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ABSTRACT

In this thesis, we review spectral theory of Laplace-Beltrami operartor on

closed manifolds and manifolds with boundary, concentrating on the properties

of eigenfunctions in the high energy limit, including asymptotic distribution

of eigenfunctions, as well as results about nodal sets. We also discuss results

about isospectrality. Finally, we discuss “Quantum Ergodicity” type results

for metrics with jump-like discontinuities, including the so-called branching

billiards.
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ABRÉGÉ

Dans ce mémoire, nous passons en revue la théorie spectrale de l’opérateur

de Laplace-Beltrami sur une variété fermée et sur une variété à bord, en nous

concentrant sur les propriétés des fonctions propres dans la limite des hautes

énergies, ce qui inclut la distribution asymptotique des fonctions propres de

même que des résultats sur les ensembles nodaux. Nous discutons aussi de

certains résultats d’isospectralité. Enfin, nous discutons de certains résultats

de type “ergodicité quantique” pour des métriques avec discontinuités à saut,

ce qui inclut les billards à ramifications.
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CHAPTER 1
Introduction

In the thesis, we give an introduction to the spectral theory of the Laplace

operator on Romanian manifolds (possibly with boundary), and discuss vari-

ous properties of the corresponding eigenvalues and eigenfunctions.

In Chapter 2, we define the Laplacian on (closed) Riemannian manifolds,

state Weyl’s law describing the asymptotic distribution of eigenvalues, and

discuss applications to several important equations in Mathematical Physics

(The Heat equation, the Wave equation and the Schrödinger equation).

In Chapter 3 we define basic boundary value problems (Dirichlet and Neu-

mann), discuss domain monotonicity results for eigenvalues, and state basic

results about the remainder in Weyl’s law.

In Chapter 4 we discuss basic constructions of isospectral manifolds and

domains, with an emphasis on Sunada’s method.

In Chapters 5 and 6 we discuss concentration of high energy eigenfunctions.

In Chapter 5 we consider their Lp norms and describe their quasi-symmetry

properties; in Chapter 6 we state basic results about uniform distribution

of squares of high energy eigenfunctions (in the weak sense) on manifolds

with ergodic geodesic flow, the so-called quantum ergodicity. Next, we discuss

the corresponding results for manifolds with boundary, and describe Hassell’s

counterexample to the Quantum Unique Ergodicity conjecture. In Chapter 7

we describe the corresponding results for metrics with jump discontinuities.

In Chapter 8 we describe basic results about nodal sets of Laplace eigen-

functions (including the Courant nodal domain theorem); state Yau’s conjec-

ture about the size of the nodal set; discuss convexity of nodal sets. We also
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describe several recent results about nodal sets with prescribed topology, and

survey results about nodal topology of random linear combinations of Laplace

eigenfunctions, and of random spherical harmonics.
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CHAPTER 2
Spectral Theory of the Laplacian

In this chapter we shall partially follow the notes “Analysis on Manifolds

via the Laplacian” by Y. Canzani, [Can].

2.1 Definitions

Laplace-Beltrami operator in Euclidean space Rn is define by the formula

∆f = div grad f ; in local coordinates, it is given by the formula

∆f = −
n∑
i=1

∂2f

∂x2
i

.

On a compact n-dimensional Riemannian manifold M endowed with a Rie-

mannian metric g = (gij), the Laplace operator ∆ is given in local coordinates

by

∆ = − 1
√
g

n∑
i,j=1

∂

∂xi

(
gij
√
g
∂

∂xj

)
,

where
√
g =

√
det(gij). The operator ∆ is self-adjoint. We denote by L2(M)

the space of square-integrable functions on M (with respect to the volume form

induced by the metric g). If the manifold is compact, the Spectral Theorem

implies that there exists an orthonormal {φj} basis of L2(M) consisting of

Laplace eigenfunctions φj with eigenvalues λj,

∆φj + λjφj = 0.

2.2 Weyl’s law

We begin by summarizing the spectral theory of the Laplace-Beltrami op-

erator on closed manifolds (∂M = ∅). It is well-known ([Cha]) that on a

compact connected smooth Riemannian manifold M without boundary, the

3



Laplacian ∆ has a discrete spectrum

0 = λ0 < λ1 ≤ λ2 ≤ . . .

and there exists a basis of L2(M) consisting of eigenfunctions of ∆:

∆φj + λjφj = 0 (2.1)

Let us denote by N(λ) the number of eigenvalues λj satisfying λj < λ.

The following result is (various versions of which are due to Weyl, Polya,

Avakumovic, Levitan, Hörmander and others) is known as Weyl’s law:

Theorem 2.2.1. On an n-dimensional closed manifold M

N(λ) � cnvol(M)λn/2, λ→∞,

where cn is a constant depending only on n.

Example: Weyl’s law for the torus Tn = Rn/(2πZ)n A basis of (complex-

valued) eigenfunctions is given φξ(x) = ei(x,ξ), where σ ∈ Zn and x ∈ Tn.

Accordingly, the number of eigenvalues is given by

#{ξ ∈ Zn : |ξ|2 < λ},

i.e. the number of lattice points in the ball of radius
√
λ centered at the origin.

It is well-known that that number is asymptotic to the volume of the ball and

grows like Cλn/2 as λ→∞.

We remark that for a general f ∈ L2(Tn), expansion into series of eigen-

functions of ∆ coincides with the n-dimensional Fourier series.

2.3 Applications to PDE

The study of the Laplacian is motivated by the fact that it arises in some

of the most fundamental partial differential equations (PDE) in Mathematical
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Physics, including the heat equation, the wave equation and the Schrödinger

equation.

2.3.1 The Heat equation.

The heat equation decribes the propagation of heat in a solid body. Denote

the temperature at a point x in a domain Ω ∈ Rn and at time t by u(x, t).

Denote by c the conductivity of the material comprising Ω. Then u(x, t)

satisfies

∆u(x, t) = −1

c

∂

∂t
u(x, t).

We first look for product solutions

u(x, t) = φ(x)α(t).

Substituting into the heat equation, we find that

∆ϕ(x)

ϕ(x)
= −α

′(t)

α(t)
, x ∈ Ω, t > 0.

This shows that there must exist a λ ∈ R such that

λ′ = −λα

and

4ϕ = λϕ

Therefore ϕ must be an eigenfunction of the Laplacian with eigenvalue λ

and α(t) = e−λt. Once you have these particular solutions uk = e−λtϕk you

use the superposition principle to write general solution

u(x, t) =
∑
k

ake
−λktϕk(x)

where the coefficients ak are chosen depending on the initial conditions. You

could do the same with the wave equation or with the Schrödinger equation

and you will also find particular solutions of the form uk(x, t) = αk(t)ϕk(x)
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with

4ϕk = λkϕk

and αk(t) = e−λkt.

2.3.2 The Wave equation.

The wave equation describes the motion of the waves on the surface of a

fluid.

∆u(x, t) = −1

c

∂

∂t2
u(x, t)

where
√
c is the speed of sound in the fluid, and u(x, t) denotes the height of

the surface of a fluid above the point x at time t.

The same equation arises when you study the vibrations of a drum (or

another musical instrument). Let the domain Ω represent the vibrating surface

of a drum, where ∂Ω would be fixed. The wave equation ∆u(x, t) = − ∂2

∂2t
u(x, t)

describes the vertical displacement of the vibrating surface above the point x at

time t, and fixing ∂Ω corresponds to the so-called Dirichlet boundary condition

u(x, t) = 0 for all points x ∈ ∂Ω.

We shall solve the wave equation on a closed manifold M by expressing

the solutions using the spectral theory of the Laplacian on M . We shall look

for product solutions of the form

u(x, t) =
∑
j

fj(t)Φj(x). (2.2)

Let the initial data be given by

u(x, 0) =
∑
j

ajΦj(x),

∂

∂t
u(x, 0) =

∑
j

bjΦj(x).

(2.3)
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Take u(x, t) =
∑

j fj(t)Φj(x) into ∂2u
∂t2

= −4xu. It follows that
∑

j f
′′
j (t)Φj(x) =∑

j fj(t)(−4xΦj(x)) =
∑

j λjfj(t)Φj(x). Therefore f ′′j (t) = λjf(t), which we

solve to get fj(t) = αj cos(
√
λjt) + βj sin(

√
λjt).

The initial data is given by fj(0) = αj and
∂fj
∂t

(0) = βj(
√
λj)

So from (2.3) we get
∑

j αjΦj(x) =
∑

j ajΦj(x), therefore λj = aj and∑
j βj
√
λjΦj(x) =

∑
j bjΦj(x), therefore βj =

bj√
λj
.

2.4 The Schrödinger equation

Consider a quantum particle on a manifold (or a domain) Ω; we assume

that there are no external forces. Then the particle is described by a solution

of u(x, t) the Schrödinger equation, where x ∈ Ω and t ∈ R:

h2

2m
∆u(x, t) = ih

∂

∂t
u(x, t).

Here h is Planck’s constant and m is the mass of the free particle.

Normalizing u so that ‖ u(· , t) ‖L2(Ω)= 1 one interprets u(x, t) as probabil-

ity density. That is, if A ⊂ Ω then the probability that your quantum particle

be inside A at time t is given by
∫
A
| u(x, t) |2dx.

We shall look for particular solutions of the form uk(x, t) = αk(t)ϕk(x)

with

4ϕk = λkϕk.

Separating variables, we find that α′k = −ihλk
2m

αk, hence a general solution is

given by the formula

u(x, t) =
∑
k

e−ihλk/(2m)tϕk(x).

7



CHAPTER 3
Manifolds with boundary

3.1 Dirichlet and Neumann boundary conditions

We follow the presentation in [Cha, Ch. 1] Let M be a manifold with

boundary ∂M . We assume that M is compact and connected. We also assume

that ∂M is piecewise C∞, and discuss several boundary value problems on M .

The standard boundary value problems considered in the literature include

Dirichlet, Neumann and mixed problems.

Dirichlet boundary value problem is defined as follows:

Definition 3.1.1. Find all real numbers λ such that there exists a nontrivial

eigenfunction φ ∈ C2(M) ∩ C0(M) satisfying

∆φ+ λφ = 0 on M ; φ = 0 on ∂M.

Neumann boundary value problem is defined as follows:

Definition 3.1.2. Find all real numbers λ such that there exists a nontrivial

eigenfunction φ ∈ C2(M) ∩ C1(M) satisfying

∆φ+ λφ = 0 on M ; ∂nφ = 0 on ∂M,

where ∂nφ denotes the normal derivative of φ.

Mixed boundary value problem is defined as follows: let N be an open

submanifold of ∂M .

Definition 3.1.3. Find all real numbers λ such that there exists a nontrivial

eigenfunction φ ∈ C2(M) ∩ C1(M ∪N) ∩ C0(M) satisfying

∆φ+ λφ = 0 on M ; φ = 0 on ∂M \N ; ∂nφ = 0 on N.

8



Below we shall consider examples of solutions to the boundary value prob-

lems 3.1.1, 3.1.2 and 3.1.3.

3.1.1 Examples

Interval: Dirichlet boundary conditions

Consider an interval [0, `] with Dirichlet boundary conditions:

−ϕxx = λ2ϕ, ϕ(0) = ϕ(`) = 0

The eigenfunctions are

ϕk(x) = sin(
kπ

`
x)fork ≥ 1,

with eigenvalues λk = (kπ
`

)2 for k ≥ 1.

Interval: Neumann boundary conditions

Neuman boundary conditions: ϕ′(0) = ϕ′(`) = 0

It is easy to see solving ODE

The eigenfunctions are ϕk(x) = cos(kπ
`
x) for k ≥ 1

We take real part, because imaginary part doesn’t satisfy boundary condi-

tion

with eigenvalues λk = (kπ
`

)2 for k ≥ 0

Parallelipiped

Consider the case of n-dimensional parallelipiped Ω = [0, l1] × ... × [0, ln]

with Dirichlet boundary conditions. It is known that one can choose a basis of

eigenfunctions on Ω consisting of product eigenfunctions φ1,k1(x1) ·φ2,k2(x2)×

. . . × φn,kn(xn), where φj,kj satisfies −∂2/(∂x2
j)φj,kj = λj,kjφj,kj and each φj,kj

satisfies Dirichlet boundary conditions φj,kj(0) = φj,kj(lj) = 0.

From section 3.1.1, we find that the eigenvalues of Ω are

π2

(
k1

2

l1
2 + . . .+

kn
2

ln
2

)
, k1, . . . , kn ∈ Z+.

9



3.2 Domain monotonicity of Eigenvalues

We first formulate a result about domain monotonicty for Dirichlet data:

Theorem 3.2.1. Let M be a compact connected manifold. We assume that

∂M is piecewise C∞, and consider a boundary value problem on M .

Let Ω1...Ωk be piecewise C∞ subsets of M with disjoint interiors. Assume

that the boundaries ∂Ωj always intersect ∂M transversally. For each 1 ≤ j ≤

k we have Dirichlet boundary conditions on Ωj, where we require vanishing

Dirichlet data on ∂Ωj ∩M , and leaving unchanged the original data on the

intercection (∂M ∩ ∂Ωj). Let λk denote the eigenvalues on M and let 0 ≤

µ1 ≤ µ2 ≤ ... denote the union (with possible repitions) of the spectra of all

the Ω′js. Then λk ≤ µk.

Proof. Let ϕi, 1 ≤ i ≤ k − 1 be eigenfunctions with the eigenvalues λi on M ;

we choose {ϕi} to be orthonormal: 〈ϕi, ϕj〉 = δij. Let ψi, 1 ≤ i ≤ k be the

eigenfunctions corresponding to the eigenvalues µi on Ωi. Set ψi ≡ 0 on M \Ωi.

Then we can normalize ψ to be orthonormal in L2(M); in addition, they lie in

the space of admissible functions on which the quadratic form D[f, f ] defined

by ∆ is well-defined.

We can construct

Φ =
k∑
1

aiψi ∈ L2(M)

such that Φ is orthogonal to all ψj-s:

Φ =
k∑
1

aiψi ∈ L2(M)
⋂

(span{ϕ1, ..., ϕk−1})⊥,

since we have k − 1 linear equations
∑k

i=1 ai〈ψ, φj〉 = 0, and k unknowns

a1, a2, . . . , ak.

10



Then we have

λk||Φ||2 ≤ D[Φ,Φ] =
k∑
j=1

a2
j ≤ νk||Φ||2,

which implies the result. In the proof, we used admissibility of ψj-s, integration

by parts, and the assumption that their supports are disjoint by construction.

We next formulate a result about domain monotonicty for Neumann data;

the proof is similar, so we do not include it.

Theorem 3.2.2. Let M and Ωj be as in 3.2.1, and assume also that M =

∪jΩj. For each Ωj we require vanishing Neumann data on ∂Ωj ∩M , and leave

unchanged the original data on the intersection (∂M ∩ ∂Ωj). Let λk denote

the Neumann eigenvalues on M and let 0 ≤ µ1 ≤ µ2 ≤ ... denote the union

(with possible repitions) of the spectra of all the Ω′js. Then λk ≥ µk.

3.3 Remainder in Weyl’s law

In this section we consider a bounded domain in Ω ⊂ Rn with piecewise

smooth boundary. Let N(λ) be the eigenvalue counting function for either

Dirichlet or Neumann boundary value problem. In 1911, H. Weyl in [Weyl]

proved an asymptotic formula (2.2.1) for domains, using monotonicity results

for Dirichlet and Neumann eigenvalue problems discussed earlier.

The behaviour of the remainder in Weyl’s law was open for many years,

until V. Ivrii in [Iv2] established thew following two-term asymptotic formula:

N(λ) =
vol(Ω)

(4π)n/2Γ(n/2 + 1)
λn/2 ± vol(∂Ω)

2n+1π(n−1)/2Γ((n+ 1)/2)
λ(n−1)/2 +R(λ),

(3.1)

where the sign + in front of the second term corresponds to Neumann bound-

ary conditions, and the sign − to Dirichlet boundary conditions. We refer to

[Iv2, SV, Vas1, Vas2, PS, EPT, Mel] for further details and proofs.
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According to the Weyl conjecture, R(λ) = o(λ(n−1)/2). Ivrii ([Iv2]) proved

this conjecture under the nonperiodicity assumption: the measure of the set

of periodic trajectories of the billiard flow is equal to zero. Ivrii conjectured

that this condition holds for all Euclidean billiards.

Lower bounds for the remainder were considered in [EPT], bulding on pre-

vious work by Jakobson, Polterovich and Toth. Previous results for translation

billiards were established by L. Hillairet in [Hil].
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CHAPTER 4
Isospectral manifolds and domains

The exposition in this section closely follows the paper [Br] by R. Brooks.

The study of isospectral manifolds and domains was motivated by the famous

question of M. Kac “Can you hear the shape of a drum.” The first example

of isospectral and non-isometric manifolds was given by J. Milnor in [Mil].

4.1 The Sunada Method

A systematic way of constructing pairs of isospectral manifolds and do-

mains was given by T. Sunada in [Sun]. His method was based on an interpre-

tation of isospectrality in terms of finite groups. The simplicity and elegance

of the Sunada method led to a period of many significant developments of the

isospectral manifolds and related problems.

Definition 4.1.1. Let G be a finite group, and H1, H2 two subgroups of G.

Then the triple (G,H1, H2) satisfies the Sunada condition if

∀g ∈ G, {[g] ∩H1} = {[g] ∩H2}, (4.1)

where [g] denotes the conjugacy class of g in G.

Theorem 4.1.2. Let (G,H1, H2) satisfy (4.1), and let φ : π1(M) → G be

a surjective homomorphism. If MH1 and MH2 are the coverings of M with

π1(MHi) = φ−1(Hi), then MH1 is isospectral to MH2.

The proof uses the following result:

Lemma 4.1.3. The Sunada condition (4.1) is equivalent to the following con-

dition:

indGH1
(1H1) is G− equivalent to indGH2

(1H2) (4.2)

13



where ”1Hi
” denotes the trivial representation of the group Hi, and ”ind” de-

notes the induced representation.

Proof. We give a proof from the paper [Pes] by Hubert Pesce:

Let λ denote an eigenvalue of MG, and Eλ the associated eigenspace. Then

Eλ is a representation space of G, and the multiplicity of λ in spec(MHi) is

just the dimension of the Hi-invariant subspace of Eλ. Writing this last as

[1Hi
: ResGHi

, where Res denotes the restriction of the representation and

[V : W ] denotes the multiplicity of the representation V in W , Frobenius

reciprocity says that

[1Hi
: ResGHi

(Eλ)] = [indGHi
(1Hi

)] : Eλ

This last is independent of i, since, by the equivalence of (4.1) and (4.2), we

have that indGH1
(1H1) is G-equivalent to indGH2

(1H2).

C. Gordon and R. Wilson in [GW] constructed first examples of isospectral

deformations of metrics. Very nice and explicit families of examples in the

plane were constructed in [GWW] and [BCDS].

Related constructions were also studied in spectral graph theory, and in

scattering theory.
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CHAPTER 5
Lp norms of high energy eigenfunctions

In this chapter we review results about bounds on Lp norms of high energy

eigenfunctions, their quasi-symmetry properties and related questions.

5.1 General Lp bounds

Given an orthonormal basis {φj} of L2(M) of Laplace Given an orthonor-

mal basis {φj} of L2(M) of Laplace eigenfunctions, the spectral function of

the Laplacian is given by the formula:

e(x, y, λ) =
∑
λj<λ

φj(x)φj(y)

Avakumovic and Levitan showed ([Av, Lev]; see also [Hor] for general elliptic

operators) that

∑
λj<λ

|φj(x)|2 = e(x, x, λ) =
1

(2π)2
|Bn|λ

n
2 +R(λ, x), (5.1)

where R(λ, x) = O(λ
n−1
2 ) uniformly in x, a result called the local Weyl law.

On negatively curved manifolds, a logarithmic improvement was obtained by

Bérard in [Ber].

The following result follows easily from (5.1):

Theorem 5.1.1. Let (M, g) be a compact n-dimensional C∞ Riemannian

manifold. Then if φ, with 4φ+ λφ = 0, is an eigenfunction of the Laplacian,

‖φλ‖∞
‖φλ‖2

≤ c1λ
n−1
4

For the proofs of the following basic theoems about Lp norms, we refer to

[Sog, SeSo]. The key estimate is for the “critical” exponent pn = 2(n+1)
n−1

; the
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other results are obtained by interpolating between p = 2 and p = pn, and

between p = pn and p =∞.

Theorem 5.1.2. Let 4φ + λφ = 0 be an eigenfunction of Laplacian on a

smooth compact n-dimensional manifold M . Let pn = 2(n+1)
n−1

. Then for pn ≤

p ≤ +∞

‖φλ‖p ≤ λ
n
2

( 1
2
− 1

p
)− 1

4

For 2 ≤ p ≤ pn

‖φλ‖p ≤ λ
n−1
4

( 1
2
− 1

p
)

On negatively-curved manifolds, improvements were obtained by Hassell

and Tacy.

For “generic” negatively-curved metrics g on Riemannian manifolds, Sar-

nak made the following L∞ conjecture (consistent with the “random wave”

conjectures about eigenfunction behavior):

Conjecture 5.1.3. Let g be a generic negatively curved metric on a compact

smooth manifold M , and let ∆gφλ+λφλ = 0 be an orthonormal basis of L2(M).

Then for every ε > 0, there exists Cε > 0 such that ‖φλ‖L∞ ≤ Cελ
ε as λ→∞

We remark that this conjecture does not hold on ceratin arithmetic hy-

perbolic manifolds: Rudnick and Sarnak have constructed examples of eigen-

functions with Lp norms growing polynomially at Heegner points on certain

arthmetic hyperbolic 3-manifolds. Accordingly, the assumption of genericity

of a metric g seems necessary.

5.2 Quasi-symmetry properties of eigenfunctions

In view of the predictions of the random wave conjecture of quantum chaos

it seems natural to investigate the relationship between positive and negative

parts of real eigenfunctions on Riemannian manifolds. In particular, it seems

natural to consider the ratio ‖ϕ+‖p/‖ϕ−‖p of the Lp norms of the positive part
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ϕ+ and the negative part ϕ− of an eigenfunction ϕ. In this section we review

results from [JN02].

It was proved earlier by Nadirashvili that ‖ϕ+‖∞/‖ϕ−‖∞ is bounded away

from zero and infinity by constants that depend only on the manifold (and do

not depend on the eigenvalue); more information about the precise value of the

constant was obtained by Kröger (see the references in [JN02]). Also, on closed

manifolds eigenfunctions with λ > 0 are L2-orthogonal to constant functions,

hence
∫
M
φλ = 0 and thus ‖ϕ+‖1 = ‖ϕ−‖1. In [JN02], the authors showed

that for 1 < p < ∞, there exist constant 0 < cp < Cp < ∞ depending only

on p and the Riemannian metric, such that for any nonconstant eigenfunction

φ = φλ,

cp <
||φ+||p
||φ−||p

< Cp

One can show that zonal spherical harmonics provide an example of a sequence

of eigenfunctions with ‖ϕ+‖∞/‖ϕ−‖∞ > C > 1.

Another interesting questions concerns the volume of the domains M+ =

{x ∈ M : ϕ(x) > 0} and M− = {x ∈ M : ϕ(x) < 0}. Nadirashvili

and Donnelly-Fefferman showed that for real-analytic M , the ratio V ol(M+)
V ol(M−)

is bounded away from zero and infinity by constants depending only on the

Riemannian metric g on M . Nazarov, Polterovich and Sodin obtained further

improvements on surfaces, [NPS]. Blum, Gnutzman and Smilanky in [BGS]

obtained a random wave theory prediction for the rate of decay of the variance

(V ol(M+)−V ol(M−))2 as λ→∞ and compared it with numerical results for

ergodic planar billiards.
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CHAPTER 6
Quantum Ergodicity

In this chapter we discuss various results related to Quantum Ergodicity,

or uniform distribution of eigenfunctions.

6.1 Closed manifolds

Let M be a compact, connected smooth manifold. Let ∆φj + λjφj = 0

denote the spectrum of the Laplacian on M . Below we shall discuss limits

of eigenfunctions. To an eigenfunction φj with ||φj||2 = 1 one can associate

a measure dµj = |φj(x)|2dvol(x) on M with the density; the corresponding

measure in phase space is a distribution dωj on the unit cosphere bundle S∗M

(defined below), projecting to dµj on M . It is defined as follows: to a smooth

function a ∈ C∞(S∗M) one associates a quantization Op(a) that is a pseudo-

differential operator of order 0 with principal symbol a. Then dωj, sometimes

also called a Wigner measure is defined by

〈a, dωj〉 :=

∫
M

(Aφj)(x)φj(x)dvol(x) = 〈Aφj, φj〉.

By compactness, sequences of of measures dµj and dωj will have limit

points as λj →∞; a natural question is to classify those limit points.

The classification depends on the properties of the geodesic flow Gt on

S∗M : if Gt is completely integrable, then dωj concentrate on the set of invariant

tori (Liouville tori) that satisfy the so-called quantization condition; see e.g.

[CdV77].

Various versions of the the following Quantum Ergodicity theorem were

established in [CdV85, HMR, Shn74, Shn93, Zel87, Zel96]
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Theorem 6.1.1. If Gt is ergodic, then it was shown in [CdV85, HMR, Shn74,

Shn93, Zel87, Zel96] that

lim
λ→∞

1

N(λ)

∑
λj≤λ

∣∣∣∣〈Aφj, φj〉 − ∫
S∗M

σAdω

∣∣∣∣2 = 0, (6.1)

where dω denotes the Liouville measure on S∗M .

It follows that for a subsequence φjk of the full desnity, dωj → dω, and

projecting on M we find that dµj → dvol, e.g. almost all high energy eigen-

functions become equidistributed on the manifold and in phase space.

Rudnick and Sarnak conjectured that on negatively curved manifolds, the

conclusion of Theorem 6.1.1 holds without averaging; this is sometimes called

quantum unique ergodicity (QUE). This conjecture has been proved for some

arithmetic hyperbolic manifolds by Lindenstrauss [Lin], with further progress

by Soundararajan and Holowinsky.

6.1.1 Example of QE

Let M = S1. Choose a basis of eigenfunctions consisting of

{1,
√

2 sin(nx),
√

2 cos(nx), n ≥ 1}.

Let f(x) be a continuous function on S1 that describes our observable. Then∫ 2π

0

f(x) · 2 sin2(nx)dx =

∫ 2π

0

f(x)dx−
∫ 2π

0

f(x) cos(2nx)dx.

The second integral converges to 0 as n → ∞ by Riemann-Lebesgue lemma,

establishing the result in that case; the computation for cos(nx) is completely

analogous and will not be presented here.

6.2 QUE for arithmetic hyperbolic surfaces

In this section, we give an exposition of results in [Lin]. Rudnick and

Sarnak formulated the following Quantum Unique Ergodicity conjecture:
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Conjecture 6.2.1. Let M be a compact Riemannian manifold with negative

sectional curvatures, and let the measures dµj = |φj(x)|2dx and dωj be defined

as before. Then the Liouville measure dω is the unique possible limit of dωj-s,

and dvol(x) is the only possible limit of dµj-s.

In other words, the conclusion of Theorem 6.1.1 holds without averaging

on such manifolds.

This conjecture was proved for compact arithmetic hyperbolic surfaces

Γ\H2 by Elon Lindenstrauss in [Lin]. Recall that a surface is called arith-

metic if the commensurator of Γ in dense in SL(2,R).1 Elements of the

commensurator give rise to the so-called Hecke operators, which correspond

to averages of isometries of finite degree covers of Γ\H2. Those operators are

self-adjoint, and commute with hyperbolic Laplacian and with each other. For

arithmetic surfaces, there exist infinitely many such operators. Lindenstrauss

considered joint eigenfunctions of the hyperbolic laplacian and those Hecke

operators. Except for some harmless obvious multiplicities, the spectrum of

Laplacian is generally expected to be simple, in which case establishing results

for Hecke eigenfunctions gives no great restrictions.

Theorem 6.2.2. Let M = Γ\H2 be a compact arithmetic hyperbolic surface.

Then 6.2.1 holds for joint eigenfunctions of the hyperbolic Laplacian and Hecke

operators on M .

Previously, T. Watson proved QUE for such functions by assuming the

Generalized Riemann Hypothesis (GRH). Under that strong assumption, he

also obtained an optimal rate of convergence.

1 An element g belongs to the commensurator Com(Γ) of Γ if Γ ∩ gΓg−1

has finite index in both groups.
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For noncompact arithmetic hyperbolic surfaces, QUE for the continuous

spectrum (for Γ = PSL(2,Z)) was established by Luo, Sarnak and Jakobson.

For square-integrable eigenfunctions φj, Lindenstrauss showed that any limit

of dωj-s must be a multiple of the Liouville measure dω; projecting, one obtains

that any limit of dµj-s must be equal to c · dxdy/y2 (where x, y denote the

usual coordinates in the upper-half plane model of H). It followed from later

work by Soundararajan [Sou] that c = 1; in other words, no mass “escapes to

infinity.” QUE for holomorphic eigenfunctions was established by Holowinsky

and Soundararajan in [HS].

6.3 Manifolds with boundary

Quantum Ergodicity theorem for manifolds with boundary was established

in [GL, ZZ]. Quantum Ergodicity for eigenfunction restrictions has been con-

sidered in [HZ, TZ1, TZ2, DZ, CTZ]. A natural question is whether one can

establish QUE type results for manifolds with boundary. It has long been con-

jectured in the physics literature that the Bunimovich stadium would serve as

a counterexample to a QUE type result.

6.3.1 Stadium Domains that are not QUE

Bunimovich stadium is a region bounded by two parallel sides of a rectangle

and two semicircles whose diameters are formed by the other two sides of the

rectangle; in particular, this billiard is convex but not strictly convex. It is well-

known from the work of Laztukin that for any strictly convex domain with

sufficiently smooth boundary. However, despite being ergodic, the billiard flow

for the Bunimovich stadium is not as strongly ergodic as (say) for the Sinai

billiard (a square with the circle removed). In particular, there exists a one-

parameter family of “bouncing ball” orbits (trajectories orthogonal to the two

parallel sides). The flow-invariant measure supported on that family of orbits

is a natural candidate for a limit measure for an “exceptional” sequence of
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eigenfunctions, and it has been conjectured by physicists that such exceptional

sequences would exist on the Bunimovich stadium.

A. Hassell ([Ha]) has shown that on the Bunimovich stadium billiard, there

exist exceptional sequences of eigenfunctions concentrating on the bouncing

ball orbits, so the analogue of the QUE conjecture does not hold for all billiards.

Theorem 6.3.1. Let St be the Bunimovich stadium with rectangle with sides

1 and t. For almost every value of t ∈ [1, 2] the Dirichlet Laplacian on the

stadium St is non-QUE.

The proof starts by constructing “quasi-modes” (linear combinations of

eigenfunctions) that concentrate on bouncing ball orbits. The problem is to

prove that certain the number of Laplace eigenvalues in certain energy inter-

vals that support those quasi-modes is uniformly bounded above (which im-

plies that some of the corresponding eigenfunctions cannot become uniformly

distributed). This was proved by Hassell for almost every value of t.

The results of Hassell were generalized in [HM].

Quantum ergodicity results for eigenfunction rstrictions to ∂M , and more

generally to hypersurfaces inside M , were studied by Hassell, Zelditch, Toth,

Dyatlov, Zworki and Christianson. We refer the reader to [CTZ] references

therein for formulation and proofs of those results.
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CHAPTER 7
QE for metrics with jump discontinuities

The aim of this chapter is to discuss a version of Quantum Ergodicity

theorem for quantum systems with discontinuities. We consider metrics that

are allowed to have jump discontinuities along hypersurfaces. Such metrics

model wave propagation in layered materials, e.g. air-water, different layers

in Earth’s crust, composite materials, semiconductors, liquids that do not mix

etc. Waves propagating in such materials experience both reflection and re-

fraction when passing through the interface between different materials: part

of the wave gets reflected back, and another part is refracted (according to

Snell’s law) into another material. For that reason, such materials are often

called ray-splitting or branching. Ray splitting not only occurs in the quan-

tum systems we consider but also happens in situations described by systems

of partial differential equations and higher order equations. Moreover, ray-

splitting occurs in a natural way in quantum graphs. The semiclassical theory

for such systems was studied in [JSS], where Quantum Ergodicity theorem for

eigenfunctions was proved; here we give a quick review of selected results in

that paper.

Ray-splitting billiards have been studied extensively in the Physics liter-

ature, see e.g. [BYNK, BAGOP1, BAGOP2, BKS, COA, KKB, TS1, TS2]

and references therein. The emphasis has been on spectral statistics, trace

formulae, eigenfunction localization (“scarring”), and the behaviour of peri-

odic orbits. In the mathematical literature, the emphasis has been on the

propagation of singularities [Iv1] and spectral asymptotics [Iv2, Saf2].
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The simplest example of a ray-splitting billiard involves two isotropic ma-

terials touching at a hypersurface. The metric in each layer is then given by

gi = ni(x)2geucl, where ni(x) is the refraction index in layer i and geucl denotes

the Euclidean metric. Wave propagation in these media is described by the

wave equation

(∂2/∂t2 + ∆)φ(x, t) = 0

where ∆ denotes is the Laplacian for the corresponding metric, and the so-

lutions satisfy transmissive boundary conditions ([JSS, §2]). The high energy

limit of such a systems shows properties that do not remind of classical me-

chanics: because of branching, there is no classical flow on phase space that

describes the high energy limit. Moreover, the naive generalization of Egorovs

theorem fails in this situation. In [JSS] it was shown that after forming an

average over the eigenstates the quantum dynamics relates to a certain prob-

abilistic dynamics that takes into account the different branches of geodesics

emerging in this way. Our main result establishes a quantum ergodicity the-

orem in the case where this classical dynamics is ergodic. The proof relies

on a precise symbolic calculus for Fourier integral operators associated with

canonical transformations ([JSS, §4]) and on a local Weyl law for such opera-

tors [JSS, Thm 6.2]. A local parametrix for the wave kernel was constructed

in [JSS]. It consisted of a sum of such Fourier integral operators ([JSS, §5.1])

and apply to them the above results. The usual proof of quantum ergodicity

is based on the consideration of the positive operator obtained by squaring

the average of the time-evolution of a pseudodifferential operator. Egorovs

theorem plays an important role in this construction. Since it does not hold

for ray-splitting billiards, the standard proof cannot cannot be modified di-

rectly. Instead in [JSS] the authors used local Weyl law for an operator that
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is not necessarily positive but whose expectation value with respect to any

eigenfunction is positive.

In standard situations where Quantum Ergodicity theorem was established,

ergodic properties of classical dynamics have long been studied (in some cases,

for more than 100 years). Ergodic properties of branching billiards are com-

pletely unknown. The first example of a class of ergodic branching billiards was

constructed by Yves Colin de Verdiere. Due to abundance of inhomogeneous

materials in nature, further understanding of ergodic properties of branching

billiards seems a very interesting open problem in Dynamical Systems.
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CHAPTER 8
Nodal sets

In this chapter we discuss some of the main results and conjectures about

nodal sets of eigenfunctions of the Laplacian on manifolds (with or without

boundary).

Definition 8.0.2. The nodal set N (f) of a function f : M → R is the set

f−1(0) = {x ∈M : f(x) = 0}.

For a smooth metric g on an n-dimensional manifold M , nodal set of an

eigenfunction φ is an (n−1)-dimensional subset N = N (φ) of M . Most results

concern the size of N and the topology of N and its complement M \N .

8.1 Yau’s conjecture

One of the main problems about nodal sets is estimating their size. Lower

bounds for the size of nodal sets of eigenfunctions on surfaces were obtained

by Brüning in [Bru]. Shortly afterwards, S.T. Yau formulated his famous

conjecture about the size of nodal sets:

Conjecture 8.1.1. For a smooth metric g on a compact manifold M , there

exist constants 0 < c < C < ∞ such that c
√
λj ≤ vol(Nϕj

) ≤ C
√
λj as

j →∞

Yau’s conjecture has only been proven for real-analytic metrics g. This

result was proved by Donelly and Fefferman in [DF1]. Upper bounds for the

size of nodal sets in dimension two of size Cλ3/4 was proved in [DF2], but

even in dimension two there is a large gap between upper and lower bounds.

Related questions were also studied in [NPS].
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Lower bounds in dimension three and higher for general smooth metrics

were studied in [SZ1, SZ2, HezS, CM, Man, Stein]. The following theorem was

proved in [CM].

Theorem 8.1.2. Given a closed n-dimensional Riemannian manifold M of

dimension n ≥ 3, there exists C so that Hn−1(u = 0) ≥ Cλ(3−n)/4

Related questions for Dirichlet and Neumann eigenfunctions on manifolds

with boundary were considered in [Ar]. The best lower bound is of order

λ(3−n)/4, so there is a very large gap between known lower and upper bounds

on the size of nodal sets.

8.2 Courant’s Nodal Domain Theorem

Definition 8.2.1. A nodal domain of an eigenfunction φλ is a connected com-

ponent of the complement M \ N (φλ) of the nodal set of φλ.

A fundamental result about nodal domains is Courant’s nodal domain the-

orem.

Theorem 8.2.2. Let M be a connected compact smooth Riemannian manifold

without boundary, and let g be a Riemannian metric on M . Let ∆gφk +

λkφk = 0 be the eigenfunctions of ∆g that form a complete orthonormal basis

of L2(M,dvolg); we let 0 = λ1 < λ2 ≤ λ3 ≤ . . . denote the corresponding

eigenvalues of of ∆g. Then the number of nodal domains of φk is less or equal

to k.

Note that the constant eigenfunction with eiegnvalue 0 has one nodal do-

main.

Remark 8.2.3. Consider a sequence of eigenfunctions φn(x, y) = sin(nx − y)

on of the Laplacian for the flat metric on T2. It is easy to show that each of

them has exactly two nodal domains. This example shows that in general one

cannot obtain a growing lower bound on the number of nodal domains of φk.
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Proof. We give a proof from [Cha]. We call a connected manifold A with

compact closure and nonempty piecewise C∞ boundary a normal domain. We

will outline a proofs in an easier cases when all the nodal domains of φk are

normal domains. We shall argue by contradiction. Assume that φk has at

least k + 1 nodal domains; denote them by G1, ....Gk, Gk+1, . . .

For each 1 ≤ j =≤ k, define ψj(x) = φk(x) if x ∈ Gj, and ψj(x) = 0

is x ∈ M \ Gj . As in the proof of eigenvalue monotonicity theorems, one

can construct a nontrivial linear combination f =
∑k

j=1 ajψj satisfying 0 =

(f, φ1) = ... = (f, φk−1). One verifies that ψj ∈ D(M) for each j. Then

Rayleigh’s theorem, the max-min method, and the divergence theorem imply

that

λk ≤ D[f, f ]/‖f‖2 ≤ λk.

Therefore, f is an eigenfunction of λk that vanishes identically on Gk+1. This

contradicts the maximum principle for Laplace eigenfunctions, finishing the

proof of the Courant’s nodal domain theorem.

Remark 8.2.4. It follows easily from 8.2.2 that φ1 always constant sign and

that λ1 is always simple (on connected manifolds!) Also, φ2 has precisely 2

nodal domains. Note that λ2 can be multiple, e.g. it will have multiplicity

(n + 1) for the round metric on Sn. Finally, if a normal domain Ω in M is a

nodal of eigenfunction of some eigenvalue λ, then λ is the lowest eigenvalue

for the eigenvalue problem of Ω with original boundary data on ∂Ω∩∂M , and

vanishing Dirichlet boundary data on ∂Ω ∩M .

The following result was proved by Pleijel in [Ple].

Theorem 8.2.5. Consider M with either the closed or Dirichlet eigenvalue

problem. Assume that for any domain Ω in M we have the isoperimetric

inequality

{λ?(Ω)}n/2volΩ > (2π)n/ωn.
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Then, letting nk denote the number of nodal domains of λk(M), we have

lim sup(nk/k) < 1.

Here, λ?(Ω) denotes lowest Dirichlet eigenvalue of Ω.

Thus, equality in Courant’s theorem can be achieved for only a finite num-

ber of eigenvalues. Eigenfunctions that attain the upper bound in Courant’s

nodal domain theorem were investigated by Helffer, Hoffmann-Ostenhof and

Terracini in [HHT] and other papers. The geometric interpretation of the dis-

crepancy between the actual number of nodal domains and Courant’s bound

was given in the papers by Berkolaiko, Smilansky and Kuchment, see e.g.

[BKuS] and references therein.

8.2.1 Convexity of nodal sets

Payne conjectured in [Pay] in a convex domain Ω ∈ Rn, the level sets

of the lowest Dirichlet eigenfunction are convex. It was settled affirmatively

by Brascamp and Lieb in [BrL], and reinvestigated, using more elementary

arguments, by Caffarelli and Spruck in [CaSp].

8.3 Prescribing nodal sets of first eigenfunctions

Here we summarize some recent results from the papers [EnPS13, EnPS14,

EHP, EPSS] by A. Enciso, D. Peralta-Salas, D. Hartley and S. Steinerberger.

The main result of the paper [EnPS14] (following some previous results in

[EnPS13]) asserts that, given an n-manifold M and any closed hypersurface

Σ ⊂ M , there is a metric g on M such that Σ is a connected component of

the nodal set of the eigenfunction u1. Moreover, if Σ separates, then one can

show that the nodal set does not have any other connected components. More

precisely, we have the following statement. It is assumed that the hypersurface

Σ is connected, n ≥ 3 and all objects are of class C∞.
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Theorem 8.3.1. Let Σ be a closed orientable hypersurface of M . Then there

exists a Riemannian metric on M such that Σ is a connected component of

the nodal set u1
0. If Σ separates, then the nodal set is exactly Σ.

The following even stronger result was proved in [EPSS]:

Theorem 8.3.2. Let M be a d-dimensional manifold (d ≥ 3) endowed with

a Riemannian metric g0 and let Σ be a separating hypersurface. Then, given

any δ > 0, there is a metric g in M conformally equivalent to g0 and with

the same volume such that its first eigenvalue λ1 is simple and the nodal set

of its first eigenfunction u1 is Φ(Σ), where Φ is a diffeomorphism of M whose

distance to the identity in C0(M) is at most δ.

It follows from the previous theorem that the following result holds:

Theorem 8.3.3. Let M be a d-manifold endowed with a Riemannian metric

g0 with d ≥ 3, and let N be a positive integer. Then there is a metric g on

M, conformally equivalent to g0 and with the same volume, such that its first

nontrivial eigenfunction u1 has at least N non-degenerate critical points.

Thus, the number of critical points cannot be uniformly bounded above.

In [EHP] the authors prove the following result:

Theorem 8.3.4. Let M be a compact 3-manifold, and let γ be a knot in M .

Then there exists a Riemannian metric g on M such that for the first nontrivial

eigenvalue of ∆g on M , there exists a complex-valued eigenfunction u whose

nodal set u−1(0) has a connected component given by γ.

The authors also consider higher-dimensional versions of that result.

8.4 Topology of Nodal sets

In this section we survey some results about the topology of nodal sets of

high energy eigenfunctions.

The following Theorem was proved by Eremenko, Jakobson and Nadi-

rashvili in [EJN]:
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Theorem 8.4.1. Let 0 < m ≤ n, and let n−m be even. For every set of m

disjoint closed curves on the 2-sphere, whose union E is invariant with respect

to the antipodal map, there exists an spherical harmonic (Laplace eigenfunc-

tion for the round metric on S2) of large anough degree n whose zero set is

equivalent to E.

This seems to be the strongest known result about high energy eigenfunc-

tions.

More is known about nodal sets of random spherical harmonics. Note that

certain problems simplify when suitably randomized. For example, P. Berard

has proved a version of Yau’s conjecture about the size of nodal sets for ran-

dom linear combinations of Laplace eigenfunctions. Fundamental results on

the topology of nodal sets of random spherical harmonics were obtained by

Nazarov and Sodin in [NS]. They studied the number N(fn) of nodal domains

of a random spherical harmonic fn of degree n (whose Laplace eigenvalue is of

order n2). They showed that as n→∞, the mean of N(fn)/n2 tends to a posi-

tive constant a, and the random variable N(fn)/n2 concentrates exponentially

around a. Their study was motivated by a very intriguing conjecture of Bo-

gomolny and Schmit about the number of nodal domains. Their results were

generalized by Gayet, Welschinger, Sarnak, Wigman, Canzani ([SaWi, CSar])

and others. Below we review some of those generalizations.

8.4.1 Results in [SaWi]

Sarnak and Wigman in [SaWi] consider linear combinations of Laplace

eigenfunctions on an n-dimensional compact Riemannian manifold, with eigen-

values t2j lying in a certain small enough “energy window” [αT, T ], where

T → ∞. They call those comibantions monochromatic random waves, and

denote the collection of those functions by EM,α(T ).
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They let H1(n − 1) ∪∞ denote the one-point compactification of the de-

screte countable set of diffeomorphism classes of compact connected manifolds

dimension n − 1. Similarly, they let B1(n) ∪ ∞ be the one-point compacti-

fication of discrete countable set of diffeomorphism classes of n-dimensional

compact connected manifolds with boundary, and T ∪∞ be the one-point com-

pactification of the (discrete countable) set of connected rooted finite graphs

(i.e. graphs together with a marked node, referred to as the “root”). Given a

random function f as above, they denote its nodal set by V (f), decomposed as

a union ∪c∈C(f)c of its connected components. They denote the disjoint union

of nodal domains of f by ∪ω∈Ω(f)ω. Note that each c ∈ C(f) and ω ∈ Ω(f)

clearly determine points in H1(n − 1) and B1(n), which are denoted by t(c)

and t(ω) respectively.

On of the main results in [SaWi] asserts that as T →∞ and for typical f

in EM,α(T ), the above measures converge ω-star to universal measures which

depend only on n and α (and not on M). Let H(n− 1) consist of all elements

of H1(n− 1) which can be embedded in Rn, and similarly let B(n) consist of

all elements of B1(n) which can be embedded in Rn and let T is the set of all

finite rooted trees.

Theorem 8.4.2. There are probability measures µC,n,α, µΩ,n,α, µX,n,α supported

on H(n − 1) ∪ ∞, B(n) ∪ ∞, T (n) ∪ ∞ respectively, such that for any given

H ∈ H(n − 1), B ∈ B(n) and G ∈ T and ε > 0. Then Prob{f ∈ EM,α(T )} :

max(|µC(f)(H) − µC,n,α(H)|, |µΩ(f)(B) − µΩ,n,α(B)|, |µX(f)(G) − µX,n,αG|) >

ε} → 0 as T →∞.

These results were extended in [CSar].
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[Weyl] H. Weyl. Über die asymptotische Verteilung der Eigenwerte.
Nachrichten der Kniglichen Gesellschaft der Wissenschaften zu Gttingen
(1911), 110–117.

[Zel87] S. Zelditch. Uniform distribution of eigenfunctions on compact hyper-
bolic surfaces. Duke Math. J. 55, 919–941 (1987).

[Z2] S. Zelditch, Kuznecov sum formulae and Szegö limit formulae on mani-
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