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ABSTRACT

Partially observable Markov decision processes (POMDPs) have emerged as a

principled framework for planning and decision making under uncertainty. Planning

in large POMDPs is challenging especially when information-gathering efforts or long

planning horizons are required. A few recent algorithms successfully tackle one of the

above two cases but at the expense of a weaker capacity of tackling another based on

the notion of point-based value iteration. To bridge the gap between the two classes

of point-based approaches, this thesis proposes Information Gathering and Reward

Exploitation of Subgoals (IGRES), a randomized POMDP planning algorithm that

leverages information in the state space to automatically generate “macro-actions”

that can tackle tasks with long planning horizons, while locally exploring the belief s-

pace to allow effective information gathering. Experimental results show that IGRES

is an effective multi-purpose POMDP solver, providing state-of-the-art performance

for both long horizon planning tasks and information-gathering tasks on benchmark

domains. The successful application to a new challenge task indicates that IGRES

is a promising tool for POMDP planning in real-world settings.
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ABRÉGÉ

Les processus de décision Markoviens partiellement observables (POMDP) ont

emergé comme un cadre pour la planification et la prise de decision dans l’incertitude.

La planification dans les POMDPs de grande taille est difficile, en particulier lorsqu’une

collecte d’information ou un grand horizon de planification est nécessaire. Certains

algorithmes récents s’attaquent à un de ces deux cas, mais seulement en échange

d’une faiblesse dans l’autre cas. Pour combler le manque entre les deux types

d’approches, cette thése propose la collecte d’information et l’exploitation de récompense

pour des sous-objectifs (IGRES), un algorithme de planification de POMDP ran-

domisé qui exploite l’information dans l’espace d’états afin de générer automatique-

ment des ”macro-actions” qui peuvent s’attaquer aux tâches à grand horizon de

planification, tout en explorant localement l’espace de croyances, ce qui permet une

collecte d’information efficace. Les résultats expérimentaux démontrent qu’IGRES

est un solveur POMDP efficace et polyvalent qui produit une performance à l’état

de l’art, à la fois pour les tâches de planification à grand horizon et pour les tâches

de collecte d’information sur des domaines références. L’application avec succés à

une nouvelle tâche indique qu’IGRES est un outil prometteur pour la planification

POMDP pour une mise en application en situation réelle.
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CHAPTER 1
Introduction

In artificial intelligence, we consider complex situations where the intelligent

agents perform actions in an uncertain and dynamic environment. One real-world

example is an autonomous robot with noisy sensors and stochastic actions navigates,

who needs to overcome the limited observability to act optimally and finish certain

tasks. This sort of scenarios are often modeled as partially observable Markov decision

processes (POMDPs).

In this chapter, we present a brief overview of the POMDP framework, various

POMDP solutions, our contributions, and the outline of this thesis.

1.1 POMDP Framework

Partially observable Markov decision processes (POMDPs) have emerged as a

principled mathematical framework for planning and decision making under uncer-

tainty. In the POMDP framwork, partial observability is allowed and uncertainty of

state information is modeled through observations and beliefs. The POMDP frame-

work provides the capacities to capture a number of important planning aspects that

appear in many real-world sequential decision tasks, such as the ability to handle

stochastic actions, missing or noisy observations, and stochastic costs and rewards.

The POMDP framework is general enough for modeling a wide range of real-

world sequential decision tasks. In practice, it has already been widely applied to
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various complex situations [4], including mechanical grasping tasks [13], medical diag-

nosis [10], intelligent medical devices [22], assistance for people with disabilities [12],

spoken dialogue systems [26], ecological adaptive management [7] etc.

1.2 POMDP Solutions

Despite the mathematical expressivity of the POMDP framework, solving large

POMDPs is computational intractable [17] and their application in complex domains

is also very limited due to two kinds of difficulty:

• For a POMDP problem modelled with n states, we must reason in an (n− 1)-

dimensional continuous belief space, which is called the ”curse of dimensional-

ity” [14].

• The complexity of POMDP planning also suffers an exponential increase with

the length of planning horizon, which is the ”curse of history” [23].

Because of the above challenges, different methods have been explored to refine the

classic value iteration algorithm. Exact solutions with a variety of pruning strate-

gies have been proposed to reduce the complexity [31, 28, 19, 8, 3, 36]. However,

exact POMDP planning is in fact PSPACE-complete [17]. Thus, many small do-

mains with limited number of states, actions and observations are computationally

intractable, let alone applying the framework in real-world scenarios. Practically

speaking, solving real-world tasks in this framework involves two challenges:

• How to carry out intelligent information gathering in a large high dimensional

belief space. For example, robot navigation in a practical scenario involves

dealing with complicated inner systems of the robot and a huge set of external

states such as various types of topography, which results in a POMDP model
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with large state space. However, it is often the case that only a small part of

the information might be substantially helpful for finishing the goal. Thus, it is

crucial for an algorithm to be able to gather useful information efficiently in a

high dimensional continuous belief space for POMDP planning in a real-world

situation.

• How to scale up planning with long sequences of actions and delayed rewards.

Solving a real-world problem, such as a long-term medical treatment, adaptive

management over a long period, navigation in a large map etc., often requires

that the intelligent agent has the ability to reason about long sequences of

actions and delayed rewards in order to obtain an optimal effect.

Researches have recently focused on approximate solutions to tackle the above

challenges due to the limited scalability of the exact methods. Over the past decade,

one set of successful approaches [23, 29, 30, 33, 27, 16] have been proposed relying on

the notion of point-based value iteration. The latest point-based planning algorithms

have made impressive improvements by tending to address one or the other of the

above practical challenges, and can compute policies for problems with up to 100, 000

states or performs well in domains that have delayed reward after long sequences of

actions. However, we still lack methods that can tackle problems of both types, i.e.

substantial information gathering in a large state space and long planning horizons.

1.3 Contributions

In this thesis, we propose a POMDP solution method, called Information Gath-

ering and Reward Exploitation of Subgoals (IGRES), that effectively tackles both
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challenges by incorporating elements from the two families of point-based approach-

es: first, IGRES identifies potentially important states as subgoals and leverages

insight of MiGS[15] algorithm to exploiting state structure in order to generate

macro-actions for transitions to subgoals; second, IGRES only gathers information

and exploits rewards with macro-actions in the neighbourhood of those subgoals,

which avoids sampling unnecessary beliefs. Thus, IGRES is efficient in terms of

computational time and space in the sense that it covers the belief space well with

a much smaller size of belief points set for expensive backup operations while still

maintaining good performance.

Promising experimental results show that IGRES outperforms state-of-the-art

POMDP solvers on tasks that require significant information gathering and planning

with long sequences of actions. We also show how IGRES can effectively tackle a new

ecological adaptive management problem [20] in addition to the classical domains,

thus providing evidence that IGRES is capable of solving tasks in useful real-world

settings.

1.4 Outline

This thesis is organized as follows: In Chapter 2, we introduce the technical

background on POMDPs; In Chapter 3, we present the motivation and cover tech-

nical details for IGRES, followed by the data structure used in the algorithm and

analysis of some theoretical properties; The experimental results are reported in

Chapter 4; Finally, we conclude with a discussion of our approach and the possible

future work.
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CHAPTER 2
Technical Background

Let us imagine an intelligent agent navigating in a complex environment where

it could not fully localize itself. Instead, it keeps receiving observations from sensors

and maintains a sufficient statistics of the history in order to choose actions that

can maximize the total reward. A general framework for this kind of situations is

partially observable Markov decision processes (POMDPs).

In this chapter, we introduce POMDPs as the general mathematical framework

for planning and decision making under uncertainty. We cover the basic terminology

and concepts within the scope of the POMDP framwork. Then we present the

definition of POMDP planning and approaches of solving the problem. Finally we

discuss the well-known and state-of-the-art algorithms that have been developed.

2.1 POMDP Framework

A partially observable Markov decision process (POMDP) is a tuple ⟨ S, A, Ω,

T , O, R, b0, γ ⟩ [14], where

• S is a finite set of states of the environment, which model all possible configu-

rations of the world.

• A is a finite set of actions which the agent can make in the environment.

• Ω is a finite set of observations about the environment which the agent can

receive.
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• T : S ×A → Π(S) is the state-transition function mapping a state and an

action to a probability distribution over states. T (s, a, s′) = Pr(s′|s, a) specifies

the probability of transitioning to state s′ from the current state s by taking

action a. Thus the transitions are Markovian in the sense that the probability

of reaching state s′ from s depends only on the current state s but not on any

of the earlier states.

• O : S ×A → Π(Ω) is the observation function that maps a state and an action

to a probability distribution over possible observations. O(s′, a, o) = Pr(o|s′, a)

specifies the probability that the agent observes observation o when it moves

to state s′ by taking action a.

• R : S ×A → R is the reward function, where R(s, a) specifies the reward for

taking a in the current state s. The reward function models the prizes or costs

by performing actions in the environment.

• b0 is the initial belief state.

• γ ∈ [0, 1) is the discount factor.

According to the framework, the agent takes an action at ∈ A at each time step

t at the current state st, and transitions from st to st+1. The post-action state st+1

is modeled with uncertainty as a conditional probability according to the transition

function T (st, at, st+1) = Pr(st+1|st, at).

In a POMDP, the current state st of the environment is a hidden variable which

cannot be observed directly by the agent. Instead, at each time step, it receives an

observation o ∈ Ω at the post-action state st+1. The observation o ∈ Ω is modeled
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with uncertainty as a conditional probability according to the observation function

O(st+1, at, o) = Pr(o|st+1, at).

The agent receives reward R(st, at) by taking action at at current state st. The

desired optimality of the agent is to take a sequence of actions wisely in order to

maximize its sum of total rewards gained. We limit our discussion to infinite-horizon

POMDPs where the expected sum of discounted total rewards is

E[
∞∑
t=0

γtR(st, at)]. (2.1)

2.2 Belief State

Since the agent is acting in an environment where the current state is not fully

observable, it has to keep an internal belief state about the environment. A belief

state b ∈ B is a probability distribution over all states of the environment. It is

a sufficient statistic for the past history ht = {a0, o1, . . . , ot−1, at−1, ot} in the sense

that, given the properly computed current belief state of the agent, no additional

data about its past actions or observations would provide any further information

about the current state of the world [1, 28], which also means that the process over

belief states is Markov, and that no additional data about the past history would

help to increase the expected reward [14]. Thus, given the initial belief state b0

and the entire past history ht, the belief state bt(s) at time step t is defined as the

posterior probability distribution assigned to state s:

b(s) = Pr(st = s|b0, ht). (2.2)
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The agent starts with its initial knowledge about the environment denoted as

the initial belief state b0. Then the new belief state b′ = ba,o can be computed after

taking action a and receiving observation o through the belief update function as

follows:

b′(s′) = Pr(s′|o, a, b)

=
Pr(o|s′, a, b)Pr(s′|a, b)

Pr(o|a, b)

=
Pr(o|s′, a)

∑
s∈S Pr(s′|a, b, s)Pr(s|a, b)
Pr(o|a, b)

=
O(s′, a, o)

∑
s∈S T (s, a, s

′)b(s)

Pr(o|a, b)
.

(2.3)

The denominator, Pr(o|a, b) =
∑

s∈S b(s)
∑

s′∈S T (s, a, s
′)O(s′, a, o), can be treated

as a normalizing factor, independent of s′, that makes sure
∑

s∈S b(s) = 1.

2.3 POMDP Planning

After the agent receives an observation and updates its belief state, it must

choose to take an action based on the current belief state. In POMDP, a policy

π : B → A is a mapping from the current belief state b ∈ B to an action a ∈ A.

A value function Vπ(b) specifies the expected reward gained starting from b

followed by policy π:

Vπ(b) =
∑
s∈S

b(s)R(s, π(b)) + γ
∑
o∈Ω

p(o|b, π(b))Vπ(bπ(b),o). (2.4)
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The goal of POMDP planning is to find an optimal policy π∗ where its value

function V∗ = Vπ∗ is maximized:

Vπ(b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈Ω

p(o|b, a)Vπ(ba,o)

]
, (2.5)

and thus the optimal policy π∗ is defined as

π∗(b) = argmax
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈Ω

p(o|b, a)Vπ(ba,o)

]
. (2.6)

In general, the value function V can be approximated arbitrarily closely by a

piecewise-linear and convex function [32]:

V(b) = max
α∈Γ

(b(s)α(s)), (2.7)

where Γ is a finite set of hyper-planes called α-vectors. Since for each α ∈ Γ, α(s) is

just the expected total reward associated with the starting state s by choosing some

specific action and acting according to the policy defined by Γ afterwards (more

details in [14]), we know that each α-vector is associated with the chosen action.

The best α-vector in the set Γ at any belief state is one that maximizes the value

function. Then the policy execution is just to select the action such that the α-

vector associated with it at the current belief state b is the best. Thus we see that a

policy can be represented by a set of α-vectors, and computing a policy involves the

construction of the α-vectors set Γ, and is performed offline in most cases.

Most of the exact POMDP approaches [31, 28, 19, 8, 3, 36] look for efficient

strategies to prune dominated α-vectors, i.e. vectors that do not maximize Equa-

tion 2.7 at any belief state, to avoid maintaining α-vectors sets that are too large.
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However, these algorithms are limited to solving small problems due to the extremely

high complexity of exact approaches. Recent work on POMDP planning has focused

on trying to find efficient approximation algorithms that can solve value function V

with desired accuracy.

2.4 Point-based Algorithms

We have seen that the goal of POMDP planning is to find an optimal policy.

However, computing policies for large POMDPs is not an easy task due to two

famous reasons [14, 23]. One is known as “curse of dimensionality” in the sense that

we must reason in a (n− 1)-dimensional continuous belief space for a problem with

n states. The other one is known as “curse of history” in the sense that the number

of belief states computed from distinct action observation histories considered grows

exponentially with the planning horizon in a complete search starting from an initial

belief.

Point-based approximations are among the most successful approaches to ap-

proximate the value function in large POMDPs. Solutions are computed by applying

iterative value function backups over a small set of belief points (see Algorithm 1).

In this way, a set of points (belief states) from the belief space B can be sampled as

an approximate representation of B, rather than representing the exact belief space

B. To reduce computation, the choice of the candidate belief points at which to ap-

Algorithm 1 α-backup

αa,o ← argmaxα∈Γ
∑

s∈S α(s)b
a,o(s), ∀a ∈ A, o ∈ Ω;

αa(s)← R(s, a) + γ
∑

o,s′ T (s, a, s
′)O(s′, a, o)αa,o(s

′), ∀a ∈ A, s ∈ S;
α′ ← argmaxa∈A

∑
s∈S α

′(s)b(s);
Γ← Γ ∪ {α′}.

10



Figure 2–1: A belief tree rooted at b0.

b0

a1 a2

o1 o2

ply backups becomes crucial for this class of algorithms, since the backup operations

are expensive. Different point-based approaches vary mainly in their belief point

sampling strategies. PBVI [23], one of the first point-based algorithm, samples only

belief points in a reachable space R(b0) ⊆ B from an initial belief point b0 as the

representative set for backup operations rather than sampling from the high dimen-

sional continuous B. Many later point-based algorithms [29, 30, 33, 27, 16] are based

on this idea. The sampled points typically form a tree TR (Figure 2–1) rooted at the

initial belief point b0. Each node of TR represents a sampled point.

Practically speaking, solving real-world tasks in the framework of POMDP in-

volves solving two problems: how to carry out intelligent information gathering in a

large high dimensional continuous belief space; and how to scale up planning with
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long sequences of actions and delayed rewards. Recent point-based planning algo-

rithms have made impressive improvements by tending to address one or the other

of the above challenges, but we still lack methods that can simultaneously tackle

problems of both types:

• PBVI [23], HSVI [29, 30], Perseus [33], FSVI [27] and SARSOP [16] work very

successfully in problems that require gathering information with a large state

space, using bias expansion of belief sampling to yield good approximations

of value functions. In particular, HSVI keeps lower and upper bounds on the

value function and use heuristics to sample belief states that reduce the gap

between bounds. Perseus adapts a randomized belief sampling strategy and

works well for highly explorative problems. FSVI uses only upper bound to

guide the belief point sampling, and works well for domains that require only

simple information gathering actions. SARSOP focuses sampling around the

optimal reachable space, R∗(b0) ⊆ R(b0) under optimal policies, and works

well for various domains and can moderately scale to problems with up to

100, 000 states in reasonable computational time. However, when working in

domains that require planning with long sequences of actions, these approaches

often struggle because they fail to sample deeper belief states before having

constructed belief trees that are too large to handle.

• MiGS [15] facilitates planning for problems that require long sequences of ac-

tions to reach a goal, by generating macro-actions and restricting the policy

space. It has been shown to perform well in domains that require long planning

12



horizons with delayed reward, but we demonstrate how it can fail even in some

very simple tasks that require certain information gathering efforts.
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CHAPTER 3
Information Gathering and Rewards Exploitation

Now we introduce our approach, called Information Gathering and Reward Ex-

ploitation of Subgoals (IGRES), which attempts to bridge the gap between the two

classes of point-based approaches, to produce a single POMDP solver with sufficient

versatility to address both problems that require substantial information gathering

actions, and problems that require long sequences of actions. To achieve this, IGRES

identifies potentially important states as subgoals, and leverages MiGS’s [15] insight

of exploiting state structure to generate macro-actions for transitions to subgoals;

Then for each belief associated with a subgoal, IGRES generates another macro-

action to gather information and exploit rewards in the neighbourhood of those

subgoals, which avoids sampling unnecessary beliefs. Thus, IGRES is efficient in

terms of computational time and space in the sense that it covers the belief space

well with a much smaller size of belief points set for expensive backup operations

while still maintaining good performance.

In this chapter, we first present our strategy for sampling belief points, and

give the overview of IGRES. Then we demonstrate the data structure used in the

algorithm, and present the theoretical results on bounding the approximation error.

Next we discuss the complexity reduced by the algorithm as well as the completeness

of planning. Finally we provide a discussion on work related to our approach.
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3.1 Sampling New Belief States

In this section, we present how IGRES uses the structure of state information

to generate two types of macro-actions for sampling new belief states.

3.1.1 Capturing Important States

In general, actions that yield high rewards or gather significant information from

the current belief state play an important role in constructing good policies [5, 11].

This observation suggests that states associated with high rewards or informative

observations may also be important. IGRES leverages this structure by attempting

to identify these potentially important states and bias the subgoal sampling towards

them. Specifically, a state s ∈ S is sampled as subgoal using the softmax function:

p(s) ∝ eηh(s), (3.1)

where the pre-defined positive constant η serves as a normalizer and a controller for

the smoothness of our random sampling, and h(s) is a measure that indicates how

important the state s is. The importance function h(s) is defined as

h(s) =
hr(s)∑
hr(s)

+ λ
hi(s)∑
hi(s)

, (3.2)

where λ balances between the normalizing values defined by two heuristic functions

hr(s) and hi(s) which describes the importance of a state s ∈ S in terms of the

capacities of reward exploitation and information gathering respectively.

We calculate the importance of reward exploitation for each s ∈ S:

hr(s) = max
a∈A

R(s, a)−Rmin

Rmax −Rmin

, (3.3)
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which captures the highest immediate reward we can get from state s over all actions,

and is normalized by using minimum and maximum instantaneous rewards, which

makes sure that hr(s) is strictly positive.

We then calculate the information gain for each s ∈ S:

hi(s) = max
a∈A

∑
o∈Ω

(
− 1

|Ω|
log(

1

|Ω|
) +O(s, a, o) log (O(s, a, o))

)
. (3.4)

which measures for state s the highest possible entropy of observation probabilities

over all actions against a uniform distribution.

3.1.2 Leveraging State Structure

In this section, we follow MiGS [15] algorithm to exploit structure in the state

space, which helps sampling in the belief space. We first consider the state graph GS

which is a weighted, directed multi-graph with each node corresponding to a state

s ∈ S, where edge (ss′, a) exists from node s to s′ if and only if T (s, a, s′) > 0. We

associate with each edge (ss′, a) a weight that measures the difference between the

expected total reward of state s and destination s′ via action a:

αw(s)− αw(s
′) = R(s, a) + γ

∑
s′′∈S/{s′}

T (s, a, s′)×
∑
o∈Ω

O(s′′, a, o)(αw(s
′′)− αw(s

′)),

(3.5)

where αa(s) = R(s, a)+γ
∑

o,s′ T (s, a, s
′)O(s′, a, o)αw(s

′) approximates the expected

total reward from state s ∈ S with the inspiration from Algorithm 1. Since solving

all equations for all unknown αw(s) is expensive if |S| is large, we need another

approximation. If we consider the fact that s′′ can be reached from s with only one

single action, we can expect the difference between αw(s
′′) and αw(s) is small. Thus
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we get the following equation by replacing αw(s
′′) with αw(s):

αw(s)− αw(s
′) =

R(s, a)

1− γ + γT (s, a, s′)
, (3.6)

If we only consider costs (negative rewards) as an analogue of distance, we define the

weight for an edge (ss′, a) as:

w(ss′, a) =
−R(s, a) · 1R(s,a)≤0

1− γ + γT (s, a, s′)
, (3.7)

such that the weights for all edges in GS are non-negative and can be used to con-

struct a distance measure. This definition of edge weights properly captures the cost

of selecting action a transitioning from s to s′ and takes both immediate cost and

future regret into account.

Now we define the distance as

dS(s, s
′) = min

a∈A:T (s,a,s′)>0
w(ss′, a). (3.8)

We further extend the notion of distance dS such that distance from s to s′ is just

the shortest path by the distance measure above. Thus we have reduced the directed

multigraph GS to a weighted directed graph.

If we assume strong connectivity of the state graph, an inward Voronoi parti-

tioning [9] can then be used to partition the states based on dS into a partitioning

K = {K(m)|m ∈M}, (3.9)
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whereM ⊆ S is a set of subgoals and K(m) = {s ∈ S|dS(s,m) < dS(s,m
′),∀m′ ̸=

m and m,m′ ∈M} is the set of states whose distance to subgoal m is less than the

distance to any other subgoal inM.

We build a roadmap graph GM where each node corresponds to a sampled

subgoal. Edge mm′ from subgoal m to m′ is present if a path is found from m to m′

in graph GK(m)∪Km′ , and the edge is labeled with both a sequence of actions and a

sequence of states according to the path. Then edge mm′ is also associated with the

weight of the shortest path. In this way, we partition the state space into regions

where states in each region lead towards a subgoal inducing that region, and the

connectivity between regions is also well structured by the edges of GM.

3.1.3 Sampling Belief States Using Macro-actions

A macro-action is constructed by a sequence of actions. IGRES adapts the

notion of sampling new belief points using macro-actions instead of single actions

as well as samples one observation sequence for each macro-action, which facilitates

planning with long sequences of actions and avoids unnecessary backup operations.

Now we describe the details of IGRES’s belief sampling strategy using macro-

actions. Just like most of the point-based algorithms, IGRES only performs backup

operations at a set R of belief points sampled from B rather than the entire belief

space B. To sample a new belief point, we choose an existing belief point b ∈ R and

suppose that an estimate of current state s is also given (how to obtain the estimate

of current state will be discussed in the later sections). A new belief state b′ is then

sampled from the current belief state b according to a macro-action (a1, a2, . . . , al)

and a state sequence (s0, s1, s2, . . . , sl) where s0 = s.
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To achieve this, we first generate an observation sequence (o1, o2, . . . , ol) where

oi is sampled according to the probability

Pr(oi) ∝ O(si, ai, oi) = Pr(oi|si, ai). (3.10)

In this way, the observation sequence (o1, o2, . . . , ol) being generated is consistent with

the state sequence (s0, s1, s2, . . . , sl) in the sense that it is indeed possible to receive

observation oi when transitioning from state si−1 to si via action ai, for 1 ≤ i ≤ l.

This consistency limits the number of possible observations. The motivation for

sampling observation sequences is to avoid exploring many similar paths in belief

space since many sequences provide similar information, which helps to reduce the

complexity of long horizon due to observations as well.

After the observation sequence is sampled, by applying the updating rule of

belief states (2.3), we immediately get a sequence of belief states (b1, b2, . . . , bl) such

that

b1 = ba1,o1 ,

bi = b
ai−1,oi−1

i−1 , for 2 ≤ i ≤ l.

(3.11)

Thus the new belief point b′ = bl is sampled, associated with the estimate state

s′ = sl.

As the core of our algorithm, two types of macro-actions:

1. subgoal-oriented macro-actions,

2. exploitation macro-actions,

are generated, which splits the planning strategy into subgoal transitioning phase

and exploitation phase respectively.
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Generating Subgoal-Oriented Macro-actions

With the help of roadmap GM, we first extract a path transitioning to the closest

m ∈ M from current state s. Recall that each path in GM is an action sequence

associated with the edges along the path. To choose a path, we store a circular list

of all outgoing edges with increasing weights for each subgoal m ∈ M according

to GM. If the current state s is not a subgoal, the path will be the only path

from s to the subgoal in the same partition; otherwise s is a subgoal and the path

is just the next outgoing edge in the list. From this path, we obtain a sequence of

actions as our subgoal oriented macro-action and a sequence of states that are visited

along the path. According to the belief sampling strategy (Eqn 3.10, 3.11), we get

a new belief state b′ associated with m. Since the subgoal m ∈ M is potentially

important, we then introduce an exploitation macro-action next, which is restricted

to the neighbourhood of m.

Generating Exploitation Macro-actions

Given an estimate of current state s at each iteration, we sample an action a with

probability Pr(a) proportional to some heuristic function ã(s). Many heuristics can

be adopted here, such as choosing the action that maximizes long term reward, or just

uniformly at random. We define ã(s) = eµ(T (s,a,s′)1s,s′∈K(m)) in order to favor actions

that are limited in the partition where the subgoal is located. For simplicity and

computational efficiency, we use ã(s) = eµT (s,a,s) in our algorithm to favor the action

that could gather information explicitly without changing the estimate of state, which

works well empirically. And we sample a state s′ to be the updated estimate of

state with probability Pr(s′) ∝ T (s, a, s′). We stop exploiting with probability
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(1 − pex) at each iteration, where pex is an exploitation probability parameter to

control the length of this macro-action. At the end of the exploitation, we add

an action that maximizes the reward from the current estimate of state if necessary,

which is consistent with the heuristic function (Eqn 3.3) for choosing subgoals. Given

the sequence of actions and the sequence of states generated in this way, we again

get a new belief state according to the belief sampling strategy (Eqn 3.10, 3.11).

3.2 Overview of IGRES

IGRES maintains a belief tree rooted at the initial belief node ub0 which consists

of all belief states that are sampled from B. It also stores all belief states that are

associated with subgoal states in a set Rδ to judge whether to exploit a subgoal or

not. In IGRES, adding new belief nodes to TR is a three-steps procedure:

1. Choose an existing node ub in TR.

2. Generate a subgoal-oriented macro-action for b and obtain new belief b′. Then

ub′ is inserted into TR as a child of ub.

3. Generate an exploitation macro-action for b′ and obtain new belief b′′, if the

algorithm decides to exploit. Then ub′′ is inserted into TR as a child of ub′ .

Then, as a point based algorithm, IGRES performs backup operations (Algo-

rithm 2) for all the belief nodes after each of them is inserted in the tree.

Algorithm 2 Backup(Γ,b)

αa,o ← argmaxα∈Γ
∑

s∈S α(s)b
a,o(s), ∀a ∈ A, o ∈ Ω;

αa(s)← R(s, a) + γ
∑

o,s′ T (s, a, s
′)O(s′, a, o)αa,o(s

′), ∀a ∈ A, s ∈ S;
α′ ← argmaxa∈A

∑
s∈S α

′(s)b(s);
Γ← Γ ∪ {α′}.

The full description of IGRES is given in Algorithm 3.
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Algorithm 3 IGRES

Input: b0, GM, δ
Output: V(b0)
TR ← {ub0}, Rδ ← {b0};
while number of rounds V(b0) not improving < limit do

Sample node ub ∈ TR probability ∝ 1
|Kc(b)| ;

if b = b0 then
Sample ub.state according to b(s);

end if
Current estimate of state s← ub.state;
Generate subgoal oriented macro-action for b with state estimate s,

which gives updated belief b′ and s′;
if minb̂∈Rδ

dK(b
′, b̂) > δ then

BackUpAtLeaf(b′,s′,TR,ub); ◃ Algorithm 4.
Rδ ← Rδ ∪ {b′};
Generate exploitation macro-action for b′ with state estimate s′,

which gives updated belief b′′ and s′′;
BackupAtLeaf(b′′,s′′,TR,ub′); ◃ Algorithm 4.

end if
end while

3.3 Data structure of IGRES

At each iteration, the algorithm chooses a belief node ub in the tree TR with prob-

ability proportional to 1
|Kc(b)| to start the belief expansion, where the c-neighbourhood

Kc(b) is defined as

Kc(b) = {b̂ ∈ R|dK(b, b̂) ≤ c}, (3.12)

Algorithm 4 BackupAtLeaf(b,s,TR,u
parent)

Create a node ub;
ub.state← s;
Insert ub to TR as a child of node uparent;
Backup for each belief inducing the node along the path from ub back to root ub0 ;
◃ Algorithm 2.
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to favor belief states that have fewer neighbours. A similar belief expansion strategy

is adopted by PBVI [23], except that instead of using L1 distance, we use a more

relaxed K-distance dK, defined based on K-partitioning (Eqn 3.9):

dK(b, b
′) =

∑
m∈M

∣∣∣∣∣∣
∑

s∈K(m)

b(s)−
∑

s∈K(m)

b′(s)

∣∣∣∣∣∣ , (3.13)

which measures the differences between probability sums for partitions rather than

probabilities for single states. Besides the associated belief state b, we also store the

estimate of current state s in each node ub.

Then, a new belief state b′ is sampled by generating a subgoal-oriented macro-

action from b, and the estimate of current state s′ is also updated to be the subgoal

state (see Section 3.1.3).

To control the total number of belief states inserted in the tree, we calculate the

K-distance from the new belief state b′ to the belief set Rδ to decide whether we will

exploit this subgoal or not. If the K-distances from b′ to all belief states in Rδ are

less than δ, we decide to do exploitation. To exploit the belief b′ with state estimate

s′, a new belief state b′′ is sampled by generating an exploitation macro-action from

b′ (see Section 3.1.3).

Once a new belief node is inserted in the tree, an α-backup is done for every

belief state along the path from that node back to the root. The corresponding

estimate of current state is also stored in each belief node to facilitate sampling

deeper belief points: if we choose to sample new beliefs from that node later, we

can start immediately from the estimate of current state rather than sampling a new

state as we do for the root. This strategy enables reasoning about long sequences
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of actions without sampling unnecessary belief states, and thus avoids maintaining

a belief tree that is too large.

As the algorithm describes, IGRES considers using different macro-actions for

transitioning to different subgoals in a circular way. So after a sufficient number of

iterations, several belief states associated with the same subgoal will be sampled.

This might degrade the performance of the algorithm because those belief states

may be sampled using the same subgoal-oriented macro-action which provides similar

observation information even though a different observation sequence is sampled each

time. To overcome this, IGRES is implemented in an any-time manner such that

after the value of initial belief state is not improved for some number of rounds,

new states are sampled as subgoals and added to M. In this way, a new GM is

constructed accordingly, which introduces new subgoals for gathering information

and exploiting rewards.

3.4 Analysis

In this section, we present the theoretical results on bounding the approximation

error. Then we discuss the complexity reduced by the algorithm as well as the

completeness of planning.

3.4.1 K-Distance Threshold

The K-distance threshold δ is used to control the number of belief states associ-

ated with subgoals for backup operations. It is desirable that the algorithm does not

lose too much performance because of δ, since intuitively two belief states within a

K-distance of δ have similar values. Next we demonstrate this idea by showing how

the difference of the values of these two belief states can be bounded.
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The partitioning K makes sure that all underlying state sequences starting from

s ∈ K(m) must travel to m before entering other K(m′), where m′ ̸= m. If we

assume sampling a proper number of subgoals and a proper η (see 3.1), all states

with positive reward will then be included in M with large probability. Under

this assumption and assuming from Equation 3.7 that αw approximate the value α

properly, we know

α(s)− α(s′) ≤ α(m)− α(s) ≤ maxa∈A−R(s, a)

1− γ
lmax ≤

−Rmin

1− γ
lmax. (3.14)

where s, s′ ∈ K(m), and lmax = maxm∈M |K(m)|, which yields the following:

Theorem 1. If dK(b, b
′) ≤ δ, then |V∗(b)−V∗(b′)| ≤ 1

1−γ
(δRmax−2lmaxRmin),∀b, b′ ∈

B.

Proof. Recall from Equation 2.7 that the optimal value function can be approximated

arbitrarily closely by V∗(b) = maxα∈Γ(b(s)α(s)). Let α be the maximizing α-vector

for belief b and α′ for b′. Assume w.l.o.g. that V∗(b) ≥ V∗(b′), or V∗(b)−V∗(b′) ≥ 0.

Since α′ maximizes V∗ at b′, we get α′ · b′ ≥ α · b′ and V∗(b)−V∗(b′) = α · b−α′ · b′ ≤

α · b− α · b′ ≤ α · (b− b′). Thus we have

|V∗(b)− V∗(b′)| ≤ |α · (b− b′)|.

We next introduce the K-partitioning in our analysis:

|V∗(b)− V∗(b′)| ≤

∣∣∣∣∣∑
s∈S

α(s)(b(s)− b′(s))

∣∣∣∣∣
≤

∣∣∣∣∣∑
K∈K

∑
s∈K

α(s)(b(s)− b′(s))

∣∣∣∣∣ .
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For any s, s′ ∈ K, we have

|V∗(b)− V∗(b′)| ≤

∣∣∣∣∣∑
K∈K

∑
s∈K

(α(s)− α(s′) + α(s′))(b(s)− b′(s))

∣∣∣∣∣
≤

∣∣∣∣∣∑
K∈K

∑
s∈K

(α(s)− α(s′))(b(s)− b′(s))

∣∣∣∣∣+
∣∣∣∣∣∑
K∈K

∑
s∈K

α(s′)(b(s)− b′(s))

∣∣∣∣∣ .
(3.15)

Let e1 and e2 denote the two error terms on the right hand side in above inequality

(3.15). We know from the inequality (3.14) that

e1 ≤

∣∣∣∣∣∑
K∈K

∑
s∈K

−lmaxRmin

1− γ
(b(s)− b′(s))

∣∣∣∣∣
=
−lmaxRmin

1− γ

∑
s∈S

|b(s)− b′(s)|

≤ 2
−lmaxRmin

1− γ
.

(3.16)

Since the values of α(s) ≤ Rmax

1−γ
and

∑
K∈K

∑
s∈K |b(s) − b′(s)| = dK(b, b

′) ≤ δ it

follows that

e2 ≤
∑
K∈K

|α(s′)|

∣∣∣∣∣∑
s∈K

(b(s)− b′(s))

∣∣∣∣∣
≤

∑
K∈K

Rmax

1− γ

∣∣∣∣∣∑
s∈K

(b(s)− b′(s))

∣∣∣∣∣
≤ Rmax

1− γ
δ.

(3.17)

Combining (3.16) and (3.17) yields the theorem.

This theorem implies that V∗(b′) can be approximated by V∗(b) with a small

error controlled by the K-distance threshold δ and an extra error that depends on

the number of states in each partition.
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3.4.2 Reduced Complexity

Since the backup operations are often the most expensive steps in a point-based

algorithm, the choice of nodes inserted in the belief tree (see Figure 2–1) becomes

crucial for reducing the planning complexity. IGRES reduces the planning complexity

for the following two reasons:

1. Belief points are sampled using macro-actions instead of single actions. So the

belief tree grows much deeper with the same number of nodes.

2. Only one observation sequence is sampled each time for each macro-action

instead of generating all possible observation sequences exhaustively.

If we consider a POMDP problem that requires planning with horizon length

h, an exhaustive approach yields a belief tree with a total number of Θ((|A||Ω|)h)

belief nodes.

IGRES significantly alleviates the effect of long planning horizon by adapting

macro-actions. Let l be the minimum length of a macro-action generated by IGRES,

then the size of belief tree constructed is reduced to O((d|Ω|l)h
l ) = O(dh

l |Ω|h) for the

same planning length h, where the maximum branching number d is the maximum

among the out degrees of all subgoals in GM.

IGRES also carries out effective information gathering in the sense that it does

not exhaustively generate all possible observation sequences for one macro-action

because many of these sequences give similar information about the hidden current

states. This strategy further reduces the complexity introduced by branching out

exhaustively different observations.
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3.4.3 Completeness of Planning

IGRES approximates the reachable space Rbo from the initial belief b0 instead

of sampling the whole space B exhaustively in the sense that:

1. IGRES samples states as subgoals, and generates new belief states with macro-

actions. It only gathers information and exploits rewards at belief states as-

sociated with subgoal states, and excludes other belief states generated along

the way transitioning to subgoals for exploitation.

2. IGRES uses the K-distance threshold δ = 0 to avoid reasoning belief states

that are too close to the existing belief point set.

However, IGRES is still planning in a complete policy space under some condi-

tions:

In the case where the distance threshold δ = 0, IGRES inserts every belief state

that has been sampled. Then we consider the fact that GM is updated by adding

without replacement new subgoals sampled from a finite set of states S. Thus, even

if we start with a small number of subgoals, all states would be sampled as subgoals

given enough running time for IGRES. As new edges are inserted to GM, including

multiple edges labeled with different actions between same pair of subgoals, all pos-

sible edges between each pair of states will finally be added to GM (subgoal-oriented

macro-actions become single actions in this case). If we also consider the fact that

for a non-zero exploitation probability parameter pex, self-loop action sequences of

any length could be generated with non-zero probability. In this way, any transi-

tioning action between any pair of states with non-zero probability or any possible

self-loop action of any state could be taken to sample new belief. Since observation is
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sampled according to observation function O, with non-zero probability all possible

action-observation sequences could be generated, which covers the whole reachable

space R(b0). Local exploitation in principle ensures completeness over the reachable

space.

Therefore IGRES is complete in a probability sense. Although practically s-

peaking, this might not be necessary for most of POMDP problems.

3.5 Related Work and Discussion

Planning with macro-actions in fully-observable environments was first intro-

duced in the semi-Markov Decision Processes and the options framework [34]. It was

then adapted to partially-observable domains with a dynamic grid approximation

approach [35].

More recently, many algorithms that are based on a generic online forward search

for POMDPs [25] (e.g. PUMA [11]) provide good performance for domains that

require long planning horizons by restricting the policy space with macro-actions.

However, they do not compute full policies for the problems.

MiGS [15] adapts a similar approach as that of IGRES by identifying important

states as subgoals, and automatically constructing macro-actions to tackle POMDP

tasks with long planning horizons. However, MiGS does poorly in gathering infor-

mation, and thus struggles in generic POMDPs including domains like Tiger [6] and

RockSample [29] which require sensing action sequences. We will demonstrate this

in the next chapter.

The key idea of point-based POMDP algorithms is to sample a set of points

from B to approximate the representation of entire B because the backup operations
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for the sampled points are expensive. Thus, the strategy of sampling belief points

is crucial for a point-based algorithm. IGRES performs point-based value function

backup operations and leverages the structure of state space and adapts macro-

actions for sampling belief points to reduce the complexity of planning, which helps

to scale better than other point-based approaches for general POMDP problems that

require effective information gathering in large state space and long action sequences

of planning.

In IGRES, the calculation of heuristic values for all states and the construction

of GM are done only once before the process of belief sampling starts, which makes

the generation of two types of macro-actions simple and effective. So in this sense,

IGRES is efficient in sampling useful belief points.

The generation of macro-actions in IGRES is relatively simple and random,

where the choices of actions are not conditional on the observation received or cur-

rent belief states. This strategy ensures IGRES performs well for general POMDP

domains. However, we expect that different domain heuristics applied to the con-

struction of macro-actions will lead to better performance for specific POMDP do-

mains.
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CHAPTER 4
Experiments

In this chapter, we present the testing results of IGRES on different tasks that

require either information gathering efforts or long planning horizons.

We first consider classic POMDP benchmark problems of various sizes and type-

s. We compare performance of IGRES to existing POMDP solvers RTDP-Bel [2],

HSVI2 [30], FSVI [27], SARSOP [16] and MiGS [15]. RTDP-Bel is an adaptation

of real time dynamic programming to POMDPs, and has demonstrate strong per-

formance on some POMDP domains. FSVI is a trial-based algorithm that finds

sequences of useful backups, and performs well on most of POMDPs. HSVI2 uses

heuristics to guide the sampling, and has good performance in general. SARSOP is a

state-of-the-art POMDP solver with demonstrated strong performance in a variety of

domains, especially problems with large state space. MiGS is a state-of-the-art solver

specifically aimed at domains with long planning horizons and delayed rewards.

We then present the results of applying IGRES to a real-world ecological adap-

tive management domain, and demonstrate its behavior with different parameters.

4.1 Benchmark Problems

POMDP as a model for planning differs largely from other fully observable mod-

els due to the uncertainty of state information. Thus, algorithms that sample belief

states by using pure state information to generate macro-actions (e.g. MiGS) might
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not work well on some problems, largely because they fail to take advantages of ob-

servation information to sample beliefs which are more focused to a single important

state.

On the other hand, for problems that require long action sequences, algorithms

that adapt certain heuristics to gather information (e.g. SARSOP) might improve

very slowly when they maintain a large set of sampled beliefs or they might even get

stuck locally on some problems because they fail to sample deeper belief points.

IGRES constructs macro-actions considering both informative observations and

rewarding actions, and gathers information and exploits subgoals in a probabilistic

manner without making assumptions about the domain. Thus, IGRES has the poten-

tial to provide good solutions to problems which require either information gathering

to compute good policies or long sequences of actions to exploit delayed rewards. To

demonstrate this, we carried out experiments on both types of benchmark problems.

4.1.1 Introduction to Domains Studied

First, we introduce the POMDP domains on which we ran IGRES and the other

five algorithms as comparison.

Tiger and Noisy Tiger

Tiger [6] (see Figure 4–1) is the most classic task to demonstrate the information

gathering perspective of a POMDP problem. In this problem, two closed doors are

given. A positive reward is behind one of the doors, while a huge cost is behind

the other door which represents a tiger. The agent can use small-cost “listen” action

before opening the right or left door. The “listen” action gives observations indicating

the correct location of the tiger with 15% noise.
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Noisy-tiger [11] is a modified version of Tiger where the noise of the listen action

is increased from 15% to 35% in order to make the information gathering more

difficult, thus yielding a longer planning horizon.

Typically successful policies for these two problems will sample belief states that

are close to the “corner” of state representing the correct door, which requires several

“listen” efforts.

Figure 4–1: Tiger Problem.

  = “tiger-left” 

Pr(  = obs-left|  = s1, = listen) = 0.15 

Pr(  = obs-right|  = , = listen) = 0.85 

  = “tiger-left” 

Pr(  = obs-left|  = s0, = listen) = 0.85 

Pr(  = obs-right|  = , = listen) = 0.15 

Reward Function: 

Opening the wrong door: -100 

Opening the correct door: 10 

“Listen” action: -1 

RockSample

RockSample [29] is another information gathering problem, which models a rover

exploring a grid map and trying to sample valuable rocks. In RockSample(n, k), the

grid map of size n×n as well as k rocks are given. The rover knows the exact positions

of itself and the k rocks. But it does not have the prior knowledge of whether a rock

is valuable or not. The rover moves deterministically, and can perform k types
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of “check” actions to obtain noisy information about whether the corresponding

rock is good. The accuracy of each “check” action depends on the distance to the

corresponding rocks. The rover gets +10 reward if it correctly samples a good rock

and is punished with −10 if the sampling is not correct.

Hallway2

Hallway2 is a maze domain introduced in [18], where a robot navigates in a map

with 22 grid rooms plus a goal and it wants to reach the designated goal as quickly

as possible. The robot observes each combination of the presence of a wall in four

directions and a “star” for the goal. The robot can move towards four directions or

stay in the same place for each time step. The transitions and observations are both

extremely noisy.

Tag

Tag is a domain introduced in [23] where a robot searches for and tags a moving

opponent. The position of the robot is fully observable, and the “move” actions are

deterministic. However, the robot cannot observe the opponent until they meet at

the same position, when it should take the “tag” action to get a reward of 10 and

win the game. The robot gets -1 for each “move” action, and -10 for a wrong “tag”

action.

Underwater Navigation

Underwater Navigation [16] (Figure 4–2) models an autonomous underwater

vehicle (AUV) navigating in a static 51 × 52 grid map from the left border to the

right. The AUV knows the environment. At each time step, it chooses to stay or

move to the adjacent grids. The difficulty of this domain is due to its large state
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space and the relatively long planning horizons. A successful solution will guide the

AUV to the top or bottom borders and localize itself around the landmarks there in

order to avoid dangerous rocks near goals.

Figure 4–2: Underwater Navigation Problem. The figure shows a reduced instance

of Underwater Navigation Problem, shown on a reduced map with a 11× 12 grid for

coastal navigation. “S” marks the possible starting positions with uniform probabil-

ities. “D” marks the destinations. “R” marks the rocks. “O” marks the landmarks

where the robot can fully localize itself. (This figure is reproduced from [16] with

the permission from the authors.)

Homecare

Homecare [16] (Figure 4–3) is a domain closely related to Tag [23] but with much

more states and more complex dynamics. It models a robot that tries to take care
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of an elderly person who moves on a certain path non-deterministically. The person

will proceed or stay along the dash path with uniform probabilities each time. And

he may stay for a long duration when he reaches the bathroom. To achieve high

reward, the robot needs to keep close to the person so that it could sense the person.

The robot gets a reward only if it serves in time when the person calls for help.
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Figure 4–3: Homecare Problem. This figure shows the robot tracking a moving

person. The light blue areas are obstacles, and the black dashed curve indicates the

targets path. The green area around the robot marks the the visible region of the

sensors of the robot. The gray shades show the belief states of the current target

position. (This figure is reproduced from [16] with the permission from the authors.)

bathroom

target

robot

+

3D-Navigation

3D-Navigation [15] (Figure 4–4) models an unmanned aerial vehicle (UAV) nav-

igating in a 3D-indoor environment with 18×14 horizontal grids and 5 height levels.

The UAV moves with 10% noise but rotates accurately. A successful solution will
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lead the UAV to the longer route on the right hand side where the vehicle can localize

itself at specific landmarks along the way, and avoid dangerous areas before heading

for the goal areas.

Figure 4–4: 3D-Navigation Problem. This figure shows a 3D-indoor environment
for navigation. “S” denotes possible starting positions, “G” denotes the goals, “D”
denotes danger areas, and the three dark regions are landmarks for localizing the
vehicle. (This figure is reproduced from [15] with the permission from the authors.)
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4.1.2 Experiments Setup

We compared performance of IGRES to existing POMDP solvers RTDP-Bel [2],

HSVI2 [30], FSVI [27], SARSOP [16] and MiGS [15] on all benchmark domains

introduced above1 .

We performed these experiments on a computer with a 2.50GHz Intel Core i5-

2450M processor and 6GB of memory. We ran MiGS and IGRES 30 times each to

compute policies on Homecare and 3D-Navigation, and 100 times each for the other

domains. Then we ran 100 simulations for each policy computed. We ran each of the

four other algorithms once for each domain until convergence or achieving good level

of estimated values. Then we ran sufficient number of simulations to evaluate each

policy computed by these algorithms. The average reward with the 95% confidence

intervals and the corresponding computation times are reported.

4.1.3 Results

Table 4–1 reports the average reward returned and the computation time used

by each of the algorithms.

For the first two domains, we observe that while RTDP-Bel, HSVI2, SARSOP

and IGRES show good performance, MiGS fails on both Tiger and Noisy-tiger even

1 For RTDP-Bel, we use the software package provided by the original au-
thors of paper [27]. For HSVI2, we use the latest ZMDP version 1.1.7 (http:
//longhorizon.org/trey/zmdp/). For RTDP-Bel, we use the software package pro-
vided by the original authors of paper [2]. For SARSOP, we use the latest APPL
version 0.95 (http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?
n=Main.Download). For MiGS, we use the software package provided by the original
authors of paper [15].
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Table 4–1: Results of benchmark problems.

Return Time(s)

Tiger
|S| = 2, |A| = 3, |Ω| = 2
RTDP-Bel 19.42 ± 0.59 0.30
HSVI2 19.31 ± 0.09 <1
FSVI* N/A
SARSOP 18.59 ± 0.61 0.09
MiGS −19.88± 0 100
IGRES (# subgoals: 1) 19.41 ± 0.59 1

Noisy-tiger
|S| = 2, |A| = 3, |Ω| = 2
RTDP-Bel −13.67 ± 0.28 1.22
HSVI2 −13.69 ± 0.04 <1
FSVI* N/A
SARSOP −13.66 ± 0.18 0.18
MiGS −19.88± 0 100
IGRES (# subgoals: 1) −13.67 ± 0.18 1

RockSample(4,4)
|S| = 257, |A| = 9, |Ω| = 2
RTDP-Bel 17.94 ± 0.12 10.7
HSVI2 17.92 ± 0.01 <1
FSVI 17.85 ± 0.18 1
SARSOP 17.75 ± 0.12 0.7
MiGS 8.57± 0 100
IGRES (# subgoals: 4) 17.30± 0.12 10

RockSample(7,8)
|S| = 12545, |A| = 13, |Ω| = 2
RTDP-Bel 20.55± 0.13 103
HSVI2 21.09 ± 0.10 100
FSVI 20.08± 0.20 102
SARSOP 21.35 ± 0.13 100
MiGS 7.35± 0 100
IGRES (# subgoals: 8) 19.54± 0.12 100

Hallway2
|S| = 92, |A| = 5, |Ω| = 17
RTDP-Bel 0.237± 0.006 1004
HSVI2 0.507± 0.001 250
FSVI 0.494± 0.007 280
SARSOP 0.530 ± 0.008 200
MiGs 0.522± 0.008 200
IGRES (# subgoals: 20) 0.530 ± 0.008 200
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Tag
|S| = 870, |A| = 5, |Ω| = 30
RTDP-Bel −6.32± 0.12 372
HSVI2 −6.46± 0.09 400
FSVI −6.11 ± 0.11 35
SARSOP −6.08 ± 0.12 30
MiGS −6.00 ± 0.12 30
IGRES (# subgoals: 20) −6.12 ± 0.12 30

Underwater Navigation
|S| = 2653, |A| = 6, |Ω| = 103
RTDP-Bel 750.07 ± 0.28 338
HSVI2 718.37± 0.60 400
FSVI 725.88± 5.91 414
SARSOP 731.33± 1.14 150
MiGS 715.50± 1.37 400
IGRES (# subgoals: 20) 747.25 ± 0.50 10

Homecare
|S| = 5408, |A| = 9, |Ω| = 928
RTDP-Bel** N/A
HSVI2 15.07± 0.37 2000
FSVI*** N/A
SARSOP 16.64 ± 0.82 1000
MiGS 16.70 ± 0.85 1600
IGRES (# subgoals: 30) 17.32 ± 0.85 1000

3D-Navigation
|S| = 16969, |A| = 5, |Ω| = 14
RTDP-Bel −93.03± 0.01 2115
HSVI2 −91.98± 0 2000
FSVI** N/A
SARSOP −99.97± 0 800
MiGS (2.977 ± 0.512) × 104 150
IGRES (# subgoals: 163) (3.272 ± 0.193) × 104 150

* ArrayIndexOutOfBoundsException is thrown.
** Solver is not able to compute a solution given large amount of computation time.
*** OutOfMemoryError is thrown when the input file is being parsed.
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though the problems are extremely simple. The reason is that MiGS fails to produce

policies that take actions changing the probability distribution within state dimen-

sions. MiGS performs poorly on the RockSample problem for similar reasons as it

does on the Tiger domain. IGRES easily solves the first four problems because it

successfully samples important states as subgoals and takes helpful actions around

the subgoals to gather information and exploit reward.

For the Hallway2 problem, SARSOP and IGRES achieve best solutions due to

their strong ability to gather useful information.

For the Tag problem, RTDP-Bel and HSVI2 are not able to compute a good

solution, while the other four algorithms achieve high rewards in a short computation

time.

For Underwater Navigation task, while all solvers achieve a good solution, I-

GRES is substantially faster than the other approaches.

For the Homecare problem, IGRES achieves higher rewards than the other

solvers given similar computation time.

For 3D-Navigation task, RTDP-Bel, HSVI2 and SARSOP are unable to achieve

a good solution because they fail to sample belief points that are far away from the

existing set, and thus get trapped in the local area, whereas MiGS and IGRES easily

overcome the effect of long planning horizon in this task.

We conclude from these results that IGRES is able to successfully tackle both

problems requiring information gathering, and problems with long planning hori-

zons, unlike previous solvers which specialize in one or the other of these classes of

problems.
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4.2 The Ecological Adaptive Management Problem

In this section, we apply IGRES to a class of ecological adaptive management

tasks [20] that was presented as an IJCAI 2013 data challenge problem to the POMD-

P community. To the best of our knowledge, there has not been any published work

on this challenge so far.

The POMDPs in this domain represent networks for migratory routes by differ-

ent shorebird species utilizing the East Asian-Australasian flyway, under uncertainty

of the rate of sea level rise and its effect on shorebird populations. The goal is to

select one node to perform protection action against a fixed amount of sea level rise

in a weighted directed graph representing the flyway. The state space is a factored

representation by the cross product of: one fully observable population variable, the

fully observable protection variable for each node in the graph, and one variable

for sea level rise which is not observable. Five different bird species are considered

(characterized by different POMDP sizes and parameterizations).

4.2.1 Results for All Species of Birds

To solve this problem, we ran IGRES 30 times for each task to compute policies,

and then ran 100 simulations to test each computed policy. Our results are generated

on a 2.67GHz Intel Xeon W3520 computer with 8GB of memory. We also present

results of the benchmark solutions computed by the original authors of the dataset

using symbolic Perseus [24] on a more powerful computer [20].

We observe in Table 4–2 that IGRES outperforms the benchmark solutions by

achieving higher rewards for all species. Even though IGRES is not specially designed

for solving the problem and does not directly exploit the factored state structure,
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Table 4–2: Results of Adaptive Management of Migratory Birds.

Return Time(s)

Lesser sand plover
|S| = 108, |A| = 3, |Ω| = 36

symbolic Perseus* 4675 10
IGRES (# subgoals: 18) 5037.72± 8.82 10

Bar-tailed godwit b.
|S| = 972, |A| = 5, |Ω| = 324

symbolic Perseus* 18217 48
IGRES (# subgoals: 36) 19572.41± 39.35 60

Terek sandpiper
|S| = 2916, |A| = 6, |Ω| = 972

symbolic Perseus* 7263 48
IGRES (# subgoals: 72) 7867.95± 2.44 60

Bar-tailed godwit m.
|S| = 2916, |A| = 6, |Ω| = 972

symbolic Perseus* 24583 58
IGRES (# subgoals: 72) 26654.06± 38.60 60

Grey-tailed tattler
|S| = 2916, |A| = 6, |Ω| = 972

symbolic Perseus* 4520 378
IGRES (# subgoals: 72) 4860.91± 38.47 60
IGRES (# subgoals: 72) 4927.17± 38.14 300

* Results from [20].
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it computes good solutions that yield high rewards in reasonable computation times

for all these tasks.

4.2.2 Behaviors with Different Configurations

We further experiment with IGRES on one of the tasks, varying parameters

to demonstrate its behaviour as the number of subgoals changes. In order to save

experimental time, we only computed 20 policies for each combination of parameters.

Figure 4–5: Performance of IGRES on Grey-tailed Tattler.
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Figure 4–5 shows the behaviour of IGRES with different number of subgoals used

given increasing computation time on Grey-tailed Tattler task. Given reasonable

number of subgoals, IGRES is able to take advantage of subgoals that help sampling

useful belief points. However, if the number of subgoals gets too large, a much

larger set of beliefs would be sampled before the algorithm plans deep enough to

compute a good solution, thus degrading the performance. On the other hand,
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if the number of subgoals is too small, some important states might be omitted

from the set of subgoals, which also degrades the performance. Recall that the

baseline performance for symbolic Perseus (as shown in Table 4–5) with 378 seconds

of planning yielded a return of just 4520, well under the results shown in Figure 4–

5. Thus, the performance indicates that IGRES is robust against changes in the

number of subgoals for this type of problems and consistently samples important

subgoal states to compute good solutions.
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CHAPTER 5
Conclusion

In this chapter, we conclude with a discussion of our approach as well as sug-

gestions for the possible work in the future.

5.1 Discussion

Practically speaking, the challenges of effective information gathering in the

large belief space and planning with long sequences arise in many planning tasks

modeled with POMDP framework. The capacities of tackling the two objectives are

important for applying POMDP planning algorithms in real-world settings.

Recent point-based algorithms have made impressive progress in effectively solv-

ing problems that require information gathering in large state spaces or aiming at

problems with long planning horizon. However, combining these two complementary

qualities into one single approach is advantageous but not easy.

In this thesis, we present a new multi-purpose POMDP planning algorithm,

IGRES, which leverages state information to identify subgoals that are essential

for computing good policies, and automatically generates macro-actions to improve

computational efficiency while maintaining good performance. We provide some

theoretical properties of the algorithm on how it can effectively tackle the challenges

offered by real-world tasks. And to demonstrate and justify the theoretical results, we

carry out experiments on a variety of domains in comparison with other approaches.
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Despite the simplicity of macro-actions construction, IGRES computes better

solution at up to 10 times faster speed for some problems, and successfully generalizes

to a wider set of tasks than previous state-of-the-art POMDP solvers. We also present

improved empirical performance for a set of real-world challenge tasks in ecological

management, with significant potential impact. These promising results suggest that

the notion of gathering information for exploitation of subgoals with macro-actions

provides a new perspective to view POMDP problems, which advances application

of POMDP planning for complex tasks in practice.

5.2 Future Work

Although IGRES provides promising experimental results that justify its the-

oretical properties, it still lacks strong theoretical guarantees on error bounds or

convergence rate, which is often the case for the family of point-based approaches.

Also, the hierarchical structure of the belief tree can be further explored to limit the

branching number and provide bounds on the convergence of the algorithm. Any

of such theoretical results will lead to better understandings of the complexity of

approximate POMDP planning, and inspire further advances of applying POMDP

framework in practice.

To scale POMDP planning from another perspective, many recent algorithms for

various factored POMDPs have been proposed to explore the inner structure of the

POMDP models, which provide promising results of scaling large POMDP problems.

For example MOMDPs [21], which are factored POMDPs with mixed observation,

assume part of the states are perfectly observable, and utilize this structure to speed
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up the planning algorithm. It would be interesting to apply the notion of planning

with macro-actions to different types of factored POMDPs.

IGRES adapts a naive strategy in generating exploitation macro-actions, which

empirically has been shown to work well in general. This is partly due to the lack of

knowledge about each domain. In fact, as is mentioned previously in the thesis, many

domain heuristics can be adopted in constructing the macro-actions for effectively

reasoning about subgoal states. We would like to see how different heuristics work

out.

There are other issues and limitation about the experiments. This thesis only

compares IGRES with five other algorithms on a limited number of domains for

the purpose of demonstrating how the experimental results support the motivation

and theoretical claims of effectively tackling the two practical challenges. However,

it would be interesting to include other point-based algorithms or other types of

approaches for comparison. It would also be interesting to see how IGRES performs

on various other POMDP domains.
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