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Abstract

Gange theories and their BRST invariance are reviewed. Gauge-invariant
(color) subamplitudes for non-Abelian gaugc theories are discussed. BRST
transformations of non-Abelian vertices are derived, and are used to obtain
the gauge transformation of any Feynman diagram. From this minimal sety
of gauge-invariant subamplitudes in perturbation theory cau be found. This
knowledge is useful in the application of the spinor helicity technique, and is

indispensible for future developments of non-Abelian perturbation theories.

RESUME

Les théories des jauges et leur invariance BRST sont passées en revue dans
cette thése. Les sous-amplitudes invariantes de jauge (de couleur) associées
aux théories des jauges non-abéliennes y sont discutées. Les transfuimations
BRST de sommets non-abéliens sont dérivées et utilisées pour obtenir 1. trans-
formation de jauge de tout diagramme de Feynman. Des ensembles minimaux
de sous-amplitudes invariantes de jauge obtenues par la théorie des pertur-
bations peuvent alors étre trouvés. Ce résultat est utile & application de la
technique de I’hélicité spinorielle et indispensable au développement futur des

théories des perturbations non-abélicnnes.

i



S O Ot e W

10
11

12
13

14
15
16
17
18
19
20

List of Figures

Three-point Green function. The dots at the ends of the fermion line mean

that we include the propagatorsthere. . ... ... .............. 1
Ward-Takahashi identity. These diagrams are obtained by sliding the photon

line to either end of the fermion line, with an appropriate sign introduced. . 12
Ward-Takahashi identity for n-point Green's function. .. ..... .. ... IR
Ward-Takahashi identity. . . . . ... ... ... ... ... ... ..., 17
An example of QCD Slavnov-Taylor identity. . . . ........... ... 21
Variation ofa QED vertex. . . . ... .. ... ... ... ... ... 2:

(a) is a new vertex with vertex factor v}, (b) is the ordinary vertex with vertex
factor v,. The photon line in both vertices can be either internal or external. 24

A graphical identity in QED. We assume that the momentum p. is incoming

and the momentum pgisoutgoing. . . .. ... .. ... ... 24
An example of four-point function at treelevel. . . ... ........ ... 25
An example of four-point function at one-loop level. . . . ... ... .. ... 26

Aninvariant subset in QED. As we can see, line a is joined all possible position
online 12 . . . . .. i e e e e e e e e 27
Ordinary vertices in QCD . . . .. .. .. . i i it i e 30
Oriented vertices for QCD. The line labelled 1 carries a momentum p;, color

factor a, and a space-time index a, while the line 2 carries p;, b, and 3, etc. 31

A color-oriented diagram. The indices are the color indices . . ... .. ... 33
An example for the color-oriented diagram .. .. ............... 37
An other example for the color-oriented diagram . . .. ......... ... 38
Variation of a quark-gluon vertex. .. .... ... ... ........ ... 39
Variation of a triplegluon vertex . . . .. ... ... ... o 40
Gauge variation of aghost vertex. . . .... ... ... .. v 42
(a) a new vertex; (b) the originalone. .. ... .......... ... ... 42




29

30
31
32
33
34

36

37

38

39

40

Two different vertices. . . . . . L 0L oL e
An identity about a four-gluon vertex . . ... .. ... . o oL
New quark verticas . . ... . oo Lo e
New four-gluon vertices . . . . . ... . . oo oL o
External ends. The end of a line without dot here denotes an external end
An example about how to change the variation of a Feynman diagram into
sumof several diagrams . . . . ... . L L o e
All the Feynman diagrams of a five-point function at tree level. ... .. ..
Gauge invariance of the five-point amplitude at tree level. Explicitly, (a) and
(b) are fromn (i) in the previous Fig; (c) and (d) are from (ii); (e) and (f) are
from (iii); (h) and (g) arc from (iv); (i) and (j) are from (v),(k) and (1) are
from (viii); (m) and (n) are from (x). (0), (p) and (q) are just (vi), (vii), and
(ix) respectively. . . . .. ..
Cancellation involved quark vertices. . . . ... .. ..............
Cancellation involved triple-gluon and four-gluon vertices.

Cancellation involved four-gluon vertices. . ... ... ... . ........
A graphical identity about ghost vertex. . . .. .. ... ... ... . ...
One of the cancellations involved ghost vertices.

The original diagrams of those in the previous Figure.

The other cancellation involved ghost vertices. . . . ... .. ...... ..
The original diagrams of thosein Fig. . . ... ... ... .. ... ... ..
Colorgraphs. . . . . . .. . . . e e
An example of inner product of two color factors. For simplicity, we omit the
dots at the joining points of a dash line and a solid line here. . . . .. . . ..
QED Feynman rules, with the bold line for fermion line, the thinner solid line
for photon .

QCD Feynman rules, with the bold line for quark line, the thinner solid line

for gluon, and dash lineforghost. . . . . . ... ... ... .. ... .....

63



41

QCD Feynman rules, with the bold line for quark line, the thinner solid line

for gluon, and dash lineforghost. . . . ... ... .... .. ... .....




Contents

I Introduction 1
II Gauge theories: QED and QCD 4
A Abeliangaugetheory: QED. . . . . .. .. .. . . o oo oo, 4

B Non-Abeliangaugetheory: QCD . . .. .. .. ... ... ... ... ... 6

III  Vector current Ward-Takahashi identity 10
IV BRST transformation 13
A BRST invariance and the Ward-Takahashi identity for QED . . . . . . .. 16

B QCD Slavnov-Taylor identities . . . . ... .. .. ... .. ........ 19

A\ Gauge invariance of perturbative amplitudes 22
A QED perturbative amplitude . . . . . ... .. .. 0 oo oL, 22

B  Gauge invariance for non-Abelian gauge theories . . . . . ... ... ... 27

1 color-decomposition . . . ... .. ... ... ... o o 28

2 color-orienteddiagiams . . .. ... .. ... .0 e 30

C QCD perturbative amplitude — vertex variations . . . . .. ... ... .. 39

1 quarkgluonvertex . . ... .. ... ... .. ... e 39

2 triplegluonvertex . . ... .. .. ... ... . e e 40

3 ghostvertex ... ..... ... . ... e 42

4 fourgluonvertex . . . . .. .. . ... .. e 42

5 mewquark vertices . . . .. .. ... .. L 44

6 newfour-gluonvertex .......... ... .. ... . .. ... 45

7 externalends . . . . . ... ... ... ... e 45

D Gauge invariance of QCD scattering amplitudes. . . . . .. ... ... .. 46

1 examples . . .. . .. ... e e e e 47

‘ 2 generalarguments . . ... .. . ... ... e e 49

vi



‘ VI Conclusion

APPENDIXES
A The Chan-Paton factors for multi-loop arbitrary processes 57
B Feynman rules for QED and QCD 62

vii



I. INTRODUCTION

The central theme of this thesis is to study the gauge variation of Feynman diagrams.
This Introduction serves to explain this problem and why it is important.

The present theory of elementary particle physics is the Standard Model. It explains
every available experiment in strong, electromaguetic, and weak interactions, provided the
measuied quantities can be calculated by the perturbation theory. The Standard Model is
given by a G = SU(3)cotor x SU(2), x U(1)y gauge theory, so to understand in general its
implications and in particular why we are interested in the certain problem discussed in this
thesis , we must first have some feeling as to what a gauge theory is.

The first and standard example of a gauge theory is the Maxwell theory of electrodynam-
ics. What is so special about this theory is that although the photon has spin 1, only two
circularly polarized states of the photon are present instead of the three normally associated
with a spin-1 particle. This fact is intimately related to the masslessness of the photon,
for in this theory, the absence of a photon mass is actually ensured by the presence of only
two photon polarizations (a massive spin-1 particle must have three polarizations). A gauge
theory is roughly speaking such a theory, that the number of polarizations present for a
spin-1 particle is two rather than three.

Mathematically, the photon in the Maxwell theory is described by a vector potential
A, (x), introduced in such a way that the physics is completely unaltered if an arbitrary
gradient is added to this field, u.e., if A () is replaced by A,(z) + d,A(z) for an arbitrary
A(x). This change is known as a gauge transformation and the physical invariance is called
a gauge invariance. This invariance ensures that the longitudinal component of A,(z) is
physically meaningless (because it can be arbitrary), thus it must be decoupled, and hence
gauge arbitraries greatly complicate the formalism, especially in a quantum theory where
only physical degrees of freedom should be quantized. The asymmetry thus introduced
between the different components makes life difficult. Nevertheless, by using the Feynman

path integral technique, this difficulty can be largely overcome, because in this formalism



symmetry is somewhat restored in that even the unphysical longitudinal degree of freedom
can be quantized, but at the expense of having to introduce an extra unphysical degree of
freedom called the ghost to compensate for the longitudinal contribution and to decouple it.

An important property of the Maxwell theory is that the photon couples universally to
the electric charge. The coupling between a photon and a charge particle depends on the
charge of the particle but not whether it is a proton or a positron. This particular property
of the theory actually follows from the gauge invariance discussed above.

In 1954, Yang and Mills [1] were able to generalize the Maxwell theory into a new kind of
gauge theories possessing most of these special attributes . However, there are now more than
one ‘photon’, or more correctly, the analogy of the photons in this theory called the gauge
particles. The gauge particles in this ‘non-Abelian’ gauge theory are still coupled universally,
but instead to the electric charge of particles as in the Maxwell theory, they are now coupled
to some ‘non-Abelian charges’. A ‘non-Abelian charge’ is a quantum number that does not
add arithmetically. Isotopic spin is a typical example, for although its third component
adds arithmetically, because of the uncertainly principle the other two components do not.
It turns out that whatever the non-Abelian charge is, the gauge particles themselves must
also carry such a charge and hence they must couple to themselves as well. This is different
from the photons of the Maxwell theory which are neutral and do not directly couple among
themselves. For that reason, the Yang-Mills theory turus out to be a more complicated
gauge theory.

According to the Noether theorem, a conserved charge is associated with a symmetry
group of the dynamics. For example, the conserved electric charge in the Maxwell theory is
associated with a U (1), invariance. In general, an arithmetically additive quantum number
is associated with a U(1) group, and a non-Abelian charge is associated with a non-Abelian
(non-commutative) group like SU(N). Every hadron carries a non-Abelian charge called
color, associated with the symmetry group SU(3).10r, and according to the Standard Model
it is this color that is the source of all strong interactions. Similarly, every particle carries

a weak isospin associated with the group SU(2)., and a weak hypercharge associated with
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the group U(1)y, and it is the universal coupling to these charges that is responsible for the
electromagnetic and the weak interactions.

Quantum field theories are difficult theories to compute, and most of the known results
are obtained in perturbation theories. Perturbation-theory calculations proceed through
the evaluation of Feynman diagrams. For a complicated process, and when a high degree
of accuracy is required, many diagrams have to be evaluated with each diagram containing
many terms This is especially bad for gauge theories, for each Feynman diagram is generally
not gauge invariant, though the sum, representing a physical process, must be. In other
words, many gauge-dependent terms must be present in individual diagrams that eventually
get cancelled out. In non-Abelian gauge theories where there are more diagrams and more
terms than the Maxwell theory, the complication can become so serious as to retard seriously
our ability for computations. For that reason it is important to find ways to calculate these
diagrams that the gauge-dependent terms, which eventually must be cancelled out at the
end, occur as little as possible in individual diagrams. Under a gauge transformation, the
content of different diagrams mix, so it is conceivable that a suitable gauge choice can result
in having less gauge-dependent terms in each diagram. In fact, a special technique inown as
the spinor helicity technique [2] [3] is available to help us simplify matters along these lines.
Recently it was also realized that reorganization in a superstring-like way can accomplish
some of the goals as well [4] [5]. To be able to devise new techniques along these lines, or
even to be able to utilize the existing techniques efficiently, we must understand thoroughly
how a gauge transformation shifts the contents of a Feynman diagram to another. The
study of this problem is the central theme of this thesis. For this purpose, this thesis is
arranged as follows' In Sec.Il, we briefly review the contents of Abelian and non-Abelian
gauge theories. Then we use current conservation to discuss the so-called Ward-Takahashi
identity in QED in Sec.IIl. A review of BRST transformation is presented in Sec.IV, together
with an application of this transformation in proving Ward-Takahashi identity and Slavnov-
Taylor identity. Finally, in Sec.V, we use BRST invariance to discuss the gauge invariance

of perturbative scattering amplitudes in QED, and in QCD, especially the gauge invariant
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subsets in both of them.

II. GAUGE THEORIES: QED AND QCD

In this thesis, we will use the following metric

(10 0 o)

0-10 0
g.:."

00 —1 0

\0 0 0—1)

A. Abelian gauge theory: QED
The QED Lagrangian is
£ = Bin"(3, + ieA,) ) — mip - -}IF,,,,F"" , 2.1)
where
FW = gtAY — 9V AP, (2.2)
¥(z) is the spinor field satisfying the following equal-time anti-commutation relation
8(z° =" w(z), ¥ )]+ = &z - y) (2.3)

and A(z) is the vector potential for the photon field.

The local symmetry for QED is a U(1) gauge symmetry. The corresponding local trans-

formations are

¥(z) = Y(z) = e y(z) ,
¥(z) = Y(a) = *y(z)

Au(z) =+ AL () = Au(z) + %aya(x) , (2.4)

4




where a(z) is the local infinitesimal transformation parameter. The Lagrangian is invariant
under this transformation, as is the action S, which is defined to be the space-time integral
of the Lagrangian density.

To determine the conserved current, we must use Noether’s theorem, which states that

for each continuous symmetry that preserves the action
s=[La, (2.5)
there is a conserved current J satisfying
9,J" =0. (2.6)
The corresponding charge @ given by
Q= [ dain(x) (27)

is a constant of the motion. Note we used L as the Lagrangian and £ as the Lagrangian

density:
L= / Pzl . (2.8)

The proof of Noether's theorem can be found in any text book [6] [7].

For QED, its conserved current is related to its U(1) global symmetry, and is given by

J, =y . (2.9)

The charge is just the electric charge Q

Q(t)= / d3zJy(z)
= [ Ba(@h(e)p(a)) - (2.10)




B. Non-Abelian gauge theory: QCD

QCD is more difficult than QED because the local transformation is now a non-Abelian
SU(3) color group, which has many generators that do not all commute with one another.

The non-Abelian gauge theory was first studied by Yang and Mills in 1954. They tried
to use it to describe the interactions between hadrons which possess an SU(2) isotopic
spin symmetry. We know now that SU(2) is only an approximate symmetry in strong
interactions, but their formalism can be equally well applied to the SU(3) color symmetry
which is believed to hold in strong interactions between the constituents of the hadrons.

We shall now discuss the non-Abelian gauge theory possessing an SU(N) symmetry. The

group SU(N) has N? — 1 generators. We shall use the following symbols,
T° (a=1,---,N*-1), (2.11)
to denote the generator matrices in the fundamental representation, normalized such that
tr(T°T?) = 6. (2.12)
The commutation relation defining the structure of the group is given by
[T, T = ifebTe (2.13)

where the structure constant f2* can be taken to be totally antisymmetric in its indices on

account of (2.12) and (2.13).

The infinitesimal gauge transformation of fermion field ¥(r) in the fundamental repre-

sentation is
¥ (z) =» —iT - a(z)¥(x) , (2.14)

where T-a(z) = T°a®(z). To compensate for the local variation of (2.14), we must introduce

the (gauge) fields A,(z) = Aj(z)T*, which transforms like
1 a a [
A% = -Ea,,a + [ Al (2.15)
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where ¢ is the coupling constant, the analogy of the e in QED, and the covariant derivative
D" = ¢ — igA*(x) (2.16)

into the Lagrangian, as in QED. Accordingly, the gauge-invariant Lagrangian can be ob-
tained from the free-field Lagrangian by replacing the derivative @ with the covariant deriva-

tive D:
£ = ¥(a)(in, D¥ = m)U(z)  gtr(Fuu ™) (2.17)
where F,, = F;,T* and
FS, =08,A% - 8,A% + gf™ AL AS . (2.18)

Patl. integral is the most convenient tool to quantize a gauge theory. In its most straight-
forward form, the vacuum functional is given by the path integral of the exponential of the

action:

W~ / (dA,]exp (i / d"x[,(z)) . (2.19)

However, this path integral is not well-defined because gauge invariance makes it infinite. To
see that, imagine the integration space to be made up of a series of hypersurfaces, obtained
from one another by gauge transformations. If we divide the path integration in (2.19)
first into integrations on these hypersurfaces, and then integrations perpendicular to these
hypersurfaces, then the latter integral is divergent because gauge invariance of the action
S = [d'zL(z). For that reason the sensible path integral should be carried out over only
one of these many hypersurfaces.

There are no unique way to determine these hypersurfaces. Suppose the hypersurface on

which to carry out the path integral is defined by the gauge-fixing condition

fA(A) =0, (2.20)
then the naive vacuum functional is given by
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W [ [dA,,]-A%[do]s( £2(A%) exp (i / a":mC(J:)) , (2.21)
where we have inserted
1 " _
a; Jour A =1, (2:22)

and Af‘ is the gauge transformation of A,. A;l is called the Faddeev-Popov determinant,

and it can be written as

ar= [o(fAL)ds)

o(rFe [
o (A20)
=1/det M . (2.23)
Now (2.21) is changed to
W~ [16] [[4AIB((4,)) exp (i [ d“xc(z)) det M . (2.24)

The integral f[dA])6(f*(A,))det M can be identified as the integral along the hypersurface
defined by (2.20), and the integral over df can be recognized as the integral which gives rise

to infinity to (2.19). We should therefore throw the @ integral away, and redefine the path

integral after gauge fixing to be

W = / [dAJ6(F2(A,)) exp (i / d‘xC(x)) det M . (2.25)

Now we want to move the §-function and the determinant to the exponential. Using the

integration identity

det M = /[dc][dé] exp (i/d"zd"yé,,(x)M(x,y)abc(y)b) (2.26)

over the Grassman variables ¢ and ¢ (known as the ghost fields), the determinant can be

moved up to the exponential. For the §-function, note that the more general gauge fixing

condition

fH(a*) = B*q) , (2.27)

8




where B*(z) is an arbitrary function of space and time, does not change the Fadeev-Popov

determinant det M provided

§B(z)

Since all the other terms in W are independent of B®(z), we can put the following integral

into W, as a constant

/[dB] exp (—gx/d‘xBQ(:v)) , (2.29)

(A is called gauge fixing parameter), and obtain a new vacuum functional which we will

denote as W. It is

W= [(dA][dBI5(*(4, - B)) exp (i [ dales) - %Bz(x)]) det M

= /[dA.] exp (z/d"x[lj(x) - -él—x(f“(A,,))"’]) det M
) 1l .
= [ldallddllddlexp(i [ d'alL(a) - 5 (£ (4]
+i [ d'adiyle@M(z yuc) (2.30)

Now remember that the ghost (¢ and ¢) fields introduced in (2.26) are Grassman variables,
so they satisfy anti-commutation relations. However, the c-field does not have any Lorentz
index, so it must be a scalar field. Hence it violates the usual spin-statistics theorem, and
they cannot be physical. In the language of Feynman diagrams. this means that the ghost
cannot be an external line, and it must be absent in all tree diagrams. However, there can
be internal loop(s) consisting of ghost(s).

It is common to use the covariant gauges, where
fi(A) =0"A, . (2.31)
Then
May(z,y) = ~0,(D¥)ab*(z — y) | (2.32)

where



(D“)ab = Mg + lg(zfabc)4t:‘ (233)

is the covariant derivative for the adjoint representation (compare (2.11)). Inspite of the
fact that the covariant derivative depends on the SU(N) representation of the field it works
on, for economy we continue to use the same notation D* to represent it.

The same formalism can be applied to QED. There, the ghost introduced above is actually
decoupled from either the gauge ficld or the spinor field. Therefore the contribution of the
ghost is just a constant, which can be absorbed into the normalization factor, and it is not
necessary to consider ghosts in QED at all. However, the language of ghosts will still be
useful when we discuss the BRST transformation as well as the gauge invariance of the
Green'’s functions and the scattering amplitudes (see Sec.III).

Having determined the effective Lagrangian density for QED and QCD, we can obtain

the Feynman rules from them as shown in Appendix B.

III. VECTOR CURRENT WARD-TAKAHASHI IDENTITY

The conserved current J*(x) = ¥(x)y*¥(x) in QED enables one to derive the Ward-
Takahash identity (8] for Green functions. Consider for example a three-point Green func-

tion in QED as shown in Fig. 1 . It can be written as

Gu(2,,2) = (OIT (L(@)dtw)¥(2)) 0) - (3.1)
Under the gauge transformation (2.4) the variation of this Green is proportional to

| Gz, 2)= 8 0(2® — y)0(" — 2°) (0 (=) P (y)(2)]0)
+9(y" - 2%)8(2° - z°)<01¢(y>1u(x)w(z)10>
+0(y" - 2°)6(2° = 2°)(0|P(y)¥(2) Ju (2)[0)
—8(2° - 2°)8(2° ~ y")(0|Ju(z)¥(2) B (1)[0)
—8(2" - 2°)8(z° - 4°)(0lw(2)Ju ()b (v)I0)

—6(=° - y°)8(y° — 2°){01¥(2)P(y) Ju(2)[0) | . (3.2)
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FIGURES

FIG. 1. Three-point Green function. The dots at the ends of the fermion line mean that we

include the propagators there.

Using the identity for §-function

E—z—oo(xo —3%) =6 —Y), (3.3)

and the conservation of the current J,, we can simplify the RHS of (3.2) to
B:Gu(z,y.2) = 8(z° — ¥ NOIT ([Jo(x), b (¥)]¥(2))[0) + b(z° ~ 2°)(O|T(P(y)[Jo(x), ¥(2)])0) -
(3.4)

The commutators in (3.4) can be computed using the explicit expression of J,, and (2.3).

This gives

8(2° = 2%)[Jo(2), ¥a(2)]= ~¥p(2)8*(z - 2) , (35)

8(z° = y°)[Jo(2), Ya (¥)]= a(y)8*(z ~ y) - (36)
Using this then (3.4) becomes

B4Gu(z,y,2) = 8(z — Y){OIT($(y)(2))[0) — &(z — 2)(O|T(¥(y)¥(2))]0) . 3.7)
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This is the Ward-Takahashi identity.
‘ Graphically the above identity can be represented as Fig. 2.

z z
. [}

FIG. 2. Ward-Takahashi identity. These diagrams are obtained by sliding the photon line
to either end of the fermion line, with an appropriate sign introduced. The cross here means a
derivtive d,(operating on A¥), and the dots at the ends denote propagators. Thick solid lines, thin
solid lines and dashed lines represent fermions(quarks, or electrons), gauge bossons, and ghosts

respectively.

Similar identities can be obtained for higher-point Green’s functions. Consider, for ex-

ample, Fig. 3. Then
I (O™ (4 (21)J#2 (za) -+ - JH= (24) B ()0 (2)) [0) (3.8)

where the T*-product is the covariant T-product. It differs from the ordinary T-product in
having all the commutators between J’s removed. The calculation is almost the same as

(3.2), and we get

4Gy(z,y,2) = (OIT" (P2(22) J**(z3) - - J¥~ (z) B(y) ¥(2)) [0)6*(z ~ 1)
o ~(OIT" (J*(z2)J**(z3) - J** (2) U(9) ¥(2)) [0)6* (2 = 2) . (3.9)
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X2

X Xy

FIG. 3. Ward Takahashi identity for n-point Green’s function.

This is the general form of the vector-current Ward-Takahashi identity. It shows the
consequence of currs.:t conservavion on Green'’s functions. It can also be used to siriplify
calculations and to show the gauge invariance of the scattering amplitudes. There is another
way to derive it, via the so-called BRST invariance which we will discuss in Sec.IV. We shall

defer further discussions on the consequences of the Ward-Takahashi identity until then.

IV. BRST TRANSFORMATION

As we saw in Sec.ll, a gauge fixing is required to quantize a gauge theory. As a result,
the effective Lagrangian density we get is no longer gauge invariant; the local symmetry is
broken by the gauge-fixing and the ghost terms. Surprisingly, there is still a remnant global

symmetry left in the effective Lagrangian, known as the Becchi-Rouet-Stora-Tyupin (BRST)
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symmetry [9]. This new symmetry provides a powerful tool to study the consequences of
gauge invariance in a gauge theory. One obtains in this way the Slavnov-Taylor identity
[10], which is the analogy of the Ward-Takahashi identity in QCD, and is useful in studying
the gauge invariance and unitary of the exact scattering amplitudes.

We shall review in the section how the BRST invariance is obtained and some of its
applications.

First we consider the effective Lagrangian density without the fermions.

1 a m
L= 4(F,w) 2/\(6 AP -0 D,c",
= Lyo+ Lgr+ Lgn (4.1)

where we have chosen the covariant gauges. £, is invariant under the gauge transformation
a 1 a abe qc b 1 ab b
04, = —=0,0" + " AL a’ = ——(D,)"a" . (4.2)
g 9
Now we choose a special «
a® =% (4.3)

where both ¢* (ghost field) and £ are Grassmann variables [6], and £ is a constant. Then

the gauge fixed Lagrangian density (4.1) is invariant under a global transformation

a ]' a
(SA#= —;(D,‘C )f s

6ca= _lfabccbct:f ,

o= o+ Al 4.
¢'= -5 g( AL . (4.4)
We can see that the £, is invariant because the (4.3) is just a special choice of (2.15).

As for the L4y, we have
8Lys= —l-(a A)? 11a (A® - l(D )€) 2
) 2A #

1 1
= (0 AP - o= [(O-A) - —a A*H[D,uc® ]g+ (D, )25]
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Remember that £ is a Grassmann variable, so

&=0, (4.6)
and we have
1 a v a
(SEM = :\-‘E(OFA#)(O D,,C )f . (4.7)

Then Ly, has the following variation

SLgh= T20"D,yc® — (& + 62%)0*(Dpc® + 6D,ic" + D,6c%)

= —°0"§(Duc®) — 66°0" Duc®

—anu a 1 ¢ acav a
= —*0*6(Duc®) + X_g_(()“A"Ea D,c¢*),
— —2°0,6(Duc”) — —l(j(a"A;“)(a"D,,c“)f , (4.8)
where ~ve have used
[£,c¢]l+=0. (4.9)

Therefore we have the variation of the effective Lagrangian density as

L= 6Ly +6Lgn ,

= —C9,6(D,c?) . (4.10)
Recall from (2.16) that
Dyc® = 8" + gf*  Ahe” (4.11)
we have
3(Dyct) = 04— Focbe€) + i (= ZDu)Ec* + 04 Al (=51 e}
= 04(= 3 fRBeE) + g AL (= TS NE) + o f SO + g fI L A

. =0. (4.12)
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Hence we have proved that the effective Lagrangian density (4.1) is BRST invariant.
When we include the fermion fields in the Lagrangian density, the gauge-fixir:g term and

the ghost contribution remain the same. The BRST transformation of fermions,
§¥= TV,
§U=10Tc%¢ , (4.13)

can be considered as the same choice of the gauge transformation as (4.3), hence the following

Lagrangian is invariant.
L =Yi(D* -m)¥ . (4.14)
Thus the total Lagrangian L.y
T m 1 a \2 1 2 ~a N C
ﬁeff = ‘I’z(Du'y - m)\II —_ Z(F“U) - 2—/\'(6 . A) b 6 D,,C ’ (4.15)

is also BRST invariant.

A. BRST invariance and the Ward-Takahashi identity for QED

Let us discuss the Ward-Takahashi identity again. We will now use BRST invariance to
get the three-point Green’s function identity we obtained before in (3.7).

Consider a trivial three-point Green function

(0IT (¥(=)&(v)d(2)) [0} . (4.16)

We call it trivial because the Green’s function above is zero owing to the conservation of

ghost numbers. This does not matter because what we want to calculate is its variation

under BRST.

8pasr{0IT (¥(z)(y)P(2)) [0) = 0. (4.17)

Now substitute in the variation of the individual fields from (4.4) and (4.13), then we get a
non-trivial identity which will be proved later to be the Ward-Takahashi identity.
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0 = —i{0|T(¥(z)c(z)e(y)¥( 2))|0)+ —(0|T((z)d - A(y)¥(2))]0)
~i(0|T (v (x)E(y)c(2)P(2))|0) ; (4.18)

therefore

(OIT ((2)3 - A(y)¥(2))|0)= ~ide(~(O|T(c(x)e(y)w(z)P(2))I0)
+(0|T(c(2)2(y)e(z)$(2))[0)) - (4.19)

As discussed at the end of Sec.II, the ghost fields are decoupled from the electron and the
photon fields in QED. As a result, the ghost fields on the RHS simply pair up to be the free

field propagator, so that we have

(0T (4 ()0 - A(y)®(2))|0)= —ire(~{0lc(z)e(y)|0){O|T(¥(z)%(2))|0)

+(0]c(2)2(y) ONOIT (w(z)$(2))|0)) . (4.20)

FIG. 4. Ward-Takahashi identity.

This equation can be graphically represented in Fig. 4 ,where a cross in the first graph

means a derivative d, (operating on A*), and a dot at the end of a line means that there is
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a propagator there. We use thick solid lines to denote fermions, i.e. electrons in QED and
quarks in QCD. The thin solid lines are used to denote photons or gluons. Dash lines mean
ghosts.

By comparing Figs. 4 and Fig. 2, we see that (4.20) is very similar to the Ward-Takahashi
identity (3.7), with the first term in (4.20) corresponding to the first term in (3.7), and
the second term in (4.20) corresponding to the second terms in (3.7). There are however
various superficial differences between the two identities: tke LHS of (4.20) contains the
field A but not the current J, and the RHS of (4.20) contains additional factors of the ghost
propagator functions. However, these additional effects cancel and that results in having
the two identities the same. To see that, notice that a Green’s function ending with A(y)
and a Green’s function ending with J(y) simply differ by the presence of a bare photon
propagator in the former case, together with a vertex factor ie. In momentum space, this

bare propagator is given by

~(guw — Pup/P*) — Apup. /P? _
pz

(4.21)

When we contract this with p#, we obtain —\p, /p?, so we can symbohcally write 4 =
—ieA(1/p*)8J. The 1/p* factor just cancels out with the ghost propagator on the RHS,
so we obtain once again the Ward-Takahashi identity (3.7). This BRST way of proving
the identity is useful because it is this form that can be generalized relatively easily to
non-Abelian gauge theories, as we shall see in the next section.

Generalization to higher-point Green's function is straight forward. Similar to (4.16), we

consider the BRST transformation of a trivial Green’s function

Sarst(0|T ($(2)dy) A (wy) - - - A*(wna)i(2)) 10) - (4.22)

When we substitute in the variation of the fields, we should remember that we are discussing
QED, so the SU(N) color algebra reduces to U(1) algebra. Thus the second term in the
RHS of equation (4.11) disappears, and we get the following identity

(OIT (¥(2)0- A(y)A™ (w) - A*=(wn)¥(2)) 10)
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= Ae(i(0|T(c(z)&(y)Y(z) A (wy) - - - AP~ (w,)P(2))]0)
~i(OIT (cl2)e(y) ¥(z) A% (wn) -+ 4" (wn)§(2)]0)
(O[T (0w, )e(u)p(@) A () -+ A% (wa) H())]0)

FLOIT (0 c(w2)ey)$(z) A" (w2) -+ A (0, )5(2)0)
+ vee
42 (01T el )oy)blz) A# (un) -+ A4 () B()IO)) (4.23)

Taking the connected-diagram part of the above equation, only the first two terms contribute
hecause the rest of them correspond to disconnected diagrams due to the fact that the ghost
fields are decoupled from the electron and the photon fields. Therefore we have
(O|T (3 () - A(y)A¥ (wy) - - - A (wn)1h(2))[0).
= —ixe(—(0[c(2)e(y)|0)(0|T (9 (x) A** (w1) -- - A= (wa)$(2))[0)

+(0]e(2)2(y) 00T ((x) A" (w1) - - - A* (wn)(2))]0)) (4.24)

which can be represented by Fig. 3 too.
When we consider on-shell scattering amplitudes, we must multiply the Fourier trans-

formation of the corresponding Green’s function with

f[ (p? — m? (4.25)
1

where ! is the number of the external particles, and then take the on-shell limit p? = m2. As
we can sce in Fig.3, cach of the diagrams on the PHS has a ghost line attached to an end of
the fermion line. This destroys the fermion pole otherwise present so the diagram vanishes
after being multiplied by (4.25) and having the on-shell limits taken. This proves the gauge

invariance of the exact scattering amplitudes.

B. QCD Slavnov-Taylor identities

Applying the BRST transformation to QCD Green’s functions, we obtain the Slavnov-

Taylor identitics. We will give here a simple example to illustrate it.
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First we consider

8% (0|T (T (y) AL (2) AL (2)T(w))|0) . (4.26)

which is shown in Fig. 5.

To get the identity for this Green function, we must study the BRST variation of another

Green function:

88rsT(0|T(¥(y) A3 (2)2(2)¥(w))|0) = 0 . (4.27)
Write out everything on the LHS of (4.27), we will get the identity we want as follows

BT (U AL AU = NG OITT S 2 450 B
—i{O|T(T" ¢ ()2 (2) ¥ () A2(2) E (w))]0)
+§<0|T<auc°<z>a°(x)wy)@(wmm
FFROT(()P (@) V)AL (DI@N0) . (4.2

This can be shown directly by the graphs as in Fig. 5, where as before, a cross indicates
a derivative (a divergence when it is on a gluon line, and a gradient when it is on a ghost
line). For QCD, the ghost no longer decouples from the other particles. This is indicated
in the graphs by having the (dash) ghost lines drawn through the shaded circle, with the

implication that interactions with them may take place inside.
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FIG. 5. An example of QCD Slavnov-Taylor identity.

If we consider the corresponding on-shell amplitude, then the first, the second and the
last terms on the RHS of (4.28) vanish because of the same reason as before, 1.e., the absence
of a pole to cancel the Klein-Gordon factor in (4.25). As for the third term, remember that

the cross means a derivative, it contains a factor

p.-€(p:) =0. (4.29)
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Hence the RHS of Fig. 5 vanishes and the on-shell scattering amplitude is gauge invariant.

V. GAUGE INVARIANCE OF PERTURBATIVE AMPLITUDES

We showed in the proceeding section that the exact on-shell scattering amplitudes are
gauge invariant. This must persist order-by-order so it follows that the perturbative ampli-
tudes in each order are gauge invariant. However by analysing the perturbative amplitudes
in detail, ore finds that such invariances are composed of sums of classes of terms each
of which is already gauge invariant. It is this refined gauge-invariant property of the per-
turbative scattering amplitude which we would like to get in this section. Such refined
gauge-invariant properties are useful in practical calculations because a separate and conve-
nient gauge choice can be made for a different class, thus allowing the computations to be
much simplified.

A perturbative scattering amplitude contains many terms given by a sum of Feynman
diagrams. The whole amplitude is gauge invariant but each individual Feynman diagram or
each term is not. That is to say, each Feynman diagram contains gauge-dependent terms,
and these terms will be canceled when they are summed up in a physical process. But we do
not always need to sum up all the terms to get gauge invariance. It is sometimes possible to
divide the amplitude of a given order into the sum of gauge-invariant subamplitudes. The
purpose of this section is to find out how each individual Feynman diagram transforms under
a gauge transformation of the wave function of an external gauge particle. For this purpose,
we shall use the Feynman gauge (A = 1) throughout for gauge propagators. Once the gauge
property for a single photon/gluon is known, the gauge property when all the external

photons/gluons undergo a simultaneous gauge transformation can be casily obtained.

A. QED perturbative amplitude

To discuss the gauge variation of Feynman diagrams, first look at the variation of the

fundamental construction units of a Feyniuan diagram: the vertices. As we can see in
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Appendix A, the QED Feynman rules contain only one kind of vertices. If we introduce
gauge transformation to the photon line attached to one of these vertices, its variation can

be represented graphically by Fig. 6.

C c c
1] \
[ \
[ Y
’ L
’ \
4 \
¥ A
’ ’ \\
a b a b a b

FIG. 6. Variation of a QED vertex.

This can be seen from the BRST technique discussed in the last section, but a direct proof
using the Feynman rules can also be given, as fotlows. The LHS of the Fig. 6 corresponds

to the following vertex factor

1 1
i€ ((pC)“ 3 7“ v )
(Po + )y —m +i€ ¥ pYy, —m + 1€

1 1
= — (P + P) Y — M = (v — M) —————
e ( e (4 P = = (= ) )

1 1
= 1€ - . (5.1)
PZ% — m + 1€ (pb + pc)”')'u —m+ 1€

Now we can recognize the two terms in the last line of (5.1) correspond to the two graphs
in the RHS of Fig. 6 respectively. The sole purpose of the dashed (ghost) line is to indicate
how the momentum p, is injected into the fermion line.

There are two possibilities of what an end point of the fermion line in the LHS of Fig. 6
can be: a vertex point or an external end. Strictly specaking, for the latter possibility, we
should take off the dot at the end, because there is no propagator for an external line.

rirst, if point a in Fig. 6(a) corresponds to a vertex, then we have a new vertex like
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Fig. 7(a), obtained from Fig. 6(b).

. < St ° [ < DU

a
(a) (b)

FIG. 7. (a) is a new vertex with vertex factor v}, (b) is the ordinary vertex with vertex factor

vg. The photon line in both vertices can be either internal or external.

Since the spinor QED vertex factor contains no momenta, the vertex factor v/, in Fig. 7(a)

is equal to v, in Fig. 7(b).

b d b d b d
4 “\\
- + < = < = : - - -
a c a c ) ¢
(a) (b) (c)

FIG. 8. A graphical identity in QED. We assume that the momentum p. is incoming and the

momentum py is outgoing.

Fig. 8 is an example illustrating this fact. Explicitly, its LHS is given by

1
B —p¥y, A’
T L
- R 1 v 0 ] !
= B'y, (pf;‘ +P¢;)')’“ e ie(p°7" +pgv — m — (P m))A
— B A'= B'v,A' . (5.2)

where A' and B’ denote all the irrelevant factors, and the arrow in the last step separates

out the term corresponding to Fig. 7(a).
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Secondly, if point a is an external end, the result of the diagram vanishes because in that
case, the fermion propagator is not present to cancel the on-shell Dirac factor ((p,)*~, — m).
We will consider two simple examples to illustrate how Fig. 6 can be used to show
directly the gauge invariance of on-shell amplitudes. The first example, shown in Fig. 9,
is the Compton scattering amplitude at tree level. The gauge invariance with respect to
the first photon line is demonstrated directly in the diagram. A similar proof is valid for
the gauge invariance of the second photon line. As a result, the whole amplitude is gauge
invariant under a simultaneous gauge transformation of all the lines, but as this example

shows, the perturbative proof accomplishes more: we have now demonstrated that gauge

directly at the Feynman diagrams.

invariance is valid separately for each photon line. This very simple example is typical, in
the sense that one can obtain more detailed information about gauge invariance by looking

-

[ 3

FIG. 9. An example of four-point function at tree level.
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The second example, shown in Fig. 10, is a one-loop light-light scattering amplitude.
Again the gauge invariance of photon line 4 is demonstrated directly in the diagrams, and
the gauge invariance of other photon lines can be proven similarly. Note that as far as the
gauge invariance of the line 4 is concerned, it is immaterial whether the other three photon
lines are on shell or not, thus making the same proof valid even when these other three

photon lines are attached to a much larger diagram.

FIG. 10. An example of four-point function at one-loop level.

From these two examples, we can conclude in general that if we introduce gauge trans-
formation to an external photon line, say line a, individual Feynman diagrams are usually
gauge dependent; we must sum up a subset of diagrams to get gauge invariance. This subset
of diagrams can be obtained by inserting line a in all possible positions along a fermion line,

while keeping the other parts of the diagrams unchanged. See Fig. 11 for an illustration.
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FIG. 11. An invariant subset in QED. As we can see, line a is joined at all possible positions

on line 12

A subset of diagrams invariant under gauge transformation of every external photon line
can thus be obtained from any Feynman diagram by adding to it all the other diagrams

obtained from this one by permuting the photon vertices along each fermion line.

B. Gauge invariance for non-Abelian gauge theories

Non-Abelian gauge theory is more difficult than QED because we have to comnsider the
color (or similar) factor, and more importantly because there are additional vertices in
their Feynman rules. We shall confine ourselves in this thesis to U(N) and SU(N) gauge
theories, and shall loosely refer to their quantum numbers as ‘colors’. For the purpose of
considering their gauge invariance, it is simpler first to make a color decomposition of the

colored amplitude, as discussed below.
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1. color-decomposition

A scattering amplitude, exact or perturbative, contains information on the momentum,

spin, and color of the particles involved, and can be written in general as

A=3 ca, (5.3)

where ¢, is the color part and a; denotes the rest. The amplitude A is gauge invariant, but
depending on the choice of c;, each a, may not necessary be gauge invariant in general. We
would like to show that a proper choice of ¢,, in terms of the generalized Chan-Paton factors,
will lead to gauge-invariant subamplitudes a,. The Chan-Paton factors were first introduced
in open string theory {11}, have been used later on in field-theoretical tice-level diagrams
(12] [13] as well as one-loop diagrams [14] to simplify calculations. We propose to do this
in any number of loops. The fuil details of the Chan-Paton factor and the general proof for
the gauge invariance of a, will be given in Appendix B. To illustrate how that works, we will
discuss the n-gluon amplitude in the tree approximation here in the text.

Let T%(a = 0,1,2,--+,N% — 1) be the generators of U(N) in the fundamental represen-
tation. By deleting T° they also form the generators for SU(N). The structure constant

f°% in the commutation relation
[T°,T"] = i f*T* (5.4)
is fixed by the following normalization which we adopt
tr(T°T?) = & . (5.5)

The corresponding U (V) completeness relation is
N3-1
> (T (T = 8udye . (5.6)
a=0

As shown in Appendix B, the Chan-Paton factors for a n-gluon amplitude in the tree

approximation are given by

28




¢ = tr(T'"T2T3...T") | (5.7)

and its non-cyclic permutations of the n generators inside the trace. The gauge invariance
of the colorless subamplitude a, follows from the independence of ¢,. To prove the latter, it
is sufficient to show that the various ¢; are mutually orthogonal in the large-N limit [15].

For that purpose, let
¢ =tr(T"T"...T™), (5.8)

where {a;,az,:--,a,} is one of the non-cyclic permutations of {1,2,-.-,n}. These color

factors span a vector space, with its dual space being spanned by the dual vectors
é = tr(T% ... T9TH) , (5.9)

To get the normalization factor K, defined by ¢, - ¢, = % Yoy 07,00 C& = 1, we use (5.6) to

compute and obtain

Cotm g X Ar(TTETr(T% - T
1,82, 1Qn
1 n
= N"=1,

(5.10)

thus k' = N",
Now we can prove that the inner product of two different vector vanishes in the large-N

limit. For example, consider ¢, - é; with
a = tr(T'T*T3TT%) ; ¢y = tr(T?*T3T5TTY) . (5.11)

The normalization factor for them is A" = N3, and the inner product is

a-é= Y tr(T‘T2T3T"T5)tr(T‘T“T"’T3T2)l—
1,2,34,5 K
N3
- NS
=0. (5.12)
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In other words, unless the order of the indices match, as between ¢, and ¢,, otherwise we
will have less power of N in the numerator than the denominator, and the dot product ¢, - ¢,
would vanish at the infinite-N limit. This statement is true also for multi-loop cases, which

will be proved in Appendix B.

2. color-oriented diagrams

As we mentioned in the last subscction, a scattering amplitude in QCD can be decom-
posed into gauge-invariant subamplitudes, cach of which corresponds to a different color

factor. To study this color subamplitude, a simple way is to use the color-oriented diagrams

[4].

(a) (b) (c)

(d)

FIG. 12. Ordinary vertices in QCD

The main idea for color-decomposition is to divide a Feynman diagram into different
parts according to their color factor. To do so we start with vertices, the basic elements of
a diagram. For the gluon-quark vertex (Fig. 12(a)), it is not necessary to decompose it, and
the oriented vertex (Fig. 13(i)) is the samne as the ordinary vertex. The color factor for a

triple-gluon vertex (Fig. 12(b)) is f¢%, which can be decomposed into two terms
e = =i (tn(T“T*T°) = Tr(T°TT")) (5.13)
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so an ordinary triple-gluon vertex can be represented by two color-oriented vertices

Similarly for the ghost-gluon vertex (Fig. 12(c)), we get the two oriented vertices as shown
in Fig. 13(iv,v).
As for the four-gluon vertex (Fig. 12(d)), the color factor is
fabefeed = (=)} (Tr(ToT*T°TY) — Tr(T*TTTY) — Tr(T°T*TIT*) + Tr(TT°TT*)) ,

(5.14)

and we need four oriented vertices (Fig. 13(vi,vii,viii,ix)) to represent it.

(1) (ii} (iii)

—

(iv) (v)

(vi) (vii) (viii) (ix)
FIG. 13. Oriented vertices for QCD. The line labelled 1 carries a momentum pj, color factor

a, and a space-time index a, while the line 2 carries po, b, and 3, etc.
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The vertex factors for these color oriented vertices are:

L (z) ig(Ta)cb(7a)1B:

(i)  gtr(T°T*T)(gay (P2 = P3)a + 9valP3 — P1)3 + Gas(P1 = P2));

(iii)  gtr(TT°TC)((gay (P2 — P3)a + Gyal(P3 — P1)s + Gas(P1 — P2)+);

(iv) —gtr(T°T*T¢)(ps)a;

(v)  —gtr(T°T°T*)(p2)a;

(vi)  igPtr(T°T*TT?)(~9sy9as ~ JapGvé + 20a1955);

(vii) igztr(T“TchT")(—gg-,ga& — 9ap0vs + 290‘79195);

(vitd) ig*tr(T°TTT?)(~gs,90p — 9apGys + 290+936);

(i.'l:) i92tr(TaTdeTc)(_gﬁ‘rga‘1 — 9af9vs + 29079136);

By joining these color-oriented vertices together we get a color-oriented diagram. As
the color-oriented vertices are just the decomposition of the ordinary vertices, the total
contribution to a Feynman diagram is just the sum of all the possible oriented diagrams for
that Feynman diagram.

To get the color factor for an oriented diagram, we multiply all the color factors of the
color oriented vertices, and sum over the intermediate color indices. The following two
identities coming from the completeness relation (5.6),

N2_1

3 (T X)tr(T°Y) = tr(XY) , (5.15)

a=0

N‘S tr(T°XT?Y) = tr(X)tr(Y) , (5.16)
a=0

can be used to obtain the Chan-Paton factor of an oriented diagram. For example, in

Fig. 14(a), the color factor becomes
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N2-1

S tr(TOT8To)tr (T TTY) = tr(T°T*TTY) .

a=0

(a)

[, J—

(e)

(g)

(c)

| e §

(£)

FIG. 14. A color-oriented diagram. The indices are the color indices

(5.17)

To join together two adjacent quark-gluon vertices on the same fermion line, as in

Fig. 14(b) , we use

T8 = (T°T )

(5.18)

where the §-function comes from the quark propagator between those two vertices. That

means in order to calculate the color factor of a diagram with several external gluons joined
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to a quark line, we simply multiply all the gencrators along the quark line in the same
order as they are found in the diagram, and then take the #j matrix element, where ij are
determined by the external quark wave-functions.

To join together two non-adjacent quark-gluon vertices, or two vertices on different quark

lines, as in Fig. 14(c) , we use the U (V) relation

N2-1

Y (T2 (T = 8ubyie - (5.19)

a=0
Graphically, when we multiply all the generators along a quark line as described above, then
this means that when we encounter a gluon line we should pass through it to onto the other
quark line.

If we join an oriented triple gluon vertex with an oriented gluon-quark vertex as shown
in Fig. 14(d), we obtain a color factor
N1 N2-1

Z (Ta)thT(TaTch) = ( Z (Ta)ij (Ta)kl)(Tb)lm(Tc)mk y

a=0 a=0

= (T°T*);; . (5.20)

Now comes the four-gluon vertex. If we join an oriented four-gluon vertex with an
oriented tiiple-gluon vertex as shown in Fig. 14(e), we have
N3-1
3 tr(Te T TT)tr (T°T°TY) = tr(T*TT*T°T7) . (5.21)
a=0
If we join it with a gluon-quark vertex as shown in Fig. 14(f), then the color factor is
N2—1
3 tr(TeTPTTYY(T?),, = (T'T°TY),, . (5.22)
a=0
where we have used the completeness relation.
When a four-gluon vertex is connected to another four-gluon vertex as in Fig. 14(g),
N3_1
S° tr(T*TTTtr(T*TeT/T?) = tr(T*T°TTT/T?) . (5.23)
a=0

The color factor for the ghost-gluon vertex is the same as the triple-gluon vertex, and

the argument is also the same.
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Using these arguments incuctively, we can prove the following rules, which allow us to
read off the color factor of an oriented diagram directly. It is worthwhile to study these
graphic rules here, because later on when we use BRST transformation to discuss the gauge
invariance of QCD perturbative scattering amplitudes, these rules can help to bypass tedious
algebra.

After ref [4], first we define somne notations.

A color path is a continuous path along the lines of an color-oriented diagram. There are
two kinds of paths, open path and closed path. An open path starts with an incoming quark
line, and ends at an outgoing quark line. A closed path starts with an external gluon and
comes back to this external gluoun finally to complete a trace. For both paths, the following

must be satisfied:

1. each quark line can be passed at most once, and each gluon line as well as each ghost

line can be traversed at most twice;
2. the path must go along the arrow when a quark line is transversed;

3. when a gluon-quark vertex is encountered, path along a quark line turns to follow the

gluon line and vice versa,;
4. the ghost-gluon vertex here can be treated as a triple-gluon vertex.
5. turn to the leftmost gluon line when a four-gluon or triple gluon vertex is encountered.

Construct all possible color paths so that each quark line of the diagram is passed by
once and cach ghost line and each gluon line is traversed twice. The union of these color
paths then determine the overall color factor of the oriented diagram, as we shall see later.

In practical calculations, it is more convenient to construct all the open paths before the
closed paths.

After we get all the paths, we can begin to write the color factor for each path. A closed

path corresponds to a trace,
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tr(T°T®-.. T, (5.24)

where a,b,- -, n are the color indices of the external gluon lines, written from left to right
according to the order that the path encounters them.

An open path will be a color matrix element
(T°TT* . . . ™), , (5.25)

where a,b, - -, n are ordered according to the path as before, and 2, j are the color index of
the outgoing quark and the incoming quark lines respectively.
Finally, the overall color factor for the oriented diagram is given by the product of the
color factors of the individual paths. To check these rules, we present two examples here.
The first one is shown in Fig. 15. We calculate the color factor directly to check the
consistency and to compare the efficiency. the generator T¢ will be abbreviated by its color

index a below.

C= Y tr(lab)tr(bdc)tr(def)tr(fhg)tr(hij)tr(jlk)

= ::6225tr(def)tr(fhg)tr(hij)tr(jlk)

= tr(claef)tr(gfilk)

= tr(gclaeilk)

= tr(aei)tr(kgc) . (5.20)
From this example, we can see that the first trace corresponds to the outer circle around
the loop, while the second one corresponds to the inner circle. The outer circle is clockwise,
and the inner one is anti-clockwise. This agrees with the rules, because if we start with line

a, we will turn to line b first, and get the first color path as
vl = (abde f hijl) (5.27)
which corresponds to

¢y = tr(aei) . (5.28)
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And when we start with line c, the left most line we will choose is line b. The second color

path is
v2 = (cblkjhg fd) (5.29)
which means

cv2 = tr(kgc) . (5.30)

FIG. 15. An example for the color-oriented diagram

The second example as shown in Fig. 16 is much more complicated, and we should use

the graphic rules directly. The complete set of color paths are
vl =(1,9,10,11,12,2,13,17,3, 18,19, 20, 21, 26,4) ,
v2 = (5,10, 16, 14,17,18,24, 23,21, 25, 26, 22,9) ,
v3 = (11, 16,15) ,
vd = (7,19,24,6, 23,8, 20) ,
v = (14,13,12) . (5.31)
The corresponding color factors are
Cu= (T?T%)14,
Co= tr(T°T®) ,
Cu=tr(1) ,
Co4= tr(TSTTY) |
Cu=1tr(1) . (5.32)
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Therefore the color factor for this color-oriented diagram is

C= C1C2C3C14Cys ,

= (T*T3) 14tr (T3 T®)tr (I)tr(TET3T )t (1) .

2 13 17 3
12\ /4 18
M~ 24 19
4 \
4 A
! \
1 | 16 6 7
\ I' 8
N ’
\\\ P 23 20
10 21
5 25
9 26
% < <
i 22 4

FIG. 16. An other example for the color-oriented diagram

(5.33)

For most of this section we have concentrated on the U(N) gauge theorics. Similar
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results and rules can be developed for SU(N) but they tend to be a bit more complicated.
To start with, tr(T°) = 0 for the SU(N) geuerators T° so sowne of the independent color
factors ¢, in U{N) may be zero or may be mutually related in SU(N). Morcover, to obtain
the SU(N) completeness relation, we must move the ¢ = 0 term of (5.6) to the RIS, as a
result of which a color-oriented diagram will generally contain more than one color factors.
One of these color factors will still be the one discussed above for U(N), bui in addition
there are other factors as well. Nevertheless, we will show in the next section that the sum of
all the amplitudes for the color-oriented diagrams with the same U(N) color factor is gauge

invariant, and that this result is true irrespective of whether the underlying gauge theory is




U(N) or SU(N), because color itself does not enter into that proof at all.

C. QCD perturbative amplitude — vertex variations

In this subsection we consider how each of the non-Abelian vertices varies under a gauge
transformation. The results so obtained are then assembled to give us the variation of a

color-or'ented diagram.

Our general procedure will be to use the BRST invariance to suggest the relevant terms
| resulting from such a variation of each vertex. We will then go back to the color-oriented
‘} Feynman rules for that vertex to derive the exact factors associated with each of the BRST
diagrams for the variations.

To simplify the expression, from now on we will use (1,2,...,) to replace the space-time

indices (a, 3,--,).

1. quark-gluon vertez

The variation of the quark-gluon vertex is similar to the variation of the photon-electron

vertex in QED.

c Cc c
/ ! \
L \
’ \
4 \
’ \
’ N
"I \“
a b a b a b

FIG. 17. Variation of a quark-gluon vertex.

‘ Note the rule for the signs of these diagrams. If the ghost line slides to the end of the
fermion line (Fig. 17(b)), it has a plus sign. If the ghost line slides to the beginning of the
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fermion line (Fig. 17(c)), it has a negative sign.

2. triple-gluon vertez
From 6prs7(0|T' (A, (x)T(y)A,(2))|0) =0, it follows that

(OIT(Dc&2A,)(0) + (OIT(A,ZD,cE)l0) + +(0IT(4, - AEA,)|0)

=0, (5.34)
or more precisely,
(O|T(A,8 - AA,)|0) = —A((0|T(8,ceA,)|0) + gf**T*{0|T(A%c"cA,)|0)
+OIT(A,E0,0)|0) + F*Tg(O|T(A,ZALC)|0)) . (5.35)
This suggests the following graphical identity.
2 2 2
! )[ R | D ]
(a) (b)
2 2
; ,
S TV SN O S S
(c) (d)

FIG. 18. Variation of a triple gluon vertex

It is not very simple to apply this identity directly. Among other things, one must

remove the external gluon line as was done in an analogous case in QED. Instead, it is much

simpler to start from the color-oriented Feynman rules and arrange the resuits of their gauge

variations into these BRST diagrams. This is the general procedure which we will adopt for
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all the vertices. The result of a gauge variation of the second gluon line can be read off from
Fig. 13 to be
9(p2)2 (912(p1 - p2)3 + g2a(P2 — P3)1 + 913(ps — p1)2)
=g ((P?)l(pl ~ p2)a + (p2)a(p2 — pa)1 — 913 (P} —Iﬁ))

= g ((p2)1(P1)a = (p2)3(Psh — 91a(r} - p}))

g ((=pr = P)i(p1)s = (=p1 — P3)a(ps)s — 93P} + gu3p})

= g (~(P)1(p)s + (P3)a(pa)s — 91395 + guapi) - (5.36)

These four terms can be summarized in the four diagrams above, in Figs. 18((c), (d), (a),
(b)), respective.y. The (p;); factor in the first term is represented by the cross at the end of
the ghost line, and the (p;)3 factor is present on account of the ghost-gluon vertex. Similar
correspondence can be seen between the second term and Fig. 18(d). The p2 factor in
term 3 corresponds to the absence of the corresponding gluon propagator in Fig. 18(a), and
similarly the factor p3 of the last term corresponds the absence of the gluon propagator on
the other side as shown in Fig. 18(b).

We shall call diagrams (Fig. 18(a) and (b)) above the sliding diagrams. Similarly, the
diagrams on the RHS of rule 1 are also sliding diagrams. On the other hand, diagrams
Fig. 18(c) and (d) are obtained by substituting the longitudinal gluon line (that with a cross)
by a ghost line. We shall refer to them as substitution diagrams. Note that these ghost lines
can turn into a gluon line half way down a propagator without any penalty, and the resulting
mixed-ghost-gluon propagator should still be treated as a pure gluon propagator.

Each diagram carries a sign as shown. For the sliding diagrams, the sign is determined
by the relative orders of three points: the end point of the ghost line,the end point of the
gluon line, and the joining point of these two lines. If these three points are in clockwise
orderas in Fig. 18(b), then the sign is positive. If they are in anti-clockwise order, then
the sign is negative. For the substitution diagrams, the sign is positive if the cross turns
left, and negative if it turns right. However, it turns out that the absolute signs of these

substitution diagrams are never important.
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3. ghost verter

The BRST variation

dprsT(0|T(CCc)|0) =0, (6.37)

suggests the following diagrams.

e enme

FIG. 19. Gauge variation of a ghost vertex.

From the explicit Feynman rules, one computes Fig. 19(a) to get

—g(p2)2(p1)2g13
= --g(p1 - p2)13
= —9("1’? — P1 - DP3)Gis

=g(p} +p1 - Pa)gia - (5.38)

This corresponds to Figs. 19(c) and 19(b) respectively.

4. four-gluon vertez

The new vertex Fig. 20(a) would result for example by applying rule 1 to Fig. 20(b).

(a) (b)
FIG. 20. (a) a new vertex; (b) the original one.
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The vertex factor for this diagram is

1

ig*(912(p1 — P2)s + 92s(P2 — Ps)1 + gs1 (ps — P1)2)P§g45;)?
= ig°gi2(p1 — P2)s + g2a(P2 — Ps)1 + gar(ps ~ p1)2 (5.39)
Using momentum conservation,
Ps=p3+pg. (5.40)
we get
ig%g12(P1 — P2)a + 924(P2 — Ps = pa)1 + g1a(p3 + Ps — p1)2 - (5.41)

This is just the triple-gluon vertex except that the momentum p4 is now replaced by p3 + pj.
In other words, as before, the ghost line does nothing except to inject some momentum. We
draw line 3 in such a funny way to indicate its pairing with line 4, as the following diagrams

are no- the same.

3, .3

[y
[y

(a) (b)

FIG. 21. Two different vertices.

Using the same discussion as above we can find out the vertex factor for the Fig. 21(a)

is
ig°q12(p1 — P2 — Pa)4 + G24(P2 + P2 — Pa)1 + 9a1(pa — P1)2 - (5.42)

The ghost-line momentum in this case pairs with rnomentum p,.
The difference of these two diagrams is actually given by the divergence of the four-gluon

vertex as can be seen below:
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FIG. 22. An identity about a four-gluon vertex

This identity follows from rule 2, and the expression for the derivative of the four-gluon

vertex
i9%(P3)a(—gaagia — 912934 + 2924913)

= ig? (= g1a(p3)2 — g12(P3)a + 2924(P3)1) (5.43)

obtained from Fig. 13.

5. new quark vertices

We considered before an extra ghost line entering into a triple-gluon vertex. This ghost
line injects some extra momentum into the vertex but otherwise does absolutely nothing.
The same is true when an extra ghost line enters a quark-gluon vertex. Since this vertex is

independent of the momenta, the following graphical identity is obviously true.

[
;

FIG. 23. New quark vertices
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6. new four-gluon vertez

Again the ghost line entering into a four-gluon vertex does nothing but inject some

momentum. However, the four-gluon vertex is momentum independent. Hence

FIG. 24. New four-gluon vertices

7. external ends

If a diagram contains one of the following components, then the result of that diagram
vanishes because of the absence of a pole to cancel the external on-shell Klein-Gordon or

Dirac factors.

(a) (b)

(c) (d) (e)
FIG. 25. External ends. The end of a line without dot here denotes an external end

Fig. 25(e) is true because this ghost line was originally a gluon line. As a result, a gluon

wave function €#(k) is present, and the cross in the graph leads to a factor
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k-elk)=0. (5.44)

D. Gauge invariance of QCD scattering amplitudes

Using these rules, the gauge variation (i.e., the divergence of a gluon line) of a Feynman
diagram can be represented by a summation of several diagrams. For example, the diagram

Fig. 27(i) can be changed into two diagrams as shown in Fig. 26.

FIG. 26. An example about how to change the variation of a Feynman diagram into sum of

several diagrams

A sum of a set of Feynman diagrams will be gauge invariant if and only if these diagrams
sotained from the gauge variations manage to cancel one another. We will first illustrate

how this is accomplished with a few explicit examples.
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1. ezamples

Consider the sum of color-oriented diagrams in Fig. 27 , all with the same U(N) (or
SU(N)) color factors. Using the rules in the subsection above, their gauge variations are
given by the sum of diagrams in Fig. 28. Diagrams that are trivially zero (such as those in
Fig. 25) are omitted. These diagrams cancel one another and the result is zero at the end.

Consequently the sum of the diagrams in Fig. 27 (without the cross) is gauge invariant.

(1) {11) (111)
)
N SRS |
2 s 1 1] 2 l }( ‘.
! s 1 ]
(iv) (v) (vi)
2
3 s
| RUVOUI N ) IV | ¥
. & p J— s 2 4 4 e 1
oo de s 2
'
(vil) (vill) (1x) (x)

FIG. 27. All the Feynman diagrams of a five-point function at tree level which carry the given

color factor.
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(1) (1) (k) 1)

(») Q)

FIG. 28. Gauge invariance of the five-point amplitude at tree level. Explicitly, (a) and (b) are
‘ from (i) in the previous Fig; (c) and (d) are from (ii); (e) and (f) are from (iii); (h) and (g) are
from (iv); (i) and (j) are from (v),(k) and (1) are from (viii); (m) and (n) are from (x). (o), (p)

and (q) are just (vi), (vii), and (ix) respectively.

. According to the rules we presented in previous subsection, we can see that the sums of

the following diagrams in Fig. 28 are zero:
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(i) a,9.k;
(ii) b,d, 0;
(iii) ¢, f, p;
(iv) h,J.q;
(v) e,t,m;

(vi) I, n.

2. general arguments

Now we see how these rules work in general.

To start with, let us review the rules again. When a cross (divergence) is applied to
the end of a gluon line, two types of diagrams may appear unless this gluon line is directly
connected to a ghost-gluon vertex, or a four-gluon vertex. These are the sliding diagrams
and the substitution diagrams (rules 1,2). The cross disappears in the sliding diagrams,
but it travels forward in the substitution diagrams, allowing these rules to be applied again.
Repeating this over and over, the surviving cross either ends up (i) at an external gluon line,
(ii) on a four-gluon vertex, or (iii) on a ghost-gluon vertex. In case (i), the corresponding
diagram disappears because of rule 7. The remaining diagrams of case (ii) and case (iii) as
well as the diagrams without a cross must add up to zero for a gauge-invariant combination
of diagrams. We shall discuss below how this can happen.

The sliding diagrams have the following characteristics: those that slide to the left have
a minus sign, and those that slide to the right have a plus sign. Moreover, the ghost line
that slides intce a vertex does not alter the vertex except to inject into it an appropriate
momentum Such injected momenta could affect only a triple-gluon vertex (rules 4,5,6)
which is momentum-dependent. In principle it could also affect a ghost-gluon vertex when
the sliding ghost is paired with the outgoing ghost of the vertex, but such a diagram never
appears.

When a sliding ghost ends up at a quark-gluon vertex, it could have come from the left
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or from the right with the same color factor, but these two differ by a sign so their sum is

zero as shown in Fig. 29.

FIG. 29. Cancellation involved quark vertices.

Note that in this figure and all the figures below, the graphs shown are meant to be only
a portion of a pssibly much larger Feynman diagram. In other words, the lines shown in
the graphs may very well be connected to other lines not explicitly drawn.

As shown in Fig. 30, a three-gluon vertex divides the plane around the vertex into three
sectors, each bound. d by a pair of gluons. A sliding ghost ending up at a three-gluon vertex
is paired up with a gluon line in one of these three sectors. Depending on whether it pairs
up with the left or the right gluon line in the sector, the sign differs. According to rule 4,

these two add up to be zero together with the diagram obtained by replacing the sliding

ghost line with a gluon line having a cross on top.
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(a) (b) (c)
- - __[ S— + ‘ + =0
(d) (e) (£)

FIG. 30. Cancellation involved triple-gluon and four-gluon vertices.

Similarly, if a sliding ghost line ends at a four-gluon vertex, the left one and the other

one have a relative sign different, and they cancel as shown in Fig. 31.

.
AN

N

FIG. 31. Cancellation involved four-gluon vertices.

Finally, a sliding ghost can end up at a ghost-gluon vertex, paired with the gluon line,
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either (i) in the sector bounded by the gluon and the incoming ghost of the vertex, or {ii)
the sector bounded by the gluon and the outgoing ghost of the vertex. In both of these
cases, it is important to note that the ghost lines in the vertex must appear in the diagram
i~ the form of a closed loop. The cancellation in both cases relies on the complementary
diagram where the ghost loop is replaced by a gluon loop.

Let us first discuss (i). First notice that the sliding ghost line may be paired up with the
incoming ghost line instead, because of the absence of momentum dependence of the vertex

on these lines.

~
w
~
1]

FIG. 32. A graphical identity about ghost vertex.

Secondly, the canceliation proceeds by rule 3 as follows.

- ~
iy i g

FIG. 33. One of the cancellations involved ghost vertices.
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The remaining question is where the diagrams in Fig. 33 can come from. The answer of

this is shown below.

- —

-
A
\
L
4

FIG. 34. The original diagrams of those in the previous Figure.

This concludes the discussion of (i). The cancellation involving case (ii) is shown below.

- -

1
A}
1
| RS,
[
\ '
Iy ,
. ,
-

)

i A — i

FIG. 35. The other cancellation involved ghost vertices.

And all the diagrams in Fig. 35 can be obtained as shown in Fig. 36.
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FIG. 36. The original diagrams of those in Fig. .

In summary, the sum of all color-oriented diagrams for a fixed color factor and with a
fized number of quark loops is invariant under gauge transformation of any of iis external

gluon wave functions.

VI. CONCLUSION

In conclusion, a set of graphical rules inspired by BRST invariance has been derived and
applied to prove the explicit gauge invariance of QED and QCD, especially perturbative ones
at multi-loop level. These rules show us how the gauge variation of each individual Feynman
diagram or color-oriented diagram cancel each other when we sum up all the contributions
to a gauge invariant subset of them.

Compared with the original Feynman rules shown in Appendix B, we find that these new
graphical rules make explicit use of the property of the divergence (indicated by a x in the
diagrams). These rules separate out the longitudinal component of an external gluon and
introduce ‘new’ vertices to describe the traveling and the coupling of this component. On

the other hand, in the original Feynman rules, the longitudinal component is mixed up with
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other components, and gauge invariance is thus obscured.

It is conceivable that even smaller gauge-invariant subsets can be obtained in specific
gauges like the background gauge [16]). This problem is under investigation. Another di-
rection for study is related to the so-called string-reorganization, one of its aims being an
attempt to sum up the individual gauge-dependent Feynman diagrams into a single gauge-
independent ‘dual’ expression. This has been achieved in QED [17] but not yet in QCD, and
it is hoped that the additional insights gained from the present work could help to attain
this goal. This is an important objective [18] because it may help to simplify practical com-
putations. As mentioned in the Introduction, the number of Feynman diagrams involved in
a higher-point or a multi-loop amplitude is very large. For example, a tree-level six-point
pure-gluon amplitude already has hundreds of Feynman diagrams [19], and the practical
calculation for this amplitude is thus extremely lengthy. An important part of this complex-
ity arises because individual Feynmaun diagrams are gauge dependent, so in evaluating them
individually many gauge-dependent terms have to be carried along, which eventually mus
be cancelled out in the sum to obtain the physical amplitude. If a single ‘dual’ expression
can be developed for the sum, which then must be gauge invariant, such additional labour

of dealing with the gauge-dependent terms can hopefully be saved.
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APPENDIX A: THE CHAN-PATON FACTORS FOR MULTI-LOGP
ARBITRARY PROCESSES

In this Appendix we are going to prove the statement in Sec III, that the generalized
Chan-Paton color factors for U(/N) are mutually orthogonal in the large N limit. As we
shall discuss later, the Chan-Paton factor is made up of products of U(N) generators T* in
the fundamental representation and their traces. Before going into the details, it would be
useful first to develop a convenient set of mathematical notations.

Fig. 37(a) represents the trace of a product of generators. Specifically, each dot on the
line represents a generator matrix 7%, and the solid lines between dots represent indices
of the matrix elements. If two dots are joined by 2 line, then they represent two matrices
sharing a common index, which is to be summed over. We choose a convention to read these
matrices in the opposed direction of the arrow on a line. Therefore, the ring in Fig. 37(a)
means tr(TT*T<T9T¢), the line in Fig. 37(b) represents (T°T*T<T9T*);,.

Consider each Chan-Paton factor as a vector, whose components are labelled by the
color indices of the generators in that factor. Inner products can be defined between some
of these vectors. An example in shown in Fig. 37(c), which represents the inner product

A - A, defined to be

1

A-A==Z ¥ (tr(T°TPTTT)tr(TTTT*T?)) , (A1)

ab,cde

where K is the normalization constant, and
A= tr(T°T T°TT*) ,
A= tr(TTTT*T°) . (A2)

Note the lower ring in Fig. represents the dual vector of A, instead of A itself. Similarly,

the inner product shown in Fig. (d) represents

A.1§=—I"E Y tr(TT*TTT*)tr(TP T TH)tr(T°T*) , (A3)
abede
A= tr(T°T*TT?T*), B = tr(TT°T*)tr(T°T*) . (A4)
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We can calculate these two examples explicitly to find out the normalization factor K for
these dot products. First Fig. 37(c),

A A== 3 (T TTTHT*)tr (TTTT*T*) ,

K ab,cde

== 2 ()T kT(T) (T i (T) g (T) e (TViewr (T) 0 (T it
K ab,cde
1
= 1{ (5 l'6]1"'5]"1'5’\"6'&"'6“0'6“9'51"]'6"1]’6" )
1, 5
=V (A5)

p—

Then Fig. 37(d),

A- D= K St (TeTTeTTe)tr(TTT)tr (T°T°) ,
a,b,c,d,e

=g Z (T)ua (T )i (Lt (T) 1 (T s (T)irge (7)1 (T Yirr (Tt (T Yt
1
_{' Z "n’(sjl'djk"6‘0"1’6,“'5']’6“’67",&"6"1]' n’) »
1

= ) 5::' y
I{ a,g e( Y )
1
= Z(N?). (A6)

Note that this is much smaller than A - A in the large-N limit.

A general rule for the inner products can be worked out. The result is the following.
Cover the inner-product graphs by a complete set of closed paths. The final result is N* /K,
where n is the number of such closed paths. A closed path is drawn starting from any point
at a solid line, proceeding along the arrow until it comes to a dot, whence it must follow the
dash line to cross over to the other solid line. Continue thus until the path returns to the
starting point to form a closed path. A complete set of closed paths is obtained when every
solid line is covered once by a path and every dash line is covered twice by some paths.

Using this rule, we can proceed to prove the claim of Sec. III, first for gluon amplitudes,

whose Chan-Paton factor is a product of traces
c=[[tr(T*---T%) (A7)
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in which each external color index appears once. Now we can prove the following two

statements.

1. In the vector space with n color indices, the normalization factor K(n) is N*. If the

color factor ¢ consists of only one trace,
c=tr(T"T"...T*")= A, (A8)
then this follows immediately from the rule because

- 1 N N
AA=—— (T T - Tt (T T o+ T™) = o = 1. (A
I{(n) al'ag-Z(x,,:l r( ) 7( ) ]\’(") (AJ)

For a more general case, consider

c= Htr(ﬁ ™ =T[4, (A10)

J

where J]' means non-commutative product. Then the inner product becomes

c-E=HA,-/i] ,
7
1 m _ N"
~ K(n) IJ-IN "= K(n) ~ Ly (A1)

where n, is the number of closed paths in A,. Hence the claim is once again valid.

2. One and zero are the only possible results for these inner products if N trends to
infinity. To prove that, consider the inner product of two vectors A and B and it
corresponding graph. There are 2n pieces of solid lines connecting the dots. Since
each closed path must contain at least two picces of such solid lines, and since cach
solid line can be passed only once, we can conclude that the maximum number of these

closed graphs is n, and the statement above becomes obvious considering the infinite

limit of N.

Now we are going to prove the statement made in Sec III: the inner product of two
n-vectors A and B is one if A = B up to cyclic permutation. Otherwise the inner product

is zero.
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At tree level, where A and B cach contains only one trace, the proof is quite obvious.
If A= D up to cyclic order, then for any two adjacent points @,b in the upper ring, the
corresponding two points a,b in the lower ring will also be adjacent, but in the opposite
order. Therefore, each closed path we construct will contain exactly two pieces of solid lines,
and we can obtain the maximum number of closed paths. As a result, the inner product is
1.

If A # B, then there must be at least one pair of adjacent dots a,b in the upper ring
for which the corresponding dots in the lower mng are either not adjacent, or adjacent but
in the same order. For both cases, the closed path involving points a,b will contain more
than two picces of solid lines. This reduces the total number of closed paths we get, and the
inner product is thus zero.

For multi-loop cases, as we can see from the examples in Sec. III, the Chan-Paton factor
is in general ~ product of traces as defined in (A7). If A = B, then all the traces in A must
pair up with those traces in B. For each pair of traces we can use the above argument, and
the inner product we get is one. If A # B, then there is at least one trace in A that is not
the sanie as its partner in B. We will get less number of closed paths, so that the inner
product of these two vectors is zero.

We have so far ignored external quarks. Their inclusion is not at all difficult. The Chan-
Paton factor for each quark line is either the identity matrix, or a product of generators.
The Chan-Paton factor for the whole diagram consists of the product of the quark factors,

and some traces. For a quark factor like
B = (TuT*...T* )y , (A12)

where Kkl are the color indices of the external quarks and m is the number of the external

gluouns attached to this quark line, the inner product of two such factors is defined to be

1

Nm+l

B-B= e (T - Ty (T - T Yy = 1 . (A13)

a

which can be read off from Fig. 37(e) .
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Consider a scattering diagram involving 2n external quarks and m external gluons. The
Chan-Paton factors that span the vector space consist of a products of factors of the form
(A12), together with a product of trace factors of the formn (A2) and (A4). The inner product
of two such factors with a fixed n and m will again be defined to be the product of one with
the dual of another, summed over all gluon and quark color indices, and divided by N™t™,
By exactly the same kind of argument as before, the inner product between two such factors
A and C can be represented graphically, e.g., Fig. 38. Their dot product would be zero
unless A = C, for otherwise the number of closed paths would be less than the maximum

number possible. This then completes the proof of our claim.

(a) (b)

-

-)—
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a"

\ -
. -
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N
A
Y

(c)

(d)

2 beenanef ©

(e)

FIG. 37. Color graphs
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FIG. 38. An example of inner product of two color factors. For simplicity, we omit the dots at

the joining points of a dash line and a solid line here.

APPENDIX B: FEYNMAN RULES FOR QED AND QCD

The Lagrangian for QED is
L= (D) = m)p = ZF* Fy, — (0 - A (B1)
= Vi YT e Ty !
From the free Lagrangian, the quadratic terms, for

Ly =9i(@y" -m)¥, (B2)

we can get the two-point Green function, or say propagator, as

i
PuYH —m + i€
_ it +m)
p>—m?+ie’

iA(p)=

It can be denoted graphically as Fig. 39(a).

For an internal photon line, the free Lagrangian including the gauge fixing term
Lo-a2 -1, B4)
2 4 ’ (
and we have the propagator as
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~igu + (L= N /p?
P2 +ie '

1Aph (P)yv = (B5)

The most common choice is Feynman gauge A = 1. This propagator can be shown as
Fig. 39(b).
The interaction term between fermion and the photon is

ie'y“z,/_)A‘“l/) , (B6)

so that the vertex factor is

—iey, (B7)

It is shown in Fig. 39(c).
Incoming and outgoing electrons are represented as u(p) and @(p) respectively.For im-

coming and outging positrons, write v(p) and ¥(p). For external photon line, multiply the

polarization vector ¢,(p).

m

P P l
a.——’—‘B Ho——e ¥ a ﬂ

(a) (b) (c)

FIG. 39. QED Feynman rules, with the bold line for fermion line, the thinner solid line for

photon

Therefore for each scattering amplitude,
1) We use the Fig. 39(a), (b), and (c) as basic elements and construct all possible
diagrams, the Feynman diagrams. Then for each fermion, photon internal line and vertex,

write down the corresponding factors as given above. Multiply these factors together.
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2)Insert an additional (—1) for each close fermion loop.

3)Integrate over all the internal loop momenta using

diq
/ 2n)1 (B8)

4)Fermion loop should occur twice, clockwise and anti-clockwise directions

5)Multiple the relative minus sign due to exchanging the equivalent external fermion
lines, and also the symmetry factor.
Then sum up the contributions from all the diagrams, we get the scattering amplitude.

As for QCD, the effective Lagrangian we got in Sec II is much more complex than the

QED one.
Legs = Bi{Dyoyps = m)¥ — 5 (FL)? -2%(0- A2 — 2D, . (B9)

Using the same method as that for QED, we can write the propagators for all the particles.

k k k
ani r————— ij uva V,b ] [ . 1 ¢ |

(a) (b) (c)

FIG. 40. QCD Feynman rules, with the bold line for quark line, the thinner solid line for gluon,

and dash line for ghost.

1)gluon propagator

. _,i(sab
iDF (M = g (9w + A= Dhuk /K] (B10)
as in Fig. 40(a)
2)quark progator
5
Y (p)op = i
iS¢ (P)ap (p,,*y“—m-i-ie)aﬂ ) (B11)

as in Fig. 40(b).
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3)ghost propagator is

as shown in Fig. 40(c).
In QCD there are more vertices:

1)triple-gluon vertex

iT = ig £ ((ky — ka)aguw + (k2 — ks)uguar + (ks — k1)ugun) -

2)four-gluon vertex

ir:te:p = "ig’(-f“be fd‘(gpkgvp - gvlgpx)

+fof u‘(g,wg,,x - gvxgup)

+f¢*fdn(9ukgpv — 9o Gur)) -

3)gluon-ghost vertex

iree = gfobk, .
4)gluon-quark vertex

iTpe = gf ™k

All these vertices are show in Fig. 41 (a), (b), (c) and (d) respectively.
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FIG. 41. QCD Feynman rules, with the bold line for quark line, the thinner solid line for gluon,

and dash line for ghost.

Then we can calculate the scattering amplitude as in QED.
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