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Abstract

The effects of length-bias and left-truncation in survival data have been

weIl studied in the statisticalliterature. To a lesser extent, the phenom­

enaoflength-bias and left-truncation have also been investigated when

group comparisons are of interest. This literature examines various bi­

ases that may occur under different scenarios, and also, on occasion,

proposes procedures for the estimation of covariate effects when using

prevalent data. In this thesis, we review the literature concerned with

the analysis of length-biased and left-truncated data, paying particular

attention to the issue of group comparisons. Sorne shortcomings of the

methods developed in the literature are pointed out. We also assess

the effects of failure to recognize the presence of length-bias when per­

forming group comparisons in natural history of disease studies. To

our knowledge, this issue has not yet been addressed in the literature.
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Résumé

Les effets de biais de longueur et de troncation à gauche dans les

données de survies ont été bien étudiés dans la littérature statistique.

À un moindre degré, les phénomènes de biais de longueur et troncation

à gauche ont aussi été examinés quand les comparaisons de groupes

sont d'intérêt. Cette littérature examine divers biais qui peuvent se

produirent selon différents scénarios, et aussi, à l'occasion, propose

des procédures pour l'estimation des effets covariés lors de l'utilisation

de donné prédominantes. Dans cette thèse, nous passons en revue

la littérature concernant l'analyse de données à biais de longueur et à

troncation à gauche, avec une attention particulière au sujet de la com­

paraison de groupes. Certains points faibles des méthodes développées

dans la littérature sont indiqués. Nous évaluons également les effets du

manque de reconnaissance de biais de longueur quand des comparaisons

de groupes sont effectuées dans des études de l'histoire naturelles de

maladies. À notre connaissance, ce problème n'a encore pas été adressé

dans la littérature.

ii



Acknowledgements

This work would not have been possible without the help and support

of many people. 1 would like to thank my thesis supervisor, Dr. David

Wolfson. 1 greatly appreciate aH of the guidance and advice he has

provided for this thesis and over the last three years. Itis clear that he

truly cares about his students, and 1 consider hima friend more than

a supervisor.

1 would also like to thank my mom and the rest of my family for all of

the sacrifices they made to help me get to where 1am now. In everyday

life these words often get lost, but they should always remember that

1 love them very much. To my girlfriend Isadora, 1 send a gentle kiss.

Thank you for being there through aH the difficult moments when 1

may have been discouraged and was probably not the easiest person

with whom to speak. 1 love you sweetheart. To my four best friends in

the world, Dario, Mike, Paul and Marco, 1 also say thank you. 1will

always be there for you guys whenever you need anything.

Finally, 1 would like to thank Ben Marlin for the preparation of this

thesis, and Pierre-Jérôme Bergeron for the translation of the abstracto

Hi



Contents

1 Introduction

1.1 General medical setting: . . . . . . . . . . .

1.2 Historical work in the one sample problem:

1.3 More recent work in the one sample

problem: .

1.4 The two sampleproblem: .

1.5 Organization of thesis: ..

1

1

4

7

9

12

2 More detailed examination of the one sample problem 14

2.1 Work of Wang and Vardi assuming known backward recurrence times: 14

2.2 Possible biases when backward recurrence times are unknown: 23

3 The two sample problem 26

3.1 Biases associated with inference based on forward recurrence times: 27

3.1.1 Fixed covariates: 27

3.1.2 Is itpossible that for somet, O*(t) < 1 while () > 1?: . 30

3.1.3 Can it ever happen that O*(t) = () \j t ? O?: . 31

3.1.4 Time-dependent covariates: 33

3.1.5 Testing: . . . . . . . . . . . 36

3.2 Estimation when both backward and forward recurrence times are

observed: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 36

iv



3.3 Prevalent treatment studies and estimation procedure on the preva-

lent time scale: . . . . . . . . . . . . . . . . . . . . . . . . . . . " 42

4 Alternative comparisons and the importance of recognizing length-

bias 49

4.1 Comparison of the biased and unbiased survivor functions of two

groups: .

4.2 Comparison of the means (medians) of two groups:

4.3 Comparison of data analyses:

4.3.1 "Naïve" approach:

4.3.2 Correct approach: .

4.3.3 "Partially naïve" approach:

4.4 Performance evaluations through two simulation studies:

4.4.1 Simulation study #1:

4.4.2 Simulation study #2:

5 Closing remarks

A Glossary

v

50

56

61

61

63

64

66

67

69

72

79



List of Tables

3.1 Summary of biases when backward recurrence times are unknown 33

4.1 Simulation study #1: performance of the two methods

4.2 Simulation study #1: variability of the two methods .

4.3 Simulation study #2: performance of the two methods

4.4 Simulation study #2: variability of the two methods .

Vi

69

69

70

70



List of Figures

1.1 Incident follow-up study .

1.2 Prevalent follow-up study

1.3 A length-biased sample .

1.4 Incidence comparison . .

1.5 Outline of work in Chapter 3 and Chapter 4

2.1 Informative censoring .

2.2 Backward and forward recurrence times .

3.1 Unobserved and observed backward recurrence times

3.2 Frailty selection . . . . . . . . . . . .

3.3 Attenuation of effect toward the null.

3.4 Quasic-stationarity...........

4.1 Unbiased and biased survivor functions .....

4.2 Biased and unbiased Weibull survivor functions

4.3 Biased and unbiased gamma survivor functions

4.4 Biased and unbiased Weibull survivor functions

4.5 Biased and unbiased gamma survivor functions

vii

2

3

3

8

13

15

21

26

34

35

44

52

54

55

57

58



Chapter 1

Introduction

1.1 General medical setting:

In the study of the natural history of a disease, one often wants to make a state­

ment about the survival from onset of an individual who acquires the disease. For

example, one might want to estimate the mean or median survival time with this

disease, or to estimatethe probability of surviving longer than a certain amount of

time with the disease. Whatever the case may be, a sample of diseased individuals

is necessary in order to make sorne kind of inference about the condition. One

way in which this sample can be obtained is by assembling a cohort of individuals

and following them forward until sorne of these subjects acquire the disease under

study. These incident cases are then followed for a further fixed time period and

their survival times noted. This is termed an incident follow-up study as new cases

are identified from onset a.s they occur (see Figure 1.1). However, this method of

obtaining a sample often Ieads to practicai difficulties. Firstly, a very large cohort

may be needed to ensure a reasonable number of occurrences of the disease. That

is, the cohort may need to be followed for a long period of time in order for a

substantialnumber to develop the condition. Secondly, further long follow-up may

be needed to ensure that a substantial number of these cases have progressed to

"failure". Henee, a different sampling scheme may be necessary whereby individu­

aIs who already have the disease of interest are identified at a certain point in time,

1



!'NCIDENT FOLLOW·UP STUDY 1

/INDIVIDUALS 1

IONS{ 1 )FAILURE 1

"----

/NSORING 1

----0

/START OF STUDY 1

Figure 1.1: Incident follow-up study

and at this time their dates of onset ascertained, if this is feasible. These individu­

aIs can then be followed until death (or another end point of interest) or censoring.

This is known as a prevalent follow-up study since the cases are initially identified

as prevalent cases (see Figure 1.2). This second method of sampling alleviates the

main practical difficulties associated with the incident sampling scheme. Bowever,

there are statistical difficulties induced by the prevalent sampling scheme which

must be addressed. The survival times of individuals who are sampled in a preva­

lent cohort study are said to be length-biased. That is, the individuals included

under this sampling scheme tend to have longer survival than those that would

normal1y be included in an equivalent incident study. In a manner of speaking, the

subjects who are sampled in a prevalent cohort study must survive long enough to

be included in the study. Bence, observed survival from this sample will tend to

be longer than would be obtained in an equivalent incident study (see Figure 1.3).

One might term the observed survival timesas length-biased since they describe a

length-biased survivor function. As interest will always be in the unbiased survivor

function adjustment for this bias must be made.

2
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Figure 1.2: Prevalent follow-up study

PNDlVIDUALS 1
lA LENGTH-BIASED SAMPLE 1

ISTART OF STUDV 1

Figure 1.3: A length-biased sarnple
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1.2 Historical work in the one sample problem:

The phenomenon of length-bias has been widely studied in the statisticalliterature.

The manifestation of this phenomenon is not restricted to the medical field. It

arises in economics, for example, when itis desired to estimate the mean duration,

say, ofwelfare aid. Individuals who are currently on welfare at a givenpoint in time

are sampled and followed forward until they stop receiving aid. .This is analogous

to the situation described previously in that individuals who are already receiving

welfare aid tend to be those who receive aid for longer periods of time. One of

the originalpapers in this area, by Cox [7], discussed length-bias in the sampling

of textile fibres. Cox mentioned that at the time much effort had been spent on

issues other than the manner in which a sample was selected. This was because

these methods were, for the most part, not general ones. However, he maintained

that in order to obtain dependable and consistent results, clearly definedand weIl

studied sampling techniques were necessary.

Now, the distribution of paraIlel fibre lengths in a piece of material can be

seen ta be analogous to the distribution of the survival times from onset of a

disease of individuais in a population. The left end of the fibre would correspond

to the onset of disease (initiatingevent) and the right end would represent the

desired terminating event. Clearly, if aH fibres, short and long, had equal chance

of selection, this would give rise to an unbiased sample. However, one sampling

method grips the material at a certain point, much in the way researchers might

enter the population of diseased .individuals at a certain point in time. AlI fibres

which are not gripped are not selected, .as are those people who have reached

the terminating event before the study is commenced. Thus, fibres which are

selected for the sample do not accurately represent the population of aU fibres

in the material. The probability of selecting any one fibre is proportional to its

length, yielding a length-biased sample. Denoting f(x) as the unbiased density of
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(1.1)

fibre length in the population, and g(x) as the length-biased density, the following

relationship holds where J-l is the mean of f(x):

g(x) _ xf(x)
J-l

Straight forward evaluation of the kth moment of g(x) yields (1.2) where J-lk is

the kth moment of f(x):

Eg(Xk ) _ J-lHI

J-l

Setting k = 1 in (1.2) gives the mean of the length-biased density g(x):

(1.2)

(1.3)
0'2

Eg(X) = J-l+-
. J-l

This is clearly larger than the mean J.-l of the unbiased density f (x), which agrees

with our intuition.

Cox developed sorne estimates of quantities relating to the unbiased distribu­

tion from the length-biased data and compared them to the analogous estimates

that would be obtained from an unbiased sampIe. Even though Cox considered

both parametric and nonparametric methods, the vital issue of censoring was not

addressed. This is presumably because it was not an issue in the sampling of tex­

tile fibres. That is, the right end point of a fibre,which represents the "failure"

or terminating event of interest, is alwaysobserved. Equivalently, it can be said

that in the length-biased sample, the entire fibre is always observed, which is not

the case with subjects affiicted with a certaindisease. These individuals may be

censored before they are observed to "fail". Censoring is an unavoidable feature

in studies where there is follow-up of subjects and length of survival is of interest.

Blumenthal [3] considered slightly different questions in dealing with the study

of electron tube life. A primarily parametric analysis was employed, focusing on

5



the gamma and Weibull distributions, to explore the utility of various sampling

schemes in a renewal processsetting. Although this setting is quite different from

that of a prevalent follow-up study, thereare distributional similarities between the

two situations. Tubes in operation are identified at a point in time and thus do

not form a random sample of aIl tubes. This is obviously analogous to the natural

history of disease setting, but there are a few variations described by Blumenthal

that deserve mention. Blumenthalexplained three main ways of obtaining a sample

of tubes. The first is the standard one in which the total length of operation is

observed for the identified tubes. The second is one in which only the backward

recurrence •times are used from the identified tubes. Backward recurrence time

refers to the time from start of operation to identification. This would be similar

to using only the time from onset of disease to entry into the study. The third

method is one in which every tube identified is replaced by a new tube and the

time observed is the backward recurrence time of the identified tube plus the

full lifetime of the new tube. An analogous procedure in a natural history of

disease study would include in the sample an incident case for every prevalent case

identified. The survival time noted would then be the time from onset to entry of

the prevalent case plus the complete survival time of the inCident case. In practice,

this may not be realizable.

Blumenthal, like Cox, examined the efficiency of estimating the mean of the

unbiased distribution using the length-biased sample or an unbiased sampie. Their

results which suggest an advantage of intentionally obtaining a length-biased sam­

pIe are discussed in the "Closing Remarks" chapter of this thesis. Finally, Blu­

menthai also did not consider the issue of censoring. However, in the medical field,

it is of fundamental importance and must be considered.
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1 .. 3 More recent work in the one sample
problem:

Although the papers that have been discussed thus far are of historical interest,

they have two features which are special cases of a broader area of study. Firstly,

there is no censoring involved in the sampling of textile fibres. Blumenthal also did

not examine this crucial practical complication. Moreover, the tacit assumption

of stationarity was made both by Blumenthal and Cox, although for Blumenthal

stationarity wasassumed to mean stationarity of the underlying renewal process.

In the medical setting, however, stationarity has to do with the incidence of dis-

ease over time, and means that disease occurrence is uniform over time before the

cases are identified. For example, in an epidemic, this assumption would clearly

be violated (see Figure 1.4). In the absence of this assumption, survival times

that are said to be length-biased are often termed left-truncated. That is, length-

bias is merely a special case of left-truncation with the additional assumptiQn that

the onsettimes are uniform over time. Thus, prevalent follow-up data that are

frequently observed in natural history of disease studies are generally subject to

left-truncation and right-censoring. The truncation time of a subject is defined to

be the time fromonset of disease to the start .of the study. The term truncation

refers to the fact that if an individual's survival time is shorter than the time from

onset to potential entry, then it will be impossible for this individual to be part of

the sample understudy. Vv'ithout the stationarity assumption, one is forced to con­

dition on theobserved truncation times (backward recurrence times). If one does

not condition on the observed truncation times the model will be overparameter­

izedand hence non-identifiable. For example, it is impossible to determine whether

survival times are "long", ~ay, because the true survival is "long", or because in-

cidence of the disease isincreasing close to the sampling point. A multitude of

papers examining the area of left-truncation havebeen published [12] (14] [15] [22]

7



o 0 o o o IConstant Incidence 1

o 0 0 0 0 0000 l'ncreaSing Incidence 1

0000 0 0 0 0 o lDecreasing Incidence 1

ISTART OF STUDY

Figure 1.4: Incidence comparison

[23]. Among the results derived in the literature is the nonparametric maximum

likelihood estimator (NPMLE) of the failure time distribution.

The paper by Wang [19]. is central in the discussion of estimation from Ieft­

truncated and right-censored data. Prior to Wang's paper, the estimator which had

been proposed for the failure time distribution of data subject to left-truncation

and right-censoring had onlybeen heuristically justified. This proposed estimator

is analogous to the usuai product-limittypeestimator under right-censoring, except

with. modified risk sets. The risk set at an observed failure time includes only

individuaIs who have not failed or been censored, but who are under active foIlow­

up. In this paper, Wang justifies this estimatorby showing that it is the NPMLE

conditional on the observed truncation times, when aIl thepotentiai censoring

times are known. Thus, the estimator seems intuitivelyplausible even when the

potential censoring times are unknown, as is the case in a majority of studies. Wang

also conjectures that when stationarity does indeed hold, Vardi's unconditionai

estimator [17] has greater efficiency than the product-limit type NPMLE.

As Wang points out, there are many practical instances where the stationarity

assumption is reason.able or is known to hold. In this thesis, we assume stationarity

8



for the simulations in Chapter 4 and hence Vardi's estimate [17] deserves further

investigation. In a renewal process context, Vardi [16] derives theunconditional

NPMLE of the failure time distribution from a mixture of prevalent and incident

cases, assuming stationarity. Importantly, Vardi [16] also derives the asymptotic

properties of the NPMLE. His results extend those of Cox [7] who assumed only

prevalent cases are observed and who discussed only the pointwise asymptotic

--behaviour of S(t), the NPMLE of the survivor function S(t). Nevertheless, Vardi

[16] does not consider censoring.

Vardi [17] shows how the unconditional NPMLE may be obtained via the EM

algorithm, even when there is censoring but no asymptotics are presented. Re­

cently, Asgharian et al [2] havederived the asymptotic properties of the uncondi­

tional NPMLE and confirmed, at least through an example, that it produces more

efficient estimates than does the conditional NPMLE. Vardi's paper [17] describes

a general model arising from data that are said to be multiplicatively censored.

Such a model yields a likelihood that is proportional to the likelihood that arises

from a prevalent follow-up study. A more detailed examination of the work by

Wang and Vardi in this area is presented in Chapter 2.

1.4 The two sample problem:

At this stage, only difficulties arising from the use of length-biased data in the

estimation ofquantities pertaining to a single group have been examined. Never­

theles$, the primary goal of a study will often be to compare the survival experience

of two or more groups with a certain condition. The two sample problem will be

the main focus of this thesis and an overview of the literature in this area is now

given.

An important complication which has not yet been considered is that of un­

known backward recurrence times. Although interest will almost always lie in the

9



time from an initiating event to a failure or terminating event, the time from the

initiating event to entry into a cohort may net be known. For example, in the

domain of infectious diseases, some studies are concerned with investigating the

time from infection to onset of a disease. In this case, the "failure" event is, in fact,

onset efthedisease. However, the time from infection to entry into the study may

not be known. That is, the time at which an individual was infected is sometimes

not available in such studies. Alternatively, the instances of onset for diseases with

insidious onset, such as Alzheimer's disease, may be difficult to determine. Thus,

inference must sometimes be carried out on the times from entry to failure alone,

the so called follow-up times. From here on, we refer to these analyses as taking

place on the follow-up time scale.

Brookmeyer and Gail [4] discussseverai issues which arise from such a com­

plication in the context of infectious diseases. This paper explores the biases that

may occur in the estimation of unbiased or incident quantities when the analysis

is forced on the follow-up time scale. Although Brookmeyer and Gail examine

these biases in the one sample problem, they fecus primarily on the biases in the

comparison of two groups through the assumption of Cox's preportional hazards

model on the incident time-from-infection scale. Prior to commencing any such

discussion, the authors raise the issue of onset confounding. Onset confounding

refers to the confounding of the effect of a .covariate on the relative risk with the

effectsof this covariate on the duration of infection. When onset confounding is

present, no reliable inference can be made about the covariate of interest. The

authors state the assumption which is necessary to ensure that onset confounding

does not occur. Even when onset confounding is not present, biases may still.occur

when assessing covariate effects.• The nature and extent of bias which may occur in

the estimation of relative risk when using only the follow-up times is investigated.

This is done for both fixed and binary time-varying covariates. A closer examina-

10



tion of the one and two sample sections of this paper will be given in Chapter 2

and Chapter 3 respectively.

In natural history of disease studies, the backward recurrence times of subjects

are often known. Moreover, interest frequently still lies in the incident time scale

in these studies. It is therefore natural to wonderwhether it is possible to estimate

the effects of covariates when the backward recurrence times are observed. Wang

[20] proposes an approach for this problem when prevalent data are observed and

the proportional hazards model is assumed on the incident time scale. In this

paper, Wang assumes stationarity of the onset times, and thus her discussion is

restricted to length-biased data, and not to the more general left-truncated data.

Unfortunately, it is not possible to simply perform an analysis using the traditional

partiallikelihood argument proposed by Cox [8]. The difficulty lies in the prevalent

sampling scheme which causes a bias in the risk sets if they are defi:ned in the

usual manner. Wang [20] samples from the traditional risk sets in order to remove

the inherent bias within them. Wang then uses the newly created unbiased risk

sets and forms a pseudo likelihood, which is maximized to obtain estimates of the

regression coefficients. Since the unbiased risk sets are random subsets of the biased

risk sets, Wang attempts to improve the efficiency of the estimates by repeating

the procedure and taking the average of aIl the estimates. Unfortunately, a major

weakness of this method is that. it does not allow for censoring which is almost

always present in any kind of follow-up study,including natural history studies.

Thus, practical applications of this method are linlited mainly to data that are

size-biased and where censoring does not occur naturally.

In prevalent follow-up studies, the subjects are .sometimes given a treatment

for the condition at entry into the study, This. type of study is called a prevalent

treatment study. We may beinterested is studying the effect of this treatment or

of other covariates in prevalent treatment studies. Clearly, since we are entering

11



a population "cross-sectionally" in these studies, we are interested in the preva­

lent time scale. That is, we are interested in examining the effect of covariates on

subjects who are prevalent with a condition and not on incident subjects. Hence,

it is natural to assume a proportional hazards model on this prevalent time scale.

Cnaanand Ryan [5] outline a modified proportional hazards analysis for the esti­

mation ofcovariate effect on the prevalent time scale, in the presence of prevalent

(left-truncated) data. That is, they propose a procedure analogous to the usual

partiallikelihood argument, only using adjusted risk sets. The risk sets are identi~

cal to the ones used in the one sample problem for the conditional NPMLE of the

survivor function. Wang et al [21] give an in depth discussion of the underlying

assumption required to carry out this analysis along with its severe limitations

for practical purposes. The assumption essentially requires that any two subjects

have identical hazards after their respective treatment, irrespective of when in the

progression toward the terminating event the treatment was administered. It is

possible to weaken the assumption needed to carry out the analysis, but in the end

this alternative proves to be unsatisfactory as weIl. A more detailed inspection of

this assumption along with the other work performed in the two sample problem

will be provided in Chapter 3.

1.5 Organization of thesis:

In this thesis, the central point is that of comparing groups in the presence of

length-biased data. Of course, before approaching this problem, the one sample

problem must first be addressed. Chapter 2 will focus primarily on the work

of Wang [19] and Vardi [17] in the one sampleestimation problem. Wang [19]

does not assume stationarity and thus, she necessarily conditions on the observed

truncation times. On the other hand, Vardi [17] assumes stationarity and this

allows for the development of a more efficient estimator. A detailed examination

12



TWO SAMPLE PROBLEM

ONLY FOLLOW-UP
(FORWARD RECURRENCE)

TIME IS OBSERVED

ESTIMATION OF RELATIVE
RISK ON INCIDENT TIME

SCALE

EFFECT OF FAILURE TO
RECOGNIZE LENGTH-BIAS

Figure 1.5: Outline of work in Chapter 3 and Chapter 4

of the work in the two sampIe problem will then be given. Chapter 3 will be based

primarily on the papers by Brookmeyer and Gail [4], Wang et al [21] and Wang

[20]. It will address the issues raised in the overview given in Section 1.4 more

thoroughly. To continue on this theme, Chapter 4 will investigate other possible

pitfalls associated with the comparison of two groups in the presence of length­

biased data. Specifically, when using the mean or median of the groups as a basis

for comparison, one must account for length-bias in order to avoid potentially

incorrect inference about the two groups. Finally, Chapter 5 will touch upon some

interesting points, induding some brought up throughout the thesis.

It should be noted that much of the literature addressing the two sampIe prob­

lem is quite confusing. This is in part due to the inherent difficulty of the material,

but aiso because the authors involved frequently do not refer to earlier work in the

field. To aid the reader,we indudea tree diagram that outlines the work done in

Chapter 3 and Chapter 4 ofthisthesis (see Figure 1.5). Moreover, we provide a

glossary of terms used in this thesis, in Appendix A, for quick reference,

and hopefully, to helpthe reader.

13



Chapter 2

More detailed examination of the
one sample problem

2.1 Work of Wang and Vardi assuming known
backward recurrence times:

As mentioned, Wang's paper [19]constitutes an important component of any dis­

cussion of the one sample estimation problem in the presence of left-truncated and

right-censored data.. One contribution of this paper lies in its recognition of the

product-limit type estimator as the conditional NPMLE in the case where aH the

potential censoring times are known. We now return to this paper fora closer

inspection.

Let X denote the true failure time of an individual, with associated distribution

function F and survivor function S. Let C be a subject's potential censoring time

and let T be the truncation time of an individual. Denote the distribution of T

by ç. If Y is the observed event time, then Y min(X, C). Moreover, let b

be the censoring indicator, where b = 1 signifies a true failure and 8 = 0 means

that an individual is censored. That is, let 6 := I(X < C). In a prevalent cohort

study, data .on an individual is often of the type (T, Y, 6). In addition, these data

have the implicit assumption that X and C are greater than T. Otherwise, the

subject has not survived until the start of the study and obviously would not have

14
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Recurrence Time From
Onset To Entry

Figure 2.1: Informative censoring

been included in the sample. Wang assumes that X i8 independent of (T, C),

which is important in the nonparametric estimation of F and G. The validity

of this assumption is essentially justified as a combination of the aS8umptions of

independence between X and T and between X and C. The former follows from

the assumption of independence between the failure times and the calendar times

of onset. This assumption may be violated with advances in treatment, say, but

often seems reasonable. The assumption of independence between X and C is as in

the random censorship model. Even though this assumption is made, the observed

length-biased event time Y = min(X, C) is not independent of the eensoring time,

C, sinee they share a common backward recurrence time (see Figure 2.1). Thus,

informative censoring is, in fact, present and the usuai asymptotic results that hold

under the assumption of independent censoring do not necessarily hold here.

Aithough a product-limit type estimator had been proposed for Ieft-truncated

and right-censored data, it had only been heuristically justified prior to Wang's

paper [19]. This estimator is anaiogousto the usual product-limit estimator under

right-censoring, except .with modified risk sets. The risk set at an observed failure

time includes only individuaIs who have not failed or been censored, and who are

under active follow-up. The estimator is shown beIow:

Suppose (ti, Yi, Qi) for.i = 1, ... , nare observed. Let Y(l), ... , Y(k) be the distinct
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ordered event times from the uncensored y's (Le. the ordered true failure times

which have been observed). Then,

S(u) .{. III (1 _cardEi)
cardAi

Y(i)'SU

if u < min(Yi : Di = 1)

Otherwise (2.1)

where for i = 1, ... , k, Ai = {j : t j ::; Y(i) 6 Yj} is the modified risk set, and Ei =

{j : Yj = Y(i)} is the number of failures at a partieular failure time.

Wang proceeds in the following fashion. The full likelihood L is written as a

produet of two functions, LI and Lz. L = LI . L2 where,

dF(Yi)5i S(Yi)l-5i

LI - n S(tü (2.2)
t

L, If [S(t;)dH(t i ' Yi)l-'; (f' h(ti,U)dUf G)]
f3 - P(X 2: T) = f S(u)dG(u) (2.3)

and H is the joint truncation and eensoring distribution with associated density h.

The function LI is then maxirnized nonparametrically to obtain the produet­

limit type estimator for S shown in (2.1). However, LI rnay not always be a

eonditional likelihood conditional on the observed truneation .tirnes. Henee, this

method requires justification sinee an estimate is being obtained simply by maxi­

mizing sorne functionof the quantity of interest whichisneither a conditional nor

a full likelihood.

Suppose now that the data observed are not of the form (T,Y, b), but are

instead of the form (T, Y, C) for every subject. That is, (ti' Yi, Ci) for i = 1, ... , n

are observed. This data>set is sirnilar to the previous one, but contains more

information sinee the potential eensoring tirnes are known. In the case where Y

does in fact represent a true failure time, the observation of C will allow one to still
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know the potential censoring time of that individual. One scenario where this type

of data arises is in a delayed entry study which terminates at sorne fixed time and in

which no subjects are lost to follow-up. In this case, although the censoring times

are a priori random because of the random entry times, the potential censoring

times beeome fixed constants by conditioning on these entry times (see Fleming

and Harrington p.l00 [11]). Assuming that sueh data ean be collected, Wang

writes the likelihood as the product of the conditionallikelihood,

(2.4)

conditionalon the (tî' Ci) 's, and the marginallikelihood of the (t i , Ci)'S,

Lm = Il S(tî)dH(tî' Cî)
î fi

It is clear that Le in (2.4) is identieal to LI in (2.2) sinee 8 :- I(X < C) =
I(Y < C) and (1 - 8) := I(X 2:: C) = I(Y = C). Thus, Wang demonstrates that

LI is indeed the conditionallikelihood when aIl the potential censoring times are

known. Renee, in this special case, Wang [19] shows that the product-limit type

estimator is. the NPMLE conditional on the observed truncation times. For this

reason, the estimator 8eems. intuitively plausible even when the potential censoring

times are unknown.

It is interesting to observe that this product-limit type estimator may give

poor results near 0, as will be discussed in the "Closing Remarks" chapter of this

thesis. Wang also speeulates that when stationarity does in fact hold,Vardi's

unconditional estimator [17] has greater efIiciency than the product-limit type

NPMLE. That is, if the truncation time distribution,G, is uniform then onemay

prefer Vardi's estimator. Itis worth noting that since Wang [19] shows a method

in whieh G may be estimated, it is possible to check the assumption of stationarity.

Aside from this, estimation of G can be useful in other ways. For example, one may

want to estimate the number of individuals who are being truncated in a study.
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By estimating G, one can obtain an estimate of j3 (the proportion of untruncated

data) by simply substituting Sand G into (2.3):

Î3 - F(X ~ T) =JS(u)dG(u)

An estimate of the number of truncated individuaIs for every observed or un­

truncated individual (i.e. the odds oftruncation) can then be obtained by (l-g)/Î3.

Thus, multiplying this odds by the number of subjects in the study gives an esti­

mate of the total number of individuals who were truncated.

As Wang [19] conjectured and Asgharian et al [2] demonstrated via an example,

if one is prepared to assume stationarity, Vardi's unconditional NPMLE [17] will

be more efficient than the conditional NPMLE. Furthermore, stationarity is a

reasonable assumption in many practical circumstances and will be assumed for

the simulations in Chapter 4 of this thesis. Therefore, Vardi's paper [17] deserves

closer inspection and its details will now be discussed.

Suppose XI, ,."Xm and Zl, ... ,Zn are i.i.d. random variables from sorne dis­

tribution F L . Xl,' .., X m are fully observed while ZI, ... , Zn are censored in the

following manner.

Let Ul , .... , Un be i.i.d Uniform(O,l) random variables independent of Xl, ... ,X m,

ZI, ... , Zn· The Z/s are said to be multiplicatively censored upon multiplication

by the U/s, to yield YI, ... , Yn , if Yi = ZîUî, for i - l, ... , n.

Of course, if we are assuming stationarity and if F L itself is a length-biased

distribution, then the data XI, ... ,Xm , YI, ... , Yn are subject to length-bias and

multiplicative censoring.

Vardi was concerned with estimation of the distribution function F L . Let Y,

U, and Z represent any of the above Yi's, U/s, and Z/s respectively, then since

Y - UZ we have,
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Fy(y) - P(UZ:::; y)

100

P(UZ :::; ylZ = z)FL(dz) (By the lawof total probability)

- 1.00

P(u:::; ~IZ= z)FL(dz)
o z

100 peu :::;'#..)FL{dz) (By independence of the U's and Z's)
o z

l y P(U:::; '#..)FL(dz) +100

peU :::;.. '#..)FL(dz)
o Z y Z

l
y

1· FL(dz) +100

'#..FL(dz)
o y z

1001
FL(y) + y -FL(dz) (2.5)

y z

:. fy(y) dd l Y

pL(dz) + dd1
00

'#..PL(dz)
y 0 y y z

FL(dy) + y (-~FL(dY)) +i oo

;FL(dz)

-100

~FL(dz) (2.6)

which implies that the fulllikelihood for (Xl, ... , X m , YI, ... , Y.,J is:

(2.7)

In a nonparametric setting,. L(FL ) must be maximized with respect to F L

in order to obtain the NPMLE of F L . If a parametric analysis is desired, one

need simply replace FL by the parametric distribution of interest and perform the

maximization over the parameters of this distribution..

From a nonparametric viewpoint, it can be shown that only discrete distribu-

tions need to be considered as possible maximizers of (2.7). Let A:- {XI, ... , Xm , YI, ... , Yn},

and consider Cl. set E to which a potential maximizer of (2.7) assigns mass. IfE

is comprised of a disjoint union of intervals and singletons then the following ar­

gument can he used on each of these individually. Bence, we can assume that E

is simply one interval or singleton. If E is to the left of the smallest value in A,
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then by shifting the mass to this smallest value, the likelihood is inereased. If the

smallest value in A is one of the x's then the result is clear sinee the first product

in the likelihood is of the FL(dxi) 's. Thus, giving more mass to one of the x's

will inerease the likelihood. If the smallest value in A is one of the y's, then the

likelihood is still inereased sinee FL(dy) will be greater for this y and the eorre-

sponding Integral inereases sinee the region of Integration includes y. Otherwise,

if E is somewhere in between two observations in A, or to the right of the largest

value in A, then the likelihood can be increased by redistributing the mass to the

nearest point from A to the left of E. Again, if the nearest point. to the left is an

x then the preeeding argument still holds. Ifthis nearest point to the left is a y,

then the eorresponding integral will be inereased sincey is less than any element

in E and henee l/y is bigger than l/x* for any X* E E.

Let 0 < t l < '" < th denote the distinct values of Xl, ... , Xm , YI, ... , Yn where

h :::; n + m (h = n + m if the underlying distribution is continuous).

Maximizing L(FL) over the space of an distribution funetions F L , therefore,

reduees to maximizing L(p) over the space of diserete probability functions p whieh

only assign mass to the observed values t l , ... , th, That is, we must.maximize:

(2.8)

where tj and 7]j are themultiplicities ofthe x's and y's respectively, j = 1, ... , h, and

(2.8) must be maxin1Ïzed subject .to: (i) Pj ~ 0 for j - 1, ... , h and (ii) E~=IPj - 1

wherep = (PI, ... ,Ph) and Pj P(tj) _ FL(dtj) the "jump" or mass at t j .

Vardi [17] chooses to use an iterativeestimate based on theEM algorithm

tomaximize (2.8), althoughother maximization methods can be used as weIl.

Speeifically, it is the Pj '8 which are simultaneouslyestimated by the EM algorithm.

Had the complete data X ll ... , X m , Zl, ... , Zn been observed then the NPMLE of

F L would simply be theempirical distribution function. The EM algorithm is
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P Cl r

where B=q-p D=r-q l=r-p

Figure 2.2: Backward and forward recurrence times

classically used formissing or incomplete data problems. Here, the incomplete

data can be thought of as being the multiplicatively censored Zi 's, or alternatively,

the Ui's could be viewed as the missing data. This interpretation provides an

intuitive justification for using the EM algorithm. In this manner, Vardi estimates

Pi for j == 1, ... , h, and thus obtains fi, the NPMLE of FL, as:

---FL(t) .- L F(t i ) I(t i ~ t)

---or FL(t)._ L F(t i )

{ti: ti9}

(2.9)

Vardi also gives an outlineof the proof which illustrates the consistency of this

estimator. It will now be shown that the estimator in (2.9) can also be used in the

situation of interest in this thesis.

Let B denote the backward recurrence time, let D denote the forward recur­

rence time and let R == B + D in a renewalprocess setting (as seen in Figure 2.2).

The data described by Vardi [17] would correspond to having observed n values of

B (previously labeled as li's) and m values of R. Jn the medical setting, this would

be analogous to identifyingn+m prevalent cases at a point intime, censoring n

of them immediately and deciding to follow the other m until failure. In practice,

this does not seem feasible, nor is it desirable. Hence, it must be acknowledged

that this model is not the same as that which is of primary interest in this the-

sis although multiplicative censoring does induce a form of informative censoring.

It is also clear that the number of censored observations is fixed a priori in the
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multiplicative censoring model. This is notthe case in a natural history of disease

study. However, as Vardi shows, the likelihoods which arise from the two different

scenarios are proportional ta one another, as we now proceed to illustrate.

Vardi [17] compares the multiplicatively censored data likelihood to the one

obtained from n + m values of R where m of themare fully observed and n are

censored. Canveniently, the distribution of R is identical to .that of the failure time

distribution in a prevalent cohort study. The likelihood for the latter case is:

(2.10)

.where f and Fare respectively the density and distribution of the failure times in

a prevalent cohort.

But in (2.10) the x's are treated as constants, thus multiplying (2.10) by

(il:l Xi) will not change where the maximum is attained. Doing this yields:

(2.11)

Now, as mentioned, if F L is itself taken to be length-biased then we have left­

truncated data and:

FL(dx) xf(x)dx
f.LF

1-F(y) [·_1FL (dz)AIso, where y > 0
f.LF z?:.y z

Substituting (2.12) and (2.13) inta (2.1l)gives:

fi FL(dxi) il[ ~FL(dz)
i=l i=l Z?:'Yi Z

(2.12)

(2.13)

whichis identical to the likelihoodin (2.7).

Since FL is. being considered as thelength-biased distribution, and interest in

most studies lies in the unbiased distribution, F, it is also interesting tonote that

(2.12) and (2.13) suggest how ta transform Fi to F.
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From (2.12), F(dx)

Further, from (2.13), {iF

So that, F(dx)

[FL~dx)]itF
1

(2.14)

(2.15)

(2.16)

Now, for the medical setting the values of n and mare not fixed prior to the

start of the study. Nevertheless, it is c1ear that for any specifie data set n and

m take on fixed values. Hence, Vardi's unconditional NPMLE [17] can still be

used with the usual prevalent cohort data of interest here. However, in order to

derive the asymptotic properties of this NPMLE in the prevalent cohort setting,

the argumentprovided by Vardi and Zhang [18] for multiplicative censoring does

not suffice. Vardi [17] makes the point that the sampling properties depend on the

sampling scheme that leads to the likelihood. Indeed, in multiplicative censoring,

ri, and mare fixed a priori. As mentioned earlier, Asgharian et al [2] derived the

asymptotic properties of the unconditional NPMLE for the situation of prirnary

interest in this thesis.

2.2 Possible biases when backward recurrence times
are unknown:

As we mentioned earlier, in sorne studies the backward recurrence time of an

individual may be unknown due to the unknown calendar time of the initiating

event. Although prevalent data are still present, the methods previously used

are not applicable because the backward recurrence times are unknown. In such

studies, analyses are thus performed on the follow-up times alone. That is, analyses

are forced on this follow-up time scale, even though one is still usuallyinterested

in making a statement about survival on the incident time scale. We now return
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to the paper by Brookmeyer and Gail [4] which was briefly mentioned in Chapter

1. This paper discusses the biases which may arise in the one sample problem

when the backward recurrence times are notknown in the context of an infectious

disease. It is important to note that in this paper the time to infection and the

time from infection to onset are assumed independent.

For a study that begins with entry into a population at time Y, let Set) denote

the survivor function on the unbiased or incident time scale and let S*(t) be the

survivor function on the follow-up time scale. That is, Set) gives the probability

of surviving more than t units from infection for an incident case, where S*(t)

gives the probability of surviving more than t units from Y, given that a subject is

prevalent at time Y. Moreover, define l(s) as the density of prior infection times or

the epidemic density for SE (-00, Y]. An expression forS*(t) in terms of Set) and

les) can be abtained. A development ofthis relationship is given below. It relies

on the fact that if an individual is to have anset (the failure event) at calendar

time Y + t, then infection must have occurred at sorne time s before Y and that

subject must have been prevalent at time Y.

Let T* = survival time from entry, and T =survival time from infection, S.

Then T = T* + Y - S,

S*(t)

=

= P(T* > tlT* > 0) = P(T* > t n T* > 0) = P(T* > t)
P(T* > 0) P(T* > 0)

f::oo peT > Y - s + t n S = s)ds f~oo peT > Y - s +tlS = s)l(s)ds

f::oo peT > Y - sn S· s)ds f~oo peT > Y - siS s)l(s)ds

f::oo peT > Y - s + t)l(s)ds
(By the assumed independence of Sand T)

f::oo peT > Y - s)l(s)ds
(2.17)

For arbitrary l(s), it is alsa true that if the hazard of failure is constant then,

S*(t) := Set). AIso, for an increasing hazard S*(t) < Set), and if the hazard

is decreasing then, S*(t) > Set). These results are quite intuitive since for an
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increasing hazard, say, prevalent individuals are at an.increased risk in comparison

to incident individuals. A similar argument holds for a decreasing hazard. A

constant hazard corresponds to the exponential failure time distribution, and the

memoryless property ensures that prevalent and incident cases are at equal risk of

failure. However, if the hazard is not strictly monotone, no general conclusion can

be arrived at concerning the direction of this bias. Therefore, one must be careful

in the reporting of findings from analyses performed on the follow-up time scale.
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Chapter 3

The two sample problem

In Chapter 2, we investigated the phenomenon of left-truncation where aH the

individuals in a cohort come from a single group. The main objective of a study

in the medical setting will oftenbe to compare the survival experienee of two or

more groups. Here, and in the next chapter, the foeus will be on the situation

where there are only two groups under study. For praetical reasons which were

discussed in Chapter 1, the comparison .of these two groups IS often carried out

through the observation of prevalent cases. The discussion on group comparison

with these prevalent (left-truncated) data will be divided into two main branches.

The first is when the calendar time of the initiating event is not known. That is,

the backward recurrence times of the prevalent subjects remain unknown. The

second is simply when both the backward recurrenee time and foHow-up (forward

reeurrence time) are observed (see Figure 3.1).

Figure 3.1: Unobserved a.nd observed backward recurrence times
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3.1 Biases associated with inference based on for­
ward recurrence times:

In this section, we shall restrict our attention to the situation where only the

forward recurrenc~ times are observed, as a continuation of the one sample problem

we discussed at the end of the Chapter 2, where the backward recurrence times.of

the subjects are notknown. In fact, Brookmeyer and Gail's main objective [4] was

to examine the biases associated with the added complexity introduced by the two

sample problem. We now turn to this issue.

This section will be based on Brookmeyer and Gail's paper [4] which examines

the possible biases arising from the use of forward recurrence times alone when in­

terest lies in the underlying incident time scale. Much of the early work in survival

analysis in a medical setting that addressed the issue .of Inference with unknown

backward recurrence times was motivated by data collected early in the AlD8 epi­

demie. More specifically, researchers were frequently concerned with the latent

periodbetween BlV-infection and onset of AlD8. In this setting, the initiating

event was HlV-infection, whose calendar time was, generally, unknown, and the

terminating event was onset of AID8. For the remainder .of this section, the terms

infection and. onset will thus be used instead of initiating and. terminating event,

respectively. Of course, the results of this section can be generalized to other situ­

ations as one can easily imagine various initiating and terminating events.. For the

most part, only heuristic arguments will be presented; the mathematical details

are developed in the appendix of Brookmeyer and Gail [4].

3.1.1 Fixed covariates:

For simplicity of exposition, a binary fixed covariate, Z = 0,1, say, is considered

first. Let f and h represent the density and hazard function, respectively, on

the incident time scale and let f* and h* represent the densityand hazard on the
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follow-up time scale. AIso,let () and ()* denote the relative risks on the incident and

follow-up time scale respectively. We note here, that without further. assumption

both () and ()* will, in general, be time dependent. Furthermore, for an quantities

introduced here and at the end of Chapter 2, let the subscripts °and 1 represent

the two levels of the covariate Z. ln this section, we shaH further assume Cox's

proportional hazards model for the incident time scale. That is, we assume that

hl(u) = Oho(u), where u is the time from infection and now () is, byassumption,

independent of u. Sinee the backward recurence times are unknown, however,

biases may be anticipated for the parameter, (), of Cox's model if only the follow-

up times are used and the analysis is earried out on this time seale. We proceed

to examine these biases.

The hazard on the follow-up time seale, h*, is expressed below, and can be

developed following a similar argument to the one given for S*(t) at the end of

Chapter 2.

h~(t)
f'Z(t) f2'oo fz(t + y - siS = s)Iz(s)ds
---- y
SHt) Loo Sz(t +Y - siS s)Iz(s)ds

f2'oo fz(t + Y -s)Iz(s)ds
y • • , Z - 0,1

J-oo Sz(t + Y - s)Iz(s)ds
(By the assumed independence of Sand T)

(3.1)

Sinee Iz(s) is usually unknown for Z = 0,1, unless it is assumed that Io(S)

Il (5), "onset confounding" may oceur and no dependable inference can be made

about (J. The following exampleillustrates this point.

Example 3.1: Suppose that we wish to compare the relative risk, (), of developing

a disease for two groups on the incident time scale. We assume that the baseline

hazard, ho, isincreasing. Further, suppose that one group is systematically infected

before the other. An expression for ()* (t) can be written as:
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O*(t) = hi(t) = h l (Y - SI +t) \;ft> 0
hÛ(t) ho(Y - So + t) -

(3.2)

where So and SI are the calendar times of infection of the two groups and SI < sa,

say. This, of course, assumes that everyone in each group is infected at the same

time. Here, onset confounding would occur since the backward recurrence times

are unknown and the two groups appear to have different risks simply because

they were infected at different times. That is, since ho is increasing, we have:

O*(t) = 0 [ho(Y - SI + t)] > 0 \;f t > 0
ho(Y - So + t) -

(3.3)

The magnitude of eand [~~~~=:~::n are confounded when assessing the magnitude

of O*(t).

When the effect of Z on 0 is confounded with the effects of Z on the duration

of infection, we calI this onset confounding. More generalIy, onset confounding

will occur whenever [o(S) =*-11(S). We therefore avoid this difficulty by assuming

10(S) - 11 (5). We recognize, however, that estimates of B*(t) may still be biased

for 0 even when onset confounding is not present.

Result 1: For a t'true" risk factor (e > 1), if ho zs strictly increasing, then

8* (t) :::; 0 V t ? O.

We may argue heuristically as follows: Suppose that individuals who are un­

exposed to the covariate Z (i.e. Z - 0) are at reduced risk in comparison to those

who are exposed to the covariate (i.e. Z - 1). Since the exposed group is at a

higher risk, it is more likely that they will have experienced onset of AIDS (the

failure event) before the time of entry into the study, Y, if their truncation tîmes

are long (i.e. if they were infected well before y). These subjects would therefore

be Ineligible to enter the study at time Y, since only HIV+, non-AIDS subjects
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would be of interest here. Therefore, at entry (Y), those with Z = 0 and with

early infection will be similar in stage of progression to those with Z = 1, who

must have been infected later; both will be at high risk of failure. Since we are

unable to observe the time of infection, the similarity of theforward recurrence

times alone will attenuate any between-group effect towards the null value (j = 1.

That is, O*(t) :; 0 \if t ~ O.

Result 2: For a "true" risk factor (0 > 1), if ho is strictly decreasing, then

0* (t) > 0 \if t ~ O.

In the case of a strictly decreasing hazard, a similar argument gives that (j* (t) ~

o\if t ~ O. That is, there is a bias away from the null value 0 - 1.

3.1.2 Is it possible that for sorne t, O*(t) < 1 while () > 1?:

These biases can never make a "true" risk factor appear protective (or make a

protective factor appear to be a "true" risk factor). That is, if 0 > 1 ((j < 1),

then (j*(t) ~ 1 \if t ~ 0 (O*(t) < 1 \if t ~ 0). These results hold irrespective of the

epidemic density 1(s) [4].

The source of these biases is termed differential length-biased sampling. At

Y, the forward recurrence times are sampled differentially from the two different

backward recurrence time distributions (Z= 0, Z = 1). Cnaan and Ryan [5) ob­

tain results which are almost identical to those of Brookmeyer and Gail (4] with

regards to the biases which may occur when using éstimates of 0* (t) for (j. We now

illustrate these points through an example on the natural history of dementia.

Example .3.2: Consider two groups of subjects with dementia, those with vascular

dementia and those with probable Alzheimer's disease. Suppose the aim of the
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study is to compare survival, from onset with dementia to death, between these

two groups. For this example we take onset with dementia and death to be the

initiating and terminating events respectively. We assume a proportional hazards

model on the incident time scale and suppose that the hazard of dying is increasing.

Further, suppose that those with vascular dementia are at a higher risk than those

with probable Alzheimer's. Since these conditions have insidious onset, it can easily

be imagined that the calendar times of onset could not be ascertained. Many of

those with onset long before the start of the study will have died. However, this

will oceur more frequently in the vascular dementia group sinee they are at an

increased risk. Since the hazard is increasing, those from the probable Alzheimer's

group who make it into the study will have high risk at entry having lived for a

long time, at the time of entry. Thus, the Alzheimer's group will seem to be at

similar risk levels in comparison to the high risk vascular dementia group, causing

a bias toward the null risk value of 1.

3.1.3 Can it ever happen that ()*(t) = () V t > O?:

When the baseline hazard is constant, O*(t) = 0 V t ~ O. This follows from the

forgetfulness property of the exponential distribution, as mentioned at the end of

Chapter 2. There are two additional circumstances in which O*(t) ~ () V t ~ 0,

even though 8*(t) is estimated from data eolleeted on the follow-up time scale

whereas the proportional hazards model is assumed on the incident time scale.

The first arises when l (s) is concentrated on a small interval, say, at the begin­

ning of an epidemic. The backward recurrence times will be forced to be similar

for the two groups, thusavoiding differentiallength-biased sampling. That is, if

initiation takes place on a small interval then aIl the subjects, high and low risk,

will start at essentially the same place. In the extreme case, where everyone starts

at the exact same point, there isno bias at aIl and 8*(t) = 0 V t ~ o. This can
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be seen, forll1ally, by letting SI = So in (3.3). This is a special case of 10(8) =Il (8).

Example 3.3: Consider vCJD (new variant Creutzveldt Jacob disease) and sup­

pose that exposure to BSE (mad cow disease) occurred over sorne small unknown

time period. Interest lies in the time from exposure to BSE to the development

of vCJD, the initiating and terminating events, respectively, in this example. Fur­

ther, suppose that the two groups being considered are those who ate organ meat

(e.g. brain) and those whodid not. If eatingorgan meat is truly a risk factor

this will be deteeted since individuals from both groups who are in the study will

have essentially the same backward recurrence times. Renee, differences in their

follow-up times will indicate a differencebetween the two groups.

Of course, it is difficult to imagine a situation where we can assert that l (s) has

mass only on a small interval, yet we do not know when in time this took place.

Hence, in the situation of unknown backward recurrence times, this scenario hardly

seems useful.

A second circumstance which would lead to f)* (t) ~ f) 'ri t 2:: 0 is when the disease

is very rare. Recall that in this section the terminating event is the occurrence

of disease. Renee, even if one is infected before time Y, there is a very high

probability that this individual will stiU be at risk of getting the disease at time

Y + t. Thus, we would observe essentially aU incident cases. Any disparity which

exists between the two groups will thus be discernible. However, again, this second

situation seems to have limited applicability as a rare disease will produce very

few observed occurrences of disease onset (the failure event). Thus, Inference for

such a. disease will be "low-powered".
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Covariate Type
Fixed
Time-Dependent

For () 2:: l (analogous results hold for () < 1) 1

lncreasing Hazard Decreasing Hazard Constant Hazard
l~()*(t).~ () ()*(t) 2:: () ()*(t) = ()
1 ::; ()* (t) ::; () 1 ::;()* (t) ::; () ()* (t) = ()

Table 3.1: Summary of biases when backward recurrence times are unknown

3.1.4 Time-dependent covariates:

Let Z(t) = 0(1) if the covariate is absent (present) at time t, he a time-dependent

covariate. While the results for such covariates are sirnilar to those for fixed co-

variates, there are differences that must be discussed. This covariate couId be, for

example, a treatment given to subjects only after entry into the study. Assuming

10(S) =Il(S), we can see from Table 3.1 that for time-dependent covariates, esti­

mates of e*(t) will always he biased toward unity, in contrast to the fixed covariate

case. That is, in the casee < l, e ~ ()* (t) ::; 1 "il t 2:: 0 for both increasing and

decreasing hazards. The following example illustrates why time-dependent covari­

ates induce slightly different biases from fixed covariates.

Example 3.4 (Refer ta Figure 3.2): Suppose that for sorne infectious disease

we are interested in studying the time frorn infection to disease onset. We enter

a population of infected individuais at calendar time Y. vVe select a sample from

those individualswho have notyet received a certain treatrnent. The treatrnent is

then randomly assigned at time Y to sorne of the infected subjects. Now, suppose

that this treatment is trulyprotective against developrnent of the disease (0 < 1),

and that the baseline hazard of developing th~ disease is monotonicaHy increasing

after infection. We foHow aH of these individuals forward and· note when they

develop thedisease under study. Since the hazard is increasing, those individuals

who were infected long before Y will be at high risk, and, in fact, rnany of them

will have already developed the disease, thus making thern ineligible for the study.
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IiNDlVIDUALS 1

rlLURE 1

-----------"f.-........!

ISTARTOFSTUDY 1

Figure 3.2: Frailty selection

These "deleted" individuals are said to be "frail" and a phenomenon known as

"frailty selection" occurs. Thus, of those with infection times in the distant past,

only the more robust ones will survive to the entry point Y. Sorne of these will

eventually be treated, but even if the treatment is protective the survival experience

of the treated and untreated subjects willappear to be similar, as' the treatment

is given to a robust group of subjects. Of course, for individuals who are infected

close to Y, the treatment effect will be detectable. However, overall, there will be

an attenuation of the treatment effect toward the null value of l.

It is very important to note that if the hazard were decreasing, then the "frail"

subjects would.still tend to be depleted, the only difference being that these would

be theones with short truncation times. Hence, whether the hazard is strictly

increasing or decreasing, the cohort will always have been depleted of "frail" in­

dividuals. The bias is thus always toward unity, unlike for fixed covariates where

the direction of the bias depends on whether the hazard· is strictly increasing or

decreasing. An analogous result can be given for a true risk factor (fJ > 1). An

exarnple will be provided to demonstrate the situation in this case.

Example 3.5 (Rerer to Figure 3.3): Suppose we are interested in a population
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Figure 3.3: Attenuation of effect toward the null.

of adults who are prone to getting some form of leukemia. We assume that their

hazard of getting leukemia is increasing from the time they enter this predisposed

population, although we do not know the moment at which. they enter it. Further,

we speculate that exposure to radiation is a risk factor for getting leukernia. The

two groups are those who are,and are not, exposed to radiation, respectively, in

this population of prone individuals. We obtain a sample of such adults "cross-

sectional1y", at time Y, and follow them forward until some develop leukemia.

Along the way, we note when, if ever, these subjects become exposed to radiation.

If radiation is truly a risk factor, then this cohort will be depleted of subjects who

were predisposed to getting leukernia longbefore Y, including, sorne who rnay have

been exposed to radi.ation. This will make survival in the exposed and unexposed

groups seem similar because many of the survivors will be resistant to leukemia.

Forsubjects entel"ing the predisposed population near Y, however, the detrirnental

effect of radiation will be more apparent. Nevertheless, overal1, there will be an

attenuation of the effect toward the null.
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3.1.5 Testing:

In spite of the biases present when using estimates of e*(t) for e, the two-sample

nonparametric survival tests of Ho : () - 1 are valid even when carried out on the

follow-up time scale. This follows from the fact that fô = fi {::? fo = fI, which

ean be observed from the numerator of (3.1). Thus, ()*(t) _ 1 {::? e - 1.

We have seen in the one sample problem that we can estimate thesurvivor fune­

tion, either conditionally or uneonditionally, by observingpossibly right-eensored,

prevalent (left-truneated) data. In natural history studies, one often has access

solely to such data and one is interested in examining not only survival from an

initiating event, but also the effect of covariates on this time seale as well. Thus,

it is of interest to investigate whether it is possible to estimate covariate effects

by observing such prevalent data having observed both backward and (possibly

censored)forward reeurrence times.

3.2 Estimation when both backward and forward
recurrence times are observed:

Sinee we are often interested in the effeet of covariates on the incident time scale,

it is therefore natural to assume a proportional hazards model on this time scale.

However, often the only data that are available, have been obtained from the follow­

up of prevalent cases. Moreover, the dates of initiation (and thus the backward

recurrence times). are often obtained, at least approximately, when the prevalent

cases are first identified.

This is conceivable even with the infectious disease scenario for AIDS eonsidered

in Section 3.1. For example, suppose we are studying hemophiliaes who were

infected during a blood transfusion, then their infection times couid beascertained.

That is, the dates of their transfusions could be obtainedand their infection time

couId be deduced in this fashion. Another example is in the naturaJ history study
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of Alzheimer's disease to death.. Aithough Alzheimer's has an insidious onset,

many res€archers approximate onset dates by close questioning of the caregivers of

the patients. The patients are then followed until failure or censoring in the usuai

manner. Hence, an important question is whether covariate effect on the incident

time scale can be estimated using left-truncated, right-censored data with known

backward recurrence times.

At first glance, it seems as though Wang's paper [20] addresses this problem

for the simplified case of length-biased data. We recall that length-biased data

is merely left-truncated data under the stationarity .assumption of the initiation

times, which is the assumption of a uniform truncationdistribution. This assump­

tion is reasonable in many circumstanees. Nevertheless, the method developed in

Wang's paper has a major shortcoming for follow-up studies, which will be re­

vealed shortly. For the moment we diseuss, uncritically, Wang's approach. The

possible biases in the estimation of the relative risk, (), on the incident time seale

when using follow-up data, excluding the backward recurrence times, were .already

considered in Section 3.1. Now, however, with the assumed availability of these

augmented follow-up data, we proceed with an investigation of actual estimation

in Cox's proportional hazards modei defined, naturally, on the incident time scaie.

ln summary, we are concerned with estimation for an unbiased model based on

length-biased data.

Unfortunately, under theassumption ofthe incident proportional hazards model,

the partiallikelihood approach introduced by Cox [8] is not directly applicable for

left-truncated data. For incident cases, the traditional risk sets wûuld contain sub~

jects who, after adjustment for their covariate effects, would have equal chances of

failingat a particular failure time. This follows, since their hazardofJailing would

simply be the baseline hazard of failure. For left-truneated data, the risk sets

defined in the usual manner no longer exhibit this property sinee the subjeets are
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sampled in a prevalent fashion. The consequence of this is that, even after remov­

ing covariate effects, two subjects who have survived until "t" will have different

hazards of failing if they have different backward recurrence times; those with long

backward recurrence times will, generally, be at greater risk to fail. However, in

the special case of length-biased data, the explicit relationship (see (1.1)) between

the unbiased and length-biased distributions allows us to sample cleverly from

the observed "biased" risk sets thereby creating risk sets that mimic conventional

unbiased risk sets. The sampling procedure which we will make explicit shortly,

tends to exclude subjects in the risk set with longer survival times, as they are the

source of the length-bias. Using these new unbiased risk sets, a pseudo-likelihood,

L * ((3), is formed and an estimate of (3 can be obtained by maximizing L * ((3). We

now provide a more formaI mathematicai development of the procedure.

Let T denote the unbiased failure time distribution for which the proportional

hazards model is assumed. The hazard function is then

h(t; Z) = ho(t) exp(Z(t)(3) (3.4)

where ho is the unspecified baseline hazard function, and Z(t) is a vector of pos­

sibly time-varying covariates. The term exp(Z(t)(3) represents the relative risk

(previously denoted by B) and the unknown parameter of interest is now (3.

Suppose t l , ... , tn is observed, and let ~ = {j : t j 2: ti} be the risk set at

ti for i = 1, ... , n. Let t(l)l ... , t(n) be the order statistics, assuming no ties, with

corresponding covariate vectors Z(l)"'" Z(n)' Denote Pi as the density for the

history Hi - {(Z(l),t(l»)' "', (Z(i),t(i»)} with Po - p. The fulllikelihood may be

written as:
L ={fiPi-lii(i) It(i»} {gPi-l (t(il)}

where the first term, L p , is the partial likelihood.

(3.5)

For unbiased data, Cox [8] prQPosed that L p be maximized in order toobtain

an estimate of (3, since in this case, Lp depends on the unknown parameters (/3, ho)
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only through (3. However, for length-biased data this method cannot be used sinee

this partial likelihood depends on ho as well as (3. As discussed, the bias is in­

duced by the presence of survivors with length-biased survival times in the risk

set Ri' That is, individuals in ~ no longer have an equal chance of failure at ti

after adjustment for exp(Z(t)(3) since the hazard on the prevalent time scale no

longer satisfies the proportional hazards assumption in (3.4). Renee, the unspeci­

fied baseline hazard, ho, does not .cancel whenassessing the relative hazard of two

individuals. Thus, ho remains in Lp as an unknown and this partiallikelihood can

no longer be used to estimate (3 without knowledge of ho. To account for these

biased risk sets we proceed as follows:

Define a random variable, 6j (u), for 0 :::; u:::; t j as follows:

6.( ) _{ 1 with probability (u/t j )

J u 0 with probability (1 - u/tj )
(3.6)

letting 6j(ti) for i = 1, ... , n be independent.

Now, form a new risk set, Ri = {j : t i :::; tj and 6j(ti ) - 1} for i = 1, ... , n.

It should be noted that sinee 6j(tD is random, the size of Ri will also be random

for i = 1, ... , n. Ri always includes an individual at his/her failure time. Ri is

also more likely to include individuals with shorter failure times, sinee (tdtj) is

closer to 1 for t j 's which are closer to t i , thereby correcting for the bias. Wang [20]

demonstrates that by using these newly created risk sets, the risk set structure in

the unbiased population is beingartificially duplicated. That is, individuals in Ri

have equal chance of failing at a particular failure time after adjustment for their

relative hazard, even though these subjects were originally identified as prevalent

cases. A fa11liliar partiallikelihood L*((3) can thus be defined as:

(3.7)
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This likelihood can only be considered as a pseudo-likelihood as it has been ar­

tificially created by a contrived random mechanisrn, foHowing observation of the

data. Nevertheless, proceeding formally, (3, can be obtained through maximization

of L* ((3). Importantly, this procedure is justified by Wang [20], who establishes

asymptotic pseudo-properties of partiallikelihood estimators, that mimic those of

ordinary partiallikelihood estimators.

Since the method just described requires a sampling of the biased risk sets ~,

one way of improving the estimator of (3 is by repeating the sampling procedure

many times and using the average of aH the (3's. That is, if the procedure is
~ k A

repeated K times, then (3 := Ei=l (3i/K. It can be shown, however, that although

the repetition process may reduce variation when the sample size is reasonably

smaH, it does not aid the asymptoticefficiency for estimation of (3.

Inspite of the ingenuity of the method developed in Wang's paper [20], it

has a major weakness for the analysis of follow-up data in that it does not aHow

for censoring. Whenever there is follow-up involved in a study, there will almost

always be censoring. However, the problem is that thecensoring accompanying

follow-up studies is informative, as was discussed in Chapter 2, and the partial

likelihood methods used in Cox's proportional hazards model breakdown when

there is informative censoring. Thus, the estimation of covariate effects in. natural

history studies, when the data are left-truncated(even length-biased) and right-

censored, remains an open problem for semi-parametric models. Of course, for

fully parametric models there is no problem as the partial likelihood approach is

not necessary; one can write down the fulllikelihood.

Wang recognizes the deficiency in the method as she gives an example and a

simulation study where no follow-up time is required. Nevertheless, this method is

quite limited asfar as practical applications are concerned. A situation where this

risk setsampling procedure can beused is described byPatiland Rao [131 and is
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explained in Example 3.6.

Example 3.6: Suppose we wish to estimate the number of individuals in a group,

say, for example, the number of albino children in a family which is prone to

having albino children. One way of sampling such groups is to record the size of

a group of individuals, only when at least one member of the group is sighted.

That is,when an albino child is observed, the number of albino children in his/her

family is recorded. Assuming that each child has an equal chance of selection, it

is clear that families with a large number ofalbino children will be more likely

to be observed than families with smaller numbers of albino children. Renee, a

sample of group sizes representing the number albino children from families prone

to having albino children obtained in this manner will be sized-biased (or length­

biased). Now, if we assume that once an albino child is sighted we will be able

to observe the entire group of albino children from that family, then there is no

censoring involved. That is, under the assumption that the observed group sizes

will beknown exactly, Wang's method [20] will be applicable here since there is

no cellsoring present. A related paper which may be of interest is by Davidov and

Zelen {IÜ].

Thus far, we have mainly been interested in natural history ofdisease studies

for which the incident time scale is natural. That is, in spite of observing prevalent

data, which is doneout of practical necessity, our concern is with covariate effects

for incident individuals. We now turn to another type of study which gathers

prevalent data but for which Inference on the prevalent time scale is the focus.

This is a time scale for individuals who are identified in a cross-sectional study and

who clearly do not correspond to a group of incident cases. In the next section,

we discuss the· difficulties involved in carrying out Inference in such studies.
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3.3 Prevalent treatment studies and estimation
procedure on the prevalent time scale:

Since a treatment for a conditîon is often administered to individuals who already

have the disease (prevalent cases), studies seeking to investigate the effectiveness

of such treatments are often based on prevalent cases. Thus, prevalent cases are

first identified, and if possible, their backward recurrence times ascertained, as

was discussed in the previous section. The treatment is then administered to these

prevalent individuals at entry into the study and they. are followed forward until

failure or censoring. This type of study is called a prevalent treatment study. A

prevalent treatment study forces the extra requirement that a subject must not

have received the treatment prior to entry, along with the usual condition that a

subjecthas experienced initiation but has not yet experienced failure at the start

of the study.

Suppose we are interested in examining the effect of covariates, in combination

with the treatment, on survival, for prevalent subjects. This investigation can be

carried out through a prevalent treatment study. It is thus clear that the incident

time scale is not of interest here. In this type of study, a proportional hazards

model on the follow-up time scale is the standard model since the treatment only

starts at entry. If one i8 interested in the effect of covariates on this follow-'up time

scale, then, of course, a standard partiallikelihood analysis is appropriate [8] with

the risk sets defined in the usual manner. That is, at a particular failure time aIl

subjects with larger failure times are included in the risk set.

Now, we may be interested in treatment-covariat~ effects on survival from ini­

tiation, rather than from the time of case ascertainment. For example, the time of

the initiating event may be biologically defined, such as the date of infection with

HIV. If this were the case it wouldbe reasonable to impose a proportional hazards
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model on the prevalent time scale. That is, a proportional hazards model would be

assumed on the backward plus forward recurrence times of prevalent individuaIs,

and not only on the follow-up tirnes (forward recurrence times).

With this in mind, Cnaan and Ryan [5] suggest an analysis sirnilar to the

standard partial likelihood method described by Cox [8], only using modified risk

sets. The modified risk sets that are suggested are exactly the sarne as those used

in the one sample estimation of the survival distribution with left-truncated and

right-censored data. That is, we include in the risk set at a particular failure

time, only those subjects with larger failure times who are under active follow-up.

However, Cnaan and Ryan provide no formaI justification for performing such an

analysis, nor is there any discussion of the assumption required that ensures its

validity.

Wang et al [21] formally justify Cnaan and Ryan's ad hoc procedure. Making a

crucial assumption, they carefully construct the partiallikelihood. We now discuss

this construction, paying particular attention to the main assumption needed for

hs validity.

Let u denote the calendar time of initiation for an individual and let v' be the

calendar time of failure. Define the point of entry for a subject to be the calendar

time T. The prevalent proportional hazards model can be written as:

h'(t; Z'(·)) = h~(t) exp(Z'(t)j3) fort 2:: T -u, (3.8)

where h', h~ are, respectively, the hazard andbaseline hazard on the prevalent time

scale. Z' (.) represents a time-varying covariate and j3 is the regression coefficient

or the log of the relative risk on the prevalent time scale. We are interested in the

estimation of the j3.

Let h'(t; u, T) be the hazard function for failure t units after u for a prevalent

individual who was enrolled at time T, .where t 2: T - u. Wang et al [21] make the
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Figure 3.4: Quasi-stationarity

Under quasi-stationarity, these two subjects are assumed to have the same
hazard at tl and t2 since both subjects have been treated and since t1 and
t2 are equidistant frOID their respective onset times. Note, however, that in
the second case treatment was started sooner after onset than in the first
case.

following important assumption:

Quasi-stationarity: There exists a baseline hazard function h~ such that hl sat­

isfies hl (t; u, T) = h~ (t) for t ~ T - u. That is, hl(t; U, T) is independent of (u, T)

when t ~ T - u.

Quasi-stationarity is a very strong, unrealistic assumption in a prevalent treat-

ment study. It states that a subject's hazard function after entry is not affected by

their calendar date of initiation or by the amount of time from initiation to entry.

In fact, by thé authors' own admission, this assumption will rarely hold in a

prevalent treatment study. The following example demonstrates one of many sit-

uations where assuming quasi-stationarity would be inappropriate.
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Example 3.7: Consider a treatment which is developed for sorne form of cancer.

We enter a population .and identify prevalent cases with this form of cancer. At

entry, we treat the subjects, who are obviously at different stages in the progres­

sion of the cancer. That is, sorne have had the cancer for long periods of tirne

before being identified, while sorne may have Just recently had onset of the can­

cer. Assuming quasi-stationarity would mean that any two subjects are thought

to have identical hazards at sorne point in the progression of the cancer if, at this

point of cornparison, both subjeets have entered the study and thus been treated

(see Figure 3.4). Clearly, the hazard of failure for those subjects who have had the

cancer for a longer period of time at entry •(treatment) will be much greater than

the hazard for those who are "caught" in the early stages of the cancer. That is,

at entry the cancer may have developed to a stage where the treatment is not as

effective as if it were administered immediately after onset of the cancer.

Clearly, quasi-stationarity does not hold in the situation described in Example

3.7. In this example, we assumed that all individuals were identified at the same

point in time. If subjects were allowed to enter the study at different points in

time, it rnaybe reasonable to assume that their hazard after entry was independent

of their time of onset. However, it almost alwaysseems wrong to assume that the

length of the backward recurrence time does not affect a subject's hazard after

ent:rY (treatrnent).

Wang et al [21] state that in the one sample problem the stronger assumption

is often made that the entire survival time, v' - u, isindependent of (u, T) for

(v' - u) ~ O. Hawever, this is not a fair eomparison sinee this assumptian is

frequently made in natural histary of disease studies, where there is no treatment

involved. While it is true thatoften survival is assessed froIIl prevalent cases,

(leading to Inference about incident cases) at intervention there is assumed ta be

no effective treatment. We can think of "treatment" .as simply the act of case
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ascertainment, in which case quasi-stationarity and even Hs stronger counterpart,

is frequently reasonable; how long after onset a subject is identified should not

affect their survival on the incident time scale. An alternative weaker assumption

is thus needed when there is a treatment involved and quasi-stationarity does not

seem plausible in any such study.

We shaH shortly describe an attempt to weaken the assumption of quasi-

stationarity. However, for the moment we assume quasi-stationarity and proceed

with the analysis.

Wang et al [21] show that the fuHlikelihood is proportional to a product of

two functions, one of which is analogous to Cox's partiallikelihood except for the

modified risk sets.

Let Yi and c5i represent the observed event time and the censoring indicator,

respectively, for the ith individual in the study, for i = 1, ... , n. Moreover, define

the modified risks sets as R(y) := {j : Tj - Uj ~ Y ~. Yj}, as is done in the one

sample conditional approach (see Section 2.1). Writing the prevalent proportional

hazard model as:

h'(t; Z(s), 0 ~ s < (0) = h~(t}exp(Z(t)jJ) for t ~ T - U, (3.9)

and conditioning on the (u,r,Z(·))'s, the fuHlikelihood based on the (y,c5)'s is:

(3.10)

where land S .are, respectively, the density and survivor function of the failure

time distribution on the. prevalent time scale.

Under the model (3.9), L is proportional to Lp * L R where:

(3.11)
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L R (f3, h~) =[•. û{· h~(y;} L eXP(Z;(Y;)!3)}"] .exp [- f h~(w) L ~(Zt<W)!3)dW]
t=l . jER(Yi) jER(w)

(3.12)

Lp is analogous to Cox's partiallikelihood and L R is termed the residuallike­

lihood. The authors motivate the consideration of Lp (j3) alone for estimation of f3

by showing that L R (j3, h6) is ancillary for 13. This result suggests that L R (j3, h~)

does not provide any information in the estimation of 13 without knowledge of h6.

Further justification for preceding in this manner is provided. That is, Wang et

al [21] establish the usual properties of the partiallikelihood. Namely, they show

that the score function has zero expectation and, importantly, that 73 converges

in distribution to a multivariate normal distribution with a diagonal covariance

matrix.

We now return to the quasi-stationarityassumptiOll to determine if it can be

relaxed in such a way so as to make the model useful in practice. Wang et al

[21] suggest weakeningquasi-stationarity by introducing (U,7) through a function

of (u, 7) that· is then regarded as a time-dependent covariate. Ignoring the other

covariates Z (t), they propose that the prevalent proportional hazards model in

(3.9) be replaced by,

h'(t; u, 7) - h~(t) exp (q'>(u, 7)Œ) for t ~ 7 - U (3.13)

where.. q'>(., .) is a sorne specified function and Œ.lS an unknown constant to

be estimated from the data. Clearly(3.13) shows the (baseline * function-of­

covariates) form is retained and. the dependence on (U,7) is incorporated through

the function q'>. We note, however, that the domain of h'(t; U, 7) stilldepends on

(U,7) through (7,...,. u). This model clearly includes quasi-stationarity as a special

case (Œ - 0). However, ultimately this proposaI does not help sinee in prevalent

treatment studies the interpret~tionof Œ will. almost always be difficult owing to
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confounding as is discussed by Wang et al in their example on ZVD treatment.

Henee, the weakening of quasi-stationarity in this fashion is also not useful in

practice. Therefore, if in a prevalent treatment study we wish to assess the effect

of covariates on the prevalent time scale we are eonstrained by the assumption of

quasi-stationarity. Unfortunately, this assumption will almost never be realistic in

a prevalent treatment study. In fact, Wang et al suggest that prevalent treatment

studies are probably not suitable unless an appropriate control group is feasible

or there are appropriate historical data for "control" or baseline comparison. We

discuss this point further in the "Closing Remarks" chapter of this thesis.

We have thus far focused on group comparisons through the examination of

covariates. However, there are major difficulties in the procedures Jor both the

incident and prevalent proportional hazards model. The incident time scale is of

greater appeal in a natural history of disease study sinee in this type of study one

often wishes to make a statement about survivalfrom initiation for an incident

case. We saw in Section 3.2 how Wang proposed a method for the estimation

of covariate effects in this case, but her model does not allow for eensoring. AI­

though the prevalent time scale is more relevant in a prevalent treatment study

we have seen that attempts to use a semi-parametrie model to assess the effects of

treatment-covariate combinationshave been largely unsuccessful as they rely on

the unrealistic assumption of quasi-stationarity. Another paper which may be of

interest is by Alioum and Commenges [1].

We briefiydiscuss the alternative of fitting purely pararnetric models in the

next chapter of this thesis. We assess the effect of erroneously using length-biased

data in an unbiased model when comparing twogroups. This seems not to have

been addressed in the literature although the failure to recognize length...bias in

data is common in the applied literature.
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Chapter 4

Alternative comparisons and the
importance of recognizing
length-bias

In Chapter 3, we examined the comparison of two groups in the presence of length­

biased data when Cox's proportional hazards model is assumed on a time scaie

relevant to the type of study being performed. Procedures were described for the

estimation of covariate effects in the presence oflength-bias when one is interested

in the incident time seale and also when one is interested in the prevalent time

seaie. Unfortunately, the procedures in both these circumstances have critical

shortcomings which eannot be overlooked.

In this chapter, in the same spirit as in Chapter 3, we investigate the conse­

quences of making group eomparisons in the presence of randomly left-truncated

data. Here, however, we restrict our discussiontolength-biased data, and, more

importantly,to the effeet of failing to recognize length-bias in these data. Simply

stated, we address the question, not addressed in the literature, "Suppose we wish

to compare survival, from initiation, between two groups. Then, what are the con-

sequences of failing to recognize length-bias in the data?" We demonstrate, using

parametric models, that at least when attention is restricted to a comparison of

mean and. median survival, the wrong conclusions may be drawn. These results
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are important, particularly in natural history studies, where it is common for re­

searchers to ignore length-bias. We propose an obvious solution for parametric

models.

We first examine how the relationship between two biased survivor functions

can change when their unbiased counterparts are compared. That is, we begin by

making purely theoretical cornparisons of the true survivor functions. Later in this

chapter, we will illustrate through two simulation studies how incorrect inference

can actually occur when data analyses are performed.

4.1 Comparison of the biased and unbiased sur­
vivorfunctions of two groups:

In this chapter, we assume that a natural history of disease study is being per­

formed and that there is no effective treatrnent available, that can effect length of

survival. Rence, in our previous terrninology, we are interested in a comparison of

survival on the incident time scale. One question of interest is whether the presence

of length-bias could cause a complete "reversaI" of the twotrue survivor functions

under consideration. We shall explain, shortly, what is m.eant by a "reversaI" of

these survivor functions. This investigation is analogous to Brookmeyer and Gail's

examination [4] of the biases that can occur for the survivor function in the one

sample problem with. prevalent data when only the follow-up times are available

(see Section 2.2).

Consider sorne length-biased density 9i(X), as in (1.1), where fi (x) is the un­

derlying unbiased distribution, and i = 1,2 is used to represent the two groups of

interest. Let J-Lf and J-Lf represent the means of the unbiased and length-biased dis­

tributions respectively, so that J.Lf is related to J.Lf by the relationship (1.3). AIso,

let MF and Ml be the IIledians of the unbiased and length-biased distributions

respectively. Furtherrnore, let Sf and Sf denote the unbiased and length-biased
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survivor funetions respeetively. That is, SU represents the survivor funetion eor-

responding to f(x) and SB is the survivorfunetion eorresponding to g(x).

Definition 4.1: We say that a reversal of the survivor functions of the two groups

has occurred if Sf(t) 2: Sf(t) \j t 2: 0, but Sf(t) ::; Sf(t) \j t 20, or equivalently

with the inequalities reversed (see Figure 4.1).

·We may first ask whether the reversaI deseribed in Definition 4.1 is possible.

This would be an interesting finding since it would mean that Iength-bias couid

Iead to a reversaI of the inferred relationship between the survivor funetions, and

thus the survivai experienees, of the two groups. It transpires that this "reversaI"

eannot occur:

Lemma 4.1: Suppose Sf(t) > S!j(t) 'ï/ t 2:: O. Then:3 sorne interval [0,5],5 >

0, such that Sf(t) > Sf(t) \j t E [0,5]. (An analogous result holds with the

inequalities reversed sinee the assigning of group labels is arbitrary.)

Note: (i) We suppose that Sf (t) ~S!j (t). If the unbiased survivor funetions are

identieai then it follows from (1.1) that the Iength-biased survivor funetions are

identieai as weIl.

Note: (H) In the proof, fi and gi, for i . 1,2, ean be either density funetions or

probability funetions, with the consequence that Lemma 4.1 is valid in both the

eontinuous and discrete cases.

Proof: We have that gi(X) = xfit
X

) for i - 1,2. Since Sf(t) > Sf (t) \j t 2: 0,
fLi

:::} :3 an intervai [0,5] where h(t) 2: h(t) 'lt E [0, <5] {::? th(t} 2: tfl(t) 'ï/ t E [0,5]

B tf2(t) >th (t) \j t E [0 5] since /lU > O. But th(t) > th (t) \j t > 0 sinee 1/.0 > /lu.-;;:r - fL~ , ,...2 - -;;:r - Il{ - .,...1 ,...2

.'. th~t) > th~t) \j tE[O, 5]
/-l2 /-lI
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Figure 4.1: Unbiased andbiased survivor functions
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AIso, since the L.H.S of (4.1) = 92(t) and the R.H.S of (4.1) - 91(t), it foHows

that 92(t) > 91(t) \;f t E [0, <5] {::} Sr(t) > Sf(t) \;f t E [0, <5], which proves Lemma

4.1.

Although Lemma 4.1 shows that the "reversai" described for the survivor func­

tions cannot occur, the example below shows that this phenomenon can "approx­

imately" hold, which, as we shaH see, means that vigilance must be maintained in

the presence of length-bias.

Example 4.1 (Refer to Figure 4.2): Let the underlying unbiased distributions

be WeibuH(0.5, 0.5) and WeibuU(0.75, 0.75) for group 1 and group 2 respectively,

where the WeibuU(a, (3) distribution is parameterized as:

f(xla, (3) ~xa-le-X/,B where (0::; x ::; (0), (a, (3 > 0) (4.2)

We see from Figure 4.2(a) that Sr(t) > Bf(t) forpracticaUy aU values of t, while

in Figure 4.2(b), Bfet) > Sf(t) for nearly aH t.

The next example shows that even when there is not "approximate" reversaI,

incorrect inference is still possible if înference is based on the length-biased survivor

functions instead of the unbiased equivalents. Furthermore, the example demon­

strates that these difficultiesare not restricted to the classof WeibuU distributions.

Example 4.2 (Refer to Figure 4.3): Let the unbiased distributions be gamma(l, 1)

and gamma(5,Ü.32) for group 1 and group 2respectively, where the gamma(a,(3)

distribution is parameterized as:

1
f(xla, (3) - f(a)(3axa-le-X//3 where (0 ::; x::; (0), (a, (3) 0) (4.3)

In Figure 4.3, the biased survivor functions seem to indicate that the two groups

experience similar survival, with group 2 enjoying slightly better survival early

on and group 1 having better survivallater. However, the unbiased equivalents
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Figure 4.2: Biased and unbiased Weibull survivor functions
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Figure 4.3: Biased and unbiased gamma survivor functions
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show that group 2 has much better survival in the early stages, while survival is

essentially identical afterwards.

Thus, Example 4.1 and Example 4.2 demonstrate thatthe potential seriousness

of using length-biased survivor functions instead of the corresponding unbiased

survivor functions is not dispelled by Lemma 4.l.

Finally, we give an example where length-bias does not cause much change in

the relationshipbetween the survivor functionsof the two groups.

Exaxn.ple 4.3 (Refer ta Figure 4.4): Let the unbiased distributions be Weibull(2, 2)

and Weibull(3, 3) for group 1 and group 2 respectively. From Figure 4.4, we can

see that the relative survival of the two groups is similar whether the biased or

unbiased survivor functions are used for Inference.

Example 4.31s given to illustrate that length-bias need not affect the Inference

in every problem. Nevertheless, one must account for its consequences carefully

since the effect (or lack of effect) of length-bias will not be known a priori.

4.2 Comparison of the means (medians) of two
groups:

One reason for having considered possible "reversaI" of the survivor functions is

that it would have caused a "reversaI" of the mediansof the two groups. Even

though we have shown that "reversaI"· cannot occur for the survivor functions of

the two groups, it maystill be possible that it occurs for their medians. Therefore,

although the "reversaI" of the survivor functions is clearly sufficient for the "rever­

saI" of the medians, we need to determine whether it is necessary as weIl. In fact,

it is not difficult to provide an example whererever~al of the medians has occurred

even though the reversaI of the survivor functions is impossible. Figure 4.5 demon­

strates this "reversaI" of the medians where the unbiaseddistributions areassumed

to be gamma(l, 1) and gamma(5, O.21}Jor group 1 and group 2 respectively.

56



Figure 4.4: Biased and unbiased Weibull survivor functions
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Figure 4.5: Biased and unbiased gamma survivor funetions
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(4.5)

Moreover, everything that holds for the median is also true for the mean of

the two groups. Recall that for a positive-valued random variable, the mean of

the distribution is equal to the area underneath the survivor function. Hence, if

we had that Sf(t) ::; Sf(t) \:/ t ~ 0, and that Sf(t) ~ Sf(t) V t 2 0 then we

wouldhave that J-lf < J-llf, but that J-lf > J-lf (or equivalently with the inequalities

reversed). Thus, interestnow turns to whether ii is possible that J-lf < J-llf but

that J-lf > J-lf (Qr with the inequalities reversed) even though the "reversaI" of the

survivor functions is impossible. The answer to this question is in the affirmative.

With the gamma(a,,8) parameterized as in (4.3), the length-biased density is:

x (XO!-l e-X/(3) xO!e-x/fi
9i(xla,,8) :::: a,8' f(a),8O! :::: f(a + 1),80!+l t'V gamma(a + 1,,8) (4.4)

where i :::: 1,2

Thus, if the true underlying distribution is gamma(a,,8) then the length-biased

distribution isgamma(a + 1, ,8). A relationship such as this one, where the length-

biased distribution takes on the same parametric form as the unbiased distribution,

does not hold, in .general, for other distributions, although this family invariance

also holds for the family of Pareto distributions. For the gamma parameterized as

in (4.3), the mean is a,8. Hence, the mean of the length-biased density is (a+ 1),8.

Now, this reversaI of means will occur if:

(1) J-lf:::: a1,81 < {);2,82 - J.1~ and if

(2) J-lf - (al + 1)/31 > (a2 + 1),82 - J-l:

(1) and (2) are simultaneously satisfied if:

a2 + 1 ,81 a2
--<-<-.
al + 1 ,82 al

Hence, whenever the parameters for the gamma distributions of the two groups

satisfy (4.5), the mean of group 2, say, will be larger for the unbiased distribu­

tion comparison, but the opposite will be true for the length-biased distribution

companson.
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A commonly used distribution in survival analysis is the Weibull. If the under­

lying unbiased distribution of the data is Weibull then the length-biased distribu­

tion does not remain Weibull. Unlike the situation with the gamma distribution,

we cannot obtain a simple expression for the Weibull parameters which indicates

whether "reversaI" of means will occur. However, it is not difficult to find examples

where reversaI does occur. Using expression (1.2), it follows that the meanof the

length-biased Weibull is simply the second moment of the unbiased Weibull divided

by the mean of theunbiased Weibull. Furthermore, using the parameterization of

theWeibull(a, (3) given in (4.2), we have that the kth moment of a Weibull is given

by:

(4.6)

Example 4.5: Assume the Weibull parameters to be (1, 1) for group 1 and (2, 2)

for group 2. Hence, from (4.6),

1 . .. . 1
I1/1f(1 + 1) = 1,J1,~ = 21/2r(I+"2) ~ 1.25, and

12/1f(1 + 2.) 22/2r(1 + 2.)
--1--.:1

:- = 2, J1,: ~ . 1.25 2 = 1.60

It is clear that what we refer to as a reversaI of means has taken place in Example

4.5.

We now give a real-life illustration of the incorrect inference this could cause.

Example 4.6: Suppose, as in Example 3.2, that we are interested incomparing

survival, from onset of dementia until death in two groups, namely, individuals

with probable Alzheimer's disease and those with vascular dementia. In the lït­

erature, it has often been reported that individuals with probable Alzheim.er's

disease have longermedian (and mean) survival from onset than those with vascu­

lar dem.entia. However, for practical reasons, these analyses wereperformed using

prevalent cases. Thus, the data used in these studies were subject to length-bias
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which was not recognized. It is therefore conceivable that, in fact, individuais with

vascular dementia have longer median or mean survival than those withprobable

Alzheimer's disease.

We will shortly turn to an examination of what can happen in practice when

data are actually analyzed. That is, we will demonstrate how incorrect Inference

can occur in a comparison of the mean and median of two groups when length­

bias is not recognized. Before doing that, we describe the types of analyses that a

researcher might perform on an observed data set.

4.3 Comparison of data analyses:

Below we present a comparison of three possible procedures that nlight be used

to analyze data. The first is a naïve approach where length-bias ls not recog­

nized, while the second is the correct manner of proceeding.. The third approach

is restricted only to certain parametricanalyses. We concentrate on the first two

procedures in our parametric simulations.

4.3.1 "NaÏve" approach:

A naïve approach to maximum likelihood estimation which does not recognize

length-bias would proceed as follows:

Let LB(~; (J) and LU (~; (J) be, respectively, the biased and unbiased likelihoods,

for. the parameter vector (J, given the observed biased data ~B, generated by the

biased model LB.

1. Maximize LU (r;;;(J) with respectto (J.

2. Carry out an Inference using the incorrect estimator Ôe, where the subscript

designates the model that is assumed and the superscript the "true" model

of the data.
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3. AIl sampling distributions are derived under the assumption that the data

were derived under LU.

4. If there are two independent comparison groups, repeat this procedure for

each group and base the Inference on h(ê~u, êf;u) for sorne function h, of the

AB . AB
two estimators B1;u and B2;u.

The rnethod just described uses an unbiased model for Inference although the

data are length-biased.

For example, suppose that the observed survival times for the two groups,

~f, i . 1,2, arise from length-biased WeibuIl distributions with length-biased

WeibuIllikelihoods given by,

(4.7)

and n is the number of survival tirnes in x!i.
~z

The "Naïve" Approach would· specify the. rnaximization of,

n. [a,(X!3.)Qi-1e- x f;/{3i]
Lf(~~;(ai'/~i)) = II . Z ZJ /3.

j=I Z

where (0 ~ x~ < (0), (ah/3i > 0), (i = 1,2)

and n is the number of survival tirnes in x!i,
~z

(4.8)

withrespect to (ai, /3i), i = 1,2, respectively for the two groups, to obtain (âi , ~i)~'

If we are interested in rnaking Inference about the difference in the unbiased rne­

dians, (Mf -Mf), say, then a parametric bootstrap would be (naïvely) performed

as follows:

1. Generate k sets of survival tirnes, each of size n.frorn iP (~; (Ô:i, ~i)B). Denote

these bY~fp for i - 1,2 and p = 1, ... , k.
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2. For each of i = 1,2, and p = 1, .." k, rnaxirnize (4.8) with respect to (ai, f3i)

to obtain (âiiP ' .8iiP)g for. i = 1,2, and p = 1, ... , k.

3. After substituting (&i;p, .8i;P)g in IF (;s; (ai, f3i)), evaluate (.M'Ku - .Mru)p for

p = 1, ... , k to obtain k "naïve" estirnates of (Mf - Mf).

4. Obtain a 95% confidence interval for (Mf -Mf) by sorting these k estirnates

and elirninating the 2.5% srnallest and biggest estimates.

A correct nonparametrïc approach would proceed along sirnilar Hnes except

that the estimators used would be nonpararnetric and bootstrap procedures would

be nonparametric as weIL

Moreover, using the "Naïve" Approach, if one were to assume Cox's propor-

tionai hazards model on the incident time scale, one would unwittingly fit Cox's

proportional hazards rnodel to the length-biased data. Unfortunately, proportion­

ality of hazards on the incident (unbiased) scale does not irnply proportionality of

the hazards for the length-biased distributions.

4.3.2 Correct approach:

A correct approach, which would recognize length-bias and account for it accord­

ingly, wouldproceed as follows:

1. Using the same notation, rnaximize LB (;s B; 0) with respect to O.

2. Carry out aIl inference using the correct estimator ê~.

3. AIl sampling distributions are derived under the assumption that the data

were derived ll.IlderLB .

4. If there are two independent comparison groups, repeat this procedure for

each group and base the inference on h(ê~B' ê~B) for sorne function h, of the
~B AB

two estimators 0l;B and 02;B'
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Note, importantly, though, that the function h is a functional of the unbiased

distribution, which isofm.ain interest. For example, h might represent (Mf -MY),

using the parameter estimates obtained by recognizing the presence of length-bias

in the data. In addition this method uses the length-biased model, that generated

the data, to infer the sampling distribution of any parameter estimator.

For example, suppose that the observed survival times for the two groups,

*'f, i ::;: 1,2, arise from length-biased Weibull distributions with length-biased

Weibulllikelihoods given by (4.7). The Correct Approach would specify the cor­

rect maximization of (4.7) with respect to (ai, 13i), i = 1,2, respectively for the two

groups, to obtain (&i, Si)~.

If we are interested inmaking inference about the difference in the unbiased

medians, (Mf -MY), say, then a parametric bootstrap would be performed as

follows:

1. Generate k sets of survival times, each of size n from il (*,; (âi , Si) ~). Denote

these by *,gp for i = 1,2 and p ::;: 1, ... , k.

2. For each of i 1,2, and p . 1, ... , k, maximize (4.7) with respect to (ai,13i)

to obtain (&iiP' Si;P)~ for i 1,2, and p ::;: 1, ... , k.

3. After substituting (&i;p, ,8iiP)~ in iF(*,; (ai., 13i)) , obtain (M~B - M!{B)P for

p =1, ... , k to yield k estimates of (Mf -MY).

4. Using thequantile method obtain a 95% confidence interval for (Mf - MY).

A correct nonparametric approach would proceed along similar Hnes except

that the estimators and bootstrap procedures used would be nonparametric.

4.3.3 "Partially naïve" approach:

A third approach is plausible for certain parametric scenarios. Suppose the length­

biased aspect of the data is recognized, but it is not accounted for correctly. We
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refer to such an approach as a "partially naïve" method. This method proceeds as

follows:

1. As in the correct approach, maximize LB (*,B; 0) with respect to G.

2. Obtain the correct estimator, êZ. That is, this method uses the correct biased

model for estimation of e, recognizing that the data are length-biased.

3. If there are two independent comparison groups, repeat this procedure for

each group and base the inference, however, on h'(êf;B' êf;B) where h' is the

length-biased function corresponding to h, the function of interest.

For example, suppose we are interested in (Mf -- Mf), then in the partially

naïve method, we would base inference on estimates of (Mf - Mf). A paramet­

ric bootstrap would be performed exactly as in the correct approach except that

(&iiP' BiiP)~' for i = 1,2, and p = 1, ... , k, would be substitutedinto !P (*,; (ai, (3i))

in order to obtain the k estimates of (Mf - Mf).

Of course, although inference is based on estimatesof (Mf -Mf), the quantity

of interest is (Mf - Mf). The partially naïve reasoning is as follows, "Although

unbiased and length-biased distributions differ, comparisons between pairs of un­

biasedand pairs of their corresponding length-biased distributions should remain

invariant" .

This scenario corresponds to the hypothetical scenario described in Section

4.1 whereby one might be tempted to compare only the pair of biased survivor

functions to infer the same relationship for the unbiased versions. We have seen

this reasoning to be flawed.

This third approach is largely a curiosity, though, as it wouldonly arise in very

few situations. It would not he possible in a nonparametricanalysissince, here,

if length-bias is recognized, then the correct estimates are immediately obtained

for the survivor functions of the twogroups. Even in a param.etric analysis, this
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situation does not always occur. For example, suppose we are performing a para­

metric analysis assuming that the underlying unbiased distributions are gamma.

In this case, recognizing length-bias is sufficient in order to carry out a correct

analysis since a.length-biased gamma distribution retains the parametric form of

a gamma distribution. Hence, once the correct estimates of the parameters are

obtained, substituting these estimates into the length-biased or unbiased gamma

forms yields identical results.However, this "partially naïve" approach may yield

erroneous conclusions if the Weibull distribution is assumed to be the unbiased

distribution in a parametric analysis since ·the length-biased Weibull does not re­

tain the Weibull parametric form. As this approach can only occur in very special

circumstances, we will focus our discussion on the "naïve" and correct methods.

4.4 Performance evaluations through two simu­
lation studies:

Now, suppose that we are interested in the difference in mean survivaIs of two

groups (or, possibly the difference in median survivaIs), that is, the quantity (J-Ig ­

/-Ln. Any instance of a "reversaI" of means will cause the quantities (J-I/:( - p,lf)

and (p,f - p,~) to be of opposite sign. Thus, these theoretical results suggest that

inference about the mean survival experience of the two groups will be incorrect if

length-bias is not accounted for in the analysis. We investigate these considerations

by carrying out simulations that enable us to examine the coverage percentages of

"naïve" and correct bootstrapped 95% confidence intervals for (p,f - p,n and for

(Mf- Mf)· These may be termed "performance analyses".

A comparison of the correct approach with the "partially naïve" method could

just as easily have been carried out and similar resultscan· be obtained but these

will not be included in this thesis.

Although our simulations generate uncensored data, similar results would be
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obtained with censored survival times sinee, here, censoring only diminishes the

amount of information contained in the data and does not change anything con­

ceptually.

4.4.1 Simulation study #1:

The underlying unbiased distribution was assumed to be gamma(l, 3) for group 1

and gamma(4, 1) for group 2. Five-hundred (500) length-biased uncensored sur­

vival times were generated for each of the two groups from gamma(l + 1 = 2,3)

and gamma(4 + 1 = 5, 1) distributions, respectively, which are the length-biased

distributions corresponding to the gamma(l, 3) and gamma(4,1) distributions, re­

spectively. These data were taken as our "observed" data set.

Since the length-biased gamma distribution is itself gamma, the "naïve" and

correct approach both maximize thesame likelihood. That is, if one believes that

the data are unbiased, a gamma likelihood will be maximized, while if one knows

that the data are length-biased, a length-biased gamma likelihood, which is again a

gamma likelihood, will be maximized. Hence, naïve and correct methods will yield

the same parameter estimates for both groups. We obtained parameter estimates,

(&1, /31) and (62, /32), for the parameters (al = 2, /31 = 3) and (a2 = 5, (31 = 1).

However, someone applying the naïve method would believe that (&1, /31) and

(&2, /32) estimate the parameters of the unbiased gamma distribution sinee hejshe

will not have recognized the length-bias. On the other hand, someone using the

correct method would realize that, in fact, these parameter estimates corre$pond

to the length-biased gamma. Using the correct approach, the parameter estimates

for the unbiased gamma are (th ~ 1, /31) and (&2 - l, /32)'

In order to finda confidence interval for (fLV - fLlf), a parametric bootstrap

was carried out, using both the "naïve" and correct method. For the "naïve"

parametric bootstrap, the gamma(&1, /31) and gamma(&2, /32) distributions were
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used to generate 1000 data sets each consisting of 500 survival times for group 1 and

group 2 respectively. The incorrect philosophy behind this bootstrap is to generate

data from the unbiased distribution. In a correct parametric bootstrap, one would

want to generate data from the length-biased distribution. Coincidentally, the

two methods are again identical, since the length-biased gamma distributions with

parameters (&1, .81) and (&2, .82) for group 1 and group 2, respectively, are again

gamma with these parameters.

For each of the 1000 data sets, the same procedure was used to obtain the

estimates of the parameters as. with the "observed" data. Having paired off the

data sets for the two groups arbitrarily, 1000 estimates of the difference in means

and medians of the two groups were produced. For the naïve approach, these

estimates were obtainedby using the parameter estimates without modification.

The estimates of the difference in means and medians using the correct method

were obtained by realizing· that the parameter estimates were. obtained from a

length-biased gamma distribution and need adjusting before they can be used to

estimate (p,f - p,f) and (Mf - M!j). That is, in the correct approach, &ij became

(&ij - 1) for i = 1,2 and j = l, .... , 1000.

To obtain a confidence interval for these differences, we simply ordered the

1000 estimates in increasing fashion and selected the 26th and the 975th largest

difference. In this way, we obtained two confidence intervals (for the difference in

means and medians respectively). This entire procedure was repeated 100 times

and each time we verified whether the true difference in means and medians was

captured by the corresponding confidence interval.

The resultsfor the two procedures are presented in Table 4.1. We can see

from these results that if length-bias were not recognized and the naïve method

applied, we never captured the true values of interest. The correct method gave

approximately 95% coverage, as expected. Table 4.2 displays the average lengths
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Simulation Study #1: Performance of the Two Methods
Frequency af true value captures out of 100

Method
Correct Approach
Naïve Approach

Difference. in Medians Difference in Means
94 93
o 0

Table 4.1: Simulation study #1: performance of the two methods

Simulation Study #1: Variability of the Twa Methods
Average length of confidence interval

Method
Correct Appraach
Naïve Approach

Difference in Medians Difference in Means
0.98812 0.87485
0.75655 0.83661

Table 4.2: Simulation study #1: variability of the two methods

of the confidence intervals produced. One may have expected the intervals to be

wider far the naïve approach, but this is not the case in this example. We suspect

that this result is particular to the gamma distribution, awing to the property that

a length-biased gamma remains gamma.

4.4.2 Simulation study #2:

In thissimulation siudy, the underlying unbiased distributions were assumed to be

Weibull(0.5, 0.5) and Weibull(0.75, 0.75) for group 1 and group 2 respectively. We

generated 500 uncensored survival times from the length-biased Weibull(0.5, 0.5)

and the length-biased Weibull(0.75, 0.75), for group 1 and group 2 respectively. It

is interesting tonote that length-biased Weibull data can be simulated conveniently

by initially generating from a gamma distribution (Correa and Walfson [6]). These

survival times are assumed to be the "observed" data.

Essentially the same methad was used as for Simulation study #1, except with

differentlikelihoods to accommodate the different parametric forms. In the correct

analysis, a length-biasedWeibull likelihood was maximized whereas, for the naïve

method, the likelihood that was maximized was simply aWeibull. This led to
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different parameter estimates for the two approaches, which is slightly different

from the situation in Simulation study #1. This is because the length-biased

Weibull does not remainWeibull. Again, in the correct parametric bootstrap, 1000

sets each consisting of 500 length-biased Weibull survival times were generated for

each of the two groups using the correct parameter estimates. In the "naïve"

method, the incorrect parameter estimates were used to generate 1000 sets each

consisting of500 Weibull survival times for each group. For each of these data sets,

parameter estimates were obtained. Estimates of the means and medians were then

derived by substituting theparameter estimates into the appropriate functionalsof

the unbiased Weibull distribution. Of course, the parameter estimates used in the

"naïve" method were incorrect. We then proceeded as in Simulation study #1 to

obtain confidence intervals for the difference in means and medians, respectively,

and to assess the performance of the two methods.

1 Simulation Study #2: Performance of the TwoMethods
,=======:::::=======:=========:=======:

Frequency of true value captures out of 100
Method Difference in Medians Difference in Means
Correct Approach 96 97
Naïve Approach 90 0

Table 4.3: Simulation study #2: performance of the two methods

1 Simulation Study #2: Variability of the Two Methods 1
~======:=====:;====:===::=~~::::==:::::::;====
1 Average length of confidence interval 1

Method Difference in Medians Difference in Means
Correct Approach 0.19721 0.32802
Naïve Approach 0.86288 0.66321

Table 4.4: Simulation study #2: variability of the two methods

The results for the twoprocedures are presented in Table 4.3. The correct

method again gave approximately 95% coverage. The naïve method for the differ-

ence in means againperformed extrernely poorly. For the difference in medians,

the naïve rnethod performed fairly weil in terms of coverage.proportion.. However,
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when examining the average lengths of the confidence intervals, we see that the

naïve method produced much wider confidence intervals (see Table 4.4). This ex­

plains the apparently adequate coverage of its confidence intervals for the difference

in medians.

We can see from the results of these two simulation studies that the failure to

recognize length-bias can affect the validity and/or the efficiency of an analysis.

That is, One may obtain very poor coverage, and even if one does, in fact, capture

the true value frequently, the confidence intervals may be very wide.
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Chapter 5

Closing remarks

In this chapter, we discuss some interesting points that have been raised in this

thesis. We also mention sorne topics for further research and a possible procedure

for the estimation of covariate effects in the two sampIe problem, even when there

is censoring.

In Section 1.2, we gave a brief overview of the historicalliterature in the area

of length-bias. We discussed how Cox had developed an unbiased estimator of

the mean of the underlying distribution from a length~biased sample. In fact,

Cox [7] demonstrates that, in sorne instances, it may be more efficient to use a

length-biased sample for estimation of the mean than the unbiased sample. This

is, perhaps, a justification for the use of the sampling method of "grabbing" used

in the textile industry at that time, and which gives rise to length-biased fibre·

lengths.

Blumenthal[3] also examines whether it is more efficient to estimate the mean

of the unbiased distribution using a length-biased sample or an unbiased sample.

For the gamma and \Veibull distributions it is, in fact, more efficient to use a

length-biased sample. This result is very interesting since the gamma and Weibull

are widely used in survival analysis. For the log-normal distribution, theefficiency

is always the same, regârdless of the parameters of the distribution. Thus, if

one believes the data to come from a log-normal distribution, it seems that a

length-biased sample 8hould be considered, since there is no. 108s in efficiency and
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it may be easier to obtain such a sample. Rowever, as Cox mentions in his paper,

Blumenthal obtains most of his results by assuming a known coefficient of variation.

For the gamma and Weibull, the coefficient of variation is onlyknown if the shape

parameter of the distribution is known. However, a method for estimating·the

coefficient of variation is provided by Blumethal when it is unknown.

In the medical setting, the use of prevalent cohorts have often been perceived

as being necessary for practical reasons such as time limitations. Rowever, the

preceding l'esults show that using a cross-sectional sampling scheme may not only

be of practical convenience but may improve the efficiency of mean estimates.

Although these papers did not consider censoring, it may be speculated that the

same result will hold even when censoring occurs. This question deserves further

consideration.

In Section 2.1, we briefly mention that Wang's one sample conditional product­

limit type estimator may give poor results neal' O. Firstly, Wang admits that the

estimator in (2.1) may be non-identifiable before the smallest observed event time,

Y(l). Renee, this estimator should really be seen as a eonditional estimator of

survival, given that one's survival is greatel' than Y(l). In practice, this is not

usually a major difficulty ifY(l) is small. The risk sets. for this estimator include

only individuaIs who have not failed or been censored and who are under active

follow-up. Renee, even after Y(l), there may be difficulties caused by small risk

sets. If at anyfailure time, everyone in the risk fails then the estimator drops to

o and obviously remains at 0 for all subsequent times since it is comprised of a

product of terms. Cnaan and Ryan [5] point out thatthis may happen in a small

study or in the early stages of a study. In one wishes to avoid such difficulties, they

suggestan estimator based on the cumulative hazard function. This estimator is

also recommended for such circumstances by Cox and Oakes [9].

Cnaan and Ryan [5] also make an interesting non-teclmical observation regard-
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ing the interpretation of fixed and time-varying covariates. Measured covariates

are often considered as fixed in a proportional hazards model when performing an

analysis on survival from entry. Sorne of these covariates, such as symptoms or

extent of disease, may be used to indicate a patient's status at entry. However, one

must be careful since these same covariates measured at entry should not necessar­

ily be viewed as fixed in an analysis of survival measured from onset. For example,

a patient with weight loss at enrollment may not have had that symptom at onset.

Hence, this covariate must be viewed as time-varying in an analysis from onset.

Wang et al [21] make an important point regarding the evaluation of treatments

in a prevalent treatment study. In Example 3.4, a type of prevalent treatment study

is described where randomization has been carried out to determine which subjects

receive a certain treatment. A prevalent treatment study is one in which the time

of entry corresponds with the beginning of a treatment. The effectiveness of treat­

ment cannot be determined in a prevalent treatment study unless there is a control

group or sorne other external information is utilized. That is, if aH subjects receive

treatment at entry then the effect of treatment cannot be identified, although, of

course, information about covariateeffects within the treated population can be

acquired. Renee, although these studies may be useful in sorne ways, they should

not be used to determine the main effect of a treatment unless randomization takes

place. This may have ethical ramifications which mustbe addressed.

In Chapter 3 we saw that using a proportional· hazards model for the esti­

mation of covariate effects is, in many ways, a futile endeavor. When interest

lies in the incident time scale, Wang's risk set sampling method [20] does not al­

low forcensoring. Moreover, when one is interested in the prevalent time scale,

the adjusted risk sets procedure relies heavily on an unrealistic assumption for

prevalent treatment studies. Therefore,an alternative approach should be inves­

tigated which circumvents these difficulties. We propose the use of a model which
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assumes a piecewise constant baseline hazard function. This eliminates the short­

comings of a semi-parametric model since estimation reduces to the estimation of

finitely many paratneters. Namely, these parameters are the values of the hazard

on the finite number of intervals for which the hazard is assumed to beconstant.

The introduction of this parametric structure to the hazard should alleviate the

problems encountered thus far. Furthermore, the conclusions drawn from any rea­

sonable amount of data should be similar whether a proportional hazards model

or a piecewise constant hazard model isadopted. The piecewise constant hazard

model thereforedeserves future consideration.

Brookmeyer and Gail [4] examined the biases which may occur in the estimation

of relative risk when one is interested in the incident time scale, but only the follow­

up times are available. In Chapter 4, we briefly look into the incorrect inference

which is possible when length-bias is not recognized through two simulation studies

using aparametric analysis. It seems worthwhile to examine whether analogous

results to those of Brookmeyer and Gail hold regarding the relative risks on the

incident and prevalent time scales. For instance, can we state that the bias induced

by not recognizing length-bias is never enough to make a true risk factor appear

protective (or vice ve.rsa)?

In this thesis, weexamined the phenomenon of length-bias in the one and

two sampIe problems.We. provided a review of theliterature for both these cir­

cumstances, .paying particular attention to group comparisonsand the difficulties

associated with such ventures when only prevalent data are available. Length-bias

continues tobe a. significant area of research since, in practice, prevalent follow­

up data is often the most convenient to observe. We have seen that there are

still many open questions in this arèa which need to be pursued. The importance

of this pursuit becomes apparent when one realizes the consequences of making

erroneous inference and acting upon these conclusions.
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Appendix A

Glossary

Backward recurrence time: The time from initiation to entry for a subject

identified in a prevalent manner. This differs from the truncation time of an

individual which refers to the time from initiation to the start of the study

even Jar a subject who does not survive long enough to enter the study.

Differentiallength-biased sampling: A type of bias. induced by sampling the

forward recurrence tilnes differentially from two different backward recur'"

rence time distributions.

Follow-up time scale: The time scale from entry to failure. An analysis on the

follow-up time scale may be obligatory if the backward recurrence times are

unobserved. It is also of interest in many prevalent treatment studies since

in these studies the treatment isadministered at entry.

Forward recurrence time (FoUow-up time): Thetime from entry to failure

for a subject identified in a prevalent manner.

Frailty selection: The unwanted deletion of "frail" subjects from a prevalent

cohort.

Incident follow-up study: A study that identifies new cases from initiation as

they OCCUI, and follows them until failure or censoring.
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Incident/Prevalent/Follow-up proportional hazards model: The proportional

hazards model on the incidentjprevalentjfollow-up time scale.

Incident time scale: The time scale from an initiating event to a failure event.

The incident time scale is of interest in natural history of disea:se studies,

since in these studies one· wishes to make a statement about the survival

experience of an incident individual.

Multiplicative censoring: A type of informative censoring.

Naïve/Correct/Partially naïve approach: Three procedures which are possi­

ble when performing data analysis. The naïve approach does not recognize

length-bias. The correct approach recognizes the length-bias in the data

and accounts for it accordingly in the analysis. The partially naïve method

also recognizes the length-bias, but does not account for it adequately in the

analysis.

Natural history of disease study: A study concerned with the natural pro­

gression of a disease, usually under the assumption that subjects have not

been administered a treatment that changes the disease course.

Onset confounding: Onset confounding refers to the confounding of the effect

of a covariate on the relative risk with the effect of this covariate on the

duration of infection. That is, two groups may appear to have different risks

simply because they were infected at different times. This can only occur

when the backward recurrence times are unknown.

Prevalent follow-up study: A study that identifies prevalent cases, that is,

cases that experienced the initiating event before they were identified.

Prevalent time scale: The time scale from an initiating event to a failure event

for those subjects identified in a prevalent manner. Asidefrom the follow-up
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tirne scale, the prevalent time scale may also be of interest in a prevalent

treatment study, if the backward recurrence times are observed, since, for

example, the initiating event may be biologically defined.

Prevalent treatment study: A type of study where a treatrnent for the condi­

tion of interest is administered toprevalent cases at entry. This differs from

a natural history of disease study sinee in prevalent treatment studies one is

not interested in the natural progression of the condition.

Quasi-Stationarity: An assumption made on the conditional hazard of failure in

prevalent treatment studies that is unrelated to the assumption of stationar­

ity of onset times.

"ReversaI" of the survivor functions: A reversaI of the survivor functions of

two groups has occurred if Sf(t) ~ Sf(t) V t ~ 0, but Sf3(t) S; Sf(t) V t > 0,

or equivalently with the inequalities reversed.

Stationarity: In a medicalsetting stationarity means that the incidence of disease

is uniform over time before the cases are identified. It can also refer to the

stationarity of the underlying renewal process, when such a process isthe

focus of attention; this perspective is ignored in this thesis.

Truncation time: The time from initiation to the .start of the study for an inci­

dent individual. This differs from the backward recurrence time in that aIl

subjects have a truncation time, which may be smaller or larger than their

failure time, even if they fail before the start of the study, and are thus not

observed as prevalent cases.

81


