
r-----------~-~------------------

• 

• 

Gauge Invariance in Perturbation Theory 

Yongjian Feng 

Department of Physics, 

McGill University, 3600 University St. 

Montreal, P. Q., Canada H9A P.T8 

(l1 July 1994) 

A Thesis submitted to the Faculty of 

Graduate Studies and Research 

in partial fulfillment of the requirement 

for the degree of Master of Science 

@Vongjian Feng, July 1994 



~r-; N n)1r. r' (. 11 ~"-' orne ./ _______ 

DlSSerlollon Abslracfs n~rnaflonal I~ arra by broad, ueneral sub,oct cotet~ones Pleose select the one sub/oct wh/ch rnost 
nearly descnbes the content of your dlssertahon Enter the .:orrespondtng four-digit code ln the spaces provlded 

(:,tt-t r~ , ~tZi:J>t.!.~LÙ·b..~ [[h11151 UM·I 
SUBJECT TER'~ 1 SUBJECT CODE 

Subject Categories 

'HI HUMANI'IES AND SOCIAL SCIEIICES 
COMMUN/CATIONS AND THl ARTS Plychology 0525 PHllOS(IPH1', RUI(jION AND A.nClent 0579 
Arch,l""lure 0729 Reading 0535 THlOLQGY Med,evol 0581 
Art Hlltory 0377 Rellgloùl 0527 Phllosophy 0422 Modern 0582 
Clnflma 0900 Science, 071A Black 0328 
Donce 0378 Socondary 0533 Re"~n Alncun 0331 nl'ral 0318 fine Arh 0357 50001 SClencp, 053A Blblrcal 5 "doel 0321 ASla, Austral.a and OcoonlO 0332 
InfarmaliO/l C,<lflnee 0711 Socoology 01 03AO Clerfly 031°~ Canad,an 033A 
Jotornnlr.m 03?1 5poclol 0529 H,stcry of 0320 ElJrop<lOn 0335 
llhru')' XI6nce 0399 Tcocher Training 0530 Ph"olopl) of 0322 laton ,t.mencan 0336 
Muu CommUlll((1tIOn!l 0708 Tcchnol::rl-. 0710 M,ddl.· Eastern 0333 
MUloc 0413 Tests an cosurements 0788 lheolog)' 0469 United Stotes 0337 
SCh <'ammunlwl.on 0459 Vocolfonal 0747 SO</AL ,ClE!IICES H/Stcory of Sc.ence 0585 
T ftUter 0465 

LANGUAGE, LlTERATURE AJID Amenca" Stud,es 032:l Law 0398 
Anthrapollog 1 Pol.hcul 5< lence 

(DUU"'- " UNGUlSTlCS Archaealogy 0324 General 0615 
Gen~ral 0515 

lan~ge CU/fI,r'" 0326 InternCltlonol Law aod 
Admlnlstrahan 0514 Rebhom 0616 
Adult and ContonutnfJ 0516 ne roi 0679 PhYl cal 0327 PublIC Adm,nlstralilln 0617 Ancoent 0289 8uslness Adr,1Inlstral,on 
AgnCl/lturol 0517 lingUlshcs 0293 Gen.!ral 0310 Recreation 081A 
Art 0273 Màdern 0291 Accountr,l9 0272 Sort 01 WClrk 0452 
8111119uol und Mult,cultl/ral 0282 llteralure Ban~ Ing 0770 Soclalogy 
Bl/IIMU 0688 General 0401 Management 0454 General 0626 
Cammurllty CoII"9" 0275 ClasSical 0294 Marketing 0338 Cnmlllala3\; and PI~no"'gy 0627 
Curnculum and 1,,,trllcIII'" 0727 Comporahve 0295 Conad'crn SIJd,es 0385 Dema'3rap'~ 0938 
Eorly <.h,ldhood 0518 Medieval 0297 Econom,c~ Elhnlc ana aCial 5tud,(·s 0631 
rlomontory 0524 Modern 0298 General 0501 Ind,v,cluol and FarTtoly 
rlllOI1CC 0277 Alncon 0316 Agnculto rai 0503 Stuc les 0628 
Guodonce und CouIISclHIlJ 0519 Amencan 0591 Commer :!~ BUSiness 0505 Indush 101 and labor 
HIl<lI'/l 0680 ASlon 0305 Finance 0508 Relat,ans 0629 
Hrg;.er 0745 Ca,ad,cIn IE119111h) 0352 Hlltory 0509 PubliC and Soc,ol VJelktre 0630 
Hisiary 01 0520 (anad,con Fu·nch) 0355 Labor 0510 SoCial SlnJcture and 
Home fcananll(' 0278 Englilh 0593 The<lry 0511 Dev.~lopment 0700 
Industnol 0521 GermonlC 0311 Folklore 0158 Theor." and Methods 0344 
Lon~uoge und L,teruture 0279 latin AmerlCfln 0312 GeograJhy 0366 T r()nSportClllan 0709 
Mo ematocs 0280 Middle Eastern 0315 Gerante loqy 0351 Urban and R;&,onal PIClnnmg 0999 
MUSIC 0522 Romance 0313 Hisiary Wamen's Stu les OA53 
Phllalophy 01 0998 Slav.c and EOII Europpo 1 0314 Ge leral 0578 PhyslCal 0523 

TH. SCIENCES AND ENGINEIERINfS 
IIOlOGICAl 5(IIN«5 Geodesy 0370 Speech 'athol~IY 0460 E"glneenn~ 
Agriculture Geology 0372 Tox coloEIY 0383 Gene;a 0537 

General 0473 GeopnySlc', 0373 Ho~,e fCOM'11ICS 0386 Aerasp'oce 0538 
Agronan,y 0285 Hr,drology 03E18 Agrlcultural 0539 
Anunal Culture and toi ,ncrology OA11 PH' SICAl !,CIENCE'S Automahve 0540 

Nutrlloon OA75 P.Jleobotany 034/5 Pure Sciel1ces Blamedocal 0541 
Animai Patllalogy 0476 PoleoecoloclY 04;/6 Chem,cal 0542 
food Science aniJ Paieontal0<3Y OA 8 Chemls'ry ('v" 0543 
Techr.ol~ 0359 Poleozoolè1JY 09B5 GellProl 0485 Electronrcs and Electncal 0544 

fores~ on Wlldl,1o 0478 Palynal~ Od27 Agrtcult"ral 0749 Heot and Thermodynoml:s 0348 
Plant llture 0479 Phyllcol agr aphy 0368 Ancllytllol 0486 Hydraur.c 0545 
Plant Parhology 0480 PhySlwl Oceon<~~raphy 0415 Bladienl.stry 0487 Indestnal 0546 
Plant PhysoolOgy 0817 InorllanfC 0488 Manne 0547 
Range Mono~em\lnt 0777 HEALTH AND EI.VIRONMEMTAl Nu, eal 0738 Materoals Science 0794 
wOOd T .... hno ogy 0746 SCIIHClS Or<)anl' ()490 Mechanlcol 0548 

Blal~y E1W1ranmentol Snenc~s 
Phè rmcce.JtlCal 0491 Mctallurgy 0743 

.encrai 0306 0768 Phr,slCa' ()49A Mtn.ng 0551 
A,1olomy 0287 Heolth Scll3nces Po·(mer 0495 Nucleor 0552 Genc,d 05,~6 Rac',ahon 0754 Il,o.lolo.he, 0308 

Aud,ol~W 0300 Mathemoloo 0405 Pad.agtng 0549 
Botony 0309 Chem"t erapy 0992 Physlcs Pelrolcum 0765 
Celi 0379 Denloslrv 0567 General 0605 Sonttary and MunlC'pal 0554 
Ecology 0329 Educatoon 0350 Acoush,:s 0986 System SCience 0790 
Entamology 0353 Hospllal Meonagement 0769 Astroncmy and Geotechnology 0428 
Genehcs 0369 HumaI) Development 0758 Astro~hyllcs 0606 OperaI/ons Researrh 0796 
ltmnologr. 0793 Immunolog)' 0982 Atmasphenc $.:Ience 0608 Plastics T echnology 0795 
MlCrobooogy OA10 Textile Technology 099A 
Moleculor . 0307 MediCine and Surgery 0564 AtomlC 0748 
NltlIrOICIlmte 0317 Mental Heclth 0347 Electron cs and EleclnclJ 0607 PSYCHOlOGY 
Oceonography 0416 Nursmg 0569 Elemenlory Portlcle. on General 0621 Nutrition 0570 H;rh 1 nergy 0798 l'IlYSIology 0433 Ob.tetnes and Gynecoljy 0380 flui and Plosma 0759 Bllhovlaral 0384 
Rad,ahon 0821 Occupotlanal Health on Molecu 'Jr 0609 ClmlCal 0622 
V~I .. nnory Sco .. nc~ 0778 

TheraFrY 0354 Nuclea, 0610 /)('velopmenlal 0620 
Zoology 0472 Ophtlla mology 0381 Ophes 0752 Ex~nmentol 0623 

Booph~1C1 Pathology 0571 Rcd,at,on 0756 ln ustnal 062A 
General 0786 Phormocology OA19 Sol,d Slate 0611 Persana"ty 0625 
MedICal 0760 

Pharmofll 0572 Stall,t,c, 0463 PhysoolPÇllCal 0989 

lA.TH SCIENCES Phb"cal hcrapy 0382 AppIied Sciences 
rlychobl?logy 0349 

Pu hc Heclth 0573 Psychometries 0632 
Blogeochco11lstry C425 Radlology 057A Applled ME'chantes 0346 Social 0451 
Gecxhcmlltry 0996 Recrootlon 0575 Computer SCience 0984 

* 



• 

• 

Abstract 

GaUI;e theorics and their DRST invariance are reviewed. Gauge-invariant 

(col or) subamplitudes for non-Abelian gaugc theories are discussed. BnST 

transformations of non-Abelian vertices are derived, and are used to obtain 

the gauge transformation of any Feynman diagram. From this minimal set~ 

of gauge-invariant subamplitudes in perturbation the ory can be found. This 

knowledge is useful in the application of the spinor helicity t~·chnique. and is 

indispensible for future devclopmcnts of non-Abelian perturbaltion theories. 

RÉSUMÉ 

Les théories des jauges et leur invariance BRST sont passées en t"'levue dans 

cette thèse. Les sous-amplitudes invariantes de jauge (de couleur) associées 

aux théories des jauges non-abéliennes y sont discutées. Les tra.nsfùnnations 

nRST de sommets non-abéliens sont dérivées et utilisées pour obtenir 1'., trans­

formation de jauge de tout di.lgramme de Feynman. Des ensembles minimaux 

de sous-amplitudes invariantes de jauge obtenues par la théorie des pertur­

bations peuvent alors être trouvés. Ce résultat est utile à. l'application de la 

technique d'E: l'hélicité spinorielle et indispensaJle au développement futur des 

théories des perturbations non-abélien.nes . 
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I. INTRODUCTION 

TIl(' ('entrai tlwlIl<' of this thcsis is to study the gauge variation of Feynman diagrams. 

This Introduction scrve~ tü explain tlus problem and why it is important. 

The present thCOl'y of elcmentary particlc physics is the Standard Model. It explains 

cvcry availablc.> cxperimcnt in strong, electromaguetic, and weak interactions, provided the 

measUlcd quantities can be calculated by the perturbation theory. The Standard Model is 

given by a G = SU(3)color X SU(2)L x U(l)y gauge theory, so to understand in general its 

implicatioIls and in particular why we are interested in the certain problem disrussed in this 

thesis , we must first have some feeling as to what a gauge theory is. 

The first and standard cxample of a gauge theory is the Maxwell theory of electrodynam­

ks. What is so special about this theory is that although the photon has spin 1, only two 

circularly polarized state.=; of the photon are present instead of the till'ee normally associated 

with Il Spill-l partirle. This faet is Îlltimately related to the masslessness of the photon, 

for in this th<,ory, tht' absence of a photon mass is actually ensured by the presence of ollly 

two ph(Jton pülarizations (a massive spin-l particle must have three polanzations). A gauge 

thCOl'y is roughly spcaking sueh a theory, that the number of polarizations present for a 

Spill-l particlc.> is two ruthcr than three. 

MatlH.>maticaIly, the photon in the Maxwell theory is described by a vector potential 

AJ'(.L·), illtrodured in sueh a way that the pbysics is completely unaltered if an arhitrary 

gradient. is add(>d to this field, ~.e., if A,.. (:r) is replaced by A,..(x) + âJAÀ(x) fol' an arbitrary 

À(:r). This change is known as a gauge transformation and the physical invariance is called 

a gauge i1t1Janance. This invariance ensures that the longitudinal component of AJA(x) is 

physically meaningless (beeause it can hc arhitrary), thus it must be decoupled, and hence 

gauge arbitraries grratly C'omplicate the formalism, especially in a quantum theory where 

only physical degrces of frecdom should be quantized. The asymmetry thus introduced 

bcf,w('<.'ll the different components makes life difficult. Nevertheless, by using the Feynman 

• path intcgral technique, this difficulty can be largely overeome, because in this formalism 

1 
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symmetry is somewhat restored in that t'ven the unphysical longitudinal degrl'l' of frl'l'dom 

can be quantized, but at the expense of having to introduce an C'xtra unphysical d('grC'C' of 

freedom called the ghost to compensatC' for the longitudinal contribution and to d\'l'oupll' it. 

An important property of the r.,·Ia.xwell theory is that the photon couples ulliversally to 

the electric charge. The coupling between a photon and a charge partide depl'nds on th(, 

charge of the particle but not whcther it is a proton or a positron. This pal'ticular pl'operty 

of the theory actually follows from the gduge invariance discussed above. 

In 1904, Yang and Mills [11 \Vere ahle to generalize the Ma..xwell thl'ory iuto a new kiml of 

gauge theories possessing most of these special attl'ibutes. However, therc are now more thall 

one 'photon', or more correctly, the analogy of the photons in this thcol'y cali cd the gauge 

particles. The gauge particles in this 'non-Abelian' gauge theOl'y are st.IlI COll pIed ullivcrsally, 

but insteaà to the electric charge of partIcles as in the Ma.xwell theory, they an' IlOW cou pIed 

to some 'non-Abelian charges'. A 'non-Abelian charge' is a quantum Humber that <:loes Ilot 

add arithmetically. Isotopie spin is a typical example, for although its third compollPnt 

adds arithmetically, berause of the uncertainly principle the other two componcIlts do Ilot. 

It turns out that whatever the non-Abelian charge is, the gauge pal'ticlcs thf'ms('lvcs must 

also carry such a charge and hence they must couple to themselves as well. This is diffcrent 

from the photons of the Ma.xwell theory which are neutral and do not directly couple among 

themselve~.. For that reason, the Yang-Mills theory turus out to be a more complicatcd 

gauge theory. 

According to the Noether theorern, a conserved charge is associated with a syrnmetry 

group of the dynarnics. For example, the conserved electric charge in the Maxwell thcory is 

associated with a U (1 )em invariance. In general, an arithmetkally additive quantum number 

is associated with a U(l) group, and a non-Abelian charge is associated with a non-Abelian 

(non-~ornmutative) group like SU(N). Every hadron carries a non-Abelian charge called 

color, associated with the symmetry group SU(3)color, and according to the Standard Model 

it is this col or that is the source of aU strong interactions. Sirnilarly, every partiele carries 

a weak isospin associated with the group SU(2)L, and a weak hypercharge associated with 

2 



the group U(l)y, and it is the univcrsal coupling to these charges that is responsible for the 

• elcctromagnetic and the weak interactions. 

• 

Quantum field theories are difficult thcories to compute, and most of the known results 

arc obtaincd in perturbation theories. Perturbation-theOl'y calculations proceed through 

the evaluation of Feynman diagrams. For a complicated process, and when a high degree 

of accuracy is required, many diagrams have to be evaluated with each diagram containing 

many terms This is cspecially bad for gaugt' theories, for cach Feynman diagram is generally 

not gauge invariant, though thf' sum, representing a physical process, must be. In other 

words, many gauge-dependent terms must be present in individu al diagrams that eventually 

get cancellcd out. In non-Abelian gauge theories where there are more diagrams and more 

terms than the Maxwell theory, the complication can become so serious as to retard seriously 

our ability for computations. For that reason it is important to find ways to calculate these 

diagrams that the gauge-dependent terms, which eventually must be cancelled out at the 

end, occur as little as possible in individual diagram5. Under a gauge transformation, the 

content of different diagrams mix, so it is conceivable that a suitable gauge choice can result 

in having less gauge-dependent terms in each diagram. In fact, a special technique ~mown as 

the spinor helicity technique [2] [3] is available to help us simplify matters along these tines. 

Recently it was also realized that reorganization in a superstring-like way can accomplish 

sorne of the goals as weil [4J [5]. To be able to devise new techniques along these Hnes, or 

even to be able to utilize the existing techniques efficiently, we must understand thoroughly 

how a gauge transformation shifts the contents of a Feynman diagram to another. The , 

study of this problem is the central thcme of this thesis. For this purpose, this thesis is 

arranged as follows' In Sec.lI, we briefly review the contents of Abelian and non-Abelian 

gauge theories. Theil we use current conservation to discuss the so-called Ward-Takahashi 

identity in QED in Sec.lII. A review of BRST transformation is presented in Sec.IV, together 

with an application of this transformation in proving Ward-Takahashi identity and Slavnov­

Taylor identity. Finally, in Sec.V, we use BRST invariance to discuss the gauge invariance 

of perturbative scattering amplitudes in QED, and in QCD, especially the gauge invariant 

3 



• 

• 

subsets in both of them . 

II. GAUGE THEORIES: QED AND QCD 

In this thesis, we will use the following metric 

The QED Lagrangian is 

where 

g= 

1 0 0 0 

o -1 0 0 

o 0 -1 0 

o 0 0 -1 

A. Abelian gauge theory: QED 

'!/J(x) is the spinor field satisfying the following equal-time anti-commutation relation 

and A(x) is the vector potential for the photon field. 

(2.1 ) 

(2.2) 

(2.3) 

The local symmetry for QED is a U (1) gauge symmetry. The corresponding local trans-

formations are 

tJ1(x) ~ tJ1(x)' = e-1o(rl'!/J(x) , 

1jJ(x) -+ ;jj(x)' = e1o(rl1jJ(x) , 

A,,(x) -+ A~(x) = A~(x) + !éJ~a(x) , 
e 

4 

(2.4) 
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where n(x) is the local infinitesimal transformation parameter. The Lagrangian is invariant 

under this transformation, as is the action S, which is defined to be the space-time integral 

of the Lagrangian density. 

To determille the conserved current, we must use Noether's theorem, which states that 

for each continuons symmetry that preserves the action 

s = J Ldt, (2.5) 

there is a conserved current J satisfying 

ô~J/J = 0 . (2.6) 

The corresponding charge Q given by 

(2.7) 

is a constant of the motion. Note we used L as the Lagrangian and C, as the Lagrangian 

density: 

(2.8) 

The proof of Noether's theorem can be found in any text book [6] [7]. 

For QED, its conserved current is related to its U(l) global symmetry, and is given by 

(2.9) 

The charge is just the electric charge Q 

Q(t)= f d3xJO(x) 

= f d3x(1jJt(x)1JI(x)) . (2.10) 

5 
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B. Non-Abelian gauge theory: QCD 

QCD is more difficult than QED because the local transformation is now a non-Abellan 

SU(3) color group, which has many generators that do not aIl commute with one anothcr. 

The non-Abelian gauge theory was first studied by Yang and Mills in 1954. They tri(>d 

to use it to describe the interactions between hadrons which posscss an SU(2) isotopk 

spin symmetry. We know now that 8U(2) is only an approximate symmetry in strollg 

interactions, but their formalism can be equally well applied to the 8U(3) col or symmctry 

which is believed to hold in strong interactions between the constituents of the hadrons. 

We shaH now discuss the non-Abelian gauge theory posscssing an SU(N) symmctry. The 

group 8U(N) has N2 - 1 generators. We shall use the following symbols, 

TG (a = l,' .. , N 2 - 1) , (2.11) 

to denote the generator matrices in the fundamental representation, normalizcd such that 

(2.12) 

The commutation relation defining the structure of the group is given by 

(2.13) 

where the structure constant r bc can be taken to be totally antisymmet.ric in its indices on 

account of (2.12) and (2.13). 

The infinitesimal gauge transformation of fermion field 'l1(x) in the fundamental reprc-

sentation is 

6'l1(x) -+ -iT . o(x)ll1(x) , (2.14) 

where T·o(x) = Ta (tG (x). To compensate for the local variation of (2.14), wc must introduce 

the (gauge) fields AIJ(x) = A~(x)Ta, which transforms like 

ISAa = -~ô oG + labe AC Ob 
~ gIJ IJ' 

(2.15) 

6 
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where 9 is the coupling constant, the analogy of the e in QED, and the covariant derivative 

(2.16) 

into the Lagrangian, as in QED. Accordingly, the gauge-invariant Lagrangian can be ob­

tained from the free-field Lagrangian by replacing the derivative â with the covariant deriva-

tive D: 

(2.17) 

(2.18) 

PatL integral is the most convenient tool to quantize a gauge theory. In its most straight-

forward form, the vacuum functional is given by the path integral of the exponential of the 

action: 

(2.19) 

However, this path integral is not well-defined because gauge invariance makes it infinite. To 

see that, imagi ne the integration space to be made up of a series of hypersurfaces, obtained 

from one another by gauge transformations. If we divide the path integration in (2.19) 

first into integrations on these hypersurfaces, and then integrations perpendicular to these 

hypersurfaces, thm the latter integral is divergent because gauge invariance of the action 

S = J d4xC(x). For that reason the sensible path integral should be carried out over only 

one of these many hypersurfaces. 

There are no unique way to determine these hypersurfaces. Suppose the hypersurface on 

which to carry out the path integral is defined by the gauge-fixing condition 

(2.20) 

then the naive vacuum functional is given by 

7 
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(2.21) 

where we have inserted 

(2.22) 

and A~ is the gauge transformation of AI-!' ~ -/ is caUed the Faddeev-Popov dcterminant, 

and it can be written as 

Now (2.21) is changed to 

~f= ! 6(f°(A:))[dB] , 

=1/d t(6(t(A:))) 
e 6Bb ' 

== 1/detM . 

w '" f[d8] !ldA]6(r(A/J)) exp (i f cI'x!(x)) det M . 

(2.23) 

(2.24) 

The integral J[dA]o(f°(AIl)) det M can be identified as the integral along the hypersurface 

defined by (2.20), and the integral over dB can be recognized as the integral which gives rise 

to infinity to (2.19). We should therefore throw the B integral away, and reclefine the path 

integral after gauge fixing to be 

(2.25) 

Now wc waut to move the o-function and the determinaut to the exponential. Using the 

integration identity 

(2.26) 

over the Grassman variables c and ë (known as the ghost fields), the dcterminant can be 

moved up to the exponential. For the o-function, note that the more general gauge fixing 

condition 

(2.27) 
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where Bt'J(x) is an arbitrary function of space and time, does not change the Fadeev-Popov 

determinant det M provided 

(2.28) 

Since aIl the ot.her terms in W, are independent of BO(x), we can put the following integral 

inta- W, as a constant, 

(2.29) 

(" is ,called gauge fixing parameter), and obtain a new vacuum functional which we will 

denote as W. It is 

W= /[dA][dB]6(r(A IJ - Ba)) exp (i / tfx[C(x) - 2
1
" B 2 (x)]) det M 

= /[dA] exp (z J crx[C(x) - 2\ (r(A IJ ))2]) det.N/ 

= /[dA][d(~][dc] exp(i J ct1x[C(x) - 2\ (Ja(A,J)2] 

+i J crxcr Y [ëa (x)Al(x, Y)abCb(Y))) • (2.30) 

Now remember that the ghost (c and ë) fields introduced in (2.26) are Grassrnan variables, 

so they satisfy anti-cornmutation relations. However, the c-field does not have any Lorentz 

index, so it must be a scalar field. Hence it violates the usua} spin-statistics theorem, and 

they cannot be physical. In the language of Feynman diagrams. this means that the ghost 

cannot be an external tine, and it must be absent in aIl tree diagrarns. However, there can 

be internaI lo.op(s) consisting of ghost(s). 

It is cornrnon to use the covariant gauges, where 

(2.31) 

Then 

(2.32) 

where 
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(2.33) 

is the covariant derivative for the adjoint representation (compare (2.11)). Inspite of the 

fact that the covariant derivative depends on the SU(N) representation of the field it works 

on, for economy we continue to use the same notation DiJ to represent ~t. 

The sameformalismcan be applied to QED. Thcre, the ghost introduced above is actually 

decoupled from either the gauge field or the spinor field. Therefore the C'ontnbut.ion of the 

ghost is just a constant, which can be absorbed into the normalization factor, and it is Dot 

necessary to consider ghosts in QED at aIl. However, the language of ghosts will still be 

useful when we discuss the BRST transformation as weIl as the gauge invariance of the 

Green's functions and the scattering amplitudes (see Sec.III). 

Having determined the effective Lagrangian density for QED and QCD, we can obtain 

the Feynman mIes from them as shown in Appendix B. 

III. VEC'1'OR CURRENT VlARD-TAKAHASHI IDENTITY 

The conserved current J~(x) = ij;(xhll'IjJ(x) in QED enables one to derive the Ward­

Takahash" identity [8] for Green functions. Consider for example a three-point Green func­

tion in QED as shown in Fig. 1 . It can be written as 

GJI(X, y, z) = (OIT (JIl(x)ij;(y)'IjJ(z)) 10) . 

Under the gauge transformation (2.4) the variation of this Green is proportional ta 

ô~GJI(x, Y, z)= BIl[ O(xo - yO)O(yO - zO)(OIJ,,(x)ij;(y)tjJ(z)\O) 

+9(yO - xO)8(xO - zO)(OIij;(y)J,,(x)tP(z)lO) 

+8(yO - zO)8(zO - xO)(OI~(y)'IjJ{z)JJI(x)lO) 

-8(xO - zO)8(zo - yO)(OIJ,,(x)'IjJ(z)~(y)lO) 

-8(zo - xO)8(xo - yO)(OI1/J(z)J,,(x)~(y)lO) 

-8(zo - yO)8(yO - xO)(OI",,(z)~(y)J~(x)lO) ] . 

10 
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z_ ........ -t 

FIGURES 

, , , , 
x: 

1---- Y 

FIG. 1. Three-point Green function. The dots at the ends of the fermion line mean that we 

include the propagators there. 

Using the identity for O-function 

(3.3) 

and the conservation of the eurrent JIJ , we can simplify the RHS of (3.2) to 

~GI'(X' y, z) = 6(xo - yO}(OIT([Jo(x) , ,,&(Y)]l,b(z))IO) + 6(xo - zO)(OIT(tP{y)[Jo(x) , t/J(z))) 10) . 

(3.4) 

The commutators in (3.4) can be computed using the explicit expression of JIJ , and {2.3}. 

This gives 

(3.5) 

{3.6} 

Using this then (3.4) becomes 

é1;GI'(x,y, z) = 6(x - y)(OIT(t,&(y).,p(z)) 10) - c5(x - z){OIT{t,&{y)tJ1{z» 10) . (3.7) 
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This is the Ward-Takahashi identity . 

Graphically the ahove identity can he represented as Fig. 2. 

=- li 
.' ,,' 

z • 

z 

1--___ Y 

~--y + 

z 
• 

" 
"'. y 

FIG. 2. Ward-Takahashi identity. These diagrams are obtained by sliding the photon Hne 

to either end of the fermion line, with an appropriate sign introduced. The cross herc menus a 

derivtive 0l'(operating on AI'), and the dots at the ends denote propagators. Thick solid Hnes, thin 

solid Hnes and dashed tines represent fermions(quarks, or electronsl, gauge bossons, and ghosts 

respecti vely. 

Similar identities can be obtained for higher-point Green's functions. Consider, for ex-

ample, Fig. 3. Then 

(3.8) 

where the T"'-product is the covariant T-product. It differs from the ordinary T-product in 

having aU the commutators between J's removed. The calculation is almost the same 88 

(3.2), and we get 

a~GI'(X,y, z) = (OIT" (Jill (X2)J1'3 (X3) .•. JI'll (Xn )'Î1(Y)'lI(Z)) IO)64(x - y) 

-(OIT"' (Jill (X2)JI'3 (X3) ••• JI'_(Xn )'Î1(Y)'lI(Z)) IO)64(x - z) . 
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z 

y z 

x" 

....... ~-.. y 

XI , , , . . , , 

::: 

FIG. 3. Ward Takahashi idcntity for n-point Grecn's function. 

....... ~-.. y 

This is the general form of the vector-current Ward-Takahashi identity. It shows the 

consequence of currp..:t conserva1-Ïon on Green 's functions. It can also be used to sir.lplify 

calclliations and to show the gauge invariance of the scattering amplitudes. There is another 

way to dcrivc it, via tht' so-callcd 13RST invariance which we will discuss in Sec.IV. We shan 

defer further discussiOllS on the consequences of the Ward-Takahashi identity untH then. 

IV. BRST TRANSFORMATION 

As wc saw in Sec.II, a gauge fixing is required to quant.ize a gauge theory. As a result, 

the cffective Lagrangian dCllsity wc get is no longer gauge invariant; the local symmt'try is 

bl'OkCll by the gauge-fixing and the ghost terms. Surprisingly, there is still a remnant global 

symlllctry left in the effectivc Lagrangian, known as the Becchi-Rouet-Stora-Tyupin (BRST) 

13 
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symmetry [9]. This new symmctry provides a powerful tool to study the l'OIlS('<}nClH't'S of 

gauge invariance in a gauge theOl·Y. One obtains in this \Vay thc Slavllov-Taylor id('ut.it.y 

[10], which is the analogy of the Ward-Takahashi idclltit.y in QCD, and is usdal in studying 

the gauge invariance and unitary of the exact scattcrillg amplitudps. 

We shaH review in the section how the BRST invariallCP is obtaincd and SOIllC of it.s 

applications. 

First we consider the effective Lagrangian density without the fcrmiolls. 

C= _!(Fa )2 - ~(O. A)2 - (?f)l'D CO 4 IJlJ 2,,\ l' , 

= Cgo + 'cgl + Cgh , (4.1) 

where we have ch08en the covariant gaugcs. Cgl1 is invariant ullclcr thc gauge transfonllatioll 

(4.2) 

N ow we choose a special ct 

(4.3) 

where both ca (ghost field) and ç are Grassmann variables [G], and ç is a constant. Then 

the gauge fixed Lagrangian density (4.1) is invariant under a global transformation 

5A~= -!(Dl'cU)ç , 
9 
1 

5cu= _"2Jabcè ccç , 

5~= -+-(01' .4;)ç . 
1\9 

( 4.4) 

We can sec that the CgQ is invariant bccause the (4.3) is just a special choicc of (2.15). 

As for the Cg!, we have 

de.!= 2\ (a· A)2 - L [a. (A" - ~(D"C")Or 
= ~(a. A)2 - ~ [(a. A)2 - ~a. AQéJl'[D ~cQ]ç + ~(D ,CU )2e] 

2,,\ 2,,\ 9 1 92 1 

(4.5) 
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• Rcmcmbcr that ~ if; a Gra.ssmann variable, so 

t,2=o, (4.6) 

and wc have 

(4.7) 

Theil .cglt has the following variation 

= -l?{J1'8(Dl-'cU
) - t5ff{JJl DjJca , 

= -l?{)1'8(D1,c
a) + :g (DI-' A~~al/ DI/ca) , 

= -l?DjJ8(DjlcU
) - \1 ({JI-' A~)(ér DI/ca)~ , 

/\g 
(4.8) 

whcrc ',,te have used 

(4.9) 

Thercfore wc ha\'e the variation of the effective Lagrallgian density as 

(4.10) 

Recall frolll (2.16) that 

(4.11) 

we have 

8(Dl-'cO) = (JI-'( _~rbccbcC~) + grbc
( -~Dl'cb)~cC + grbc At( -~rel ced)ç) 

• 
1 1 = D"( -"2rbcécC~) + grbc At( -"2rel ced)ç) + lrbc(Dl'é)~cC + grbc Jbel d A~çcc 

= 0 . (4.12) 
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• Bence we have proved that the effective Lagrangian density (4.1) is BRST invariant . 

When we include the fermion fields in the Lagrangian density, the gauge-v.x.ing term and 

the ghost contribution remain the same. The BRST transformation of fermions, 

(4.13) 

can be considered as the same choice orthe gauge transformation as (4.3), hence the following 

Lagrangian is invariant. 

c, = ~i(D",i'" - m)\lI . ( 4.14) 

Thus the total Lagrangian CcII 

(4.15) 

is also BRST invariant. 

A. BRST invariance and the Ward-Takahashi identity for QED 

Let us discuss the Ward-Takahashi identity again. We will now use BRST invariance to 

get the three-point Green's function identity we obtained before in (3.7). 

Consider a trivial three-point Green function 

(OIT (,p(:Z:)ë(y)~(z») 10) . ( 4.16) 

We call it trivial because the Green's function above is zero owing to the conservation of 

ghost numbers. This does not matter because what we want to calculate is ita variation 

un der BRST. 

c5BRsT {OIT (,p(:z:)ë(y)~(z») 10) = 0 . ( 4.17) 

• Now substitute in the variation of the individual fields from (4.4) and (4.13), then wc get a 

non-trivial identity wluch will be proved later to be the Ward-Takahashi identity. 
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- 1 -
0= -i(OIT(t/J(x)c(x)ë(y)t/J(z))IO)+ ,xe (0IT(t/J(x)8· A(Y)lI'(z))lO) 

-i(0IT(tP(x)ë(y)c(z)~(z))I0) j ( 4.18) 

thcrefore 

(0IT(1P(x)8· A(y)tj,(z))I0)= -iAe( -(OIT(c(x)ë(y)t/J(x)t,b(z))lO) 

+(OIT(c(z)ë(y)t/J(x)~(z))lO)) . (4.19) 

As discussed at the end of Sec.II, the ghost fields are decoupled from the electron and the 

photon fields in QED. As a result, the ghost fields on the RHS simply pair up to be the free 

field propagator, so that we have 

{OIT( 11 {x)8 . A(y)?jj(z ))10)= -i,xe( -(Ojc(x)ë(y)lO)(OIT( lI'(x)?jj(z) )10) 

+(Olc(z)ë(y)lO) (OIT( t/J(x)~(z) )10)) . 

- . 

w 
• · · · 

w 

....--y 

........... _ y + z_----t 

FIG. 4. Ward-Takahashi identity. 

w 
• · · · 

(4.20) 

This equation can be graphically represented in Fig. 4 ,where a cross in the first graph 

means a derivative a" (operating on A"), and a dot ai the end of a line means that there is 
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a propagator there. We use thick soJid lines to denote fermions, i.e. eledron. in QED and 

quarks in QCD. The thin solid lines are used to denote photons or gluons. Dash lines mean 

ghosts. 

By comparing Figs. 4 and Fig. 2, we see that (4.20) is very similar to the Ward-Takahashi 

identity (3.7), with the first term in (4.20) corresponding to the first term in (3.7), and 

the second term in (4.20) corresponding to the second terms in (3.7). There are however 

various superficial differences between the two identities: the LBS of (4.20) contains the 

field A but not the current J, and the RHS of (4.20) contains additional fa.dora of the ghost 

propagator functions. However, these additional effects cancel and that results in having 

the two identities the same. To see that, notice that a Green's function ending with A(y) 

and a Green's fun ct ion ending with J(y) simply differ by the presence of a bue photon 

propagator in the former case, together with a vertex fa.ctor ie. In momentum space, this 

bare propagator is given by 

-(g,w - PIIPll/p2) - ).PIIPlI/p2 

p2 (4.21) 

When we contract this with pli, we obtain -).PlI/p2, so we can symbohcally write ôA = 
-ie)'(1/p2)8J. The 1/p2 factor just ca~.cels out with the ghost propagator on the RHS, 

so we obtain once again the Ward-Takahashi identity (3.7). This BRST way of proving 

the identity is useful because it is this form that can be generalized relatively easily to 

non-Abelian gauge theories, as we shall see in the next section. 

Generalization to higher-point Green 's function is straight forward. Similar to (4.16), we 

consider the BRST transformation of a trivial Green 's function 

(4.22) 

When we substitute in the variation of the fields, we should remember that we are discussing 

QED, so the SU(N) color algebra reduces to U(l) algebra. Thus the second term in the 

RHS of equation (4.11) disappears, and we get the following identity 
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• = "e(i(OIT(c(x)ë(Y)1P(x)Alll (wt) ... AIl"(wn)"jj(z))IO) 

-i(OIT(c(z)ë(Y)1P(x)Alll (wd ... Ail" (wn)~(z))IO) 

1 -
+-(OIT(DIJI c( Wl )ë(y).,p(x )Alll (W2) •.• AIJ" (wn)"p(z)) 10) 

e 
1 -

+-(OIT( DIJle( w2)ë(y).,p(x)AIl2 (wd ... Ail" (wn)"p(z)) 10) 
e 

+ ... 
1 -+ -(OIT(DIJ" c( wn)ë(y)'l/J{x )A1l2 (wd ... AIJ,,-I (wn-d"p(z) )10») . 
e 

(4.23) 

Taking the connccted-diagram part of the ab ove equation, only the first two terms contribute 

hecausc the rcst of thcm correspond to disconncctcd diagrams due to the fact that the ghost 

fields arc dccoupled from the electron and the photon fields. Therefore we have 

(OIT(.,p(x)D· A(y)AIlI (wt) ... AIJn(wn)"jj(z))IO)c 

= -iAe( -(Olc(x)ë(Y)IO}(OIT(.,p(x)AIJl (wd ... Ail .. (Wn)~(Z)) 10) 

+(Olc(z)ë(y)lO}(OIT(.,p(x)A'll (wt) ... AIJn (Wn)~(z))IO)) , 

which cau he rcpresented by Fig. 3 too. 

(4.24) 

Whcn we cOllsider on-shell scattering amplitudes, we must multiply the Fourier trans-

formation of the corrcsponding Green's function with 

1 

II(p; - m;) 
1=1 

(4.25) 

whcre 1 is the llumber of the external particles, and theu take the on-shelllimit Pf = m;. As 

wc cau sec in Fig.3, cach of the diagrams on the P,HS h~ a ghost line attached to an end of 

the fcrlllion line. This destroys the fermion pole otherwise present 50 the diagram vanishes 

after beillg multiplicd hy (4.25) and having the on-shelllimits taken. This provcs the gauge 

invariancc of the exact scattcring amplitudes. 

B. QCD Slavnov-Taylor identities 

• Applyillg the BRST transformation to QCD Green's functions, we obtain the Slavnov-

Taylor idcntitics. Wc w;ll give here a simple example to illustrate it. 
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First we consider 

(4.26) 

which is shown in Fig. 5. 

To get the identity for this Green function, we must study the BRST variation of allother 

Green function: 

(4.27) 

Write out everything on the LHS of (4.27), we will get the identity we want as follows 

ô~(OIT('lI (y)A~(z )A! (x)'ÏI( w) )10) = '\g( i(OIT(Tece (y)t'(x)'lI (y)A:(z )IÏJ( w) )10) 

-i(OIT(Tfce
( W )t(x) 'li (y)A~( z)1ÏJ (w) )IO} 

+!(OIT(ô"cO(z )é(x) lit (y) lÏJ (w) )IO} 
g 

+ rcd(OIT(cd(z )t'(x) \fi (y)A~( z)1ÏJ (w) )IO)} . (4.28) 

This can be shown directly by the graphs as in Fig. 5, where as before, a cross indicates 

a derivative (a divergence when it is on a gluon line, and a gradient when it is on a ghost 

line). For QCD, the ghost no longer decouples from the other particles. This is indicated 

in the graphs by having the (dash) ghost lines drawn through the shaded circle, with the 

implication that interactions with them may take place inside . 
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y • 

Il z li l 

y y ....... .-.._ w 

x x z 

y ~ ...... _w + y .............. _w 

FIG. 5. An exampl..:! of QCD Slavnov-TayloI' identity. 

If we consider the corresponding on-shell amplitude, then the first, the second and the 

last tenus on the RHS of (4.28) vanish because of the same reason as before, i. e., the absence 

of a pole to cancel the Klein-Gordon factor in (4.25). As for the third term, remember that 

the cross means a derivative, it contains a factor 

(4.29) 
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Hence the RHS of Fig. 5 vanishes and the on-shell scattering amplitude is gauge invariant . 

v. GAUGE INVARlANCE OF PERTURBATIVE AMPLITUDES 

We showed in the proceeding section that the exact OIl-shell scattcring amplitudes are 

gauge invariant. This must persist order-by-order so it follows that the perturbative ampli­

tudes in each order are gauge invariant. However by analysing the perturbative amplitudes 

in detail, one finds that such invariances are composed of surns of classes of terms {'ach 

of which is already gauge invariant. It is this refined gauge-invariant property of the per­

turbative scattering amplitude which we would like to get in this section. Such refined 

gauge-invariant properties are useful in practical ca1culations becallsc a scparate and conve­

nient gauge choice can be made for a different class, thus allowing the computations to be 

much simplified. 

A pertllrbative scattering amplitude con tains many terms given by a sum of Feynman 

diagrams. The who!e amplitude is gauge invariant but each individual Feynma.n diagram or 

each term is not. That is to say, each Feynman diagram contains gauge-dependent terms, 

and these terms will be canceled when they are summed up in a physical process. Out we do 

not al ways need to sum up ail the terms to get gauge invariance. It is sometimes possible to 

divide the amplitude of a given order into the sum of gauge-invar;ant subamplitudcs. The 

purpose of this section is to find out how each individual Feynman diagram transforms under 

a gauge transformation of the wave function of an external gauge particle. For this purpose, 

we shaH use the Feynman gauge (,\ = 1) throughout for gauge propagators. Once the gauge 

property for a single photon/gluon is known, the gauge property when aIl the external 

photons/ gluons undergo a simultaneous gauge transformation can he easily obtained. 

A. QED perturbative amplitude 

To discuss the gauge variation of Feynman diagrams, first look at the variation of the 

fundamental construction units of a Feynman diagram: the vertices. As we can sec in 
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Appendix At the QED Feynman rul~s contain only one kind of vertices. If we introduce 

gauge transformation to the photon line attached to one of these vertices, its variation can 

he rcpresentcd graphically by Fig. 6. 

c c C 

1 \ 
1 \ 

1 \ , \ , \ , \ 

JI '" ... , , ... , .. , 

- . ,,' • • - • • - . 
a b a b a b 

la) lb) le) 

FIG. 6. Variation of a QED vertex. 

This can be seen from the BRST technique discussed in the last section, but a direct proof 

using the Feynman rules can also be given, as foUows. The LHS of the Fig. 6 corresponds 

to the following vertex factor 

le ((pc)1J (Pb + PC)/I~II _ m + if "'fIJPb'YlI _lm + If) 
= le (( + )/1 1 +' ((pb + Pc)IJ'Y1J - m - (]It'YIJ - ml) /1 1 +.) 

Pb Pc 'Y/I - m If Pb "'fil - m u 

= le (Pb'Y/I _1 m + u - -(P-b-+-Pc-)-II"'f-
1
11---m-+-z-f ) . (5.1) 

Now we can recogllize the two terms in the last line of (5.1) correspond to the two graphs 

in the RHS of Fig. 6 respectively. The sole purpose of the dashed (ghost) Hne is to indicate 

how the momentum Pc is injected into the fermion Hne. 

Thcre are two possihilities of what an end point of the fermion tine in the LHS of Fig. 6 

can be: a vertex point or an externat end. Strictly spcaking, for the latter possihility, we 

should take off the dot at the end, because t.here is no propagator for an ext~rnal Hne . 

First, if point a in Fig. 6( a) corresponds to a vertex, t.hen we have a new vertex like 
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Fig. 7(a), obtained from Fig. 6(b) . 

b 

, ...... 
a 

(a) 

JI , 
, 

1 
1 

1 , , 

b 

a 
(b) 

FIG. 7. (a) is a new vertex with vertex factor v~, (h) is the ordinary vertex with vertex factor 

Va. The photon line in both vertices can be either internai or external. 

Since the spinor QED vertex factor contains no momenta, the vertex factor v~ in Fig. 7(a) 

is equal to Va in Fig. 7(b). 

b d b d b d 

1 l • • 
1 ./i 

1 

. . . . . . 
~, , , 

' . r· .~ • • a • C • c 

(a) (b) (e) 

FIG. 8. A graphical identity in QED. We assume that the momentum Pc is incoming and the 

momentum Pd is outgoing. 

Fig. 8 is an example illustrating this fact. Explicitly, its LHS is given by 

B' 1 liA' Va(~ -P) , Pd111 
pc + Pd 'Y,., - m + lE 

= B'va (]fc + 11.:) 1 + ' (P~1" + Pd'YII - m - (p~'Y" - m))A' 
C d 'YI-' - m lE 

-+ B'v~A' = B"vaA' . (5.2) 

where A' and B' den ote aU the irrelevant factors, and the arrow in the last step separates 

out the term corresponding to Fig. 7(a). 
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Sècondly, if point a is an external end, the result of the diagram vanishes because in that 

case, the fermion propagator is not present to cancel the on-shell Dirac factor ((Pa)IJ'"YIJ - m). 

Wc will consider twa simple examples ta illustrate how Fig. 6 can he used to show 

directly the gauge invariance of on-shell amplitudes. The first example, shown in Fig. 9, 

is the Compton scattering amplitude at tree level. The gauge invariance with respect to 

the first photon line is demonstratcd directly in the diagram. A similar proof is valid for 

the gauge invariance of the second photon Hne. As a result, the whole amplitude is gauge 

invariant under a simultaneous gauge transformation of all the lines, but as this example 

shows, the perturhative proof accomplishcs more: we have now demonstrated that gauge 

invariance is valid separately for each photon line. This very simple example is typical, in 

the sense that one can obtain more detailed information about gauge invariance hy looking 

directly at the Feynman diagrams. 
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2 

FIG. 9. An example of four-point function a.t tree levei. 
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The second example, shown in Fig. 10, is a one-Ioop light-light scattering amplitude . 

Again the gauge invariance of photon line 1 is demonstrated directly in the diagrams, and 

the gauge invariance of otlier photon lines cau be proven similarly. Note that as far as the 

gauge invariance of the line 4 is concerned, it is immaterial whcther the other thrcc photon 

lines are on shell or not, thus making the sarne proof valid even when thcse othcr three 

photon lines are attached to a much larger diagram. 

+ + 

= + 

+ + 

= 0 

FIG. 10. An example of four-p:lint function at one-Ioop level. 

From these two exampIes, we can conclude in general that if we introduce gauge trans­

formation to an external photon Hne, say Hne a, individual Feynman diagrams are usually 

gauge dependent; we must sum up a subset of diagrams to get gauge invariance. This subset 

of diagrams can be obtained by inserting tine a in ail possible positions along a fermion line, 

while keeping the other parts of the diagrams unchanged. See Fig. Il for an illustration . 
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a b a 

____ ~--~~--~-------2 

b a a b 

__ ~~ __ ~ __ --~-------2 

FIG. 11. An invariant subsct in QED. As wc cao see, !ine a is joined at aIl possible positions 

on Hnc 12 

A subset of diagrams invariant under gauge transformation of every external photon Hne 

can thus be obtained from any Feynman diagram by adding to it aIl thE' other diagrams 

obtained from this one by permuting the photon vel'tices along each fermion Hne. 

B. Gauge invariance for non-Abelian gauge theories 

Non-Abelian gauge theory is more difficuit than QED because we have to consider the 

color (or similar) factor, and more impol'tantly because there are additional vertires in 

their Feynman rules. We shaH confine ourselves in this thesis to U(N) and SU(N) gauge 

theories, and shallloosely rerer to their quantum numbers as 'colors'. For the purpose of 

cOllsidering their gauge invariance, it is simpler first to make a calaI' decomposition of the 

colored amplitude, as discussed below . 
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1. color-decomposition 

A scattering amplitude, exact or perturbative, contains information on the momcntum, 

spin, and coJor of the particles involved, and can he written in general as 

(5.3) 

wherc c, is the color part and ai denotes the rest. The amplitude A is gauge invariant, but 

depending on the choice of CI, each Q'I may not necessary he gauge invariant in generaL We 

would like to show that a proper choice of Cil in terms of the gcneralizcd Chan-Paton factors, 

willlead to gauge-invariant subamplitudes a,. The Chan-Paton factors wcre first introduced 

in open string the ory [11], have been used later on in field·thcorctical tlcc-lcvcl diagrams 

[12} [13} as well as one-Ioop diagrams [14} to simplify calculations. We propose to do this 

in any number of loops. The ftait details of the Chan-Paton factor and the gencral proof for 

the gauge invariance of a, will be given in Appendix B. To illustrate how that works, we will 

discuss the n-gluon amplitude in the tree approximation here in the text. 

Let Ta(a =- 0, 1,2,' .. ,N2 
- 1) be the gcnerators of U(N) in the fundarneutal represen­

tation. By deleting TO they also form the generators for SU(N). The structure constant 

r bc in the commutation relation 

(5.4) 

is fixed by the following normalization which we adopt 

(5.5) 

The corresponding U(N) completeness relation is 

N2-1 

:E (ra)I}(TO)kl = 8i18}1c . (5.6) 
0=0 

As shown in Appendix B, the Chan-Paton factors for a. n-gluon amplitude in the tree 

approximation are given hy 
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(5.7) 

and its non-cyclic permutatiùns of the n generators inside the trace. The gauge inm,riance 

of the colorlcss subamplitude a, follows from the independence of CI' To praye the latter, it 

is sufficient to show that the various Cl are mutually orthogonal in the large-N limit [15]. 

For that purpose, let 

(5.8) 

where {aba2,···,an} is one of the l!lon-cyclic permutations of {1,2,···,n}. These color 

factors span a vector space, with its dual space being spanned by the dual vectors 

(5.9) 

To get the normalization factor K, defined by c, . è, == k Eal,au .. ,a .. c,è, = 1, we use (5.6) to 

compute and obtain 

1 
- -Nn -1 - K - , 

(5.10) 

thus 1\ = Nn. 

Now we can prove that the inner product of two different vector vanishes in the large-N 

limite For example, consider Cl • è2 with 

The normalization factor for them is K = NS, and the inner product is 

Cl • è2= L tr(TIT2T3rTS)tr(TIT4TST3T2)~ 
K 1,2,3,4,5 

N3 
= N5 

=0. 
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In other words, ulliess the order of the indices match, as betW('l'll CI and èll ut ht'rwise Wt' 

will have less power of N in the llUlllcrator thall the dpllomillator, and thl' dot product CI' (') 

would vallish at the infillitc-N limit. This statelllellt is trul' abo [or llluiti-loo}> l'a:-;{'s, whil'h 

will be proved in Appelldix D. 

2. color-07-ientcd tliagmms 

As we mentioned in the last subscctioll, a scatterillg amplitude in QCD l'au I)l' dt'COlll­

posed into gauge-invariant subamplitudes, cach of which corrcspoll(h; to il difft,l't'nt colol' 

factor. To study this color subamplitude, a simple way is to use tht' ('olor-ori('lltpd diél~ral11s 

[4]. 

-~-- _____ --J __ 
(a) (b) (e) 

(d) 

FIG. 12. Ordinal'y vCl'ticcs in QCD 

The main idea for color-dccompositioll is to divide a Feyumau diagralll iuto diffen'ut. 

parts according to their col or factor. To do so we start with vertie('s, the basic elelllellts of 

a diagram. For the gluon-quark vertex (Fig. 12(a)), it is Ilot necessary to deeolllpose it, and 

the oriented vertex (Fig. 13(i)) is the same as the ordillary vertex. Tlw <:0101' factor for a. 

triple-gluon vertex (Fig. 12(b)) is roc, which cuu' be dccoIllposed illto two tenus 

(5.13 ) 
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60 an ordinary triple-gluon vertex can be reprcscnted by two color-oriented vertices 

(Fig. 13(ii ,iii», differing from one another by the clockwise ordering of their color indices. 

Sirnilarly for the ghost-gluon vertex (Fig. 12(c», we get the two orienterl vertices as shown 

in Fig. 13(iv,v). 

As for the four-gluon vertex (Fig. 12(d», the color factor is 

and wc need four orientcd vertices (Fig. 13(vi,vii,viii,ix)) ta reprcsent it. 

(j) (ii) 

1 

, _____ -- _1 ___ ---_ , 

(iv) 

2 3 3 

~ 
2 

(d) (vil) 

4 

1 

(ijj) 

, --------r------- , 
1 

(v) 

4 

(viii) 

(5.14) 

2 

4 

3 

(ix) 

FIG. 13. Oricutcd verticcs for QCD. The line labellcd 1 carries a momentum pt, color factor 

a, and a space-timc index a, while the Hnc 2 carrics P2, b, and {3, etc. 
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• The vertex factors for these color oriented vertices are: 

By joining these color-oriented vertices together wc get a color-orientcd diagram. As 

the color-oriented vertices are just the decomposition of the ordinary vertices, the total 

contribution to a Feynman diagram is just the sum of ail the possible oriented diagrams for 

that Feynman diagram. 

To get the color factor for an oriented diagram, we multiply a11 the color factors of the 

color oriented vertices, and sum .lver the intermediate color indices. The fo11owing two 

identities coming from the completeness relation (5.6), 

N'l-l 

E tT(TaX)tr(Tay) = tT(XY) , (5.15) 
0=0 

N'l-l 

E tT(Ta XTay) = tr(X)tr(Y) , (5.16) 
0=0 

can be used to obtain the Chan-Paton factor of an oriented diagram. For example, in 

• Fig. 14(a), the color factor becomes 
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• N2-1 
L tr(TaTbTC)tr(TCTdT') = tr(TaTbTdT') . 
0=0 

(5.17) 

b d 
b 

j=1 1 
~k 

a kIl 
j j 

a f 

(a) (b) (e) 

c c 

bIa C 

1 J 

b __ +-__ d b __ +-__ d 

a a 

f __ -'-__ c 

(d) (e) (f) 

d e 

C __ ---I __ a ---1 ___ f 

b g 

(g) 

PIG. 14. A color-oriented diagram. The indices are the color indices 

To joïn togcthcr two adjaccnt quark-gluon vertices on the same fermion Hne, as in 

Fig. 14(b) ! wc use 

(5.18) 

• whcre the <5-fullction cornes from the quark propagator between those two vertices. That 

means in order to calculate the color factor of a diagram with several external gluons joined 
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• to a quark Hne, wc sim ply multiply aH the gellerators along the quark Hne in the srune 

order as they are found in the diagrarn, and thcn take the ij matrix clement, whcre ij are 

detcrmined by the external quark wave-functiolls. 

To join together two non-adjacent quark-gluon verticcs, or two verti('('8 on difft'l"(lut quark 

Hnes, as in Fig. 14(c) , we use the U(N) relation 

N'l-l 

L (Ta)i}(To.)kl = d"d}k . (5.1 D) 
0.=0 

Graphically, when we multiply aU the gcncrators along a quark Hue as dcscribed abow, thcll 

this means that when we encounter a gluon line we should pass through it to Ollto the ot.hcr 

quark Hne. 

If wc join an oriented triple gluon vertex with an oriented gluoll-qumk vertex as ShOWll 

in Fig. 14(d), we obtain a color factor 

N'l-l N'l-l 

L (Ta)i;tr(TlJTbTC) == ( E (Ta)i}(Ta)kl)(Tb)'m(TC)mk , 
0.=0 0.=0 

- (TbTC", - ") . (5.20) 

Now cornes the four-gluon vertex. If we join an oricnted four-gluon vertex \Vith an 

oriented tliple-gluon vertex as shown in Fig. 14(e), we have 

N2-1 

1: tr(TaTbTcTd)tr(TlITeTf) = tr(TbTcTdTerl) . (5.21 ) 
0.=0 

If we join it with a gluon-quark vertex as shown in Fig. 14(f), thcn the color factor ifl 

N2-1 

E tr(To.TbTcTd)(Ta),; = (TbTCTd)'J . (5.22) 
a=O 

where we have used the completeness relation. 

When a four-gluon vertex is connected to another four-gluon vertex as in Fig. 14(g), 

N~-l 

L tr(T"TbTCTd)tr(TaTeTITg) = tr(TbTcTdTerlT9) . (5.23) 
a=O 

• The color factor for the ghost-gluon vertex is the same as the triple-gluon vertex, and 

the argument is also the same. 
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Using thcse arguments incuctively, we ean prove the following ruIes, whieh allow us to 

read off the color factor of an oriented diagram directIy. It is worthwhile to study these 

graphie rules here, because Iater on when we use BRST transformation to discuss the gauge 

invariance of QCD perturbative scattering amplitudes, these rules can help to bypass tedious 

algebra. 

After fcf [4], first we define some notations. 

A color path is a continuous path along the lines of an color-oriented diagram. There are 

two kinds of paths, open path and closed path. An open path starts with an incoming quark 

Hne, and ends at an outgoing quark Hnc. A c10sed path starts \Vith an external gluon and 

cornes back to this external gluon finally to complete a trace. For both paths, the foJlowing 

must he satisfied: 

1. each quark line cau he passed at most once, and each gluon Hne as well as each ghost 

Hne can be traversed at most twice; 

2. the path must go along the arrow when a quark Hne is transversed; 

3. when a gluon-quark vertex is encountered, path along a quark Hne turns to follow the 

gluon Hne and vice versa; 

4. the ghost-gluon vertex here can he treated as a triple-gluon vertex. 

5. turn to the leftmost gluon Hne when a four-gluon or triple gluon vertex is encountered. 

Construct aU possible color paths so that eaeh quark Hne of the diagram is passed by 

once and cach ghost line and each gluon tine is traversed twice. The union of these color 

paths then determine the overall color factor of the oriented diagram, as we shall see later. 

III practical calculations, it is more convenient to construct aIl the open paths before the 

closed paths. 

After we get all the paths, we can begin to write the color factor for each path. A closed 

pat.h corresponds to a trace, 
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(5.24) 

where a, b,' .. ,n are the color indices of the extcrnal gluon Hncs, writtl'll fro111 lcft to right 

according to the order that the path encounters thClll. 

An open path will be a color matrix clemcnt 

(5.25) 

where a, b, ... , n are ordered according to thc path as bcfore, and i, j arc thc colm index of 

the outgoing quark and the incoming quark lines respectivcly. 

Finq,lly, the ove raIl color factor for the oriclltcd diagram is givcll by thc produet. of th<, 

color factors of the individuai paths. To check thcse rù!cs, wc present two cxampics hen'. 

The first one is shown in Fig. 15. We calcuiate thc color factor directly to dwck the 

consistellcy and to compare the efficicncy. the gCllcrator Ta will b(' abhreviatcd by its color 

index a below. 

c= L tr(lab)tr(bdc)tr(deJ)tr(fhg)tr(hij)tr(jlk) 
b,d,/,h,j,l 

= tr(ladc)tr(deJ)tr(fhg)tr(hij)tr(jlk) 

= tr(claeJ)tr(gfilk) 

= tr(gclaeilk) 

= tr(aci)tr(kgc) . (5.26) 

From this example, we can see that the first trace corresponds to the outer drde aroulld 

the Ioop, while the second one corresponds to the inncr circle. The outer circle is clockwisc, 

and the inner one is anti-clockwise. This agrees with the ruies, because if wc start with line 

a, we will turn to line b first, and get the first color path as 

vI = (abdefhijl) (5.27) 

which corresponds to 

cvl = tr( aei) . (5.28) 
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And when we start with Hne c, the left most line wc will choose is Une b. The second color 

path is 

v2 = (cblkjhgfd) (5.29) 

which means 

Ct/2 = tr(kgc) . (5.30) 

a 

k 

h f 

FIG. 15. An cxample for the color-oriented diagram 

The second example as shown in Fig. 16 is much more complicated, and we should use 

the graphie rules directly. The complete set of color paths are 

vI = (1,9,10,11,12,2,13,17,3,18,19,20,21,26,4) , 

v2= (5,10,16,14,17,18,24,23,21,25,26,22,9). 

v3 = (11,16,15) , 

v4 = (7,19,24,6,23,8,20) , 

v5 = (14,13,12) . 

The corrcsponding color factors are 

Ct/! == (T2TJh4 , 

Ct/2= tr(T5T 25
) , 

Ct/a= tr(l) , 

Cv4= tr(TiT8T7) , 

Cvs= tT(l) . 
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• Therefore the color factor for this color-oriclltcd diagram is 

(5.33) 

2 13 17 3 

12 18 

... ---, , 
1 \ 

1 \ 
1 

11' 16 
1 
\ 1 

\ 1 , 1 , .-.. ., - -~ 

10 21 

5 25 

9 26 

22 4 

FIG. 16. An other example for the color-oriented diagram 

For most of this section wc have concellt.rated 011 t.hc U(N) gallge thCOl'ÎeH. Si 1Il il al' 

rcsults and rules can be dcvelopcd for SU(N) but they tend to be a bit Illore complieat.('d. 

To start with, tr(Ta) = a for the SU(N) geu('rators Ta so HOllle of t.he illdepellclcllt colol' 

factors CI in U(N) may be zero or may be mutually relatcd in SU(N). Moreover, to obtaÎIl 

the SU(N) completcness relation, wc must mave the a = 0 terIU of (5.6) to the RIIS, ~L'l a. 

result of which a color-oriented diagram will gCIlerally cOlltain more than OllC color faet.ors. 

One of thcse col or factors will still be the olle disc\I<;scd abovt.! for U(N), but. in a.ddit.ioll 

there are other factors as weIl. Neverthcless, wc will show in the next scction that the Hum of 

• aIl the amplitudes for the color-oriented diagrams with the sam~ U(N) color fador iH gauge 

invariant, d.nd that this result is truc irrespectivc of whcther the underlying gauge theory iH 
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U(N) or SU(N), because color itself does not enter into that pro of at aIl . 

C. QCD perturbative amplitude - vertex variations 

ln this subsection we consider how each of the non-Abelian vertices varies under a. gauge 

transformation. The results 50 obtained are then assembled to give us the variation of a 

color-or' ented diagram. 

Our general procedure will be to use the BRST invariance to suggest the relevant terms 

resulting from sUI~h a varia.tion of each vertex. We will then go back to the color-oriented 

Feynman rules for that vertex to derive the exact factom associated with each of the BRST 

diagrams for the variations. 

To simplify the expression, from now on we will use (1,2, ... ,) to replace the space-time 

indices (0:, {J"",). 

1. quark-gluon vertex 

The variation of the quark-gluon vertex is similar to the variation of the photon-electron 

vertex in QED. 

c c c 
, \ , \ , \ 

1 \ 
1 , , , 

,: '" , .. 
'" .. , .. .. 

" - . ' .. • - • .. -. 
a b a b a b 

(a) (bJ (e) 

FIG. 17. Variation of a quark-gluon vertex. 

Note the rule for the signs of these diagrams. If the ghost line slides to the end of the 

fermion Hne (Fig. 17(b)), it has a plus sign. If the ghost Hne slides to the beginning of the 
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• fermion Hne (Fig. 17(c)), it bas a negative sign . 

2. triple-gluon vertex 

From 6BRST(OIT(A,,(x)c(y)AII (z))lO) = 0, it follows that 

= 0 , (5.34) 

or more precisely, 

(OIT(A"ô· AAII)\O) = -'\({OIT(ô"cëAII)lO) + .9rbcT" (OIT(A!ccëAII)lO) 

+(OIT(A"câllc)\O) + rbcTGg(OIT(A"cAtcC)IO») . (5.35) 

This suggests the following graphieai identity. 

2 2 

. . . . 
l \'" 3 .---_ . ..::.:'._ .. 

(a) 

2 

, , , , 
1 : 3 
~ .. _._:~-.... 

(e) 

+ 

+ 

FIG. 18. Variation of a triple gluon vertex 

2 

. . 
1 

.1 
3 " • .,' • 

(b) 

2 

, 
: , 

1 : 3 ...-----l. ... ___ ~ 

(d) 

It is not very simple ta apply this identity directly. Among other things, one must 

remove the externai gluon Hne as was done in an analogous case in QED. Instead, it is mueR 

• simpler to start from the color-oriented Feynman rules and arrange the rcsuits of their gauge 

variations into these BRST diagrams. This is the general procedure which we will adopt for 
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• ail the vcrtices. The result of a gauge variation of the second gluon line can be read off from 

Fig. 13 to be 

g(p2h (g12(P1 -- P2)3 + 92a(P2 - pah + g13(P3 - Plh) 

= 9 (~h(PI - P2)a + (P2):J(P2 - P3h - g13(p~ - pn) 

= 9 (P2h(Pl)a - (P2)a(P3h - g13(P3 - Pl) ( 22) 

= 9 (( -Pl - P3h (Pd3 - (-Pl - Pah(P3h - g13P~ + gl3pn 

= 9 (-(pl h (Pd3 + (Pa h (p3h - glaP~ + g13pn . (5.36) 

These four terms can be summarized in the four diagrams above, in Figs. 18((c), (d), (a), 

(b», respective.y. The (pdl factor in the first term is represented b) the cross at the end of 

the ghost line, and the (Pl h factor is present on account of the ghost-gluon vertex. Similar 

correspondence can be seen between the second term and Fig. 18(d). The p~ factor in 

tenn 3 corresponds to the absence of the corresponding gluon propagator in Fig. 18(a), and 

similarly the factor p~ of the last term corresponds the absence of the gluon propagator on 

the other side as shown in Fig. 18(b). 

We shall cali diagrams (Fig. 18(a) and (b» above the sliding diagrams. Similarly, the 

diagrams on the RHS of rule 1 are also sliding diagrams. On the other hand, diagrams 

Fig. 18(c) and (d) are obtained by substituting the longitudinal gluon line (that with a cross) 

by a ghost line. We shall refer to them as substitution diagrams. Note that these ghost lines 

can turn into a gluon Hne half way down a propagator without any penalty, and the resulting 

mixed-ghost-gluon propagator should still be treated as a pure gluon propagator. 

Each diagram carries a sign as shown. For the sliding diagrams, the sign is determined 

by the relative orders of three points: the end point of the gho5t line,the end point of the 

gluon Hile, and the joining point of these two li Iles. If these three points are in clockwise 

orderas in Fig. 18(b), then the sign is positive. If they are in anti-clockwise order, then 

the sign is negative. For the substitution diagrams, the sign is positive if the cross turns 

• left, and negative if it turns right. However, it turns out that the absolu te signs of these 

substitution diagrams are never important. 
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3. ghost vertex 

The BRST variation 

~BRST(OIT(ëëc)lO) = 0 , 

suggests the following diagrams. 

1
2 

1 3 ..... ~._ ....... _._ .... 
la) 

. , 

2 

3 
........ .... ~- .. ~-4 

(b) 

FIG. 19. Gauge variation of a ghost vertex. 

• 2 . 
•. " 3 

.,... .... :: .... -.............. _- .. 
(e) 

From the explicit Feynman ruIes, one computes Fig. 19(a) to get 

-g(p2h(pt}2g13 

= --g(PI ' P2)g13 

= -g( -P~ - Pl . P3)gl3 

= g(p~ + Pl . P3)g13 . 

This corresponds to Figs. 19(c) and 19(b) respectively. 

4. four-gluon vertex 

(5.37) 

(5.38) 

The new vertex Fig. 20(a) would rcsult for example by applying rule 1 to Fig. 20(b). 

la) 

, , . . 
3 

(b) 

FIG. 20. (a) a new vertex; Cb) the original one. 
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The vertex factor for this diagram is 

ig2(g12(P1 - P2)s + g2S~ - P5h + 9S1 (ps - Plh)p~945 12 
Ps 

= i92912(P1 - P2)4 + 924W2 - Psh + 941(PS _. Plh , 

Using mornentum conservation, 

Ps = Pa + P4 . 

wc get 

(5.39) 

(5.40) 

(5.41) 

This is just the triple-gluon vertex except that the mornentum P4 is now replaced by Pl + P4. 

In other words, as berore, the ghost lint! does nothing except to in je ct sorne rnomentum. "v\Te 

draw line 3 in such a funny way to indicate !ts pairing with line 4, as the following diagrams 

are no· the same. 

3. .. . 
''-' .. 

" 

(a) 

,3 , , . 2-t-. 
lb) 

FIG. 21. Two different vertices. 

Using the same discussion as above we can find out the vertex factor for the Fig. 21(a) 

is 

(5.42) 

The ghost-line momentum in this case pairs with mornentum 112. 

The difference of these two diagrams is actually given by the divergence of the four-gluon 

vertex as can be seen below: 
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3 

2---1---4 

3. . . . , 
\ ....... 

'i' 
. 

..,~' 

.3 . . 

'T' 
FIG. ~2. An identity about a four-gluon vertex 

This identity follows from rule 2, and the expression for the derivative of the four-gluon 

vertex 

obtained from Fig. 13. 

iy2(P3)3( -923914 - 912934 + 2924913) 

= ig2(-g14(p3h - g12(P3h + 2g24(P3h) 

5. new quark vertices 

(5.43) 

VVe considered before an extra ghost line entering into a triple-gluon vertex. This ghost 

Hne injects sorne extra rnomenturn into the vertex but otherwise does absolutcly nothing. 

The same is true when an extra ghost }ine enters a quark-gluon vert.ex. Since this vertex is 

independent of the mornenta, the following graphical identity is obviously truc. 

'l'-'-" . . . . 

FIG. 23. New quark vertices 
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6. new four-gluon vertex 

Again the ghGst line entering into a four-gluon vertex does nothing but in je ct sorne 

mornentum. However, the four·gluon vertex is momentum independent. Hence 

, 
,,/ 

" 

. . 

= 

FIG. 24. New four·gluon vertices 

7. extemal ends 

If a diagram contains one of the following components, then the result of that diagram 

\'anishes because of the absence of a pole to cancel the external on·sheU Klein·Gordon or 

Dirac factors. 

.... ,.' 
· · · , 

(e) 

" 

,/ 

, , , , 

(a) 

· · · . 
.,' .... 

' . . ----~.-... 
(d) 

· · · . 
\" 

(b) 

". 

)( ........ _ ........ .. 
(e) 

FIG. 25. External ends. The end of a line without dot hen: denotes an extemal end 

Fig. 25(e) is true because this ghost line was originally a gluon Hne. As a rcsult, a gluon 

• wave function E~(k) is present, and the cross in the graph leads to a factor 
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(5.44) 

D. Gauge invariance of QCD scattering amplitudes 

Using these rules, the gauge variation (i.e., the divergence of a gluon Hne) of a Feynman 

diagram can be represented by a summation of several diagrams. For example, the diagram 

Fig. 27(i) can be changed into two diagrams as shown in Fig. 26. 

, 
# 

• = 1 l''-~ + 
1 1 

l , l , 

_,'_4 

-' = I-r- 1 ., 

1 
+ 

, 

,_,' 4 

= + 

FIG. 26. An example about how to change the variation of a Feynman diagram into 8um of 

several diagrams 

A sum of a set of Feynman diagrams will be gauge invariant if and only if these diagrams 

obtained from the gauge variations manage to cancel one anot.her. We will first illustrate 

how this is accompli shed with a few explicit examples . 
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1. examplea 

Consider the sum of color-oriented diagrams in Fig. 27 , aIl with the same U(N) (or 

SU(N)) col or factors. Using the rules in the subsection above, their gauge variations are 

given by the sum of diagrams in Fig. 28. Diagrams that are trivially zero (such as thosp. in 

Fig. 25) are omitted. These diagrams cancel one another and the result is zero at the end. 

Consequently the sum of the diagrams in Fig. 27 (without the cross) is gauge invariant. 

, 

'-Yi '~_1_4 
(11 

, _,-L._-y-__ 

(dl 

l ,) _ 2 

1 

(dJI (ÛlI 

FIG. 27. Ali the Feynman diagrams of a live-point function at tree level which carry the given 

col or factor . 
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+ J .... _ , 
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FIG. 28. Gauge invariance of the Sve-point amplitude at tree level. Explicitly, (a) and (h) are 

from (i) in the previous Fig; (c) and (d) are from (H); (e) and (f) are Crom (iii); (h) and (g) are 

Crom (iv); (i) and m are Crom (v),(k) and (1) are Crom (viii); (m) and (n) a.re from (x). (0), (p) 

and (q) are just (vi), (vii), and (ix) respectively. 

According to the rules we presented in previous subsection, we can see that the SUffiS of 

the following diagrams in Fig. 28 are zero: 
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(i) a, g, k; 

(ii) b,d,o; 

(iii) c, J, p; 

(iv) h,j, q; 

(v) e, i, m; 

(vi) l, n. 

2. general arguments 

NO\" we see how thesc rules work in general. 

To start with, let us review the rules again. When a cross (divergence) is apptied to 

the end of a gluon line, two types of diagrams may appear unless this gluon line is directly 

connected to a ghost-gluon vertex, or a four-gluon vertex. These are the sliding diagrams 

and the substitution diagrams (rules 1,2). The cross disappears in the sliding diagrams, 

but it travels rorward in the substitution diagrams, allowing these rules to be applied again. 

Repeating this over and over, the surviving cross either ends up (i) at an external gluon line, 

(ii) on a four-gluon vertex, or (iii) on a ghost-gluon vertex. In case (i), the corresponding 

diagram disappt>ars because of rule 7. The remaining diagrams of case (ii) and case (iii) as 

weil as the diagrams without a cross must add up to zero for a gauge-invariant combination 

of diagrams. We shaH discuss below how this can happen. 

The stiding diagrams have the following characteristics: those that slide to the left have 

a minus sign, and those that slide to the right have a plus sign. Moreover, the ghost Hne 

that slides into a vertex does not alter the vertex except to in je ct into it an appropriate 

momentum Such injected moment a could affect vnly a triple-gluon vertex (rules 4,5,6) 

which is momentum-dependent. In principle it could also affect a ghost-gluon vertex when 

the sliding ghost is paired with the outgoing ghost of the vertex, but such a diagram never 

appears . 

When a sliding ghost ends up at a quark-gluon vertex, it could have come f",..,m the left 
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or from the right with the same color factor, but these two differ by a sigll so their sum is 

zero as shown in Fig. 29. 

· · · . , 
.. , ..... 

Î 

+ 

1 
FIG. 29. Cancellation involved quark vertices. 

.'~' 

. . . 
- 0 

Note that in this figure and aIl the figures below, the graphs shown are meant to be only 

a portion of a F )ssibly much larger Feynman diagram. In other words, the lines shown in 

the graphs may very weIl be connected to other lines not explicitly drawn. 

As shown in Fig. 30, a three-gluon vertex divides the plane aroulld the vertex into three 

sectors, each bound· d by a pair of gluons. A stiding ghost ending up at a three-gluon vertex 

is paired up with a gluon line in one of these three sectors. Depending on whether it pairs 

up with the leCt or the right gluon line in the sector, the sign differs. According to rule 4, 

these two add up to be zero together with the diagram obtained by replacing the sliding 

ghost line with a gluon tine having a cross on top . 
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+ -~- + + 
(a) (b) (e) 

; 

-~ - -- T---- --- --- + 1- + + = 0 

(d) (e) (f) 

FIG. 30. Callcellation illvolved triple-gluon and four-gluon vcrtices. 

Similarly, if a slidillg ghost line ends at a four-gluon vertex, the left one and the other 

one have a relative sign differcnt, and they cancel as shown in Fig. 31. 

= 0 

,,,,#., 

· · · . . 

+ 

'. , 
, 

'/7"'" 

FIG. 31. Cancellation involvcd four-gluon vertices . 

Finally, a sliding ghost cau end up at a ~host-gluon vertex, paired with the gluon line, 
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either (i) in the sector bounded by the gluon and the illcomillg ghost of the Vt.'rt{'x, or (ii) 

the sector bounded by the gluon and the outgoing ghost of the Vt.'rtl'x. In both of tlH'se 

cases, it is important to note that the ghost lines in the vertcx lllust appl'ar in the diagnun 

1'" the form of a closed loop. The canccllatioll in bath cascs n,lies on the (·ompl('lllellt.l\ry 

diagram where the ghost loop is replaccd by a gluon loop. 

Let us first discuss (i). First notice that the sliding ghost liue may be paircd np with tht, 

incoming ghost line instead, because of the absence of momentull1 dep<,udcllcc of the VNtt'X 

on these Hnes. 

2 3 

l 
. . . . . 

,If' 
,,' 

1 •••• - ••••• :.-•••• 4 

(a) 

2 3 

l 
.... , 

~.' 

1 •••• - •••• :~~'.- •••• 4 

(b) 

FIG. 32. A graphical idcntity about ghost vertex. 

Secondly, the canccliation proceeds by rule 3 as follows. 

l_-- l , , , ... . , . , 

. __ 1/ . ... ... . , . , 
't ~ 

... . , . , . , . .. " '"'"------ ... " ...... - - ---" 

o 

FIG. 33. One of the cd.ncellations involved ghost vcrtices . 
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• The rcrnaining question is where the diagrams in Fig. 33 can come from. The answer of 

this if) ShOWIl bclow. 

l : , 
---~ 

'. 
] 

,'-----.-" 

... r. , , , . 
" À 
. . . ' , " .... _---' 

, 

,.J -- -.::. .......... -
1"'" -"", , ~ 
\.... ...,' 

.... - - --' 

FIG. 34. The original diagrams of those in the previous Figure. 

This concludes the discussion of (i). The cancellation involving case (ii) is shown below. 

· : · , 
: '. , · ... - -' - .... 

,,' " . . --- --" , , . , , 

~" "l ....... _- -_ ... 
= 0 '" _ "t-" ------' 

+ 

FIG. 35. The other cancellation involved ghost vertices. 

And aIl the diagrams in Fig. 35 can be obtained as shown in Fig. 36 . 

• 
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FIG. 36. The original diagrams of thosc iu Fig .. 

· · · ; , · , -- -'-' ....-;:--
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.. , 
• A 
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In summary, the SUlU of aH color-oriellted diagrams for a fixcd co)or fador and with li 

fixed number of quark loops is invariant under gauge transformation of ally of iLs cxtcruai 

gluon wave functions. 

VI. CONCLUSION 

In conclusion, a set of graphicai rules inspired by DUST invariance ha.s becn derivcd and 

applied to prove the explicit gauge invariance of QED and QCD, cspcdally pCl't.ul'bativc ones 

at multi-loop level. These rules show us how the gauge variation of each incliviclual Feynman 

diagram or color-oricnted diagram cancel cach otller when we sum up aIl thc coutrihutious 

to a gauge invariant subset of them. 

Compared with the original Feynman rules shown in Appcndix D, wc find tlmt thcse new 

graphical rules make explicit use of the property of the divergence (indicated hy a x in the 

diagrams). These rules separate out the longitudinal component of an extel'llal gluon and 

introduce 'new' vertices to describe the traveling and the couplillg of this componcut. On 

the other hand, in the original Feynman rules, the longitudinal component is mixed up with 
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other components, and gauge invariance is thus obscured . 

It is conceivable that even smaller gauge-invariant subsets ca.n be obtained in specifie 

gauges like the background gauge [16]. This problem is un der investigation. Another di­

rection for study is rela.ted to the so-called string-reorganization, one of its aims being an 

attempt to sum up the individual gauge-d~pendent Feynman diagrams into a single gauge­

independent 'dual' expression. This has been achieved in QED [17] but not yet in QCD, and 

it is hoped that the addition al insights gained from the present work could help to attain 

this goal. This is an important objective [18] because it may help to simplify practical com­

putations. As mentioned in the Introduction, the number of Feynman diagrams involved in 

a higher-point oi' a multi-loop amplitude is very large. For example, a tree-Ievel six-point 

pure-gluon amplitude already has hundreds of Feynman diagrams [19], and the practical 

calculation for this amplitude is thus extremely lengthy. An important part of this complex­

ity arises because individual Feynman diagrams are gauge dependent, so in evaluating them 

individually many gauge-dependent terms have to be carried aIong, which eventually mus 

be cancelled out in the sum to obtain the physical amplitude. If a single 'dual' expression 

can be developed for the sum, which then must be gauge invariant, such additionallabour 

of dealing with th(~ gauge-dependent terms can hopefully be saved. 
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APPENDIX A: THE CHAN-PATON FACTORS FOR MULTI-LOOP 

ARBITRARY PRO CESSES 

In this Appendix we are going to prove the statement in Sec III, that the generalized 

Chan-Paton color factors for U(N) are rnutually orthogonal in the large N limit. As we 

shall discuss later, the Chan-Paton factor is made up of produds of U(N) generators Tf& in 

the fundamental rt'presentation and their traces. Before going into the details, it would be 

useful first to develop a convenient set of mathematical notations. 

Fig. 37(80) represents the trace of a product of generators. Specifically, each dot on the 

line represents a generator matrix TC, and the solid lines between dots represent indices 

of the matrix elements. If two dots are joined by a line, then the)' represent two matrices 

sharing a common index, whicb is to be summed over. We choose a convention to rend these 

ma.trices in the opposed direction of the arrow on a line. Therefore, the ring in Fig. 37(a) 

means tr(TGT"TcTdTe), the line in Fig. 37(b) represents (TGT"TcTdTe)il' 

COllsider each Chan-Paton factor as a vector, whose components are lahelled by the 

color indices of the generators in that fa.ctor. Inner products ca.n he defined hetween sorne 

of these vectors. An example in shown in Fig. 37(c), which represents the inner product 

A . A, defined to be 

A· A = ~ E (tr(TGT"TcTdTe)tr(TeTdTcT"TG», 
G,",c,d •• 

where K is the normalization cl'.Jnt:tant, and 

A= tr(TGT"TcTdTe) , 

A= tr(TeTdTcT"TG) . 

(Al) 

(A2) 

Note the lower ring in Fig. represents the dual vedor of A, instead of A itself. Simüarly, 

the inner product shown in Fig. (d) represents 
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Wc can calculate thcse two exampics explicitly to find out the normalization factor J( for 

thûse dot products. F'irst Fig. 37(c), 

A . À= ;( 2: (tr(TaTbTcTdTC)tr(TCTdTcTbTa)) , 
a,b,c,d,e 

= ;( L (TU)'J (Tb)Jk(TC)kl(Td)/m(Te)'TIi (Te)"JI (Td)Jlkl (TC)klll (Tb)/lml(Ta)mlil , 
u,b,c,d,e 

J 
= J( (~ial~)ml~)ml~kI'~kll~/kI6'kl~mi'~mJ'~III) , 

= ;«(N5
) • (A5) 

Theu Fig. 37(d), 

A . il= ;( L tr(TUTbTcTdTe)tr(TdTUTb)tr(TeTc) , 
a,b,c,d,c 

= ;( L (Ta),) (Tb))k(TC)kl(Td)/m(Te)m, (Te)jljl (TC))ljl (Td)kll l (Ta)/lml(Tb)mlkl , 
u,b,c,d,e 

= ;( 2: (6IfnI8jllt5jkI6kmI6k,It5'J'~1I16mklt5mjl~ii'), 
a,b,c,d,e 

1 
= J( L (8JJ~,i) , 

u,b,c,d,c 

1 2) = J«(N . 

Note that this is much sm aller than A . À in the large-N limit. 

(A6) 

A gcncrai rule fol' the inner produds can be worked out. The result is the following. 

Coyer the iUllcr-prodllct graphs by a complete set of closed paths. The final result is NB / K, 

wherc 1t is the uumbcr of such closed paUls. A closed path is drawn starting t'rom ally point 

at n solid line, procccdillg along the arrow ulltil it cornes to a dot, whence it must follow the 

dash liue to cross ovel' to the otller solid Hne. Continue thus nntil the path returns to the 

start.illg point t.o fOrlu a. closcd path. A complete set of closed paths is obtained when every 

solid line is covered once by a path and evcry da.."h liuc is covered twice by some paths. 

Usillg this ruIe, wc cau procced ta prove the daim of Sec. III, first for gluon amplitudes, 

whosc Chan-Paton factor is a pl'Oduct of traces 

(A7) 
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• in which each eAternal color index appears once. Now wc cau pl'OYt' t.he followillg two 

statements. 

1. In the vector space with n col or indices, the llorlllali~atioll factor K(n) is Nil. If tilt' 

color factor c consists of only one trace, 

(AS) 

then this fo11ows immediately from the ru le because 

_ 1 N Nil 
A· A = -- L tr(TalTal ... Tan )tl'(T"nT"n-' ... T"l) = -.- = 1. (AU) 

K(n) a1,a2 ... a,,=1 1\ (n) 

For a more general case, consider 

, 
c= IItr(IIT' ) = ITA) , (AlO) , J 

where TI' means non-commutative procluct. Then the iUller procluC't becomcs 

(A11) 

where n, is the number of closcd paths in AJ' Bence the daim is oncc agaill valicl. 

2. One and zero are the only possible results for these iIllwr prodllcts if N trends to 

infinity. To prove that, consider the inner proclllct of two vectOl'S A and il and Ïl.s 

corresponding graph. There are 2n pieces of soHd lines cOllm·ctillg the dots. Siuee 

each closed path must contain at least two pieces of such solid liucs, and sincc cadi 

solid line can be passed only once, we can conclude that the ma.ximum number of thmm 

closed graphs is n, and the statement above bccomes obvious cOIlHiclering t.he infiuite 

limit of N. 

Now we are going to prove the statement made in Sec lU: the inuer procluct of two 

• n-vectors A and B is one if A = B up to cyclic permutation. OtherwiHc the Înncr prodlld 

lS zero. 
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At tree levcl, where A and Beach contains only one trace, the proof is quite obvious . 

If A = il up to cyclic ordcr, thcn for any two adjaccnt points a, b in the upper ring, the 

corr('sponding two points a, b in the lowcr ring will also be adjacent, but in the opposite 

ordcr. Thereforc, each closed path wc construct will contain cxactly two pieces of saUd Hnes, 

and wc cau obtain the maximum numbcr of closed paths. As a result, the inner product is 

1. 

If A i- B, thcll thcrc must be at least one pair of adjacent dots a, b in the upper ring 

for which the corresponding dots in thc lowcr 'T'mg are either not adjacent, or adjacent but 

in the saIlle arder. For both cases, the closcd path involving points a, b will contain more 

thau t.wo picees of solid lines. This reduces the total number of closed paths wc get, and the 

inncr prod net is t.hus zero. 

For multi-Ioop cascs, as wc can see from the examples in Sec. III, the Chan-Paton factor 

is in gellcra.l '\ Ploduct of traces as defined in (A7). If A = B, then a11 the traces in A must 

pair u}> with thosc tra('cs in B. For each pair of traces we can use the above argument, and 

the iUllcr product wc get is one. If A :j:. n, then there is at least one trace in A that is not 

the saUle as its partner in B. \Ve will gcl less number of closcd paths, sa that the inner 

product of thcse two vcctors is zcro. 

\V(' have so far igllorcd external quarks. Thcir inclusion is not at a11 difficult. The Chan-

Paton factor for cach quark linc is eithcr the idclltity matrix, or a product of generators. 

The Chall-Paton factor for the whole diagram consists of the product of the quark factors, 

and some traces. For a quark factor like 

(A12) 

where kt arc the color indices of the external quarks and m is the number of the external 

gluons attachcd to this quark line, the inner product of two su ch factors is defined ta be 

(Al3) 

which cau be read off from Fig. 37(e) . 
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Consider a scattering diagram involving 2n external quarks and m cxt<'l'llal gluons. Thl' 

Cha.n-Paton factors that span the vector space consist of a products of factors of tilt' fOrln 

(A12), together with a product oftracc factors of the fOllll (A2) and (A4). The iUllt'r pl'Oduct 

of two sueh factors with a fixed n and m will agaill he defillcd ta he the produet of Olll' with 

the dual of another, summcd over aU gluon and quark color indiccs, and (hvid('d hy NII+m. 

By exactly the same kind of argument as beforc, the inner product hetw('('ll two SUdl factors 

A and C can be representcd graphically, C.g., Fig. 38. Thcir dot prodllct. would b(' Z{'l"O 

unless A = C, for otherwise the number of dosed paths would be less thall thc maximulll 

number possible. This then completes the proof of our daim. 

(a) 

A 

B 

(e) 

(e) 

.. ____ .... • .__-e- - __ -~ - -
abc d e 

. , 
l,' 

\ " 
\ " " . . ' . 

(b) 

f "\ \ 1 do 
(d) 

FIG. 37. Color graphs 
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&3 as BI 86 a7 84 

FIG. 38. An example of inner product of two col or factors. For simplicity, we omit the dots at 

the joining points of a dash Hne and a solid Hne here. 

APPENDIX B: FEYNMAN RULES FOR QED AND QCD 

The Lagrangian for QED is 

(BI) 

From the fn!e Lagrangiall, the quadratic terms, for 1/J 

(B2) 

wc can gct the two-poillt Green fUIlction, or say propagator, as 

(B3) 

It cau he denotcd graphically as Fig. 39(a). 

For an internaI photon HIle, th(' free Lagrangian including the gauge fixing term 

(B4) 

• and we have the propagator as 
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(135) 

The rnost corn mon choice is Feynman gauge >. ::: 1. This propagator can be ShOWll as 

Fig. 39(b). 

The interaction term betwcen fermion and the photon is 

(136) 

so that the vertex factor is 

(07) 

It is shown in Fig. 39(c). 

Incoming and outgoing electrons are representcd as u(p) and ü(p) œspcctivcly.For Î111-

coming and outging positrons, write v(p} and v(p). For external photon linc, Illult.iply the 

polarization vector fil (p). 

p p 
a •• _--4 .......... P 

(a) (b) (a) 

FIG. 39. QED Feynman rules, with the bold line for fermioIl line, the thiullcr Holid lille for 

photon 

Therefore for each scattering amplitude, 

1) We use the Fig. 39(a), (h), and (c) as basic clements and coustruct aIl possible 

diagrarns, the Feynman diagrams. Then for cach fermion, photon int.crnalline and vert(!x, 

write down the corresponding factors as given abovc. Multiply these factors togcthcr. 
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2)Insert an additional (-1) for each close fermion Ioop . 

3)Integrate over aIl the internaI Ioop momcnta using 

4) Fermion Ioop should occur twice, clockwise and anti-clockwise directions 

(B8) 

5)Multiple the relative minus sign due to exchanging the equivalent external fermion 

Hnes, and also the symmetry factor. 

Then sum up the contributions from aIl the diagrams, we get the scattering amplitude. 

As for QCD, the effective Lagrangian we got in Sec II is much more complex than the 

QED one. 

(B9) 

Usiug the same method as that for QED, we can write the propagators for aIl the partic1es. 

k k k 
a,i ... _ ...... _ ...... p ,j ~,a ..... 0 _-''' __ 0 v, b ~ ________ • m 

(a) (b) (e) 

FIG. 40. QCD Feynman rules, with the bold line for quark Hne, the thinner solid Hne for gluon, 

and dash Hne for ghost. 

1) gl uon propagator 

as in Fig. 40(a) 

2)quark progator 

as in Fig. 40(b). 

(BlO) 

(Bl1) 

63 



• 

• 

3)ghost propagator i • 

'A'm i6'm 
1 F = -k2--m-2-+-,-' E t 

as shown in Fig. 40(c). 

In QCD there are more vertices: 

1 )triple-gluon vertex 

2)four-gluon vertex 

3)gluon-ghost vertex 

4)gluon-quark vertex 

+ r·ce /'*(g,.,.,.,gp>. _ 91/>'9,..,,) 

+ JAÜ r be (9,..>.9pl/ - 9p>.9,.,.,.,» • 

Ali these vertices are show in Fig. 41 (a), (b), (c) and (d) respectively . 
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Il,a Il,a v,b 

• kt X ~ ks 
"-........ 

v,b Â. ,c p,d À ,c 

(a) (b) 

Il,a Il, a 

J . 
~" .' .... 

,"./' ......... 
c b j 

(e) (d) 

FIG. 41. QCD Feynman rules, with the bold Hne for quark Hne, the thinner solid line for gluon, 

and dash line for ghost. 

Then wc can calculate the scattering amplitude as in QED . 

• 
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