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SUMMARY 

This thesis presents a new theory for the dynamical 

and static analysis ofaxially non-uniform, thin, circular 

cylindrical shells subjected to random pressure fluctuations. 

It is a hybrid of finite element andclassical shell 

theories: the shell is subdivided into cylindrical finite 

elements, and the displacement functions are obtained using 

Sanders' shell equations (for thin cylindrical shells) in 

full. Expressions for the mass, stiffness and stress­

resultant matrices for one finite element and for the 

whole structure are obtained. 

The free flexural vibration·characteristics of thin 

uniform shells with simply-supported, clamped and free ends 

are studied, as well as ring-stiffened shells, shells with 

thickness discontinuities, and shells partially or completely 

filled with liquide The frequencies of vibration are compared 

with those obtained by other theories and with others' 

experiments. Agreement with other theories is good and, in 

the majority of cases, is even better with the experiments. 

Finally, an expression of the r.m.s. response of 

uniform and non-uniform shells subjected to subsonic 

boundary-layer pressure fluctuations was derived; and a 

particular simply-supported cylindrical shell subjected to 

such a pressure field was studied. 
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CHAPTER l 

INTRODUCTION 

1.1 General Introduction 

Thin shells appear as components in practically 

every type of modern industrial equipment, in aerospace, 

nuclear, marine and petrochemical industries. Accordingly, 

the study of the dynamical characteristics of thin elastic 

shells is of considerable practical, as well as theoretical, 

interest. 

As in all dynamical problems, interest commonly lies 

in the determination of the free vibration characteristics 

of such shells, and in their response characteristics when 

subjected to prescribed force fields. 

In this thesis we are concerned with the dynamics 

of thin cylindrical shells. Such shells are commonly used 

to contain or convey fluids, and this, to a certain extent, 

determines the classes of problems in which interest is 

focused. Thus, in addition to the determination of the 

vibration characteristics of the shells in vacuo, it is 

also of considerable interest to determine the dynamical 

characteristics of shells containing either stationary or 
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flowing fluid - which is the realm of fluidelasticity. 

There are many ways in which the presence of the 

fluid May influence the dynamics of the shell. If the 

shell contains a stationary gas at low pressure, then the 

vibration of the shell differs only slightly from that of 

the same shell in vacuo. This is not the case, however, 

if the shell is substantially pressurized by the enclosed 

fluid, as this entails additional strain energy in the 

shell. Moreover, if the fluid is compressible, the 

compressibility of the fluid alters the effective stiffness 

of the system. Also, if the density of the enclosed fluid 

is relatively high, as is the case with liquids, then the 

fluid exerts considerable inertial loading on the shell, 

and this results in diminishing the resonant frequencies 

significantly. 

Coupling between the fluid and the shell can manifest 

itself in several other ways. In the case of shells 

partially filled with liquid free-surface motions May be 

coupled to the shell motions. This is of particular interest 

in liquid-propelled rockets: in cases of proximity or 

coincidence of the natural frequencies of the free-surface 

motion and that of the shell, large oscillations May develop 

in the propellant tanks and are normally referred to as 

sloshing. Nonlinear coupling May also induce sloshing: in 

this case subharmonic excitation of free-surface modes is 
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involved. 

Other effects of coupled fluid-shell motions occur 

when the fluid is flowing. Depending upon the boundary 

conditions, if the flow velocities are large, buckling 

or oscillatory flexural instabilities are possible (§1.2). 

More recently, the existence of flutter in the shell-modes 

was discovered (~1.2). 

Similarly, in considering the response of cylindrical 

shells, considerable interest exists in the case where 

the excitation is transmitted through, or arises from, 

the contained fluide This could take the forrn of pressure 

waves transmitted through the fluid: or, if the fluid is 

flowing, the excitation could arise from gross pressure 

perturbations due to disturbances in the flow, or from 

boundary-Iayer perturbations. It is known that vibration 

caused by these pressure fluctuations may, in certain 

circumstances, cause fatigue failures of the structures 

involved. 

In this thesis we shall concern ourselves with the 

development of a novel theory for the dynamical analysis 

ofaxially non-uniform shells. We shall study (a) the free 

vibration characteristics of such shells empty, and completely 

or partially filled with liquid, and (b) the response of 

such shells to an arbitrary pressure field, and specifically 

to a pressure field arising from the subsonic boundary layer 
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of an internally flowing fluide 

1.2 Literature Review 

The first attempt to formulate a bending theory 

of thin shells from the general equations of elasticity was 

made by Aron in 1874, and was followed in 1888 by a 

successful approximate theory known as Love's first 

* approximation (l) - (l). Since then, the theory of elastic 

shells has repeatedly been re-examined in the literature, 

e.g. (l) - (~). 

Several methods have been developed for the dynamical 

analysis of shells. Of these the Most versatile have 

proved to be Rayleigh-Ritz methods, e.g. (10), (11), Stodola­

type iteration methods, e.g. (12), finite-difference methods, 

e.g. (13), and finite-element methods (l4) - 0(20). AlI 

these methods and their variants have their advantages and 

disadvantages. One of the criteria of success of a method 

may be considered to be its capability of yielding the high 

as weIl as the low characteristic frequencies and modal 

shapes with comparable, high
0 

accuracy. This requirement is 

not really met by the finite-difference and Stodola-type 

methods [cf. (12)]. The Rayleigh-Ritz and finite-element 

methods, on the other hand, are satisfactory from this point 

of viewi furthermore, because they le ad to a symmetric 

* Underlined numbers in parentheses denote references, 
listed separately. 
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eigenva1ue prob1em, they are easi1y amenab1e to solution 

by digital computer, which is a great advantage. The 

finite-e1ement method has added advantages in terms of 

ease of formulation, and because numerica1 convergence is 

not as sensitive to particu1ar sets of boundary conditions 

as is the case with the Ray1eigh-Ritz method (21). 

Here we are specifica11y interested in free vibration 

and response to randorn pressure" fluctuations of uniform 

and non-uniform thin cy1indrica1 she11s. According1y, 

we sha11 review the pertinent 1iterature in these areas, 

as fo11ows: first1y, on free vibration of empty cy1indrica1 

she11s; second1y, on free vibration of f1uid-fi11ed she11s; 

third1y, on the response of cylindrica1 she11s subjected 

to random force fields. 

Arnold and Warburton's (47) pioneering work on the 

vibration of uniform cy1indrical she11s derives the frequency 

equation by the energy method using Timoshenko's strain 

relations. Lagrange's equations are used to derive the 

dynamical equations, eventua1ly leading to a determinantal 

equation which yields the frequencies. Baron and Bleich (!!) 

have based their theory on an energy method in which the 

she11 is first treated as a membrane and the bending effects 

are subsequently introduced as corrections. Galletly (!!) 

extends Arnold and Warburton's theory to ring-stiffened shells. 

Michalopoulos and Muster (46), also studying ring-stiffened 



- 6 -

shells, proceed essentially as in (!I), but express 

displacements in the kinetic and strain energy expressions 

in general, series form; the frequencies are found by the 

Jacobi iteration method. Sewall and Naumann (11) studied 

uniform and axially stiffened shells; they obtained their 

natural frequencies by application of the energy method, 

using Novozhilov's strain-displacement relations and employing 

the Rayleigh-Ritz procedure. Weingarten (50) neglecting 

rotary inertia effects, derived a Donnell-type equation for 

a general orthotropic conical shell. He then reduced the 

ring-stiffened shell to an equivalent orthotropic conical 

shell. The cylindrica1 she1l in this case may be considered 

as the limiting case of a conica1 one. Fina11y, the free 

vibration characteristics of she1ls with a thickness 

discontinuity were studied theoretica11y by Warburton and 

A1-Najafi (51) and both theoretica11y and experimenta11y 

by Fa1kiewicz (52). 

The above is not meant to be an exhaustive 1iterature 

survey of the field of free vibration of thin cy1indrical 

she11s; no such survey is presented here, main1y because 

most of the papers are concerned with uniform cy1indrical 

she1ls, whereas we are here interested in (axia11y) non­

uniform ones. In this latter category there are few papers 

indeed, namely Warburton's and Al-Najafi's (51) work, and 

the work on ring-stiffened she11s discussed above. 
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Considering f1uid-fi11ed she11s next, a considerable 

volume of work exists dea1ing with the effect of the f1uid 

on the dynamics of the she11. Once again, we sha11 not 

attempt a complete 1iterature review, for simi1ar reasons 

to those given above. Niordson (33), in 1953, was the 

first to present a systematic - and e1egant - theory for 

the effect of interna1 and externa1 fluids on the vibration 

of she11s (a1so considering the case of f10wing f1uids). 

Fung et al. (37), and Berry and Reissner (32) investigated 

the effect of pressurization (by compressible f1uids) on 

the vibration of freely supported cy1indrica1 she11s, both 

theoretica11y and experimental1y. Lindholm et al. (36) 

studied the free vibration of a comp1etely 1iquid-fi11ed 

tank, essentia11y unpressurized. They also performed 

experiments in the case of partia11y 1iquid-fi11ed she11s. 

Parenthetica11y considering coup1ed f1uid-she11 

motions in cases when the f1uid is f1owing, it was found 

that, depending on the boundary conditions, if the f10w 

ve10cities are large enough, buck1ing or osci11atory 

instabi1ities are possible (33), (34). More recent1y, the 

existence of f1utter instabi1ities in the she11 modes was 

discovered by Paidoussis (35). 

Fina11y, we consider the 1iterature on the vibration 

of she11s subjected to a random force field. We shal1 

by-pass references on the response of cy1indrical she1ls 
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subjected to either static or dynamic deterministic 

force fields, which are o~ no interest to us here. Severa1 

theories do exist for the response of bars, beams and 

plates subjected to genera1, random pressure fields, and in 

the particu1ar case of a boundary-1ayer pressure field, 

e.g. (53) - (57). To the author's know1edge no such genera1 

theory exists for cy1indrica1 she11s. However, a study 

concerned "with the vibratory motion of a simp1y supported 

finite, e1astic, circu1ar cy1indrica1 she11 due to random 

pressure field" ~as made. by Cottis et al. (45). That study, 

apart from being 1imited to simp1y-supported she11s, derives 

on1y the space-time correlation function, rather than the 

mean-square responsei moreover, numerica1 solution of 

the prob1em is not attempted. 

1.3 The Present Theory 

In this Thesis we are concerned with the dynamics 

of thin cy1indrica1 she11s. Such she11s can vibrate in 

Many ways. Here we shal1 on1y concern ourse1ves with the 

c1ass of vibrations where the she11 motions are predominant1y 

radial. More specifica11y, we sha11 on1y consider f1exura1 

vibrations of the she11 wal1s, in the modes sometimes 

designated as "breathing" vibrations, thus exc1uding the 

particu1ar1y simple case where the she11 vibrates essentia11y 

as a beam. 

The theory to be deve10ped will be capable of ana1ysing 

geometrica11y axia11y-symmetric she11s which are not necessari1y 



- 9 -

uni form , i.e. allowing for axial variations in wall­

thickness and elastic properties. The theory will be 

capable of yielding the free-vibration characteristics of 

such shells, and their response when subjected to a random 

pressure field. The the ory can also deal with shells 

partially filled with liquide 

This theory is a hybrid finite-element theory in 

the sense that, whereas it uses the framework o~ the finite-

element method, the displacement functions are determined 

by classical shell theory. The finite element chosen is 

a cylindrical frustum, rather than the more usual triangular 

or rectangular fIat plate elements [cf. (22) - (25)]. This . - -
allows us to use the thin shell equations in full for the 

determination of the displacement functions, and hence the 

mass, stiffness and stress-resultant matrices - instead of 

the more usual polynomial displacement functions. 

As no geometric modelling of the structure is 

involved, and as the shell equations are used for the 

determination of displacements within each finite element, 

it is reasonable to expect that this approach is capable 

of high accuracy. 

Calculations of the free vibration characteristics 

(i.e. the eigenvalues and modal shapes) of uniform and non­

uniform shells will be presented. In the latter case, shells 
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with a thickness discontinuity and ring-stiffened she11s 

are analysed, as we11 as she11s partia11y fi11ed with 

1iquid. Specifica11y, for particu1ar uniforrn or axia11y 

non-uniforrn cy1indrica1 she1ls, the f1exura1 natura1 

frequencies and the eigenvectors are ca1cu1ated for various 

combinations of the circumferentia1 wave-number, n, and 

number of axial ha1f-waves, m. The ca1cu1ations are 

confined to n ~ 2 which is a limitation of the theory as 

it stands. In this connection, it shou1d be remarked that 

for n = 1 the vibration is essentia11y that of a beam and 

its characteristics may be deterrnined by much simp1er theory. 

For n = 0 the deforrnation of the she11 is axia11y symmetric, 

and this case will 1ikewise not be considered here. 

Fina11y, the r.m.s. response of uniforrn and axia11y 

non-uniforrn she11s subjected to subsonic boundary-layer 

pressure fluctuations is a1so ca1cu1ated, ana1ytica11y and 

numerica11y. In a11 the above cases, whenever possible, 

the theoretica1 resu1ts will be compared with avai1ab1e 

experimenta1 data and with others' theories. 

The original contributions of this Thesis may be 

consldered to be the fo11owing: (i) the deve10pment of a 

new concept for the ana1ysis of she11s, by utilizing the 

versati1ity of the finite-e1ement method, on the one hand, 

and the precision of classical shell theory, on the other: 

(ii) the use of this concept in deve10ping a new finite 
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element formulation for thin cylindrical, axially non-

uniform or uniform, shells: (iii) the development of a 

theory capable of statically and dynamically analysing 

any axially non-uniform shell, including the case of 

partially liquid-filled shells (as will be seen, with 

consistently good accuracy): (iv) the analysis of 

uniform and non-uniform thin cylindrical shells subjected 

to a subsonic boundary-layer pressure field, to the point 

of predicting r.m.s. amplitudes of vibration. 

1.4 Organization of this Thesis 

The study is divided into nine Chapters. We shall 

briefly outline the contents of each. 

Chapter II is devoted to general, theoretical aspects 

of the finite-element method, and to the basic theory of 

thin elastic shells, with particular attention to Sanders' 

theory. 

In Chapter III we establish the pertinent displacement 

functions for the finite element selected from the theory 

of thin elastic shells. 

The construction of the stiffness, mass and stress-

resultant matrices for one finite element and for the whole 

shell is developed in Chapter IV, as weIl as an outline of 

the method of analysis of shells subjected to static loads. 

Chapter V considers the free vibration characteristics, 

the effect of enclosed stationary liquid on the dynamics of 
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partia11y filled shells, and the determination of the 

response to random pressure fields, of uniform and non­

uniform shells. 

In Chapter VI we determine the longitudinal and 

lateral spatial correlation functions for the case of 

subsonic boundary-Iayer pressure fluctuations. We also 

obtain expressions for the r.m.s. response of shells 

subjected to such pressure fluctuations. 

Chapter VII describes a procedure for computing the 

vibration modes and frequencies, both for the case of empty 

shells and also for the case of shells completely or 

partially fiiied with Iiquid; aiso the method of computing 

the r.m.s. response to subsonic boundary-Iayer pressure 

fluctuations. 

In Chapter VIII are presented the results of sorne 

calculations undertaken to test the theory. 

The first set of calculations invo1ves uniform shells, 

the main aim being (i) to check the correctness of the mass 

and stiffness matrices as derived in Chapter IV, (ii) to 

test the rate of convergence of the computed natural 

frequencies to the correct value with increasing number of 

finite elements, and (iii) to test the sensitivity of the 

new theory to boundary conditions. 

The second set of calculations is with non-uniform 

shells. A shell made up of two segments of unequal wall-
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thickness and another which is ring-stiffened are 

analysed. The third set involves natural frequencies of 

uniform shell completely or partially - filled with 

liquid. 

Finally, the r.m.s. response to subsonic boundary­

layer pressure fluctuations is determined for one specifie 

shell configuration. 

Finally, Chapter IY presents sorne general conclusions. 

_ .... _------
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CHAPTER II 

BASIC THEORY 

2.1 Introduction 

The general method used in this study is the fini te­

element method. The shell is subdivided into cylindrical 

finite elements, and the displacement functions are obtained 

using Sanders' equations for thin cylindrical shells in 

full. This approach appears to offer considerable advantages, 

and its relatively simple logic makes it ideally suited for 

the computer. 

As this is a relatively new technique, a short 

outline of the finite-element method and of Sanders' theory 

for thin shells will be given next. For further information, 

the reader is referred to (25) and (~). 

2.2 Finite-element Method 

2.2.1 General outline of the procedure 

The finite-element method proceeds as follows (25): 

(i) the continuum is separated by imaginary lines or surfaces 

into a number of 'finite elements'; 

(ii) the elements are assumed to be interconnected at a 

discrete number of nodal points situated at their 

boundaries, the displacements of these nodal points 
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being the basic unknown parameters of the problem; 

(iii) functions are chosen to uniquely define displacement 

within each finite element in terms of its nodal 

displacernents; 

(iv) as the displacement functions uniquely define the 

state of strain within each element, this strain, 

together with any initial strain, and the elastic 

properties of the material will define the state of 

stress throughout the element and on its boundaries. 

Suppose that we have a cylindrical finite element 

defined by two nodes i and j and nodal surface boundaries 

(figure 1). Then the displacements within the element, i.e. 

the displacement functions, may be defined by 

{~;,:.:) t = LN] {~~} (2.1) 
vell •• )] l 

where ttS\represents the nodal displacements, and the elements 

of [N] are in general functions of position. 

With displacements now known throughout the element, 

the strain matrix {E} may be written as 

(2.2) 

Assuming general elastic behaviour, th~ relationship 

between the stress matrix, {a}, and the strain matrix will 

be linear and of the form 

(2.3) 

where [p] is the elasticity matrix containing the appropriate 
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material properties. 

Finally, the equivalent values of the nodal forces, 

{F}e, May be written as follows (25): 

(2.4) 

where p is the density. Equation (2.4) sirnply states that 

the equivalent force is due to stress, within the element, 

associated with deformation and inertial loading, and is 

recognized as the typical dynamical equation for any 

structural element. Accordingly, it defines the stiffness 

and ~ matrices, [k] and [ml, respectively, associated 

with the finite element, i.e. 

(2.5) 

and 
(2.6) 

2.2.2 Convergence criteria 

It is noted that the finite-element method yields 

use fuI results provided that the displacement functions 

chosen represent weIl the true displacernents. To this end, 

the displacement functions should satisfy the following 

'convergence' criteria (25): 

(i) the displacernent functions should be such that they 

do not permit straining of an element when the nodal 
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displacements are generated ~olely by rigid-body 

displacements: 

(ii) the displacement functions should be such that if the 

nodal displacements are compatible with a constant 

strain condition, such constant strain will in fact 

be obtained. 

It is noted that the second criterion incorpora tes the 

requirements of the first one, as rigid body displacements 

are a particular case of constant strain, namely zero 

strain. 

2.3 Basic Theory of Thin Elastic Shells 

The linear theories of thin elastic shells may be 

divided into two categories: 

(a) Theories based on Love's first approximation 

The assumptions in this case are the following: (i) the 

thickness of the shell i9 small compared with the least 

radiu~ of curvature (Rmin ) of the middle surface, i.e. 

(tiR. «1): (ii) the strains and displacements are 
m~n 

sufficiently small, so that the quantities of the second-

and higher-order magnitudes in the strain-displacement 

relations may be neglected in comparison with ,the first-order 

terms: (iii) the component of stress normal to the middle 

surface is small compared with other normal components of 

stress and may be neglected in the stress-strain relations, 

and (iv) the normals to the undeformed middle surface remain 

normal to the deformed middle surface and suffer no extension. 
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(b) Theories based on Love's second approximation 

These are distinguished from those of (a) in that here 

the effects of transverse shear and normal strain are not 

neglected. 

The first assurnption in (a) defines what is meant by 

a "thin shell". The second assurnption ensures' the linearity 

of the resultant differential equations. The third and 

four th assurnptions, respectively, imply the neglect of 

transverse normal stress (an = 0) and transverse shear 

de forma tion. 

Here we shall use a theory based on Love's first 

approximation which is quite adequate for thin shells. However, 

MOSt forros of the equations based on this approximation contain 

an inconsistencYi this is that, except for the special case 

ofaxisyrnrnetric loading of shells of revolution, the strains 

do not aIl vanish for small rigid-body rotations of the shell 

(e.g. theories of Love (1), vtasov (!), Reissner (!), 

Timoshenko (26». On the other hand, Sanders (!), and 

Budiansky and Sanders (!) developed a modified theory based 

on Love's first approximation which removes this inconsistency 

without complicating the equationsi (in Sanders' theory aIl 

strains vanish for small rigid body motions). This is the 

theory we shall use. 

The analysis proceeds as follows. First, an appropriate 

system of coordinates on the shell is introduced (figure 4) 
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and certain geometrica1 relations estab1ished; then the 

strain-disp1acement relations are derived from strict1y 

geometrica1 considerations of the process of deformation. 

Then, the equations of motion which are obtained from a 

balance of the forces acting on sorne fundamenta1 e1ement 

of the medium are considered (figure 6). Fina11y, the 

system of equations is comp1eted by deriving the relations 

between disp1acement components and stress-resu1tant 

components in the e1astic medium by using the 1aw of 

e1asticity (Hooke's Law). 

This matter (Sanders' theory of shel1s) is further 

e1aborated in Appendix A, where the equi1ibrium"equations 

are a1so given, in terms of the axial, circumferentia1 

and radial disp1acements of the midd1e surface, U, V and 

W, respective1y. 



CHAPTER III 

THE DISPLACEMENT FUNCTIONS 

3.1 Selection of the Displacement Functions 

The finite element used in this theory, as shown in 

figure 1, is a cylindrical frusturn defined by two nodal 

circles and two nodal points i and j. As stated in the 

Introduction, in the present theory we shall employ Sanders' 

equations of thin cylindrical shells to obtain the pertinent 

displacement functions, rather than using the more common 

arbitrary polynomial forms. This is the point of departure 

of the present theory from, what might be termed, the 

classical finite-element theory. 

We now consider the effects of loads applied to the 

nodes i and j. Three components of displacement (U,V,W) 

describe the movement of a point of the midd1e surface 

(see figures 1 and 2). The genera1 expression for the edge 

disp1acement must be found from equation (A.10) of the 

she11 theory. See a1so (59) for further detai1s. 

3.2 Determination of the Disp1acement Functions 

We assume, in the normal manner [cf. (~»), that 

(3.1 ) 
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where n is the circumferential wave-number. Upon 

substituting into (A.1D) we find that we can further 

assume 

() A b/r )../r ).~/,. 
IL~ IC = e J \1'",(Je) = Be, ~I\.llc) _ Ce, 

(3.2) 

which substituted into the equations yield three ordinary 

linear equations in A,B,C of the forro 

[H] = {D}. { A~} (3.3) 

For non-trivial solution the deterroinant of [H] must vanish 

yielding the characteristic equation 

This is a quartic in À
2 and its roots may be written in 

the forro 

~,o: -K, -i.I-', 
)., .. -1C~+")Ja 

>. .... ~, - i.)J, 1 

). 7 c KI.. lI-' 2. , 

where K. and u. are real. Each À. yields a solution of 
1. 1. 1. 

(3.4) 

(3.5) 

equations (A.10), the complete solution being obtained by 

the sum of aIl eight and involving the constants Aj' Bj' Cj 
where j = 1,2,···,8. 

As the A., B. and Cl. are not independent, we shall 
) ) 

next express the A. and B. in terms of C. so that the un' 
) J J 

v and w can be expressed in terms of only eight constants. 
n n 

To this end we let 
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(3.6) 

where a. and B. are complexe Substituting (3.6) into 
J J 

(3.3) we may now determine a. and B .• The a. and B. are 
J J J J 

so interconnected, because of the form of (3.3), that we 

need only solve two pairs of equations, (say obtaining the 

real and imaginary parts of al' BI' a 3 and B
3
), the 

remainder being obtainable from them, as done by Flügge (~). 

Thus for j = 1 and 3 we obtain 

(3.7) 

where 

4,,- [~j - (Ii")n.'-(i+}>J J 

Q.I~=~["(I +~) +(1- ~)] J 

Q.a2 =[- ,,;'1' )j+n.'(,+I.)-9(é-lI)"ln ) 
[ \ (1-'1)" 'J 4..,- ''l'J - -r-""'j ft: J 

G.n_[n.(I+n.tl.) _{3 j "ltn.lj) , 

The other a., B. 
J J 

may be obtained from the following relationships: 

p'l. - Po - "pa, 
P. _ P, + i.F .. 1 

p ..... ~.- i.~+J 

CI. _ - Cltl. 1 

ct". _cr" 

cc. _ - OIJ 1 

~s - ~2. , 

p. -,, , 

'7 & ~ .. , 

~. -~, . 

(3.8) 
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Since the disp1acements are rea1 functions, the 

final form of u , v and w must a1so be rea1. The final n n n 
expressions may be written as 

J~} lv 
= [T] [R] {C}, (3.9) 

where the matrices [T] and [R] are shown in Appendix B 

and 

{c}={lJ (3.10) 

is a set of constants [the Cj being 1inear combinations 

of the Cj , (6) ] • The Cj are the on1y free constants in our 

prob1em and must be determined from eight boundary 

conditions, four at each edge of constant x. 

We are now in a position to specify the disp1acement 

functions. At each node (figure 2), the axial, 

circumferentia1 and radial disp1acements, as we11 as a 

rotation will be prescribed. The 'disp1acement' of node i 

can thus be defined by the vector 

~ .. 
\&1w!.~ 

{8..i = (d.u.t .. /t!alï. ) 

where a11 these components represent amplitudes of U,V,W 

and dW/dx associated with the nth circumferentia1 wave-
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number. The element, having two nodes and eight nodal 

degrees of freedom, will have nodal displacements 

111\." 

lIT",." 

{d.ur ... /d..)i. 

{~~} """-j. 
= [A]{C l (3.11) = , 

u."-j 
:J 

UYl\.j 

(d.ur ... /cl" )j 
\1n.j 

where [A] is given in Appendix B, the terms of [A] being 

obtainable from the terrns of [R]. 

by [A]-l, we obtain 

Now pre-multiplying 

and substituting into (3.9) we obtain 

This equation defines the displacement functions. 

(3.12) 

(3.13) 

In Chapter VIII, rigid-body motions are considered, 

with the aim of testing whether the displacernent functions 

selected above satisfy the convergence criteria of the 

finite-element method. It is shown that the y do. 
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CHAPTER IV 

MATRIX FORMULATION 

In this section, expressions for the strain, 

elasticity, mass, stiffness and stress-resultant matrices 

are obtained, and the m~thod for constructing the 

equivalent global matrices is given. Also a method of 

solving problems of cy1indrica1 she11s subjected to static 

loads is mentioned. 

4.1 Strain Matrix 

The strain vector may be found by using equations 

(2.2), (A. 7) and (3. 12), i. e • 

{~} = !u~ _ [[THOl1 [QHAr,{8L}=- [e]{:~l 
k. l[oJ lT)J Sj J 
"., 

2R:., 

(4.1 ) 

where the matrices [T), [A) and (0) are given in Appendix B. 

4.2 E1asticity Matrix 

Similarly, the stress-resu1tant matrix may be found 

from equations (2.3) , (A. 8) and (4. 1), i. e • 

toi. 

N" 

{cr} -
ij.., - [p1{~}- (PJ[e1~} :: [ST) {~~} ) (4.2) .... .... 
M.., 
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where [Pl, the elastieity matrix, is given by 

0 \ID 0 0 0 0 

\ID D 0 0 0 0 

0 0 Dh-\l) 0 0- 0 
[pl = --r 

(4.3) 
0 0 0 K. ,,~ 0 

0 0 0 '\IK K 0 

0 0 0 0 0 ~ 

D and K being given by (A.9) for an isotropie elastie 

material. We note, however, that [Pl ean be quite general, so 

that the theory may also apply to anisotropie shells provided 

their eharaeteristies are knot.o[n. 

4.3 Stiffness and Mass Matrices 

The stiffness and mass matrices may now be expressed 

as in (2.5) and (2.6) 

[!] = ff[sf[p](SlcJ..A , 

(4. 4) 

where dA = r~f~x. 

Here [N], [B] and [P] are defined in (3.13), (4.1) 

and (4.3). Using these equations in (4.4) and integrating 

over cp we obtain 

[1] & ([AJ"f[ltitQl'[P)[Q]cb] [Ar' - ([AJ"r [G] [Ar' , 
o 

(4.5) 

(4.6) 
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where [G] and [S] are defined by the above equations. 

4.3.1 Determination of the terms of [G] and [S] 

Before integrating over x in equations (4.5) and 

(4.6), it was found advantageous to express [0] and [R] 

as follo\l1s: 

[Ql~ [r][z] , [R)- (A](Z] } (4.7) 

where [r] and [6] are given in Appendix Band their elements 

are constants; the elements of [Z], which is also given in 

Appendix B, are functions of x. 

5ubstituting [0] and [R] into (4.5) and (4.6) we 

obtain for [G] and [S] 

(4.8) 

(4.9) 

the advantage in introducing [r], [6] and [Z] via (4.7) 

becoming obvious upon realizing that [Y] = [r]T[p] [r] and 

[RJ] = [6]T[6] are constant matrices. [ZY] and [ZJ] are 

given in Appendix B. 

We now proceed to obtain [G] and [5]. We may write 

the general term of [G] as follows: 
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G . ') {I t 
r. ') A, (t,J}1' [ C ')] [ ') :1 d. (loI) ""Jtr !\,Io,J e cos B, ~'J )C coS C,(L,J XJ Jt 

• 

(4.10 ) 

which apply to aIl i, j = 1, 2, 8, except for the 

fol1owing e1ements: 

G(l,S), G(1,6), G(2,S), G(2,6), G(3,7), G(3,8), G(4,7), G(4,8), 

G(S,l), G(6,1), G(S,2), G(6,2), G(7,3), G(8,3), G(7,4), G(8,4), 

which can be written as fo1lows: 

G(L,j) = nr { !~, CL,p COSI[B,CI.,JlX] c!_ 

+"do.(c..,j) + o,(L.J>J ,if\.(B,(l.Jhe]œt[S,(L.j)X]tLc 

1 
+[D4 (i.,j)aiIL'[B,(L,j))e]d.J. 

The matrices [Al]' [BI]' [Cl]' [01]' [02], [03], [04] 

(4.11) 

are given in Appendix B. Now, integrating over x, we obtain 

equations (4.l2a) and (4.l2b), where the indices (i,j) have 

been omitted from elements Al(i,j), Bl(i,j), etc., for 

simp1icity. 



- 29 -

The (i,j)th terrn of [G] is given by 

" 

+ [(D,-~)(8.+c.l +(D,+O,lA,J "ill.[(B,+c.le] 
[A~ + (8.+c,ll ] 

+ [(D,+O.)A, -(D1 -1),)(8,-C,) ]cos[<B,-c,)L] 
[A~ +(B,-C,)'] 

+ [(D,·0.l(8,-CI) + (1)2 -D3)A1] sin[(B1-Clll] } 

[A~ +(B1-C.)t] 

+ (B.+C,)( D1 .. D,)-AI(0.- 0 .. ) t(8,-C,)(~-1>.)-AI(O,+D .. ) 

[A~ +(a.+C.)'1 [A~+(BI-CI)2J) 

for aIl i, j = l, 2, 8, except for the following 

elements: 

(4.l2a) 

G(1,5), G(l,6), G(2,S), G(2,6), G(3, 7), G(3,8), G(4, 7), G(4,8), 

G(S,I), G(6,1), G(S,2), G(6,2), G(7,3), G(8,3), G(7,4), G(8,4), 

which can be written as follows: 

(4.l2b) 

5imilarly, after integrating the general term of 

matrix [ZJ], we obtain the general term of matrix [5], as 

follows: 
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+ ((E,-E.)(B,i'C, ... CE1 i'E,)Â,] si~(8, +C,)t] 

[A~ + lB,.C,) 

+ [CE,+E .. )A, -CE .. -E.)(B,-C.)] cos[(B,-qe] 
[Af +(8,- C.)a] 

+ [CE,+E.)(B,-C,)+(E1 -E,)A,J çiO\. [(B,-C,)t] } 

[A~ "'(B,-C,)~] 

for a11 i, j = l, 2, 8, except for the fo11owing 

e1ements: 

(4.13a) 

S(l,5), S(1,6), S(2,5), S(2,6), 5(3,7), 5(3,8), 5(4,7), 5(4,8), 

5(5,1), 5(6,1), 5(5,2), 5(6,2), 5(7,3), 5(8,3), 5(7,4), 5(8,4), 

which can be written as fo11ows: 

(4.13b) 

Here again, El' E2, E3' E4 , B1 and Cl' in (4.13a) and 

( 4 13b) th ( . . ) th 1 f th d . 
• , represent e 1,) e ements 0 e correspon 1ng 

matrices given in Appendix B. 

4.4 The Stress-Resultant Matrix 

Finally, the stress-resultant matrix for the stress 

resultants at node i (x = Oi see figure 2) may be obtained 
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from equation (4.2), such that 

{} ~T] [O~ I{S.} 
cri = llO][T]J(Pl[QdCAr s; 

where [Q.] is obtained from [Q] by putting x = o. 
l. 

Simi1ar1y the stress-resu1tant matrix of node j (x = 1) 

is given by 

fcr.} = ITT] COJ1CP][Q·][Arl{St}. 
t:l UO] [TJJ J ~j 

(4.14a) 

(4.14b) 

The corresponding stress-resu1tant matrix for both nodes 

of the finite e1ement is given by 

[THo] [ J 
(O](TJ 0 ~PJ[Qd[ÂrJ {S,} ] fS~} = .. :: [ST lI). , 
[ 

0 ] [TJ[e] (P][Qjl[Ar' Bj ~ 
[O][TJ 

(4.15) 

where [A], [Qi] and [Qj] are given in Appendix B. 

4.5 The Stiffness and Mass Matrices for the Who1e She11 

As previous1y mentioned, the complete she11 is 

divided into finite e1ements each of which is a cy1indrica1 

frustum (figure 3). The position of the nodal points (nodal 

circ1es) May be chosen arbitrari1y. 

The vectors {Fi}' {Fj} represent the interna1 forces 
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acting at nodes i and j, respectively, and {ô.}, {ô.} are 
~ J 

the corresponding displacements. As the shell is continuous, 

the sum of forces and moments at a particular no de must be 

equal to the external forces and moments applied at the 

node. Thus 

moreover, the displacements must be continuous, and 

These relationships allow us to super impose the mass and 

stiffness matrices of individual finite elements, to obtain 

the global mass and stiffness matrices [M] and [K] for 

the whole shell. This is shown diagrammatically in 

figure 3. [K] and [M] will be square matrices of order 

4(N+l), where N is the number of finite elements. 

4.6 Analysis of Shells Subjected to Static Loads 

We are now in a position to solve problems of 

cylindrical shells subjected to static loads. The 

dynamical problem will be discussed in Chapter V. 

From equation (2.4) we see that for static loads 

we can write 

(4.16) 

where [K] is the global stiffness matrix, {ô} the vector 

of all nodal displacements, and {F}e the nodal load vector. 

We may partition (4.16) as follows: 
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(4.17) 

where {Fl } represents the loads applied to the shell and 

{F2} are unknown reactions at points where the disp1acements 

are specified, and {cl} and {c 2 } are the unknown and 

specified displacements, respectively. 

Equation (4.17) may be solved to give 

-1 

{SI} =lK"l ({F,l - [K'11{S,}) , 
(4.18) 

{Ftl = [K11] {SI} + [Ku1 {~t} . 

Fina11y, the stresses can then be found from the 

displacements by a relationship of the type 

{cr} s [ST1{S,1 , (4.19) 

where [ST] is given by equation (4.15). 



CHAPTER V 

FREE VIBRATION AND 

RESPONSE TO RAMDOM PRESSURE FIELD 

5.1 Introduction 

Vibrations of shells in which the wall motions 

are predominantly radial, such that flexure and stretching 

of the wall occur while the longitudinal axis of the shell 

remains straight, are often referred to as "breathing 

vibrations". For the purposes of this thesis, the term 

"breathing vibration" will include shell modes for various 

combinations of the circumferential wave-number, n, and 

number of axial half-waves, m; however, the rotationally 

symmetric modes, where n = 0, are excluded. This type of 

vibration is very important in shell structures where the 

walls are thin compared to other dimensions. 

The differential equations of motion for a system 

in which viscous damping is present are given by 

,,) (5.1) 

where {:1 (l<, cP, t.)} is the displacement vector ,{F(ôII!, cp, l)} 
. is a vector of external forces; [M], [C] and [K] are the 

mass, damping and stiffness matrices, respectively. The 
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study of vibration of non-uniform thin cylindrical shells, 

subjected to a random pressure field, was divided into 

two parts, namely free vibration and response, following 

the normal procedure for the study of dynamical problems. 

Sections 5.4 et seq. aIl deal with the response aspect of 

the problem. 

5.2 Free, Breathing Vibration 

If no external forces are operative, the equations 

of motion (5.1) may be written in the form 

S. 8. 

[M] + lK] = {a} 1 (5.2) 

~""1 S ..... 

where N is the total number of fini te elements (see figure 3), 

[M] and [K] are real, symmetric matrices of order 

4 (N+l) x 4(N+l)i the nodal displacement vectors {o.} are l. 
of the form 

{o. } 
l. = 

u . nl. 
w . nl. 

(dw /dx) . n l. 

v . 
nl. 

(5.3) 

where u ., w ., and v . are respectivelv, the axial, radial nl. nl. nl. -

and circumferential displacement amplitudes associated with 
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the nth circumferentia1 wave-number at node i. 

Introducing now 

&1 ~IO 

= sin (n.t + 0) . l. 

~N+1 
, 

~~+I)o 

and substituting into (5.1) we obtain 

([K] - n. 2 [M]) 
l. 

~IO 
= fOl, 

which 1eads to the standard eigenva1ue prob1em. Here 

n. is the i th natura1 frequency. [K] and [M] being of l. 

(5.4) 

4 (N+1) th order,we shall obtain 4(N+I) natural frequencies, 

each of which will be associated with a particular eigenvector 

{~ .. l ~~~' also called a modal column of the system. The 

matrl.X 

cS lO . 
(5.5) 

is ca1led the modal matrix of the system. 

Of course, before the eigenva1ues and eigenvectors 
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of a particu1ar she11 can be computed, the boundary 

conditions must be specified and taken into account. This 

aspect of the prob1em, as we11 as a fair1y detai1ed 

description of the computationa1 method emp1oyed, will be 

discussed in Chapter VII. 

5.3 Free Vibration of a Liquid-Fi11ed Cy1indrica1 She11 

The previous section dea1t, strict1y speaking, with 

vibration of she11s in vacuo. ~le can usua11y assume that 

the effect of the surrounding f1uid (norma11y air at normal 

pressures) on vibration is neg1igib1e. This is not the 

case, however, if the she11 contains, or" for that matter 

is immersed in, a f1uid of considerable density. 

We sha11 now consider cy1indrica1 she11s either 

partia11y or comp1ete1y fi11ed with stationary 1iquid. In 

cases where the she11 is partia11y fi11ed, it is assumed that 

it is vertical so that there is a horizontal free surface. 

Free surface effects are neg1ected. This may be justified 

as fo110ws: the natura1 frequencies of the empty she11s 

in the modes under consideration are 1ike1y to be high 

(certain1y in the 102 Hz region); on the other hand, the 

natura1 frequencies of free surface phenomena are 1ike1y 

to be 10w, at 1east in the 10west modes; moreover, the 

amplitudes associated with the higher free-surface modes 

May be expected to be sma11 because of dissipation. According1y, 

it May be conc1uded that coup1ing between the she11 modes 
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under consideration and the free-surface resonances 

would normally be weak and hence negligible. Actually, 

as Lindholm et al. (~) have found experimentally, there 

is a possibility of nonlinear coupling between the free­

surface motion and that of the shell, resulting in 

subharmonic excitation of the free surface at low frequencies, 

while the shell itself is vibrating at high frequency. This 

phenomenon, however, is incompletely understood and it will 

not be attempted to take it into account here. 

It is also assumed that the effect of the internal 

static pressure is small and may be neglected. This means 

that (a) in the case of completely filled shells we shall 

not consider pressurized shells, and (b) in the case of 

partially filled shells, which must be vertical, we shall 

not consider very long shells. However, static pressure 

effects ~ be taken into account, by slightly extending 

the present theory, essentially by taking into account the 

initial strain energy induced by the gravit y potential. 

Finally, it is assumed that the contained liquid is 

incompressible. Here again compressibility could have been 

taken into account, as was done by Niordson (33) for 

instance. However, Niordson found that for water-filled 

shells the effect of compressibility is negligible. 

Having made these assumptions, it is clear that the 

only effect the fluid will have on motions of the shell will 
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be that of inertial hydrodynamic loading. The dynamical 

effect of the contained fluid can be taken into account 

by taking into consideration the apparent, or virtual, 

mass of the fluid, which is added to the mass of the shell 

itself (~). For beam vibration the apparent mass of the 

fluid is simply the mass of the enclosed fluid, at least 

at low frequencies, as no deformation of the cross-section 

is involved. For shell vibrations, on the other hand, 

the situation is not so simple, and it is found that the 

apparent mass is a function of frequency. In order to 

determine the apparent mass of the fluid in such cases the 

fluid mechanics of the enclosed fluid must be studied. 

Fung et al. (lI) and Berry and Reissner (32) studied 

the effect of pressurization on cylindrical shells containing 

compressible fluid, using the wave equation to describe 

the motion of the contained fluid. For small motions, they 

obtained the follo~ing expressions for the fluid apparent 

mass: 

(5.6) 
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where PF is the fluid densi ty, ).., = le Hl/.t , -E-c -= ..n...j,)LI ~ 
Co being the velocity of sound in the fluid and J n and In 

are the ordinary and modified nth order Bessel functions, 

respectively. 

On the other hand, Lindholm et al. (36) developed 

a frequency equation for completely liquid-filled 

cylindrical shells. Incompressible fluid theory was used and 

Laplace's equation was utilized to describe the motion of 

the fluide The liquid apparent mass per unit are a in this 

case is 

, (5.7) 

where Àf'f'IV = M\llt tt. / i . 
It is noted that this expression is the same as 

equation (5.6) when k ~ 0 or when c ~ m 
C 0 

Here we shall 

use ~ as given by (5.7), as we are only concerned with 

incompressible fluids. 

In the present theory, as the only effect of the 

enclosed liquid to be taken into account is that of inertial 

hydrodynamic loading, the analysis of liquid-filled shells 

is particularly simple. Thus, for a partially-filled shell, 

the shell is first subdivided into two: one part is empty 

and the other liquid-filled; then in the formulation of the 

mass matrix, the mass per unit area of the elements in the 

empty shell is pt (see equation (4.6», while that of the 
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filled-shell finite elements is (pt + mp), where mF is 

given by equation (5.7). 

5.4 Response to Random Pressure Field 

The external forces {F} of equation (5.1) may be 

harmonie, periodic, aperiodic or random. In this thesis 

we shall only concern ourselves with the last eventuality: 

the vector {F} is considered to represent nonperiodic, 

random forces. Moreover, we shall assume that these forces 

are due to pressure fluctuations so that the y are normal 

to the surface of the cylinder. A method of solution for 

such (vibration) problems is developed in this section. 

It is important, at first, to emphasize that while 

the pressure field varies from point to point at any instant, 

its variation at any given point fluctuates irregularly 

with time, and the frequency spectrum results in many modes 

of vibration being excited with a statistical dependence 

between them. However, the forced vibration can be 

represented by synthesis of the natural modes: this assumption 

is generally permissible only for such structures where 

nonlinearities can be ignored. 

After solving the usual equations of motion for an 

uncoupled mode, a generalization is made by putting the solution 

in the form of spectra. The cross-correlation spectral 

density of displacements at sorne point in the structure, can 

then be determined in terms of the cross-correlation spectral 
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density of the pressure perturbations. This allows the 

r.m.s. value of the displacements to be determined. 

We restrict ourselves to weak stationary random 

processes. Weak stationarity implies that the expected 

value and the covariance of F (t +'l;) in the sample space 

are identical with those of F(t) independently of ~. It 

is also assumed that the random process has a weak ergodic 

property. This means that a statistical average of F(t), 

or any function of F(t), over the sample space, can be 

replaced by a "long" time average over a single sample 

function F(t). Finally, it is assumed that the variables 

have a Gaussian (normal) probability distribution. 

Before we can proceed with the evaluation of the 

response, we must first decouple the equations of motion. 

s.s Decoupling of the DifferentiaI Equations of Motion 

Any arbitrary motion {y} can be expressed by 

superposition of aIl of the normal modes taken in appropriate 

proportions. Therefore 

where {Z(t)} represents the normal coordinates, and [$] is 

the modal matrix in which each column is a modal column of 

i 
: 
1 
1 

:1 

1 
1 

1 

! 
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the system. Substituting equations (5.8) into (5.1) 

and premultiplying by the transpose of [~], equation (5.1) 

becomes 

(5.9) 

Due to the orthogonality of the normal modes, 

products such as 

(5.10) 

Furthermore, it is always possible to normalize the modes 

such that 

. 
~=-I.)= "'. (5.11) 

A simi1ar result is valid for the matrix [K]. It 

follows, therefore, that 

[<pl [M] [4>] 

[cp ]T[Kl [<l>J = 

tM~J ) 
f~l~J - lK~J 

(5.12) 

:> 

where [~~ and [-~_] are diagonal matrices. Comparing 

now the triple matrix product [~]T[C] [~] with equation (5.12), 
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it becomes apparent that this triple product will result 

in a diagonal matrix only when the damping matrix [Cl is 

proportional to either [M] or [K], or to a linear combination 

of the two. If [Cl is taken to be proportional to [M] and 

[K], then, 

(cp) [C] [<l>] , (5.13) 

where nr is the r th natural frequency, ~ is the generalized 
~ 

damping factor and ~C~J is the diagonal viscous damping matrix 

in which a typical element can be written as 

(5.14 ) 

Substitution of relations (5.12) and (5.13) in 

equation (5.9) results in a set of 4 (N+l)-J decoupled 

differential equations of motion 

where N is the number of finite elements and J is the number 

of constraint equations imposed (see Chapter VII). The 

th r equation of (5.15) has the form 

i,. + ~ 7',. .n,j,. +.n.~ Z'" - ~Jt, {4>}r} 
".. 

• (5.16) 
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From equation (5.8), the response Yt(x,~,t) of 

point t, defined by the coordinates (x,~) at time t, can 

be expressed in terms of the normal modes ~r(x,f) and 

normal coordinates Zr(t) such that 

4(N+1)-J 

- L cP,t,! 'dt!~Cf» .21l, (t ) 
~:Jl 

(5.17) 

5.6 Representation of Continuous Random Pressure Field 

at the Nodal Points 

It is weIl known that a set of forces on a rigid 

body may be represented by another set of forces acting at 

a different point, along with appropriate couples. The 

continuous random pressure field of the deformable body will 

be approximated here by a finite set of discrete forces and 

moments acting at the nodal points (~). 

As previously mentioned in Chapter IV, the complete 

shell is divided into N finite elements each of which is a 

cylindrical frustum. The position of the (N+l) nodal points 

May be chosen arbitrarily (figure 3). 

Any pressure field is considered to be acting on an 

area ~ surrounding the node e of coordinate1: as shown 

in figure 7a. This area Se is limi ted by the positions le 
and ~ with respect to the origin in the x direction. It 

is therefore possible to approxima te the pressure distribution 

acting over the area Se by two mutually perpendicular 

forces per unit length. These forces 
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and fc.('=t,t) , at time t, are at distance Xo from the 

origin of the shell as shown in figure 7a: and these 

values are simply 

:t 7r . 

7L l r (7.,~, t) Co$ (q') cLq> .) 
o 

~1t 

f/~}) - )(, 1 r(~/tp/t) SI~ (q» J.cp } 

where F(X,f,t) is the instantaneous pressure on the 

surface. 

h r d f . . ,. T ese two forces, T~ an Tc' act1ng at p01nt A 

(5.18) 

(5.19) 

are transformed to two forces and one moment (~) acting 

at the node e as shown in figure 7b. 

The external force vector at a typical node e can 

be written in the following form: 

o 

:> 

(5.20) 

where and 
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5.7 Fourier Transform Representation of Nonperiodic 

Forces 

As previous1y mentioned, the vector {F(t)} represents 

the nonperiodic forces due to the pressure fluctuations. 

This nonperiodic force can be treated as a periodic one 

having a period 2T of infinite duration (T~oo). It fo11ows 

then, that the nonperiodic force function can be synthesized 

from harmonie components whose frequencies form a continuous 

spectrum". This synthesis is accompli shed by the use of the 

Fourier integra1. It is known that in genera1 we may 

write 

(5.21) 

where 0 is the forced frequency in radians per second, and 

SF. (0), ca11ed the Fourier transform of F. (t), is given by 
) J . 

(5.22) 

5.8 Cross-correlation Spectral Density of Displacements in 

Terms of the Cross-Correlation Spectral Density of the 

Pressure Field 

The excitation spatial correlation function is defined 

as 
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(5.23) 

where Z' is the time delay, and the barred quanti ty denotes 

a time average. The stationary random process being ergodic, 

we can write 

~'1.}~,cp, b) = 'f ... t?l!,cp,t) ta- t.,.., CP, t+1» (5.24 ) 

= ~ ~T jT';h (-:t,'P,t) ~ ('X,cp, hl;) Ji: .J 

-T a 
where 2T is the periode 

By using the correlation theorem, we can also write 

4"(tJ2JlPJ~) = 
"'a j.,c:) * (5.25) 

T ~ 4-~ T 54.: ( 'X.l1',.1';~ 51{ .( %/P,"-''1 ~.n !.n, .J 
-COcJ 0 oa 

where.5 f7e, CD .n. T' , S'i.,I'?e, <Q Jl,,,, T\ are the finite Fourier 
~..:, ~ .., 0 ~ '/ tTa-\... ~, !/ 

transforms of ~,(-;e-,~,t) and <:i.. (~..1cp, t) ,respectively, 
~ °a 'nt 

such that S~~(~CP..1~.1"9 = 5-~ "(h ('de.;1Cf>,t)ël. dt, and 

similarly for ~~~i the asterisk denotes the complex conjugate. 

Now for ~ = 0 and i = j = t, equation (5.25) becomes 



- 49 -

III' 

Since L .5~(Z)P;C'It,-9 S4..(~tpl\·,~ is an even function of n, 
.2,T Ot Ot 

equation (5.26) can be written in the forrn 

By taking the Fourier transforrn of equations (5.16) 

and (5.17), the following relation is obtained 

) 

where nr is the r th natural frequency, n is the forced 

frequency, and Or is the phase lag of the displacernent 

relative to the driving force and is given by 

• 

(5.28) 
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Aiso 

4(N+S.) -:r 
- L cp (~/((') S' (Jl.)T) 

)(,=1 t)t. è1t-

By introducing equations (5.28) and (5.29) in 

(5.27), we obtain 

where 

is the magnification factor. Figure 8 shows \Hr(n) \ 

(5.29) 

(5.30 ) 

for a lightly damped multi-degree-of-freedom system. This 

magnification factor has regions of pronounced peaks in 

the neighbourhood of the corresponding natural frequencies 

Or. The products \Hr(n) \ IHs{n) 1 for r # sare seen to be 

sma11 in comparison with the same products for r = s. In 

addition, the terms in equation (5.30) with r # s may he 

negative or positive depending upon the sign of the product 

.: ~." -
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~tr(x,f) tts(x,f), whi1e terms with r = 5 are a1ways 

positive. Therefore, the contribution of cross-product 

terms (r ~ 5) to the mean square response will a1ways be 

sma11 and can be ignored (38): equation (5.30) can then 

be written as 

(5.31) 

The externa1 force vector at each node is given by 

equation (5.20): the corresponding Fourier integra1 and 

its conjugate can be written as 

r 
o 

'~ ... :'.~~':.' . 
' ...... . 

(5.32 ) , 
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o 

where the indices i and u represent the radial forces, 

and p and v the circumferential forces. The indices j 

and k correspond to the moments. 

Substituting equation (5.32) into (5.31) and 

.. -',-----.- :-

(5.32) 

7 cont' 

(5.33) 
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(5.33) 

conti 

where Wf(l).j %,'.><»: ~ [til~T).~l~llo,1)J is 

the cross-correlation spectral density function of the 

force fie ld . If' 
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5.9 Calculation of the Cross-Correlation Spectral , 
W W·x x ·0) Density f " , of the Force Field If'. 

, 
This quantity wf(n;x,x ;0) can be obtained 

, 
electronically by multiplying f(x,t) and f(x ,t) and 

passing it through a narrow-band filter whose central 

frequency is varied slowly through the desired frequency 

range. (Here f(x,t) represents the force per unit length.) 

Then 

(5.34) 

, 
where the quantity fnf n denotes the mean per unit band-

width. 

The pressure field is assumed to be homogeneous, 

and hence the resultant force field will also be homogeneous. 

This assumption permits writing the cross-correlation 

spectral density of the force field as a function of the 
1 

separation (x-x) and the frequency n: thus 

Wf (~j 'Z)7!.'; 0) == Wf (&!ù; ~ j 0) .J (5.35) 

where ~ = \ ~_~/I. Substituting equations (5.18) and 

(5.19) in (5.34), the mean-square values of the fluctuating 

radial and circumferential forces per unit band-width are 
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(S.36) 

(S.37) 

1 

f).SIN( ,'J.'f tlf{' .J 

(5.38) 

(5.39 ) 

The normalized space-time correlation function of 

the fluctuating pressure is defined as 

p( '4le,tP, -1:.) ~ (z+ ~,C(>-4-~):+~) 

r" ( ':Je/ 'PI t) 
J 

is the time 

delay and P~('X/<f, t) is the mean square of pressure 

fluctuations. The spatial correlation function in the 

frequency domain, for Z;: 0, becomes 

(5.40) 
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l (5.41) 

where the subscript n represents the geometric mean 

centre-frequency of the octave band (forced frequency, 

rad/sec), p~(cJlI, Re) is the mean-square pressure per unit 

band-width, and the subscript Re indicates the Reynolds 

number for a given measurement. The longitudinal and 

1atera1 spatial correlation functions are particu1ar cases 

of the space-time correlation function 4'~~~rq~/~1 0) and 

are given respective1y by t..p (~, DJ 0) and 4! (0 '~J 0) 
~'J'l" Re P I~I ~ 

Assuming that 

(5.42) 

and substituting equation (5.42) into (5.41) we obtain 

5. 10 Summary 

In ~ 5.2 was presented the genera1 formulation for 
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obtaining the free vibration characteristics of non-

uniform cylindrical shells. Solution of equation (5.4), 

with the pertinent boundary conditions taken into account, 

will yield the eigenvalues (and hence the natural frequencies) 

and eigenvectors of the system. 

The necessary modifications for the analysis of 

shells partially or completely filled with liquid were 

presented in J 5.3. To obtain the free vibration characteristics 

of liqui~-filled shells, we must again solve equation (5.4), 

where [M] must now be modified to take into account the 

virtual mass of the fluide 

The subsequent sections dealt with the response of 

a shell subjected to an arbitrary random pressure field. 

Equation (5.33) in/S.a gives the mean-square response of 

the shell in terms of the cross-correlation spectral 

density of the pressure field. In! 5.9 this cross­

correlation spectral density is expressed in terms of the 

pertinent pressure correlations [equations (5.36) - (5.39)]. 

Finally, these pressure correlations are expressed in terms 

of spatial cross-correlation functions of the pressure field 

and the mean-square spectral density, by equations (5.43), 

in the particular case of a homogeneous pressure field. 

Thus, if the mean-square spectral densi ty, p~ (A, Ra) , 
and the spatial cross-correlation functions,qJ(~/~O) and 

"f( o,'T"o), of the pressure field are known, the cross-

.- ---"-~-.-... 
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correlation spectral density of the field is known, 

in terms of equations (5.36) - (5.39): the response may 

then be computed by using equations (5.33). 



"' 

CHAPTER VI 

SHELL RESPONSE TO SUBSONIC BOUNDARY-LAYER 

PRESSURE FLUCTUATIONS 

6.1 Introduction 

In the previous Chapter we obtained expressions 

for the response of a shell subjected to an arbitrary random 

pressure field. The origin of the pressure field was left 

undefined, although the indicial notation'Re' for Reynolds 

number anticipated a flo\'l situation. In this Chapter we 

shall consider the particula.r case \'lhere the pressure field 

arises from pressure fluctuations in the subsonic, turbulent 

boundary layer of a fluid flowing inside the shell. 

In the previous Chapter \'le have indicated how the 

inertial effects of a fluid contained by the shell may be 

taken into account. Ho\·rever, when the fluid is flo\'ling, 

there are additional factors that must be considered; thus 

the shell will be subjected to centrifugaI forces proportional 

to üi (a 2w/a x'L) and Coriolb forces proportional to 

~ TJtf.("da""'/d'ile èlt) ,\'lhere Ut is the mean flow velocity (33). 

The fonier have the effect of decreasing the natural 

frequencies of the system <l1'>, OS), \'lhile the latter 

effectively have a damping effect on vibrations in cases 

where one end of the shell is free (l!). The magnitude of 
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these effects depends on a dimensionless flow velocity 

given byV=Ut (F t_:2.)V~. Unless we are dealing with 

very flexible shells (e.g. rubber shells), where E is 

very small, or with very high flow velocities, these 

effects are small and may be neglected. Thus for a 

cylindrical shell with L/r = 26, t/a = 2.3 x 10-2 and 

both ends clamped, the frequencies for n = 2 are diminished 

by 3% whe"n IT = O. 20 (~); for a steel shell containing air 

flow, the dimensional velocity associated with this IT is 

3330 ft/sec, which is beyond the range we shall be considering. 

(Actually, the Coriolis forces may be taken into account by 

incorporating their effect in the overall damping of the 

system.) In any case, for metal shells conveying fluid with 

flow velocity in the normal engineering range, these effects 

are negligible and will not be taken into account in the 

present theory. 

It is also assumed that the internaI pressures are 

not unduly high, so that pressurization of the shell is 

negligible. We further assume that pressure drop in the 

length of the shell is sufficiently small for the mean 

pressure to be considered constant over the length of the 

shell (thus excluding very long, slender shells); this, 

however, is not a limitation of the theory, but a 

simplification introduced for convenience. 

For the case of subsonic boundary-layer pressure 
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fluctuations, the longitudinal and lateral space correlation 

functions have been determined experimentally and 

theoretically by several investigators, (~) - (44). 

Bakewell, (39)and(!i), has measured, and derived a formula 

for, the longitudinal and lateral spatial correlation 

functions over a range of Reynolds numbers from 100,000 to 

300,000. In the experiments, the fluid was air. Compressibility 

effects were ignored because the highest local Mach nurnber 

was 0.185, which is well below the nominal 0.3 Mach nurnber 

generally used as the lower limit of compressibility 

phenomena. 

6.2 Longitudinal and Lateral Correlation Functions 

The longitudinal correlation function lfIb P (,,'i,o,o) 
r' r., "e, 

and the lateral correlation function~ (o,~,o) are plotted 
p,f.,~e. 

against the axial and circurnferential Strouhal nurnbers, ,. 
5~= fo 5/qDtiV~nd S~ = f. ~/Ut ' in figures 3 and 4 as 

given by references (39) and (!i). U~ and UCONV are the 

centreline and convection velocities, respectively. 

The data of the longitudinal and lateral correlation 

functions, for all Reynolds nurnbers, frequencies, and 

separations plotted in figures 9 and 10 respectively, appear 

f and n both represent the forced frequency: fo is given 
iR Hz and n in radians per second. 
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to define the following curves [given by (l!) and (44)] 

(6.1) 

(6.2) 

where a,b,c and d are constants determined from experimental 

data. 

The values of the constants used in these two 

expressions for longitudinal and lateral correlations 

depend on the fluide For turbulent flow in air, the 

values of a,b,c and d for Strouhal number based on centre­

line velocity lJ~, as given in (l!) and (!i) are 

~ - 8.':J.~'b , b = 1.0 " -r S'f = ~ fo/Uct :J 

c - ~O )) cl= 100" t~ S~ = .tfoj Uce. 
(6.3) 

Bakewell (44) reported that work to determine these 

constants, for turbulent flow in water, is in progress 

at the Underwater Sound Laboratory (U.S. Navy). It may be 

expected, nevertheless, that these constants would be the 

same for different fluids at the same Strouhal number, at 

least for sufficiently high Reynolds number. 

It should also be noted that the empirical expressions 

for the lateral and longitudinal correlation functions satisfy 

the fOllowing general requirements (39): 
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"J 4Jp,f., ~4! ( ~I 0, 0) 
. è) ~ . 

,~ (o,'t,o) 
_____ U~~~,f~o~,e~~~ _____ 1 _ 0 (6.4) 

- ) ë)t, 

~=o 

, 

On the other hand, the mean square pressure per 

unit band-width, fa(f.,Rc.) in equation (5.43), is plotted 

in non-dimensional form against the Strouhal number 

(5 = ~ f. J(,/ U~) . This plot, also obtained by Bakewell (39), 

is reproduced here in figure Il. For the purposes of this 

analysis, a functional expression for this curve was obtained, 

as follows 

(6.5) 
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-6 where k 2 = 2 x 10 and k l = 0.25. 

Substitution of relations (5.43) in equations 

(5.36) - (5.39) gives 

where <.Vh !' 0 (i",o);lP. (O''rl,O) and b 2
( Io R~ are given 

ri ,o/~~ P/fo,~f, r 11 J 

byequations (6.1), (6.2) and (6.5), respectivelYi and the 

integrals of equations (6.6) - (6.8) are evaluated in 

Appendix C. 

6.3 Mean Square Response 

Substitution of equations (12C) - (14C) into (5.33) 

leads to the following expression: 



where r~(~o, Re.) is given by the equation (6.5) 1 T(fo ) 

is evaluated in Apgendix C, equation (llC) 1 and can be 

written as follows 

7 

c = c n.;U; / J) -= cL1L!U~ / 

-V~ 

IH~(f·)1 = [1-(iJ t+ (~ '{ f,J } 

(6.9) 
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f is the r th natura1 frequency in Hz and f is the forced 
r 0 

frequency in Hz. 

By substituting relations (6.1) in equation (6.9) 

and integrating over x and Xl, the fo11owing is obtained 
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(6.11) 
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(6.11) 

conti 
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l , l ' 
where A = a/Ut, B = b/U

t
, a and b are given by equation (6.5), 

and le ,.l' , te represent the coordinates of the area e l'l 

surrounding the node e (figure 7). In this case e may have 

the values i,j,k,p,u or v. The expression 

i !~stl\T ( Il (f./!. 0 0\ J~ '-- can a1so be obtained from 
l~ !~ "t' P/~O/~ Tj, , /'~~~' ~f\t' 

equation (6.12) by substituting in this equation the indices 

p and v in place of i and u, respectively. 
~ 

Next, the product r~(fo/RL).T( 1o).\Hn.ltJ\ ,in 

equation (6.9), gives the relation 

, 

Substitution of relations (6.10) - (6.13) in 

(6.13) 

equation (6.9) resu1ts in an expression of the fo11owing 

form: 
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r: = (.B"~A'-Y':{ (S .... A") [~C(t~,t)_ Fsk,t...)-~G(t~,e: .. ) +~G«()qJ 
+ ~."8E-~06(!.; ,t .. ) + r;(( ,t..)i'~A(t~,e~ )-~lt:, ( .. ) JI, 

(6.15) 

r,;; = (A~~")3 ·i (B3_3A"~~{~,~HK,t.:H(r,.,() +f(t~,t~il 
+ (Aa..3A8' ~ (ek'~) -~(e~ ,t.) -~(elo,e~) .. F4A(e~,t~)] 1 

+ 1 . ~ (S~A,(e~ t:) [~C(elL,t4:)- ~C(e~,t'~)l 
(Aa.+a':a. l 'J (6.16) 

- (B~Aj(e~-l:) ~c(e~,e~) - ~'(e~)e~) ] 

- ~AB (21&- 1.:) 15< el., t.) - ~A( Llo' tiD 
+.1. A8(e~-L~) [~4(~~.t.) - ~A(L~,t~Ül ' 
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ï' MM ~ ~! G ci 1)) c. â, C 1,1 
La!" - (A"'~ B"')": L ~--A,(t .. - Ir\(.t .. ~~â ~ (et,~)-(t..~la) ~ (e,.,lâ1 

- (a'-A'( t} !~) [( R:-lâ) f(e~ ,t,H ~~ e~) ~ te~,~ ~ 

-.'!.AB(e>l~ l,,)Ee!ï fa) ~(~ ,~) - (i .. ~ -lé) ~ .. ( 4, tj ) ] 
- . 1 fi 3 ~ a- 1 ) ~(' e' ~( 

+~. AB(t,.-tk) ~t",- la} ~ (t~,~ H~ .. -li ~ lt, d ~ 5 

+ 1 3'~ 't~f;.~~-e,.\ra(3"'~l»~(~,e.)+ 4(38~An(e...~)1 
(A'\a~) L" 0 VL (1 

~ (6.17) 

- (eH':.t:-tâ .. l.)~ (3A"-") ~ (~,!~) + A (3B' .. A' ~(e." t~ ~ 

-(LJt}tr~~&(3"'~B' r(l~,t.j)...A(3JI~A, ~êei..~~ 

+(t:l~ L~-e~[&(3A· .. ai ~ '( ~~,2~)+ A (51\"-"" ~(~~) ti~] 

+ 1 • f UA~8J~4A'5j~(~,til-~(tr.,t:) .. Fs'(~,t,)+~C(t~,e~)1 
(A &+ aj" Loo ~ 

+4.A6(A!..8'[r.7Vjl-F;CR,.,e;l- ~(e~, Qa)'" ~(9~ l] 1 ' 
r;~ = (A .. ~g')3 {(g ... 3A·~~lV .. )-~(I~AH(V~+ ~"tt~.l:.,) ] 

+(A~3A&'~(~,tH(9.)-~( V~)+ ~(9~H 1 
+ 1 j (6!A·)(\ .. t!)[~C:(ta)~) _ F3C(!aJt~)] 

(A~~82)& L (6.18) 

-(8~A'(li-!:)[~G(t~,q_ ~G(!~. t:") ] 

-.t.A8( trt!) ~A( V ... ) _~ b( .eâ, t:") J 
+ .'i.AII (t~ .. t=) [(( .ti,t)- ç(.e~, l;") J} ) 
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(6.19) 

(6.21) 

(6.22) 

Fs C ( l,.,) tJA,) = ~ c ( 1.,;.;) !~) / (,~ ~ ) (6.23) 

F/' (e.:, t,..) -= ~"( 1.:, t ... ) / f. z, ? (6.24) 
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The above integra1s, (6.19) - (6.24), are eva1uated and 

1isted in Appendix C, [(25C) - (30C)]; they are given by 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6. 30) 
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where 
~ 

~1 = [Kl+lei-t~1 (Ali' +B)l r -+ CI , 
71f. 'J TIt. flL~ + '1 .. j 

r ~ = [- KI ~ + 1t .. -t .... 1( A-S'flll)]f + CI ~JE, ) , 

~ "' f~~+ 7; 
153 : [- K. tlR. .. -! .. I(A~ .. -J5)] (- r .. t+l:) ' 

0.4=[- K, <e -)t.-~ I(A+B~ \l~ + c, '1& , 
711J .. IN 1rI!J TTt. fft, ~ + 7:) 

~5 = [ 1(, + It.-.lI • .I (A'1 .. +B) ] fjl. + f/l.(I; 7':) , (6.31) 

~ = [-KI ~ +Jt.-t I(A-f>C2 ,1 t + D, ~,., ) 
., ...... 7,..)J l ~ frz. (If ~",') 

'61 = CI( +11.- t , (A~-8'] f - _.D .......... ' _ 
TI.:' 4.'" 71f1 1 Trt- flL(I+~':) ) 

~8:' [- K, CR -It.- ..t~1 (A + e,CRJ\l f + D, ~ILI , 
7", ~ 7/1,lj '" f If, ( 1 f "7:) 

KI - .t '1 '0/ Ut , K.t, = ~ ~ f,:~"' ut J 

CI clive, Cz. = ~(~ - e~/C-) J 

D, = Ve,.,~/D"" D<., = ~ VP.L.,~,. [1 - ~tn,t.J ' 

* here the arguments (t., t ) have been omitted from 
Yl(t., 1 ), Y2(1., t f, e~c., for simplicity. 

1 U 1 U 
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A = Qj / Ut , .B = b/ V ~ :> 

C = C~/U~ .J .D = cL n.7u~ .) 
k2 , k l and a,b,c,d are constants given by equations (6.5) 

and (6.3) respectively, f r is the r th natural frequency 

in Hz, r is the mean radius in inches, M~ is the element 

of the matrix given by.equation (5.12), Ut is the centre­

line velocity in in./sec., PF is the fluid density in 

(lb.sec. 2/in. 4) , ~~ is the generalize~ damping fa?tor 
. . n' "n n' 1\)-

g1ven by equat10n (5.14), (tA.' x.", ' el'" Là' .l.i ' J(,N' etc ... ) 

are the coordinates of the field force (figure 7) surrounding 

the nodes (i, j, etc ••• ) gi ven in inches; and cp , <P ,cp, 
~"' .n. 3"­

qP, , ~ ,~ represent the elements of the modal column 
" '" j-"' tlTn. 

of the r th natural frequency in the modal matrix corresponding 

to the radial displacement, rotation and circumferential 

displacement, in respective pairs. Finally itl-;;e.'~1 t) is 

the mean square response (displacements) at the node t. 



CHAPTER VII 

METHOD OF CALCULATION 

This Chapter describes a procedure for computing 

the vibration modes and frequencies, both for the case 

of the empty non-uniform cylindrical shell and also for 

the case of the shell completely or partially filled with 

fluide Also, the root-mean-square (r.m.s.) response 

to subsonic boundary-layer pressure fluctuations is 

obtained. The procedure is based on the theory developed 

in the previous Chapters. 

7.1 Computational Method and Computer program 

To determine the eigenvalues, eigenvectors and 

the response of a given uniform or non-uniform cylindrical 

shell, we first subdivide it into a sufficient number of 

finite elements (sufficiency in this context will be 

discussed later). The calculation is then done with the 

aid of a digital computer program which, for given input 

data, calculates the mass, stiffness and stress-resultant 

matrices for each element, assembles the global mass and 

stiffness matrices for the whole shell, and calculates the 

natural frequencies, the eigenvectors, and finally the r.m.s. 
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response at each node. 

In this section, the necessary steps of the 

computational method will be outlined. The steps are 

specific enough to allow a digital computer program to 

be written by using them as a guide. 

The basic organization of the computer program 

used in the present analysis is shown in figure 12. 

A - The necessary input data are the mean radius, wall 

thickness, and lengthof each individual element, and the 

respective modulus of elasticity, Poisson's ratio, material 

density and fluid density; also the values of n(~2) which 

should be calculated. To find the r.m.s. response, 

additional input data are required at each no de such as 

the centreline velocity, viscous damping or damping factor, 

and the constants a,b,c,d,k l and k 2 given by the expressions 

( 6 . 3) and ( 6 . 5) . 

B - The computer program then proceeds as follows for 

each element: 

(i) the eight complex roots of the characteristic equation, 

À., are calculated by the Newton-Raphson iterative 
) 

technique, and hence, we obtain Kl' K2' ~l' ~2' u j ' Bj' 

(j = 1,2,···,8), and aj , Bj: 

(ii) the intermediate matrices [R], [A], [f], [~], [RJ] = 

[~]T[~] and [Y] = [f]T[p][f] given in Appendix B are 

determined: 
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(iii) the displacement functions, mass, stiffness and 

stress-resultant matrices, [N], [m], [k] and [ST], 

re~pectively, are computed by the relationships 

given by equations (3.13), (4.5), (4.6) and (4.15). 

C - When the stiffness and mass matrices have thus been 

computed for each element, the matrices are superimposed 

to form the global shell stiffness and mass matrices, in 

the manner described in ~ 4.5. 

D - If the shell has rigid edge constraints, then 

appropriate rows and columns of [K] - n~ [M] given by 

equation (5.4), are deleted to satisfy these constraints. 

Accordingly, [K] and [M] are reduced to square matrices 

of order 4(N+l)-J, where J is the number of constraint 

equations imposed. The form and character of equation (5.4) 

is not affected, except in that the reduced [K] and [M] are 

positive definite instead of being, generally, positive semi-

definite. It is noted that only kinematic boundary conditions 

are specified. Thus for a free shell, no specification of 

boundary conditions need be made, and J = Oi for a shell with 

two edges simply supported (v = w = 0) J = 4, and for one n n 

with two clamped edges J = 8. 

E - With the reduced [M] and [K] determined, the computer 

program proceeds to find the natural frequencies, ni' where 

i = 1,2,···, 4(N+l)-J for each n, and the corresponding 

eigenvectors of a real square non-symmetric matrix of the 
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special form [M]-l [K], where both [M] and [K] are real, 

symmetric matrices and [M] is positive definite (31). 

F - Finally, if the r.m.s. response to a subsonic 

boundary layer is required, the diagonal matrices rt1~ and 

rK~Jmust be computed by the relationships given by 

equation (5.6). It follows that the calculation of the 

amplitude of the r.m.s. axial, radial, circumferential 

displacements and the rotation at each node can be done 

with the aid of equation (6.14). 

A computer program, based on this procedure, has been 

coded in FORTPAN IV for the IBM 360/75 computer. Double 

precision arithmetic was used throughout the eight overlays 

shown in figure 12. The maximum capabi1ity of the solution 

for the eigenva1ue problem is li~ited to 30 e1ements, which 

corresponds to 400K bytes of core memory. 

The program, invo1ving approximate1y five thousand 

cards, is compiled in 3 minutes, and the necessary time 

for the calculation of the eigenva1ues and eigenvectors of 

a given shell subdivided into 15 e1ements is about 2.5 minutes 

for each value of n. But, for the calcu1ation of r.m.s. 

response due to random pressure, the execution time for a 

typical case invo1ving five finite elements is approximate1y 

30 minutes. However, for the case of 10 e1ements, the 

time involved is around 130 minutes of CPU. 
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The computer time for the calculation of r.m.s. 

response seems to be high. The time quoted above refers 

to the case where all the computed natural frequencies 

are used in the calculation of response. However, if 

only a few of the lowest natural frequencies are used 

in the calculation, the response may be computed to an 

acceptable degree of accuracy, but with a considerable 

saving in computational cost; thus, if only 15% of the 

natural frequencies are utilized, then the time given 

above may be reduced by a factor of 1/8 approximatively. 

To illustrate the utility of the computer program 

described above, the results (INPUT, OUTPUT) for one 

example problem are listed in Appendix D. 



CHAPTER VIII 

CALCULATIONS AND DISCUSSION 

8.1 Introduction 

The aim of the calculations presented in this 

Chapter was to test the theory as to correctness, 

precision and versatility and, accordingly, a wide variety 

of cylindrical shells and boundary conditions was chosen. 

Most of the calculations were aimed at deterrnining the 

free vibration characteristics of shells. 

The first set of calculations (~8.3, 9 8.4) were 

aIl for uniform shells with various boundary conditions. 

In each case the eigenvalues and eigenvectors were calculated 

for various cornbinations of n and m. The first calculation 

in this set (§8.3) was with a single, completely free, 

finite element in order to investigate rigid-body motions, 

with the aim of testing whether the displacement functions 

selected satisfy the convergence criteria of the finite­

element method. 

The second set of calculations (§8.5, ~ 8.6) deals 

with the free vibration characteristics of non-uniforrn 

shells. A shell made up of two segments of unequal wall-
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thickness and another which is ring-stiffened are 

analysed. 

The third set (§8.7) deals with the free-vibration 

characteristics of a uniform shell completely or partially­

filled with liquide 

Finally, the r.m.s. response to subsonic boundary­

layer pressure fluctuations is determined for one particular 

case in § B. 8 • 

In aIl cases but the last,the results obtained by 

this theory are compared with other theories or experiments, 

or both. 

8.2 Characteristic Equation 

The computational task is quite complex and the 

author was constantly aware that it would be easy for an error 

to slip into the computer program and remain undetected. 

For this reason the results were checked at each stage. 

Starting with the characteristic equation, the values of 

Àj obtained by the computer program were compared with 

existing values using other theories. One such set of 

calculations is shown in Table 10, where it may be seen 

that the computed values based on Sanders' characteristic 

equation are comparable with those from other theories. 

Next, the elements of the displacement function 

matrix, [N], were calculated for a wide variety of input 
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parameters. The results for a typical case are shown 

in Table Il, where the elements of [N] were calculated 

at x = 0 and x = t respectively. In such a case we 

should obtain a matrix with zero elements throughout, 

except for sorne elements equal to unit y corresponding to 

displacements being equal to nodal displacements. As may 

be seen this is indeed the case, and with very good accuracy. 

8.3 Rigid-Body Motions 

For a finite-element free at both ends the solution 

of equation (5.4) should give the rigid-body modes of 

vibration, which should be two in nurnber (for n ~ 2) and 

have zero frequencies in addition to the flexural modes. 

The results of one such calculation will be given 

here for a particular element with E = 10 6 lb/in. 2 , 

~ = 0.3, p = 1 lb. sec2/in. 4 , r = 60.523 in., t = 1 in., 

t = 40 in. , for n = 2. The computer program, described 

in Chapter VII, yields the following eight eigenvalues: 

n2 
1 = 0.0478 n2 

5 = 1390.8 

n2 
2 = 0.2187 n2 

6 = 3072.4 

n2 = 348.22 n2 = 5585.6 3 7 

2 424.28 n2 6273.9 n4 = = 8 

aIl in (rad/sec) 2. 
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We see that the first two eigenvalues are 

essentially zero when compared with the others, within 

the accuracy of the computer manipulation (although double 

precision was used). The corresponding eigenvectors 

associated with the first and second modes are listed in 

Table 12. 

We note that for the first mode u = u ,.... 0, n. n. ,..,. 
~ J 

(dw /dx) . = (dw /dx) . ~ 0, w = w and v = v , i.e. n ~ n J n. n. n. n. 
~ J ~ J 

this mode involves pure translation in w and v. The second 

mode, on the other hand involves rotation about the centre 

of the element and axial translation. 

Taking aV/àx = (v - v )/~, etc. and using 
• n j ni 

equations (3.1), (A.7) and the values of Table 10, the 

strains are found to be aIl of order 10-4 or less. This 

is not true for eigenvectors corresponding to n3 and higher. 

It may be concluded, therefore, that the displacement 

functions chosen satisfy the convergence criteria of the 

finite-element method with good accuracy. 

8.4 Calculations for Uniform Shells 

The eigenvalues and eigenvectors of uniform shells 

may, of course, be calculated by much simpler methods than 

by this theory. The main aim here is to test the correctness 

of the mass and stiffness matrices in their general form as 

derived in previous Chapters. 

The first calculation involves the determination of 
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the natural frequencies and eigenvectors of a particular 

simply-supported shell which has been analysed by 

Michalopoulos and Muster (~), not only by their own 

theory but also by the theory of three other investigators. 

The data for the shell are as follows: r = 4.08 in. , 

t = 0.047 in. , L 18.54 in. , E = 3 x 10 7 lb/in. 2 , v = 0.3 = 
and p = 7.324 x 10- 4 lb. 2j' 4 sec. ~n. . The natural frequencies 

of this shell for n = 2 to 5 and m = lare shown in Table 13, 

as calculated by Michalopoulos and Muster according to 

various theories, and by the author. 

Arnold and Warburton's (47) pioneering work derives 

the frequency equation by the energy method using Timoshenko's 

strain relations; the strain and kinetic energies are evaluated 

and, with the nodal configuration assumed, Lagrange's 

equations are used to derive the dynamical equations, 

eventually leading to a determinantal equation which yields 

the frequencies. Three natural frequencies are obtained 

for each nodal configuration, of which only the lowest is 

of interest here and corresponds to vibration mainly radial 

in character. Baron and Bleich's (48) theory is based on 

an energy method in which the shell is first treated as a 

membrane and the bending effects are subsequently introduced 

as corrections. Galletly's theory (49) is quite similar to 

Arnold and Warburton's but is extended to ring-stiffened 

shells. Finally, Michalopoulos and Muster's (46) theory 

- - ------_._-------"" ... - -. -
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which also deals with ring-stiffened shells, proceeds 

essentially as in (47), but expresses displacements in 

the kinetic and strain energy expressions in general, 

series forrni the equations of motion are written in matrix 

form and the frequencies are found by the Jacobi iteration 

method, yielding also the eigenvectors. 

The results obtained by our theory were calculated 

using ten equal finite elements. As may be seen in Table 13, 

the results obtained by this theory are in qui te good 

agreement with those from other theories, and particularly 

those of (46) which may be considered to be the most precise. 

We also note in Table 13 that the frequencies are 

not in ascending order of magnitude with increasing n, and 

that the lowest frequency is not associated with n = 2, in 

this particular case at least. This matter was first 

observed and explained by Arnold and Warburton (47) and will 

not be elaborated upon here. 

The eigenvectors were also computed for this shell 

and are shown in figure 13 in norrnalized forme Once 

norrnalized, the eigenvectors are identical for n = 2,3,4 and 

5 to eight significant figuresi moreover, they are indistinct 

from the corresponding sine and cosine half-waves, as they 

should be for a simply-supported shell. As may be seen in 

the table at the bottom of the figure the motion is mainly 

radial; th us v Iw ~ lin and u Iw < 0 (10- 1). max max max max-

---_ •... ~ ... ".- .,. 
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Accordingly, the computed frequencies correspond to the 

lowest of the three frequencies determined by Arnold and 

Warburton's and Michalopoulos and Muster's theories, as 

expected. 

Another set of calculations was undertaken to 

determine the requisite nurnber of finite elements for a 

precise determination of the natural frequencies. 

Calculations were made for the same shell as above for 

n = 2 to 5, and with the nurnber of finite elements 

N = 2,4,6,8 and 10. The results for m = 1 are shown in 

figure l4a and those for m = 2 and 3 in figure l4b. From 

figure l4a it is clear that for m = 1, the higher n is, 

the larger the nurnber of finite elements required: th us 

for n = 2 and 3 the frequencies may be adequately determined 

with N = 6, while for the higher n at least N = 8 or 10 

is required. However, the rate of convergence is not the 

same for different m as may be seen by comparing figures l4a 

and l4b. For m = 2 and 3 it is the frequencies associated 

with n = 2 which converge slowest, while for m = 1 the 

frequency for n = 2 converges fastest. Finally, attention 

is drawn to the purposely expanded ordinate of the figures 

which accentuates differences in frequency: thus, in aIl 

cases shown, the values for N = 8 differ from those of 

N = 10 by less than 2%. 
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Next, the natural frequencies of another uniform 

shell were calculated for various boundary conditions and 

combinations of n and m. The shell analysed is one already 

studied, both theoretically and experimentally, by Sewall 

and Naumann (11), with whose results those of this theory 

will be compared. The data for the shell are as follows: 

r = 9.538 in., t = 0.0255 in., E = 10 7 Ib/in. 2 , Y = 0.315, 

p = 2.54 x 10- 4 lb.sec2/in. 4 ; the length is L = 25.125 in., 

24.625 in. and 24.0 in., respectively, for the free-free, 

clamped-free, and clamped-clamped configurations. 

The analytical natural frequencies in (!l) were 

obtained by application of the energy method using 

Novozhilov's strain-displacement relations and employing 

the Rayleigh-Ritz procedure. The modal functions used 

in connection with the Rayleigh-Ritz procedure assume 

axial variation in displacements proportional to the 

corresponding beam eigenfunctions: this has certain inherent 

limitations, namely (i) in connection with free-free boundary 

conditions, not aIl possible rigid-body motions are allowed, 

and (ii) in cases of a clamped end, there is the contradiction 

of having both v = 0 and Nx~ = 0 at that end (11). 

The results obtained by our theory were computed 

with N = 10, and are compared with those û: (11) in 

figures 15 - 17. As may be seen, the results obtained by 

this theory are in fairly good agreement with those of (!!) 
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and, what is more gratifying, they are in better agreement 

with the experiments of (lIt. This is particularly 

noticeable in the case of both ends clamped (figure 16), 

'where the effect of the aforementioned difficulty arising 

from the modal functions chosen in (11) would be greatest. 

Detailed discussion of the results obtained and 

their significance will not be undertaken here as this 

has already been done by others, notably in (47) and (~). 

The evident success of this theory in analysing 

uniform cylindrical shells is considered to have provided 

adequate proof of the soundness of the the ory as a whole 

and of the correctness of the expressions of the stiffness 

and mass matrices derived here. 

8.5 Calculations for Ring-Stiffened Shells 

A particu1ar ring-stiffened cylindrical shel1 with 

clamped ends is analysed. This shell was first studied, 

theoretica1ly and experimentally, by Weingarten (50) and, 

subsequently, also by Sewall and Naumann (11). The shel1 

data are as fol1ows: r = 3.03 in., t = 0.06 in., L = 5.375 in., 

E = 107 lb./in. 2 , V = 0.315 and p = 2.54 x 10-4 lb. sec2/in. 4 • 

The 'rings', e1even in number, are actua1ly integral with 

the shell in the form of external ribs of height 0.095 in. 

(measured from the she11 mean radius), of width 0.125 in. 

each, and equispaced at a pitch of 0.50 in. 

* It is possible, of course, that the better agreement is 
fortuitous, arising from the difficulty of obtaining 
tru1y a c1amped boundary condition in the experiments. 
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Weingarten (50) neglecting rotary inertia effects, 

derived a Donnell-type vibration equation for a general 

orthotropie conical shell, so that the cylindrical 

configuration is a particular case. He then reduced the 

ring-stiffened shell to an equivalent orthotropic shell 

using Bodner's method. The free vibration characteristics 

of this equivalent shell were then determined by application 

of the Galerkin method, using rnatrix iteration techniques. 

Sewall and Naurnann's (11) rnethod of analysis has 

already been outlined. In dealing with stiffened shells 

(rnainly with axial stiffeners) the y assurned the stiffeners 

to be sufficiently closely spaced for their effect to be 

averaged, or 'srneared' as they put it, over the whole shell 

surface; eccentricity effects are explicitly taken into 

account. 

In the calculations done by our theory the shell 

was divided into 23 finite elernents, each corresponding 

alternately to stiffened and unstiffened portions of the 

shell. The difference in rnean radii of stiffened and 

unstiffened sections was taken into account. 

The natural frequencies of both the stiffened and 

the 'unstiffened' shell were calculated, the latter being a 

uniforrn shell with the rings obliterated, for n = 2 to 14 

and m = 1,2,3 ... ,*1-1)-J. 
The results for the unstiffened shell are shown in 
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figure 18 for m = 1,2 and 3 where they are compared with 

Weingarten's theoretica1 and experimenta1 resu1ts. 

Agreement with both Weingarten's the ory and experiments 

is fairly good. 

The results for the stiffened she11 are shown in 

figures 19 - 21, where they are compared with Weingarten's 

theory and experiments and with Sewa1l and Naumann's 

theory. We note that the theories of (11) and (~) are in 

close agreement, but they both somewhat overestimate the 

frequencies, particularly at high n - assuming, of course, 

that the experimental values are correct. This theory, 

on the other hand, is in considerab1y closer agreement with 

. * the exper1ments. 

8.6 Calcu1ations for Shells with Thickness Discontinuity 

The particular shells considered here are made up 

of a 1ength LI of uniform thickness t 1 and a length L2 

of uniform thickness t 2 > t 1 and a constant mean radius over 

the total length L: they are simp1y-supported. The free 

vibration characteristics of such she1ls were recent1y 

studied theoretical1y by Warburton and Al-Najafi (51) and 

both theoretical1y and experimentally by Falkiewicz (~). 

Falkiewicz's theoretical resu1ts were not available 

to the authors at the tirne of writing and will not be 

discussed. Warburton and Al-Najafi presented two theories. 

* See footnote on p. 89. 
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One is based on a c1assica1 theory which has been used 

by Warburton previous1y for uniform she11s, and is 

extended in (Si) to dea1 with she11s with a thickness 

discontinuity by using appropriate conti nuit y conditions 

at the intersection of the two segments. Their second 

method is a finite-e1ernent method emp10ying ring-type 

e1ements with disp1acement functions which are p01ynomia1s 

in x and trigonometric functions in n~. 

Ca1cu1ations for three different steel she11s were 

undertaken in (51) invo1ving different t 1 and t 2 , for 

various values of LIlL and sorne values of n and m. Here 

on1y two of the cases are ana1ysed, one with t 1 = 0.1875 in. 

and the other with t 1 = 0.125 in., and both with r = 2.073 in., 

L = 17.56 in. and t 2 = 0.25 in.; attention was focused on 

on1y those of the cases presented in (51) where there were 

appreciab1e discrepancies between the ory and experirnent. 

The ca1cu1ations by our theory were done using 20 

finite e1ements throughout. The resu1ts are shown in 

figures 22 - 24 where they are compared with Warburton 

and A1-Najafi's theoretica1 resu1ts and Fa1kiewicz's 

experirnenta1 resu1ts. In figure 22, where t 1 = 0.1875 in., 

the finite-e1ement ca1cu1ations of (51) were done using 

nine or ten finite elements. In figure 23, where t l = 0.125 in. 

and n = 4, the corresponding ca1culations of (51) were do ne 

with 25 finite elements; in this case the da shed line for 
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rn = 1 is not shown as it essentia11y coincides with the 

full one, i.e. the resu1ts of the two finite-e1ernent 

theories coincide. Finally, in figure 24, where t 1 = 0.125~. 

and n = 5, the finite-element calcu1ations of (~) were 

done using ten e1ements. This figure also shows the 

frequencies for m = 3 and 4 which are not available in 

(51) . 

We note that in most cases the classical shell 

theory of (51) agrees weIl with the experiments; that 

theory, however, was only used to obtain frequencies for 

a 1imited range of LIlL. The agreement with the finite­

element method of (51), on the other hand, is generally 

not as good. The resu1ts obtained by our theory are seen 

to be genera11y in quite good agreement with the c1assica1 

theoryof (51) and also with the experiments of (52), with 

sorne notable exceptions. Thus for m = 1 and n = 2 (figure 10), 

n = 4 (figure 23), and n = 5 (figure 24), the experimental 

points for LIlL < 0.25 are at variance with aIl theories, 

which throws sorne doubt on these specifie measurements. 

There are a1so sorne discrepancies between our theory and 

the c1assica1 theory of (51), for LIlL < 0.125 and m = 1 

in figure 24, which remain unexplained. 

It may be said that, on the who1e, the frequencies 

obtained by this theory are superior to those calcu1ated 

by the finite-e1ement theory of (51). The reason for this 
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lies in the better choice of disp1acement functions, 

and a1so because in figures 22 and 24 more finite e1ements 

were emp1oyed. However, our the ory has been shown to 

yie1d equa11y good resu1ts for any set of boundary conditiops: 

this is not genera11y true with ordinary type of finite-

e1ement theories. 

It is a1so noted that the computationa1 task for 

the full ana1ysis is comparable in the two finite-e1ement 

methods. Thus for ten e1ements both t'larburton and 

Al Najafi's matrices and ours are of order 40 x 40. However, 

in (51) the prob1em is reduced prior to ca1cu1ation, by 

Guyan's method, by expressing u, v and dwjdx in terms of w: 

this reduces the 40 x 40 matrices to order 9 x 9, but 

raises the frequencies, as additiona1 constraints are thus 

imposed on the system. 

Now comparing the c1assica1 theory of (51) with our 

theory it is noted that they yie1d comparable resu1ts. 

According1y, there is no advantage either way, for this 

particu1ar she11. However, in dea1ing with a she11 with 

severa1 discontinuities, or a ring-stiffened shel1 such as 

the one of the previous section, Warburton and Al Najafi's 

analysis, or any other tru1y c1assica1 theory, wou1d have 

to be reformu1ated for the particu1ar shel1 at hand. Our 

theory, on the other hand, because it emp10ys the finite-

e1ement framework, requires no special reformu1ation. 
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8.7 Ca1cu1ations for She11s Comp1ete1y or Partia11y 

Fi11ed with Liquid 

A particu1ar simp1y-supported cy1indrica1 she11 

partia11y fi11ed with water is ana1ysed. The free vibration 

characteristics of such a she11 were studied expe~imenta11y 

by Lindho1m et al. (~). Based on the theory discussed 

in section 5.3, Lindho1m et al. (~) deve10ped a frequency 

equation for the comp1ete1y 1iquid fi11ed tank, using 

incompressible theory for the f1uid, in an unpressurized 

circu1ar cy1indrica1 she11. A1so experimenta1 data 

was obtained in (~) in order to determine the effect of 

the 1iquid on frequency at partial 1iquid depths. The 

she11 data are as fo11ows: r = 1.48425 in., t = 0.0090157 in., 

L = 9.2126 in., E = 0.29 x 10 8 1b./in. 2 , y = 0.29, 

-3 2 4 
p = 0.75017 x 10 1b.sec. lin. and PF = 0.096066 

1b.sec. 2/in. 4 . 

The investigations made in (36) invo1ve different 

values of b/L (= 0, 0.25, 0.5, 0.75, 1.0), where b is the 

depth of 1iquid, and sorne values of n and m. The ca1cu1ations 

by our the ory were done using 10 finite e1ements and with 

b/L = 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 1.0. The 

resu1ts are shown in figures 25 - 33. 

Our theoretica1 resu1ts are p10tted on figures 25 - 27 

for m = 1,2 and 3. We note that for m = 1 a11 the curves 

have same form, with the change of curvature of the curves 

-- ------------
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occurring at a fractional depth of about 1/4. As shown 

in figures 28-30, agreement between the present theory 

and experiment of (~) is seen to be relatively good. 

Also, it can be seen that the natural frequencies decrease 

significantly with the liquid depth. 

On the other hand, figures 31 - 33 show the modal 

shapes of the system for n = 5, and m = 1,2, and 3 for 

the empty, 1/4-, 1/2-, 3/4-, and completely-filled shells. 

It is clear that the peaks of the displacements tend to 

shift towards the base of the tank as the depth is decreased 

(but non-zero). 

However, for the cases of an empty (b/L = 0.0) or 

a full shell (b/L = 1), the modal shapes are theoretically 

the same. But for the experimental modes (m = 3 and 4) 

reported in (36), difference was noted between the shapes 

corresponding to the empty and full cases. This difference 

according to Lindholm et al. (36) is "not felt to be 

significant because of the difficulty in obtaining a clean 

mode shape at the higher frequencies". 

8.8 Calculations of the r.m.s. Response for Shells 

Subjected to Subsonic Boundary Layer Pressure 

Fluctuations 

As developed in Chapter VI, the present theory is 

capable of determining the r.m.s. response for the rnost 

general case: axially non-uniform, thin cylindrical shells, 

-. _._._ .. __ ._--------_ .. _ .. , 
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subjected to subsonic boundary layer pressure fluctuations 

with arbitrary boundary conditions, are within the 

capabi1ities of the computer program d~scribed in Chapter VII. 

However, due to the high computationa1 cost of this 

ana1ysis (cf. Chapter VII), on1y one case of a simp1y-

supported uniform she11 was treated. The free vibration 

characteristics of this particu1ar she11 was studied in 

section 8.4. From figures 14a and 14b, it is clear that 

an idea1ization of 5 e1ements is sufficient to yield 

reasonably accurate resu1ts for low as weIl as high natural 

frequencies. 

The shell dimensions and material properties are 

as follows: r = 4.08 in., t = 0.047 in., L = 18.54 in., 

E = 3 x 10 7 Ib.jin. 2 , Y = 0.3 and p = 7.324 x 10-4 Ib.-

2j. 4 sec. ~n.. 

The f1uid is air at 70°F and atmospheric pressure, 

flowing through the she11. The f1uid properties are: 

-2 2 4 -5 2 
P F = 0.23292 x 10 1b.sec. jft. , ~ = 0.038 x 10 1b.sec.jft., 

andYF = 1.63147 x 10- 4 ft. 2jsec .. 

The first case studied was for mean centreline 

ve10city of 24 ft.jsec. corresponding to Re = 10 5 and a 

damping factor of ~~= 10-5 . The resu1ts of maximum r.m.s. 

response for n = 2,3,4 and 5 are shown in figure 34. The 

peak values for("~~') ,/~~& ,) 
"" nftIQIX.. \: lit. J ~. and tVW!Î~ 

are at n = 3. This confirms the theoretica1 derivations 
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as obtained in equation (6.14) where the r.m.s. response 

is inversely proportional to the square of the natural 

frequency, f . . r 

It is evident, therefore, that the r.m.s. response 

of interest, for this particular case, is at n = 3. 

Consequently aIl subsequent calculations will be confined 

to this particular value of the circumferential wave-

number. 

Figure 35 shows the r.m.s. response for different 

mean velocities, namely 24, 75, 120 and 240 ft./sec., 

using ~~ = 10-5 and 10-2 as damping factors. It is seen, 

from the results plotted in figure 35, that the r.m.s. 

displacement is inversely proportional to the damping 

factor and proportional to the mean axial flow velocity 

raised approximately to a power 2, both effects being 

as could have been anticipated. 

Unfortunately, in this case no experimental results 

are available to check the theory. 



CHAPTER IX 

CONCLUSION 

The accuracy of the finite-element method depends 

primarily on the nurnber and size of the finite elements 

into which the structure is divided. Good accuracy can 

generally be obtained with a sufficiently large nurnber of 

small elements. 

The optimum degree of approximation in the element 

stiffness and mass matrices will depend on many factors, 

the most important perhaps being the choice of the displacement 

functions and the degree to which they satisfy the convergence 

criteria of the finite-element method. (Here we do not 

mean numerical convergence but absolute convergence to the 

continuum.) The usual type of displacement functions are 

polynomials of the type 

U = CI • Cs 1l. 

W = c, + c." ... CS XL + ~)('J 

(~) - (17), (20) and (22) - (25). Such displacement 

functions can never exactly satisfy the convergence 

criteria, but may satisfy them approximately if a sufficiently 

large nurnber of small finite elements is used. 

In this work the displacement functions are derived 
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from the equations of thin cylindrical shells based on 

Sanders' theory. As Sanders showed (~), for small rigid­

body motions the strains aIl vanish for his theory, while 

they do not if the strain-displacement relations are 

taken as given by Love (~), or Novozhilov (~), for 

instance. This is because the sixth equation of motion 

(A.5) is violated in aIl but Sanders' theory. " Flugge puts 

the ~atter as follows: "There is one point of fundamental 

interest which may bediscussed at once. In the simplified 

formulas the difference between the shearing forces N~x 

and Nx~ has disappeared. The sixth condition of equilibrium, 

(rNx~ - rN~x + M~x = 0), is therefore no longer satisfied 

if M,x ~ 0, which is generally the case. This violation of 

one of the fundamental principles of mechanics is a serious 

drawback for aIl theory founded thereon. In most cases, 

small and otherwise insignificant changes of N~ and Nx~ 

will be sufficient to adjust the equilibrium, but during 

the mathematical handling of the equations it may happen 

that the large terms cancel and just the small ones become 

decisive." 

" The difficulties anticipated by Flugge were by-

passed in this work by the use of Sanders' theory. As was 

shown in Chapter VIII no strains are induced by rigid-body 

motions, as evidenced by the fact that the frequencies 

associated with rigid-body motions of a free-free element 
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are zero. Accordingly, one of the main practical difficulties 

associated with the use of the finite-element method, is 

absent from this theory. 

The hybrid finite-element, classical theory developed 

in this thesis has been used, with considerable success, 

to obtain the free vibration characteristics of a variety 

of uniform and non-uniform circular cylindrical shells, 

empty and partially or completely filled with liquide The 

data obtained was compared with that of other theories and 

experiments. If one accepts the validity and precision of 

the available experimental data for the shells used, then 

it may be stated that this theory is, in general, more 

successful than at least sorne of the others already referred 

to in this Thesis. This is hardly surprising if one considers 

that it is basically a classical theory put on a fini te­

elernent framework for the sake of versatility. Moreover, 

the shell equations ernployed, which are solved for the 

determination of the displacement functions, are such that 

the convergence criteria of the finite-elernent rnethod are 

satisfied. 

It is clear that this theory enjoys at once the 

advantages of the finite-elernent rnethod and the precise 

formulation of classical shell theory. Yet the difficulties 

often encountered by classical analysis with certain 

boundary conditions (e.g. clarnped-free), even for uniform 
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shells, are absent here. Also the computational difficulties 

in classical analysis arising from the vanishing determinant 

of the boundary conditions, which contains both large and 

Il f h ± À .L/r t d h sma terms 0 t e type e J , are no encountere ere; 

difficulties due to such terms in this theory are easily 

overcome either by increasing N or by matrix manipulations. 

Only a few cases have been presented here, a 

sufficient number, the author believes, to illustrate the 

capabilities of the theory. Several other cases could also 

have been tackled, but were not because of the computational 

cost. Thus shells with several discontinuities in thickness 

and rnaterial properties, conical shells, and non-isotropie 

shells can be easily analysed by thig theory. 

The second part of this thesis dealt with the 

reRponse of thin circular cylindrical shells (uniform or 

axially non-uniform) when subjected to a random pressure 

field. The theory was developed in general for an arbitrary 

randorn p~essure field, and in particular in the case where 

the pressure field arises from pressure fluctuations in 

the turbulent, subsonic boundary layer of an internally 

flowing fluid (air). This latter case was incorporated in 

the computer program, which also determines the free-vibration 

characteristics of the shell, and yields the r.m.s. response 

of the shell. One calculation was undertaken, the results 

of which appear to be reasonable: however, the absence of 
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data prec1udes comparison.with experiment. 

This theory may also be applied to shells 

subjected to supsonic boundary-1ayer pressure fluctuations 

when the fluid is other than air, by using the values 

of the constants a,b,c and d given by expression (6.3). 

Further work on boundary-layer pressure fluctuations by 

Wil1marth and Wooldridge (61), Willmarth and Roos cg) 

support the original measurements and assumptions made 

by Bakewe1l (39), (!i) and used in this thesis. 

The ana1ysis of the random vibration of the shell 

is restricted to light damping (~r « 1); this restriction 

can be re1axed by considering the contribution of cross­

product terms in equation (5.30). However, the results 

obtained here, for~r « 1, will still constitute an 

important part of the total solution. Finally, it is 

stressed that pressure correlation functions used in the 

analysis are applicable on1y for flow ve10cities corresponding 

to Mach number 0.3 or less; there is no assurance that such 

correlation functions can be applied at higher Mach numbers 

when compressibility effects become important. 

Future Work 

This theory can of course only dea1 with geometrically 

axially-symmetric, non-uniform cylindrical and conical shells. 
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Neverthe1ess, considering the extensive 1iterature on 

the topic, it is c1ear that the ana1ysis of such she11s 

is of considerable practica1 importance. According1y, 

the effort involved in producing a theory such as this, 

of superior precision and accuracy than existing theories, 

is deemed to be justified. Moreover, the success of this 

theory indicates that the basic approach adopted, namely 

using classical theory for the determination of the 

disp1acement functions, i~ both sound and practicable. 

Therefore, its extension to the more general case of curved-

she11 finite elements is envisaged, with which shells of 

any shape could be ana1ysed with enhanced precision. 

Another extension to this work will be to consider 

the effects of al1 the components arising from the presence 

of f10wing or stationary fluids, on the natural frequencies 
1 

for the cases of comp1ete1y or partial1y-filled shells. 

Final1y, jt would be of interest to compare the theoretica1 

r.m.s. response of this theory to experimenta1 data which 

will hopefu11y become availab1e in future • 
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APPENDIX A 

SANDERS' THEORY OF SHELLS 

A.I The Coordinate System 

The location of a point of the shell is given by 

three parameters, two of which are along the middle surface 

of the shell and the third along the normal to the middle 

surface. The condition we impose on the parametric curves 

is that they form a three-dimensional orthogonal system 

(see figure 4). 

To describe the location of an arbitrary point in 

the space occupied by a thin shell, we define the following 

position vector (see figures 4 and 5): 

(A.I) 

where ~ is the position vector of a corresponding point 

on the reference surface, ~ is the unit vector from the 

reference surface to the point in question, ~,= constant 

and ~2. = constant are the parametric cunl'es which follow 

the lines of principal curvature of the shell on the middle 

surface, and ~ is the distance of the point from the 

middle surface measured along the unit normal vector n. All 

of the necessary concepts and results from differential 

.. -.' .-_ ... _----_. 
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geometry are developed in (~) and (30). 

A.2 Equations of Motion 

Consider an element of the shell bounded by surfaces 

5 = constant, 5 +J.' = constant, and ~ = ±t/2. Forces 

and moments acting on aIl six faces must be in equilibrium 

(see figure 6). We denote by N the force resultants and 

by ~ the moment resultants, per unit of length measured 

along the parametric curves on the middle surface. By ~ 

we denote the external force per unit of area of the middle 

surface. 

We may use Hamilton's princip le for the derivation 

of the equations of motion of a thin elastic shell because 

it gives us, at the same time, the natural boundary 

conditions that are to be used with the theory. 

Hamilton's principle states that the actual path 

followed by a dynamical process is such as to make 

j
tr 

S (n - K) d.t :: 0 ) 

to 
(A. 2) 

where rr is the pofential energy, and K is the kinetic 

energy. If the process is steady, the above principle 

reduces to the princip le of minimum potential energy, or 

Tt: _ minimum, (A. 3) 

For a thin elastic shell this may be written in the form 
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f
t. 

S (cr - Ws - w~ - w,!: - K ) d..t = 0 
rt '>, S"2, ) 

o 

(A. 4) 

where U is the strain energy, Ws is the work of the body 

and surface forces,'W5, and W5t,represent the work of 

the edge stresses on edges of constant 5. and 5aJ ' 

respective1y, and K is the kinetic energy. The deve10pment 

of the equations of static equi1ibrium from (A.4) can 

be found in many papers, e.g. (29), (~), (l). Here we 

on1y 1ist the final six sca1ar equations of motion, as 

fo11ows: 

è)A.Q. + 21A,Qs _ A Jo. (.~ NU) 0 
ZI~ ~t: """'2 R +-;;-- - } 

,. ~2 1 ~& 

(A. 5) 

(figure 6), where distributed load terms have been omitted 
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for simp1icity. 

In the usu~l derivation of the equations based 

on Love's first approximation, the distinction between 

M12 and M21 is dropped and the 1ast of equations (A.5) 

is suppressed. According1y, most theories vio1ate this 

equation, un1ess the she11 is spherica1, or a f1at plate, 

or if it is a symmetrica11y loaded she11 of revo1ution. 

This is not the case with Sanders ' theory; consequent1y, as 

is shown in (~), a11 strains vanish for sma11 rigid-body 

motions. According1y, if we select disp1acement functions 

based on this theory, we shou1d expect to be able to 

satisfy the convergence criteria of the finite-e1ernent 

method. 

We now consider a circular cy1indrica1 she11 and 

express the movement of the midd1e surface in terms of 

the axial, tangentia1 and radial disp1acernents, U,V and W, 

respective1y. In equations (A.5) we now have 

~ - )(. ) U, = U , R, _ 00 , AI'" 1 • 
• } 

The modified strain-disp1acement relations are 

given by 

- - ------- -------_. 

(A. 6) 

(A.7) 
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The appropriate set of stress-strain relations (see 

figure lb) are given by 

"'". b (~.+\I'.) , M.cK(I<.Il+ \/""Cf) , 

J (A. 8) 

= ~(N + Nm ) and M = ~(M + Mmx)~ for an x<p TX x~ xcp T 

isotropie elastic material, the stiffness parameters K and 

D are given by 

D = Et/ (1- i) . (A. 9) 

Upon substituting (A.6), (A.7) and (A.8) into (A.5), 

after considerable manipulation, one obtains the equations 

of equilibrium in terms of U,V and W, namely (~) 

(A.lO) 

+ titi _r4 a~ _ 2rllJ~ _ lJ·wJ = 0, 
,.,, bi' )11' :;.,- 'l)r 

where k = (1/12) (t/r)2. 
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For an edge of constant x, the boundary conditions 

are given by specified values of the following quantities 

or 
(A. 11) 

v _ Q ... J. b& or W = W J 

• • r bCf' . 

Mil - Mit or C·'iil) - ~ . ~" - b)C 

where the double-barred quantities refer to the boundary 

values. 
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APPENDIX B 

List of Matrices 

This appendix contains the matrices referred to 

in the text which were too large to be included therein. 

The matrices are listed as follows: 

[R), [T) 

[A) 

[Q) 

[f) 

[t.), [Z) 

* [ZY) 

[Al)' [BI)' [C11 

[011, [0 2), [0 31, [0 4) 

[Q. ) 
~ 

* 

in Table l 

" " 2 

" " 3 

" " 4 

" " 5 

" " 6 

" " 7 

" " 8 

" " 9 

The matrices [ZJ1 and [E11, [E21, [E31, [E41 are obtained 

respectively, from matrices [ZY1 and [011, [02), [0 3), [04) 

by substituting in these matrices the elements of matrix· 

[Y) = [f)T[P1 [r1 by the elements of matrix [RJ) = [t.)T[t.]. 

The matrix [Q.1 is obtained from matrix [Q] by 
J 

substituting in this matrix ~l' ~2' ~l' s2 by wl ' w2 ' nI' n2 , 

* y .. in these matrices are elements of the [Y] matrix 

gi~en above. 
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respectively, where these terms are defined in Table 4. 

~~--_ ... - --~--, ... ,_._-----
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APPENDIX C 

EVALUATION OF SOMB INTEGRALS OF CHAPTER VI 

C-l Evaluation of the IntegraIs given by Equations (6.6) - (6.8) 

,,11: ~1C 

~ = S l 4!. (O/~,O).C:os( <1». CO~( cp). tLCV.cLcp'./ (C.l) 

() {) p,fo,Re 

~1tl~1C p. = 5 c.v. (OR~/~.Sl:N( C(»).S~N( C{>).cL<{'.J.,~', (C.2) 

<, 0 0 p, fOI e 

- Pg= (~1t(~1C.4! (OJ~/O).COS( <f).s~~( ~').~_J..CÇ>I.) (C.3) 

Jo Jo ~, fOI ~e 

and 

/ (C. 4) 

where 

Consider and let 

. , 
~ 

AIti 
= e 1 

where ~ = M. Then 

J,~ =A.a J,tp' 1 cp'= -..i..~ 6 such that 
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, (C 0 5) 

·where C'is the circ1e of unit radius with center at the 

origin ~ • The integrand (C.S) has simple pales at 

)
21 À. cp 1: il ~ C.3 ' 

1 + Cs ( ~ + ;., ~ ~ = 0 J ()7V lf= e e ./ (C 0 6) 

(Co 7) 

Final1y, the integrand has a simple pole at 

}= 
~t() 1- t/VC3 ' A.cp ± V~~/P3' 

e e and at ~:= e e ; however 

on1y 
~C9 - t!Vë;' J 1..1' -Vim'J..jf?3 \ 

~= e e.. ~ ;}= e e 

lie inside Cio 

ftM.d...e '1 .;, """R. 1 
&x e~" e- IJV Cs'~ 

~ 
~ ~ ei,f - Vfë;. [1 + ~ (cp+,- J...~)J P -ë~ (~ ... '-I...j )"J 

i cf - fIt) ci. 
e e , 

and 

(C 0 8) 
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i 
~ .-

ReSI..Dur: '1 ~ uYR­

cJ: ~~ ëV~~7J)3' 
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• 

Then, equation (C.s) becomes 

_ 1/ V C..3' _ • V~~/j).3 
e +~e~ ________ __ 

~IfSl~ - e·IC~] 4'iJ>.~i~- ~ Q,..,~ 

.2 1r 

(C. 9) 

.(C.10) 

i Cos (~') clq; 1 

The expression r1 q G -P.3 (c.Q- q>1)J of equation 
o ~+ C3 (C(>-ce? j'L:t- e 

(C.4) is equa1 to the rea1 part ofurRÎ therefore 

or 

c = C'/f.L/U<t~ and J) '" d-h-a/U: . 
Simi1ar1y, P2 becomes equa1 to Pl' P3 is zero and 

equations (6.6) - (6.8) qive 
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(C.12) 

(C.13) 

(C.14) 

where T(fo ) is given by the equation (C.ll). 

C-2 Evaluation of the IntegraIs given by the Equations 

(6.19) - (6.24) in the Main Text 

We consider (C .15) 

where C is the semi-circular arc of radius R shown here 

~ 
~ , (M,N,P) are positive constants, 

i = v-::; and Z is a complex variable. 

The integrand has pole of order 3 at Z = 0, and 

4 simple poles at 

J 
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z ==- f]V vi 1- <,~: +i, <, ~ lU (J 1- '7: y' ? 

Z = - t)'t- ~~: -A,!I. '7", ll/I- '7:') , .) 
and , 

z= frvJl-~1~:Ù-~~'7/{J(Vl-~:Z')' 

but only 

lie within C. 

a) Residue at Z = 0 is 

_ [M~--t,NZ + fil] 
..!:::~~3---=e~ ___ --:-_-=_\ = 0 . 

Z3 [(fi)Z4 + (4~f:.?,)l;~+] 
(C.16) 



- 126 -

By neglecting the terms of third and higher-order 

of magnitude for the generalized damping factor ~N' we 

obtain 

The 

, (C 017) 

becomes 

(ColS) 

where 

By considering equations (C.16), (C.17) and (ColS); we 

obtain 

(Co19) 
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This equation (C.19) can be reduced to the fo11owing 

expression 

~c 

where 0; = MflTJ + N fltl ~1tJ + (p/f",('+~:)) , 
o~ = - M f)tl ~1tI +N f~ + (f~1tI/fltl(,-t7:~ / 

~~ = - M f", + Nf,., "f", - \ f' / f",0 + '7:» / 
'6'~ = - M f", ~'" - N flU + (i' '7",!f", (I+~ .. y · 

On the other hand, since 

where C is the semi-circular arc of radius Rand r is cn.r the curve 
-Rk • 

(C.20) 
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Taking the 1imit of equation (C.21) as R ~ 00 

* and using the theorem which proves that the integra1 

around r approaches zero, the following is obtained 

(C.22) 

Comparing equation (C.22) with (C.21), then 

(C.23) 

(C.24) 
, 1 

where ~" ~1 
1 

"t) and 
1 

~4 are given by equation (C.20). 

* 
k ~9 

If If(Z) 1 < MIR, for Z = Re ,where (k>O) and ~ 
are constants, then ~ 5. e;'- ~ f (t) ~ =l :: o· 

R-J- l' 

. - ---.. __ ._----
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By using the above two equations (C.23) and (C.24), 

the expressions ~c (!~, ~~) and ~/.I( ~4)"") , given by 

(6.19) and (6.20) in the main text, can be written as 

fo11ows: 

Using the same method, deve10ped in this Appendix to 

eva1uate ~C(l,,;/i.A.) and ~~(1~/Q.....) given above, 

integration of the expressions given by the equations 

(6.21) - (6.24) can be performed. Thus 

(C. 25) 

(C. 26) 
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where 
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>5: = [ Kl + lei-t .. 1 (AG],.+ B)1 fJ(. -t CI ~ , 
. f~~+7:) 

"r.t = f_ K1 ~ +) t4,-!~J{ A-B 7",)11 + CI <!7J[, ~) ) 
. L ~ ~r", fJl,~ + 7111 

~3 = [- Kl t IR.L-L .. I( A~,.-.&) ] f ",- f .. t + '7:) J 

-04 ", [- KI 7n.-l~-R, .. 1 (A+ g~,.~-pn. + f",~~~:) 

05= [KI + J~.-.t \ (A~ +B"] f -r. D, " 
• IN 7", '/ Tn. . f,..(I+ 7':) 

~ = [-KI ~ +I.t.-t I(A-f>CR ,l.c + D, c..t;",_ ) 
III .. NI 7Jt-)J IlL f",(I+ <tj",'-) 

ll= r_k" +11.- ~I (A~-B)J 1). - .D, ) 
L.:' '" 7~ 1 ln" fJt, (10{- 7':) 

~ ::. [- K' CR -11,.-1 1 (A + BCRJ,l r + D, ~IV , 
8 1 7", ,. #AJ 7",U Titi f,.,(1+ '7:) 

1<. ~ ~ '1 ~/ Ut , K.:t, = ~ t~ f;:~"" V: J 

CI .. Yvc, Cz, = I{ë'(~ - eJ)/C.) J 

D, = V en, ~ / D" ~ D.tI =:b \/):>.en,:l, 1 [1 - ~ tn,~] , 
A = Q./u~ )1 B == 1/ll 4:. J C = C tt-

1/U; .J D = c.tJt.lu~ . 

* here the arguments (1;, 1 ) have been omitted from 
Yl(l i , lu)' Y2(li , luT, e~c., for simplicity. 

il 
t· 

1 
! 
1 , 
1 

. 1 



APPENDIX D 

OUTPUT DATA 

NATURAL VleR4TION CF NCNUN1FORM T~IN CVLINC SHELLS BV FINITE-ELEMENTS METHOD 

INPUT CATA 

SECTION NUMBER 
VCUNG.S MOOlLLS OF ELASTICI1V E=LB/(IN-SQUARE' 
PCISSON.S RATIO NU. 
MEAN RACIUS OF SHELL ELEMENl RAzIN ----------­
T~ICK~ESS OF SHELL ELEMENT lH=IN ------------­
LeNGT~ OF AN INCIVIOUAL SHELL ELEMEN LE=IN. 
MASS PER UNIT VOLUME O~ THE S~ELL ELEMENT RHO 
COEFFICIENTS IN S~ELL EQUATIC~ D=E-T/CI-NU •• Z' 

K =E*T**3/12*CI-NU •• Z' 
SMALL K =1.*2/12*RA.-Z 

N~B. RI-IO:a(LB/IN/SEC.· .. 2'1( IN**3) 

FLUIO CE~SI1Y= C.112330-06 

seCTI(j~ NU~BER 1 

1 
Col 300C JO 08 
1), 300000 ~O 
C.4081:'00 Cl 
C. 4700')0-(' l 
Q 463500 01 
C.732400-03 
r; .. 154950 {.17 
~ 285230 ('3 

C~ 11 ')580-04 

ELASTICITV ~ATRIX P~I.t,6< -FOR ISOTROPIC ~ATERIAL-
J.1549SC C.i O.4~4e40 '=6 ( C 0.0 0.0 
:.464e40 ce o 1~4950 C7 t·c 0.0 0.0 
1,).0 ".r' ( 542310 06 0 •. 0 0.0 
o.c o 0 c c o.ze523C ~3 ).855680 ':'2 
':.0 O.~ ~. C o~ 85568C }2 ~.28523D)3 
;. () 0.( cc 0.0 J.O 

0.(' 
0.0 
0.0 
0.0 
0.0 
a.998'2(-0 ,)2 

; ,_. \ 

...... 
W 
"-l 



N',uaAL VleaATICN Cf NCHUNlfORM TMIN C'LIND. S.ELLS B' FINITE-ELEMEN'S METHOO 

'.E NU~BER Of tIRtLM'ERE~TIAL WAVES IS N - J. 

SEC110N NL'IER 1 
---~-_.-------~_.-

----A--------------------CH.RAC1'aISlIC EQUATION-------------------------

'tE EIG~T aCCIS Cf TtE tHAaACIERISTIC EQUAlICN ARE -

L'McAI • -O.Jt,490 co 0.,4JI2C CO *1 
L.~tA2 • -0.J6J49D 00-0.J.JI2D 00 *1 
LAMCAJ • -0.12J61C OZ 0·11611C OZ *1 
L'MCA4 • -O.12,fIC 02-0.116110 C2 *1 

LAMCA'. 0.36J490 00 0.34JB20 00 *1 
LAMCA6 - 0.36J490 00-0.343B20 00 -1 
LAMCA1. 0.IIJ610 01 0.11611002 *. 
LAMOAI. 0.IIJ610 OZ-o.116110 02 el 

fACM Of ltE 1 VALUIS -LA'OA- 'lE LOS CNE SOLUTION 
Of ECUA11CNS 0' MO'IC~. JNO 'HE CO"LE1E SOLUTION 
15 'tE SU" 0' ALL 'MEM WllM B INDE'E~OENl SETS OF 
CC~S1AN1S J'JI. B'JI • C'JI -

AIJI - CONS1A~1S OF U - AXIAL OIS.LACEMENT EQUATION 
BIJI • CCNS1AhlS Cf V • lANGE~TJAL OIS'LACEMENT EQUATION 

CIJI • tCNS1AhlS Of W - RADIAL OIS'LACEMENT EQUATION 

SUC" lUl • AI JI • Al'MAU .•• CU. 
IIJI • BE1AIJ' • CIJ. 

AND-

JL'~AI - 0."9RIO-Ol-0.401!Ot-01 t. 
AL'tA2 - 0.J1'B1C-OI C.408!Oo-OI *. 
AL'~AJ. O.ICI'lt-OI 0.142CBC-Ol •• 
ALPHA4 - 0.ICI6Bo-Ol-0.142t8C-01 *. 
AL'HA' • -0."'81t-Ol-0.40B!OO-OI •• 
ALPHA' • -0."gelo-~1 ?401!OC-01 *. 
AL'HAl • -C.IC8'BC-Ol 0.142(8C-Ol -t 
AL'.AI • -C.1CI'10-Ol-0.142(BC-01 -1 

BETAI • -0.'31610 00-0·210480-02 el 
BE1A2 - -~.'31620 00 0 2B0480-o2 el 
BETJ' - G.198940-03 0.140J80-01 -1 
BE1A4. 0.19«940-0J-0.240'80-o1 el 
BEl.' • -0.33J620 00 0.180410-02 el 
BE1A6 • -0.333610 00-0·110410-01 -1 
BETA1. C.198940-03-0.1403BO-ol-1 
BET'B. 0.19B940-03 0.140380-01 -1 

C~IGAI. 0.412"C 00 
'-EGA2. C.1404JC 02 

ETJI. t.J90590 OC 
E1J2· t.I'1900 OZ 

CIS'LACEMENt 'UNC'.ON "J1R •• Al X-LE- 0.0 
t.I'OOOO 01 0 •• '9190-16 0.416510-18 -0.404170-16 0·Z57790-15 

-,.J6549C-14 O.lCOOOO 01 t.6'fIZO-16 -C.211B40-14 -0.45'510-14 

0.12'010-14 -0.146060-16 -0.691110-11 C·IOGOCO 01 0.1307Z0-14 

-(1.909170-11 
-(1 165690-15 
C.625510-16 

0.109810-11 (l913C40-16 
0.506240-16 -0.ZZ5680-15 
o 143460-16 0.141630-15 

OISPLACEMEh' FU~ClION "A1RI' Jl .-LE- 0.46'500 01 
0.251150-15 -C.lOOB50-16 -0.5046CO-17 0.!12420-15 
~.I(15150-1J -0.611410-15 -C.II'B30-15 0.1243~D-14 

~.40l060-'4 -0,1'll60-'5 -C."'BlO-16 0.111110-14 

O.lCCOOO 01 
0.134150-13 
0.483130-14 

G.525300-16 -0 164360-17 -0.304440-15 
0.100000 Dl -0.971450-16 -C 444090-14 

0.145120-15 -0 364290-16 0 100COO Dl 

"-.. 
" 

.... 
W 
W 



N'TUR'L vleRATICN Qf h:NUNlfOR' T~IN CYLINC. S~ELLS 8Y FINITE-ELEMENTS METHOO 
--------------------------------------------------------------------------------

ThE ~U~8IR O' CIRCL~fERE~TIAL ~AVES 15 N. 3. 
---------------------------------------------

SECTION NU".eR 1 

----.-------------------------OUTPUT MATRICES------------------------------

Tte M"AIX.' 1 1 •••• , IS 
o. n91lD-Ol -0.4CUOO-Dl C.1C168O-01 0.142680-01 -0.379810-01 -0.40'300-01 
O.lCOCOD Cl O.C (.10COOO 01 0·0 0.100000 01 0.0 

-0.190UC-01 C.'UTCD-Ol -0.l32910 Dl 0.214580 01 0.'90910-01 (1.842700-01 
-0."1620 OC - C. za04 10-02 0.191940-03 C.240380-01 -0.333620 00 (\.28(1480-':2 
~.n526C-0I -0.154140-01 C.31~410-09 o 142160-07 -0·295830-01 -(\.789100-01 
C.61 tel0 00 (.25193D 00 (.6461040-06 0.46~520-06 0.139740 01 (1.575380 00 

-c. TS1420-Cl C.29111O-01 -c.un9D-05 (.42Ç82D-06 0.760100-01 0.169020 00 
-0.20343D OC -0.U7Io6D-01 -C.l1C62D-D1 C.156360-07 -0.467820 00 -O. 188C140 00 

TtE TAANSFCAM.TIOh MITRIX -I~VERSE OF A- IS 
-0.269660 02 0.111150 01 C.2I115D 00 -O. 111180 02 -0.333010 OZ -0.1211"0 01 
-0.66"45D 02 1:.22"510 1)1 0.501590 CO -o. 19Ç4Z0 OZ -0.28:1840 OZ -0.131020 (\1 
-C.4IU10 CC C.942640 00 -0.204930-01 0.211 .. 00 01 0.611320-01 -(\.116890-02 

O.106UD-OZ C.99"43D 00 C.321430 00 0.Z113"0 Dl -0.183080 00 -0.107660-01 
0.n451C CZ -(.111420 01 -C.26fl60 00 0.154640 OZ 0.312)9D 02 0.128260 01 

-C.I7U'O 01 0.41115D 00 0.125110 00 -0.968Z00 Dl -0.338620 02 -('.101900 (II 
0.453010-01 -0.516 16D-O' -0.112910-0' 0.177100-(\6 0.309850-06 CI.l01250-!'5 

-~.141120-C6 C.64U5D-0' 0.151360-01 -0.10CUO-D6 0.230980-06 -O. Z04220-06 

TtE GtNERALlllD CtORDINATE !rl"NESS CF THE ELEMENT G 1 •••• , IS 
0.ZT1040 04 O. "'960 OZ -C.l)18)O O~ 0.11'490 0 .. 0.333410 04 0.137280 04 
0.""60 Dl c.214no 04 -C.11'640 04 -0.196960 04 0.137280 04 -C.3334Z0 l'~ 

-O. Ul"C 04 -0.115640 04 0.11"50 06 0.n5~90 04 -O. 185~00 04 0.125780 04 
0.U54çc 04 -C.I96960 04 0."5090 04 C.195190 06 0.183120 O~ 0.124610 "4 
0.333410 C4 o.nn.o O~ -0.115'00 04 O.ll!llD 04 0.650090 04 -0.183860 03 
0.l1u.e Cio -Cl. !UIoZO 04 C.125T10 04 0.124610 04 -0.183160 03 0.635340 (\4 
l'.Zl9UO n -C.1410100 10 C.l10640 06 0.IZl8 ... 0 06 -0.255340 10 0.~23290 10 

-0.206040 lC -C.600UO 09 C.U2850 06 -C.110640 06 -0.258140 10 -0.223610 la 

TRA~SFCRM "'TRIK G TO THE OESIREO NODAL PCINT STIFFNESS .SUCH THAT 
It _ ITRANSFOSE OF INVERSE CF At • G • 1 INVERSE OF A t 
0.1uno 01 -C.8il106!) os -t.1414Z0 03 0.164190 07 -0.139260 06 0.210690 05 

-1) •• ".060 O! ~. 359110 06 C.5U51O OS 0.100'40 01 -0.270690 05 -r.238830 Olt 
-0.141420 Dl C.!U5110 0' (.2010iO 05 Cl 159990 06 -0.nlt680 05 -0.686180 03 

0.164190 01 C. 101.'140 Dl (.15n90 06 0.393300 01 0.119660 DT C.652260 05 
-O. n9Z60 O~ -~. 27C6ÇO :15 -C.114680 05 0.11U60 07 0.712270 01 0.808(160 ('5 

O.Z7CUO 1:5 -C.2311830 0 ... -C.68678D 03 0.652260 05 0.808060 05 0.359110 06 
-0.114610 D!! 0.61""0 03 C.1I4510 03 -0.150380 05 -0.7"142003 -0.596580 05 
-O.l1'a66C 01 0.tS22tO 05 C.15C380 05 -0.1U910 06 -0.164190 01 0.IC0340 C'1 

THIS "ATRIK K 15 THI STIFFNESS "ATRIX OF ANY FGRM OF ST~UCTURAL ELE"ENT 

,~t ~CCIl 0ISPL'CEMEN'S ARE I~ T~E FCLLO~lhG CRDER • 
IU.W.8ITA.Vt AT PCINTS IIX-O' 'ND JIX-LEt RESPECTIVELY 

-0.108680-01 
O. lMooO 01 
o 302970 Dl 
0.198Q4O-1)3 

-0 215320 05 
0.1"1860 Dl 
0.9"'9190 06 
0.178290 05 

0.302440 00 
0 .. 330250 00 
0.600020-03 
0.Z88090-02 

-0.303,)40 00 
0.234160 00 

-O. 13964O-Cl6 
O. 221920-06 

0.219120 09 
-0.148040 10 

0.170640 06 
0.122840 06 

-0.255340 10 
0.423290 10 
0.30 ... 950 18 

-0.107860 16 

-0.114680 05 
0.686180 03 
O. \84510 03 

-1.'.150380 05 
-0.741420 03 
-O. 596580 05 

0.2(81)10 ')5 
-0.159990 1.'6 

o 142680-01 
o./) 
(1 284510 Dl 

-C.240311O-01 
o ~56400 04 
0.733270 06 
('.512(120 Dl 

-0.243380 05 

o 160390 OZ 
1).224280 02 
O. 107660 00 
1.'.232380 00 

-0.161410 02 
(1.762230 01 
o 30U20-05 

-0.491110-06 

-C.Z0604O 10 
-0.600130 09 

C.12285D 06 
-0.110~4O 06 
-0.258140 10 
-0.223610 10 
-0.701860 16 

0.29'5!1O 11 

-0.119660 01 
0.652260 05 
CI.15031O 05 

-(1. 713910 06 
-C.16419O Dl 

0.10(\340 DT 
-0.159990 06 

(l.393300 Dl 

1-' 
W 
,c. 
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NATURAl VIBPATICN OF NONUNIfORM THIN CVlIND, SHELLS av FINITE-ELEMENTS METHOO 

-----------------------
---~-------------------

-----------------------
-----------

THE NUMBER OF CIRClMFERENTIAL WAVES IS N = 3~ FLUID OENSITV= O,112~3D-06 

---------------------------------------------
Ne. LAMCA t (lAHDA. 1 (lAHDA, TOTAL MASS PER UNIT SURFACE 

N N+l STR~CTURE+FLUID 

1 O.21~5~D 01 C~6q60~D CC 0.220120 or. v.345410-04 

~ 
w 
V1 



1 

._.j 

.;,;, ... ., 
'" 
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N.TUAAL VI!AATICN 0' NCNUNlfOA' THIN CYLINC. S~ELLS SY FINITE-ELEMENTS METHOO 

---------------------------------------------------
T~E ~U~8E. OF CIACLMFEAE~TIAL MAVES 15 N - 3. 

---------------------------------------------SECTION NU'IER 1 

----I-------------------------CUTPUT "ATAICES------------------------------

T~I "ATAIX • Cl ••••• lS 
O. ,7Q1l0-CI -0.4dnoo-Ol (.1(1610-01 0.14Zla80-ClI -0.3791110-01 -o. 400eJOD-0' 

O.IOOCOO 01 0.0 O.l(COoo 01 0.0 0.100000 01 0.0 

-C:.ltCUD-OI C.842100-01 -0.J02970 Dl 0.21 .. 580. DI 0.890910-:n 1). 8~Z700-01 

-o. JHUO Ct -C.280"10-OZ 0.191940-03 0.Z .. 0380-01 -0.3336Z0 00 0.280~80-02 

0.U'Z60-U -O. "411t0-01 C.'15410-09 0.1"ZI60-C7 -0.Z95130-01 -0.789100-('1 

o."unc CC C.Z5IUO 00 C.'''U40-06 . 0.4655Z0-N. 0.139740 01 0.575380 00 

-0.1514Zo-OI C.291110-:)1 -Co JU390-05 0.4Z91Z0-C6 0.760100-01 0.16ge20 CO 

-0.ZO'430 CC -C.151660-01 -0.1101020-01 C.156360-01 -0.4671Z0 :)0 -C.1880"0 1:'0 

T~E TRAhSFC~MATIO~ MATRIX -1I\VeASE OF A- IS 

-0.260;660 OZ 0.111150 01 c.zuno 00 -0.11111002 -0.333Cl0 oz -0.1281"0 (Il 

-0.664..,0 OZ C.2245.0 01· 0.501590 00 -001941420 02 -0.210140 02 -0.131020 Dl 

-0.4.,,910 OC C.9426"0 00 -C.204930-01 0.211400 01 0.611320-01 -0.116190-02 

C •• OU)C-OZ C.'i9 .... 'O 00 O. lZ!430 00 C.2113 .. 0 DI -0.183080 00 -0.101660-01 

o.n .. "c Cl -C.I1I"20 01 -t.26E260 00 0.15 .. 6 .. 0 02 0.332390 02 0.128260 01 

-C.IlU'O 01 0."'"50 00 0.125170 00 -o. 'l6UOO Dl -0.3381020 OZ -O. 107900 (II 

'.4"010-Cl -C.516160-01 -0.112910-01 0.111100-06 0.3;)9850-06 0.107Z5D-C5 

-0.I41Uo-06 0.641150-01 0.15n60-01 -0.100150-06 0.230910-06 -O. Z04220-06 

"ASS OF THE ELE'FNT AHO-'-SII,II,'< IS 
'~E GENEAALIIEO tC~OINATE 

0.461110 OZ -C.251500 01 
-0.258500 01 0.36"560 01 
-0.121 ... C rc 0."'Z010 DO 

C.516130 OZ -0.150310 DI 
-0.301'00 CZ C.245190 01 
-J.Z .. 5190 CI 0.ll05CO 00 

0.1264100t -0.41"160-01 
0.546540 CZ -0.35662001 

-C.121140 00 0.516130 02 -0.301800 02 -0.2 .. 5790 01 

0.412010 00 -0.150310 DI 0.Z"5190 DI C.l10500 00 

0.912220-01 -C.21IZ60 01 0.lZ6"10 00 C.48"160-01 

-C.2IE260 01 0.12325003 -0.'''654002 -1:'.356620 Dl 
C.12t"10 00 -0.5 .. 65 .. 0 02 0."611ID 02 0.258500 Dl 

C.414160-01 -0.356620 01 0.258500 01 0.364560 01 

-C.1J6060-01 O.Ç9'580 00 -0.lZ711"0 00 -O.~lZ;)IO 00 
-0.90;55110 00 0.115140 OZ -0.51683002 -0.150310 01 

TRANSfORM -"A1AIX AHO-T-SII,8,11- TO THE DESIREe NODAL POINT MASS SUCH THAT 

" _ CTAANSPOSE Of INVEASE O' AI - AHQa'-SCI.II.II •• CINVERSE OF A • 

0.161550-(2 -0.8928110-04 -(.2'1"00-0" (.11E5Z0-02 -0.10"240-02 

-0.e9ZIEO-04 0.125'20-03 t.16)0 .. 0-04 -C.Z5'illO-C3 0.1~1990-04 

-0.251"00-0" t.163040-04 (.JI5090-05 -0.1531180-0" 0.250910-04 

0.ITl5Z0-C2 -t.2591'0-03 -C.15JIIO-O.. 0."Z5130-0Z -0.1887110-0Z 

-0.104Z"0-02 0 .... 8990-0.. C.25C910-0" -t.1111780-0Z 0.161550-0Z 

-0.14!'l9(-04 C.511O;30-o5 C.16123O-05 -t.123180-o3 0.892180-0 .. 

~.Z5C910-04 -0.1612)0-05 -t.46Ç960-06 0.343880-04 -0.Z51"00~" 

C.lllltO-t~ -O.IZ3110-0J -C~3438'0-04 0.Z"7Z20-0Z -O. 171520-0Z 

-C.IC,8990-04 
('.511930-05 
C.161230-05 

-('.1231110-03 
C.892180-0" 
C.1Z59Z0-03 

-O. 1630C,0-0" 
-1).2'9180-03 

THIS "TRIX " 15 T~E "ASS 'A1RIX OF ANY FC'" OF STRUCTURAL ElE"ENT 

T~E NC,Al OISPLACIMENTS ARE I~ THE FOLLOYING CRDEA • 
IU,Y,IETA,VI AT POINTS IIX-CI A~O JIX-LEI RESPECTIVElY 

-0.1086ID-O\ 
0.1000(10 ('1 
0.302970 01 
0.198940-03 

-0.215320 05 
0.101860 07 
0.9991QO 06 
0.1712~0 05 

0.302"0 00 
0.330250 00 
0.6001:'20-03 
0.ZIIII(l9O-02 

-0.303C40 00 
0.Z3"160 00 

-0.1396"0-06 
0.Z21920-06 

0.726"10 00 
-0."114160-01 
-O. 136060-01 

0.995580 00 
-0.1218 .. 0 DO 
-0 ... lZ010 00 

0.912220-01 
0.2111260 Dl 

0.2'Ml0-04 
-0.167230-05 
-0.469960-(16 

O. 34 311110-04 
-0.2511000-04 
-0.163040-04 

0.3151)90-05 
0.1531110-04 

0.1 .... 680-01 
1).0 
C.28"58O Dl 

-C.240310-01 
0.1.56400 Q4 
0.731270 06 
(1.5121:'20 07 

-1:'.243380 OS 

0.160390 02 
0.2242110 02 
0.101660 00 
0.232380 00 

-0.161 .. 10 02 
0.762230 01 
0.3"1120-05 

-O ... 91170-06 

C.546540 02 
-0.356620 01 
-0.9955110 00 

0.715140 02 
-0.5161130 02 
-0.150310 01 

0.Z1II260 Dl 
0.123250 03 

O. 1811180-02 
-0.1231110-03 
-O. 343811D-Q4 

1:'.2"7220-1)2 
-0.1111520-02 
-0.2591110-03 

0.1531180-Q4 
0."25130-02 

..... 
W 
0\ 



N'TURAL VleRATICN OF ~CNUNlrOR' THIN CVLI~O. SHfLLS BV FINITE-~LE'ENTS "ETHCO 

T~E ~U'BfR Of 'IRC~'ffRE~TIAL WAVES IS ~. ). FLUIP OE~SITY· 0.112330-06 

GEC~ET.ltAL ANe ELASTI~ PRCPERTIES OF STRUCTURE 

fL!MEhT "OCE tCORDINAlES THICKNESSIINI FLASTIC CONSTANTS MASS/UNIT VOLUME 1-' 
~c. ~OS. XIINI RU"' EILBIIN"ZI NU ILR/IN/S~t··ZI/IIN··3' IN 

1 1 0,0 C.40ICOO 01 0.470000-01 C.30~00D 08 0-30000001l ') 73Z41)0-03 
~ a. t.4(>3S:0 Cl 0.4"1000 Dl 

2 2 0.46HtO Cl 0.401COO 01 0.410000-01 il. 300000 08 o 300000 OC' 0.1)2 .. 00-03 
! C.9U')CO Cl 0.401000 01 

J ! o. 'il 7 'CD Cl 0.401000 01 0.410000-01 'l.3DCOOO 08 o 300000 00 0.1321000-03 
4 0, U90~0 Cl 0.401000 01 

4 4 O. U90~0 02 0.401COO 1)1 0.410000-01 ':.3000tO 08 o 300000 00 ,. 132400-03 
S O.lIS .. CO 02 0.401000 01 



E ElUPoVAL\lU 
'l.27410C C4 O.nU60 04 t.1HUO O~ C 49C830 05 0.~U130 O~ 0.626110 05 0.671810 05 1'.851&10 05 

C.I""O OS ~.11Z600 05 C.IUUO 05 C.9n1l0 (,5 0.le4360 06 (.105610 06 0.11'5440 06 (1. \20460 (\6 

IIC," NUMIIII 1 
-0.4U"II:-Cl 0.611130-01 C.~C]"10-01 C.4023')0-01 -0.4!>5610-01 C. 498220-0 1 0.551690-01 (\.154320-02 

:.1 .. 216&-o;Z -O. 263110-0Z 0.Z16540-0Z' 0.125620-01 -0.316080-01 -('.212210 00 -0.5(13080 on -(1.128160 00 

110_ NU""" Z 
'l.111e5C cc -c.2eI210 00 -C.U!290 OC -0.44S4oJO 00 0.554010 00 -0.502890 00 -0.312120 00 -('.5l3f>30 00 

".516950 C'C -0.5"Z90 lO e."41Z10 00 0.441040 00 -(1.514980 0(1 0.354820 00 -o. "10110:-01 -r.550240 ('(1 

IIC"" HUMI.A J 
-o.llUle-Cl C.!15!20-14 -C.35S910-01 -0.402300-01 0.329240-01 -0.869980-13 0.391520-01 -0.109120-02 

-o. 16141C-12 -0.1I6SI0-OZ 0.Z1U4O-C2 -0.125620-01 0.223500-(11 -0.212210 00 -0.355130 00 -C'.41481O-13 

IIU, 'tU"I.II 4 
".UJ"6t OC -c.nOl!O 00 -(.425550 CO -t. Z4C120-12 -0.134580 00 0.3 .. 1130 00 0.311110 OC -0.546430-01 

0.250600-01 -C.U0250-02 -C.Z)]01O-12 -0.10t280-12 0.329230-"1 -o. ?l4830-11 (\.219040 00 0.121560 00 

Ile," NUMUII '5 
C. 1I525C-0 1 .,.111120-12 C.lIU20 CC C.445400 00 -0.391190 oc -1'.134030-11 -0.263~50 00 ('.405620 00 

0.4"UO-l1 -0.401210 00 C.4 .. ,210 00 -0.4410 .. 0 (10 0.406510 00 0.35"820 00 -0.290460-01 ~.190110-11 

IIC," NU"I'" t 
-o. Ut UC t C 0.2C'iUO 00 (.134640 00 -o ... 124 .. 0-13 0.36 .... 40-02 (1.122240-01 0.2828(10-01 -0.150250-01 

':.7)92)0-0& -O.lU"IO-OZ -C.121500-12 -0.258660-13 0.146160-)1 -('.231830-11 0.104580 00 (1.1(\2910-01 

1 
IIC," HUMerA 1 

1 C.~"I'iJ4o-" -0.61U30-01 -C.5110CO-13 0.402300-01 0.218230-13 -o. "982Z0-0 1 -0.125510-12 (1.196530-14 ~ 

-".14Z UC-Cl C.62UIO-14 C.Z1U40-CZ 0.125620-CH 0.980040-14 -(1.212210 oc ".154480-12 0.128160 00 

! IIC. N\I"I.II • 

W 

,1 
C.eS!430 C( -C.119440-1] C.601lZ0 00 -C.264430-12 0.190320 00 -0.156610-11 0.534250 00 0.lT2110-01 

00 

-o. 16U50-12 -0.'105450-02 -C.19969O-13 -O. 10 19!JD-lZ -0.46560D-o 1 C.219880-11 0.309110 00 (1.4911530-12 

lIeli NUMIIA 9 
- C. 47C l'iC-14 0.201210 ')C -C.2C1100-13 -0.445400 00 0.164450-12 0.502890 00 -0.lT4230-12 0.675420-14 

-0.5l6nC (( 0.11.430-13 0.441210 00 0.441040 00 0.3Z9Z10-13 C.354820 00 0.913090-12 0.550240 00 

'e," Nu-lU"te 
-0.2Z&1')C O( C. 2'1"'10-1 3 -e.l'it4CO 00 C.1492100-14 -o. S15ltOO-o2 0.6IoU30-13 0.399"140-01 \l.2121080-01 

0.1"9030-13 -o. ZlJUO-02 0.1011660-110 C. 108210-13 -0.206100-0 1 -0.108210-12 0.141900 00 -C.319830-13 

",. IlUIO 1111 1 , 
e.316 .. 10-01 -C.530620-1" (.355910-01 -0.402300-01 -0.329240-:)1 Co. 613680-13 -0.391520-01 1:'.109120-02 

-0.15'''10-12 0.116510-02 C.216540-02 -o. 12 5620-0 1 - O. 2235C 0-0 1 -(1.212210 00 0.355130 00 -C.805950-13 

IICII N"II"CUZ 
,,.,,,,,106C CC C.62:1130 00 -(.IoZ5550 00 -C.222100-12 -0.134580 00 -(1. 341130 00 0.311110 00 -0.5461030-01 

- C. 2"660-01 -0.64(\250-0Z C.264400-12 0.684230-14 0.329230-01 ('.10~220-1 0 0.219040 00 -0.121560 oc 

lIell 'tUIII.1I1! 
-0.lI~l~0-01 -0.444260-12 -(.18C520 00 C.445400 00 0.391190 00 -(.110190-11 0.263550 00 -(\.405620 00 

0.154450-11 0 ... 01210 00 C.441210 00 -0."'0 .. 0 00 -0.406~10 ;)0 (1.354820 00 0.290460-01 C.419103O-11 

·IICII NU"I.II14 
-').15UIIO CC -0.2':U'0 00 0.13464000 O. 'i;)e650-15 0.364440-0 Z -O. 12Z2100-01 0.282800-01 -0.150250-01 

-Co nu JO-OZ -C.193480-0Z O.l1t050-11 -Co n4990-14 0.1"6160-01 C.285990-11 0.1010580 00 -0.102910-01 

IICII NUMIIAl! 
C."414l1t-C 1 C.6U130-o1 -(.503410-01 0.402300-1)1 0.465610-01 (1.498220-01 -0.553690-01 -C.15432O-02 

0.142160-02 0.2631110-02 C.21U40-0l 0.lZ5620-01 0.316080-:)1 -0.212210 00 0.503080 00 -0.128160 00 

IICII NUMIlEA16 
-'l.11H50 t( -0.Z0Il210 00 C.255290 00 -0.4"54"0 00 -0.554010 00 -C.502890 OC 0.312120 01) 0.513630 00 

O. S'''950 (·c 0.511290 00 C.441210 00 0.441040 00 0.514910 00 0.3!JIo820 00 0.410110-01 -(1.550240 00 



NATURAL VleRATICN CF ~CNUNIFOR~ THIN CYLINO. SHELLS SY FINITE-ELEME~TS METHCO 

T~E ~UMAER OF CIRCLMFERE~TIAl WAVES IS N = 3. FlUIO DENSITY= 0.112330-06 
---------------------------------------------

THE FREQUE~CY IS = O.2147QC C4 RAO./SEC. = 0.437200 03 CYCLES/SEC. FREQ. NO. 

T~e CCRRESP(~CI~G SHAPE IS 

U~AX= 0.447480-Cl WMAX= 1.655430 00 BMAX= 0.111050 01 

1 

......... 

1-' 
W 
\D 

VMAX= 0·221150 00 
NODE NO. X/L AXIAL/UMAX RAOIALlWMAX ANGULAR/BMAX CIRCUMFERENTIAL/VM~X 

1 0.0 -O.lCOCOC'JOO 01 0.0 1) IfOCO(lOOO 01 D.l) 
2 ü.25C(')C ÙO -C.1C71,)6780 OC o. 1011 06180 00 C' 1C110618D 00 -~~ 7C7106780 ~o 
3 O.c;C:lCt:O (('1 t). 1 33Q36780-13 C.100'JOOOOO 01 -f).423Q37610-13 - (\ H' 0000 ('f. f) (Il 

4 1J.750'JOD CO O.7C71(16780 OC ry. 7071 06780 00 -0 107106180 OC -0 .. 707106780 1)1) 

5 O.1('::(,)C 1)1 C.1COOOCOOO 01 c.o -0 1(0000000 01 0- t) 

RE~AkK= LISTED ABOVE.CN: HARMCNIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCU~FERENTIAl OIRECTln~ 
THESE SHOULO BE MULTIPLIEe RESPECTIVElY sv COS(N~PHI'.COS(N~PHI',COS(N*PHI) AND SIN(N*PHI' 
FOR CIRCU~FERENTIAL HAVE NUMBER N A~C CIRCUMFERENTIAl ANGLE PHI. 



NATURAL VleRATICN OF ~CNUNIFOR~ ThIN CVLI~D. SHELLS BV FINITE-ElE~E~TS METHOD 

T~E ~UMBER OF CIRClMFERENTIAL W.VES 15 fi: 2 3. FLUIO OENSITV= 0.112330-1)6 

ThE FRe'UE~CV IS a 0.87226C 04 RAO./SEC. = f.138830 04 CVCLES/SEC. FREQ. NÇl w 

T~E CCRRESP(~CI~G SHAPE IS 

UMAX= O.611830-Cl WMAX= 0_620730 00 BMAX= 0.208210 00 

2 

,-'" , 

1-' 
~ 
o 

-) 

VMAX= 0 20988D 00 
NODE NO. X/L AXIAL/UMAX RAOIALlWMAX ANGULAR/R,..AX CIRCUMFEPENTIAL/VMAX 

1 0.0 C.IOOCOCOOO 01 0 .. a -f} . 100000000 01 o ') 
2 0.250000 CO c. c; 40 32fS80-13 -0.1COOOOOOO al 0.570197380-12 1) .. 100000000 r)l 
3 O.SCCCCC (0 -0.10000:>000 01 -0.132011280-12 o 100000000 01 n.123773780-12 
4 0.75rooo 00 -C.861258200-13 o. H'OOOOOOO 01 -0 21 3 3 10 160- 1 1 -0 .. 10oCCOCro r1 
5 o .10CaOO Jl C.1CCCI)OOOD 01 0.0 -0.100000000 01 ~"0 

REMARK= LISTEe ARove,CNE HARMC~IC AT A TIME, ARE THE A~PLITUOES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION 
THESE SHOULD BE ~UL1IPLIEO RESPECTIVELV BV COS(N.PHlt,COS(N*PHlt,COS(N.PHlt AND SIN(N~PHl) 
FCR CIRCUMFERE~TIAL HAVE ~UMBER N A~C CIRCUMFERENTIAL ANGLE PHI. 



NATURAl VleRATICN OF NCNUNIFOR~ THIN CYlIND. SHEllS SY FINITE-ElE~ENTS METHOO 

T~E NU~BER Of CIRC~~FeRE~TIAl WAVES IS N = 3. FLUIO DENSITV= 00112330-06 

T~E FREQUE~CY IS • O.17573C C5 RAO./SEC. = 0.219680 04 CYCLES/SEC. FREQ. NO. 

T~E CC~RESP(Ntl~G S~APe IS 

U~AX· 0.503410-01 WMAX= 0.601820 00 BMAX= 0.255290 00 

3 

,-- , 

l-' 
~ 

l-' 

l 

VMAX= 0 190400 00 

NODE NO. X/L AXIAL/UMAX RAOJAL/WMAX ANGULAR/BMAX CIRCU~FERE~TIAl/V~AX 

1 0.0 O.lCI)COOOOO 01 0.0 -0 1000000(\0 01 1 .. ') 

2 0.250000 :JO -0.7C7106780 OC -1). 7071 06780 00 0, 7e 7106780 00 f) .. 707106780 ot) 

3 0.500000 ('1) -0.113425310-11 o. 100000000 01 -0·813568600-13 -''; 1('(',"\000(10 01 

4 o • 7 5C (' CO CI C O.le 7106780 oc -0.707106180 00 -0.7Q7106780 00 O.1()71,)618000 

5 O.lCOOOO 01 -C.ICOOOOOOO 01 (\.0 ') laooooClOO 01 0,('1 

~EMARK. LISTED ABOVE,ONE HAPM(~IC AT A Tl~E, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAl DIRECTION 

THESE SHOUlO BE MULTIPLIEO RESPECTIVELY SY COS(N*PHI),COSCN*PHI),COSCN*PHI) AND SIN{N-PHI) 

FOR CIRCU~FERENTIAl HAVE NUMBER ~ A~C CIRCUMFERENTIAl ANGLE PHI • 

• 



NATURAL VI8RATICN OF NGNUNIFOR~ THIN CVlINo. SHEllS BV FINITE-ElEMENTS METHOO 

THE NUMBER OF CIRC~MfERENTIAl WAVES IS N = 3. FlUlo oENSITV= O~112330-J6 

fHE FREQUE~tV lS • O.~~083C C~ RAo./SEC. = C.78118D 04 CVClES/SEC~ FREQ. NO. 

T~E CCRRESPCNCI~G S~APE IS 

U~AX= 0.402300-01 WMAX= 0.264430-12 BMAX= 0.445400 00 

4 

1-' 
~ 
t\) 

VMAX= O~412440-13 

NODE NO. XIL AXIAl/UMAX RAol ALlWMAX J\NGUlAR/BMAX CIRCUMFEPENTIAL/VMAX 

1 0.0 C.ICO·JOCOOO 01 0.0 -0.100000000 01 !). 1) 

Z 0.250000 00 -0.100000000 01 -0.910342710 00 0.100000000 01 -O~lOOOOO()OO 01 

3 O • .,C""CCO (0 0.100000000 01 -C.10000000o :)1 _.J 100000roo 01 ':',158590020 00 

4 C.75(\000 00 -C.I00COCOOo 01 -'.).839916690 Of) Co .1(·001)('000 1) 1 C.1923310BO-Cl 

1) O.lCOIJOD 11 C.ICOOOOCOO 01 O.Q -0.1("0000000 01 0.0 

REM4RK= LISlEe ABCVE,CNE HAR~C~IC AT A TIME, ARE THE AMPLITUDES OF THE VARIATIUN IN CIRCUMFERENTIAl DIRECTTON 

THESE ~'~UlO BE MUL1IPlIEC RESPECTtVElV BV COS(~PHI),COS(N.PHI),COS(N*PHI) AND SIN(N*PHI, 

FOR CIRCU~FERENTIAl ~AVE ~UMBER N A~C CIRCUMFERENTIAl ANGLE PHI. 



" 

•• :.i...' 

NATURAl VleRATICN OF NC~UNIFORM THIN CYlr~o. SHEllS BY FINITE-ELEMENTS METHOO 

T~E ~U~BER OF CIRC~MFERENTIAl WAVES IS N = 3. FlUIo OENSITY= 0.112330-06 1-' 
~ 
w ---------------------------------------------

ThE FREQUE~CV IS • 0.56113C C5 RAo./SEC. = 0.8~301o 04 CYCLES/SEC FREQ. NO. 5 

T~E CCRRESP(~DI~G SHAPE IS 

UMAX- 0.465610-01 WMAX= 0.190320 00 BMAX= 0.554010 00 VMAX= 0.515400-02 

NODE NO. X/L AXIAL/UMAX RAolAlIWMAX ANGUlAR/BHAX CIRCU~FERENTIAL/VMAX 

1 0.0 -C.l00'l00'l00 01 0.0 o 100000000 01 0.0 

2 C.21j000C 0)0 O.1C110678o OC -o. 7011 06180 00 -0.1C110618o 00 0.101106180 00 

3 0.50CCCo 00 0.468693150-12 0.100000000 01 o 296803940-12 -O~10000000o rl 

4 0.750000 00 -O.lC710678o OC -o. 107106180 00 0.701106180 00 O.7071061~D 0)0 

5 0.100000 Jl O.lCOOOOOOD 01 0.0 -0·100000000 01 0.0 

REMARK- LISTED ABOVE,CNE HA~~C~IC AT A TIME, ARE THE AMPlITUD~S OF THE VARIATION IN CIRCUMFERENTIAl DIRECTION 

THESE SHOULD BE MULTIPLIEC RESPECTIVElY BV COS(N*PHI),COS(N-PHI',COS(N*PHI' AND SIN(~*PHI' 

FOR CIRCUMFERENTIAl WAVE ~U~8ER N ANO CIRCUMFERENTIAL ANGLE PHI. 



N_'URAl VIERATICN OF NCNUNIFO~M THIN CYLINO. SHELLS BY FINtTE-ELE~ENTS METHCD 
---------------------------------------~---------------------------------------

THE ~UMBeR OF CIRClMFERE~TIAL WAVES IS N = 3. FLUIO OENSITY= 0.112330-06 

T~E FREQUE~CY IS = O.62677C C5 RAO./SEC. = O.9~7530 04 CVCLES/SEC. FREQ. NO. 

T~e CCRRESPCNCING S~APE IS 

U~AX= ~.4~8220-Cl W~AX= 0.341730 00 BMAX= 0.502890 00 

6 

~.-.. t! 

.... 
~ 
~ 

VMAX= 0,122240-01 
~OOE NO. X/L AXIAL/UMAX RAOIAl/WMAX ANGUlAR/BMAX CIRCUMFERENTtAL/VMAX 

1 0.0 0.100'::00000 01 0.0 -o· 100000000 (01 0.0 
2 0.250000 JO -0.114617420-11 0.100000000 01 -0.266515650-11 O. 100000000 Cl 
3 O. 5C 00(\0 :'0 -C.l,)()COOOOO 01 -C.458451320-11 C.1('OOOOOOO CIl 0.528680340-11 
4 0.750000 JO C.l~5215610-11 -0.100000000 01 -0.136120460-11 -c, 1 f) ')or /) oc 0 C'!. 
5 0.1001J00 01 C.1CIJ000000 01 0.0 -0.1(,0000000 01 0.0 

PEMARK= LISTEe ABO~E,GNe HAPMC~IC AT A TIME, ARE THE AMPLITuoes OF THE VARIATION IN CJRCU~FERENTJAL DIRECTION 
THESE SHOULO BE MULTIPllEO RESPECTIVELY BY COS(N*PHIJ,COS(N*PHIJ,COS(N.PHIJ ANO SIN(N*PHIJ 
FOR CIRCU~FERE~TIAL WA~E ~U~BER ~ A~C CIRCUMFERENTIAl ANGLE PHI. 



N4TURAl VIBRATICN OF NCNUNlfORM THIN CYlINO. SHEllS BY FINITE-ElEMENTS METHOO 

T~E NU~BER Of CIRCl~feRE~TIAl HAVES IS N = 3. FLUIO DENStTY= Odl12330-06 

THE FRECUE~CY 15 • 0.671BIC C5 RAO./SEC. = 041C6~20 05 CYCLES/SEC. FREQ. NO. 

T~e CO~RESPC~CI~G SH4PE IS 

U~AX2 0.553690-01 H~AX= 0.534250 00 BMAX= 0.312120 08 

1 

1-' 
.e. 
VI 

VMAX= 0. 39Q94D-Ol 
NODE NO. X/l AXIAL/UMAX RAOIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAl/VMAX 

1 0.0 C.IIJOOOOOOO 01 O.C -C' ·1(10000000 01 0.1) 
Z 0.250000 ~O C.1C1106780 OC O. 101106180 00 -0.707106180 00 0.1n.7106180 00 
3 0.5r.O(,CO Cl) -0.226675160-11 O .. lCCOIJOOOO Dl -c' • 2e 1124720-11 O. l ')I)(jooor D 01 
4 1).750000 :0 -C.701106780 00 'l. 7011 06780 00 0.101106780 00 O.7C'711)6780 Or) 
') O.lCCOOO ')1 -C.ICOOOOOOO 01 0.0 0.100000000 01 0.0 

REMARK- LISTEe ABove,CNE HARMC~IC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAl DIRECTION 
THEse SHOULO BE MULTIPllEO RESPECTIVELV SV COSCN*PHI',COSCN*PHI',COSCN*PHI' AND SINCN*PHI, 
FaR CIRCU~FERENTIAl ~AVE NUMBER N A~O CIRCUMFERENTIAL ANGLE PHI. 



NATURAL VIeRATICN OF NONUNlfOR~ THIN CYLINO. 5HELLS BY FINITE-ELE~ENTS METHOO 
-------------------------------------------------------------------------------

T~E ~U~BER OF CIRCLMFERENTIAL WAVES 15 N = 3. FLUIO OENSITY= 0.112330-06 

THE FREQUE~CY IS • 0.85701C CS RAO./SEC. = 0.136400 05 CYCLES/SEC. FREQ. NO. 

T~E CûRRESP(~CING S~APE IS 

UMAX. 0.154320-02 W~AX= 0.772770-01 BMAX= 0.573630 00 

'3 

..... 
~ 
0\ 

VMAX= 021248D-~1 
NODE ~O. X/L AXIAL/UMAX RADI AL/WMAX ANGULAR/8MAX CIRCUMFERENTIAL/VMAX 

1 0.0 C.I00COOOOO 01 0.0 -0.1COOOOOOD 01 n.1) 
z O.Z~vOOD 01) -(.1C7106780 OC -o. 701106180 00 0.707106780 00 -0.701106180 CI) 
3 1).5000CO 00 C.127353840-11 0.1(10000000 01 0.117744750-13 o. 1001)000('0 0 t 
4 0.150000 (,0 O. 1 C 71 C t: 180 CC -1). 7071 06 780 00 -0.7C710678D 00 -0.71)7106780 01) 
5 O.100COO ')l -C.1COOOOOOD 01 Q.O O.lCtOOCOOOD 01 0.0 

REMARK= LIS1EO A8ûVE,C~E HA~~C~IC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION 
THESE SHOULO BE MUlTIPLIED RESPECTIVELY SV COS(N~PHI.,COS(N*PHI.,COS(N*PHI' AND SIN(N·PHI' 
FOR CIR(U~FERENTtAL WAVE NUMRER ~ A~O CIRCUMFERENTIAL ANGLE PHI. 



NATURAL VleRATICN OF NCNUNIFOR~ THIN CYLINO. SHELLS BY fINITE-ELEMENTS METHOO 

T~e ~U~AER OF CIRC~MFERE~TIAL HAVES 15 N & 3. FlUIO DENSITY= 0.112330-06 

THE FReQUE~CY IS • O.e7788t C5 RAO./SEC. = 0.139720 05 CYCLES/SEC. FREQ .. NO~ 

T~E CCRRESPCNCI~G SHAPE IS 

U~AX= 0.142760-C2 HMAX= 0.250660-01 BMAX= 0.576950 ~O 

9 

# ....... ~ 

..... 
".. 
-...J 

VMAX= 0.73Q230-02 
NOOE NO~ XIL AXIAL/UMAX RADIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAL/VMAX 

1 0.0 C.IOOOOOOOO 01 0.0 0,100000000 01 r.o 
Z 0.250JOO 00 -C.53158C700-09 O~100000000 01 o .748261140-11 O.lC'l!)000C'D 01 
3 o. 5C ~C 00 00 -C.I00COOOOD 01 -0.663642180-11 -(\~ 1C'000eOOD 01 0.201596611)-11 
4 0.150C(:D (0 -C.5~7786C20-0C; -'J.I0~00(\000 01 0.130764910-10 -0.101:)nOOGD (,1 
5 0.1CJOOO 01 O.10~,)OCOOO 01 0.0 CI ~ 100000000 01 0.0 

R~~ARK· LISTEO ABCVE,CNE HA~~C~IC AT A TIME, ARE THE AMPLITUDES OF THE VARI~TION IN CIRCU~FEkENTIAL DIRfCTION 
THESE SHOUlO BE MULTIPLIEO RESPECTIVELY BV cnS(N*PHI"COS(N*PHI"COS(N~PHI' AND SIN(N~PHI' 
FOR CIRCU~FERENTIAl "AVE ~UMBER ~ A~D CIRCUMFERENTIAL ANGLE PHI. 



1 
NATURAL VleRATICN OF NCNUNIFOR~ THIN CYLINO. 5HELLS SY FINITE-ELEMENTS METHOD 

T~E ~UM8ER OF CIRC~MFERE~TIAl WAVES 15 N = 3. fLUID OENSITY= 0.112330-06 

THE FREQUE~CY IS • 0.8a260C 05 RAD./SEC. = 0.140410 05 CYCLES/SEC. FREQ. NO. 

rtE CCRReSP(~OI~G SHAPE IS 

UMAX= O.Z63810-C2 WMAX= J.905450-02 BMAX= 0.571290 ao 

1(\ 

; ~ ~ 

'f 

.... 
~ 
IX) 

VMAX= O. 213630-02 
NODE NO. X/L AXIAL/UMAX R,\O 1 Al/WMAX ANGULAR/BMAX CIRCUMFERENTIAl/VMAX 

1 0.0 -C.IC010000D Dl t).0 -0.100000000 01 0.1) 
2 0.250000 00 -O.lC 7106180 'JC -0.107106180 00 -0.107106780 00 -0.1071')618D 01) 
3 C.5COOOO CO C.231953080-11 -0.100000000 01 (1 .309073720-13 -o. 11)00000.(0 01 
4 0.150000 00 C.1C1106780 00 -'J. 1071 06 780 00 Ci.7(11106180 OC -0.101106180 ro 
5 O.lOOODO ')1 0.1C1')000000 Dl J.O (1 .1COOOOOOO Cl ~.o 

REMARKa LISTEe ABOVE,CNE HAR~C~IC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CtRCUMFERENTIAL DIRECTION 
THESE SHOULC BE MUlTIPllEO RESPECTIVELY BY COSCN*PHI),COSCN*PHI),COS(N*PHI) AND SIN(N~PHI) 
FOR CIRCUMFERENTIAL ~A~E ~UMBER N A~C CIRCUMFERENTIAL ANGLE PHI. 



MEAN SQUARE RESPONSE CF NONlNIFOR~ THIN CYLINO. SHELLS 

SUBJECTEC TC tNTER~AL RANOO~ FRESSURE 
--------------------------------------
CI~CUMFeRE~TIAl _AVES NUMBER ~ =~. FlUIO DENSI1V= 0.112330-06 lB-SEC.*2/(IN**4' 

CENTRE LINE VELOCITY VECTOR, (UCl(I.,lsl,N~~~E$)= (IN./SEC.' 
0.288000 C3 0.288000 J3 C.288000 03 0.2e80~n 03 0.288000 03 ~ 

CIAGC~AL MASS ~ECTOR, (M( 1),I=I,NREOUC'= (le-SEC*SEC/IN' 
0.19~270-02 O.141~2C-02 C.e54ç~0-03 O~545620-04 0.444170-04 ~,7~9970-04 
0.151170-C3 0.784~40-05 C,4C6100-05 0.365340-05 0.432340-05 0_463100-05 
C.758CÇO-C5 0.342500-C3 C.EI7860-03 0.54269(-04 

CIAGCNAl STIFFNESS VECTOR, (K(I',I=1,NREOLC'= (LB/IN' 
0.145840 C5 0.112240 C6 C.264030 06 0.131450 06 0.139850 06 0.290690 06 
C.684Ç6C Ct 0.576220 CS C. :12Çl0 05 C.2e459C 05 J_337340 05 8.438590 C5 
J.e25590 C~ O.382~10 C7 C,E234CO C7 0.787480 06 

VISCOUS CA~PING VECTGR, 
C.106180-03 0.257340-03 
0.2l3920-C3 0.134470-C4 
0.15822C-C4 ~.723820-03 

(CC 1),J=1,NREOUC'= (le-SEC/IN' 
(.~105CO-03 0.53562(-04 0.498470-04 
C.7130~0-05 0.64489(-05 0.763800-05 
C.1426~0-02 0.13C75(-03 

OAMPING FACTOR, (lETA(I),I:l,NREOUC), 

0 .. 927580-04 
0.901370-05 

0.100000-04 0.1(OOJO-04 C~lOOOOO-04 0.100COO-04 0.10000D-04 0.100000-04 
C.1CCCOO-04 0.1COOOO-04 C~ICO(OO-04 O.lOOCOC-~4 0~lOOOOO-C4 J.10C000-04 
O.10CCC(-04 C.1COOOO-C4 C.ICCOJO-04 ~.ICOCOC-C4 

~ 
~ 



~ ..: 

'.WA"J ~()UAR: 'i:~pn'ISr.: nF Nn~JUN 1 Fnr>~, T'f IN CVL 1"10. ">H~LLS 

SUHJr'c Trr) Tn 1 r-;Trr~"IAl. RA~I)'lr, "'H~5SlJPE' 

CIDC:UMFFPFNTIAL WAVFS N\.I:·hlFI~ N =:l. FLIIID DENSITV= O.11?3:JD-06 L8-SF:C**2/(IN**4) 

J.:'. rJ'.~). R.M.">. R.M.S. 
NO:1F X ( t ) I\XIAL l'Mt) r AL ANr.l.lLAR 
Nn. ° tSPL. OJSr;L. DtSPL. 

1 n.t' O. 1 (, 1 Cl40- OB O.') 0.401880-CA 

? 0.1\6150n tll n.114'l1f'-On 1"I.1677?O-07 o. ?n41 70-0l' 

"' n. Q 27con 01 O.264l(\l)-11 o.? J 71'')1)-07 O.ClOO4"n-11 ,. (). 1 :iC)r.SO Or' ().114~,ln-OH o • t f, 7 7 ? r, - n 7 O.2n4170-08 

!\ (\ • 1 f\54 (~n "'? 0.tf~t"'40-~H f).() C.401BRD-0f' 

OFC:Al'$r' TI-iF t-:XCtlATln'l IS APf'ROX. Nn~,\'.I~LLV ot<:;TPIHUTE'D 
WITt! 7f"Q(1 t"WA"IS. IT F(JLL(1W~ TIII\T TH!: RF.SPONSE 15 Al.SO 
Af'\PIH'>:. "-1nl~''''l\t LV DIC;TPI!IIJTrn \~IlH ?rl~n "'!FANS AND 

Tllr. \'ARIANCf~~ A CH' Glvr::I\: nv THF n,\~s VALUFS LlSTEn AfH1VE 

HH:pf.Tnm:: 

r..~".s. 

CIRCUMrERI?NTIAL 
f>I<;;PL. 

0.0 
1) • S(,S C)2[)- 0 q 

o. n('r, 330-0 A 

r..5U5C)~O-08 

0.0 

TtT PRnUAnlL1TY THAT THF DI5PL. AT ",('OF (1) \"rILL r:XC:FEO 
THe 1.*(r'~'5 PFc;rnNSE) JS = 0.31731D 0(1 
TH~ ?~("~c:; r~~~nNS~) I~ = 0.4~50~n-Ol 
TH~ ~.U(I~r.'S r.r::SPIlNSF) IS -= ').2(,'1'1'10-02 

:"{ 

.... 
V1 
o 



MrAN ~OUARr ~CSpnNSr rF NnNUNIrQR~ TYIN CVLINn. SHtL LS 

S'~JrCTEn TO 'NTF~NAL ~ANn~M PPFS5URF 

rtr.(U',·r-[r)!'I'lTlf.1 WI\VI'<'; I:UI·If\F:P N =3. FLUTfl nF"I~tTV= 0.1123'::\!1-06 U3';"SEC**2/(·IN**4) 

U~,4AX::' 

~1l'lt\F lCl'L 
NC'. 

1 l' • C' 
? C'.?Cjno('l!" OC 
~ O. ')le OO!) ('('l 

4 c. 7500 ('\~ nr 
c; o • 1 .) 0 ('. (' ') .., J 

". 1 Ô 1 C)4 0- 08 
f.'·.1~ I\XIAL 

nISP.I'U~IA'<. 

!). 1 ('100 on 01 

C'.707110 ("0 

0.1(·1400-0? 

C'.7f711fl ('(\ 

o. J (1')0 OD ." 1 

\11 MA'lC = 0.2~71<10-07 
~.·"S i~ A. CI !\L 

nrSP.l'wv,AX. 
o.n 
o • 7 1)7 1 l") 00 

o. t r '~')('r) 01 
O. 70'r 1 1 ') 00 
0.0 

PMAX= 0 ./1('1.1 ~B~-O!3 Vf..1AX= 0.800330-08 

p~s ANGULAR R~S CIRCUMFERENTI"L 

OISP.1'f1~AX. 

c.ta,.,oC"o 01 

O.70711r'\ 00 

r..:>~'l.Cf..n-o.? 

0.70711') co 
0.10('001) Cl 

nISPL./VMAX. 

<'.0 
O.70711D 00 

0.100000 01 

0.70711D 00 

0.0 

~._--. 
... 

1-' 
Ut 
1-' 



e-"'(cii.co,~ -Oi"'"~ le""fciI.cos's. ~··,,,'ç,l ...... (éilICG'\ - &,. .... l.l .-"'.[;,,,,,\+,,.'''-ç.l 

[R] = e-tco.'ç. e-+· ... -.,. e-tat.DS'Ça .-..... ,,,'1; a-

.·'lo..""" -;;.",,~,1 e""'lo.to,";, +lis5I1'r;) .""[ci,CDS'f;. -iie,,~l 

.~~'s, eot. .... ~, e .... eo.';a 

.... -« 
'" 

-

."''l .. cos'Ç,+·,~\l 

·+· .... ~2 
I 

i<"(~~ -;'-~I é'rlo-N,-~I .-"If,-\-;',-\1 .. "rp.-~, • ;.-, 1 "(p.-~, -p.~, 1 1·'( p.-~. /.'~~ J ·+.tlr'>;' -"-~J .~'I,''''-\l, 

w,_~ , 7=~ , t. - I<,X 's. = }l,x 
T" 1 .,. '-r- ' 1 y> 

cos "CP 0 0 

W2=~ 1 = 1-'2e ~ = 1<2 X , 's: = }l2X 
[T] = 

,. a .,. ,. r 2 r 

0 cOs ncp 0 
1 

0 0 Sin "If' J 

{f)={~}=(T)[RJ{C) = [T][R)[A"'){b.} = [Nj{S.} 

TABLE 1. 
Matrices CR] and (Tl and definition of CAl l , (.1)2' 1)1' '12' "l'l' "2 and 'l' ~2. 

.... 
U1 
t\J 



r-

&", o.:a o., &4 

1 0 1 0 

-K,/r p,/r - K2./r p.2./ r 

~, ~I P3 p. 
[A] = 

e- W,[ &.C:05 ,\, e-w' [ Qi 1 co, '\. e-W' [ &, COS '\ 
1 

e-W1 [iii4U)S'1.
a 

-il •• 'n,\ 1 .. Oi •• ,,, '\,1 _ii4·'''~1 .. iiis ,·" "a 1 , 
". 

t 
-"", -.... -"'a _Wa 

e COI', e .''''\, e C:OS'l:a e .'" 'lI 
; 

C-rw, [ - K,C05'l, -..,. [ !.;- toi. COI 'l, -~[ !.;:- -". CO"l ~[t'a COS'la 
T" 

-toi· 1'" '\.1 - -'."''1.) -t' ... '" 'l11 _lCt5'" 'ta ] 

e-.... [ p, COS,\, e- ... ·r~'&Co.,. e-w
, [ ~, cos 'ta e-""'[ ~. CO''11 

-p. S", '1.1 .. p, SI" 'l,] - ~4 .'n 't.] + ~ s,n'II] 

'-

TABLE 2 • Matrix [Al 

O:s 56 

1 0 

K,IT' p../r 

PS P6 

e ... • { iis CDS 't. e"" { ci, COS'l. 

- ci. ""'l.l 
.. Oi, 51n 'l,] 

eW'cos 'l, .... e .,n 'l, 

.... 
~[ K.COS'l, 

.... 
c;. [p, C05,\, 

-t'. s,,, rt.1 .... ,s,n,\,] 

e ... • C psc,os '1, e ... • ( ~r. cos 'l, 

-P5 11
'" '\.1 .. ~5 .,,, '1.1 

0;:7 

1 

K2./ r 

~7 

e"'1[ Di, COS'l1 

- Ole son '1.] 

eW1c:os't. 

lA)a 

~[ "aCOI,\. 

-tla s,n '\.) 

&e 

0 

p.'l./r 

~e 

"~I\ 
, .. 

-

eO»S (ëii e co 50 'lI 

... , S'" '\ l a 

"2 , 

e s,n '12. 1 

1 

1 ..,. 
~[1'11 C.01'\1 1 

+Kts'n 'lI) 1 

."[~,œ·1. • ... ['-=1. ~ 
~ ~ •• ,n '12) .. ~7.'" '\, 1 

1-' 
U1 
W 



r-

.t[ ~ ( .... i. -.... 5, )cot~. .. t,~ _ ) -;:- ( ••• ar •• ,..S. ~~ .-t,~ _ _ ) - (_IC,III,_~, .. -I r t 
-~~ !;:- (·",a...)&I1ii.)-~ -:'[( •• i', _~.i.) __ ~ 

.( •.•• -l' .•• lt, .. ~.l -( ",a ... }A ••• )l'''~. ] +( ka -a.- )'a 5. )""~,] -C k,iI,+Il.ÏI4)5·"l..1 _( •• ii •• )l';5)~'''~.] 
. __ ._--

-of: 
~[("~.+I)C.'~. ~[ ,,~&co,~. ~1[("J,+I)U5~ ~lr\f4~~ .. e:'[("11 +1)e05';, 

-", ..... '1.] .. (n~, .').''''S.] - "J.s'" ).J +( ... ~ +')"'''~ .. ] _r\p..,,,~.] 

~ [C· Il. r. -}l.,.-ft;') ~~ .. ~.)Io,,- .. a.). --tau - -~ l-IC,p,-.. ,~-" .. } .--l',~ - - _) T (· .. ,~++tIo~J-"oI+ . ~[{oc.jfd'·k"a,} 
COI; ... (1l'~I-}l.J. c .. ~. -{oc.r; ... ~.r:a co .. ~ .. +( ... p .. -.... ;, ~~ .. -(· .. r'+)1 .. f4 c •• ~. -llC.'" + ... ·f, 

..... )I·"~I] .. " ëiI,)I''';,] ..... ·.) .... ~ .. l .".,)5''''5,] -"êiI~)5''''~,) 

-il [ -!.. (IC ... -,...·)u.t, ~[-1M,}l.c~~ 
r" • 

-+'[ -..!.- (":-JA: )c:n~ r" .. 
-~f -~, -2ICaY..C:OI'fa -f! ~. [(IC,"-)1.' )c:o~~. 

T" 

(G]= .11C.~,., .. '1. + (IC,'_"'~) s,,,'), + 2 " .. ,.. ...... ') .. ] +(IC: -)l~)~""~a] - 2. IC. )J. si .. ~, ] 

-ot:[ ~ (""."J,)CDI~ ët.[ ~ ~ ra " .C •• , -.,.'~ eT. (",a.,,~.)c:os'S'. 
-'i'a[ -!L:! I\.~ .. c.os ~ ,..1 • e'4: [(n'+n;,)eo,'>. 

ra • 

-,,~ .. '" ~.] + (",'l. "p.) .u, ~.] - '" p ... ,'" 's' .. ] +l "' ....... p.) s,,, li.] -"P4ô 5111 's",] 

.~ -Y.f ,- ~[(-Z,,,ca -l /Clf, -"'St ,- ~ [(2nlC • .,.~ It, fs ~ [(-21\ ... -l''.F, ~ (2"", - - Il.', ~ (2I\.p'I.-;: ".p.,. 
y. 2 ra 

- t JI."" 'i' )Cftr, +l}1o;. !!§)c_~ -iJA.'.+ ~,)c;.Jt. +~Jla"" "'~)CDS~L -iJl·!c+~S)cos't. & '2 1 

.C-hJl.+JII.,. +(_2"". -lit." J -+(-211~''''i/(''''' +(-2"" .. -i~', .J{o.1I.f'. -tIC. ~ 
-Jp.,.-~.)$t'.~.J -i,..·;'+~·)s'''~,J -JJ'.~'- ~)Si"~J -IJl~,&. ... ,,:,)s.;,~ -iP.ps- ":':f°'s,] 
-

{E} = r[T] [O]l[Q]{C} = f[T][oJl[Q][A-']{b l l[ 0] [TJJ l[ OJ [TJJ I\J 

TABLE3 • Matrix rQ] 

.111{( - -) ~ T Il .... ·)'.·1 - • e'i'. [( ..... ?-tAa .. >-~ 
T • 

"(K.ii5-"·~)··"~.l -{ .. ,ile+t"aOi?)S'''~a] 

e'l',[ -r n.p,COS'Ç, e :'[(r\,.,+I)eos~t 

+(1\.15 +1).'''';,] -n.pas,,,, ),) 

·~·~ •• f~+t'·~ -,,~} .:' [<10. p,-.... Je -,,;:?} 

COI ~I + (IC'~!I -tA· p. COJlï, -lee .. ~ •• )1.~, 
- ... Ois)"" "S,] _I\.Gi.)S'''~,] 

e .... [ ~ -_ ~K,}A.COS ,... . _et.~ ~ a) 'S; _ l K .. -Y.. C.0I 
T" .. 

+{\(.·_,..· .. )·· .. ~,1 -1 ... ,... s." 'Ça 1 

et [r\pceoJ~ 
r· , 

e+· [(",a .... ,p,)CDS'Ç. 
r. J 

+l 1\.'. " ~~)Si" ~.] -1\. J. ~ÏII';.] 

+Of 3- t. J-
~ (1"}', +-;. IC'Pf: ~ [(blta+ s"-P7 ,.'" 
+lpls + ~)c.,t. -~J'a.'''''' ~')rA!lr.. 

3 -
+(2 .. " .... ;: IC. Ps +C- 2"f'a-l"'J.fe 
-~ ".p •... ~s)$OII r. J - Jl0(8)'~] - ~J' ... p, - 2:" 50" 

,..-. 

-
~[(.,il.+)lsiily)co.~ 
+( ... a? -)&,ëiI.)s, .. ~.) 

eoJt .. [ -T n.fe-~& 

+C. .. p,.+I)s, .. ~.] 

e:"[(·&'en .. ~-I\.;')' 
u,~, +( .... J; ~,Fe ' 
-"_7 )"'''l; .. ] 

-~l2.\C·}Aac.ol~" 
f' 

+( \Cl-JAn s"'~ .. ] 

~[~ jie CDS 7& 

.t(1l' ... "J7) ""~&.] 

~[(~"JA"+ IIC.'" ,. 
+~far,. .. ~")t#S~ 
.(2" Kt" ~ "'s'7 

-lpaP. of" ~7 )St_~ ] 
-

1-' 
111 
,c:.. 



....... 

.3 
Il 

E 
........ 
G) 

Il 
~ , 

ct---. 

j 1 1 

FaI-znK,-I"~,-It',fz·!!f: ] f.[ns ... p,] • (1 1] ~f·,~,-,.,Pt-"i,l ~["P,+I] IH-.. ,ii,-,.,ia] -rI·' - t!. 
,-- J.f __ .-.- --

!' 
1. ( l - 1 - ni] ~s[ -1\ P,] -Ta [ 1",t'~ ~("'~-J'. p, + f\~, 1 H-n~a] : . [- -] 
r' -2n"'''2·'~-2t',P'-T 'r IIl,ClI - ".Cf, 

6f 
'0-....... 
~ ,.. .--, 

01 \) .... ~ 

>< 
~ 

0 
~ 

~ 

-:1 P-
'-' x 

Il 

----
! 

;'d"pl] :!t[1I""'] - 1 ] 
1:a[2"~,-ik.pa+~t',p,+ ~J 1 - - -. '1 - -

r r[-··p.401',p,-n.,) r [1'\ ~ 1 Ir[- k'·l·~'·' 
i --r- --- --t-- --- --

.!. [ :l 1 - J ~ .. i,] ';,[ ni. ,,~ ] -fl[ .. ,I-~~l * ... J,-I"PI- nëi,] l-tr"~'4o.J · [ - - J " - "". - .. ~. -i'" a40 T ~ --,- ... ,.. .. , 
._-- ~-------- :-- ---

';::t 

~ 
....... f'D 

N --.... 
....-.~ -, 
'--' 

1 f: 1 ~ J - ,,5 J . - 'c a.] ~[_ .. ".-,.,~.- .. iJ1IH np, •• ] f:l - -J ;:". -z.. ... - ., '-i".P.+T· r.[n' .... ,.] -ri IC 1 -JA, -",.,-Jl,-. 
-r------f--------

-fIl 2 •• ,...) I~[ ICsp .. -}!.p,+nii.] 
1 

, r • - J - .... ] -f.C"P4J ~[-n;4J 1 [- - J r" -z"JoIa+ïk'P.-il'afS,- ï ;: It, •• -"'1-' 
...... ~ --
\) 
~ 
~ 

""'J -,...., 1 [ 1 - • ; ni4J ~,[n~.] ~s[ UI"", J U-"I~+}la~,-"iii~ Hn~4] H- Ir:r.ëi44o)I.5a] ra 2n,..._ 1C".+il" '+2 
N 
~ 

P-
X 

'r 1 J - -] Mnl."p.] • [1 'J ~[-kl~,-,u.P.- .. a.] ~[n~,. IJ 'f - -.] r' -1"·I-IIC"'-ll'.P.+~·· ï:'. IC. -}AI ;: -.. ,CII,?,._ 
Il '--'-- -
~ 

~ 
....... - 1 [ 1 - f - ... J ra In·'+I"'~S- l',~,+ al f.[na+n~] -Mie,' -l','J *[IC,Ps-I',p,_nisJ tfniis + 1] ~[ Il,iis-}',Sa] 

N -,---f----
--.... 
.-,-4 

-< ........ 'r '-1-- -Mn;.] #2",,..,] H-·'~d.\I~+"isJ H-"',] 1 [ - - ] 'a -2.""'-2"'~'-i"'" -'1f6] ;: _IC,.,_ l',CI, 
.-. 
N 

--- - '--- ---- f--- ---, -,--
........ 
P-
X 
Il 

1 [ a - 3 - n- ] ~,[n~,] -MlIC.t'.] U ... P.+t"~s-";,J H"P,) 1 [- - ] " 2",.,+~IC,II'+i"'P," 2~ r ",., + 1',0/, 
--- -- ----- f-- .. ---, ----

~ 

~ , [ • - 1 ~ nci J M"I+ n;'] ra 2"I('+i'IC'~5- z}-', ,+ TI -MIC~-t'~] ;[",p,_p,p,_niiis) ~("PIJ + 1] 1 [- - J r -'-5 -,...-• 
.--, ~ -- -- _._-- --- -- -
N 
-< ....... , [ , - f - "Ii i:-~["a + "p,] -M"~ -p!] UIC.p,-t'tplI-niii,) Hn~7+1] I[ - - ~ ra a"I(·+IIC&~,- ",PII+ T' ;: ",CII,_}! .... 
P-
X 

;-a[-I""'a-llC.Pe-I"ap,-~·) . -] _;:t[np. ~,[ 2.,,...] If 1e - -~ ;: _ICI -t" p, + n"'- H -,,1.] I[ - - J ;: -"alle-Jl,II, 

h[ZnJl24o ~ ... ;1J+l .. ,P,+ ~~] M"~e] -isC 2 "a}-'I] HICI~+"'2p,_niiie) Hn;e] HIC,iitll+l'lii, ] 
-, _ .. 

~.(2 .... 2 +;1C2~7-~ ... 1.+ ~7 Fa[n' ... ,,] 1 [1 .] -ra ICa -}l. ~["'~-Jla~-"i,] Hn;,. 1] ~["';dltie] 
1 1 l 

- SSl -



~ 

t 
-~I-~ _ëi

z ! a2-1--a"-1,ëj3- t--ëi_
4 '~~ra3f'-* 

[6]= ___ ~ __ ---~.J __ ~_ h'- __ -'_. __ { __ ~ ___ ? ___ ~_ ~. 0 

~, - ~l 1 ~~ i ~I p, -~4. ~4 P3 ~ 

i5i& 1 
1 as 1 &7 -a8 -"=-l 

o ~ 1 1 1 0 

! -
(3& ! ~!5 1 ~7 -~8 51-PEI ~ 

i l +---:~; :~n~:~e--~~-;~.--~_~--=~r-·----~--- -----~ ~--l--
e-4', sm~, 1 . _ 

------.- - - e-~a cos '1;& _____ --+ __ .. ___ --4---
l- ----+ la. \000 i---

------.------ - e-"'~n72 t e-"'''''~' 1-----+ 
e-1J'2 s,n)a 1 ____ ------~-

e-"'COs's'_"_LI -----r--
[z]=.-

- ------+------

-+- - --
elJ', s,n's, 1 _. _ 

----t-- --- e'l',cos's, 1 ----+- ---1-----, 
--.--- --f---- -- e"" s"'~' ___ t __ _ 

---- j---- -+-----, •• ',=o~s~'s~t._-jlf-___ _ -- -+- ---- 1 ---+-_ 
-._--.-+_. ---L-- --- 1 e4'2s".,'I;2-

f ---~--- ----~- --~~~~=~:-'~~-=----i'- - ------1' -- :::::: ~ - ---+ ._- - - ---
-- -- -- ------

t t t e 
[G]=n r S [Q]T[pJ[Q] dx = J( rI[ ztrrnp][r][z]dx = JI. rirZ([y][z] dx=Jt r'ir Zy] dx 

o 0 0 0 

TABLE 5. t-Ia trices [A] and [Z] 

1-' 
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.v· 
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. ~ 
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:ia ". 

,. 

X 
"0 

):' 
N 
'--' 

~ 
L 

Id 
Il 
x 
"0 

N 
E 
~ ........ 
t:!. 

--------'0 
L 
~ 

1\ 
x 
"0 

bL 
:c. 
:0: 
~I: .. 
H 

.. 0 -----, 
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Il 
X 
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-.-
~ 

1 
.(11. ..tIL ~IL ~I'" ~IL ~Il 

1 
",IL ~I~ 

--- --- --- ---1--. . . 

~I'" "II. ~I~ ~L :(IL .:(1 L. ~IL. ~IL 
.... - -

"1,,, ~~ "II. :(11. .:~JL. ",IL. ~IL .:tIL 

,...--
",II. ~'" ~I.. ",II. -IL. ~IL ~IL ",IL 

.-1-1.(1-
, 

~II. ~L ~I'" ~IL ..(/L. ~II. 
-.---

.:( 1 L.I ~IL. ~II. :(11. ~II. 1 ~II. .:\11. 1 ~IL 

~1. ! ~II. i «IL. ! ~IL. 
+- .. 1-

",II. ",II. i .(Ia. ,~IL 
• 1 

. -~---t--. 

1 1 1 1 1 1 1 1-1 '\1" ~I'" , ~ 1.1 "II. ! ~IL ~l.i~I.I,L 
1 • 1 1 

i· '-r-' 
i~-r Il 1 ':/L. ~IL. 1 1. 1 ~II. i ~IL : ~L. 

, l , 1 ~ 1 Nil , 0 0 

~1. ; "I.! 1 j, ~ ~L. ,ft. 1 1 \ 
I.I! 1---4.-

: , ~a. 1 ~L i raI. ~IL .iIL 
1 fiL 1 1 tl', 1 0 0 

, 
1 t't 1 N . , ,il",. 

1 ~L ~IL. ' l , : .xl~ 1 

· . 1 1: 

1 

,il'" 
~ .. 

• 1 rtIL i ~IL 1 ~L. : rita., 1 1 1 
0 0 1 1 

N · ~ : ~\'- ~\L 1 .wl'- ~IL 1 L 
1 

, j 1 1 

/1 

r 
~IL ~II. "IL -IL. ~L .:i.IL ~ ! _, 1 

~ . L.;,1. 
+_.-

~IL. ~II. ~Ia. \ ~IL. 1 :ëJ 1. ~IL ,IL. : ~IL 
1 

. ----,----
",IL :(IL ~I ~-~IL.- .:(11. ~II.I:(I < ~I L 

oë:\ L. "IL -<:l' 1.0:1' l '" LI"" 1 ... 1, : ,,1 L 

1 1 -~--~-

... IL ~ .. .:\j L. l ,,1 LI" 1. 1 ~I \. ~ 1 1. : -\11. 

~L. ~L. ~II. ~IL. .;;:1 L 1,:(11. .(1 L i :(1 L 

t--~-

~II. ~L. ""II. ~II. .ci:1 .. ,,1 L r' L i .. l' 

1 
:i:1L. ~L. :(1" ~I L 1 ~IL. -(1 L .(ll.j.çlL. 1 

1 



1 

't.. '1., 't.. '1., 'l'.~ '1' •• 11 ''fe •• , 'l' •.•• 

'1-.. '1., 'tM 'ln 'Jo... ~J.II 'J-3•1J 'l-s ... --.~--_._--- -.. -
.,.~. If.. ~.. ~s, ~... ~ •. II· 'l.... 'cf. ••• s --------------...-..--.. -

[01] = l 'l,. ~" '1,. ~17 'j-,.. . '1'.11 '10,." 't,." ----------
~ ... ~., ~~. '1 .. , 'h~ ; 'h .... ~ ... ,s '1-.. ,15 

.---- ... -··-T--·-

'1-•• ' 't ... s '1 ••• ' '1-11.', 'I-"'~ '1..... 't. .•• s· }n." 
-------, -+- '1 
""'1., 1.,., ~ '1.'1.' : " ... " t 'Ii'l.~ 'tis ... 

1 
't. .. ..,! 1-••.• , 

l' ... , i t .... i 'Ioi •• 1 1 ...... , 'toM! 'il .... %. .. , }.'.1'5 

r- I 1 1 1 1 -1." t 14 ; 'to ... 1 1 •• '1.". '&.,11. ~ 1-.... ~ }.,'6 

'}4' l 't .. l ~,. i '1. l 'h .• ~ l 'h." 
i 

't",.1 'l-J." 
1 

~ ~·,-+i -'-"-4--t--+---t----
l ' 1 f" . [03]= I~ !.~ r !_~._! .. ~7t ~~~.. '~'tT''': 'ho .. 

~ ... , l '10.'. 't ",s l 't .... 1 't.,.. 'h .• l! '1".,14 . '1-•• " 

-;,:.T;: i;,:.: l't,:, 1 -;.:.:r;::,~l;:~:'~.: 
1 •• l ' i 1 1 

, 1 1 l "-

l' .... 1 ~ ... , • 't ... , ~ 't ••. , 1 ""4.4 ! 1'.4 ••• ; ~'''.14 , .... " 
., T! t!·· . . -

L.. 't .... l ,"'., ; 't .•. , 1 1" •. ' i l' ••.• : 't, •.• i 'l' •• ",! t ..... 

TABLE R • Matrices [011 to [041 

.... , : 1 -
1 ,.. 1 

't,.. 'tu 'lu i 'ln 'i-,.. 't ... 11 't •.. ,! "a ... 
---~----+--

'1-,,. 't .. ,' l4S '4' 
. ; i 

'i-... • .... 11 ~ ... Il' :}..,'I 
• 1 i . 1 
• ! ' 1 i 

~,~ t,.. : h • 3" ~, ... 'h ... , '1-•• " : h,~ 
1----. ~--

~71 i 174 ' ~7' : '1-., ~ .. i 'te, .. i '1 •• " il .. ., 
[02]=1 ; 1 1 

~'U '&... ~ .. , lu! 'f,o,~ ~IO,II: ~'D." 1'D,1I; 
1 i 

lI-. ~ i '&11.4 i ~n.' ~II.': l'I.II! 'tl~": ).1 . ., ~.2.1S 
• 1 i ! 1 1 • 1 

• 1 • 1 
lI-••• ~ ! "s .• ! ~.",: '!., .• i ~".'D· ),.",. 't .... ) «ct ••• 1f 

,-,,,.·1 '1;", i ~",.I ,~.I ~ .. ~ '}··~I '~·I 't",~ 
1 1 1 J 

'tu 1u "16 'he: 1'2... 'h.~ '1' ..... 1 'h .. " 
r-

~41' 144 'tu ~48! 1".10 1 ~" •• " ~..... '& ..... 

· 1 l '1 1 ~u '1-.... 'h.. h. 1 h, .• t~.,1. 'h., .. : '1-.". 
! . , 

. '1 '. 
li 1 l 'tes 1e.4! ~." ! 1" i t'.'D 11",1 ~.,14: '}'." L04J= ----1-- -t---r- , 

t .•. 1 ~'DJ4 l 't,o" 1 ~IO" ~ .... o l 't'D." ~D.'.: 't.o"" 
. 1 1 1 

~~.1. +-!~:~l~~ ! tll··1 ~'I •.• ! 't",'I, 1".'4' 'h,., .• 

~'4 t : ~.4 •• : '!'4,': 't.... lA ... ,o! h",-! '1-.... 4 1' ..... 
-'-+- ~. - _.~--.~ .--+ ! ._--

't. .. ,,- ! 't" 4 l 't ,u il .•• ! 'AI .. , •• : 't·.,·t.I: '&-".'" 'â-,,,., L 1 1 1 1 ., ._ 

,1Ja." 

1-' 
U1 
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"".~ . ., 

--

r- 1 ! i 1 j 1 

~ [_1<,", -JI,;;;'] 1: (-,. .... JI,w, 1 ! ~ [-1<" ... -~ ~ ~H -1< ............ )1 H"''''' .... ;;; 1 j ~ [1<,,,". }'Osll H 1< • ..,-...... 11+ [1<,,;;0. + .... ·,1 

t [~+'l 1 ~ + ["fW+'1 1 

~I:;J 1 -+ 
I~-J'~-"" .. 1 _ 

[01.] =,--i----t---+--+--+---+---!---
-:. [ 1<,'-)A,. J i+-- [2"k'}'] -;. [~&.-}':] + [2lc,,&] -:. [1<.1_)':] . I-~I [Zl<.)'.] -:. [1<: -]A!] -~. [2~J&] 

~I [ ,." ... "~J ~ I+- ["I+~] 1 
l\f .. .1 ~. [~'+ ·f·] 1 

'f\6 1 ~ [ l\'~ "fl] ... ra 
r ra. ra. r" 

;a [- ... 1(, -Ile,;; 't. [ ..... -t "'l'ô ~. [-.. "" -~ •• f; ~,[ 2-JAt-~~ I·h [zll14+~ 1<,fs .!. [2")A,+~~ },[ Z"1<a ... t1c·~ .L [2"}I:o. + ~1<aP; 
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SANDERS * 

BIEZENO and ** 
GRAMMEL 

FLUGCE ** 

VLASOV ** 

MORLEY ** 

TIMOSHENKO ** 

BIJLAARD ** 

NOVOZHILOV ** 

NAGHDI and ** 
BERRY 

KENNARD ** 

TABLE 10 

n - 2 n .. 3 n .. 10 

ÀI ~2. 'XI À2. À, À2. 

10.202 .17570 10.465 .43961 15.286 5.2613 

1'9.8026i ±.1705li :!"9.5682i :!".40598i 1'7.3965i :!"2.5783 

10.1953 0.1758 10.4583 .4399 15.2534 5.2609 

:!"9.8105i :!".1704i :t9.5763i t.4056i :!"7.4853i 1'2.5719i 

10.1952 • t'758 10.4581 .4399 15.2533 5.2610 

t9.8104i t·1704i +9.576i 1'.4057i t7.485li "!2.5719i 

10.1955 .1756 10.4591 .4396 15.2881 5.2579 

t9.8107i :!" .1706i i-9.577li t.4059i :!"7.4183i "!2.5766i 

10.1781 .1761 10.4414 .4406 15.2678 5.2678 

±9.8283i ±.170li +9.59441 +.40491 +7.4348i +2.5652i 

10.2025 .1758 10.4652 .44 15.2840 5.2645 

±9.8027i :t.1704i ±9.5632i :!".4056i 1'7.395li +2.57411 

10.2024 .1707 10.4651 .4382 15.284 5.2643 

±9.8025i :t.1655i ±9.568li :t.404li ;;7.3950i ;;2.574li 

10.2022 .1757± 10.4645 .4396 15.2796 5.2657 

±9.8024i ±.1705i ±9.56741 t·4060i t7.3859i ±2.5779i 

10.2027 .1760 10.4660 .4403 15.2737 5.2860 

:!"9.803i t·1702i t9.569i t· 4052i +7.4030i :t2 .5342i 

10.2033 .1767 10.467 .4418 15.289 5.2691 

±9.8036i t·1694i t9.5703i t·4015i t7.41371 t2.5340i 
---

Roots of Characteristic Equations for (1 - ,,2)/k 4 x 104 and )1= 0.3 

* This data cornes from the authors' computer program. 

** This data is given in Reference (28). 
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O.I~23H)-11 

-o. Sl'ilV-ll 

(b) 

~.212!2D-13 
-C.27)11(,-1 , 
-C.I'>3AI,,!)-1l 

1.1:>;)000 ill 
-0.3"0<>40-11 
-O.I(,IC;~D-D 

-O. 277';/oO-1l 
0.H';)90-11 

-0.lH7b!)-11 

-J.I~7~5D-12 

O. HlJOJO 01 
-r.412~'i0-1l 

0.111j8b:)-12 
-0.25"311\-11 
0.21 Q25')-11 

0.1l21!oO-I' 
-0.21 77'1"-11 

O. '21 S:I:l-ll 

,--.1' , ·1 

O.U1211-n ] {St} -0.!l1:l20)-12 
0.410110-12 S. 

J 

]{ s.} 0.1j4A730-13 L 
-0.17b3~D-11 ~ 
C.IDO(,,)~ DI 0j 

TABLE 11. The elements of the disp1acement function matrix for (a) x = 0, and (b).x ct. 
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Note: Terms such as 0.54179D-13 mcan 0.54179 x 10 
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(dwn/dx) i vn . 
l. 

Un· 
J 

lFirst 
-5 -3 -5 

-.55xlO - .633 .927x10 .31515 .55x10 

~ode 

Second .3967 .5227 -.02633 -.262 .3967 

t-fode 

TABLE 12. The eigenvectors of the first and second modes of a free e1ement. 

wn . (dwn/dx) . 
J J 

-3 
- .633 -.927x10 

-.5227 -.02633 

Il "00. 

vn . 
J 

.31515 

.262 
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n Arnold and Baron Galletly Michalopoulos This theory 

Warburton and and 
Bleich Muster 

2 748 760 744 750 752.3 

3 435 435 435 436 436.3 

4 469 463 467 467 468.7 

5 675 670 675 675 678.3 

TABLE 13. Natural frequencies, in Hz, for a particular unifo~m shell, 

as calculated by various theories (rn = 1) 

------- ---- - -----
- ---- -------
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FIGURE 1. 
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Mcp 

(a) (b) 

(a) Axi-symmetric shell showing a cylindrical finite element defined by nodes i and jj 

(b) Stress resultants on an element of the shell within the finite element (with 

transverse shear forces omitted for clarity). 
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Uni 

FIGURE 2. Nodal displacements at points i and j. 
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FIGURE 3. Illustration of the construction of stiffness and mass matrices for the whole shell. 
(N - number of elements). 
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FIGURE 4. Parame tric curves of the surfacC' ~Jhere 

lo - A~-'" A, = ~,. Y,. and Z = r,2,. r,~ 



FIGURE s. 
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Reference Surface 
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Differentiai eiement of a shel1 • 
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FIGURE 6. 
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<a) 

-n 

(b) 

(a) Stress resultants and surface loads acting on a 
differential element, and (b) stress couples acting on a 
differential element. 

' ...... -._._ ..... _ .... _ ... _ ... _--------



f 

- 171 -

2 2 

~~--r------------------

N N 

N+1 
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FIGU~E 7. Illustration of the construction of the 
continuous randorn pressure field at the 
nodal points. 

7b 
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n,. ns .Cl 

Maqnification factors for a 1ight1y damped 
mu1ti-degree-of-freedom system. 
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The non-dimensiona1ized frequency spectrum. 

(Reproduction of Bakewe11 (39), figure 5) 
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J INPUT J 1 .... ~-

1 
ri CIRCUMFERENTIAL WAVE-NUMBER, n = 2,3,···,1 

COMPUTE THE INTERMEDIATE MATRICES AND 
ALL ELEMENT STIFFNESS MATRICES 

1 COMPUTE ALL ELEMENT MASS MATRICES 

a) SUPERIMPOSE ELEMENT ~TRICES TO OBTAIN 
STIFFNESS MATRIX FOR AN UNCONSTRAINED 
SHELL. 

b) DELETE APPROPRIATE ROWS AND COLUMNS 
FROM THE STIFFNESS MATRIX TO SATISFY 
EDGE CONSTRAINTS. 

- MASS MATRIX -

(SAME PROCEDURE AS IN OVERLAY #3) 

SOLVE EIGENVALUE AND EIGENVECTOR 
PROBLEM 

RMS 
RESPONSE NO 
REQUlRED 

? 

YES 

1 FIND [H",] = [41]T[M] [41] 1 
t 

IFIND [k,.J = [41]T[K] [41] 1 
lCOMPUTE THE RMS RESPONsE DUE TO pRF.SS IRE 1 

NO 6 
YES FIGURE 12. 

Over lay #1 

#2 

#3 

#4 

#5 

#6 

17 

18 

Corn putational 
flow diagram. 
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1 w 

-1 ........ ~ 

n UrNIX/W". Vrnax/WrntAx 

2 0·1342 0·5098 
3 0·0683 0·3374 

4 0·0404 0·2520 
5 0·0265 02011 

FIGURE 13 Normalized eigenvectors for n = 2,3,4,5 

and m = 1 for a uniform, simp1y-supported 

sllell. 
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PIGUIB 14. ~ natura1 frequenciea of a unlfarm aiaply­

aupported ahell .a a function of the number 

of f1nlte ele.anta, a, for • - 1. 

(cœtinuoua lin.a drawn through diacrete points 

at integral Il.) 
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Cl:: \ 18·6 l.L. \ 
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,-, , , 

9·6 " ..... ..... ......... ------
n:4 

n:5 

8·8 
~----~----~----~----~~----~--~ o 2 4 6 8 10 

N 
PIGURE 14b The natural frequencies of a uniform simply-

supported shell as a function of N, for 

m = 2 and 3. (continuous lines drawn through 

discrete pOints at integral N.) 
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-- This theory 
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n 

FIGURE 15 Natural frequencies of a free-free uniform 

shell as a function of the number of 

circumferential waves, n. 
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-- This theory 
---- Theory of (11) 
6, C,O Exp. of (11) 

4 8 12 
n 

FIGURE!f; RaturaI frequencies of a c1amped-c1amped 

uni~orm she11. 
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-- This theory 
---- Theory of (11) 
6,D,O Exp. of (U) 

O~--~----~----________________ ~ ________ _ 
o 4 8 12 

n 

FIGURE 17 Natura1 frequencies of a c1amped-free 

uniform shell. 
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This theory 
---- Theory of (50) 
0,0,0 Exp. of (50)· 

O~----~----~----~----~----~----~----J o 2 4 6 S 10 12 14 
n 

FIGURE 18 Natural frequenc1es of the unst1ffened 

(un1form) shell stud1ed by Weingarten (~). 
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FIGURE 19 Natura1 frequencies of the ring-stiffened 

she11 first studied by Weingarten (w): 

m = 1. 
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FIGURE 20 Natural frequencies of the ring-stiffened 

shell first studied by Weingarten (~):m = 2. 
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m=3 

, 

-- This theory 
----- Theory of (11) 
---- Theory of ~) 

<> Exp. of (50) 

O----~--~ __ ~ __ ~ __ L_ __ L_ __ L_~ 

o 

PIGURE 21 

4 8 12 16 
n 

Ratura1 frequencies of the ring-stiffened 

shell first studied by Weingarten ~): 

m = 3. 
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FIGURE 22 Sorne natura1 frequencies of a simp1y­

supported she11 with thickness discontinuity 

(t1 = 0.1875 in., t 2 = 0.25 in.) 
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n=4 

- This thea-y 
---- Fini~-el. th. (51) 

o Classical th. (51) 
+ Exp. of (52) 

05 075 1.0 
L,/L 

FlGURE?3 Natura1 frequencies of a simp1y-supported 

she11 with thickness discontinuity 

(t1 = 0.125 in., t 2 = 0.25 in.); n = 4. 
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n=5 

- This thecry 
--- Finite-el. theory (51) 

o Classical thecry(51) 
+ Exp. of (52) 

0·5 075 1-0 
L./l 

PlGURB 24 Ratura1 frequenc1es of a s1mp1y-supported 

sbe11 with th1ckness d1scontinu1ty 

(t1 = 0.125 in., t
2 

= 0.25 in.): n = 5. 
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FIGURE 25. Variation of natura1 frequencies with 1iauid 
depth of a 1iquid filled she11, this theory: 
In = 1. 



N 
I 
.x 

- 191 -

3.0 ,..-,..---,--....,...--.,....--,---....,----,---------

1 m=21 

2·5 

.. 2·0 
>-
U 
z w 
::::> o 
lJJ 

If 
1·5 

n=8 

1·0 

0·5 

o ·25 ·50 ·75 1-0 
b/L 

FIGURE 26. Variation of natura1 frequencies with 1iquid 
depth of a 1iquid-fi11ed she11, this theory~ 
m = 2 • 
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FIGURE 27. Variation of natura1 frequencies with liquid 
depth of a liquid-fi11ed she11, this theory; 
m = 3. 
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1 m=11 

-+- This theory 

• n=2 
• n=3 

+ n=4 
a n=5 
6 n=6 
o n = 7 

Exp. of (JQ) 
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U 
z 
W 
::l 
@ 
Cl::: 
l.1.. 

0·5 

·25 

n=6 

n=4 

n=3 

o ·25 ·50 ·75 1·0 
b/L 

FIGURE 28. Comparison of this theory with exp~riments 
of (36) for 1iquid-fi11ed shel1s: m : 1. 
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1 m= 21 
~ This theory 

o n=3 
o n =4 Exp. of (J,Q) 

+ n=5 
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FIGURE 29. Comparison of this theory with experiments 
of (36) for liquid-fil1ed shells; m = 2. 
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-...-. This theory 

0,0 Exp. of (36) 
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FIGURE 30. Comparison of this theory with experiments 
of (36) for 1iquid-fi11ed shei1s; m = 2 and 
3. -
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FIGURE 31. 
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Eiqenvectors of liquid-filled shells, as 
functions of liquid depth, b: for n = 5, 
m = 1. 
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Eiqenvectors of 1iquid-fi11ed she11s, as 
functions of 1iquid depth, b: for n = 5, 
m = 2. 
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FIGURE 35. Maximum of r.m.s. displacements as functions of 
the mean centerline velocity, U~: n = 3. 
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