a
calorically and thermally perfect gas. Results apply directly to flows that possess axial
and planar symmetry and with some considerations of symmetry also to curved shock

elements in three-dimensional flow. As for P, and D, , in the previous section, we derive

the rational as well as the influence coefficient forms of the vorticity equation. The
derivation is based on the shock-tangential momentum equation, the Euler equations and
the definition of vorticity for the upstream (subscript 1) and downstream (subscript 2)
flows. The following Euler relations are used to eliminate derivatives of velocity in

favour of expressions containing streamwise pressure gradient, streamline curvature and

1 (ov 1 (ov
(9" —_p (9" ) =p -1
K[@S jl 1 V;[an jl 1 1 (2.11,2.14)

(o) L (%) -,
V,\ 0Os J, V,\ on /,

The geometric shock angle is 6, =6+ 9,. Taking derivatives of 6, with respect to o

normalized vorticity.

gives the geometric shock curvature in the flow plane, S,

5 28, _20 35 232
0o 0o Ooc

This can be written,
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S, :%+c059%+sin9%
oo os on
But %:Dl and %:—(Mf —l)Pl—sinél /y (2.15)
os on
So that, 90 _ S, + (M12 — l)sin OPF, —cos@D, +sin@sind, / y (2.33)

oo

Similarly, starting from -6 =6, -0,, gives,

o0(0-o

(a) =S, +(M,’ ~1)sin(0 - 8) P, ~cos(0—5) D, +sin(0—5)sind, /y  (2:34)

(o

In these equations 6, and o, are the geometric flow inclinations in front of and behind
the shock. 0=0,-6, is the flow deflection through the shock and & is the
corresponding aerodynamic shock angle. 6, is the geometric (physical) shock inclination.

All inclinations are measured from the axis of symmetry, in the flow plane. For axial
flow, y is the perpendicular distance from the shock to the axis of symmetry or, more
generally, the radius of curvature of the shock trace in the transverse plane. For planar
flow y— oo. Equations (2.11), (2.14), (2.33) and (2.34) are needed in the derivation of
the vorticity equation. The derivation follows.

The momentum equation tangential to the shock is,
Vicos@ =V, cos(0—5) (2.35)
Taking derivatives of both sides of this equation with respect to the distance o along the

shock, gives,

800s9+00898VI =V, 8005(0—5)+COS(0_5)%

4
oo oo oo oo

Dividing through by V; and using equation (2.29a,b) gives,

o(@-o6
sin@ﬁ—cosﬁ cosﬁl(an +sin91(an =E Sin(g_é) ( ) 2.36

1

_Cos(g_a)?[cos(e—a);(a”l +sin(0—5)Vl(5VM

| 5\ Os S\ On

Using equations (2.11), (2.14), (2.33) and (2.34) from above to replace the velocity and
angle derivatives and replacing v, / 4 by cos@/ cos(@ — 5) gives (2.37),
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sinH[Sa +(M12 —l)siné’P1 —cos@D, +sinfsin g, /y} +cos’ O, —cos@sin@{D, T} =
S : . (2.37)

cos@tan(9—5)[Sa +(M2 —1)sm(9—5)P2 —cos(@—5)D, +sin(0—5)sind, /y}—

cosf —cos(6—5) P, +sin(6-5){D, -T,} |

Dividing through by cos@ and collecting coefficients of the physical variables P;, D; etc.

for the vorticity equation:

A'"B+B'D +E'T,=A4,"P+B,'D, +E,'T, +C"S, +G"S, (2.38a)

where,

P :Al"=(M12 —1)tan05in6’+cos6’

D, :B'=-2sin6

I :E'=sind

P, : 4} =(M; —1)tan (0 —5)sin(6—5)+cos(0-5)

D, :Bz”=—2sin(6?—5) (2.38b)

I,:E)=sin(0-5)

S,:C"=tan(0-5)—tan @
1/y:F"=tan(0—-5)sin(6—5)sin 5, —sin & tan Gsin 6,
S,:G"==F"/cos(0+6,)

Equation (2.38a) can now be written,

L"= AP, +B!D, + EIT, +C'S. +G'S, (2.38¢)
or L"=AP,+B!D, +EIT, +C"S +F"/ y (2.38d)
where L"=AR+BD,+ET, (2.38¢)

Either one of the equations (2.38¢c) or (2.38d) can be used to solve for the post-shock

vorticity, I',, in terms of the other variables. The two equations differ in their last terms
depending on whether the transverse curvature of the shock is specified by S, ory —a
choice determined by the problem at hand. S, and y are themselves interchangeable
through S, =—cos(6+6,)/y. Choosing (2.38¢c) and solving (2.38a) forI', gives the

desired expression for the downstream vorticity,

r,=[L"—(4;P,+BD,+C'S,+G"S,) |/ E] (2.38f)
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This i1s the generalized vorticity equation in a rational form for I';, the normalized
vorticity behind a curved shock facing non-uniform flow. Together with equation (2.30f)

it forms three equations for the three unknowns P, D, andI', so as to completely

define the non-uniform post-shock flow. For a uniform upstream (2.38f) reduces to,

| [BCl4y [4C] By s, (2.382)
B [AB]E, [4B]E}

I,

Fortunately P, and D, are decoupled from I',, leading to explicit solutions for all
unknowns. P, and D,, appearing in the equations (2.30f), (2.38a) and (2.38f) are found

from the two curved shock equations (2.30e) which are repeated here:

_B,(C'S,+G'S,~L")-B,(CS,+GS, - L)

’ 4,8, - 4,58, (2.300)
b __A(CS,+G'S, L)~ 4,(CS,+GS, - L) '
t Asz’ - AéBz

Where the L-terms above are given by,

L=AF+BD, +ET,

L'=AP+BD +ET,
Note that L and L’ contain the upstream gradients and that G and G’ contain the
upstream flow inclination &,. Substituting P, and D, from Eqn. 2.39a into Eqn. 2.38f
and collecting terms of the upstream gradients and the shock curvatures gives the
influence coefficient form of the vorticity equation (2.38f),

r,=1,F+1,D,+1.I''+1,S,6+1,S, (2.40a)

where the I-coefficients, each multiplying their respective variables, appear in the full

equation for I', as shown below,
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T, ={[4B]A'+(B,4 — B A)) A — (A, 4 — 4,4)) By} | {{AB] E}} R
+{[4B]B+(B,B; — B,B,) 4 —(4,B/— 4,B,) By} | {| AB| E}} D,
+{[AB)E+(B,E - B,E,) 4 —(A,E - 4,E,) By} | {{AB]E;}T,  (2.40b)
—{[4B]C"+(B,C'- C)A;'—(AZC'—Azc)B"}/{[AB]E;}S

—{[4B]G"+(B,G' - B,G) 4, —(4,G' - 4,G) B} | {{ AB]E;} 5,
The unprimed and single-primed coefficients A......G are listed as equations (2.30 ¢ and
d); the double-primed are in Eq. (2.38b). This equation shows clearly what the role is of
each upstream non-uniformity £, D, and I', and of the
shock curvatures S, and S, in determining the downstream vorticity. Note that the above

derivation for vorticity does not need Crocco’s thermodynamic relation between vorticity
and entropy gradient, and that the resulting equations account for upstream flow non-

uniformity and vorticity as well as flow inclination. Derivation of the
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vorticity equation parallels those for the pressure gradient and streamline curvature but it
is quite a bit simpler. That is the reason why the vorticity derivation is presented above
and the others are not. The use of j to denote planar or axial symmetry has been dropped
since the equations are uniformly valid for both geometries. For axial flow, y is the
radius of the shock’s curvature in the transverse plane, so that the flow is sensitive to
dimensionality through the parameter y. In the calculations for planar flow, y is set to a
very large number. Fig. 2.6 above depicts the influence coefficients for vorticity plotted
against shock angle. The blue curve shows the influence of pre-shock pressure gradient

B, and we see that a positive pressure gradient causes a positive vorticity contribution

for an acute shock and a negative contribution for an obtuse shock. The green curve

shows that a positive pre-shock flow curvature, D, produces a positive contribution to

vorticity. The red curve is for the effect of pre-shock vorticity itself and it is noted that
the curve passes through zero at about 43 deg. and also at its supplement 180-43 deg. —
the pre-shock vorticity is destroyed at these shock angles when the freestream Mach
number is 3. At the Mach wave limits the influence coefficient has a value of 1,
predicting that vorticity passes through Mach waves unchanged. All other curves are at
zero so, at Mach wave conditions, there is no vorticity production due to pre-shock
gradients or Mach wave curvatures. Stronger shocks tend to amplify and reverse the
direction of vorticity. The cyan curve shows that positive vorticity is produced by a
positive flow-plane shock curvature,S,, for an acute shock and negative vorticity is
produced by a positively curving obtuse shock. The black curve is for the effect of the
transverse shock curvature, S, and it shows that the influence coefficient for the transverse
curvature is identically zero. This confirms the fact that the shock produces vorticity
only by its flow-plane curvature and not by the transverse curvature so that flow behind a
conical shock is irrotational. The 7,5, term can be dropped from equations 2.40a and
2.40b since I, is identically zero. Seemingly opposing effects on the acute and obtuse

shocks are generally due to different shock orientations rather than any differences in the

underlying fluid mechanics.
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2.5 Concluding comments

This chapter has presented the curved shock theory relating pressure gradient,
streamline curvature and vorticity on the up- and downstream sides of a doubly curved
shock surface in terms of the pre-shock Mach number, the shock angle and the two shock
curvatures. Equations have been derived for constant property line inclinations for
pressure, density, temperature and Mach number in terms of pressure gradient, flow
curvature and vorticity.

In the next chapter we apply the curved shock equations to derive various results
for doubly curved shocks as well as for characteristics and constant property lines for
flows with planar and axial symmetry. For all examples, involving an oblique shock
element, we first need to solve the Rankine-Hugoniot equations (2.25) to (2.28) to obtain
one of M), 6, and 0 in terms of the other two and the upstream conditions. These three
variables are required in order to calculate the coefficients of the curved shock equations
(2.30 a and b). Most example flows have a uniform upstream so that all terms on the left
hand sides of the two curved shock equations are zero and so is G, on the right hand side,

if we choose to align the free stream with the x-axis (5 =0). This is not the case when

the equations are applied to the reflected shock in the shock reflection process, for then
the flow in front of the reflected shock is inclined towards the axis and is possibly also
non-uniform and rotational.

The very general curved shock equations have been derived above because they
have not been presented with this degree of generality before. This is true especially for
the vorticity equation as well as the influence coefficient form of the other equations for
flow curvature and pressure gradient. Their full generality may not necessarily be used in
the applications presented next in Ch. 3. The purpose of Ch. 3 is to show that the curved

shock equations give results that make sense for limiting and simple shock geometries.
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CHAPTER 3
APPLICATIONS OF CURVED SHOCK
WAVE THEORY
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3.0 Introduction

This chapter describes facts and tools for the analysis of curved shocks, presenting
simple examples of CST results which point the way to more complicated applications.
CST is shown to apply for a range of flow situations without pursuing any one example in
great depth. Topics such as the flow behind a Mach disk deserve extended studies of
their own. Comparison of CST results against known flows increases confidence in the
correctness and applicability of the general CST equations.

CST, as derived in the previous chapter, is applied to flat shock waves, shocks with
planar symmetry, shocks with conical symmetry and shocks with axial symmetry. For
such cases, expressions are derived for pressure gradient, streamline curvature and
vorticity on the post-shock sides of symmetric shocks. Application is also made to
normal shocks in both a uniform and a non-uniform upstream flow. Results are produced
for the stand-off distance of a shock from a bluff body and the stand-back distance of the
sonic line from a Mach disk. Shapes of shocks with zero post-shock pressure gradient
(isobaric) and straight post-shock streamlines (isoclinic) are calculated. Polar streamline
slopes are illustrated for planar shocks, conical shocks and doubly curved shocks. CST
formulae for curvature and strength of characteristics lead to an equation for the reflection
coefficient of pressure disturbances from the back side of a shock. This, in turn, leads to
the discovery of an axial shock surface shape, the back-side of which is uniformly and
totally absorbing to impinging pressure pulses. Equations are presented, in terms of the
CST coefficients, for the angle between the sonic line and the streamline for both planar
and axial flow. These applications are presented here to lend credibility to the CST and to
show how readily the CST is adapted to the analysis of various flow situations. About
one-third of the examples are found in the literature [Lin & Rubinoff, 1948; Chernyi,
1961; Probstein & Hayes, 1966], while the rest are believed to be novel. Applications are
selected on the basis of having some relevance to the design of air intakes for high Mach
number air-breathing engines. Some findings are relevant to future study of RR—>MR

transition.

3.1 Shocks with planar symmetry, S, = 0 occur on solid surfaces that also

possess planar symmetry such as unswept wing leading edges and air intake ramps.
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These types of shocks and associated flows are sometimes called two-dimensional. We
avoid the use of two-dimensional, using instead the term planar, since axisymmetric flow,
having two independent space variables, is also two-dimensional. The classical oblique

shock and Prandtl-Meyer flows are examples in this category of planar flows.

3.1.1 Plane® shock in uniform upstream — a limiting case
This application is just to demonstrate that the curved shock equations predict no
flow gradients behind a plane (flat) shock in a uniform stream. In a uniform freestream
flow all the gradients are zero and the left-hand-sides of the curved shock equations (2.30
a and b) both reduce to zero. For a plane shock both S, and S, are zero as well so that the
curved shock equations reduce to,
0=A4,P +BD, (3.1)
0= AP +BD,
For any values of 4,, B,, A,” and B>, the only possible solution for these two equations is
P, =D, =0, ie. the pressure gradient and flow curvature behind a plane shock, in a
uniform irrotational stream, are both zero. Not an unexpected result. The vorticity
equation (2.31 ¢) implies that the vorticity is zero behind a plane shock in uniform flow -
also not surprising. For a flat shock, in a uniform pre-shock flow, the CST equations

predict a uniform post-shock flow.

3.1.2 Shock with single curvature S, in the flow plane, in a uniform

upstream flow — planar flow (S, = 0). Such a shock and its

associated flow exist at the curved leading edge of an unswept wing or a
circular cylinder placed perpendicular to the flow direction. Again,
because of the uniform, irrotational, freestream the left-hand sides of the

curved shock equations are zero. The transverse curvature S, is zero also

% The term ‘plane’ or “flat’ is used to denote a surface with no curvature in any direction; for the case of a
shock it means S, =S, = 0. The term ‘planar’ refers to flow and shocks with planar symmetry where the
shock curvature S, = 0 but S, # 0 and ‘axial’ refers to flow that is axially symmetric. The term ‘conical
flow * implies’ flow that has no variation along any ray drawn from the apex of a coordinate cone. In axial
conical flow S, = 0. Conical shock means that the shock curvature in the flow plane, S, = 0. Conical wall

surface means that the surface curvature in the flow plane, D =06 /0s =0.
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but the curvature in the flow plane has a finite value, S, # 0. Under these conditions the

curved shock equations become,
0=A4,P,+B,D,+CS, (3.2a)
0=AP +B.D,+C'S,
such that the pressure gradient and the streamline curvature behind the shock can both be
expressed in terms of the shock curvature,
p-Bl=BC o ChC4 (3.2b,c)
AB,-AB,° AB,—AB, "
We abbreviate the above expressions by the following matrix notation. The square-

bracketed matrix terms appear often in what follows.

[BCly  p _[CA (3.2d,e)

2_[AB]a 2_[AB]a

The equation for downstream vorticity follows from Eqn. (2.28 g),

>\ E} [4B]Ey [AB)Ej|“

(3.2f) Equations 3.2a-e state that, immediately behind the shock, the pressure gradient
along the streamline and the streamline curvature and vorticity are all linearly dependent
on the shock curvature, S,. The magnitude and sign of the dependence is determined by

the terms in the square

brackets. These terms are

5 —— —
functions of the freestream ¢ & ii A =
Mach number and the shock z / \

angle only, as in Eqns. (3.2 a, 1 i B/‘\\

b and c). P, D, and the 0 \\ / \\ P~
vorticity I', are plotted, ; //—_\—/ \\

(where I', is denoted by G>) i // \\

in Fig. 3.1 for a freestream s L _ - Fig9.03.1 - lso%ock Anglleso

Mach number Of 3 and a PRESSURE GRADIENT, FLOW CURVATURE AND VORTICITY
behind planar shock in uniform flow
convex shock with curvature of S,=-1.
For a convex, nearly normal shock, where 8 ~ 90 deg, the pressure gradient is

positive and at weaker shock angles it is negative. Flow curvature is positive above and
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negative below the line of symmetry for the strong shock and opposite to that for weak
shocks. The points/angles on the shock wave where P, and D; are zero are the Thomas
and Crocco points respectively. They are useful guide-posts in the landscape of
changing flow-fields near curved shocks. As an example, in the search for reflected
(embedded) shocks, behind curved incident shocks, it appears that where the flow is
supersonic behind a convex shock it is also always expansive so that reflected shocks are
not likely to form. For concave shocks, however, the flow is compressive, so that
reflected shocks can form. This will become evident when considering hyperbolic shocks
in Ch.5. It is the Thomas point that separates compressive and expansive flow-fields. In
Ch.6 the concepts embodied in Thomas and Crocco points will be broadened to doubly
curved shocks. The vorticity behind the shock is given by Eqn. (2.29 ab,c); it is
uniformly negative for acute convex shocks and positive for obtuse convex shocks. All
of the above is consistent with our knowledge of qualitative aspects of flow behaviour

behind strong shocks on bluff planar shapes.

3.1.3 The Thomas and Crocco points in planar flow
The Thomas and Crocco points, described qualitatively above, are set into
mathematical terms in this section. First, for the Thomas point, from equation (3.2d) it is

seen that P, =0 occurs when [BC]=B,C'-B,C =0, and this condition yields an equation
relating o and ¢,
(7 +1)sin26 =8sin26cos’ (6 - 5) (3.3a)

This equation has an explicit solution because it does not contain the freestream Mach

number explicitly.

ans - a-2a’b’ + Ja(a—4a’b*) (3.3b)

2a’b
where a = sinfr, b = cosfr and o = (y+1)/8. Having specified a 87 and calculated o7,
from (3.3b), the freestream Mach number can then be found from the usual oblique shock
relation [Ames, NACA Rep. 1135; Eqn. 148 a]

e _y+1siné;sind;
M, "2 cos(6,-5,)

(3.3¢)
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to obtain the condition (M;;, 65, or) at which the pressure gradient along the streamline
behind the shock is zero. There is a unique such condition for every Mach number. On
a planar curving shock the zero streamline pressure gradient shock angle lies between the
angle for maximum flow deflection and the normal shock — on the strong shock side, in
subsonic downstream flow. In recognition of Thomas’ [1947 and subsequent] early work

on curved shock theory, we call 8, the Thomas angle, or Thomas point on the shock. For
a plane shock, the Thomas point, defined by [BC]=B,C'- B,C =0, is where the pressure

gradient behind the shock is zero but the flow curvature is not. If both were zero then we
would have just an uninteresting piece of flat shock that can occur at any combination of
Mach number and shock angle. Thomas points are shown in green on the Mach number
curves in the theta/delta polar diagram, Fig. 3.2, below. The Thomas point plays a key
role in the discussion of shock detachment in Ch.6.

An approach similar to that for the Thomas point, but setting [C4]=0, yields the

equation,

sind = 7/4_”[sin2(9—5) +(M: -2)sin* (0~ 5)sin20 ] (3.4)

which, with the help of the oblique shock relations (2.25) to (2.28), relates M; and 4.

Solving for @ gives a shock angle 6. at which the streamline curvature behind the shock

is zero. The angle is called the Crocco angle and its location is the Crocco point. No

explicit solution has been found for (3.4) so that the Crocco angle has to be found

iteratively, solving for 6, as a function of the freestream Mach number.

G. Emanuel (private communication) has derived a cubic equation for w= M 12 sin’ O

aw' +bw’ +cw+d =0 (3.5)



where,

a=-y(2y-

1)

b=(y+1)(2y -1)M} /2+(27* =13y +3)/2
c=(r+1)(y+35)M;/4+(4y-5)
d==(y=1)(r+1)M/4+(y-35)/2
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Since the cubic has an exact solution it is more accurate and faster than any iterative

solution.

For every freestream Mach number, in a planar flow, there is then a unique shock

angle attached to each of: the maximum flow deflection, the post-shock sonic condition,
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the Crocco point and the Thomas point. Figure 3.2 is for shock angle (theta) vs. flow

deflection (delta) through the shock for a selection of Mach numbers 1.05, 1.1, 1.15, 1.2,
1.25,1.3,1.4,15,1.6,1.7,1.8,19,2,2.2,2.3,2.4,2.6,2.8, 3,3.2,3.4,3.6,3.8, 4,4.5,
5,6, 8, 10, 20, 10000 (from left to right). The maximum flow deflection points and the

sonic points are shown in blue and red, respectively. For a planarly symmetric (planar)

curved shock wave the Thomas and Crocco points are shown in green and yellow

respectively. The Crocco shock angle lies between the sonic shock angle and the

maximum flow deflection angle for any Mach number (and any y). The Crocco point,

shown by the yellow points, is not just where the flow curvature behind the shock is zero;
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it is a point where the flow curvature is zero but the shock curvature and pressure gradient
are not. If all were zero then we would have just an uninteresting piece of flat shock that
can occur at any combination of M; and 6. The Crocco and Thomas shocks, here
restricted to planar flow, are versions of the more general isoclinic and isobaric shocks
when the flow is axial and the shock has double curvature. It will be shown that, for
doubly curved shocks, both the Crocco and Thomas point locations are a function of the
shock’s surface curvature ratio as well as the freestream Mach number. Crocco and
Thomas point definitions have been generalized, not to lie at specific shock angles, but at
locations where the post-shock streamline is straight and where the post-shock flow
properties are constant along the streamline.

The Thomas and Crocco points are convenient points of reference when dealing
with flow gradients’ behavior behind curved shocks. The Crocco condition [CA] = 0 has
been suggested as a possible point of transition from RR to MR [Henderson, 1987].
Mathematically this is apparent from Eqns. (2.33 ¢, d) where, for a finite D,, the shock
curvature and pressure gradient will become unbounded when [CA] — 0. This is in line

3

with Henderson’s assertion: “...transition on concave, plane and convex surfaces are
different,...”. An infinite pressure gradient behind an attached or reflected shock, be it

favorable or adverse, is bound to affect the shock as well as the boundary layer.

3.1.4 Polar streamline slope (/) in planar flow

In studying shock reflections and interactions the set of Rankine-Hugoniot
conservation equations is often closed by statements regarding pressure and flow
direction in the downstream flow. For example, for shock reflection at a plane wall we
require that the flow be returned to the freestream direction by the reflected shock and for
a three-shock, free-floating shock interaction (Mach reflection at a triple point) we require
that the pressures and flow directions match across the slip layer [von Neumann, 1943].
These pressure/deflection conditions encourage the use of the Rankine-Hugoniot shock
wave equations in pressure/deflection (p - 0) polar form [Ames Res. Staff, NACA Rep.
1135, Eqn. 160], and the graphical representation of the shocks on a (p — J) plane.
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|71 ) M —(r)~(r+1)¢
an” o = >

yMP=&+1)  (r+1)E+(r-1) (3.6)
where ¢ is the shock pressure ratio, p, / p,

If the shock is curved then there is a value of P, and D, associated with every point on the

shock polar and the flow ‘direction’ in the (p — J)-plane can then be written as,

1 op

Z:pwa: 1 o _P _[BC] (3.7)
06 pVios D, [AC]
Os

This is the slope of the ‘streamline’’ behind the planarly symmetric shock in the ( p—-0 ) -
plane, here denoted by the symbol /. A typical ( p—0 )-polar with associated streamlines

is shown in Fig. 3.3 [Molder, 1972]. The right-hand-side represents acute shocks, with

] L
Shock pressure ratio I / / / ] UPSTREAM
/ / M1 =3
10 . i 1 L /// I
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8
6
4 \\\\\ 7 //
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0 low deflection through shock (deg)
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Fio. 3.3 SHOCK POLAR AND POLAR STREAMLINE DIRECTIONS
1g. 5. behind planar shock in uniform flow

positive flow deflection and the left-hand-side represents obtuse shocks with negative

flow deflection. For a weak acute shock / is positive, representing either P, and D, both

positive or both negative for S, > 0 or < 0 respectively. At the Crocco point (i34 deg)

the slope goes through +oo because [CA] = 0. At the Thomas point (31 deg) the slope

" A true streamline exists only in physical space. In (p-6)-space there is a curve that relates the pressure and
flow direction as the flow moves along the true streamline.
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goes through another change of sign, this time through zero, because [BC] = 0. For a
strong acute shock the streamline slope is positive because both pressure gradient and
flow curvature are positive behind the shock. The polar streamline slope is independent of
shock curvature in planar flow. For an obtuse shock, on the left side of the polar the
streamline slopes are in the opposite sense because the flow curvatures have opposite
signs. If the shock is the incident shock in regular reflection then P,/D,, as given by
(3.7), will have to equal P3/D; in front of a reflected shock. This condition is applied in
studies of regular shock reflection. For Mach reflection it means that the quantity M*P/D
has to match across the slip layer. Reasons for including the M’-term stem from the
pressure invariance requirement across the slip layer. The polar streamline slope is a
useful ‘higher level’ concept in relating reflection and interaction of curved shocks by
requiring compatibility of streamline slopes between incident, reflected and Mach shocks.

This section has introduced the polar streamline slope and suggested its

applications to shock interactions.

3.2 Shocks with conical symmetry; S, =0

The flow associated with a conical shock, either upstream or downstream of the
shock, as governed by the Taylor-Maccoll equations [Owcharek,1964 p.482], will be
treated further in Ch.4 under CONICAL FLOW AND THE
TAYLOR-MACCOLL EQUATION(S). In this section we use CST
to develop the flow gradient terms for flow behind such conical
shocks that face a uniform upstream flow, P; = D; = I'; = 0, where

S, =0and S, = -cos(@+0;)/y. The freestream is parallel to the x-

axis so that §; = 0. This makes G = 0 so that the curved shock

equations become,
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0= Az'P2 + BZ,DZ | (3.9)
0=A4,P,+B,D,+G'S,
with the solutions,
B,G' A,G'
P =——2—cosf/y D, =-——cosf/y (3.9)

o [48] © (48]
These gradients are plotted in Fig. 3.4 for a Mach number of 3 and for streamlines that

originate at a point on the shock that is located unit distance from the centre line, y = 1.

Vorticity behind a conical shock is zero, as shown by the red line G2.

3.2.1 Acute conical shock in uniform flow; cone flow (u< < 72)

This section describes the classical flow behind the attached shock (in the first

quadrant — left half of the Fig. 3.4) that envelops a solid axisymmetric cone in uniform
supersonic flow at zero angle of attack. For this flow both P, and D, are positive,
confirming that, in the flow behind an acute conical shock, the pressure increases as does

the flow inclination. These are both conditions known to exist in flow over a circular cone
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at zero angle of attack [Sims, 1964]. We note that both P, and D, become very large near

the apex of the cone as y — 0 in Eqns. (3.9). This is necessary for the flow, coming from

the shock, to adjust to the cone surface conditions in a very short
distance. Fig. 3.4 above shows P, and D, vs 8 for Mach 3. The
left half of this figure is for a cone with an acute shock angle.
The right half is for an obtuse conical shock, producing M-flow
to be discussed further in Ch. 4. Note that B, 4, and G’ are
never zero (except for a normal shock) so the flow gradients
behind a conical shock are never zero and there is then no

possibility of a Crocco or Thomas point on a conical shock.

3.2.2 Obtuse conical shock in uniform flow; M-flow; 72 <0< (7w

For this less well-known obtuse conical shock (in the second quadrant), the lateral
streamline curvature coefficient (Eqn. 3.9) is positive but the pressure gradient coefficient
is negative while the shock curvature S is positive so that the ""-”I(////
pressure decreases but the streamline inclination increases \////

along the streamline. P and D, are plotted in Fig. 3.4,

Gradients for both of these results are confirmed by the
solution of the Taylor-Maccoll equations for axially

symmetric conical flow in Ch. 4. From Eqn. (3.9) we see

again that both the pressure gradient and the flow curvature
become very large on approaching the axis of symmetry

(y — 0). This is the fundamental reason why oblique shocks cannot reach the centre line,

as in the sketch above [Rylov, 1990] and it is proposed as a cause of the untimely

RR — MR transition in all axial internal flows.
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3.2.3 Polar streamline slope in conical flow

Using Eqns. (2.37) for conical flow gives the polar streamline slope,

P _ B (3.10)

This is the slope of the streamline in the (p-J)-plane for conical flow. It corresponds to
Eqn.(3.7) for planar flow. Examining the nature of B, and A, shows that the streamline
slope in the (p-9)-plane is a function of freestream Mach number and shock angle only —

and not of the shock

Il I
curvature, Sp. Polar 12 Shock pressure ratio ’ l / / UPSTREAM
M1 =3
streamline directions 4, B— ll / / / i
are plotted in Fig. 3.5, W\\\ \ \ \ \ %

8
on the right. We will /

6 N /|
present  below an \ /
equation for the slope ™
of polar streamlines 2 Mf//‘
for shocks with 0 low deflection through shock (deg)

-40 -30 -20 -10 0 10 20 30 40
compound curvature. K SHOCK POLAR AND POLAR STREAMLINE DIRECTIONS
Flg- 35 behind conical shock in uniform flow

3.3 Shocks with compound (double) curvature; S, #0, S, #0

This is the general case of a doubly curved shock with a non-zero surface curvature
S, in the flow plane and §; in the flow-normal plane. For a uniform freestream, aligned
with the coordinate axis, the curved shock equations reduce to,

0=4,P+B,D,+CS,

(3.11)
0=4P,+B,D,+C'S, +G'S,
with the solutions,
-l s
[45] [4B] (3.12 a,b)

- [CA] S - A4,G s,
[4B] [4B]
The first of the two terms, on the right-hand-side, in each of the two expressions above is

due to the curvature of the shock in the flow plane. The second term is due to the
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curvature in the flow-normal plane. Flow behaviour due to the second term is sometimes
called convergence effects. A flow plane [Hornung and Robinson, 1982] can always be
identified on a doubly curved shock element, even in 3D space, as the plane that contains
the incoming and outgoing velocity vectors [Figure 2.1]. The shock angle and S, are
measured in the flow plane and S, from the shock trace in the transverse plane. This
results in the definition of all quantities on the right-hand sides of Eqns. (3.2 a,b), leading

to the determination of P, and D,. The polar streamline slope is now,

p/p. - BCIR+B,G' (3.12¢)
27 [CAIR - A,GY

where, R =S,/S,, showing that the slope can have any value depending on the ratio of

shock curvatures. These relations will be used throughout most of the subsequent

developments concerning curved shocks facing a uniform stream.

3.4 Vorticity
In intrinsic coordinates, primitive vorticity is defined as,
_yo5 v
os oOn

For dimensional homogeneity and ease of algebraic manipulation it is convenient to use a
normalized vorticity,

1"—2—85 1oV

"V o os Voon

For a shock with flow-plane curvature S,, in a rotational upstream flow with normalized
vorticity I';, which is otherwise uniform, the influence coefficient form (2.40 a) of the
vorticity equation reduces to,
r,=1.I'+1,S,
If the pre-shock flow is rotational then the term /,I'; must be retained on the right hand

side of (2.31b and c). This equation can be used to find the vorticity behind a curved
shock in a boundary layer where the pre-shock velocity profile is known. In terms of

primitive vorticity this can be written,
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61)2 :%(IGCOI +Vl]aSa)
1

So that, for a conical shock where, S, =0, facing uniform rotational flow, we can write a

primitive vorticity ratio across the shock,

@ Y (3.13)
o N

where 1, ={[AB]E]+(B,E, - B,E,) 4 —(A,E/ - A,E,) B} | {{ AB] E;}.

The above illustrates the fact that the vorticity formulas (2.31a,b,c), for calculating the
vorticity downstream of a curved shock, are applicable only if the upstream flow is

uniform and irrotational.

3.5 Normal shocks

This section contains an illustration of curved shock theory applied to a curved
shock wave that is locally perpendicular to its upstream velocity vector. Typically, this
normal shock and associated flow appear near the most forward part of a blunt object in
supersonic flow (‘shell-shock’, Fig. 2.2) and behind the Mach stem in Mach reflection
(‘spoon-shock’ in Fig. 2.2). For the blunt body case both curvatures § and S are

negative and the corresponding radii of curvature, R, and R,, are positive, as shown in

the sketch below. For a Mach disk both curvatures are positive. A less frequently
encountered, saddle-shaped, normal shock, would have one negative and one positive
curvature. Results of this section will be used to estimate the stand-off distance of a blunt
body shock as well as the downstream extent of the subsonic region behind a concave,
hyperbolic shock. Some results for normal shocks facing non-uniform flow are derived
by allowing the upstream flow to have a pressure gradient and be curved as well so that

P#0 and D #0- For a normal shock,

5,=6, =0 @=r/2 (3.14)



Under these conditions the curved
4=0
E = 2 [(y-1)M]+2]
(r+1)
B]=[;/+3—2M12]/(7+1)
A4,=0
B =—[(y-1)M+2]/[(y+1)M] ]
C=0
A=(M}-1)

B =E =B =G=0
A =—(M-D)[(y-1)M; +2]/ [M (2yM} -y + 1)]

C'=- M -1)/ M’
2
G'=- M’ —1)/ M

shock

(3.15)
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coefficients become,

(2.30)

Traces of normal shock on flow- and flow-normal planes

For a normal shock, the curved shock equations reduce to,

BD +ET, =BD,
AP = AP +C’S +G',

(3.16 a,b)

Note that the streamline curvatures, D, and the shock curvatures, S, appear separately in

the above equations. The equations are thus decoupled which means that, for a normal

shock, the streamline curvatures, D, and the shock curvatures, S, do not influence one

another. Behind the shock, streamline curvature depends on freestream Mach number

and upstream vorticity only, whereas pressure gradient depends on shock curvature. This

brings about some surprising results for normal shocks at curved wall boundaries.

/

-
o

D2/D1 /

9 / i

X / Fig. 3.6

7 /
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RATIO OF STREAMLINE CURVATURES FOR NS
irrotational upstream flow

8

If the
freestream is irrotational, which is
a good assumption for a normal
shock sitting on top of an airfoil

in transonic flow, then I'; =0 and

the first of these equations gives,

g_ﬁ_Mﬁ(2Mﬁ—y—3)
D, B, (y-1)M +2

2

(3.17)
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The black curve in Fig. 3.6 represents D,/D;. To catch the rapid rise with Mach number,
(D2/D1)/10 is shown by the blue curve and (D,/D;)/100 by the red curve. The normal
shock is a strong amplifier of streamline curvature. From (3.17) we see further that if

D, =0 then D,=0 also, implying that a straight streamline, entering a curved normal

shock, remains straight irrespective of the shock curvature or pressure gradient or value of
pre-shock Mach number as long as the pre-shock flow is irrotational. Not unreasonable,
since consideration of axial symmetry has to lead to the same conclusion. If the term

7/_|.3_2M12 =( then, for y =14, M; = 1.485 and D, = 0 for all values of D;. A

normal shock at this Mach number, whatever its curvature, will straighten out a curved
flow. A curious result. If D; = D, then M; must equal 1.662. This implies that only for
this Mach number can a normal shock sit on a surface of constant curvature. Another
curious and unexpected result. These anomalous results were studied by German
aerodynamicists Zierep [1958], Oswatitsch and Zierep [1960], Gadd [1960] and others.
Fung [1983] characterizes the problem by: “Such a flow is known to have a multi-valued
normal pressure gradient and a stream-wise pressure gradient that is logarithmically
singular”. It seems that the anomaly appears only when a normal shock, at a specified
pre-shock Mach number, is required to be attached to a curved wall with preset
curvatures. In reality the shock is prevented from being influenced by wall curvature by
the boundary layer and hence it is not constrained by Eqn. 3.18c. Away from the
boundary layer the shock is free to set its own streamline curvatures according to Eqn.
(3.16 a) so that no anomaly exists. No other physical descriptions have been proposed.
The peculiar results are presented for awareness in case similar results appear for oblique

shocks and shock reflections. From the second equation (3.16b),

Pz:(A{/AQ)PI—(C'/AQ)SQ—(G’/Aé)Sb (3.18 a)
Using the normal shock coefficients (3.15),
M;P,=-MP, —il{sa +8S,} (3.18b)
Y+

ME (27 M} -y +1) 2 (2rMP—y+1)
o [o-nmie] 131_7+1[(7—1)M3+2]{S“+Sb} (3.18¢)
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This can be used to obtain the pressure gradient, P, behind the normal shock, in terms of
the two principal radii of curvature of the shock surface and the pressure gradient in front

of the shock®.

3.5.1 Normal shocks in uniform flow

With uniform upstream flow, Eqns. (3.16) and (3.18, b) reduce to,

D, =0 (3.19)
_ 2 M-y [1 1 (3.20)
oy +1[(y-1)M:+2]|R R,

The first of these states that behind a normal shock, in a uniform, irrotational free-stream,
the streamlines are straight no matter how the shock is curved. The second states that
the pressure gradient is proportional to the Gaussian curvature of the shock, 1/R, + 1/R,.
An exploding spherical shock, moving at Mach M; with radius R, has a post-shock
pressure gradient given by (3.20) where {l1/R, + 1/R;} is replaced by {2/R}. For a
cylindrical shock in the same situation, the {1/R, + 1/R;}-term is replaced by {1/R}. For
imploding shocks the gradients are negative. This equation will be applied below to find
the first approximations to the shock stand off distance on a bluff body and the length of

the subsonic region behind a Mach disk or Mach stem.

3.5.1.1 Blunt body with convex normal shock

We note that for a blunt body shock in a uniform freestream, where the shock
curvature radii are both positive, the pressure gradient, P, in Eqn. (3.20) indicates an
increasing pressure behind the normal shock. This is known to be the case for blunt body
flow where the flow along the centre line, behind the shock, has a monotonically
increasing pressure, eventually stagnating, on the body, at a pressure higher than that

immediately behind the shock. From M; and p; we can readily calculate p,, the pressure

¥ 1t is a result of differential geometry that the quantity 1/R +1/R, remains a constant on a curved

surface no matter in what planes the radii lie as long as the planes are orthogonal. [Kreyszig, 1991]. This
must be so since the orientation of coordinate planes can not influence the pressure gradient or any other
physical variable at the shock surface.
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behind the shock and p;, the pressure at the stagnation point (pitot pressure). This leads

to a first approximation for the shock stand-off distance, A, from,

2~

Po— P

PV A

(3.21)

This is a linear approximation to the pressure gradient over A and, for axial flow, can be

written,

and for planar flow

_(r-1) (

dyM; =2(y

(eym VO
_1)

A_(r-1) (
R

(y+1) M; (/”_1
_1)

4yM: =2(y

(A)

(B)

Another approach to obtaining the stand off distance is to assume that the average

velocity gradient between the shock and the stagnation point is the same as the post-shock

velocity gradient, i.e., 0V _ (a—Vj so that —=——
A ) A

Os

1 1 (aV
os

Using (3.20) for axial flow, where 2/ R =1/ R, +1/ R, produces,

y+1[(r -

M2+2]

A_
R

A very similar result for planar flow, where R, =0 and 1/R=1/R_, is

7+1[

4 (2;/Mlz 7/+1)

)M; +2]

A_
R

2 (27/M12 v+ 1)

j =P, and P, xA=1
2

©)

(D)



50

These formulas are plotted in Fig. 3.7. Most published data on the shock stand off
distance is in terms of the body radius R, and not the shock radius R, as used above. To
facilitate comparison, we have plotted against body surface radius R;, assuming that R;=
R, - 4. This is a reasonable approximation especially for axial flow at high Mach numbers
where the shock lies close to the body surface. Data points are from various sources
found in [Liepmann and Roshko, Fig.4.15, 1956]. Except at low Mach numbers there is
reasonable agreement with experiment and other theories.

We have here derived a simple equation for the stand off distance of a shock on a
sphere or a cylinder from general curved shock wave theory. However, we started with
the more general, doubly curved, normal shock having two differing curvature radii R,
and R, as in Eqn. (3.20). Such a shock would be carried by a nose
cap body having two differing radii of curvature Rupoqy = R, - 4 and

Rppody = Rp - 4, at least to the first

o : L 0.2 , .
approximation. If analytic continuation Standoff distance 4 body radius

holds between the axial and planar results

then the theory should predict shock stand- \

. . . . B -
off distances for intermediate blunt bodies Shock on cylinder

0.1

\
with elliptic cross-sections with differing kc
curvature radii. Experimental results of 0.5 % Shock on sphere
stand off distance have not been found in Fig 3.7
. 18- 2. Mach numb
the literature for such shapes. o 3 3 2 = 3 ac7 S 8

Shock stand-off distance / Rbody
For concave shocks Eqn. (3.20)

indicates a negative post-shock pressure gradient. Normal shocks with negative

(concave) curvature are discussed in the next section.

3.5.1.2 Flow behind a normal shock at a concave Mach disk
For an axisymmetric Mach disk with radius of curvature R = R, = R}, in a uniform
freestream, Eqn. (3.20) gives a direct relationship between the radius of curvature of the

disk and the pressure gradient behind the disk,
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Coy+l[(y-1)M+2] (R
Which can also be written in terms of A,
p___ 4 (3.22)
©(y+1)MIR
P> is defined as,
_(dp/ds), (dp/ds), (3.23)
el yp,M;
Eliminating P, and M., dp 4y ds (3.24)

p (r+1)R
In the isentropic flow behind the Mach disk the Mach number and pressure are related
by, [Shapiro, 1954],
-1
(=1,

a 2 dp (3.25)
M yM* p

Eliminating dp/p, and separating variables gives,

MdM 4 ds (3.26)

LD () R

Integrating, with the conditions that M = M, ats=0and M=1ats=s" gives,

;: 4(77+—11)1n{(7il)[1+(yz_l)M;H o

In terms of the freestream Mach number this becomes,

y+1 ln[ (y +1)M; } (3.28)

&
R_4(7/—1) 2yM? —(y—1)
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This equation gives the length of the subsonic patch, s", behind the axisymmetric Mach
disk, in terms of the shock curvature radius (R is negative) and the freestream Mach
number. The formula is plotted in Fig. 3.8 as a blue line. This is a unique result which
could be useful in designing axial flows with convergent shocks. It points to the
possibility of first constructing a shock structure in Mach reflection and then building the
supersonic flow around it. Results of Eqn. (3.28) need to be compared against CFD and
experiment.

For planar flow the shock has only a single curvature, R, where 1/R=1/R_,

showing that the subsonic region in planar flow is twice as long as in axial flow. This is
reasonable since flow convergence for planar flow takes place from two sides whereas
axial flow converges from all four sides, leading to sonic flow in a shorter distance. The
planar flow equation is plotted in Fig. 3.8 as a green line. The above results will be used
to provide the length of the subsonic region behind hyperbolic shocks in Ch. 5. The ratio
of patch length to shock curvature reaches a finite limit for both a hypersonic freestream

as well as a sonic freestream. In the limit, as

shock
M’ —> o, s'/R—> -0.2231 for axial flow and -0.4462 for planar W%
R, *
flow. For both cases, as M =1, s/R—> 0. A lower vy leads to :
a longer patch length suggesting that real gas effects lead to a H

longer patch length for the same shock

Patch length / shock radius of curvature
radius of curvature. As for the blunt body
-0.1
example above, Eqn. (3.20), used above \
. . 0.2 ~—— M . N
to estimate the subsonic patch length for Mach dick (axial)
axial Mach disks and planar Mach stems, -0
can also be used to estimate s for a o
. c e ' Mach stem (pl
concave shock having two differing : ach stem (planar)
Flg' 3.8 Mach number
. -0.5
curvatures. . In such a case the sonic 1 2 3 4 5 6 7 8

Length of subsonic patch behind Mach disk
surface would not be circular but

somewhat elliptic in shape. For a flat normal shock where R, = R, = oo,

P/P=-M}/M: (3.29)
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Since M; is always greater than M,, a flat normal shock amplifies and reverses the
normalized pressure gradient. Shocks of equal but opposite curvature do so also and, not
unexpectedly, a flat normal shock in uniform flow has no pressure gradient behind it.
This concludes the application of curved shock theory to curved and plane normal

shocks.

3.5.1.3 Blunt leading edge with sweep

A supersonic airfoil profile appears thinner to the approaching airflow if the wing
is swept back. Making supersonic airfoil profiles appear thinner leads to a decrease in
wave-drag. Sweep-back also lessens heat transfer to leading edges of hypersonic air
intakes, promotes weaker leading edge shocks and leads to a higher compression
efficiency of the internal intake flow. Flow near the leading edge of such swept leading
edges is the same as that over a swept cylinder and, in any plane normal to the axis of the
cylinder, behaves as if the cylinder were placed normal to an air flow with Mach
number M sin A where M is the freestream Mach number and A is the sweep angle. If,

in this normal plane, the leading edge curvature is, S., then the shock stand off distance,

A, and curvature S, can be found, with reasonable accuracy, from Billig’s correlation
[Billig, 1967]. For constant sweep at the leading edge of the shock S, = 0 giving the
curved shock equations,

0 = AP, + B:D;, + GS)

0=A4P,+ B>D;+ G’S) (3.30)
such that behind the leading edge of the swept shock the pressure gradient and streamline
curvature are given by (note that G is zero),
_BG 4 p-—AG (3.31)

2 b an 2 b
[A4B] [4B]

This is a type of conical flow in that there is no variation of conditions along the leading
edge. Not surprisingly, the polar streamline slope is the same as that for the cone [Eqn.
(2.40)],

P B (3.32)

Morphologically this flow lies on the negative S, axis in Figure 2.2. If the sweep angle
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varies along the leading edge so that at any point the lateral curvature is S; and if S; << S,
then the local flow is again invariant in the spanwise direction so that along the shock
ridge,

, LBClg [ BG ¢ nd p, =Gl 4G (3.33)
[4B] [4B] * [4B] [4B] °

If the leading edge sweep is decreasing then S, > 0 and the shock is ‘saddle’ shaped
appearing in the fourth quadrant in Figure 2.2. If the leading edge sweep increases then
Sy < 0 and the shock is ‘shell” shaped, appearing in the third quadrant.

The above has shown how the pressure gradient and streamline curvature behind a
swept leading edge shock can be found from the freestream Mach number, the sweep
angle and the two leading edge curvatures. The shock on a swept blunt leading edge is
three-dimensional in that it has two finite curvatures. However, there is locally no change
in the shock angle in the cross-stream direction so that the trace bb (Fig. 2.1) is
perpendicular to the freestream vector. This makes CST applicable locally for this 3D
shock shape. The shock is a ridge in the flow plane. Equally well, CST would be
applicable behind a left-right symmetric col-shaped shock. The critical feature that
makes CST applicable in both of these cases is that R, = - 1/S, (Fig. 2.1) stays constant
along the bb trace.

3.6 Shocks on a circular wedge-annulus; D, = 0, (a.k.a. Unit Ring -
Wedge)
Conical flow does not generally

flow over conical surfaces and conical

surfaces do not always produce conical
flow. In this section we find the flow
gradients behind shocks attached to the -~ o

leading edges of conical ducts (no weak

shocks

)

S strang
shocks

Saneg

. S
streamwise surface curvature) and we find .

that the flow does not possess conical

Symmetry. The circular Wedge, or conical Attached weak and strong shocks on axisymmetric ring-wedge

duct, on the right, presents examples of flow over external and internal truncated conical
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surfaces. An axisymmetric engine cowl leading edge is a typical example where attached
shocks appear on the external as well as the internal surfaces and where the surfaces are
not necessarily curved in the flow direction. For such flow the streamline curvature
behind the shock, at the surface, is zero, so that D, = 0. The transverse shock curvature is

S =—cosf/y, where @ is the shock angle and y is the leading-edge radius of the ring-
wedge.’ Note that for weak acute shocks (external flow), S, 1s negative while, for obtuse

angled shocks (internal flow), S, is positive. For a uniform, parallel, irrotational,

freestream and D, = 0, the curved shock equations reduce to,
0=4,P +CS,

(3.34)
0=A,P,+C'S, +G'S,

From these we find the pressure gradient on the ring-wedge surface and the shock

curvature at the leading edge,

_CG'cosO/y

p= S _ —A,G'cosO/y (3.35a,b)

cA o

P,y and §,y are plotted in Fig. 3.9 showing the effects of varying the shock angle

on a surface that has only lateral curvature. At the Crocco point, where |[CA| =

C4, —C'A, = 0, both the

P2y is red PRESSURE GRADIENT AND SHOCK CURVATURE ON UNIT RING-WEDGE
Say is blue

pressure gradient and the shock

UPSTREAM |
ML =3

curvature become infinite and

switch sign. Some authors have
suggested that the shock will —~ —~
detach from the leading edge at
this condition. [Guderley, 1962].
CFD will be used in Ch. 6 to

o = N W M~ U

' | ' ' '
(8] E w ] -

Flg 3.9 Shock Angle

0 30 60 90 120 150 180
PRESSURE GRADIENT, SHOCK CURVATURE
behind axial shock in uniform flow

simulate attached shock
behaviour at the leading edge of a ring-wedge at conditions corresponding to the Crocco
point. This will be done by varying the freestream Mach number through the Crocco
point on a fixed angle ring-wedge. [Equally interesting would be to vary the

axisymmetric ring-wedge angle through the Crocco point at constant Mach number. The

? A ring-wedge with y = 1 is called a unit ring-wedge. This is the scale length referred to in Chapter 2.
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latter is easier to do computationally than with a ‘solid’ model in a wind tunnel. Even
computationally it may not be that easy because the Crocco point lies close to the shock

detachment point. CFD results of flow over and inside the ring-wedge are presented in

Ch. 6.

3.7 Shock surfaces with up- or downstream uniformity
In aeronautical flight application the flow conditions upstream of the shock are
most often uniform, irrotational and the coordinate axis is aligned with the freestream so

that 6, =0. In an airbreathing engine the combustor requirements may be such as to

require uniform flow from the last shock in the intake. For shock reflections off a plane
wall the flow emerging from the reflected shock must be parallel to the wall and must

have no curvature so that 6, =0and D, =0. Also, for shock reflection, the polar

streamline direction behind the incident shock must equal the polar streamline direction
in front of the reflected shock. This makes it important to have analytical tools suitable
for uniform flows on the upstream and downstream surfaces as well as for prescribed
non-uniform conditions. Shocks with no downstream pressure gradient and with straight

streamlines will be studied in what follows.

3.7.1 Doubly curved Thomas and Crocco shocks
Consider a shock in uniform, irrotational upstream flow that is doubly curved so

that neither S, nor S; is zero. For these conditions the curved shock equations reduce to,
0=4,P +B,D,+CS,

(3.36)
0=AP,+B,D,+C'S, +G'S,

Solving these for pressure gradient and flow curvature,
[BC] B,G'
=——S5 +—=2—F5
» 4B’ a1 (3.37 a,b)
D, — [CA]S _AG :
[AB] “° [AB]
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If the pressure gradient behind the shock is zero then, setting P, =01in Eqn. (3.33 a)

gives, R, = (

S_j __BG
S, ),

[BC]

(3.37¢)

so that for this shock curvature ratio we can expect to find a space behind the doubly

curved shock with relatively constant pressure. Such a point on the shock wave is called a

Thomas or an isobaric point and the relation expressed by Eqn. (3.37 c) is the isobaric

condition. For planar flow, where S, =
0, the isobaric condition occurs when
either the shock is flat, S, = 0, or at the
Thomas point. Recall that, for planar
flow, the Thomas and Crocco
conditions are defined by [BC] = 0 and
[CA] = 0 respectively. At the Thomas
condition, where [BC] = 0 on a doubly
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M1 =3
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curved shock, the pressure gradient is not generally zero but equal to {BZG’/ [AB]} S, .

It is only for a planar shock that the pressure gradient is zero at the Thomas condition.

From Eqn. (3.33 b), setting D, =0 for straight streamlines behind the shock, gives,

® E(SGJ _ 4G
D

S,

[CA]

(3.37d)

so that for this shock curvature ratio we can expect a space behind the doubly curved

shock to have straight streamlines. Such a point on the shock wave is called a Crocco or
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At a given y, Mach number and shock angle the isobaric or isoclinic shock surface can

be established by proper choice of shock curvature ratio as shown in Figures 3.10a and b.
Fig. 3.10b shows what the URW leading edge radius of curvature », must be to obtain a
zero pressure gradient on the URW surface at any acute or obtuse shock angle. Similarly
the shock radius of curvature, S,, is plotted to show what the curvature must be to obtain
a surface of zero curvature.

For shocks with axial symmetry in a parallel upstream flow,

_d0_dody _do

= = nd
‘" do dydo dy

S, =—cos@/y
For an isobaric shock where P =0,
50

using Eqn. (3.33 a), y
v _ 1BCl . pa0 (3:38) 4 /
Yy Bz vy
This is a total differential equation 30
where the two variables y and € have Fig. 3.11
been separated so that a simple 20
numerical integration is possible for
the shock shape, yzf(é?), giving a 10
shock shape that is such that the 0 X%

i i i i 0 10 20 30 40 50
pressure  gradient  behind it s ISOBARIC SHOCK SHAPES FOR MACH 2 TO 8
everywhere zero. Equation (2.11) axial shock in uniform flow

implies that if the pressure gradient is zero then so is the velocity gradient and then Eqn.
(2.13.a) requiresthat the enthalpy (temperature) gradient is zero also. It follows then that
the Mach number gradient is also zero. The isobaric shock then is a surface that produces
zero gradients not only in pressure but also in velocity, temperature and Mach number.
With both pressure and temperature gradients being zero, it must be that the density
gradient is zero also. Thus the isobaric shock is a particular shock shape that produces
zero stream-wise gradients in most thermodynamic and dynamic variables. The isobaric

shock is plotted in Fig. 3.11 for a range of Mach numbers from 2 to 8. Both acute and
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obtuse axisymmetric isobaric shocks can 50

be produced. In planar flow there can be

no isobaric shock surface, only an isobaric 49

point at the Thomas shock angle. /

30 1
A treatment that parallels that for /
the axisymmetric isobaric shock surface 20 > &L
gives the equation for the axisymmetric
isoclinic shock surface that has straight 1g Fig. 3.12
streamlines  behind it  everywhere.
. P 0 X
Requiring that D, =0 in Eq. (2.67b) 0 10 0 30 20 50
. ISOCLINIC SHOCK SHAPES FOR MACH 2 TO 8
gIves, axial shock in uniform flow
d CA
D _ 1 anoao (3.39)
y A4,G

The expressions on the right hand sides of (3.38) and (3.39) are complicated functions of
@ and have to be integrated numerically. The isoclinic shock profile, Fig. 3.12, is very
similar to that for the isobaric shocks. Both acute and obtuse shocks can be produced.
The body shapes that produce these shocks are axisymmetric. Finding body shapes
involves some kind of finite difference approach that proceeds from the shock towards
the body surface. Such calculations are sometimes badly posed in that the body surface is
not necessarily unique; it may contain folds and cusps or it may not exist at all.

Isobaric and isoclinic shocks are dealt with here because, as incident shocks, they
present unique flows to any potential reflected shocks. For example, if the RR — MR
transition is thought to be influenced by pressure gradient or streamline curvature, then,
by using incident isobaric and isoclinic shocks, it is possible to study transition when
these gradients are absent, the notion being that, if neither pressure gradient nor
streamline curvature is present, then there ought to be no effect of shock curvature on
transition. Or, even further, if the gradients produced by the incident shock favour
attachment of the reflected shock then transition ought to be delayed by their absence and
conversely. It is important to realize that the isobaric and isoclinic-points can be made to
lie anywhere behind the shock where the shock curvature ratio is such as to satisfy (3.37

c) for the isoclinic point and (3.37 d) for the isobaric point. It is only for planar flow that
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the isoclinic point lies between the sonic point and the maximum deflection point and the
isobaric point lies behind the strong shock between the maximum deflection and normal

shock points.

3.7.2 Polar streamline slope for shocks with upstream uniformity
Equations for polar streamline slopes were presented in sections 2.4.4 and 2.5.3 for

flow behind planar and conical shocks in a uniform freestream. Equations are presented

here for shocks with compound curvature, also in a uniform freestream. Using equations

(3.37 a) and (3.37 b), the polar streamline slope is,

Lo [BC]S, +B,G'S, [BCIR+B,G’ (3.40)

2

D, [CAIS, - AG'S, [CAIR-AG'

2

This relation shows that, for a doubly curved shock, the polar streamline slope is a
function of the upstream Mach number, the shock angle, and the ratio of shock
curvatures. Any value of polar streamline slope between —w and +o0 can be obtained with
a suitable choice of R at a given Mach number and shock wave angle. Hornung [1997]
has argued that the stability of steady-flow regular and Mach reflection is associated with
the slope of the reflected shock pressure-deflection polar locus at the point where the

locus intersects the pressure axis.

3.7.3 Polar streamlines for uniform post-shock flow

All examples of CST applications, presented so far, have involved either uniform
or specified pre-shock flow as is the case for most aeronautical applications. However, in
situations such as the design of air intakes it is useful to be able to specify the down-
stream or post-shock conditions, as determined by the combustor requirements.
Typically, a uniform downstream flow is desired and specified as for Busemann flow in

Ch. 4. If; in addition, the pre-shock flow is irrotational, such that I, =0, then the two
curved shock equations 2.30 a,b become,
AR +BD —-(CS,+GS,)=0
171 11 ( h) (341)
AP, +BD,—(C'S,+G'S,)=0

Solving these for P; and D;,
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-B,(C'S,+G'S,)+B/(CS, +GS,)

A= ,
AlBll _AIBI
(3.42)
P (C'S,+G'S, )+ 4/ (CS, +GS,)
b AlBlr - Al'Bl

The polar streamline slope is then,

l__ﬁ__—Bl(C’fR+G’)+Bl’(C§£+G) (3.43)
D, -4 (CR+G)+4(CR+G) '

This is for the polar streamline

in front of the shock. The over- 12 Shock pressure ratio UPSTREAM
. LUy

[~ T §

for the post-shock polar °©

bar is to distinguish the present /

from the previous / which was

streamline for a uniform 4

upstream flow. For a planar 2

shock, R — oo so that, 0 low deflection through shock (deg)
-40 -30 -20 -10 10 20 30 40
] ] SHOCK POLAR AND POLAR STRI LINE DIRECTIONS
l_ — _B]C + B]C (3 '44a) in front of conical shock for uniform down-shock flow

planar =~y AC 1 AC
For a conical shock R =0,

Leomical = —% (3.44b)
The polar streamline slopes in the pre-shock flow, as given by Eqn. (3.44b) are shown on
the (p-0) shock polar as coloured line segments. Blue segments indicate supersonic post-
shock flow and red segments indicate subsonic post-shock flow. The right half of the
graph is for the acute Busemann shock and the left half is for the obtuse W-flow shock ,
both having uniform post-shock flow. Busemann and W-flows are discussed further in
Ch. 4. If the acute shock is thought of as representing a reflected shock then its pre-shock
streamline slope will have to match the post-shock streamline slope of an obtuse incident
shock.
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3.7.4 Conditions behind a reflected shock

The conditions P,, D, and I',, behind a curved incident shock, facing a uniform
stream, are found from (3.12 a and b) and (2.31 c¢). These conditions now become the
pre-shock conditions P;, D; and I'; for the reflected shock. If the reflection takes place

on a surface that has no streamwise curvature (D, = 0, a flat wall or a straight tube) the

transverse curvature of the reflected shock is S, = —005(8—5 ) /'y and then the curved

shock equations for the reflected shock are Eqns. (2.30 a and b),

L =A4PF+BD+El' =4,P+CS,+GS,

L/=A4 P+BD,+ET,=A4P+C'S,+G'S, G.49)
These are two simultaneous equations for P, and S,. It will be shown in Ch. 6 that the
pressure gradient, P, plays a critical role in causing shock detachment from a wedge by
local choking . 1t remains to be shown that the analogous RR—>MR transition is similarly
affected by the pressure gradient as calculated from Eqn. (3.45). The lateral surface
curvature, Sp, will then have an influence on the transition. In a like manner a specified

flow-wise curvature, D,, different from zero, would affect the pressure gradient and

hence, detachment, directly.

3.8 Curvature and strength of characteristics

Shock waves form when compressive characteristics overtake one another. To
determine if there exist regions behind a curved shock where there is a tendency for an
embedded reflected shock to form we seek characteristics with positive strength
(compressive) and positive curvature when acute and negative when obtuse, so as to be
overtaking one another. Tools presented here are applied to the hyperbolic shock wave in

Ch. 5.

3.8.1 Curvature of characteristics

Let the curvatures of the C" and C characteristics be denoted by S;, S b+ , S; and

S , - As before, the a-subscript is for curvature in the flow plane and the b-subscript is

for curvature in the flow-normal plane. The C" and the C  characteristics are inclined at
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+u and - to the local streamline. In the weak shock limit, shocks become Mach waves or

characteristics so that,
o=0 6,=6, M=M=M
q,/q =1 0==tu (3.46)
sind==x1/M cos@=+J/M>~1/M
$in20 = +2VM° ~1/M*  cos20=(M*>-2)/ M
In reference to the characteristics on the downstream side of the shock, M is the Mach
number on the back of the supersonic portion of the shock. With these limiting

conditions the shock curvature coefficients, (2.30c), become the characteristics’

curvature coefficients,

2NM? -1
A=t"—" (3-4/M’—(y-1)/2
1 (7/+1)M( (r=1) )
B =+ 2 (7_5+4_M2j
(y+1)M\ 2 M

e (s

A=2M 1)/ M

B =2IM"-1/M’

(3.47)

A =M -1/ M

B, =—-1/M®

E'=0

C=24IM -1/[(y+1)M"]

G=+4IM" ~1sing, /[ (y +1)M"] (3.47)
A =2(M* 1)/ M

B =+2M* 1/ M
C'=0
G'=0
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so that,

3/2

8 M-I 8 (M-l
(y+1) M* "’ [CA]_+(y+1) M*

[4B]=0; [BC]=-

The upper sign of + or F isused with S," and S,” and the lower sign is used with
S”and S, . The subscript 1 variables, in the curved shock equations, are all relevant
because the characteristics are facing non-uniform flow behind a curved shock. For
axisymmetric flow,

M -1 (3.48)

S =—cos(u—5)/y=F
, =—cos(u—0)/y My

Except for G, the characteristics’ curvature coefficients are all functions of the local
Mach number only. For the curved characteristics, using the above coefficients, the
curved shock equations, (2.30 a,b) become,
AB+BD +ET, =A4,P,+B,D, +CS; +GS; (3.49)
AP, + B/D, = AP, +B,D,
If we apply these to finding the curvature of a characteristic on the downstream side of a
shock then P;, D; and I'; are the pressure gradient, streamline curvature and vorticity on
the downstream side of the shock, as determined by the shock’s curvature, and P, and D,

are the pressure gradient and streamline curvature on the downstream side of the

characteristic. From Eq. (3.49),
P_R:i(Mz_l)im(Dz_Dl) (350)

2

This shows that, across a characteristic, both streamline curvature and pressure gradient
can be discontinuous and that the discontinuities are linearly related in proportions
determined by the local Mach number. Note that the upper sign of = Or =+ is used
with the C" characteristic and the lower sign with the C™ characteristic. Dividing Eqn.
(3.50) by 2+/M* —1gives,

ijj—l ! 2\/?\141?1—1 - Nj\lj}—l " Ni}l}_l 3D
Subtracting Equations (3.51) and (3,50) gives,
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S;_I_Sh*siné‘l:[(7—7)M2_(7+1)M—8]|:mgil)l:| (3.52)

[AM~M* —1] J
+ +
S; and S , are the curvatures of either the positive or negative characteristic depending
on whether the upper or lower sign is used in the above equation. The subscript 1

denotes conditions immediately in front of the characteristic and, for the flow on the back

side of a shock, M, P; and D; are then the values behind the shock, produced by the
shock. If the flow is parallel to the axis then 51 is zero so that Sai can be determined
from a knowledge of M, P;, and D;. Axisymmetric flow behind a regularly reflecting
shock on a straight cylinder has both 51 and D; equal zero so that The C" and C

characteristics have the same curvature in the flow behind the reflected shock. It is

interesting to note that, for y =1.4 the term in the numerator [(7 —)M = (y+1)M —8] is
zero when M = 1.4286, so that the characteristic’s curvatures are then very simply related
by Sai +S bi Siné‘1 = (). This is another example where curved shock theory yields a

singular Mach number with curious properties. For axisymmetric flow

S* = —cos( uts ) /y sO that the curvature of the characteristics in the flow plane is,

(7T-y7)M* =(y+1)M -8
AMNM® -1

S =

a

[x/Mz—1PliDl}+sin5lcos(,ui51)/y (3.53)

3.8.2 Strength of characteristics

In this section we define the strength of one characteristic as the pressure gradient
in the direction of the other characteristic. This leads to a convenient formulation in
terms of the local stream-wise pressure gradient and flow curvature. Using the formulas
2.42 for the gradients on the downstream side of a doubly curved shock gives the
strengths of the incident and reflected characteristics and their ratio behind a shock - the
reflection coefficient. The reflection coefficient has been used to gauge the strength of
waves emanating from the back side of a curved shock as they hit the aft portions of a
supersonic vehicle [Chernyi, 1961; Hayes and Probstein, 1966]. If the reflections are

weak then it is possible to apply such approximate techniques as Shock-Expansion,



66

Tangent-Wedge and Tangent-Cone theory to the calculation of flow fields between body

and shock.

The variation of any quantity across the C" characteristic, in the direction of the

C’ characteristic, is,

00 _ cos ;2 +sin x2° (3.54)
on os on

where 77 is the distance along the C™ characteristic and u is the angle between the

characteristic and the streamline. Similarly for the C™ characteristic,

oe :cosyg—sinyﬁ (3.55)
on’ 0os on

Using these, we define the strengths of the C" and C” characteristics in terms of their
cross-characteristic pressure variation as,
= 1 op :cosy@+siny6£
pv:ion  pV: as  pV: on (3.56 a,b)
= 1 op :cosy@_sinuﬁﬁ
pvVionT  pV’ os  pV’ on

7T will be positive/negative for a compressive/expansive characteristic. Using Eqns.
(2.16) and (2.17) these can be written in terms of the local pressure gradient and

streamline curvature as,

" :AZ[\/MZ —1P—D] (3.57 a,b)
T :L[\/Mz 1P+ D]
M

These expressions are general in that they apply wherever the Euler equations are

applicable.

3.8.3 Reflection Coefficient

The relative strength of the characteristics is,

_VM'-1P-D (3.58)
NM? —-1P+D

7Z_+
1577
T
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If the C~ characteristic is incident on the back of a shock and the C* characteristic
reflects then A is called the reflection coefficient. On the downstream side of a planarly

symmetric shock with curvature § the pressure gradient and streamline curvature are
from Eqn. (2.33),

PO (oA

IR TR (3.59 a, b)

so that the reflection coefficient for planar flow is,

P JM; - 1[BC]-[C4] (3.60)
planar = - \/m[ BC1+[CA]

This equation is plotted in 90 ‘
. o Shock angle
Fig. 3.13. This is a plot of 80
70 sonic shock (M2=1)
shock angle versus
60
freestream Mach number 50
showing where the 40
. . 30 .
reflection coefficient, 2 Fig. 3.13
ﬂ, . C. 10 Mach wave
, 1S positive - green
planar
0 Mach Number
. . 1 2 3 4 5 6 7 8
(‘hke’ reﬂectlon) and Reflection Coefficient lambda (red for -, green for +)

planar acute shock in uniform flow
where it is negative - red

(‘unlike’ reflection). The lower boundary of the coloured band is for the limiting weak
shock — the Mach wave. The upper bound is where the post-shock Mach number M, =1,
the sonic condition. The reflection coefficient is zero at both the Mach wave and the
sonic shock lines as well as at all boundaries between the green and red areas. At a very
low Mach number, below 1.32, the reflection coefficient over the whole post-shock side
is green — positive. This means that compression waves reflect as compression waves
and expansion waves reflect as expansion waves — like reflection at all shock angles.
Between Mach 1.32 and Mach 2.42 the weaker (red) part of the shock has a negative
reflection coefficient, implying an unlike reflection, whereas the portion of shock nearest
the sonic point is still in a like reflection (green) mode. There is a narrow region between

Mach 2.42 and 2.55 where the reflection coefficient has four zones (- + - +). Above



68

Mach 2.55 there is (+ - +) sequence of zones. The upper green region, indicating like
reflection near the sonic shock, becomes very narrow as it extends to higher Mach
numbers. For positively curved shocks, be they acute or obtuse, the incident waves are
compressive so that in this narrow region, next to the sonic shock, the reflected waves are
also compressive. If a reflected shock forms here then its formation is compatible with
the indicated presence of shock-causing compression waves. This will be applied and
further discussed in Ch. 5 as it pertains to the formation of embedded shocks behind
hyperbolic shocks.

For a conical shock, S, =0, and with the curvature § =—cos@/ y Eqn. (2.30¢)

gives,
B,G' -4,G'
e T D, =————5, (3.61)
Asz - AzB2 Asz _Asz
This gives,
L1 5 G'cosd
z __E[ M; ~1B,+ 4] ; (3.62 a,b)
-1 p G'cosd
7 _—M[ M; -1B, -4, | ;
and,
PR M:—1B,+ 4, (3.63)

= T 1B 4
In conical flow, strengths of the characteristics both increase as j — (0 but their ratio
remains constant. The reflection coefficient in conical flow is uniformly positive for all

Mach numbers and shock angles.

Behind a doubly curved shock wave,

_IBClg B

T RATTIR (3.64 a,b)
_[CAlg 4G

© [4B] " [4B] "

Substituting in 3.58 gives the reflection coefficient for a doubly curved shock,

(M- 1BCI-[CAl R+ M. -1BG + 4G (3.65)

{JMj —1[BC]+[CA]}:R+ JM-1BG - AG
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where R = S /S, This equation reverts to planar flow when R — o and to conical

flow when & — 0. Equation 3.65 shows that, although the strengths of the characteristics
behind a doubly curved shock depend explicitly on the shock curvatures, the reflection
coefficient depends only on the ratio of curvatures. The dependence on Mach number is
complex, as seen in the above Fig. 3.13. The reflection coefficient and the strengths of
the shock-reflected characteristics are important in the design of shock waves where one
is concerned with coalescence of characteristics and the formation of embedded shocks
behind a shock with given curvatures. Since the formation and existence of shock waves
can be explained on the basis of overtaking (compressive) characteristics, it is possible
that the appearance of a reflected shock wave behind a curved shock also comes about

when the strengths of the reflected characteristics are positive. Equation (3.65) shows

that at a sonic line (M , = 1) , a characteristic reflects with the same strength but opposite

sign irrespective of the ratio of the characteristic’s curvature.
The back surface of a shock is perfectly absorbent to characteristics when 4 =0.

From Eqn. (3.65) this occurs when the ratio of shock curvatures is,

,/Mz 1BG' + AG' (3.66)
\/ -1[BC]-[CA4]

As with the isobaric and isoclinic shocks, the axisymmetric, perfectly absorbent shock, is

found by numerically integrating,

_ M -1[BCI-[C4] 040 (3.67)
JM—1BG' + AG'
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Such shock shapes are plotted in Fig. 3.14, with the freestream Mach number as

parameter. Shock shapes for a
Mach number less than 4 are
too small to appear on the
scale of the plot. Sound,
generated in the turbulent
boundary layer on a body
surface, would not be
reflected from a surrounding,
perfectly absorbent, shock
wave, preventing  sound
reverberation between body
and shock. Chernyi [1961]
discusses further implications
of the reflection coefficient at

some length. As with the

0

Fig. 3.14

X

0 1 2 3
ABSORBENT SHOCK SHAPES FOR MACH 4 TO 8

axial shock in uniform flow
isobaric and isoclinic shocks, one is still faced with the task of finding the body shapes

that produce the absorbent shock shapes.

3.9 Sonic line orientation

By its very nature the sonic line, in the post-shock flow, must impinge on the

shock at the point where the post-shock flow is sonic. Orientation of the sonic line at the

shock has an influence on the extent of subsonic flow behind the shock, which, in turn,

must be compatible with the extent of supersonic flow. Any conflict, such as overlap of

the two regions must mean that the proposed flow cannot exist. It will be shown in Ch. 5

that the orientation of the sonic line is critical to the existence of a concave smooth shock

at the sonic point. Formulas will here be established for the angle between the streamline

and the sonic line at the sonic point for planar and axial shocks in a uniform freestream in

terms of the gradients behind the shock. Hints for developing the formula for the sonic

line in case of a non-uniform upstream will be indicated.
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The angle between a constant Mach number line, in this case the sonic line, and the
streamline at the sonic point is o* (Eqn. 2.22), where,
P %

D*_l"*

tan a* = (2.22) (3.68)

and where P* D* and I'* are the pressure gradient, the streamline curvature and the
vorticity, all evaluated at the sonic point behind the shock. This formula is valid for both
planar and axial flows as well as for a non-uniform pre-shock flow. Expressions for the
terms on the right-hand side of this formula vary, depending on the shock geometry and
upstream conditions.
For a uniform upstream and planar flow (S, # 0 and S, = 0), using Eqns. (3.2

b,c,d.e,f),

P, =[BC]/[4B]xS,

D, =[CA]/[AB]xS,

e [C Ba feas] o
E " [4BIE; [ABIE}

so that,
*
tana* = P (3.69)
D % _1—‘ %
BC1E;
becomes, tan o* = - [ - 1E> - - (3.70)
[CAJE} +[AB]C" +[BC) 4, +[CA]B]

Note that, for planar flow, S, cancels out, leaving o* a function of the freestream Mach

number only.

For a uniform upstream and axial flow, behind a doubly curved shock where S,

# 0 and S, # 0, using equations (3.12 a and b) for P* D* and Eqn. (2.40 b) for ['*, gives,

[BCIESR" + B,G'E}

3.71
{[CAIE; +[AB]C" +[BC]4; +[CA1By } R +{[ABIG" +[BG14; ~[AG]B) — A,G'E5} G711

tana* =

All coefficients on the right are evaluated at the post-shock sonic condition so that

they are functions of Mach number only. This makes a* a function of the freestream
Mach number and R only. The angle a* is plotted in Fig. 3.15 against the freestream

Mach number for a range of R = S, /S, as parameter, covering all the possible shock
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shapes in Fig. 2.2. Black curves are for positive ®  and red curves are for negative R .
The blue curve is for conical shocks and the green curve is for planar shocks. The green
curve and its implications for planar shocks have been discussed by Hayes and Probstein
[1966]. o* and R have critical roles in determining the nature of the flow behind
hyperbolic shocks and shock detachment discussed in Ch. 5 and 6. Orientation of the
sonic surface, as depicted by a*, contributes greatly to the visualization of flow structure

behind curved shocks, as further developed in Ch. 5.
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With non-uniform pre-shock flow one would have to use the general expressions
for P* D* and 7* as in (2.30e) and (2.40b) in the formula (3.71). This situation occurs
behind a regularly reflecting shock on a curved surface where the incident shock is
curved. It occurs also for the reflected shock in Mach reflection with a curved incident

shock.
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3.10 Concluding remarks

This chapter has applied curved shock theory to calculate flow gradients near
curved shocks on various simple aecrodynamic surfaces as well as on shock surfaces with
very specific properties.  Most topics discussed are open to further investigation and
elucidation. The following results have been deduced from curved shock theory:

1) The specific heat ratio, y, upstream Mach number, M;, shock angle, 6, upstream
flow inclination, d; and the two shock surface curvatures, S, and Sp, uniquely relate the
flow properties as well as their gradients upstream and downstream of a doubly curved
shock wave surface in steady flow of an ideal gas.

2) If S, is constant along an isobar on the back side of the shock then the CST is
applicable locally to a shock element in three-dimensional space.

3) In homenergic flow lines of constant temperature, velocity, sound speed and
Mach number are collinear.

4) Lines of constant pressure, temperature, density, velocity, sound speed and
Mach number are collinear in homenergic, irrotational flow.

5) There are singular positions behind doubly curved shock waves where the
isoclinic and isobaric lines are collinear with the streamlines. At these locations the
stream-wise flow gradients vanish. At any combination of Mach number and shock angle
the positions exist for a specific value of shock curvatures ratio.

6) In planar flow the locations of the isoclinic (Crocco) point and the isobaric
(Thomas) point are independent of shock curvature, being located at shock angles
determined by Mach number only.

7) Curved shock theory predicts some curious results for curved normal shocks.
8) Shock stand-off distance and sonic patch extent can be approximated for convex
and concave shocks.

9) Axisymmetric shock shapes are found such that the pressure gradient or
streamline curvature vanish behind the whole shock surface. Also, shock shapes are
found that do not reflect sound from their back surfaces. In all of these situations the pre-
shock characteristics are those of the uniform free stream and the post-shock inclination
and shapes of the characteristics are determined explicitly and uniquely by the local

shock inclination and curvatures.
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10) Curved shock theory predicts very high downstream flow gradients for
oblique shocks approaching the axis of symmetry.

11) Curved shock theory predicts very high downstream flow gradients behind
shocks near the Crocco point conditions for curved surfaces.

12) Orientation of the sonic surface behind a doubly curved shock is governed by
the specific heat ratio, the pre-shock Mach number and the shock’s surface curvature
ratio at the sonic conditions on the shock.

13) It has been shown that CST can be used to find the doubly curved surface
required to produce a given doubly curved shock or the inverse situation where the
surface is given and the shock shape is found. This makes the theory useful as a
predictive as well as an interpretive tool particularly since the analysis is algebraic in both

directions.
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4.1 Introduction

A preferred geometry for a scramjet combustor is a circular cross-section duct
because of its superior ability to withstand both heat and pressure loads. Frictional losses
are also at a minimum for such a duct since a cylinder has the smallest surface area for a
given cross-sectional area. This leads to a cylindrical (axially symmetric) geometry as
being desirable also for the intake that is attached to the front of the combustor duct. The
same circular exit geometry for the intake is demanded by a gas turbine engine, this time
because the axial compressor face is circular. In design selection of a suitable
aerodynamic flowpath geometry, the requirement of high aerodynamic efficiency leads to
the selection of intake flow types where any isentropic compression precedes shock
compression so that the latter can occur at the lowest possible Mach number. Towards
these ends, it is wise to study an axisymmetric flow and it is entirely fortuitous that
axisymmetric, conical, Taylor-Maccoll flow provides a streamtube shape that satisfies the
above intake design requirements, both geometric/structural as well as aerodynamic. In
recognition of A. Busemann’s work on such streamtube shapes, they are called
Busemann flows and Busemann intakes. Enforcing conical symmetry for Busemann flow
leads to flow quantities being constant on cones whose apecis all lie on the same point
and whose axes are all parallel to the free stream. Imposing conicality, restricts
considerations to this specific class of flow while, at the same time, offering great
simplicity in flow analysis where a wide variety of intake surfaces is available for
selection - surface shapes that yield both a high compression and a high efficiency.
Disappearance of the radial dimension as an independent variable, in conically symmetric
flow, permits the depiction of results on the single remaining spatial variable — the
conical angle. Furthermore, the use of conical flow means that all shocks are also conical
and therefore of constant strength at any given angular position. The flows are not only
uniform but also irrotational — generally, a desirable feature for flow that leaves the
intake to enter a combustion chamber. These features of conical flow and, in particular,
Busemann flow, which is by nature an internal flow, make the Busemann streamline

shape an attractive candidate for an air intake of a hypersonic flight vehicle’s engine.
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This chapter is a self-contained treatment of supersonic conical flow. Later
chapters will make reference to its various, seemingly disconnected, results. Four types
of flow with conical symmetry are presented: a) cone flow, b) Busemann flow, c) M-flow
and d) W-flow. The common feature of all four flows is that they abut uniform and
parallel flow on either the up- or downstream boundary. In the case of Busemann flow
both upstream and downstream flows are uniform. The flows were studied, as a set, by
Godzowskii [1959]. Cone flow is a well-understood classical supersonic flow treated in
many textbooks and it is here mentioned briefly for the sake of completeness. The much-
less familiar W-flow is also treated briefly for completeness. It starts from an upstream
singularity, expands and passes through a conical shock to become a uniform
downstream flow. It has, so far, had no known practical utility in flow-path design.
Busemann flow contains four unique fluid mechanical features that are treated in this
chapter, a) internal flow with an inflected surface, b) a free-standing conical shock, c) an
axisymmetric centered compression fan and d) a flow process from a uniform flow to
another uniform flow. M-flow is another type of internal, conical flow that can represent
part of an intake surface. It also contains some interesting fluid mechanical features — a)
a singularity and b) an example of convergent flow with a decreasing pressure. It is

suitable as a leading edge shape that produces a conical internal shock wave. Both

o e

b. Busemann flow

Busemann and M-flow carry conical shocks that
either diverge from or converge towards the

centre line of symmetry. The study of such

shocks is important in their applications to
intake flows as well as to understanding the
basics of reflection and interaction of curved = ""

shock waves. Busemann and M-flow are the

c M-flow d W-flow
main subjects of this chapter. ingularty sl ok
The first part of this chapter deals with |:">arrow indicates area of uniform flow
conical flow theory as embodied in the Taylor- Four types of axisymmetric conical

flow that border onto uniform flow.
Maccoll equations and as applied to the four

flows that are bounded on the up- or downstream side by uniform flow. The Taylor-

Maccoll equations are recast and presented in terms of Mach number components; their
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solution is applied to the calculation of internal, conical, axisymmetric flow. It is shown
that the Taylor-MacColl numerical solution cannot be started at the free stream and that
characteristics of Busemann flow, emanating from the surface, tend to focus close to the
apex of the internal conical shock so that a substantial length of intake surface is required
to determine a relatively short segment of the shock. An inflection point on the Busemann
streamline is shown to have significance for starting of Busemann flows. The second
part presents CFD and experimental results of
Busemann flow and M-flow, the two types of
conical flow that are significant for air intake
design as well as to the understanding of shock

reflection in axisymmetric internal flow.

4.2 The Taylor-Maccoll equation(s)

Flow which is both axially and conically
symmetric is best described in spherical polar coordinates (r,6) where r is distance
measured radially out from the origin and & is the angle measured from the downstream
direction. In all cases the origin is at the apex of the conical shock, on the centre line of
symmetry (xx). The flow velocity components in the radial and angular directions are
designated as U and V. Drawing similar triangles along the streamline in the figure on
the right gives the streamline equation:

dr/d@=rU/V (4.0)
The original Taylor-Maccoll equation is a non-linear, second order total differential
equation with the spherical polar angle, &, as independent variable and the radial flow
velocity, U, as dependent variable [Anderson 1982, Emanuel, 1994].
7—_1{1—02—(d—UTMZU+d—Ucot9+d2—U}—d—U{U‘i—U+d—U[‘ﬁ—Uﬂ:o 4.1)

2 de do do* | do| do do| do*

This is the model equation that governs steady, axisymmetric, conical flow of a perfect
gas. No explicit algebraic solution has been found, nor are there any numerical schemes
for solution of the second order equation (4.1) as given above. However, the equation

can be converted to two first order equations, (4.2) and (4.3), at the price of acquiring
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the additional dependent variable, V. The two equations are now amenable to standard
numerical solution methods. Most of these solutions have been done with boundary

conditions applicable to cone flow [Sims, 1964; Anderson, 1982; Emanuel, 1994;].

4.2.1 The first order equations

The first-order versions of equation (4.1) are the momentum equations, in polar
coordinates, in the » and @ directions, [Thompson, p.488, 1972]:
U +V cot6) 42)

2

dV/d@:—U+“(

_az
dU/do =V 43)

where a is the speed of sound that can be written in terms of the velocities and the total
conditions through the energy equation. The second of these equations is also the
irrotationality condition, implying that conical flows are necessarily irrotational. Explicit
reference to the speed of sound and total conditions can be circumvented if the equations
are recast so as to have the radial and angular Mach number components as dependent
variables in place of the corresponding velocity components. The boundary conditions,
when expressed as Mach number components at the up- and downstream sides of conical
shocks are then applicable directly to the solution of the equations. Also, total conditions,

which have no influence on the Mach number solution, do not have to be invoked.

4.2.2 Mach number variables

The Taylor-Maccoll (T-M) equations have been recast in terms of the radial and
angular Mach numbers « and v, where u = U/a and v = V/a and a is the local sound
speed:

ﬂ_v+y—1uvu+vcot9 44

do 2 v =1 4
ﬂ:_uJ{H_y/—lszunchot@
do 2 v -1

(4.5)
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These two equations seem more complicated than their parents (4.2) and (4.3). However,
it will be shown that the use of Mach number components «# and v leads to meaningful
and useful physical interpretations from Eqns. (4.4) and (4.5)
The streamline equation is:
dr/d@=rulv (4.6)
M =~u +v*

Having the T-M equations in this form reveals their singular nature at v = +I

The flow Mach number is:

where the singularity is caused by the (v’ — I)-term in the denominators above.'
Absence of any explicit reference to total conditions, as well as the sound speed, leads to
a more straightforward application of the boundary conditions. A standard, fourth-order
Runge-Kutta scheme has been used to integrate the Mach number form of Eqns. (4.4) and
(4.5). The solutions are identical, to eight decimal places, to similar solutions of (4.2) and
(4.3) in the velocity variables. Previous reference to the T-M equations in Mach number

form has not been found in the literature.

4.3 Conical flows with uniform upstream and downstream flows

The four types of Taylor-Maccoll (T-M) flow that are bounded on the up- or
downstream side by a conical shock and/or uniform flow are of interest because, in each
case, a uniform flow can be grafted onto the T-M flow to obtain a combined flow with
some practical flight applications where the flow is joined onto a uniform and parallel
freestream. The four flows are also of interest from a more fundamental viewpoint
because they contain shock waves that appear to be incident on, or reflecting from, the
centerline of symmetry and such reflections are pertinent to the study of reflection of
curved shocks. Conical shocks, being of constant strength, aid in the understanding of
causes and effects as pertaining to curved shock reflection. Integration of Eqns. (4.4) and
(4.5) requires the starting values u# and v at some specified value of 8. It is these boundary

conditions that lead to the four different flow configurations.

' Such singularities are discussed by Dadliz [1946], Mdlder [1967] and Rylov [1990]. Their appearance, in
any given flow, should be taken as a warning that whatever symmetry assumption(s) have been made may
not hold in the physical airflow.
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4.3.1 Cone flow and W-flow

The most well-known numerical integration of the T-M equations is for the flow
over an axisymmetric cone at zero angle of attack in supersonic flow. This is of some
historical interest since it was one of the first applications of the digital computer, some
60 years ago. It is a classical
compressible flow example found in most
text books. Consideration of this flow is
included here because the cone shape is a
useful surface to form the centre-body of x:>

an axisymmetric intake. For an intake this

is the situation where the shock from the
centre-body reflects off the inside surface

of the cowl as would be the situation when arrow indicates area — wal
of uniform flow

shock

the engine operates at a Mach number Axisymmetric conical flow with shock

higher than the design Mach number. reflecting off the inside of a cylinder

Also, for more fundamental uses, the conical shock, produced by the cone, can be
reflected from the inside surface of an enclosing circular cylinder. In applying CST to
this reflection, the incident shock is conical so that S, = 0 and S, = -cosé for a unit ring-
wedge. In this case all primitive variables as well as gradients and vorticity at the
reflection point are analytically predictable by CST, as is the curvature of the reflected
shock.

To calculate cone flow, we specify a free stream Mach number M; and a conical
shock with aerodynamic shock angle 6, where 1; < 6;, < /2. The u and v components
of Mach number immediately behind the shock are [Anon. NACA Rep. 1135 Eqns. 133
and 134]

+1)M?sin6,, cos @
" = (7/ ) 1 12 12 4.7)

2 \/[%/Mlz sin” &, _(7_1)} [(7/—1)M12 sin’ 6, +2}

B (7/+1)M12 sin® 6, +2

4.8
2yM 7 sin® 6, —(y —1) (+8)

2
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These are the starting values, on the downstream side of the shock, for integrating Eqns.
(4.4) and (4.5) numerically by decreasing € until v = 0. At this value of € the cone
surface has been reached and the integration is complete. An iteration may have to be
performed on 6;; if a specific cone half-angle is desired. The details of such integrations

can be found in [Anderson, 1982 and Emanuel, 1994].

4.3.2 Busemann flow experiments and CFD results

Thermodynamic cycle calculations of high Mach number air-breathing engines,
such as scramjets, have shown that these engines should have air intakes that contract and
compress the flow by factors of 6 to 10 and 10 to 20 respectively and that this contraction
and compression be done with the least loss of total pressure. Aside from high contraction
and compression, the attainment of good intake performance is critically dependent on the
free stream Mach number and the lateral and stream-wise contours of the intake surface.

Busemann [1944] demonstrated, analytically, the possibility of an axially and
conically symmetric flow that starts as a supersonic and uniform free stream, compresses

and contracts isentropically, finally passing through a conical shock wave to become

parallel and uniform flow at a lower Mach

a) QUARTER-MODULE
number. The isentropic compression is  WAVETRAPPER INLET
contained between a Mach cone on the
upstream side and a shock cone on the
downstream side. Molder and Szpiro ,@
[1966] proposed the Busemann flow as the
basis for hypersonic air intake shape adtg;x; :2 :R: ;r;lezttngmjfgéure tube
generation. A Busemann intake
performance chart was presented which V%AV%%’%?EEE%%ELET
relates  the intake’s  compression,
contraction and efficiency. Using wave-
rider methodology, Mdélder and Romeskie
[1968] presented the notion of selecting 2

portions of the axisymmetric versions of .o e o capture tube

Busemann flow to generate modular dexf is the exit stream-tube (both circular)
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“Wavetrapper” intake shapes with enhanced flow starting potential . Experimental results
were presented for both full and modular (streamline traced) versions of the Busemann
intake. Experimental performance of a full Busemann intake was compared by Molder
et.al. [1992] against a Prandtl-Meyer intake and an Oswatitsch type intake at a free stream
Mach number of 8.33 and applications to flight vehicles were suggested by VanWie and
Molder [1992]. The above work has shown that, Busemann flow, which is axisymmetric,
conical and bounded on the upstream by a Mach cone and on the downstream by a shock
cone, does exist; and that it has characteristics which make it suitable for use as a basis
for the design of supersonic and hypersonic air intakes. Some new analytical features of
Busemann flow are presented in the following sections. Some new experimental results
of Busemann flow at a freestream Mach number of 3.00 are found in Section 4.3.2.7 and

4.3.2.9, below.

4.3.2.1 Description of Busemann flow

In Busemann flow, compression from the high freestream Mach number is
initially isentropic. Only at the lowest Mach number does the flow pass through a shock.
The shock is weak and produces a downstream flow, which is irrotational, uniform and
parallel to the free stream. High stream-wise pressure gradients occur in the flow as
opposed to at the walls. High overall compression and substantial Mach number reduction
is attained with a high efficiency. As an example: A Busemann intake reduces the Mach

number from 8.33 to 2.8 with a
Cone of inflection Mach
cone

total pressure recovery of 91%. In

choosing a particular design, one

can start by specifying the desired uniform
o | [ree 4 ow
exit conditions and the efficiency —
an  approach  suitable  for conical
shock

preliminary  design  selection.
Alternatively, one can start by selecting a shock pressure ratio low enough to keep the
boundary layer attached at the shock impingement point and then proceeding by
considering all intakes satisfying this condition. Another virtue of the Busemann design

approach is that the surface contours and intake operating conditions are very easily
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calculable, allowing ready perusal of multiple design options. Recent CFD studies have
shown that a given Busemann contour seems to produce a uniform exit flow at two
distinctly different freestream Mach numbers. This discovery makes the intake suitable
for use on dual-cycle engines that operate with subsonic or supersonic combustion,
depending on the freestream Mach number. This possibility needs further analysis.
Schematics of Busemann flow contours are shown in Fig. 4.0. Uniform, parallel
freestream flow, state (1), from the left, is isentropically compressed from a Mach cone
up to the shock cone, state (2), and then the flow passes through the conical shock to
become uniform and parallel flow at state (3). The flow is both axially and conically
symmetric and irrotational throughout. In passing from state (1) to state (3), the flow is
contracted and compressed and there is a loss of total pressure at the shock. Detailed
examination of the shape of the Busemann streamline has shown that the upstream part of
the streamline is curved towards the centre line and that this is followed by a downstream
part that is curved away from the axis. These two portions are then separated by an
inflection point. The heavy red lines indicate a cone whose base circle is at the inflection
points of the Busemann streamlines. This inflection point cone has special significance to

the starting of supersonic flow in the intake.

4.3.2.2 Busemann flow theory and intake performance

Busemann flow and its streamline shape are calculated from the T-M equations
(4.4) and (4.5). These equations are integrated with respect to € from the front of the
conical shock (station 2) to the free stream (station 1). To do so requires the starting
values: u,, v, and 6. These have to be specified in such a way that the flow downstream
of the shock will be parallel to the free stream — this is the most common requirement of
flow entering a combustor. This condition must be applied to find the appropriate
combination of u,, v,, and 6. Using the Mach number in front of the shock, M>, and the
aerodynamic shock angle, 63, the radial and circumferential Mach numbers are:
u, =M, cosb,, (4.9)

v, =—M, sin 6, (4.10)
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The flow deflection through the shock is obtained from the equation relating Mach
number, shock angle and flow deflection through the shock [Anon. NACA Rep. 1135,
1953, Eqn. 139a]:

20t (M sin’ 6, 1)

tano,, = (4.11)
© oM (y+1-2sin’0,,)
The angular location of the shock which is the starting value for the variable of
integration, is then:
0) = 0p3 =523 4.12)

Equations (4.4) and (4.5) are then numerically integrated from 6, to 6, = 7= u;.
Since 6, is not known a priori, the integration is continued until the vertical or cross-
stream Mach number (u sinf + v cos6) becomes zero, indicating that the free stream has
been reached. Note that, prior to integration, we could calculate the intake’s efficiency,
using the total pressure ratio as measure,

1

/4
(7/+1)k2 -1 y+1 r-1
/o = _rxr 4.13
Pis P2 {(y—l)k2+2 2pk* —y +1 (19

and the exit Mach number,

vy 2 O DMK — 4k — DA + 1)
2k — (- DIy — DA +2]

where k> =M’ sin’ ,,. In fact, we could prescribe a desired efficiency; calculate k

(4.14)

from Eqn. (4.13); prescribe the downstream Mach number M; and calculate M, by
inverting (4.14). Then 6»; = sin! (k/M>), u, = Mscosbh; and vo,=Msin6h;. After this, 6,
and o,; are found as above and the integration performed until (u + v cot6) > 0. The
ability to specify the downstream Mach number and an intake efficiency, before doing
the integration, makes this approach particularly suitable for preliminary intake design
selection. Note, however, that all is not roses, since the integration yields a free stream
Mach number that may not be the desired one. An iteration, on the input conditions,
pty/pt; and M3, has to be performed to arrive at the desired design Mach number of the
flight vehicle. This inconvenience is the direct result of, and the price paid for, the

convenience and simplicity achieved by assuming a conical flow. At the free stream
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condition an infinite number of different intakes are possible at any specified Mach
number. This is in agreement with the appearance of the singularity at the freestream
condition which makes it impossible to start the integration at a specific freestream Mach
number — an infinite number of streamlines are possible. Proper boundary conditions
cannot be specified for the freestream.

Proceeding with the integration of the TM-equations from the initial conditions, as
chosen above, produces a free-stream Mach number M;. The results of many such
calculations are shown in the figure below, each case represented by a dot. For each case,
a value of M, is selected, in our case between 1 and 8 and £ is cycled from 1 to M. For
each M, and k the total pressure ratio and M; are calculated; integration of the T-M
equations then leads to the freestream at M, and a point is plotted on a graph of M; vs. M;

with p3/p,; as parameter, determining the point’s colour.

1 ) ENFRYIMAG@H MB&R M
1 3 5 7
BUSEMANN INTAKE PERFORMANCE CHART - TOTAL PRESSURE RECOVERY

M1M3totpress.
Every point in this figure represents a Busemann intake calculation from the downstream
shock to the freestream. This graph can be used to select a Busemann intake design based
on the entry and exit Mach numbers and the total pressure ratio. Any two of these
parameters can be used to determine the third. For example, a Busemann intake that

reduces the freestream Mach number from 7 to 3 does so with a total pressure recovery of
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0.95. This graph represents both components of intake performance, the capability by M,
and M; and the efficiency by p;3/py;.

4.3.2.3 Streamlines and radials in Busemann flow

When integrating equations (4.4) and (4.5) from the shock, in an upstream

direction with increasing 6, we find the shape of the Busemann streamline, » = f (49) , by

integrating the streamline equation, which, in spherical coordinates, takes the form:

dr/d@ = ru/v (4.15)
Equation (4.15) can be integrated separately from (4.4) or (4.5) since » does not appear in
either (4.4) or (4.5). Although this equation is not coupled it is most conveniently
integrated alongside (4.4) and (4.5). The integration is started by assigning a boundary
value r = r, = [ at @ = 6,. The streamline (4.15) then originates from (r, 6) = (1, 6,).
Other streamlines originate from lesser values of 7, and, keeping in mind conical
symmetry, are geometrically similar to each other, being scaled, at any &, by their
respective values of r,. This important property allows the construction of three-
dimensional (modular) intake surfaces'' by scaling the coordinates of a single Busemann
streamline. [Molder and Romeskie, 1968]. The inclination of the streamline ahead of the
shock is & = -3, from Eqn. (4.11). Progressing upstream, the inclination increases by a
few degrees (typically 6 to 10) to the inflection point and then decreases to zero at the
free stream. It is fortunate that all such integrations, done so far, have always terminated
with a zero flow deflection, i.e. a parallel free stream flow. If this were not so, then the
Busemann flow streamline surfaces would not be useful for compressing a uniform
freestream and acting as the generators for air intake surfaces. No a priori reason has
been discovered for this fortunate happenstance.'? Note that in Eqns. (4.4) and (4.5) the
term (u sin@ + v cosd) represents the Mach number component normal to the axis of

symmetry. In the freestream this component is zero and also on a freestream Mach wave,

" The geometry of these intakes is such that overboard mass flow spillage is possible - allowing flow
starting in high contraction intakes

"2 W-flow, which is briefly discussed below, is an example of Taylor-Maccoll flow that is limited in its
usefulness because its upstream solution does not end at a uniform freestream but at a more-or-less useless
singularity where the circumferential Mach number becomes sonic.



88

v = I, so that in both equations the term (u + v cot)/(' — 1) becomes 0/0 in the

freestream. Some algebra shows that Eqns. (4.4) and (4.5) then revert to,

du/df=v (4.16)
av/d@ = -u (4.17)

which have the solution,
u=Mjcos 0 and v =-M;sin 6 (4.18)

These define a uniform flow in the freestream direction; thus, the Taylor-Maccoll
equations are seen to allow a smooth mergence of a variable, conical, Busemann flow
with a uniform parallel flow. It is also apparent that the integration cannot be started in
the freestream because equations (4.16) and (4.17) would continue giving the degenerate
uniform flow represented by Eqns. (4.18). In fact there is an infinity of solutions starting
from a given Mach number and a uniform parallel freestream and there is no rational way
of specifying the boundary conditions at the freestream so as to arrive at a desired exit

flow.

4.3.2.4 Numerical analysis of Busemann flow

The theoretical evolution of Busemann flow is determined by the conservation
equations, equation of state, a high degree of imposed symmetry and flow steadiness, and
the question arises as to whether such flow actually exists. We try to answer this by
calculating the flow inside a Busemann intake with an independent method that is free of
all the symmetry and steadiness assumptions. We have used Solverll which is a 2D,
locally adaptive, unstructured Euler solver. Discretization has been performed using a 2D
unstructured grid generator by Galyukov and Voinovich [1993]. The underlying
numerical scheme and data structure were described by Saito et al. [2001]. This code
knows nothing about conical symmetry or steady flow and we will examine its ability to
simulate both of these features of the Busemann flow as well as of M-flow further down.
We input the geometry of an axisymmetric Busemann intake duct as calculated by the
Taylor-Maccoll equation integration, along with its calculated freestream Mach number.
In the Solverll simulation, the duct geometry was inserted instantaneously into the
supersonic, Mach 5.77, flow. An unsteady internal flow resulted that eventually settled

into a supersonic steady internal flow. Upper half of Fig. 4.1 shows isobars as calculated



89

by Solverll. The lower half shows the constant property radials as calculated from the T-
M solution. Similarity of the two sets of radials shows that the time-asymptotic Solverll
solution has converged to the conical T-M solution, lending credibility to the existence of

ZolvarTl Bossmann, Validation, Machcontoms (30, 2406), Minfi=3770194 Him LO42B4LE- I=7.159 -7, 17 nodes presen t

Fig. 4.1 Constant property lines
in Busemann flow
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Busemann flow. Although the shock is straight and in its proper location, a short

reflected shock emanates from the surface at the corner. This

reflected wavelet 1s due to the finite thickness of the incident

shock because the shock occupies two to three cell widths of

computational space, some of which is ahead of the corner

and some is behind. This leads to a reflected compression

wave followed by a reflected expansion from the corner. The
net result is a weak, decaying wave, which projects some distance into region (3). The
insert is a zoomed-in view of the radials at the focal point showing that there is a loss of
conicality, in the upstream flow, near the focus. This deficiency, due to the singular
nature of the focal point, can be reduced, but not entirely eliminated, by progressive grid
refinement in the Solverll code. The grid has been purposely left unrefined to show some
difference between the benchmark Taylor-Maccoll flow and the Solverll results.
Closeness of the leading radials at the focal point indicates a rapid change of flow
properties in this area of flow. This feature of Busemann flow introduces a unique
centered axial compression fan that will be discussed further below.

The results give us some assurance that steady, conical flow, as posed by the
Taylor-Maccoll equation, exists in the Busemann intake. In a back-handed wayj, it is also
reasonable to have confidence in the ability of Solverll to predict steady internal flow

with freestanding shocks. Although the existence of such flows can conclusively be
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proven only by experiment, it is not useful to use experimental results to verify CFD,
because experimental error usually swamps the accuracy and resolution demanded of
CFD. It is better to verify CFD against such exact solutions as the Busemann flow.
Numerical integration of the Taylor-Maccoll equation by a technique such as fourth order
Runge-Kutta can be made to have arbitrarily small errors and, in this sense, Busemann
flow can be made exact in such features as adherence
to conicality, irrotationality, shock location at the
corner, streamline (body) shape and flow uniformity
in the downstream flow state. The ability of CFD to
replicate these features can then be used to judge the
efficacy of the particular CFD technique.

Courant and Friedrichs [1948] pictured

Busemann flow with straight radial lines from the

focus to the surface, as shown in the Busemann Intake Figure 4.1 above. From our
experience in dealing with centered Prandtl-Meyer fans, we might presume these radials
to be characteristics. This is not so; the radials are lines of constant property value,
isobars, isotherms, etc. — this being a necessary result of conical symmetry. The shape and

location of characteristics is more complicated — the subject of the next section.

4.3.2.5 Characteristics and a centered axisymmetric compression fan

Characteristics are two sets of intersecting lines in supersonic flow. The
characteristics carry a physical significance in that they delineate the region of space that
influences flow conditions at a particular point as well as the region of space that depends
on the flow conditions at a point. The characteristic lines are selected such that along
these lines the governing partial differential equations become total differential, finite
difference equations, allowing numerical solutions of the flow-field, [Zucrow and
Hoffman, 1977]. Alternatively, once a supersonic flow has been established by some
non-characteristic methods the characteristic lines can be calculated and superimposed
and inferences about influences, causes and effects can be drawn. The « and £ or C+ and
C- characteristics are inclined at # u to the local streamlines where x = sin™ (1/M). In

polar coordinates the o and S characteristics’ shapes are determined by integrating,
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(Z;jaﬁ =rcot(5 — 0+ u)

Where the plus sign is for the « characteristic and minus is for the S characteristic. For
x-y plotting one can integrate the a-characteristics:

(dx/d6@), =r cos(6+ w/cos(w/'2 - 6- 1

(dy/d@), =r sin(o+ w/cos(w/'2 - 6- 1
and the f-characteristics,

(dx/d6)p =1 cos(0- w)/cos(m/'2 - 6+

(dy/d0)s = r sin(5- w/cos(m/2 - 6+ u

Integration of the characteristics is easily performed inside the routine for integrating the

T-M equations. This method was used to superimpose characteristics on the T-M solution

above. Resulting characteristic lines are shown in Fig. 4.2 for the same Mach 5.77
intake. The characteristics mesh is an overlay on the Busemann flow. The o
characteristics all start from the Mach cone and proceed away from the axis to intercept
either the surface streamline or the front surface of the shock. The f-characteristics start
at the surface and proceed towards the axis. The first of these is the free stream Mach
cone itself, having an inclination g at the axis. At the shock the remaining characteristics
have an inclination ¢, + g different from z4. Fig. 4.3 is a schematic showing a
Busemann contour B; B, B3 centered at O with a conical shock OB; and a streamline
S1S, passing through the shock. Characteristics C, and Cp emanate from S; and S; is so
located on the streamline that the Cg characteristic passes through O. This characteristic

intercepts the Busemann contour at B.
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An examination of the inclinations of the characteristics shows that a =y, +|52|— 7
which must be greater than zero, because y, > g since M, <M,. The angular region

o is populated by S characteristics that fan out from O to the Busemann contour along
BB,. The fan of f characteristics contained in OB;B, is a centered, axisymmetric
compression fan analogous to the Prandtl-Meyer fan in planar flow. The f-
characteristics from the surface B,B3; (not shown) all intercept the shock OBj; and it
becomes apparent that a very small, near-apex segment of the shock, is determined by a
relatively long length of the Busemann intake surface. This large surface-to-shock length
ratio suggests that the leading edge shape is unimportant in determining the overall shock
shape. We know, however, that a long leading edge surface length contributes to
boundary layer growth and viscous losses, so that these two facts provide an incentive to
truncate the leading edge so as to minimize the sum of leading edge shock and boundary
layer losses on a practical intake surface. The results presented here give an indication of
the extent (B;B;) to which the conical shock is influenced by a shortening of the intake
surface. A study of viscous/inviscid efficiency loss tradeoffs is in order. Any treatment

of the centered con-focal compression fan or the free-standing conical shock has not been
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found in the open literature.'”” An experiment, to expressly demonstrate this flow
structure is described below.

Bi is an inflection point on the Busemann streamline and the green line OB;
contains all such inflection points. Rotating this line about the axis produces a conical

surface containing all inflection points.

4.3.2.6 Inflection point on the Busemann streamline

Although the inflection point is mathematically a part of the general T-M flow, it
is here discussed under Busemann flow because, of the four types of conical flow, it
occurs only with Busemann type flow. An equation for the curvature of the T-M
streamline is derived to show that the streamline can have points of zero and infinite
curvature. The Busemann streamline has two points of zero curvature where one of these
points has significance in the starting of a Busemann-type intake. A point of infinite
curvature exists in M-flow as discussed below. The conical surface containing all
inflection points in a typical Busemann flow is shown in green in the sketch above.

The defining equation of the T-M streamline is,
dr/d@=rulv (4.15)
where u and v are the radial and angular components of Mach number as used in the T-M

equations. Taking another &-derivative of (4.15) gives,

d*r udv rdu ru®
—_— et — 4.19
do* v do vdo 2 .19

In polar coordinates the curvature of a planar curve is [Kreyszig, p.34, 1991],

2 2
o5y " +2(:§;j B 36;
D (_] _ —~ (4.20)

Os 5 (dl")
ro+| —
do

Eliminating the derivatives of » with Eqns. (4.15) and (4.19) gives,

B An analog of this flow exists in planar flow where the region B;B,0O is a Prandtl-Meyer compression fan,
the region B,B;0 is then uniform, the shock OB; is plane and the flow in region 3 is again uniform.
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r2+2(ru/v)2+r — -

(r2 +ru? /v2)

In this expression the derivatives dv/d€ and du/d@ are given by the T-M equations (4.4)

and (4.5) so that the curvature can be written,

_ uv(u +vcot6’)
r(v2 - 1)(v2 +u’ )3/2

This equation gives the curvature of the T-M streamline in terms of the polar coordinates,

(4.22)

r and 6, and the radial and polar Mach number components, # and v. A number of very
interesting and important features, about the T-M streamline, become apparent from an
examination of its curvature as given by Eqn. (4.22):

1) D is inversely proportional to » so that when » — 0 then D — o. This means
that streamlines near the origin of T-M flows are highly curved. This is a necessary
condition for flow over a cone, where flow, near the tip and just aft of the conical shock,
has to rapidly adjust to the inclination demanded by the cone since the flow deflection
produced by the conical shock is insufficient for the flow to be tangent to the cone
surface. Similar highly curved streamlines are to be expected near the origin of
Busemann and M-flows. Conical flow is not conically symmetric (i.e. independent of r)
when it comes to gradients of its dependent variables, such as streamline curvature, — the
dependence being inversely proportional to ». This extends to other flow property
gradients as well.

2) There is an asymptotic condition, (D = 0) in the T-M streamlines at v = 0. For
flow over a cone, v = 0 at the cone surface. This confirms that the streamlines become
asymptotic to the cone surface as they approach the surface. There isnov=0oru =0
asymptotic condition in W-flow or M-flow and no v = 0 condition in Busemann flow.

3) When u = 0 then D = 0. This means that the streamline has a point of inflection at
the place where the radial Mach number is zero. For flow over a cone and for M-flow the
condition u = 0 never occurs, so that the streamlines are curved monotonically positive
for these two flows. However, for Busemann flow there is a location, &,, where the

streamline changes from being concave towards the axis (negative curvature) to being
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convex (positive curvature). Numerical integrations of the T-M equations have shown
that 6, always lies in the interval 6, to 772 (first quadrant) somewhat upstream of the
Busemann shock as shown by the green line in Fig. 4.3. Every Busemann streamline has
an inflection point and these points form a conical surface. At this angular location the
flow is everywhere normal to the inflected flow cone surface, whose half-angle is 6, and
a conical normal shock can be placed here since the Mach number is supersonic! The
shock could be coaxed into taking up this position by allowing enough mass spillage to
occur upstream of the inflection location, [Fabri,1958] and by restricting the downstream
contraction to that allowable by the Kantrowitz criterion for flow starting. Flow just
downstream of the conical normal shock is inclined towards the axis. This is tolerable
everywhere but not right at the axis since at the axis the flow must be aligned with the
axis. This (r — 0)-type singularity is similar to the cone-tip singularity described above;
its existence, in the idealized form, has not seen confirmation by experiment or CFD. If
the contraction downstream of the conical normal shock surface does not lead to choking,
then the shock would move downstream and the intake would start spontaneously. This
feature has not been appreciated for Busemann flow and it has some significance in the
design of self-starting supersonic/hypersonic air intakes. It is a conical and axisymmetric
example of the starting criterion proposed by Kantrovitz for one-dimensional flow,
embodying the same principle of flow choking downstream of a normal shock where, in
this case, the normal shock has a conical shape.

4) There is a point of inflection also when (u + vcot8) = 0. The quantity (u + vcot6)
is the component of Mach number normal to the flow axis. For Busemann flow it is zero
only where the Busemann flow joins the free stream. Thus the leading edge of the
Busemann flow has not only zero deflection but also zero curvature. Aerodynamically
this means that the leading edge wave is neither compressive nor expansive but is a zero-
strength Mach wave. The fact that the entering free stream flow is neither deflected nor
curved by the Busemann leading edge means that the leading edge of a hypersonic air
intake, based on Busemann flow, is totally ineffective in producing compression. This
provides a clear incentive to truncate some length of the leading edge surface so as to
decrease viscous losses without incurring serious inviscid flow losses. For M-flow the

potential appearance of the condition (u + vcoté) = 0 is prevented by the appearance of
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the (v = 1)-singularity (described below) so that the down-shock flow never becomes
parallel to the freestream. This is unfortunate from a practical viewpoint since it presents
no possibility of grafting on any of the flows that have a uniform upstream such as cone
or Busemann flows to the downstream of M-flow. From a fundamental viewpoint it
presents an obstacle to the possibility of conical shock reflection at the centre line of
symmetry.

5) When v — %/ then D — oo; the curvature is infinite and the streamline has a cusp
or a corner. This indicates a singularity or a limit line. Neither cone nor Busemann flow

exhibit such a limit line. However it does occur in both M- and W-flows.

6) The quantity o7 + i’y

, appearing in the denominator of (4.22), is just M. It is
always a positive quantity for all flows and has no drastic characterizing effect on D

except to force streamlines to lose their curvature, to straighten out, at hypersonic speeds.

4.3.2.7 Wind tunnel tests on Busemann flow

Busemann flow was tested in the NRC/NAE hypersonic gun-tunnel at a Mach
number of 8.33 and a Reynolds number of 15x10%m and in the DRDC trisonic tunnel at a
Mach number of 3.00 and a Reynolds number of 0.5x10°/m. Tests on M-flow were also
conducted in the NRC/NAE facility. Experiments on both the Busemann and M-flows
were conducted in axisymmetric test models whose surface contours were calculated

4" Model contour

from the T-M equations for axisymmetric, conical and steady flow.
shapes were corrected for laminar compressible boundary layer displacement. Both
Busemann flow and M-flow, as modeled by both the T-M equation, as well as CFD
analysis, predicted local high gradients in flow properties, including density. These
density variations should be visible to any of the conventional optical flow visualization
techniques used in supersonic tunnels. Evidence of such high gradients was sought in

experiments and CFD results.

' Attainment of flow with axial symmetry is advantageous in aerodynamic testing of internal flows because
it eliminates the uncertainties caused by ‘end effects’ that plague experiments on shock interactions in
planar flows. Its disadvantages are that it offers short optical light paths through density gradients so that
weak disturbances become hard to detect and the axial solid surfaces are often impediments to optical flow
visualisations.
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4.3.2.8 Busemann tests in the gun-tunnel at Mach 8.33

An axisymmetric Busemann intake was constructed and tested in the NRC/NAE

hypersonic gun-tunnel. The test
model was designed for the tunnel
Mach number of 8.33. It has a
circular intake of 2.2 in. diameter
and a Busemann contour length of
11.8 in. Its design exit Mach
number is 539 with a
compression ratio of 15.55 and an
area contraction ratio of 6.71.'
Solid curve in Fig. 4.4 shows the
theoretical ~ surface  pressure
distribution. “Equation 17 refers
to the T-M equation result.
There is a smooth increase in
pressure along the compression
surface until the conical chock
causes a pressure jump at 11.80

in. After the jump the pressure

Surface static pressure ratio

levels off in the constant area section.

higher-than-theoretical surface pressure distribution.

correction was applied and the pressures, now shown by solid circles, showed good

RESULTS OF BUSEMANN INLET STUDIES
AT THE NRC (CANADA) GUNTUNNEL
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First measurements (open circles) showed a

A boundary layer displacement

correspondence with theory. The boundary layer effect on the exit pressure is significant

in that it causes a pressure rise from 16 to 22 — a rise of 38%. Although the Busemann

'3 This area ratio is far above the spontaneous starting value of 1.67 so that the intake would not start under
steady-state conditions. However, the transient starting flow in the gun-tunnel nozzle is such that, in
sweeping through the model, it causes supersonic flow starting in the model. This fortunate flow behaviour
makes it possible to test high contraction intakes in gun-tunnels where they would not start in steady state

wind tunnels.
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wave structure had not been seen by any optical means, this was good evidence for

Busemann type flow to exist.

4.3.2.9 Busemann tests in the wind-tunnel at Mach 3.00

A solution of the T-M equation for the Busemann flow shows a leading edge
region of surface that causes a set of compressive confocal characteristics (CCC) to focus
at the origin of the conical flow. This is followed by a region of non-uniform conical
flow, in turn followed by a freestanding conical shock (as described above). Such
axisymmetric flow structure has not been previously observed, at least not where it has
been purposefully designed to meet specific criteria. This section describes an
experiment to demonstrate the existence of CCC as well as the conical shock, both
designed to specific criteria. The aim is to show that a reflected conical shock can exist at
the centre line even though the incident wave is not a conical shock but a compression
wave. Whatever prevents a conical shock/shock reflection is thus absent in the case of a
CCC/shock reflection and one should then be able to compare the flows produced by a
conical incident shock and by the CCC to see what prevents a conical reflected shock
from forming in conjunction with a conical incident shock.

A solution of the T-M equations was performed as described above for Busemann
flow above for the full Busemann intake. At the upstream side of the conical shock the
Mach number was set at 1.800 and the aerodynamic shock angle at 42.88 degrees. These
produced a normal-to-the-shock Mach number of 1.225. Integration of Eqns. (4.5) and
(4.6) produced the Busemann streamline coordinates and the freestream Mach number
2.998. The coordinates were corrected for a laminar, compressible, axisymmetric
boundary layer. Rotating the corrected streamline around the axis of symmetry created a
leading edge portion of the Busemann intake surface.

A length of the leading edge portion of the surface was chosen such that the
resulting internal contraction would allow the internal flow to start at a tunnel Mach
number of 3.0 and such that the duct would be short enough to expose the focal point to
the schlieren beam in the downstream flow. This required a 20 cm diameter duct with a
length of 20 cm. The duct is shown mounted in the DRDC Trisonic Wind Tunnel on four
swept support arms, Figs. 4.5 and 4.6.
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B

Fig. 4.5
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Fig. 4.7 | Busemann ring in Mach cong]

IVI1 \J

Busemann

Schematic of confocal conical compression
fan B1B2X1 and freestanding Busemann
shock X1SB3

Referring to the interpretive sketch, Fig. 4.7, CCC is contained in the region B;B,X;. All
the characteristics from BB, focus to X;. Characteristics from B, to B, impinge on the
front of the conical shock from X; to S,. The calculated Busemann streamline is shown
extending from B, to Bs. In the experiment there is no such streamline and a wake forms
instead behind the base of the truncated profile. The whole flow is axisymmetric and, in
the whole region B;B,B,S, XX, it is conical as well. The theoretical Mach number
behind the apex of the shock is 1.48. The static pressure is 10.10 times the free stream
pressure. The Mach number upstream of the shock is 1.80 (the flow is inclined towards
the shock and the axis). The total pressure recovery across the shock is 0.992. Normal
Mach number is 1.22. Figure 4.8 shows a CFD Solverll simulation of the flow-field in
and around the model. At the centre line the shading shows an incident compression
followed by a distinct conical shock. Figure 4.9 is a schlieren picture of the flow at the
exit of the model at a tunnel Mach number of 3.00. Flow is from left to right. The exit
diameter covers the height of the picture. Two X-shaped wave structures are apparent at

the exit of the duct in the middle of the picture. The downstream structure has two left
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branches that represent the leading portion of an axisymmetric expansion emanating from
the trailing edge of the Busemann ring. This wave reflects from the centre line as an
axisymmetric expansion and it is of no direct interest. The upstream X-shaped wave
structure emanates from the Busemann contour. The upstream branches represent the
conical confocal compression fan. The leading wave of this fan originates at the leading
edge of the Busemann ring and the trailing wave is the last wave of the CCC. Waves
downstream of this do not go to the focal point but meet the conical shock along its

length.

After JEME time stens, te 4.MG2TSEZ, di 9.3M1€-3, 1S3HY aodes present 2.ae0

2868

1.8

1109

_f{",;, ERIE
YV

Rik, Hach number, He3.8EEQ ERE

Fig. 4.8

- :
Fig. 4.8
ke - |

WFter 26246 time steps, t= 489.527512E+, dt= 5.381E-3, 153819 nodes present

Fig. 4.8b

After 26296 fime steps,.t="Fem. 527512640, di= SISEIE-LN

Fig. 4.8¢ 4
v, 4 Fig. 4.8d

H/A, Mach number, [M|, M=3.80E+ 5 s

Figures 4.8a-d are CFD simulations of the Busemann ring as rendered in a simulated colour

schlieren, constant Mach number contours, pseudo-schlieren and shadowgraph.
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The long arrow points to the focal point where the converging compression fan and the
free-standing conical shock meet. The short arrow points to the centered conical
compression fan. The analytically predicted Busemann flow and its features have been
confirmed by both CFD and experiment. The approach presented here is the only method
for establishing a centered axial compression and a conical shock at the centre line in a

steady flow.

4.3.3 M-flow experiments and CFD results

The leading edges of hypersonic air intakes are designed with some degree of
bluntness to cope with high rates of heat transfer. Bluntness causes flow deflection and
leading edge shock waves, which get captured by the intake, to focus at the centre line,
producing flow distortion and efficiency losses in the intake flow. Converging and
interacting shocks, particularly at centre lines of axisymmetric flow, produce Mach
reflections and complex flow structures which are difficult to predict and control. The
one-to-one correspondence that exists between a shock and its uniform, deflected flow for
planar shocks does not exist as soon as the shocks become axisymmetric and curved.
Curved shocks produce curved streamlines and flow property gradients. Internal flow
theories of curved shocks are plagued by singularities. M-flow is a one-parameter,
axisymmetric, conical, internal flow that has been discussed by Mélder (1967) and Rylov

(1990). Its inherent axial and conical symmetry makes it simple to analyze and an ideal
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candidate for generating intake leading edge surfaces for non-planar intakes. M-flow is
examined in some detail because it is an example of flow and shock wave structure
caused by flow deflection at the internal leading edge of an axisymmetric intake. A polar

coordinate system (7, &) is used where u and v are the Mach number components in the

7 and @ direction so that M’ =y’ +1v’. M-flow occurs behind an axisymmetric conical
shock, with a downstream-pointing apex, sitting in a uniform upstream flow. It is
supported by the inside surface of a ring that deflects the flow towards the axis of
symmetry (see Fig. c in Sec. 4.1). This flow occurs at the sharp leading edge of an intake

cowl where the leading edge angle is finite. 4

Boundary conditions for M-flow are the same &\%\\\}\\\\\\% Characfs:?_rf:ﬂu‘ii
as those for cone flow except that the shock ,. “\ ct

angle now lies in the second quadrant, in the ’.4.‘

angular range /2 to 7 - ;. The integration

proceeds with a decreasing € (clockwise) and,

for all the cases calculated, always ends up at a

singularity (limit line) where v = -1. At this
value of @ the streamlines have a kink (corner) M-flow
or a cusp where the flow turns back on itself. —-———————---cvmm O-—I—-1--
This is a physical impossibility, indicating that the assumptions of conservation of mass
and energy, the momentum balance, the equation of state, inviscid flow, axisymmetric
flow, conical flow and a smooth streamline cannot all be locally satisfied at some value of
0. At the singularity, Eqn. (4.22) predicts an infinite curvature — a sharp corner. A
centered Prandtl-Meyer fan would normally occur at such a corner. We have named this
type of flow ‘M-flow’ because the shock and the surface shape resemble the letter M
when rotated 90 deg counter-clockwise. Computational and experimental M-flow
results are in Sec. 4.3.3.

We assume the physical existence of an axisymmetric conical shock, in uniform
flow, where the apex of the shock points in a downstream direction and the flow is
directed into the shock cone, Fig. 4.10. Conical M-flow is in the region ead. Shock is at
6. M-flow streamline ad causes straight shock oa. Flow accelerates from a to d reaching

v = -1 at the singularity at 0". df" and df are the (+) and (-) characteristics through d.
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Inclination of the shock with respect to the free-stream direction is everywhere the same,
so that the shock is of uniform strength. Hence, conditions immediately behind the shock
are everywhere the same and the downstream flow is irrotational and both conically and
axially symmetric. Conicality implies that flow quantities remain constant on the surface
of con-focal cones while changing from cone to cone in a downstream direction. As
pointed out above, such flows are governed by the T-M equations and, for M-flow, their
integration is started at the back of the shock, with # in the second quadrant, at the shock
angle 6;, and a free-stream Mach number, M;. The initial Mach numbers u and v are
found from Eqns. (4.7) and (4.8) and they are both negative immediately behind the
shock. Concurrent integration of the streamline equation, (4.6), produces a smoothly
curving convex internal M-flow surface ad, with the surface Mach number slowly
increasing in the downstream direction along the surface from a to d. All other
streamlines in the M-flow region are similar to ad and scale geometrically linearly with
distance from o. As the integration proceeds downstream from the shock, with decreasing
8, the v-Mach number soon reaches -1, leading to infinities in both du/d6 and dv/d6, at an
angle 0", as is evident from Eqns. (4.4) and (4.5). Any forced continuation of the
integration downstream of the singular cone, 6", leads to scattered results that depend on
just exactly how the singularity is numerically over-stepped. The rapid change in v, at the
singularity surface, suggests the presence of a shock wave where the Mach number
component normal to the shock is discontinuous across the shock. However, the
singularity surface cannot be a shock because its normal Mach number component is one
and, furthermore, the rapid change of properties approaching the singularity is expansive
rather than compressive. Concurrent integration of the C" and C characteristics is
discussed below. The characteristics are also self-similar. The C™ characteristic df"
forms one of the boundaries of the region adf® whose disturbances can influence
conditions on the surface ad. It intersects the singularity at an angle 2u at d. The C
characteristic df is a boundary to the region adf whose properties determine the shape of
the shock af. The C  characteristic intersects the surface at the point where the
singularity intersects the surface and it is tangential to the singularity at this point. The
shock from f to o is determined by the C™ characteristics originating on od; these all being

tangential to od. In fact, it is the surface singularity point d that determines the shock
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from o to f since no characteristics from downstream of d can penetrate the singular line
od — at least not in conical flow. This peculiar behavior in supersonic flow casts some
doubt on the existence of conical flow behind a concave conical shock. For this reason it
is suspected that the problematics of the singularity and the questionable existence of
regular shock reflection at the centre line are causally connected. If M-flow exists in the
whole region oad then the conical shock has to proceed to the centre line, as shown in the
figure above, and for conical flow to exist at the centre line there has to be a conical
reflected shock there. Such ‘regular reflections’ are common in flow with planar shocks
[see Ben-Dor, 2007]. Although regular reflection of shocks has been produced at the
centre line for cylindrically collapsing shocks, in unsteady flow, and seemingly also for
weak shocks in steady flow [Hornung (1999)], there are claims that RR is not possible at
the centre line in steady flow [Rylov (1990)].

The first question then is, does the M-flow with a conical shock and a
downstream conical flow really exist? In particular, does the shock extend from the
leading edge all the way to the centre? The T-M equations pose no objections. One is
also prompted to ask whether such singularities with high gradients really exist in the
flow or are they just some kind of mathematical artifacts arising from the enforced
symmetry or are the gradients inimical in themselves in forcing an end to the existence of
downstream continuance of axial or conical symmetry or steady flow. The remainder of
this section presents a T-M solution for the ideal M-flow including the surface shape and
the surface pressure distribution. This surface shape is then used in the Method of
Characteristics to calculate a new surface pressure distribution. As with the Busemann
flow calculation, the MOC is not aware of the conicality assumption inherent in the T-M
solution for M-flow. The Solver II code is used in a similar manner to calculate the
surface pressure distribution as well as the internal flow over the M-flow contour. Solver
IT is not informed of either conicality or the existence of a final steady state M-flow.

Only axial symmetry is imposed.

4.3.3.1 Characteristics on M-flow contour

In the previous section a characteristics mesh was superposed on an M-flow flow-

field solution without asking whether such a flow existed in the first place. In this section
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an MOC solution is done on an M-flow surface contour. The purpose is to seek a

numerical confirmation of M-flow as calculated from the T-M equations. An M-flow

surface was first calculated by a T-M solution for a shock angle of 140 degrees at a
freestream Mach number of 5.

The surface coordinates were input into a Method of Characteristics program that

had been developed by M. L. Snow (1966) of the Applied Physics Laboratory of The

Johns Hopkins University (JHU/APL)

250 T T T T T especially for the calculation of

M-flow

A internal supersonic flows. A similar

MOC code by V. L. Sorensen (1965)

246

was used as well. The latter method

2.42= —— Exact solution
O MOC - Sorensen

M X MOC - Snow had to be adapted for internal flow.

238 The Mach number variations on the

M-flow surface is labeled as ‘Exact’
2.34

when calculated by solving the T-M

SINGULARITY

equations (4.4 and 4.5). The two

Fig. 4.11 characteristics methods of Sorensen
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cone angle (deg) Crosses. There is  excellent

and Snow are shown as circles and

correspondence between the exact T-M and both MOC results for the surface Mach
number distribution, differences being no more than 0.02 of a Mach number. All methods
terminated at the predicted location of the surface singularity 6 = 0". The T-M calculation
stopped because both du/df and dv/df approached infinity. The MOC methods stopped
and the calculation could not proceed because the characteristic from the surface
singularity overtook the previous characteristic of the same family at the shock wave. The
MOC stopped just before — typically 0.1 deg in front of the singularity. The MOC results
have confirmed the T-M analysis for predicting the M-flow surface shape as well as the
flow properties on it. But they have also indicated that there is a problem at the

singularity — at least in continuing the calculation further with MOC as well as with T-M.
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The point, on the shock, (R"), where the overtaking occurred in the MOC methods
of Snow and Sorensen, was short of the centre line and the singularity. This indicated that
the region of influence of the M-flow surface was bounded by the surface s;s,, the last
calculated characteristic from the singularity, s;R", and the shock, s;R™ as in the figure
above. More significantly, only the portion of the shock from s;R” was determined by the
surface, the remainder, R'o, up to the centre line was not influenced by the M-flow
surface. The T-M solution predicted that the shock segment from R™ to o is determined
by characteristics similar in shape to s;R’, starting from somewhere on the singularity
between s; and 0. Characteristics that started from a surface point just downstream of s;,
overtook the previous characteristic at the shock, tending to form a secondary shock there.
This shock would overtake and

p-0 ploars for shock reflection at Mach 8.33
strengthen the straight shock 1

coming from the leading edge.
The leading edge shock would
become curved and the flow
behind it would become
rotational. The two MOC

ar
methods were now trying to

flow inclination (rad)

indicate that M-flow could be

Fig. 4.12

expected to be confined to the

region $15;R™ and not to extend

throughout s;s,0 as predicted by

the T-M solution. It was -1
0 25 50 75 100 125_ 150 175 200 225 250

interesting to note that the two pressure ratio (p/p1)

MOC’s, that ‘knew nothing’ about the singularity proceeded through it without difficulty

encountering a problem only at the shock.

4.3.3.2 M-flow experiments in the guntunnel at Mach 8.33 and CFD
results
A series of experiments were conducted in the Mach 8.33 Gun Tunnel at the

National Aeronautical Establishment of the National Research Council in Ottawa in an

attempt to demonstrate the existence of M-flow and to discover the physical nature of the
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flow near the singularity as well as at the centre line. The challenge was to discover what
happens to conical shocks, reflecting off the centre line, at shock angles that produce well
understood reflections of planar shocks at a plane wall. Three different M-flow surface
rings were constructed that, at a free stream Mach number of 8.33, would produce shock
angles of A =145.0, B=153.7 and C = 170.5 degrees with corresponding flow deflection
angles of a =-30.45 deg, b=-19.27deg, ¢ = -3.69 deg. Figure 4.12 shows pressure-flow-
inclination polars for regular and Mach reflection at Mach 8.33. Red polar is for the
incident shock (I). Incident shock angles for the other polars are: (A) green 140.3; (B)
blue 153.7; (C) purple 170.5. Conditions for regular reflections are indicated where the
reflected shock polars cross the flow inclination = 0 axis, typically ar. Mach reflections
occur where the reflected (A, B, C) and incident (I) polars intersect, typically am. These
particular shock angles were chosen to produce for, A, a Mach reflection am; for B, the
von Neumann reflection condition where both regular and Mach reflection can
theoretically exist at brm with no flow deflection through the point of reflection; and for
C, a very weak incident shock reflecting regularly as a very weak shock at cr or as a
Mach reflection with a strong reflected shock at em. The polar intersections are
representative of conditions that occur with planar shocks. In our search for conical
shocks that would regularly reflect at the centre line we would be on the look-out for
conditions represented by ar, brm and cr since these yield zero net flow deflection as
demanded by the centre line boundary condition.

Numerical values for the polar intersections are given in the following table where
the subscripts 1, 2 and 3 refer to conditions in front of the incident shock, behind the
incident shock (same as in front of the reflected shock) and behind a reflected shock. In
all cases the reflected shock is assumed to deflect the flow back to the freestream
direction. Conditions are based on reflection of planar shocks where the inter-shock

space is uniform.



109

SHOCK A B C
M, I 8.33 8.33 8.33
05 (deg) I 145.0 153.7 170.5
M, I 2.56 3.97 7.42
p2/p1 I 32.86 15.72 2.04
61 (deg) I 0 0 0
012 (deg) I -30.45 -19.87 -3.69
p3/p1 R 200 ar 80 br 4.0 cr
p3/p1 M 79 am 80 bm 75 cm
O (deg) Rm -30.45 arm -19.87 brm -3.69 crm
03 (deg) R 0ar 0 br 0cr
03 (deg) M -16 am 0 bm 34 cm
023 (deg) R 30.45 ar 19.87 br 3.67 cr
023 (deg) M 14.45 am 19.87 bm 37.7 cm

4.3.3.2(A) The 145 deg shock

An axisymmetric M-flow tunnel model was constructed for a freestream Mach
number of 8.33 to produce a conical shock with a shock angle of A = 145.0 deg. The
model was tested in the National Research Council’s Gun Tunnel. Polar A in Fig. 4.12
represents the possible pressure/deflection conditions behind the reflected shock. Figure
4.13a shows a schlieren picture of the flow as it emerges from the M-flow ring.
Freestream flow comes from the left. The incident shock, generated by the M-flow
surface, appears to be axisymmetric and conical. However, it does not extend to the
centre-line but, rather, terminates at a triple-shock confluence off the flow axis and,
clearly, the regular reflection condition ar, as demanded by the centre line, does not
appear. The triple-point is the intersection of the incident shock, the reflected shock, a
Mach shock (Mach disc) and a shear layer — a typical Mach interaction designated by am.
The Mach disc appears to be flat and normal to the flow (more about this later). Both the
reflected shock and the shear layer have a definite positive curvature — their angles

increase with distance from the triple point. The shear layer is inclined towards the centre
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line. No sharp density gradient is observed just downstream from the incident wave,
where the singularity is predicted to lie. Dark and light shadings in front of the incident
shock and elsewhere are not indications of density gradients but are merely optical effects
of schlieren due to the circular shape of the discontinuities. Fine lines are contours
produced by the CFD calculations of Solver II. Conical flow, mostly hidden by the ring,
seems to come from the leading edge but it clearly breaks down at the centre line. Since
the shear layer is angled towards the centre line at the triple point, it must be that the
Mach disc is angled there as well and it cannot be normal to the free-stream flow. The
Mach disc is of the strong shock family. That is why its inclination is small and hard to
detect because a strong shock wave angle is close to 90 degrees, even for substantial flow

deflections through the shock. The flow appears top-to-bottom symmetric so there is a

good possibility that it is also axisymmetric.

Fig. 4.13(A) M-flow at a free stream Mach number of 8.33, coming from the left and
passing through a 145 deg conical shock. Superimposed contours are calculated
constant density lines; their coalescence indicates shock waves. Picture shows a
prominent Mach reflection with distinctive shear layer around the centre line. The

density contours have been zoomed to fit the schlieren picture at the diameter of the
Mach disk.
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We conclude that a 145.0 deg conical shock does not reflect regularly off the
symmetry axis. Instead, a Mach reflection is formed off the centre line. Flow at the triple
point of this Mach reflection is turning towards the axis, as predicted by the triple point
solution on the shock polar. There is good agreement between experiment and CFD, both

showing that RR does not occur at the centre line for a conical incident shock.

4.3.3.2(B) The 153.7 deg shock'®

If we think of moving the triple point closer to the centre line, without changing
its geometry, then eventually, the inward flow turning at the triple point can no longer be
tolerated by the centre line because axial symmetry requires that the flow inclination be
zero right at the centre line. So, is this the reason for cessation of conical flow and
regular shock reflection at the centre line? To answer this, we construct an M-flow
surface that produces a shock that reflects in von Neumann reflection at the centre line
(Molder 1967, Henderson 1990, BenDor 2007). The von Neumann reflection is a unique
form of Mach reflection where the Mach disc is truly normal to the flow at the triple point
and the flow deflection behind the triple point is zero, which makes it compatible with the
zero flow deflection required by the centre line.

Von Neumann reflection occurs at a unique shock angle determined by the
freestream Mach number. For Mach 8.33 the incident shock angle at the von Neumann
reflection condition is 153.7 deg. The incident shock state is represented by polar B in
the polar diagram Fig. 4.12. The von Neumann condition is at brm where the flow
inclination aft of the reflected shock is zero. In this configuration, the triple point should
be transportable to any location on the incident shock — including the centre line. The
axisymmetric slip layer, now in the shape of a constant radius cylinder, would, in the

limit, as the triple point is moved to the centre line, become a cylinder of zero diameter, to

6 For any kind of shock reflection to occur the incident shocks must always be in the ‘weak shock’
category because the flow behind strong shocks is subsonic and thus unable to sustain a reflected shock.
That is, they must produce a pressure ratio that lies on the lower pressure branch of the pressure-deflection
polar. For our purposes we further divide the lower pressure branch into ‘very weak’ and ‘weak’ shocks.
The very weak are the shocks which, on Mach reflection, would produce a positive net flow deflection and
the weak ones would produce a negative deflection. The two types are separated by the incident shock
strength that produces no net flow deflection on Mach reflection. This condition is called the von
Neumann (vN) condition.
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merge smoothly with the centre line. For this as well as the previous case there is nothing
derivable from the oblique shock relations that would indicate that RR is impossible at the

centre line. An M-flow surface for this shock angle was calculated, machined and tested

in the gun tunnel. The schlieren picture of the flow is shown in Fig. 4.13(B).

Fig. 4.13(B) M-flow at Mach 8.33 from the left passes through a shock at 153.7 deg.
(the von Neumann angle).Contours are lines of constant density calculated by Solver II.

The Mach disk is now smaller than for case A, and the flow behind it appears to be less
inclined to the centre line. However, there is a noticeable positive curvature on the
incident shock, as it nears the triple point - it is no longer conical and so the flow behind it
cannot be conical. Conical flow has broken down and the higher shock angle has taken
us away from the von Neumann condition at the triple point. Axially the flow appears
symmetric. Experiment and CFD are in good agreement in indicating that the attempt to
experimentally coax the triple point to the centre line, by using the von Neumann shock
interaction condition, has failed and there is still no appearance of any drastic density
change at the predicted location of the singularity.

A number of questions arise: Where exactly does the conical flow break down?
Why and how does it break down? Conicality does not vanish for cone flow or
Busemann flow — why does it break down here? Why does conical and not axial
symmetry break down? Since a singularity does not appear in cone flow or Busemann
flow, is the breakdown caused by the singularity that occurs in conical flow theory for M-

flow?
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So far experiments have shown that both a conical shock of the weak family (A)
and a von Neumann shock (B) reflect off the axis in Mach reflection. In both cases a
Mach shock interaction has appeared at some distance from the flow axis of symmetry.
The von Neumann shock curves towards the axis and acquires a strength above the von
Neumann strength so that it deflects the flow toward the axis. No high flow property
gradients are observed at the predicted location of the singularity. There is a definite

discrepancy between experiment and predictions of the T-M conical flow analysis.

4.3.3.2(C) The 170.3 deg shock

Schlieren and shadowgraph pictures of supersonic flow exiting from axisymmetric
nozzles have shown what appears like regular shock reflection at the centre line [Hornung
(1999)].  Invariably, the nozzles have been fully or near-fully expanded, so that the
shocks have been weak and the approach flow has been non-uniform. In a hypersonic air
intake, the leading edge shocks should be weak also, so that the study of reflection of
such shocks is relevant to hypersonic intake design. It was decided to produce a weak M-
flow shock to see if it would reflect regularly at the centre line. An M-flow surface was
constructed for Mach 8.33 and a shock angle of 170.5 deg, producing a shock-normal
Mach number of 8.33sin(170.5) = 1.36 — a weak shock, yet strong enough to show up on
schlieren. The pressure-deflection polar, for this shock angle, is the purple curve (C) on
the (p, d)-plot in Fig. 4.12. This polar shows that a very weak, regularly reflecting (zero
net deflection), shock could occur at cr with an overall pressure ratio of 4.0 or a Mach
reflection could occur with a net flow deflection of 0.593 rad (34 deg) and a pressure ratio
of 78 at em. The cr point is compatible with the apparent regular reflections at the centre
line. The em point indicates a flow deflection away from the centre line at the triple
point. It could be compatible with the experimental observations only if the Mach disc
would be ‘too small to be seen’. A Mach disc at ecm would require a shock angle less
than 270 deg at the triple point. In turn, this would force the Mach disc to be convex
toward the upstream flow. We seek to discover what happens at weak conical shock
reflection at the centre line by both experiment and CFD simulation - specifically to
determine whether the reflection is regular (cr) or of the Mach type (em) or possibly

something else.
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Fig. 4.13(C) M-flow Mach 833 6=170.3 deg

A schlieren picture of flow produced by the M-flow ring is shown in Fig.
4.13(C). The measured incident conical shock is at an angle of 170.3 deg, compared to
the predicted value of 170.5 deg, showing that the calculated M-flow surface does
produce the required strength axisymmetric shock. The calculated Mach number
behind the shock is 7.42 and the flow deflection through the shock is -3.69 deg. If a
planar reflected shock, with this Mach number in front of it, causes a flow deflection of
+3.69 deg (back to the free stream direction), it would require a shock angle of 10.5
deg. The shock angle, measured off the schlieren picture, is 10.6 deg. Thus it appears
that weak conical shocks reflect off the centre line just as weak planar shocks - at
least so it appears in the far field where angular measurements of shock inclination can
be made with some assurance of accuracy. On the schlieren picture, all shock traces
appeared to meet at a single point and, in the near field, the experiment did not resolve

a Mach disc. It remained for high resolution CFD to find the Mach disc, if it existed.
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Solverll CFD code was used to simulate flow in the M-flow ring for the (C)
model configuration. CFD calculations produced a quite straight incident shock cone at
170.3 deg and a reflected shock cone at 9.7 deg. The two shock cones appeared to reflect
regularly at a point on the centre line with no trace of a Mach reflection. Further
calculations with Solverll, at several levels of grid refinement, produced a 25,000-fold
magnified picture of the zoomed-in centre-line region. This magnification shows a Mach
reflection with a slightly curving incident shock with an angle of 153.4 deg! This is the
von Neumann shock angle for Mach 8.33. The shear layer does not seem to deviate much
from being parallel to the flow’s axis of symmetry. It seems that the reflected shocks and
the associated flow have by themselves sought out the von Neumann shock reflection
configuration — the Mach reflection structure that is compatible with the boundary
condition at the centre line. This allows us to predict the reflected shock angle for such
weak shock reflections. In fact, the reflected shock angle is that predicted by the von
Neumann triple point solution for the triple point at the von Neumann condition. Sine the
von Neumann condition is dependent only on the freestream Mach number, the reflected
shock angle also does not depend on the initial shock strength for very weak incident
shock waves in axisymmetric flow.

In axisymmetric internal flow, shocks approaching the axis of symmetry (centre

line) always reflect as Mach reflections. Very weak shocks (those below vN strength) in
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axisymmetric flow tend to strengthen as they approach the axis to become of vN strength.
There they reflect at a very small (‘too small to be seen’) Mach reflection at vN strength,
very near the axis, to give a reflected shock at the vN strength with a net flow deflection
close to zero. Weak shocks, above vN strength, reflect also as Mach reflections but now
of sizable (visible) proportions off the axis, producing a negative net flow deflection
(towards the axis). CFD methods exist for the prediction of both very weak and weak
shock reflections. Very fine computational grids have to be used to detect the ‘too small
to be seen’ reflections of very weak shocks. No analytical or semi-analytical theories

exist for predicting reflection of either very weak or weak shocks.

4.4 Concluding remarks

The Taylor-Maccoll equations are recast and presented in terms of Mach number
components.  Their solution is applied to the calculation of internal, conical,
axisymmetric flow, which can be used as the basis for designing air intakes for high
Mach number air breathing engines. Computational and experimental proof is presented
for the existence of internal conical flows in the Busemann and M-flow configurations.
The assumption of conical symmetry holds for flow over a cone and for Busemann flow,
but it does not hold for M-flow near the axis of symmetry.

Busemann flow contains four unique fluid mechanical features: a) internal flow
with an inflected surface, b) a free-standing conical shock, c¢) an axisymmetric centered
compression fan and d) a flow process from a uniform flow to another uniform flow. All
these features are significant if the Busemann streamtube is used as a basis for design of
engine air intakes. M-flow is another type of internal flow that can represent part of an
intake surface. It also contains two interesting fluid mechanical features: a) a singularity
and b) an example of convergent supersonic flow with a decreasing pressure. It is
suitable as a leading edge shape that produces a conical internal shock wave. Both
Busemann and M-flow carry conical shocks that either diverge from or converge towards
the centre line of symmetry. The study of such shocks is important in their application to
intake flows as well as to understanding the basics of reflection and interaction of curved

shock waves.
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The Taylor-Maccoll equations point to the existence of a confocal, conical,
compression fan - the axisymmetric analogue to a Prandtl-Meyer fan. Such a fan of
coalescing characteristics, preceding a free-standing conical shock, is shown to exist
experimentally as well as by CFD calculations.

Despite a focused search, no analytical, computational or experimental evidence
was found for the possibility of regular shock reflection of incident shocks at the centre-

line of symmetry.
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CHAPTER D5
HYPERBOLIC SHOCK WAVE

Contents

5.1 Introduction

5.2 Geometry of the concave hyperbolic shock
5.3 Flow properties behind a curved shock

5.4 Streamlines behind hyperbolic shock

5.5 Orientation of sonic line behind the shock
5.6 CFD results

5.7 Conclusions

5.1 Introduction

In the design of supersonic airplane and air intake shapes, for specific
performance, it is useful to begin with a known shock wave shape and flow-field and from
these deduce the required wall shapes. These are design methods referred to as “Wave
Rider” or “Wave Trapper” techniques. Questions then arise as to the nature and existence
of flow behind a given known shock shape. This is particularly pertinent to supersonic air
intake flows where doubly curved concave shocks are likely to exist and where the quality
of the downstream flow is of importance but less well understood than external flows.

The left lobe of a hyperbola of revolution shape is proposed as a particular
example of a doubly curved, concave axisymmetric shock surface. It offers an
analytically simple surface for the study of pressure gradient and flow curvature effects on
shock detachment and reflection where the cumulative effects of both shock curvatures are
present. Such shock shapes are physically plausible for internal, converging flow and
Mach disk shapes. Existence of simple analytical expressions describing the inclination
and curvatures of the hyperbola lead to equally simple, explicit, analytical expressions for
gasdynamic properties and their gradients downstream of the hyperbolic shock wave. The
concave, hyperbolically shaped shock in both planar and axial flow is investigated
analytically with oblique shock theory as well as curved shock theory to discover any
tendency towards the formation of a shock wave in the flow immediately behind the

hyperbolic shock. If such a shock appears, and impinges on the back of the hyperbolic
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shock, then there would have to be a kink in the originally posed smooth shock and a
Mach interaction would ensue. The onset of Mach interaction, at the sonic point is shown
to depend on the freestream Mach number and the ratio of shock curvatures. Critical
roles are attributed to both the subsonic patch of flow behind the strong portion of the
shock and to the orientation of the sonic surface at the shock. There is much experimental
evidence of the existence of strong concave shock waves in the studies of Mach reflection
where such shocks constitute the Mach stem. No experimental or CFD examples of
continuously curved concave shocks that span both the weak and strong shock range have

been found, probably because the enclosing ducts have to have very special shapes. Such

surface shapes (both planar and axial) are presented here, together with their analytical
and CFD-generated shock shapes. Background material, covering theory related to sonic
line orientation for convex, planar shocks can be found in [Hayes and Probstein (1966)]

and [Rusanov(1976)].

5.2 Geometry of the concave hyperbolic shock
In Fig. 5.1 the hyperbolic shock is shown as a purple surface. Its enveloping Mach
cone is in green. In Cartesian coordinates the equation of a hyperbola of revolution, that

has two lobes lying on the positive and negative x-axis, is,
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2 2

XV (5.1)

a b
The left lobe, which presents a concave surface to the left, towards the oncoming flow, has

a shape that can be found from,

x=—ayl+ /b (5.2)
Setting, a=M?-1 and b=.M -1 (5.3)
makes the far-out branches of the hyperbola asymptotic to the freestream Mach cones and

the radius of curvature of the hyperbola at the horizontal axis equal to -1 (see Fig. 5.1

above and cross-section, Fig. 5.2,).

Each freestream Mach number, M,,

thus has a unique shock shape with the
common radius of curvature -1 at the
axis and with its extremities asymptotic
to the Mach waves. Keeping the radius
of curvature constant with Mach _._. T " ___

number is for convenience; it sets the

problem’s  scale and facilitates
sonic Iinel

Hyperbolic shock and
subsonic patch

comparison between shocks for various
Mach numbers on the same plot. For
any one Mach number the hyperbolic
shock contains all possible shock angles
for that Mach number, from normal shock to Mach wave. The slope of the hyperbolic
shock, at any point (X, y) on the hyperbola is (from Eqn. 5.1),

dy x b’ 1 (5.4)

=tanf =n— where n=—=——-—=tan" u
dx y a M’ -1

and 6 is the shock angle (obtuse in second quadrant). The second derivative is,

d)zjzn[l—nszzl(tanz,u—tanzé’) (53)
dx' y vy

so that the left-lobe’s shock curvature is,
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d’y n l—nx—2
A ~ ( yz ~ tan’ = tan> @ (563)

5, 132 E 1+ tan 3/2
1+(dy) y[1+n2xzj y(I+1tan’0)
dx y

This formulation for S, matches our definition of shock curvature in the flow plane17

S,=d0/do . Flow-plane shock curvature, S, is defined to be positive when the shock is

concave towards the oncoming flow. The curvature in the flow-normal plane is,

S, =—cos@/y (5.6b)
and the ratio of shock curvatures, S,/S,, for obtuse shocks, at any value of hyperbolic

shock angle, is,

%:[ij:(l+n)sin29—n (5.6¢)

b
On the shock surface R varies from 0 to 1 as @ varies from u# fo m/2. The shock
intercepts the x-axis at x = - @ and y = 0 so that the shock angle there is /2 and the ratio of
curvatures is 1. Using Eqns. (5.1) and (5.2) enables a solution for x and y with the shock
angle appearing as parameter,

atan@ and = 1 (5.7
Jtan’@—n Jtan’@ —n

The (x,y)-location of any significant shock angle, such as the angle for sonic post-shock

flow, can then be determined directly using Equations (5.7) above. Positive square roots
are taken in both cases resulting in a positive y and a negative x value for the upper-left
branch of the hyperbola. At given value of x or y, on the shock, the steps to calculate the
flow gradients behind the hyperbolic shock are as follows:

1) from a given M, calculate a and b using Eqn. (5.3);

2x) for a given —oo < x < —q, calculate y from (5.1), or

2y) for a given —oo < y < oo, calculate x from (5.2); take the negative value of x for

the left branch of the hyperbola;
3) find the shock angle 6 from (5.4); or

"7 The flow plane is the plane surface that contains the smallest angle between the down-shock flow vector
and the shock surface; it also contains the upstream flow vector.
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2) instead of steps 2x, 2y and 3, above, start with a given shock angle and calculate
x and y from (5.7)

4) find the shock curvature in the flow plane, S, from (5.6a)

5) find the curvature in the flow-normal plane, S, =— cosf/y, from (5.6b)

Since the shock has a vertical slope at the axis, it is better to take evenly spaced values of
y rather than x, i.e. use option 2y) rather than 2x) above, when plotting or generating a
CFD grid for the region behind the shock." The above has shown that, given a Mach
number, a hyperbolic shock shape can be calculated and, given any shock angle, locates a
point on the shock where the shock’s surface curvatures are determinable. All of this

applies to planar shocks as well as axial ones. For planar shocks S, = 0 so that R — 0.

5.3 Flow properties behind a curved shock

Having defined all relevant geometric properties of the hyperbola we now
establish relations for flow properties behind the hyperbolic shock. The properties fall
into two categories: the ‘zeroth order’ properties such as pressure, Mach number and the
flow deflection angle; these requiring, as inputs, the ratio of specific heats, the shock angle
and the freestream Mach number. The second category, the ‘first order’ properties, such
as pressure gradient streamline curvature and vorticity, require the previous three inputs
plus the shock curvature(s). The zeroth order quantities are obtained from the algebraic
Rankine-Hugoniot equations and the first order quantities require the use of the Euler
equations. The zeroth order relations as well as the Euler equations are given in all
standard textbooks on gasdynamics [Liepmann and Roshko (1956)]. Curved shock theory
(CST) for planar flow is derived in Ch.2 as well as by [Lin and Rubinoff (1948); Gerber
and Bartos (1960); Thomas (1947); Truesdell (1952)]. Application of CST to axial flow
and shocks with compound curvature is found in Ch. 2.

The streamline curvature, D, , pressure gradient, P, and vorticity, I',, behind the

hyperbolic shock, are found from the curved shock equations (2.30¢) and (2.31b),

81t is possible to study the flow behind a convex hyperbolic shock by taking the positive values of x as
generated in step 2y above.
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(5.8)

where the coefficients multiplying S and S, are all functions of the freestream Mach

number and the shock angle. These equations are general to any doubly curved, axial

shock surface. All coefficient equations are found in Ch. 2.

5.4 Streamlines behind hyperbolic shock

For a given Mach number, the shock geometry, including the shock curvatures are
calculated, at selected points, using equations (5.1) to (5.6) by the steps 1 to 5, above.
Oblique shock theory gives the slope, tand,, of the post-shock streamlines at any point on
the shock. The curved shock theory equations (5.8) are then used to find the streamline

curvature, D,, at the selected points, (x,, ys) along the shock and the streamline shape near

the shock is calculated from a Taylor series approximation,

planar flow | \\ axial flow

0 Mach 3

Fig. 5.3

V4

Concave Hyperbolic Shock
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where (x;, ys) is the starting point of the streamline, on the shock. The Figures 5.3 show
streamline shapes behind a hyperbolic shock for axial and planar flows at Mach 3.
Streamlines are red where the pressure gradient is negative, blue where the streamline
curvature is negative and green where both are positive. The point on the shock where the
streamline curvature is zero is the Crocco point and the point where the pressure gradient
is zero is the Thomas point. The location of both points depends on the ratio of specific
heats, the shock angle, the freestream Mach number as well as the shock curvatures. In
each case, the approximate sonic line (to be further described in Section 4) is shown in
black. The two pictures are quite similar because the cross sectional shock shapes are the
same, the flow deflections are the same and the shock curvature, S,, is the same at
corresponding points. Differences arise from the transverse shock curvature, Sp, being
zero for planar flow but non-zero for axial flow. This causes P,, D, and I, as they
appear in equations (5.8)'°, to be different for the two flows. The difference is reflected
in the not-so-easily discerned difference in streamline curvatures, D, and the shape of the
sonic line. The streamlines next to the centre line form a throat around the sonic point —
indicated by the black dot on the sonic line. This is encouraging agreement between two

essentially disparate downstream flow results of CST.

5.5 Orientation of sonic line behind the shock
The angle a*, between the sonic line and the streamline is, from [Hayes and
Probstein Eq.6.1.1 (1966)] and curved shock theory, Eqn. (2.22):
. (amids) B
tana =- ] ¥
(dM / dl’l) Dz _Fz

(5.9)

This relation applies to both planar and axial flow. The asterisk indicates that the gradient
quantities have been evaluated at the post-shock sonic condition. Hayes and Probstein

present a formula for o * for acute shocks in planar flow,
tan’ (9* —5*)[3(}/+1)tan2 (6* —6*)+5—;/}

[l—tan2 (49* —5*)}[(7+1)tan2 (49* —5*)+2}

tana* = (5.10)

' For planar flow, these quantities are not functions of shock curvature and for axial flow they are functions
not of the individual curvatures but of their ratio.
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Note that the right-hand side is a function of y and M; only so that, for planar flow, the
orientation of the sonic line does not depend on shock curvature. Eqn. (5.9) is valid for

both planar and axial flow as are its components.

Type | Type |l

a® < () 0<o*x<m/2 o = /2

For a shock with compound curvature, one of three types of flow can exist at the
sonic point on the shock, depending on the orientation of the sonic line, ™ Type I for
a*< 0; Type II for 0 < a* < /2 and Type III for a* > n/2. Figure 5.4 illustrates the three
types where shocks are black, streamlines are blue, sonic lines are green and the C+
characteristics are red. Flow is left-to-right. These three types determine the existence and
nature of the flow at the sonic point. For Type I, supersonic flow, leaving the shock just
outboard of the sonic point continues supersonically. For convex, planar shocks Hayes
and Probstein [1966] have shown that Type I flow does not exist. For Types II and III the
supersonic flow outboard of the sonic point has to cross the sonic line to become subsonic
and then to accelerate to sonic at its second crossing of the sonic line. Types II and III are
themselves further distinguished by the fact that for Type III the C+ characteristics,
reflecting from the supersonic downstream side of the shock near the sonic line, become
incident on the sonic line and are thus intercepted and blocked from coalescing to form a

reflected shock. This occurs in the area shaded red on the Type III sketch in Fig. 5.4.
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Thus Type III flow may have a continuous incident shock whereas Types I and II are
likely to develop a reflected shock and Mach reflections. This will become more evident
when considering the orientation of reflected characteristics and the sonic line. For planar
flow, the angle that the sonic line makes with the streamline is sown in Fig. 5.5 which is a
plot of Eqn. (5.10). Type III flow exists between Mach 1 and 1.7. Above Mach 1.7 only
Type I or II flow is possible. This means that, in planar flow, a continuous shock can be
expected only below Mach 1.7 and above that a Mach reflection will occur. Type I flow is
not possible for planar flow since the curve never becomes negative. Shock curvature
does not affect these results since the flow has planar symmetry. Similar results have been
obtained previously for planar flows, involving convex shocks, by [Rusanov (1976)] and
for planar shocks, Henderson (1987) has shown that Mach reflection cannot exist for very

weak shocks.

100
tar - black curve Type III ‘
90 degrees
80 \
60 \
Type I1
40 \
Fig. 5.5
0 Mach number
1 | 2 3 4 5 6 7 8
ANGLE BETWEEN STREAMLINE AND SONIC LINE
planar flow

The picture is more complicated when the shocks are axial (axisymmetric) with

curvatures S, and S and curvature ratio R* = S: / S, at the sonic point. In this case the

curved shock theory Eqn. (5.10) for the sonic line orientation, « *, takes the form,

X*
tang*=———= (5.11)
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where asterisks denote values at the sonic point. The coefficients k;_, are all functions of

the specific heat ratio and the freestream Mach number only. Formulas for the k’s are

found in Appendix 5A at the end of this chapter. The shock curvature ratio plays an
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ANGLE BETWEEN STREAMLINE and SONIC LINE
vs. MACH NUMBER and SHOCK CURVATURE RATIO

Fig. 5.6

important role in determining the character of flow behind a doubly curved shock. The
angle from the streamline to the sonic line a* (AlphaStar), is plotted against the

freestream Mach number in Fig. 5.6 with the shock curvature ratio, R¥* =S, /S, , at the

sonic point, as parameter. The two red, horizontal lines, at zero degrees and 90 degrees,

separate the regions for the three types of flow. The top-most curve, for S, /S, = 1e6 (i.e.

10°) is effectively for planar flow as was presented in the previous figure. The bottom

curve, for S, /S,= 0, is for conical flow. Type I flow, generally above Mach 2, appears

for curvature ratios below 0.5. For a curvature ratio of 0.5, above Mach 3, a* is
approximately zero, indicating that the sonic line and streamline are collinear. This, in
turn, means that the isobaric (Thomas) point is at the sonic point and that pressures in the
supersonic/subsonic regions on either side of the streamline are increasing/decreasing.
Type II flow is possible for curvature ratios between 0.5 and 10° for all Mach numbers.

Type II (a* > 90 deg) flow is possible for curvature ratios above 1 and Mach numbers
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between 1 and 1.7. Only for Type III conditions can a smoothly curving incident shock

wave be expected for the whole range of shock angles from u to m/2. The above

conclusions apply to concave shocks of any shape - not only hyperbolic. For planar,
concave, hyperbolic shocks the top-most curve applies, showing that both Types II and III
flow are possible and that we can expect a single shock, without a reflected shock, at
Mach numbers below 1.7. This lower limit to Mach reflection of 1.7 is only for planar
incident shocks. For axial shocks the lower limit depends on the ratio of shock curvatures
at the sonic point. For example for a ratio of 2 the lower limit is about Mach 1.4 and for a
ratio of 1 there is no lower limit — implying that Mach reflection will appear for all Mach
numbers as long as the ratio of shock curvatures is below 1. The green curve is for
concave, hyperbolic shocks, showing that only Type II shocks are possible and we should
not expect a complete hyperbolic axial shock at any Mach number. At the same time it
does not mean that complete axial shocks (Type II) do not exist. If they do, they would
have to have a ratio of shock curvatures at the sonic point higher than that provided by the
present type of axial, hyperbolic shock. Figure 5.7 shows where the three types of sonic

flow exist in the shock curvature ratio R * (Rstar) vs. Mach number space. Equations

5 fR X
4 (Type:
III -
: Fig. 5.7
3
Type I1
2 /
1
— Type 1
0 Mach number

1 2 3 4 5 6 7

8
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(5.8) can be rearranged and substituted into Eqn. (5.9) so as to give,

tana’ = *Pz* * :a1+c059 (a1b2—aib1*)R2
D, -1, bl—c(1+bzcosé? Rz)

where,
a, =[BC]/[AB] a, = B,G'/[AB]
b =[CA]/[A4B] b, =—A,G'/[AB]
c=—C"/E]

(5.12)

are all evaluated at the sonic condition. The angle a* in Equation (5.12) is now in terms

of Mach number and the streamline radius of curvature behind the shock, R;, where R,

has been normalized with respect to y = y* - the distance from the sonic point to the

centre line. This shows that the inclination of the sonic line at the back of the doubly

curved shock is controlled by the post-shock streamline/surface curvature. Consequently,

so is also the shock type. Since the streamline curvature is also the curvature of the

physical leading edge it is a more physically meaningful and realizable quantity than the

ratio of shock curvatures, R *. Inverting Eqn. (5.12) to solve for R; gives,

. (b —c)tana” —q
R2 = *
cosf (cb2 tana” +a,b, —azbl)

(5.13)
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R, is plotted against the freestream Mach number with «* as parameter in Fig. 5.8. " is

a’ = /2positive on the green curves and negative on the red curves. It is zero on the
black curve and £7/2 on the blue curve. In the region for Type III the sonic line is angled
forward so that there is no reflected shock and therefore a smooth curved shock is

possible in this region.

5.6 CFD Results

As described in Section 1, the shape of each concave, hyperbolic shock is defined
completely by its freestream Mach number. At any point on the back of the shock a flow
deflection and a post-shock streamline curvature is fixed and easily calculated. These are
used for defining a curved surface as input to a CFD program for calculating the flow and
the shock inside that annular surface. These input values of wall/streamline curvature are
exact only right behind the hyperbolic shock surface so that the constant curvature wall
surfaces used as input are only approximations to the true streamline/wall surfaces
required to produce the hyperbolic shock. The length of curved wall is critical in the
computations. Too short and it will not produce the proper hyperbolic shock shape; and
too long a wall will cause premature Mach reflection - in some cases leading to total
internal flow unstart (for reasons dealt with in the next chapter). Reasonably consistent
results are obtained by selecting curved surface lengths which have one degree less
turning than that required to produce sonic flow by Prandtl-Meyer turning from the post-
shock conditions at the leading edge. This results in the trailing edges being just
supersonic.

The aim of the CFD calculations is to show that the Type I, II and III flows do or
do not appear where so predicted in Section 5.4. A time-asymptotic, finite difference
scheme with automatic grid refinement, SOLVER 1II [2004] is used. Only the top half of
the top-to-bottom symmetric flow is calculated. The centre line of symmetry and the top
wall are shown in red.  In each case the hyperbolic shock is shown as a black curve.
Calculated shocks take their colour from adjacent contours. All figures show colour-
coded constant Mach number lines and a black sonic line. Axial or planar symmetry and

the freestream Mach number are denoted on the bottom text line of each figure.
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Figure 5.9 is for planar flow at Mach 3. The calculated shock follows the
hyperbola closely near the leading edge of the curved surface tending slightly forward as
it nears the triple point of the Mach interaction. At the triple point the reflected shock is
very weak and there is a small subsonic region between the reflected shock and the shear
layer. The sonic flow for this case would be of Type II so that a continuously curving

shock is not expected. The sonic line is shown in the flow downstream of the Mach disk.
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Figure 5.10 is for axial flow at Mach 3. The calculated shock agrees well with the
hyperbola (thin black line) from the leading edge down to the triple point. The flow at the
sonic point would be of Type II so that a continuously curving shock is not expected —

Mach interaction appears, as with the planar flow above.
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The zoomed-in Fig. 5.11 is for axial flow at Mach 1.2. The CFD shock is slightly
ahead of the CST shock and it is no longer hyperbolic. The thin, black, kidney-shaped
line is the sonic line with subsonic flow inside. A streamline runs through the sonic point

on the back of the shock at what appears to be at a right angle to the sonic line. CFD
shock curvatures measured off the figure, at the sonic point, give S: =2.92 and SZ =243
giving a shock curvatures ratio ¥ =S /S, = 1.19 at the sonic point. At Mach 1.2 this

is just inside the Type III flow region, as confirmed by the lack of a reflected shock and

the consequent continuously curving incident shock.
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5.7 Conclusions

Analytical and computational results are presented for flow behind concave
shocks. The existence of a reflected shock and hence the non-existence of a continuous
smooth shock depends on the orientation of the sonic surface at the back of the shock. In
turn, sonic surface orientation depends on the upstream Mach number and the ratio of
shock curvatures at the sonic point. For planar shocks, a single, continuously curved
shock is possible only below Mach 1.7 such that Mach reflection will occur at higher
Mach numbers. For shocks with positive curvature ratio, R *, this Mach number limit is
reduced until for R *< 1, no continuous concave shock is possible for any Mach number.
A hyperbolic shock always reverts to Mach reflection. Both analytical and computational
results show that the shock curvature ratio plays an important role in determining the
character of flow behind a doubly curved shock. It is a determining factor, beyond shock
polar intersections, as to what type of shock reflection can take place at any freestream

Mach number when the incident shock is doubly curved.

Appendix SA — Coefficients for the sonic line inclination

For axial flow the inclination of the sonic line with respect to the streamline, « *, takes

the form,
*
tan or* = R R* 1k,
kR *+k,
where, k, = EJ[BC] k, = EJB,G'

ky =[CA]E +[BC] A} +[CA1B. +[ABIC"
k, =—A,G'E! + B,G'A! — 4,G'B} +[AB]G"

and R¥=S/S,
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CHAPTER G
SHOCK DETACHMENT

Contents
6.1 Introduction
6.2 Preliminaries
6.2.1 The Unit Ring Wedge (URW) and splitter tube
6.2.2 Curved Shock Theory (CST)
6.3 Shock detachment from a sharp leading edge
6.3.1 Detachment by excessive flow turning — 9, criterion
6.3.2 Shock detachment by overpressure
6.3.2.1 Shock detachment by global choking
6.3.2.2 Shock detachment by local choking
6.4 Analysis of detachment by local choking
6.4.1 Pressure gradient at leading edge of curved surfaces
6.4.2 Mach number gradient and choking length L*
6.4.3 Local choking on a flat plate
6.4.4 Planar flow over a curved surface
6.4.5 Flow in a URW with a conical surface
6.4.6 Flow in a URW with curved surface
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6.5.1 Grid-independence
6.5.2 Local and global choking
6.5.3 Attachment/detachment hysteresis by CFD
6.5.4 CFD vs. CST
6.5.5 Abruptness of detachment
6.6 Conclusions

6.1 Introduction

“Transition from a shock attached to the leading edge of the wedge to a
detached shock appears to introduce such a radical change in the flow field that one
would expect quite abrupt changes in flow characteristics such as drag. The analysis

of this particular change is of particular interest.”

G.K. Guderley in The Theory of Transonic Flow

Another reason for the attached-to-detached shock analysis to be of particular
interest is that the termination of regular reflection of an oblique shock wave can
have as its cause the same limiting flow conditions (e.g. excessive flow turning) as

does the detachment of a shock from a wedge, so that the abrupt changes, referred to
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by Guderley, for the detaching shock, should be expected to occur also at the
termination of regular reflection. In the shock reflection situation the flow from the
incident shock, approaching the reflecting surface, sees the reflecting surface as a
freestream flow would see a flow-deflecting wedge. This implies that the fluid-
mechanical process involved in the detachment of an oblique shock from a plane or
curved surface and the termination of regular reflection on a plane or curved surface
have the same underlying causes. The two phenomena are governed by the same
equations and should, at their termination, have the same values of independent
parameters and boundary conditions. Thus, an investigation of shock detachment from
a plane or curved wedge should lead to an understanding of the more complicated
regular reflection termination. Shock detachment occurs right at the leading edge,
hence also right at the shock, so that CST, which also applies right at the shock, is the
appropriate, precise analytical tool for tackling the shock detachment problem. In the
study of detachment and transition, some resolution between differences in theory and
experiment is required as noted by Sudani et al. [2000] who state that “...transition
from regular to Mach reflection occurs significantly below the maximum
deflection condition”. This justifies the study of shock detachment as a lead-in to
understanding the regular-to-Mach reflection transition process.

It was the original intent to investigate the RR to MR transition, with CST, by
using shock detachment from a wedge as a stepping-stone. However, it has turned out
that the detachment of a shock from a curved wedge has enough substance and
complexity to warrant clarification and that the proposed new mechanism needs
investigation by a study of its own.

Section 6.2 of this chapter presents two useful concepts: the unit ring-wedge
with a splitter tube, (URW), and some results of curved shock theory (CST). Section
6.3 discusses shock detachment from a sharp curved wedge. The concepts of local
and global choking are introduced as possible causes for shock detachment. Section
6.4 shows the analytical conditions under which the above causes are present. Section
6.5 is a CFD confirmation showing flow field computations of shock

attachment/detachment at the analytically predicted conditions.
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6.2 Preliminaries
Two items are introduced to aid the development of discussion, theory and
computation in subsequent sections: the unit ring-wedge and a short recapitulation of

curved shock theory.

6.2.1 The Unit Ring-Wedge (URW) and splitter tube is an annular ring

with a sharp leading edge that is everywhere at unit radius from the axis of symmetry

(y = 1). Three such rings are shown in Fig. 6.1

)
Fig 6.1. At the leading edge, the outer % %

surface of the ring turns the flow

outward by &, and the inner surface 1

turns the flow towards the axis by 6. —L-}-72-=.4.—._. B il RO Bl e .
The surface curvature, D,, in any
meridian (flow) plane is zero when

a
there is no curvature, positive when the % % %

flow turns away from the axis and

. THREE UNIT RING WEDGES (URW)
negative when the flow turns toward

the axis, as shown in the sketches a, b and ¢ respectively. The shock has an acute
angle on the outside and an obtuse angle on the inside; giving a positive/negative flow
deflection on the outside/inside. Shock curvature in the meridian plane is S,, defined
as positive when the shock is concave towards the oncoming flow. In the transverse
plane the shock curvature, at the leading edge, is S, = -cos@y, which, for the URW,
becomes simply -cosé All radii of curvature values such as R, = -1/S,, Ry = -1/S)
and r, = -1/D; are normalized with respect to the unit ring-wedge radius y = 1. The
URW thus provides the normalizing dimension and a convenient geometry for the
study of doubly curved shock waves and surfaces in axial flow. The term axial is
synonymous with axisymmetric and what is often called two-dimensional is referred
to as planar, the latter being a limiting case of the former when y — co. The term

wedge is used to denote the URW and Mach number means freestream Mach number.
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For some of the CFD calculations an infinitely thin tube is inserted into the
computational mesh, extending forward from the leading edge into the free stream
(see Fig. 6.20 and 6.24). Its purpose is to isolate the outer and inner flow calculations
so that surface curvature effects appear separately on each side without spillage
effects from detached flows on either side affecting the flow on the other side - yet the
outer and inner flows have identical freestream conditions. Any differences between
inner and outer flows becomes readily discernible and attributable to the local surface

geometry only.

6.2.2 Curved shock theory (CST), presented in Ch.2, relates flow gradients on
the up and downstream sides of a doubly curved shock wave. The theory is derived
by taking derivatives of the oblique shock equations with respect to the distance along
the shock. Equating the up- and downstream derivatives yields a set of simultaneous
equations for the gradients of flow properties along the streamlines as a function of
upstream Mach number, shock angle and the two shock curvatures. CST is applied in
this chapter to find the streamwise gradient of Mach number behind a doubly
curved shock wave. Two major results of CST, applicable to shock detachment
formulations, are the algebraic expressions for pressure gradient and streamline

curvature behind a doubly curved shock in terms of the shock’s curvatures (see Eqn.

3.12 aand b):

P
_ os _ [BC] BG!
5= o2 [4B]7a " [4B] Sh (6.1 a,b)
5 _ 95 _[cA] MG

2 os [AB] a [AB]°b
where S, and S, are the shock’s curvatures and their coefficients are all functions of
shock angle and freestream Mach number. For convenience, write the equations as,

P =aS,+a,S,

(6.2 a,b)
D, =bS, +b,S,
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These two equations will be used in Section 6.4 to derive an estimate of the length

(L*) of a curved surface, required to bring the flow to Mach one behind an attached

shock. Coefficient values are plotted in Fig. 6.2, against both acute (<90) and obtuse

(>90) shock angles, for Mach 3. The black curve refers to vorticity behind the shock

from Eqn. (2.38g) when expressed as,

Ir,=ds,

_ g+[BC]A_g_[AC]B_g

E] [AB]E) [A4B]E;

so that, d (6.2 ¢)

6.3 Shock detachment from a sharp leading edge
A shock wave will remain attached to a sharp wedge leading edge as long as the
pressure ratio across the shock and the flow deflection demanded by the leading edge

surface are related by the (p, d)-relation for oblique shocks [Anon. NACA Rep.1135,

180
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Eqn. 160].*° A mismatch in pressure ratio and flow deflection will result in shock

detachment. This chapter deals with how such mismatches can be produced.

6.3.1 Detachment by excessive flow turning — J,,,. criterion
The oblique shock equations readily show that a shock, attached to the leading
edge of a wedge, is incapable of turning the freestream flow into being parallel with

the wedge surface beyond a certain maximum wedge angle. [Shapiro, 1954;

Liepmann and Roshko, 1956; )

Fig. 6.3 /
Owcharek, 1964].  This maximum 5 P,'Py
turning angle, J,., depends on the
ratio of specific heats and the P, P,
freestream Mach number.?' Although

other causes may preempt shock —_—
detachment at J,,,,, this must be an ATTACHED OBL[:.%UEOSEIA%CK ANDITS

ultimate cause in that there are no analytical flow constructs for either a wedge-
attached shock or of regular reflection beyond the 0, criterion. Fig. 6.3 shows
attached weak and strong shocks on a wedge surface and a typical polar diagram
representing the necessary relation between the wedge angle and the shock pressure
ratio for the shock to remain attached. On the red segment of the polar the flow
behind the shock is supersonic and on the black portion it is subsonic. The shock will
detach when either the wedge angle is made greater than 9J,,,, or the pressure exceeds
the top (black) part of the (p, )-polar curve. Since &, is a function of Mach number,
shock detachment can also be brought about, on a fixed angle wedge, by a reduction
of Mach number. As the Mach number in front of an oblique shock, on a plane
wedge, is reduced, it becomes sonic behind the straight attached shock. A further

reduction causes the shock to become curved and the Mach number to become

2 2_ _ _
20 tanzé':( ¢l ]2}/M1 (7/ 1) (7/+1)§ where &=p,/p

yM? —£+1 (r+1)&E+(r-1)

2 4
21 &, =Ml 2+ 4 +27 1M12+M]
2 y+1 y+1 4
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subsonic. The shock remains attached as long as the sonic line passes all the flow
entering the subsonic portion of the shock. Flow behind the shock takes on the
characteristics of subsonic flow in a concave corner. Such flow is shown in Fig. 6.20
where the shocks are just detaching from a wedge. Compressible corner flow is
characterized by near-circulat isobars, centered at the corner stagnation point. In the
corner flow region, pressure decreases radially outward, compatibly with the curved
bow shock which takes up a position that supplies the right mass flow to the sonic line
downstream. Corner flow becomes fully established as the shock leaves the wedge at
Omax- It provides a smooth transition between attached shock and detached shock flow

as long as the Mach number or wedge angle vary smoothly.

6.3.2 Shock detachment by overpressure

Fig. 6.4

The appearance of detachment

by excessive back-pressure is more
likely in internal flows where it is
easier to apply a back-pressure through

downstream flow choking.

a. global choking b. local choking

Detachment by excessive backpressure
is not causally dependent on the wedge Pressure detachment

angle but on the pressure that is applied by the downstream flow exceeding the
pressure indicated by the shock polar for that particular wedge angle. The
downstream flow can exert this excessive pressure on the black portion of the polar
where the flow is subsonic, allowing the increased pressure to be transmitted
upstream to the attached shock at the leading edge. Although the detachment
mechanism is local to the leading edge, the excessive back-pressure mechanism for
shock detachment is of a global nature because the cause arises from choking of the
downstream flow. Positively attributing detachment to the influence of downstream
global flow requires calculation of the whole flow-field between the shock and the
sonic line in the downstream flow. Two types of excessive pressure choking are

possible in a convergent duct, as shown in Fig. 6.4. They are here referred to as

global choking and local choking. Choking (M = 1) occurs at the green lines.



144

6.3.2.1 Shock detachment by global choking appears in internal flow when
the mass outflow at the exit of a streamtube is restricted to such an extent that it is less
than that passed into the inlet by an attached shock at the entrance. The excess flow
must be spilled overboard and this is made possible by the shock detaching and
moving upstream to allow a gap for flow spillage between the shock and the leading
edge. When the shock detaches due to global choking the shape of the duct leading
edge is immaterial. If the exit-to-entry area ratio is varied to choke and unchoke the
flow, there appears a possibility for shock attachment/detachment at two different area
ratios — a hysteresis is established. This is part of the shock swallowing/un-

swallowing process associated with 1

supersonic air intakes for which Fie. 6.5
0.8

analytical, one-dimensional flow

0.6 Kantrowitz

area criteria were  originally

0.4 planar

developed by [Kantrowitz and L —1

0.2 '/ axial
L]

Donaldson, 1945]. Kantrowitz’ one-

Mach number

dimensional theory predicts that the ° i 2 3 ¢ > 6 7 8

Global choking limits as indicated by Kantrowitz area ratio (green)
and by Lsin(delta) in planar (red) and axial (blue) ducts

normal shock will stand at the
entrance of the duct when the exit-to-entry area ratio is less than that shown by the
green curve in Fig. 6.5. A higher value of area ratio will cause the shock to move

downstream — be swallowed. For

simple axial (conical) or planar

(double-wedge) convergence of angle o
and surface length L it means that Lsino

cannot exceed values that would yield

an area ratio below the Kantrowitz areca
: 22 : : . . .
ratio, (4/A)x™. A simple geometric Simple converging axial or planar duct

construction shows that if, for planar ducts, Lsino is greater than 1—(Ae /4, )K,

|

A

1

y . 5 -12 5 1 -1/(7-1)
A | _| VT + > A [Kantrowitz criterion]
K M,

y+1 (r+1) y+1 (r+1)M;
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shown by the red curve, and if, for an axial ducts, Lsind is above 1—, /(Ae /A )K , the

blue curve, global choking will take place and shock detachment will follow. The
geometric relation Lsind gives a rule-of-thumb estimate of global choking, applicable
best when L is large and o is constant and small (Fig. 6.6). This Lsino relation was
used to avoid global choking when setting conditions for CFD calculations of locally

choked flow in Section 6.5.

6.3.2.2 Shock detachment by local choking appears near the leading edge
when the sonic surface is not able to pass all the mass flow entering the portion of the
shock between the leading edge and the sonic line behind the shock. As with
detachment due to global choking, the shock then detaches, opening a gap between
the leading edge and the shock for excessive flow spillage. As distinct from global
choking, the conditions for detachment due to local choking depend on the geometric
details of the leading edge surface. It is the purpose of this chapter to use CST to
predict the conditions for local choking and to verify the predictions by CFD.

6.4 Analysis of detachment by local choking is based on CST. As such, its
results are restricted to flow near the shock, i.e. near the leading edge of an attached
shock. Local choking is greatly influenced by flow divergence or convergence that
occurs in axial flow and it is therefore distinctly different from local choking in
planar flow. This is the fundamental reason why detachment by local choking is
different in planar and axial flows. An approximate analytical method, based on CST,
is developed in this section for predicting the conditions necessary for shock
detachment by local choking in axial flow. Planar flow will be treated as a special
case. The underlying premise of local choking is that a sonic line cannot exist on a
surface if the flow area on that surface is contracting. This principle is the same
that applies to steady flow in a converging/diverging passage where the sonic surface
can exist only at the throat and not in a convergent section of the passage. It is
assumed that this is the driving mechanism that moves the sonic line forward in its

attempt to satisfy the mass flow imbalance. Moving in an upstream direction, the
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sonic line shifts itself and the imbalance to the leading edge, where detachment then

occurs by local overpressure. For a wedge of given angle and curvatures, we attempt

to find the wedge length required to choke the flow near the leading edge. Thus the

conditions, determining shock detachment by local choking, at a given freestream

Mach number, are: wedge angle, wedge curvatures and wedge length.

6.4.1 Pressure gradient at leading edge of curved surfaces

The starting point for local choking analysis is the curved shock equations (6.2

a,b) as applied to the URW. Using S, = -cos@ for the URW and eliminating S, from

the two Eqns. (6.2 a,b) gives,

P :‘;—llDz + jcosO(ab, —ab)/ b (6.3)
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This expression gives the normalized pressure gradient at the URW leading edge
(both outside and inside) in terms of the leading edge curvature, D, and the Mach
number and shock angle, which are the only parameters contained in the a and b-
terms in Eqn. 6.3. Outside/inside is determined by specifying the shock angle, & as
acute/obtuse. The first term on the right hand side of Eqn. (6.3) is the contribution to
pressure gradient from the streamwise curvature of the surface, D), and the second
term, which vanishes for planar flow, is the contribution of lateral surface curvature
(divergence) in axial flow. The two terms are independent, being determined by the
URW shape and freestream Mach number so that P, can be positive, negative, zero
and infinite. Expressing P, from Eqn. (6.3) as, P, =¢D, + jc, (6.3.1) makes c;
represent the curvature contribution to the pressure gradient and c, represent the
convergence contribution. The distributions of the curvature and convergence
coefficients are plotted against shock angle for Mach 3 in Fig. 6.7. At the Crocco
values of shock

angle [CA] = 0, the 0.5 i ‘

0.4 LAXIAL FLOW (URW) D2 /// ///; Mi= 3_]

coefficients go to ' INTERNAL FLOW ‘_.5//// ///

0.3
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. : ac ves foRM2>1
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Y
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The red curves cross 0.5
the zero-lines at the
Thomas points showing that a zero pressure gradient can exist. The convergence

contribution (c;) is small in comparison to the curvature effect (c;) over most of the
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supersonic shock as well as the normal shock. It is only near the Crocco point where
the reverse is true.  Considering that D, also enters as a variable in determining the
pressure gradient, the possible pressure gradient variation is complex. Figures 6.8 and
6.9 are for a supersonic post-shock flow showing the pressure gradient, P, from Eqn.
(6.3), at the leading edge of the internal surface of the URWs described in Section
6.2.1 for three streamwise

surface curvatures, D, = +1, 0 2 , ‘

L5l RTERNAL Lo - |/
and -1, plotted against wedge 4
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The Figure 6.9 is the same as 6.8 but with an expanded P,-axis for P, values near zero
and with D, ranging from -.5 to +.5 in steps of 0.1. For negative values of D,
(concave surfaces) the pressure gradient is positive, making local choking possible.
For positive curvatures (convex surfaces) the pressure gradient is largely negative,
hence no local choking occurs. However, for small positive values of curvature such

as +0.1, P, is negative for small values of o, becoming positive for ¢ > 25 deg.

 Such surfaces can be calculated for conically symmetric M-flow from the Taylor-Maccoll equations. See
Ch. 4
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showing that, for more steeply converging ducts, local choking is attained by flow
convergence and not by surface curvature. Figure 6.10 is for the same URW
geometries (a), (b), (c), with a strong family attached shock carrying subsonic post-
shock flow. In this case a negative pressure gradient moves the subsonic flow
towards choking; again, it is configurations (a) and (c) that allow the internal flow in
the URW to choke locally. More complicated behaviour is observed at higher values
of Flow Deflection where (b) begins to support downstream choking by dipping into
the negative P, region of the graph. At the same high values of Flow Deflection the

(c) configuration rises into the positive P, region, showing that it no longer supports

BC_

downstream flow choking. All curves meet at the Thomas point where @, = (AB]

so that the value of P, at this point is P, = j cos@(a1b2 —azbl)/ b,. The Thomas point

occurs at a unique value of wedge angle for each freestream Mach number. At this
unique value the pressure gradient and the length of surface required for choking,
discussed below, are both insensitive to changes in surface curvature. The practical
importance of this is unknown. The condition does not exist in planar flow.

In the investigation of boundary layer flow it may be of interest to examine the
effects of surface curvature and divergence as isolated from the effects of a
streamwise pressure gradient. Setting P, = 0 in Eqn. 6.3.1 gives the curvature of the
required surface as, D,p-g = -c»/c;. From Fig. 6.7 it appears that, for weak shocks, c¢;
and ¢, have opposite signs so that the surface curvature is positive as in Fig. 6.1b.
Between the two Thomas points ¢; and ¢, have opposite signs so that the surface
curvature is negative as for the surfaces in Fig, 6.1c.

This section has presented the post-shock pressure gradient as the underlying
cause of local choking near the leading edge of a doubly curved wedge surface and
how this pressure gradient can be determined from freestream Mach number, wedge
curvature and wedge angle. In the next section the pressure gradient is converted into
a Mach number gradient to derive an approximate distance from the leading edge to

the sonic point.
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6.4.2 Mach number gradient and choking length L*

For the isentropic flow behind the shock (subscript 2), the Mach number gradient
can be written in terms of the pressure gradient [Zucrow and Hoffman, Eqns. 4.50 and

4.51, 1977],

aMm; 2+(y—1)M; dp 64)
M; yM; ) '

P
This enables the Mach number gradient to be expressed in terms of the normalized,
CST, pressure gradient, P, = (dp/ds)/(}/pMz) as,
am;

ds

=-[2+(y-1)M3 |M}P, (6.5)

where s is the distance along the wedge (streamline) in the flow direction. The Mach
number will tend towards one if the flow behind the shock is subsonic and the Mach
number gradient is positive or if the flow is supersonic and the Mach number gradient
is negative. Given enough length, choking will occur behind a curved shock in both
cases. The Mach number gradient is plotted against shock angle, for a URW with no
streamwise curvature (D, = 0; i.e. conical surfaces) at Mach 3, in Fig. 6.11. Subsonic
post-shock flow is shown in red and supersonic in blue. Both curves are rendered
bold where local choking is possible. In the left side of the graph, for acute shocks,
the supersonic flow goes sonic only at a shock angle near 65 deg. The situation is
similar to what happens on a pointed cone at high cone angles. In the right side of the
graph, for internal flow and obtuse shocks, the supersonic flow always chokes, only a
short segment of subsonic flow (thin, red), having a negative Mach number gradient,
does not. The strong shock curve, passing through the normal shock condition at a
shock angle of 90 deg, shows that the subsonic flow on the external surface does not
choke whereas it does choke on the internal surface. Although there is an obvious
symmetry for the inside/outside Mach number gradient magnitudes, the flow types, in

terms of their choking propensity, are quite different.
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Mach number gradient on URW vs. Shock Angle

Opportunities for choking increase on a URW that is concave on its outer and inner
surfaces as in Fig. 6.12. Supersonic flow, both inside and outside, tends to choke
(bold, blue) except for a narrow band of acute angles in outside flow. Subsonic flow
on the inside chokes, as it does in a narrow region in outside flow. A normal shock,
facing uniform flow does not produce a curved streamline behind itself (Sect. 3.).
Imposing such curvature causes anomalous results at a shock angle of 90 deg. There
is a noticeable lack of symmetry due to divergence on the outside and convergence on
the inside. It is this inside convergence that causes the inside flow to choke much

more readily for all shock conditions.
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Opportunities for choking decrease on a URW that is convex on its outer and inner
surfaces. The curves, in Fig. 6.13 are for a URW with curved surfaces that are convex

towards the oncoming flow both outside and inside. Only a short segment of the
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weak inside shock (bold, blue) and all of the inside strong shock (bold, red) produce
choking. There is a noticeable lack of symmetry due to divergence on the outside and
convergence on the inside. Convergence causes the inside flow to choke and
divergence prevents choking on the outside. For the convex URW choking is
discouraged also by the expanding surface curvature.

This section has described the geometry of curved wedge surfaces that can

produce shock detachment by local choking.

6.4.3 Curved surface length required for choking, L*
Making the approximation that the post-shock Mach number gradient equals
the average gradient to the sonic surface gives,
dM;/ds = (1 - M3)/L* (6.6)
where L* is the distance from the shock (at the leading edge) to the sonic point on the

wedge.”* Using Eqn. (6.5) and P, from Eqn. (6.3), gives,

b (M3 -1)

M2 ()M s + (s —ahy)c0s0]

(6.7)

where j = 0/1 for planar/axial flow. The post-shock Mach number, M., is expressed in

terms of M, and 8 [NACA Rep. 1135, Eqn. 132],

so that the independent parameters that make up

the right-hand side of this expression are the

freestream Mach number, M, the shock angle, 6,
and the wedge curvature, D,. The shock angle can
be traded for the wedge angle, o, by the (M, 6, 0)-
relation for oblique shocks [NACA Rep. 1135,
Eqgn. 138] so that the right side becomes an

expression containing the freestream Mach

number, M,, and wedge geometry as specified by

* An interesting variation would be to assume a linear decrease in Mach number instead of the square of

the Mach number. In this case Eqn. (6.6) would read, d M, /ds = (1 — M, )/L*. This equation would give
a different value of L* by at most a factor of 2.
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(6 Dy, L*). Equation (6.7) is the ‘local choking equation’. 1t places a limit, L*, on
the length of curved wedge surface that supports an attached shock, predicting that a
value of L > L* will cause shock detachment by local choking. If L* = (), detachment
will occur due to local choking conditions right at the leading edge. Detachment by
local choking will not occur when L* — . However, shock detachment can still
occur by an excessive wedge deflection or by global choking. Shock detachment will
also not occur by local choking when Eqn. (6.7) gives a negative value of L* A large
positive surface curvature, D,, leads to local choking near the leading edge and shock
detachment even for a small value of L. This will become more evident for planar
flow where the combination L*D, appears as a parameter. Equation (6.7) is the basis
for judging the onset of local choking and the resulting shock detachment. Since it is
based on CST, it applies strictly only right behind the shock for small values of L* ~
0.1. For values of L much larger than 0.1 one should look to global choking as the
cause of shock detachment.

This section has produced an approximate length required to produce local
choking on a curved wedge. The next four sections deal with the implications of Eqn.
(6.7) for four types of leading edge shapes:

- planar flow over a flat surface where j = 0 and D, = 0;

- planar flow over a curved surface where j =0 and D, #0;

- axial flow over a URW with straight generators where j = 1 and D, = 0 (sketch
(a) in Section 6.2.1);

- axial flow inside and outside a curved URW where j = 1 and D, = 0 (sketches

(b) and (c) in section 6.2.1).

6.4.4 Local choking in planar flow over a flat plate (j =0 and D, =0)

An examination of Eqn. (6.7) shows that for these conditions the third term in the
denominator is zero so that L* — co. There is then no reason to expect local choking
at any Mach number and shock angle, so that detachment would occur only when 6
exceeds Oy, or Lsing is large enough for global choking to occur. Shock detachment

by local choking does not occur for flat shocks and wedges. It is reassuring that CST
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predicts what is known to be the correct result in the limiting case where surfaces and

shocks have no curvature.

6.4.5 Planar flow over a curved surface (j=0 and D, = 0)
For this case Eqn. (6.7) reduces to,

x 2
rp,=—L_n M; -1 6.8)

NI WL
os L]
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where 7, is the radius of curvature of the concave surface. It states that the ratio of
length of surface required to choke the post-shock flow to the surface radius of
curvature is a function of freestream Mach number and wedge angle. So that
Eqn.(6.8) places a limit on L*/r,=-L*D; (rad.) which is just the amount of post-shock
flow turning. This equation, a function of M; and &, is plotted in Fig. 6.15. Both this
graph and Fig.6.16 plotted for a selection of Mach numbers, from left to right: 1.05,
1.1,1.15,1.2,1.25,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.2,23,24,2.6,2.8, 3,3.2,34,
36,38, 4,45, 5,6, 8 10,20, 10000. This is the same set of Mach numbers that
appears in the plots of NACA Rep. 1135. Black curves in Fig. 6.15 represent shocks
with supersonic post-shock flow; red curves represent shocks with subsonic post-

shock flow.
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Each Mach number curve has a positive and a negative branch that meet at oo at the
Thomas point. The black curves for supersonic post-shock flow all give positive
values of L*D, (= - L*/r;) so that the supersonic post-shock flow chokes only when
L* is positive due to D, being positive (concave) also. It appears (black curves) that,
on a planar wedge, a post-shock flow turning above approximately 0.5 radians will
produce “supersonic” shock? detachment by local choking at any Mach number. All
supersonic shock curves dip to L*D, = 0 at values of their flow deflection angles
corresponding to sonic post-shock flow. This indicates that detachment of a
supersonic shock occurs when the flow behind the shock is sonic at any wedge
curvature. Detachment from a planar wedge at d,,,, occurs only on a wedge with zero
or negative curvature. Detachment of a “subsonic” shock can occur for positive or
negative D, on either side of the Thomas point as shown by the red curves.
Detachment of a “subsonic” shock can not occur at the Thomas point since P, and
hence the Mach number gradient, are both zero. Fig. 6.16 is on the familiar (0 vs. J)
polar for oblique shocks. It shows, by the black curves, where the L*D, limit for an

attached shock is positive and, by the red curves, where it is negative. A short portion

%> The nature of local choking behind shocks is distinguished by the post-shock flow being either subsonic
or supersonic. Hence the shocks are denoted as “subsonic” and “supersonic” in the two cases.
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of each curve, between the sonic and Crocco points is also red so that L*D, is

negative in this region.

6.4.6 Flow in a URW with conical surface (jf =1 and D,= 0)
This is the URW (a) shown in Fig. 6.1. For this geometry Eqn. (6.7) becomes,

] b (321

M2 [2+(7/—1)M22]|:(a1b2 —a2b1)c05¢9:|

*

(6.9)

This equation gives the flow-length of post-shock surface required to choke the

flow. Since the outside and inside flows are different; the shocks are acute and

obtuse respectively giving two different evaluations for L°, for the outer and inner

AXIAL FLOW
INSIDE FLOW

30-40
Mach number
1 2 3 4 5 6 7 8
DISTANCE FROM LEADING EDGE TO SONIC LINE
vs. MACH NUMBER AND WEDGE ANGLE LstarDeltaM

flows. Figure 6.17 is a plot of Eq. (6.9) for L* (Lstar)*® against M, with the
wedge angle as parameter for D, = 0, i.e an a-type URW, as described in Section
6.2.1, above with straight conically convergent inner surface. The various values of

o0 on the abscissa, where L* = 0, are the J,,, values, indicating that, for & =0,

26 L* is normalized by the URW radius of y=1
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DISTANCE TO CHOKING, L*, AS PARAMETER

local choking occurs right at the leading edge, effectively requiring a very short
duct length to cause detachment. An examination of this figure shows that moving
to a smaller duct convergence angle increases the length of duct, L*, required to
produce local choking and hence detachment at that angle. At Mach numbers
below ~2.5 the colour bands for & are almost vertical so that the effect of local
choking on shifting shock detachment away from J,,, is small. Figure 6.18 is a
cross-plot of Eqn. (6.7) for the inside surface of a URW at Mach 3. At Mach 3 the
deflection angle for sonic flow is -34.00835 deg and the maximum deflection is (-
34.07344) deg, as represented by the vertical border of the coloured area. The
surface curvature D, is plotted against the flow deflection through the shock at the
leading edge with L*, the distance from the leading edge to the sonic surface, as
parameter. Since L* is based on CST, and CST applies strictly only at the shock,
then only small (fractional) values of L*, predicted by Eqn. (6.7) , are credible on
this graph. Points at A(-33.5, 0) and B(-33.5, -1) are chosen for CFD verification.
At the A-point, L* = 0.3 and at the B-point, L* = 0.1. CST predicts that shock
detachment occurs with L-values larger than these in each case. The global choking
measure, L*sing, 1is 0.1655 and 0.0552 for points A and B, respectively; both
values being below the global choking criterion of 0.23.  Note that both of these
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points are for a Mach number of 3 and a wedge angle of -33.5 deg, so that

differences in shock attachment/detachment on the inner surface are due to wedge

curvature as manifest by local choking.

6.4.7 Flow in a URW with (jf =1and D, # 0)

This is the general case where the freestream Mach number and the wedge

geometry, as specified by (M;, 6 D), are given and L* is then calculated from

Eqn.(6.7).
b (M: -1
L=—; : 1( 2 ) (6.7)
M; [2+(7/—1)M2 J[alD2 + j(ab, —ayb)cos 49]
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Positive values of L* as given by Eqn. (6.7), are plotted in Fig. 6.19, versus the wedge

curvature and shock angle on the outside and inside surfaces of a URW, for Mach 2.7.

Green curves indicate positive surface curvature (turning away from the axis), red curves

indicate negative curvature (turning towards the axis).

The black curve is for zero

curvature (conical surface). Curves at and around a shock angle of 90 deg are anomalous

because flow curvatures are imposed on a normal shock and a normal shock can not

produce any curvature in a uniform free stream (see Section 3.5.1). All curves dip to L* =
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0 at the sonic shock angles and L*-—»c at the Thomas shock angles. A conical inside
surface will choke whereas a conical outside surface will not. Both sets of curves
terminate on the left and right at the Mach angles for Mach 2.7. At these (weak shock)
limits the surface curvatures determine the pressure gradients uniquely (see Section 3.8.1,
Eqn. 3.50); the pressure gradient determines the Mach number gradient and the Mach
number gradient determines L* This is the essence of local choking on a URW at Mach

2.7.

6.5 Computational examples”’

Curved shock theory (CST) applies exactly only to the curved shock and
the conditions immediately in front of and behind the shock surface. It is capable of
depicting conditions at shock detachment as they occur right at the shock. However, the
cause of these conditions is not necessarily reachable and detectable by CST when the
cause is some distance removed from the shock. Shock detachment by downstream
choking is an example of where the higher-than-tolerable pressure behind the shock is
created by conditions further downstream, conditions that are not in themselves
predictable by CST. In these situations CFD has to be used to simulate the whole flow-

field so as to include the effect of causes located away from the shock surface.

6.5.1 Grid-independence
The grid generator used by the

Ater 201585 time steps, 1= 1.3448931E1, 7‘3.1425-5. 111475 nodes present 2765

CFD code produces a grid that is /

asymmetric with respect to the splitter

tube. The code would then produce

results that could not be compared if

its calculations were at all grid- Fig. 6.20

Split wWedge, Pressure, M=1.67E0 1 87E4

27Computer program Solverll is used in this paper to obtain steady state
flows over URWs. Solverll is a finite-volume unstructured TVD Godunov-type
Euler code with local grid refinement.



161

dependent. A test calculation was performed on two plane wedges with no stream-wise
or cross-stream curvature on the top and bottom. For grid-independence the flows must
be identical. The result is shown in Fig. 6.20 for Mach 1.67 and a wedge angle of 16 deg
- just larger than the maximum deflection angle. The top and bottom flows show no grid-
induced dissimilarity so that any grid refinement is unwarranted. As an added feature, the
picture shows just-detached shocks where the post-shock flow has characteristics of
corner flow with concentric near-circular isobars centered at the corner. Corner flow is
an intermediate flow between an attached shock flow and detached shock flow. It allows

a time-wise smooth transition between the two.
6.5.2 Local and global choking

This section illustrates the difference between global and local flow choking in an
axial converging duct. Figure 6.21a shows Mach number contours on a URW as
calculated by the CFD code Solver II. The freestream Mach number is 2.7 for which the
maximum deflection angle is 31.7406 deg and the sonic shock deflection is 31.64294 deg.
The upper (outer) and lower (inner) wedge angles are both 30 deg so that on a plane
wedge the shocks would both be attached with slightly supersonic post-shock flow. Flow
is supersonic on the outer wedge surface and the shock is attached. However, on the
lower wedge the flow is subsonic and the shock is very close to detaching. This is an
example of shock detachment by local choking where the sonic surface, appearing as a
thin black line from the shoulder to the shock, is not able to pass the flow entering
through the shock in front of it. Shock detachment is caused by the curved shape of the
inside surface at the leading edge. Although there is a Mach disk at the centre line, the
global (inside) flow is not choked and the detached flow is confined to the leading edge

without being affected by downstream conditions — hence the term ‘local choking’.

37856E1, dt= B.833E-5, 22228 nodes present 3 7gp 5, t= 5.619845E8, dt= 1.272ZE-5, 36938 nodes present 1.8E@

Fig. 6.21b T

\MK 4:9;-

| Fie. 6.21a
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Figure 6.21b is for a URW at a freestream Mach number of 1.7. For Mach 1.7 the
maximum deflection and sonic shock angles are 17.01194 and 16.63108. Both upper and
lower wedge angles are 16.0000 deg. The splitter tube appears on this picture. In this
case the outer shock is attached whereas the inner shock is detached from the leading
edge. All of the inner flow is choked at the sonic surface and the shock has assumed a

steady shape and position in front of the URW.

6.5.3 Attachment/detachment hysteresis by CFD

At supersonic speeds, two distinctly differing global flows can exist in a given
converging duct, the so-called started and unstarted flows. These flows are subject to
hysteresis when approached by increasing or decreasing Mach numbers. This section
describes a similar hysteresis for local flow at the leading edge. The leading edge of a

URW is shown in Fig. 6.22a,b with a £30 deg double wedge leading edge.

\\
X
\

In the calculations for the left picture 6.22a the Mach number was very gradually
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brought down to Mach 2.7 from Mach 3. In the right picture 6.22b the Mach number
was brought up to 2.7 from Mach 2.5. At Mach 2.7 the sonic angle is at 31.64294 deg
and the maximum flow deflection is 31.7406 so it is not surprising that the flow on
the outside wedges is supersonic with an attached shock for both cases. On the inside,
however, the flows are markedly different. First of all they are different from their
corresponding external flows because of the lateral curvature and secondly they are
different from each other — this being the hysteresis. In the decreasing Mach number
case the lower shock is attached and concave towards the on-coming flow. In the

increasing Mach number case the lower shock is detached and convex with subsonic
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downstream flow. This is in accord with Eqn. (6.7) which predicts differing values

of L* for weak and strong shocks.

6.5.4 CFD vs. CST

CFD calculations are presented in this section for the CST predictions in
Section 6.4 of Eqn. (6.7) at conditions for the two points A and B. All the results are
for a Mach number of 3 and a wedge angle of 33.5 deg. At this Mach number the
flow deflection angle for sonic flow is 34.00835 deg and for maximum deflection it is
34.07344 deg so that, on a plane wedge, the shock remains attached. The 0.5 degree
difference in flow deflection angle represents a 1.5 degree difference in shock angle
at this Mach number. CFD result for point B is shown in Fig.6.23b with constant
Mach number contours. The axial wedge surface at the top is curved towards the flow
with a radius of curvature of 1. The distance from the axis of symmetry at the bottom
to the top of this figure is also unity. The doubly curved leading edge supports a

detached shock with subsonic flow between the
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shock and the surface and a sonic line from the corner to the shock. The diagram in
Fig.6.23a is an enlarged view of the subsonic region where the detachment is is
clearly visible. This is an example of shock detachment occurring due to local flow
choking as induced by wedge curvatures in both streamwise and transverse directions.
Globally, the flow is unchoked. The conditions for point A led to global choking

where the shock moved upstream out of the computational region.
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Figure 6.24  shows
Mach number colour grading
over the leading edge of a
URW with outer/inner
deflection angles £30 deg in a
Mach 3 freestream flow. An
infinitely thin splitter tube is
inserted, in the computational
domain, projecting upstream

from the leading edge, to keep

the effects of the upper and

lower curvatures from

interacting. The streamwise curvature for both surfaces is zero, D, = 0. For the
upper/outer surface the lateral curvature is -cos(30) = -.8660 and for the lower/inner
surface it is -cos(150) = .8660 with curvature radii 1.1547 and -1.1547 respectively.
The negative and positive curvatures cause expansive and contractive flows on the
upper and lower surfaces as specified by the second term of Eqn. (6.3). Expansive
flow on the upper surface is supersonic whereas compressive flow on the bottom is
subsonic. The bottom flow chokes at the corner causing detachment of the lower
shock. This is an illustration of shock detachment as caused by lateral surface

curvature through the action of local choking.
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Figure 6.25 is for planar flow at Mach 1.7, with constant Mach number lines,
where the outer and inner wedge angles are £16.5 deg. At this Mach number the
sonic and maximum deflection angles are 16.6311 and 17.0119, so that, on plane
wedges the shocks would remain attached. In fact the upper wedge is plane and the
shock is attached with a sonic line shown between the plane surface and the shock,
indicating just-supersonic flow. The bottom wedge is curved towards the flow in the
streamwi