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Abstract

The effects of length-bias and left-truncation in survival data have been
well studied in the statistical literature. To a lesser extent, the phenom-
ena of length-bias and left-truncation have also been investigated when
group comparisons are of interest. This literature examines various bi-
ases that may occur under different scenarios, and also, on occasion,
proposes procedures for the estimation of covariate effects when using
prevalent data. In this thesis, we review the literature concerned with
the analysis of length-biased and left—truncated data, paying particular
attention to the issue of group comparisons. Some shortcomings of the
methods developed in the literature are pointed out. We also assess
the effects of failure to recognize the presence of length-bias when per-
forming group comparisons in natural history of disease studies. To

our knowledge, this issue has not yet been addressed in the literature.



Résumé

Les effets de biais de longueur et de troncation & gauche dans les
données de survies ont été bien étudiés dans la littérature statistique.
A un moindre degré, les phénoménes de biais de longueur et troncation
a gauche ont aussi été examinés quand les comparaisons de groupes
sont d’intérét. Cette littérature examine divers biais’ qui peuvent se
produirent selon différents scénarios, et aussi, a 'occasion, propose
des procédures pour estimation des effets covariés lors de P'utilisation
de donné prédominantes. Dans cette thése, nous passons en revue
la littérature concernant l'analyse de données & biais de longueur et &
troncation & gauche, avec une attention particuliére au sujet de la com-
paraison de groupes. Certains points faibles des méthodes développées
dans la littérature sont indiqués. Nous évaluons également les effets du
manque de reconnaissance de biais de longueur quand des comparaisons
de groupes sont effectuées dans des études de I'histoire naturelles de
maladies. A notre connaissance, ce probléme n’a encore pas été adressé

dans la littérature.
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Chapter 1

Introduction

1.1 General medical setting:

In the study of the natural history of a disease, one often wants to make a state-
ment about the survival from onset of an individual who acquires the disease. For
example, one might want to estimate the mean or median survival time with this
disease, or to estimate the prdbability of surviving longer than a certain amount of
time with the disease. Whatever the case may be, a sample of diseased individuals
is necessary in order to make some kind of inference about the condition. One
way in which this sample can be obtained is by assembling a cohort of individuals
and following them forward until some of these subjects acquire the disease under
study. These incident cases are then followed for a further fixed time period and
their survival times noted. This is termed an incident follow-up study as new cases
are identified from onset as they occur (see Figure 1.1). However, this method of
obtaining a sample often leads to practical difficulties. Firstly, a very large cohort
may be needed to ensure a reasonable number of occurrences of the disease. That
is, the cohort may need to be followed for a long period of time in order for a
substantial number to develop the condition. Secondly, further long follow-up may
be needed to ensure that a substantial number of these cases have progressed to
“failure”. Hence, a different sampling scheme may be necessary whereby individu-

als who already have the disease of interest are identified at a certain point in time,
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Figure 1.1: Incident follow-up study

and at this time their dates of onset ascertained, if this is feasible. These individu-
als can then be followed until death (or another end point of interest) or censoring.
This is known as a prevalent follow-up study since the cases are initially identified
as prevalent cases (see Figure 1.2). This second method of sampling’alleviates the
main practical difficulties associated with the incident sampling scheme. However,
there are statistical difficulties induced by the prevalent sampling scheme which
must be addressed. The survival times of individuals who are sampled in a preva-
lent cohort study are said to be length-biased. That is, the individuals included
under this sampling scheme tend to have longer survival than those that would
normally be included in an equivalent incident study. In a manner of speaking, the
subjects who are sampled in a prevalent cohort study must survive long enough to
be included in the study. Hence, observed survival from this sample will tend to
be longer than would be obtained in an equivalent incident study (see Figure 1.3).
One might term the observed survival times as length-biased since they describe a
length-biased survivor function. As interest will always be in the unbiased survivor

function adjustment for this bias must be made.
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Figure 1.3: A length-biased sample




1.2 Historical work in the one sample problem:

The phenomenon of length-bias has been widely studied in the statistical literature.
The manifestation of this phenomenon is not restricted to the medical field. It
arises in economics, for example, when it is desired to estimate the mean duration,
say, of welfare aid. Individuals who are currently on welfare at a given point in time
are sampled and followed forward until they stop receiving aid. This is analogous
to the situation described previously in that individuals who are already receiving
welfare aid tend to be those who receive aid for longer periods of time. One of
the original papers in this area, by Cox [7], discussed length-bias in the sampling
of textile fibres. Cox mentioned that at the time much effort had been spent on
issues other than the manner in which a sample was selected. This was because
these methods were, for the most part, not general ones. However, he maintained
that in order to obtain dependable and consistent results, clearly defined and well
studied sampling techniques were necessary.

Now, the distribution of parallel fibre lengths in a piece of material can be
seen to be analogous to the distribution of the survival times from onset of a
disease of individuals in a population. The left end of the fibre would correspond
to the onset of disease (initiating event) and the right end would represent the
desifed terminating event. Clearly, if all fibres, short and long, had equal chance
of selection, this would give rise to an unbiased sample. However, one sampling
method grips the material at a certain point, much in the way researchers might
enter the population of diseased individuals at a certain point in time. All fibres
which are not gripped are not selected, as are those people who have reached
the terminating event before the study is commenced. Thus, fibres which are
selected for the sample do not accurately represent the population of all fibres
in the material. The probability of selecting any one fibre is proportional to its

length, yielding a length-biased sample. Denoting f(x) as the unbiased density of
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fibre length in the population, and g(z) as the length-biased density, the following

relationship holds where p is the mean of f(z):

zf(x)
L

g9(z) = (1.1)

Straight forward evaluation of the £ moment of g(z) yields (1.2) where u; is

the k™ moment of f(z):

Ey(X*) = H—kf (1.2)

Setting k = 1 in (1.2) gives the mean of the length-biased density ¢(z):

E,(X) =p+ 5'; (1.3)

This is clearly larger than the mean p of the unbiased density f(z), which agrees
with our intuition.

Cox developed some estimates of quantities relating to the unbiased distribu-
tion from the length-biased data and compared them to the analogous estimates
that would be obtained from an unbiased sample. Even though Cox considered
both parametric and nonparametric methods, the vital issue of censoring was not
addressed. This is presumably because it was not an issue in the sampling of tex-
tile fibres. That is, the right end point of a fibre, which represents the “failure”
or terminating event of interest, is always observed. Equivalently, it can be said
that in the length-biased sample, the entire fibre is always observed, which is not
the case with subjects afflicted with a certain disease. These individuals may be
censored before they are observed to “fail”. Censoring is an unavoidable feature
in studies where there is follow-up of subjects and length of survival is of interest.

Blumenthal [3] considered slightly different questions in dealing with the study

of electron tube life. A primarily parametric analysis was employed, focusing on



the gamma and Weibull distributions, to explore the utility of various sampling
schemes in a renewal process setting. Although this setting is quite different from
that of a prevalent follow-up study, there are distributional similarities between the
two situations. Tubes in operation are identified at a point in time and thus do
not form a random sample of all tubes. This is obviously analogous to the natural
history of disease setting, but there are a few variations described by Blumenthal
that deserve mention. Blumenthal explained three main ways of obtaining a sample
of tubes. The first is the standard one in which the total length of operation is
observed for the identified tubes. The second is one in which only the backward
recurrence times are used from the identified tubes. Backward recurrence time
refers to the time from start of operation to identification. This would be similar
to using only the time from onset of disease to entry into the study. The third
method is one in which every tube identified is replaced by a new tube and the
time observed is the backward recurrence time of the identified tube plus the
full lifetime of the new tube. An analogous procedure in a natural history of
disease study would include in the sample an incident case for every prevalent case
identified. The survival time noted would then be the time from onset to entry of
the prevalent case plus the complete survival time of the incident case. In practice,
this may not be realizable.

Blumenthal, like Cox, examined the efficiency of estimating the mean of the
unbiased distribution using the length-biased sample or an unbiased sample. Their
results which suggest an advantage of intentionally obtaining a length-biased sam-
ple are discussed in the “Closing Remarks” chapter of this thesis. Finally, Blu-
menthal also did not consider the issue of censoring. However, in the medical field,

it is of fundamental importance and must be considered.



1.3 More recent work in the one sample
problem:

Although the papers that have been discussed thus far are of historical interest,
they have two features which are special cases of a broader area of study. Firstly,
there is no censoring involved in the sampling of textile fibres. Blumenthal also did
not examine this crucial practical complication. Moreover, the tacit assumption
of stationarity was made both by Blumenthal and Cox, although for Blumenthal
stationarity was assumed to mean stationarity of the underlying renewal process.
In the medical setting, however, stationarity has to do with the incidence of dis-
ease over time, and means that disease occurrence is uniform over time before the
cases are identified. For example, in an epidemic, this assumption would clearly
be violated (see Figure 1.4). In the absence of this assumption, survival times
that are said to be length-biased are often termed left-truncated. That is, length-
bias is merely a special case of left-truncation with the additional assumption that
the onset times are uniform over time. Thus, prevalent follow-up data that are
frequently observed in naturalyhistory of disease studies are generally subject to
left-truncation and right-censoring. The truncation time of a subject is defined to
be the time from onset of disease to the start of the study. The term truncation
refers to the fact that if an individual’s survival time is shorter than the time from
onset to potential entry, then it will be impossible for this individual to be part of
the sample under study. Without the stationarity assumption, one is forced to con-
dition on the observed truncation times (backward recurrence times). If one does
not condition on the observed truncation times the model will be overparameter-
ized and hence non-identifiable. For example, it is impossible to determine whether
survival times are “long”, say, because the true survival is “long”, or because in-
cidence of the disease is increasing close to the sampling point. A multitude of

papers examining the area of left-truncation have been published [12] [14] [15] [22]
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[23]. Among the results derived in the literature is the nonparametric maximum
likelihood estimator (NPMLE) of the failure time distribution.

The paper by Wang [19] is central in the discussion of estimation from left-
truncated and right-censored data. Prior to Wang’s paper, the estimator which had
been proposed for the failure time distribution of data subject to left-truncation
and right-censoring had only been heuristically justified. This proposed estimator
is analogous to the usual product-limit type estimator under right-censoring, except
with modified risk sets. The risk set at an observed failure time includes only
individuals who have not failed or been censored, but who are under active follow-
up. In this paper, Wang justifies this estimator by showing that it is the NPMLE
conditional on the observed truncation times, when all the potential censoring
times are known. Thus, the estimator seems intuitively plausible even when the
potential censoring times are unknown, as is the case in a majority of studies. Wang
also conjectures that when stationarity does indeed hold, Vardi’s unconditional
estimator [17] has greater efficiency than the product-limit type NPMLE.

As Wang points out, there are many practical instances where the stationarity

assumption is reasonable or is known to hold. In this thesis, we assume stationarity
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for the simulations in Chapter 4 and hence Vardi’s estimate [17] deserves further
investigation. In a renewal process context, Vardi [16] derives the unconditional
NPMLE of the failure time distribution from a mixture of prevalent and incident
cases, assuming stationarity. Importantly, Vardi [16] also derives the asymptotic
properties of the NPMLE. His results extend those of Cox [7] who assumed only
prevalent cases are observed and who discussed only the pointwise asymptotic
behaviour of S/(?), the NPMLE of the survivor function S(t). Nevertheless, Vardi
[16] does not consider censoring.

Vardi [17] shows how the unconditional NPMLE may be obtained via the EM
algorithm, even when there is censoring but no asymptotics are presented. Re-
cently, Asgharian et al [2] have derived the asymptotic properties of the uncondi-
tional NPMLE and confirmed, at least through an example, that it produces more
efficient estimates than does the conditional NPMLE. Vardi’s paper [17] describes
a general model arising from data that are said to be multiplicatively censored.
Such a model yields a likelihood that is proportional to the likelihood that arises
from a prevalent follow-up study. A more detailed examination of the work by

Wang and Vardi in this area is presented in Chapter 2.

1.4 The two sample problem:

At this stage, only difficulties arising from the use of length-biased data in the
estimation of quantities pertaining to a single group have been examined. Never-
theless, the primary goal of a study will often be to compare the survival experience
of two or more groups with a certain condition. The two sample problem will be
the main focus of this thesis and an overview of the literature in this area is now
given.

An importént complication which has not yet been considered is that of un-

known backward recurrence times. Although interest will almost always lie in the



time from an initiating event to a failure or terminating event, the time from the
initiating event to entry into a cohort may not be known. For example, in the
domain of infectious diseases, some studies are concerned with investigating the
time from infection to onset of a disease. In this case, the “failure” event is, in fact,
onset of the disease. However, the time from infection to entry into the study may
not be known. That is, the time at which an individual was infected is sometimes
not available in such studies. Alternatively, the instances of onset for diseases with
insidious onset, such as Alzheimer’s disease, may be difficult to determine. Thus,
inference must sometimes be carried out on the times from entry to failure alone,
the so called follow-up times. From here on, we refer to these analyses as taking
place on the follow-up time scale.

Brookmeyer and Gail [4] discuss several issues which arise from such a com-
plication in fhe context of infectious diseases. This paper explores the biases that
may occur in the estimation of unbiased or incident quantities when the analysis
is forced on the follow-up time scale. Although Brookmeyer and Gail examine
these biases in the one sample problem, they focus primarily on the biases in the
comparison of two groups through the assumption of Cox’s proportional hazards
model on the incident time-from-infection scale. Prior to commencing any such
discussion, the authors raise the issue of onset confounding. Onset confounding
refers to the confounding of the effect of a covariate on the relative risk with the
effects of this covariate on the duration of infection. When onset confounding is
present, no reliable inference can be made about the covariate of interest. The
authors state the assumption which is necessary to ensure that onset confounding
does not occur. Even when onset confounding is not present, biases may still occur
when assessing covariate effects. The nature and extent of bias which may occur in
the estimation of relative risk when using only the follow-up times is investigated.

This is done for both fixed and binary time-varying covariates. A closer examina-
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tion of the one and two sample sections of this paper will be given in Chapter 2
and Chapter 3 respectively.

In natural history of disease studies, the backward recurrence times of subjects
are often known. Moreover, interest’ frequently still lies in the incident time scale
in these studies. It is therefore natural to wonder whether it is possible to estimate
the effects of covariates when the backward recurrence times are observed. Wang
[20] proposes an approach for this problem when prevalent data are observed and
the proportional hazards model is assumed on the incident time scale. In this
paper, Wang assumes stationarity of the onset times, and thus her discussion is
restricted to Iength—biased data, and not to the more general left-truncated data.
Unfortunately, it is not possible to simply perform an analysis using the traditional
partial likelihood argument proposed by Cox [8]. The difficulty lies in the prevalent
sampling scheme which causes a bias in the risk sets if they are defined in the
usual manner. Wang [20] samples from the traditional risk sets in order to remove
the inherent bias within them. Wang then uses the newly created unbiased risk
sets and forms a pseudo likelihood, which is maximized to obtain estimates of the
regression coefficients. Sinée the unbiased risk sets are random subsets of the biased
risk sets, Wang attempts to improve the efficiency of the estimates by repeating
the procedure and taking the average of all the estimates. Unfortunately, a major
weakness of this method is that it does not allow for censoring which is almost
always present in any kind of follow-up study, including natural history studies.
Thus, practical applications of this method are limited mainly to data that are
size-biased and where censoring does not occur naturally.

In prevalent follow-up studies, the subjects are sometimes given a treatment
for the condition at entry into the study. This type of study is called a prevalent
treatment study. We may be interested is studying the effect of this treatment or

of other covariates in prevalent treatment studies. Clearly, since we are entering
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a population “cross-sectionally” in these studies, we are interested in the preva-
lent time scale. That is, we are interested in examining the effect of covariates on
subjects who are prevalent with a condition and not on incident subjects. Hence,
it is natural to assume a proportional hazards model on this prevalent time scale.
Cnaan and Ryan [5] outline a modified proportional hazards analysis for the esti-
mation of covariate effect on the prevalent time scale, in the presence of prevalent
(left-truncated) data. That is, they propose a procedure analogous to the usual
partial likelihood argumenﬁ, only using adjusted risk sets. The risk sets are identi-
cal to the ones used in the one sample problem for the conditional NPMLE of the
survivor function. Wang et al [21] give an in depth discussion of the underlying
assumption required to carry out this analysis along with its severe limitations
for practical purposes. The assumption essentially requires that any two subjects
have identical hazards after their respective treatment, irrespective of when in the
progression toward the terminating event the treatment was administered. It is
possible to weaken the assumption needed to carry out the analysis, but in the end
this alternative proves to be unsatisfactory as well. A more detailed inspection of
this assumption along with the other work performed in the two sample problem

will be provided in Chapter 3.

1.5 Organization of thesis:

In this thesis, the central point is that of comparing groups in the presence of
length-biased data. Of course, before approaching this problem, the one sample
problem must first be addressed. Chapter 2 will focus primarily on the work
of Wang [19] and Vardi [17] in the one sample estimation problem. Wang [19]
does not assume stationarity and thus, she necessarily conditions on the observed
truncation times. Omn the other hand, Vardi [17] assumes stationarity and this

allows for the development of a more efficient estimator. A detailed examination
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EFFECT OF FAILURE TO
RECOGNIZE LENGTH-BIAS

Figure 1.5: Outline of work in Chapter 3 and Chapter 4

of the work in the two sample problem will then be given. Chapter 3 will be based
primarily on the papers by Brookmeyer and Gail [4], Wang et al [21] and Wang
[20] It will address the issues raised in the overview given in Section 1.4 more
thoroughly. To continue on this theme, Chapter 4 will investigate other possible
pitfalls associated with the comparison of two groups in the presence of length-
biased data. Specifically, when using the meaﬁ or median of the groups as a basis
for comparison, one must account for length-bias in order to avoid potentially
incorrect inference about the two groups. Finally, Chapter 5 will touch upon some
interesting points, including some brought up throughout the thesis.

It should be noted that much of the literature addressing the two sample prob-
lem is quite confusing. This is in part due to the inherent difficulty of the material,
but also because the authors involved frequently do not refer to earlier work in the
field. To aid the reader, we include a tree diagram that outlines the work done in
Chapter 3 and Chapter 4 of this thesis (see Figure 1.5). Moreover, we provide a
glossary of terms used in this thesis, in Appendix A, for quick reference,

and hopefully, to help the reader.
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Chapter 2

More detailed examination of the
one sample problem

2.1 Work of Wang and Vardi assuming known
backward recurrence times:

As mentioned, Wang’s paper [19] constitutes an important component of any dis-
cussion of the one sample estimation problem in the presence of left-truncated and
right-censored data. One contribution of this paper lies in its recognition of the
product-limit type estimatof as the conditional NPMLE in the case where all the
potential censoring times are known. We now return to this paper for a closer
inspection.

Let X denote the true failufe time of an individual, with associated distribution
function F' and survivor function S. Let C be a subject’s potential censoring time
and let T be the truncation time of an individual. Denote the distribution of T
by G. If Y is the observed event time, then ¥ = min(X,C). Moreover, let &
be the censoring indicator, where § = 1 signifies a true failure and § = 0 means
that an individual is censored. That is, let ¢ := I(X < C). In a prevalent cohort
study, data on an individual is often of the type (T, Y, d). In addition, these data
have the implicit assumption that X and C are greater than T. Otherwise, the

subject has not survived until the start of the study and obviously would not have
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been included in the sample. Wang assumes that X is independent of (T, C),
which is important in the nonparametric estimation of F' and G. The validity
of this assumption is essentially justified as a coinbination of the assumptions of
independence between X and T and between X and C. The former follows from
the assumption of independence between the failure times and the calendar times
of onset. This assumption may be violated with advances in treatment, say, but
often seems reasonable. The assumption of independence between X and C is asin
the random censorship model. Even though this assumption is made, the observed
length-biased event time ¥ = min(X, C) is not independent of the censoring time,
C, since they share a common backward recurrence time (see Figure 2.1). Thus,
informative censoring is, in fact, present and the usual asymptotic results that hold
under the assumption of independent censoring do not necessarily hold here.

Although a product-limit type estimator had been proposed for left-truncated
and right-censored data, it had only been heuristically justified prior to Wang’s
paper [19]. This estimator is analogous to the usual product-limit estimator under
right-censoring, except with modified risk sets. The risk set at an observed failure
time includes only individuals who have not failed or been censored, and who are
under active follow-up. The estimator is shown below:

Suppose (t;,yi,6;) for i = 1,...,n are observed. Let y(, ..., yx) be the distinct
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ordered event times from the uncensored y’s (i.e. the ordered true failure times

~ which have been observed). Then,

S =1 T (1-220%) Otterwis 21)

YaySu
where for i = 1,...,k, A; = {j 1t <y < yj} is the modified risk set, and ¢; =
{ jry;= y(i)} is the number of failures at a particular failure time.
Wang proceeds in the following fashion. The full likelihood L is written as a

product of two functions, L; and L,. L = L1 - L2 where,

_ dF (y:)% S(y:)' %
L, = H 50) (2.2)
o 6
L = H[S(mdmti,yal—éi ([ nttwwpan ) (—;)}
B = PX>T)= / S(u)dG(u) (2.3)

and H is the joint truncation and censoring distribution with associated density h.

The function L; is then maximized nonparametrically to obtain the product-
limit type estimator for S shown in (2.1). However, L; may not always be a
conditional likelihood conditional on the observed truncation times. Hence, this
method requires justification since an estimate is being obtained simply by maxi-
mizing some function of the quantity of interest which is neither a conditional nor
a full likelihood.

Suppose now that the data observed are not of the form (7,Y,4), but are
instead of the form (T,Y,C) for every subject. That is, (¢;,v;,¢) fori=1,...,n
are observed. This data set is similar to the previous one, but contains more
information since the potential censoring times are known. In the case where Y

does in fact represent a true failure time, the observation of C will allow one to still
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know the potential censoring time of that individual. One scenario Where this type
of data arises is in a delayed entry study which terminates at some fixed time and in
which no subjects are lost to follow~up. In this case, although the censoring times
are a priori random because of the random entry times, the potential censoring
times become fixed constants by conditioning on these entry times (see Fleming
and Harrington p.100 [11]). Assuming that such data can be collected, Wang

writes the likelihood as the product of the conditional likelihood,

I(yi<ci)S(yi)I(yi=Ci)
S(t:)

i

conditional on the (¢;,¢;)’s, and the marginal likelihood of the (%;, ¢;)’s,

StidHti,Ci
L[] A )

It is clear that L. in (2.4) is identical to L; in (2.2) since 6 := I(X < C) =
I(Y <C)and (1 -6) :=I1(X > C) = I(Y = C). Thus, Wang demonstrates that
L, is indeed the conditional likelihood when all the potential censoring times are
known. Hence, in this special case, Wang [19] shows that the product-limit type
estimator is the NPMLE conditional on the observed truncation times. For this
reason, the estimator seems intuitively plausible even when the potential censoring
times are unknown.

It is interesting to observe that this product-limit type estimator may give
poor reSults near 0, as will be discussed in the “Closing Remarks” chapter of this
thesis. Wang also speculates that when stationarity does in fact hold, Vardi’s
unconditional estimator [17] has greater efficiency than the product-limit type
NPMLE. That is, if the truncation time distribution, G, is uniform then one may
prefer Vardi’s estimator. It is worth noting that since Wang [19] shows a method
in which G may be estimated, it is possible to check the assumption of stationarity.
Aside from this, estimation of G can be useful in other ways. For example, one may

want to estimate the number of individuals who are being truncated in a study.
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By éstimating G, one can obtain an estimate of 8 (the proportion of untruncated

data) by simply substituting S and & into (2.3):

f=P(x2T)= [ Swit)

An estimate of the number of truncated individuals for every observed or un-
truncated individual (i.e. the odds of truncation) can then be obtained by (1-5)/8.
Thus, multiplying this odds by the number of subjects in the study gives an esti-
mate of the total number of individuals who were truncated.

As Wang [19] conjectured and Asgharian et al [2] demonstrated via an example,
if one is prepared to assume stationarity, Vardi’s unconditional NPMLE [17] will
be more efficient than the conditional NPMLE. Furthermore, stationarity is a
reasonable assumption in many practical circumstances and will be assumed for
the simulations in Chapter 4 of this thesis. Therefore, Vardi’s paper [17] deserves
closer inspection and its details will now be discussed.

Suppose Xi,..., X, and Z3, ..., Z, are i.i.d. random variables from some dis-
tribution FX. Xj,..., X,, are fully observed while Zi, ..., Z, are censored in the
following manner.

Let Uy, ..., U, beii.d Uniform(0,1) random variables independent of X1, ..., Xy,
Z1,y.ey Zn. The Z;'s are said to be multiplicatively censored upon multiplication
by the Uy's, to yield Yy, ..., Y, if Y; = ZU,, fori =1, ... m.

Of course, if we are assuming stationarity and if FL itself is a length-biased
distribution, then the data Xi,..., X, Yi,...,Y, are subject to length-bias and
multiplicative censoring.

Vardi was concerned with estimation of the distribution function FZ. Let Y,
U, and Z represent any of the above Y;’s, U;’s, and Z;’s respectively, then since

Y = UZ we have,
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Fy(y) <)

P(UZ < y|Z = 2)F¥(dz) (By the law of total probability)

8

PU< %]z: 2)FL(dz)

(o0}

P(U < '—y—)FL(dz) (By independence of the U’s and Z’s)

Y

PU< g)FL (d2) / PU < )FL(dz)

i
o\ﬁo\,c\c\c\

1- FE(dz) + / %FL(dz)
= Fliy)+y / ” *P(d2) (2.5)

i) = d%/yFL(dé)-l—%f Y pl(az)

F*(dy) +y (—--—FL(dy)) + /y°° %FL
N /y _Z_FL(dZ) (2.6)

which implies that the full likelihood for (X3, ..., X\, Y1, ..., Yy) is:

L(F) = HFL daz;) H / —FL (dz) (2.7)

2>y; ©
In a nonparametric setting, L(FL) must be maximized with respect to FL
in order to obtain the NPMLE of FZ. If a parametric analysis is desired, one
need simply replace F'* by the parametric distribution of interest and perform the
maximization over the parameters of this distribution. -

From a nonparametric viewpoint, it can be shown that only discrete distribu-

tions need to be considered as possible maximizers of (2.7). Let A := {z1, ..., Zm, Y1, ---

and consider a set E to which a potential maximizer of (2.7) assigns mass. If E
is comprised of a disjoint union of intervals and singletons then the following ar-
gument can be used on each of these individually. Hence, we can assume that E

is simply one interval or singleton. If E is to the left of the smallest value in A,
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then by shifting the mass to this smallest value, the likelihood is increased. If the
smallest value in A is one of the z’s then the result is clear since the first product
in the likelihood is of the FZ(dz;)’s. Thus, giving more mass to one of the z’s
will increase the likelihood. If the smallest value in A is one of the y’s, then the
likelihood is still increased since FZ(dy) will be greater for this y and the corre-
sponding integral increases since the region of integration includes y. Otherwise,
if £ is somewhere in between two observations in A, or to the right of the largest
value in A, then the likelibood can be increased by redistributing the mass to the
nearest point from A to the left of E. Again, if the nearest point to the left is an
z then the preceding argument still holds. If this nearest point to the left is a y,
then the corresponding integral will be increased since y is less than any element
in F and hence 1/y is bigger than 1/z* for any z* € E.

Let 0 < t; < ... < t, denote the distinct values of zy, ..., Tm, Y1, ---, Yo Where
h < n+m (h =n+m if the underlying distribution is continuous).

Maximizing L(FZ) over the space of all distribution functions F'Z, therefore,
reduces to maximizing L(IN)) over the space of discrete probability functions p which
only assign mass to the observed values t,...,¢;. That is, we must maximize:

hooo (b ;i
L(p) = HP;’ (Z Z;I’k) (2.8)
Jj=1 k=j
where ¢; and 7n; are the multiplicities of the z’s and y’s respectively, j = 1, ..., h, and
(2.8) must be maximized subject to: (i) p; > 0 for j = 1,..., h and (i) Z;‘zlpj =1
where p = (p1,...,pn) and p; = P(t;) = FL(dt;) = the “jump” or mass at t;.

Vardi [17] chooses to use an iterative ’estima,te based on the EM algorithm
to maximize (2.8), although other maximization methods can be used as well.
Specifically, it is the p;’s which are simultaneously estimated by the EM algorithm.
Had the complete data Xy, ..., X,,, Z1,..., Z, been observed then the NPMLE of

FI would simply be the empirical distribution function. The EM algorithm is
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Figure 2.2: Backward and forward recurrence times

classically used for missing or incomplete data problems. Here, the incomplete
data can be thought of as being the multiplicatively censored Z;’s, or alternatively,
the U;’s could be viewed as the missing data. This interpretation provides an
intuitive justification for using the EM algorithm. In this manner, Vardi estimates

p; for j =1, ..., h, and thus obtains F, the NPMLE of FL, as:

FL(t) = Y Pt) It <) (2.9)
or FL(t) = > P(t;)
{ta:ti <t}

Vardi also gives an outline of the proof which illustrates the consistency of this
estimator. It will now be shown that the estimator in (2.9) can also be used in the
situation of interest in this thesis.

Let B denote the backward recurrence time, lét' D denote the forward recur-
rence time and let R = B+ D in a renewal process setting (as seen in Figure 2.2).
The data described by Vardi {17] would correspond to having observed n values of
B (previously labeled as };’s) and m values of R. In the medical setting, this would
be analogous to identifying n+m prevalent cases at a point in time, censoring n
of them immediately and deciding to follow the other m until failure. In practice,
this does not seem feasible, nor is it desirable. Hence, it must be acknowledged
that this model is not the same as that which is of primary interest in this the-
sis although multiplicative censoring does induce a form of informative censoring.

It is also clear that the number of censored observations is fixed a priori in the
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multiplicative censoring model. This is not the case in a natural history of disease
study. However, as Vardi shows, the likelihoods which arise from the two different
scenarios are proportional to one another, as we now proceed to illustrate.

Vardi [17] compares the multiplicatively censored data likelihood to the one
obtained from n + m values of R where m of them are fully observed and n are
censored. Conveniently, the distribution of R is identical to that of the failure time

distribution in a prevalent cohort study. The likelihood for the latter case is:

L(F) = zHlf(x’)zHl{l" y’] (2.10)

where f and F are respectively the density and distribution of the failure times in

a prevalent cohort.
But in (2.10) the z’s are treated as constants, thus multiplying (2.10) by
(TT, z;) will not change where the maximum is attained. Doing this yields:

L*‘(F) =11 zi f () H [1 = F(yz)] (2.11)

i1 MF U

i=1
Now, as mentioned, if FL is itself taken to be length-biased then we have left-

truncated data and:

FL(dz) EI_(EZ?E (2.12)
, HF

Also, 1-Fy) / lFL(dz) where y > 0 (2.13)
Kr z2y ©

Substituting (2.12) and (2.13) into (2.11) gives:

HFL dz;) H / —FL(dz)

2>y #

which is identical to the likelihood in (2.7).
Since F'T is being considered as the length-biased distribution, and interest in
most studies lies in the unbiased distribution, F'; it is also interesting to note that

(2.12) and (2.13) suggest how to transform FLio F.
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From (212), F(dz) = [F Lid‘”)}ﬁ; (2.14)

1

Further, from (213), HE = W (215)
0 u

So that , F(dz) = {M} //ww (2.16)
z 0 u ‘

Now, for the medical setting the values of n and m are not fixed prior to the
start of the study. Nevertheless, it is clear that for any specific data set n and
m take on fixed values. Hence, Vardi’s unconditional NPMLE [17] can still be
used with the usual prevalent cohort data of interest here. However, in order to
derive the asymptotic properties of this NPMLE in the prevalent cohort setting,
the argument provided by Vardi and Zhang [18] for multiplicative censoring does
not suffice. Vardi [17] makes the boint that the sampling properties depend on the
sampling scheme that leads to the likelihood. Indeed, in multiplicative censoring,
n and m are fixed a priori. As mentioned earlier, Asgharian et al [2] derived the
asymptotic properties of the unconditional NPMLE for the situation of primary

interest in this thesis.

2.2 Possible biases when backward recurrence times
are unknown:

As we mentioned earlier, in some studies the backward recurrence time of an
individual may be unknown due to the unknown calendar time of the initiating
event. Although prevalent data are still present, the methods previously used
are not applicable because the backward recurrence times are unknown. In such
studies, analyses are thus performed on the follow-up times alone. That is, analyses
are forced on this follow-up time scale, even though one is still- usually interested

in making a statement about survival on the incident time scale. We now return
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to the paper by Brookmeyer and Gail [4] which was briefly mentioned in Chapter
1. This paper discusses the biases which may arise in the one sample problem
when the backward recurrence times are not known in the context of an infectious
disease. It is important to note that in this paper the time to infection and the
time from infection to onset are assumed independent.

For a-study that begins with entry into a population at time Y, let S(¢) denote
the survivor function on the unbiased or incident time scale and let S*(¢) be the
survivor function on the follow-up time scale. That is, S(t) gives the probability
of surviving more than t units from infection for an incident case, where S*(t)
gives the probability of surviving more than t units from Y, given that a subject is
prevalent at time Y. Moreover, define 7(s) as the density of prior infection times or
the epidemic density for s € (—o00,Y]. An expression for $*(¢) in terms of S(¢) and
I(s) can be obtained. A development of this relationship is given below. It relies
on the fact that if an individual is to have onset (the failure event) at calendar
time Y + t, then infection must have occurred at some time s before Y and that
subject must have been prevalent at time Y.

Let T* = survival time from entry, and T = survival time from infection, S.

Then T =T"+Y - S,

S*(t) ZP(T*>t|T*>O)=P(T >tNT*>0) P(T*>1)

P(T* > 0) ~ P(T*>0)
2 PT>Y —s+tnS=s)ds [I P(T>Y —s+1S=s)I(s)ds
LYOO PT>Y —-snS=s)ds B f_yoo P(T>Y —s|S = s)I(s)ds

Y P(T>Y —s+1t)I(s)ds
S P .
= - (By the assumed independence of S and T)
[. P(T>Y —s)I(s)ds

(2.17)

For arbitrary I(s), it is also true that if the hazard of failure is constant then,
S*(t) = S(t). Also, for an increasing hazard S*(t) < S(t), and if the hazard

is decreasing then, S*(¢) > S(t). These results are quite intuitive since for an
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increasing hazard, say, prevalent individuals are at an increased risk in comparison
to incident individuals. A similar argument holds for a decreasing hazard. A
constant hazard corresponds to the exponential failure time distribution, and the
memoryless property ensures that prevalent and incident cases are at equal risk of
failure. However, if the hazard is not strictly monotone, no general conclusion can
be arrived at concerning the direction of this bias. Therefore, one must be careful

in the reporting of ﬁhdings from analyses performed on the follow-up time scale.
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Chapter 3

The two sample problem

In Chapter 2, we investigated the phenomenon of left-truncation where all the
individuals in a cohort come from a single group. The main objective of a study
in the medical setting will often be to compare the survival experience of two or
more groups. Here, and in the next chapter, the focus will be on the situation
where there are only two groups under study. For practical reasons which were
discussed in Chapter 1, the comparison of these two groups is often carried out
through the observation of prevalent cases. The discussion on group comparison
with these prevalent (left-truncated) data will be divided into two main branches.
The first is when the calendar time of the initiating event is not known. That is,
the backward recurrence times of the prevalent subjects remain unknown. The
second is simply when both the backward recurrence time and follow-up (forward

recurrence time) are observed (see Figure 3.1).

NOT OBSERVED
INITIATING ' Ent TERMINATING
EVENT EVENT

~a

GBSERVED

Figure 3.1: Unobserved and observed backward recurrence times
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3.1 Biases associated with inference based on for-
ward recurrence times:

In this section, we shall restrict our attention to the situation where only the
forward recurrence times are observed, as a continuation of the one sample problem
we diséussed at the end of the Chapter 2, where the backward recurrence times of
- the subjects are not known. In fact, Brookmeyer and Gail’s main objective [4] was
to examine the biases associated with the added complexity introduced by the two
sample problem. We now turn to this issue.

This section will be based on Brookmeyer and Gail’s paper [4] which examines
the possible biases arising from the use of forward recurrence times alone when in-
terest lies in the underlying incident time scale. Much of the early work in survival
analysis in a medical setting that addressed the issue of inference with unknown
backward recurrence times was motivated by data collected early in the AIDS epi-
demic. More specifically, researchers were frequently concerned with the latent
period between HIV-infection and onset of AIDS. In this setting, the initiating
event was HIV-infection, whose calendar time was, generally, unknown, and the
terminating event was onset of AIDS. For the remainder of this section, the terms
infection and onset will thus be used instead of initiating and terminating event,
respectively. Of course, the results of this section can be generalized to other situ-
ations as one can easily imagine various initiating and terminating events. For the
most part, only heuristic arguments will be presented; the mathematical details

are developed in the appendix of Brookmeyer and Gail [4].

3.1.1 Fixed covariates:

For simplicity of exposition, a binary fixed covariate, Z = 0, 1, say, is considered
first. Let f and h represent the density and hazard function, respectively, on

the incident time scale and let f* and h* represent the density and hazard on the
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follow-up time scale. Also, let 8 and §* denote the relative risks on the incident and
follbw-up time scale respectively. We note here, that without further assumption
both # and 6* will, in general, be time dependent. Furthermore, for all quantities
introduced here and at the end of Chapter 2, let the subscripts 0 and 1 represent
the two levels of the covariate Z. In this section, we shall further assume Cox’s
proportional hazards model for the incident time scale. That is, we assume that
hi(u) = Oho(u), where u is the time from infection and now 4 is, by assumption,
independent of u. Since the backward recurence times are unknown, however,
biases may be anticipated for the parameter, 6, of Cox’s model if only the follow-
up times are used and the analysis is carried out on this time scale. We proceed
to examine these biases.

The hazard on the follow-up time scale, h*, is expressed below, and can be
developed following a similar argument to the one given for S*(¢) at the end of

Chapter 2.

ho = J2) _ Lo lrE4Y —olS = o)lz(s)ds
2T S50 T TSyt +Y — 8IS = 8)Iz(s)ds
_ LS+ Y - a)lp(s)ds a1
IY Syt +Y - 9)Iz(s)ds '

(By the assumed independence of S and T)

Since Iz(s) is usually unknown for Z = 0, 1, unless it is assumed that I,(S) =
1,(S), “onset confounding” may occur and no dependable inference can be made

about 6. The following example illustrates this point.

Example 3.1: Suppose that we wish to compare the relative risk, 4, of developing

a disease for two groups on the incident time scale. We assume that the baseline
hazard, hyg, is increasing. Further, suppose that one group is systematically infected

before the other. An expreésion for 6*(t) can be written as:
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_ W) _ MY =5 +1)

o (1) = Ry(t)  ho(Y — so +1)

V>0 (3.2)

where so and s; are the calendar times of infection of the two groups and s, < sq,
say. This, of course, assumes that everyone in each group is infected at the same
time. Here, onset confounding would occur since the backward recurrence times
are unknown and the two groups appear to have different risks simply because

they were infected at different times. That is, since hq is increasing, we have:

hQ(Y — 81 -+ t)
ho(Y — 8o -+ t)

9%@:0[ ]>9Vt20 (3.3)

The magnitude of § and [%ﬁ%{%ﬁ—lﬁ%} are confounded when assessing the magnitude
of 6*(t).

When the effect of Z on 6 is confounded with the effects of Z on the duration
of infection, we call this onset confounding. More generally, onset confounding
will occur whenever Iy(S) £I;(S). We therefore avoid this difficulty by assuming
Iy(S) = I (S). We recognize, however, that estimates of 6*(t) may still be biased

for 6 even when onset confounding is not present.

Result 1: For a “true” risk factor (8 > 1), if hg is strictly increasing, then
6*(t) <6vVt>0.

We may argue heuristically as follows: Suppose that individuals who are un-
exposed to the covariate Z (i.e. Z = 0) are at réduced risk in comparison to those
who are exposed to the covariate (i.e. Z = 1). Since the exposed group is at a
higher risk, it is more likely that they will have experienced onset of AIDS (the
failure event) before the time of entry into the study, Y, if their truncation times
are long (i.e. if they were infected well before Y). These subjects would therefore

be ineligible to enter the study at time Y, since only HIV+, non-AIDS subjects
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would be of interest here. Therefore, at entry (Y'), those with Z = 0 and with
early infection will be similar in stage of progression to those with Z = 1, who
must have been infected later; both will be at high risk of failure. Since we are
unable to observe the time of infection, the similarity of the forward recurrence

times alone will attenuate any between-group effect towards the null value 6 = 1.

That is, () <8Vt >0.

Result 2: For a "true” risk factor (6 > 1), if hy is strictly decreasing, then
g*(t) > 0Vt > 0.

In the case of a strictly decreasing hazard, a similar argument gives that 6*(¢) >

# Y t > 0. That is, there is a bias away from the null value § = 1.

3.1.2 Is it possible that for some ¢, 8*(¢t) < 1 while 8 > 17:

These biases can never make a “true” risk factor appear protective (or make a
protective factor appear to be a “true” risk factor). That is, if 6 > 1 (8 < 1),
then 6*(t) > 1Vt >0 (8*(t) < 1Vt > 0). These results hold irrespective of the
epidemic density I(s) [4].

The source of these biases is termed differential length-biased sampling. At
Y, the forward recurrence times are sampled differentially from the two different
backward recurrence time distributions (Z = 0, Z = 1). Cnaan and Ryan [5] ob-
tain results which are almost identical to those of Brookmeyer and Gail [4] with
regards to the biases which may occur when using estimates of 6*(t) for 8. We now

illustrate these points through an example on the natural history of dementia.

Example 3.2: Consider two groups of subjects with dementia, those with vascular

dementia and those with probable Alzheimer’s disease. Suppose the aim of the
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study is to compare survival, from onset with dementia to death, between these
two groups. For this example we take onset with dementia and death to be the
initiating and terminating events respectively. We assume a proportional hazards
model on the incident time scale and suppose that the hazard of dying is increasing.
Further, suppose that those with vascular dementia are at a higher risk than those
with probable Alzheimer’s. Since these conditions have insidious onset, it can easily
be imagined that the calendar times of onset could not be ascertained. Many of
those with onset long before the start of the study will have died. However, this
will occur more frequently in the vascular dementia group since they are at an
increased risk. Since the hazard is increasing, those from the probable Alzheimer’s
group who make it into the study will have high risk at entry having lived for a
long time, at the time of entry. Thus, the Alzheimer’s group will seem to be at
similar risk levels in comparison to the high risk vascular dementia group, causing

a bias toward the null risk value of 1.

3.1.3 Can it ever happen that 6*(t) =6Vt > 07:

When the baseline hazard is constant, 8*(t) = 8 V ¢ > 0. This follows from the
forgetfulness property of the exponential distribution, as mentioned at the end of
Chapter 2. There are two additional circumstances in which 8*(t) =~ 6 V¢ > 0,
even though 6*(¢t) is estimated from data collected on the follow-up time scale
whereas the proportional hazards model is assumed on the incident time scale.
The first arises when I(s) is concentrated on a small interval, say, at the begin-
ning of an epidemic. The backward recurrence times will be forced to be similar
for the two groups, thus avoiding differential length-biased sampling. That is, if
initiation takes place on a small interval then all the subjects, high and low risk,
will start at essentially the same place. In the extreme case, where everyone starts

at the exact same point, there is no bias at all and *(t) = 8 V ¢t > 0. This can
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be seen, formally, by letting s; = s in (3.3). This is a special case of I4(S) = I;(5).

Example 3.3: Consider vCJD (new variant Creutzveldt Jacob disease) and sup-

pose that exposure to BSE (mad cow disease) occurred over some small unknown
time period. Interest lies in the time from exposure to BSE to the development
of vCJD, the initiating and terminating events, respectively, in this example. Fur-
ther, suppose that the two groups being considered are those who ate organ meat
(e.g. brain) and those who did not. If eating organ meat is truly a risk factor
this will be detected since individuals from both groups who are in the study will
have essentially the same backward recurrence times. Hence, differences in their
follow-up times will indicate a difference between the two groups.

Of course, it is difficult to imagine a situation where we can assert that I(s) has
mass only on a small interval, yet we do not know when in time this took place.
Hence, in the situation of unknown backward recurrence times, this scenario hardly
seems useful.

A second circumstance which would lead to 6*(t) ~ 8 V ¢t > 0 is when the disease
is very rare. Recall that in this sect’ion the terminating event is the occurrence
of disease. Hence, even if one is infected before time Y, there is a very high
probability that this individual will still be at risk of getting the disease at time
Y +t. Thus, we would observe essentially all incident cases. Any disparity which
exists between the two groups will thus be discernible. However, again, this second
situation seems to have limited applicability as a rare disease will produce very
few observed occurrences of disease onset (the failure event). Thus, inference for

such a disease will be “low-powered”.
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l

For # > 1 (analogous results hold for § < 1)

l

Covariate Type

‘Increasing Hazard

Decreasing Hazard

Constant Hazard

Fixed

1<G@H <0

) >0

[HOEY.

Time-Dependent

1<6(0) <8

1<6@) <0

o (2) =0

Table 3.1: Summary of biases when backward recurrence times are unknown

3.1.4 Time-dependent covariates:

Let Z(t) = 0(1) if the covariate is absent (present) at time ¢, be a time-dependent
covariate. While the results for such covariates are similar to those for fixed co-
variates, there are differences that must be discussed. This covariate could be, for
example, a treatment given to subjects only after entry into the study. Assuming
Iy(S) = L(S), we can see from Table 3.1 that for time-dependent covariates, esti-
mates of §* (t) will always be biased toward unity, in contrast to the fixed covariate
case. That is, in the case 8 < 1, 8 < 6*(t) < 1 V¢ > 0 for both increasing and
decreasing hazards. The following example illustrates why time-dependent covari-

ates induce slightly different biases from fixed covariates.

Example 3.4 (Refer to Figure 3.2): Suppose that for some infectious disease

we are interested in studying the time from infection to disease onset. We enter
a population of infected individuals at calendar time Y. We sélect a sample from
those individuals who have not yet received a certain treatment. The treatment is
then randomly assigned at time Y to some of the infected subjects. Now, suppose
that this treatment is truly protective against deveiopment of the disease (6 < 1),
and that the baseline hazard of developing the disease is monotonically increasing
after infection. We follow all of these individuals forward and note when they
develop the disease under study. Since the hazard is increasing, those individuals
who were infected long before Y will be at high risk, and, in fact, many of them

will have already developed the disease, thus making them ineligible for the study.
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Figure 3.2: Frailty selection

These “deleted” individuals are said to be “frail” and a phenomenon known as
“frailty selection” occurs. Thus, of those with infection times in the distant past,
only the more robust ones will survive to the entry point Y. Some of these will
eventually be treated, but even if the treatment is protective the survival experience
of the treated and untreated subjects will appear to be similar, as the treatment
is given to a robust group of subjects. Of course, for individuals who are infected
close to Y, the treatment effect will be detectable. However, overall, there will be
an attenuation of the treatment effect toward the null value of 1.

It is very important to hote that if the hazard were decreasing, then the “frail”
subjects would still tend to be depleted, the only difference being that these would
be the ones with short truncation times. Hence, whether the hazard is strictly
increasing or decreasing, the cohort will always have been depleted of “frail” in-
dividuals. The bias is thus always toward unity, unlike for fixed covariates where
the direction of the bias depends on whether the hazard is strictly increasing or
decreasing. An analogous result can be given for a true risk factor (¢ > 1). An

example will be provided to demonstrate the situation in this case.

Example 3.5 (Refer to Figure 3.3): Suppose we are interested in a population
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Figure 3.3: Attenuation of effect toward the null.

of adults who are prone to getting some form of leukemia. We assume that their
hazard of getting leukemia is increasing from the time they enter this predisposed
population, although we do not know the moment at which they enter it. Further,
we speculate that exposure to radiation is a risk factor for getting leukemia. The
two groups are those who are, and are not, exposed to radiation, respectively, in
this population of prone individuals. We obtain a sample of such adults “cross-
sectionally”, at time Y, and follow them forward until some develop leukemia.
Along the way, we note when, if ever, these subjects become exposed to radiation.
If radiation is truly a risk factor, then this cohort will be depleted of subjects who
were predisposed to getting leukemia long before Y, including, some who may have
been exposed to radiation. This will make survival in the exposed and unexposed
groups seem similar because many of the survivors will be resistant to leukemia.
For subjects entering the predisposed population near Y, however, the detrimental
effect of radiation will be more apparent. Nevertheléss, overall, there will be an

attenuation of the effect toward the null.
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3.1.5 Testing:

In spite of the biases present when using estimates of *(¢) for 8, the two-sample
nonparametric survival tests of Hy : 6§ = 1 are valid even when carried out on the
follow-up time scale. This follows from the fact that f; = f; < fo = fi, which
can be observed from the numerator of (3.1). Thus, #*(t) =1« 6 = 1.

We have seen in the one sample problem that we can estimate the survivor func-
tion, either conditionally or unconditionally, by observing possibly right-censored,
prevalent (left-truncated) data. In natural history studies, one often has access
solely to such data and one is interested in examining not only survival from an
initiating event, but also the effect of covariates on this time scale as well. Thus,
it is of interest to investigate whether it is possible to estimate covariate effects
by observing such prevalent data having observed both backward and (possibly

censored) forward recurrence times.

3.2 Estimation when both backward and forward
recurrence times are observed:

Since we are often interested in the effect of covariates on the incident time scale,
it is therefore natural to assume a proportional hazards model on this time scale.
However, often the only data that are available, have been obtained from the follow-
up of prevalent cases. Moreover, the dates of initiation (and thus the backward
recurrence times) are often obtained, at least approximately, when the prevalent
cases are first identified.

This is conceivable even with the infectious disease scenario for AIDS considered
in Section 3.1. For example, suppose we are studying hemophiliacs who were
infected during a blood transfusion, then their infection times could be ascertained.
That is, the dates of their transfusions could be obtained and their infection time

could be deduced in this fashion. Another example is in the natural history study
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of Alzheimer’s disease to death. Although Alzheimer’s has an insidious onset,
many researchers approximate onset dates by close questioning of the caregivers of
the patients. The patients are then followed until failure or censoring in the usual
manner. Hence, an important question is whether covariate effect on the incident
time scale can be estimated using left-truncated, right-censored data with known
backward recurrence times.

At first glance, it seems as though Wang’s paper [20] addresses this problem
for the simplified case of length-biased data. We recall that length-biased data
is merely left-truncated data under the stationarity assumption of the initiation
times, which is the assumption of a uniform truncation distribution. This assump-
tion is reasonable in many circumstances. Nevertheless, the method developed in
Wang’s paper has a major shortcoming for follow-up studies, which will be re-
vealed shortly. For the moment we discuss, uncritically, Wang’s approach. The
possible biases in the estimation of the relative risk, 8, on the incident time scale
when using follow-up data, excluding the backward recurrence times, were already
considered in Section 3.1. Now, however, with the assumed availability of these
augmented follow-up data, we proceed with an investigation of actual estimation
in Cox’s proportional hazards model defined, naturally, on the incident time scale.
In summary, we are concerned with estimation for an unbiased model based on
length-biased data.

Unfortunately, under the assumption of the incident proportional hazards model,
the partial likelihood apprdach introduced by Cox [8] is not directly applicable for
left-truncated data. For incident cases, the traditional risk sets would contain sub-
jects who, after adjustment for their covariate effects, would have equal chances of
failing at a particular failure time. This follows, since their hazard of failing would
simply be the baseline hazard of failure. For left-truncated data, the risk sets

defined in the usual manner no longer exhibit this property since the subjects are
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sampled in a prevalent fashion. The consequence of this is that, even after remov-
ing covariate effects, two subjects who have survived until “¢” will have different
hazards of failing if they have different backward recurrence times; those with long
backward recurrence times will, generally, be at greater risk to fail. However, in
the special case of length-biased data, the explicit relationship (see (1.1)) between
the unbiased and length-biased distributions allows us to sample cleverly from
the obserx;ed “biased” risk sets thereby creating risk sets that mimic conventional
unbiased risk sets. The sampling procedure which we will make explicit shortly,
tends to exclude subjects in the risk set with longer survival times, as they are the
source of the length-bias. Using these new unbiased risk sets, a pseudo-likelihood,
L*(f), is formed and an estimate of 3 can be obtained by maximizing L*(3). We
now provide a more formal mathematical development of the procedure.

Let T denote the unbiased failure time distribution for which the proportional

hazards model is assumed. The hazard function is then
h{t; Z) = ho(t) exp(Z(¢)B) (3.4)
where hg is the unspecified baseline hazard function, and Z(t) is a vector of pos-
sibly time-varying covariates. The term exp(Z(t)8) represents the relative risk
(previously denoted by ) and the unknown parameter of interest is now 5.
Suppose ti,...,t, is observed, and let R; = {j : t; > t;} be the risk set at
t; for i’= 1,...,n. Let tqy,..., () be the order statistics, assuming no ties, with
corresponding covariate vectors Z(), ..., Z(n). Denote p; as the density for the
history H; = {(Z(l),t(l)), ey (Z(,-),t(,-))} with po = p. The full likelihood may be

L= {Hpi-l(zmlt(i))} {Hpi—l(t(i))} (3.5)

=1

written as:

where the first term, L,, is the partial likelihood.
For unbiased data, Cox [8] proposed that L, be maximized in order to obtain

an estimate of /3, since in this case, L, depends on the unknown parameters (53, ho)
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only through 5. However, for length-biased data this method cannot be used since
this partial likelihood depends on hy as well as 8. As discussed, the bias is in-
duced by the presence of survivors with length-biased survival times in the risk
set R;. That is, individuals in R; no longer have an equal chance of failure at #;
after adjustment for exp(Z(t)p3) since the hazard on the prevalent time scale no
longer satisfies the proportional hazards assumption in (3.4). Hence, the unspeci-
fied baseline hazard, hy, does not cancel when assessing the relative hazard of two
individuals. Thus, kg remains in L, as an unknown and this partial likelihobd can
no longer be used to estimate § without knowledge of hy. To account for these

biased risk sets we proceed as follows:

Define a random variable, ¢;(u), for 0 < u < t; as follows:

65(u) = { 1 with probability (u/t;)

0 with probability (1 — u/t;) (36)

letting 6,(t;) for i = 1,...,n be independent.

Now, form a new risk set, R} = {j : ¢; < ¢; and §;(t;) = 1} for 2 = 1,...,n.
It should be noted that since 9,(¢;) is random, the size of R} will also be random
for ¢« = 1,...,n. R} always includes an individual at his/her failure time. R} is
also more likely to include individuals with shorter failure times, since (%;/t;) is
closer to 1 for t;’s which are closer to t;, thereby correcting for the bias. Wang [20]
demonstrates that by using these newly created risk sets, the risk set structure in
the unbiased population is being artificially duplicated. That is, individuals in R}
have equal chance of failing at a particular failure time after adjustment for their
relative hazard, even though these subjects were originally identified as prevalent
cases. A familiar partial likelihood L*(f8) can thus be defined as:

o Ty | enlZi)8)
reo=11 [zj@; exp{zj(ti)ﬁ}} S
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This likelihood can only be considered as a pseudo-likelihood as it has been ar-
tificially created by a contrived random mechanism, following observation of the
data. Nevertheless, proceeding formally, B , can be obtained through maximization
of L*(3). Importantly, this procedure is justified by Wang [20], who establishes
asymptotic pseudo-properties of partial likelihood estimators, that mimic those of
ordinary partial likelihood estimators.

Since the method just described requires a sampling of the biased risk sets R;,
one way of improving the estimator of 3 is by repeating the sampling procedure
many times and using the average of all the B’s. That is, if the procedure is
repeated K times, then B = Zi;l Bz /K. It can be shown, however, that although
the repetition process may reduce variation when the sample size is reasonably
small, it does not aid the asymptotic efficiency for estimation of 5.

In spite of the ingenuity of the method developed in Wang’s paper [20], it
has a major weakness for the analysis of follow-up data in that it does not allow
for censoring. Whenever there is follow-up involved in a study, there will almost
always be censoring. However, the problem is that the censoring accompanying
follow-up studies is informative, as was discussed in Chapter 2, and the partial
likelihood methods used in Cox’s proportional hazards model breakdown when
there is informative censoring. Thus, the estimation of covariate effects in natural
history studies, when the data are left-truncated (even length-biased) and right-
censored, remains an open problem for semi-parametric models. Of course, for
fully parametric models there is no problem as the partial likelihood approach is
not necessary; one can write down the full likelihood.

Wang recognizes the deficiency in the method as she gives an example and a
simulation study where no follow-ﬁp time is required. Nevertheless, this method is
quite limited as far as practical applications are concerned. A situation where this

risk set sampling procedure can be used is described by Patil and Rao [13] and is
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explained in Example 3.6.

Example 3.6: Suppose we wish to estimate the number of individuals in a group,

say, for example, the number of albino children in a family which is prone to
having albino children. One way of sampling such groups is to record the size of
a group of individuals, only when at least one member of the group is sighted.
That is, when an albino child is observed, the number of albino children in his/her
family is recorded. Assuming that each child has an equal chance of selection, it
is clear that families with a large number of albino children will be more likely
to be observed than families with smaller numbers of albino children. Hence, a
sample of group sizes representing the number albino children from families prone
to having albino children obtained in this manner will be sized-biased (or length-
biased). Now, if we assume that once an albino child is sighted we will be able
to observe the entire group of albino children from that family, then there is no
censoring involved. That is, under the assumption that the observed group sizes
will be known exactly, Wang’s method [20] will be applicable here since there is
no censoring present. A related paper which may be of interest is by Davidov and
Zelen {10].

Thus far, we have mainly been interested in natural history of disease studies
for which the incident time scale is natural. That is, in spite of observing prevalent
data, which is done out of practical necessity, our concern is with covariate effects
for incident individuals. We now turn to another type of study which gathers
prevalent data but for which inference on the prevalent time scale is the focus.
This is a time scale for individuals who are identified in a cross-sectional study and
who clearly do not correspond to a group of incident cases. In the next section,

we discuss the difficulties involved in carrying out inference in such studies.
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3.3 Prevalent treatment studies and estimation
procedure on the prevalent time scale:

Since a treatment for a condition is often administered to individuals who already
have the disease (prevalent cases), studies seeking to investigate the effectiveness
of such treatments are often based on prevalent cases. Thus, prevalent cases are
first identified, and if possible, their backward recurrence times ascertained, as
was discussed in the previous section. The treatment is then administered to these
prevalent individuals at entry into the study and they are followed forward until
failure or censoring. This type of study is called a prevalent treatment study. A
prevalent treatment study forces the extra requirement that a subject must not
have received the treatment prior to entry, along with the usual condition that a
subject has experienced initiation but has not yet experienced failure at the start

of the study.

Suppose we are interested in examining the effect of covariates, in combination
with the treatment, on survival, for prevalent subjects. This investigation can be
carried out through a prevalent treatment study. It is thus clear that the incident
time scale is not of interest here. In this type of study, a proportional hazards
model on the follow-up time scale is the standard model since the treatment only
starts at entry. If one is interested in the effect of covariates on this follow-up time
scale, then, of course, a standard partial likelihood analysis is appropriate [8] with
the risk sets defined in the usual manner. That is, at a particular failure time all

subjects with larger failure times are included in the risk set.

Now, we may be interested in treatment-covariate effects on survival from ini-
tiation, rather than from the time of case ascertainment. For example, the time of
the initiating event may be biologically defined, such as the date of infection with

HIV. If this were the case it would be reasonable to impose a proportional hazards
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model on the prevalent time scale. That is, a proportional hazards model would be
assumed on the backward plus forward recurrence times of prevalent individuals,

and not only on the follow-up times (forward recurrence times).

With this in miﬁd, Cnaan and Ryan [5] suggest an analysis similar to the
standard partial likelihood method described by Cox [8], only using modified risk
sets. The modified risk sets that are suggested are exactly the same as those used
in the one sample estimation of the survival distribution with left-truncated and
right-censored data. That is, we include in the risk set at a particular failure
time, only those subjects with larger failure times who are under active follow-up.
However, Cnaan and Ryan provide no formal justification for performing such an
analysis, nor is there any discussion of the assumption required that ensures its
validity.

Wang et al [21] formally justify Craan and Ryan’s ad hoc procedure. Making a
crucial assumption, they carefully construct the partial likelihood. We now discuss
this construction, paying particular attention to the main assumption needed for
its validity.

Let u denote the calendar time of initiation for an individual and let v’ be the
calendar time of failure. Define the point of entry for a subject to be the calendar

time 7. The prevalent proportional hazards model can be written as:
R'(t; Z'(-)) = hy(t) exp(Z'(¢)B) for t > 7 — u, (3.8)

where k', b}, are, respectively, the hazard and baseline hazard on the prevalent time
scale. Z'(-) represents a time-varying covariate and 8 is the regression coefficient
or the log of the relative risk on the prevalent time scale. We are interested in the
estimation of the 3.

Let B'(t;u,7) be the hazard function for failure ¢ units after u for a prevalent

individual who was enrolled at time 7, where t > 7 — u. Wang et al [21] make the
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Figure 3.4: Quasi-stationarity

Under quasi-stationarity, these two subjects are assumed to have the same
hazard at t1 and t2 since both subjects have been treated and since t1 and
t2 are equidistant from their respective onset times. Note, however, that in
the second case treatment was started sooner after onset than in the first
case.

following important assumption:

Quasi-stationarity: There ezists a baseline hazard function h{ such that b’ sat-
isfies W (t;u,7) = hl(t) for t > 7 — u. That is, h'(t;u,7) is independent of (u,7)

whent > T — u.

Quasi-stationarity is a very strong, unrealistic assumption in a prevalent treat-
ment study. It states that a subject’s hazard function after entry is not affected by
their calendar date of initiation or by the amount of time from initiation to entry.

In fact, by the authors’ own admission, this assumption will rarely hold in a
prevalent treatment study. The following example demonstrates one of many sit-

uations where assuming quasi-stationarity would be inappropriate.
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Example 3.7: Consider a treatment which is developed for some form of cancer.

We enter a population and identify prevalent cases with this form of cancer. At
entry, we treat the subjects, who are obviously at different stages in the progres-
sion of the cancer. That is, some have had the cancer for long periods of time
before being identified, while some may have just recently had onset of the can-
cer. Assuming quasi-stationarity would mean that any two subjects are thought
to have identical hazards at some point in the progression of the cancer if, at this
point of comparison, both subjects have entered the study and thus been treated
(see Figure 3.4). Clearly, the hazard of failure for those subjects who have had the
cancer for a longer period of time at entry (treatment) will be much greater than
the hazard for those who are “caught” in the early stages of the cancer. That is,
at entry the cancer may have developed to a stage where the treatment is not as
effective as if it were administered immediately after onset of the cancer.

Clearly, quasi-stationarity does not hold in the situation described in Example
3.7. In this example, we assumed that all individuals were identified at the same
point in time. If subjects were allowed to enter the study at different points in
time, it may be reasonable‘to assume that their hazard after entry was independent
of their time of onset. However, it almost always seems wrong to assume that the
length of the backward recurrence time does not affect a subject’s hazard after
entry | (treatment).

Wang et al [21] state that in the one sample problem the stronger assumption
is often made that the entire survival time, v’ — u, is independent of (u,7) for
(v — u) > 0. However, this is not a fair comparison since this assumption is
fréquently made in natural history of disease studies, where there is no treatment
involved. While it is true that often survival is assessed from prevalent cases,
(leading to inference about incident cases) at intervention there is assumed to be

no effective treatment. We can think of “treatment” as simply the act of case
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ascertainment, in which case quasi-stationarity and even its stronger counterpart,
is frequently reasonable; how long after onset a subject is identified should not
affect their survival on the incident time scale. An alternative weaker assumption
is thus needed when there is a treatment involved and quasi-stationarity does not
seem plausible in any such study.

We shall shortly describe an attempt to weaken the assumption of quasi-
stationarity. However, for the moment we assume quasi-stationarity and proceed
with the analysis.

Wang et al [21] show that the full likelihood is proportional to a product of
two functions, one of which is analogous to Cox’s partial likelihood except for the
modified risk sets.

Let y; and §; r‘epresent the observed event time and the censoring indicator,
respectively, for the i** individual in the study, for i = 1,...,n. Moreover, define
‘the modified risks sets as R(y) := {j : 5 — u; < y < y;}, as is done in the one
sample conditional approach (see Section 2.1). Writing the prevalent proportional

hazard model as:
h'(t; Z(s),0 < s < 00) = hy(t) exp(Z(¢)B) fort > 7 — u, (3.9)

and conditioning on the (u,7, Z(-))’s, the full likelihood based on the (y,d)’s is:

2 T f (s Za()% S (ys; Za($)) 2%
LO(E [ S(1; —us; Zi(+))

(3.10)

where f and S are, respectively, the density and survivor function of the failure
time distribution on the prevalent time scale.

Under the model (3.9), L is proportional to L, x Lr where:

6.
il _eezes 17
Ly(#) = zI__-‘!: [ZjeR(yi) exp(Zj(y,-)ﬂ)] and: (3:11)
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(3.12)

L, is analogous to Cox’s partial likelihood and Lp is termed the residual like-
lihood. The authors motivate the consideration of L,(5) alone for estimation of 3
by showing that LR(ﬁ, hg) is ancillary for 8. This result suggests that Lg(8, hy)
does not provide any information in the estimation of § without knowledge of hjg.
Further justification for preceding in this manner is provided. That is, Wang et
al [21] establish the usual properties of the partial likelihood. Namely, they show
that the score function has zero expectation and, importantly, that B converges
in distribution to a multivariate normal distribution with a diagonal covariance
matrix.

We now return to the quasi-stationarity assumption to determine if it can be
relaxed in such a way so as to make the model useful in practice. Wang et al
[21] suggest weakening quasi-stationarity by introducing (u,7) through a function
of (u,7) that is then regarded as a time-dependent covariate. Ignoring the other
covariates Z(t), they propose that the prevalent proportional hazards model in

(3.9) be replaced by,
h'(t;u, ) = ho(t) exp(p(u, 7)a) fort > 7 —u (3.13)

where &(-,-) is a some specified function and « is an unknown constant to
be estimated from the data. Clearly (3.13) shows the (baseline * function-of-
covariates) form is retained and the dependence on (u, 7) is incorporated through
the function ¢. We note, however, that the domain of h'(t;u, 7) still depends on
(u,7) through (7 — u). This model clearly includes quasi-stationarity as a special
case (o = 0). However, ultimately this proposal does not help since in prevalent

. treatment studies the interpretation of o will almost always be difficult owing to
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confounding as is discussed by Wang et al in their example on ZVD treatment.
Hence, the weakening of quasi-stationarity in this fashion is also not useful in
practice. Therefore, if in a prevalent tredtment study we wish to assess the effect
of covariates on the prevalent time scale we are constrained by the assumption of
quasi-stationarity. Unfortunately, this assumption will almost never be realistic in
a prevalent treatment study. In fact, Wang et al suggest that prevalent treatment
studies are probably not suitable unless an appropriate control group is feasible
or there are appropriate historical data for “control” or baseline comparison. We
discuss this point further in the “Closing Remarks” chapter of this thesis.

We have thus far focused on group comparisons through the examination of
covariates. However, there are major difficulties in the procedures for both the
incident and prevalent proportional hazards model. The incident time scale is of
greater appeal in a natural history of disease study since in this type of study one
often wishes to make a statement about survival from initiation for an incident
case. We saw in Section 3.2 how Wang proposed a method for the estimation
of covariate effects in this case, but her model does not allow for censoring. Al-
though the prevalent time scale is more relevant in a prevalent treatment study
we have seen that attempts to use a semi-parametric model to assess the effects of
treatment—covaria’qe combinations have been largely unsuccessful as they rely on
the unrealistic assumption of quasi-stationarity. Another paper which may be of
interest is by Alioum and Commenges [1].

We briefly discuss the alternative of fitting purely parametric models in the
next chapter of this thesis. We assess the effect of erroneously using length-biased
data in an unbiased model when comparing two groups. This seems not to have
been addressed in the literature although the failure to recognize length-bias in

data is common in the applied literature.
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Chapter 4

Alternative comparisons and the
importance of recognizing
length-bias

In Chapter 3, we examined the comparison of two groups in the presence of length-
biased data when Cox’s proportional hazards model is assumed on a time scale
relevant to the type of study being performed. Procedures were described for the
estimation of covariate effects in the presence of length-bias when one is interested'
in the incident time scale and also when one is interested in the prevalent time
scale. Unfortunately, the procedures in both these circumstances have critical
shortcomings which cannot be overlooked.

In this chapter, in the same spirit as in Chapter 3, we investigate the conse-
quences of making group comparisons in the presence of randomly left-truncated
data. Here, however, we restrict our discussion to length-biased data, and, more
importantly, to the effect of failing to recognize length-bias in these data. Simply
stated, we address the question, not addressed in the literature, “Suppose we wish
to compare survival, from initiation, between two groups. Then, what are the con-
sequences of failing to recognize length-bias in the data?” We demonstrate, using
parametric models, that at least when attention is restricted to a comparison of

mean and median survival, the wrong conclusions may be drawn. These results
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are important, particularly in natural history studies, where it is common for re-
searchers to ignore length-bias. We propose an obvious solution for parametric
models.

We first examine how the relationship between two biased survivor functions
can change when their unbiased counterparts are compared. That is, we begin by
making purely theoretical comparisons of the true survivor functions. Later in this
chapter, we will illustrate through two simulation studies how incorrect inference

can actually occur when data analyses are performed.

4.1 Comparison of the biased and unbiased sur-
vivor functions of two groups:

In this chapter, we assume that a natural history of disease study is being per-
formed and that there is no effective treatment available, that can effect length of
survival. Hence, in our previous terminology, we are interested in a comparison of
survival on the incident time scale. One question of interest is whether the presence
of length-bias could cause a complete “reversal” of the two true survivor functions
under consideration. We shall explain, shortly, what is meant by a “reversal” of
these survivor functions. This investigation is analogous to Brookmeyer and Gail’s
examination [4] of the biases that can occur for the survivor function in the one
sample problem with prevalent data when only the follow-up times are available
(see Section 2.2).

Consider some length-biased density g;(z), as in (1.1), where f;(z) is the un-
derlying unbiased distribution, and ¢ = 1,2 is used to represent the two groups of
interest. Let u¥ and p2 represent the means of the unbiased and length-biased dis-
tributions respectively, so that p? is related to p¥ by the relationship (1.3). Also,
let MY and MP be the medians of the unbiased and length-biased distributions

respectively. Furthermore, let SY and SP denote the unbiased and length-biased
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survivor functions respectively. That is, SY represents the survivor function cor-

responding to f(z) and S? is the survivor function corresponding to g(z).

Definition 4.1: We say that a reversal of the survivor functions of the two groups

has occurred if SV(t) > SY(£) V t > 0, but SE(t) < SEB(¢) V t >0, or equivalently

with the inequalities reversed (see Figure 4.1).

‘We may first ask whether the reversal described in Definition 4.1 is possible.
This would be an interesting finding since it would mean that length-bias could
lead to a reversal of the inferred relationship between the survivor functions, and
thus the survival experiences, of the two groups. It transpires that this “reversal”

cannot occur:

Lemma 4.1: Suppose SV(t) > SY(t) V¢t > 0. Then 3 some interval [0,6],6 >
0, such that SE(t) > S2(t) V t € [0,8]. (An analogous result holds with the
inequalities reversed since the assigning of group labels is arbitrary. )

Note: (i) We suppose that SV (t) #S% (t). If the unbiased survivor functions are
identical then it follows from (1.1) that the length-biased survivor functions are -
identical as well.

Note: (ii) In the proof, f; and g;, for ¢ = 1,2, can be either density functions or
probability functions, with the consequence that Lemma 4.1 is valid in both the

continuous and discrete cases.

Proof: We have that g;(z) = 1{;’7(]3—) for i = 1,2. Since SY(t) > SY(t) Vt >0,
= 3 an interval [0, 6] where fo(t) > fi(t) VE € [0,6] & tfo(t) > tfi(t) V t € [0,0]

@t—héﬂ>gig(,QVte[0,5] since,ugZO. But%égz%thtZOSinceM?>u2U.

Hy -
tfa(t tfilt
- ]:jg(f) > ]:g(])‘dte[o,é] (4.1)
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Figure 4.1: Unbiased and biased survivor functions

Unbiased Survivor Functions

Group 1(broken line), Group 2(solid line)
Figure 4.1a Unbiased survivor functions

Biased Survivor Functions

Group 1(broken line), Group 2(solid line)
Figure 4.1b Biased survivor functions
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Also, since the L.H.S of (4.1) = g»(¢) and the R.H.S of (4.1) = ¢;(¢), it follows
that go(t) > g1(t) V t € [0,8] & SE(t) > SP(t) V t € [0, 6], which proves Lemma
4.1.

Although Lemma 4.1 shows that the “reversal” described for the survivor func-
tions cannot occur, the example below shows that this phenomenon can “approx-
imately” hold, which, as we shall see, means that vigilance must be maintained in

the presence of length-bias.

Example 4.1 (Refer to Figure 4.2): Let the underlying unbiased distributions

be Weibull(0.5, 0.5) and Weibull(0.75, 0.75) for group 1 and group 2 respectively,

where the Weibull(a, §) distribution is parameterized as:
F(zle, B) = %xa~1e—wf/3 where (0 < z < o), (o, 8> 0) (4.2)

We see from Figure 4.2(a) that SZ(t) > SE(t) for practically all values of ¢, while
in Figure 4.2(b), S¥(t) > SY(¢) for nearly all ¢.

The next example shows that even when there is not “approximate” reversal,
incorrect inference is still possible if inference is based on the length-biased survivor
functions instead of the unbiased equivalents. Furthermore, the example demon-

strates that these difficulties are not restricted to the class of Weibull distributions.

Example 4.2 (Refer to Figure 4.3): Let the unbiased distributions be gamma(1, 1)

and gamma(5, 0.32) for group 1 and group 2 respectively, where the gamma(a, §)
distribution is parameterized as:

1
[(a)se

In Figure 4.3, the biased survivor functions seem to indicate that the two groups

flzla, B) = 2% 1e™*/8 where (0 < z < ), (a, B > 0) (4.3)

experience similar survival, with group 2 enjoying slightly better survival early

on and group 1 having better survival later. However, the unbiased equivalents
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Figure 4.2: Biased and unbiased Weibull survivor functions

Biased Weibull Survivor Functions
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Figure 4.2a Biased Weibull survivor functions
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Figure 4.2b Unbiased Weibull survivor functions
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Figure 4.3: Biased and unbiased gamma survivor functions

Biased Gamma Survivor Functions

Group 1(broken line): a4=1, B4=1, Group 2(solid line): wy=5, $,=0.32
Figure 4.3a Biased gamma survivor functions

Unbiased Gamma Survivor Functions

Group 1{brocken line): ay=1, B,=1, Group 2(solid line): =5, B,=0.32
Figure 4.3b Unbiased gamma survivor functions
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'show that group 2 has much better survival in the early stages, while survival is
esséntially identical afterwards.

Thus, Example 4.1 and Example 4.2 demonstrate that the potential seriousness
of using length-biased survivor functions instead of the corresponding unbiased
survivor functions is not dispelled by Lemma 4.1.

Finally, we give an example where length-bias does not cause much change in

the relationship between the survivor functions of the two groups.

Example 4.3 (Refer to Figure 4.4): Let the unbiased distributions be Weibull(2, 2)

and Weibull(3, 3) for group 1 and group 2 respectively. From Figure 4.4, we can
see that the relative survival of the two groups is similar whether the biased or
unbiased survivor functions are used for inference.

Example 4.3 is given to illustrate that length-bias need not affect the inference
in every problem. Nevertheless, one must account for its consequences carefully

since the effect (or lack of effect) of length-bias will not be known a priori.

4.2 Comparison of the means (medians) of two
groups:
One reason for having considered possible “reversal” of the survivor functions is
that it would have caused a “reversal” of the medians of the two groups. Even
though we have shown that “reversal” cannot occur for the survivor functions of
the two groups, it may still be possible that it occurs for their medians. Therefore,
although the “reversal” of the survivor functions is clearly sufficient for the “rever-
sal” of the medians, we need to determine whether it is necessary as well. In fact,
it is not difficult to provide an example where reversal of the medians has occurred
even though the reversal of the survivor functions is impossible. Figure 4.5 demon-
strates this “reversal” of the medians where the unbiased distributions are assumed

to be gamma(1, 1) and gamma(5, 0.21) for group 1 and group 2 respectively.
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Figure 4.4: Biased and unbiased Weibull survivor functions

Biased Weibull Survivor Functions

Group 1(broken line): oy=2, B4=2, Group 2(solid line): 0,=3, B,=3
Figure 4.4a Biased Weibull survivor functions

Unbiased Weibull Survivor Functions

Group 1(broken line): a;=2, B4=2, Group 2(solid line): up=3, B=3
Figure 4.4b Unbiased Weibull survivor functions
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Figure 4.5: Biased and unbiased gamma survivor functions

Biased Gamma Survivor Functions

Group 1(broken line): oy=1, By=1, Group 2(solid line): 0,=5, $,=0.21

Figure 4.5a Biased gamma survivor functions

Unbiased Gamma Survivor Functions

Group 1{broken line): ay=1, By=1, Group 2(solid line): ap=5, $,=0.21
Figure 4.5b Unbiased gamma survivor functions
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Moreover, everything that holds for the median is also true for the mean of
the two groups. Recall that for a positive-valued random variable, the mean of
the distribution is equal to the area underneath the survivor function. Hence, if
we had that SY(t) < SY(¢) V ¢ > 0, and that SP(t) > SE(t) V¢t > 0 then we
would have that u¥ < pY, but that u? > u2 (or equivalently with the inequalities
reversed). Thus, interest now turns to whether it is possible that u¥ < pf but
that u? > u2 (or with the inequalities reversed) even though the “reversal” of the
survivor functions is impossible. The answer to this question is in the affirmative.

With the gamma(a, 5) parameterized as in (4.3), the length-biased density is:

a~1_ —z/8 o ,—z/f
aela) = 5 () = ey ~ gemmala + 1.6) (44)

where ¢t = 1,2
Thus, if the true underlying distribution is gamma(c, 5) then the length-biased
distribution is gamma(a +1, 8). A relationship such as this one, where the length-
biased distribution takes on the same parametric form as the unbiased distribution,
does not hold, in general, for other distributions, although this family invariance
also holds for the family of Pareto distributions. For the gamma parameterized as
in (4.3), the mean is o. Hence, the mean of the length-biased density is (a+1)8.

Now, this reversal of means will occur if:
(1) /1[11 =a1f < afp = ug and if
@) w=(ea+1)B> (e + 1) =pus

(1) and (2) are simultaneously satisfied if:

az+1 B o
e 22 4.5
ay +1 ,32 o1 ( )

Hence, whenever the parameters for the gamma distributions of the two groups
satisfy (4.5), the mean of group 2, say, will be larger for the unbiased distribu-
tion comparison, but the opposite will be true for the length-biased distribution

comparison.
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A commonly used distﬁbution in survival analysis is the Weibull. If the under-
lying unbiased distribution of the data is Weibull then the length-biased distribu-
tion does not remain Weibull. Unlike the situation with the gamma distribution,
we cannot obtain a simﬁle expression for the Weibull parameters which indicates
whether “reversal” of means will occur. However, it is not difficult to find examples
where reversal does occur. Using expression (1.2), it follows that the mean of the
length-biased Weibull is simply the second moment of the unbiased Weibull divided
by the mean of the unbiased Weibull. Furthermore, using the parameterization of
the Weibull(c, 8) given in (4.2), we have that the k' moment of a Weibull is given
by:

E(X*) = g**r(1 + g-) (4.6)

Example 4.5: Assume the Weibull parameters to be (1, 1) for group 1 and (2, 2)

for group 2. Hence, from (4.6),

1 1
o= 1Yira+ —1-) =1, u¥ =2Y°r(1 + —2-) ~ 1.25, and

1217(1 + 2 22/2D(1 4+ 2

B
1 2

It is clear that what we refer to as a reversal of means has taken place in Example
4.5.

We now give a real-life illustration of the incorrect inference this could cause.

Example 4.6: Suppose, as in Example 3.2, that we are interested in comparing

survival, from onset of dementia until death in two groups, namely, individuals
with probable Alzheimer’s disease and those with vascular dementia. In the lit-
erature, it has often been reported that individuals with probable Alzheimer’s
disease have longer median (and mean) survival from onset than those with vascu-
lar dementia. However, for practical reasons, these analyses were performed using

prevalent cases. Thus, the data used in these studies were subject to length-bias
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which was not recognized. It is therefore conceivable that, in fact, individuals with
vascular dementia have longer median or mean survival than those with probable
Alzheimer’s disease. |

We will shortly turn to an examination of what can happen in practice when
data are actually analyzed. That is, we will demonstrate how incorrect inference
can occur in a comparison of the mean and median of two groups when length-
bias is not recognized. Before doing that, we describe the types of analyses that a

researcher might perform on an observed data set.

4.3 Comparison of data analyses:

Below we present a comﬁarison of three péssible procedures that might be used
to analyze data. The first is a naive approach Whére length-bias is not recog-
nized, while the second is the correct manner of proceeding. The third approach
is restricted only to certain parametric analyses. We concentrate on the first two

procedures in our parametric simulations.

4.3.1 “Naive” approach:

A najive approach to maximum likelihood estimation which does not recognize
length-bias would proceed as follows:

Let LZ(x: ) and LY (x; 6) be, respectively, the biased and unbiased likelihoods,
for the parameter vector ¢, given the observed biased data x®, generated by the

biased model LE.

1. Maximize LY(x;6) with respect to 6.

2. Carry out all inference using the incorrect estimator 55, where the subscript
designates the model that is assumed and the superscript the “true” model

of the data.
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3. All sampling distributions are derived under the assumption that the data

were derived under LY.

4. If there are two independent comparison groups, repeat this procedure for
each group and base the inference on h(éﬁU, éfU) for some function A, of the

two estimators 67, and 8%,

The method just described uses an unbiased model for inference although the
data are length-biased.

For example, suppose that the observed survival times for the two groups,
;gf .7 = 1,2, arise from length-biased Weibull distributions with length-biased
Weibull likeliboods given by,

n By g=a5 /6
LE(xZ; (04, 8)) H [ 1+1/‘“r( - ] (4.7)

j=1 + 3
where (0 <z} < 00), (@, 8; > 0), (i =1,2)

and 7 is the number of survival times in x 7.

The “Naive” Approach would specify the maximization of,

n Bya;— :55/5,-
L (7 (o, B)) = H [a (75) 5'1 } (4.8)
i=1 !

where (0 < a: . < 00), (05,8 >0), i=1,2)

and 7 is the number of survival times in x72,

with respect to (o, 5;), @ = 1, 2, respectively for the two groups, to obtain (&;, Bi)g.
If we are interested in making inference about the difference in the unbiased me-
dians, (MY — MY), say, then a parametric bootstrap would be (naively) performed

as follows:

1. Generate k sets of survival times, each of size n from f¥ (x; (63, [3’2)5) Denote

these by x| fori=1,2andp=1,...k.
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2. For each of i = 1,2, and p = 1, ..., k, maximize (4.8) with respect to (cy, 5;)

to obtain (Guy, Bip)y fori=1,2, and p =1, ..., k.

3. After substituting (&up, Bip)¥ in fU(x; (, Bi)), evaluate (]\//TIUU - /\gU)p for

p=1,....k to obtain k “naive” estimates of (MY — MY).

4. Obtain a 95% confidence interval for (M{ — M) by sorting these k estimates

and eliminating the 2.5% smallest and biggest estimates.

A correct nonparametric approach would proceed along similar lines except
that the estimators used would be nonparametric and bootstrap procedures would
be nonparametric as well.

Moreover, using the “Naive” Approach, if one were to assume Cox’s propor-
tional hazards model on the incident time scale, one would unwittingly fit Cox’s
proportional hazards model to the length-biased data. Unfortunately, proportion-
ality of hazards on the incident (unbiased) scale does not imply proportionality of

the hazards for the length-biased distributions.

4.3.2 Correct approach:

A correct approach, which would recognize length-bias and account for it accord-

ingly, would proceed as follows:
1. Using the same notation, maximize LZ(x?; ) with respect to 4.
2. Carry out all inference using the correct estimator 5.

3. All sampling distributions are derived under the assumption that the data

were derived under LZ.

4. If there are two independent comparison groups, repeat this procedure for
each group and base the inference on h(éﬁ B> 95 ) for some function A, of the

two estimators 655 and 62 5.
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Note, importantly, though, that the function h is a functional of the unbiased
distribution, which is of main interest. For example, k might represent (MY —MY),
using the parameter estimates obtained by recognizing the presence of length-bias
in the data. In addition this method uses the length-biased model, that generated
the data, to infer the sampling distribution of any parameter estimator.

For example, suppose that the observed survival times for the two groups,
;gf ,i = 1,2, arise from length-biased Weibull distributions with length-biased
Weibull likelihoods given by (4.7). The Correct Approach would specify the cor-
rect maximization of (4.7) with respect to (ay, 5;), ¢ = 1, 2, respectively for the two
groups, to obtain (64, 3;)B.

If we are interested in making inference about the difference in the unbiased
medians, (MY — MY), say, then a parametric bootstrap would be performed as

follows:

1. Generate k sets of survival times, each of size n from f2(x; (&, 5;)8). Denote

these by x7 fori=1,2andp=1,...k.

2. For each of i = 1,2, and p = 1, ..., k, maximize (4.7) with respect to (o, 5;)

t0 obtain (&iyp, Bip)B fori =1,2, and p=1,..., k.

3. After substituting (6., Bip)8 in fY(x; (i, 8)), obtain (.7\//.71‘?3 - J\//.TQJ?B),, for

p=1,..,k to yield k estimates of (MY — MY).
4. Using the quantile method obtain a 95% confidence interval for (MY — MY).

A correct nonparametric approach would proceed along similar lines except

that the estimators and bootstrap procedures used would be nonparametric.

4.3.3 “Partially naive” approach:

A third approach is plausible for certain parametric scenarios. Suppose the length-

biased aspect of the data is recognized, but it is not accounted for correctly. We
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. refer to such an approach as a “partially naive” method. This method proceeds as.

follows:
1. As in the correct approach, maximize L?(xZ; ) with respect to 6.

2. Obtain the correct estimator, §3. That is, this method uses the correct biased

model for estimation of §, recognizing that the data are length-biased.

3. If there are two independent comparison groups, repeat this procedure for
each group and base the inference, however, on A’ (913 s @f p) where b’ is the

length-biased function corresponding to h, the function of interest.

For example, suppose we are interested in (MU — MY), then in the partially
naive method, we would base inference on estimates of (MB — MZ). A paramet-
ric bootstrap would be performed exactly as in the correct approach except that
(Giip, Bip) 2, for i = 1,2, and p = 1, ..., k, would be substituted into f&(x; (c, 5i))
in order to obtain the k estimates of (M — M2).

Of course, although inference is based on estimates of (MP — MP), the quantity
of interest is (MY — MY). The partially naive reasoning is as follows, “Although
unbiased and length-biased distributions differ, comparisons between pairs of un-
biased and pairs of their corresponding length-biased distributions should remain
invariant”.

This scenario corresponds to the hypothetical scenario described in Section
4.1 whereby one might be tempted to compare only the pair of biased survivor
functions to infer the same relationship for the unbiased versions. We have seen
this reasoning to be flawed.

This third approach is largely a curiosity, though, as it would only arise in very
few situations. It would not be possible in a nonparametric analysis since, here,
if length—bias is recognized, then the correct estimates are immediately obtained

. for the survivor functions of the two groups. Even in a parametric analysis, this
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situation does not always occur. For example, suppose we are performing a para-
metric analysis assuming that the underlying unbiased distributions are gamma.
In this casé, recognizing length-bias is sufficient in order to carry oﬁt a correct
analysis since a length-biased gamma distribution retains the parametric form of
a gamma distribution. Hence, once the correct estimates of the parameters are
obtained, substituting these estimates into the length-biased or unbiased gamma
forms yields identical results. However, this “partially naive” approach may yield
erroneous conclusions if the Weibull distribution is assumed to be the unbiased
distribution in a parametric analysis since the length-biased Weibull does not re-
tain the Weibull parametric form. As this approach can only occur in very special

circumstances, we will focus our discussion on the “naive” and correct methods.

4.4 Performance evaluations through two simu-
lation studies: |

Now, suppose that we are interested in the difference in mean survivals of two
groups (or, possibly the difference in median survivals), that is, the quantity (u¥ —
©Y). Any instance of a “reversal” of means will cause the quantities (u¥ — uf)
and (uf — uf) to be of opposite sign. Thus, these theoretical results suggest that
inference about the mean survival experience of the two groups will be incorrect if
length-bias is not accounted for in the analysis. We investigate these considerations
by carrying out simulations that enable us to examine the coverage percentages of
“naive” and correct bootstrapped 95% confidence intervals for (u¥ — p¥) and for
(MY — MY). These may be termed “performance analyses”.

A comparison of the correct approach with the “partially naive” method could
just as easily have been carried out and similar results can be obtained but these
will not be included in this thesis.

Although our simulations generate uncensored data, similar results would be
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obtained with censored survival times since, here, censoring only diminishes the
amount of information contained in the data and does not change anything con-

ceptually.

4.4.1 Simulation study #1:

The underlying unbiased distribution was assumed to be gamma(1,3) for group 1
and gamma(4,1) for group 2. Five-hundred (500) length-biased uncensored sur-
vival times were generated for each of the two groups from gamma(l +1 = 2, 3)
and gamma(4 + 1 = 5,1) distributions, réspectively, which are the length-biased
distributions corresponding to the gamma(l, 3) and gamma(4, 1) distributions, re-
spectively. These data were taken as our “observed” data set.

Since the length-biased gamma distribution is itself gamma, the “naive” and
correct approach both maximize the same likelihood. That is, if one believes that
the data are unbiased, a gamma likelihood will be maximized, while if one knows
that the data are length-biased, a length-biased gamma likelihood, which is again a
gamma likelihood, will be maximized. Hence, naive and correct methods will yield
the same parameter estimates for both groups. We obtained parameter estimates,
(&, 5’1) and (ds, B,), for the parameters (@ =2,6, =3)and (ay = 5,6, = 1).

However, someone applying the naive method would believe that (G, Bl) and
(62, B2) estimate the parameters of the unbiased gamma distribution since he/she
will not have recognized the length-bias. On the other hand, someone using the
correct method would realize that, in fact, these parameter estimates correspond
to the length-biased gamma. Using the correct approach, the parameter estimates
for the unbiased gamma are (&; — 1, 4;) and (&2 — 1, )

In order to find a confidence interval for (u¥ — uY), a parametric bootstrap
was carried out, using both the “naive” and correct method. For the “naive”

parametric bootstrap, the gamma(ézl,ﬁl) and gamma(do, Bg) distributions were
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used to generate 1000 data sets each consisting of 500 survival times for group 1 and
group 2 respectively. The incorrect philosophy behind this bootstrap is to generate
data from the unbiased distribution. In a correct parametric bootstrap, one would
want to generate data from the length-biased distribution. Coincidentally, the
two methods are again identical, since the length-biased gamma distributions with
parameters (&, 51) and (6, B;) for group 1 and group 2, respectively, are again
gamma with these parameters.

For each of the 1000 data sets, the same procedure was used to obtain the
estimates of the parameters as with thg “observed” data. Having paired off the
data sets for the two groups arbitrarily, 1000 estimates of the difference in means
and medians of the two groups were produced. For the naive approach, these
estimates were obtained by using the parameter estimates without modification.
The estimates of the difference in means and medians using the correct method
were obtained by realizing that the parameter estimates were obtained from a
length-biased gamma distribution and need adjusting before they can be used to
estimate (u¥ — p¥) and (MY — MY). That is, in the correct approach, &;; became
(63;— 1) for i =1,2 and j = 1, ...,1000.

To obtain a confidence interval for these differences, we simply ordered the
1000 estimates in increasing fashion and selected the 26" and the 975" largest
difference. In this way, we obtained two confidence intervals (for the difference in
means and medians respectively). This entire procedure was repeated 100 times
and each time we verified whether the true difference in means and medians was
captured by the corresponding confidence interval.

The results for the two procedures are presented in Table 4.1. We can see
from these results that if length-bias were not recognized and the naive method
applied, we never captured the true values of interest. The correct method gave

approximately 95% coverage, as expected. Table 4.2 displays the average lengths
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] Simulation Study #1: Performance of the Two Methods |

{ ‘ Frequency of true value captures out of 100 |
Method Difference in Medians | Difference in Means
Correct Approach 94 93
Naive Approach 0 0

Table 4.1: Simulation study #1: performance of the two methods

j Simulation Study #1: Variability of the Two Methods |

Average length of confidence interval
Method Difference in Medians | Difference in Means
Correct Approach 0.98812 0.87485
Naive Approach 0.75655 0.83661

Table 4.2: Simulation study #1: variability of the two methods

of the confidence intervals produced. One may have expected the intervals to be
wider for the naive approach, but this is not the case in this example. We suspect
that this result is particular to the gamma distribution, owing to the property that

a length-biased gamma remains gamma.

4.4.2 Simulation study #2:

In this simulation study, the underlying unbiased distributions were assumed to be
Weibull(0.5, 0.5) and Weibull(0.75,0.75) for group 1 and group 2 respectively. We
generated 500 uncensored survival times from the length-biased Weibull(0.5, 0.5)
and the length-biased Weibull(0.75,0.75), for group 1 and group 2 respectively. It
is interesting to note that length-biased Weibull data can be simulated conveniently
by initially generating from a gamma distribution (Correa and Wolfson [6]). These
survival times are assumed to be the “observed” data.

Essentially the same method was used as for Simulation study #1, except with
different likelihoods to accommodate the different parametric forms. In the correct
analysis, a length-biased Weibull likelihood was maximized whereas, for the naive

method, the likelihood that was maximized was simply a Weibull. This led to
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. different parameter estimates for the two approaches, which is slightly different
from the situation in Simulation study #1. This is because the length-biased
Weibull does not remain Weibull. Again, in the correct parametric bootstrap, 1000
sets each consisting of 500 length-biased Weibull survival times were generated for
each of the two groups using the correct parameter estimates. In the “naive”
method, the incorrect parameter estimates were used to generate 1000 sets each
consisting of 500 Weibull survival times for each group. For each of these data sets,
parameter estimates were obtained. Estimates of the means and medians were then
derived by substituting the parameter estimates into the appropriate functionals of
the unbiased Weibull distribution. Of course, the parameter estimates used in the
“naive” method were incorrect. We then proceeded as in Simulation study #1 to
obtain confidence intervals for the difference in means and medians, respectively,

and to assess the performance of the two methods.

|  Simulation Study #2: Performance of the Two Methods |
} Frequency of true value captures out of 100 ]

Method Difference in Medians | Difference in Means
Correct Approach ' 96 97
| Naive Approach 90 0

Table 4.3: Simulation study #2: performance of the two methods

| Simulation Study #2: Variability of the Two Methods |

[ Average length of confidence interval [
Method Difference in Medians | Difference in Means
Correct Approach 0.19721 0.32802
Naive Approach 0.86288 ‘ 0.66321

Table 4.4: Simulation study #2: variability of the two methods

The results for the two procedures are presented in Table 4.3. The correct
method again gave approximately 95% coverage. The naive method for the differ-
ence in means again performed extremely poorly. For the difference in medians,

‘ the naive method performed fairly well in terms of coverage proportion. However,
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when examining the average lengths of the confidence intervals, we see that the
naive method produced much wider confidence intervals (see Table 4.4). This ex-
plains the apparently adequate coverage of its confidence intervals for the difference
in medians.

We can see from the results of these two simulation studies that the failure to
recognize length-bias can affect the validity and/or the efficiency of an analysis.
That is, one may obtain very poor coverage, and even if one does, in fact, capture

the true value frequently, the confidence intervals may be very wide.
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Chapter 5

Closing remarks

In this chapter, we discuss some interesting points that have been raised in this
thesis. We also mention some topics for further research and a possible procedure
for the estimation of covariate effects in the two sample problem, even when there
is censoring.

In Section 1.2, we gave a brief overview of the historical literature in the area
of length-bias. We discussed how Cox had developed an unbiased estimator of
the mean of the underlying distribution from a length-biased sample. In fact,
Cox [7] demonstrates that, in some instances, it may be more efficient to use a
length-biased sample for estimation of the mean than the unbiased sample. This
is, perhaps, a justification for the use of the sampling method of “grabbing” used
in the textile industry at that time, and which gives rise to length-biased fibre
lengths. |

Blumenthal [3] also examines whether it is more efficient to estimate the mean
of the unbiased distribution using a length-biased sample or an unbiased sample.
For the gamma and Weibull distributions it is, in fact, more efficient to use a
length-biased sample. This result is very interesting since the gamma and Weibull
are widely used in survival analysis. For the log-normal distribution, the efficiency
is always the same, regardless of the parameters of the distribution. Thus, if
one believes the data to come from a log-normal distribution, it seems that a

length-biased sample should be considered, since there is no loss in efficiency and
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it may be easier to obtain such a sample. However, as Cox mentions in his paper,
Blumenthal obtains most of his results by assufning a known coeflicient of variation.
For the gamma and Weibull, the coefficient of variation is only known if the shape
parameter of the distribution is known. However, a method for estimating the
coeficient of variation is provided by Blumethal when it is unknown.

In the medical setting, the use of prevalent cohorts have often been perceived
as being necessary for practical reasons such as time limitations. However, the
preceding results show that using a cross-sectional sampling scheme may not only
be of practical convenience but may improve the efficiency of mean estimates.
Although these papers did not consider censoring, it may be speculated that the
same result will hold even when censoring occurs. This question deserves further
consideration.

In Section 2.1, we briefly mention that Wang’s one sample conditional product-
limit type estimator may give poor results near 0. Firstly, Wang admits that the
estimator in (2.1) may be non-identifiable before the smallest observed event time,
ya). Hence, this estimator should really be seen as a conditional estimator of
survival, given that one’s survival is greater than y;). In practice, this is not
usually a major difficulty if y) is small. The risk sets for this estimator include
only individuals who have not failed or been censored and who are under active
follow-up. Hence, even after y(), there may be difficulties caused by small risk
sets. If at any failure time, everyone in the risk fails then the estimator drops to
0 and obviously remains at 0 for all subsequent times since it is comprised of a
product of terms. Cnaan and Ryan [5] point out that this may happen in a small
study or in the early stages of a study. In one wishes to avoid such difficulties, they
suggest an estimator based on the cumulative hazard function. This estimator is
also recommended for such circumstances by Cox and Oakes [9].

Cnaan and Ryan [5] also make an interesting non-technical observation regard-
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ing the interpretation of fixed and time-varying covariates. Measured covariates
are often considered as fixed in a proportional hazards model when performing an
analysis on survival from entry. Some of these covariates, such as symptoms or
extent of disease, may be used to indicate a patient’s status at entry. However, one
must be careful since these same covariates measured at entry should not necessar-
ily be viewed as fixed in an analysis of survival measured from onset. For example,
a patient with weight loss at enrollment may not have had that symptom at ohset.
Hence, this covariate must be viewed as time-varying in an analysis from onset.

Wang et al [21] make an important point regarding the evaluation of treatments
in a prevalent treatment study. In Example 3.4, a type of prevalent treatment study
is described where randomization has been carried out to determine which subjects
recéive a certain treatment. A prevalent treatment study is one in which the time
of entry corresponds with the beginning of a treatment. The effectiveness of treat-
ment cannot be determined in a prevalent treatment study unless there is a control
group or some other external information is utilized. That is, if all subjects receive
treatment at entry then the effect of treatment cannot be identified, although, of
course, information about covariate effects within the treated population can be
acquired. Hence, although these studies may be useful in some ways, they should
not be used to determine the main effect of a treatment unless randomization takes
place. This may have ethical ramifications which must be addressed.

In Chapter 3 we saw that using a proportional hazards model for the esti-
mation of covariate effects is, in many ways, a futile endeavor. When interest
lies in the incident time scale, Wang’s risk set sampling method [20] does not al-
low for censoring. Moreover, when one is interested in the prevalent time scale,
the adjusted risk sets procedure relies heavily on an unrealistic assumption for
prevalent treatment studies. Therefore, an alternative approach should be inves-

tigated which circumvents these difficulties. We propose the use of a model which
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assumes a piecewise constant baseline hazard function. This eliminates the short-
comings of a semi-parametric model since estimation reduces to the estimation of
finitely many parameters. Namely, these parameters are the values of the hazard
on the finite number of intervals for which the hazard is assumed to be constant.
The introduction of this parametric structure to the hazard should alleviate the
problems encountered thus far. Furthermore, the conclusions drawn from any rea-
sonable amount of data should be similar whether a proportional hazards model
or a piecewise constant hazard model is adopted. The piecewise constant hazard
model therefore deserves future consideration.

Brookmeyer and Gail [4] examined the biases which may occur in the estimation
of relative risk when one is interested in the incident time scale, but only the follow-
up times are available. In Chapter 4, we briefly look into the incorrect inference
which is possible when length-bias is not recognized through two simulation studies
using a parametric analysis. It seems worthwhile to examine whether analogous
results to those of Brookmeyer and Gail hold regarding the relative risks on the
incident and prevalent time scales. For instance, can we state that the bias induced
by not recognizing length-bias is never enough to make a true risk factor appear
protective (or vice versa)?

In this thesis, we examined the phenomenon of length-bias in the one and
two sample problems. We provided a review of the literature for both these cir-
cumstances, paying particular attentibn to group comparisons and the difficulties
associated with such ventures when only prevalent data are available. Length-bias
continues to be a significant area of research since, in practice, prevalent follow-
up data is often the most convenient to observe. We have seen that there are
still many open questions in this area which need to be pursued. The importance
of this pursuit becomes apparent when one realizes the consequences of making

erroneous inference and acting upon these conclusions.
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Appendix A

Glossary

Backward recurrence time: The time from initiation to entry for a subject
identified in a prevalent manner. This differs from the truncation time of an
individual which refers to the time from initiation to the start of the study

even for a subject who does not survive long enough to enter the study.

Differential length-biased sampling: A type of bias induced by sampling the
forward recurrence times differentially from two different backward recur-

rence time distributions.

Follow-up time scale: The time scale from entry to failure. An analysis on the
follow-up time scale may be obligatory if the backward recurrence times are
unobserved. It is also of interest in many prevalent treatment studies since

in these studies the treatment is administered at entry.

Forward recurrence time (Follow-up time): The time from entry to failure

for a subject identified in a prevalent manner.

Frailty selection: The unwanted deletion of “frail” subjects from a prevalent

cohort.

Incident follow-up study: A study that identifies new cases from initiation as

they occur, and follows them until failure or censoring.
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. Incident/Prevalent /Follow-up proportional hazards model: The proportional

hazards model on the incident/prevalent/follow-up time scale.

Incident time scale: The time scale from an initiating event to a failure event.
The incident time scale is of interest in natural history of disease studies,
since in these studies one wishes to make a statement about the survival

experience of an incident individual.
Multiplicative censoring: A type of informative censoring.

Naive/Correct /Partially naive approach: Three procedures which are possi-
ble when performing data analysis. The naive approach does not recognize
length-bias. The correct approach recognizes the length-bias in the data
and accounts for it accordingly in the analysis. The partially naive method
also recognizes the length-bias, but does not account for it adequately in the

analysis.

Natural history of disease study: A study concerned with the natural pro-
gression of a disease, usually under the assumption that subjects have not

been administered a treatment that changes the disease course.

Ounset confounding: Onset confounding refers to the confounding of the effect
of a covariate on the relative risk with the effect of this covariate on the
duration of infection. That is, two groups may appear to have different risks
simply because they were infected at different times. This can only occur

when the backward recurrence times are unknown.

Prevalent follow-up study: A study that identifies prevalent cases, that is,

cases that experienced the initiating event before they were identified.

Prevalent time scale: The time scale from an initiating event to a failure event

.“ for those subjects identified in a prevalent manner. Aside from the follow-up
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time scale, the prevalent time scale may also be of interest in a prevalent
treatment study, if the backward recurrence times are observed, since, for

example, the initiating event may be biologically defined.

Prevalent treatment study: A type of study where a treatment for the condi-
tion of interest is administered to prevalent cases at entry. This differs from
a natural history of disease study since in prevalent treatment studies one is

not interested in the natural progression of the condition.

Quasi-Stationarity: An assumption made on the conditional hazard of failure in
prevalent treatment studies that is unrelated to the assumption of stationar-

ity of onset times.

“Reversal” of the survivor functions: A reversal of the survivor functions of
two groups has occurred if SY(t) > SY(¢) V¢ > 0, but SB() < SE(t) vVt > 0O,

or equivalently with the inequalities reversed.

Stationarity: In a medical setting stationarity means that the incidence of disease
is uniform over time before the cases are identified. It can also refer to the
stationarity of the underlying renewal process, when such a process is the

focus of attention; this perspective is ignored in this thesis.

Truncation time: The time from initiation to the start of the study for an inci-
dent individual. This differs from the backward recurrence time in that all
subjects have a truncation time, which may be smaller or larger than their
failure time, even if they fail before the start of the study, and are thus not

observed as prevalent cases.
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