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ABSTRACT

This thesis presents the application of k-space Image Correlation Spec-

troscopy (kICS) to the analysis of fluorescence microscopy image time series for the

measurement of particle diffusion in heterogeneous membranes, composed of micro-

domains. The extension, testing and application of kICS for such measurements is

developed both in silico with simulation and with in vivo cellular experiments.

Connections between kICS analysis and other existing fluorescent microscopy

techniques used in the study of heterogeneous membranes, such as single particle

tracking (SPT) and spot vary Fluorescence Correlation Spectroscopy (FCS) are

introduced. This is followed by the development of kICS theory of fluorescent

particle diffusion within a heterogeneous two dimensional (2D) environment.

Two possible membrane heterogeneities, isolated lipid micro-domains and actin

proximal meshwork, are considered separately. The emergent models suggest that

the kICS correlation function (CF) can be fit by a sum of two Gaussians in the

case of particle diffusion in the presence of isolated micro-domains. These two fit

components, called ’fast’ and ’slow’, with the fast associated with the rapid decay

of the kICS CF at small spatial frequencies due to particle motion on large spatial

scales outside domains while the slow component refers to the confined particle

motion on large spatial frequencies or small spatial scales in domains. On the other

hand, the meshwork confinement is well fit with a single Gaussian model for the

analysis of kICS CF. These models suggest that the exponents and amplitudes of

the fits embed the characteristic system parameters such as diffusion coefficients
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outside and inside domains, the partitioning rates, micro-domains radii and mesh

pore size.

Furthermore, systematic simulations to study different confinement scenarios

were conducted and the calculated kICS correlation functions were fit and the

output interpreted for recovery of self system parameters. The characterization of

the simulated data suggests that kICS CFs exhibit various confinement dependent

features, such as decays due to effective slow and fast dynamics populations and

effective domain sizes. The in silico characterization of different confinement

scenarios, suggests a connection between the apparent measured confinement

properties, and the set system defining parameters. We explore the range and

limits where confinement effects can be detected and accurately measured by kICS

analysis. Possible systematic errors in the values of the fit extracted parameters

due to background noise is discussed with possible alternative solutions.

Finally, we apply this extension of kICS to the heterogeneous membrane en-

vironment to explore the confinement dynamics of GPI-GFP anchored proteins in

the basal plasma membrane of COS-7 cells. We employ a novel labelling approach

of GPI-GFP using anti-GFP-Alexa594 and image the protein in COS-7 cell mem-

branes with TIRF microscopy. Cells were exposed to enzymatic treatments, using

the Cholesterol Oxidase (COase) and Sphingomyelinase (SMase), in order to dis-

rupt membrane domains and change GPI-GFP confinement dynamics. We observe

that GPI-GFP mobility and the effective domain size measured correlates with

the enzymatic exposure time. We attribute it to the conversion of the membrane

domain constituents, cholesterol and sphingomyelin, upon the enzymatic reactions,
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leading to membrane domain that are effectively larger and leakier. Finally, we

conclude with possible improvements and future directions.
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ABRÉGÉ

La thèse qui suit est a propos de l’adaptation de la technique de la spectro-

scopie par la corrélation des images dans l’espace de Fourier, appelle kICS. La

nouveauté consiste en utilisation de kICS pour analyser les séries temporelles

d’images fluorescentes afin de caractériser la diffusion des particules en présence

des membranes hétérogénes, composées de micro-domaines.

Tout d’abord, une parallèle est exposée entre l’analyse fondée sur kICS pro-

posé ci-dessus et d’autres techniques de microscopie à fluorescence existantes et

utilisées dans l’étude des membranes hétérogénes. Ensuite, on expose le développe-

ment de la théorie de kICS dans les cas de la diffusion des particules fluorescentes

dans un espace hétérogène bidimensionnel (2D). Les deux hétérogénéités mem-

branaires possibles, micro-domaines lipidiques isolés et le réseau de l’actine

proximale, sont considérés séparément. Les modèles émergents suggèrent que

la fonction de corrélation de kICS doit être caractérisé par une somme de deux

Gaussiennes dans le cas de la dynamique des particules en présence de micro-

domaines isolés. Ces deux éléments, appelés ’rapide’ et ’lent’, représentent les

composantes dynamiques a deux échelles d’espace différentes. La rapide est associé

à la décroissance rapide de la fonction de corrélation de kICS à petites fréquences

spatiales dues au mouvement des particules sur de grandes échelles spatiales.

La composante lente réfère au mouvement des particules confinées à des petites

échelles spatiales, observées sur de grandes fréquences spatiales de kICS. D’autre
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part, la fonction de corrélation de kICS due au confinement par le réseau du cy-

toskeleton peut être caractérise par unique décroissance Gaussienne. Ces modèles

suggèrent que les exposants et les amplitudes obtenus par la caractérisation de

la fonction kICS dépend des paramètres caractéristiques du système tels que les

coefficients de diffusion à l’extérieur et à l’intérieur de domaines, les taux de migra-

tion de particules vers intérieur ou extérieur de micro-domaines ou des tailles de

porosités du réseaux du cytoskeleton.

Les études systématiques par les simulations des scénarios différents de

confinement et leurs effets sur la fonction de corrélation de kICS ont été explorés.

La caractérisation des données simulées suggèrent que les fonctions de corrélation

ont des caractéristiques qui dépendent de confinement et les propriétés spécifiques,

tels que la dynamique des populations lents et rapides et la tailles effective de

micro-domaines. La caractérisation des scénarios de confinement différents,

représente les liens entre les propriétés apparentes mesurées de confinement,

et un ensemble de paramètres définissant hétérogénéité. Nous explorons les

limites pour lesquelles des effets de confinement ne sont pas observées dans la

fonction de corrélation kICS. Les éventuelles erreurs systématiques dans les valeurs

des paramètres extraits à cause du bruit de fond est discuté avec des possibles

solutions.

Finalement, nous utilisons l’analyse afin d’explorer la dynamique de confine-

ment de la protéine ancrée à GPI-GFP dans la membrane plasmique basale des

cellules COS-7. Nous explorons une approche nouvelle de la conjugaison entre le

GPI-GFP et les anti-GFP-Alexa594 et imagé par la microscopie TIRF. Les cellules
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ont été exposées à des traitements enzymatiques, par Coase et SMase, afin de

perturber domaines membranaires et changer la dynamique de confinement de

GPI-GFP. Les réactions enzymatiques augmentent la mobilité et la taille effective

des domaines de GPI-GFP. Nous attribuons cela à la conversion des constituants

des domaines, le cholestérol et la sphingomyéline, par les réactions enzymatiques,

ce qui conduit aux plus grandes et moins étanches domaines membranaires.
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STATEMENT OF ORIGINALITY

The author claims that the following aspects of the thesis constitute original

scholarship and an advancement of knowledge:

• chapter 2 The theoretical link connecting the dynamic light scattering

related metrics and image correlation spectroscopy correlation functions

was made. For the first time, clear equivalence between the spatio-temporal

image correlation spectroscopy (STICS) and k-space image correlation

spectroscopy (kICS) CF was made. The theory for kICS in presence of

two phase media, characterized by isolated microscopic domains, is linked

with the chemical reaction-diffusion system of equations. The model is the

first instance in which STICS or kICS are applied for the measurement

of the confined particles dynamics and system parameters from an image

time series. The kICS theory for analyzing a meshwork type confinement

is suggested based on a phenomenological observation of data and from

theoretical models published in the SPT and FCS literature.

• chapter 3 The development of an image time series simulator with realistic

convolutions taking into account possible sub-pixel displacements of the

particles. Implementation of a continuous value for membrane domain

sizes, in contrast to the old methodology employing the use of raftMask

images. A novel approach to the interpretation of kICS correlation functions,

using a fit with a sum of two Gaussian functions in order to characterize

the effective dynamic populations emerging in the presence of membrane
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heterogeneities. A single Gaussian fit vs time lag, at given spatial frequency

k2, in order to extract the so called ICS diffusion law. An original approach

to the GPI-GFP labelling by the anti-GFP-Alexa594 in order to increase the

signal-to-background level in the experimental images.

• chapter 4 The simulations were performed for the isolated membrane

domains and meshwork modelling a heterogeneous membrane environment.

The parameters governing the particles confined diffusion were varied system-

atically. kICS was used for first time to characterize all of the confinement

scenarios simulated and the fitted correlation function data were interpreted.

The parameters extracted, such as diffusion coefficients at small and large

spatial scales, their amplitudes, the plateau of the saturation of the slow

component are the hallmark of kICS correlation function in presence of a

heterogeneous two-phase environment. They were demonstrated to corre-

late with the variation of the set simulation parameters such as diffusion

coefficients inside and outside domains, probabilities of partitioning inside

and outside domains, domain size and domain density. The meshwork-like

confinement was shown to yield a single Gaussian decay for the calculated

kICS CF. The microscopic and macroscopic diffusion coefficients and mesh

pore radius in a meshwork system can be determined from the 4Dτ vs τ

relation extracted from the fit. The confinement statistics, such as average

particle domain partitioning β, correlate with kICS extracted properties such

as saturation of the slow component plateau and amplitudes saturation for

different components.
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• chapter 5 The first measurement and characterization of GPI-GFP dy-

namics in COS-7 cells using the new extension of kICS analysis. Enzymatic

treatments were made to perturb GPI-GFP domains, using coase and smase,

and kICS analyzed image time series were characterized for the characteristic

confinement parameters.

Because of the interdisciplinary nature of biophysics, some of the work presented

here was completed in collaboration with others. The procedures included in this

thesis that were completed in collaboration with other people include:

• Experimental GPI-GFP characterization The experimental work

included in chapter 5 was done together with Dr. Asmahan Abu Arish. The

shared tasks involved cell culture, cellular transfection and TIRF microscopy,

while the image time series kICS analysis was done solely by the author of

this thesis.

• Theory development The part of the theory dealing with the inter-

conversion of two dynamic species was developed partially by Hussain Sangji

during his summer research fellowship in 2012.
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CHAPTER 1
Introduction

1.1 Heterogeneity in cellular membrane environments

Our view of matter in terms of structure and function is constantly evolving

due to new experimental findings obtained with newly developed techniques.

For instance, the modern view of the atom has evolved ever since John Dalton

proposed the atomic hypothesis [1]. The development of quantum theory in the

early 20th century suggested several experiments, which were carried out and

established radical new views about the structure of atoms. It also led to the

emergence of a more detailed view of molecules and stimulated afresh the interest

for defining the physical basis of biological molecules, cells and their constituents,

as was exemplified in Schrödinger’s “What is Life?” [2].

In a similar way, molecular biology has been driven by advances in techniques.

The investigation of the structure of cellular membranes started with a series of

pioneering experiments in 1925. Measurement of the capacitance of erythrocyte

(red blood cell) membranes provided an initial estimate of 3.3 nm for the cell

barrier thickness [3]. The misinterpretation of these results led to the belief

that this was the thickness of a mono-layer. Later that year, quantification

of erythrocyte lipid content led to the conclusion that the cellular membrane
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is a bilayer [4]. Lipids are molecular building blocks of cellular membranes,

usually composed of two generally two hydrocarbon tails and a polar head group.

Therefore, within a bilayer the polar head of each mono-layer would face the

aqueous exterior and interior of cell while the hydrophobic hydrocarbon chains

would be forming the ‘oily’ core of the bilayer. This model of the membrane was

still a static one, where lipids simply form a passive barrier between the cell’s

interior and exterior. The subsequent extension of the cellular membrane model

suggested that the lipid bilayer is coated with globular proteins on both surfaces,

by simple absorption from the surrounding solution [5]. Furthermore, the advent

of the painted “black lipid membrane” technique allowed researchers to determine

that lipid bilayers exhibit a high lateral fluidity [6]. As a consequence, lipids were

no longer considered as static components of a cellular barrier. The revolutionary

experiment by Frye and Edidin [7], in 1970, demonstrated that membrane proteins

actually diffuse in the cell membrane. These experiments set the stage for the

development of the fluid mosaic model of biological membranes by Singer and

Nicholson in 1972 [8]. In this model, the cell membrane acts as a two-dimensional

lipid bilayer in which proteins play a functional role and are embedded in the

outer or inner mono-layer or span the bilayer. The key feature of the model is that

proteins diffuse freely within the two dimensional fluid lipid matrix and the lipids

are free to diffuse laterally and rotationally as well. Although Singer and Nicholson

did not explicitly postulate the existence of other forms of heterogeneity, they

specified that "the absence of long-range order should not be taken to imply an

absence of short-range order in the membrane" [8].
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Figure 1–1: Singer and Nicholson Fluid Mosaic model of cell membrane with larger
proteins embedded in a fluid lipid bilayer. Adapted from [8] with a permission.

In reality, cells can generate over 1000 different types of lipids [9] that can

partition asymmetrically in the two leaflets, creating a composition heterogeneity

perpendicular to the membrane plane.

Moreover, membrane proteins represent approximately 30 % of proteins

present within a cell. Various published experiments show that the surface cov-

erage by membrane proteins is in the range of 30-70 % [10, 11, 12]. Given this

crowded molecular environment of the cell membrane, there is only a small reser-

voir of lipids that one can accommodate around a given protein. In turn, this

would suggest that the immediate lipid environment of the embedded membrane

protein will play a crucial role in the regulation of its function. In addition, one

may infer, based on the richness of lipid species, that the heterogeneity will not

only exist perpendicular to the membrane plane, but also in the lateral plane. One

such heterogeneity occurs in Golgi apparatus membranes, that serve as a protein

sorting centres. Indeed, in late 80’s, Simons and van Meer [13, 14] discovered
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that glycosphingolipids form clusters in the Golgi apparatus that serve as sorting

regions for the selective transport of proteins to the apical surface of polarized

epithelial cells. Subsequent studies of these clusters by the non-ionic detergent

solubilization of membranes at low temperatures, suggested that they are con-

tained within the detergent resistant membrane (DRM) fractions [15]. DRM’s were

shown to be rich in cholesterol and glycosylphosphatidyl inositol (GPI)-anchored

proteins. Biophysical experiments using an optical tweezer, determined the domain

radius to be 50 nm [16] in radius. The term “rafts” was coined to describe these

assemblies of sphingolipids, cholesterol and proteins, that were believed to play

a role in membrane trafficking and signalling [13]. Since then, many biochemical

studies suggested the presence of various proteins inside these rafts, based solely on

the appearance of these proteins in the DRM fraction. Nevertheless, later studies

have questioned the validity of the biochemical fractionation approach due to the

potential membrane altering properties of detergents [17]. Furthermore, a number

of attempts at microscopy imaging to visualize these membrane domains were tried

without success. As well, the standard biophysical fluorescence microscopy based

techniques, fluorescence recovery after photobleaching (FRAP) and förster reso-

nance energy transfer (FRET), did not yield the same spatial scale when applied

to these objects [18], which added to the scepticism about the raft concept. The

difficulty in characterizing these objects in the cellular membrane by biophysical

means, was due to the fact that these objects are smaller than the diffraction

limited resolution of the light microscopy and they have short lifetimes (i.e. they

are transient) [19]. Widely accepted criteria for defining rafts were lacking 10
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years ago, when the raft constituents were defined as an insoluble residue or DRM

remaining after non-ionic detergent solubilization at a low temperature. Other

treatments, such as addition of the cyclodextrin, which extracts the cholesterol

from membranes, were attempted in order to reinforce the presence of membrane

domains in live cells. Nevertheless, the detergent solubilization of membranes

was criticized for being an inherently artificial method leading to many possible

outcomes, depending of the concentration and type of detergent, duration of ex-

traction and temperature [20]. Also, a cyclodextrin treatment leads to serious side

effects that change the protein mobility [21] and many cellular functions can be

perturbed [22].

This impasse in the raft field encouraged and inspired new efforts to find

biophysical methods to study the behaviour of these small and transient membrane

structures. This included techniques such as single molecule spectroscopy and

microscopy which were already developed and applied to other problems in cell

biology. New adaptations of these techniques such as FRET and single particle

tracking (SPT) at a higher spatial and temporal resolutions, were able to answer

some central questions. For instance, the homo- and hetero- FRET revealed that

GPI-anchored proteins exist in cholesterol dependent nano-clusters [23]. On the

other hand, SPT of GPI revealed the existence of mobile smaller rafts, while bigger

stationary domains were found to be composed of several raft proteins [24].

A new adaptation of a fluorescence fluctuation technique named fluorescence

correlation spectroscopy (FCS) revealed partitioning of membrane proteins at

5



timescales of a few µs to ms [25]. Their FCS adaptation involved varying the beam

radius of the excitation focus (see section 1.3.2). Indeed, by applying a milder

treatment using cholesterol oxidase or sphyngomyelinase, enzymes which convert

some of the cholesterol and sphingomyelin, respectively within rafts, into different

chemical components, the authors were able to change dynamics of postulated

raft embedded proteins. They also used the method to measure yet another type

of membrane heterogeneity, the meshwork. Such membrane heterogeneity can

be caused by several sources and it is commonly thought that it is due to the

actin cytoskeleton mesh that is in close proximity of the inner leaflet of cellular

plasma membrane as shown in the diagram of the figure 1–2. If a trans-membrane

protein extends its cytoplasmic domain into the cell, this could potentially be

confined by or interact with the actin meshwork, much like getting caught in a

net. Consequently, a protein that would otherwise freely diffuse unrestricted in

the membrane, remains confined within the given mesh pore until the cytoskeleton

relaxes allowing the particle to “hop” from one compartment into an adjacent

one. Another possible source of meshwork that can confine a membrane protein

comes from the collagen extra-cellular matrix as shown in the figure 1–2. This

type of membrane associated heterogeneity was the subject of SPT experiments

over past 15 years [27, 28, 29] which led to the solution of an old observation

that puzzled the scientific community: why do membrane proteins appeared to

move an order of magnitude slower in real cell membranes as compared to the

model membranes? A high speed image acquisition with SPT showed that the

molecular motion within the meshwork defined compartment, was on same order
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Figure 1–2: Membrane in the presence of Lipid Rafts, Extracellular and Intracel-
lular Meshwork. Red spheres represent the major lipid (DPPC) head group and
cyan its hydrocarbon tails. GPI-anchored protein inserts preferentially into choles-
terol rich domains. A trans-membrane protein, a potassium channel in this case,
can be confined by the actin cytoskeleton. PDB entries: 1N83 (cholesterol), 1BKV
(collagen), 3B63 (actin), 1F6G (potassium channel). Lipid structures (DPPC) were
found at [26])

of magnitude as the motion of proteins in a reconstituted artificial model lipid

bilayer system. The slower hopping from one compartment to another is what was

typically observed before when particle motion was acquired at lower imaging rates

and lower spatial resolution. These findings suggested the compartmentalization

of plasma membrane by the underlying actin cytoskeleton. In summary, over

the past two decades our knowledge of the cell membrane structure have evolved

dramatically to the extent that the membrane is now considered “more mosaic

than fluid” [30].
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In this thesis, we develop and explore a new approach for studying membrane

heterogeneity, using another biophysics technique. It is an extension of the

existing Image Correlation Spectroscopy (ICS) techniques that we will exploit

in order to elucidate dynamics of particles exploring heterogeneous membrane

and its characteristic length scales. The remainder of this chapter will consist of

a summary introduction to the principles of fluorescence, fluorescent dyes and

fluorescence microscopy, including Total Internal Reflection (TIRF) microscopy.

We will compare the results of two biophysical techniques introduced previously,

SPT and FCS, as they have played a major role in most recent studies of the

membrane heterogeneity and share similarities with the new ICS approach. We

conclude the chapter with preview of the material that will be the subject of this

thesis.

1.2 Fluorescence

Methods developed in this thesis are all based on the fluorescence microscopy.

Therefore, we will provide an introduction to the key concepts of fluorescence in

following sections.

1.2.1 Definition of fluorescence

The photoluminescence is a process by which a matter absorbs light (elec-

tromagnetic radiation) and re-radiates new light after a period of time. Although

there exists the resonant (the absorbed and emitted photons have same energy)

type of photoluminescence, we will describe the two most widely used variants in

biological sciences: fluorescence and phosphorescence. The fluorescence consists
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of the absorption of the light by a molecule (a fluorophore), and the excitation of

an electron, on a time scale of 10−15 s, from the ground singlet (spin) state to an

excited singlet state. The electron relaxes vibrationally within the excited state,

without emitting light, and then emits light at higher wavelengths photon (the

energy smaller than that of excitation). In order to visualize the electronic states

of a molecule, one can refer to the Jablonski energy diagram [31] as depicted in

figure 1–3.

Figure 1–3: Jablonski diagram for Fluorescence and Phosphorescence

This transition to the ground electronic state is on the ns timescale. On the

other hand, during phosphorescence the molecule undergoes a transition from

the excited singlet to excited triplet state, and the return to ground states is

spin-prohibited. As a consequence, the phosphorescence occurs on a much longer

time scale (ms to seconds) in comparison to the fluorescence. This is the basic

principle of “glow in the dark” substances. The difference between the lower

emission energy light and excitation radiation is called the Stokes shift, after
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G.G. Stokes who described it in 1852 [32]. Fluorescence usually occurs due to

a transition from the ground vibrational level of the excited singlet state S1 to

the ground vibrational level of the ground singlet state (S0) giving rise to the

major peak in the fluorescence emission spectra 1–4. The transitions from other

excited vibrational S1 levels to other vibrational levels of S0 are less likely, but

are still possible and result in the spread of the emission spectrum about its peak

wavelength.
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Figure 1–4: GFP and Alexa 594 fluorescence excitation and emission spectra.

Fluorophores can undergo non-radiative transitions from the excited state to

the ground state (termed internal conversion) as well. The ratio of the number

of emitted to absorbed photons on average per molecule is called the quantum

yield which defines the efficiency of this process (it is always smaller than one).

Several effects can influence the quantum yield, including the inter-system crossing

(like phosphorescence), non-radiative transitions from excited to ground state and
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non-radiative transfer of energy to nearby fluorophores (the resonance transfer or

quenching).

Perhaps the greatest advantage of fluorescence is the ability to observe

specifically labelled molecules inside a cell, with high sensitivity because we

detect the fluorescence at a longer wavelength than the excitation light. Our

measurement exploit this sensitivity in order to study the motion and distribution

of membrane proteins in live cells.

1.2.2 Tracers used to probe heterogeneous environment

In order to observe a particular protein of interest in a live cell, one needs a

non-invasive and specific labelling of the target molecule. Currently, the fusion of

genes of the protein of interest with that of green fluorescent protein (GFP) vari-

ants, is a common practise in molecular biology laboratories. The GFP is a small

protein that is found in the jellyfish Aequoria victoria [33] that produces a green

light after being excited by the aequorin blue light, giving the animal an overall

green color. The excitation of wild-type GFP occurs primarily in the UV to blue

range, which is not a desirable characteristic for a marker of proteins in live cells,

since several naturally occurring proteins in the cell can absorb UV and blue

light, and UV light is known to damage cells. Several research groups developed

mutations of GFP, that not only shifted the excitation spectrum to higher wave-

lengths, but also improved its quantum yield, pH sensitivity, photo-stability and

maturation folding time [34]. Elucidation of its crystal structure (figure 1–5 b) by
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the X-ray diffraction further opened research into improving the photophysical

properties of this molecule and its variants [35].

(a) Alexa dyes (b) Green Fluorescent Protein

Figure 1–5: a) Organic Fluorescent Alexa dyes. Adapted from [36]. b) Side and
top views of the crystallographic structure of Green Fluorescent Protein. PDB
entry 1EMA. Source : [37]

Once researchers knew which amino acids formed the external surface of its

barrel-like structure, targeted mutations could be employed to create a monomeric

version of this protein. In turn, a desirable property of a marker is to be as small

as possible in order to minimize the perturbations to the function of the target

molecule. In addition, exact knowledge of the fluorophore structure and position

of its light absorbing “antena” (residue 66) was crucial in development of new

color variants. In general, there are several aspects to consider when one chooses a

fluorescent protein to use for cellular studies including: its excitation and emission

spectra, folding rate, monomeric vs multimeric state, its brightness (encompasses

the quantum yield of the fluorophore) and wavelength detection window of the

imaging system [38]. In the present work, we chose the enhanced green fluorescent

protein (EGFP) as it has a single excitation peak at 488 nm and an emission
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peak at 510 nm (Fig. 1–4). Moreover, it has an improved fluorescence and

photo-stability compared to wild-type GFP as well as shorter maturation time.

There are two major drawbacks of using EGFP (or other fluorescent proteins).

One is that it can photo-bleach, which is a photochemical reaction causing a

fluorophore to lose fluorescence due to photo-chemical conversion into a “dark

state”. When the fluorophore is photo-bleached, we are no longer capturing light

from it on the detector, which can influence the outcome of the data analysis from

SPT, FCS or other quantitative biophysical techniques. The other is that, despite

of the existence of tight controllers of protein expression (production) in cells,

one cannot achieve a very precise control on the concentration of GFP (or other

proteins) in any given cell. As a consequence, very high densities of proteins may

be expressed in a cell membrane resulting in a spatially overlapping fluorescence

signals from very closely packed proteins. This will affect the results of biophysical

techniques as it introduces density variations from cell to cell.

As a potential replacement of organic fluorophores are the semiconductor

nanoparticles, also known as quantum dots (QD), which have reduced photo-

bleaching and high quantum yield [39]. They consist of 5-10 nm crystals that

can be coated and bioconjugated to selectively bind to a protein of interest on

the surface of a cellular membrane. Nevertheless, they exhibit intermittent light

emission (a.k.a. blinking) at all time scales, which complicates data interpretation.

Moreover, surface conjugation that renders QD specific to a given protein, may

create several binding sites that can attach to more than one protein of interest,

on a cellular surface. Labelling of GPI or other raft associated marker, with QD,
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could induce an artificial clustering, being an undesirable feature for this type of

studies. As well, after bioconjugation, they are larger than fluorescent proteins

(15-20 nm).

Another alternative to natural fluorescent proteins are organic fluorescent

dyes such as the Alexa Fluorphores (Fig. 1–5a). These are sulfated forms of

different basic fluorescent chemical dyes like fluorescein, coumarin, cyanine or

rhodamine [40]. The advantage of these dyes is their small size (few Angstroms

compared to few nm for GFP) without compromising the photo-stability and

brightness. It is that characteristic that makes them appealing when labelling

proteins on the cell surface. Indeed, from 4-8 Alexa dyes can attach on the surface

of a single antibody which in turn binds to the specific protein on the cell surface.

This labelling strategy is employed in the present work to mark the GPI-anchored

proteins on the surface of live cells, as detailed in the following sections.

Fluorescent dye conjugated antibody labelling of
proteins of interest

Immunostaining or immunofluorescence labelling refers to techniques by which

a protein of interest is labelled with fluorophore-tagged antibody for microscopy

visualization. It was developed in 1940s [41] by Albert Coons and is still widely

used. Figure 1–6 shows immunoglobulin G (IgG) , which is a type of antibody

composed of four peptide chains: two identical heavy and two light chains. IgG are

produced by plasma B lymphocyte cells during an immune response. Its crystal

structure reveals a “Y” shape typical of IgG antibody monomers. Each IgG has

two antigen binding pockets. These pockets are produced by lymphocytes in
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Figure 1–6: IgG Antibody X-ray diffraction resolved crystallographic structure
(PDB entry: 1IGT)

response to the invading reagent (antigen) present in the host organism during

infection. Therefore, antigen binding pockets have very high specificity, which is a

desirable feature for the labelling of a particular protein in cells. Often, proteins

are labelled with a primary antibody, followed by a secondary antibody labelling of

the primary antibody. As result, multiple fluorophore tagged secondary antibodies

can sometimes bind to the primary and amplify the signal from a single target

protein. Due to the large antibody size, the labelling often requires cell fixation

and permeabilization, consisting of opening large pores in cell membranes, in order

to allow antibodies access to the inside of the cell. Luckily, GPI-anchored proteins

are inserted in the outer leaflet of the cell plasma membrane which makes them a

good candidate for labelling live cells with antibodies without permeabilization.

As shown in figure 1–7, anti-GFP IgG can bind a single GPI-GFP complex while

being labelled by 4-8 Alexa dyes. [42]. This procedure increases the signal to noise
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ratio per GPI molecule which is advantageous for the protein detection in the

fluorescence microscopy.

Figure 1–7: GPI-GFP labelled by an Anti-GFP tagged with Alexa-594 dyes. Each
Anti-GFP contains 4 to 8 Alexa dyes, giving higher fluorescence signal for a single
GPI molecule, than would GFP alone provide.

Moreover, the amount of anti-GFP IgG conjugated to Alexa dye can be

controlled in both concentration and exposure time, allowing for low dilution

(sparse) labelling of GPI-GFP molecules on the cell surface. Alexa dyes come in a

variety of colors and are commercially available as the anti-GFP IgG conjugated

to Alexa dyes (Molecular Probes). In this thesis, the choice of Alexa 594 was
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obvious, since its excitation spectra was red shifted compared to EGFP. By using

a 560 nm laser and appropriate filter sets, we could observe the Alexa 594 signal

alone. A possible drawback of this labelling strategy is that there could be possible

forced aggregation of GPI-GFP molecules if a single anti-GFP binds two different

GFP’s. This is likely a very low probability event, as an IgG free binding site is

unlikely to have access to another GFP, due to steric effects in the membrane and

a limited range of the hinge region of the protein. Nevertheless, such event, if it

did occur, would at worst dimerize a fraction of the GPI population. Another

possible undesirable outcome of this labelling procedure is the possibility that

a single IgG binds two GPI-GFP from closely spaced nano-domains, inducing

clustering of domains. Luckily, this was not observed, as macroscopic rafts were

not seen to appear in the image time series. Care must be taken to expose the cells

to low concentrations of IgG and for minimal periods of time.

1.2.3 Fluorescence microscopy

Epi-fluorescence microscopy. Once the cells have been labelled with

fluorophores for the target molecule of interest, they are ready for fluorescence

microscopy. Modern fluorescence microscopes operate in epi-fluorescence mode,

meaning that the excitation and emission light pass through the same optics as

shown schematically in Fig 1–8. In its basic form, the light source is a broad-band

lamp (such as mercury or tungsten). The light first passes through an excitation

filter that narrows the light wavelengths to match the excitation range of the

target fluorophore and then is reflected by a dichroic mirror into an objective

lens back aperture to be focused on the sample. The fluorophores in the sample
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Figure 1–8: In Epi-Fluorescence microscopy, excitation and emission light passes
through the same objective lens.

are excited and emit fluorescent light which is collected by the same objective

and passes through the dichroic mirror and is directed toward a detector. Before

reaching the detector, the emission signal passes thorough another filter that

matches the emission spectrum of the desired fluorophore. This way the detected

signal is limited to the desired fluorophore emission, without excitation light or

other possible spurious light.

Total internal reflection fluorescence microscopy. Despite the advan-

tage conferred by the fluorescence specificity, the simple wide-field epi-fluorescence

microscope has a major drawback in that a thick region of sample is being excited

simultaneously, both in and out of the focus. Consequently, the background flu-

orescence from outside the focal plane can decrease the signal-to-noise ratio and

reduce the spatial resolution of the features one wants to probe in the specimens.

TIRF microscope takes advantage of a unique property of an induced evanescent
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wave (or field) within a thin sheet ( 100 nm) at the interface between two me-

dia having different refractive indices. The basic principle of the creation of this

evanescent field relies on the total internal reflection of light when it crosses the

interface from a high to low refractive index medium. The incidence angle at which

this happens is called the critical angle. It can be derived from Snell’s law with the

knowledge of the two media indices of refraction. Although the entire incident light

ray may seem to be back reflected into the incident medium, by geometric optics,

Maxwell’s equations require that an evanescent wave propagates along the bound-

ary of the two media. The expression for the evanescent field can be derived from

the transmitted light wave vector and the transmitted plane wave expressions,

using the consequence of total internal reflection as predicted by Snell’s law [43].

(a) Fluorescence Total Internal
Reflection Microscopy (TIRF)
principle.

(b) Widefield image. (c) TIRF image

Figure 1–9: a) The evanescent wave produced by a total internal reflection extends
over 100 nm from coverslip-sample interface, exciting only cellular components
within that range. b) Epi-fluorescence and c) TIRF images of GFP-vinculin, re-
spectively, in PtK1 kangaroo kidney epithelial cells. Source: [43]
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For cellular imaging, the interface for TIRF is the contact area between a

specimen and a glass coverslip, at which cell grow. As a result, tagged proteins,

in an adherent live cell with its basal membrane at the interface in question,

will be only excited if they lie within this thin layer (100 nm) of the evanescent

field (Figure 1–9). The intensity of the excitation profile decays exponential with

distance from the coverslip-specimen interface, which reduces the excitation of

out of focus fluorophores. More specifically for this thesis, GPI-GFP expressed in

epithelial adherent cells, will be mainly visible if they are present in adherent basal

membrane of the cell. Proteins in organelles, such as Golgi apparatus, will be less

or completely invisible in TIRF mode as they lie outside of the evanescent field.

Point spread function and spatial resolution. The point spread

function and spatial resolution of the microscope need to be defined to provide

the context for concepts introduced in the rest of this manuscript. Point spread

function (PSF) , is a measure of the spatial resolving power of an optical imaging

system. The narrower the PSF, the better the spatial resolution will be. As the

name implies, PSF defines the spread of light imaged from a point source. That is,

if we observe a radiating point source, its image will appear to have expanded to

a finite size. This spread is a direct consequence of diffraction by a spatial filter,

which in this case is the lens aperture (or lenses) within the microscope. The PSF

can be seen as a degree of blurring and represents a good measure of the quality of

an imaging system. It can be shown that a point source at the focal point of a lens

with circular aperture will produce an Airy disc PSF in the image plane. The Airy

disc is often approximated by a 2 dimensional Gaussian, as it captures most of the
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features of a PSF. The width of the lateral distribution (full width half maximum)

of the PSF is usually defined as:

∆x = 0.6098
Mλ

NA
(1.1)

where M, λ and NA represent the magnification of system, wavelength of light

and numerical aperture of the lens, respectively. This is also known as the Airy

disk radius . This number defines the uncertainty of the position of the image

of a point source. If the distance between the centres of two image plane Airy

disks of two point sources is equal or smaller than the Airy disk radius, then these

objects will not be optically resolved. This is known as the Rayleigh criterion

for the optical resolution. It is important to realize that membrane domains

(rafts) were estimated (by SPT) to be on the order of a few tens to hundreds of

nanometres. For light in the visible range (400-600 nm) and using a lens with

numerical aperture of 1.4, yields ∆x (in lateral direction, i.e. xy plane) of about

170-300 nm. This implies that membrane heterogeneities are on the same order of

size or smaller (most likely) than the PSF of a standard light microscopy system.

We will see shortly how techniques, such as SPT and spot-varying FCS, tackle the

problem by overcoming the diffraction limited spatial resolution of the optics, and

how we extend the image correlation methods to accomplish similar results.

1.3 Fluorescence techniques for probing membrane heterogeneities

Over the last 15 years, several fluorescence based techniques were used to

study different aspects of heterogeneous membranes. Several excellent reviews exist

that give an overview on techniques used to study these structures [44, 45, 16, 46,
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47, 48]. We will outline two techniques, SPT and FCS, as their concepts and basic

principles inspired and captured the essential features of the image correlation

based approach which is the focus of this thesis.

1.3.1 Single particle tracking

The detection and tracking of microscopic particles in order to answer

certain physical questions go back to the work of Jean Perrin on the experimental

confirmation of Einstein’s theory of Brownian motion and the determination of

Avogadro’s constant [49], which ended a century long debate on the existence of

atoms as postulated by Dalton’s theory. Since then, our tools have evolved greatly,

allowing for the detection and tracking of single molecules in cells. The basic idea

behind SPT, is that a molecule’s position can be determined with a typical spatial

resolution of tens of nm, by fitting the particle’s emission light profile (PSF) with

a 2D Gaussian function to establish the peak centroid position. The PSF profile

depends inversely on the square root of the number of photons collected. The

peak position defines the diffraction sub-resolution position of the particle and

the standard deviation of the fit defines the position uncertainty. The particles’

peak position fitting is repeated for each frame and trajectories are mapped by

connecting the peak position series using a tracking code. The strength of this

technique is that it produces a high spatial position resolution (and in case of fast

imaging, high temporal) data for the particle motion in a given environment. Its

chief advantage as a single molecule method is that the particles behaviours are

not averaged as an ensemble and each trajectory can be deciphered in order to
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define the different modes of motion. Whether the particle moves in Brownian,

confined, active transport or anomalous diffusion modes, the trajectory will reflect

it if the temporal resolution is high enough. The drawback of the technique is

that several hundreds of trajectories of sufficient duration are required in order

to be able to deduce significant statistical properties about the sample. The first

SPT experiments on the cell membranes involved tracking of a highly scattering

colloidal gold labels attached to the membrane proteins and imaged using the

bright-field microscopy [50]. With the discovery of new fluorescent organic and

inorganic dyes, as well as semi-conductor nano-crystals quantum dots (QDs),

more SPT experiments have been conducted using the fluorescence microscopy.

Indeed, bright field microscopy is not specific as the images contain background

features other than the particle of interest, making it more difficult for particle

detection and localization. A good signal-to-noise ratio (SNR) is an essential

element in SPT, as a particle with a signal near noise level will not be detectable.

Although fluorescence microscopy also has background and counting noise that can

potentially reduce the SNR, it has the sensitivity to reach single molecule detection

limits. Moreover, a simultaneous labelling of several proteins is achievable with

different dyes, allowing detection of protein specific signals within the same

sample.

SPT in presence of heterogeneous membrane. With the innovation

of new fluorescent probes, fast acquisition and high sensitivity detectors, a new

experimental era for the study of heterogeneous membrane dawned about 10 years

ago. The development of fast and sensitive charge coupled device (CCD) cameras,
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allowed SPT to solve the 20 year dilemma of reduced protein mobility in cellular

membranes [27, 28, 29]. In addition to improvement of temporal resolution, new

tracking algorithms allowed for the detection and tracking of particles on the

surface of cells at very high particle densities [51, 52]. Indeed, these cleverly

designed algorithms detect the highest intensity profiles particles first, then

subtract detected features, revealing hidden features characterized by the lower

intensity peaks. In this manner, more features become detectable, down to the

noise level, in a given frame. Following detection, the connection into trajectories

is done with optimization algorithms, that are robust for particles disappearing

for certain numbers of frames (possibly due to a drift motion or blinking of the

fluorophore), trajectories merging (due to a particle interaction) or trajectories

splitting. Moreover, new mutations of fluorescent proteins led to the so called

photo-activable proteins, which opened a whole new field of “super-resolution”

microscopy. The main idea of one of these techniques, called photo-activation

light microscopy (PALM) , is similar to that of the standard SPT, but advantage

of these probes comes from the fact that only a subset of fluorophores could

be activated, excited and observed at given time. Indeed, a protein becomes

excitable only when it is in its “active” state, achievable by the absorption

of ultra-violet light by that molecule. One can think of the photo-activation

process as a shift in the excitation spectrum of the fluorophore. Initially, the

fluorophore is excitable at 405 nm (case of photo-activable GFP). Following

absorption of 405 nm light, the fluorophore structure re-organizes such that it

becomes excitable at longer wavelengths. If the exposure time of the 405 nm laser
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is carefully controlled, one can achieve the activation of only a subset of molecules

present in a membrane. Therefore, only that subset will be excitable at longer

wavelengths and its fluorescence emission visible under a fluorescence microscope.

In earlier versions of super-resolution microscopy, samples were chemically fixed,

such that transport dynamics of molecules were not assessed but only positions

recorded [53, 54]. In later versions, the activation-excitation-detection-tracking

cycle was repeated and short single molecule trajectories were recorded in live

cells [55, 56]. Another approach, called point-accumulation-for-imaging-in-

nanoscale-topography (PAINT) takes advantage of the labelling of cell surface

molecules by fluorescent probes that diffuse in the solution and become fluorescent

upon binding to the target of interest (a membrane receptor for instance) [57, 58].

The advantage of this technique is that it yields many single molecule long-time

trajectories for high labelling densities of the receptors on cell surface. Bath

application of the fluorescent ligands, at a given concentration allows labelling of a

subset of surface receptors allowing for long-time trajectory tracking. Interestingly,

this approach of labelling surface receptors is similar to the approach taken for the

labelling of GPI-GFP on cellular surfaces described in this thesis.

Other techniques improved spatial resolution by the engineering of the effec-

tive sub-diffraction PSF [59, 60]. Whether it is through an algorithm implementa-

tion, hardware modification or probe engineering, all of these techniques have the

goal of achieving sub-diffraction detection and tracking of proteins throughout the

cell, at native high densities of proteins. Ultimately one would want to be able to
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resolve the complete transport and location history of any labelled molecule. Data

interpretation is another challenge.

Once trajectories are acquired, it is not an easy task to divide particles into

different transport categories by eye. The human visual system has evolved to

detect patterns which can sometimes lead us to false conclusions. For example,

visual inspection of the free diffusion trajectory shown in figure 1–10 a) might

lead to the conclusion that there are confinement zones present in this sample,

however the simulated particle is undergoing pure Brownian motion.

(a) Free diffusion trajec-
tory

(b) Confined diffusion
trajectory

t

♠

✷

▼�✁
❝✂✄☎

✥✆✝ ✞✟✠✡☛ ☞ ✌ ✍✍✎✆

▼�✁
❝✂✄☎

✏✆✝ ✞✟✠✡☛ ☞ ✌ ✑✒✓✔

▼�✁
❝✂✄☎

✒✆✝ ✞✟✠✡☛ ☞ ✌ ✏✏✔✑

▼�✁
❝✂✄☎

✑✆✝ ✞✟✠✡☛ ☞ ✌ ✕✆✔

▼�✁
❝✂✄☎

✍✆✝ ✞✟✠✡☛ ☞ ✌ ✥✏✏

▼�✁
❝✂✄☎

✓✆✝ ✞✟✠✡☛ ☞ ✌ ✥✆

▼�✁
❝✂✄☎

✖✗✗ ✘✖✙✞✟✚✗✡✛

▼�✁
☎❢✜✜

✢✟✞✣ ✁✌✆✤✆✥ ✦✠
✧
✴✛

(c) MSD for free and confined particles diffusion.

Figure 1–10: SPT trajectory for a freely (a) and confined (b) diffusing simulated
particles. Trajectories (green) are superimposed on the average image of particle
positions convolved with a 2D Gaussian function which models the PSF c) MSD
for free and confined particles. N indicates number of particles that were confined
X % of total time. Scalebar: 1 µm
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The mean squared displacement (MSD) is a quantity that characterizes well

the trajectory of a given particle. It is computed as:

MSD(τ) = 〈[r(t)− r(t+ τ)]2〉 (1.2)

where r(t) denotes the position of the particle at time t. The average is taken

over all pairs of positions separated by time lag τ . For pure Brownian motion, the

MSD will be linear in time and proportionality constant describes the diffusion

coefficient of tracer particles. Nevertheless, when a single particle trajectory MSD

is considered, only few first temporal lag are significant, while higher temporal lags

are computed from fewest pairs of particle position [61]. Indeed, for a trajectory

of N time points, N-1 pairs of positions will contribute to M(0) , while only one

pair of positions contributes to MSD(N − 1) , according to the equation 1.2.

Often multiple particle MSDs are averaged together to achieve suitable statistics

of ensemble of particles as expected for Brownian motion. In presence of 2 phase,

heterogeneous environment, particles explore outside (of domains) and inside

phases, depending on the domain’s barriers and diffusion coefficients of particles in

each phase (Figure 1–10 b). The size and spatial density of the confining domains

phase will also regulate the time a particle spends in either phase. For a given time

window, different particles can spend different amounts of time inside and outside

of domains. As a result, averaging particles’ MSD will not yield the same result

if particles that are confined 10% of time are averaged or if those confined 20, 30,

40, 50 or 60 % of time are used (see MSD plot in Figure 1–10 c). Therefore, care
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needs to be taken when deciphering the SPT results for cases of particles moving

in more complex ways than simple free Brownian motion as suggested in [62].

1.3.2 Fluorescence correlation spectroscopy

Principles of FCS. FCS was introduced over 40 years ago by Magde

and colleagues [63, 64], but first applied to cellular measurements using confocal

optics [65, 66]. Later, it was extended as a practical tool for the measurement

of diffusive and active transport dynamics and protein subunit counting in

living cells [67]. The expansion of applications of FCS was achieved due to

the improvement of laser sources, more sensitive detectors and efficient data

processing. The basic idea behind FCS is the recording of temporal fluctuations

in fluorescence emission within a laser focal spot as fluorescent molecules enter

and exit the tiny excitation volume. The small (∼fL) and open excitation and

observation volume is produced by focusing a laser beam through a high NA

objective lens. Figure 1–11 shows a schematic of a typical FCS apparatus.

Fluorescence photons are collected through same objective lens and detected

with an avalanche photo-diode (APD) or photo-multiplier tube (PMT) . The

photon counts are correlated in time by a hardware auto-correlator and a temporal

auto-correlation (ACF) is outputted to a computer. The temporal ACF is fitted

with an appropriate function that depends on the underlying particle transport or

chemical kinetics. In the case of free 2D Brownian motion, a simulated time series

is shown in figure 1–12 a) and the temporal ACF in figure 1–12 b) can be fitted

to extract the characteristic decay time of the ACF. The ACF, which compares
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Figure 1–11: FCS setup: fluorescence photons are detected (green line on right
zoom in), by an avalanche photo-diode (APD) and fluctuations are recorded and
autocorrelated in time as fluorescent particles move in and out of a stationary laser
focal beam volume. Red traces show particle trajectories as they diffuse outside
the focal volume and green when they enter the focus and emit.

the signal with itself time shifted by lag τ , can be thought of as a measure of self-

similarity of the signal. The characteristic decay time of the ACF (figure 1–12 b)

relates to the mean residence time of a fluorophore in the focal volume. The zero

time lag value of the normalized ACF varies inversely with the average number

of fluctuation events, and is equal to the average number of particles within

the beam focus (assuming noise has been corrected). The temporal resolution

of this approach is generally superior to SPT, allowing the measurement of

transport coefficients occurring on time scales ranging from a few microseconds to

milliseconds. When the system is at thermal equilibrium, fluorescence fluctuations

originate from fluorophore transport or from an inter-system conversion (single to

triplet). The diffusion, and other modes of transport usually occur on time scales
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at least an order of magnitude greater than inter-system crossing, which allows for

separation of these two effects during correlation analysis. The excitation within

the focus can be achieved by either one- or two-photon absorption and the focus

is less than fL in volume for standard high numerical aperture objectives. The

relevant advantages of FCS are its sensitivity to low concentrations of fluorophores,

it is a minimally invasive approach, it requires a low intensity of laser light, and

is accurate when the correct models for data analysis are known. More complete

reviews of FCS have been published [68, 69].
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(b) FCS free diffusion ACF

Figure 1–12: a) A simulated FCS intensity trace for free diffusion case with
D=0.01µm2/s and a Gaussian radius ω=0.4 µm. b) Calculated temporal auto-
correlation function.

FCS with varying beam size and the FCS diffusion law. In 1987,

FRAP experiments [70] with a varying bleaching spot size (0.35-5 µm) provided
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evidence that micro-domains existed in fibroblast plasma membranes and that the

mobile fraction of fluorescently labelled lipid phosphatidylcholine decreased with

the increasing size of the bleaching spot. This study likely inspired two different

groups ( [71] and [72]) to develop an FCS version with varying beam spot size. In

the case of simple 2D Brownian diffusion (figure 1–13 top row), there is no barrier

to the motion of particles in space. Therefore, the characteristic decay time for

the ACF should be proportional to the square of the e−2 radius (ω) of the variable

beam spot:

td =
ω2

4D
(1.3)

The plot of ω2 vs td is called the “FCS Diffusion Law” and its slope in the case of

free diffusion in 2D is equal to 1
4D

[71]. On the other hand, the presence of isolated

domains can cause particles to be trapped for certain periods of time, increasing

the overall residence time for particles within the focal spot (figure 1–13 middle

row). For this case the relation becomes:

td = t0 +
ω2

4Deff

(1.4)

where the additive constant is greater than zero in the case of isolated domains

and becomes negative in the case of a meshwork confinement (figure 1–13 bottom

row). An effective measured diffusion coefficient, Deff , is less than it would be in

the absence of confinement regions.

The central idea of spot-varying FCS can be demonstrated by considering

computer simulated examples of Brownian diffusion (D= 0.01µm2

s
, figure 1–13

top row) compared to the motion in the presence of circular isolated domains
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(a) Free Diffusion with
Beam Radius ω=0.1 µm

(b) Free Diffusion with
Beam Radius ω=0.2 µm

(c) Free Diffusion with
Beam Radius ω=0.3 µm

(d) Isolated Domains
Confined Diffusion with
Beam Radius ω=0.1 µm

(e) Isolated Domains
Confined Diffusion with
Beam Radius ω=0.2 µm

(f) Isolated Domains
Confined Diffusion with
Beam Radius ω=0.3 µm

(g) Meshwork Confined
Diffusion with Beam
Radius ω=0.05 µm

(h) Meshwork Confined
Diffusion with Beam
Radius ω=0.1 µm

(i) Meshwork Confined
Diffusion with Beam
Radius ω=0.15 µm

Figure 1–13: Simulations of beam varying FCS with particle trajectories super-
imposed. Three simulated dynamic scenarios are shown, free diffusion (top row),
isolated domains confinement with a 200 nm domain radius (middle) and mesh-
work with a 250 nm mesh pore diameter (bottom row). In each case, few particle
trajectories are shown when outside (red) or inside the beam radius (green). Gaus-
sian spots were plotted logged to emphasize their spatial coverage.
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of 0.2 µm radius, with D= 0.005 and 0.01 µm2

s
inside and outside the domains

respectively (figure 1–13 middle row). Confinement boundaries were assigned

probabilities of 0.5 and 0.1 for particles to partition in or out of domains, respec-

tively. Figure 1–14 (a) shows that the ACFs are all shifted to higher temporal lags,

for all beam sizes, in the case of the simulation in presence of isolated domains.

Therefore, the FCS diffusion law will exhibit higher td values for a given ω2 in

the case of the simulation in presence of isolated domains, compared to the free

Brownian motion (Figure 1–14). Moreover, as the slope of FCS diffusion law is

greater in the confined case, this entails a smaller effective diffusion coefficient

(Deff ∼ ω2

4td
) than for the free diffusion case. The y-axis intercept, t0, is related

to the partition factor, β, that defines the ratio of confined particles to the total

number of particles in the system by the relation [71]:

t0 ≈ 2 · β · τconf (1.5)

where τconf denotes the average time particles spend within domains. Finally, the

FCS diffusion law relates the apparent and actual diffusion coefficients outside of

domains through the relation [71]:

Deff ≈ (1− β) ·Dfree (1.6)

The analysis of the simulated FCS data with different beam radii (Figure 1–14

b), gave an effective diffusion coefficient of 0.007±0.006 µm2

s
while the intercept

was found to be 2.1±1.7 s, which verifies Eq. 1.6 considering that β was approxi-

mately 0.3.
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(b) FCS diffusion law for free and isolated
domains simulated scenarios

Figure 1–14: The FCS Diffusion Law for simulated particle diffusion in homoge-
neous (free) and isolated domains 2D systems. a) Normalized ACFs for various
beam radii sizes. Circles show all the simulated free diffusion ACFs, while lines are
for isolated domains scenario. b) FCS Diffusion Law for free diffusion and isolated
domain confined cases. Black circles are the extracted characteristic diffusion times
(td) for different beam radii in case of free diffusion. The black line is a sugges-
tive plot for 2D free diffusion FCS Diffusion law with a set diffusion coefficient.
Red circles display the FCS diffusion law for a simulated isolated domains case.
The red line is a linear fit through the data at larger beam radii. Error bars are
standard deviations from 100 different beam positions within the field of view.
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In the case of meshwork confinement, it was shown [71] that the FCS diffusion

law will exhibit two regimes, for spatial scales smaller and larger than the mesh

size. For spatial scales smaller than the mesh size, the diffusion law will exhibit

a slope that matches the microscopic diffusion coefficient of the particles. For

scales larger than the mesh size, the diffusion law deviates from the free diffusion

case, since particles start encountering the restrictive boundaries of the mesh. The

confinement strength (Sconf ) is defined as the ratio of average confined time to

the free diffusion time within the domain (i.e. the mean time a particle requires

to explore a domain freely before encountering a wall). It was shown [71] that

confinement strength has the following relation to the system parameters:

Sconf =
τconf
τ domain
d

= A+ B
σ

r

1− P

P
(1.7)

where σ, r, and P represent elementary diffusion jump length, mesh radius

and probability of crossing the confinement barrier respectively. A and B are

phenomenological constants and were shown to equal 1 and 1.34 respectively. Sconf

is equal to 1 when no confinement is present (since τconf = τ domain
d ) and increases

as the probability of crossing the boundary decreases. Another relation that links

the confinement strength to the diffusion coefficients observed on micro (Dµ) and

macro (DM) scales [71]:

Dµ ≈ Sconf ·DM (1.8)

The diffusion law of meshwork shown in figure 1–15 gave DM ∼ 0.012 ± 0.005µm2

s
.

Since the mesh diameter was set to 0.25 µm and the probability to cross a

barrier was set to P ∼ 0.05 the confinement strength is calculated to be ∼
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11.9. Then the microscopic diffusion coefficient should be around 0.14 µm2

s
.

That is indeed the case as Dµ was set to 0.1µm2

s
. These examples illustrate the
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(b) FCS diffusion law for meshwork simulated
scenarios

Figure 1–15: The FCS Diffusion Law for simulated particle diffusion in a mesh-
work. a) Normalized ACFs for various beam radii sizes. Circles show all ACFs,
while lines are the corresponding fits to a 2D diffusion model. b) FCS Diffusion
Law for a meshwork. Blue circles are the extracted characteristic diffusion times
(td) for different beam radii in the presence of a meshwork. The red line is a sug-
gestive plot for the 2D free diffusion FCS diffusion law with set diffusion coeffi-
cient. The black dashed line is a linear fit through data at larger beam radii.

usefulness of spot-varying FCS for measuring particle dynamics in heterogeneous

membrane environments. The complete theory for both isolated domains [73]

and meshwork [74] confinements have been derived after the first reports of this

technique.

36



1.4 ICS analysis of heterogeneous membrane

1.4.1 Overview of ICS superfamily of techniques

Image correlation spectroscopy (ICS) is an extension of FCS to the analysis

of fluorescence fluctuations recorded in the spatial domain by imaging. In its

original adaptation, ICS was used to count the number density and cluster size

of membrane receptors [75, 76]. The basic idea of the technique was to spatially

correlate fluorescence fluctuations from pixel to pixel in an image. Assuming

ergodicity of the sample, acquiring information from uniform sampling at a fixed

point in time, as in FCS, is equivalent to the information acquired at a single time

snapshot for a spatial ensemble of points (the image). The amplitude of the spatial

intensity fluctuation auto-correlation function of an image provides information on

the average number of entities per focal spot (labelled receptors in this case). The

ICS spatial correlation function is well modelled and fit with a 2D Gaussian. The

origin of the 2D Gaussian shape comes from the shape of the PSF which acts as a

correlator, and sub-resolution particles convolved with the PSF give rise to image

features of that shape. Later, ICS was extended to study the diffusion properties

of membrane receptor clusters [77, 78]. In that adaptation, a pixel within an

image time series is correlated with itself at later times, in order to extract the

equivalent of the temporal ACF in FCS. The technique, named temporal image

correlation spectroscopy (TICS), assumed a homogeneous sample, and provided

better statistics by an ensemble averaging of the temporal ACFs of all pixels.

Application of TICS relies on membrane proteins diffusing slowly enough so they
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remain with a given PSF defined spot in the image in sequential frames and

hence are correlated in time. Ever since the introduction of pure image spatial

auto-correlation (ICS) several adaptations were made in order to tackle different

biophysical problems. Indeed, image cross-correlation spectroscopy (ICCS) was

introduced to measure the spatial co-localization of proteins in cells [79, 80], image

moment analysis [81] and spatial intensity distribution analysis (spIDA) [82] were

developed to measure the oligomerization states and stoichiometry of protein

complexes. Spatio-temporal image correlation spectroscopy (STICS) extends

the capabilities to measure flow of proteins in cells [83], and the k-space image

correlation spectroscopy (kICS) allows the measurement of protein transport

independent of fluorophore photophysics [84]. Other adaptations of imaging based

correlation analysis methods have emerged in the last 15 years which have been

reviewed [85]. STICS and kICS, can be considered to be opposite faces of the same

coin, and serve as a basis for the development of the analysis presented in this

thesis. Therefore, we will introduce the key concepts of these techniques below.

1.4.2 Spatio-temporal image correlation spectroscopy

STICS was originally developed to measure the flow of proteins in live

cells [83]. The analysis was based on spatially cross-correlating two images of the

same cellular area, taken at two different times. That implies that each pixel of an

image is correlated with other pixels at later times. This is a full two-pixels-two-

times correlation function, or four-point correlation function. If proteins undergo

active transport (flow), the correlation function peak will translate in time at the
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same rate as the dynamic species do. The peak shape is governed by the PSF

and features in the image, and is usually fit with a 2D Gaussian, which is free to

translate and spread. The tracking of the correlation peak position with temporal

lag allows for the measurement of an average particle flow velocity vector for the

region of interest, as shown in figure 1–16 b).

Figure 1–16: STICS of three different scenarios. Top row depicts image series,
while bottom row shows correlation functions for each scenario. a) STICS of
purely diffusive particles. b) STICS of purely flowing particles. c) STICS of simul-
taneously flowing and diffusing particles. Scalebar: 5 µm top and 1 µm bottom.

If motion of the particles is predominantly diffusive, then the correlation

peak will spread and its peak amplitude will decrease with lag time as shown in
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figure 1–16 a). Of course, any combination of dynamics, such as simultaneous

diffusing and flowing particles, will give rise to a correlation peak exhibiting a

combination of the two basic modes of motion (as in Figure 1–16 c). The original

application of STICS studied diffusion, flow, and combined transport in silico,

but only protein flow was measured experimentally in cells as the diffusion time

scales were shorter than the imaging frame time [83]. The time dependent width

of the correlation function was not considered as the main criterion for diffusion

measurements, but rather its zero spatial lags decay in amplitude over time

was used to measure the diffusion characteristics, which is the same as TICS.

This modality of image correlation is also known as Dynamic Image Correlation

Spectroscopy (DICS) [86]. The problem with fitting zero spatial lags of the CF

to measure the diffusion coefficient, is its sensitivity to the time dependent probe

photo-physics. If a fluorophore blinks (emission switches from on to off for a period

of time) or photo-bleaches (permanent loss of emission) then its temporal ACF will

be biased to a more rapid decay if the photophysics time scale is comparable to

or shorter than the characteristic time for diffusion or flow. The width of STICS

function peak will not be affected by blinking or photo-bleaching, as a pixel-to-

pixel spatial correlation will only occur if a fluorophore is in the “on” state at

both pixels at two time points. If it is in the “off” state, it will simply not produce

a correlation for that set of spatio-temporal lags. Therefore, the width of the

STICS correlation function is not affected by probe photo physics but there is a

loss of precision relative to the zero spatial lags time CF. For the two dimensional
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Brownian motion with a diffusion coefficient D, the square of the time dependent

e−2 radius of the spatio-temporal CF will follow:

ω2
STICS(τ) = ω2

0 + 4Dτ (1.9)

where ω0 is the e−2 radius of PSF of a microscopy system. The implementation of

the pixels spatio-temporal correlation in the study of diffusive protein motion, was

first demonstrated by k-space (Fourier) equivalent of STICS, also known kICS [84].

1.4.3 k-space image correlation spectroscopy

STICS and kICS are simply connected by a spatial Fourier transform but

there are some advantages of kICS due to the treatment of data in k-space instead

of r-space. With kICS, the correlation functions can be normalized by the zero-

temporal lag correlation, which removes all static contributions, such as spatially

dependent PSF. Also, flow and diffusion components are decoupled as real and

imaginary parts of the correlation function. Photo-physics contribution, which is

presumably only time dependent, can be also separated out from the dynamics

terms. kICS development for the treatment of homogeneous diffusion and flow

cases was the subject of an ulterior manuscript [87], and a further characterization

was subject of yet another [88]. In the case of pure Brownian motion, kICS

correlation function will have a collapsing width as shown in figure 1–17:

Since the correlation function is normalized with the zero temporal lag, the

PSF contribution to the width of the correlation as a function of time lag will be

eliminated, and will be in case of 2D freely diffusing particles:
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Figure 1–17: kICS in case of a purely diffusing single species. a) A simulated im-
age series in time. b) Image series Fourier transformed into k-space. c) Temporal
correlation function in k-space. Scalebar: 5 µm.

ω2
kICS(τ) = (Dτ)−1 (1.10)

In practice, each temporal lag of the kICS time correlation function with the zero

temporal lag, followed by a circular k-space averaging of the function at different

temporal lags (assuming an isotropic system) to enhance statistics and to reduce

the binning noise (Figure 1–18).

Therefore, measurement of the radius of the kICS correlation function, at each

temporal lag, can be used to extract the average diffusion coefficient of a system

of diffusive particles as shown in figure 1–19. Both STICS and kICS, originally

were developed and tested through simulations, for one component homogeneous

systems with constant transport dynamics. However, biological samples are usually

more complex. Multiple dynamic species that can change modes of motions,
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Figure 1–18: Steps for calculation of a normalized averaged kICS correlation func-
tion. a) The correlation function is calculated in Fourier space, ensemble averaged
for each temporal lag, and normalized to the zero temporal lag. b) At each tem-
poral lag (τ=2 s here), the correlation function is circularly averaged. c) Plot of
the final correlation function, as a function of temporal lag and spatial frequency
squared, for the case of free diffusion (D=0.002 µm2/s) simulated data. White
dashed line delimits the τ= 2 s (from b) contribution to the correlation function.

interact with each other or partition into multi-phase heterogeneous environments

in the membranes, are more likely. The subject of this thesis is to extend the kICS

method to measure these more complex systems.

1.4.4 Emergent features of kICS in the presence of heterogeneities

ICS methods have only recently been used to study transport in heteroge-

neous membranes. One of the first systems to be explored by ICS and related

techniques was the cystic fibrosis trans-membrane receptor (CFTR) [89]. This pa-

per presents an extensive comparison of CFTR mobilities acquired by SPT, FRAP

and ICS, and explores by simulations the effect transient confinement zones in the

membrane on the overall mobility measured by TICS. The properties explored
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(b) 4Dτ vs τ for free diffusion

Figure 1–19: kICS data analysis example using free diffusion case with
D=0.002µm2/s. Circularly averaged and normalized correlation functions are
fit with an appropriate model at a given temporal lag. a) Correlation functions are
fit with a single Gaussian that models 2D free diffusion. Blue to red data points
represent an increasing time lag. Dashed lines are Gaussian fits at each time lag.
Extracted parameter is 1

k2
char

=Dτ at each value of τ . b) 4Dτ is plotted as a func-

tion of τ in order to extract characteristic mobility (diffusion coefficient).
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in the simulations and experimental data were limited to mobile fractions and an

effective diffusion coefficient. Another DICS based study explored the mobilities

of epidermal growth factor receptor (EGFR) clusters [86]. These studies produced

some useful results but were limited by the fact that they only rely on a single

pixel stack temporal fluctuations. In other words, these techniques do not explore

more than one spatial scale, beyond that of a single pixel. In contrast, STICS and

kICS take advantage of all spatial and temporal scales present and accessible from

an image series, but involve an average over the dynamic populations present. If a

particle population explores a homogeneous medium, through 2D Brownian motion

as explained above, its kICS correlation function will decay completely to a noise

floor at a given k2 value for each time lag as shown in figure 1–20 a).

This correlation function depends not only on time, as is the case of TICS

or DICS, but also on spatial frequency (k2). A fit with a 2D Gaussian at each

temporal lag will give a characteristic Dτ and a plot of 4Dτ vs τ can be seen as an

equivalent of the MSD(τ) vs τ measured in SPT experiments. On the other hand,

in the presence of isolated domains (Figure 1–20 b), the kICS CFs will not decay

completely at later temporal lags. Instead of a single Gaussian decay, there will

be effectively two or more emergent dynamic species present that contribute the

CF. The characteristic feature of the kICS CF for dynamics in a heterogeneous

2D system is the presence of late temporal lag “shoulders”, which are due to the

dynamics of confined (domain trapped) particles. The kICS CFs for simulated data

of diffusive particles in the presence of isolated domains and a meshwork are shown

in figure 1–20. b) and c), respectively.
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Figure 1–20: Examples of kICS CFs for three different simulated populations. a)
kICS CF for free diffusion of particles with a diffusion coefficient of 0.01 µm2/s. b)
kICS CF for particles diffusing in a system with isolated circular domains of 0.25
µm radius. Diffusion in and out of domain of 0.001 and 0.01 µm2/s respectively. c)
kICS CF for for particles diffusing in a system with meshwork type of confinement
with a mesh size of 0.25 µm , a diffusion coefficient of 0.1 µm2/s within com-
partments and an escaping probability of P=0.05. All correlation function were
normalized by the zero-temporal lag correlation such that highest (red) and lowest
(blue) values equal 1 and 0, respectively.

One may speculate that there should be an ICS analog in r or k-space to the

spot-vary FCS method. Indeed, measurement of the spread of the correlation func-

tion in these techniques at a given temporal lag should give analogous information

to the measurement of the characteristic decay time in spot-vary FCS at a given

beam radius. kICS has advantages for the reasons explained above. In order to

process the correlation functions, and extract the relevant parameters we need to

properly fit the CF vs time or vs spatial frequency. Traditionally, the kICS CF

are fitted at a given temporal lag, vs spatial frequency, in order to extract Dτ . For
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measurement of dynamics in a heterogeneous environment a single 2D Gaussian

fit vs spatial frequency is not sufficient. On the other hand, a single Gaussian

fit can be forced as a fit vs time, at a given spatial frequency, in order to extract

a characteristic decay constant. This idea is similar to the forced fit for 2D free

diffusion through data in the FCS diffusion law, in order to characterize the decay

at a given beam spot radius. If one plots the characteristic decay constant, k2
charD

vs spatial frequency, k2, one obtains an equivalent relation to the FCS diffusion

law. We shall call this plot, for the sake of history, the “inverse kICS diffusion

law”. The “inverse” part comes from the fact that x-axis has units of µm−2 and

y-axis has units of s−1, while in actual FCS diffsuion law the units are seconds and

µm2, respectively. For free diffusion, the inverse kICS diffusion law has a slope

equal to the D of the particles, and passes through the origin (Figure 1–21).

For particle’s transport in the presence of isolated domains, the diffusion

law has a positive intercept, depending on the confinement strength, and an

early slope reflecting the effective diffusion coefficient outside the domains. The

fast diffusion implies greater slope which happens at smaller spatial frequencies

corresponding to bigger spatial scales. The later slope reflects motions at higher

spatial frequencies (smaller spatial scales) which corresponds to motions within the

domains. Interestingly, the kICS diffusion law saturates at a spatial frequency that

is ∼ π2

2(domain radius)2
as shown by the vertical magenta line in figure 1–21 a). It is

likely that particles exhibit slower mobility as we increase spatial frequency (going

to smaller spatial scales) until we reach the domain size scale, where particles

appear immobile (peak position in red symbols of figure 1–21 a). At smaller
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Figure 1–21: kICS diffusion law for free diffusion (blue symbols) and isolated do-
mains cases (red symbols). a) Plot of the characteristic decay constant (k2

charD)
of Gaussian fit over temporal lag variable (τ), at a given spatial frequency (k2).
Green full and dashed lines represent trends for cases of pure diffusion with dif-
fusion coefficients used for isolated diffusion simulation. Magenta vertical line
represents the value of the characteristic spatial frequency one would expect for
diameter of raft. b) kICS diffusion law plotted in a format closer to the FCS diffu-
sion law.

scales (even higher spatial frequency) motion inside rafts is detected. A similar

observation of reduced mobility with decreasing the size of a bleaching spot was

seen in FRAP experiments [70].
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Another way to present these data is by the inversion of both k2
charD to give

τchar and k2 to give ω2
char as shown in the kICS diffusion law plot (figure 1–21

b). This is one way to present kICS data, for measurements on heterogeneous

environments. The rest of this thesis will present the details of simulations and

characterization of kICS applied to measure transport in various types of 2D

heterogeneous environment. Chapter 2 presents the theory behind kICS and how

it extends beyond the simple homogeneous Brownian diffusion case. In chapter 3,

we will present the computer simulations and methods data analysis approaches,

as well as experimental methods for cell culture and TIRF microscopy. Chapter

4 will follow with a simulation results and analysis, while chapter 5 will present

an experimental application of this method for the study of dynamics of GPI-

anchored proteins in live cells.
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CHAPTER 2
Theory of kICS for heterogeneous membrane environments

2.1 kICS analogy to the dynamic light scattering

We shall start the theory development by introducing the connection between

the measured quantities in the dynamic light scattering (DLS) experiments, such

as the intermediate scattering function or spectra, and the space-time correlation

functions. The development presented in this section is based on the complete

treatment in [1].

We define the particle number density, ρ(~r, t), for a system of N Brownian

particles in a microscopic volume V:

ρ(~r, t) =
N∑

i=1

δ(~r − ~ri(t)) (2.1)

where the sum is over all N particles and δ denotes the Dirac δ-function. The

fluctuation in the number density due to particle diffusion will be:

δρ(~r, t) = ρ(~r, t)− ρ (2.2)

where ρ is a mean number density.
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In DLS experiments one measures a quantity which is proportional to the

Fourier component of the number density fluctuation. Taking the spatial Fourier

transform of δρ(~r, t) :

δ̃ρ(~k, t) =

∫ ∞

−∞

d3rei
~k·~rδρ(~r, t) (2.3)

The temporal autocorrelation function of the number density in Fourier space

(k-space) leads to the intermediate scattering function (ISF) :

S(~k, τ) =
1

N

N∑

i=1

N∑

j=1

〈exp{i~k · [~ri(t)− ~rj(t+ τ)]}〉 (2.4)

Where the ISF quantifies the degree of correlation between the Fourier component

of the number density fluctuation at time t and that at time t + τ . The ISF is the

spatial Fourier transform of the van Hove space-time correlation function (a.k.a.

the pair correlation function), G(~r, τ):

S(~k, τ) = (2π)3ρ

∫ ∞

−∞

G(~r, τ)e−i~k·~rd~r (2.5)

where

G(~r, τ) =
1

N
〈

N∑

i=1

N∑

j=1

δ[~r + ~ri(t)− ~rj(t+ τ)]〉 (2.6)

where the van Hove function is the probability that we will find a particle j at

time t+τ at a position ~rj(t + τ) if particle i is at the position ~ri at time t. For

an ergodic system, the time origin is arbitrary. Also, if the system is Brownian,

different particle positions will not correlate at later times. This metric effectively

measures the step size distributions of the particles.
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The van Hove function can be calculated from single particle tracking trajec-

tories or video microscopy data, where the positions of all particles are known at

every time point. In most cases we can not track particles or obtain their positions

at every time point. Fortunately, we can apply the results derived above to the

ISF or to the spectra from scattering, or more particularly to the fluorescence

spatio-temporal fluctuation data.

When considering a particle position correlation with its position at a later

time, we relate to the self part of van Hove correlation function. On the other

hand, correlating particle i position at time t with another particle j at time t + τ ,

is called the distinct part of the van Hove correlation function. The total van

Hove correlation function, from equation 2.6, is the sum of the self and distinct

parts. For a dilute and Brownian system of particles, the distinct part does not

contribute significantly to the sum in equation 2.6, and consequently the cross

terms (when i6=j) in equation 2.4 are negligible. Consequently, the ISF reduces to

the self-intermediate scattering function (SISF) :

Fs(~k, τ) = 〈exp{i~k · [~r(t)− ~r(t+ τ)]}〉 (2.7)

For freely diffusing particles with a diffusion coefficient D, the above expression

will reduce to [1]:

Fs(|~k|, τ) = exp{−k2Dτ} = exp{− t

τk
} (2.8)

where τk = 1
k2D

is the characteristic lifetime of the particles inside the measure-

ment volume. |~k| denotes the magnitude of the wave vector ~k, implying that the

system is isotropic so the only absolute value of the k vector counts. The diffusion
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coefficient D can be obtained from the slope of the τ−1
k versus k2 plot, known as

the ’slope of the slopes’ plot in kICS [2, 3]

Now we show that SISF is the solution to the diffusion equation. The def-

inition of the self-van Hove correlation function at the initial time suggest that

∆rj(0) = 0 and therefore:

Gs(~r, 0) = 〈δ(~r)〉 = δ(~r) (2.9)

and its Fourier transform

Fs(~k, 0) = 〈exp{i~k · [~rj(0)− ~rj(0)]}〉 = 1 (2.10)

Using the definition of the self-van Hove correlation function it follows that it

will be a solution to the diffusion equation subject to the initial value given by

equation 2.9:
∂

∂τ
Gs(~r, τ) = D∇2Gs(~r, τ) (2.11)

or its Fourier transform equivalent:

∂

∂τ
Fs(~k, τ) = −k2DFs(~k, τ) (2.12)

subject to the initial value given by equation 2.10 with solution given by:

Fs(~k, τ) = exp(−k2Dτ) (2.13)

which is equivalent to the equation 2.7 for the SISF. The corresponding full spatio-

temporal spectrum is obtained by taking the temporal Fourier transform of the

61



SISF:

Fs(~k, ω) =
1

π
[

k2D

ω2 + [k2D]2
] (2.14)

In the above derivation we assumed that particles are always detected and

hence emitting (i.e. no photo-bleaching or blinking involved) and did not consider

other spectral characteristics such as quantum yield or brightness. Moreover, when

dealing with detection via fluorescence microscope, one needs to include the effect

of the finite spatial resolution of the optical system. These are incorporated and

explored in next section.

2.2 kICS theory for a homogeneous environment

The following section is a recap of the kICS Theory development as presented

in [2, 3]. Originally, kICS was developed assuming a homogeneous and ergodic

system. In the fluorescence intensity fluctuation based ICS techniques, one

considers the intensity of a given pixel in an image, i(~r, t), to be a convolution

of the optical point spread function (PSF), I(~r), and the particle concentration,

ρ(~r, t):

i(~r, t) = qI(~r) ∗ ρ(~r, t) (2.15)

where q is a the constant that takes into account the quantum yield of the

fluorophore, the collection efficiency and the detector gain. The number density
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now can be written as:

ρ(~r, t) =
N∑

i=1

Θi(t)δ(~r − ~ri(t)) (2.16)

where the sum is over all N particles and δ is again the Dirac δ-function. The

photo-physics effects (bleaching, blinking, etc) are modelled by the time dependent

function:

Θi(t) =





1 if particle i is fluorescent at time t;

0 otherwise.
(2.17)

The PSF of a confocal microscope can usually be approximated by a 2D Gaussian

for cell membrane systems:

I(~r) = I0exp[−2(
x2 + y2

ω2
0

)], (2.18)

where I0 denotes the laser intensity at the center of the focus, and ω0 is the e−2

the beam radius of the laser beam in the lateral direction. We explicitly ignore the

third spatial dimension, as we assume measurements on flat quasi 2D membranes.

Since the convolution becomes a product in Fourier space, it is most con-

venient to take the spatial Fourier transform of the concentration and the PSF

functions. Thus equation 2.15 in k-space is:

ĩ(~k, t) = qĨ(~k, t)ρ̃(~k, t) (2.19)

where X̃ labels the spatial Fourier transform of a quantity X.
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Calculating the spatial Fourier transforms of equations 2.16 and 2.18, we can

rewrite equation 2.19 as:

ĩ(~k, t) =
qI0ω

2
0π

2

N∑

i=1

Θiexp[i~k · ~ri(t)−
ω2
0|~k|2
8

]. (2.20)

Using Eq. 2.20 to define the intensity fluctuation correlation function in the

k-space:

Φ(~k; τ, t) = 〈̃i(~k, t)̃i∗(~k, t+ τ)〉 (2.21)

By combining the equations 2.20 and 2.21 we get:

Φ(~k; τ, t) =
q2I20ω

4
0π

2

4
× 〈

N∑

i=1

Θi(t)e
i~k·~ri(t)−

ω2
0 |

~k|2

8

N∑

j=1

Θj(t+ τ)ei
~k·~rj(t+τ)−

ω2
0 |

~k|2

8 〉 (2.22)

Assuming that the system is sufficiently dilute, the cross-product terms will

be negligible and since the Θ(t) is only a function of time, we factor it out of the

spatial integral so the above expression reduces to:

Φ(~k; τ, t) = N
q2I20ω

4
0π

2

4
×〈Θ(t)Θ(t+τ)〉×〈exp[i~k ·(~r(t)−~r(t+τ))− ω2

0|~k|2
4

]〉 (2.23)

For a population undergoing diffusion with a coefficient D and/or flow with a

velocity ~v this reduces to:

Φ(~k; τ, t) = N
q2I20ω

4
0π

2

4
× 〈Θ(t)Θ(t+ τ)〉 × exp[i~k · ~vτ − |~k|2(Dτ +

ω2
0

4
)] (2.24)

We will simplify the expression, without any loss of generality, to the case where

only one population is diffusing and no flow is present (i.e. ~v = 0). Then the real
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part of the equation 2.24 contains the diffusion part of the correlation function:

Φ(~k; τ, t) = N
q2I20ω

4
0π

2

4
× 〈Θ(t)Θ(t+ τ)〉 × exp[−|~k|2(Dτ +

ω2
0

4
)] (2.25)

Careful comparison between this equation and equation 2.13, suggests that the

fitting function obtained for kICS, in the case of a single diffusing population, is

proportional to the self-intermediate scattering function. In fact, we can define the

heterodyne correlation function, used in DLS, in terms of SISF, as follows:

F1(~k, τ) = 〈N〉Fs(~k, τ) (2.26)

where 〈N〉, the average number of particles, effectively contains all of the photo-

physics effects given in the amplitude, N q2I20ω
4
0π

2

4
× 〈Θ(t)Θ(t+ τ)〉, of equation 2.25.

2.2.1 STICS from kICS

We now apply the inverse Fourier transform to equation 2.25:

Φ(~r; τ, t) = N
q2I20ω

4
0π

2

4
× 〈Θ(t)Θ(t+ τ)〉

∫ +∞

−∞

d~kei
~k·~re−|~k|2(Dτ+

ω2
0
4
) (2.27)

and then by making the substitution 1
4α

= Dτ +
ω2
0

4
and using the following:

√
π

α

∫ +∞

−∞

d~kei
~k·~re

−|~k|2

4α = e−α|~r|2 (2.28)

we obtain:

Φ(~r; τ, t) = N
q2I20ω

4
0π

3
2

4
√

4Dτ + ω2
0

× 〈Θ(t)Θ(t+ τ)〉e−
|~r|2

4Dτ+ω2
0 (2.29)
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This represents the fitting function for STICS in the case of a single freely

diffusing population. In this case it is equivalent to the self-van Hove spatio-

temporal correlation function, Gs(~r, τ). The difference between Fs(~k, τ) and

Φ(~k; τ) (in k-space) or between Gs(~r, τ) and Φ(~r; τ), is that the fluorescence

intensity fluctuation correlation functions take into account the particles photo-

physics, intrinsic light emission properties and the finite resolution of the optical

instrument employed for the measurement. Even though light scattering and

fluorescence are based on two different forms of light and matter interactions,

the theory explaining Brownian motion, as measured by the ensemble average

spatio-temporal fluctuations of particles density is analogous in the two cases.

2.2.2 Normalization by the zero temporal lag

Expression 2.29 has one undesirable characteristic for the study of diffusion

properties. The finite width, ω0, of the correlation function at the zero temporal

lag can potentially mask the effects of the motion at spatial scales smaller than ω0.

In kICS, the contribution of ω0 is removed from the correlation function by zero

temporal lag normalization [2, 3], as follows:

Φ(~k; τ, t)

Φ(~k; 0, t)
=

〈Θ(t)Θ(t+ τ)〉
〈Θ(t)2〉 × exp(−|~k|2Dτ) (2.30)

This normalization removes the PSF contribution and other constants embedded

in the amplitude of correlation function. This expression is then usually averaged

angularly (circularly) to obtain an effective two dimensional, spatial frequency (k)

and temporal lag (τ), dependent correlation function: r(k2, τ).
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2.2.3 Two freely diffusing populations

In the case of two or more freely diffusing species in the sample, the total cor-

relation function will be the weighted sum of all contributions. Then equation 2.25

becomes:

Φ(~k; τ, t) =
I20ω

4
0π

2

4
e

−k2ω2
0

4

∑

p

Npq
2
p × 〈Θp(t)Θp(t+ τ)〉 × exp(−|~k|2Dpτ) (2.31)

for each diffusing particle population, p, the correlation amplitude reflects the

fractional contribution of that population as weighted by number and squared

yield. In the case of two freely diffusing species, the normalized correlation

function becomes:
Φ(~k; τ, t)

Φ(~k; 0, t)
=

N1e
−|~k|2D1τ +N2e

−|~k|2D2τ

N1 +N2

(2.32)

where the normalized number densities, Ni, are constants in space and time.

In what follows, we will see that two inter-converting or interacting species

will produce a correlation function that can be effectively fit as a sum of two

Gaussians. Nevertheless, the amplitudes and exponents of this correlation function

will depend on spatial frequency (k) and time lag (τ) in a non-trivial way as well

on the kinetics parameters defining the inter-conversion rates.

2.3 Theory for a two phase medium with static domains

Here we revisit the solution to the coupled differential equations describing the

motion of tracer particles inside a heterogeneous two-phase medium. The problem

is to find an expression for particle number densities as a function of diffusion
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coefficients inside and outside the domains. Phase 1 is assumed to be composed

of circular micro domains embedded inside a larger 2D phase 2. The system is

defined in terms of a partition coefficient between the two phases, the volume

fraction of domains and the absorption rate constant. The problem of diffusion

in two-phase media has attracted a lot of attention at the end of the last century

and several solutions were proposed [4, 5, 6, 7]. We will base our development on

the solution proposed by [8] starting by the definition of two partial differential

equations that need to be solved in order to find the number densities for bound

and unbound particles, Nb(~r, τ) and Nf (~r, τ) respectively:

∂Nf (~r, τ)

∂τ
= D+∇2Nf (~r, τ)− ka[ηsNf (~r, τ)−KNb(~r, τ)] (2.33)

and
∂Nb(~r, τ)

∂τ
= ka[ηsNf (~r, τ)−KNb(~r, τ)] (2.34)

where ka is the absorption rate constant, K is the partition coefficient, ηs is the

microdomain volume fraction, and D+ is the diffusion coefficient of particles

outside microdomains. K is defined in terms of the chemical potential of the

diffusing species K ≡ [ ∂µ
+

∂c
]

[ ∂µ
−

∂c
]
, where +/- denote outside/inside microdomains

respectively.

The above problem assumes that particles do not diffuse inside domains, but

are rather immobilized. It will become clear in the next section, that assuming a

nonzero diffusion inside domains, D−, gives a similar solution to equations 2.33

and 2.34. These equations are subject to initial conditions Nf (~r, 0) = (1 − ηs)δ(~r)
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and Nb(~r, 0) = ηsδ(~r), together with the boundary conditions at the interface of

microdomains D− ∂Nb(~r
−,τ)

∂n
= D+ ∂Nf (~r

+,τ)

∂n
and Nf (~r

+, τ) = KNb(~r
−, τ).

When K → 0 the microdomains become traps, while K → ∞ produces

scatterers. In other words, by the definition of K in terms of chemical potentials,

as K → 0, the affinity for the large (+) phase will approach zero. This makes the

microdomains perfect attractors or traps. Similarly, the K → ∞ limit implies

that particles affinity for the microdomains phase (-) approaches zero, hence they

become perfect scatterers.

Another way of seeing this is by computing the Fourier transform of the

boundary conditions i~kn̂D−Ñ−
b = i~kn̂D+Ñ+

f combined with Ñ+
f = KÑ−

b gives

D− ≡ KD+. This means that in the case of a perfect trap (K → 0) we will have

D− → 0 which implies that particles diffuse very slowly within the domains and

hence almost never encounter the domain boundary and never escape.

On the other hand, in the limit K → ∞, we get D− → ∞ which means that

particles diffuse very fast within domains, hence increasing the collisions with the

walls and hence the probability that the particles will escape from the domains.

This translates into a zero residence time within the domains making them perfect

scatterers.

Another interesting case is when the partition coefficient equals 1, hence

equal affinity for both phases. In this case the phases are indistinguishable to the

particles, hence D− = D+ and the rate constants are equal by the definition of the

partition coefficient.
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In order to solve the above system of equations, we take the Fourier-Laplace

transform, taking advantage of the transformation ∇ → i~k, ∇2 → −k2, and

∂
∂τ

→ sY (s) − y(0) while considering the initial values for the number densities,

Nf (~r, 0) = (1− ηs)δ(~r) and Nb(~r, 0) = ηsδ(~r) :

sÑf +D+k2Ñf + ka(ηsÑf −KÑb)− (1− ηs)δ(~r) = 0 (2.35)

and

sÑb − ka(ηsÑf −KÑb)− ηsδ(~r) = 0 (2.36)

After some algebra we obtain:

Ñf =
(1− ηs)δ(~r)s+ kaKδ(~r)

s2 + (D+k2 + kaηs + kaK)s+ kaKD+k2
(2.37)

and a further simplification leads to following:

Ñf + Ñb =
1

s+ D+(s(1−ηs))k2+kaKD+k2

s+ka(ηs+K)+ηsD+k2

(2.38)

which is expressed as follows in [8]:

Ntot ≡ Nf (k, s) +Nb(k, s) =
1

s+Deff (k, s)k2
(2.39)

where s and k denote Laplace and Fourier transforms variables. In the above

expression, the effective diffusion coefficient Deff (k, s) is written as a function of

all the parameters established in the present case:

Deff (k, s) ≡
D+[s(1− ηs) + kaK]

s+ ka(ηs +K) + ηsD+k2
(2.40)
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This effective diffusion coefficient is in Laplace-Fourier space and one could

attempt to tackle the problem of image correlation by transforming images to the

Laplace-Fourier space. Unfortunately, the product of two temporal functions leads

to convolutions after Laplace transform, which prevents us from doing this with an

expression similar to equation 2.30. Therefore, Laplace inversion of expression 2.39

is required. The Laplace inverse transform of the expression 2.39 gives the k-space

total particle number density expression. We start by writing it in a simplified

format:

Nk,s =
s+ x

s2 + ys+ z
(2.41)

after the simplification of equation 2.38 and grouping of all terms in the numerator

and the denominator together we obtain expressions for x,y and z:

x = ka(ηs +K) + ηsD
+k2 and y = D+k2 + ka(ηs +K) and z = kaKD+k2 (2.42)

In order to apply the inverse Laplace transform to the expression 2.41 it is useful

to write it as:

Nk,s =
A

s+ B
+

C

s+D
(2.43)

which gives a trivial expression after Laplace inversion:

Nk,τ = Ae−Bτ + Ce−Dτ (2.44)

then taking equation 2.43 and adding the fractions we get:

Nk,s =
(A+ C)s+ (AD + BC)

s2 + (B +D)s+ BD
(2.45)
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which when compared to equation 2.41 leads to 4 equations with 4 unknowns.

Laplace inversion leads to:

A =
(1− 2ηs)D

+k2 − ka(ηs +K) +
√
(D+)2k4 + 2D+k2ka(ηs −K) + k2

a(ηs +K)2

2
√

(D+)2k4 + 2D+k2ka(ηs −K) + k2
a(ηs +K)2

(2.46)

B =
D+k2 + ka(ηs +K) +

√
(D+)2k4 + 2D+k2ka(ηs −K) + k2

a(ηs +K)2

2
(2.47)

C =
−(1− 2ηs)D

+k2 + ka(ηs +K) +
√
(D+)2k4 + 2D+k2ka(ηs −K) + k2

a(ηs +K)2

2
√
(D+)2k4 + 2D+k2ka(ηs −K) + k2

a(ηs +K)2

(2.48)

D =
D+k2 + ka(ηs +K)−

√
(D+)2k4 + 2D+k2ka(ηs −K) + k2

a(ηs +K)2

2
(2.49)

The exponents of expression 2.44, B and D, have units of temporal frequency

1
τk

, which identify the two modes by which the system decays in time. Inter-

estingly, if one plugs B or D into equation 2.44, one finds that the exponent

contains the familiar diffusion term D+k2τ but also a term that is identi-

fied as the correction due to the ’reactive’ part of the system, ka(ηs + K) ±
√
(D+)2k4 + 2D+k2ka(ηs −K) + k2

a(ηs +K)2. These terms contain the sum of

the two reaction rates kaηs and kaK and a correction due to the inter-conversion

kinetics. The larger exponent, B, is greater than the characteristic rate in absence

of microdomains, k2Dfree. As a result, the effective diffusion coefficient measured

on large spatial scales (small k values) will be smaller than the diffusion coefficient

in the absence of microdomains, Dfree. What follows demonstrates how these

72



correlation functions emerge from the kICS treatment of a system where particles

can chemically convert form one species to another.

2.4 kICS theory for a system of chemically inter-converting species

In the standard kICS treatment of two or more independently diffusing

species, the correlation function is a linear combination of all independent con-

tributions. In a system where two diffusing species can inter-convert, the cross-

product terms in expression 2.52 will be non-negligible. In other words, the density

of one population of particles will depend on the density of the other. An example

would be a particle diffusing in a random two-phase medium, where density of

the ‘free’ population depends on the density of the ‘trapped’ population.

We start the derivation by writing the intensity of images as in equation 2.15.

i(~r, t) = q1I(~r) ∗ ρ1(~r, t) + q2I(~r) ∗ ρ2(~r, t) (2.50)

which on transforming to k-space and building on the same parameters gives an

expression analogous to equation 2.20 :

ĩ(~k, t) =
I0ω

2
0π

2
e−

ω2
0 |

~k|2

8 {q1
N1∑

i=1

Θi,1(t) ˜ci,1(~k, t) + q2

N2∑

j=1

Θj,2(t) ˜cj, 2(~k, t)} (2.51)
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where ˜cm,n represent the mth particle of the nth population Then the temporal

correlation function in k-space becomes:

Φ(~k; τ, t) =
I0ω

2
0π

2
e−

ω2
0 |

~k|2

8 〈{q1
N1∑

i=1

Θi, 1(t) ˜ci,1(~k, t) + q2

N2∑

j=1

Θj,2(t) ˜cj,2(~k, t)}×

{q1
N1∑

i=1

Θi,1(t+ τ) ˜ci,1(~k, t+ τ) + q2

N2∑

j=1

Θj,2(t+ τ) ˜cj,2(~k, t+ τ)}〉

(2.52)

which upon expansion leads to:

Φ(~k; τ, t) =
I0ω

2
0π

2
e−

ω2
0 |

~k|2

8 {q21〈Θi,1(t)Θi,1(t+ τ)〉〈c̃1(~k, t)c̃1(~k, t+ τ)〉

+ q1q2〈Θi,1(t)Θi,2(t+ τ)〉〈c̃1(~k, t)c̃2(~k, t+ τ)〉

+ q2q1〈Θi,2(t)Θi,1(t+ τ)〉〈c̃2(~k, t)c̃1(~k, t+ τ)〉

+ q22〈Θi,2(t)Θi,2(t+ τ)〉〈c̃2(~k, t)c̃2(~k, t+ τ)〉}

(2.53)

the first and the last terms of the above expression are simply the self-correlation

contributions of each species. In the case of freely diffusing populations, these are

the only two terms present as shown in equation 2.32. However, the second and

third terms contain the inter-conversion factors between two populations densities.

The Θ(t) correlation terms in the above expression can be seen as the probabilities

that a particle in state 1(2) at time t turns into state 2(1) at time t+τ . The above

expression can also be written as:

Φ(~k; τ, t) =
I0ω

2
0π

2
e−

ω2
0 |

~k|2

8

2∑

i,j=1

αi,jFi,j(~k, τ) (2.54)
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where the α parameters in this expression relate to Θ temporal correlation func-

tions and are analogous to the polarizabilites of molecules in a DLS experiment.

The expression above has also an equivalent in the DLS formulation for chemical

reaction [1].

Indeed, the simple chemical interconversion reaction described by A ⇀↽ka
kb

B, where ka and kb are the forward and the backward rate constants, can be

represented by the following system of equations [1]:

∂c1
∂τ

= D1∇2c1 − kac1 + kbc2 (2.55)

and
∂c2
∂τ

= D2∇2c2 − kbc2 + kac1 (2.56)

which can be solved for the particle concentrations, c1 and c2. In analogy to the

traping problem, c1 is comparable to the free particle concentration in medium

(+), Nf , while c2is like the concentration of bound particles Nb. The equilibrium

constant Keq ≡ ka
kb

=
c02
c01

is defined in terms of equilibrium concentrations of A and

B species. If we assume that the domains are large enough so that the diffusion

coefficient within domains is significant and the term D−∇2Nb(~r, τ) appears in

equation 2.34, we can then see the correspondence between equations 2.33 and 2.55

and 2.34 and 2.56. Indeed, in the problem we are considering, K =
Nf (~r

+,τ)

Nb(~r−,τ)

and comparing to the definition of the equilibrium constant, we deduce that the

partition coefficient in trapping problem, K, is equivalent to the inverse of the

equilibrium constant in the reaction system solved in [1], K ≡ 1
Keq

. Moreover,
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the absorption rate constant for the trapping problem, kaηs tells us the rate at

which particles in medium (+) get absorbed into the domains (-). It has a similar

meaning as the forward rate constant, ka, which tells us at what rate the particles

A convert to particles B. Also, the rate constant kb for the inverse reaction

matches the trapping problem product kaK which the rate at which particles leave

the bound state (microdomains). The general solution to 2.55 and 2.56 is of the

form:

S(~k, τ) = B+e
s+τ +B−e

s−τ (2.57)

where S(~k, τ) denotes the intermediate structure function and:

s± = −1

2
(γ1 + γ2)±

1

2
[(γ1 − γ2)

2 + 4kakb]
1
2 (2.58)

denote the modes of relaxation of the system, while the coefficients B± are:

B± = ± [α2
1c

0
1(s± + γ2) + α1α2(c

0
1ka + c02kb) + α2

2c
0
2(s± + γ1)]

(s+ − s−)
(2.59)

where γ1,2 = D1,2k
2 + ka,b. Now, using the following correspondences between their

system and our problem: c1 → Nf , c2 → Nb, ka → ηska, kb → kaK, D1 → D+,

D2 → D−, c01 = 1− ηs and c02 = ηs.

Consider the roots of the dispersion relation obtained:

s± = −1

2
(D+k2 + ka(ηs +K))± 1

2
[(D+k2 + ka(ηs −K))2 + 4k2

aηsK]
1
2 (2.60)

which after simplification becomes

s± = −1

2
(D+k2+ka(ηs+K))± 1

2
[(D+)2k4+2ka(ηs−K)D+k2+k2

a(ηs+K)2]
1
2 (2.61)
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which are equivalent to equations 2.47 and 2.49. Similarly one can show that

equations 2.59 reduce to equations 2.46 and 2.48 assuming α1 = α2 = 1. This

leads us to anticipate the result if we include the diffusion coefficient within

microdomains. Indeed, substitution of γ2 for D−k2 + kaK in expressions 2.60

and 2.59 would lead to the solution which includes diffusion inside domains.

The expressions found for effective mobilities in either a heterogeneous two-

phase medium or for the case of the chemical interconversion, suggest that there

will be two effective mobilities emerging in such systems. If one considers the

system where particles diffuse outside (inside) domains with diffusion coefficient

D+(−) and can partition into domains at a rate kbind and out of domains at a rate

kunbind, then the kinetic model described above represents a good representation of

this system. The rates, kunbind and kbind, will depend on several system parameters.

In the next chapter we will discuss how this system is simulated and explore

the parameters influencing these rates. Equations 2.57 and 2.44 suggest that the

kICS correlation function is composed of a sum of two Gaussians. The sum of two

effective dynamic components was suggested in the spot-vary FCS adaptation in

the study of isolated domains and stick-and-diffuse kinetics, but only as function

of temporal lag and laser beam waist size [9]. In the present case, we should not

expect the mobilities, s±, to be simply equal to Dfreeτ for two populations, as is

the case for two freely diffusing independent species (equation 2.32). Instead we

should expect to observe one faster decaying component, s+, which will effectively

represent the larger spatial scale motion that particles will undergo, as they
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visit domains between two points in space separated with large distances. This

component will be called ’Fast’ as shown in figure 2–1. The other component,

s−, will effectively represent smaller spatial scale motions, where particles explore

the region inside the domains. This component will be called ’Slow’ as depicted

in the figure 2–1. Both of these mobilities will be affected by all of the chemical

reaction parameters, D1,2, k1,2, which effectively emerge in the case of the two

phase medium from the micro-structure defined by D±, ka, K, ηs. The next

chapter will outline the approaches used to simulate such system, compute and

characterize the correlation functions by non-linear weighted fitting of a sum of

Gaussians. Chapter 4 explores the characterization of heterogeneous systems

through computer simulations and chapter 5 presents results from cellular imaging

experiments with isolated membrane domains and heterogeneous dynamics for

GPI-GFP in live COS-7 cells.

2.5 kICS theory for a meshwork confinement

As we have seen in chapter 1, the other type of confinement is membrane can

be caused by the mesh of the membrane proximal actin cytoskeleton. In the case

of meshwork like confinement, there is effectively a single probability value, P, for a

particle to escape from a compartment and move to an adjacent compartment. All

particles are assumed to move at same microscopic diffusion coefficient D, within

a compartment of defined average mesh pore diameter, L. Depending on P,D and

L values, which define the transport in system, the particles are observed to hop

between compartments with a macroscopic diffusion coefficient, DM , that is smaller
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Figure 2–1: Emergence of two dynamic populations in the kICS correlation func-
tions calculated from simulations with particles diffusing inside and outside do-
mains on a 2D surface. Top row depicts simulated free diffusion (D=0.01µm2

s
,

ωPSF=0.4 µm, tframe=1 s) and bottom row depicts the simulation of diffusion on
a 2D surface containing randomly distributed circular domains (rdomain=0.2 µm,
domain area coverage 5 %, Din and Dout set to 0.005 and 0.01 µm2

s
, while Pin and

Pout set at 0.5 and 0.1, respectively). a) and e) show schematics of sample particle
trajectories superimposed on the series projection images from each simulation
condition. The particle in e) visits, and is confined within small domains as is seen
in red parts of the trajectory. b) and f) show the kICS correlation function for
each condition at lag time τ=2 s. c) and g) show lag time τ=10 s, while d) and h)
show lag time τ=20 s. The red and green areas superimposed on the correlation
function in h) highlight the relevant k-vector regimes where the two dynamic popu-
lations are manifest. These are labeled Slow for particles diffusing and confined in
domains (red in e and h) and Fast, for particles freely diffusing outside of domains
(green in e and h).
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than that of particles within a compartment. These properties differentiate the

meshwork confinement from isolated domains, which is effectively a two phase

system. As a result, the diffusion coefficient inside and outside domains can be

different from the effective large spatial scale diffusion coefficient, Deff . Also, the

probabilities of particles to partition into and out of domains can vary.

Recently, several theoretical approaches were suggested to predict mesh size

and microscopic diffusion coefficients on basis of either SPT or FCS experiments

on meshwork like membrane confinements. In one case [10], it has been shown that

for the FCS diffusion law, the time for the amplitude temporal auto-correlation

function to be reduced by a factor of 2 is given by:

t 1
2
≃ 1

4DM

(ω2 − L2

12
) (2.62)

where DM denotes the macroscopic (long range) diffusion coefficient, L is the

mesh pore diameter and ω is the e−2 beam waist radius. Other approaches [11, 12]

quantify the SPT based data analysis. Here the authors calculated the two-time

correlation of particle positions:

C(t) = 〈~r(s+ t)~r(s)〉 − 〈~r(s+ t)〉〈~r(s)〉

∼= Const.exp(− t

τ
)

(2.63)

which after expansion leads to:

C(t) ∼= L2

6
exp(− t

τ
) (2.64)
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with τ = L2

12Dµ
where Dµ is the micro diffusion coefficient of the particles within the

mesh pore.

These developments suggest that the correlation function should be described

by a single Gaussian decay. In spot-varying FCS experiments, FCS diffusion law

for meshwork gave a positive intercept which links to the diameter of the mesh

pore (L). The late temporal lags diffusion coefficient (DM) is an effective one that

depends on the probabilities for particles to cross the meshwork barriers and on

the micro diffusion coefficient (Dµ). With SPT one can deduce these properties

from the mean square displacement (MSD) of particles [11].

In the current development, we will employ a similar approach, in which kICS

correlation functions are fitted vs spatial frequency at a given temporal lag (the

standard kICS approach) in order to extract the characteristic decay constant, Dτ .

Plotting 4Dτ vs temporal lag τ yields the equivalent of an MSD plot 4–22 b). The

plot exhibits an early and a late slope which can be fitted to give the micro and

macro diffusion coefficients, respectively. The intercept on the y-axis (MSD) for

the later linear regression of that curve, gives an apparent mesh size, Lapp. The

following expression links, Dearly, Dlate and Lapp to the actual mesh size:

L = (1 +
Dlate

Dearly

)Lapp (2.65)

The extracted Dearly represents the micro diffusion coefficient within mesh pore,

Dµ, while the extracted late diffusion coefficient, Dlate is linked to the macro

diffusion coefficient of the particle hoping between compartments, DM . The micro

81



diffusion coefficient is larger than the large scale hoping diffusion coefficient,

Dµ > DM . Similarly, the late temporal lags diffusion coefficients reflects the oping

motion of particles between mesh pores and is smaller than early temporal lag

diffusion coefficient, Dearly > Dlate.

This is a phenomenological relation and should not be taken as an analytically

derived expression. Indeed, if Dlate equals Dearly, then the above expression implies

that the true mesh size is twice the value of the apparent. On the other hand,

in the limit where Dlate approaches Dearly, the apparent mesh size, Lapp would

approach zero. As result, the recovered mesh size would also approach zero (i.e.

there is no meshwork). The description of fitting procedures will be detailed in

next chapter, while examples of simulated results for meshwork will appear in

chapter 4.
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CHAPTER 3
Materials and Methods

3.1 Computer simulations

3.1.1 General considerations

The terms ‘domain’ and ‘raft’ are both used interchangeably in this thesis,

to mean an isolated circular subregion within the heterogeneous composition

relative to the bulk membrane. All simulations and data analysis were performed

using Matlab (The Mathworks Inc., Natick, MA) and associated toolboxes, like

Fitting and Image Processing. The analysis was performed on a laptop MacBook

Pro (2.53 GHz, Dual core Intel, 4GB RAM) and on a personal desktop computer

with similar specifications running on Linux Unbuntu platform. In this work,

a 2D matrix representing the fluorescence microscope images are simulated

containing N particles diffusing within 2D plane. The plane is composed of a

uniform distribution of randomly placed circular domains, that mimic membrane

heterogeneities. Images are formed by 2D convolution of 2D Gaussian filter,

mimicking the PSF of a microscope, and are separated in time at a defined

frame rate. It takes around 520 s to simulate 100 images of 256 by 256 pixels,

including a population of 3277 particles. The time for simulation scales linearly

with the number of particles and the number of images generated. It takes
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around 10 s to calculate a correlation function from such an image stack, with

the first 20 temporal lags. In the original implementation from the simulator

from the Wiseman lab, particles were moving in a continuous 2D space, with

set dynamics, and discrete pixel sampling. Since the previous simulator did

not consider the possibility of a sub-pixel displacements, the particle positions

were rounded to the nearest integer prior to image creation. A similar effect

occurs if one considers the particles’ diffusion in a multi-phase heterogeneous

environment. These integer valued positions of the particles were subsequently

convolved by a function ‘convolve2’ using a Gaussian filter, created using the

function ‘fspecial’, to simulate particle emission profile blurred by a 2D Gaussian

approximation of the PSF. Although this approach captured the main features of

images collected on a fluorescence microscope, it is realistic only if the particles’

displacements are integer valued, from one frame to the next. Since we are dealing

with motion of particles in a heterogeneous environment, we need to allow for

the flexibility of motion smaller than a pixel size during a time step. This was

accomplished by a new implementation, where images are created by summing all

the Gaussian functions placed at the exact coordinates of each particle at a given

time. Mathematically, this gives a pixel intensity:

I(i, j, t) = I0

N∑

n=1

e
−(i−xn(t))2

ω2
x · e

−(j−yn(t))2

ω2
y (3.1)

where I0 is the intensity of the PSF at the origin (which can be set to 1), i and

j denote integer value coordinates of the pixel, for N particles, xn(t) and yn(t)

are the sub-pixel coordinates of particle n at time t. In this fashion, Gaussian
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peaks are centred on the actual positions of particles, rather than their integer

rounded values. The difference between the old and the new image simulations

can be seen in figure 3–1. In the old version (Figure 3–1 a), where particles

positions are rounded, the peak centre moves by a whole pixel from one frame to

another. The red Gaussian spots show the previous frame and the green is the

superimposed subsequent frame. Figure 3–1 b) shows that the new convolution

registers properly a sub-pixel motion as witnessed by a quasi imperceptible change

of PSF position from one frame to another.

(a) Old image convolution (b) New image convolution

Figure 3–1: Old vs new image convolution methods. Red spots label earlier frame
while green are for the superimposed subsequent frame. a) Old style image convo-
lution. b) New simulation image creation result. The particles motion was set to
be sub pixel size.
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3.1.2 Isolated domains simulations

Simulation of isolated domains was also performed previously in the Wiseman

group [1], although the new implementation has significant improvements. In

the old version of the simulator, isolated domains were implemented through

a ‘raftMask’, which involved creating a binary mask of the same size as the

final image, which had a value of ‘1’ where the domain phase was present and

zeros elsewhere. This mask was used throughout the simulation as a guide for

the delimitation between raft and non-raft phases. Effectively, particles would

partition into a domain phase if the probability of going in, Pin, was favourable.

Similarly, it would leave the domain phase if the probability of exiting, Pout, was

favourable. That implementation works if the domain radius is a few pixels in

size. Then the domain will appear in the mask as a circular object, even if its

boundaries are slightly pixelated. On the other hand, when the domain radius is

on the order of a pixel or less, the old implementation of raftMask will force the

minimum achievable radius, which in this case is a single pixel. Therefore, this

mask will fail to create domains of the real sub-pixel size. The new implementation

does not use a binary mask for rafts. It rather simulates a continuous case for

domains, where their centers have a real value (xraft, yraft), which falls within the

boundary of the image and they have a radius of a positive real value. Figure 3–2

demonstrates the difference between the old and the new implementations for

isolated domain simulation. Figure 3–2 a) displays rafts as cross-shaped objects,

because their radius (0.2 µm) is close to the pixel size (0.1 µm) Therefore, particles

forceably explore that shape of domain. In figure 3–2 b) with the new simulation
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the rafts are continuous with a radius of 0.2 µm, so particles explore a more

continuous circular raft shape.

♠�

✁
✂

✶✄ ✶☎ ✷✆ ✷✷ ✷✝

✝

✄

☎

✶✆

✶✷

(a) Old raft mask

✷✷ ✷� ✷✁ ✷✂ ✷✄
✼

✽

✾

✶☎

✶✶

♠✆

✝
✞

(b) New raft mask

Figure 3–2: Old vs new ways of simulating rafts. In both images the yellow trace
represents a particle trajectory. a) Rafts are 0.2 µm in radius and ‘raftMask’ is
composed of cross shaped domains. The pixel size is 0.1 µm. b) Raft centres are
labelled with an asterix and their radii are 0.2 µm. The red dashed line was added
to show the boundary of one of the rafts.

The simulation of Brownian particle motion in 2D environments in the

presence of circular domains proceeded as follows: Domains were stationary, of

uniform finite size and randomly placed uniformly in a region defined by the

boundary of an image. The centres were selected to be at least 2 times the radius

apart, to avoid potential overlaps. The domain density per µm2 was adjusted to

preserve the domain phase area coverage (fixed to 5 % unless stated otherwise) in

order to account for a change of radii from one simulation to another. Initially,

particles were distributed randomly uniformly within the image frame. Particles
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were set to move with different diffusion coefficients inside (Din) and outside (Dout)

of domains. When encountering a domain boundary from the inside, a random

number from 0 to 1 was generated and compared to the probability for a particle

to leave the domain, Pout, set from 0 to 1. If the random number was greater than

Pout, the particle would escape the domain. Otherwise, it would remain within

the domain. Similarly, if encountering a domain boundary from the outside, a

probability to partition into domains, Pin, was compared to a randomly generated

number and an entry decision was made. When the particle leaves the boundary of

the image, it was set to reappear on the opposite side through the implementation

of a periodic boundary. This was implemented to conserve the number of particles

within any simulation. Experimentally, for measurement on a cell sub regions,

a periodic boundary condition does not hold, which prompted simulations of a

larger area (typically 300 by 300 pixels) and then the central portion (256 by

256 pixels) was cropped and analyzed. The pixel size was set to 0.1 µm to mimic

typical pixel size of TIRF microscopy images. The diffusion coefficient within

and outside of rafts typically take values of 1 and 3 µm2

s
in previous simulation

studies [2], although this choice of parameters was not desirable for simulation

of very small rafts. Indeed, when simulating small rafts, it is not desirable for

a particle to move with a step size of more than 0.2 times raft radius. This

potentially creates unrealistic dynamics, where a particle encounters the boundary

too frequently. Also, with a greater step size, a particle outside will less frequently

encounter the small rafts. For example, for rafts of a 0.1 µm radius, the step size

would have to be 0.02 µm or less. With Din =1 µm2

s
, this requires a frame time
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on the order of 0.1 ms, which exceeds the time resolution of most commercial

microscope CCD cameras. Therefore, Din and Dout were chosen to be 0.001 and

0.01 µm2

s
respectively, unless otherwise stated. The frame time was then adapted to

accommodate the size of domains as follows:

frame time =
( raft radius

5
)2

4Din

(3.2)

For the raft sizes and the diffusion coefficients inside the domains considered in

these simulations, frame time varied from 40 ms to few s. which matches the

time frame achievable on CCD cameras used in standard TIRF microscopy. The

number of simulated frames was set to 2200, and an adjustment of the frame time

allowed for sampling of a reasonable number of fluctuations inside and outside

the domains. The first 200 frames of the image series were not included in the

calculation of the correlation function, in order to allow the particles to reach

partitioning equilibrium, for the confinement scenarios considered. Images were

created by a convolution of a 2D Gaussian with particles positions at each time

frame, as described above. This mimics the integration of fluorescence emission

by CCD-type detectors in TIRF microscopy. The PSF was approximated by a 2D

Gaussian with lateral e−1 radii ωx and ωy in x and y dimensions, respectively.

These radii are usually approximately equal, and they represent, in the new

convolution mode (see above), the radius of the PSF at e−1 of the peak value. The

older implementation of convolution defined the ‘PSF size’ as the radius at e−2

of the peak value instead. Particle density was set to 5 particles per µm2. Photo-

physics effects (photo-bleaching and blinking) of fluorophores were not simulated
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for the particles as these should not interfere with the dynamics of particles

on the time scales considered. They were characterized thoroughly in [3]. The

quantum yield of the particles was set to 1. There was no particle flow in any of

the simulations. Background noise was implemented and varied as described below.

The table 3–1 summarizes the set of parameters used in computer simulations.

Table 3–1: Adjustable parameters for isolated domains simulations

Parameter name Default values Variation range
Image Series Properties

Number of pixels in x dimension 300 cropped to 256 NA
Number of pixels in y dimension 300 cropped to 256 NA

Number of frames 2200 used last 2000 NA
Pixel size 0.1 µm NA

Time between frames 1 s
( raft radius

5
)2

4Din

Imaging mechanism CCD-type integration NA
PSF type 2D Gaussian NA

PSF e−1 x, y radius 0.4 µm NA
PSF e−1 z radius 0 (i.e. 2D simulations) NA

Particle properties
Particle density 5 per µm2 NA

Particle distribution (initially) uniformly random NA
Photophysics considered NA NA

Quantum yield 1 NA
Din 0.001 µm2

s
0.001 to 0.01 µm2

s

Dout 0.01 µm2

s
NA

Noise
Background Noise (inverse S

B
) 0 0.01 to 0.2

Domain properties
Pin 0.5 0.1 to 0.9
Pout 0.1 0.1 to 0.9

raft radius 0.2 µm 0.05 to 0.5 µm
raft area fraction (% total area ) 5 % 0.5 to 5 %

raft distribution uniformly random NA
raft motion mode none NA
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3.1.3 Meshwork simulations

To simulate a meshwork like confinement, a network of parallel horizontal and

vertical lines were simulated to create an effective mesh. The spacing between lines

defined the square mesh pore diameter. Each line acted as a barrier for a particle

in motion. For a time step, each particle’s subsequent potential position was

evaluated. If the next position implied crossing the barrier, then a random number

was generated and compared to a pre-set probability of crossing the barrier to

determine if the particle crosses or not. Only one particle diffusion coefficient is set

for meshwork simulations for motion within compartments. Figure 3–3 shows two

examples of a small (250 nm) and a large (2 µm) meshwork compartment size.

Many of the same simulation settings as for the domains were used for the

meshwork runs. Particles were randomly seeded initially and convolution was

done in the same way as for the isolated domains simulations. Since, each particle

has to be checked for all boundaries making up the meshwork, the simulations

were slower than for isolated domains. The direction of approach to a line for

each particle needs to be checked, increasing the number of calculations. For that

reason, an effective image area of 9 by 9 µm was simulated, making up smaller

images, when 0.1 µm pixels were considered. The table 3–2 summarizes parameters

varied for the meshwork simulations.
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(a) Small diameter meshwork (b) Large diameter meshwork

Figure 3–3: Examples of simulated meshworks. a) 200 particles trajectories (dif-
ferent colour for different particles) exploring a 250 nm sized mesh. There are 36
by 36 mesh lines, making up a meshwork of 9 by 9 µm. b) Large meshwork of a
2 µm diameter mesh, making an effective 12 by 12 µm area. Only a few particle
trajectories were superposed on top of the average image of the series produced.

3.1.4 Background noise implementation

Background noise was added to images in order to assess its effect on the

quality of the data analysis and qualitative effect on kICS correlation func-

tion. A detailed analysis of noise effects on kICS can be found in the following

manuscript [3]. Background noise comes from the sample itself, such as from cell

medium or auto-fluorescence in the cell. We will simulate it as a normally dis-

tributed matrix of random values, with zero mean and pre-set standard deviation.

Indeed, upon the addition of noise the image matrix with elements (pixels) rij,
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Table 3–2: Adjustable parameters for meshwork simulations

Parameter name Default values Variation range
Image Series Properties

Number of pixels in x dimension 90 NA
Number of pixels in y dimension 90 NA

Number of frames 1200 used last 1000 NA
Pixel size 0.1 µm NA

Time between frames 0.01 s NA
Imaging mechanism CCD-type integration NA

PSF type 2D Gaussian NA
PSF e−1 x, y radius 0.4 µm NA
PSF e−1 z radius 0 (i.e. 2D simulations) NA

Particle properties
Particle density 2 per compartment (initially) NA

Particle distribution (initially) uniformly random NA
Photophysics considered NA NA

Quantum yield 1 NA
D 0.1 µm2

s
NA

Noise
Background Noise (inverse S

B
) 0 0.01 to 0.2

Meshwork properties
P NA 0.001 to 0.4

mesh size NA 0.2 to 0.45 µm
number of mesh NA scaled to area of 81 µm2

mesh deformation mode none NA

becomes a noisy signal image sij:

sij = rij + nij (3.3)

where nij are the noise matrix elements. Since, the noise matrix is normally dis-

tributed around zero, then nij is set to σuij where sigma is the standard deviation

of the noise level and uij are the elements of the noise distribution. Hence σ is an
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actual parameter representing the standard deviation of the background noise. The

signal-to-background ratio is defined as:

S

B
=

mean(signal)
σ

(3.4)

3.2 Data analysis

3.2.1 Data windowing

The need for image windowing prior to the kICS analysis was previously

described [3]. The rationale for the windowing of images comes from the fact that

the discrete Fourier transform of an image is sensitive to the sharp discontinuities

at the image edges, producing non-existent high frequency components that mix

with lower spatial frequencies. Mathematically, an image can be represented as a

product of an infinite 2D plane with a square window function:

i(x, y) = iinf (x, y) · w(x, y) (3.5)

when Fourier transformed, this product becomes a convolution of the two func-

tions:

ĩ(~kx, ~ky) = ĩinf (~kx, ~ky) ∗ w̃(~kx, ~ky) (3.6)

Therefore, high frequency components arising from the image edges discontinuities

mix with the spectrum of the image at all frequencies. The standard procedure to

attenuate such spectral leakage in signal processing, is through a multiplication of
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the data by a window function that is equal to 1 at the centre of the signal and

decays to zero toward the edges. We will use the Hann window as it attenuates

optimally the spectral leakage in the low spatial frequencies, which we are mostly

interested in. The 2D version of the Hann window is made using the existing

Matlab function ‘hann’ for 1D signals. Indeed, by replicating a 1D window over

all rows of the image and by multiplying in an element-wise fashion its 900 rotated

version, we get the 2D Hann window. The image is multiplied, element-wise, with

the window function before the application of the fast Fourier transform algorithm.

Figure 3–4 shows an example of an image before and after windowing and the 2D

Hann window function itself.

(a) Image before win-
dowing
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✵�✟
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(b) 2D Hann window (c) Windowed image

Figure 3–4: Hann windowing is applied to each image prior to the Fourier trans-
form. a) Image prior to windowing. b) 256 by 256 Hann window. c) Image after
windowing. Scalebar is 5 µm
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3.2.2 kICS function computation, normalization and averaging

Details of kICS correlation function computations, normalization and av-

eraging can be found in [3, 4]. The basic idea behind rapid computation of any

correlation functions is the Wiener-Khinchin theorem. It states that the power

spectral density, Sxx(f), of a stationary random process, x(t), is the Fourier

transform of the corresponding autocorrelation function, rxx(τ). It writes as:

rxx(τ) =

∫ ∞

−∞

Sxx(f)e
2πτfdf (3.7)

where rxx(τ) = 〈x(t)x∗(t − τ)〉 is the auto-correlation of the signal x(t). This

implies that if we want to correlate two images, the fastest way to do so is by

calculating the 2D fast Fourier transform of the images and then computing

their cross-power spectrum, followed by computation of the inverse transform.

Practically, windowed images, as described in the previous section, are fast Fourier

transformed (by ‘fft2’ function in Matlab). Then pairs of transformed images,

ĩ(kx, ky, t), separated by temporal lag τ , are correlated and averaged producing an

non-normalized temporal correlation function:

G(kx, ky, τ) = 〈̃i(kx, ky, t)̃i∗(kx, ky, t+ τ)〉τ (3.8)

This temporal correlation function forms the basis for STICS, which is then

Fourier inversed and normalized by the product of the average intensity of the

images in real space. In kICS, all analysis is performed in Fourier space instead,

and the normalization is with the zero temporal lag (G(kx, ky, 0)) of the above
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expression, eliminates stationary contributions, such as the PSF. The resulting

normalized correlation function is azimuthally (circularly) spatially averaged,

as the system is considered isotropic. This effectively results in the minimum

number of fitting parameters, as we get a 1D correlation function instead of 2D.

It also reinforces the correlations present at all angles, while averaging out noisier

contributions. Figure 1–18 from chapter 1, gave an overview of the operations

described. We will refer to the normalized and circularly averaged correlation

function as r(k2, τ):

r(k2, τ) = 〈G(kx, ky, τ)

G(kx, ky, 0)
〉t (3.9)

3.2.3 Nonlinear fitting of the correlation functions

In order to extract characteristic widths and amplitudes from a correlation

function, the nonlinear fitting algorithm was employed. In its original adaptation,

kICS used a linear fitting of the logarithm of the correlation function [4]. This

was useful only if a single dynamic species existed in the sample, since in this case

the logarithm of the correlation function yielded a linear relation vs the spatial

frequency squared (k2) for a single time lag. For multicomponent dynamical

systems, the correlation function’s overall shape is fit by a sum of two or more

Gaussians. The tool employed for this task was the Matlab function ‘fit’ from

the Curvefit toolbox. This function is rather flexible so that the user can choose

between linear and non-linear fitting schemes, methodologies, weights, bounds

on parameters, and many other useful features. For our purposes, non linear

least squares fitting was used. Three algorithms were tested, traditional ‘Gauss-

Newton’, ‘Levenberg-Marquardt’ and the more recent and flexible ‘Trust-Region’
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procedure. The best results were obtained using the Trust-Region approach, as it

offered the user the possibility to define lower and upper bounds on parameters.

In turn, this keeps the final solution within defined boundaries, instead of letting

it diverge to some local minimum in the parameter space. The bounds were set

on the basis that amplitudes of normalized correlation functions can not be less

then 0 or greater than 1. Similarly, the decay rates (widths) lower bound was set

to 0 and their upper bounds were set at infinity. Another advantage of the ‘fit’

function is the option ‘Robust’, which makes sure that outliers in the data set

are not taken into account (or are given less weight) during the fit. In our fitting

we use the least absolute residuals method for robust fitting, which ensures that

the absolute difference of the residuals is minimized. Initial values for the fit

relied on a logic that in the case of two dynamic components, one of them will

have a larger amplitude than the other, but the sum of amplitudes is equal to

one. Similarly, the widths were set initially so that one component is an order of

magnitude higher than the other. The initial guess of one of the two component’s

diffusion coefficient was an arbitrary task. It was estimated by forcing a linear

fit through the logarithm of the correlation function, as done in kICS [4]. This

yielded an average diffusion coefficient, that was used as the initial parameter in

the non-linear fitting procedure.

The ultimate goal is to characterize, through fitting, the circularly averaged

and normalized correlation function, r(k2, τ). Figure 3–5 displays an example of

r(k2, τ) for an isolated domains simulation where domain size was set to 0.25 µm

and mobilities were Din =0.001 and Dout =0.01 µm2

s
. For intermediate spatial

100



frequencies and intermediate times, single Gaussian fit does not characterize the

whole range of k2 values. We notice that there is an initial decay at small spatial

frequencies (small k), which represents large spatial scales. This component is

referred to as a ‘fast’ component, since it decays faster, reflecting faster motion

at large spatial scales, which is usually due to particles’ motion outside the

domains. It can be seen as a measure of the effective particle mobility through a

heterogeneous medium. If there were no domains, that value would simply be the

diffusion coefficient of free (Brownian) particles. Also, there is a late, larger spatial

frequencies component, that reflects motion (or arrest of motion) at small spatial

scales. We refer to this component as ‘slow’, since it represents effective mobility

around and inside the rafts. In order to characterize these complex correlation

functions, a multi-component non-linear least square fit is applied. The shape of
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Figure 3–5: Non-linear least squares fitting k-space correlation function resulting
from a heterogeneous environment. a) 2D magnitude plot of r(k2, τ) calculated
from simulated images. b) Plot of green dashed line from a) with two possible im-
plementations of 2 Gaussian fit. c) Plot of magenta dashed line from image on a)
with its 2 Gaussian fit.
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the curves at a given time (Figure 3–5 b) or a given spatial frequency (Figure 3–5

c), suggests that a sum of two Gaussians is a good approximation, as expected

from the Theory, which can be used to characterize both spatial and temporal fits.

The fitting equation has the form:

r(k2, τ) = Ae−Bk2τ + Ce−Dk2τ + E (3.10)

where the offset parameter E, usually goes to zero in the k2 fit while it is a

nonzero value in the τ fit. We shall refer to these fits as ‘2G-τ -fit’ and ‘2G-

k-fit’, respectively. It is not clear why the 2G-k-fit does not work well with a

simple sum of Gaussians, but rather fits better the sum of a Gaussian and a

‘quadratic exponent’ Gaussian as shown with the red line in figure 3–5. The

simplest explanation would be that the domains, have a size comparable to

or smaller than the PSF set in simulations. Therefore, the zero temporal lag

normalization, as described earlier, could possibly skew the shape of the second

(slow) decay. Indeed, the PSF normalization factor e−
k2ω2

4 decays faster than the

smaller raft size e−k2a2 factor, where the PSF radius, ω is greater or equal to th

raft size a. Consequently, if the highest frequencies of r(k2, τ) are truncated from

the fit, the modified r(k2, τ) is better fitted by an exact sum of two Gaussians

than without truncation, but that does not capture the whole range of the r(k2, τ)

decay. The 2G-τ -fit seems more appealing for characterization of r(k2, τ) as it

appears to be an exact sum of Gaussians. On the other hand, having a small

number of temporal lags ( 200 time lags for image series of 2000 frames) makes

it less appealing compared to the 2G-k-fit which is done over ∼1200 k2 values.
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Therefore, we will adopt the 2G-k-fit for the characterization of correlation

functions for the remainder of this thesis.

Another approach for the characterization of the r(k2, τ) is by fitting a single

Gaussian in either space or time. Figure 1–21 in chapter 1 shows an example of

how forcing a single Gaussian fit in time, at a given spatial frequency, gives a first

order characterization of r(k2, τ). This fit formed the basis of the extraction of the

FCS diffusion law in spot vary FCS experiments, even though their temporal ACF

did not exhibit a single freely diffusing species decay. The fit we apply here is:

r(k2, τ)τmax=50 frames = Ae−Bτ + C (3.11)

where B is the characteristic decay at a given spatial frequency, which we define

as B= k2
charD. This is used to extract mobilities at every spatial frequency. In

the case of Meshwork, a single Gaussian fit vs k2 was sufficient to characterize

the correlation function and produces the equivalent of an MSD plot. The fitted

function was:

r(k2, τ)mesh = Ae−Bk2 + C (3.12)

In this case, B = Dτ and if multiplied by 4 gives the equivalent of the MSD.

Therefore, plotting each B vs τ can be used to recover meshwork system parame-

ters in a similar way as for MSD vs time analysis of SPT data.

The quality of fits was assessed for each scenario by χ2 and reduced χ2

statistics. The Matlab function ‘fit’ outputs the goodness-of-fit statistics as well

as the 95 % confidence intervals for the fitted parameters. The error bars used for
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each Dτ or other fitted parameters represent 95 % confidence intervals from the

non-linear fit.

3.2.4 Extraction of domain size and particle mobilities

In order to extract characteristic system parameters such as domain and mesh

size and particles mobilities, from Dτ vs τ plots, we employ the function ‘fit’

again. This time we use it to do a weighted linear least square fit. The weights

used in this fit is the inverse of the square of the error bars (defined by the 95 %

confidence intervals) of each Dτ point obtained in the previously described fits.

Basically, the following parameter is minimized:

s =
n∑

i=1

(Dτ iexp −Dτ ifit)
2

σ2
Dτ

(3.13)

where σDτ represents the 95% confidence interval on Dτ iexp recovered from the 2G-

k-fit as explained above. Therefore, if the parameter Dτ iexp, extracted at a given τ ,

has a high uncertainty (i.e. larger than σDτ ), then the weighted least squares fit

will give less weight to that value in the fit.

In order to extract the domain size, the ‘slow’ component decay constant

Dτslow was plotted vs temporal lag variable τ and the saturation point of the curve

gives the value that is proportional to the radius of the domain squared. The

saturation point is extracted by fitting the weighted linear regression, through the

later temporal lags (typically the second half of the temporal lags). Figure 3–6 a)

shows an example of a domain size extraction by weighted linear least squares fit

for an isolated domains simulation with Pin/Pout =5, Dout/Din =10, 5 % raft area
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fraction and 0.2 µm radius of domains. The linear fit was done for τ = 50 to 80 s.

The y-axis intercept was 0.0100 ± 0.0001 which is within the expected raft size
2
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Figure 3–6: Example of data processing to extract domain size and particle mobili-
ties. a) The blue symbols are ‘slow’ component mobilities Dτ with 95% confidence
intervals. Red line shows weighted least square linear fit and dashed green and
magenta lines show 95 % confidence intervals on fitted line. b) Same description as
for left example, but for early slope of ‘slow’ component. c) Same descriptions but
for slope of ‘fast’ component.

Similarly, the slope of the slow component is extracted by applying the

weighted linear least square fit to the first 10-30 temporal lags. Figure 3–6 b)

gives an example of such a fit recovering a diffusion coefficient of 0.00063±0.00003

µm2/s, which is slightly lower than the set diffusion coefficient inside the rafts.

This difference will be discussed extensively in the following chapters. Finally, the

fast component slope is recovered in a similar fashion (figure 3–6 c), reflecting the

effective diffusion coefficient of particles at large spatial scales. In this example

it gave a slope of 0.0074±0.0002 which is lower than the set diffusion coefficient
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outside domains which was 0.01 µm2

s
, as expected for a system with isolated

domains.

The outlined weighted linear least square approach ensures that points with

better confidence interval in the ‘Dτ ’ graphs have the highest impact on fitting.

Also, a ‘Robust’ option of the fitting function ensures that outliers, that possibly

resulted in the previous fitting step, do not contribute in the weighted least

squares fit. Figure 3–7 gives a summary of the analysis and fitting steps presented

above, starting from the input image time series data to the calculation and fitting

of normalized correlation functions, to the retrieval of characteristic transport and

confinement parameters of the two dynamic particle populations sampled in the

image series.

3.3 Cell culture, protein labelling and enzyme treatments

All experiments were conducted with COS-7 cells, a kidney fibroblast-like

cell line derived from the African green monkey [5]. This cell line was used

extensively in previous cellular studies of lipid rafts, especially GPI partitioning

into rafts [6, 2, 7, 8, 9]. It was cultured and passaged in medium according to

standard procedures prescribed for this cell line [5]. Briefly, cells were grown in

glucose (0.45 % w/v), sodium-pyruvate (0.15 % w/v) and l-glutamine (4 mM)

enriched Dulbecco Modified Eagle Medium (DMEM) , supplemented by 10 %

fetal bovine serum (FBS) . Confluent cells were passaged (diluted) approximately

every 3 days. Five days before imaging, cells were passaged into glass bottom

(glass N0.1.5 of thickness 0.16-0.19 mm) MatTek (MatTek Corporation) dishes.
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Figure 3–7: Schematic overview of the correlation function analysis, fitting and
confinement parameter output calculated from image time series inputs. A) A
kICS correlation function (CF) is calcualted from an input image time series ac-
quired by standard TIRF or confocal fluorescence microscopy or via computer
simulation. b) The kICS CF is normalized according to eqn. 2.30. and cicularly
averaged for each time lag τ . The dashed blue line and inset plot shows the CF at
τ=5 s. C) Each CF obtained is fitted vs k2, for every temporal lag tau, with a sum
of Gaussians to account for a fast (green) and slow (red) dynamical components
emerging due to domain structure in a heterogeneous membrane (as derived in
eqns. 2.44 and 2.57). D) The amplitudes and exponents are functions of temporal
lag and are characterized by linear fitting over different temporal lag regimes, in
order to extract characteristic confinement parameters.

The passaging procedure, involves washing cells twice in phosphate buffer saline

(PBS) and trypsinization (0.05 % Trypsin in EDTA) for 5 min at 370C and

subsequent light centrifugation to separate them from solution. Resuspended cells

were diluted 1:50 into fresh medium, and added to the fibronectin coated MatTek

dish. Fibronectin, an extracellular matrix component, ensures uniform spreading

of fibrobalsts onto glass bottom dish. Two to three days later, cells reached 50-70
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% confluence, which was optimal dish area coverage for cell transfection. This

procedure consists of inserting plasmid (circular) DNA inside cells to introduce

and express new genes. In order to observe GPI-GFP inside cell membrane by

TIRF microscopy, the GPI-GFP gene needs to be inserted into the DNA of the

cells, where it gets expressed (i.e. protein being produced). GPI-GFP plasmid

DNA was kind gift of Prof. John Hanrahan (Physiology Dept. McGill University).

Transfection was done using a Lipofectamine 2000 kit from Invitrogen, which

consists of proprietary genetic delivery system. Briefly, an amount of plasmid DNA

of GPI-GFP (approximately 1 µg per culture dish) was mixed with Lipofectamine

2000 and incubated at room temperature for 30 min. The mixture was added to

the cell culture dishes and left incubating at 370C for 4-6 hours. DMEM was then

replaced by a nutrient reduced medium (Opti-Mem I, Invitrogen), that induces

cell ‘starvation’. Cell starvation is a standard procedure in cell biology, prior to

biochemical assays, which enhances cellular responses to enzyme treatments and

up-regulation of receptor proteins. Cells were imaged the day after transfection.

Before imaging, the medium was changed from Opti-Mem I to Hank’s Bal-

anced Salt Solution (HBSS) supplemented by 10 mM HEPES buffer. Each MaTtek

dish would have a final volume of 1 mL of HBSS/Hepes buffer. HBSS/Hepes

buffer was used for all imaging, since Opti-Mem, and other cellular media contain

the Phenol Red molecule which produces a fluorescence background. Moreover,

reduced medium contains traces of amino-acids and nutrients, which could poten-

tially interfere with the enzyme treatments applied to cells. HBSS contains glucose

sufficient to keep cells stable throughout the imaging sessions. It contained Mg2+
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ions, which are essential for activity of neutral sphingomyelinase used for domain

disruption. In this study, we image cells without and post enzyme treatment by

either cholesterol oxidase (COase: Sigma Aldrich, Cat. S8633) or sphingomyeli-

nase (SMase: Sigma Aldrich, Cat. C-5421) . The first enzyme, COase, converts

membrane cholesterol into cholestenone, which effectively disrupts the native

membrane domains. The second enzyme, SMase, converts another raft component

sphingomyelin, into ceramide, creating a similar raft disruption effect. Enzymes,

were added to final concentration of 0.5 Units per mL for SMase and 1-2 Units per

mL for COase. Cells were incubated with the enzymes for either 1-2 hours at 370C

or 15 min prior to imaging.

Another step before imaging was GPI-GFP labelling by anti-GFP IgG

antibody conjugated with Alexa-594 fluorophores (Life Technologies, Cat. A-

21312). The labelling consists in adding 2 µL of dye (0.2 mg per mL) to 1 mL of

cell solution, for about 15 min, followed by washing cells with HBSS/Hepes twice.

Brief exposure of cells to the dye, ensures sufficient surface labelling of GPI-GFP

by antibodies. Labelled cells were imaged immediately (control measurements) or

treated with enzymes as explained above.

3.4 TIRF microscopy

As outlined in chapter 1, the imaging procedures of current work was done

using TIRF microscopy which takes advantage of a unique property of an induced

evanescent wave within a thin sheet ( 100 nm) at the interface between two

media having different refractive indices. The experimental apparatus consists of
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commercial instrument (TIRF III Research platform, Carl Zeiss, Germany) on an

Axio Observer Z1 microscope. The imaging was preformed with 100x Alpha-Plan

APO oil immersion objective lens with NA of 1.46. The microscope stage was

equipped with an enclosed heating module (370C). Prior to each imaging session,

lasers were warmed up for at least an hour, to stabilize the output intensity. Beam

collimation calibration was performed as described in the Zeiss user manual.

Another important step prior to imaging, consists of calibrating the critical angle

using a module provided by Zeiss. Indeed, this procedure ensures that laser light is

incident at an optimal angle to produce best fluorescence signal. The calibration

procedures were done with fluorescent beads (0.1 µm radius) diluted in tap water,

and mounted on a glass bottom MaTtek dish with a thickness appropriate for

TIRF microscopy (0.16-0.19 mm). Following calibrations, a cell culture dish was

mounted on the stage and coupled by immersion oil to the objective for 15-20

minutes prior to imaging, to ensure a thermal equilibrium between the cells and

the microscope stage. The TIRF system employed was equipped with a CCD

camera (Evolve S12 EMCCD) of 512 by 512 pixels area. With the 100x objective

lens and an extra magnification lens placed in the optical path, the pixel size was

0.1 µm. The exposure time of the image can be set as low as 1 ms, although signal

is usually poor at that level. An extra 17 ms was added between each frame to

account for integration and storage time of the CCD. The choice of 30 ms exposure

time was made on the basis of optimal signal to noise ratio, while keeping the

time per frame as short as possible. Thus the total frame time was 47 ms. Solid

state lasers lines of 488 nm with 100 mW output power and 561 nm with power
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output of 40 mW, were used to excite GFP and Alexa 594, respectively. GFP and

Rhodamine emission filters ensured selection of green and red signal, respectively.

Data was acquired using the AxioVert software customized for this microscope.

Each image series consisted of an area of 256 by 256 pixels, acquired over 2000

frames. For each condition (control and enzymes) 20 image series were acquired

sequentially. Data series were stored in ‘zvi’ files and loaded into Matlab for

further analysis.

The simulation of realistic sub-pixel particle diffusion within a heterogeneous

2D environment required the careful implementation of simulator. The simulated

and experimentally acquired data were processed using kICS analysis and cor-

relation functions fit using appropriate models by the mean of non-linear least

square fitting. This chapter exposed the methodologies and materials used for

simulating image series and acquire the experimental data sets. It also details

the analysis procedures for computation and characterization of kICS correlation

functions. Next chapter explores the particles dynamics in different scenarios of

heterogeneous 2D environements. It is followed by an experimental verification of

the methodology using GPI-GFP anchored protein in live COS-7 cells.
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CHAPTER 4
Computer simulations for characterization of kICS applied to

heterogeneous 2D environments

4.1 Computer simulated data for isolated domains

The following chapter presents the computer simulation results for models of

isolated microdomains and meshwork type membrane confinements. The simulated

isolated domains image series are presented, followed by the description of quali-

tative observations of the properties correlation functions calculated. The results

of the characterization of the correlation functions by the nonlinear least squares

fitting will be presented along with the characteristic system parameters recovered

from analysis of the simulations. A discussion of the particle confinement statis-

tics follows. We also discuss briefly the effect of the large effective confinements

size observed, for the cases where small domains were simulated. The effects of

background noise on images and correlation functions is discussed with their impli-

cations for the analysis. We conclude the chapter with potential new approaches

for the analysis of confined membrane dynamics.

Chapter 3 of this thesis described how an image series is generated and what

parameters can be varied in the simulation. An example of simulation images,
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taken at time frames 1000, 1010 and 1100 of a time series, is shown in figure 4–

1. The circular domain radius for this series was set to 0.2 µm. The diffusion

coefficients for particles the outside and inside the domains were set to 0.01 and

0.001 µm2/s, respectively. The probabilities for escaping and entering domains

were set at 0.5 and 0.1, respectively. Finally, the domain density was set at 5 % of

the whole image area coverage.

The bright points appearing in these images represent a local higher density,

due to the larger number of particles within domains per unit area. The fainter

spots outside represent unbound particles, diffusing freely with the diffusion

coefficient Dout. Note, these domains are positionally static throughout the

simulation, hence the bright points appear immobile in time. A closer inspection

of the three frames, shows that some bright spots become fainter from frame 1000

to 1010, but regain their intensity at later times. This is due to particle exchange

across the boundary. Particles inside the domains boundary move randomly

according to Din, producing fluctuations in the pixels surrounding the domain.

The effects of partitioning and sub-domain diffusion give rise to the “slow”

population contribution to the correlation function. The particle motion at large

spatial scales, which combines both motion within and outside domains, gives rise

to the “fast” population contribution in the correlation function.
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Figure 4–1: Example of computer simulated images of series for isolated domains
of 0.2 µm radius. Time points shown are 1000, 1010 and 1100 s, in a),b) and c),
respectively. High intensity points denote domains, since the density is higher
within.

4.2 kICS analysis for different confinement simulations

The following section outlines the average correlation functions for simulations

where Din, domain radius, domains density and Pin were varied. In each simula-

tion scenario, 5 image series were simulated and their kICS correlation functions

were averaged to remove the noise inherited from the discreetness of the system.

4.2.1 kICS analysis for simulations with a varying Din

Figure 4–2 shows the average correlation functions for simulations in which

Din was varied. The range of diffusion coefficients inside domains was set from

0.001 to 0.01 while keeping Dout at 0.01 µm2/s. Qualitatively, as we decrease Din,

correlation functions start to show amplitude at higher spatial frequencies (k2).

Indeed, at Din=0.01 µm2/s the correlation function is almost zero in the range of

k2 from 100 to 200 µm−2, for τ values above 4 s (figure 4–2 i). As we decrease Din

toward 0.001 µm2/s, that range of the correlation function increases in amplitude.
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This trend results from particles spending more time confined diffusing inside

domains, where the diffusion coefficient inside domains is lower. Effectively, the

lower diffusion coefficient inside domains results in less frequent encounters with

the domain boundary, hence a lower probability for the particle to escape.

4.2.2 kICS analysis for simulations with a varying domain radius

Variations in the domain radius result in a more drastic change in the

correlation functions, as shown in figure 4–3. Increasing domain radius from 0.05

to 0.45 µm leads to lower amplitude at higher spatial frequencies (high k2). The

larger the spatial scale explored, the smaller the spatial frequencies that will be

visible in the CF. As a consequence, the correlation function could be used to infer

the effective domain size present in the system. The pixel size in all simulations

was set to 0.1 µm and the PSF e−1 radius to 0.4 µm. Therefore at least one

simulated scenario contains domains smaller than the pixel size while at least 6 of

them have domains smaller or equal to the PSF size. The key question tested with

this set of simulations is what is the minimum detectable domain size for a given

set of microscopy sampling parameters.

4.2.3 kICS analysis for simulations with a varying domain area occu-
pancy

When only the domain area occupancy increases, it is expected that we

will observe an increase in the number of confined particles. Consequently, this

should lead to non zero amplitudes at higher spatial frequencies in the correlation

functions. Figure 4–4 shows exactly that effect. Note that for all of the correlation
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Figure 4–2: Normalized amplitude density plots of average correlation functions
calculated from 10 confined domain simulations with variable Din. Dout was set
to 0.01 µm2/s. Pin and Pout were fixed at 0.5 and 0.1, respectively. The domain
radius was 0.2 µm while the domain area fraction was set at 5 %. Din increases
from a) to i). The correlation functions were normalized setting the highest equal
to 1 (red) and lowest equal to 0 (blue).
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Figure 4–3: Normalized amplitude density plots of average correlation functions
calculated from 10 confined domain simulations with variable domain radius.
Domain radius increases from a) to i). Din and Dout were set to 0.001 and 0.01
µm2/s, respectively. Pin and Pout were fixed at 0.5 and 0.1, respectively. The do-
main area fraction was set at 5 %. The PSF e−1 radius was set to 0.4 µm. The
correlation functions were normalized setting the highest equal to 1 (red) and
lowest equal to 0 (blue).
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functions shown so far in this chapter, there is always a fast decaying contribution

at small spatial frequencies. This is due to the fast population diffusing over large

spatial scales. The domain area coverage was varied from 0.5 to 5 % of the total

image area. In these simulations domain radius was kept constant at 0.2 µm,

while Din and Dout were set at 0.001 and 0.01 µm2/s respectively and transition

probabilities Pin and Pout at 0.5 and 0.1 respectively.

4.2.4 kICS analysis for simulations with varying Pin

Pout

For the variation of Pin, the probability for particles to exit domains, Pout was

set to 1-Pin. It is not until Pin

Pout
∼ 0.8 that a significant confinement effect appears,

as shown in figure 4–5. At this ratio Pin=0.4 and Pout=0.6 which would lead to

no confinement if diffusion coefficients inside and outside of domains were equal.

On the other hand, Din and Dout were set to 0.001 and 0.01 µm2/s, respectively,

producing the emergence of the confinement effect at the Pin

Pout
smaller than 1.

Other parameters were set constant, with domain radius=0.2 µm, domain area

fraction=5%).

The results above show that it is a combination of different parameters

values that lead to the signature of confinement emerging in the correlation

functions. Moreover, it is possible to produce very similar, if not the same,

correlation response with two different sets of parameters. In other words, system

is degenerate. This leads to several questions regarding the accuracy and precision

of the kICS correlation functions as an analytical tool for characterization of

dynamics in heterogeneous 2D systems. Is it possible to extract the specific
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Figure 4–4: Normalized amplitude density plots of average correlation functions
calculated from 10 confined domain simulations with variable domain area frac-
tion. Domain area fraction increases from a) to i). Din and Dout were set to 0.001
and 0.01 µm2/s, respectively. Pin and Pout were fixed at 0.5 and 0.1, respectively.
The domain radius was set to 0.2 µm. The correlation functions were normalized
setting the highest equal to 1 (red) and lowest equal to 0 (blue).
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characteristic parameters for a system with confined dynamics using image

correlation analysis? Moreover, can other dynamics give rise to similar decays in

the correlation function? The following section shows that the case of two freely

diffusing populations, will not produce correlation function decays that can be

misinterpreted as a confined scenario.
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Figure 4–5: Normalized amplitude density plots of average correlation functions
calculated from 10 confined domain simulations with variable Pin variation. Pin

increases from a) to i). Din and Dout were set to 0.001 and 0.01 µm2/s, respec-
tively. The domain radius was set to 0.2 µm. The domain area fraction was set at
5 %. Pout was set to 1-Pin. The correlation functions were normalized setting the
highest equal to 1 (red) and lowest equal to 0 (blue).
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4.3 kICS analysis for simulations of two freely diffusing populations

Here we explore briefly, the kICS analysis for a case of two freely diffusing

populations. The simulations had no domains present in the 2D system. The two

diffusion coefficients set in this simulation, D1=0.001 and D2=0.01 µm2/s, were

the same as Din and Dout of the domain simulations described in the previous

section. Figure 4–6 a) shows the average correlation function of 5 trials. There

are no significant amplitude at large k2 values for higher temporal lags, as in

the confined case. Moreover, the correlation function decays almost completely

with time. The fit of the correlation function, using the sum of two Gaussians,

produces two straight lines for the characteristic decay constants as plotted Dτ vs

τ (Figure 4–6 b). The fast component fit recovers the larger diffusion coefficient

(D1) while the slow component fit recovers the smaller diffusion coefficient (D2).

Most importantly, the slow component of the fit (red circles) does not ‘plateau’ at

long temporal lags (τ). A plateau at long lag times is the hallmark of confinement

in the system. Indeed, when the correlation function does not decay with time,

it implies that some features in the image appear immobile or almost immobile.

Consequently, the slow component Dτ does not grow linearly over all temporal lags

for a confined case.

The ICS diffusion law (introduced in chapter 1), does bear some similarities

(as shown in figure 4–6 c) with the confined case 1–21, but there is one essential

difference. The slope of the slow components (green dashed line) passes through
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the origin, while in the confined case, it gives a non-zero intercept at the y-axis.

This will be discussed in more detail at the end of this chapter.
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Figure 4–6: kICS analysis of simulations of two freely diffusing populations. a)
Amplitude density plot for kICS CF for the case of two freely diffusing popula-
tions with coefficients D1=0.01 and D2=0.001 µm2/s. b) Results of the sum of 2
Gaussian fit of the kICS correlation function from a). Blue and red circles denote
Dτ from each component of the fit, as a function of τ , while dashed magenta and
green lines show linear trends one would get if two freely diffusing species were
simulated. c) ICS diffusion law extracted from the single Gaussian fit vs temporal
lag of the function in a). Blue circles are fit data, while red and green dashed lines
denote trends one would have for two separate cases with freely diffusing popu-
lations, with above mentioned diffusion coefficients. Error bars denote the 95 %
confidence interval on fit parameters obtained from non-linear fitting at each k2.

4.4 Two Gaussian fit of the kICS correlation functions for the simula-
tions of different confinement scenarios

This section summarizes the results of fitting the average correlation functions

with a sum of two Gaussians. Fitting was done vs spatial frequencies at a given

time lag, as described in chapter 3. For each Dτ vs τ plot a limited number of

error bars are superimposed to enhance the visibility of the underlying trends. The
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error bars represent 95 % confidence interval on the fitted parameter at a given

temporal lag.

4.4.1 Two Gaussian fit of the kICS correlation functions for simula-
tions with variable Din

Section 4.2.1 details the parameters values used for simulations with varying

Din. Figure 4–2 shows average kICS CFs of each simulated scenario which are

fitted in what follows with sum of Gaussians. Figure 4–7 shows Dfastτ and Dτslow

for each of these cases, where blue to orange circles denote trends of increasing Din

. A quick inspection of the fast component, does not show a particular trend as

Din increases. Furthermore, a decrease in Din leads to a deviation of Dfastτ away

from the diffusion coefficient set outside of domains (Dout shown as a black dashed

line).

For the slow contribution, it is not clear what the variation in Din induced

in this case (figure 4–7 b). Nevertheless, the long τ plateau of all of these curves

saturates at approximately the value of the set domain radius squared (black

dashed line). The ‘4’ appearing in the y-axis label comes from the fact that

for the two dimensional diffusion, the MSD of particles goes as 4Dτ with time.

Therefore, if one is to compare any characteristic length scale in the system, it has

to be adjusted this way.

Figure 4–8 summarizes the parameters extracted from fits of the early tempo-

ral lags of the fast component, the early temporal lags of the slow component, the

late temporal lags of the slow component plateau and the late temporal lags of the
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Figure 4–7: Two Gaussian fit of the kICS CF for simulations with variable Din. a)
Fast mobility Dfastτ and b) slow mobility Dslowτ as function of temporal lag. Blue
to orange circles are trends for simulations with increasing Din. Error bars are
plotted for only some points for clarity and represent 95 % confidence intervals on
plotted parameters. The frame time, tframe, is variable according to equation 3.2.
Black dashed lines represent Doutτ and (domain radius)2 used in these simulations,
for a) and b) respectively. Dout and domain radius were set to 0.01 µm2/s and 0.2
µm, respectively.

amplitudes of the correlation functions, using weighted linear least-squares fitting.

Figure 4–8 a) shows that the effective Dfast decreases with increasing ratio Dout

Din
.

The recovered value is always smaller than the set value of Dout (blue line) and so

it appears to be an effective diffusion coefficient as measured at small spatial fre-

quencies (i.e. large spatial scales). The diffusion coefficient of the slow component

seems more noisy (figure 4–8 b), especially in the range where Dout

Din
is equal to one.

It is reasonable to assume that in this particular range, particles do not remain in

the domains for a long time, and thus contribute a significant number of fluctu-

ations, that should amplify slow contribution. The slow component contribution
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Figure 4–8: Fit parameters recovered from analysis for simulations with varying
Din. Error bars represent the 95 % confidence intervals on plotted parameters.
Blue and green dashed lines in a) and b) are equal to D=Dout=0.01 µm2/s and
D=0.001 µm2/s, respectively . Green dashed line in c) represent the domain radius
(0.2 µm) squared divided by 4.
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plateau extracted from the long temporal lags, increases at small Dout

Din
values, but

then drops continuously. As Dout

Din
ratio increases, particles become more confined

which results in them tracing a smaller effective area at small spatial scales. As

we decrease that ratio, particles encounter the boundaries of the domains more

often which increases the probability of escape. This effect leads to the observation

of an effectively greater domain area at small spatial scales, as reported by the

plateauslow.

The plateaus of the CF amplitudes (chapter 3, equation 3.10) exhibit interest-

ing trends as shown in figure 4–8 d). As one increases the ratio, Dout

Din
, the plateau

of the amplitude of the fast component decreases while that of the slow component

increases. This is simply a consequence of the increased confinement of particles

with increasing diffusion coefficients ratio, which results in an increasing amplitude

of slow component.

4.4.2 Two Gaussian fit of the kICS correlation functions for simula-
tions with variable domain radius

Section 4.2.2 details the parameters values used for simulations with varying

domain radius. Figure 4–3 shows average kICS CFs of each simulated scenario

which are fitted in what follows with sum of Gaussians. When the domain radius

is increased, the fitted Dfastτ and Dslowτ show clear trends. For example, while the

fast component y-axis intercept increases with increasing domain radius (figure 4–9

a), the slow component’s late temporal lags plateaus increase as well (figure 4–9

b).
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Figure 4–9: Two Gaussian fit of the kICS CF for simulations with variable domain
radius. a) Fast mobility Dfastτ and b) slow mobility Dslowτ as function of tempo-
ral lag. Blue to orange circles are trends for simulations with increasing domain
radius. Error bars are plotted for only some points for clarity and represent 95
% confidence intervals on plotted parameters. The frame time, tframe, is variable
according to equation 3.2. Black dashed line in a) represents Doutτ , where Dout was
set to 0.01 µm2/s.

Inspection of the fitted parameters (figure 4–10) suggests that the fast

component slope still measures an effective diffusion coefficient, which is smaller

than the set Dout, but greater than Din. On the other hand, the early temporal

lags fit of Dslowτ vs τ curve suggests that the motion is almost arrested for

domains bigger than ∼0.2 µm in radius (figure 4–10 b), while for smaller radius,

Dslow recovered is lower than Din. This is an important observation as the effective

diffusion coefficient measured at small spatial scales is smaller than the diffusion

coefficient set at those scales. The value of plateau of the slow component clearly

increases linearly with domain radius squared, for domain radii equal to the 0.2

µm or greater (figure 4–10 c). The full discussion of this phenomenon is found
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later in this chapter. An interesting observation is that a theoretical domain radius

of zero, the 4×plateau value should be around 0.01 µm, which is the size of a pixel

squared. This is possibly the smallest spatial scale that could, in theory, produce

fluctuations that can be observed from one image to another in an image series.

4.4.3 Two Gaussian fit of the kICS correlation functions for simula-
tions with variable domain area fraction

Section 4.2.3 details the parameters values used for simulations with varying

domain area fraction. Figure 4–4 shows average kICS CFs of each simulated

scenario which are fitted in what follows with sum of Gaussians. When the domain

area fraction is varied, Dslowτ and Dfastτ exhibited similar trends as for previous

cases (Figure 4–11). On one hand, the diffusion of the fast component follows a

decreasing trend, with increasing domain area fraction, as shown in figure 4–12 a).

On the other hand, the slow component early regression slope, seems to increase

with the increase in domain area fraction (figure 4–12 b). This could be due to

more particles being trapped (figure 4–12 d, red symbols), hence giving rise to

the emergence of the slowly diffusing population characteristics in the correlation

functions. Interestingly, the domain area fraction does not seem to affect the

apparent domain radius recovered (figure 4–12 c). Finally, the amplitude of the

fast population decreases less abruptly suggesting that the change in domain area

fraction causes only a slight change in confinement, as detected by all of the other

characteristic parameters recovered.
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Figure 4–10: Fit parameters recovered from analysis for simulations with vary-
ing domain radius. Error bars represent the 95 % confidence intervals on plotted
parameters. Blue and green dashed lines in a) and b) represent the set diffusion
coefficients, Dout and Din, respectively. The intercept of the dashed green line in c)
is the pixel diameter squared.
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Figure 4–11: Two Gaussian fit of the kICS CF for simulations with variable do-
main area fraction. a) Fast mobility Dfastτ and b) slow mobility Dslowτ as function
of temporal lag. Blue to orange circles are trends for simulations with increasing
domain area fraction. Error bars are plotted for only some points for clarity and
represent 95 % confidence intervals on plotted parameters. The frame time, tframe,
is equal to 0.4 s. Black dashed lines represent Doutτ and (domain radius)2, in a)
and b) respectively.

4.4.4 Two Gaussian fit of the kICS correlation functions for simula-
tions with variable Pin

Pout

Section 4.2.4 details the parameters values used for simulations with varying

Pin

Pout
ratio. Figure 4–5 shows average kICS CFs of each simulated scenario which

are fitted in what follows with sum of Gaussians. The kICS analysis of simulations

where Pin

Pout
ratio was varied, shows clear trends, especially when the ratio Pin

Pout

is greater than 1. In such cases, the fit fast diffusion, Dfast, deviates from the

diffusion outside domains, Dout. In the extreme case when the ratio was 9, the

particles experience complete trapping (Figure 4–13a orange symbols), which is

represented by the dark orange symbols. In the case of the slow component, the
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Figure 4–12: Fit parameters recovered from analysis for simulations with varying
domain area occupancy. Error bars represent the 95 % confidence intervals on
plotted parameters. Blue and green dashed lines in a) and b) represent the set
diffusion coefficients, Dout and Din, respectively. Green dashed line in c) represents
the domain radius squared divided by 4.
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Figure 4–13: Two Gaussian fit of the kICS CF for simulations with variable Pin

Pout
.

a) Fast mobility Dfastτ and b) slow mobility Dslowτ as function of temporal lag.
Blue to orange circles are trends for simulations with increasing Pin

Pout
. Error bars

are plotted for only some points for clarity and represent 95 % confidence intervals
on plotted parameters. The frame time, tframe, is equal to 0.4 s. Black dashed
lines represent Doutτ and (domain radius)2, in a) and b) respectively.

higher the ratio Pin

Pout
, the closer the plateau is to the actual value of the set domain

radius (figure 4–13 b).

The fitted parameters are shown in figure 4–14. The fast diffusion coefficient

decreases with the increase of the Pin

Pout
ratio, and similarly for the measured

diffusion for the slow component (figure 4–14 a and b). Indeed, as we approach

a ratio of 9, the fast diffusion coefficient is reduced to almost the value of the

diffusion coefficient inside the domains, while the slow component approaches

zero suggesting that particles are almost fully trapped. The slow component

plateau decreases in value with increasing the Pin

Pout
ratio. At intermediate ratios,

the plateau value approaches that of the domain radius squared but at the highest
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Figure 4–14: Fit parameters recovered from analysis for simulations with vary-
ing Pin

Pout
. Error bars represent the 95 % confidence intervals on plotted parame-

ters. Blue and green dashed lines in a) and b) represent the set diffusion coeffi-
cients, Dout and Din, respectively. Green dashed line in c) represent the raft radius
squared divided by 4.
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ratio it falls slightly below this value. This effect is similar to the one observed

with varying Dout

Din
(figure 4–8 c). Amplitudes saturations for the slow and fast

components, change dramatically with increasing Pin

Pout
. The amplitude for trapped

particles increases, as expected (figure 4–14 d), while the amplitude saturation for

the free particles decreases.

The results of the above section are summarized qualitatively in table 4–1.

The kICS analysis by the fit of a sum of two Gaussians offers the possibility for

quantifying and distinguishing between different confinement cases. The extracted

mobilities, Dfast and Dslow, and their respective amplitudes, instruct us on the

variability of some of the parameters controlling the underlying heterogeneous

transport and exchange dynamics.

Table 4–1: Summary of results trends for the isolated domains simulations. Sym-
bols ⇓, ↓,- and ∼ reflect strong decrease, weak decrease, constant and undefined
trends for the properties listed. The set variables Dout

Din
, raft size, raft density and

Pin

Pout
are all considered to increase.

Measured \ varied Dout

Din
↑ domain radius ↑ domain area fraction ↑ Pin

Pout
↑

Dfast ⇓ - ↓ ⇓
Dslow ↓ ↓ ↑ ⇓

plateau slow ↓ ⇑ - ⇓
amplitudefast ↓ ⇓ ↓ ⇓
amplitudeslow ↑ ⇑ ↑ ⇑

β (partition coeff.) ↑ - ↑ ⇑
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4.5 Discussion

4.5.1 Characteristic times for free and trapped particles

From the particle coordinates generated in the simulations, the total time

a particle spends inside and outside of a domain can be calculated. With that

information, the average partition coefficient, β, is calculated which defines the

ratio of the number of particles within domains at a given time divided by the

total number of particles. Therefore, in the limit of β approaching zero, the

occupation number of the domains becomes zero. Conversely, β approaching one

leads to complete trapping (as in the case of the scenario of Pin

Pout
=9). Figure 4–15

shows the values of β calculated from the simulations described in the previous

sections. It appears that β and the amplitudes of the slow population exhibit

similar trends, except for the case of the domain radius variation.

It is intuitive, in view of the data presented, that an increasing number

of trapped particles would lead to a greater slow component amplitude. The

parameter β is often used in spot-vary FCS [1, 2] data interpretation. It links the

effective diffusion measured in the presence of domains to that measured in their

absence:

Deff = Dfree(1− β) (4.1)
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Figure 4–15: Plots of fractional confinement statistics calculated from particle
positions from the computer simulations. Green symbols show the ratio of the
average number of particles inside domains to the total number of particles in the
system, β. Red symbols represent the ratio of the average time particles spend
inside domains, 〈τtrap〉 to the sum of 〈τtrap〉 and the average time particles spend
outside domains, 〈τfree〉. This quantity, labelled βτ should be equivalent to β. Blue
symbols represent 1-βτ .
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Also, these studies define βτ in terms of the average time particles spend in the

free and trapped states:

βτ =
τtrap

τtrap + τfree
(4.2)

Therefore, β is calculated as a ratio of the number of particles within domains

at equilibrium divided by the total number of particles, while βτ is recovered

from the average time particles spend in the free and trapped states. Figure 4–15

shows total time normalized τtrap and τfree in red and blue symbols respectively,

calculated from particle coordinates from our simulations. Equation 4.2 holds

only for the variable Pin simulations and it is not clear at this stage why other

simulated scenarios did not satisfy this equation. A later section of this chapter

explores in a more systematic way the variation of β, τtrap and τfree as a function

of Din, Pout, domain radius, and domain density. It is interesting to note that the

characteristic parameters, Dfast, Dslow and Ampfast follow a trend opposite to β.

This is in agreement with the equation 4.1.

4.6 Domain size: aliasing or large effective clusters?

The data presented for varying domain radius suggested that this parameter

could be inferred from the plateau of the slow component Dslowτ plot. Neverthe-

less, the data shown from expected value suggests that for domains ≤ 0.25 µm in

radius, the recovered domain radius had a systematic deviation from the expected

value (see figure 4–10 c). The origin of this effect was at first considered to be due

to spatial aliasing. Indeed, for the smallest spatial sampling unit of an image, a

pixel, the Nyquist sampling criterion implies that any object sampled at spatial
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frequencies smaller than the resciprocal of twice the pixel size, will be aliased.

Therefore, a domain radius of 0.2 µm is the minimum accurately measurable value

assuming a pixel size of 0.1 µm.

Hence, spatial aliasing could be responsible for the overestimation of the

recovered radii of the small domains. Nevertheless, farther investigation suggests

a different hypothesis. In the simulations reported, when the domain radius was

set to smaller values, the total number of domains was increased simultaneously to

maintain the pre-set domain area fraction to 5 %. Therefore, when domain radius

decreased the number of domains was increased, per field of view , giving rise to

possibly larger effective domains. It is important to emphasize that domains were

placed such that their areas did not overlap. Therefore, when particles occupy

two neighbouring domains, separated by a distance smaller than or close to the

radius of the PSF, the image produced by convolution with the PSF shows the

neighbouring domains as a larger connected object. Figure 4–16 shows images

of the pixel averages for time series simulations DC components for the different

domain radii considered in the simulations. Clearly, as radius increases, the

number of domains per image decreases, leading to a well-resolved domains.

Consequently, the intensity fluctuations from particle exploring domains by

diffusion, will report the correct radii in cases of larger domains. On the other

hand, for smaller domains the larger numbers create the appearance of larger

structures due to the PSF limited resolution.
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displayed. Scale bar is 5 µm.
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In order to further explore this idea and characterize the confinement statis-

tics, systematic simulations were run with low numbers of rafts per field of view.

The simulation parameters were varied as described in the previous sections but

the number of domains was fixed 50, 100 and 200 per field of view, independent

of their radius. The following section details the results, but a quick examination

of figure 4–19 b, e, and h, suggests that plateau of the slow component does not

follow any particular trend for small domains (less than 0.2 µm in radius). These

erratic data observed for small domains proves to be independent of their area

coverage. Instead, further investigation in particles confinement statistics suggests

that particles do not partition in large fraction into small domains (figure 4–18). In

other words, for small domain simulations, a small fraction of particles is confined

at any time during the time series. Therefore, the small subset of particles will be

exploring the small domains, leading to the relatively low amplitude in correlation

function and low plateau for the slow component (figure 4–19 b, e, and h).

4.7 Systematic characterization of confinement statistics

This section explores by means of simulations, the relationship between the

average partition coefficient, β, and the input parameters (Din, Pout, domain

radius, and domain density). The probability of exiting domains was set to 0.01 or

0.1. The probability of entering domains was set to 0.5. For each Pout simulation

scenario, Din was set to 0.001, 0.005, 0.01 and 0.02 µm2/s. Dout was fixed at

0.01 µm2/s. The domain radius was varied in the range of 0.05 to 0.45 µm with

0.05 µm increments. The PSF e−1 radius was set to 0.4 µm, making all except
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one (0.45 µm) domain radii below the optical resolution limit. In the previous

simulations, when the domain radius was varied, the domain number was varied

too in order to keep the total domain area coverage set to 5 %. In the simulations

presented in the following section, the number of domains was fixed to 50, 100 or

200 per field of view, independent of the set domain radius. There are two main

reasons for the choice of this domain density. First, as observed in the previous

section, decreasing the domain radius to 0.05 µm leads to a dramatic increase in

the number of domains (4172). The high density of sub-optical resolution domains

can lead to the spatial overlaps and so produce the large effective domains, as

discussed in previous section. Moreover, having the smaller number of domains

per field of view could simulate a more realistic scenario to test the limits of the

detection of confined dynamics using kICS analysis.

In the simulations performed in this work, particles are initially randomly

seeded in a 2D field of view. The system was equilibrated prior to the conversion

of particle positions into an image series or other useful confinement statistics. For

each simulated scenario, 12 000 time points were generated and the confinement

statistics, β, 〈τtrap〉 and 〈τfree〉 were calculated. The large number of time points

was required to assess the time variation of the fraction of particles inside and

outside of domains, Nin

Ntot
. This quantity measures effectively the average partition

coefficient, β, at each time point. For each simulation, the range of time values

used for the β calculation was selected such that the Nin

Ntot
is in steady state

equilibrium. For all scenarios considered, the mean particle partition coefficient,

β, fluctuated at equilibrium around a mean value, for the later time points. The
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particles’ positions for the last 2000 time points, situated within this equilibrium

range, were selected to be used for the image series convolution as well as for the

calculation of confinement statistics.

Figure 4–17 a) shows a plot of Nin

Ntot
as a function of frame number for a

simulation example with Pout =0.01, Din =0.001 µm2/s, Dout =0.01 µm2/s,

domain radius=0.2 µm and 50 domains in the field of view. The characteristic

β extracted by averaging the ratio Nin

Ntot
over the last 2000 time points was 0.633

± 0.004, where the error represents the standard deviation of these values. The

exact times particles spend inside vs outside of domains can be calculated for

these time points and distributions of times for a free and bound states are shown

in figure 4–17 b). The average free and bound times, τfree and τtrap, represent

averages of these distributions. Recall, that eqn 4.2 links these parameters to the

partition coefficient β. We refer to this value as βτ .

Figure 4–18 shows the averaged simulation results for 〈τtrap〉, 〈τfree〉, β and βτ ,

in the case of Pout = 0.01. As the domain radius increases, at a given Din

Dout
ratio,

β increases toward 1 (figures 4–18 b, d and f). This result is intuitive, since the

time per frame (td) changes with the domain radius and diffusion coefficient inside

domain as (domain radius)2/5
4∗Din

. Consequently, an increase in domain radius increases

tframe for a fixed Din. Therefore, for a given number of frames, particles will try to

explore equivalent areas. On the other hand, for small domain radius, particles will

encounter the boundary more often than for bigger ones, leading to more frequent

escapes. Similarly, for a fixed domain radius, decreasing the diffusion coefficient
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Figure 4–17: Frame series plots of Nin

Nout
and free and bound state time distributions

calculated from particle coordinates for one simulation. a) The partition fraction
as a function of time frame. Red dashed line is the average of the last 2000 time
points, giving β. b) Steady state normalized free and bound states time distri-
butions. Blue line is the free state time distribution, while the red line is for the
bound state. Each distribution was normalized by its maximum value. For both
graphs, the simulation parameters were Pout=0.01, Din=0.001 µm2/s, Dout=0.01
µm2/s, domain radius = 0.2 µm, 50 domains in field of view.

increases β. Examination of figures 4–18 b, d and f) suggests that increasing the

number of domains, from 50 to 100 per whole field of view, leads to an increase in

β. Again, this is not surprising as increasing the number of domains leads to an

increase in the total number of confined particles, for a given scenario.

Interestingly, comparing β and βτ in figures 4–18 b, d and f) suggests that

eqn 4.2 does not hold for small domains (radius ≤0.2µm). In parallel with this

observation, the average time particles spend in the free state (figure 4–18 a, c and

e) is only ∼4 times smaller for the range of small domains radii (0.05-0.15 µm) and

large Din (0.01-0.02 µm2/s simulated. In order to obtain the smallest β observed
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Figure 4–18: Confinement statistics for Pout = 0.01. a), c) and d) are 〈τfree〉 and
〈τtrap〉, normalized to the total amount of frames, for 50, 100 and 200 domains
per field of view (FOV), respectively. Din

Dout
and domain radius were varied. Dout

was set to 0.01 µm2/s. b) , c) and d) show calculated β and βτ for 3 raft densities
considered.
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(0.025), it would require τfree to be 39 times greater than τtrap. Similar behaviour

was seen in figure 4–15 where β and βτ do not match, except for the case of Pin

Pout

variation. When analyzing the overall patterns of data shown in figure 4–18, we

notice that βτ depends more strongly on 〈τfree〉 than on 〈τtrap〉. A similar figure

for Pout = 0.1, can be found in the appendix at the end of this chapter. The kICS

analysis and correlation functions will be similar to those presented in figures 4–10

and 4–8, as Pout was set to 0.1 in those simulations.

Figure 4–19 shows the results of the two Gaussian fit of the correlation

functions obtained for each simulation scenario considered. These values were

each obtained from a single image time series per condition, and thus exhibit large

uncertainties. Indeed, that is the case for the diffusion coefficient extracted for the

fast component, Dfast (figures 4–19 a, d and g). Fitting of Dfastτ vs τ was done

for two different τ ranges, an early (τ=2 to 10 frames) and late lags (τ=30 to 100

frames). These two different fitting regimes of Dfastτ was adapted because two

different apparent regimes of were apparent. In either case, the Dfast obtained was

smaller than the Dout set in the simulations.

When examining the early slope of the slow component, it appears to increase

with increasing Dout and domain radius. Figures 4–19 b), e) and h) show this

within the green dashed rectangle. Outside of this rectangle, the extracted

Dslow and plateauslow are uncorrelated with the increase in the ratio Din

Dout
and

domain radius. The increase in the number of domains from b) to h) leads to an

increase in the extent of this coherence rectangle. Simultaneously, the saturation
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of the slow component plateau, plateauslow, increases with increasing domain

radius and increasing Din

Dout
. This observation is in agreement with the previous

simulations (figures 4–10 and 4–8 c), where increasing the domain radius and Din

Dout

increased the slow component plateau. The ratio Din

Dout
acts on the slow plateau

in a fashion similar to that of the Pout

Pin
. The smaller these ratios are, the smaller

is the probability for the particles to encounter the domain boundaries which

reduces the chances of escaping the domain. As a result, the effective domain area,

as measured from the slow component saturation, decreases. Thus, this effective

domain area measures the effective area that particles explore through diffusion

and partitioning at small spatial scales.

The amplitudes of the two Gaussian fit of kICS correlation function follow

the expected trends 4–19 c), f) and i). The smaller Din

Dout
is, the more particles

are confined and so the saturation of the slow component amplitude, Amp

Saturslow, increases. Conversely, the fast component amplitude saturation, Amp

Saturfast, decreases. In parallel, an increase in the raft size leads to an increase

in the slow component saturation, which was also observed in figure 4–10 d. It

is not surprising that increasing the total number of domains, from 50 to 200,

increases confinement as witnessed from the increase in the saturation of the slow

component.

These simulation results confirm that kICS correlation function fitting with

a sum of two Gaussians can differentiate between different confinement scenarios.

The analysis of simulated single image series suggests that the confinement
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statistics, such as β, correlate with the extracted fit parameters, such as Dslow,

plateauslow and amplitude saturations. The extracted fast component diffusion

coefficient, Dfast does not show a clear correlation and likely a greater number of

simulated image series would be needed to improve the statistics.

Interestingly, the extracted phase space maps presented in figure 4–19

have very poor correlation in the region of small domain radii (0.05-0.2 µm).

Incidentally, this was the same region for which βτ in figure 4–18 did not match β.

It is possible that in this part of phase space, domains are too small and Din is too

high, which makes the average domain time occupancy very low (β ∼0.02). The

low domain temporal occupancy leads to a low number of spatio-temporal intensity

fluctuations, which is necessary for accurate and precise kICS analysis.

The appendix at the end of this chapter gives the average R2 extracted for the

sum of two Gaussians fit applied to the kICS correlation functions of the image

series generated for each simulation scenario.

4.8 Effects of background noise on kICS correlation functions

In this thesis, the effects of noise on kICS correlation are not studied in detail

as this has been presented previously [3]. However this section outlines the impact

of background noise on the CF. Figure 4–20 shows simulated images with added

background noise with signal-to-noise ratio ranging from 100 down to 5. The

experimental data presented in the next chapter have fairly good signal-to-noise

ratio, due to the presence of several Alexa dyes per GPI-GFP molecule observed.
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Figure 4–19: kICS analysis fitted parameters for single image series simulations
with Pout=0.01. a), d) and g) are fast component diffusion coefficients, Dfast,
obtained from fitting early and late temporal lags. Top to bottom rows display sce-
narios where the number of domains per field of view (FOV) was 50, 100 and 200,
respectively. Dout was set to 0.01 µm2/s. b) , e) and h) show the early slope Dslow

and plateau saturation of the slow component. c), f) and i) denote the saturations
of amplitudes for the fast and slow components.
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S/N=100

(a) Bckd. Noise vary param.=0.01

S/N=25

(b) Bckd. Noise vary param.=0.04

S/N=13

(c) Bckd. Noise vary param.=0.08

S/N=8

(d) Bckd. Noise vary param.=0.12

S/N=6

(e) Bckd. Noise vary param.=0.16

S/N=5

(f) Bckd. Noise vary param.=0.2

Figure 4–20: Background noise variation effect on simulated images for domain
radius of 0.2 µm. Each sub-caption identifies the value of noise parameter used in
the simulation. Scale bar is 5 µm.
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The correlation functions for each S
N

ratio simulation are shown in figure 4–21.

As the background noise increases, the correlation function gets truncated at a

certain cutoff value k2
cut. However it can still be fit below this cutoff and param-

eters can be extracted. Nevertheless, for very small domains, the cutoff due to

noise could remove some of the essential features of the correlation curve, needed

for the fitting of the two Gaussians. It is very important that the correlation data

are examined prior to fitting and further quantification. An abnormally sharp

cutoff of the correlation function at all temporal lags would suggest the presence

of important background noise. Since k2
cut truncates the CF at all temporal lags

equally, it is important to distinguish it from the features of some simulated CF

observed earlier (see for example figure 4–3 g, h and i). Those CFs do not have a

cutoff at all temporal lags like those CFs from background noise corrupted image

series 4–21. Therefore, the rule of thumb before one proceeds with the confinement

analysis of the CF calculated from image data series, is the examination of CF for

a potential background noise induced cutoff. If CF is cut abruptly at all temporal

lags, then the fitting range for CF should be below the value of k2
cut, in order to

avoid the bias in the extracted parameters.

The presence of various sources of noise in an image series will introduce an

error in the estimation of the plateau saturation and other extracted parameters.

Similar effects are known to occur in SPT or other single molecule techniques.

Indeed, in the case of a poor signal-to-noise ratio, the extracted particle positions

will be inaccurate. Consequently, the MSD curve will systematically be shifted

depending on the variance of the noise present in the image series [4]. The shifted
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MSD could lead to an overestimate of the domain size. Furthermore, the Gaussian

background noise was shown to affect the extraction of the diffusion coefficients

from the early temporal lags of the MSD curves in the SPT data [5]. Nevertheless,

when all image series are acquired under the same conditions of the illumination,

exposure time and EMCCD gain, a similar systematic error in the extracted

parameters will be present in the analysis. Therefore, the background noise effect

on CF, regardless of its amplitude, will shift the effective domain value by an equal

amount for all the image series acquired under similar imaging conditions.

4.9 Results for kICS analysis of simulations of meshwork confinement
domains

In this section we examine results for kICS analysis of simulations of the

meshwork type of confinement. The scenarios of varying barrier crossing prob-

ability and varying mesh pore diameter (L) are explored. A phenomenological

model was developed, as outlined at the end of the Theory chapter (chapter 3), in

order to characterize the calculated correlation functions. Figure 4–22 a) shows an

example of a kICS correlation function calculated from a meshwork confinement

simulation. A cursory assessment of this correlation function suggests that it does

not exhibit a decay with two distinct regimes as in the case of isolated domains

confinement. Therefore, it can be effectively fit by a single Gaussian decay as a

function of spatial frequencies at a given τ . As the temporal lag increases (blue to

red lines), the correlation function collapses. The change in the decay constant,

Dτ , can be plotted as 4Dτ vs τ , which effectively is equivalent to an ensemble

averaged MSD vs time plot. Figure 4–22 b) shows this relation as a function of
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Figure 4–21: Background noise variation effect on correlation functions for data
with domain radius of 0.2 µm. Each sub-caption identify the value of signal-to-
noise ratio. All correlation functions were zero temporal lag normalized to have
maximum value of 1 (red) and minimum of 0 (blue).
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particle crossing probability. As P decreases (going red to blue in figure 4–22 b)

the 4Dτ vs τ curves deviate from 4Dµτ , where Dµ labels the microscopic diffusion

coefficient within mesh pore.

In meshwork confinements, the particles explore each mesh pore with a

microscopic diffusion coefficient and hop from one compartment to an adjacent

with a macroscopic diffusion coefficient DM , that depends on P. In figure 4–22 b),

each of the cases exhibit an early (τ 0 to 0.2 s) regime, that is labelled ‘early’.

Similarly, the later temporal lags are characterized by another linear regime,

which is labelled ‘late’. It is the early component that characterizes the motion

of particle within a mesh pore (Dµ ), while the late one determine the hopping

dynamics on larger spatial scales. Another important parameter from the late

regime fit is the intercept on the 4Dτ axis. This parameter is related to the mesh

size, as was shown in theory chapter 3. In order to characterize the efficiency of a

given meshwork in trapping particles we define:

Sconf = A+B
2δr

L

1− P

P
(4.3)

where δr denotes the diffusion step size within a mesh compartment, and L denotes

the mesh pore diameter. This parameter, is comparable to the parameter β of the

isolated domains confinement and increases with increasing confinement.

155



0 200 400
0

0.2

0.4

0.6

0.8

1

k
2
 (µm

−2
)

<
G

 (
k
,τ

) 
/ 

G
 (

k
,0

)>
θ
 

(a) Example of Corr Fn for meshwork

0 0.5 1
0

0.2

0.4

τ (seconds)

4
D

τ
 (

µ
m

2
)

 

 

(b) 4Dτ for each scenario

Figure 4–22: a) Example of circularly averaged and normalized kICS functions
calculated for a meshwork simulation with P=0.1, Dµ=0.1µm2/s and L=0.25 µm.
Blue to red traces label increasing temporal lag, τ . b) 4Dτ extracted for different
meshwork scenario. Red to blue data points indicate the decrease in probability
(0.4 to 0.001) for particles to cross the meshwork barriers, while pore mesh diam-
eter was kept constant at 0.25 µm . The dashed black line shows 4Dτ with set
microscopic Dµ=0.1µm2/s.

4.9.1 Results for kICS analysis of meshwork simulations to establish
the ICS diffusion law

Characterization of kICS CF by single Gaussian fit for simulations with a

varying crossing probability (P=0.001 to 0.4, L= 250 nm and Dµ= 0.1 µm2/s)

led to 4Dτ vs τ as displayed in figure 4–22 b). Linear regression of early and late

regimes of 4Dτ vs τ provide the characteristic diffusion coefficients, Dearly and

Dlate, which can be used to infer the microscopic diffusion coefficient and meshwork

confinement strength. Figure 4–23 shows that the measured diffusion coefficient for

the late regime decays strongly with increasing confinement strength (figure 4–23

a), while the measured early regime diffusion coefficient was calculated to be
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slightly less then the set value of Dµ. Plotting the ratio of early and late slopes

vs confinement strength, results in a linear relationship, with a y-axis intercept of

1 (figure 4–23 b). Therefore, at a confinement strength of zero, the two diffusion

coefficients are equal to one. It is important to note that in the case of square

mesh of a diameter L, two characteristic length scales emerge in the analysis. The

first is equal to the half mesh radius L/2 and the second is the distance form the

center of the mesh to its corner, equal to L/
√
2. We will label these as a lower and

an upper bound length scales of the meshwork.

Plots of the square root of the y-axis intercept from the fit at a later τ regime

vs confinement strength suggests that for low Sconf values, the recovered mesh

size is inaccurate (figure 4–23). Therefore, the extracted mesh size needs to be

corrected by the following expression that links Dearly, Dlate and Lapp to the actual

mesh size:

L = (1 +
Dlate

Dearly

)Lapp (4.4)

As specified in the theory chapter, this is a phenomenological equation that is

not derived from any specific model. Nevertheless, it is an empirical correction

method for values of the mesh size recovered which is particularly useful in the

case of intermediate to high Sconf . For very low confinement strength (Sconf ≤10)

simulations the difference between the two regimes (early and late) is not large

enough to be accurately treated using this approach.

Finally, simulations with variable mesh diameter were performed with diam-

eters ranging from L=200 to 425 nm, while keeping P=0.01 and Dµ=0.1µm2/s.
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Figure 4–23: kICS analysis of simulations with either varied P or the mesh pore
size of a meshwork. a) Early (blue) and late (red) diffusion coefficients for varying
P (P=0.001 to 0.4, L= 250 nm and Dµ= 0.1 µm2/s), as function of confinement
strength. The dashed line shows the set microscopic diffusion coefficient. b) A plot
of Dearly

Dlate
versus confinement strength with linear regression (black line) outlining

the emergent relation between these parameters. c) Measured and corrected con-
finement length scales for variable P simulations. d) Measured and corrected con-
finement length scales for varying mesh pore diameter (L=200 to 425 nm, P=0.01
and Dµ=0.1µm2/s) simulations. In c) and d) the black and blue dashed lines label
the upper and lower bounds for the characteristic mesh scale, respectively.
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Figure 4–23 d) shows the fit values of mesh sizes before and after correction by

equation 4.4. Note that they fall within an acceptable upper and lower bound lim-

its for the mesh sizes considered. Also, all of these mesh pore diameters were of a

size smaller then twice the e−1 radius of PSF (set to 0.28 µm). This suggests that

kICS CF of image time series in presence of sub-diffraction sized meshwork can be

fit by a single Gaussian function in order to extract the characteristic microscopic

diffusion coefficient and a good estimate of the mesh pore diameter.

4.10 ICS diffusion law for Isolated domains

As seen in the introductory chapter, fitting a single Gaussian function in

time to the CF measured for isolated domains, can partially characterize the

characteristic mobilities and spatial scales of the system (figure 1–21). On the

other hand, the analysis of a system with two freely diffusing species by the same

approach led to a graph of k2D vs k2 that exhibited similar characteristics to

the isolated domains case (figure 4–6 c). Nevertheless, a close inspection of ICS

diffusion laws in figure 4–24 suggests that the late regime of this plot will have a

nonzero intercept on the k2 axis. On the other hand, the free diffusion populations

example gave an intercept very close to zero.

The determination of slopes of k2D vs k2 for the low and high k2 regimes, as

well as the y-axis intercept from the higher k2 regime, shows some promising fea-

tures to this approach for the characterization of the image correlation functions.

Figure 4–25 shows these features for the case of varying domain radius simulations

described in section 4.2.2. As a comparison, the parameters obtained for the fit
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Figure 4–24: ICS diffusion law from single temporal Gaussian fit to the correlation
functions. Red and black dashed lines outline Dk2 for D= 0.01 and 0.001 µm2/s,
respectively. Unless specified otherwise, simulations parameters for isolated do-
mains were set to Din= 0.001 µm2/s, Dout= 0.01 µm2/s, domain radius=0.1 µm,
domain area fraction=5 %, Pin=0.5 and Pout=0.1. The blue to red symbols show
ICS diffusion laws for: a) a decreasing Din (Din from 0.01 to 0.001 µm2/s), b) an
increasing domain radius (0.05 to 0.45 µm at 0.05 µm increment), c) an increasing
domain area coverage (0.5 to 5 % at 0.5 % increment) d) an increasing Pin (0.1 to
0.9 at 0.1 increment with Pout=1-Pin).
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of the correlation function for two freely diffusing populations is superimposed on

each graph. The diffusion coefficient, Dearly, is calculated as a slope from the fit of

first linear trend, over small values of k2 of the ICS diffusion law plots. The second

linear trend, at higher k2 values is denoted Dlate. The small k2 used for fitting

is defined by the range of k2 for which k2D increases linearly, usually up to the

peak value. The large k2 range that is linearly fitted comes after the peak value of

k2D. For different domain radius scenarios (section 4.2.2), Dearly does not follow

any particular trend, although the values are below the set Dout (0.01 µm2/s).

The diffusion coefficient recovered from later k2, Dlate, increases slightly with

increasing domain radius, although its value is below the set Din (0.001 µm2/s).

In comparison, Dlate for the simulations of two freely diffusing populations is very

close to the set value of the smallest diffusion coefficient ( 4–25 b). The y-axis

intercept obtained from the late regime fit, has a nonzero value that increases

with decreasing domain radii ( 4–25 c). Same figure shows as a reference (blue

symbols), the value of y-intercept for the fit of the high k2 range, extracted from

the ICS diffusion law of the case of two freely diffusing species (figure 4–6 c). The

value of the peak position, on the other hand exhibited a significant trend. When

a Gaussian is fitted in the neighbourhood of the peak, its centroid position can be

determined. Plotting peak position and superposing this on the same graph, values

of π2

(2×domain radius)2
shows almost a perfect match between these two quantities. It

is possible therefore, to obtain information on domain radius, even if the plot vs τ

is considered instead of vs k2. For very small domains, noise and spatio-temporal

sampling limits, can limit detection, since the peak would appear at higher k2
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Figure 4–25: Data extracted from ICS diffusion law for the simulated data with
isolated domains with the variation of domain radius (labelled raft size). X-axis for
each plot was normalized by the PSF e−1 radius which was set to 0.4 µm. For iso-
lated domains simulations Din=0.001 µm2/s, Dout=0.01 µm2/s, and Pin and Pout

at 0.5 and 0.1 respectively. In the case of two freely diffusing species, the diffusion
coefficients (D1 and D2) were set to 0.01 and 0.001 µm2/s. ICS diffusion law ex-
tracted parameters a) to d) for isolated domains simulations with varying domain
radius were compared to the parameters extracted from simulations of two freely
diffusing populations.
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As was shown in the last chapter, domains create apparent slow and fast

mobilities, that depend on the set system properties (Din, Dout, Pin, Pout, domain

radius, domain area fraction). Proper analysis of the characteristic decays of image

spatio-temporal correlation can infer the characteristic effective domain sizes and

effective diffusion coefficients. The amplitudes of the two characteristic modes

of motion are linked to the average number of confined and trapped particles at

equilibrium. Care should be taken prior to the application of this methodology

in cases with poor signal-to-noise ratio. It is always important to first examine

the raw data images and calculated correlation functions, before proceeding with

further steps of characterization, such as fitting. The meshwork confinement is

characterized by a single Gaussian decay in spatial frequencies and so can be

used to extract the mesh pore sizes, in cases of moderate to high barrier crossing

probabilities. The next chapter demonstrates the applicability of these methods to

study isolated domains in cells, by kICS analysis of fluorescence microscopy image

series of a well-characterized domain partitioned GPI anchored protein.
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Appendix Chapter 5

This appendix contains two figures from the confinement statistics characteri-

zation. The first figure 4–26 shows the confinement statistics for Pout = 0.1.

The second figure 4–27, shows the average R2 obtained from the sum of two

Gaussians fit of kICS correlation functions, in case of each scenario considered.

For each correlation function fitted, an R2 value was obtained for each temporal

lag. The average is computed for all temporal lags and called 〈R2〉. A standard

deviation is also computed for R2, called σ(R2). In case of a good fit, for a given

simulation scenario, 〈R2〉 is close to 1 while σ(R2) tends to zero. What is observed

is that fit is not great for the correlation functions of small radius domains

(0.05-0.15 µm). This region of phase space produced uncorrelated confinement

properties.
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Figure 4–26: Confinement statistics calculated for simulations with Pout=0.1. a), c)
and d) are 〈τfree〉 and 〈τtrap〉, normalized to the total amount of frames, for 50, 100
and 200 domains per FOV, respectively. Din

Dout
and domain radius were varied. Dout

was set to 0.01 µm2/s. b) , c) and d) show calculated β and βτ for 3 raft densities
considered.
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Figure 4–27: R2 and σ(R2) for two Gaussians fit of kICS data of a single image se-
ries simulation for two Pout scenarios considered. a), c) and d) show R2 and σ(R2)
for case of Pout=0.01, while Pout=0.1 for b), d) and f). Top to bottom row display
scenarios with 50, 100 and 200 domains per field of view (FOV), respectively.
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CHAPTER 5
Experimental characterization of GPI-GFP dynamics in live COS-7 cells

This chapter presents the results of kICS investigation of a GPI-anchored

protein expressed in living COS-7 cells. As described in the introductory chapter

of this thesis, GPI-anchored proteins partition into plasma membrane domains,

made primarily from cholesterol and sphingomyelin, of living cells. Addition of

domain disrupting enzymes changes the domain constituents, cholesterol and

sphingomyelin, which impacts the dynamics of GPI-GFP. In this chapter, we will

describe the results of the kICS analysis of image time series collected using TIRF

microscopy of the cell basal membranes. The diffusion coefficients and correlation

amplitudes of the dynamic populations of GPI-GFP were measured for the case of

unperturbed and enzyme disrupted domain scenarios and summarized here.

The details of cell culture, labelling, enzyme treatments and microscopy can

be found in the chapter 3 (Materials and Methods).

5.1 Alexa dye labelled GPI-GFP on COS-7 plasma membranes

As outlined in earlier chapters, GPI-GFP proteins are expressed in COS-7

cells and inserted into its plasma membrane. Each GPI-GFP molecule is labelled

with an anti-GFP antibody, which is labelled with approximately 4-8 Alexa-594

fluorophores. Originally, the experimental data acquired by TIRF microscopy
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was that of GFP signal from GPI-GFP in the cell membrane. Unfortunately,

over-expression of this protein in COS-7 cells leads to spatially uniform intensity

(see figure 5–1 a). Consequently, GPI-GFP signal-to-background ratio was not

high enough to produce sufficient spatio-temporal fluctuations. This is an essential

requirement for the application of kICS or other image correlation spectroscopy

techniques. Molecular biology offers different strategies that can be employed to

control protein expression from plasmid DNA in living cells. Nevertheless, these

strategies involve extra time consuming steps such as copying and then cloning

GPI-GFP gene into a tight control expression plasmid. Luckily, another option

presented itself to increase GPI-GFP signal-to-background ratio. The idea of

labelling GPI-GFP with an antibody originated accidentally during one of the

imaging sessions. Addition of few micro-molars of anti-GFP-Alexa594 into the

imaging cell culture dish for 10-15 min, labelled enough of GPI-GFPs to make

them appear brighter against the diffuse background fluorescence of plasma

membrane (see figure 5–1 b). A larger number of fluorophores (Alexa dyes) per

GPI molecule makes it more visible against the noisy background.

For imaging cells, a sufficiently large flat basal membrane area of a selected

cell (see figure 5–2 a) is imaged, and a central, 256 by 256 pixels region of interest

(ROI) is selected for analysis (figure 5–2 b through d). Acquiring the images from

the flat portion of basal cellular membrane ensures that the assumption of two

dimensional motion is satisfied. Moreover, the assumption of spatial uniformity

is satisfied by selecting cells with uniform expression and a spatial distribution of

GPI-GFP. Selecting the region of interest away from the cell centre ensured that
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(a) Image of GPI-GFP in COS-7 (b) Image of GPI-GFP-IgG-Alexa594

Figure 5–1: Comparison of old and new labelling approaches for GPI-GFP. a)
GPI-GFP prior to Anti-GFP-Alexa-594 labelling. b) Image of the same cell after
exposure to the Anti-GFP-Alexa-594. Image in a) was imaged using green excita-
tion laser, while image in b) was excited with red laser. For more specification of
imaging condition, please refer to the chapter 3. Scale bar 5 µm.

TIRF visible background from the Golgi apparatus and/or endoplasmic reticulum

(ER), are not included in the analysis (such as bright structures visible in lower

and upper right corners of figure 5–2 a) . Indeed, GPI-GFP gets produced in

the ER and transfers to the Golgi apparatus before being shuttled to the plasma

membrane. A large fraction of the total population of GPI-GFP is localized to

the membranes of these organelles, which could lead to misleading results if the

fluorescence signal from this subpopulation of GPI-GFP is included within the

ROI. The image size window was chosen on the basis that the flattest and most

uniform part of the cellular membrane that could be fitted within a 256 by 256

pixel region. In the zoom view of the frames shown (figure 5–2 b through d), the

white arrows label the brighter spots that appear immobile over time, but show
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fluorescence intensity fluctuations over time. These immobile spots are similar

to the isolated domains being populated by GPI-GFP partitioning in and out,

at defined rates. The fainter features, hidden by the background noise, represent

free diffusing GPI-GFP outside of membrane domains. For each cell imaged, a

time series was collected of 256 by 256 pixels area and 2000 image frames. These

were Hann windowed and the kICS correlation functions were calculated and fit as

described in chapter 3.

5.2 Correlation functions for GPI-GFP under different enzyme treat-
ments

In order to probe different scenarios of confinements of GPI-GFP in the

basal membrane of adherent COS-7 cells, samples were exposed to one of the two

domain disrupting enzymes, COase and SMase. These enzymes convert the two

major components of membrane domains, cholesterol and sphingomyelin, into

new molecules, resulting in an effective domain disruption. These enzymes were

added to the cellular samples for either long (COaselong and SMaselong) or short

(COaseshort and SMaseshort) periods of time, prior to imaging. COase and SMase

proved to be most potent within the first hour of treatment. After long periods,

these enzymes seem to lose their potency, while the kICS analysis suggests that

the enzymatic reaction products can change the membrane microstructure and

lipid organization. COase is known to convert cholesterol into cholestenone and

phosphocholine, while SMase converts sphingomyelin to ceramide and hydrogen

peroxide . The cholestenone is known to be a potential domain inhibitor due to

its different polar head group [1]. Hydrogen peroxide was reported to induce the
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(a) Large scale image (b) Frame 1 of series

(c) Frame 50 of series (d) Frame 100 of series

Figure 5–2: Example of GPI-GFP-IgG-Alexa594 images. Top Left: large view (512
by 512 pixels) of COS-7 expressing GPI-GFP labelled by Anti-GFP-Alexa-594.
Central 256 by 256 region delimited by the yellow square in a) is selected for imag-
ing. Frames increase in time from b) to d). Frame time is 47 ms. Scale bar is 5
µm.
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conversion of the sphingomyelin to ceramide, by acidification of membrane bound

sphingomyelinase [2]. Accumulated ceramide over time can form larger membrane

domains, and lead to membrane receptors clustering [3]. Ceramide domains

are known to be precursors of the cell apoptosis (programmed cell death) [2].

Therefore, the two enzymes employed in these experimental assays can have either

the raft disrupting and the raft inducing effects, through the various enzymatic

reaction products generated. Figure 5–3 shows examples of kICS correlation

functions for 5 different conditions. The top row shows the average of correlation

functions calculated from ROI time-series from 20 different cells, while the bottom

row displays the correlation functions for typical single cell time series, for each

experimental condition.

When a temporal average image of the time series (called the DC image), is

subtracted from the time series, the remaining signal contains only fast fluctua-

tions of mobile particles. The immobile component was effectively removed by DC

image subtraction. As a consequence, the kICS correlation function will contain

only the remaining fast component contribution. This remaining component is not

exactly equal to the fast component obtained from the two Gaussians fit of the

raw correlation functions. Indeed, DC subtraction removes mostly the immobile

component of the time series, but some of the mobile component from the images

is also affected by the subtraction. Therefore, care should be taken in the inter-

pretation of the DC image-removed correlation functions. Nevertheless, correlation
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Figure 5–3: Examples of an average (top row) and a typical (bottom row) correlation functions for GPI-
GFP-Alexa-594 data for 5 enzymatic conditions considered. kICS correlation functions were normalized by
zero temporal lag, making the maximum value equal to 1 (red) and lowest equal to 0 (blue).
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functions after DC image subtraction (Figure 5–4) can be fit with a single Gaus-

sian, and the parameters extracted can be compared to the fast component of the

two Gaussians fit.

When fitting the correlation function with the sum of two Gaussian functions,

the parameters of the fit are 2 amplitudes and 2 exponents (one for the fast

and one for the slow components). Since this non-linear fitting is done at each

temporal lag, each fit parameter is a function of the temporal lag (τ). Figure 5–5

presents the average amplitudes and exponents of GPI-GFP dynamics in COS-7

cells as a function of τ under the different treatments. These fit parameters were

obtained each time series correlation function and their averages and standard

deviations, from 20 cells of each enzymatic treatment, are shown as a function of

temporal lag. One would expect that the domain disrupting enzymes could change

the viscosity of the domains, as cholesterol is converted to the cholestenone and

the phosphocholine, while the sphingomyelin is converted to the ceramide and the

hydrogen peroxide. As a result, we expect to see more particles becoming mobile

and an increase of the slope of the fast component, Dfastτ . This effect is evident

in figure 5–5 a, where the slope of the fast component, Dfast is greater for all of

the enzyme conditions (any colour symbols) than for the case of the control sample

(black symbols). Simultaneously, the slow component saturates at a lower level for

control samples (black symbols figure 5–5 b) than any of the enzyme treatment

conditions.

These two qualitative observations suggest two things. First, these results

suggest that COase and SMase disrupt membrane domains by changing their
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Figure 5–4: Examples of an average (top row) and a typical (bottom row) correlation functions for GPI-
GFP-Alexa-594 data for 5 enzymatic conditions considered, after the DC image removal. kICS correlation
functions were normalized by zero temporal lag, making the maximum value equal to 1 (red) and lowest
equal to 0 (blue).
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constituents, which results in higher mobility of GPI-GFP, as witnessed by higher

slope in the fast component. Secondly, the increase of the plateau of the slow

component, after enzyme treatment, suggests that the effective area explored

by the confined particles is larger than those under the control condition. The

amplitudes extracted from the non-linear fit of the sum of Gaussians, corroborate

these qualitative observations. The amplitude of the fast component saturates at

higher values, at later τ range, for the enzyme treated samples than in the case

of control sample (figure 5–5 c). On the other hand, the amplitude of the slow

component saturates at lower values for the enzyme treated samples than the

case of control (figure 5–5 d). As shown in the Theory chapter 2, the normalized

correlation function amplitude is proportional to the total number of particles of

given species. This suggests that after enzyme treatments, there are more particles

contributing to the fast component and less to the slow.

In the following two sections we will explore quantitatively the two strategies

of characterization of correlation functions fitting. Following the nonlinear fitting

of the correlation function for a given scenario to the sum of two Gaussians, one

needs to process the trends of Dfastτ , Dslowτ , Amplitudeslow and Amplitudefast as

a function of τ . As detailed in the Materials and Method chapter 3, we use the

least squares linear fit to extract the characteristic parameters. The first approach

involved averaging all of the trends for a given scenario, as shown in figure 5–5,

and linearly fitting these averages. The second approach involved a linear fit of the

trends extracted for each individual time series, for a given scenario, and plotting
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dard deviation for 20 cells for a given enzymatic treatment. Symbols colors in a)-c)
are same as in the legend of d).
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the distributions of the characteristic parameters. Comparisons between the results

of these two approaches are discussed later.

5.2.1 Characterization of the average trends from multiple cells

In this section we present the results of the linear fit of the average of trends

across cells obtained for a given scenario as shown in figure 5–5. This approach

seemed appropriate with the assumption that GPI-GFP from all cells have similar

dynamics, under a given enzymatic condition. This procedure ensured that trends

such as Dfastτ vs τ are smoother resulting in better linear fits. The standard

deviations obtained from considering the ensemble of trends from all cells, are used

to weight different τ points while linearly fitting the average trends. The results

from this analysis are summarized in figure 5–6. The error bars represent the 95

% confidence intervals of the fit. From this analysis it is clear that the diffusion

coefficient of the fast component of GPI-GFP increases from 0.085 to 0.115 ±

0.002 µm2/s as a consequence of the enzymatic disruption of the domains. The

long exposure of these enzymes (labelled C2 and C3 in the figure 5–6 a) does not

seem to significantly affect the diffusion coefficient of the fast component. On

the other hand, short term exposure to enzymes (labelled C4 and C5) seems to

have a significant effect on the diffusion coefficient of the fast component. It is

possible that short term enzymatic conditions (C4 and C5) disrupt domains by

conversion of cholesterol and sphingomyelin, effectively freeing more of the GPI-

GFP molecules. Nevertheless, the long term exposure to these enzymes can change

the effective viscosity of the cell membrane, by redistribution of cholestenone or
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ceramide at intermediate spatial scales, which could translate into slower dynamics

overall on the large spatial scale (Dfast). It is known that ceramide forms gel-like

macroscopic domains, that could, after longer times, cause the immobilization

of GPI-GFP molecules [3]. One should not exclude the possibility of cellular

membrane recycling of different components, such as cholesterol and sphingomyelin

over longer time periods. Indeed, freshly inserted cholesterol and sphingomyelin

could induce re-segregation of GPI-GFP into the composite domains. These

enzymes did not seem to significantly affect the diffusion coefficient on the small

spatial scales, Dslow, as shown in figure 5–6 b. For all conditions measured Dslow

was in the range of 0.007 ± 0.007 to 0.02 ± 0.02 µm2/s. It is plausible that

small spatial scale viscosity does not change significantly. The combination of

observations suggests that the domains get disrupted by the enzymes, changing the

structure of the membrane at intermediate spatial scales, by redistribution of the

byproducts: cholestenone and ceramide.

The plateau saturation of the slow component (figure 5–6 d) does increases

from 0.250 to 0.310 ± 0.002 µm with the enzymatic treatment. This parameter

was attributed to the effective domain radius in the discussion of chapter 4. As

was demonstrated, this parameter does not depend only on the actual size of the

domain but also on the probabilities of the particles partitioning in and out of the

domains. If the enzyme treatments have affected the domains, it is reasonable to

assume that probabilities of GPI-GFP partitioning into and out of domains would

be affected. As a result, GPI-GFP molecules could escape the modified domains

more frequently and explore a slightly larger area in the domain surroundings
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before being trapped again. This gives rise to the idea that an effective domain

size is measured by slow (small spatial scale) component saturation. As discussed

in chapter 4 the intercept of the linear fit of the fast component, Interceptfast, only

changes significantly from zero only if the domain size is actually being varied. In

the previous simulation studies, variation of the raft densities, diffusion coefficients

or partitioning probabilities, did not result in a change of the Interceptfast. From

the data presented in figure 5–6 c, in combination with results from figure 5–6

d, one can conclude that the actual domain size does increases with the enzyme

treatment. It is possible that the exchange rates of particles across the domain

boundaries increased as well, which would complement the previous explanation

for the increase in the effective domain size, as well as Dfast and Dslow.

Finally, the saturation of the amplitude of the fast component increased from

0.48 to 0.68 ± 0.01 (95 % confidence) following the enzyme treatments, while the

slow component decreased from 0.48 to 0.28 ± 0.01 (95 % confidence) as shown

in figure 5–6 e. All these observations lead to the conclusion that both COase

and SMase affect the spatio-temporal distribution of GPI-GFP fast and slow

populations in living COS-7 cells. The long enzyme treatment might have induced

new domains from the byproducts or from the freshly inserted cholesterol and

sphingomyelin, as a consequence of cellular membrane trafficking and recycling.

Nevertheless, the short term exposures to these enzymes, show significant change

in the large scale dynamics, Dfast of GPI-GFP and the effective spatial extent

they explore on the small spatial scales, Platslow. Furthermore, these observations
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are reinforced by the trends of the amplitudes of the slow and the fast dynamical

components which saturate at longer temporal lags τ .

5.2.2 Characterization of the individual cell trends

When fitting Dτ ’s derived from single cell time series, the parameters re-

covered will vary significantly from one cell to another, even under the same

treatment condition. Therefore, a relatively large number of cell time series need

to be processed to build statistically significant population histograms that can be

used to differentiate between conditions. For each of the treatments considered,

20 cells were imaged and the image series analyzed. The problem of the linear fit

of Dτ vs τ for a single cell data is due to the presence of sudden inflections and

changes in trends at some values of τ . Consequently, the linear fit does not capture

the variations in Dτ that occur over a large range of τ values and the linear regres-

sion will give very significant variations in D from one cell to another. The same

is true for other parameters extracted from the linear trends. The averaging of Dτ

for a given condition, as done in the previous section, helps smooth out the out-

liers’ contributions and creates a trend that is more readily fitted with linear least

squares. It is analogous to the averaging of MSD from different particle trajectories

in order to produce a statistically significant trend. Nevertheless, we preformed the

analysis of the same data presented in the earlier section, by linear fitting single

cell trends over restricted linear ranges of τ values. Usually, the first 50 to 100 τ

lags are less noisy as more pairs of images are used in the calculation of kICS CF
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at small temporal lags. Figure 5–7 summarizes the results of this analysis and is

presented using the boxplot graphs.

When examining and comparing boxplots, one needs to consider 5 parameters

of a boxplot (take any example from figure 5–7 a): lowest observation, lower quar-

tile (Q1), median value (Q2), upper quartile (Q3) and highest observation. The

lowest and highest values show the full extent of the distributions of parameters

and are depicted by the black dashed lines and whiskers. Since the data presented

in figure 5–7 exhibit some outliers, they will be represented by the red plus mark-

ers. The box repress 50 % of the data in a given distribution and is called the

interquartile range (IQR). The lower limit of IQR is Q1 and the upper bound is

Q3. They represent 25 and 75 % of the data distribution. The upper observation is

1.5 times the IQR above the Q3, while the lower observation is the same distance

below Q1. The red line represents the median, while the narrowing of the box

around it is called a ’notch’. Notches offer a good guide for the significance in the

differences between the medians. If confidence intervals do not overlap significantly

then two medians can be considered as statistically different.

Figure 5–7 a) shows that the IQR for all the enzymatic reactions conditions

(C2-C5) are shifted upward compared to the control samples (C1). In parallel,

the medians for all enzymatic conditions are shifted upward compared to the

control as well. The median significance intervals are quite overlapping for control

and long SMase (C3) condition. Nevertheless, the clear trend of the increase

of median Dfast with the potency of the enzymatic reactions. Interestingly, the
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Figure 5–7: Boxplots for characteristic parameters extracted from the linear regres-
sions calculated from CF fit parameters for a single cell image time series. C1-C5
label enzymatic conditions as shown in figure 5–6 e).
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slow component slope, Dslow exhibits a significant increase in the median value,

especially for the short enzymatic exposure conditions, C4 and C5 (figure 5–7 b).

Another interesting observation is that all enzymatic conditions (C2-C5) have a

larger spread of values and IQR than the control condition. It is possible that after

drug treatments, especially for the short exposures, GPI-GFP explore small spatial

scales at slightly larger rates than in the control case. Inspection of figure 5–7

c) suggests that the median of the interceptfast does not change significantly for

the long enzyme exposure scenarios (C2 and C3). On the other hand, the short

enzymatic exposures (C4 and C5) lead to a significant increase in the median

values as well as the full distribution of values, compared to the control case (C1).

When discussing the change in the plateau saturation value of the slow component,

Dslowτ , it is evident from figure 5–7 d), that the median increases significantly for

conditions C1 to C5. The saturation of amplitudes exhibit the same strong trend

as the plateau saturations, as shown in figures 5–7 e) and f).

From all of the data presented in figure 5–7, one can conclude that the

ensembles of parameters, extracted from 20 cells per condition, agree with the

parameters extracted from the fitting of average trends, as outlined in previous

section. The enzymatic reactions increase the diffusion coefficient at large spatial

scales as witnessed by the trends of Dfast. The increase in the slow or small

spatial scale component plateau saturation, in combination with the increase of

the interceptfast, suggest that the domain effective size grows with time of the

enzymatic reaction. This effective size is a combination of the exchange of particles

between the small and large spatial scales that we extract from the two Gaussian
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fit of the kICS correlation function. This exchange between scales depends on

the diffusion coefficient of the actual particles at each scale and the rate at which

they enter and leave the effective domain area. The enzymatic reaction effectively

breaks the smaller and more confining domains and resulting in a leakier and

larger effective domains. Particles that were highly trapped under the control

condition, explore more readily the intermediate and large spatial scales. This

idea is also confirmed by the increase in the saturation of the fast component

amplitude, and the decrease in the slow component amplitude saturation.

5.3 Discussion of experimental results

In the present study we report that two effective dynamic populations of

GPI-GFP, fast and slow, diffuse at 0.06-0.11 and 0.007 to 0.02 µm2/s, respectively.

A similar range of diffusion coefficients for GPI-GFP in COS-7 cells was observed

experiments using the UPaint method [4]. The observed distribution of GPI-GFP

diffusion coefficients was found to be bimodal, with the peaks of the distribution

centred around 0.005 and 0.1 µm2/s. The assessment of the GPI-GFP trajectories

suggests that confinement zones can be up to ∼ 500 µm in diameter. The basis

of the UPaint technique relies on sparse labeling of GPI-GFP with anti-GFP

antibodies labelled with multiple AT647N dyes. Another study employs an

anti-GFP conjugated with a quantum dot (QD) for the sparse labelling of GPI-

GFP [5]. The observed distribution of GPI-GFP diffusion coefficients had peaks

at ∼0.25 and 1 µm2/s. The larger diffusion coefficient could be attributed to the

faster monomeric GPI-GFP. Indeed, similar values for the diffusion coefficient
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of GPI-GFP were observed by the spot-vary FCS method [6]. Nevertheless,

this technique involves an assumption of single dynamic species in their fitting

procedure of the FCS’ ACF. Therefore, the single species model was used in the

fit of the temporal auto-correlation function, leading to the effective diffusion

coefficient of ∼ 1 µm2/s [7]. The same study suggests that GPI-GFP resides

within microdomains about 10 and 30 % of the total time, while the average time

spent within domains is estimated to be between 34 and 95 ms. The same group

applied a two populations fit to the ACF and proposed two diffusion coefficients

of ∼ 45 and 0.6 µm2/s [8]. In a previous report, they estimated the upper bound

to the GPI-GFP microdomain diameter to be ∼ 120 µm. In agreement with

this result is a recent study [9]of GPI-GFP dynamics by using the FCS-STED

(stimulated emission depletion), which is an extension of spot-vary FCS with PSF

radius reduced below the diffraction limit, which allows for probing of the small

spatial scales. STED-FCS measured GPI-GFP domains to be on the order of 100

nm. Another conclusion from their study was that the COase treatment did not

influence the GPI-GFP dynamics. In another study, a single particle tracking

experiment was applied to follow the movements of Thy-1, a GPI-anchored

protein [10]. The results suggest that Thy-1 visits ∼ 230 nm diameter domains

with diffusion coefficients outside the domains in the ranges of 2-8 µm2/s, while

inside the domains ranges 1-5 µm2/s. This high spatio-temporal measurement of

Thy-1 suggest that this protein spends 15 % of the total trajectory time inside

domains with the average τtrap ∼ 5 s. They report that cyclodextrin removal

of cholesterol decreases the domain size to ∼ 150 nm diameter and the protein
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raft occupancy drops to 2 % while τtrap remains unaffected. It is interesting to

note that the spot vary FCS and SPT studies agree only on the estimate of the

fraction of time GPI-GFP spends within microdomains. In another report, the

translational motion of GPI-linked I-Ek class II MHC membrane proteins in the

plasma membrane of CHO cells studied by SPT measured a diffusion coefficient

of ∼ 0.22 µm2/s, but failed to detect any confinement of these proteins [11]. A

recent study by high spatio-temporal SPT of GPI-anchored proteins, demonstrate

the existence of transient homo-dimers of GPI [12]. These nano-structures were

observed at low GPI-anchored protein expression levels. Nevertheless, the authors

suggest that higher surface density of this protein might lead to higher order

oligomers. Other conclusions were drawn about the aggregation state of GPI-GFP

as measured by FRET anisotropy [13]. In this study, it was demonstrated that

∼ 30 % of GPI-anchored proteins exist in small, ∼ 3 nm, aggregates composed

of up to 4 GPI molecules, while the rest of the GPI were in a monomeric state.

Interestingly, the polyclonal antibody cross-linking of GPI-anchored proteins of

one species was shown to lead to higher order oligomers, which was confirmed by

the same author in a previous study [14]. In agreement with these results are data

from a PALM study where 2-3 proteins per cluster were detected [15]. On the

other hand, PALM most frequently detected clusters of PAGFP-GPI with ∼ 80 nm

diameters while larger, ∼ 320 nm diameter clusters were observed as well.

In light of the literature findings on the dynamics, confinement and aggrega-

tion state of GPI-anchored proteins, we shall summarize the data observed in our

current work. The range of diffusion coefficients observed for the large and small
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spatial scales, Dfast and Dslow, suggest that we are observing a similar dynamic

species of GPI-anchored proteins as the study done by the UPaint experiment [4].

A similar diffusion coefficient was observed when GPI was labelled with anti-GFP-

QD [5]. Both of these studies share an important feature with the current study,

namely the labelling of GPI-GFP with an antibody. It is possible that anti-GFP-

Alexa594 used in the current work, clusters 2-4 GPI-GFP together, so these small

clusters form larger domains through sphingolipids and cholesterol interactions.

The hypothesis here implies that large domains observed are a result of the liquid

ordered packing of sphingolipids, cholesterol and small aggregates of cross-linked

GPI. This suggests that monomeric or dimeric GPI-GFP can still partition into

and out of these large domains. Consequently, an enzymatic treatment changing

sphingomyelin and cholesterol into new products, will disrupt the ordered phase

resulting in faster exchange of particles. We observe the change in the appar-

ent GPI-GFP domain size as the plateau of the small spatial scales component

increases from 0.25 to 0.31 µm. It was demonstrated in chapter 4 that several pa-

rameters can affect this value. The increase in domain size and the decrease in the

domain binding rate will lead to the increase of plateauslow. The increase in the

diffusion coefficients, following the enzymatic reactions, as well as the increase in

the saturation of the fast component amplitude, suggests that the domains become

leaky. The plausible change in the microstructure due to the enzymatic reaction

could be that small aggregates of GPI-GFP that are no longer closely packed with

sphingolipids or cholesterol. Instead, the newly produced cholestenone or ceramide,
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depending on the enzymatic reaction, break the ordered and tightly packed micro-

domain into a more loose domain. The monomers or small aggregates of GPI-GFP,

can thus explore a larger effective area that is measured with the plateau of the

slow component of the kICS analysis.

It is important to state that the value of the apparent domain size extracted

from the plateau saturation level of the slow component should not be taken

as an absolute value of the domain size. It was shown in the previous chapter,

through simulations analysis, that this value does not depend only on the actual

size of domains present. Moreover, the presence of noise in an image series will

introduce an error in the estimate of this plateau level. Analogous to this is the

detection of particles positions in SPT. If the image series’ signal-to-noise ratio is

small, the accuracy of the fit particle positions will decrease. Consequently, the

MSD curve shifts upwards by a positive value which depends on the variance of

the noise present in the image series [10]. As a result, the shifted MSD curve will

produce an overestimate of the domain size. Furthermore, the noise can produce

an apparent sub-diffusion for the early temporal lags of MSD curves in the SPT

data [16]. Nevertheless, the domain sizes reported in the present study are due to

several system parameters and as such do not represent actual absolute values of

domain sizes. Therefore, the image noise effect, whatever its amplitude, will shift

the effective domain value by an equal amount for all the image series analyzed.

Indeed, both of the control and enzymatic treatment image series were collected

under similar conditions of the illumination, time exposure and EMCCD gain.
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Hence, the variance of the counting noise is not expected to vary significantly from

one series to another.

192



REFERENCES

[1] Perimutter J.D. Sachs J.N. Inhibiting lateral domain formation in lipid
bilayers: Simulations of alternative steroid headgroup chemistries. J. Am.

Chem. Soc., 131:16362–3, 2009.

[2] Golkorn T. Balaban N. Shannon M. Chea V. Matsukuma K. Gilchrist D.
Wang H. Chan C. H2o2 acts on cellular membranes to generate ceramide
signaling and initiate apoptosis in tracheobronchial epithelial cells. J.Cell Sci.,
111:3209–3220, 1998.

[3] Bollinger C.R. Teichgraber V. Gulbins E. Ceramide-encriched membrane
domains. Biochim. Biophys. Acta, 1746:284–294, 2005.

[4] Giannone G. Hosy E. Levet F. Constals A. Schulze K. Sobolevsky A.I.
Rosconi M.P. Gouaux E. Tampe R. Choquet D. Cognet L. Dynamic super-
resolution imaging of endogenous proteins on living cells at ultra-high density.
Biophys. J., 99:1303–1310, 2010.

[5] Thoumine O. Saint-Michel E. Dequidt C. Falk J. Rudge R. Galli T. Faivre-
Sarrailh C. Choquet D. Weak effect of membrane diffusion on the rate of
receptor accumulation at adhesive contacts. Biophys. Letters, pages L40–L42,
2005.

[6] Wawrezinieck L. Rigneault H. Marguet D. Lenne P.F. Fluorescence cor-
relation spectroscopy diffusion laws to probe the submicron cell membrane
organization. Biophys. J., 89:4029–4042, 2005.

[7] Wawrezinieck L. Conchonaud F. Wurtz O. Boned A. Guo X.-J. Rigneault
H. He H-T. Marguet D. Lenne P.-F. Dynamic molecular confinement in the
plasma membrane by microdomains and the cytoskeleton meshwork. EMBO

J., 25(3245-3256), 2006.

[8] Wawrezinieck L. Lenne P.-F. Marguet D. Rigneault H. Fluorescence cor-
relation spectroscopy to determine diffusion laws: application to live cell
membranes. Proceedings of the SPIE, 5462:92–102, 2004.

193



194

[9] Eggeling C. Mueller V. Honigmann A. Andrade D.M. Bernardino de la Serna
J. Hell S.W. New insight into lipid-protein membrane organization and its
functionality with super-resolution sted microscopy. Biophys. J., 104(Issue 2,
Supplement 1):5a, 2013. Presented at 57th Annual Biophysical Meeting.

[10] Dietrich C. Yang B. Fujiwara T. Kusumi A. Jacobson K. Relationship of
lipid rafts to transient confinement zones detected by single particle tracking.
Biophys. J., 82:274–284, 2002.

[11] Vrljic M. Nishimura S.Y. Brasselet S. Moerner W.E. McConnell H.M.
Translational diffusion of individual class ii mhc membrane proteins in
cells. Biophys. J., 83:2681–2692, 2002.

[12] Suzuki K.G.N. Kasai R.S. Hirosawa K.M. Nemoto Y.L. Ishibashi M. Miwa
Y. Fujiwara T.K. Kusumi A. Transient gpi-anchored protein homodimers are
units for raft organization and function. Nature Chem. Bio., 8:774–782, 2012.

[13] Sharma P. Nanoscale organization of multiple gpi-anchored proteins in living
cell membranes. Cell, 116:577–589, 2004.

[14] Mayor S. Rothberg K.G. Maxfield F.R. Sequestration of gpi-anchored poritein
in caveolae triggered by cross-linking. Science, 264(5167):1948–51, 1994.

[15] Sengupta P. Jovanovic-Talisman T. Skoko D. Renz M. Veath S.L. Lippincott-
Schwartz J. Probing protein heterogeneity in the plasma membrane using
palm and pair correlation analysis. Nature Methods, 8:969–975, 2011.

[16] Martin D.S. Forstner M.B. Kas JA. Apparent subdiffusion inherent to single
particle tracking. Biophys.J., 83(4):2109–2117, 2002.



CHAPTER 6
Conclusions and future perspectives

We conclude with a summary of the new ideas and developments presented

in this thesis. The problem of implementing image correlation analysis to measure

dynamics within a heterogeneous membrane environment is restated and the

methodology developed is summarized. The major conclusions are stated and

linked. The thesis ends with suggestions of possible future perspectives and

work to further extend these methods with consideration of the fundamental

assumptions that were made.

6.1 Conclusions

6.1.1 Adaptation of kICS to confinement analysis

The advent of microscopy in the 17th century enabled the first observation and

qualitative description of cells by Robert Hook [1]. It was not until 1925 that a

series of experiments suggested the existence of the bilayer lipid membrane [2, 3].

The following decades led to a series of controversies about the role of the proteins

in the cellular membrane, until finally new experimental findings in early 1970’s [4]

prompted the postulation of the fluid mosaic model [5]. Consequently, our view

and understanding of the structure of the cellular membrane has not stopped

evolving. The application of biophysical experimental techniques, such as optical
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tweezers, FRET, SPT and adaptations of FCS, led to the observation of membrane

heterogeneities and domain structure and a refinement of the fluid mosaic model.

Image correlation spectroscopy (ICS) and various adaptations were previ-

ously used to measure protein dynamics in cellular membranes, as well as their

aggregation and oligomerization states. k-space ICS (kICS) was developed to

measure protein dynamics, independent of the probe photo-physics [6, 7]. In this

thesis, a new adaptation of kICS was proposed for the measurement of protein

confinement and dynamics in a heterogeneous membrane. When kICS is applied to

an image time series of a system with isolated membrane domains, the correlation

function decays effectively as a sum of two Gaussians, in time lag (τ) and spatial

frequency (k2). These two decays were linked to two effective dynamic populations

that emerge from the particle diffusion within the two phase heterogeneous 2D

environment as previously modelled [8]. Similarly, two effective modes of system

relaxation were derived for the case of chemical reaction in the context of dynamic

light scattering [9]. In both models, a particle can exist in one of two available

states, free or confined. It is reasonable to assume that the emerging conversion

rates that link those two states, will be a function of particle diffusion coefficients,

probabilities of entering and escaping domains, domain sizes and densities.

A series of simulations were performed, where these parameters were varied

according to values suggested by previous experimental studies, and kICS con-

finement analysis was applied in order to extract the characteristic confinement

parameters. The analysis consists of calculation of the kICS correlation function

from the image time series, which is then fit by a sum of Gaussians. The resulting
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characteristic decays of the correlation function, Dfastτ and Dslowτ , as well as their

amplitudes, Amplitude saturationfast and Amplitude saturationslow, are a function

of time lag, τ . These trends are fit linearly at different τ ranges to extract the

confinement parameters such as diffusion coefficients explored by particles at large

and small spatial scales, Dfast and Dslow, the maximum squared displacement of

particles at small spatial scales, Plateauslow, and amplitudes saturation at higher

temporal lags, Amplitude Saturationslow and Saturationfast. When confinement

increases, the number of particles partitioning into domains increases, which

results in a decrease in Amplitude Saturationfast and an increase in Amplitude

Saturationslow. Similarly, one would expect the diffusion coefficient at small scales,

Dslow, to decrease as particles explore smaller distances at small spatial scales.

This is accompanied by a decrease in the Plateauslow. Moreover, a larger fraction

of particles will explore smaller overall distances at large spatial scales, as they

get trapped for longer periods of time within domains, leading to a lower effective

diffusion coefficient at large spatial scales, Dfast.

When examining the trends of confinement parameters as the ratio Dout

Din
is

increased, it was observed that Dfast decreases until saturation, which occurred

at a ratio ∼ 5. Similarly, Dslow decreased with increasing Dout

Din
, which suggests

that more particles got confined and have smaller diffusion coefficients on small

spatial scales. In agreement with this observation was the increase in Amplitude

Saturationslow and decrease in Amplitude Saturationfast. Interestingly, the value

of the slow component saturation value, Plateauslow, was increasing up to the Dout

Din

∼1, followed by a decrease for higher ratios. This would imply that for ratio Dout

Din
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smaller than 1, particles inside domains diffuse at higher rates than outside. This

results in more frequent encounters of particles with the internal boundaries of

domains, and hence a higher chance of particles escaping the domains. As a result,

particles would explore the area around domains more readily giving rise to the

larger measured effective domain area, or larger Plateauslow, than the simulation

set (domain radius)2. On the other hand, when 1 ≤ Dout

Din
, the lower diffusion

coefficient inside domains increases particles partitioning into the domains, which

leads to the effective area explored by particles, Plateauslow, approaching the set

simulation value for the (domain radius)2.

The increase in domain radius should increase the effective area particles can

explore at small spatial scales, and this was observed through the linear increase

in Plateauslow with increase in (domain radius)2. Similarly, the effective diffusion

coefficient particles explore at small scales, will decrease as particles remain more

confined within larger domains, as observed with the decrease in Dslow. This trend

is accompanied by an increase in Amplitude Saturationslow with increasing domain

radius. While there was no a clear trend in the change of Dfast with domain

radius.

When it comes to the variation of the domain area fraction, all confinement

parameters correlated with the change except the Plateauslow. This observation

was reasonable considering that changing the number of domains in the field of

view, should not affect the partitioning and motion of particles at small spatial

scales. Instead, it is the large spatial scale properties that will be more signifi-

cantly affected. Indeed, Dfast drops with the increase in domain area fraction,
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which can be explained by particles being trapped by more domains as they diffuse

on large spatial scales. Dslow approaches the set Din as domain area fraction is in-

creased, which could be explained by more particles being trapped with increasing

number of domains, and hence the diffusion coefficient at small scales more closely

matches the set Din. The Amplitude Saturationslow slowly increased as the domain

area fraction increased, indicating that confinement partitioning increases with

increasing domain area fraction.

Increasing Pin

Pout
led to a decrease in Dfast and Dslow suggesting that the higher

the probability for particles to enter domains, the lower the effective measured

diffusion coefficients on all spatial scales. Again, this is a consequence of particle

partitioning more readily into domains with increasing Pin

Pout
, which leads to

particles travelling shorter distances on large spatial scales (smaller Dfast) and

results in particles exploring smaller effective distances on small spatial scales

(smaller Dslow). As a result, Plateauslow approaches the true value of (domain

radius)2 as we increase Pin

Pout
. The Amplitude Saturationslow increases with Pin

Pout

while Saturationfast follows the opposite trend.

The information extracted from the computer simulations as detailed above,

helped in understanding and interpretation of the experimental results for dynam-

ics and confinement of GPI-GFP. The goal of the experiments was to measure

the confinement parameters by adapted kICS analysis on TIRF acquired image

time series of GPI-GFP-Alexa-594 in COS-7, with or without treatment with the

domain disrupting enzymes, COase and SMase. The longer time exposure to either

of these enzymes did not produce very significant changes in GPI-GFP-Alexa594

199



dynamics and confinement. On the other hand, shorter term exposure to enzymes

(∼15 min) prior to imaging was more effective in disrupting the sphingomyelin and

cholesterol domains. The diffusion coefficient at large spatial scales, Dfast doubled

in value over the range of enzymatic reactions, going from 0.085 (control) to 0.115

(short SMase) ± 0.002 µm2/s. Similarly, Dslow was measured to be in the range

of 0.007 (control) ± 0.007 to 0.02 (short SMase) ± 0.02 µm2/s. The effective area

explored at small spatial scales, Plateauslow can be traced with a circle of effective

radius of 0.250 (control) to 0.310 (short SMase) ± 0.002 µm. The trend in these

three measured confinement parameters, suggests that that ratio of Pin

Pout
is decreas-

ing as we go from control to the shorter enzymatic exposure. The conversion of

cholesterol and sphingomyelin into cholestenone and ceramide introduces more

permeable domains in the system. Therefore, GPI-GFP will more readily escape

these domains exploring larger distances on both small and large spatial scales.

Amplitude Saturationslow decreased from 0.48 to 0.28 ± 0.01, while Amplitude

Saturationfast increased from 0.48 to 0.68, indicating again that more GPI-GFP

particles explore larger spatial scales post enzymatic treatments.

As described in the simulations results above, the parameters that can affect

Plateauslow are domain radii and ratios Dout

Din
and Pin

Pout
. The domains area fraction

should not affect Plateauslow and since we do observe a change in its experimental

value, we can conclude that enzymatic reactions do not simply increase the

domains surface coverage. Also, the Amplitude Saturations change by a factor

of two from control to enzymatic treatment conditions. In the simulations with

varying Dout

Din
, these amplitude saturations only happened for the range in Dout

Din
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from 0 to 5. For that same range, Plateauslow increased up to Dout

Din
∼ 1 followed

by a decrease at higher ratios. Together these suggest that a change in Dout

Din
is not

responsible for change in confinement parameters post enzymatic treatment of

GPI-GFP-Alexa-594 in COS-7, while a Pin

Pout
variation could be occuring.

In summary, our experimental data suggest that GPI-GFP-Alexa-594 explore

the effective area at small spatial scales of ∼0.250 µm in radius that increases

to ∼0.310 µm post enzymatic treatments. In parallel, the effective diffusion

coefficients at large and small spatial scales increase with enzymatic reactions,

suggesting that Pin

Pout
decreases making the effective domains more permeable.

Previous reports by FRET anisotropy [10] suggest that GPI-GFP exist in small

(∼3 nm) aggregates and a PALM study [11] pointed to protein clusters of 2-3

GPI, although higher order structures were detected as well. In accordance with

this, recent high temporal resolution SPT [12] demonstrated that GPI form

transient homo-dimers which form the basis for higher order oligomers under high

physiological expression condition. Our results are in better agreement with the

findings of UPaint [13], which reports a bimodal distribution of diffusion coefficient

for GPI-GFP, centered around 0.005 and 0.1 µm2/s. Similarly, UPaint applied to

the measurement of GPI-GFP dynamics in COS-7 cells reports the confinement

zones that can be up to ∼500 µm in diameter. Our experimental system is very

similar to the one reported in [13] where GPI-GFP are sparsely labelled with

anti-GFP antibodies labelled with multiple AT647N dyes. It is plausible that in

both our kICS and UPaint studies, a fraction of GPI-GFP form dimers or small

oligomers as a consequence of anti-GFP cross-linking. Consequently, it is possible
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that these oligomers get stabilized into larger domains by sphingomyelin and

cholesterol packing into ordered structures. Nevertheless, the enzymatic disruption

of domains would create more permeable domains that these oligomers as well as

GPI monomers can partition into and escape more readily. On the other hand,

spot-vary FCS [14] applied to GPI-GFP, without anti-GFP labelling, reported

higher order structures with upper bound of the domain diameter to be ∼120 µm.

Another high spatial resolution variation of spot vary FCS, called STED-FCS [15],

measured a domain radius of ∼100 nm for GPI-GFP. Similarly, PALM [11] on

fixed COS-7 cells expressing PAGFP-GPI detected a non-negligible occurrence

of ∼320 nm diameter clusters. It is entirely plausible that we are exploring

different spatial and temporal scales for GPI proteins. FRET can asses very small

structures at very high spatial resolution while high temporal resolution SPT can

asses very fast dynamics of GPI, that PALM, spot-vary FCS or kICS can not, due

to low spatio-temporal resolution. Nevertheless, we can assess slower dynamics, on

longer temporal scales and large spatial scales, that are not readily accessed with

some of the high resolution techniques. Therefore, a combination of techniques is

necessary to asses all spatial and temporal scales explored by GPI in live cells.

In addition to exploring the influence of isolated circular micro-domains on the

kICS measured dynamics of particles in 2D, we simulated a meshwork modelling

the actin cytoskeleton and its effects on particle dynamics and confinement. Our

results suggest that in the presence of a meshwork the kICS CFs decay as a single

Gaussian in temporal lag, τ , and spatial frequency k2. The non-linear fitting by

a single Gaussian decay vs k2, at given τ produces 4Dτ which is an equivalent
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of the MSD. For weak confinement, when the probability (P) to cross the mesh

boundary is high, 4Dτ increases linearly while for higher confinement, it has an

inflection at later τ . Linearly fitting the early and late linear τ regimes provide 3

parameters, Dearly, Dlate and Lapp, which when combined give estimates of diffusion

coefficients within mesh pore, Dµ, the hopping diffusion coefficient, DM , and mesh

pore diameter, L. The measured diffusion coefficients, Dearly and Dlate, combine

to define the meshwork confinement strength, Sconf . Higher Sconf implies the

smaller Dlate, hence higher confinement of the mesh and smaller P. This parameter

has similar significance to the partitioning coefficient, β, in the isolated domains

simulations statistics. The increasing β lead to a smaller measured effective

diffusion coefficient, Deff , at larger spatial scales, compared to the diffusion

coefficient set for diffusion outside domains, Dout. It is important to note that the

calculated characteristic mesh pore diameter, L, can be extracted even if the set

value was below the optical resolution of PSF e−1 diameter.

We have demonstrated that background Gaussian noise will influence higher

k2 values of kICS CF, by introducing a cutoff value k2
cut, above which the CF is

not to be considered for fitting and confinement analysis. The k2
cut varies with

signal to noise ratio and an assessment of CF prior to fitting is required in order

to avoid bias in extracted confinement parameters. Moreover, other sources of

noise in the time image series, will introduce a systematic error in the estimation

of confinement parameters, in a similar way that was reported for MSD errors

from SPT conducted on noisy images [16, 17]. Nevertheless, when all image series

are acquired under the same conditions of the illumination, exposure time and
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EMCCD gain, a similar systematic error in the extracted parameters will occur in

the analysis of all time series. Therefore, comparison of confinement parameters

prior to and post enzymatic treatments are valid, in a relative sense, considering

that the signal to noise ratio was same in all time series.

Our simulations suggest that the smallest domains resolvable by kICS

confinement analysis are on the order of twice the smallest spatial sampling unit of

an image, a pixel, which in simulation and experimental data was equal to 0.1 µm.

On the other hand, careful examination of particle statistics in chapter 4 showed

that for small domains the partitioning fraction, β was relatively small. This

suggests that particles did not visit enough small domains over the length of time

series simulated, which in turn would result in a low amplitude for the confined

(slow) component in the correlation functions, making the small domains invisible

or undetectable by kICS confinement analysis. It would take a larger number of

small domains and higher confinement (higher β) to see the emergence of small

domains characteristics in kICS CFs. Also, resolving the smallest particles’ step

sizes, due to small domains, would require higher signal to noise ratios, especially

if they are smaller or equal to the pixel size. This is also the basis of sub-pixel

localization of single particles in SPT, by fitting of 2D Gaussian to the particle’s

intensity emission diffraction profile in the image. Therefore, higher signal to noise

and higher particle confinement would be necessary ingredients for the detection of

small, sub-pixel, domains using kICS confinement analysis.
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6.1.2 Perspectives and possible future directions

The main focus of this thesis was to extend the potential of kICS and other

image correlation based techniques to characterize the heterogeneous membrane

environments through image correlation of standard confocal or TIRF microscopy

image time series. In particular, the confinement analysis extension to kICS was

a natural next step to the previously established kICS analysis of dynamics in

a homogeneous 2D environment [6, 7]. Future work could include some of the

following improvements:

• Transient domains and a dynamic meshwork The isolated domains

simulated in chapter 4 according to the methods in chapter 3 were mono-

disperse, stationary and uniformly randomly distributed in 2D. A possible

extension to the current work could be adding the polydispersity to the

domain radii and characterizing the change in the kICS CF. Also, domains

could be made mobile, either by translating their centroid positions according

to active transport or diffusion. Furthermore, the literature on membrane

domains describes them as transient, which could be yet another possibility

in the domains simulations. Nevertheless, making the domain appearing

transiently at random positions in 2D would add yet another time constant,

and should shift the partitioning coefficient, β, to lower values for any given

condition. When it comes to meshwork simulations, we used a network of

parallel horizontal and vertical lines to model a meshwork with square mesh

pore of defined radius. It was set to be stationary in time. A more realistic

picture would include non-parallel lines and polydisperse mesh pores. Also,

205



depending on the time frame considered, one could include the possibility

in meshwork dynamic reorganization by translation of mesh boundary lines

in time. This should cause more than one inflection point in 4Dτ vs τ curve

and result in a temporal variation in diffusion coefficient as described and

verified experimentally by spot-vary FCS study of artificial meshworks [18].

• Vary step size and waiting time distributions In the simulations

performed in this thesis, the particle step size was drawn from a normal

distribution of random numbers with standard deviation defined in each

dimension as
√
2Dt. This of course simulates the Brownian step sizes in

each dimension particle explores, while domain boundaries and probabilities

of crossing were used to simulate the effect of confinement on the effective

step size distribution of particles. An alternative approach to simulation

of confined dynamics is to pick particles step sizes at random from a non-

Gaussian distribution of waiting times. For example a power law distribution

would lead to an anomalous random walk. On the other hand, if a simulated

random walker jumps at each time step t in some random direction to a

distance r, which is taken from a power law distribution, then the probability

density would be Lévy rather than Gaussian. In these simulations, it would

be interesting to observe the change in the characteristic features of the kICS

CFs and see how they depend on the characteristic exponents of step size and

waiting time distributions used to simulate particle trajectories.

• More realistic models In the theory chapter (2) we examined the solu-

tions for density-density correlations in the cases of static traps and chemical

206



reactions. The model for diffusion in a two phase medium, consisting of

static traps, assumes that particles become immobile when trapped while

they diffuse with a finite diffusion coefficient when outside of traps. As a

result, the author of study [8] assumes that the diffusion coefficient is space

independent. Usually, the diffusion equation is written as:

∂c(~r, t)

∂t
= ∇ · (D(c, ~r)∇c(~r, t)) (6.1)

which usually reduces to:

∂c(~r, t)

∂t
= D∇2c(~r, t) (6.2)

when the diffusion coefficient is considered independent of diffusing species

concentration (c) and space (~r). On the other hand, if diffusion coefficient

varies in space, as in case of simulations of isolated domains considered in

this thesis, then the diffusion equation should read:

∂c(~r, t)

∂t
= ∇c(~r, t) · ∇D(c, ~r) +D(c, ~r)∇2c(~r, t) (6.3)

Therefore, the coupled diffusion equations for concentration of free and

bound particles should have an extra term ∇c(~r, t) · ∇D(c, ~r) that takes

into account the spatial heterogeneity in diffusion coefficient values. It is

reasonable to assume that this contribution to the particles motion can be

seen as a change in particle concentrations due to the spatial gradient in

diffusion coefficients at the boundary of each domain. Of course, this assumes

that D(c, ~r) is function of positions of domains in 2D, but also offers the
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possibility for a particle concentration dependent D. Indeed, free volume

effects can become important at high concentrations of particles, leading to

the concentration dependent D, which should not be neglected.

Furthermore, a parallel between solutions for the static traps model [8] and

chemical reaction [9] was an appealing one for the theory development in

this thesis, although an essential difference was omitted in the discussion.

In the case of chemical reaction, species A diffuses freely with diffusion

coefficient Da and when it is converted to state B, it diffuses freely with

diffusion coefficient Db. Therefore, in the chemical reaction model, particles

never encounter a physical boundary, such as for the isolated domain or

meshwork. Consequently, it is important to distinguish basic physical

differences between the two models compared in the theory chapter, even

though both solutions suggest that density-density correlation functions can

be expressed as a sum of two dynamic contributions.

Finally, there is a major distinction between the two models of heterogeneous

2D membrane explored by simulations in this thesis. When particles are

exploring a meshwork, at any given time frame, particles are either within a

given mesh pore or are crossing from one mesh to the adjacent. Therefore,

the kICS CF will distinguish between those motions at different temporal

scales, as shown in 4Dτ vs τ plot, since hopping occurs more slowly than

diffusion within each pore. On the other hand, when particles explore a

2D medium seeded randomly with isolated circular domains, particles can

explore several different types of dynamics on the same time scale. Some
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particles will be exploring the space within domains at diffusion coefficient,

Din while others will be diffusing between domains with set Dout. Moreover, a

fraction of particles will be crossing boundaries of domains. As a result, the

kICS CF will have two effective decays, that represent the large and small

spatial scales particles explore at each temporal lags.

• Cellular cytoskeletal meshwork confinenement and in vitro model

confined systems In this thesis, the experimental verification of the devel-

oped technique was carried out by measuring dynamics and confinement of

GPI-anchored membrane proteins on live COS-7 cells. This was an obvious

choice for the proof of principle experiment, since GPI-anchored protein

dynamics were thoroughly explored in the past using many microscopy

techniques [16, 12, 19, 11, 10, 20, 21, 15].

However, in the current work, the effects of confinement due to a meshwork

grid on kICS CF, was explored only through simulations and theoretical

treatments, modelling the proximal cortical actin network. An experiment

that could test the kICS extension would be a valuable as it would com-

plete the story of confinement analysis using k-space image correlation

spectroscopy. A possible candidate experiment to test this would involve

measurements of a membrane embedded protein, such as transferrin re-

ceptor, that is known to interact or be confined by the underlying actin

meshwork [21, 22]. Another possibility would be to measure the transport

dynamics of fluorescent beads embedded in agarose or other artificial gels,
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with varying the confinement strength or pore mesh size achieved by tai-

loring the gel preparation. Indeed, bead diffusion in agarose gel has been

investigated previously by FCS [23]. It will be important to tailor the gel

concentration as well as to choose the beads of appropriate sizes and surface

chemistry, in order to be able to capture the desired confined dynamics with

kICS.

Furthermore, an artificial membrane in the form of giant unilamellar vesi-

cles [24] or a supported lipid bilayer [25] could be prepared with defined

composition and incorporating a fluorescently labeled membrane protein.

The variation of lipid/cholesterol/sphingomyelin concentrations will ulti-

mately define the size and lifetime of ordered and disordered phases in such

model membrane systems.

Finally, an artificial mesoporous system can be prepared with compartments

of spatial dimensions ranging from a few nanometers to several micrometers.

The micro-structure for such a system was already investigated by single

particle tracking of embedded fluorescent dye at low concentrations [26]. The

confinement analysis extension of kICS, developed in this thesis is currently

being applied to map the micro-structure of such samples with embedded

fluorescent dye concentrations higher than what SPT can typically handle.

This application will be the subject of an upcoming publication.

All of the above topics should be explored in greater detail in a future work.
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KEY TO ABBREVIATIONS

ACF:Auto-Correlation Function 28

APD:Avalanche Photo-Diode 28

CCD: Charge Coupled Device 23

Coase:Cholesterol Oxidase 106

DLS:Dynamic Light Scattering 57

DMEM:Dulbecco Modified Eagle Medium 104

DRM:Detergent Resistant Membrane 4

E.Coli:Escherichia Coli 110

EGFP:Enhanced Green Fluorescent Protein 12

EGFR:epidermal growth factor receptor 44

FBS:Fetal Bovine Serum 104

FCS:Fluorescence Correlation Spectroscopy 5

FRAP: Fluorescence Recovery After Photobleaching 4

GFP:Green Fluorescent Protein 11

GPI:glycosylphosphatidyl inositol 4

HBSS:Hank’s Balanced Salt Solution 105

ICCS:Image Cross-Correlation Spectroscopy 37

ICS:Image Correlation Spectroscopy 7

IgG:Immunoglobulin G 14
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ISF:Intermediate Scattering Function 58

kICS:k-space Image Correlation Spectroscopy 38

MSD:Mean Squared Displacement 26

PAINT:Point Accumulation for Imaging in Nanoscale Topography 25

PALM:Photo-Acitvation Light Microscopy 24

PMT:Photo-Multiplier Tube 28

PSF:Point Spread Function 20

QD:Quantum Dot 13

SISF:Self-Intermediate Scattering Function 59

Smase:Sphingomyelinase 106

SNR:Signal to Noise Ratio 23

spIDA:Spatial Intensity Distribution Analysis 37

SPT:Single Particle Tracking 5

STICS:Spatio-Temporal Image Correlation Spectroscopy 38

TICS: Temporal Image Correlation Spectroscopy 37

TIRF:Total Internal Reflection 8
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