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Résumé

Avec l'évolution de l'ordinateur moderne et les technologies resautiques, les systèmes

d'ordinateurs et les applications devient de plus en plus complexes et dynamiques. L'un

des problèmes des systèmes complexes et dynamiques et la difficulté de gestion de

changement. La gestion de réseaux comprend la surveillance et contrôle, son but et la

détection et le traitement des erreurs, la chute de performance et les fraude. La gestion

centralisée des réseaux limite sérieusement la classification de la gestion de réseaux. La

faiblesse de la gestion centralisée apparaît durant les périodes de lourdes congestion

quand les interventions de gestion sont particulièrement plus importantes. Par conséquent,

pour résoudre les problèmes (tel que passif, statique, rigide, etc.) causés par la

centralisation, la fonction de la gestion du réseau doit être décentralisée et doit devenir

plus active et flexible. Dans cette thèse, nous utilisons les agents mobiles et les

technologies des réseaux actives pour implanter un outil de la gestion du réseau. C'est un

filtre actif qui pourrait être très utile dans les plusieurs activités de la gestion du réseau tel

que la gestion de ressources en temps réel; reroutage du flux en fonction de la charge;

filtrage dans un réseau avec ou sans fil, dependant de l'application; et multicast en temps

réel.
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Abstract

With the development of modem computer and network technologies, computer systems

and applications become more and more complex and dynamic. One of the problems of

complex and dynamic systems is the difficulty of management of changes. Network

management comprises of network monitoring and control, its aims include the detection

and handling of faults, performance inefficiencies and security compromises. Centralized

network management seriously limits the scalability of network management. The

shortcomings of the centralizcd approach show up during the periods of heavy congestion

when management intervention is particularly important. Therefore, in order to cope with

problems (such as passive, static, rigid, etc.) arising from centralization, the network

management functionality must be decentralized and should become more active and

flexible. In this thesis, we use mobile agent and active network technologies to implement

a network management tool, active tilter, which could be very useful in various network

management activities, such as, real-time resource management; load-sensitive flow

rerouting; application-specific tiltering in wireline/wireless network; and real-time

multicast.
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CHAPTER 1 INTRODUCTION

Chapter 1

Introduction

With the development of modem computer and network technologies, computer systems

and applications become more and more complex and dynamic. Internet is a typical

example, it is a huge network, composed of millions of heterogeneous computers

connected through a wide variety of network links, and numerous kinds of applications.

Furthermore, hosts, network links and applications are added or removed constantly. Each

application can be envisioned as a dynamic system living in an ever-changing

environment. One of the problems of complex and dynamic systems is the difficulty of

management of changes.

1.1 Network Management and Its Architecture

Network management comprises of network monitoring and control, its aims include the

detection and handling of faults, performance inefficiencies (e.g., high latency delays),

and security compromises (e.g., unauthorized access). To accomplish these goals,

management application do the following:

• Collect real time data from network elements, such as routers, switches, and work

stations. For example, they collect the number of packets handled by the given

interface ofa router.

• Interpret and analyze the data collected. For instance, they may recognize security

events, such as repeated illegal attempts to login on a workstation.

• Present this information to àuthorized network operators, possibly by displaying a

map ofCUITent traffic.

• Proactively react, in real time, to management problems, possibly by disabling a link

that is experiencing faults.



The architectures of network management systems are categorized as follows:

• Centralized network management· A single centralized Network Management

Station (NMS) overlooks the management. Il queries the network components on a

timely basis to determine the health of the network.

• Hierarchieal network management· A single centralized NMS is aided by a set of

subordinate NMSs. The subordinate NMSs take off sorne of the responsibilities of the

central NMS.

• Peer network management· A set of NMSs manage the different domains of the

network with timely interaction amongst them.

• FuUy distributed network management· A totally distributed management archi·

tecture in which a large number of NMSs perform the management by using

specialization, delegation, cooperation, etc.

•
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Currently, the prevalent network management architecture is centralized network

management, which is achieved by having management stations routinely poli the

managed devices for data, 100king for anomalies. But this kind of centralized manage·

ment architecture has many drawbacks as we will describe in the following section.

1.2 Centralized Network Management and Its Drawbacks

Centralization seriously Iimits the scalability of network management. As the dimension

of the network grows, the management station has to cornmunicate with a larger number

of devices, and to store and process an ever increasing amount of data. This leads to the

need for high cost hardware dedicated to the management station, to poor performance, or

even to the impossibility to cope with the dimension of the network. The area of the

network around of the management station experiences heavy traffic due to the

combination of messages sent around by the management station and those containing

data from the devices. The shortcomings of the centralized approach show up during the

periods of heavy congestion, when management intervention is particularly important. In

fact, during these periods:

• The management station increases its interactions with the devices and possibly

downloads configuration changes, thùs increasing congestion.
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• Access to devices in the congested area becomes difficult and slow (sometimes even

impossible), and

• Congestion, as an abnormal status, is Iikely to trigger notifications to the management

which worsen congestion.

A further problcm with polling is that a component can suffer multiple state changes in

less than one round-trip time. Therefore, it is essential that network management employs

techniques with more immediate access and more ability to scale.

Similar problems also affected routing table computation when it was centralized. A

Routing Control Center (RCC) gathered information on network topology, calculated the

routing table for cach router in the network, and downloaded it into proper device. The

heavy traffie load in the area around the RCC and the difficulty of management areas far

from RCC led to the development of distributed routing.

Therefore, in order to cope with problems (such as passive, static, rigid, etc.) arise from

centralization, the network management functionality must be decentralized and become

more active and flexible, for example, the complex diagnosing and information gathering

activities can be moved from the management station into the network. Many researches

have been done in this area, what we interest in this thesis are two technologies: mobile

agent [CHK97] and active networks [TW96].

1.3 Mobile Agent Approach

Mobile agent represents a clear effort towards decentralization and increased flexibility of

network management functionality. Mobile agents can be used for a variety of purposes

in network management, they could provide the following advantages [SC]:

• Distribution of management code' Mobile agents are used to distribute the code to

the managed network elements when necessary, instead of moving large amount of

data to the manager over the network, this rt:ùuces substantially bandwidth usage and

reduces the network bottleneck as weIl as makes the architecture more scalable.

• Decentralization' They are effectively used to decentralize network management

activities.



Dynamic changing of nctwork managcmcnt policics· As thc network environment

grows and changes the policies need to be changed over time and also in order to

tackle temporally changing problems the management policies need to be altered.

Instead of going through rewrite, compile and run cycle, the management policies are

dynamically changed by writing new agents easily without altering the provided

infrastructure.

• Monitoring and statistics· Mobile agents are suitable for retrieving large number of

sarnples of network management variables Le. suitable for monitoring of these

variables and also for studying the behavior of network components over long period

of time. They could be used for network components monitoring and for gathering

statistics.

• Data collection. They are suitable for data collection, searching and fiitering.

• High speed networks· They are suitable for high speed network management in

which case it is not practical to bring ail thc network data to the manager.

•
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Generally speaking, mobile agent is a new technology which can overcome many

limitations showed in centralized network management and the traditional client/server

architecture. Detailed infonnation about mobile agent will be given in Chapter 3.

1.4 Active Network Approach

Active network [TW96] has recently altracted a lot of attention. The idea is that instead of

having packets be passive entities that are carried around, packets can be active and

change the behavior of the network. Generally speaking, an active network is one where

node functions can be openly and dynarnically prograrnmed. Software will be loaded and

executed in intennediate nodes. This software could be developed and deployed by

anyone. This would pennit any vendor to introduce novel protocols that support

innovative functions in network nodes, as much as they do for end nodes. This software,

packaged as mobile agents, called Smart Packet [KMH+98], could be dynamically

dispatched and activated by network providers or users. Hence, it enables the creation of

self·configuring, self diagnosing and self·healing networks. This involves actions, such as
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alarm and event reporting, accounting, configuration management, workload monitoring,

etc.

Active network technology can improve network management. For example, manage

ment centers can send programs to the managed nodes, which can bring the following

advantages as:

the information content returned to the management center can be tailored (in real

time) to the current interests of the center, thus reducing the trafflc as weil as the

amount ofrequiring examination.

• many of the management rules employed at the management center can now be

embodied in programs which, when sent to managed nodes, automatically identify

and correct problems without requiring further intervention from the management

center.

• Smart Packets shortens the monitoring and control loop -- measurements and control

operations are taken during a single packet's traversai of the network, rather than

through a series of set and get operations from a management station.

•

1.5 Active Filters

As we mentioned above, mobile agent and active network do have many advantages

which could be applied to network management, especially the management of changes.

Therefore, in this thesis, we try to use mobile agent and active network technologies to

implement a network management tool, active fi/ter, which could be very useful in

various network management activities, such as:

Cl) Real-time resource management;

(2) Load-sensitive flow rerouting;

(3) Application-specifie filtering in wireline/wireless network, and

(4) Real-time multicast.

The rest of the thesis is organized as follows: Chapter 2 describes the background

knowledge of filters; Chapter 3 devotes to basic concepts of mobile agent and its

applications in network management, followed by detailed descriptions on active network
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technologies, the research groups and different approaches; Chapter 4 describes the

existing research on the applications of active filters; Chapter 5 gives the explicit design

and implementation of the extended use of active filters in other domains, which includes

network resource management area, application-specifie filtering in wiredlwireless

network area, and real-time multicast area. Chapter 6 describes the simulation part by

using mobile agent platform: Grasshopper. The thesis closes with the evaluations and

conclusions of our research.
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Chapter 2

Background Knowledge ofFllters

In this chapter, we discuss the background knowledge of tilters that either influenced the

research presented in this thesis or is crucial to the understanding of the tilter mechanisms

and important tilter concepts. Section 2.1 gives the tilter definition and classification.

Section 2.2 describes the heterogeneity and resource utilization problems. Section 2.3

discusses the related research in tilter areas, which includcs: media scaling and the

Heidelberg Transprot System; the multimedia multicast channel; frame·induced packet

discarding; dynamically scaled multimedia streams; resource reservation protocol

(RSVP); real·time transport protocol (RTP); and QoS tiltering model in distributed

multimedia applications, etc. Filter services and mechanisms are presented in Section 2.4.

In Section 2.5, we introduce sorne media compression technologies.

2.1 Filter Definition and Classification

In our work, a filter is a software only or hardware supported, object that implements

sorne actions on its inputs based on a set of rules. For example, a tilter could operate

within the network or at the network edge to process continuous media streams or packets

to satisfy the requirements of the distinct receivers of that particular stream or packets, or

to adapt quick1y to the whole network changing conditions.

The rules on which a tilter takes action could relate to:

• QaS (quality afservice) parameters: bandwidth,jitter, throughput, delay, etc.

• Alarms;

• Management cammands: set, get, etc.

A tilter could be static or nomadic, the set of rules on which it bases could be rigid or

modifiable. Therefore, any combination leads to a particular tilter type.
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2.1.1 Statie Filter

A statie fi/ter is a tilter that is built into a network element by the ISP (Internet Service

Provider) to perform ils functions based on one or more given rules, and it is not rnovable

(which means that it cannot move from one network element to another). For example, a

router is a kind of static tilter, because it can route packets to their respective destinations

based on the packet's header information (See Figure 2.1).

••••••••

•

Figure 2.1 Statie Fi/ter

2.1.2 Nomadie Filter

A nomadiefi/ter could move from one network element to another. For example, it could

be a mobile agent (or Smart Packet) created by users, and be sent 10 one or more network

Q router
Iswiteh

ID end-system

• nomodie
filter

Figure 2.2 Nomadie Fi/ter



elements (such as switch, router, or even server) to perform the various filtering

functions. Nomadic filter could be downloaded into a network element, and execute its

functions for one time then move to another network element (See Figure 2.2).
•
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2.1.3 Modifiable Filter

A modifiable filter means the set of mIes on which it takes actions are modifiable. For

example, a filter based on QoS parameters encapsulates a QoS negotiation and

renegotiation (which means the changing of QoS parameters according to the

application's requirements and the network conditions) to achieve a receiver's QoS

rcquirements and promote optimum system utilization. A modifiable filter can be static or

nomadic.

2.1.4 Rigid Filter

A rigidfilter means the set of mIes on which it takes actions are rigid, not modifiable. A

rigid filter can also be static or nomadic.

We summarize the classification offilters by Table 2.1:

Categories Movable Modifiable

Static rigid filter no no

Static modifiable filter no yes

Nomadic rigid filter yes no

Nomadic modifiable filter yes ycs

Table 2.1 Classification ofFi/ters

2.2 The Heterogeneity and Resource Utilization Problems

As we have already given the definitions and classifications of filters, the question cornes

after is that why we need filters. In this section, we demonstrate the present degree of

heterogeneity present at every level of modern distributed systems; heterogeneity in

applications, end-systems and networks. This section continues with other driving reasons

such as resource utilisation and dynamic QoS management.



2.2.1 Thc Hctcrogcncity Problcm

As a result of information technology expanding into new areas of society and geographic

location, there now exists a vast assortment of end-system and communica-tion

architectures, not to mention the multitude of application software. Heterogeneity is

totally acceptable in isolated systems; Once these systems are connected together, the

problems of establishing a true open environment emerge. While the proliferation of the

Internet Protocol (IP) has gone sorne way to solve the interconnection problems for data

transfer, the issues relating to the transfer of real-time continuous media are still

unresolved. This problem is particularly acute in distributed group applications where

many disparate receivers are wishing to exchange continuous media data with each other

despite capability and architectural differences. Generally speaking, the network

heterogeneity problem shows in the following aspects:

•
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User andApplication Requirements

The range ofapplications and user requirements is Iikely to be quite diverse. For example,

in multimedia applications, the perception of video and audio quality is user-dependent

and hence users may express different requirements in playout qualities. This will be

encompassed in the specification of distinct QoS requirements by disparate users.

End-system Capabilities

Considering end-system hardware, heterogeneity is present in: CPUs, 1/0 devices, storage

capabilities, compression support (dedicated boards/software), internai inter-connect

architecture, communication protocol support, network interfaces, etc. These issues place

limits on the end-system's capabilities to process, consume and generate multimedia data.

Networks

End-systems are Iikely to be connected to different networks which not only have

different bandwidth capabilities but also varying access delay characteristics. For

example: medium access control mechanism, maximum and minimum data unit size,

service types, packet loss rates, propagation delays, congestion, etc.

2.2.2 Rcsourcc Utilization



As weil as the heterogeneity problem there exists the ever-present problem of limited

resources. Anderson [ATW+90] defined the window of insufficient resources (see Figure

2.3). Figure 2.3 shows the development of computer resources against the resource

requirements of the various application domains. The implications of Figure 2.3 are that

optimum resource utilization is an inherent requirement in distributed applications, as

such services have a high demand for network bandwidth allocation, storage capacities

and processor time. The rationale for using filters to reduce bandwidth required is that il

is unnecessary to transmit data to receivers that either cannot use it or do not wish to use

il. Iffully and correctly implemented, filters can cut out the unwanted data at the earliest

opportunity, or during network congestion, filters can drop less important data according

to some set of roles, hence achieving optimum bandwidth utilization.

•
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Besides, limited resources on end-systems result in buffer overflows, lateness in

processing data and inability to process data. If the processing of data can be distributed

among a number of nodes, and some processing completed before it reaches an

overloaded client, this reduces the demands on that client.

2.2.3 Dynamic Characteristics of Quality of Service



Solving the heterogeneity problem involves providing individual QoS, and achieving

resource optimization implies accurate QoS levcls; to rcalize both of these in a

continually changing environment requires the ability to adapt and dynamically alter QoS

levels.

•
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The most important factor to consider when implementing a dynamic QoS mechanism is

the cost, in terms of resources required and of changing the CUITent QoS levels. To

perform a complete end-to-end rc-negotiation within a multiparty connection may take up

to three signaling messages per receiver and may involve resynchronizing, i.e.

initializing, and altering parameters of codee hardware. Therefore, the cost of end-to-end

adaptation or scaling deterrnines the frequency at which re-negotiation may take place

and how dynamic may be the QoS monitoring and control system.

Filter operations could be one solution to make the localization of dynamic QoS control,

which means fine adjustments to a client's received data rate can be made which require

only interaction between a receiver and its closest tilter agent. Localization of control

offers a number advantages over end-to-end control: firstly, the propagation delay

between client and flow control process may be much smaller thus allowing more

accurate and reactive feedback control. The signaling messages between client and

control nodes traverse fewer hops and are therefore have less impact on the total end-to

end bandwidth. Moreover, they have less chance of suffering the effects of a congested

network (even if the signaling data is prioritized, it may still be delayed in a congested

non-reservation based network).

2.3 Related Research in Filter Areas

The terrn tilter has been used by many researchers each with their own interpretation of

the word. Systems incorporating what can be viewed as tilter operations generally fall

into the categories conceming:

• end-to-end scaling

• media processing tilters

• resource reservation



Ali approaches aim to support adaptive and reactive distributed multimedia applications;

sorne goals are to solve heterogeneity in networks, or in end-systems; other aims are

resource optimization and reservation.
•
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2.3.1 Media Sealing and the Heidelberg Transport System - IBM ENC

The Heidelberg Transport System (HeiTS) [Hehmann91] is a communication system for

real-time delivery ofvideo and audio.

2.3.1.1 Transparent and Non-transparent Scaling

Transparent scaling is performed by the transport system independently of the upper

protocol layers. It relies on the transport system being able to identify suitable stream

segments to discard, such as individual frames. Non-transparent scaling involves an

interaction between the transport system and upper layers. Generally, non-transparent

scaling involves the aItering of encoding parameters, on live streams, or the recoding of a

stream before il is passed to the transport system. These application level modifications

may be enacted as a result of congestion induced feedback from the transport system.

2.3.1.2 Continuons and Discrete Scaling

Scaling can be applied in one of two ways: either within a connection or sub-stream, or

by adding and removing connections and sub-streams. This gives a choice between fine

and coarse granularity hence these two approaches are called conlinuous and discrete

scaling respectively.

Continuous scaling relies on two functions: scale-up and scaie-down. These requests will

either be performed by the transport entity or the sending application depending on

whether scaling is being performed transparently or non-transparently, respectively. If a

number of packets are late, or lost, the receiver assumes the received stream is suffering

the effects of congestion and initiates the scaIing procedure (this is aIso called receiver

initiated scaling). This procedure consists ofthree stages:

• The first reaction to congestion is 'local scaIing', by discarding late packets. This does

not affect the sender. It is only intended as a short term measure.



• If the number oflost or late packets exceeds a certain threshold a scale-down request

is made to the sender to throttle back its trafflc. The sender may be throttled back to

zero transmission, but the connection is still maintained so scaling up can be quickly

performed once the current congestion problem is relieved.

• If congestion continues and a number of scale-up attempts fail, a decision to terminate

the connection and release resources is made.

•
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There is no way for the transport entity to know when congestion has finished, so an

attempt to scale-up is made after a certain amount of time. Care has to bc taken to ensure

that the sender does not scale-up too early or too late. Too early and the system may have

to scale-down immediately, producing an oscillation; too late is not as critical but to make

the best use of resources an optimum time must be established.

Diserele sealing is a connection oriented scaling method. That is, a stream is split into

sub-streams and each of these is transmitted on a separate connection. Receivers then

scale-up and scale-down by accepting or rejecting connections, and full quality is gained

by receiving ail sub-streams. Discrete scaling implies a minimum of feedback and hence

each receiver has more control over its individual QoS received, as opposed to continuous

scaling where, in a multicast session, each receiver may issue scale-down requests to the

sender thus restricting the transmission to the ability of the least capable receiver.

The continuous and discrete scaling methods are in fact Iwo very separate mechanisms.

Continuous scaling does not work for multicast trafflc because the least capable receiver

will inhibit ail other receivers in the same group. Using intermediate nodes ta down-seale

and up-seale traffle eouldprovide the solution ta this.

Discrete scaling is a way to solve the problems created by continuous scaling, i.e., to

allow different receivers in the same multicast session to obtain different QoS levels.

Complexities with discrete scale· lie with resynchronising the various sub-streams.

Discrete scaling gives strong support to hierarchical encoding schemes thus a1lowing

heterogeneity in multipeer communications.

2.3.2 The Multimedia Multieast Channel- UC, San Diego



The Multimedia Mullicasl Channel (MMC) [PPA+92](PPA+93] is a communication

abstraction akin to that of a cable TV channel. That is, receivers 'tune in' to a particular set

of streams, or just one stream, to obtain a desired multimedia service. Filters may be

instantiated to tailor a particular stream to a receiver's requirements if the transmitted

stream is incompatible with the receiver. Filters thus allow a number of heterogeneous

receivers to obtain different QoS levels from a common flow.

•
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2.3.2.1 Filtcrs

A filter is a transformer of one or more input streams of a multi-stream into an output

stream, where the output stream replaces the input streams in the multi-stream. Filters are

categorized into selective, Iransforming and mixing filters.

• The selective ji/1er is the simplest form of filter. The filter only forwards certain

segments depending on sorne criteria. Such a filter may perform frame rate reduction,

by only forwarding segments from certain frames; or if the multi-stream contains a

hierarchically coded stream the filter can choose only to pass the base layer, by

discarding ail segments from any enhancement layers.

• A Iransforming ji/1er involves more processing. The filter performs sorne calculation

or computation on the stream to produce a new stream. A jilter does nol necessarily

have 10 reduce bandwidlh: a decompression filter would be equally as valid.

• A mixingji/1er takes two or more streams and combines them into fewer streams than

originally present.

2.3.2.2 Filter Propagation

Each filter is separately instantiated by individual receivers at the end of a complex

dissemination tree. The power of filters on the MMe is their ability to propagaIe towards

the source. If a filter produces a new stream that occupies less network bandwidth than its

input stream, as many filters do, then relocating the tilter c10ser to the source optimizes

network usage.

Furthermore, by propagating a filter to a specialized network server it is possible to off

load sorne end-system processing. Filters also have the ability to combine together.



Combining filters reduces thc processing incurred by interrnediate network nodcs. The

mixed filter will then, if possible, continue to propagate towards the source.•
CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS
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2.3.2.3 Nctwork as a Proccssor

By performing operations of different levels of complexity en route bctween source and

receiver implies that the network may be treated as a processor. Il is therefore possible to

trade off bandwidth requirements with processing performed on network routers and

gateways.

2.3.3 Frame-Indueed Paeket Disearding - ue, San Diego

Frame-Induced Packet Discarding (FIPD) [RRV93] is a method to improve network

bandwidth utilization. The scheme involves an efficient frame dropping strategy based on

discarding corrupted frames. A router implementing the FIPD scheme monitors loss on a

stream. Once a certain percentage of the Packet Data Units (PDU) constituting a frame

have been lost, the remaining PDUs belonging to that frame are then discarded. The loss

threshold, termed the packet resiliency, is dependent upon the encoding scheme used.

Some encoding schemes would not tolerate any PDU losses, implying that a single lost

packet would require the whole frame to be discarded. In inter-coded compression

schemes, such as MPEG, the effect of a corrupt frame may be propagated through to

neighboring frames. For example, a corrupt I-frame May Mean that the P- and B- frames

dependent on it are also corrupted.

2.3.4 Dynamically Sealed Multimedia Streams - Sun Mierosystems

The Dynamically Scaled Multimedia Streams (HSF93] concept is based on the use of

hierarchically encoded media streams. These streams may be filtered at various network

nodes, such as routers or transport relays, that are not explicitly aware of the stream

semantics. Each media stream consists of a number of sub-flows. Filtering is achieved by

discarding sub-flows at various points in the network. The Hoffman approach includes a

syntax to describe scalable flows and extension of the media transport interface to

understand this syntax. The objective of using scalable flows and filtering is to achieve

congestion control, bandwidth and admission control, and receiver traffic selection. That

is, the filter system can intelligently discard packets at the time of congestion; aIso, lower



capability links may only be able to receive a subset of the stream 5ub·flows, and an end·

system may also select the quality it requires by only receiving sorne of the subflows.•
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The scalable stream syntnx includes adding a time stamp, sync bit and packet sequence

number to each Media Data Unit (MDU). Each MDU is also tagged to identify which

sub·flow it belongs to. Based on this tag, two tilter types are defined:

DiscardTagEquaITo(tag_val)

DiscardTagGreaterThan(tag_val)

Higher priority sub·flows are assigned lower tag values; control data and data that cannot

be tiltered are assigned zero. Where the data in a scalable flow consists of components

which have an ordering, e.g. a base layer and further enhancement layers, the base layer

will be assigned the lowest value. The DiscardTagEqualTo(tag_val) tilter can be used to

drop an individual sub·flow, whereas the DiscardTagGreaterThan(tag_val) tilter will

discard ail sub·flows above the set value. For example, it could discard ail enhancement

layers above the base layer.

2.3.5 Resouree Reservation Protocol (RSVP) - Internet Engineering Task Force

The resource reservalion prolocol (RSVP) [ZDE+93] has another perspective on the

concept of tilters. With the use of RSVP, clients may reserve resources (e.g. buffers) at

switches and end·systems. There are a nomber of reservation styles, which are

differentiated by the type of tilter used. The tilter mechanism determines which packets

may use the reserved resources:

• Fixed·Filler This reservation is applicable to only one sender, i.e. only packets from

the specified sender will be forwarded.

• Shared-Explicit This reservation allows multiple senders to use the same reserved

resources, but oruy the senders that are explicitly specified by the receiver.

• Wildcard·Filler The tilter allows all senders to use t11e reserved resources.

2.3.6 Real-time Transport Protocol (RTP) - Internet Engineering Task Force

The real·time transport protocol (RTP) [SCF+94] provides end·to-end transport fonctions

suitable for distributed applications using continuous media. It is intended for unicast and



multicast network services. RTP is based on application /eve/ framing (AFL) and hence

operates on top of existing transport protocols, primarily UOP. The real-time protocol

specification consists of two parts: RTP for data transfer and the Real-Time Control

Protocol (RTCP) for monitoring and distributing information on the current level of QoS

transmitted and received on a session.

•
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To support real-time data transfer the RTP protocol header has a number of important

fields: pay/oad type, sequence number and lime-stamp. The payload specifies the media

type encapsulated within the POU, e.g. MPEG video, PCM audio, etc. The sequence

number denotes the order in which the packets are transmitted from the source. The time

stamp represents the time at which the data segment being transmitted was sampled. The

timestamp can be used by a receiver to resynchronise data and to monitor packet arrivai

jitter. The sequence number can be used to monitor packet loss and recodering.

2.3.7 The QoS Filtering Model in Distributed Multimedia Applications

- Lancaster University

Oistributed multimedia applications inc1ude video and audio conferencing, dissemination

and on-demand services. The requirements of these applications are very different but ail

have real-time considerations in terms of the transmission of multimedia. Multicast

mechanisms a110w a source to transmit data to a nurnber of receivers simultaneously. A

typical multipeer communication session may therefore consist of a number of one-to-one

and one-to-many connections forming a many-to-many group communication.

2.3.7.1 The QoS-Filtering Model

The QoS-filtering mode/ [YGH+96] involves placing filters at strategie points, such as

network nodes, gateways, specialized servers, etc., around a multicast network tree. The

designated source may then send at the quality required by the highest capability receiver

while low capability receivers acquire a filtered down version of the media stream.

Filters in QoS-filtering model are objects which transform continuous media streams in

some way. This may involve reduction of video frame rate, adjustrnents to presentation



quality or conversion to different compression formats. A filter may be a software only

object or enjoy hardware support.•
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As the characteristics of the underlying network or the nature of the transmitled media

change, filters may be added or removed from the multicast dissemination tree. Filter

objects may also logically move around the current tree to achieve the optimum location

of execution. This is known as filter propagation which we mentioned above. By

implementing this approach ail receiver's disparate quality requirements are satisfied.

Filtering is one of the realistic solutions to heterogeneous QoS within multicast

communications.

2.3.7.2 Model Entities

Within the QoS-Filtering Model there are a number of key objects that combine to build

the overall QoS-Filtering Architecture. The stream, source, filters and clients are

controlled and maintained by a session manager, although the clients do have some

autonomy with respect to controlling local filter agents. The following gives the

definitions of these related entities:

Clie/lt: The client object represents the communication data sink. Within a multipeer

stream a number of clients will be associated with the end leaves of the dissemination

tree. Clients are responsible for initiating a media service or joining an ongoing

communication session. Service instantiation, or service joining, is achieved by clients

issuing connect requests to a session manager.

Source Server: The source server centers around a daemon that waits for media requests

from session manager. On receiving a connection request the daemon spawns a source

agent. The source server is always in existence whether any source agents are transmitting

media or not. The location and services available from the source server are weil known

to the session manager.

Source Age/lt: The source agent is the communication data source. The source agent

resides at the root of a multipeer dissemination tree. The source agent responds to the

request issued by a session manager by disseminating a message for set-up negotiation to

filter server and clients.



Filter Server: The tilter server is based around a daemon that waits for requests to

instantiate tilter mechanisms. The mechanisms may be instantiated at connection set-up

Üme or a during an existing communication session. Like the source server, the tilter

server is ever-present and weil known to the session manager. The tilter server may reside

on a switching node, an end system (source or sink), or on a specialized tiltering node. A

number of tilter servers may exist along a communication path. If occupying a switch, the

tilter server would be integrated into the switching and forwarding mechanisms of the

switch.

Fi/ter Agellt: The tilter agent performs the tiltering operations on a continuous media

stream. Filter agents are spawned by the tilter servers to perform sorne requested tiltering

operation. Depending on the tilter operation complexity, a tilter agent may be a software

only process or may be supported by specialized hardware.

Sessioll Mallager: The session manager is responsible for informing group members of

services available, and of the QoS capabilities of those services. It is also required for

dealing with client requests to initiate services, join existing service sessions and leave

existing sessions. Clients may also request changes in the quality of their received

service, which may involve the session manager interacting with the source agent and

with a number of tilter servers and tilter agents to adapt the stream quality. Note that the

clients can also renegotiate QoS levels with their c10sest tilter agent. The session manager

also maintains the current state of the group within communication session. There is one

session manager per communication session.

The Stream: The stream is a data transmission between a source agent and multiple client

objects. The flow of data through the stream follows the path of the established

dissemination tree. The flow hides the identity of the clients from the source agent. The

source agent is only aware of the session manager and the address to which it is sending,

which may be a multicast group and/or a tilter/switch object.

The Group: The group is a list of receivers and senders within a single multipeer

communication session. The current quality that each client is receiving, and that the

source is sending, are also held with the group membership information. The group

information is held and maintained by the session manager, possibly by implementing a

Group Management Information Base (GMIB).

•

•
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2.3.7.3 Ncgotiation

This section describes the negotiation process in the QoS-Filtering model which is

entailed before a continuous media data transmission is initialized. The negotiation

includes the reservClIion ofresources andfilter allocation po/icy.

•
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The initial negotiation consists of a three-way message-passing initiated by the client.

Exchanges between clients, the session manager and the source are in the fonn of flow

specifications (FlowSpec). The FlowSpec characterize3 quantitative QoS levels, actions

on thresholds, reliability requirements, service commitment and appropriatc filter

operation identification. As the QoS of the flow may be changed, through filtering

mechanisms, on its way to the client(s), each client supplies a client-FlowSpec describing

its particular QoS requirements and characteristics.

Client COllllect Request

The client issues a request to connect to a service. This FlowSpec request is issued to the

session manager in the fonn of the service required, associated QoS specifications for

throughput, delay, jitter and reliability and the service commitment for these QoS metrics.

Ifvalid, the request is processed and passed to the source server.

Resollrce Mallagemellt: Admission Control and Fi/ter Allocation

The source server, on receiving a FlowSpec connect request message, either accepts the

QoS or changes it to a level it can suppIy. Instead of a1ways lowering the proposed QoS

level in the FlowSpec it is conceivable that the source server may actually increase the

QoS levels it can supply. The FlowSpec is then sent to the client(s), containing the

original or adjusted QoS parameters.

While this message is en route to the clients, each node in the intended path for the

continuous media transmission perfonns an admission test based on availabIe resources

and the QoS parameters within the FlowSpec. If the QoS levels cannot be met, Le. the

required resources are not available, a filter is allocated to reduce the required QoS to

match the Ievel of resources available. If resource reservation is availabIe, and required,

the approximate amoun! of resource is reserved. The QoS leveIs within the FlowSpec are



then adjusted to reflect this change. The message is passed on to the next down-stream

node until each node has allocated any required filters and reserved any resources

necessary. Any node, including the source, can reject the connection request if

insufficient resource is available. The connection may also fail if allocating a filter to

reduce the required QoS levels breaches one or more of the other specified QoS levels.

•
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COlmectiol/ Agreemel/t

Once the message has reached the clients, ail required resources will have been reserved

along the proposed paths and any filters necessary will have been provisionally allocated.

The FlowSpec message encapsulates whether it was necessary to lower the proposed QoS

characteristics. Each client has the option of whether to accept the final proposed QoS

levels, lower the QoS requirement and allocate a filter, or reject the connection. If

accepted the client confirms the connection an acknowledgment to the sender. This is

relayed through each node, hence allocating the reserved resources and instantiating any

filter operations needed. Any over-committed resources, such as if the client has lowered

the QoS requirement, are relinquished. A reject results in the reserved resources being

freed and filters deallocated.

Stream Cllaracterizatiol/

Stream characterization is intended to give a client a reasonable approximation of the

QoS to be expected from a given service. Ali information gathered is held by the session

manager and relayed to the client objecls as requested or at regular intervals.

2.3.7.4 Stream Establishment

Data transfer begins when the QoS negotiation, set-up stage is complete, i.e. as soon as

the source receives the acknowledgment and desired source QoS output level from the

clients. This QoS level requirement will be the FlowSpec from the highest capability

receiver.

Cliel/t Applicatiol/ II/itializatiol/

Once the client has agreed to, and acknowledged, the proposed QoS levels il instantiates

ail receiving processes that are necessary. The receiving application then wails for the



data stream to arrive. If the connection setup fails the client applications may be either

explicitly terminated by the session manager or may time-out.•
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Filter ServerlFilter Agent Initiation

On the return acknowledgment path any tilter agents that are required are spawned by the

relevant tilter server. The tilter agents generally take a single stream in and generate the

number of required tiltered streams. The tilter agents also retain any information essential

to initialize a receiving process which is transmitted within the stream. This enables

clients to join an ongoing stream at a later time by connection directly to a tilter agent, i.e.

without the need to involve the source agent. The tilter agent informs the session manager

of any changes it may experience.

Source Server1Source Agent Interaction

On receiving the client acknowledgment FlowSpec the source server spawns a source

agent which is responsible for gathering, packetizing and sourcing the data stream. Ali

control over the data stream is handed over to the source agent, the source server reverts

to waiting for further service requests, as far as the CUITent session is concerned the source

server is no longer needed. The source agent informs the session manager about itself and

the QoS levels it is transmitting; this information is intermittently updated.

2.3.7.5 Filter Propagation and Renegotiation

One fundamental aspect of the QoS tiltering model is the ability for tilters to propagate.

That is changes in end-system loading and application/user requirements tilters can be

relocated within the dissemination tree. Filter propagation achieves optimum resource

utilization. Filter propagation occurs when QoS levels of ail outputs of a node are lower

than the input QoS. Filters a1ways propagate toward the source, thus reducing network

loading, if the tilter is a reduction tilter. Filters may ultimately propagate to the source

itselfand hence reduce the output QoS of the source.

In practice, limits may be placed on the how far filters can propagate toward the source.

For example, filters may only be allowed to propagate within the local LAN domain. A

policy could also exist where any clients joining 'late' have to accept the quality available



locally. There exists a trade-off between flexibility and the overhead of providing such

dynamic adaptability.
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Clients can, during the lifetime of a connection, issue requests to the session manager to

renegotiate the whole stream. If the session manager receives enough renegotiate requests

it may decide to initiate a complete stream renegotiation. It is just replaced by another

connection with different QoS levels, resource reservations and filter allocations.

The characteristics of the seven systems introduced above can be summarized into the

following Table 2.2:

Filter SYstems Develoners Characteristics
HeiTS IBMENC • For real-time delivery of video and audio

· Transparent and non-transparent scaling

• Continuous and discrete scaling
MMC UC, • For delivery ofa set ofstreams

San Diego • Selective filter, transforming filter, mixing
filter

• Filter propagation
FIFD UC, • For delivery offrames

San Diego • Be dependent upon the encoding scheme used
(such as 1-, B-, P- frames)



Dynamically Sun • For delivery of multimedia streams
Scaled Multimedia Mcrosystems • Based on the use of hierarchically encoded
Streams media streams

• Filtering is achieved by discarding sub·flows.
RSVP IETF • Another perspective on the concept of tilters :

tilter mechanism determines which packets
may use the reserved resources

• Fixed·tilter, shared·explicit, wildcard·tilter
RTP IETF • For delivery of continuous media for unicast

and multicast
QoS·Filtering Lancaster • For distributed multimedia applications
Model University • Place tilters at network strategie points

• QoS negotiation and renegotiation

• Various tiltering functions

• Filter propagation

•
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From the Table 2.2 above, we can see all of the tilters are static tilters, which means they

are not movable. The filter propagation which was proposed by UC (San Diego) and

adopted by Lancaster University does not mean movable tilters, it just means the

instantiation of another tilter which is nearer to the source and deactivate the tilters on its

downstream. Sorne of the tilters are modifiable, such as QoS·Filtering Model (Lancaster

University), FIFD (UC, San Diego) and Dynamically Scaled Multimedia Streams (Sun

Microsystems).

2.4 Filter Services and Mechanisms

Based on the background knowledge of tilter research, in this section we will outline

tilter services and tilter mechanisms, tilter location will also be discussed here. Filter

services can be either explicitly requested by end·system applications or may be

instantiated by underlying network entities. One or more tilter mechanisms may be

adopted in the process of delivering a tilter service.

2.4.1 Filter Services

Filter services include: end·to·end scaling; in·line adaptation; in-line translation, etc.



2.4.1.1 End-to-End Scaling

There are several approaches to changing or adapting the traffle between the source and

sink. The first method is end-to-end scaling, which can be considered as end-system or

source based filtering. End-to-end scaling involves the source altering its own output to

suit the requirements of the receiving parties.

•
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Scaling may be performed to react to different conditions in the receiver end-system or

because of congestion within the transmission medium.

The source system may be called upon to perform extra processing or sorne special

adaptive function. Such operations include:

• changing sampling rates;

• quantization scales;

• adjusting luminance levels and other encoding parameters.

If the media to be distributed is already compressed when presented to the sending host, it

is still possible for the sender to perform source based filtering. This will generally

involve ooly transmitting a selection of a media stream. For example, if a client only

requires mono audio then, by clever storage techniques, only one mono channel would be

retrieved from the storage medium.

2.4.1.2 In-line Adaptation

In-line adaptation is the name given to simple filter operations that change a data stream's

characteristics with a minimum of processing and involving no decompression. The

stream or streams concemed are usually altered by discarding information. The

mechanisms used to achieve this service can be relatively simple. Hence, it is possible for

network nodes with limited processing power, e.g. switches, to perform such filtering.

Frame dropping filters and the hierarchical splitting filter are typical mechanisms that

may be called upon to offer this service.



2.4.1.3 In-Iine Translation

In-Une translation includes tilter operations that require more processing complexity to

convert media into a different form. These operations require an in depth knowledge of

the encoding schemes used and how to interpret information contained within the

compressed media. It is possible that these mechanisms may be performed on a separate

network device in order to not to overload the switching nodes within the network. This

type of service may be called upon if a receiver has very different requirements to other

members of its own multicast group, or if the source and sender are quite simply

incompatible. These operations can be very adaptive and maybe used as a reactive

measure in the communication. Mechanisms included are: low-pass tiltering, color

reduction tiltering, transcoding and mixing, etc.

•
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2.4.2 Filtcr Mcchanisms

One or more tilter mechanisms may be adopted in the process of delivering a tilter

service which include: frame dropping tilters; codec tilters; color reduction tilters; OCT

tilters; mixing and splitting tilters, etc.

2.4.2.1 Frame Dropping Filtcrs

The frame dropping class offi/ter is a media discarding tilter used to reduce frame rates.

There are two types of frame dropper:

• priority based frame dropper: it has knowledge of the frame types and drops frames

according to importance. It may be to used where interdependencies exist between

frames (such as MPEG, it has l, B, P frames)

• simple frame dropper: it has less knowledge than the priority based frame dropper,

and can be used where each frame in a stream is independently encoded (such as in

Motion-JPEG or I-picture-only MPEG).

2.4.2.2 Codee Filters

. They perform specific compression related operations.

• Transcoding Fi/ter, converts data streams encoded in one particular compression

standard into a different compression standard.



• Compression/Decompression Fi/ter, where end-systems do not have the ability to deal

with compressed media of any type, this kind of filter may be used. These filters

perform compression or decompression on behalfof a source or client system.
•
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2.4.2.3 Color Reduction Filtcrs

They discard varying amounts of color information from a video stream, used where an

end-system does not have a color display or has a Iimited display.

• C%r to monochrome fi/ter, has the effect of removing ail color information from a

video stream and leavingjust luminance data.

• DC-C%r fi/ter, provides a means of reducing the bit-rate of a video stream by

discarding only sorne of the color information.

• Dithering Fi/ter, reduces the number of bits used to represent the color and luminance

depth (i.e. bits-per-pixel) in the uncompressed image.

2.4.2.4 DCT-Filtcrs

The DCT-based tilters are specific to the sequential DCT compression schemes, such as

JPEG, MPEG, and H.261.

• Low-pass Fi/ter, removes the high frequency components from an image, thus

reducing image quality but maintaining frame-rate.

• Re-quantization Fi/ter, is a method of reducing bit-rate while maintaining the same

frame rate.

• Limiting Fi/ter, is based around a highly dynamic low-pass or re-quantization tilter.

The tilter is designed to convert a variable bit-rate (VBR) data stream into a constant

bit-rate (CBR) data stream.

2.4.2.5 Mixing and Splitting Filtcrs

They provide the functions of combining many streams to one stream, and separating a

single stream into a number of sub-streams, respectively.

• Mixing Fi/ter, is used where the end-system only has the capability to decode one

stream at a time or where sorne resource saving is possible by combining a nurnber of

streams. In certain cases the combined stream may have a lower bandwidth



requirement then the sum of the streams' separate bandwidth requirements. We have

the following kinds of mixing tilters:

• Inlerleaving Frame Mixer

• In/ra-Frame Mixer

• Video and Audio Multiplexer

• Audio Mixer

• Splilling Filler, can perform reverse operations to the mixing tilter and also two other

appropriate uses:

• Individual QoS Splitter: a splitting tilter can be used to separate a mixed media

stream in order to associate specifie media dependent QoS parameters to the

individual streams. For example, a MPEG System (video and audio) stream

may be split into a single video stream and single audio stream.

• Hierarchical Spliller: in situations where a source cannot provide a

hierarchically encoded stream but such a stream would be advantageous, the

splitting tilter can take a single stream and split it into the required sub-stream

structure. For example, an MPEG 1 video stream could be split so that the 1, P,

B pictures are assigned to separate sub-streams.

•
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The various tilter mechanisms can be generalized into Table 2.3.

Frame dropping tilter Priority based frame dropper
Simple frame dropper

Codee tilters Transcoding tilter
Compression/decompression tilter

Coler reduction tilter Color to monochrome tilter
DC-color tilter
Dithering tilter

DCT-tilter Low-pass tilter
Re-quantization tilter
Limiting tilter

Mixing and splitting Mixing tilter Interleaving frame mixer
tilter Intra-frame mixer

Video and audio multiplexer
Audio mixer

Splitting tilter Individual QoS splitter
Hierarchicai splitter

Table 2.3 Filler Mechanisms



2.4.3. Filtcr Location

In the path between a source and a recipient, a tilter operation can' be performcd either

within the network (routers and switches) or at the network edge (i.e. end-systems and

gateways). The criteria for determining this location depend on the following factors:

•
CHAPTER 2 BACKCROUND KNOWLEDCE OFFILTERS

30

•

Data Unit EncapslIlation

The amount of information a particular node knows about a stream, and hence its ability

to execute a tiltering function, relies on the way the data is encapsulated within the

protocol data unit (POU). For example, separate video frames can be encapsulated within

separate POUs, and so a gateway or router could performed a frame dropping function by

dropping POUs.

Switch/Rollter Capability

Implementing tiltering within switches/routers will require reprogramming of the switch.

It is plausible that switches/routers could be reconfigured and reprogrammed to incor

porate tilter operations.

End-system Capability

End-systems in certain cases are the optimum place for filters. The term 'end-systems'

includes, sources and receivers, high level gateways (because these are also at the

network edge). Certain sources or low end receivers may not have the necessary

capabilities to execute a particular operation, that is, to execute it within the imposed time

constraints. The operation may therefore be performed at a less optimal location in the

network.

Available Bandwidth

If the manipulation of a stream involves a major change in the bit rate, such as

compression or decompression, then in order to utilize the network resources to best

effect, the operation must be executed where the stream will not cause adverse network

loading. That is, an operation that produces a larger bit-stream should be executed as

close to the receiver as possible and conversely and operation that reduces the size the bit

stream should be located as close to the source as possible.



Time Cons/raints

No malter how powerful a filtering engine may be, time will always be consumed. This

affects both the transmission delay experienced, and the jilter. A trade-off has to be

reached between the benetits of filtering, network performance and time constraints.
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Fil/cr Propagation

In a dynamic heterogeneous network the optimum location for a particular tiller operation

may change over time, hence a filter must have the ability to move or propagate to a more

suitable node. For example, propagation may occur when a client joins or leaves a current

session, or if a node or link becomes heavily loaded and sorne processing must be off

loaded to neighboring node.

2.4.4 Spccial Notcs

Pulting filters into switches/routers does have advantages, il is the most logical place, but

this may be detrimental to the overall performance of the switchlrouter. End-system

filtering is easier to implement and causes Jeast disruption to existing services but does

not realize the full potential of filtering operations.

2.5 Media Compression Technologies

Sorne of the filter algorithms described in later chapters operate on compressed media

streams. These algorithms exploit certain characteristics of the stream syntax to simplify

filtering. Hence, this section describes the common international standards on media

compression.

Compression technology is primarily employed to reduce the amount of data required to

represent text, graphics, audio and video. This Jeads to savings in storage space,

improvements in access speeds and in distributed environmenls it leads to more efficient

utilization ofnetwork bandwidth.

2.5.1 MPEG 1

Moving Picture Expert Group (MPEG) is responsibJe for the deveJopment of international

standards for digitally coded motion video and ils associated audio. The initial intention



was to provide a common representation and format for the encoded video and its

associated audio on various digital storage media such as Compact Discs (CDs), Digital

Audio Tapes (DATs), Winchester disk and optical drives. These devices are capable of

providing a continuous transfer rate of about 1.5 Mbitls. This standard is now typically

referred to as MPEG 1. The features that MPEG 1 supports include forward playback,

reverse playback, random access, fast search, error robustness, and sorne editing

functionality.
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2.5.2 MPEG2

The MPEG group, in association with the Expert Group of ATM Video Coding of the

ITU-T SG 15, has been developing MPEG 2 [MPEG 2, 94] which is targeted for very

high quality coding of moving pictures and associated audio. The fealUres supported by

the MPEG 2 standard include: constant bit rate transmission, variable bit rate

transmission, random access, channel hopping, scalable decoding, editing, as weil as

special functions such as fast forward playback, fast reverse playback, slow motion, pause

and still pictures. MPEG 2 codees are required to be backward compatible with MPEG 1

encoded bit stream.

Any MPEG stream conforms to a generic two layer structure:

• The system layer which contains timing and other information needed to multiplex,

demultiplex and synchronize playout of the audio and video substreams.

• The compression layer which handles the compression and decompression of the

audio and video streams.

2.5.3 Video Stream Data Hierarchy

MPEG encoder has a hierarchical structure. This hierarchy is illustrated in Figure 2.5 and

described below.

The topmost level, the sequence layer, consists of a header, one or more groups of

pictures and an end of sequence of marker. The information carried in the header is

employed to initialize the state of the decoder. The group of pictures (GOP) layer

contains a header with time and editing information plus a number of pictures. GOPs



represent the smallest coding unit that can be independently decoded within a sequence

and that may form random access points.•
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The PiclUre structure represents a single frame of motion video. Three frame types are

defined. I-pictures, or intra·coded pictures, are coded without reference to other pictures.

They provide the access points and are moderately compressed. P·pictures, or forward
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Picture

Slîce

Figure 2.5 MPEG Video Stream Data Hierarchy
(Adaptedfrom [Yeadon96])

~I

predictive coded pictures, are more efficiently coded by employing motion compensation.

These form reference points for further prediction. B·pictures, or bi·directionally

predicted coded pictures, are coded by using motion compensated prediction from a past

and a future 1or P·picture. B·pictures demonstrate the highest degree of compression and

are never used as reference points for further prediction.

Because of the inter·dependencies between the various picture types, the arder in which

pictures are transmitted, stored, or retrieved is not the same as the display arder. Instead,



the pictures are arranged in the order in which they are required for decoding. This is

iIlustrated in Figure 2.6. Each picture is composed of a header, containing ordering,

picture type, and coding information, plus one or more sUces. The sUce structure is

composed of a header and one or more macroblocks. The header contains position and

quantizer scale information which may be used to recover from local corruption. If the bit

stream becomes unreadable within a picture, the decoder may recover when the next slice

arrives without having to drop an entire picture.

•
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Figure 2.6 Pic/ure sequences in display and video s/ream order

The macroblocks represent the basic unit for motion compensation and quantizer scale

changes. Each macroblock structure contains a header a six 8 by 8 blocks: 4 blocks of

luminance, 1 block of Cb chrominance and 1 block of Cr chrominance. The header

contains quantizer scaIe and motion compensation information. The blocks represent the

basic coding unit.
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In this chapter, we are going to introduce two active adaptation technologies: mobile

agent and active network. Mobile agents are autonomous, intelligent programs that can

migrate from one machine to another in a heterogeneous network. From the computation

point of view, mobile agents co-locate data and computation by bring the computation to

the data, rather than by bringing the data to the computation. Agents have the necessary

autonomy to make decisions, and interact with other agents and services to accomplish

their goals. It is a new technology which can overcome many limitations of clientlserver

architecture. The detailed knowledge information about mobile agent will be introduced

in Section 3.1; Active nctwork offers a technology where the application can not only

determine protocol functions as necessary at the endpoints, but one in which applications

can inject new protocols into the network or the network to execute on behalf of the

application. The nodes of the network are programmable entities and application code is

executed at these nodes to implement new services, the knowledge of active network is

covered in Section 3.2.

3.1 Active Adaptation by Mobile Agent

Historically, distributed applications are created with "clientlserver" prograrnming. In this

model, an operation is split into two parts across a network, with the client making

requests from a user machine to a server which services the requests on a large,

centralized system. A protocol is agreed upon and both the client and server are

prograrnmed to implement il. A network connection is established between them and the

protocol is carried ouI. The clientlserver model works weil for certain applications.

However il breaks down under lots of other situations, which include highly distributed

systems, slow and/or poor quality network connections (such as wireline/wireless

network), and especially in the face ofchanging applications.



With clientlserver architecture, it needs the following conditions to make good quality

network connections [BWP98] :

• First, the client needs to connect reliably to its server, because only by setting up and

maintaining the connection may it be authenticated and secure.

• Second, the client needs to be assured of a predictable response, since its many

requests of the server require full round trips to be completed.

• Third, it needs good bandwidth, due to its very nature, clientlserver must copy data

across the network.

• Final/y, the protocol which a client and server agree upon is specialized and static.

Often, specifie procedures on the server are codified in the protocol and become a part

of the interface. This interface is extensible, but only at the high cost of recoding the

application, providing for protocol version compatibility, software upgrade, etc. As

the applications grow and the needs increase, clientlserver programming rapidly

becomes an impediment to change.
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However, the conditions for clientlserver architecture to make good quality network

connections cannot always be satisfied. We need more flexible technology, such as

mobile agent technology, which can overcome the limitations of clientlserver. The

following will introduce what is mobile agent, its advantages, and its applications related

with active adaptations.

3.1.1 Mobile Agent and Us Advantages

Mobile agent, in simple words, is an independent software program running on behalf of

a network user that can migrate from machine to machine in a heterogeneous network.

The program chooses when and where to migrate. Il can suspend its execution at an

arbitrary point, jump to another machine and resume execution on the new machine

[BKR98]. An agent may run when the user is disconnected from the network, even if the

user is disconnected involuntarily. Some agents run on specialized servers, others run on

standard platforms.

A mobile agent is specialized in that in addition to being an independent program

executing on behalf of a network user, it can travel to multiple locations in the network.



As it travels, it perfonns work on behalf of the user, such as collecting information or

delivering requests. This mobility greatly enhances the productivity of each computing

element in the network and creates a uniquely powerful computing environment well .

suited ta a number of tasks.
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Mobile agents break the clientlserver barrier, and overcome all of the above inherent

limitations in clientlserver:

• Mobile agent shallers the very notion of client and server. With mobile agents, the

flow of control actually moves across the network, instead of using the

request/response architecture of clientlserver. In effect, every node is a server in the

agent network, and the agent (program) moves ta the location where it may find the

services it needs ta run at each point in its execution.

• The scaling of servers and connections then becomes a straightforward capacity

issue, withoutthe complicated exponential scaling required between multiple servers.

The relationship between users and servers is coded into each agent. It is the agent

itself that creates the system, rather than the network or the system administrators.

Server administration becomes a matter of simply managing systems and monitoring

local load.

• The problem ofrobust networks is greatly diminished. The hold time for connections

is reduced ta only the time required ta move the agent in or out of the machine. No

requests flow across the connection, the agent itself moves only once, in effect

carrying a greater "payload" for each traversai. This allows for efficiency and

optimization at several levels.

Besides the above, mobile agents also have the following primary advantages

[CHK97][BHN+97]:

J. They facilitate high quality, high performance, economical mobile applications:

Applications employing mobile agents transparently use the network ta accomplish

their tasks, while taking full advantage of resources local ta the many machines in the

network. They process data at the data source, rather than fetching it remotely,

allowing higher performance operation. They use the fuIl spectrurn of services



available at each point in the network and make best use of the network as they

travel.

2. Mobile agent technology provides for secure communications even over public

nelWorks. Agents carry user credentials with them as they travel, and these credentials

are authenticated during execution at every point in the network. Agents and their data

are fully encrypted as they traverse the network. Ail this occurs with no programmer

intervention.

3. They efficiently and economically use low bandwidth. high latency, error prone

communications channels.

4. They can ojJer dynamic adaptation: Mobile agents have the ability to autonomously

react to changes in their environment. However, such changes must be communicated

to mobile agents from the mobile agent environment.

5. They support for heterogeneous environments: Both the computers and networks on

which a mobile agent system is built are heterogeneous in character. As mobile agent

systems are generally computer and network independent, they support transparent

operation.

6. They can personalize server behavior: In the intelligent networks, mobile agents are

proposed as a way to personalize the behavior of network entities Ce.g., routers) by

dynamically supplying new behavior.

7. They are robust andfault tolerant: The ability of mobile agents to react dynamically

to adverse situations makes it easier to build fauit tolerant behavior, especially in a

highly distributed system.
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We could also identify four properties of mobile agents that can be useful for the

improvement ofCUITent network management, which are:

• Intelligence is the ability to not only perform the processing associated with a task,

but to assume sorne level ofcontrol or decision making.

• Autonomy is the ability of the agent to operate independently, not merely in response

• Cooperation is the ability to interact with other agents. Cooperation encourages a

hierarchical approach to problem solving where agents are assigned small low-Ievel

tasks and combine to achieve a higher level goal.



Mobility is the ability to move the agent to a network component so that the agent

operates in the same locale as the data. Agent mobility encompasses code mobility,

which is transporting code to a network component for remote execution, as weil as

migration, which is the ability of a process to stop its execution, save its state and

transport itself to another network component to continue its execution there. Both

forrns of mobility are powerful tools that lead to opportunities for service

customization, software version control and upgrades, and more.
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As mentioned above, mobile agent technology do have many advantages over the

traditional clientlserver models. That is the reason we try to apply this technology to

network management and distributed network systems.

3.1.2 Mobile Agent Technology in Distributed Multimedia Systems

In this section, we will explain on how mobile agent can be used in distributed

multimedia systems.

3.1.2.1 Passive Approach

Presently, many distributed multimedia systems adapt to their changing environments and

QoS requirements by exchanging control and feedback data between servers and clients.

For the most part, the nature of such data is passive, that is, they contain values

representing the states of sorne pre-defined variables and control parameters. The

recipients of the data respond by executing a fixed set of functions, implementing sorne

fixed adaptation algorithm.

The problem here is that these functions are indiscriminately applied to ail participating

machines even though the latter may have different requirements. For example, upon

receiving feedback on frame loss from its clients, a video server reacts by executing the

same frame dropping algorithm across ail client, regardless of the difference in their

processing powers. The only variability allowed is through changes in feedback values;

the algorithm remains invariant.



In the above passive approach, ail programs used to control QoS are static because they

can neither be moved dynamically to a remote location nor replaced. They are attached to

their hosts (server or client) for the entire duration of the application.
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This absence of program mobility makes it very difficult for multimedia systems to

support dynamic changes in QoS control policies and adaptation algorithms. Such

changes are often required due to the time-dependent needs of an application which can

best be served by switching to different protocols or different resource management

policies. Accommodating these changes with a fixed set of programs would require a

forecast of many possible scenarios, which may not always be attainable.

3.1.2.2 Mobile Agent To Rescue

In order to facilitate multimedia applications to timely adapt to their continuously

changing environment and hence to QoS fluctuations, we can complement the passive

data passing model with the active program passing model: active because programs can

be dynamically launched, loaded and executed at a remote destination where computation

is needed. Such programs are referred to as mobile programs or mobile agent.

Dispatching a program to another computer is known as remote delegation [GY95]

because the computational responsibility of the program is passed to another machine that

carries out the actual execution.

Exploiting program mobility to actively adapt to applications' QoS variations offers sorne

notable advantages [Tran97]:

• A fine grained. dynamic customization ofQoS control can be rea/ized.

Through delegation, a client can inject into the server, at any point in time, a mobile

program containing specific adaptation functions and a1gorithms, tailored to the

client's processing capabilities and requirements. The program is then executed at the

server, directly affecting the server's behavior towards the given client. This results in

a flexible structure where different clients can impose their preferred QoS control

policies carried in different mobile programs. For example, in multicast applications

using MPEG 1 encoding, a group of clients may desire their server to adjust its frame



sending rates, while another group of slower clients may prefer the server to send the 1

frames and discard the resl.

• Furthermore, existing QoS adaptation behavior can he altered dynamically to

respond to QoS variations in a continuously changing environment.

Here, re-delegalion can be used: a new program, which incorporates an application's

new control intelligence reflecting new requirements, can be delegated over to a

remote site, replacing the current mobile program. This strategy permits a video

receiver to flexibly introduce new control schemes to its sender at any time during the

application, thereby achieving far greater adaptivity than is traditionally possible.

Considering a flow control example, if during a video play, a client's CPU is so busy

that the current rate control strategy is deemed to be inappropriate, the client may

decide to switch to a frame dropping strategy by simply re-delegating another suitable

program.
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The end result is that programs at the server no longer need to be fixed. Instead, a server

can utilize dynamically deployed adaptation programs to respond to its clients' diverse

hardware/software processing requirements. These programs can be removed and

replaced on an 'as needed' basis when they become obsolete.

The mobility of programs can provide a richer set of adaptive capabilities to

accommodate continuous QoS changes in distributed multimedia systems. The concept of

active adaptation breaks the mindset of traditional adaptation. Instead of sending feedback

values, clients have the latitude of dynamically sending feedback programs, which

encapsulate their desired QoS control logic and data. These programs, customized for

individual clients' needs, replace the server's rigid set of QoS control functions.

3.2 Towards Active Networks

Today, mobile programs are not only deployed in end-systems, but also in intermediary

network nodes. This results in recent emergency of novel network designs and

architectures, known as active nelWor/cs [TW96). The traditional view of a router/switch

as being a passive 'store and forward' machine is replaced by a highly flexible engine, one



that can dynamically accept and perfonn customized computations on various packets

according to individual application's requirements.•
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3.2.1 Programmable Network vs. Active Network

There has been an increasing demand to add new services to networks or to customize

existing network services to match new application needs. However, the introduction of

new services into existing networks is usually a manual, time consuming and costly

process. The goal of programmable networking is to simplify the deployment of new

network services leading to networks that explicitly support the process of service

creation and deployment. Programmable nelwork architectures can be customized by

utilizing clearly defined open programmable interfaces (Le., network APis) and a range of

service composition methodologies and toolkits.

A programmable network is distinguished from any other networking environment by the

fact that it can be programmed from a minimal set of APIs from which one can ideally

compose an infinite spectrum ofhigher level services [CKV+99]. The programmability of

network services is achieved by introducing computation inside the network, beyond the

extent of the computation perfonned in existing routers and switches. We can view the

generalized model for programmable networks as comprising conventional

communication, encompassing the transport, control and management planes, and

computation as weil. Collectively, the computation and communication models make up a

programmable network.

Two schools of thought have emerged on how to make networks programmable: Active

Networks (AN) [DARPA96] and Open Signalling (Opensig) [Open].

• The Opensig community argues that by modeling communication hardware using a

set of open programmable network interfaces, open access to switches and routers can

be provided; and by "opening up" the switches in this manner, the development of

new and distinct architectures and services can be realized. Open signaling takes a

telecommunications approach to the problem of making the network programmable.

There is a cIear distinction between transport, control and management that underpin

programmable networks and an emphasis on service creation with QoS. The open



programmable network interfaces allow service providers to manipulate the states of

the network using middleware toolkits (e.g., CORBA) in order to construct and

manage new network services.

• The AN community advocates the dynamic deployment of new services at runtime

mainly within the confines of existing IP networks. The level of dynamic runtime

support for new services goes far beyond that proposed by the Opensig community,

especially when one considers the dispatch, execution and forwarding of packets

based on the notion of "smart packet". In active networks, code mobility represents

the main vehicle for program delivery, control and service construction. Active

networks allow the customization of network services at packet transport granularity,

rather than through a programmable control plane. Active networks offer maximum

flexibility in support of service creation but with the cost of adding more complexity

to the programming mode!. AN approach is more dynamic than Opensig's network

programming interfaces.
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80th communities share the common goal to go beyond existing approaches and

technologies for construction, deployment and management of new services in tele

communication networks. In this thesis, we put more importance on active network.

3.2.2 Introduction to Active Networks

As we know, traditional networks have the drawback that the intermediate nodes are

closed systems whose fonctions are rigidly built into the embedded software. Therefore,

development and deployment of new protocols in such networks requires a long

standardization process. The range of services provided by the network is also limited

because the network cannot anticipate and provision for all needs of ail possible

applications.

Active networks offer a different paradigm that enables programming intermediate nodes

in the network. A network is active if it allows applications to inject customized programs

into the network to modify the behavior of the network nodes [TW96]. This allows

applications to customize the network processing and adapt it to the application's

immediate requirements. This enables new protocols and new services to be introduced



into the network without the need for network-wide standardization. Active network

suggests that protocols are nothing but services provided by the nodes of the active

network. In an active network, applications have the ability to access these services and

customize them for their needs.
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3.2.3 Active Network Concepts

Traditional networking implementations follow a layered model that provides a weil

defined protocol stack. Most implementations provide a fixed protocol stack that is

determined by a long standardization process often taking many years and is fixed when

the final system is constructed. Therefore the time delay from the conceptualization of a

protocol to its actual deployment in the network is usually an extraordinarily long

process.

Active networking offers a technology where the application can not only determine

protocol functions as necessary at the endpoints, but one in which applications can inject

new protocols into the network to execute on behalf of the application. The nodes of the

network are programmable entities and application code is executed at these nodes to

implement new services.

In this section, we are going to introduce two key concepts in active network: Smart

Packet and active node.

3.2.3.1 Smart Packets

In an active network, data packets are information entities. These entities, which we cali

Smart Packets [KMH+98], contain a destination address, user data, and methods (or "how

to" information) that are executed locally at any node in the active network. These

methods tum the network elements into active elements: they appiy the methods to the

packets, thereby implementing network-based services tailored to the application. We can

think of Smart Packets as carrying customized protocols that have to be fitted in with

protocol modules at the network nodes.



The code in the Smart Packet can be in any executable format and it can be exccutcd at

the node if the node has the correct processing environment. Figure 3.1 and Figure 3.2

demonstrate the difference between Smart Packets and Nol-Sa-Smart Packets.

•
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DESTINATION

Figure 3.1 Not-Sa-Smart Packet
(Delivery Pracess is statie. relatively passive)

3.2.3.2 Active Nodes

Nodes in an active network are called active nodes because they are programmable

elements that a110w applications to execute user-defined programs at the nodes.

Active nodes perforro the functions of receiving, scheduling, executing, monitoring and

forwarding Smart Packets [KMH+98]:

• When a Smart Packet arrives at an active node, the type identifier and the user

defined code inside the Smart Packet is extracted.

• The type identifier is used to de-multiplex the Smart Packet to its correct processing

environment.

• The Smart Packet is then scheduled for execution.

A separate environment is required for each invocapon to prevent undesirable interactions

and malicious access to node resources.
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Figure 3.2 Smart Packet
(Smart Packet arrives, executes in active node,

run, actively, then move on)
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Active nodes export a set of resources and primitives that can be used by user programs.

This not only provides a consistent view of the network but also enforces constraints on

the actions that can be performed by user code.

3.2.4 Active Networks and Programming Interfaces

One way to think about active networks is they provide a programmable network API. As

showed in Figure 3.1 and Figure 3.2, if we think of the IP header in the traditional

network as the input data to a virtual machine, we can think of packets in the active

network containingprograms ("how to" information) as weIl as input data. In the context

of this model, a variety of active networking approaches can be characterized by the

foIlowing attributes (CBZ+98]:

• Language Expressive Power. The degree ofprograrnmability of the network API may

range from a simple of fixed-size parameters that select from predefined sets of

choices, to a Turing-complete language capable of describing any effective



computation. The advantage of a less powerful language is that it constrains the

possible node behaviors and so simplifies correctness analysis.

• Statefulness. Another important characteristic of the network API is the ability to

install state in the interior nodes of the network, and to refer to state installed by other

packets. Sorne active nctwork APIs provide this capability, while others do not.

Where it is present, the API must include control mechanisms to protect users' state

from unauthorized access.

• Granularity ofControl. This refers to the scope ofnode behavior that can be modified

by a received packet. One possibility is that a single packet can modify the node

behavior seen by ail packets arriving at the node, and this change persists until it is

overridden. At the other extreme, a single packet modifies the behavior seen only by

that one packet. Between these extremes, modifications might apply to aj/ow, which

we define to a set of packets sharing sorne common characteristic, such as temporai

locality and/or a particular source and destination address in the headers. In general,

the active network API must include security mechanisms that ensure that packets

affecting the node behavior have localized effect and/or come from authorized users.

•
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The possibility of programming the network API introduces a new role, namely that of

service developer: a third party who provides code that can be loaded into the active

network to enhance or customize the service seen by users. Such code might be deployed

by users themselves, or by network service providers.

3.2.5 Active Network Design ModeIs

To help better understanding of active network, here we introduce sorne basic ideas about

active network design models.

3.2.5.1 Design Space Axis

Two design space axis are important for designing an active network.

J. The first axis addresses possible mechanismsfor networkprogrammability.

• At one extreme (called the "integrated approaeh" [TW96]), eaeh paeket (capsule)

earries a program that may be evaluated at interrnediate hops to effeet its routing,



compute some useful result, or in some other way affeet the network. Here,

networking changes occur by ehanges at the programmable packet level.

• Capsules - an integrated approach

Every message, or capsule, that passes between nodes contains a program

fragment (of at least one instruction) that may include embedded data. When a

capsule arrives at an active node, its contents are evaluated, in much the same

way that a PostScript printer interprets the contents of each file that is sent to

il. Bits arriving on incoming links are processed by a mechanism that

identifies capsule boundaries, possibly using the framing mechanisms

provided by traditional link layer protocols. The capsule's contents are then

dispatched to a transient execution environment where they can safely be

evaluated. The programs are composed of instructions, that perform basic

computations on the capsule contents, and can also invoke "buHt-in"

primitives, which may provide access to resources external to the transient

environment. The execution of a capsule results in the scheduling of zero or

more capsules for transmission on the outgoing links and may change the non

transient state of the node.
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• The other extreme (called the "discrete approach"[TW96]) is that packets are

passive, and that extensibility is provided by downloading code into the routers.

• Programmable routers (or switches) - a discrete approach

The processing of messages may be architecturally separated from the

business of injecting programs into the node, with a separate mechanism for

each function. This preserves the current distinction between in-band data

transfer and out-of-band management channels. Users would first inject their

custom processing routines into tJie required routers. Then they would send

their packets through such "programmable" nodes much the way they do

today. When a packet arrives at anode, its header is examined and the

appropriate program is dispatched to operate on its contents.

Separate mechanisms for loading and execution might be valuable when

program loading must be carefully controlled. Allowing operators to

dynamically load code into their routers would be useful for router



extensibility purposes, even if the programs do not perform application- or

user-specifie computations. In the internet, for example, program loading

could be restricted to a router's operator who is furnished with a "back door"

through which they can dynamically load code. This back door would at

minimum authenticate the operator and might also perform extensive checks

on the code that is being loaded.

• There is a mixture of these approaches in which packets carry programs that may

refer to and invoke more general (and loadable) router-resident functionality.

•
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2. The second axis delermines al which hops active evaluation should occur.

• The internet currently lies at one extreme: interesting 'active' processing can occur

only at the endpoints.

• Another view is that active processing should occur at every intermediate hop.

• There is an intermediate position that allows evaluation at some of the

intermediate hops, thus allowing more flexibility than end-to-end approaches

while avoiding unnecessary processing overhead for simple tasks which do not

require evaluation at every hop.

3.2.5.2 Towards a Common Programming Model

Network programs must be transmitted across the communication substrate and loaded

into a range of platforms. This suggests the development of common models for: the

encoding of network programs; the "built-in" primitives available at each node; and the

description and allocation ofnode resources.

Program encoding. The objectives for program encoding are that they support:

• Mobility - the ability to transfer programs and execute them on a range ofplatforms.

• Safety - the ability to restrict the resources that programs can access.

• Efficiency - enabling the above without compromising network performance, at least

in the most common cases.

Mobility may be achieved at several different levels ofprogram representation:

• express the program in a high-Ievel scripting language, e.g. Tel;



• adopt a platform independent intermediate representation, typically a byte-coded

virtual instruction set, e.g. Java;

• or transfcr programs in binary formats, e.g., Omniware.

•
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The Table 3.1 below describes recently developed enabling technologies that support the

safe and efficient execution of each level of program encoding. Ali three approaches

prove useful:

PROJECT MS E DESCRIPTION

Safe-Tcl X X Safe-Tcl (based on Tel) is a scripting language that provides
(source) safety through interpretation of a source program and closure

of its namespace. It depends on the restricted closure and
correctness of the interpreter to prevent programs from
deliberately or accidentally straying beyond their permitted
execution environment.

Java X X x Java uses an intermediate instruction set to achieve mobility.
(intermediate) Traditionally, the safe execution of intermediate code has

relied on its careful interpretation. One of Java's key
contributions is to improve efficiency by off-loading
responsibility from the interpreter: the instruction set and its
approved usage are designed to reduce operand validation
pel' executed instruction.

Omniware x X X Omniware portable object-code depends on software-based
(object-code) fault isolation (SFI) to enforce safety efficiently. It

prescribes a set of rules that instruction sequences must
adhere to, e.g. restrictions on how address arithmetic is
performed. In conjunction with run-time support, these rules
define a "sandbox" within which the program can do what it
Iikes, but that it may not escape.

Proof- X X PCC uses a novel approach to achieve safety: it attaches a
Carrying formai proof of the properties of a binary program. The
Code recipient can check that the proof is valid, a process that is
(object-code) much simpler than constructing it from scratch. Currently,

PCC is practical only short programs.

Table 3.1 Program Encoding Technologies (wilh labeled columns M, S. and E
Assessing mobilily. safety. and efficiency. respectively)

• source encodings support rapid prototyping;



• intennediate representations provide a compact and relatively efficient way to express

short programs; and

• commonly used modules might best be expressed at the object-code level.
•
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A possible approach to node interoperability would be to agree on an intennediate

instruction encoding as the backstop for code mobility. Node implementers and users

would be welcome to leverage alternative encodings, so long as they provide mechanisms

through which an intermediate encoding of a program can be obtained or generated.

Implementers may also leverage techniques such as dynamic ("on-the-fly") compilation

that optimize common processing routines, both by converting portable representations to

native ones, and by specializing programs to individual contexts. Operating system

support for more specifie strategies, such as "path"-based scheduling, protocol code

reorganization, and low-Ievel extensibility should also prove usefuI. The Table 3.2 below

describes sorne ofthese compilation and operating systems technologies.

PROJECT DESCRIPTION

Scout Scout is designed to support communication-oriented tasks. Il
allocates and schedules resources on a "path" basis and applies a
number of optimizations intended to increase throughput and
decrease latency. Many of the techniques may be applicable to
programs loaded into network nodes.

Exokernel The exokernel enables programs to safely share low-level access
to system resources. It implements a thin veneer that securely
multiplexes the raw hardware. This in turn allows programs to
tailor their own abstractions of operating system services, e.g.,
access to the active node environment.

SPIN SPIN relies on the properties of the Modula 3 language and a
trustworthy compiler to generate programs that will not stray
beyond a restricted environment. Programs signed by the compiler
may be dynamically loaded into the operating system.

'c 'c and VCODE enable "on-the-fly" code generation. This aIlows
source programs to be automatically tailored, or even wholly
generated, at runtime. These technologies could aIlow active
nodes to translate commonly-used programs to binary encodings.

Table 3.2 Operating System Technologies



Common primitives. The services built-in to each node might include several categories

of operations:

• primitives that allow the packet itself to be manipulated, e.g., by changing its header,

payload, length, etc.;

• primitives that provide access to the node's environment, e.g., the node address, time

of-day, link status, etc.; and

• primitives for controlling packet flow, such as forwarding, copying, discarding.

• Additional primitives might provide access to node storage and scheduling, e.g., to

facilitate rendezvous operations that combine processing across multiple packets.

•
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Node resourees and their allocation. Beyond encodings and primitives, there must be a

common model of node resources and the means by which policies governing their

allocations are communicated. The resources to be modeled include: physical resources,

such as transmission bandwidth, processing capacity, and storage; as weil as logical

resources, such as routing tables and the node's management information base. Safe

resource allocation is an area that will require considerable attention. Active nodes will be

embedded within the shared network infrastructure, and so their designs must address a

range of "sharing" issues !hat are often brushed over in the design of programmable

systems destined for less public environments.

3.2.6 Brief Overview of Current Existing Active Network Technologies

ln this section, we will introduce sorne active network technologies which were

developed recently, which include PLANet [HMA+98] & SwitchWare [SFC+], ANTS

[WGT96], NetScript [YS96], Smart Packet [SZJ+], etc.

3.2.6.1 PLANet & SwitchWare (University of Pennsylvania)

PLANet is an active network that is programmable in two ways. First, packets contain

programs written in a special-purpose packet language called PLAN (Packet Language

for Active Networks); these programs serve a role similar to the header of a traditional

packet in providing control ofhow packets operate inside the network.



The SwitchWare project uses PLAN as the network API, it aims to build a software

programmable active network switch using a discrete approach. Programs could be

dynamically loaded into the switch tbrough the switch's input ports. Packets could then

select between different network services by having different programs run on them.

•
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3.2.6.2 ANTS (MIT)

ANTS (an Active Node Transfer System) was developed at MIT, which is an "active

network" approach to building and deploying network protocols. This approach views the

network as distributed programming system, and provides a programming language-Iike

mode for expressing new protocols in terms of operations at nodes. lt provides the greater

flexibility that accompanies a programming language and the convenience of dynamic

deployment.

The ANTS architecture has tbree key components:

• The packets found in traditional networks are replaced by capsules that refer to the

processing to be performed on their behalf.

• Routers and end nodes are replaced by active nodes that execute capsule processing

routines and maintain their associated state.

• A code distribution mechanism ensures that processing routines automatically and

dynamically transferred to those nodes where they are needed.

Capsule

A capsule is a generalized replacement for a packet. Its most important architectural

function is to include a reference to the forwarding routine to be used to process the

capsule at each active node. Sorne forwarding routines are "well-known" in that they are

guaranteed to be available at every active node, such as standard routing; Other routines

are "application-specific", which will not reside at every node, but must be transferred to

anode by the code distribution scheme before capsules of that type can be processed for

the first time. Each capsule carries an identifier for its protocol and particular capsule type

within that protocol.



Active Nades

Active nodes execute protocols within a restricted environrnent that limits their access to

shared resources. They exported a set of primitives for use by application-defined

processing routines. They also supply the resources shared between protocols and enforce

constraints on how these resources may be used as protocols are executed.

•
CHAPTER 3 ACTIVEADAPTATION BYMOBILEAGENTAND ACTIVENETWORK S4

•

Code Distribution

The third component of ANTS is a code distribution system. Given a programmable

infrastructure, a mechanism is needed for propagating program definitions to where they

are needed. The ANTS couples the transfer of code with the transfer of data as an in-band

function.

3.2.6.3 NetSeript (Columbia University)

The NetScript project seeks to create a model for programmable, rather merely

configurable, intermediate network node engine. NetScript uses agents to program

management and control the functions of intermediate nodes. A NetScript agent glues

primitive node functions to processing packet streams and allocate node resources.

NetScript agents can be programmed to handle both standardized as weil as non

standardized protocols. Packet streams arriving at intermediate nodes are processed by the

appropriate agents to accomplish the desired functionality ofthese protocols.

The NetScript project consists of three components:

• an architecture for programmillg networks in the large.

NetScript views a network as a collection of Virtual Network Engine (VNE)

interconnected by Virtual Links (VL). The VNEs can be programmed by NetScript

agents to process packet streams and relay these streams over VLs to other VNEs.

The collection of VNEs and VLs defines a NetScript Virtual Network (NVN).

NetScript provides a language to program a NVN. A NetScript program can be

viewed as a collection of threads, distributed at the VNEs and processing packet

streams moving through the NVN.

• an architecture ofa dynamically programmable networked device.



• a language called NelScripl for building networked software on a programmable

network.•
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3.2.6.4 Smart Packcts (BBN Tcchnologics)

Smart Packets is an Active Networks project focusing on apply active networks

technology to network management and monitoring without placing undue burden on the

nodes in the network. Smart Packets improves the management of large complex

networks by

• moving management decision points doser to the node being managed, targeting

specific aspects of the node for information rather than scatter-shot collection, and

• abstracting the management concepts to language constructs, allowing nimble

network control.

The Smart Packets architecture consists of four parts:

• a specification for smart packet formats and their encapsulation into sorne network

data delivery service,

• the specification of a high level language, its assembly language, and compressed

encoding representing that portion ofa smart packet that gets executed,

• a virtual machine resident in each networking element to provide a context for

executing the program within the smart packet, and

• a security architecture.

3.2.7 ANEP (Active Network Encapsulation Protocol)

One challenge in implementing Smart Packet is that IP does not have a notion of a

datagram whose contents is processed at intermediate nodes. An IP router simply

examines the datagram header and forwards the datagram. However, for Smart Packets in

active network, the router must process the contents of the datagram before forwarding il.

Further, the router should examine the contents of the datagram ooly if the router support

Smart Packets. Otherwise, the router should pass the datagram through.

One solution is to rnodify an IP option, Rouler Alerl, to achieve the operation specified

above. The Rouler Alerl oplion tells the router that it may need to examine the contents of



the datagram. Router Alert options can be specified for both IPv4 and IPv6. Based on the

type tag, and possibly an examination of sorne of the higher-layer headers, the router can

determine if it should process the datagram contents. If the router doesn't support active

networks, it ignores the option and forwards the datagram. If the router supports Active

Networks, it examines the ANEP (Active Network Encapsulation Protocol) message,

learns the message is a Smart Packet and, if the router supports Smart Packet, it processes

the packet.

•
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This section specifies a mechanism for encapsulating active network frames for

transmission over different media. This format allows use of an existing network

infrastructure (such as IP or IPv6) or transmission over the Iink layer. This mechanism

allows co-existence of different execution environments and proper demultiplexing of

received packets.

An active network node (or active router) is capable of dynamically loading and

executing programs, written in a variety of languages (such as PLAN, JAVA, etc.). These

programs are carried in the payload of an active network frame. The program is executed

by a receiving node in the environment specified by the ANEP. Various options can be

specified in the ANEP header, such as authentication, confidentiality, or integrity.

TerminoIogy

paeket: an ANEP header plus the payload

active node: a network element that can evaluate active packets

TLV: acronym for TypeILengthlVaiue constructs

basic header: the first two elements of the ANEP header

Reasons

The reasons an active network header is necessary are:

• An active node receiving a packet must be able to uniquely and quickly deterrnine the

environment in which it is intended to be evaluated.

• To a1low minimal, defauit processing of packets for which the intended evaluation

environment is unavailable.



• So that information that does not fit conceptually or pragmatically in the encapsulated

program (such as security headers), can be placed in the header.•
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Packet Format

The packet format is shown in Figure 3.3.

Version 1 Flags 1 Type ID
ANEP Header Length 1 ANEP Packet Length

Options

Payload

Figure 3.3 ANEP paeketformat

The Version field indicates the header format in use. This field will be changed if the

ANEP header should change. If an active node receives a packet whose version number it

does not recognize, it should discard the packet. The length of this field is 8 bits; The flag

field is 8 bits long. It indicates what the node should do if it does not recognize the Type

ID. If the value is 0, the node could try to forward the packet using the default routing

mechanism. If the value is l, the node should discard the packet; The ANEP Header

Length field specifies the length of the ANEP header in 32 bit words. The length of this

field is 16 bits; The Type ID field indicates the evaluation environment of the message.

The active node should evaluate the packet in the proper environment. The length of this

field is 16 bits. If the value contained in this field is not recognized, the node should

check the value of the mo'st significant bit of the Flags field in deciding how to handle the

packet; The ANEP Paeket Lengthfield specifies the length of the entire packet; Options in

the form ofTLVs can included in the packet immediately following the basic header; The

Option Type field identifies the option. How the active node handles the option Payload

depends on the Option Type value.
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As the name suggests active filters are active technology based on mobile agent and

active network. Active filters can be cither nomadic or modifiable, or both. Active filters

can be developed to be used in various areas, existing research on the applications of

active filters includes: programmable congestion control; intelligent communication

filtering; firewalls which are related to security issues; and e-commerce, such as online

auctions, etc. This chapter is divided into two sections: Section 4.1 devotes to protocol

classifications which are closely related to active filter functions in active network, such

as tiltcring protocol class, combining class, transcoding c1ass and network management

c1ass, etc. Existing active tilter applications are introduced in Section 4.2, which include

active networking and congestion control, intelligent communication filtering, firewalls,

and online auctions, etc.

4.1 Protocol Classification in Active Networks

As we mentioned in Chapter 3, one of the biggest advantages of active network is that it

has enabled us to develop and test new protocols within short time. While each protocol

seems to be unique to an application, it generally possesses characteristics that are

common to some other protocols. Ali such protocols can collectively be identified as

members of a class. These include the architecture required for deployment, common

protocol interfaces and the set of services required by the protocols from an active node.

This facilitates rapid design of new protocols and the seamless introduction of these

protocols into the network.

A few key issues to consider while developing the methodology for each protocol class

are:

• Architecture for deployment: The architecture refers to the placement (location) of the

protocol services in the nodes of the active network.



• Common interface: This means the structure of the Smart Packet and its design.

• Node primitives requlred: This describes the requirements of the protocol before il

executes at an active node.

•
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11 is also important to find out if there is a top%gy for the distribution of a protocol

inside the active network that is most efficient. For example. do wc need to make ail the

nodes be active nodes in a network in order to implement active filtering? Or do we only

need some critical network nodcs ta be active nodes?

We can identify the fol1owing protocol classes whieh arc related to the functions of active

filters:

4.1.1 Filtcring Protocol Class

This encompasses ail those protocols that perform packet dropping or employ some other

kind of bandwidth reduction technique on an independent per-packet basis such as

compression protocols and the transmission of layered MPEG: by prioritizing the layers,

it is possible to maintain real-time connectivity in times of network congestion by

dropping packets containing the lower priority layers.

Similar strategies are being used for audio transport whcrein the signal components are

separated based on their level of contribution to the original sound. Signal components

that do not contribute heavily are placed in lower priority packets that are specially

marked for discard if congestion occurs.

Protocols belonging to the filtering class are primarily developed to reduce bandwidth

requirements of the application data Temporary reduction in bandwidth requirements is

necessary in the face of transient congestion problems. However, bandwidth reduction

techniques are always required whenever there is a severe rate mismatch. This typically

occurs at interfaces where there is an order of magnitude difference in the speeds on

opposite sides of the interface e.g. the interface between wired and wireless networks. In

such cases, it is obvious that the protocols have to be deployed at the interface gateway.



ln an active network, applications could deploy the filtering code in this way: applications

use congestion detection module (CDM) in the active nodes or just use Smart Packets to

find out the occurring of a rate mismatch or congestion then installs (downloads) the

filtering protocol at those active nodes. Since protocols of this class are designed

primarily to reduce bandwidth requirements, the active node must supply them with the

following primitives:

• To find out the available bandwidth over a particulur interface.

• To find the maximum bandwidth capacity on ail interfaces.

• Management of small state involves providing primitives for the creation of small

state, and storage of information to and the retrieval of information from the small

state.

•
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4.1.2 Combining Class

The class of combining protocols has the property of combining packets that may come

from the same stream or from different streams. For example, the Wireless ATM

Voice/Data project [Wireless) combines two or more packets from the same stream to

form a single packet that is forwurded to the next hop, the purpose of this technique is to

reduce congestion; The Distributed Sensor Data Mixing [Yeadon96) project at Lancaster

University is a1so a member of this class of protocols because it combines different

streams into one: Different types of sensors such as microphones and antennas, dispersed

over a wide urea network, collect data and transmit them to receivers on the network.

Instead of having each receiver do its own mixing of the transmitted data, sorne of the

mixing is done within the network on the input signais that pass through the network node

at approximately the same time. If the mixed signal is smaller than the SUffi of its

constituents, then it reduces the bandwidth requirements and the processing to be done at

the receiver.

Combining is an expensive processing step; therefore it is desirable for the active nodes

deploying a protocol of this class to have sufficient processing power. They must a1so

have sufficient memory storage because combining sometirnes involves storing packets



from one stream until packets from the other arrive at the node. Therefore the interfaces

that active nodes have to provide for this class ofprotocols are:

• Finding memory available for the Smart Packet.

• Management of small state.

• Primitives for c1oninglduplication of Smart Packets to enable multicasting.

•
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4.1.3 Transcoding Class

Protocols that transform the user data into another form within the network belong to the

c1ass of transcoding protocols. Examples of such protocols include encryption protocols

and image conversion protocols. These protocols are CPU-intensive and therefore require

nodes with sufficient computing resources. Encryption protocols are generally deployed

only at the end-points of a connection whereas compression protocols are deployed either

at the end-points or at points in the network where congestion likely happens and

bandwidth control alternatives are desired. Protocols ofthis c1ass are primarily processing

functions and therefore the primitives desired are:

• Available memory.

• Computing resources.

4.1.4 Nctwork Management Class

The programmability of the nodes in an active network enables the creation of self

configurlng, self-diagnosing and self-healing networks. This involves actions such as

alarm and event reporting and workload monitoring, etc. The advantage of using active

network to perform such functions is that it is possible to capture a consistent state of a

node by sending a single Smart Packet that gathers ail relevant information at one time.

The architecture involved in the deployment of these protocols requires dynamically

establishing monitoring and monitored entities in network. Alarm and event reporting

functions have to be defined and installed at various nodes in the network. The active

nodes must provide management Smart Packets with the following interfaces:

• To create, access and modify the state ofthe active node.

• To establish events and state for which information is to be gathered.
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As a generalization, active filters may perform the functions of filtering, combining,

transcoding, network management (such as rerouting based on real-time network

conditions).

4.2 Existing Active Filter Applications

In this section, we will introduce the existing active filter applications, which includes:

active networking and congestion control; intelligent communication filtering; firewalls;

online auctions, etc.

4.2.1 Active Networking and Congestion Control

Active Networking (AN) [BCZ97] refers to the addition of user-controllable computing

capabilities to data networks. With active networking, the network is no longer viewed as

a passive mover of bits, but rather as a more general computation engine: information

injected into the network may be modified, stored, or redirected as it is being transported.

ln this approach, users can select from an available set of functions to be computed on

their data, and can supply parameters as input to those computations. The availabIe

functions are chosen and implemented by the network service provider, and support

specific services; thus users are able to influence the computation in a way of choosing

from a selected functions, but cannot define arbitrary functions to be computed.

4.2.1.1 An Architecture for Active Networking

A Generic ModelofPacket Processing

The network consists of switching nodes, which are connected via links. In this generic

model, nodes don't do anything except process the packets received on their incoming

links; processing an incoming packet may result in one or more packets being transmitted

on outgoing links. More precisely, the state ofa node comprises the following pieces:

• An input queue ofpackets. Packets received on any Iink are placed in the input queue.



• For each outgoing link, an output queue containing packets to be transmitted on that

link.•
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• A collection of generic state information. This represents long-lived information

maintained at the node, such as routing tables or virtual-circuit switching tables.

Each node in the network supports a particular set of functions, each of which has a

unique identifier. Each packet contains a set of headers, which specify (i) the identifier of

one or more functions to be applied to the packet; and (ii) parameters to be supplied to

those functions. When the packet is processed, the function identified by each header is

applied, resulting in updating of the node's state and possibly modification of the rest of

the packet.

For each function identifier f, and each parameter value p for function f, there is a

particular subset of the node's generic state information that is relevant tof and parameter

p. Functions cannot modify or use parts of the node state that are not relevant.

Each node repeatedly performs the following:

Remove a packet M Irom the input queue;
while (more lunctions need to be applied to M):

Let f, p be the lunction ID and parameter !rom the next header 01 M;
Let g be the state component relevantto f and p;
Invoke function f on M, with p as parameter:

(optionally) Modify M;
(optionally) Update g;
(optionally) Queue messages lor output;

Traditional networking functions can be characterized as node-processing functions in

this mode!.

Fram Packet Farwarding ta Active Netwarking

This approach defines active networking to be extension of the set of functions that can

be invoked at a network node beyond those required to simply move bits from place to

place. The basic idea of active networking is the incremental addition ofuser-controllable

functions, where each function is precisely defined and supports a specific service.



In general, the introduction of new AN functions involves specification of the following:

• The identifier associated with the function.

• The parameters associated with the function, and the method of encoding them in a

packet.

• The semanties of the funetion. A standard environment, comprising support services

such as private state storage and retrieval, access to shared state information (e.g.

routing tables), message forwarding primitives, etc., would provide a foundation on

which new AN functions services could be built.

•
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In the view of AN. addition of a new jimetion ta a network node would be the

responsibility ofthe network service provider. This approach corresponds roughly to the

way new features are deployed in the public switched telephone network today: users

have the option ofprovisioning various features implemented and deployed by the service

provider.

4.2.1.2 Programmable Congestion Control

Operaling Madel

From the point of view of anode somewhere in the network, a flow is a sequence of

packets all having the same source and destination. A flow might consist of packets

traveling between a single pair of end-points, or it might be the aggregation of a set of

lower-level flows. It is assumed that a flow is identified by a label of some kind in the

network protocol header.

Generally, programmable congestion control operates as follows: Based on triggers that

indicate congestion control should take place, flow state is examined for advice about

how to reduce quantity ofdata. The important components ofthis model are:

• the triggers responsible for initiating congestion control,

• theflow state that contains the specifie advice for this flow, and

• the reduetion techniques defined by the network and made available to the users.



An important feature of this model is its consistency with traditional best·effort service.

That is, a flow provides advice about what to do with its data. The network node is not

required to take the advice, and may apply generic bandwidth reduction techniques.

•
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This approach focus on the special case of intelligent discard of data. Il allows

applications to define units based on application semantics, with aim of discarding the

entire unit if any portion must be discarded. Given that bandwidth reduction will occur by

discarding units, a question arises as to which units (within a flow) to discard:

• In the most simple case, there is no choice: when the congestion indication trigger

occurs, a fixed unit (typically the one currently being processed) is subject to discard.

• More efficient network behavior is possible. The congestion control advice was

considered, which indicating priority or sorne other policy by which to discriminate

across data in the same flow.

Making use of this advice clearly requires that the network node have access to a

collection of data within a single flow. These mechanisms involve storing and

manipulating flow data before it leaves the node, e.g., while sitting in a per·flow queue

from which packets are periodically selected for output by a scheduling mechanism.

4.2.1.3 Application and Mechanisms of Congestion Control to MPEG

As we introduced in Chapter 2, Section 2.5, the important feature of an MPEG stream is

that it consists of a sequence of frame of three types: I·frame, P-frame, B·frame. Coding

dependencies exist between the frames, causing P- and B-frames to possibly require other

frames in order to be properly decoded. Each I-frame plus the following p. and B- frames

forrns a group of pictures (GDP), which can be decoded independently of the other

frames.

The specific components of the programmable congestion control are implemented as

follows:



• Source-allached advice. The mechanisms were considered, in which the source

identifies "units" such that the unit will be discarded if any portion of the unit must be

dropped.

• Frame Level Discard mechanism defines a unit to be an MPEG frame. The advice

given is to queue a datagram if and only if its corresponding frame can be queued in

its entirety. The state for each frame was maintained that is being discarded or

buffered, and use this state information to decide, in constant time, to buffer or

discard a particular datagram.

• A mechanism that identifies dependencies between units is further considered. Group

ofPic/ure (Gap) Level Discard maintains state about the type of frame discarded. In

case an 1 frame has been discarded, the corresponding P and B frames are discarded as

weil.

• Choice among units. A policy for making choices amongst units is considered. When

a 1frame is too large to be accommodated in the output queue, and the queue contains

P and B frames such that their combined sizes are greater than that of the 1frame, then

such P, B frames are discarded, and the 1 frame transmitted.

• Triggers. Two types of triggers are considered. In the first, This approach detect and

respond to congestion only when data arrives that cannot fit in the output queue. Ali

three mechanisms mentioned above use this trigger. An "early" trigger, which detects

and responds to congestion when the output queue occupancy exceeds a certain

threshold are aIso being considered.

•
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4.2.1.4 Limitations

This approach has some benefits with respect to incrementai deployment as weil as

security and efficiency: AN functions can be individually implemented and thoroughly

tested by the service provider before deployment, and new functions can be added as they

are developed. However, there are some tradeoffs. As we can see, users can only select

from an available set of functions to be computed on their data. The available functions

are chosen and implemented by the network service provider; thus users can only be able

to influence the computation of a selected function, but cannot define arbitrary functions

to be computed.



4.2.2 Intelligent Communication Filtering

A mobile computer may move through areas that provide wide variety of operating

conditions. In particular, it may be attached to a high speed (wired) network at one

moment and to a low speed, pay-per-use (wireless) network at the network moment. Most

distributed systems can be expected to react poorly to such sudden, drastic changes in

available bandwidth.

•
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A new architecture for distributed systems supporting mobility was advocated [2D94]. In

this architecture an intermediary tilter is interposed between client and server. Ils purpose

is to tilter or delay ail but the most essential data that would travel over the slow link to

the mobile host.

The actions of the intermediary tilter are controlled by the client, since the client is more

likely to be informed of the circumstances that motivate data tiltering, and since the

network link to the client is probably the "cause of the problem." Types of actions that the

intermediary might take include:

• Running an optimized version of a protocol between itself and the mobile host.

• Omitting data or reducing interactions.

• Delaying transmission ofsorne data, forcing the client to demand-fetch it.

• Compressing data.

• Compression and decompression are properly placed at the intermediary and mobile

host, rather than "end-to-end" because the need for compression arises from link

characteristics.

The tilters were expected to embody a significant amount of application specific

knowledge, and would have to accumulate state in order to make effective tiltering

decisions.

A number ofadvantages derive from tiltering data at the intermediary tilters:

• Since the communication link between intermediary and mobile host may be slow,

reducing the amount of traffic can improve performance.



• Even if data filtering reduces performance it may reduce cost. Depending on the

relative degrees of reduction, reduced cost in return for reduced performance might be

desirable.

• If properly designed, the intermediary can act not only as a filter, but also as an

"agent": i.e., as a permanent representative for a mobile host that might not always be

powered up or connected to the Internet.

•
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Design oflllte/ligent Communication Filter

The following will introduce how to interpose an intermediary, add a filter and associate a

filter with a stream.

(l) Interposing an Intermediary

The intermediary is realized as a process called the Proxy Server. The Proxy

Server runs on sorne host, presumably in the wired part of the network. It could be

advantageous to run the Proxy Server on a host that is the fringe and hence

attached to both wired and wireless links. Such a host might have extra

information about the characteristics of the wireless link. However, there is no

constraint on where the Proxy Server may run.

The Proxy Server handles ail trafflc between the mobile host and the outside

world, which includes both filtered and unfiltered data.

(2) Adding a Filter

A filter is hard-coded into the Proxy Server and automatically attached to data

streams created by the mobile host.

(3) Associating a Filter with a Stream

When the mobile host starts a process, a "session" is created with the Proxy Server

which lasts the lifetime of the process. Within the proxy server, two threads are

created to handle data coming from and going to the mobile host's process,

respectively. Such threads cali a filter function, handling packets to il and possibly

receiving packets back.



Unresolved Issues

There is no design of a programming interface through which arbitrary tilter code can be

dynamically loaded into the Proxy Server and attached to an arbitrarily defined data

stream. The tilter could be written in a simple interpreted language containing primitive

actions (forward, discard, etc.) to be executed based on the contents of the packet.

•
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Where to place the Proxy and when to move it is an issue that remains to be investigated.

Il seems desirable to have the Proxy located near the mobile host it is serving; however, it

certainly is undesirable to move the Proxy too often in response to a highly mobile host.

4.2.3 Firewalls

Firewalls implement tilters that determine which packets should be passed transparently

and which should be blocked. Although they have a peer relationship to other routers,

they implement application- and user-specific functions in addition to packet routing. The

need to update the firewall to enable the use of new protocols is an impediment to their

adoption. In an active network, this process could be automated by allowing applications

!Tom approved vendors to authenticate themselves to the firewaIl and inject the

appropriate modules into it.

4.2.4 Online Auctions

Web servers hosting online auctions are currently among the most popular sites in the

Internet. A server running a live online auction collects and processes client bids for the

available item(s). This server also responds bids for the current price of an item. Because

of the network delay experienced by a packet responding to such a query, its information

may be out of date by the time it reaches a client, possibly causing the client to submit a

bid that is too low to beat the current going price. Thus, unlike auctioneers in traditional

auctions, the auction server may receive bids that are too low and must be rejected,

especiaIly during periods ofhigh load when there are many concurrent bids.

Current implementations of such servers perforrn ail bid processing at the server. In an

active network, low bids can be tiltered out in the network, before they reach the server.

This capability can help the server achieve high throughput during periods of heavy load.



When the server senses it is heavily loaded, it can activate filters in nearby network nodes

and periodically update them with the current price of the popular item. The filtering

active nodes drop bids lower than this price and send bid rejection notices to the

appropriate clients. This frees up server resources for processing competitive bids and

reduces network utilization near the server. The filtering active nodes could also keep

track of the number of rejected bids at each price, and ship those to the auction server at

the end of the auction. The auction server performs caching (of CUITent price information)

in network nodes.
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The essential feature of the auction service is thai low bids may be rejected at nodes

within the network when server load is high. The basic form of this functionality can be

realized can realized in ANTS (an active network architecture developed at MIT which

we introduced in 3.2.5.2) with a protocol comprised offour capsules:

• a FILTER capsule for the server to set a filtering price.

• a BIO capsule for clients to submit bids.

• a SUCEED capsule for the server to notify a client that a bid succeeded.

• a FAIL capsule to notify a client that a bid failed or would have failed.

During the normal operation, BID capsules are sent from clients to the server, and

SUCCEED and FAIL capsules retumed from the server to client. Unlike traditional

auctions, bids may fail to be accepted because they are out-of-date by the time they are

processed at the server. During periods of high load, many bids may fail, and the server

may delegate some rejection processing to active network node. It does this by sending

FILTER capsules to nearby active nodes. These capsules store the current price in the

node, and subsequent BIO capsule passing through the node compare the price of their

bid with a known bid. If it is lower, then a FAIL capsule may be retumed from within the

network indicating failure, and the BIO capsule need not be forwarded to the server. Note

that the SUCCEED capsule is generated only by the server, never by interior network

nodes.



The FILTER capsule uses a flooding algorithm to update the CUITent price of the item at

ail network nodes within a certain radius of the server; the size of the radius in hops is

selected by the server depending on load. At each load it reaches, it updates the item's

price in the cache, decrements its own hop limit, and then forwards copies of itself on ail

outgoing links. Forwarding stops when the hop limit is exhausted, or if it reaches node

that has filter that supersedes the one being forwarded. The BIO capsule forwards itself

towards the server, comparing its bids with any known prices it discovers along the way.

Strictly lower bids are rejected by creating a FAIL capsule and retuming it to the sender

in place of forwarding the failed BIO. The processing routines for the FAIL and

SUCCEED capsules are not shown, since these capsules are simply forwarded at nodes

until they reach their destinations.

•

•
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Chapter 5

Extended Use ofActive Fllters in Other Domains

In this chapter, according to the tiltering theories introduced in Chapter 2, by using the

mobile agent and active network technologies which were discussed in Chapter 3, and

based on Chapter 4's existing active tilter applications, we extended and developed the

active filter functions into other domains, such as: real-time resource management;

rerouting; application-specifie tiltering in wireline/wireless network; and real-time

multicast. Therefore, this chapter is divided into four sections: Section 5.1 covers active

tilters in real-time resource management, which includes the motivation of our research

and design of an active tilter architecture. Section 5.2 devotes to load-sensitive rerouting

via active tilters. Active tilters could also be applied to wireline/wireless network, which

is discussed in Section 5.3; In Section 5.4, we designed another active tilter architecture

which can be used to improve the efficiency of real-time multicast.

5.1 Active Filters in Real-time Resource Management

In the design of active tilter in real-time resource management, active tilter is a code

segment that applications or service providers inject into the network to assist in the

runtime management of the network resources that are allocated to them.

This active tilter architecture is driven by two requirements. First, users should be able to

tailor runtime resource management so that they can optimize their notion of quality of

service. Second, since active tilters execute inside the network, they can quickly respond

to changes in the network conditions. We also describe the programming interface that

active filters can use to monitor the network conditions, e.g. queue status and bandwidth

of the flows they are responsible for, and to modify resource use, such as selective packet

dropping, rerouting, and changing reservations, etc.



Active filtcr is a mechanism (code segments) for applications and service providers to

inject into the network that are directly involved in or affect the resource management

decisions for the trafflc belonging the that user. Service providers must be able to

influence how "their" resources are managed based on their own notion of service quality,

and this is most directly achieved by having them provide code (active fillcr) that

implements their policies. We also cali these code segments de/egates since they

represent the interests of the users inside the network. These delegates can be developed

to handie problems such as congestion control for video streaming and balancing trafflc

load.
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5.1.1 Motivation

Advaneed applications will have many flows that use a variety of resources in the

network. Runtime resource management policies arc needed in a number of situations:

• First, the availability of networking resources may change, forcing the application to

change how it uses resources; this is most important for applications that use best

effort service or weak guarantees.

• Altematively, the application may have to change its resource usage because its

requirements have changed.

As we have already known, responsibility for adapting resource use has traditionally been

pushed to the end points, this simplifies the core of the network. However, both network

applications and the network itself are changing rapidly. Applications are becoming more

complex and sophisticated. The network provides mechanisms for explicit resource

control and is delivering more sophisticated services. As result of these changes, having

sorne resource management policies implemented by entities inside the network could

have several advantages:

• Strategically p'aced entities in the network can more easily collect ail the information

that is needed to moke resource management decisions. For example, they could

monitor how ail flows belonging to a user are using a congested link. An endpoint

typically has information ooly on the flows it generates or receives.



• Entitles ln the network have Immediate access ta relevant Information and can more

qulckly respond ta changes. Adaptation policies implemented at end-points have to

deal with at least one round-trip time worth of delay.

• Endpolnts of course have to be involved in rulllime adaptation. However, cntllies in

the Iletwork can glve specifie feedback that may help in adapling. Without explicit

feedback endpoints have to rely purely on implicit feedback, Le. packet loss or

measured delay; implicit feedback is often hard to interpret and often offers

incomplete information.

•
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Motivated by these potential benefits, we feel that it is necessary to implement an

application-specifie or service-specifie runtime resource management policies inside the

network by using mobile agent and active network technologies called active filters.

5.1.2 Active Filter Architecture

In this part, we describe the active filter runtime environment, focusing on the

programming interface that active filters use to perform customized runtime resource

management. Since active filters use this interface to control the router's behavior, we calI

it Router Control Interface (RCl).

The most directive way of having applications and service providers involved in runtime

resource management is to have them provide code that implements their adaptation

policies. Applications or service providers can inject active filters into the network to

implement customized resource management oftheir data flows.

We divide active filters into active data filters and active control filters. Active data

filters can be used to implement data manipulation operations such as video transcoding,

compression, or encryption, they need large memory and computing resources. Active

control filters, on the other hand, perform resource management tasks that do not require

processing or even looking at the body of packets, such as changing bandwidth

allocations, selective packet dropping, or rerouting. Active control filters could execute

on the control processor of routers or switches.



Active filters execute on designated active routers and can monitor the network status and

affect resource management on those routers. The network model that forms the basis for

the router control interface that active filters use is illustrated in Figure 5.1. The trafflc in

the network is viewed as a set of flows (a sequence of packets with a semantic

relationship defined by application and service providers). Flows are defined on each

router using a flow spec, Le. a list of constraints that fields in the packet header must

match for that packet to belong to the flow. A packet classifier in the data plane of the

router (shown in white in Figure 5.1) determines what flow each incoming packet belongs

to (Figure 5.2). The active control filters live in the control plane (shown in gray in

Figure 5.1) ofactive router and can monitor and change resource use in the data plane on

a per-flow basis.
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The distinction between control and data filters is in part driven by the desire to achieve

good performance using today's routers. Complex data manipulation operations like data

filters could be moved to computer servers, so that the router data plane can remain

simple: it only has to perform classification and scheduling. In contrast, there is more

room in the control plane for customization and intelligent decision making using active

control filters. However, even on different router architectures, e.g., routers· that can



support expensive data manipulation, the distinction will be useful, since the two types of

filters need different RCIs, and raise different performance and security concerns.•
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Figure 5.2 Active node architecture
(Adaptedfrom [CFK+98J)

A critical design decision for active filters is the definition of the router control interface,

i.e., the Rcr that active filters use to interact with the environment. rf the RCr is too

restrictive, it will limit the usefulness of active filters, while too much freedom can make

the system Jess efficient.

The definition of the Rcr is driven by the need to support resource management and it

includes functions in three categories:

• Collecting information: Active filters can monitor network status, waiting for events

such as congestion conditions or hardware failures, or just keeping track of trafflc

patterns and flow distributions. Querying output queue sizes, checking for

connectivity, or retrieving bandwidth usage are methods that can be used to collect

information local to an active filter.

• Resource management actions: Active filters can change how resources are

distributed across flows: splitting and merging flows, changing their resource



allocation and sharing mies. For instance, a subset ofa flow may be isolated through a

flow split, and assigning no resources to that subset implements a selective packet

dropping mechanism. Active filters can also affect routing, for example to reroute a

flow inside the application's trafflc for load balancing reasons. Another example is to

direct a flow to an active data filter on a compute server that will, for example,

perfonn data compression to reduce bandwidth usage.

• Active fllter communication: Active filters can send and receive messages to

coordinate activities with peers on other routers and to interact with the application on

endpoints. Messaging between active filters allows the global knowledge and perfonn

global actions, as in the case of rerouting for load balancing. Interaction with end·

points increases the flexibility of the system, as adaptation to network events typically

involves the sources.
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5.1.3 Active Filtcr Runtime Environmcnt

Our current framework for active filters is based on Java and uses the Java virtual

machine, capable ofjust-in-time (JIT) compilation and available for many platfonns. We

hope that this environment will give us acceptable perfonnance, portability, and safety

features inherited from the language. Active filters can be executed as Java threads inside

the virtual machine "sandbox." Table 5.1 presents the methods that implement the RCI

Methods 1 Description
add Add node in scheduler hierarchy
deI Delete node fun scheduler hierarchy
set Change parameter on scheduler queue
dsc on Activate selective discard in classifier
dsc- off Deactivate selective discard in classifier
probe Read scheduler queue state
reqMonitor Request async. congo notification
retrieve Retrieve scheduler queue state
getrt Get next hop's IP address for a specified destination
chgrt Change the routing table entry for a specified destination
mmode_on Tum on the monitor mode to monitor bandwidth and delay
mmode off Tum off the monitor mode
getdata- Retrieve bandwidth usage and delay data recorded in the kemel

Table 5.1 Rel caUs avaUable to the active filters



to the packet classifier, scheduler and router. Communication can be built on top of

standard java.net classes. While this environment is sufficient for experimentation, it is

not complete. Il needs support for authentication and mechanisms to monitor and limit the

amount of resources used by active filters.

•
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5.1.4 Active Filter Set Up

Setting up an active filter involves a number of steps:

• First, we have to verify that the router is an active router which has sufficient CPU

and memory resources to support the active filter. The active filter may also need

specifie libraries or APis that may or may not be available on normal routers.

Verifying that these conditions are met is a form of admission control.

• Second, the active filter code has to be transferred to the active router and installed.

• Finally, the active filter runtime environment has to be told what flows it is

responsible for.

Active filters are characterized by their QoS requirements, runtime environment needed

(e.g., Java, Perl, VisualBasic script, etc.). Runtime type identifies the native library

requirement of the active filter (e.g., JDK 1.0.2, WinSock 2.1, etc.). In addition to active

filter QoS and runtime requirements, the active filter setup message also contains a list of

flow descriptors, which identify flows to be manipulated by the active filter at the

execution active node. At the execution active node, when an active filter setup message

arrives, the appropriate runtime environment is located, the active filter is instantiated and

then is passed to the local resource manager. By using these handles, the active filters can

interact directly with the local resource manager to perform resource management for the

flows during runtime.

5.1.5 Implementation

This part briefly describe the conceptual testbed, and present how active filters can be

used to perform customized runtime resource management.
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Figure 5.3 Testbed Top%gy

The system will be implemented on a testbed of PCs. The topology of the conceptual

testbed is shown in Figure 5.3. The three routers can be Pentium II 266 MHz PCs. The

end systems ml through m9 could be workstations running Unix 4.0. Ail links are full

duplex point-to-point Ethemet links configured as 100 Mbps.

B. Se/ective packet droppingfor MPEG video streams

As we mentioned in Chapter 2, Section 2.5, MPEG video streams are very sensitive to

random packet loss because of dependencies between three different frame types: 1

frames (intracoded) are self contained. P frames (predictive) uses a previous 1 or P frame

for motion compensation and thus depend on this previous frame, and B frames

(bidirectional-predictive) use (and thus depend on) previous and subsequent 1 or P frames.

Because of these inter-frame dependencies, losing 1 frames is extremely damaging, while

B frames are the least critical. In this section, we will show how active filters can be used

to selectively protect the most critical frames during congestion.



To create congestion, we can direct three flows over the PC 1 - PC 2 link of the testbed:

two MPEG video streams and one unconstrained UDP stream. 80th video sources send at

a rate of 30 frames/second, the performance metric could be defined as the rate of

correctly received frames. We can then compare the performance of the following four

scenarios.

• In the first scenario, the video and data packets are treated the same, and the random

packet losses should result in a very low frame rate.

• In the second case, the video stream share a bandwidth reservation equal to the sum of

the average video bandwidths. This should improve performance. But the video

streams are bursty, and random packet loss during peak transfers still results in large

amount of frames cannot be received correctly.

• In the third scenario, we place an active filter on PC 1. The active filter monitors the

length of queue used by video streams using the probe calI. If the queue grows

beyond a threshold, it instructs the packet classifier to identiry and drop 8 frames.

This is done by setting up the B frames as a separate flow using the add cali (8 frames

are marked with an application-specific identifier), and then switching on selective

discard for that flow using the dsc_on cali. Packet dropping is switched off when the

queue size drops below a second threshold.

While active filters provide an elegant way of selectively dropping 8 frames, the same

effect could be achieved by associating different priorities with different frame types.

• In scenario four we can use an active filter to implement a more sophisticated

customized drop policy. In scenario three, either ail or none of the B frames are

dropped. By dropping the 8 frames of oruy a subset of the video streams, we can

achieve finer grain congestion control. To achieve this, we can use a simple "time

sharing" policy, where every few seconds the active filter switches the stream that has

8 frames dropped. This should further improve the performance.

•
CHAPTER S Extended Use ofActive Fi/ters in OtherDomains 80

•
C. Dynamic control ofMJPEG video encoding

An alternative to selective frame dropping for dealing with congestion is to use a video

transcoder to compress, or change the level of compression, of the video stream. Il is still



possible to dynamically optimize video quality, as in the previous example, by using an

active filter to control the level of compression.•
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In this experiment, we design an application consisting of Iwo MJPEG video streams and

Iwo bursty data streams is competing for network bandwidth with other users, modeled as

an unconstrained UDP stream. Ali flows are directed over the 10 Mbps PC 1- PC 2 link.

The application has 70% of the bandwidth, 20% for video and 50% for data, and

remaining 30% is for the competing users. The application data streams belong to a

distributed FFT (fast Fourier transforms) computation. Since FFT altemates between

compute phases, when there is no communication, and communication phases, when the

nodes exchange large data sets, the data traffic is very bursty. In this experiment, the

video flows have priorily on taking bandwidth not used by the FFT flows. This means

that video quality can be improved significantly during the compute phases of the FFT, if

the video can make use the additional bandwidth.

This can be achieved by having an active filter on PC 1 monitor the FFT traffic, and

adjust the lever of compression of a transcoder (an active data filter) executing on the

server m9. The transcoder takes in raw video and generates MJPEG. This allows the

video flows to opportunistically take advantage of available bandwidth.

D. Selective dropping ofnon-adoptivej/ows

Applications that do not use appropriate end-to-end congestion control are an increasing

problem in the Internet. These applications do not back off when there is congestion, or

they back offless aggressively than users that use correct TCP implementations, and as a

result, they get an unfair share of the network bandwidth. Such flows are called as non

conformant flows. In response to this problem, researchers have developed a variety of

mechanisms that try to protect conformant flows from non-conformant flows. These

inc1ude Fair Queuing scheduling strategies that try to distribute bandwidth equally, and

algorithms such as RED [FJ93] and FRED [LM97] that, in case of congestion, try to

selectively drop the packets ofnon-conformant flows.



Once deployed, these mechanisms will improve the fairness of bandwidth distribution at

the bottleneck link, however, they address only part of the problem since they are

designed to work locally. The problem is that non-conformant f10ws still consume (and

probably waste) bandwidth upstream from the congested link. Upstream routers may not

respond to the non-conformant f1ows, for example because they have no support for

detecting non-conformant f1ows, or because the f10w cannot be detected, or because the

f10w appears to be conformant (e.g., does not cause congestion). This problem can be

addressed by having routers propagate information on the non-conformant flows

upstream along the path ofthose f1ows.

•
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We can implement a simple version of this solution using active filters. An active filter

locally monitors the congestion status and tries to identify non-conformant f10ws among

the f10ws it is responsible for. Once a "bad" f10w has been identified (in the

implementation, a f10w can be considered to be non-conformant f10ws if its queue is

overflowing for an extended period of time), the active filter enables selective packet

dropping for the f1ow, and sends the f1ow's descriptor to a peer active filter on the

upstream router. When an active filter receives a report of a "bad" f1ow, il verifies that the

f10w indeed has a high bandwidth and enables selective packet dropping, if possible, and

forwards the message to the upstream router. Clearly, many alternative policies could be

implemented, for example, only a certain percentage of the packets could be dropped to

reduce its bandwidth instead of dropping ail packets as in our experiment design.

5.2 Load-sensitive flow rerouting via active filters

In a telecommunications network, a cali between two parties may be connected via one of

a number of paths. The process of deciding which of these paths to use is called routing.

Choosing an efficient path is important because the network's capacity for handling traffic

is finite. However, finding the optimal path is problematic because the network state

continually evolves. By the time the information needed to compute the optimal path

between any two nodes is made available at the node where that decision needs to be

taken, the network state will probably have changed, rendering that decision obsolete.

Furthermore, efficient routing decisions, those which maintain a balance in utilization of



the network resources, require information about the utilization of alt network resources

to be made simultaneously available to the process making that decision.•
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Routing algorithms are used to establish the appropriate routing paths or the equivalent

routing table entries in each node along a path. Most algorithms are based on assigning a

cost measure to each link in the network and determining the linear sum of paths across

the network. Based on these costs, the network tries to allocate traffic to the cheapest

paths across the network. Where the cost function is based on link congestion (real or

predicted) the cheapest path may change over time to maintain the network level

efficiency. However, such mechanisms are limited by their lack of information about the

wider network state, which means that the traditional routing approaches cannot

determine the most efficient path from the network point of view merely by checking a

small number of paths for congestion.

Routing decisions in Internet today are mostly load-insensitive and application

independent; in other words, the path taken by a packet does not depend on the load in the

network or the application the packet belongs to. While this results in simple and stable

routing protocols, it can also cause inefficient use ofnetwork resources. For example, in a

client-server s'.:enario, to handle multiple clients' requests, il may be necessary to have

multiple servers. However, there are times that one server is overloaded by requests from

clients for various reasons, and other servers are idle. In this case, it would make sense to

redirect sorne requests to the lightly-loaded servers to achieve better overall performance.

We can use active filter to rectify this situation, by which node level routing decision

making takes place in the presence of sorne (Iimited) information about the network level

state of congestion. Active filters can determine system topology by exploring the

network, then store this information in the nodes on the network. Other active filters use

this stored information to derive multi-hop routes across the network.

With the mechanisms described before, e.g., collecting information, communication with

peer active filters and abilities of changing network resources, active filters are good



candidates for this kind oftask. Since active tilters are considered part of an application,

they should reroute only the flows that belong to one application.•
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We can use a simple experiment to illustrate how active filters ean balance an

application's load by rerouting. The example application has multiple flows that use a

virtual network that use a virtual network that has 50% of the bandwidth reserved on each

of the three links between the routers. Flows originate from either mS or mg and the

resource trees on Link 1, 2 and 3 are shown in Figure 5.4. On Link 1, Node 1 corresponds

to this application and Node 2 corresponds to sorne other competing application. Node 3

corresponds to one specific flow of this application, m9 to m2. Node 4 corresponds to

another flow ofthis application, m9 to m4, and is drawn in dotted line, meaning this flow

is not known to the scheduler and it will be classified to Node 1. On Link 2, Node 1 and

Node 3 are the same as on Link l, but there are no other applications that have reserved

resources. On Link 3, Node 1 again corresponds to our application, and Node 2 represents

sorne other competing application. Node 3 and Node 4 correspond to a flow from mg to

m2 and a flow from mS to m6 respectively, and they are drawn in dotted Iines, meaning

that they do not have individual reservations.

(a)
(a) Resource tree on Linkl

(b)
(b) Resource tree on Link2

Figure 5.4 Resource trees

(c)
(c) Resource tree on Link3
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The active filter on PC 1 is responsible for one particular flow, m9 to m2, of this

application. lt knows the bandwidth usage by this flow on Links 1 and 2 by directly

monitoring them, and it queries the active tilter on PC 3 to get the available bandwidth for



this application on Link 3. Initially, the route flow m9 to m2 passes router PC 1 and PC 2

only (the shortest path). Since the application has a 50% reservation, this flow gets about

50 Mbps throughput. When another flow, m9 to m4, which belongs to this application

joins, they share the bandwidth reserved by the application, Le., each gets about 25 Mbps.

As this time, the active filter 011 PC 1 knows that 50 Mbps are available on Link 2 and, by

querying the active filter on PC 3, it understands that the available bandwidth for this

application on Link 3 is 50 Mbps. the minimum ofthese!wo numbers is larger than what

flow m9 to m2 is using, so the active fi1ter on PC 1 makes the decision to reroute flow m9

to m2 through PC 3. Later, when another flow, mB to m6, which also belongs to the

application starts, flow m9 to m2 still goes through PC 3 until flow m9 to m4 finishes,

making more bandwidth available on Link 1. At that time, the active filter changes the

route for flow m9 to m2 back to its initial route.

•
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5.3 Active Filters in WirelinelWireless Network

Future wireless media systems will require mobile multimedia communications to support

the sean:!css delivery of voice, video and data with QoS guaranteed. Delivering hard QoS

guarantees in the wireless domain is very difficult due to large-scale mobility

requirements, limited resources (e.g., relatively low bandwidth) and fluctuating network

conditions. In this section, we argue that by using active filters, we can scale flows during

periods of QoS fluctuation.

5.3.1 Active Filters

Active fi/ters are active technology, and in our approach they are based on Java coded

agents which are capable of being dynamically dispatched to strategie nodes (which

should be active nodes, such as base stations, switches, etc.) in the wireline/wireless

network, and could automatically scale flows in active nodes during the periods of drastic

QoS fluctuation and congestion to seamless deliver audio and video flow to the mobile

end users with a smooth change of perceptual quality. Active filters are dispatched,

configured and executed at active nodes (here we also consider the mobile end-system as

an active node). They are autonomous agents that continuously monitor a flow's available



bandwidth and self-adjust their tiltering operations based on the QOS metric via a tilter

interface to match the available resources at a particular bottleneck node.•
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5.3.2 Active Node

One of the aims of the thesis is to explore providing applications with a higher degree of

programmability to address the QOS control and management in networks. In this

section, the programmability mcans that active node can provide a set of QOS

configurable object-level APis and algorithms for transport, mobility and media scaling.

The adaptive and active transport and media scaling algorithm objects are Java program

code which are remotely fetched for execution by using a network loader service.

Active tilter could exploit the intrinsic scalable properties of multi-layer and muiti

resolution audio and video flows and the knowledge of user supplied scaling preferences

to actively tilter flows at active nodes in the network in order to best utilize the available

bandwidth and to seamlessly deliver media with smooth change in the perceptual quality

to mobile end users.

Multimedia flows can be represented as muiti-Iayer scalable flows and supported by the

semantics ofthe active network service which can be inteIligently and perceptibly scaled

up or scaled-down to match the available resources.

5.3.3 Media Sealing

Media scaling is a techoique for the dynamic manipulation of audio and video flows by

active tilters as flows pass through the active nodes. Media scaling is implemented in

active nodes usingfilter control abjects (which reside in active node or end system) and

active tilters (implemented as Java classes). Active tilters are Smart Packets written as

Java bytecode classes and dispatched to the desired network node (active node) using a

tilter control a1gorithms which interacts with an enhanced network loader. Active tilters

can be dispatched, configured and tuned by tilter control (See Figure 5.5).
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Figure 5.5 Fi/ter Control and Fi/ter Agent Interactions

Active filters are autonomous self-adjusting and could be driven by the small state of

active node, which means that active nodes use the small state to rcfresh flow-state (i.e.,

allocated bandwidth) and filter-state (i.e., instantiated active filters). The media scaling

object model is divided into three operational modes:

• jilter control is a distributed signaling algorithm which comprises of tilter control

objects. These objects are permanently resident at base stations (active nodes), mobile

capable switches (active nodes) and mobile end systems. Filter control objects support

a set of methods to select, dispatch and configure active filters;

• jilter instantiation fetches remote Java bytecode classes and bootstraps them into Java

VM environment based at active nodes. Once an active filter has been loaded and

booted into an active node the local filter control object initiates a configure operation

to complete the instantiation phase. At this point active tilters act autonomously in the

flow tiltering mode;



• flow filtering algorithms operate in the flow filtering mode where autonomous active

filtering algorithrns interact with the adaptive service small state mechanism to

periodically tune flows.

•
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5.3.4 Resource Probing and Automatie Teardown

As part of QOS renegotiation the adaptive network service mechanism resident at the

mobile end-systems periodically probes for resources between the end-system and the

neighbor active node by sending probe messages (probe) toward the active node. These

probe messages carry the user (or application) desired QOS requirement (such as,

bandwidth required for the BL, El and E2 layers) for each flow terminated at the user.

The active node responds to the probe message by issuing an adapt message which

advertises the explicit rate made. available to the user during the next small state refresh

interval. This resource management scheme is especially suitable for multicast QOS

where individual clients may have different QOS capability. The adapt messages are

acted as a signal to refresh the small state (flow and filter-state).

Small state disappears if an adapt is not received during the refresh interval. This results

in de-allocation of network resources and active filters which is called automatic

teardown.

5.3.5 Media Sealing Operations

Now we go through the operations of the media scaling algorithm. The media scaling

process is also demonstrated in Figure 5.6.

(1) Filter Selection. This approach can provide the end user systems with the flexibility

to select media scaling aigorithms that best suit the application QOS needs and the coding

semantics of the transported flow. Such as the following two classes of active filters

which are supported for manipulating the rate ofMPEG coded video:

• Selective packet dropping filters operate on the flow as it traverses the active node to

ensure that the appropriate combination of base layer and enhancement layers are

forwarded to the proper link to the end users. Selective packet dropping filters only

select and drop resolutions, they do not process the media;
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Figure 5.6 Media Scaling Process

• Dynamic rate shaping fi/ters are used to adapt the rate of compressed video (MPEG,

H261, MJPEG) to the dynamically varying rate constraints of the network

environment. Rate shaping tilters can shape fiows to meet any bandwidth availability

but are computationally intensive in comparison to media selectors.

(2) Filter Dispatch. New active tilters need to be dispatched under conditions when there

is a drastic degradation in the delivered QOS ( e.g. network congestion). At this point a

tilter is selected and dispatched from a tilter server resident at the end user system or in

the network (such as a fi/ter service station if the end system can not offer appropriate

active tilter). In this case tilter control interacts with the tilter control object at the

designated tiltering node and arranges to dispatch the active tilter. The transfer of the

Java bytecode class is achieved through the interaction of the tilter network loader to

fetch the program code.

The end system's available resources are indicated by periodic feedback ("adapt")

messages which defines the specifie allocated bandwidth for fiows received by the end

user. Every adapt message provides the end user with slate information which could be

used to select a new tilter and dispatch il into the network. Once a tilter has been



dispatched it needs to be bootstrapped in and configured before it is operational and can

execute in the active node.•
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(3) Bootstrap. Once a dispatch acknowledgment message has been received from the

target node the bootstrap process is initiated by filter control.

(4) Filtcr Configuration. After bootstrap is complete filter control configures the active

filter by forwarding the filter-spec to the filter. The filter-spec indicates the bandwidth

required to support the base and enhancement layers. This allows the remote active filter

agent to configure itself and complete the instantiation phase.

(5) Filtcr Tuning. Active filters, are autonomous self-adjusting agents which are driven

by the resource level indicated by the adapt messages. No interaction with filter control is

required for active filters to adjust to changing network conditions. The advertised rate in

the adapt messages indicated whether there is sufficient resources to provide enhanced

quality to the end user. Two modes of filter tuning are supported. The scaling-down mode

informs the active filters to drop enhancement layers. The other mode is the scaling-up

mode which is generally invoked when resources free-up.

Resources are allocated to the end user over a route for the duration of the small state

refresh time via the probe/adapt messages. These message pair periodically probes the

communications systems for resources. The adapt messages is used to tune active filters

at active node. The available bandwidth advertised in the adapt messages is used to adjust

the filtering operation of active filters. This has the eITect ofperiodically tuning the filters,

e.g., to add or delete a specifie enhancement layer, or add or delete coded content or

objects.

5.4 Active filters in Real-Time Multicast

Real-time multicast is focusing on delivering streaming data to multiple clients at the

same time through network, while adapting streaming data to the variable available

bandwidth in multiple paths. Real-time multicast is delivering data through a tree

organized network structure. In this approach, it sends data using IP multicast. The real-



time multicast tree is same as the multicast tree that is formed by the multicast routing

mechanism. There is explicit ACK packet sent by each client for each data packet it

received.

•
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5.4.1 Active node and multicast strategic point

The intermediate node that has the ability to support executing user specified active

packet program besides doing traditional routing functions is called active node.

D

-+ Data

---~ ACK

• Active
node

o (nactive
node
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Assume S is one sender of the real-time multicast group. Using S as root to construct a

real-time multicast stream distribution tree as in Figure 5.7.

In Figure 5.7, node S, A and C are active node which can support additional function for

processing the real-time multicast data stream and the acknowledge packets.These nodes

are called active nodes. In real-time multicast, we let the sender and ail the clients belong

to active nodes. Node B and C are where data packets duplicate and forward to different

branches in the multicast session. They are called multieast strategie points. Node A and

node C are active nodes that receive ACKs from more than one downstream node. They

make aggregation to ACK packets. Note in a real-time multicast tree, the active node is

not necessary be the multicast strategic point, vice versa. But it's better for the real-lime

multicast session situation that ail the multicast strategic points are active nodes.



In this approach, we use input/output interfaces to refer to the stream data input/output

interfaces in routers. The ACK packets are going through in the reverse direction. And we

assume the ACK packets go through the network along the reverse data stream path.

•
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We use downstream and upstream to refer to the relative positions ofnodes. For any node

X in the real-time multicast tree, if a node Y is on the path between source sender and X,

then X is a downstream node of Y, and Y is a upstream node to X. In Figure 5.8, for

example, node C, D, E and F are al! downstream nodes ofnode A.

5.4.2 Active Filtcr Approach

In a multiple-clients streaming application, usual!y the path properties to the clients are

varied in network. Sending stream to multiple clients at same time has the problem of

difficulty to adapting one data stream sending rate to multiple clients.

In Figure 5.8, suppose node S wants to send one data stream to C, D and E at the same

time. But the paths to node C, D and E have different bandwidth properties. If node S

sends data according to the available path bandwidth to node D as 4.5Mbps, it will cause

congestion on link between node B and node E. Similar situation happened if node S

sends data stream according to the available bandwidth to node C. If node S sends data

D

•
Figure 5.8 Mu/tieast Tree with Different Bandwidth Properties



according to the available bandwidth on the path to node E, which can be supported by ail

the path, then node C and node E will get lower quality stream than what they can get in

the case before.
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One solution to this problem is let the stream dynamically changed in the network

according to the current downstream capacity. This approach is try to combined active

network with the multiple priorities stream encoding tecbnology to making media scaling

in the network in order to adapt data stream to different paths.

The sender uses the feedback information from network to adapt the sending speed of the

data stream. Il tries to let this stream satisfy the "best path", which is the path with largest

path available bandwidth. The data stream is sending out through IP multicast. In an

active node in the real"time multicast tree, it may drop sorne packets of the data stream

based on the downstream link properties. Because of the possible frequent variation of the

available bandwidth in the network, it needs to use feedback information to dynamically

detect available bandwidth along each path, and lets the active tilter change the stream as

the bandwidth variation. Each client sends explicit acknowledgment for each packet it

receives. This ACK packet carries additional link information (QoS metrics, such as free

buffer size). When these ACK packets pass an active node, the node will make

aggregation to these packets and combined its own output links' free buffer size into the

produced ACK packet.

In this approach, the requirements to the active network node are:

• Support for injecting active tilter program in il.

• Keep small-states for each output links

• Fiiter streaming data packet based on the small-states in the node

It's not needed that all the network nodes in the real-time multicast tree are active. The

more the active node, the more scaiability of stream it can supply. It's better to have an

active node at a multicast strategic point, so that it can make packet filtering to produce



different streams to different clients when the paths' bandwidths from this point to

different clients have great variances.•
CHAPTER S Extended Use ofActive Filters in Other Domalns 94

•

This approach tries to let the performance degrade gracefully when the percentage of

active nodes in the network decreases. When ail of the network nodes are non-active, this

approach degrades to the End-to-End approach that adapts to one path. This approach is

also based on the packet coding and packet filtering mechanism to the data stream. The

data stream is coded into packets that contain priority information in them. In the active

node, the active filter use this priority information to decide which packet to drop to

produce stream "suitable" to each data output link. The result stream level is decided by

the small-states associated with each link. Another important aspect of this approach is

the representalive aggregalion. For each active node in the real-time multicast tree

(include the sender), it usually gets feedback from only one representative from the

downstream. And it will use that feedback information to control the data stream to

downstream.

5.4.3 Mechanisms

ln order to supply feedback to sender and ail the active nodes, each client sends explicit

acknowledgment for each packet it receives. In this approach, we let each active node act

as the representative of ail its downstream clients to the neighbor active node in the

upstream (In Figure 5.8, node A is the neighbor active node of node C in upstream, node

S is the neighbor active node of node A in upstream). For each active node, the ACK

packets it received ail have the addresses of its neighbor active nodes in downstream (One

node can have severaI neighbor active nodes in downstream). (Remember that we aiso

call the client side as active node ifnecessary).

ACKpacket

An ACK packet is generated by a client and sent aIong the direction in the tree to the

sender. The ACK packet used in this approach has the following outstanding fields:

• Nack: the acknowledge number



• Cbuf: the free buffer size, which indicate at most how many more packets it can

receive now.•
CHAPTER S Extended Use ofActive Fi/ters in Other Domains 9S

When the ACK packet is passed through an active node, the active node will try to

aggregate this packet with other same acknowledge number ACK packets. The active

node will also compare the local node information with the information in the packet and

make changes to the free buffer size field if needed. Finally it will put its own address

into the output ACK packet produced by this aggregation.

Assumption ta Filters

At any time when the upstream data stream increase, the tilter can still keep the "same

level" output stream by dropping more data.

In Figure 5.9, Si is the data stream come from upstream, SA is the data stream output

through the tilter to downstream. Sdrop is the part of data stream dropped by the tilter.

So, Si = Sa + Sdrop. When Si is increased, the packet tilter can still guarantee the SA get

same data stream as before. (Although SA may have larger packet sequence number gap).

This requires that when the source increases the data stream level, il will only add packets

into the original data stream. This assumption guarantees that one links bandwidth

increase wouldn't affects other links data stream.

Si

•

Figure 5.9 Filter Assumption (Si = Sa + Sdrop)

Congestion Detection Module (CDM)

From the server to downstream clients, the data stream will be tiltered at each active node

to stream according to the feedback get back from the corresponding downstream path. In

this section we will describe the estimation part of work at active node to supply



infonnation to packet filter. There will be a Congestion Detection Module for each output

link in an active network node.•
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In Figure 5.10, we show the internai data flow in an active node with only two output

interfaces in one real-time multicast session. The input data stream lO the active node go

through the tilter and produce two streams (In Figure 5.10, the filter's output to interface 2

is same to the input data stream, and output to interface 1 is half of the input data stream).

The output stream of the Filter will be the input of CDM. Then the packet of the output of

CDM will go to the output interface buffer. The ACK packets are tirst forwarded to the

CDM in the same interface. Then the CDM will forward ACK packets to the Aggregation

Module in the active node, which will aggregate ACKs packets come from all the output

interfaces in the real-time multicast session. The output of the Aggregation Module will

be the ACK packets sent to upstream.

Output Interface 1

••••...
•

'---+-----' ...

•...

•

Output Interface 2

Figure 5.10 Internai Data Flow in an Active Node

In order to let the packet filter produce the proper output to the downstream, the

Congestion Detection Module needs to give the packet filter enough infonnation to let il

make decision on how much input stream will be the output stream to this output

interface.



Acknowledge aggregation

In order to give correct feedback information to upstream, each active node needs not

only to make packet filtering but also to make ACKs aggregation. Because of the

assumption we made before, what each active node want to let the upstream node know

is the best stream it can support currently. 80 it choose the "best" path's ACK packets to

forward to upstream.

•
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The address of ACK packets to upstream will use address of the active node. This is used

in order to guarantee these ACKs are looked by upstream node as come from one

representative.

Multiple ACKs in one output Iink

When a multicast strategie point is not an active node, there will be several ACKs go to

upstream through one link. 80 it's possible for an interface of an active node in the

upstream gets more than one ACK packet streams.

The interface in the active node will be able to distinguish them by looking their source

address. Before making estimation in CDM, the interface can make aggregation for them

before. This aggregation can also follow the policy that choose the "best" one, or use a

simple aggregation mechanism as forwarding the first arrived one for each sequence

number.

t,,
A i

C

Figure 5.11 ACKs' Aggregation



In Figure 5.1 1, one of the interface of active node A will receive ACKs from both C and

D. These ACKs will be aggregate first in this interface, then it will be aggregated again in

node A with ACKs from node E.

•
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Single input/output active node

For the active node with only one input link and one output link in the current real-time

multicast tree, there will be no ACKs aggregation work. But in order to use the free buffer

size information, this active node will need to compare its free buffer size with the value

carried by the ACK packets come from downstream.

In Figure 5.12, the free buffer size value (Cbul2) in the ACK packet to upstream will be

smaller one between the originaily value in the ACK packet come from downstream

(Cbun) and free buffer size in this output interface (Obur)

,-----..,
: Obuf :
1... , ...1

"l' ACK : N". + Cbun

ACK': Nick + Cbuf2
Ob'" : Free butTer size ofoutput Iink 1
Cbuf2 = Min (Cblln,Obur)

•

Figure 5.12 Single Input/Output Active Node
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Grasshopper is a mobile agent platform that is built on top of a distributed proccssing

environment [IKV98]. In this way, an integration of the traditional client/server paradigm

and mobile agent technology can be achieved. Grasshopper is developed compliant to the

first mobile agent standard of the Object Management Group (OMG), i.e. the Mobile

Agent System Interoperabi/ity Faci/ity (MASIF). The MASIF standard has been initiated

in order to achieve interoperability between mobile platforms of different mobile agent

platforms of different manufacturers. In Ihis Chapter, we will introduce Grasshopper, and

how we use Grasshopper to simulate load-sensitive rerouting. Section 6.1 devotes to the

introduction of distributed agent environment; Section 6.2 describes the communication

concepts in Grasshopper; a..'ld the simulation of load-sensitive rerouting by using

Grasshopper is presented in Section 6.3.

6.1 Distributed Agent Environment

This section describes the structure of the Grasshopper Distributed Agent Environment

(DAE). The DAE is composed of regions, places, agencies and different types of agents.

Figure 6.1 depicts an abstract view of these entities.

6.1.1 Agents

Two types of agents act in the Grasshopper context, i.e., stationary agents and mobile

agents. As we already introduced in Chapter 3, mobile agents are able to move from one

physical network location to another, they can migrate to the desired communication peer

and take advantage of local interactions. In contrast to mobile agents, stationary agents do

not have the ability to migrate actively between different network locations. Instead, they

are associated with one specifie location.



6.1.2 Agencies

An Agency is the actual runtime environment for mobile and stationary agents. At least

one agency must run on each host that shaH be able to support the execution of agents. A

Grasshopper agency consists oftwo parts, Le., the core agency and one or more places.
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Figure 6.1 Hierarchical Component Structure

Core Ageney

Core Agencies represent the minimal functionality required by an agency in order to

support the execution of agents. The following services are provided by a Grasshopper

core agency :

Communication Service: This service is responsible for ail remote interactions that

take place between the distributed components of Grasshopper, such as location

transparent inter-agent communication, agent transport, and the localisation of agents

by means of the region registry. Ail interactions can be performed via CORBA HOP,

Java RMI, or plain socket connections.

• Registration Service: Each agency must be able to know about all currently hosted

agents and places, on the one hand for external management purposes and on the



other hand in order to deliver infonnation about registered entities to hosted agent3.

The registration service is developed to achieve this.

• Management Service: Management services are developed to allow the monitoring

and control ofagents and places of an agency by external (human) users.

• Transport Service: This service supports the migration of agents from one agency to

another. At the destination agency, the agent continues its task processing exactly at

the point where it has been interrupted before the migration.

• Security Service: Grasshopper supports two kinds of sccurity mechanisms, Le.

external security and internai security. External security protects remote interactions

between the distributed Grasshopper components, Le., agencies and region registries.

Internai security protects agency resources from unauthorised access by agents. This

is achieved by authenticating and authorising the user on whose behalf an agent is

executed.

• Persistence Service: The Grasshopper persistence service enables the storage of

agents and places on a persistent medium. In this way it is possible to recover agents

or places when needed, e.g., when an agency is restarted after a system crash.
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Places

A place provides a logical grouping of functionality inside an agency. The name of the

place should reflect its purpose. For example, in every egancy exists by default a place

named InformationDesk. Every agent with no detennined place is transported to the

Informat ionDesk where it can look for further infonnation.

6.1.3 Regions

The region concept facilitates the management of the distribued components in the

Grasshopper environrnent, Le., agencies, places, and agents. Agencies as weil as their

places can be associated with a specifie region, Le., they are registered within one region

registry. Each registry automatically registers each agent that is currently hosted by an

agency associatcd with the region. If an agent moves to another location, the corres

ponding registry infonnation is automatically updated. A region may comprise all

agencies belonging to a specifie company or organisation, thus facilitating its manage

ment.



6.2 Communication Concepts

The section explains the communication concepts of the Grasshopper platform. These

concepts are realised by means of the Grasshopper communicalion service (CS) which is

an essential part of each core agency. The communication service allows location

transparent interactions between agents, agencies, and non-agent-hased entities.
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6.2.1 Multi-protocol Support

Remote interactions are generally achieved by means of a specific protocol. The CS

supports communication via Internel Inler-ORB Prolocol (HOP), Java 's Remole Melhod

Invocalion (RMI), and plain sockel conneclions. To achieve a secure communication,

RMI and the plain socket connection can optionally he protected with the Secure Sockel

Layer (SSL).

Agency

Communication Service

Agcncy

Communication Service

•

1

Communication Channel

Figure 6.2 Mu/li-Protocol Support

6.2.2 Location Transparency

On the one hand the communication service is used by the Grasshopper system. e.g., for

agent transport or for locating entities within the DAE. On the other hand, agents can use

the CS to invoke methods on other agents. This is done location-transparently, i.e., the

agent need not care about the location of the desired communication peer. Within the

agent code, remote method invocations look exactly Iike local method invocations on

objects residing on the same Java Virtual Machine.



6.3 Simulation by Using Grasshopper

In this section, we will use Grasshopper mobile agent platform to simulate load-sensitive

rerouting which we discussed in Chapter 5, Section 5.2.
•
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We created three agencics to simulatc three active routers. And we also create one mobile

agent in Agcncy 1. The Grasshopper testbed for this simulation is shown in Figure 6.3.

We use this mobile agent in Agency 1 to simulate an active filter. By using this mobile

agent, node level routing decision-making can take place in the presence of sorne

(limited) information about the network level state of congestion because active filters

can determine system topology by exploring the network. We use this mobile agent in

Agency 1 to collect the bandwidth information of Agency 2 and Agency 3, compare these

two bandwidth information, then make the routing decision.

Mobile Agent

•

Figure 6.3 Grasshopper Testbed

We implemented a simple experiment to iIIustrate how this mobile agent can balance an

application's load by rerouting. We create a mobile agent called BandwidthCheckAgent,

this agent moves to a remote agency (AgencL2) specified by the application. At the

remote agency, it collecls information about the free bandwidth (here, we let the mobile

agent to check the free memory) and returns. Back home, it pops up a window showing

the free bandwidth of the remote agency. Then the agent moves to another remote agency

(Agency_3) and collecls information about the free bandwidth (here, also means checking



free memory) and retums. It can compare the two bandwidth information, then makes the

routing decision, i.e., it will route the packet to the router which has the (arger bandwidth

information.
•
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Figure 6.4 Agency /, Agency 2 and Agency 3

Dialog Ei ~Flee Memory ~

•
Figure 6.5 GUIofBandwidthCheckAgent
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This chapter gives the evaluation and conclusions of our approach. Section 7.1 gives the

evaluation of active filters in real-time resource management and load-sensitive flow

rerouting. Section 7.2 evaluates the active filters in wireline/wireless network. Evaluation

ofactive filters in real-time multicast is discussed in Section 7.3.

7.1 Evaluation of active filtcrs in real-time resource management

and load-sensitive flow rerouting

In this approach, we introduced the concept of active fi/ter, a code segment that

applications or service providers inject into the network to assist in the runtime

management of the network resources that are allocated to them. Our active filter

architecture was driven by two requirements. First, users should be able to tailor resource

management so they can optimize their notion of quality of service. Second, since active

filters execute inside the network, they can quickly respond to changes in the network

conditions. We described the prograrnming interface that active filters can use to monitor

the network conditions, e.g. queue status and bandwidth of the flows they are responsible

for, and to modify resource use, e.g. changing reservations, selective packet dropping or

rerouting.

We described a number of active filters addressing problems such as congestion control

for video streaming, tracking down non-conformant traffic sources, and balancing of

traffic load. While sorne active filters operate in a purely local fashion, others require

coordinated actions by active filters running on multiple routers. While none of the

examples provides necessarily the best, or even a complete, solution to these problems,

they do illustrate that our prograrnming interface is rich enough to support a broad range

of resource management actions. Further research will compare the benefits of being able

to make customized resource management decisions inside the network, with the
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7.2 Evaluation of active filters in wireline/wireless network

ln this approach, active fiiters are active technology which are based on Java coded

agents, are capable of being dynamically dispatched to strategie nodes (which should be

active nodes, such as base stations, switches, etc.) in the wireline/wireless network, and

could automatically scale flows in active nodes during the periods of drastic QoS

fluctuation and congestion to seamless deliver audio and video flow to the mobile end

users with a smooth change of perceptual quality. Active filters are dispatched,

configured and executed at active nodes (here we also consider the mobile end-system as

an active node). They are autonomous agents that continuously monitor a flow's available

bandwidth and self-adjust their filtering operations based on the QOS metric via a filter

interface to match the available resources at a particular bottlenc;ck node.

One of the key performance issues related to this technology is the time taken to dispatch,

bootstrap and configure new agent over the wireless/wireline interfaces. Another

important performance concem relates to the performance penalty paid by flows as they

are filtered at switches and base stations. The amount of delay introduced by such

operations as tlows traverse active filters is dependent on the computational complexity

of the tilter.

We have coded a selective packet dropping filter in Java that drops either El (Le., P

pictures) and E2 (Le., B pictures) frames based on the available resources (see Appendix).

Selective packet dropping tilters do not process the media, therefore, the aIgorithms have

the least impact of ail the proposed filters.

Selective packet dropping tilters are computationaIly simple and an attractive type of

filter, which can significantly reduce the data rate of a video stream without degrading its

quality to an unacceptable levels. Sorne of the positive attributes of selective packet

dropping filters is the smaIl processing delays incurred at the base stations during media

scaling. Only headers of incoming frames are examined and the frame dispatched during



media scaling. Instantiation time is also modest dues to the length of media selector's

bytecode which is modest in comparison with other filters like dynamic rate shaping

filters.
•
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A major disadvantage of the selective packet dropping filters is that is lacks the ability to

set an incoming bit rate to a desired level; il does not operate over a continuum of

available bandwidth but at discrete bandwidth intervals. In this scheme selective packet

dropping filters operate at three distinct discrete rates. There is a major trade-off between

a filter complexity and continuous scale ofbandwidth.

7.3 Evaluation of active filters in real-time multicast

As we introduced in Section 5.4, real-time multicast IS focusing on delivering streaming

data to multiple clients at the same time through network, while adapting streaming data

to the variable available bandwidth in multiple paths. Il is delivering data through a tree

organized network structure. In our approach, it sends data using IP multicast.

In our approach, we only assume one QoS dimension (bandwidth), one thing we want to

show in the future is policy on multiple QoS dimensions, which may need to cause more

complex policy description to make feedback information aggregation in network node.

Also, if we consider multiple QoS dimensions, there will exist problem on that if we

should encode multiple QoS information into the packet, and if we should add more

particular requirements to the active node's work.

We did not consider to keep the real-time multicast result stable, which means users may

want to get a more stable stream instead of a frequently changed stream, this problem

remains as a further research consideration. For example, the end-system users may want

to see either mono-color or color, they may not want to switch frequently.
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Appendlx SOURCE CODE OFACTIVEFILTER APPLICAnON

Agent.java

/1 File: Agent.java

import java.long.*;
importjava.util.*;

public abstraet elass Agent extends Thread (
Vector vargs;

public void setArguments(Veetor ar) {
vargs = or;

}
native void testnativeO;

public void runO (
IIHere is where the args supplied by setArguments are used
/lFor exarnple, the filter agent might say args[I) = <upstream host>
/land so on..
try{
Thread.sleep(10000);

} eateh(InterruptedExeeption e) {
System.out.println("Exception Il + e);

}
System.out.println("Agent Started");

}
}

2 FiiterController.java

/1 File: FiiterController.java

import javaJang.*;
import java.net.*;
importjava.io.*;
importjava.util. *;

public elass FiiterController extends Thread {
statie final int CONFIRM = 7777;
statie final int sigPort =5510;

/1 -- Instance variables •••

UDPSoekManager mgr = null;
MediaSeleetor mySeleetor;
int filterSetPort;

Il --- Methods -_.

public FiiterController(MediaSeleetor ms. int fsp) {

mySelector = ms;
filterSetPort = fsp;
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public void run() (
String bs = Il "; Il to be ovenvritten
mgr = new UDPSockManager();
StringPackager packager = new StringPackager(bs);
while(true) (

Il receive connection request from a base station...
System.out.println("Fiiter Controler>Listening on port: "+ lilterSetPort);
int lilterType = mgr.recv(fiIterSetPort, packager);
System.out.println("Fiiter Controler>Request received to setMS to "+ filterType);
bs = packager.getString();

Il Set Filter Type;
mySelector.setNewType(lilterType);
mySelector.raiseNewFilter();
System.out.println("Fiiter Controller>Filter Type was set to "+ filterType

+" for Agent #"+ (fiIterSetPort·5600)+ " on host "+bs);
Il send confirmation message...
mgr.send(bs, sigPort. CONFIRM);

}
}
}

3 FilterDaemon.java

Il File: FiiterDaemon.java

importjava.net.*;
importjava.io.*;
importjava.lang.*;
importjava.util.*;

public class FilterDaemon (
Il Constant Declarations

static linal int sigPort = 5600; Il for receiving agent instantiation
Il requests from the BS

static linal int fsPort = 5115; Il for signalling with the
Il filter server

Il .... the main() method ....
public static void main (String args[]) throws SocketException

if(args.length!= 1) (
System.out.println("Usage: java FilterDaemon <fiIter server>");
retum;

}

UDPSockManager mgr = new UDPSockManager();
StringPackager p = new StringPackager();
StringPackager q = new StringPackager();
int numOfAgents = 0;
while(true) (

int getFrom = mgr.recvIPintf{sigPort, P. q);
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int UDPport =(int)(getFrom/lO);
int filterType = (int) getFrom%lO;
String dpathHost = p.getStringO;
String mobiieHost =q.getStringO;
numOfAgents++ ; 1/ increase the number ofagents...
String[] av =new String[S); 1/ av: array ofarguments passed to the

1/ media scaling filter

av[O) =Integer.toString(UDPport);
av[l) = Integer.toString(fiIterType);
av[2) =dpathHost;
av[3) = Inleger.toString(sigPol1+numOfAgents);
av[4) =new String(mobileHost);

System.out.println("Filter daemon> Paramaters passed to Agent #" + (numOfAgellts-!)+ " : "
+ av[O) +" "+ av[I)+" "+av(2)+" "+av(3)+" "+av(4));

Vector arguments = new Vector(S); 1/ convert array to vector
MakeVector myVector = new MakeVector();
arguments = myVector.parse(av);

System.out.println("Fiiter daemon> Passing vector of length " + arguments.capacityOl;

1/ Loading the filler agent...
NetworkLoader myLoader = new NetworkLoader( args[O). fsPort);

Class myClass =myLoader.loadClass("MediaSelector", true);
if (myClass == null) {

System.out.println("Fiiter Daemon> No Class Loaded");
}
else {

try{
Object myObject = myClass.newlnstanceO;
if (myObject instanceofAgent) {

Agent myAgent = (Agent)myObject;
myAgent.setArguments(arguments);
myAgent.startO;
System.out.println("Fiiter Daemon> Successfully started agent");

} catch(Exception e) {
System.out.println("Fiiter Daemon>Faiied to create Object from Class");
System.exit(1);

}

4 FiiterServer.java

Il File: FiiterServer.java

importjava.lang.*;
importjava.net.*;
importjava.io.*;
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private statie final int sending = 0;
private statie final int sent = 1;
private statie int state =sending;
publie statie void main (String args[}) {
IlDefault port number
int Port = 1115;

IIUlnilialize Server side Soeket. Ifport is in use try to bind to another
lIIoeal port.
while(true) {
ServerSoeket servsoek = null;
try {
servsoek = new ServerSoeket(Port);
System.out.println("Server: listening on port" + Port);

} eateh (IOExeeption e) {
Systcm.out.println("> Could not listen on port: "+ Port+ ", Il + e);
Syslem.out.println("> Trying for another port");
Port++;
Systcm.out.println("> Server Sig Port: "+ Port);

}

11**lnitialize Client Aeeept Soeket
Soeket delient =null;
try {
delienl = servsoek.aeeeptO;

} eateh (IOExeeption e) {
System.out.println("> Aeeept failed on "+ Port +", "+ el;
System.exit(l);

}

Il'*Define Input and Output Streams on the Client Aeeept Soekct
try{
BufferedReader is =new BufferedReader(new InputStreamReader(delient.getInputStreamO));

Il PrintStream os = new PrintStream(new BufferedOutputStream(delient.getOutputStream()));
String inline, outline;
byte[J bret = nuIl;
String Classfile =nuIl;
while «inline = is.readLine()) != nuIl) {

Il inline =is.readO;
Classtile = inline.concat(".classll);
System.out.println("Server: File Requested "+ Classfile);

11**<Sending Begins....>
IIUWrite the File Input Stream and File Output Streams
FilelnputStream fis = new FilelnputStream(Classfile);
int tilesize = fis.availableO;
bret =new byte[tiIesize);
while (fis.read(bret) != -1) {
if (bret != null) {
System.out.println("Server: Byteeode Read");
Ilos.write(bret, 0, tilesize);
Ilos.tlushO;
state =sent;
System.out.println("Server: Agent Sent");
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}
}

Ilos.eloseO;
is.eloseO;
delient.eloseO;
servsoek.eloseO;

} catch (FileNotFoundExeeption e) {
System.out.prinUn("> Could not find requested file");

} catch (IOExeeplion e) {
System.out.prinUn("> IOExeeption: "+ el;
e.printStaekTraecO;

}
}
}

}

5 SelectivePacketDropper.java

Il File: SeleetivePaekelDropper.java

importjava.lang.*;
importjava.net.*;
importjava.io.·;
importjava.util.*;

public elass SeleelivePaeketDropper extends Agent {

Il Constant Declarations
statie final int NEW CONNECTION = 100;
statie final int HAND_OVER= 101;
statie final int BUFFER SIZE = 65535; Il maximum AAL5 - UDP paeket size
statie final int sigPort =5500;

Il SeleetivePaeketDropper
statie final int DROPB = 15;
statie final int DROPP = 16;
statie final int DROPI = 17;
statie final int SCENE = 18;
statie final int MOTION = 19;
statie final int NOFILTER = 20;

Il Header identifiers
statie final int seqHeader = 1;
statie final int gopHeader = 2;
statie final int pieHeader = 3;
statie final int eomHeader =4;
statie final int pieHeader_1 = 5;
statie final int pieHeader] = 6;
static final int picHeader_B = 7;
Il --- Instance Variables -
Veetor arguments = new Veetor(5);
byte[) inputBuffer = null;
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UDPSoekManager mgr ~ new UDPSoekManagerO;
int videolnPort ; 1/ The ports that video is reeeived
int videoOutPort ; 1/ from/sent to

// Lancaster Header Elements...
int Header;
intPad:
int SeqNum;
int TimeStamp:
int Seglndex;

// Filler Controller Thread...
public FiiterController filteretl;
public int filterType ~ 0;
public int newFiiterType ~ 0:
public boolean newFiiterFlag ~ false:

// •••• Methods ••••
public void selArguments(Veetor aVeetor) {

arguments = aVector;
1
public void setType(int x) {

filterType = x:
1
public void setNewType(int x) {

newFiiterType ~ x:
1
public void raiseNewFilterO {

newFiiterFlag = truc;
1
public void dropNewFilter() {

newFiiterFlag = false:
1
public void nmO {

System.out.println(" Starting Media Seleetor .....):
DatagramSoeket videolnSoe ~ null; // Video input and output datagram
DatagramSoeket videoOutSoc ~ null: // Soeket

1/ Create the datagram soekets ...
try {

videolnSoc ~ new DatagramSoeketO;
1catch (java.net.SoeketExeeption e) {
System.out.println("> Could not crente socket: Video In. "+ el;
System.exit(l);

1
try{

videoOutSoc ~ new DatagramSocketO;
1catch (java.net.SoeketException e) {
System.out.println("> Could not create socket: Video Out, .. + el;
System.exit(I);

1

Il Parse the arguments ...
int videoOutPort = Ioteger.parselnt(String.valueOf(arguments.elemenlAt(O)));

filterType ~ Integer.parselnt(String.valueOf(arguments.elemenlAt(I»);
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/1 filterType = 0;
String dpathHost = String.valueOf(arguments.elementAt(2»;
int filterSetPort = Integer.parselnt(Sll'Ïng.valueOf(arguments.elementAt(3)));
System.out.println("Fiiter Agent> Arguments receivcd : u+videoOutPort+ ""+ filtcrType +" Il

+dpathHost+ " " + IillerSetPort);

/1 Start the Iiller Type Controlling Thread...
Iillerctl = new FillerController(this. filterSetPort);
filterctl.startO;

Il determine the video Input port
videolnPort = videolnSoc.getLocaIPortO;
System.oul.println("Filter Agent> Video Input Port: " + videolnPort);

Il and send itto the BS
mgr.send(dpathHosl. sigPort. videolnPort);
System.oUl.println("Filter Agent> response sentto host: "+ dpathHost);

if (videoOutPort 1= 0)
System.oul.println("Filter Agent> Video Output Port" + videoOutPort);

for ( int count = 0; count>= 0; count++) { /1 inlinite loop
DatagramPacket packet = null;
if (videoInSoc 1= null && videoOutSoc 1= nuIl) {
try{

Il receive and process the packet ...
inputBuffer = new byte[BUFFER_SIZE];

packet = new DatagrarnPacket(inputBuffer. BUFFER_SIZE);
int stamp1= (int) System.currentTimeMillisO;
videolnSoc.receive(packet);
intlength = packet.getLengthO;
if(count == 0)

System.out.println("Filter Agent> Data are being rcceived from Datapath Host ");

Il Intermediate additional filtering
ByteArraylnputStrearn Barray = new ByteArraylnputStream(inputBuffer);

DatalnputStrearn dbs = new DatalnputStrearn(Barray);

Il read the Lancaster Header Iields
Header = dbs.readUnsignedShortO;
Pad = dbs.readUnsignedShortO;
SeqNum = dbs.readlntO;
TimeStarnp = dbs.readlntO;
Seglndex = dbs.readIntO;

Il change the Iiller type ifneeded...
if( (newFillerFlag = true) &&

(Header = seqHeader) &&
(SegIndex = 1» {

filterType = newFilterType;
dropNewFilterO;

}
Il And set the Media Scaling type in the Lancaster Header
Pad = filterType;
ByteArrayOutputStream b_os = new ByteArrayOutputStrearnO;
DataOutputStream d_os = new DataOutputStream(b_os);
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d os.writeShort(Header);
d:os.flush();
d_os.writeShort(Pad);
d_os.flush();

byte[) tempBuf= b_os.toByteArray();
ByteArraylnputStream bJs = new ByteArraylnputStream(tempBuO;
b_is.read(inputBuffer. O. 4);

1/ Sel the datapath host address
InetAddress addr = InetAddress.getByName(String.valueOf(arguments.elementAt(4)»;

int filter action = 0;
switch(tÏ1terType) {

case 0: filter action = NOFILTER; break;
case 1: filter-action = DROPB ; break;
case 2: filter:action = DROPP ; break; 1/ meaning Ps and Bs
default : System.out.println("Fiiter Agent>lnvalid type of filter"); break;

IfNow a swileh has to be done on the header...
switeh (Header) {

ease(seqHeader):
case(gopHeader):
case(pieHeader):
case(eomHeader):
case(pieHeadeU):

if(filter_aetion = DROPI) {
break;

} else {
paeket = new DatagramPaeket(inputBuffer, length. addr, videoOutPort);
videoOutSoe.send(paeket);

Il System.out.println("transmitting 1frame/SHlGH");
}
break;

ease(pieHeader]):
if(filter_aetion = DROPP) {

break;
} else {

paeket = new DatagramPaeket(inputBuffer, length, addr, videoOutPort);
videoOutSoe.send(paeket);
1/ System.out.println("transmitting P frame");
}
break;

ease(pieHeader_B):
if(filter_aetion = DROPB Il tilter_aetion = DROPP) {

break;
} else {

paeket = new DatagramPaeket(inputBuffer, length, addr, videoOutPort);
videoOutSoe.send(paekel);
Il System.out.println("transmitting B frame");
}
break;
default :

packet = new DatagramPaeket(inputBuffer. length, addr. videoOutPort);
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videoOutSoc.send(packet);
break;

}
int stamp2 = (int) System.currentTimeMiIIis();

1catch (UnknownHostException e) {
System.out.prinUn("UnknownHostException: "+ el;

} catch (IOException e) (
System.out.println("IOException: "+ el;

}
}

}

6. BandwidthCheckAgent.java

package de.ikv.grasshopper.example;

impor! de.ikv.grasshopper.example.util.lnputOialog;
impor! de.ikv.grasshopper.agency.MobileAgent;
impor! de.ikv.grasshopper.type.Location;
impor! de.ikv.grasshopper.app.utiI.GOptionPane;
impor! de.ikv.grasshopper.communication.GrasshopperAddress;
impor! de.ikv.grasshopper.config.Configurator;

public class BandwidthCheckAgent extends MobileAgent {
Il Location of the remote agency.
private Location remote =nuIl;

Il Location of the home agency.
private Location home = nul1;

1/ Free memory ofremote agency.
private long freeBandwidth;

1/ The agent's execution state.
private int state = 0;

1/ The input dialog handle
private transient InputOialog dialoglnput;

1/ The input dialog status
private boolean WindowOpened = false;

1/ Sets the name ofthe agent.
1/ @retum The name ofthe agent.
public String getName() {
retum new String("BandwidthCheckAgent");
}

1/ Action. which should be executed, as the agent moves from
1/ one place to another place within the same agency

public void onMoveO {
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System.out.println("onMove caUed .....):
if( WindowOpened )

dialoWnput.eloseDialogO;

Il What to do if a user double clicks on the agent entry in the main window see Grasshopper programmer's guide
public void aetionO {

state =0;
IiveO:

Il Specifies the agent's behaviour.
public void IiveO {

Ilat home agency after creation
if (state == 0) {

dialoglnput =new InputDialog("Destination: ");
WindowOpened =true:
try {

String remoteAddress = dialoglnput.getInputStringO;
WindowOpened = false;

try {
remote = new Location(remoteAddress);
Illfthere isn't active region
Il use configurator to
Il get the information about active receiver at the home agency
String [) homeAddress =Configurator.getConfiguratorO.

getCommunicationServerO.getReceiverAddressesAsStringO:

Il otherwise (if the region is active)just caU the getLoeationO
Il to get active receiver
Il home = gelLocationO;

home = new Location(homeAddress[O)):
System.out.println("home =.. + home.toString());
state++;
move(remote);

1
catch (Exception e) {

System.err.println("BandwidthCheckAgent: .. + e.getMessage()):
state = 0;
IiveO;

1
catch (Exception e) {

System.out.println("BandwidthCheckAgent: Exception from InputDialog"):

Il arrived at remote agency
cIse if(state = 1) {

System.out.println("CoUecting information about free bandwidth .....);
freeBandwidth =Runtirne.getRuntimeO.frceMemoryO;
try{

state++;
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move(home);
}
catch (Exception e) {

Il ifregion is not mnning, specify fully qualified address
Il of home agency

System.out.println("Error: " +e.toStringO );
InputDialog dialog = new InputDialog("Address of home agency: ");
try{

String homeAddress =diaJog.getinputSlringO;
try {

home = new Location(homeAddress);
move(home);
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}
catch (Exception el) {

System.err.println("BandwidthCheckAgent: " + e.getMessage());

}
catch (Exception e2) {
System.out.println("BandwidthCheckAgent: Exception from InputDiaJog");

Il back home
else if (state = 2) {

String[] message =new String[2];
message[O] =new String("Agency" + remote.getHostO + "1" +

remote.getAgentsystemO + " has");
message[l] = new String(freeBandwidth +" bytes offree Bandwidth.");
GOptionPane.showMessageDialog(null,message,"Free Bandwidth",

GOptionPane.INFORMATION_MESSAGE);
state = 0;
}


