Event Correlations in Active Networks
By Using Active Filters

Yihong Shangguan

School of Computer Science
McGill University, Montreal
July, 1999

A thesis submitted to the
Faculty of Graduate Studies and Research
In partial fulfillment of the requirements for the degree of
Master of Science

© Yihong Shangguan, 1999

| L |

National Library
of Canada du Canada
Acquisitions and
Bibliographic Services
3g5 Wellington Street
Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your N Votre réldrsnce

Our file Noire ridience

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
Ia forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni Ia thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-64449-9

Canadd

Résumé

Avec ’évolution de I'ordinateur moderne et les technologies resautiques, les systémes
d’ordinateurs et les applications devient de plus en plus complexes et dynamiques. L’un
des problémes des systémes complexes et dynamiques et la difficulté de gestion de
changement. La gestion de réseaux comprend la surveillance et contréle, son but et la
détection et le traitement des erreurs, la chute de performance et les fraude. La gestion
centralisée des réseaux limite sérieusement la classification de la gestioh de réseaux. La
faiblesse de la gestion centralisée apparait durant les périodes de lourdes congestion
quand les interventions de gestion sont particuliérement plus importantes. Par conséquent,
pour résoudre les problémes (tel que passif, statique, rigide, etc.) causés par la
centralisation, la fonction de la gestion du réseau doit étre décentralisée et doit devenir
plus active et flexible. Dans cette thése, nous utilisons les agents mobiles et les
technologies des réseaux actives pour implanter un outil de la gestion du réseau. Cest un
filtre actif qui pourrait étre trés utile dans les plusieurs activités de la gestion du réseau tel
que la gestion de ressources en temps réel; reroutage du flux en fonction de la charge;
filtrage dans un réseau avec ou sans fil, dependant de l'application; et multicast en temps

réel.

Abstract

With the development of modern computer and network technologies, computer systems
and applications become more and more complex and dynamic. One of the problems of
complex and dynamic systems is the difficulty of management of changes. Network
management comprises of network monitoring and control, its aims include the detection
and handling of faults, performance inefficiencies and security compromises. Centralized
network management seriously limits the scalability of network management. The
shortcomings of the centralized approach show up during the periods of heavy congestion
when management intervention is particularly important. Therefore, in order to cope with
problems (such as passive, static, rigid, etc.) arising from centralization, the network
management functionality must be decentralized and should become more active and
flexible. In this thesis, we use mobile agent and active network technologies to implement
a network management tool, active filter, which could be very useful in various network
management activities, such as, real-time resource management; load-sensitive flow
rerouting; application-specific filtering in wireline/wireless network; and real-time

multicast.

Acknowledgements

1 am most grateful to my thesis supervisors Professor Petre Dini and Professor Monty
Newborn for being excellent advisers on both my thesis and career, I would like to thank
for their guidance, advice, and encouragement throughout the research. This thesis

benefited from their careful reading and constructive criticisms.

I truly thank CRIM (Centre de recherche informatique de Montreal). It provides not only
an cozy research environment for me, but also a great financial support for this research. I

can not achieve anything without its support.

Many, many people have helped me in the preparation of this thesis. [would like to thank
all of the team for the collaboration in the design and implementation of application. I

benefited greatly from the formal and informal discussions with them.

1 wish to thank the School of Computer Science for the graduate courses and the research
environment. Thanks to Franca Cianci, Vicki Keirl, Josie Vallelonga, Lise Minogue, and

Lucy St-James, for easing the procedure of dealing with the school.

I would like to thank my dear parents whose continual love and support throughout my

whole life have kept me going.

Finally, special thanks to Hui Zhang for his deep love, support and encouragement during
my study.

Acronym

AFL Application Level Framing

AN Active Networking

ANEP Active Network Encapsulation Protocol
ANTS Active Node Transfer System

CDs Compact Discs
CBR Constant Bit-Rate
Cs Communication Service

DAE Distributed Agent Environment
DATs Digital Audio Tapes

FIPD Frame-Induced Packet Discarding
GMIB Group Management Information Base
GOP Group of Pictures

HeiTS Heidelburg Transport System

1I0P Internet Inter-ORB Protocol

1P Internet Protocol

MASIF Mobile Agent System Interoperability Facility
MbD Management by Delegation

MDU Media Data Unit

MIB Management Information Base

MMC Multimedia Multicast Channel
MPEG Moving Picture Expert Group

NMS Network Management Station

NVN Netscript Virtual Network

OMG Object Management Group

PDU Packet Data Unit

PLAN Packet Language for Active Networks
RCC Routing Control Center

RCI Router Control Interface

RMI Java’s Remote Method Invocation
RSVP Resource Reservation Protocol

RTCP Real-Time Control Protocol

RTP Real-time Transport Protocol

TLV Type/Length/Value

VBR Variable Bit-Rate

VL Virtual Link

VNE Virtual Network Engine

Table of Contents
Résumé
Abstract
Acknowledgments
Acronym
1 Introduction
1.1 Network Management and Its Architecture...........c.ccovvninvininininnn
1.2 Centralized Network Management and Its Drawbacks.....
1.3 Management by Delegation (Mobile Agent Approach)....

1.4 Active Network Approach......ccc.oveveeinnieeinienianines
1.5 Active FIters....cioviriiiiiiiniiiiiinniciin e

2 Background Knowledge of Filters
2.1 Filter Definition and Classification..........c.c...eerieiiisiesiiieiineceisonnnn.
2.1.1 Static Filter........ccccceenunne.
2.1.2 Nomadic Filter...
2.1.3 Modifiable Filter

214 RigidFilter......ccooiiiiiiiiiiieiiiiiciee
2.2 The Heterogeneity and Resource Utilization Problems...............c.cuuue
2.2.1 The Heterogeneity Problem............cccveiniirirareniienneninnneenenn
222 Resource Utilization.............
2.2.3 Dynamic Quality of Service. .
2.3 Related Research in Filter Areas.........covecvvrieeivemnenniiiiniinnninnnene.
2.3.1 Media Scaling and the Heidelberg Transport System
—IBMENC... oottt craerrens s s encese e erae e
2.3.1.1 Transparent and Non-transparent Scaling..
2.3.1.2 Continuous and Discrete Scaling...............
2.3.2 The Multimedia Multicast Channel - UC, San Diego..
2321 FIMErS...ocvuiiniiiiiie et
2.3.2.2 Filter Propagation..........
2.3.2.3 Network as a Processorc..ccveevnneennns

2.3.3 Frame-Induced Packet Discarding — UC, San Diego....
2.3.4 Dynamically Scaled Multimedia Streams

— Sun MiCIOSYSIEIMS. ..cevvvvniniieierrerereeereineesirrrarinneesreseeneen
2.3.5 Resource Reservation Protocol (RSVP)

— Internet Engineering Task Force........ccoooiveeuiiiiiiiniciecannn.
2.3.6 Real-time Transport Protocol (RTP)

— Internet Engineering Task Force.......cccooiiveeiiieniiinininnne..
2.3.7 QoS-Filtering Model in Distributed Multimedia Application

— Lancaster University......c.cccerieriirnnrneniniicrncrieneennncerneeen

2.3.7.1 The QoS-Filtering Model............ccceeremiiiicnninnrnnnnn

[QN -NR VS I S R

2.3.7.2 Model Entities........ccoveviunniiiininnnireniiniiinininn,
23.7.3 Negotiation

2.3.7.4 Stream Establishment..........c.cccoiiiiicinnnnnniiinnn,
2.3.7.5 Stream Management, Monitoring and Maintenance.......
2.4 Filter Services and Mechanisms.........ccveevvveerninriniinrininne.

2.4.1

242

243
244

2.5 Media Compression Technologies .

2.5.1
252
253

Filter Services.......ccccccrunenne
2.4.1.1 End-to-End Scaling.
2.4.1.2 In-line Adaptation...
2.4.1.3 In-line Translation..
Filter Mechanisms.............
2.4.2.1 Frame Dropping.. .
2422 Codec Filters.....cvvevvniiiniennirinenniasinnrinineniiennn
2.4.2.3 Color Reduction Filters.........cceevivverenireninnienniennan
2424 DCT-Filters....cccoceveunnnes
2.4.2.5 Mixing and Splitting Filters..
Filter Location...........ccevveneennennn.
Special Notes...........u..eee.

MPEG L..coeviiniiiiininnnne
MPEG 2.....ccvviviiiiiniiiiiinnnns ..
Video Stream Data Hierarchy..........ccooeevviiiiiiniiiiniiininnnn

3 Active Adaptation by Mobile Agent
3.1 Active Adaptation by Mobile Agent............ooceviirimcenerinniinnniecnnenn

3.11
3.12

3.2 Towards Active Network........cccooeeuerennnnnns

3.2.1
322
323

324
3.25

3.26

3.27

Mobile Agent and Its Advantages..........c.cccecerevnieinirienneriene.
Mobile Agent Technology in Distributed Multimedia Systems....
3.1.2.1 Passive Approach..........cceeueiriniireneenecnrcneenneninnnns
3.1.2.2 Mobile Agents to the Rescue..

Programmable vs. Active Network....
Introduction to Active Networks...
Active Network Concepts.........

3.2.3.1 Smart Packets......
3232 Active Nodes......c.oieivrrnerirrneninnerenieneenne

Active Networks and Programming Interfaces...............
Active Network Design Models................cc...
3.2.5.1 Design Space AXiS.......ccverevuerurieernnennns
3.2.5.2 Towards a Common Programming Model..................
Brief Overview of Current Active Network Technologies...........
3.2.6.1 PLANet & SwitchWare (University of Pennsylvania)...
3.262 ANTS (MIT)...oiiiiiiiiiiiiiiiiiiiiinrieee et
3.2.6.3 Netscript (Columbia University)......
3.2.6.4 Smart Packet (BBN Technologies).........
ANEP (Active Network Encapsulation Protocol).........c....ceunen.

. 4 Active Filters

4.1 Protocol Classification in Active NetWOrkS. cvvereeriiermiermuiiiiinenenns 58
4.1.1 Filtering Protocol Class............... e 59
4.1.2 Combining Class............c....... 60
4.1.3 Transcoding Class............. 61
4.1.4 Network Management Class. e 61

4.2 Existing Active Filter Research.......c.cccviveeineiieinniiicienenoenenrincinnen 62
4.2.1 Active Networking and Congestion Control..............cevinviennns 62

4.2.1.1 An Architecture for Active Networking. 62
4.2.1.2 Programmable Congestion Control..........c.ccovvvieennne 64

4.2.1.3 Application and Mechanisms of Congestion Control to
MPEG....citiiiriitiiciiiniiiiii s 65
4.2.1.4 Limitations.........c.c0ueeneens 66
4.2.2 Intellegent Communication Filtering.. 67
423 Firewalls . 69
4.2.4 On-line Auctions 69

5 Extended Use of Active Filters in Other Domains

5.1 Active Filters in Real-time Resource Management..........cvvvevernvennennn. 72
5.1.1 Motivation.......covveiiiviineieiiiineieniiinnss e 73
5.1.2 Active Filter Architecture.......... 74
5.1.3 Active Filter Runtime Environment. 77
5.1.4 Active Filter Set Up.....c.ocouvunnnnne 78
5.1.5 Implementation........c.cocourreaniinnnnen. 78

5.2 Load-sensitive tlow rerouting via active filters.. 82

5.3 Active Filters in Wireline/Wireless Network.. 85
5.3.1 Active Filters.....cccccvviivieniniiinnnnas . 85
5.3.2 Active Node.... . 86
5.3.3 Media Scaling......c.cciiivrnieiniiireiiiiiniir e rerie e e naien 86
5.3.4 Resource Probing and Automatic Teardown.......c.c.cccoueenrernnnn. 88
5.3.5 Media Scaling Operations..........c.cceveeee.. ... 88

5.4 Active Filters in Real-time Multicast............. 90
5.4.1 Active Node and Multicast Strategic Point... 91
5.4.2 Active Filter Approach...........cc.ccee..ee. e 92
5.4.3 MechamiSmS.....c.iiiiiereeiiiiieieiiiireeerie et rensrereseannons 94

6 Simulation by Using Grasshopper

6.1 Distributed Agent Environment...........c.ooeuieririurceniiennnniennnennnn
6.1.1 Agents 99
6.1.2 Agencies.. 99
6.1.3 REGIONS....cuviiruiiiiiiiiiinriitierererinreeiieeeiesreessreseesesansarnnnes 100

6.2 Communication Concepts....... 102
6.2.1 Multi-protocol Support.. 102
6.2.2 Location Transparency.. w102

6.3 Simulation by Using GrasshOpPer.........eevuerenerrnnerneerenerrenreenneennn 103

7 Evaluations and Conclusions
. 7.1 Evaluations of Active Fitlers in Real-time Resource Management

and Load-Sensitive Flow Rerouting..........ccoevuvirieinieneienincinnennnnnn, 105

7.2 Evaluation of Active Filters in Wireline/Wireless Network.................. 106

7.3 Evaluation of Active Filters in Real-time Multicast...........c..c.ccoeeunnenn 107
Bibliography..........cooviriiiiiiiiiiiii e 108

Appendix Source Code of Active Filter Application

1T ABENLJaVA....euiiiiiniiiiinn ittt reeeie s e s e raerenaaens 112
2 FilterController java.. . 112
3 FilterDaemonjava.... 113
4 FilterServerjava 114
5 SelectivePacketDropper.java .. e 116
6 BandwidthCheckAgent,java..........ceevvvuiiiriieininierinrennnnn 120

List of Figures

Static FIter.oovviiiiiii i 8
Nomadic Filter........c.ocnevinninn. . 8
Window of Insufficient Resources........c....cevevens 1
Localized Dynamic Control...........cccovveniennnnnes . 24
MPEG Video Stream Data Hierarchy............coovevvnninennininiinninnnnn. 33
Picture Sequences in Display and Video Stream Order... 34
Not-So-Smart Packet..........ccocerniiiniirriiirnenorvanciennes 45
Smart Packet........... . 46
ANEP Packet Format............ e 57
Active Filter Network Model... 75
Active Node Architecture....... 76
Testbed TOPOIOZY....cuvvvnviriiniiiiiiiiiiceiineaeees [P 79
ResoUrce TIEeS.....cuuvievniiiiiiiiiiint i eren ettt e eeranens 84
Filter Control and Filter Agent Interactions... 87
Media Scaling Process.........ccvveerevnerenens 88
Active Node in Multicast Tree........ccoveuviiiriuneennens 91
Multicast Tree with Different Bandwidth Properties... 92
Filter Assumption (Si = So + Sdrop)................... 95
Internal Data Flow in an Active Node.... . 96
ACKSs’ Aggregation........c...c.veueve. e 97
Single Input/Output Active Node..........ccceiieriiiiniiniiiniiiiiniiinienn 98
Hierarchical Component StruCtUre.oeuivieireererennerereenenenensnenens 100
Multi-Protocol Support............... . 102
Grasshopper Testbed........c..ccnveen.n. .. 103
Agency 1, Agency 2 and Agency 3. .. 104
GUI of BandwidthCheckAZent........c..ceiiiiiinieearenrenieneeeeneninrenn 104

List of Tables

2.1
2.2
2.3
3.1
3.2

Classification Of FIMErS. ... veveevovreissietreoreesresseossenreesssessnens

Generalization of Filter Systems...

Filter Mechanisms................

Program Encoding Technologies.........cc..coeeviviiiiiniiiniiniininnnen.

Operating System Technologies

CHAPTER 1 INTRODUCTION

Chapter 1
Introduction

With the development of modern computer and network technologies, computer systems
and applications become more and more complex and dynamic. Internet is a typical
example, it is a huge network, composed of millions of heterogeneous computers
connected through a wide variety of network links, and numerous kinds of applications.
Furthermore, hosts, network links and applications are added or removed constantly. Each
application can be envisioned as a dynamic system living in an ever-changing
environment. One of the problems of complex and dynamic systems is the difficulty of

management of changes.

1.1 Network Management and Its Architecture

Network management comprises of network monitoring and control, its aims include the

detection and handling of faults, performance inefficiencies (e.g., high latency delays),

and security compromises (e.g., unauthorized access). To accomplish these goals,
management application do the following:

o Collect real time data from network elements, such as routers, switches, and work-
stations. For example, they collect the number of packets handled by the given
interface of a router.

o Interpret and analyze the data collected. For instance, they may recognize security
events, such as repeated illegal attempts to login on a workstation.

o Present this information to authorized network operators, possibly by displaying a
map of current traffic.

o Proactively react, in real time, to management problems, possibly by disabling a link

that is experiencing faults.

CHAPTER 1 INTRODUCTION

The architectures of network management systems are categorized as follows:

e Centralized network management: A single centralized Network Management
Station (NMS) overlooks the management. It queries the network components on a
timely basis to determine the health of the network.

¢ Hierarchical network management: A single centralized NMS is aided by a set of
subordinate NMSs. The subordinate NMSs take off some of the responsibilities of the
central NMS.

o Peer network management- A set of NMSs manage the different domains of the
network with timely interaction amongst them.

e Fully distributed network management. A totally distributed management archi-
tecture in which a large number of NMSs perform the management by using

specialization, delegation, cooperation, etc.

Currently, the prevalent network management architecture is centralized network
management, which is achieved by having management stations routinely poll the
managed devices for data, looking for anomalies. But this kind of centralized manage-

ment architecture has many drawbacks as we will describe in the following section.

1.2 Centralized Network Management and Its Drawbacks

Centralization seriously limits the scalability of network management. As the dimension
of the network grows, the management station has to communicate with a larger number
of devices, and to store and process an ever increasing amount of data, This leads to the
need for high cost hardware dedicated to the management station, to poor performance, or
even to the impossibility to cope with the dimension of the network. The area of the
network around of the management station experiences heavy traffic due to the
combination of messages sent around by the management station and those containing
data from the devices. The shortcomings of the centralized approach show up during the
periods of heavy congestion, when management intervention is particularly important. In
fact, during these periods:

o The management station increases its interactions with the devices and possibly

downloads configuration changes, thus increasing congestion.

CHAPTER 1 INTRODUCTION

o Access to devices in the congested area becomes difficult and slow (sometimes even
impossible), and

o Congestion, as an abnormal status, is likely to trigger notifications to the management
which worsen congestion.

A further problem with polling is that a component can suffer multiple state changes in

less than one round-trip time. Therefore, it is essential that network management employs

techniques with more immediate access and more ability to scale.

Similar problems also affected routing table computation when it was centralized. A
Routing Control Center (RCC) gathered information on network topology, calculated the
routing table for cach router in the network, and downloaded it into proper device. The
heavy traffic load in the area around the RCC and the difficulty of management areas far

from RCC led to the development of distributed routing.

Therefore, in order to cope with problems (such as passive, static, rigid, etc.) arise from
centralization, the network management functionality must be decentralized and become
more active and flexible, for example, the complex diagnosing and information gathering
activities can be moved from the management station into the network. Many researches
have been done in this area, what we interest in this thesis are two technologies: mopife
agent [CHK97] and getive nerworks [TW96).

1.3 Mobile Agent Approach

Mobile agen: represents a clear effort towards decentralization and increased flexibility of

network management functionality. Mobile agents can be used for a variety of purposes

in network management, they could provide the following advantages [SC]:

o Distribution of management code- Mobile agents are used to distribute the code to
the managed network elements when necessary, instead of moving large amount of
data to the manager over the network, this reduces substantially bandwidth usage and
reduces the network bottleneck as well as makes the architecture more scalable.

s Decentralization- They are effectively used to decentralize network management

activities.

CHAPTER 1 INTRODUCTION

¢ Dynamic changing of network management policics- AS the network environment
grows and changes the policies need to be changed over time and also in order to
tackle temporally changing problems the management policies need to be altered.
Instead of going through rewrite, compile and run cycle, the management policies are
dynamically changed by writing new agents easily without altering the provided
infrastructure.

o Monitoring and statistics: Mobile agents are suitable for retrieving large number of
samples of network management variables i.e. suitable for monitoring of these
variables and also for studying the behavior of network components over long period
of time. They could be used for network components monitoring and for gathering
statistics.

e Data collection- They are suitable for data collection, searching and filtering.

e High speed networks: They are suitable for high speed network management in

which case it is not practical to bring all the network data to the manager.

Generally speaking, mobile agent is a new technology which can overcome many
limitations showed in centralized network management and the traditional client/server

architecture. Detailed information about mobile agent will be given in Chapter 3.

1.4 Active Network Approach

Active network [TW96] has recently attracted a lot of attention. The idea is that instead of
having packets be passive entities that are carried around, packets can be active and
change the behavior of the network. Generally speaking, an active network is one where
node functions can be openly and dynamically programmed. Software will be loaded and
executed in intermediate nodes. This software could be developed and deployed by
anyone. This would permit any vendor to introduce novel protocols that support
innovative functions in network nodes, as much as they do for end nodes. This software,
packaged as mobile agents, called Spyarr Packer [KMH+98], could be dynamically
dispatched and activated by network providers or users. Hence, it enables the creation of

self-configuring, self diagnosing and self-healing networks. This involves actions, such as

CHAPTER 1 INTRODUCTION

alarm and event reporting, accounting, configuration management, workload monitoring,
ete.

Active network technology can improve network management. For example, manage-
ment centers can send programs to the managed nodes, which can bring the following
advantages as:

« the information content returned to the management center can be tailored (in real-
time) to the current interests of the center, thus reducing the traffic as well as the
amount of requiring examination.

« many of the management rules employed at the management center can now be
embodied in programs which, when sent to managed nodes, automatically identify
and correct problems without requiring further intervention from the management
center.

o Smart Packets shortens the monitoring and contro} loop -- measurements and control
operations are taken during a single packet's traversal of the network, rather than

through a series of et and et operations from a management station.

1.5 Active Filters

As we mentioned above, mobile agent and active network do have many advantages
which could be applied to network management, especially the management of changes.
Therefore, in this thesis, we try to use mobile égent and active network technologies to
implement a network management tool, gerive filfer, Which could be very useful in
various network management activities, such as:

(1) Real-time resource management;

(2) Load-sensitive flow rerouting;

(3) Application-specific filtering in wireline/wireless network, and

(4) Real-time multicast.

The rest of the thesis is organized as follows: Chapter 2 describes the background
knowledge of filters; Chapter 3 devotes to basic concepts of mobile agent and its

applications in network management, followed by detailed descriptions on active network

CHAPTER 1 INTRODUCTION §

technologies, the research groups and different approaches; Chapter 4 describes the
existing research on the applications of active filters; Chapter 5 gives the explicit design
and implementation of the extended use of active filters in other domains, which includes
network resource management area, application-specific filtering in wired/wireless
network area, and real-time multicast area. Chapter 6 describes the simulation part by
using mobile agent platform: Grasshopper. The thesis closes with the evaluations and

conclusions of our research.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS ’

Chapter 2
Background Knowledge of Filters

In this chapter, we discuss the background knowledge of filters that either influenced the
research presented in this thesis or is crucial to the understanding of the filter mechanisms
and important filter concepts. Section 2.1 gives the filter definition and classification.
Section 2.2 describes the he'terogeneity and resource utilization problems. Section 2.3
discusses the related research in filter areas, which includes: media scaling and the
Heidelberg Transprot System; the multimedia multicast channel; frame-induced packet
discarding; dynamically scaled multimedia streams; resource reservation protocol
(RSVP); real-time transport protocol (RTP); and QoS filtering model in distributed
multimedia applications, etc. Filter services and mechanisms are presented in Section 2.4.

In Section 2.5, we introduce some media compression technologies.

2.1 Filter Definition and Classification

In our work, a filter is a software only or hardware supported, object that implements
some actions on its inputs based on a set of rules. For example, a filter could operate
within the network or at the network edge to process continuous media streams or packets
to satisfy the requirements of the distinct receivers of that particular stream or packets, or

to adapt quickly to the whole network changing conditions.

The rules on which a filter takes action could relate to:
o QoS (quality of service) parameters: bandwidth, jitter, throughput, delay, etc.
s Alarms;

o Management commands: set, get, etc.

A filter could be static or nomadic, the set of rules on which it bases could be rigid or

modifiable. Therefore, any combination leads to a particular filter type.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS

2.1.1 Static Filter

A static filter is a filter that is built into a network element by the ISP (Internet Service
Provider) to perform its functions based on one or more given rules, and it is not movable
(which means that it cannot move from one network element to another), For example, a
router is a kind of static filter, because it can route packets to their respective destinations

based on the packet's header information (See Figure 2.1).

Router
(Filter)

Figure 2.1 Static Filter

2.1.2 Nomadic Filter
A nomadic filter could move from one network element to another. For example, it could

be a mobile agent (or Smart Packet) created by users, and be sent to one or more network

Orouter
Iswitch
E end-system

nomadic
L filter

Figure 2.2 Nomadic Filter

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS ?

clements (such as switch, router, or even server) to perform the various filtering
functions. Nomadic filter could be downloaded into a network element, and execute its

functions for one time then move to another network element (See Figure 2.2).

2.1.3 Modifiable Filter

A modifiable filter means the set of rules on which it takes actions are modifiable. For
example, a filter based on QoS parameters encapsulates a QoS negotiation and
renegotiation (which means the changing of QoS parameters according to the
application’s requirements and the network conditions) to achieve a receiver's QoS
requirements and promote optimum system utilization. A modifiable filter can be static or

nomadic.
2.1.4 Rigid Filter
A rigid filter means the set of rules on which it takes actions are rigid, not modifiable. A

rigid filter can also be static or nomadic.

We summarize the classification of filters by Table 2.1:

Categories Movable Modifiable
Static rigid filter no no

Static modifiable filter no yes
Nomadic rigid filter yes no
Nomadic modifiable filter yes yes

Table 2.1 Classification of Filters

2.2 The Heterogeneity and Resource Utilization Problems

As we have already given the definitions and classifications of filters, the question comes
after is that why we need filters. In this section, we demonstrate the present degree of
heterogeneity present at every level of modem distributed systems; heterogeneity in
applications, end-systems and networks. This section continues with other driving reasons

such as resource utilisation and dynamic QoS management.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 1o

2.2.1 The Heterogencity Problem

As a result of information technology expanding into new areas of society and geographic
location, there now exists a vast assortment of end-system and communica-tion
architectures, not to mention the multitude of application software. Heterogeneity is
totally acceptable in isolated systems; Once these systems are connected together, the
problems of establishing a true open environment emerge. While the proliferation of the
Internet Protocol (IP) has gone some way to solve the interconnection problems for data
transfer, the issues relating to the transfer of real-time continuous media are still
unresolved. This problem is particularly acute in distributed group applications where
many disparate receivers are wishing to exchange continuous media data with each other
despite capability and architectural differences. Generally speaking, the network

heterogeneity problem shows in the following aspects:

User and Application Requirements

The range of applications and user requirements is likely to be quite diverse. For example,
in multimedia applications, the perception of video and audio quality is user-dependent
and hence users may express different requirements in playout qualities. This will be

encompassed in the specification of distinct QoS requirements by disparate users.

End-system Capabilities

Considering end-system hardware, heterogeneity is present in: CPUs, I/O devices, storage
capabilities, compression support (dedicated boards/software), internal inter-connect
architecture, communication protocol support, network interfaces, etc. These issues place

limits on the end-system's capabilities to process, consume and generate multimedia data.

Networks

End-systems are likely to be connected to different networks which not only have
different bandwidth capabilities but also varying access delay characteristics. For
example: medium access control mechanism, maximum and minimum data unit size,

service types, packet loss rates, propagation delays, congestion, etc.

2.2.2 Resource Utilization

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS n

As well as the heterogeneity problem there exists the ever-present problem of limited
resources. Anderson [ATW+90] defined the window of insufficient resources (see Figure
2.3). Figure 2.3 shows the development of computer resources against the resource
requirements of the various application domains, The implications of Figure 2.3 are that
optimum resource utilization is an inherent requirement in distributed applications, as
such services have a high demand for network bandwidth allocation, storage capacities
and processor time. The rationale for using filters to reduce bandwidth required is that it
is unnecessary to transmit data to receivers that either cannot use it or do not wish to use
it. If fully and correctly implemented, filters can cut out the unwanted data at the earliest
opportunity, or during network congestion, filters can drop less important data according

to some set of rules, hence achieving optimum bandwidth utilization.

Requirements
A

ln}em‘“i"e N In§ixfﬁéient

Video ‘Resources.; | -,

High-Quality

Audio
Network Hardware
File Access Resources in Year X

1980 1590 2000 >

Figure 2.3 Window of Insufficient Resources [ATW+90]

Besides, limited resources on end-systems result in buffer overflows, lateness in
processing data and inability to process data. If the processing of data can be distributed
among a number of nodes, and some processing completed before it reaches an

overloaded client, this reduces the demands on that client.

2.2.3 Dynamic Characteristics of Quality of Service

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 12

Solving the heterogeneity problem involves providing individual QoS, and achieving
resource optimization implies accurate QoS levels; to realize both of these in a
continually changing environment requires the ability to adapt and dynamically alter QoS
levels.

The most important factor to consider when implementing a dynamic QoS mechanism is
the cost, in terms of resources required and of changing the current QoS levels. To
perform a complete end-to-end re-negotiation within a multiparty connection may take up
to three signaling messages per receiver and may involve resynchronizing, i.e.
initializing, and altering parameters of codec hardware. Therefore, the cost of end-to-end
adaptation or scaling determines the frequency at which re-negotiation may take place

and how dynamic may be the QoS monitoring and control system.

Filter operations could be one solution to make the localization of dynamic QoS control,
which means fine adjustments to a client's received data rate can be made which require
only interaction between a receiver and its closest filter agent. Localization of control
offers a number advantages over end-to-end control: firstly, the propagation delay
between client and flow control process may be much smaller thus allowing more
accurate and reactive feedback control. The signaling messages between client and
control nodes traverse fewer hops and are therefore have less impact on the total end-to-
end bandwidth. Moreover, they have less chance of suffering the effects of a congested
network (even if the signaling data is prioritized, it may still be delayed in a congested
non-reservation based network).

2.3 Related Research in Filter Areas

The term filter has been used by many researchers each with their own interpretation of
the word. Systems incorporating what can be viewed as filter operations generally fall
into the categories concerning:

e end-to-end scaling

¢ media processing filters

® resource reservation

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 12

All approaches aim to support adaptive and reactive distributed multimedia applications;
some goals are to solve heterogeneity in networks, or in end-systems; other aims are

resource optimization and reservation.

2.3.1 Media Scaling and the Heidelberg Transport System - IBM ENC
The Heidelberg Transport System (HeiTS) [Hehmann91] is a communication system for

real-time delivery of video and audio.

2.3.1.1 Transparent and Non-transparent Scaling

Transparent scaling is performed by the transport system independently of the upper
protocol layers. It relies on the transport system being able to identify suitable stream
segments to discard, such as individual frames. Non-transparent scaling involves an
interaction between the transport system and upper layers. Generally, non-transparent
scaling involves the altering of encoding parameters, on live streams, or the recoding of a
stream before it is passed to the transport system. These application level modifications

may be enacted as a result of congestion induced feedback from the transport system.

2.3.1.2 Continuous and Discrete Scaling

Scaling can be applied in one of two ways: either within a connection or sub-stream, or
by adding and removing connections and sub-streams. This gives a choice between fine
and coarse granularity hence these two approaches are called continuous and discrete

scaling respectively.

Continuous scaling relies on two functions: scale-up and scale-down. These requests will
either be performed by the transport entity or the sending application depending on
whether scaling is being performed transparently or non-transparently, respectively. If a
number of packets are late, or lost, the receiver assumes the received stream is suffering
the effects of congestion and initiates the scaling procedure (this is also called receiver-
initiated scaling). This procedure consists of three stages:

o The first reaction to congestion is 'local scaling', by discarding late packets. This does

not affect the sender. It is only intended as a short term measure.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 4

¢ If the number of lost or late packets exceeds a certain threshold a scale-down request
is made to the sender to throttle back its traffic. The sender may be throttled back to
zero transmission, but the connection is still maintained so scaling up can be quickly
performed once the current congestion problem is relieved.

e If congestion continues and a number of scale-up attempts fail, a decision to terminate

the connection and release resources is made.

There is no way for the transport entity to know when congestion has finished, so an
attempt to scale-up is made after a certain amount of time. Care has to be taken to ensure
that the sender does not scale-up too early or too late. Too early and the system may have
to scale-down immediately, producing an oscillation; too late is not as critical but to make

the best use of resources an optimum time must be established.

Discrete scaling is a connection oriented scaling method. That is, a stream is split into
sub-streams and each of these is transmitted on a separate connection. Receivers then
scale-up and scale-down by accepting or rejecting connections, and full quality is gained
by receiving all sub-streams. Discrete scaling implies a minimum of feedback and hence
each receiver has more control over its individual QoS received, as opposed to continuous
scaling where, in a multicast session, each receiver may issue scale-down requests to the

sender thus restricting the transmission to the ability of the least capable receiver.

The continuous and discrete scaling methods are in fact two very separate mechanisms.
Continuous scaling does not work for multicast traffic because the least capable receiver
will inhibit all other receivers in the same group. Using intermediate nodes to down-scale

and up-scale traffic could provide the solution to this.

Discrete scaling is a way to solve the problems created by continuous scaling, i.e., to
allow different receivers in the same multicast session to obtain different QoS levels.
Complexities with discrete scale’ lie with resynchronising the various sub-streams.
Discrete scaling gives strong support to hierarchical encoding schemes thus allowing
heterogeneity in multipeer communications.

2.3.2 The Multimedia Multicast Channel - UC, San Diego

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 15

The Multimedia Multicast Channel (MMC) [PPA+92][PPA+93] is a communication
abstraction akin to that of a cable TV channel. That is, receivers 'tune in' to a particular set
of streams, or just one stream, to obtain a desired multimedia service. Filters may be
instantiated to tailor a particular stream to a receiver's requirements if the transmitted
stream is incompatible with the receiver. Filters thus allow a number of heterogeneous

receivers to obtain different QoS levels from a common flow.

2.3.2.1 Filters

A filter is a transformer of one or more input streams of a multi-stream into an output

stream, where the output stream replaces the input streams in the multi-stream. Filters are

categorized into selective, transforming and mixing filters.

e The selective filter is the simplest form of filter. The filter only forwards certain
segments depending on some criteria. Such a filter may perform frame rate reduction,
by only forwarding segments from certain frames; or if the multi-stream contains a
hierarchically coded stream the filter can choose only to pass the base layer, by
discarding all segments from any enhancement layers.

o A transforming filter involves more processing. The filter performs some calculation
or computation on the stream to produce a new stream. A filter does not necessarily
have to reduce bandwidth: a decompression filter would be equally as valid.

* A mixing filter takes two or more streams and combines them into fewer streams than

originally present.

2.3.2.2 Filter Propagation

Each filter is separately instantiated by individual receivers at the end of a complex
dissemination tree. The power of filters on the MMC is their ability to propagate towards
the source. If a filter produces a new stream that occupies less network bandwidth than its
input stream, as many filters do, then relocating the filter closer to the source optimizes

network usage.

Furthermore, by propagating a filter to a specialized network server it is possible to off-

load some end-system processing. Filters also have the ability to combine together.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 16

Combining filters reduces the processing incurred by intermediate network nodes. The

mixed filter will then, if possible, continue to propagate towards the source.

2.3.2.3 Network as a Processor

By performing operations of different levels of complexity en route between source and
receiver implies that the network may be treated as a processor. It is therefore possible to
trade off bandwidth requirements with processing performed on network routers and

gateways.

2.3.3 Frame-Induced Packet Discarding - UC, San Diego

Frame-Induced Packet Discarding (FIPD) [RRV93] is a method to improve network
bandwidth utilization. The scheme involves an efficient frame dropping strategy based on
discarding corrupted frames. A router implementing the FIPD scheme monitors loss on a
stream. Once a certain percentage of the Packet Data Units (PDU) constituting a frame
have been lost, the remaining PDUs belonging to that frame are then discarded. The loss
threshold, termed the packet resiliency, is dependent upon the encoding scheme used.
Some encoding schemes would not tolerate any PDU losses, implying that a single lost
packet would require the whole frame to be discarded. In inter-coded compression
schemes, such as MPEG, the effect of a corrupt frame may be propagated through to
neighboring frames. For example, a corrupt I-frame may mean that the P- and B- frames

dependent on it are also corrupted.

2.3.4 Dynamically Scaled Multimedia Streams - Sun Microsystems

The Dynamically Scaled Multimedia Streams [HSF93] concept is based on the use of
hierarchically encoded media streams. These streams may be filtered at various network
nodes, such as routers or transport relays, that are not explicitly aware of the stream
semantics. Each media stream consists of a number of sub-flows. Filtering is achieved by
discarding sub-flows at various points in the network. The Hoffman approach includes a
syntax to describe scalable flows and extension of the media transport interface to
understand this syntax. The objective of using scalable flows and filtering is to achieve
congestion control, bandwidth and admission control, and receiver traffic selection. That

is, the filter system can intelligently discard packets at the time of congestion; also, lower

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 17

capability links may only be able to receive a subset of the stream sub-flows, and an end-

system may also select the quality it requires by only receiving some of the subflows.

The scalable stream syntax includes adding a time stamp, sync bit and packet sequence
number to each Media Data Unit (MDU). Each MDU is also tagged to identify which
sub-flow it belongs to. Based on this tag, two filter types are defined:
DiscardTagEqualTo(tag_val)
DiscardTagGreaterThan(tag_val)

Higher priority sub-flows are assigned lower tag values; control data and data that cannot
be filtered are assigned zero. Where the data in a scalable flow consists of components
which have an ordering, e.g. a base layer and further enhancement layers, the base layer
will be assigned the lowest value. The DiscardTagEqualTo(tag_val) filter can be used to
drop an individual sub-flow, whereas the DiscardTagGreaterThan(tag_val) filter will
discard all sub-flows above the set value. For example, it could discard all enhancement

layers above the base layer.

2.3.5 Resource Reservation Protocol (RSVP) - Internet Enginecring Task Force

The resource reservation protocol (RSVP) [ZDE+93] has another perspective on the

concept of filters. With the use of RSVP, clients may reserve resources (e.g. buffers) at

switches and end-systems. There are a number of reservation styles, which are

differentiated by the type of filter used. The filter mechanism determines which packets

may use the reserved resources:

e Fixed-Filter This reservation is applicable to only one sender, i.e. only packets from
the specified sender will be forwarded.

e Shared-Explicit This reservation allows multiple senders to use the same reserved
resources, but only the senders that are explicitly specified by the receiver.

e Wildcard-Filter The filter allows all senders to use the reserved resources.

2.3.6 Real-time Transport Protocol (RTP) - Internet Engineering Task Force
The real-time transport protocol (RTP) [SCF+94] provides end-to-end transport functions

suitable for distributed applications using continuous media. It is intended for unicast and

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 18

multicast network services, RTP is based on application level framing (AFL) and hence
operates on top of existing transport protocols, primarily UDP. The real-time protocol
specification consists of two parts: RTP for data transfer and the Real-Time Control
Protocol (RTCP) for monitoring and distributing information on the current level of QoS

transmitted and received on a session.

To support real-time data transfer the RTP protocol header has a number of important
fields: payload type, sequence number and time-stamp. The payload specifies the media
type encapsulated within the PDU, e.g. MPEG video, PCM audio, etc. The sequence
number denotes the order in which the packets are transmitted from the source. The time
stamp represents the time at which the data segment being transmitted was sampled. The
timestamp can be used by a receiver to resynchronise data and to monitor packet arrival

jitter. The sequence number can be used to monitor packet loss and recodering.

2.3.7 The QoS Filtering Model in Distributed Multimedia Applications

~ Lancaster University
Distributed multimedia applications include video and audio conferencing, dissemination
and on-demand services. The requirements of these applications are very different but all
have real-time considerations in terms of the transmission of multimedia. Multicast
mechanisms allow a source to transmit data to a number of receivers simultaneously. A
typical multipeer communication session may therefore consist of a number of one-to-one

and one-to-many connections forming a many-to-many group communication.

2.3.7.1 The QoS-Filtering Model

The QoS-filtering model [YGH+96] involves placing filters at strategic points, such as
network nodes, gateways, specialized servers, etc., around a multicast network tree. The
designated source may then send at the quality required by the highest capability receiver

while low capability receivers acquire a filtered down version of the media stream.

Filters in QoS-filtering model are objects which transform continuous media streams in

some way. This may involve reduction of video frame rate, adjustments to presentation

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 19

quality or conversion to different compression formats. A filter may be a software only

object or enjoy hardware support.

As the characteristics of the underlying network or the nature of the transmitted media
change, filters may be added or removed from the multicast dissemination tree, Filter
objects may also logically move around the current tree to achieve the optimum location
of execution. This is known as filter propagation which we mentioned above. By
implementing this approach all receiver's disparate quality requirements are satisfied.
Filtering is one of the realistic solutions to heterogeneous QoS within multicast

communications.

2.3.7.2 Model Entities

Within the QoS-Filtering Model there are a number of key objects that combine to build
the overall QoS-Filtering Architecture. The stream, source, filters and clients are
controlled and maintained by a session manager, although the clients do have some
autonomy with respect to controlling local filter agents. The following gives the
definitions of these related entities:

Client: The client object represents the communication data sink. Within a multipeer
stream a number of clients will be associated with the end leaves of the dissemination
tree. Clients are responsible for initiating a media service or joining an ongoing
communication session. Service instantiation, or service joining, is achieved by clients
issuing connect requests to a session manager.

Source Server: The source server centers around a daemon that waits for media requests
from session manager. On receiving a connection request the daemon spawns a source
agent. The source server is always in existence whether any source agents are transmitting
media or not. The location and services available from the source server are well known
to the session manager.

Source Agent: The source agent is the communication data source. The source agent
resides at the root of a multipeer dissemination tree. The source agent responds to the
request issued by a session manager by disseminating a message for set-up negotiation to

filter server and clients.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS %

Filter Server: The filter server is based around a daemon that waits for requests to
instantiate filter mechanisms. The mechanisms may be instantiated at connection set-up
time or a during an existing communication session. Like the source server, the filter
server is ever-present and well known to the session manager. The filter server may reside
on a switching node, an end system (source or sink), or on a specialized filtering node. A
number of filter servers may exist along a communication path. If occupying a switch, the
filter server would be integrated into the switching and forwarding mechanisms of the
switch.

Filter Agent: The filter agent performs the filtering operations on a continuous media
stream. Filter agents are spawned by the filter servers to perform some requested filtering
operation. Depending on the filter operation complexity, a filter agent may be a software-
only process or may be supported by specialized hardware.

Session Manager: The session manager is responsible for informing group members of
services available, and of the QoS capabilities of those services. It is also required for
dealing with client requests to initiate services, join existing service sessions and leave
existing sessions. Clients may also request changes in the quality of their received
service, which may involve the session manager interacting with the source agent and
with a number of filter servers and filter agents to adapt the stream quality. Note that the
clients can also renegotiate QoS levels with their closest filter agent. The session manager
also maintains the current state of the group within communication session. There is one
session manager per communication session.

The Stream: The stream is a data transmission between a source agent and multiple client
objects. The flow of data through the stream follows the path of the established
dissemination tree. The flow hides the identity of the clients from the source agent. The
source agent is only aware of the session manager and the address to which it is sending,
which may be a multicast group and/or a filter/switch object.

The Group: The group is a list of receivers and senders within a single multipeer
communication session. The current quality that each client is receiving, and that the
source is sending, are also held with the group membership information. The group
information is held and maintained by the session manager, possibly by implementing a
Group Management Information Base (GMIB).

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS a

2.3.7.3 Negotiation
This section describes the negotiation process in the QoS-Filtering model which is
entailed before a continuous media data transmission is initialized. The negotiation

includes the reservation of resources and filter allocation policy.

The initial negotiation consists of a three-way message-passing initiated by the client.
Exchanges between clients, the session manager and the source are in the form of flow-
specifications (FlowSpec). The FlowSpec characterizes quantitative QoS levels, actions
on thresholds, reliability requirements, service commitment and appropriate filter
operation identification. As the QoS of the flow may be changed, through filtering
mechanisms, on its way to the client(s), each client supplies a client-FlowSpec describing

its particular QoS requirements and characteristics.

Client Connect Request

The client issues a request to connect to a service. This FlowSpec request is issued to the
session manager in the form of the service required, associated QoS specifications for
throughput, delay, jitter and reliability and the service commitment for these QoS metrics.

If valid, the request is processed and passed to the source server.

Resource Management: Admission Control and Filter Allocation

The source server, on receiving a FlowSpec connect request message, either accepts the
QoS or changes it to a level it can supply. Instead of always lowering the proposed QoS
level in the FlowSpec it is conceivable that the source server may actually increase the
QoS levels it can supply. The FlowSpec is then sent to the client(s), containing the
original or adjusted QoS parameters.

While this message is en route to the clients, each node in the intended path for the
continuous media transmission performs an admission test based on available resources
and the QoS parameters within the FlowSpec. If the QoS levels cannot be met, i.e. the
required resources are not available, a filter is allocated to reduce the required QoS to
match the level of resources available. If resource reservation is available, and required,

the approximate amount of resource is reserved. The QoS levels within the FlowSpec are

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 2

then adjusted to reflect this change. The message is passed on to the next down-stream
node until each node has allocated any required filters and reserved any resources
necessary. Any node, including the source, can reject the connection request if
insufficient resource is available. The connection may also fail if allocating a filter to

reduce the required QoS levels breaches one or more of the other specified QoS levels.

Connection Agreement

Once the message has reached the clients, all required resources will have been reserved
along the proposed paths and any filters necessary will have been provisionally allocated.
The FlowSpec message encapsulates whether it was necessary to lower the proposed QoS
characteristics. Each client has the option of whether to accept the final proposed QoS
levels, lower the QoS requirement and allocate a filter, or reject the connection, If
accepted the client confirms the connection an acknowledgment to the sender. This is
relayed through each node, hence allocating the reserved resources and instantiating any
filter operations needed. Any over-committed resources, such as if the client has lowered
the QoS requirement, are relinquished. A reject results in the reserved resources being

freed and filters deallocated.

Stream Characterization
Stream characterization is intended to give a client a reasonable approximation of the
QoS to be expected from a given service. All information gathered is held by the session

manager and relayed to the client objects as requested or at regular intervals.

2.3.7.4 Stream Establishment
Data transfer begins when the QoS negotiation, set-up stage is complete, i.e. as soon as
the source receives the acknowledgment and desired source QoS output level from the

clients. This QoS level requirement will be the FlowSpec from the highest capability

receiver.

Client Application Initialization
Once the client has agreed to, and acknowledged, the proposed QoS levels it instantiates

all receiving processes that are necessary. The receiving application then waits for the

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 3

data stream to arrive. If the connection setup fails the client applications may be either

explicitly terminated by the session manager or may time-out.

Filter Server/Filter Agent Initiation

On the return acknowledgment path any filter agents that are required are spawned by the
relevant filter server. The filter agents generally take a single stream in and generate the
number of required filtered streams. The filter agents also retain any information essential
to initialize a receiving process which is transmitted within the stream. This enables
clients to join an ongoing stream at a later time by connection directly to a filter agent, i.c.
without the need to involve the source agent. The filter agent informs the session manager

of any changes it may experience.

Source Server / Source Agent Interaction

On receiving the client acknowledgment FlowSpec the source server spawns a source
agent which is responsible for gathering, packetizing and sourcing the data stream. All
control over the data stream is handed over to the source agent, the source server reverts
to waiting for further service requests, as far as the current session is concerned the source
server is no longer needed. The source agent informs the session manager about itself and

the QoS levels it is transmitting; this information is intermittently updated.

2.3.7.5 Filter Propagation and Renegotiation

Ore fundamental aspect of the QoS filtering model is the ability for filters to propagate.
That is changes in end-system loading and application/user requirements filters can be
relocated within the dissemination tree. Filter propagation achieves optimum resource
utilization. Filter propagation occurs when QoS levels of all outputs of a node are lower
than the input QoS. Filters always propagate toward the source, thus reducing network
loading, if the filter is a reduction filter. Filters may ultimately propagate to the source

itself and hence reduce the output QoS of the source.

In practice, limits may be placed on the how far filters can propagate toward the source.
For example, filters may only be allowed to propagate within the local LAN domain. A

policy could also exist where any clients joining 'late’ have to accept the quality available

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS #

. locally. There exists a trade-off between flexibility and the overhead of providing such
dynamic adaptability.

Filter,
N

Figure 2.4 Localized Dynamic Control

Clients can, during the lifetime of a connection, issue requests to the session manager to
renegotiate the whole stream. If the session manager receives enough renegotiate requests
it may decide to initiate a complete stream renegotiation. It is just replaced by another

connection with different QoS levels, resource reservations and filter allocations.

The characteristics of the seven systems introduced above can be summarized into the

following Table 2.2:
Filter Systems Developers | Characteristics
HeiTS IBM ENC e For real-time delivery of video and audio
o Transparent and non-transparent scaling
o Continuous and discrete scaling
MMC uc, o For delivery of a set of streams
San Diego e Selective filter, transforming filter, mixing
filter
o Filter propagation
FIFD ucC, e For delivery of frames
. San Diego e Be dependent upon the encoding scheme used
(such as I-, B-, P- frames)

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS %

Dynamically Sun ¢ For delivery of multimedia streams
Scaled Multimedia | Mcrosystems | « Based on the use of hierarchically encoded
Streams media streams

o Filtering is achieved by discarding sub-flows.
RSVP IETF o Another perspective on the concept of filters :

filter mechanism determines which packets
may use the reserved resources
o Fixed-filter, shared-explicit, wildcard-filter

RTP IETF o For delivery of continuous media for unicast
and multicast

QoS-Filtering Lancaster

For distributed multimedia applications
Model University

Place filters at network strategic points
QoS negotiation and renegotiation
Various filtering functions

Filter propagation

Table 2.2 Generalization of Filter Systems

From the Table 2.2 above, we can see all of the filters are static filters, which means they
are not movable. The filter propagation which was proposed by UC (San Diego) and
adopted by Lancaster University does not mean movable filters, it just means the
instantiation of another filter which is nearer to the source and deactivate the filters on its
downstream. Some of the filters are modifiable, such as QoS-Filtering Model (Lancaster
University), FIFD (UC, San Diego) and Dynamically Scaled Multimedia Streams (Sun

Microsystems).

2.4 Filter Services and Mechanisms

Based on the background knowledge of filter research, in this section we will outline
filter services and filter mechanisms, filter location will also be discussed here. Filter
services can be either explicitly requested by end-system applications or may be
instantiated by underlying network entities. One or more filter mechanisms may be

adopted in the process of delivering a filter service.

2.4.1 Filter Services

Filter services include: end-to-end scaling; in-line adaptation; in-line translation, etc.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 2

2.4.1.1 End-to-End Scaling

There are several approaches to changing or adapting the traffic between the source and
sink. The first method is end-to-end scaling, which can be considered as end-system or
source based filtering. End-to-end scaling involves the source altering its own output to

suit the requirements of the receiving parties.

Scaling may be performed to react to different conditions in the receiver end-system or

because of congestion within the transmission medium.

The source system may be called upon to perform extra processing or some special
adaptive function. Such operations include:

e changing sampling rates;

e quantization scales;

o adjusting luminance levels and other encoding parameters.

If the media to be distributed is already compressed when presented to the sending host, it
is still possible for the sender to perform source based filtering. This will generally
involve only transmitting a selection of a media stream. For example, if a client only
requires mono audio then, by clever storage techniques, only one mono channel would be

retrieved from the storage medium.

2.4.1.2 In-line Adaptation

In-line adaptation is the name given to simple filter operations that change a data stream's
characteristics with a minimum of processing and involving no decompression. The
stream or streams concerned are usually altered by discarding information. The
mechanisms used to achieve this service can be relatively simple. Hence, it is possible for

network nodes with limited processing power, e.g. switches, to perform such filtering.

Frame dropping filters and the hierarchical splitting filter are typical mechanisms that
may be called upon to offer this service.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS s

2.4.1.3 In-line Translation

In-line translation includes filter operations that require more processing complexity to
convert media into a different form. These operations require an in depth knowledge of
the encoding schemes used and how to interpret information contained within the
compressed media. It is possible that these mechanisms may be performed on a separate
network device in order to not to overload the switching nodes within the network. This
type of service may be called upon if a receiver has very different requirements to other
members of its own multicast group, or if the source and sender are quite simply
incompatible. These operations can be very adaptive and maybe used as a reactive
measure in the communication. Mechanisms included are: low-pass filtering, color

reduction filtering, transcoding and mixing, etc.

2.4.2 Filter Mechanisms
One or more filter mechanisms may be adopted in the process of delivering a filter
service which include: frame dropping filters; codec filters; color reduction filters; DCT-

filters; mixing and splitting filters, etc.

2.4.2.1 Frame Dropping Filters

The frame dropping class of filter is a media discarding filter used to reduce frame rates.

There are two types of frame dropper:

o priority based frame dropper: it has knowledge of the frame types and drops frames
according to importance. It may be to used where interdependencies exist between
frames (such as MPEG, it has I, B, P frames)

o simple frame dropper: it has less knowledge than the priority based frame dropper,
and can be used where each frame in a stream is independently encoded (such as in
Motion-JPEG or I-picture-only MPEG).

2.4.2.2 Codec Filters

" They perform specific compression related operations.

s Transcoding Filter, converts data streams encoded in one particular compression

standard into a different compression standard.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 28

o Compression/Decompression Filter, where end-systems do not have the ability to deal
with compressed media of any type, this kind of filter may be used. These filters

perform compression or decompression on behalf of a source or client system.

2.4.2.3 Color Reduction Filters

They discard varying amounts of color information from a video stream, used where an

end-system does not have a color display or has a limited display.

o Color to monochrome filter, has the effect of removing all color information from a
video stream and leaving just luminance data.

e DC-Color filter, provides a means of reducing the bit-rate of a video stream by
discarding only some of the color information.

o Dithering Filter, reduces the number of bits used to represent the color and luminance

depth (i.e. bits-per-pixel) in the uncompressed image.

2.4.2.4 DCT-Filters

The DCT-based filters are specific to the sequential DCT compression schemes, such as

JPEG, MPEG, and H.261.

e Low-pass Filter, removes the high frequency components from an image, thus
reducing image quality but maintaining frame-rate.

® Re-quantization Filter, is a method of reducing bit-rate while maintaining the same
frame rate.

e Limiting Filter, is based around a highly dynamic low-pass or re-quantization filter.
The filter is designed to convert a variable bit-rate (VBR) data stream into a constant
bit-rate (CBR) data stream.

2.4.2.5 Mixing and Splitting Filters

They provide the functions of combining many streams to one stream, and separating a

single stream into a number of sub-streams, respectively.

e Mixing Filter, is used where the end-system only has the capability to decode one
stream at a time or where some resource saving is possible by combining a number of

streams. In certain cases the combined stream may have a lower bandwidth

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS

29

requirement then the sum of the streams' separate bandwidth requirements. We have

the following kinds of mixing filters:

e Interleaving Frame Mixer

o Intra-Frame Mixer

o Video and Audio Multiplexer

* Audio Mixer

e Splitting Filter, can perform reverse operations to the mixing filter and also two other

appropriate uses:

e Individual QoS Splitter: a splitting filter can be used to separate a mixed media

stream in order to associate specific media dependent QoS parameters to the

individual streams. For example, a MPEG System (video and audio) stream

may be split into a single video stream and single audio stream.

e Hierarchical Splitter: in situations where a source cannot provide a

hierarchically encoded stream but such a stream would be advantageous, the

splitting filter can take a single stream and split it into the required sub-stream

structure. For example, an MPEG 1 video stream could be split so that the I, P,

B pictures are assigned to separate sub-streams.

The various filter mechanisms can be generalized into Table 2.3.

Frame dropping filter | Priority based frame dropper
Simple frame dropper
Codec filters Transcoding filter

Compression/decompression filter

Color reduction filter

Color to monochrome filter
DC-color filter
Dithering filter

DCT-filter Low-pass filter
Re-quantization filter
Limiting filter
Mixing and splitting | Mixing filter Interleaving frame mixer
filter Intra-frame mixer
Video and audio multiplexer
Audio mixer
Splitting filter Individual QoS splitter
Hierarchical splitter

Table 2.3 Filter Mechanisms

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS o

2.4.3. Filter Location
In the path between a source and a recipient, a filter operation can be performed either
within the network (routers and switches) or at the network edge (i.e. end-systems and

gateways). The criteria for determining this location depend on the following factors:

Data Unit Encapsulation

The amount of information a particular node knows about a stream, and hence its ability
to execute a filtering function, relies on the way the data is encapsulated within the
protocol data unit (PDU). For example, separate video frames can be encapsulated within
separate PDUs, and so a gateway or router could performed a frame dropping function by
dropping PDUs.

Switch/Router Capability
Implementing filtering within switches/routers will require reprogramming of the switch.
It is plausible that switches/routers could be reconfigured and reprogrammed to incor-

porate filter operations.

End-system Capability

End-systems in certain cases are the optimum place for filters. The term 'end-systems'
includes, sources and receivers, high level gateways (because these are also at the
network edge). Certain sources or low end receivers may not have the necessary
capabilities to execute a particular operation, that is, to execute it within the imposed time

constraints. The operation may therefore be performed at a less optimal location in the

network.

Available Bandwidth

If the manipulation of a stream involves a major change in the bit rate, such as
compression or decompression, then in order to utilize the network resources to best
effect, the operation must be executed where the stream will not cause adverse network
loading. That is, an operation that produces a larger bit-stream should be executed as
close to the receiver as possible and conversely and operation that reduces the size the bit-

stream should be located as close to the source as possible.

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 3

Time Constraints
No matter how powerful a filtering engine may be, time will always be consumed. This
affects both the transmission delay experienced, and the jitter. A trade-off has to be

reached between the benefits of filtering, network performance and time constraints.

Filter Propagation

In a dynamic heterogeneous network the optimum location for a particular filter operation
may change over time, hence a filter must have the ability to move or propagate to a more
suitable node. For example, propagation may occur when a client joins or leaves a current
session, or if a node or link becomes heavily loaded and some processing must be off-

loaded to neighboring node.

2.4.4 Special Notes

Putting filters into switches/routers does have advantages, it is the most logical place, but
this may be detrimental to the overall performance of the switch/router. End-system
filtering is easier to implement and causes least disruption to existing services but does

not realize the full potential of filtering operations.

2.5 Media Compression Technologies

Some of the filter algorithms described in later chapters operate on compressed media
streams. These algorithms exploit certain characteristics of the stream syntax to simplify
filtering. Hence, this section describes the common international standards on media

compression.

Compression technology is primarily employed to reduce the amount of data required to
represent text, graphics, audio and video. This leads to savings in storage space,
improvements in access speeds and in distributed environments it leads to more efficient

utilization of network bandwidth.

2.5.1 MPEG1
Moving Picture Expert Group (MPEG) is responsible for the development of international
standards for digitally coded motion video and its associated audio. The initial intention

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 32

was to provide a common representation and format for the encoded video and its
associated audio on various digital storage media such as Compact Discs (CDs), Digital
Audio Tapes (DATs), Winchester disk and optical drives. These devices are capable of
providing a continuous transfer rate of about 1.5 Mbit/s. This standard is now typically
referred to as MPEG 1. The features that MPEG 1 supports include forward playback,
reverse playback, random access, fast search, error robustness, and some editing

functionality.

252 MPEG2

The MPEG group, in association with the Expert Group of ATM Video Coding of the
ITU-T SG 15, has been developing MPEG 2 [MPEG 2, 94] which is targeted for very
high quality coding of moving pictures and associated audio. The features supported by
the MPEG 2 standard include: constant bit rate transmission, variable bit rate
transmission, random access, channel hopping, scalable decoding, editing, as well as
special functions such as fast forward playback, fast reverse playback, slow motion, pause
and still pictures. MPEG 2 codecs are required to be backward compatible with MPEG 1

encoded bit stream.

Any MPEG stream conforms to a generic two layer structure:

e The system layer which contains timing and other information needed to multiplex,
demultiplex and synchronize playout of the audio and video substreams.

e The compression layer which handles the compression and decompression of the

audio and video streams.

2.5.3 Video Stream Data Hierarchy
MPEG encoder has a hierarchical structure. This hierarchy is illustrated in Figure 2.5 and
described below.

The topmost level, the sequence layer, consists of a header, one or more groups of
pictures and an end of sequence of marker. The information carried in the header is
employed to initialize the state of the decoder. The group of pictures (GOP) layer

contains a header with time and editing information plus a number of pictures. GOPs

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS B

represent the smallest coding unit that can be independently decoded within a sequence

and that may form random access points.

The Picture structure represents a single frame of motion video. Three frame types are
defined. I-pictures, or intra-coded pictures, are coded without reference to other pictures.

They provide the access points and are moderately compressed. P-pictures, or forward

Sequence

le

l‘ Vl

== (7] @@@Eﬂ@‘@@ﬁi@fﬂ@@ﬁf---

GOoP

Picture

I

Block

8by8
pixels

Figure 2.5 MPEG Video Stream Data Hierarchy
(Adapted from [Yeadon96])

predictive coded pictures, are more efficiently coded by employing motion compensation.
These form reference points for further prediction. B-pictures, or bi-directionally
predicted coded pictures, are coded by using motion compensated prediction from a past
and a future I or P-picture. B-pictures demonstrate the highest degree of compression and

are never used as reference points for further prediction.

Because of the inter-dependencies between the various picture types, the order in which

pictures are transmitted, stored, or retrieved is not the same as the display order. Instead,

CHAPTER 2 BACKGROUND KNOWLEDGE OF FILTERS 3

the pictures are arranged in the order in which they are required for decoding. This is
illustrated in Figure 2.6. Each picture is composed of a header, containing ordering,
picture type, and coding information, plus one or more slices. The slice structure is
composed of a header and one or more macroblocks. The header contains position and
quantizer scale information which may be used to recover from local corruption. If the bit
stream becomes unreadable within a picture, the decoder may recover when the next slice

arrives without having to drop an entire picture.

Bl |[p | |B{|B ||P |] e -Forward Prediction
2 -
DISPLAY
ORDER
I B B P B B LA S S Bi-directional
1 2 3 4 5 6 7 Prediction
1 P B B P B B VIDEO
1 3 7 5 p STREAM
4 2 ORDER

Figure 2.6 Picture sequences in display and video stream order

The macroblocks represent the basic unit for motion compensation and quantizer scale
changes. Each macroblock structure contains a header a six 8 by 8 blocks: 4 blocks of
luminance, 1 block of Cb chrominance and 1 block of Cr chrominance. The header
contains quantizer scale and motion compensation information. The blocks represent the

basic coding unit.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ *°

Chapter 3
Active Adaptation
by Mobile Agent and Active Network

In this chapter, we are going to introduce two active adaptation technologies: mobile
agent and active network. Mobile agents are autonomous, intelligent programs that can
migrate from one machine to another in a heterogeneous network. From the computation
point of view, mobile agents co-locate data and computation by bring the computation to
the data, rather than by bringing the data to the computation. Agents have the necessary
autonomy to make decisions, and interact with other agents and services to accomplish
their goals. It is a new technology which can overcome many limitations of client/server
architecture. The detailed knowledge information about mobile agent will be introduced
in Section 3.1; Active network offers a technology where the application can not only
determine protocol functions as necessary at the endpoints, but one in which applications
can inject new protocols into the network or the network to execute on behalf of the
application. The nodes of the network are programmable entities and application code is
executed at these nodes to implement new services, the knowledge of active network is

covered in Section 3.2.

3.1 Active Adaptation by Mobile Agent

Historically, distributed applications are created with "client/server” programming. In this
model, an operation is split into two parts across a network, with the client making
requests from a user machine to a server which services the requests on a large,
centralized system. A protocol is agreed upon and both the client and server are
programmed to implement it. A network connection is established between them and the
protocol is carried out. The client/server model works well for certain applications.
However it breaks down under lots of other situations, which include highly distributed
systems, slow and/or poor quality network connections (such as wireline/wireless

network), and especially in the face of changing applications.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 3

With client/server architecture, it needs the following conditions to make good quality

network connections [BWP98] :

® First, the client needs to connect reliably to its server, because only by setting up and
maintaining the connection may it be authenticated and secure.

e Second, the client needs to be assured of a predictable response, since its many
requests of the server require full round trips to be completed.

o Third, it needs good bandwidth, due to its very nature, client/server must copy data
across the network.

® Finally, the protocol which a client and server agree upon is specialized and static.
Often, specific procedures on the server are codified in the protocol and become a part
of the interface. This interface is extensible, but only at the high cost of recoding the
application, providing for protocol version compatibility, software upgrade, etc. As
the applications grow and the needs increase, client/server programming rapidly

becomes an impediment to change.

However, the conditions for client/server architecture to make good quality network
connections cannot always be satisfied. We need more flexible technology, such as
mobile agent technology, which can overcome the limitations of client/server. The
following will introduce what is mobile agent, its advantages, and its applications related

with active adaptations.

3.1.1 Mobile Agent and Its Advantages

Mobile agent, in simple words, is an independent software program running on behalf of
a network user that can migrate from machine to machine in a heterogeneous network.
The program chooses when and where to migrate. It can suspend its execution at an
arbitrary point, jump to another machine and resume execution on the new machine
[BKR98]. An agent may run when the user is disconnected from the network, even if the
user is disconnected involuntarily. Some agents run on specialized servers, others run on
standard platforms.

A mobile agent is specialized in that in addition to being an independent program

executing on behalf of a network user, it can travel to multiple locations in the network.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 7

As it travels, it performs work on behalf of the user, such as collecting information or

delivering requests. This mobility greatly enhances the productivity of each computing

element in the network and creates a uniquely powerful computing environment well

suited to a number of tasks.

Mobile agents break the client/server barrier, and overcome all of the above inherent

limitations in client/server:

Mobile agent shatters the very notion of client and server. With mobile agents, the
flow of control actually moves across the network, instead of using the
request/response architecture of client/server. In effect, every node is a server in the
agent network, and the agent (program) moves to the location where it may find the
services it needs to run at each point in its execution.

The scaling of servers and connections then becomes a straightforward capacity
issue, without the complicated exponential scaling required between multiple servers.
The relationship between users and servers is coded into each agent. It is the agent
itself that creates the system, rather than the network or the system administrators.
Server administration becomes a matter of simply managing systems and monitoring
local load.

The problem of robust networks is greatly diminished. The hold time for connections
is reduced to only the time required to move the agent in or out of the machine. No
requests flow across the connection, the agent itself moves only once, in effect
carrying a greater "payload" for each traversal. This allows for efficiency and

optimization at several levels.

Besides the above, mobile agents also have the following primary advantages
[CHK97]{BHN+97]:

1.

They facilitate high quality, high performance, economical mobile applications:
Applications employing mobile agents transparently use the network to accomplish
their tasks, while taking full advantage of resources local to the many machines in the
network. They process data at the data source, rather than fetching it remotely,
allowing higher performance operation. They use the full spectrum of services

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK

available at each point in the network and make best use of the network as they
travel.

Mobile agent technology provides for secure communications even over public
networks. Agents carry user credentials with them as they travel, and these credentials
are authenticated during execution at every point in the network. Agents and their data
are fully encrypted as they traverse the network. All this occurs with no programmer
intervention.

They efficiently and economically use low bandwidth, high latency, error prone

C ications ch Is.

They can offer dynamic adaptation: Mobile agents have the ability to autonomously

" react to changes in their environment. However, such changes must be communicated

to mobile agents from the mobile agent environment.

They support for heterogeneous environments: Both the computers and networks on
which a mobile agent system is built are heterogeneous in character. As mobile agent
systems are generally computer and network independent, they support transparent
operation.

They can personalize server behavior: In the intelligent networks, mobile agents are
proposed as a way to personalize the behavior of network entities (e.g., routers) by
dynamically supplying new behavior.

They are robust and fault tolerant: The ability of mobile agents to react dynamically
to adverse situations makes it easier to build fault tolerant behavior, especially in a

highly distributed system.

We could also identify four properties of mobile agents that can be useful for the

improvement of current network management, which are:

Intelligence is the ability to not only perform the processing associated with a task,
but to assume some level of control or decision making.

Autonomy is the ability of the agent to operate independently, not merely in response
Cooperation is the ability to interact with other agents. Cooperation encourages a
hierarchical approach to problem solving where agents are assigned small low-level

tasks and combine to achieve a higher level goal.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK

¢ Mobility is the ability to move the agent to a network component so that the agent
operates in the same locale as the data. Agent mobility encompasses code mobility,
which is transporting code to a network component for remote execution, as well as
migration, which is the ability of a process to stop its execution, save its state and
transport itself to another network component to continue its execution there. Both
forms of mobility are powerful tools that lead to opportunities for service

customization, software version control and upgrades, and more.

As mentioned above, mobile agent technology do have many advantages over the
traditional client/server models. That is the reason we try to apply this technology to

network management and distributed network systems.

3.1.2 Mobile Agent Technology in Distributed Multimedia Systems
In this section, we will explain on how mobile agent can be used in distributed

multimedia systems.

3.1.2.1 Passive Approach

Presently, many distributed multimedia systems adapt to their changing environments and
QoS requirements by exchanging control and feedback data between servers and clients.
For the most part, the nature of such data is passive, that is, they contain values
representing the states of some pre-defined variables and control parameters. The
recipients of the data respond by executing a fixed set of functions, implementing some
fixed adaptation algorithm. '

The problem here is that these functions are indiscriminately applied to all participating
machines even though the latter may have different requirements. For example, upon
receiving feedback on frame loss from its clients, a video server reacts by executing the
same frame dropping algorithm across all client, regardless of the difference in their
processing powers. The only variability allowed is through changes in feedback values;

the algorithm remains invariant.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ *°

In the above passive approach, all programs used to control QoS are static because they
can neither be moved dynamically to a remote location nor replaced. They are attached to

their hosts (server or client) for the entire duration of the application.

This absence of program mobility makes it very difficult for multimedia systems to
support dynamic changes in QoS control policies and adaptation algorithms. Such
changes are often required due to the time-dependent needs of an application which can
best be served by switching to different protocols or different resource management
policies. Accommodating these changes with a fixed set of programs would require a

forecast of many possible scenarios, which may not always be attainable.

3.1.2.2 Mobile Agent To Rescue

In order to facilitate multimedia applications to timely adapt to their continuously
changing environment and hence to QoS fluctuations, we can complement the passive
data passing model with the active program passing model: active because programs can
be dynamically launched, loaded and executed at a remote destination where computation
is needed. Such programs are referred to as mobile programs or mobile agent.
Dispatching a program to another computer is known as remote delegation [GY95]
because the computational responsibility of the program is passed to another machine that

carries out the actual execution.

Exploiting program mobility to actively adapt to applications' QoS variations offers some

notable advantages [Tran97]:

o A fine grained, dynamic customization of QoS control can be realized.
Through delegation, a client can inject into the server, at any point in time, a mobile
program containing specific adaptation functions and algorithms, tailored to the
client's processing capabilities and requirements. The program is then executed at the
server, directly affecting the server's behavior towards the given client. This results in
a flexible structure where different clients can impose their preferred QoS control
policies carried in different mobile programs. For example, in multicast applications

using MPEG 1 encoding, a group of clients may desire their server to adjust its frame

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK '

sending rates, while another group of slower clients may prefer the server to send the
frames and discard the rest.

o Furthermore, existing QoS adaptation behavior can be altered dynamically to
respond to QoS variations in a continuously changing environment.
Here, re-delegation can be used: a new program, which incorporates an application's
new control intelligence reflecting new requirements, can be delegated over to a
remote site, replacing the current mobile program. This strategy permits a video
receiver to flexibly introduce new control schemes to its sender at any time during the
application, thereby achieving far greater adaptivity than is traditionally possible.
Considering a flow control example, if during a video play, a client's CPU is so busy
that the current rate control strategy is deemed to be inappropriate, the client may
decide to switch to a frame dropping strategy by simply re-delegating another suitable

program.

The end result is that programs at the server no longer need to be fixed. Instead, a server
can utilize dynamically deployed adaptation programs to respond to its clients' diverse
hardware/software processing requirements. These programs can be removed and

replaced on an 'as needed’ basis when they become obsolete.

The mobility of programs can provide a richer set of adaptive capabilities to
accommodate continuous QoS changes in distributed multimedia systems. The concept of
active adaptation breaks the mindset of traditional adaptation. Instead of sending feedback
values, clients have the latitude of dynamically sending feedback programs, which
encapsulate their desired QoS control logic and data. These programs, customized for

individual clients' needs, replace the server's rigid set of QoS control functions.

3.2 Towards Active Networks

Today, mobile programs are not only deployed in end-systems, but also in intermediary
network nodes. This results in recent emergency of novel network designs and
architectures, known as active networks [TW96}. The traditional view of a router/switch

as being a passive 'store and forward' machine is replaced by a highly flexible engine, one

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 2

that can dynamically accept and perform customized computations on various packets

according to individual application’s requirements.

3.2.1 Programmable Network vs. Active Network

There has been an increasing demand to add new services to networks or to customize
existing network services to match new application needs. However, the introduction of
new services into existing networks is usually a manual, time consuming and costly
process. The goal of programmable networking is to simplify the deployment of new
network services leading to networks that explicitly support the process of service
creation and deployment. Programmable network architectures can be customnized by
utilizing clearly defined open programmable interfaces (i.e., network APIs) and a range of

service composition methodologies and toolkits.

A programmable network is distinguished from any other networking environment by the
fact that it can be programmed from a minimal set of APIs from which one can ideally
compose an infinite spectrum of higher level services [CKV+99]. The programmability of
network services is achieved by introducing computation inside the network, beyond the
extent of the computation performed in existing routers and switches. We can view the
generalized model for programmable networks as comprising conventional
communication, encompassing the transport, control and management planes, and
computation as well. Collectively, the computation and communication models make up a

programmable network.

Two schools of thought have emerged on how to make networks programmable: Active

Networks (AN) [DARPA9Y6] and Open Signalling (Opensig) [Open].

e The Opensig community argues that by modeling communication hardware using a
set of open programmable network interfaces, open access to switches and routers can
be provided; and by “opening up” the switches in this manner, the development of
new and distinct architectures and services can be realized. Open signaling takes a
telecommunications approach to the problem of making the network programmable.
There is a clear distinction between transport, control and management that underpin

programmable networks and an emphasis on service creation with QoS. The open

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK **

programmable network interfaces allow service providers to manipulate the states of
the network using middleware toolkits (e.g.,, CORBA) in order to construct and
manage new network services.

e The AN community advocates the dynamic deployment of new services at runtime
mainly within the confines of existing IP networks. The level of dynamic runtime
support for new services goes far beyond that proposed by the Opensig community,
especially when one considers the dispatch, execution and forwarding of packets
based on the notion of “smart packet”. In active networks, code mobility represents
the main vehicle for program delivery, control and service construction. Active
networks allow the customization of network services at packet transport granularity,
rather than through a programmable control plane. Active networks offer maximum
flexibility in support of service creation but with the cost of adding more complexity
to the programming model. AN approach is more dynamic than Opensig’s network

programming interfaces.

Both communities share the common goal to go beyond existing approaches and
technologies for construction, deployment and management of new services in tele-

communication networks. In this thesis, we put more importance on active network.

3.2.2 Introduction to Active Networks

As we know, traditional networks have the drawback that the intermediate nodes are
closed systems whose functions are rigidly built into the embedded software. Therefore,
development and deployment of new protocols in such networks requires a long
standardization process. The range of services provided by the network is also limited
because the network cannot anticipate and provision for all needs of all possible

applications.

Active networks offer a different paradigm that enables programming intermediate nodes
in the network. A network is active if it allows applications to inject customized programs
into the network to modify the behavior of the network nodes [TW96]. This allows
applications to customize the network processing and adapt it to the application’s

immediate requirements. This enables new protocols and new services to be introduced

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 4

into the network without the need for network-wide standardization. Active network
suggests that protocols are nothing but services provided by the nodes of the active
network. In an active network, applications have the ability to access these services and

customize them for their needs.

3.2.3 Active Network Concepts

Traditional networking implementations follow a layered model that provides a well-
defined protocol stack. Most implementations provide a fixed protocol stack that is
determined by a long standardization process often taking many years and is fixed when
the final system is constructed. Therefore the time delay from the conceptualization of a
protocol to its actual deployment in the network is usually an extraordinarily long

process.

Active networking offers a technology where the application can not only determine
protocol functions as necessary at the endpoints, but one in which applications can inject
new protocols into the network to execute on behalf of the application. The nodes of the
network are programmable entities and application code is executed at these nodes to

implement new services.

In this section, we are going to introduce two key concepts in active network: Smart

Packet and active node.

3.2.3.1 Smart Packets

In an active network, data packets are information entities. These entities, which we call
Smart Packets [KMH+98], contain a destination address, user data, and methods (or “how
to” information) that are executed locally at any node in the active network. These
methods turn the network elements into active elements: they apply the methods to the
packets, thereby implementing network-based services tailored to the application. We can
think of Smart Packets as carrying customized protocols that have to be fitted in with
protocol modules at the network nodes.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ **

. The code in the Smart Packet can be in any executable format and it can be exccuted at
the node if the node has the correct processing environment. Figure 3.1 and Figure 3.2

demonstrate the difference between Smart Packets and Not-So-Smart Packets.

FROM]

FROM; "
T0!

™

DESTINATION

£ T e

Figure 3.1 Not-So-Smart Packet
(Delivery Pracess is static, relatively passive)

3.2.3.2 Active Nodes
Nodes in an active network are called active nodes because they are programmable

elements that allow applications to execute user-defined programs at the nodes.

Active nodes perform the functions of receiving, scheduling, executing, monitoring and

forwarding Smart Packets [KMH+98]:

s When a Smart Packet arrives at an active node, the type identifier and the user-
defined code inside the Smart Packet is extracted.

o The type identifier is used to de-multiplex the Smart Packet to its correct processing
environment.

o The Smart Packet is then scheduled for execution.

A separate environment is required for each invocation to prevent undesirable interactions

. and malicious access to node resources.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 6

FROM. ...
TO: .. u
HOW: ...

ACTIVE
NODE

Figure 3.2 Smart Packet
(Smart Packet arrives, executes in active node,
run, actively, then move on)

Active nodes export a set of resources and primitives that can be used by user programs.
This not only provides a consistent view of the network but also enforces constraints on

the actions that can be performed by user code.

3.2.4 Active Networks and Programming Interfaces

One way to think about active networks is they provide a programmable network APIL. As

showed in Figure 3.1 and Figure 3.2, if we think of the IP header in the traditional

network as the input data to a virtual machine, we can think of packets in the active

network containing programs (“how to” information) as well as input data. In the context

of this model, a variety of active networking approaches can be characterized by the

following attributes [CBZ+98]:

e Language Expressive Power. The degree of programmability of the network API may
range from a simple of fixed-size parameters that select from predefined sets of

choices, to a Turing-complete language capable of describing any effective

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 7

computation. The advantage of a less powerful language is that it constrains the
possible node behaviors and so simplifies correctness analysis.

o Statefulness. Another important characteristic of the network API is the ability to
install state in the interior nodes of the network, and to refer to state installed by other
packets. Some active nctwork APIs provide this capability, while others do not.
Where it is present, the APl must include control mechanisms to protect users’ state
from unauthorized access.

o Granularity of Control. This refers to the scope of node behavior that can be modified
by a received packet. One possibility is that a single packet can modify the node
behavior seen by all packets arriving at the node, and this change persists until it is
overridden. At the other extreme, a single packet modifies the behavior seen only by
that one packet. Between these extremes, modifications might apply to a flow, which
we define to a set of packets sharing some common characteristic, such as temporat
locality and/or a particular source and destination address in the headers. In general,
the active network API must include security mechanisms that ensure that packets

affecting the node behavior have localized effect and/or come from authorized users.

The possibility of programming the network API introduces a new role, namely that of
service developer: a third party who provides code that can be loaded into the active
network to enhance or customize the service seen by users. Such code might be deployed

by users themselves, or by network service providers.

3.2.5 Active Network Design Models
To help better understanding of active network, here we introduce some basic ideas about

active network design models.

3.2.5.1 Design Space Axis
Two design space axis are important for designing an active network.
1. The first axis addresses possible mechanisms for network programmability.
e At one extreme (called the “integrated approach” [TW96]), each packet (capsule)

carries a program that may be evaluated at intermediate hops to effect its routing,

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK 8

compute some useful result, or in some other way affect the network. Here,

networking changes occur by changes at the programmable packet level.

Capsules — an integrated approach

Every message, or capsule, that passes between nodes contains a program
fragment (of at least one instruction) that may include embedded data. When a
capsule arrives at an active node, its contents are evaluated, in much the same
way that a PostScript printer interprets the contents of each file that is sent to
it. Bits arriving on incoming links are processed by a mechanism that
identifics capsule boundaries, possibly using the framing mechanisms
provided by traditional link layer protocols. The capsule’s contents are then
dispatched to a transient execution environment where they can safely be
evaluated. The programs are composed of instructions, that perform basic
computations on the capsule contents, and can also invoke “built-in”
primitives, which may provide access to resources external to the transient
environment. The execution of a capsule results in the scheduling of zero or
more capsules for transmission on the outgoing links and may change the non-
transient state of the node.

s The other extreme (called the “discrete approach”[TW96]) is that packets are

passive, and that extensibility is provided by downloading code into the routers.

Programmable routers (or switches) — a discrete approach

The processing of messages may be architecturally separated from the
business of injecting programs into the node, with a separate mechanism for
each function. This preserves the current distinction between in-band data
transfer and out-of-band management channels. Users would first inject their
custom processing routines into the required routers. Then they would send
their packets through such “programmable” nodes much the way they do
today. When a packet arrives at a node, its header is examined and the
appropriate program is dispatched to operate on its contents.

Separate mechanisms for loading and execution might be valuable when
program loading must be carefully controlled. Allowing operators to

dynamically load code into their routers would be useful for router

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ *°

extensibility purposes, even if the programs do not perform application- or
user-specific computations. In the internet, for example, program loading
could be restricted to a router’s operator who is furnished with a “back door”
through which they can dynamically load code. This back door would at
minimum authenticate the operator and might also perform extensive checks
on the code that is being loaded.

o There is a mixture of these approaches in which packets carry programs that may

refer to and invoke more general (and loadable) router-resident functionality.

2. The second axis determines at which hops active evaluation should occur.
o The internet currently lies at one extreme: interesting 'active' processing can occur
only at the endpoints.
* Another view is that active processing should occur at every intermediate hop.
e There is an intermediate position that allows evaluation at some of the
intermediate hops, thus allowing more flexibility than end-to-end approaches
while avoiding unnecessary processing overhead for simple tasks which do not

require evaluation at every hop.

3.2.5.2 Towards a Common Programming Model

Network programs must be transmitted across the communication substrate and loaded
into a range of platforms. This suggests the development of common models for: the
encoding of network programs; the “built-in” primitives available at each node; and the

description and allocation of node resources.

Program encoding. The objectives for program encoding are that they support:

e Mobility — the ability to transfer programs and execute them on a range of platforms.
e Safety — the ability to restrict the resources that programs can access.

¢ Efficiency — enabling the above without compromising network performance, at least

in the most common cases.

Mobility may be achieved at several different levels of program representation:

e express the program in a high-level scripting language, e.g. Tcl;

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ *°

e adopt a platform independent intermediate representation, typically a byte-coded
virtual instruction set, e.g. Java;

e or transfer programs in binary formats, e.g., Omniware.

The Table 3.1 below describes recently developed enabling technologies that support the
safe and efficient execution of each level of program encoding. All three approaches
prove useful:

PROJECT |M|[S [E [DESCRIPTION

Safe-Tcl XX Safe-Tcl (based on Tecl) is a scripting language that provides
(source) safety through interpretation of a source program and closure
of its namespace. It depends on the restricted closure and
correctness of the interpreter to prevent programs from
deliberately or accidentally straying beyond their permitted

execution environment.
Java X IX |x [Java uses an intermediate instruction set to achieve mobility.
(intermediate) Traditionally, the safe execution of intermediate code has

relied on its careful interpretation. One of Java’s key
contributions is to improve efficiency by off-loading
responsibility from the interpreter: the instruction set and its
approved usage are designed to reduce operand validation
per executed instruction.

Omniware x |X [X |Omniware portable object-code depends on software-based
(object-code) fault isolation (SFI) to enforce safety efficiently. It
prescribes a set of rules that instruction sequences must
adhere to, e.g. restrictions on how address arithmetic is
performed. In conjunction with run-time support, these rules
define a “sandbox” within which the program can do what it
likes, but that it may not escape.

Proof- X [X [PCC uses a novel approach to achieve safety: it attaches a
Carrying formal proof of the properties of a binary program. The
Code recipient can check that the proof is valid, a process that is
(object-code) much simpler than constructing it from scratch. Currently,

PCC is practical only short programs.

Table 3.1 Program Encoding Technologies (with labeled columns M, S, and E
Assessing mobility, safety, and efficiency, respectively)

e source encodings support rapid prototyping;

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK '

e intermediate representations provide a compact and relatively efficient way to express
short programs; and

e commonly used modules might best be expressed at the object-code level.

A possible approach to node interoperability would be to agree on an intermediate
instruction encoding as the backstop for code mobility. Node implementers and users
would be welcome to leverage alternative encodings, so long as they provide mechanisms
through which an intermediate encoding of a program can be obtained or generated.
Implementers may also leverage techniques such as dynamic (“on-the-fly”) compilation
that optimize common processing routines, both by converting portable representations to
native ones, and by specializing programs to individual contexts. Operating system
support for more specific strategies, such as “path”-based scheduling, protocol code
reorganization, and low-level extensibility should also prove useful. The Table 3.2 below

describes some of these compilation and operating systems technologies.

PROJECT DESCRIPTION

Scout Scout is designed to support communication-oriented tasks. It
allocates and schedules resources on a “path” basis and applies a
number of optimizations intended to increase throughput and
decrease latency. Many of the techniques may be applicable to
programs loaded into network nodes.

Exokernel The exokernel enables programs to safely share low-level access
to system resources. It implements a thin veneer that securely
multiplexes the raw hardware. This in turn allows programs to
tailor their own abstractions of operating system services, e.g.,
access to the active node environment.

SPIN SPIN relies on the properties of the Modula 3 language and a
trustworthy compiler to generate programs that will not stray
beyond a restricted environment. Programs signed by the compiler
may be dynamically loaded into the operating system.

‘C ‘C and VCODE enable “on-the-fly” code generation. This allows
source programs to be automatically tailored, or even wholly
generated, at runtime. These technologies could allow active
nodes to translate commonly-used programs to binary encodings.

Table 3.2 Operating System Technologies

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ **

Common primitives. The services built-in to each node might include several categories

of operations:

o primitives that allow the packet itself to be manipulated, e.g., by changing its header,
payload, length, etc.;

o primitives that provide access to the node’s environment, e.g., the node address, time-
of-day, link status, etc.; and

s primitives for controlling packet flow, such as forwarding, copying, discarding.

s Additional primitives might provide access to node storage and scheduling, e.g., to

facilitate rendezvous operations that combine processing across multiple packets.

Node resources and their allocation. Beyond encodings and primitives, there must be a
common model of node resources and the means by which policies governing their
allocations are communicated. The resources to be modeled include: physical resources,
such as transmission bandwidth, processing capacity, and storage; as well as logical
resources, such as routing tables and the node’s management information base. Safe
resource allocation is an area that will require considerable attention. Active nodes will be
embedded within the shared network infrastructure, and so their designs must address a
range of “sharing” issues that are often brushed over in the design of programmable

systems destined for less public environments.

3.2.6 Brief Overview of Current Existing Active Network Technologies

In this section, we will introduce some active network technologies which were
developed recently, which include PLANet [HMA+98] & SwitchWare [SFC+], ANTS
[WGT96], NetScript [YS96], Smart Packet [SZJ+], etc.

3.2.6.1 PLANet & SwitchWare (University of Pennsylvania)

PLANet is an active network that is programmable in two ways. First, packets contain
programs written in a special-purpose packet language called PLAN (Packet Language
for Active Networks); these programs serve a role similar to the header of a traditional

packet in providing control of how packets operate inside the network.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK >

The SwitchWare project uses PLAN as the network API, it aims to build a software-
programmable active network switch using a discrete approach. Programs could be
dynamically loaded into the switch through the switch’s input ports. Packets could then

select between different network services by having different programs run on them.

3.2,6.2 ANTS (MIT)

ANTS (an Active Node Transfer System) was developed at MIT, which is an “active
network” approach to building and deploying network protocols. This approach views the
network as distributed programming system, and provides a programming language-like
mode for expressing new protocols in terms of operations at nodes. It provides the greater
flexibility that accompanies a programming language and the convenience of dynamic

deployment.

The ANTS architecture has three key components:

s The packets found in traditional networks are replaced by capsules that refer to the
processing to be performed on their behalf.

e Routers and end nodes are replaced by active nodes that execute capsule processing
routines and maintain their associated state.

® A code distribution mechanism ensures that processing routines automatically and

dynamically transferred to those nodes where they are needed.

Capsule

A capsule is a generalized replacement for a packet. Its most important architectural
function is to include a reference to the forwarding routine to be used to process the
capsule at each active node. Some forwarding routines are "well-known" in that they are
guaranteed to be available at every active node, such as standard routing; Other routines
are "application-specific”, which will not reside at every node, but must be transferred to
a node by the code distribution scheme before capsules of that type can be processed for
the first time. Each capsule carries an identifier for its protocol and particular capsule type
within that protocol.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK >*

Active Nodes

Active nodes execute protocols within a restricted environment that limits their access to
shared resources. They exported a set of primitives for use by application-defined
processing routines. They also supply the resources shared between protocols and enforce

constraints on how these resources may be used as protocols are executed.

Code Distribution

The third component of ANTS is a code distribution system. Given a programmable
infrastructure, a mechanism is needed for propagating program definitions to where they
are needed. The ANTS couples the transfer of code with the transfer of data as an in-band

function.

3.2.6.3 NetScript (Columbia University)

The NetScript project seecks to create a model for programmable, rather merely
configurable, intermediate network node engine. NetScript uses agents to program
management and control the functions of intermediate nodes. A NetScript agent glues
primitive node functions to processing packet streams and allocate node resources.
NetScript agents can be programmed to handle both standardized as well as non-
standardized protocols. Packet streams arriving at intermediate nodes are processed by the

appropriate agents to accomplish the desired functionality of these protocols.

The NetScript project consists of three components:

e anarchitecture for programming networks in the large.
NetScript views a network as a collection of Virtual Network Engine (VNE)
interconnected by Virtual Links (VL). The VNEs can be programmed by NetScript
agents to process packet streams and relay these streams over VLs to other VNEs.
The collection of VNEs and VLs defines a NetScript Virtual Network (NVN).
NetScript provides a language to program a NVN. A NetScript program can be
viewed as a collection of threads, distributed at the VNEs and processing packet
streams moving through the NVN.

® anarchitecture of a dynamically programmable networked device.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ~ 5°

® a language called NetScript for building networked software on a programmable
network.

3.2.6.4 Smart Packets (BBN Technologics)

Smart Packets is an Active Networks project focusing on apply active networks
technology to network management and monitoring without placing undue burden on the
nodes in the network. Smart Packets improves the management of large complex
networks by

* moving management decision points closer to the node being managed, targeting

specific aspects of the node for information rather than scatter-shot collection, and

e abstracting the management concepts to language constructs, allowing nimble

network control.

The Smart Packets architecture consists of four parts:

e a specification for smart packet formats and their encapsulation into some network
data delivery service,

o the specification of a high level language, its assembly language, and compressed
encoding representing that portion of a smart packet that gets executed,

e a virtual machine resident in each networking element to provide a context for
executing the program within the smart packet, and

e asecurity architecture.

3.2.7 ANEP (Active Network Encapsulation Protocol)

One challenge in implementing Smart Packet is that IP does not have a notion of a
datagram whose contents is processed at intermediate nodes. An IP router simply
examines the datagram header and forwards the datagram. However, for Smart Packets in
active network, the router must process the contents of the datagram before forwarding it.
Further, the router should examine the contents of the datagram only if the router support
Smart Packets. Otherwise, the router should pass the datagram through.

One solution is to modify an IP option, Router Alert, to achieve the operation specified

above. The Router Alert option tells the router that it may need to examine the contents of

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK ¢

the datagram. Router Alert options can be specified for both IPv4 and IPv6. Based on the
type tag, and possibly an examination of some of the higher-layer headers, the router can
determine if it should process the datagram contents. If the router doesn't support active
networks, it ignores the option and forwards the datagram. If the router supports Active
Networks, it examines the ANEP (Active Network Encapsulation Protocol) message,
learns the message is a Smart Packet and, if the router supports Smart Packet, it processes

the packet.

This section specifies a mechanism for encapsulating active network frames for
transmission over different media. This format allows use of an existing network
infrastructure (such as IP or IPv6) or transmission over the link layer. This mechanism
allows co-existence of different execution environments and proper demultiplexing of

received packets.

An active network node (or active router) is capable of dynamically loading and
executing programs, written in a variety of languages (such as PLAN, JAVA, etc.). These
programs are carried in the payload of an active network frame. The program is executed
by a receiving node in the environment specified by the ANEP. Various options can be
specified in the ANEP header, such as authentication, confidentiality, or integrity.

Terminology

packet: an ANEP header plus the payload

active node: a network element that can evaluate active packets
TLV: acronym for Type/Length/Value constructs

basic header: the first two elements of the ANEP header

Reasons

The reasons an active network header is necessary are:

® An active node receiving a packet must be able to uniquely and quickly determine the
environment in which it is intended to be evaluated.

o To allow minimal, default processing of packets for which the intended evaluation

environment is unavailable.

CHAPTER 3 ACTIVE ADAPTATION BY MOBILE AGENT AND ACTIVE NETWORK °'

o So that information that does not fit conceptually or pragmatically in the encapsulated

program (such as security headers), can be placed in the header.

Packet Format

The packet format is shown in Figure 3.3.

Version [Flags Type ID
ANEP Header Length ANEP Packet Length
Options

v

Payload

Figure 3.3 ANEP packet format

The Version field indicates the header format in use. This field will be changed if the
ANERP header should change. If an active node receives a packet whose version number it
does not recognize, it should discard the packet. The length of this field is 8 bits; The flag
Jield is 8 bits long. It indicates what the node should do if it does not recognize the Type
ID. If the value is 0, the node could try to forward the packet using the default routing
mechanism. If the value is 1, the node should discard the packet; The ANEP Header
Length field specifies the length of the ANEP header in 32 bit words. The length of this
field is 16 bits; The Type ID field indicates the evaluation environment of the message.
The active node should evaluate the packet in the proper environment. The length of this
field is 16 bits. If the value contained in this field is not recognized, the node should
check the value of the most significant bit of the Flags field in deciding how to handle the
packet; The ANEP Packet Length field specifies the length of the entire packet; Options in
the form of TLVs can included in the packet immediately following the basic header; The
Option Type field identifies the option. How the active node handles the option Payload
depends on the Option Type value.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 58

Chapter 4
Existing Active Filter Applications

As the name suggests active filters are active technology based on mobile agent and
active network. Active filters can be either nomadic or modifiable, or both. Active filters
can be developed to be used in various areas, existing research on the applications of
active filters includes: programmable congestion control; intelligent communication
filtering; firewalls which are related to security issues; and e-commerce, such as online
auctions, etc. This chapter is divided into two sections: Section 4.1 devotes to protocol
classifications which are closely related to active filter functions in active network, such
as filtering protocol class, combining class, transcoding class and network management
class, etc. Existing active filter applications are introduced in Section 4.2, which include
active networking and congestion control, intelligent communication filtering, firewalls,

and online auctions, etc.

4.1 Protocol Classification in Active Networks

As we mentioned in Chapter 3, one of the biggest advantages of active network is that it
has enabled us to develop and test new protocols within short time. While each protocol
seems to be unique to an application, it generally possesses characteristics that are
common to some other protocols. All such protocols can collectively be identified as
members of a class. These include the architecture required for deployment, common
protocol interfaces and the set of services required by the protocols from an active node.
This facilitates rapid design of new protocols and the seamless introduction of these

protocols into the network.

A few key issues to consider while developing the methodology for each protocol class
are:
e Architecture for deployment: The architecture refers to the placement (location) of the

protocol services in the nodes of the active network.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS »

o Common interface: This means the structure of the Smart Packet and its design.
o Node primitives required: This describes the requirements of the protocol before it

executes at an active node.

It is also important to find out if therc is a topology for the distribution of a protocol
inside the active network that is most efficient. For example, do we need to make all the
nodes be active nodes in a network in order to implement active filtering? Or do we only

need some critical network nodes to be active nodes?

We can identify the following protocol classes which are related to the functions of active

filters:

4.1.1 Filtering Protocol Class

This encompasses all those protocols that perform packet dropping or employ some other
kind of bandwidth reduction technique on an independent per-packet basis such as
compression protocols and the transmission of layered MPEG: by prioritizing the layers,
it is possible to maintain real-time connectivity in times of network congestion by

dropping packets containing the lower priority layers.

Similar strategies are being used for audio transport wherein the signal components are
separated based on their level of contribution to the original sound. Signal components
that do not contribute heavily are placed in lower priority packets that are specially

marked for discard if congestion occurs.

Protocols belonging to the filtering class are primarily developed to reduce bandwidth
requirements of the application data. Temporary reduction in bandwidth requirements is
necessary in the face of transient congestion problems. However, bandwidth reduction
techniques are always required whenever there is a severe rate mismatch. This typically
occurs at interfaces where there is an order of magnitude difference in the speeds on
opposite sides of the interface e.g. the interface between wired and wireless networks. In

_such cases, it is obvious that the protocols have to be deployed at the interface gateway.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 60

In an active network, applications could deploy the filtering code in this way: applications

use congestion detection module (CDM) in the active nodes or just use Smart Packets to

find out the occurring of a rate mismatch or congestion then installs (downloads) the

filtering protocol at those active nodes. Since protocols of this class are designed

primarily to reduce bandwidth requirements, the active node must supply them with the

following primitives:

e To find out the available bandwidth over a particular interface.

e To find the maximum bandwidth capacity on all interfaces.

s Management of small state involves providing primitives for the creation of small
state, and storage of information to and the retrieval of information from the small

state.

4.1.2 Combining Class

The class of combining protocols has the property of combining packets that may come
from the same stream or from different streams. For example, the Wireless ATM
Voice/Data project [Wireless) combines two or more packets from the same stream to
form a single packet that is forwarded to the next hop, the purpose of this technique is to
reduce congestion; The Distributed Sensor Data Mixing [Yeadon96] project at Lancaster
University is also a member of this class of protocols because it combines different
streams into one: Different types of sensors such as microphones and antennas, dispersed
over a wide area network, collect data and transmit them to receivers on the network.
Instead of having each receiver do its own mixing of the transmitted data, some of the
mixing is done within the network on the input signals that pass through the network node
at approximately the same time. If the mixed signal is smaller than the sum of its
constituents, then it reduces the bandwidth requirements and the processing to be done at

the receiver.

Combining is an expensive processing step; therefore it is desirable for the active nodes
deploying a protocol of this class to have sufficient processing power. They must also

have sufficient memory storage because combining sometimes involves storing packets

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 6l

from one stream until packets from the other arrive at the node. Therefore the interfaces
that active nodes have to provide for this class of protocols are:

* Finding memory available for the Smart Packet.

e Management of small state.

¢ Primitives for cloning/duplication of Smart Packets to enable multicasting.

4.1.3 Transcoding Class

Protocols that transform the user data into another form within the network belong to the
class of transcoding protocols. Examples of such protocols include encryption protocols
and image conversion protocols. These protocols are CPU-intensive and therefore require
nodes with sufficient computing resources. Encryption protocols are generally deployed
only at the end-points of a connection whereas compression protocols are deployed either
at the end-points or at points in the network where congestion likely happens and
bandwidth control alternatives are desired. Protocols of this class are primarily processing
functions and therefore the primitives desired are:

s Available memory.

o Computing resources.

4.1.4 Network Management Class

The programmability of the nodes in an active network enables the creation of self-
configuring, self-diagnosing and self-healing networks. This involves actions such as
alarm and event reporting and workload monitoring, etc. The advantage of using active
network to perform such functions is that it is possible to capture a consistent state of a

node by sending a single Smart Packet that gathers all relevant information at one time.

The architecture involved in the deployment of these protocols requires dynamically
establishing monitoring and monitored entities in network. Alarm and event reporting
functions have to be defined and installed at various nodes in the network. The active
nodes must provide management Smart Packets with the following interfaces:

e To create, access and modify the state of the active node.

s To establish events and state for which information is to be gathered.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 62

s To establish frequency and format of reporting event information.

As a generalization, active filters may perform the functions of filtering, combining,
transcoding, network management (such as rerouting based on real-time network

conditions).

4.2 Existing Active Filter Applications
In this section, we will introduce the existing active filter applications, which includes:

active networking and congestion control; intelligent communication filtering; firewalls;

online auctions, etc.

4.2.1 Active Networking and Congestion Control

Active Networking (AN) [BCZ97] refers to the addition of user-controllable computing
capabilities to data networks. With active networking, the network is no longer viewed as
a passive mover of bits, but rather as a more general computation engine: information

injected into the network may be modified, stored, or redirected as it is being transported.

In this approach, users can select from an available set of functions to be computed on
their data, and can supply parameters as input to those computations. The available
functions are chosen and implemented by the network service provider, and support
specific services; thus users are able to influence the computation in a way of choosing

from a selected functions, but cannot define arbitrary functions to be computed.

4.2.1.1 An Architecture for Active Networking

A Generic Model of Packet Processing

The network consists of switching nodes, which are connected via links. In this generic
model, nodes don't do anything except process the packets received on their incoming
links; processing an incoming packet may result in one or more packets being transmitted
on outgoing links. More precisely, the state of a node comprises the following pieces:

¢ Aninput queue of packets. Packets received on any link are placed in the input queue.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS s

e For each outgoing link, an output queue containing packets to be transmitted on that
link.
e A collection of generic state information. This represents long-lived information

maintained at the node, such as routing tables or virtual-circuit switching tables.

Each node in the network supports a particular set of functions, each of which has a
unique identifier. Each packet contains a set of headers, which specify (i) the identifier of
one or more functions to be applied to the packet; and (ii) parameters to be supplied to
those functions. When the packet is processed, the function identified by each header is
applied, resulting in updating of the node's state and possibly modification of the rest of
the packet.

For each function identifier f; and each parameter value p for function f, there is a
particular subset of the node's generic state information that is relevant to fand parameter

p. Functions cannot modify or use parts of the node state that are not relevant.

Each node repeatedly performs the following:

Remove a packet M from the input queue;
while (more functions need to be applied to M);
Let f, p be the function ID and parameter from the next header of M;
Let g be the state component relevant to f and p;
Invoke function fon M, with p as parameter:
(optionally) Modify M;
(optionally) Update g;
(optionally) Queue messages for output;

Traditional networking functions can be characterized as node-processing functions in

this model.

From Packet Forwarding to Active Networking

This approach defines active networking to be extension of the set of functions that can
be invoked at a network node beyond those required to simply move bits from place to
place. The basic idea of active networking is the incremental addition of user-controllable

functions, where each function is precisely defined and supports a specific service.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 64

In general, the introduction of new AN functions involves specification of the following:

o The identifier associated with the function.

o The parameters associated with the function, and the method of encoding them in a
packet.

o The semantics of the function. A standard environment, comprising support services
such as private state storage and retrieval, access to shared state information (e.g.
routing tables), message forwarding primitives, etc., would provide a foundation on

which new AN functions services could be built.

In the view of AN, addition of a new function to a network node would be the
responsibility of the network service provider. This approach corresponds roughly to the
way new features are deployed in the public switched telephone network today: users
have the option of provisioning various features implemented and deployed by the service

provider.

4.2.1.2 Programmable Congestion Control

Operating Model

From the point of view of a node somewhere in the network, a flow is a sequence of
packets all having the same source and destination. A flow might consist of packets
traveling between a single pair of end-points, or it might be the aggregation of a set of
lower-level flows. It is assumed that a flow is identified by a label of some kind in the

network protocol header.

Generally, programmable congestion control operates as follows: Based on triggers that
indicate congestion control should take place, flow state is examined for advice about
how to reduce quantity of data. The important components of this model are:

o the triggers responsible for initiating congestion control,

o the flow state that contains the specific advice for this flow, and

o the reduction techniques defined by the network and made available to the users.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 65

An important feature of this model is its consistency with traditional best-effort service.
That is, a flow provides advice about what to do with its data. The network node is not

required to take the advice, and may apply generic bandwidth reduction techniques.

This approach focus on the special case of intelligent discard of data. 1t allows

applications to define units based on application semantics, with aim of discarding the

entire unit if any portion must be discarded. Given that bandwidth reduction will occur by

discarding units, a question arises as to which units (within a flow) to discard:

e In the most simple case, there is no choice: when the congestion indication trigger
occurs, a fixed unit (typically the one currently being processed) is subject to discard.

* More efficient network behavior is possible. The congestion control advice was
considered, which indicating priority or some other policy by which to discriminate

across data in the same flow.

Making use of this advice clearly requires that the network node have access to a
collection of data within a single flow. These mechanisms involve storing and
manipulating flow data before it leaves the node, e.g., while sitting in a per-flow queue

from which packets are periodically selected for output by a scheduling mechanism.

4.2.1.3 Application and Mechanisms of Congestion Control to MPEG

As we introduced in Chapter 2, Section 2.5, the important feature of an MPEG stream is
that it consists of a sequence of frame of three types: I-frame, P-frame, B-frame. Coding
dependencies exist between the frames, causing P- and B-frames to possibly require other
frames in order to be properly decoded. Each I-frame plus the following P- and B- frames

forms a group of pictures (GOP), which can be decoded independently of the other
frames.

The specific components of the programmable congestion control are implemented as
follows:

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 86

e Source-attached advice. The mechanisms were considered, in which the source
identifies "units" such that the unit will be discarded if any portion of the unit must be
dropped.

e Frame Level Discard mechanism defines a unit to be an MPEG frame. The advice
given is to queue a datagram if and only if its corresponding frame can be queued in
its entirety. The state for each frame was maintained that is being discarded or
buffered, and use this state information to decide, in constant time, to buffer or
discard a particular datagram.

® A mechanism that identifies dependencies between units is further considered. Group
of Picture (GOP) Level Discard maintains state about the type of frame discarded. In
case an I frame has been discarded, the corresponding P and B frames are discarded as
well.

o Choice among units. A policy for making choices amongst units is considered. When
a I frame is too large to be accommodated in the output queue, and the queue contains
P and B frames such that their combined sizes are greater than that of the [frame, then
such P, B frames are discarded, and the I frame transmitted.

o Triggers. Two types of triggers are considered. In the first, This approach detect and
respond to congestion only when data arrives that cannot fit in the output queue. All
three mechanisms mentioned above use this trigger. An "early” trigger, which detects
and responds to congestion when the output queue occupancy exceeds a certain

threshold are also being considered.

4.2.1.4 Limitations

This approach has some benefits with respect to incremental deployment as well as
security and efficiency: AN functions can be individually implemented and thoroughly
tested by the service provider before deployment, and new functions can be added as they
are developed. However, there are some tradeoffs. As we can see, users can only select
from an available set of functions to be computed on their data. The available functions
are chosen and implemented by the network service provider; thus users can only be able
to influence the computation of a selected function, but cannot define arbitrary functions
to be computed.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 87

4.2.2 Intelligent Communication Filtering

A mobile computer may move through areas that provide wide variety of operating
conditions. In particular, it may be attached to a high speed (wired) network at one
moment and to a low speed, pay-per-use (wireless) network at the network moment. Most
distributed systems can be expected to react poorly to such sudden, drastic changes in
available bandwidth.

A new architecture for distributed systems supporting mobility was advocated [ZD94]. In
this architecture an intermediary filter is interposed between client and server. Its purpose
is to filter or delay all but the most essential data that would travel over the slow link to

the mobile host.

The actions of the intermediary filter are controlled by the client, since the client is more

likely to be informed of the circumstances that motivate data filtering, and since the

network link to the client is probably the "cause of the problem." Types of actions that the

intermediary might take include:

¢ Running an optimized version of a protocol between itself and the mobile host.

¢ Omitting data or reducing interactions.

e Delaying transmission of some data, forcing the client to demand-fetch it.

o Compressing data.

e Compression and decompression are properly placed at the intermediary and mobile
host, rather than "end-to-end" because the need for compression arises from link

characteristics.

The filters were expected to embody a significant amount of application specific
knowledge, and would have to accumulate state in order to make effective filtering

decisions.

A number of advantages derive from filtering data at the intermediary filters:
s Since the communication link between intermediary and mobile host may be slow,

reducing the amount of traffic can improve performance.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 68

e Even if data filtering reduces performance it may reduce cost. Depending on the
relative degrees of reduction, reduced cost in return for reduced performance might be
desirable.

o If properly designed, the intermediary can act not only as a filter, but also as an
"agent": i.e., as a permanent representative for a mobile host that might not always be

powered up or connected to the Internet.

Design of Intelligent Communication Filter

The following will introduce how to interpose an intermediary, add a filter and associate a

filter with a stream.
(1) Interposing an Intermediary
The intermediary is realized as a process called the Proxy Server. The Proxy
Server runs on some host, presumably in the wired part of the network. It could be
advantageous to run the Proxy Server on a host that is the fringe and hence
attached to both wired and wireless links. Such a host might have extra
information about the characteristics of the wireless link. However, there is no

constraint on where the Proxy Server may run.

The Proxy Server handles all traffic between the mobile host and the outside
world, which includes both filtered and unfiltered data.

(2) Adding a Filter
A filter is hard-coded into the Proxy Server and automatically attached to data
streams created by the mobile host.

(3) Associating a Filter with a Stream

When the mobile host starts a process, a "session” is created with the Proxy Server
which lasts the lifetime of the process. Within the proxy server, two threads are
creaied to handle data coming from and going to the mobile host's process,
respectively. Such threads call a filter function, handling packets to it and possibly

receiving packets back.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 6

Unresolved Issues

There is no design of a programming interface through which arbitrary filter code can be
dynamically loaded into the Proxy Server and attached to an arbitrarily defined data
stream. The filter could be written in a simple interpreted language containing primitive

actions (forward, discard, etc.) to be executed based on the contents of the packet.

Where to place the Proxy and when to move it is an issue that remains to be investigated.
It seems desirable to have the Proxy located near the mobile host it is serving; however, it

certainly is undesirable to move the Proxy too often in response to a highly mobile host.

4.2.3 Firewalls

Firewalls implement filters that determine which packets should be passed transparently
and which should be blocked. Although they have a peer relationship to other routers,
they implement application- and user-specific functions in addition to packet routing. The
need to update the firewall to enable the use of new protocols is an impediment to their
adoption. In an active network, this process could be automated by allowing applications
from approved vendors to authenticate themselves to the firewall and inject the

appropriate modules into it.

4.2.4 Online Auctions

Web servers hosting online auctions are currently among the most popular sites in the
Internet. A server running a live online auction collects and processes client bids for the
available item(s). This server also responds bids for the current price of an item. Because
of the network delay experienced by a packet responding to such a query, its information
may be out of date by the time it reaches a client, possibly causing the client to submit a
bid that is too low to beat the current going price. Thus, unlike auctioneers in traditional
auctions, the auction server may receive bids that are too low and must be rejected,

especially during periods of high load when there are many concurrent bids.

Current implementations of such servers perform all bid processing at the server. In an
active network, low bids can be filtered out in the network, before they reach the server.

This capability can help the server achieve high throughput during periods of heavy load.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS 7

When the server senses it is heavily loaded, it can activate filters in nearby network nodes
and periodically update them with the current price of the popular item. The filtering
active nodes drop bids lower than this price and send bid rejection notices to the
appropriate clients. This frees up server resources for processing competitive bids and
reduces network utilization near the server. The filtering active nodes could also keep
track of the number of rejected bids at each price, and ship those to the auction server at
the end of the auction. The auction server performs caching (of current price information)

in network nodes.

The essential feature of the auction service is that low bids may be rejected at nodes
within the network when server load is high. The basic form of this functionality can be
realized can realized in ANTS (an active network architecture developed at MIT which
we introduced in 3.2.5.2) with a protocol comprised of four capsules:

o aFILTER capsule for the server to set a filtering price.

e aBID capsule for clients to submit bids.

e a SUCEED capsule for the server to notify a client that a bid succeeded.

e aFAIL capsule to notify a client that a bid failed or would have failed.

During the normal operation, BID capsules are sent from clients to the server, and
SUCCEED and FAIL capsules returned from the server to client. Unlike traditional
auctions, bids may fail to be accepted because they are out-of-date by the time they are
processed at the server. During periods of high load, many bids may fail, and the server
may delegate some rejection processing to active network node. It does this by sending
FILTER capsules to nearby active nodes. These capsules store the current price in the
node, and subsequent BID capsule passing through the node compare the price of their
bid with a known bid. If it is lower, then a FAIL capsule may be returned from within the
network indicating failure, and the BID capsule need not be forwarded to the server. Note
that the SUCCEED capsule is generated only by the server, never by interior network
nodes.

CHAPTER 4 EXISTING ACTIVE FILTER APPLICATIONS m

The FILTER capsule uses a flooding algorithm to update the current price of the item at
all network nodes within a certain radius of the server; the size of the radius in hops is
selected by the server depending on load. At each load it reaches, it updates the item's
price in the cache, decrements its own hop limit, and then forwards copies of itseif on all
outgoing links. Forwarding stops when the hop limit is exhausted, or if it reaches node
that has filter that supersedes the one being forwarded. The BID capsule forwards itself
towards the server, comparing its bids with any known prices it discovers along the way.
Strictly lower bids are rejected by creating a FAIL capsule and returning it to the sender
in place of forwarding the failed BID. The processing routines for the FAIL and
SUCCEED capsules are not shown, since these capsules are simply forwarded at nodes

until they reach their destinations.

CHAPTER 5 Extended Use of Active Filters in Other Domains ”

Chapter §
Extended Use of Active Filters in Other Domains

In this chapter, according to the filtering theories introduced in Chapter 2, by using the
mobile agent and active network technologies which were discussed in Chapter 3, and
based on Chapter 4’s existing active filter applications, we extended and developed the
active filter functions into other domains, such as: real-time resource management;
rerouting; application-specific filtering in wireline/wireless network; and real-time
multicast. Therefore, this chapter is divided into four sections: Section 5.1 covers active
filters in real-time resource management, which includes the motivation of our research
and design of an active filter architecture. Section 5.2 devotes to load-sensitive rerouting
via active filters, Active filters could also be applied to wireline/wireless network, which
is discussed in Section 5.3; In Section 5.4, we designed another active filter architecture

which can be used to improve the efficiency of real-time multicast.

5.1 Active Filters in Real-time Resource Management
In the design of active filter in real-time resource management, active filter is a code
segment that applications or service providers inject into the network to assist in the

runtime management of the network resources that are allocated to them.

This active filter architecture is driven by two requirements. First, users should be able to
tailor runtime resource management so that they can optimize their notion of quality of
service. Second, since active filters execute inside the network, they can quickly respond
to changes in the network conditions. We also describe the programming interface that
active filters can use to monitor the network conditions, e.g. queue status and bandwidth
of the flows they are responsible for, and to modify resource use, such as selective packet

dropping, rerouting, and changing reservations, etc.

CHAPTER 5 Extended Use of Active Filters in Other Domains &

Active filter is a mechanism (code segments) for applications and service providers to
inject into the network that are directly involved in or affect the resource management
decisions for the traffic belonging the that user. Service providers must be able to
influence how "their" resources are managed based on their own notion of service quality,
and this is most directly achieved by having them provide code (active filter) that
implements their policies. We also call these code segments delegates since they
represent the interests of the users inside the network. These delegates can be developed
to handle problems such as congestion control for video streaming and balancing traffic
load.

5.1.1 Motivation

Advanced applications will have many flows that use a variety of resources in the

network. Runtime resource management policies are needed in a number of situations:

o First, the availability of networking resources may change, forcing the application to
change how it uses resources; this is most important for applications that use best
effort service or weak guarantees.

* Alternatively, the application may have to change its resource usage because its

requirements have changed.

As we have already known, responsibility for adapting resource use has traditionally been
pushed to the end points, this simplifies the core of the network. However, both network
applications and the network itself are changing rapidly. Applications are becoming more
complex and sophisticated. The network provides mechanisms for explicit resource
control and is delivering more sophisticated services. As result of these changes, having
some resource management policies implemented by entities inside the network could
have several advantages:
o Strategically placed entities in the network can more easily collect all the information
that is needed to muake resource management decisions. For example, they could
monitor how all flows belonging to a user are using a congested link. An endpoint

typically has information only on the flows it generates or receives.

CHAPTER 5 Extended Use of Active Filters in Other Domains ™

o [Entities in the network have immediate access to relevant information and can more
quickly respond to changes. Adaptation policies implemented at end-points have to
deal with at least one round-trip time worth of delay,

o Endpoints of course have to be involved in runtime adaptation. However, entities in
the network can give specific feedback that may help in adapting. Without explicit
feedback endpoints have to rely purely on implicit feedback, i.e. packet loss or
measured delay; implicit feedback is often hard to interpret and often offers

incomplete information.

Motivated by these potential benefits, we feel that it is necessary to implement an
application-specific or service-specific runtime resource management policies inside the

network by using mobile agent and active network technologies called active filters.

5.1.2 Active Filter Architecture
In this part, we describe the active filter runtime environment, focusing on the
programming interface that active filters use to perform customized runtime resource
management. Since active filters use this interface to control the router's behavior, we call
it Router Control Interface (RCI).

The most directive way of having applications and service providers involved in runtime
resource management is to have them provide code that implements their adaptation
policies. Applications or service providers can inject active filters into the network to

implement customized resource management of their data flows.

We divide active filters into active data filters and active control filters. Active data
filters can be used to implement data manipulation operations such as video transcoding,
compression, or encryption, they need large memory and computing resources. Active
control filters, on the other hand, perform resource management tasks that do not require
processing or even looking at the body of packets, such as changing bandwidth
allocations, selective packet dropping, or rerouting. Active control filters could execute

on the control processor of routers or switches.

CHAPTER 5 Extended Use of Active Filters in Other Domains 7

Active filters execute on designated active routers and can monitor the network status and
affect resource management on those routers. The network model that forms the basis for
the router control interface that active filters use is illustrated in Figure 5.1. The traffic in
the network is viewed as a set of flows (a sequence of packets with a semantic
relationship defined by application and service providers). Flows are defined on each
router using a flow spec, i.e. a list of constraints that fields in the packet header must
match for that packet to belong to the flow. A packet classifier in the data plane of the
router (shown in white in Figure 5.1) determines what flow each incoming packet belongs
to (Figure 5.2). The active control filters live in the control plane (shown in gray in
Figure 5.1) of active router and can monitor and change resource use in the data plane on

a per-flow basis.

Flow

Control and
Data plane
of router

L] Active Filter

Figure 5.1 Active Filter Network Model

The distinction between control and data filters is in part driven by the desire to achieve
good performance using today’s routers. Complex data manipulation operations like data
filters could be moved to computer servers, so that the router data plane can remain
simple: it only has to perform classification and scheduling. In contrast, there is more
room in the control plane for customization and intelligent decision making using active

control filters. However, even on different router architectures, e.g., routers that can

CHAPTER 5 Extended Use of Active Filters in Other Domains 7

support expensive data manipulation, the distinction will be useful, since the two types of
filters need different RCIs, and raise different performance and security concerns.

Users/Other Other Active

Filters

iignaling Entities

L - Routing . IR ing
Routing Tey
Entities

Figure 5.2 Active node architecture
(Adapted from [CFK+98])

A critical design decision for active filters is the definition of the router control interface,
ie., the RCI that active filters use to interact with the environment. If the RCI is too
restrictive, it will limit the usefulness of active filters, while too much freedom can make

the system less efficient.

The definition of the RCI is driven by the need to support resource management and it

includes functions in three categories:

e Collecting information: Active filters can monitor network status, waiting for events
such as congestion conditions or hardware failures, or just keeping track of traffic
patterns and flow distributions. Querying output queue sizes, checking for
connectivity, or retrieving bandwidth usage are methods that can be used to collect
information local to an active filter.

¢ Resource management actions: Active filters can change how resources are

distributed across flows: splitting and merging flows, changing their resource

CHAPTER 5 Extended Use of Active Filters in Other Domains n

allocation and sharing rules. For instance, a subset of a flow may be isolated through a
flow split, and assigning no resources to that subset implements a selective packet
dropping mechanism. Active filters can also affect routing, for example to reroute a
flow inside the application’s traffic for load balancing reasons. Another example is to
direct a flow to an active data filter on a compute server that will, for example,
perform data compression to reduce bandwidth usage.

e Active filter communication: Active filters can send and receive messages to
coordinate activities with peers on other routers and to interact with the application on
endpoints. Messaging between active filters allows the global knowledge and perform
global actions, as in the case of rerouting for load balancing. Interaction with end-
points increases the flexibility of the system, as adaptation to network events typically

involves the sources.

5.1.3 Active Filter Runtime Environment

Our current framework for active filters is based on Java and uses the Java virtual
machine, capable of just-in-time (JIT) compilation and available for many platforms. We
hope that this environment will give us acceptable performance, portability, and safety
features inherited from the language. Active filters can be executed as Java threads inside

the virtual machine “sandbox.” Table 5.1 presents the methods that implement the RCI

Methods | Description

add Add node in scheduler hierarchy

del Delete node frm scheduler hierarchy

set Change parameter on scheduler queue

dsc_on Activate selective discard in classifier

dsc_off Deactivate selective discard in classifier

probe Read scheduler queue state

reqMonitor Request async. cong. notification

retrieve Retrieve scheduler queue state

getrt Get next hop’s [P address for a specified destination

chgrt Change the routing table entry for a specified destination
mmode_on Turn on the monitor mode to monitor bandwidth and delay
mmode_off Turn off the monitor mode

getdata Retrieve bandwidth usage and delay data recorded in the kernel

Table 5.1 RCI calls available to the active filters

CHAPTER 5 Extended Use of Active Filters in Other Domains 78

to the packet classifier, scheduler and router. Communication can be built on top of
standard java.net classes. While this environment is sufficient for experimentation, it is
not complete. It needs support for authentication and mechanisms to monitor and limit the

amount of resources used by active filters.

5.1.4 Active Filter Set Up

Setting up an active filter involves a number of steps:

o First, we have to verify that the router is an active router which has sufficient CPU
and memory resources to support the active filter. The active filter may also need
specific libraries or APIs that may or may not be available on normal routers.
Verifying that these conditions are met is a form of admission control.

» Second, the active filter code has to be transferred to the active router and installed.

e Finally, the active filter runtime environment has to be told what flows it is

responsible for.

Active filters are characterized by their QoS requirements, runtime environment needed
(e.g., Java, Perl, VisualBasic script, etc.). Runtime type identifies the native library
requirement of the active filter (e.g., JDK 1.0.2, WinSock 2.1, etc.). In addition to active
filter QoS and runtime requirements, the active filter setup message also contains a list of
flow descriptors, which identify flows to be manipulated by the active filter at the
execution active node. At the execution active node, when an active filter setup message
arrives, the appropriate runtime environment is located, the active filter is instantiated and
then is passed to the local resource manager. By using these handles, the active filters can
interact directly with the local resource manager to perform resource management for the

flows during runtime.

5.1.5 Implementation
This part briefly describe the conceptual testbed, and present how active filters can be

used to perform customized runtime resource management.

CHAPTER 5 Extended Use of Active Filters in Other Domains ' ”

A. Conceptual Testbed

m3

" 190Mbps 100Mbps
. ~=’y
Active N /
Filter » [
Filter) ,/'
Service -1
Station

Figure 5.3 Testbed Topology

The system will be implemented on a testbed of PCs. The topology of the conceptual
testbed is shown in Figure 5.3. The three routers can be Pentium II 266 MHz PCs. The
end systems m1 through m9 could be workstations running Unix 4.0. All links are full-
duplex point-to-point Ethernet links configured as 100 Mbps.

B. Selective packet dropping for MPEG video streams

As we mentioned in Chapter 2, Section 2.5, MPEG video streams are very sensitive to
random packet loss because of dependencies between three different frame types: 1
frames (intracoded) are self contained. P frames (predictive) uses a previous I or P frame
for motion compensation and thus depend on this previous frame, and B frames
(bidirectional-predictive) use (and thus depend on) previous and subsequent I or P frames.
Because of these inter-frame dependencies, losing I frames is extremely damaging, while
B frames are the least critical. In this section, we will show how active filters can be used

to selectively protect the most critical frames during congestion.

CHAPTER 5 Extended Use of Active Filters in Other Domains 80
. To create congestion, we can direct three flows over the PC 1 - PC 2 link of the testbed:
two MPEG video streams and one unconstrained UDP stream. Both video sources send at

a rate of 30 frames/second, the performance metric could be defined as the rate of

correctly received frames. We can then compare the performance of the following four
scenarios.

o In the first scenario, the video and data packets are treated the same, and the random
packet losses should result in a vefy low frame rate.

¢ In the second case, the video stream share a bandwidth reservation equal to the sum of
the average video bandwidths. This should improve performance. But the video
streams are bursty, and random packet loss during peak transfers still results in large
amount of frames cannot be received correctly.

o In the third scenario, we place an active filter on PC 1. The active filter monitors the
length of queue used by video streams using the probe call. If the queue grows
beyond a threshold, it instructs the packet classifier to identify and drop B frames.
This is done by setting up the B frames as a separate flow using the add call (B frames
are marked with an application-specific identifier), and then switching on selective
discard for that flow using the dsc_on call. Packet dropping is switched off when the
queue size drops below a second threshold.

While active filters provide an elegant way of selectively dropping B frames, the same
effect could be achieved by associating different priorities with different frame types.

e In scenario four we can use an active filter to implement a more sophisticated
customized drop policy. In scenario three, either all or none of the B frames are
dropped. By dropping the B frames of only a subset of the video streams, we can
achieve finer grain congestion control. To achieve this, we can use a simple "time
sharing" policy, where every few seconds the active filter switches the stream that has

B frames dropped. This should further improve the performance.

C. Dynamic control of MJPEG video encoding
An alternative to selective frame dropping for dealing with congestion is to use a video

‘ transcoder to compress, or change the level of compression, of the video stream. It is still

CHAPTER 5 Extended Use of Active Filters in Other Domains 8
possible to dynamically optimize video quality, as in the previous example, by using an

active filter to control the level of compression.

In this experiment, we design an application consisting of two MIPEG video streams and
two bursty data streams is competing for network bandwidth with other users, modeled as
an unconstrained UDP stream. All flows are directed over the 10 Mbps PC 1- PC 2 link.
The application has 70% of the bandwidth, 20% for video and 50% for data, and
remaining 30% is for the competing users. The application data streams belong to a
distributed FFT (fast Fourier transforms) computation. Since FFT alternates between
compute phases, when there is no communication, and communication phases, when the
nodes exchange large data sets, the data traffic is very bursty. In this experiment, the
video flows have priority on taking bandwidth not used by the FFT flows. This means
that video quality can be improved significantly during the compute phases of the FFT, if

the video can make use the additional bandwidth.

This can be achieved by having an active filter on PC 1 monitor the FFT traffic, and
adjust the level of compression of a transcoder (an active data filter) executing on the
server m9. The transcoder takes in raw video and generates MJPEG. This allows the

video flows to opportunistically take advantage of available bandwidth.

D. Selective dropping of non-adaptive flows

Applications that do not use appropriate end-to-end congestion control are an increasing
problem in the Internet. These applications do not back off when there is congestion, or
they back off less aggressively than users that use correct TCP implementations, and as a
result, they get an unfair share of the network bandwidth. Such flows are called as non-
conformant flows. In response to this problem, researchers have developed a variety of
mechanisms that try to protect conformant flows from non-conformant flows. These
include Fair Queuing scheduling strategies that try to distribute bandwidth equally, and
algorithms such as RED [FJ93] and FRED [LM97] that, in case of congestion, try to

selectively drop the packets of non-conformant flows.

CHAPTER 5 Extended Use of Active Filters in Other Domains 82

Once deployed, these mechanisms will improve the fairness of bandwidth distribution at
the bottleneck link, however, they address only part of the problem since they are
designed to work locally. The problem is that non-conformant flows still consume (and
probably waste) bandwidth upstream from the congested link. Upstream routers may not
respond to the non-conformant flows, for example because they have no support for
detecting non-conformant flows, or because the flow cannot be detected, or because the
flow appears to be conformant (e.g., does not cause congestion). This problem can be
addressed by having routers propagate information on the non-conformant flows

upstream along the path of those flows.

We can implement a simple version of this solution using active filters. An active filter
locally monitors the congestion status and tries to identify non-conformant flows among
the flows it is responsible for. Once a “bad” flow has been identified (in the
implementation, a flow can be considered to be non-conformant flows if its queue is
overflowing for an extended period of time), the active filter enables selective packet
dropping for the flow, and sends the flow's descriptor to a peer active filter on the
upstream router. When an active filter receives a report of a "bad" flow, it verifies that the
flow indeed has a high bandwidth and enables selective packet dropping, if possible, and
forwards the message to the upstream router. Clearly, many alternative policies could be
implemented, for example, only a certain percentage of the packets could be dropped to

reduce its bandwidth instead of dropping all packets as in our experiment design.

5.2 Load-sensitive flow rerouting via active filters

In a telecommunications network, a call between two parties may be connected via one of
a number of paths. The process of deciding which of these paths to use is called routing.
Choosing an efficient path is important because the network's capacity for handling traffic
is finite. However, finding the optimal path is problematic because the network state
continually evolves. By the time the information needed to compute the optimal path
between any two nodes is made available at the node where that decision needs to be
taken, the network state will probably have changed, rendering that decision obsolete.

Furthermore, efficient routing decisions, those which maintain a balance in utilization of

CHAPTER 5 Extended Use of Active Filters in Other Domains 8
the network resources, require information about the utilization of al/ network resources

to be made simultaneously available to the process making that decision.

Routing algorithms are used to establish the appropriate routing paths or the equivalent
routing table entries in each node along a path. Most algorithms are based on assigning a
cost measure to each link in the network and determining the linear sum of paths across
the network. Based on these costs, the network tries to allocate traffic to the cheapest
paths across the network. Where the cost function is based on link congestion (real or
predicted) the cheapest path may change over time to maintain the network level
efficiency. However, such mechanisms are limited by their lack of information about the
wider network state, which means that the traditional routing approaches cannot
determine the most efficient path from the network point of view merely by checking a

small number of paths for congestion.

Routing decisions in Internet today are mostly load-insensitive and application-
independent; in other words, the path taken by a packet does not depend on the load in the
network or the application the packet belongs to. While this results in simple and stable
routing protocols, it can also cause inefficient use of network resources. For example, in a
client-server scenario, to handle multiple clients' requests, it may be necessary to have
multiple servers. However, there are times that one server is overloaded by requests from
clients for various reasons, and other servers are idle. In this case, it would make sense to

redirect some requests to the lightly-loaded servers to achieve better overall performance.

We can use active filter to rectify this situation, by which node level routing decision-
making takes place in the presence of some (limited) information about the network level
state of congestion. Active filters can determine system topology by exploring the
network, then store this information in the nodes on the network. Other active filters use

this stored information to derive multi-hop routes across the network.

With the mechanisms described before, e.g., collecting information, communication with

peer active filters and abilities of changing network resources, active filters are good

CHAPTER 5 Extended Use of Active Filters in Other Domains 84

candidates for this kind of task. Since active filters are considered part of an application,

they should reroute only the flows that belong to one application.

We can use a simple experiment to illustrate how active filters can balance an
application's load by rerouting. The example application has multiple flows that use a
virtual network that use a virtual network that has 50% of the bandwidth reserved on each
of the three links between the routers. Flows originate from either m8 or m9 and the
resource trees on Link 1, 2 and 3 are shown in Figure 5.4. On Link 1, Node 1 corresponds
to this application and Node 2 corresponds to some other competing application. Node 3
corresponds to one specific flow of this application, m9 to m2. Node 4 corresponds to
another flow of this application, m9 to m4, and is drawn in dotted line, meaning this flow
is not known to the scheduler and it will be classified to Node 1. On Link 2, Node 1 and
Node 3 are the same as on Link 1, but there are no other applications that have reserved
resources. On Link 3, Node 1 again corresponds to our application, and Node 2 represents
some other competing application. Node 3 and Node 4 correspond to a flow from m9 to
m2 and a flow from m8 to m6 respectively, and they are drawn in dotted lines, meaning

that they do not have individual reservations.

a) ® ©
(a) Resource tree on Linkl (b) Resource tree on Link2 (c) Resource tree on Link3

Figure 5.4 Resource trees
The active filter on PC 1 is responsible for one particular flow, m9 to m2, of this

application. It knows the bandwidth usage by this flow on Links 1 and 2 by directly

monitoring them, and it queries the active filter on PC 3 to get the available bandwidth for

CHAPTER 5 Extended Use of Active Filters in Other Domains 8

this application on Link 3. Initially, the route flow m9 to m2 passes router PC 1 and PC 2
only (the shortest path). Since the application has a 50% reservation, this flow gets about
50 Mbps throughput. When another flow, m9 to m4, which belongs to this application
joins, they share the bandwidth reserved by the application, i.e., each gets about 25 Mbps.
As this time, the active filter on PC 1 knows that 50 Mbps are available on Link 2 and, by
querying the active filter on PC 3, it understands that the available bandwidth for this
application on Link 3 is 50 Mbps. the minimum of these two numbers is larger than what
flowm? to m2 is using, so the active filter on PC 1 makes the decision to reroute flow m9
to m2 through PC 3. Later, when another flow, m8 to mé, which also belongs to the
application starts, flow m9 to m2 still goes through PC 3 until flow m9 to m4 finishes,
making more bandwidth available on Link 1. At that time, the active filter changes the

route for flow m9 to m2 back to its initial route.

5.3 Active Filters in Wireline/Wireless Network

Future wireless media systems will require mobile multimedia communications to support
the sean:less delivery of voice, video and data with QoS guaranteed. Delivering hard QoS
guarantees in the wireless domain is very difficult due to large-scale mobility
requirements, limited resources (e.g., relatively low bandwidth) and fluctuating network
conditions. In this section, we argue that by using active filters, we can scale flows during

periods of QoS fluctuation.

5.3.1 Active Filters

Active filters are active technology, and in our approach they are based on Java coded
agents which are capable of being dynamically dispatched to strategic nodes (which
should be active nodes, such as base stations, switches, etc.) in the wireline/wireless
network, and could automatically scale flows in active nodes during the periods of drastic
QoS fluctuation and congestion to seamless deliver audio and video flow to the mobile
end users with a smooth change of perceptual quality. Active filters are dispatched,
configured and executed at active nodes (here we also consider the mobile end-system as

an active node). They are autonomous agents that continuously monitor a flow's available

CHAPTER 5 Extended Use of Active Filters in Other Domains 86

bandwidth and self-adjust their filtering operations based on the QOS metric via a filter

interface to match the available resources at a particular bottleneck node.

5.3.2 Active Node

One of the aims of the thesis is to explore providing applications with a higher degree of
programmability to address the QOS control and management in networks. In this
section, the programmability means that active node can provide a set of QOS
configurable object-level APIs and algorithms for transport, mobility and media scaling.
The adaptive and active transport and media scaling algorithm objects are Java program

code which are remotely fetched for execution by using a network loader service.

Active filter could exploit the intrinsic scalable properties of multi-layer and multi-
resolution audio and video flows and the knowledge of user supplied scaling preferences
to actively filter flows at active nodes in the network in order to best utilize the available
bandwidth and to seamlessly deliver media with smooth change in the perceptual quality

to mobile end users.

Multimedia flows can be represented as multi-layer scalable flows and supported by the
semantics of the active network service which can be intelligently and perceptibly scaled-

up or scaled-down to match the available resources.

5.3.3 Media Scaling

Media scaling is a technique for the dynamic manipulation of audio and video flows by
active filters as flows pass through the active nodes. Media scaling is implemented in
active nodes using filter control objects (which reside in active node or end system) and
active filters (implemented as Java classes). Active filters are Smart Packets written as
Java bytecode classes and dispatched to the desired network node (active node) using a
filter control algorithms which interacts with an enhanced network loader. Active filters
can be dispatched, configured and tuned by filter control (See Figure 5.5).

CHAPTER 5 Extended Use of Active Filters in Other Domains 87

Base Station

Mobile Switch ;_J

Mobile Device

Local mobile
Filter repository

Figure 5.5 Filter Control and Filter Agent Interactions

Active filters are autonomous self-adjusting and could be driven by the small state of

active node, which means that active nodes use the small state to refresh flow-state (i.e.,

allocated bandwidth) and filter-state (i.e., instantiated active filters). The media scaling

object model is divided into three operational modes:

o filter control is a distributed signaling algorithm which comprises of filter control
objects. These objects are permanently resident at base stations (active nodes), mobile
capable switches (active nodes) and mobile end systems. Filter control objects support
a set of methods to select, dispatch and configure active filters;

o filter instantiation fetches remote Java bytecode classes and bootstraps them into Java
VM environment based at active nodes. Once an active filter has been loaded and
booted into an active node the local filter control object initiates a configure operation
to complete the instantiation phase. At this point active filiers act autonomously in the

flow filtering mode;

CHAPTER 5 Extended Use of Active Filters in Other Domains 8

o flow filtering algorithms operate in the flow filtering mode where autonomous active
filtering algorithms interact with the adaptive service small state mechanism to
periodically tune flows. '

5.3.4 Resource Probing and Automatic Teardown

As part of QOS renegotiation the adaptive network service mechanism resident at the
mobile end-systems periodically probes for resources between the end-system and the
neighbor active node by sending probe messages (probe) toward the active node. These
probe messages carry the user (or application) desired QOS requirement (such as,
bandwidth required for the BL, E1 and E2 layers) for each flow terminated at the user.
The active node responds to the probe message by issuing an adapt message which
advertises the explicit rate made available to the user during the next small state refresh
interval. This resource management scheme is especially suitable for multicast QOS
where individual clients may have different QOS capability. The adapt messages are

acted as a signal to refresh the small state (flow and filter-state).

Small state disappears if an adapt is not received during the refresh interval. This results
in de-allocation of network resources and active filters which is called automatic

teardown.

5.3.5 Media Scaling Operations

Now we go through the operations of the media scaling algorithm. The media scaling

process is also demonstrated in Figure 5.6.

(1) Filter Selection. This approach can provide the end user systems with the flexibility

to select media scaling algorithms that best suit the application QOS needs and the coding

semantics of the transported flow. Such as the following two classes of active filters
which are supported for manipulating the rate of MPEG coded video:

o Selective packet dropping filters operate on the flow as it traverses the active node to
ensure that the appropriate combination of base layer and enhancement layers are
forwarded to the proper link to the end users. Selective packet dropping filters only
select and drop resolutions, they do not process the media;

CHAPTER 5 Extended Use of Active Filters in Other Domains 8

media scaling filter contro! . filter agent

Figure 5.6 Media Scaling Process

o Dynamic rate shaping filters are used to adapt the rate of compressed video (MPEG,
H261, MIPEG) to the dynamically varying rate constraints of the network
environment. Rate shaping filters can shape flows to meet any bandwidth availability

but are computationally intensive in comparison to media selectors.

(2) Filter Dispatch. New active filters need to be dispatched under conditions when there
is a drastic degradation in the delivered QOS (e.g. network congestion). At this point a
filter is selected and dispatched from a filter server resident at the end user system or in
the network (such as a filter service station if the end system can not offer appropriate
active filter). In this case filter control interacts with the filter control object at the
designated filtering node and arranges to dispatch the active filter. The transfer of the
Java bytecode class is achieved through the interaction of the filter network loader to
fetch the program code.

The end system’s available resources are indicated by periodic feedback ("adapt")
messages which defines the specific allocated bandwidth for flows received by the end
user. Every adapt message provides the end user with state information which could be

used to select a new filter and dispatch it into the network. Once a filter has been

CHAPTER 5 Extended Use of Active Filters in Other Domains %0

dispatched it needs to be bootstrapped in and configured before it is operational and can

execute in the active node.

(3) Bootstrap. Once a dispatch acknowledgment message has been received from the

target node the bootstrap process is initiated by filter control.

(4) Filter Configuration. After bootstrap is complete filter control configures the active
filter by forwarding the filter-spec to the filter. The filter-spec indicates the bandwidth
required to support the base and enhancement layers. This allows the remote active filter

agent to configure itself and complete the instantiation phase.

(5) Filter Tuning. Active filters are autonomous self-adjusting agents which are driven
by the resource level indicated by the adapt messages. No interaction with filter control is
required for active filters to adjust to changing network conditions. The advertised rate in
the adapt messages indicated whether there is sufficient resources to provide enhanced
quality to the end user. Two modes of filter tuning are supported. The scaling-down mode
informs the active filters to drop enhancement layers. The other mode is the scaling-up
mode which is generally invoked when resources free-up.

Resources are allocated to the end user over a route for the duration of the small state
refresh time via the probe/adapt messages. These message pair periodically probes the
communications systems for resources. The adapt messages is used to tune active filters
at active node. The available bandwidth advertised in the adapt messages is used to adjust
the filtering operation of active filters. This has the effect of periodically tuning the filters,
e.g., to add or delete a specific enhancement layer, or add or delete coded content or

objects.

5.4 Active filters in Real-Time Multicast

Real-time multicast is focusing on delivering streaming data to multiple clients at the
same time through network, while adapting streaming data to the variable available
bandwidth in multiple paths. Real-time multicast is delivering data through a tree
organized network structure. In this approach, it sends data using IP multicast. The real-

CHAPTER 5 Extended Use of Active Filters in Other Domains 5

time multicast tree is same as the multicast tree that is formed by the multicast routing
mechanism. There is explicit ACK packet sent by each client for each data packet it

received.

5.4.1 Active node and multicast strategic point
The intermediate node that has the ability to support executing user specified active

packet program besides doing traditional routing functions is called active node.

QO Inactive
node

Figure 5.7 Active Node in Multicast Tree

Assume S is one sender of the real-time multicast group. Using S as root to construct a

real-time multicast stream distribution tree as in Figure 5.7.

In Figure 5.7, node S, A and C are active node which can support additional function for
processing the real-time multicast data stream and the acknowledge packets. These nodes
are called active nodes. In real-time multicast, we let the sender and all the clients belong
to active nodes. Node B and C are where data packets duplicate and forward to different
branches in the multicast session. They are called multicast strategic points. Node A and
node C are active nodes that receive ACKs from more than one downstream node. They
make aggregation to ACK packets. Note in a real-time multicast tree, the active node is
not necessary be the multicast strategic point, vice versa. But it's better for the real-time

multicast session situation that all the multicast strategic points are active nodes.

CHAPTER 5 Extended Use of Active Filters in Other Domains 92

In this approach, we use input/output interfaces to refer to the stream data input/output
interfaces in routers. The ACK packets are going through in the reverse direction. And we

assume the ACK packets go through the network along the reverse data stream path.

We use downstream and upstream to refer to the relative positions of nodes. For any node
X in the real-time multicast tree, if a node Y is on the path between source sender and X,
then X is a downstream node of Y, and Y is a upstream node to X. In Figure 5.8, for

example, node C, D, E and F are all downstream nodes of node A.

5.4.2 Active Filter Approach
In a multiple-clients streaming application, usually the path properties to the clients are
varied in network. Sending stream to multiple clients at same time has the problem of

difficulty to adapting one data stream sending rate to multiple clients.

In Figure 5.8, suppose node S wants to send one data stream to C, D and E at the same
time. But the paths to node C, D and E have different bandwidth properties. If node S
sends data according to the available path bandwidth to node D as 4.5Mbps, it will cause
congestion on link between node B and node E. Similar situation happened if node S

sends data stream according to the available bandwidth to node C. If node S sends data

Figure 5.8 Multicast Tree with Different Bandwidth Properties

CHAPTER 5 Extended Use of Active Filters in Other Domains %

according to the available bandwidth on the path to node E, which can be supported by all
the path, then node C and node E will get lower quality stream than what they can get in
the case before.

One solution to this problem is let the stream dynamically changed in the network
according to the current downstream capacity. This approach is try to combined active
network with the multiple priorities stream encoding technology to making media scaling

in the network in order to adapt data stream to different paths.

The sender uses the feedback information from network to adapt the sending speed of the
data stream. It tries to let this stream satisfy the "best path", which is the path with largest
path available bandwidth. The data stream is sending out through IP muiticast. In an
active node in the real-time multicast tree, it may drop some packets of the data stream
based on the downstream link properties. Because of the possible frequent variation of the
available bandwidth in the network, it needs to use feedback information to dynamically
detect available bandwidth along each path, and lets the active filter change the stream as
the bandwidth variation. Each client sends explicit acknowledgment for each packet it
receives. This ACK packet carries additional link information (QoS metrics, such as free
buffer size). When these ACK packets pass an active node, the node will make
aggregation to these packets and combined its own output links' free buffer size into the
produced ACK packet.

In this approach, the requirements to the active network node are:
o Support for injecting active filter program in it.
o Keep small-states for each output links

o Filter streaming data packet based on the small-states in the node

It's not needed that all the network nodes in the real-time multicast tree are active. The
more the active node, the more scalability of stream it can supply. It's better to have an

active node at a multicast strategic point, so that it can make packet filtering to produce

CHAPTER 5 Extended Use of Active Filters in Other Domains %4

different streams to different clients when the paths' bandwidths from this point to

different clients have great variances.

This approach tries to let the performance degrade gracefully when the percentage of
active nodes in the network decreases. When all of the network nodes are non-active, this
approach degrades to the End-to-End approach that adapts to one path. This approach is
also based on the packet coding and packet filtering mechanism to the data stream. The
data stream is coded into packets that contain priority information in them. In the active
node, the active filter use this priority information to decide which packet to drop to
produce stream "suitable" to each data output link. The result stream level is decided by
the small-states associated with each link. Another important aspect of this approach is
the representative aggregation. For each active node in the real-time multicast tree
(include the sender), it usually gets feedback from only one representative from the
downstream. And it will use that feedback information to control the data stream to

downstream.

5.4.3 Mechanisms

In order to supply feedback to sender and all the active nodes, each client sends explicit
acknowledgment for each packet it receives. In this approach, we let each active node act
as the representative of all its downstream clients to the neighbor active node in the
upstream (In Figure 5.8, node A is the neighbor active node of node C in upstream, node
S is the neighbor active node of node A in upstream). For each active node, the ACK
packets it received all have the addresses of its neighbor active nodes in downstream (One
node can have several neighbor active nodes in downstream). (Remember that we also

call the client side as active node if necessary).

ACK packet

An ACK packet is generated by a client and sent along the direction in the tree to the
sender. The ACK packet used in this approach has the following outstanding fields:

o Nack : the acknowledge number

CHAPTER 5 Extended Use of Active Filters in Other Domains %

e Cbuf: the free buffer size, which indicate at most how many more packets it can

receive now.

When the ACK packet is passed through an active node, the active node will try to
aggregate this packet with other same acknowledge number ACK packets. The active
node will also compare the local node information with the information in the packet and
make changes to the free buffer size field if needed. Finally it will put its own address
into the output ACK packet produced by this aggregation.

Assumption to Filters

At any time when the upstream data stream increase, the filter can still keep the "same

level" output stream by dropping more data.

In Figure 5.9, Si is the data stream come from upstream, So is the data stream output
through the filter to downstream. Sdrop is the part of data stream dropped by the filter.
So, Si = So + Sdrap. When Si is increased, the packet filter can still guarantee the So get
same data stream as before. (Although So may have larger packet sequence number gap).
This requires that when the source increases the data stream level, it will only add packets
into the original data stream. This assumption guarantees that one links bandwidth

increase wouldn't affects other links data stream.

Si So

Sdrop

Figure 5.9 Filter Assumption (Si = So + Sdrop)

Congestion Detection Module (CDM)
From the server to downstream clients, the data stream will be filtered at each active node
to stream according to the feedback get back from the corresponding downstream path. In

this section we will describe the estimation part of work at active node to supply

CHAPTER 5 Extended Use of Active Filters in Other Domains %

information to packet filter. There will be a Congestion Detection Module for each output
link in an active network node.

In Figure 5.10, we show the internal data flow in an active node with only two output
interfaces in one real-time multicast session. The input data stream io the active node go
through the filter and produce two streams (In Figure 5.10, the filter's output to interface 2
is same to the input data stream, and output to interface 1 is half of the input data stream).
The output stream of the Filter will be the input of CDM. Then the packet of the output of
CDM will go to the output interface buffer. The ACK packets are first forwarded to the
CDM in the same interface. Then the CDM will forward ACK packets to the Aggregation
Module in the active node, which will aégregate ACKSs packets come from all the output
interfaces in the real-time multicast session. The output of the Aggregation Module will

be the ACK packets sent to upstream.

Output Interface 1

.................... o I
am [- v ! — Data/ACK
i
EEED Filter = ‘ ===~ Control
< Apgreg i @ D
- - i
H i @R ACK
H
.................... oM e
-
anmn
Qutput Interface 2

Figure 5.10 Internal Data Flow in an Active Node

In order to let the packet filter produce the proper output to the downstream, the
Congestion Detection Module needs to give the packet filter enough information to let it
make decision on how much input stream will be the output stream to this output
interface.

CHAPTER 5 Extended Use of Active Filters in Other Domains 7

Acknowledge aggregation

In order to give correct feedback information to upstream, each active node needs not
only to make packet filtering but also to make ACKs aggregation. Because of the
assumption we made before, what each active node want to let the upstream node know
is the best stream it can support currently. So it choose the "best" path's ACK packets to

forward to upstream.

The address of ACK packets to upstream will use address of the active node. This is used
in order to guarantee these ACKs are looked by upstream node as come from one

representative.

Muiltiple ACKs in one output link
When a multicast strategic point is not an active node, there will be several ACKs go to
upstream through one link. So it's possible for an interface of an active node in the

upstream gets more than one ACK packet streams.

The interface in the active node will be able to distinguish them by looking their source
address. Before making estimation in CDM, the interface can make aggregation for them
before. This aggregation can also follow the policy that choose the "best" one, or use a
simple aggregation mechanism as forwarding the first arrived one for each sequence

number.

Figure 5.11 ACKs’ Aggregation

CHAPTER 5 Extended Use of Active Filters in Other Domains %

In Figure 5.11, one of the interface of active node A will receive ACKs from both C and
D. These ACKs will be aggregate first in this interface, then it will be aggregated again in
node A with ACKs from node E.

Single input/output active node

For the active node with only one input link and one output link in the current real-time
multicast tree, there will be no ACKs aggregation work. But in order to use the free buffer
size information, this active node will need to compare its free buffer size with the value

carried by the ACK packets come from downstream.

In Figure 5.12, the free buffer size value (Cpy2) in the ACK packet to upstream will be
smaller one between the originally value in the ACK packet come from downstream

(Coun) and free buffer size in this output interface (Opyg)

4]
1 O |} .
I\I I----‘
4 ACK : Ny + Cuun
L ACK: N + Co
m———— l————— Ogur : Free buffer size of output link 1

- Chusz= Min (Cpunt,Opur)

Figure 5.12 Single Input/Output Active Node

99
Chapter 6 Simulation by Using Grasshopper

Chapter 6
Simulation by Using Grasshopper

Grasshopper is a mobile agent platform that is built on top of a distributed processing
environment {IKV98). In this way, an integration of the traditional client/server paradigm
and mobile agent technology can be achieved. Grasshopper is developed compliant to the
first mobile agent standard of the Object Management Group (OMG), i.e. the Mobile
Agent System Interoperability Facility (MASIF). The MASIF standard has been initiated
in order to achieve interoperability between mobile platforms of different mobile agent
platforms of different manufacturers. In this Chapter, we will introduce Grasshopper, and
how we use Grasshopper to simulate load-sensitive rerouting. Section 6.1 devotes to the
introduction of distributed agent environment; Section 6.2 describes the communication
concepts in Grasshopper; and the simulation of load-sensitive rerouting by using

Grasshopper is presented in Section 6.3.

6.1 Distributed Agent Environment
This section describes the structure of the Grasshopper Distributed Agent Environment
(DAE). The DAE is composed of regions, places, agencies and different types of agents.

Figure 6.1 depicts an abstract view of these entities.

6.1.1 Agents

Two types of agents act in the Grasshopper context, i.e., stationary agents and mobile
agents. As we already introduced in Chapter 3, mobile agents are able to move from one
physical network location to another, they can migrate to the desired communication peer
and take advantage of local interactions. In contrast to mobile agents, stationary agents do
not have the ability to migrate actively between different network locations. Instead, they
are associated with one specific location.

Chapter 6 Simulation by Using Grasshopper

6.1.2 Agencics

100

An Agency is the actual runtime environment for mobile and stationary agents. At least

one agency must run on each host that shall be able to support the execution of agents. A

Grasshopper agency consists of two parts, i.e., the core agency and one or more places.

Region
Region Registry
MAF
L
Agenc;
Core Agency Communication gency '—___::l_l H
Management Place
: | ©
]
| |
H Security
|
: B e O O
E A8 Transport =1 S S
O .
Figure 6.1 Hierarchical Component Structure
Core Agency

Core Agencies represent the minimal functionality required by an agency in order to

support the execution of agents. The following services are provided by a Grasshopper

core agency :

s Communication Service : This service is responsible for all remote interactions that

take place between the distributed components of Grasshopper, such as location-

transparent inter-agent communication, agent transport, and the localisation of agents

by means of the region registry. All interactions can be performed via CORBA IIOP,

Java RM], or plain socket connections.

e Registration Service : Each agency must be able to know about all currently hosted

agents and places, on the one hand for external management purposes and on the

Chapter 6 Simulation by Using Grasshopper 101

other hand in order to deliver information about registered entities to hosted agents.
The registration service is developed to achieve this.

e Management Service : Management services are developed to allow the monitoring
and control of agents and places of an agency by external (human) users.

e Transport Service : This service supports the migration of agents from one agency to
another. At the destination agency, the agent continues its task processing exactly at
the point where it has been interrupted before the migration.

e Security Service: Grasshopper supports two kinds of security mechanisms, i.e.
external security and internal security. External security protects remote interactions
between the distributed Grasshopper components, i.e., agencies and region registries.
Internal security protects agency resources from unauthorised access by agents. This
is achieved by authenticating and authorising the user on whose behalf an agent is
executed.

e Persistence Service: The Grasshopper persistence service enables the storage of
agents and places on a persistent medium. In this way it is possible to recover agents

or places when needed, e.g., when an agency is restarted after a system crash.

Places

A place provides a logical grouping of functionality inside an agency. The name of the
place should reflect its purpose. For example, in every egancy exists by default a place
named InformationDesk. Every agent with no determined place is transported to the

InformationDesk where it can look for further information.

6.1.3 Regions

The region concept facilitates the management of the distribued components in the
Grasshopper environment, i.e., agencies, places, and agents. Agencies as well as their
places can be associated with a specific region, i.e., they are registered within one region
registry. Each registry automatically registers each agent that is currently hosted by an
agency associated with the region. If an agent moves to another location, the corres-
ponding registry information is automatically updated. A region may comprise all
agencies belonging to a specific company or organisation, thus facilitating its manage-

ment.

Chapter 6 Simulation by Using Grasshopper 102

6.2 Communication Concepts

The section explains the communication concepts of the Grasshopper platform. These
concepts are realised by means of the Grasshopper communication service (CS) which is
an essential part of each core agency. The communication service allows location-

transparent interactions between agents, agencies, and non-agent-based entities.

6.2.1 Multi-protocol Support

Remote interactions are generally achieved by means of a specific protocol. The CS
supports communication via /nternet Inter-ORB Protocol (110OP), Java’s Remote Method
Invocation (RMI), and plain socket connections. To achieve a secure communication,
RMI and the plain socket connection can optionally be protected with the Secure Socket
Layer (SSL).

Agency Agency
Communication Service Communication Service
Plain Plain I RMI Plain
Rt Socket Socket/ nop Socket/
SSL SSL

<|V Y A A
N\ A - >

1
Communication Channel

Figure 6.2 Multi-Protocol Support

6.2.2 Location Transparency

On the one hand the communication service is used by the Grasshopper system, e.g., for
agent transport or for locating entities within the DAE. On the other hand, agents can use
the CS to invoke methods on other agents. This is done location-transparently, i.e., the
agent need not care about the location of the desired communication peer. Within the
agent code, remote method invocations look exactly like local method invocations on
objects residing on the same Java Virtual Machine.

Chapter 6 Simulation by Using Grasshopper 103

6.3 Simulation by Using Grasshopper
In this section, we will use Grasshopper mobile agent platform to simulate load-sensitive

rerouting which we discussed in Chapter 5, Section 5.2,

We created three agencies to simulate three active routers. And we also create one mobile
agent in Agency 1. The Grasshopper testbed for this simulation is shown in Figure 6.3.
We use this mobile agent in Agency 1 to simulate an active filter. By using this mobile
agent, node level routing decision-making can take place in the presence of some
(limited) information about the network level state of congestion because active filters
can determine system topology by exploring the network. We use this mobile agent in
Agency 1 to collect the bandwidth information of Agency 2 and Agency 3, compare these

two bandwidth information, then make the routing decision.

Agency 1 .~ ~.. ‘Agency 2
e 25>
s, o

Mobile Agent

"o

Agency 3

Figure 6.3 Grasshopper Testbed

We implemented a simple experiment to illustrate how this mobile agent can balance an
application's load by rerouting. We create a mobile agent called BandwidthCheckAgent,
this agent moves to a remote agency (Agency_2) specified by the application. At the
remote agency, it collects information about the free bandwidth (here, we let the mobile
agent to check the free memory) and returns. Back home, it pops up a window showing
the free bandwidth of the remote agency. Then the agent moves to another remote agency

(Agency_3) and collects information about the free bandwidth (here, also means checking

Chapter 6 Simulation by Using Grasshopper 104

free memory) and returns. It can compare the two bandwidth information, then makes the
routing decision, i.e., it will route the packet to the router which has the larger bandwidth

information.

% InformationDesk
s Ay Consol: (A aooty 2]

W, Prace . Joots _;
(i [RET] [HTTe] iy
[agency_2 4
(=% informatonDusk

®E - B® w0

i e

R e B e g S]

Figure 6.4 Agency 1, Agency 2 and Agency 3

Figure 6.5 GUI of BandwidthCheckAgent

CHAPTER 7 EVALUATIONS AND CONCLUSIONS 105

Chapter 7
Evaluations and Conclusions

This chapter gives the evaluation and conclusions of our approach. Section 7.1 gives the
evaluation of active filters in real-time resource management and load-sensitive flow
rerouting. Section 7.2 evaluates the active filters in wireline/wireless network. Evaluation

of active filters in real-time multicast is discussed in Section 7.3.

7.1 Evaluation of active filters in real-time resource management
and load-sensitive flow rerouting

In this approach, we introduced the concept of active filter, a code segment that
applications or service providers inject into the network to assist in the runtime
management of the network resources that are allocated to them. Our active filter
architecture was driven by two requirements. First, users should be able to tailor resource
management so they can optimize their notion of quality of service. Second, since active
filters execute inside the network, they can quickly respond to changes in the network
conditions. We described the programming interface that active filters can use to monitor
the network conditions, e.g. queue status and bandwidth of the flows they are responsible

for, and to modify resource use, e.g. changing reservations, selective packet dropping or

rerouting,

We described a number of active filters addressing problems such as congestion contro}
for video streaming, tracking down non-conformant traffic sources, and balancing of
traffic load. While some active filters operate in a purely local fashion, others require
coordinated actions by active filters running on multiple routers. While none of the
examples provides necessarily the best, or even a complete, solution to these problems,
they do illustrate that our programming interface is rich enough to support a broad range
of resource management actions. Further research will compare the benefits of being able

to make customized resource management decisions inside the network, with the

CHAPTER 7 EVALUATIONS AND CONCLUSIONS 106

additional complexity active filters introduce.

7.2 Evaluation of active filters in wireline/wireless network

In this approach, active filters are active technology which are based on Java coded
agents, are capable of being dynamically dispatched to strategic nodes (which should be
active nodes, such as base stations, switches, etc.) in the wireline/wireless network, and
could automatically scale flows in active nodes during the periods of drastic QoS
fluctuation and congestion to seamless deliver audio and video flow to the mobile end
users with a smooth change of perceptual quality. Active filters are dispatched,
configured and executed at active nodes (here we also consider the mobile end-system as
an active node). They are autonomous agents that continuously monitor a flow's available
bandwidth and self-adjust their filtering operations based on the QOS metric via a filter

interface to match the available resources at a particular bottleneck node.

One of the key performance issues related to this technology is the time taken to dispatch,
bootstrap and configure new agent over the wircless/wireline interfaces. Another
important performance concern relates to the performance penalty paid by flows as they
are filtered at switches and base stations. The amount of delay introduced by such
operations as flows traverse active filters is dependent on the computational complexity
of the filter.

We have coded a selective packet dropping filter in Java that drops either El (i.e., P
pictures) and E2 (i.e., B pictures) frames based on the available resources (see Appendix).
Selective packet dropping filters do not process the media, therefore, the algorithms have
the least impact of all the proposed filters.

Selective packet dropping filters are computationally simple and an attractive type of
filter, which can significantly reduce the data rate of a video stream without degrading its
quality to an unacceptable levels. Some of the positive attributes of selective packet
dropping filters is the small processing delays incurred at the base stations during media

scaling. Only headers of incoming frames are examined and the frame dispatched during

CHAPTER 7 EVALUATIONS AND CONCLUSIONS 107

media scaling. Instantiation time is also modest dues to the length of media selector’s
bytecode which is modest in comparison with other filters like dynamic rate shaping
filters.

A major disadvantage of the selective packet dropping filters is that is lacks the ability to
set an incoming bit rate to a desired level; it does not operate over a continuum of
available bandwidth but at discrete bandwidth intervals. In this scheme selective packet
dropping filters operate at three distinct discrete rates. There is a major trade-off between

a filter complexity and continuous scale of bandwidth.

7.3 Evaluation of active filters in real-time multicast

As we introduced in Section 5.4, real-time multicast is focusing on delivering streaming
data to multiple clients at the same time through network, while adapting streaming data
to the variable available bandwidth in multiple paths. It is delivering data through a tree

organized network structure. In our approach, it sends data using [P multicast.

In our approach, we only assume one QoS dimension (bandwidth), one thing we want to
show in the future is policy on multiple QoS dimensions, which may need to cause more
complex policy description to make feedback information aggregation in network node.
Also, if we consider multiple QoS dimensions, there will exist problem on that if we
should encode multiple QoS information into the packet, and if we should add more

particular requirements to the active node’s work.

We did not consider to keep the real-time multicast result stable, which means users may
want to get a more stable stream instead of a frequently changed stream, this problem
remains as a further research consideration. For example, the end-system users may want

to see either mono-color or color, they may not want to switch frequently.

BIBLIOGRAPHY

108

BIBLIOGRAPHY

[ABG+97]

[ATW+90]

[BCZ97]

[BHN+97]

[BKRYS]

[BWP9S]

[CBZ+98]

[CFK+98]

[CHK97]

[CKV+99]

[DARPA96]

D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W. Jackson,
Angelos D, Keromyties, Gary J. Minden, David Wetherall. “Active
Network Encapsulation Protocol (ANEP)”. RFC Draft. July 1997.

D. Anderson, S. Tzou, R. Whabe, R. Govindan and M. Andrews,
“Support for Continuous Media in the DASH System”, In Proceedings
of the 10" ICDCS, Paris, France, May 1990.

Samrat Bhattacharjee, Kenneth L. Calvert, Ellen W. Zegura. “An
Architecture for Active Networking”. Georgia Institute of Technology.
High Performance Networking (HPN'97), White Plains, NY, April
1997.

Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis, Kurt Rothermel,
and Markus Strer. “Communication concepts for mobile agent systems.”
In ma97, Berlin, Germany, April 1997.

Jonathan Bredin, David Kotz, and Daniela Rus. “Market-based resource
control for mobile agents.” In Proceedings of Autonomous Agents. May
1998.

fip:/ftp.cs.dartmouth.edu/pub/kotz/papers/bredin:market.ps.Z.

Bieszczad, A., White, T., Pagurek, B. “Mobile Agents for Network
Management.” In IEEE Communications Surveys, September, 1998.

Kenneth L. Calvert, Samrat Bhattacharjee, Ellen Zegura and James
Sterbenz. “Directions in Active Networks.” Technical Report GIT-CC-
98-16, College of Computing, Georgia Institute of Technology, 1998.

Prashant Chandra, Allan Fisher, Corey Kosak, T. S. Eugene Ng, Peter
Steenkiste, Eduardo Takahashi, Hui Zhang, “Darwin: Resource
Management for Value-Added Customizable Network Service”,
extended draft of the ICNP paper, 1998

David Chess, Colin Harrison, and Aaron Kershenbaum. “Mobile agents:
Are they a good idea?” In mob-obj-sys, pages 46-48. Springer-Verlag,
April 1997. Incs1222.

Campbell, A.T., Kounavis, M.E., Vicente, J., Villela, Miki, K. and H.
De Meer, "A Survey of Programmable Networks", ACM SIGCOMM
Computer Communication Review, April 1999.

DARPA “Active Network Program”
http://www.darpa.mil/ito/research/anets/projects.html, 1996

BIBLIOGRAPHY

[F193]

[GY95]

[Hehmann91]

[HMA-+98]

[HSF93]

[HSF93]

[IKV98]

[KMH-+98]

{LM97)]

{LWG98)

109

Sally Floyd and Van Jacobson. “Random early detection gateways for
congestion avoidance.” IEEE/ACM Transactions on Networking, 1(4):
397-413, August 1993,

German Goldszmidt, Yechiam Yemini. “Distributed Management by
Delegation™. In Proceedings of the 15™ International Conference on
Distributed Computing Systems, 1995,

D. Hehmann et.al. “Implementing HeiTs: Architecture and
Implementation Strategy of the Heifelberg High-Speed Transport
System”, Proceedings of 2™ International Workshop on Network and
Operating Systems Support for Digital Audio and Video, Heidelberg,
Germany, November 1991.

Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter,
and Scott M. Nettles. “PLANet: An Active Internetwork”. Department
of Computer and Information Science. University of Pennsylvania.
August 2, 1998,

D. Hoffman, M. Speer and G. Fernando. “Network Support for
Dynamically Scated Multimedia Data Streams”, Proceedings of 4
International Workshop on Network and Operating System Support for
Digital Audio and Video, Lancaster University, Lancaster, UK. 1993,
pp.251-262

D. Hoffman, M. Speer and G. Fernando. “Network Support for
Dynamically Scaled Multimedia Data Streams”, Proceedings of 4"
International Workshop on Network and Operating System Support for
Digital Audio and Video. Lancaster University, Lancaster, UK, 1993,
pp.251-262.

IKV++/GMD. Architecture of grasshopper.
htp://www.ikv.de/products/grasshopper/content.html, 1998

A. B. Kulkarni, G. J. Minden, R. Hill, Y. Wijata, A. Gopinath, S. Sheth,
F. Wahhab, H. Pindi and A. Nagarajan. “Implementation of a Prototype
Active Network”. Department of Electrical Engineering and Computer
Science, University of Kansas. 1998.

Dong Lin and Robert Morris. “Dynamics of Random Early Detection.”
In Proceedings of the SIGCOMM ’97 Symposium on Communications
Architectures and Protocols, pages 127-137, Cannes, August 1997.
ACM

Ulana Legedza, David J. Wetherall, and John Guttag. “Improving the
performance of distributed applicaions using active networks.” IEEE

BIBLIOGRAPHY

[PPA+92]

[PPA+93]

[PPV98]

[RRV93]

[SC]

[SCF+94]

[SFC+]

[SZI+]

[Tran97]

[TW96]

110

Infocom ’98, 1998,

J. Pasquale, G. Polyzos, E. Anderson and V. Kompella. “The
Multimedia Multicast Channel”, Proceedings of 3™ International
Workshop on Network and Operating System Support for Digital Audio
and Video, San Diego, California, 1992, pp.185-196

J. Pasquale, G. Polyzos, E. Anderson and V. Kompella. “Filter
Propagation in Dissemination Trees: Trading off Bandwidth and
Processing in Continuous Media Networks”, Proceedings of 4
International Workshop on Network and Operating System Support for
Digital Audio and Video, San Diego, California, 1993, pp.269-278.

G. Parulkar, C. Papadopoulos and G. Varghese. “An error control
scheme for large-scale multicast applications”. Infocom 98, 1998.

S. Ramanathan, P. Venkat Rangan and H. Vin, “Frame-Induced Packet
Discarding: An Efficient Strategy for Video Networking”, Proceedings
of 4" International Workshop on Network and Operating System
Support for Digital Audio and Video. Lancaster University, Lancaster,
UK, 1993, pp.175-186

Akhil Sahai, Christine Morin. “Towards Distributed and Dynamic
Network Management”. INRIA- IRISA. Campus de Beaulieu. 35042,
Rennes CEDEX, France.

H. Schulzrinne, S. Casner, R. Frederick and V. Jacobson. “RTP: A
Transport Protocol for Real-Time Applications”, Internet-Draft, draft-
ietf-avt-rtp-05.txt, July 1994.

J.M. Smith, D. J. Farber, C.A. Cunter, S. M. Nettles, Mark E. Segal, W.
D. Sincoskie, D. C. Feldmeier and D. Scott Alexander. “SwitchWare:
Towards a 21* Century Network Infrastructure”. CIS Department,
University of Pennsylvania.

Beverly Schwartz, Wenyi Zhou, Alden W. Jackson, W. Timothy
Strayer, Dennis Rockwell, Craig Partridge. “Smart Packets for Active
Netwworks”. BBN Technologies.

N. Tran. Mobile Agent Assisted Adaptation in Video on Demand.
Master Thesis 1997. University of Illinois at Urbana-Champaign

David Tennenhouse and David Wetherall. “Towards active network
architecture.” In Computer Communication Review, 26(2): 5-18, April
1996.

BIBLIOGRAPHY

[Wireless]

[WGT96]

[Yeadon96]

[YGH+96]

[YS96]

{ZD94]

[ZDE+93]

111

Wireless ATM Voice/Data Project. URL
hutp:/www.ittc.ukans.edu/Projects/Wireless ATM

David J. Wetherall, John V. Guttag and David L. Tennenhouse, “ANTS:
A Toolkit for Building and Dynamically Deploying Network Protocols”.
Software Devices and Systems Group. Laboratory for Computer
Science, Massachusetts Institute of Technology.

Quality of Service for Multimedia Communications, Ph.D. Thesis,
Lancaster University. May 1996

Nicholas Yeadon, Francisco Garcia, David Hutchison and Doug
Shepherd. “Filters: QoS Support Mechanisms for Multipeer
Communications”. In IEEE Journal on Selected Areas in
Communications (JSAC) forthcoming issue on Distributed Multimedia
Systems and Technology, 3™ Quarter, 1996.

Yechiam Yemini and Sushil da Silva. “Towards Programmable
Networks”. Department of Computer Science, Columbia University.
April 1996.

Bruce Zenel, Dan Duchamp. “Intelligent Communication Filtering for
Limited Bandwidth Environments”. Computer Science Department,
Columbia University. 1994

L. Zhang, S. Deering, D. Estin, S, Shenker and D. Zappala, “RSVP: A
New Resource Reservation Protocol”, IEEE Network, vol.7, pp8-18,
Sept. 1993.

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

1 Agentjava
/I File: Agent.java

import java.lang.*;
import java.util.*;

public abstract class Agent extends Thread {
Vector vargs;

public void setArguments(Vector ar) {
vargs = ar;
}

native void testnative();

public void run() {
//Here is where the args supplied by setArguments are used
/IFor example, the filter agent might say args[1] = <upstream host>
/fand s0 on..

ty {
Thread.sleep(10000);

} catch(InterruptedException €) {
System.out.printin("Exception * + ¢);

}
System.out.printin("Agent Started");

2 FilterController.java

/I File: FilterController.java

import java.lang.*;

import java.net.*;

import java.io.*;

import java.util. *;

public class FilterController extends Thread {
static final int CONFIRM = 7777,

static final int sigPort = 5510;

/I - Instance variables -~
UDPSockManager mgr = null;
MediaSelector mySelector;

int filterSetPort;

/I —- Methods --—--

public FilterController(MediaSelector ms, int fsp) {

mySelector =ms;
filterSetPort = fsp;

112

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

public void run() {
String bs=""; //to be overwritten
mgr = new UDPSockManager();
StringPackager packager = new StringPackager(bs);
while(true) §

/I receive connection request from a base station...

System.out.println("Filter Controler>Listening on port : "+ filterSetPort);

int filterType = mgr.recv(filterSetPort, packager);

System.out.println("Filter Controler>Request received to setMS to "+ filterType);
bs = packager.getString();

/I Set Filter Type;
mySelector.setNewType(filterType);
mySelector.raiseNewFilter();
System.out.printin("Filter Controller>Filter Type was set to "+ filterType
+" for Agent #"+ (filterSetPort-5600)+ * on host "+bs);
// send confirmation message...
mgr.send(bs, sigPort, CONFIRM);

3 FilterDaemon.java
// File: FilterDaemon.java

import java.net.*;
import java.io.*;
import java.lang.*;
import java.util.*;

public class FilterDaemon {
// Constant Declarations

static final int sigPort = 5600; // for receiving agent instantiation
// requests from the BS

static final int fsPort =5115; / for signalling with the
// filter server

!/ --- the main() method ----
public static void main (String args{]) throws SocketException {
if (args.length 1= 1) {
System.out.printin("Usage: java FilterDaemon <filter server>");
return;

}

UDPSockManager mgr = new UDPSockManager();
StringPackager p = new StringPackager();
StringPackager @ = new StringPackager();
int numOfAgents = 0; ’
while(true) {

int getFrom = mgr.recvIPintf(sigPort, p, q);

113

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

—

int UDPport = (int)(getFrom/10);

int filterType = (int) getFrom%10;

String dpathHost = p.getString();

String mobileHost = q.getString();

numOfAgents++ ; // increase the number of agents...

String[] av = new String[5]; /av: array of arguments passed to the
// media scaling filter

av[0] = Integer.toString(UDPport);

av[1] = Integer.toString(filterType);

av[2] = dpathHost;

av[3] = Integer.toString(sigPort+numOfAgents);
av[4] = new String(mobileHost);

System.out.printin("Filter daemon> Paramaters passed to Agent #" + (numOfAgents-1)+":

+av[0] +" "+ av[1]+" “+av[2}+" "+av[3}+" “+av[d]);
Vector arguments = new Vector(5); // convert array to vector

MakeVector myVector = new MakeVector();

arguments = myVector.parse(av);
System.out.printIn("Filter daemon> Passing vector of length " + arguments.capacity());

// Loading the filter agent...
NetworkLoader myLoader = new NetworkLoader(args[0}, fsPort);
Class myClass = myLoader.loadClass("MediaSelector", true);
if (myClass == null) {
System.out.printin("Filter Daemon> No Class Loaded");

else {
try {
Object myObject = myClass.newlnstance();
if (myObject instanceof Agent) {
Agent myAgent = (Agent)myObject;
myAgent.setArguments(arguments);
myAgent.start();
System.out.printin("Filter Daemon> Successfully started agent");

} catch(Exception ¢) {
System.out.println("Filter Daemon>Failed to create Object from Class”);
System.exit(1);

4 FilterServer.java

1/ File: FilterServer.java

import java.lang.*;
import java.net.*;
import java.io.*;

public class FilterServer {

114

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION 15

private static final int sending = 0;
private static final int sent = 1;
private static int state = sending;
public static void main (String args[]) {
//Default port number
int Port = 1115;

//**Initialize Server side Socket. If port is in use try to bind to another
/Mocal port.
while(true) {
ServerSocket servsock = null;
try {
servsack = new ServerSocket(Port);
System.out.printIn("Server: listening on port " + Port);
} catch (IOException ¢) {
System.out.println("> Could not listen on port: " + Port+ ", " + e);
System.out.println("> Trying for another port");
Port++;
System.out.println("> Server Sig Port: " + Port);

}

//**Initialize Client Accept Socket

Socket dclient = null;

try {
dclient = servsock.accept();

} catch (IOException €) {
System.out.printin("> Accept failed on " + Port + ", " +e);
System.exit(1);

/1**Define Input and Qutput Streams on the Client Accept Socket
try {
BufferedReader is = new BufferedReader(new InputStreamReader(dclient.getInputStream()));

// PrintStream os = new PrintStream(new BufferedOutputStream(dclient.getOutputStream()));
String inline, outline;

byte[] bret = null;

String Classfile = null;

while ((inline = is.readLineQ) !=null) {

/ inline = is.read();
Classfile = inline.concat(".class");
System.out.printin{"Server: File Requested " + Classfile);

/1**<Sending Begins....>
//**Write the File Input Stream and File Output Streams
FilelnputStream fis = new FileInputStream(Classfile);
int filesize = fis.available();
bret = new byte][filesize];
while (fis.read(bret) !=-1) {
if (bret !=null) {

System.out.printin("Server: Bytecode Read");

/los.write(bret, 0, filesize);

Hos.flushQ;

state = sent;

System.out.println("Server: Agent Sent");

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

}

1/ os.close();
is.close();
delient.close();
servsock.close();
} catch (FileNotFoundException ¢) {
System.out.printin("> Could not find requested file");
} catch (I0Exception e) {
System.out.printin("> IOException: " + ¢);
e.printStackTrace();
}
}
}
}

5 SelectivePacketDropper.java
/I File: SelectivePacketDropper.java

import java.lang.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class SelectivePacketDropper extends Agent {
// Constant Declarations

static final int NEW_CONNECTION = 100;
static final int HAND_OVER = 101;

static final int BUFFER_SIZE = 65535; // maximum AALS - UDP packet size

static final int sigPort = 5500;

/I SelectivePacketDropper
static final int DROPB = 15;
static final int DROPP = 16;
static final int DROPI =17;
static final int SCENE ~ =18;
static final int MOTION =19;
static final int NOFILTER = 20;

/I Header identifiers

static final int seqHeader =1
static final int gopHeader =2;
static final int picHeader =3;

static final int eomHeader =4;
static final int picHeader 1 =5;
static final int picHeader_P = 6;
static final int picHeader B =7,

/I ---Instance Variables ----
Vector arguments = new Vector(S);
byte[] inputBuffer = null;

116

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

UDPSockManager mgr = new UDPSockManager();
‘ int videoInPort ; /I The ports that video is received
int videoOutPort ; /! from/sent to

/! Header El
int Header;

int Pad;

int SeqNum;

int TimeStamp;

int SegIndex;

/I Filter Controller Thread...

public FilterController filterctl;
public int filterType = 0;

public int newFilterType = 0;

public boolean newFilterFlag = false;

" ---- Methods ----
public void setArguments(Vector aVector) {
arguments = aVector;

}
public void setType(int x) {
filterType = x;

}

public void setNewType(int x) {
newFilterType = x;

}

public void raiseNewFilter() {
newFilterFlag = true;

}
public void dropNewFilter() {
newFilterFlag = false;

}

public void run() {
System.out.printin(" Starting Media Selector ...");
DatagramSocket videoInSoc =null; // Video input and output datagram
DatagramSocket videoOutSoc =null; // Socket

// Create the datagram sockets ...
try §
vi = new DatagramSocket();
} catch (java.net.SocketException e) {
System.out.printin("> Could not create socket: Video In, " + ¢);
System.exit(1);

gl

{
videoOutSoc = new DatagramSocket();
} catch (java.net.SocketException €) {
System.out.printin("> Could not create socket: Video Out, " +¢);
System.exit(1);

}

// Parse the arguments ...
int videoOutPort = Integer.parselnt(String.valueOf{arguments.elementAt(0)));
. filterType = Integer.parselnt(String.valueOf{arguments.elementAt(1)));

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION 118

/ filterType = 0;

String dpathHost = String.valueOf{arguments.elementAt(2));

int filterSetPort = Integer.parselnt(Suing.valueOf{arguments.elementAt(3)));

System.out.printin("Filter Agent> Arguments received : "+videoOutPort+ " " + filterType +" "
+dpathHost+ " " + filterSetPort);

// Start the filter Type Controlling Thread...
filterctl = new FiiterController(this, filterSetPort);
filterct!.start();

/! determine the video Input port
videoInPort = videolnSoc.getLacalPort();
System.out.printin("Filter Agent> Video Input Port: * + videolnPort);

// and send it to the BS
mgr.send(dpathHost, sigPort, videoInPort);
System.out.printIn("Filter Agent> response sent to host: "+ dpathHost);

if (videoOutPort 1= 0)
System.out.printin("Filter Agent> Video Output Port "' + videoOutPort);
for (int count = 0; count >= 0; count++) { // infinite loop
DatagramPacket packet = null;
if (videoInSoc != null && videoOutSoc != null) {
ry {

// receive and process the packet ...
inputBuffer = new byte[BUFFER_SIZE];
packet = new DatagramPacket(inputBuffer, BUFFER_SIZE);

int stamp1 = (int) System.currentTimeMillis();
videolnSoc.receive(packet);
int length = packet.getLength();
if (count == 0)

System.out.printin("Filter Agent> Data are being received from Datapath Host ");

// Intermediate additional filtering
ByteArraylnputStream Barray = new ByteArrayInputStream(inputBuffer);
DatalnputStream dbs = new DatalnputStream(Barray);

// read the Lancaster Header fields
Header = dbs.readUnsignedShort();
Pad = dbs.readUnsignedShort();
SeqNum = dbs.readInt();
TimeStamp = dbs.readInt();

Segindex = dbs.readInt();

/I change the filter type if needed...
if ((newFilterFlag == true) &&
(Header == seqHeader) &&
(Segindex==1)) {
filterType = newFilterType;
dropNewFilter();

}
/1 And set the Media Scaling type in the Lancaster Header
Pad = filterType;
ByteArrayOutputStream b_os = new ByteArrayOutputStream();
DataOutputStream d_os = new DataOutputStream(b_os);

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

d_os.writeShort(Header);
d_os.flush();
d_os.writeShort(Pad);
d_os.flush();

byte[] tempBuf = b_os.toByteArray();
ByteArraylnputStream b_is = new ByteArrayInputStream(tempBuf);
b_is.read(inputBuffer, 0, 4);

// Set the datapath host address
InetAddress addr = InetAddress.getByName(String.valueOf(arguments.elementAt(4)));

int filter_action = 0;
switch(filterType) {
case 0: filter_action = NOFILTER; break;
case 1: filter_action = DROPB ; break;
case 2: filter_action = DROPP ; break; // meaning Ps and Bs
default : System.out.printIn("Filter Agent>Invalid type of filter"); break;

//Now a switch has to be done on the header...
switch (Header) {
case(seqHeader):
case(gopHeader):
case(picHeader):
case(eomHeader):
case(picHeader)
if (filter_action == DROPI) {
break;
} else {
packet = new DatagramPacket(inputBuffer, length, addr, videoOutPort);
videoOutSoc.send(packet);

/1 System.out.println(" itting I frame/SH/GH");

}
break;
case(picHeader_P):
if (filter_action == DROPP) {
break;
} else §
packet = new DatagramPacket(inputBuffer, length, addr, videoOutPort);
videoOutSoc.send(packet);
/! System.out.println("transmitting P frame");
}

break;
case(picHeader_B):
if (filter_action == DROPB || filter_action == DROPP) {
break;
} else {
packet = new DatagramPacket(inputBuffer, length, addr, videoOutPort);
videoOutSoc.send(packet);
// System.out.println("transmitting B frame");
}
break;
default :
packet = new DatagramPacket(inputBuffer, length, addr, videoOutPort);

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

videoOutSoc.send(packet);
break;

int stamp2 = (int) System.currentTimeMillis();
} catch (UnknownHostException ¢) {
System.out.printin("UnknownHostException: " + ¢);
} catch (IOException e) {
System.out.println("IOException: " + ¢);

}
}
}
)

6. BandwidthCheckAgent.java

kage de.ikv h I

Pt P

P

import de.ikv.grasshopper.example.util.InputDialog;

import de.ikv.grasshopper.agency.MobileAgent;

import de.ikv.grasshopper.type.Location;

import de.ikv.grasshopper.app.util. GOptionPane;

import de.ikv.grasshopp ication.GrasshopperAddress;
import de.ikv.grasshopper.config.Configurator;

public class BandwidthCheckAgent extends MobileAgent {
/ Location of the remote agency.
private Location remote = null;

/I Location of the home agency.
private Location home = null;

/I Free memory of remote agency.
private long freeBandwidth;

// The agent's execution state,
private int state = 0;

// The input dialog handle
private ient InputDialog dialoglnp

// The input dialog status
private boolean WindowOpened = false;

I/ Sets the name of the agent.

/{ @return The name of the agent.

public String getName() {

return new String("BandwidthCheckAgent");
}

/1 Action, which should be executed, as the agent moves from
// one place to another place within the same agency

public void onMove() {

120

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

System.out.printin("onMove called ...");
if{ WindowOpened)
dialoglnput.closeDialog();
}

// What to do if a user double clicks on the agent entry in the main window see Grasshopper programmer’s guide
public void action() {
state = 0;
live();
}

// Specifies the agent's behaviour.
public void live() {

// at home agency after creation
if (state == 0) {
dialoginput = new InputDialog("Destination: ");
WindowOpened = true;
try {
String remoteAddress = dialoglnput.getinputString();
WindowOpened = false;
try {
remote = new Location(remoteAddress);
1/ If there isn't active region
// use configurator to
// get the information about active receiver at the home agency
String {] homeAddress = Configurator.getConfigurator().

getCommunicationServer().getReceiverAddressesAsString();

// otherwise (if the region is active) just call the getLocation()
1/ to get active receiver
// home = getLocation();

home = new Location(homeAddress[0]);
System.out.println(*home = " + home.toString();
state++;

move(remote);

catch (Exception €) {
System.err.printin("BandwidthCheckAgent: " + e.getMessage());
state = 0;
live();

}

catch (Exception e) {
System.out.printin("BandwidthCheckAgent: Exception from InputDialog");
}

}

// arrived at remote agency

else if (state == 1) {
System.out.printin("Collecting information about free bandwidth ...");
freeBandwidth = Runtime.getRuntime().freeMemory();

try {
state++;

121

Appendix SOURCE CODE OF ACTIVE FILTER APPLICATION

move(home);

}
catch (Exception €) {
// if region is not running, specify fully qualified address
1/ of home agency
System.out.println("Error: " + e.toString());

InputDialog dialog = new InputDialog("Address of home agency:

try §
String homeAddress = dialog.getInputString();
try {
home = new Location(homeAddress);
move(home);

catch (Exception el) {

122

System.err.printin("BandwidthCheckAgent: " + e.getMessage());

}

catch (Exception e2) {

System.out.printin("BandwidthCheckAgent: Exception from InputDialog”);

}

// back home
else if (state ==2) {
String[] message = new String[2];
message[0] = new String("Agency " + remote.getHost() + /" +

remote.getAgentsystem() + * has");

message[1] = new String(freeBandwidth + * bytes of free Bandwidth.”);
GOptionPane.showM: Dialog(null ge,"Free Bandwidth”,

GOptionPane.INFORMATION_MESSAGE);
state = 0;

}

