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Summary

This thesis presents a new theory for the dynamical
and static analysis of axially non-uniform, thin, circular
cylindrical shells subjected to random pressure fluctuations.
It is a hybrid of finite element and classical shell
theories: the shell is subdivided into cylindrical finite
elements, and the displacement functions are obtained using
Sanders' shell equations (for thin cylindrical shells) in
full. Expressions for the mass, stiffness and stress-
resultant matrices for one finite element and for the
whole structure are obtained.

The free flexural vibration characteristics of
thin uniform shells with simply-supported, clamped and
free ends are studied, as well as ring-stiffened shells,
shells with thickness discontinuities, and shells partially
or completely filled with liquid. The frequencies of
vibration are compared with those obtained by other thecries

and with others' experiments. Agreement with other theories



is good and, in the majority of cases, is even better
with the experiments.

Fina;ly, an expression of the r.m.s. response of
uniform and non-uniform shells subjected to subsonic
boundary-layer pressure fluctuations was derived; and a
particular simply-supported cylindrical shell subﬁected

to such a pressure field was studied.
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Sommaire :

Une théorie nouvelle est €laborée dans cette
thase pour analyser dynamiquement et statiquement les
coques minces et non uniformes soumises aux fluctuations
d'une pression aléatoire. La méthode des éléments-finis
est utilisée et les fonctions de déplacement obtenues
proviennent de la théorie des coques minces de Sanders.
Les matrices de la masse, de la rigidité (stififness) et
des efforts-résultants pour un élément fini ainsi que pour
toute la structure sont dérivées.

Les fréguences et les valeurs propres des cogues
uniforme ou non-uniformes simplement supportée, encastrée,
etc., sont déterminées. Aussi, on étudie les effets cu
ligquide sur ces fréguences propres dans le cas d'une cogque
complatement ou partiellement remplie. Ces résultats sont

comparés avec ceux des autres théories et expériences.



Finalement, les déplacements des parois de la

cogue soumise aux fluctuations d'une pression aléatoire

sont dérivés analytiquement et déterminés numériguement.
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SUMMARY

This thesis presents a new theory for the dynamical
and static analysis of axially non—uniform, thin, circular
cylindrical shells subjected to random pressure fluctuations.
It is a hybrid of finite element and classical shell
theories: the shell is subdivided into cylindrical finite
elements, and the displacement functions a&e obtained using
Sanders' shell equations (for thin cylindrical shells) in
full. Expressions for the mass, stiffness and stress-
resultant matrices for one finite element and for the
whole structure are obtained.

The free flexural vibration characteristics of thin
uniform shells with simply-supported, clamped and free ends
are studied, as well as ring-stiffened shells, shells with
thickness discontinuities, and shells partially or completely
filled with liquid. ‘The frequencies of vibration are compared
with those obtained by other theories and with others'
experiments. Agreement with other theories is good and, in
the majority of cases, is even better with the experiments.

Finally, an expression of the r.m.s. response of
uniform and non-uniform shells subjected to subsonic
boundary-layer pressure fluctuations was derived; and a
particular simply-supported cvlindrical shell subjected to

such a pressure field was studied.
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CHAPTER I

INTRODUCTION

1.1 General Introduction

Thin shells appear as components in practically
every type of modern industrial equipment, in aerospace,
nuclear, marine and petrochemical industries. Accordingly,
the study of the dynamical characteristics of thin elastic
shells is of considerable practical, as well as theoretical,
interest.

As in all dynamical problems, interest commonly lies
in the determination of the free vibration characteristics
of such shells, and in their response characteristics when
subjected to prescribed force fields.

In this thesis we are concerned with the dynamics

of thin cylindrical shells. Such shells are commonly used

to contain or convey fluids, and this, to a certain extent,
determines the classes of problems in which interest is
focused. Thus, in addition to the determination of the
vibration characteristics of the shells in vacuo, it is
also of considerable interest to determine the dynamical

characteristics of shells containing either stationary or



flowing fluid - which is the realm of fluidelasticity.

There are many ways in which the presence of the
fluid may influence the dynamics of the shell. If the
shell contains a stationary gas at low pressure, then the
vibration of the shell differs only slightly from that of
the same shell in vacuo. This is not the case, however,
if the shell is substantially pressurized by the enclosed
fluid, as this entails additional strain energy in the
shell. Moreover, if the fluid is compressible, the
compressibility of the fluid alters the effective stiffness
of the system. Also, if the density of the enclosed fluid
is relatively high, as is the case with liquids, then the
fluid exerts considerable inertial lcading on the shell,
and this results in diminishing the resonant frequencies
significantly.

Coupling between the fluid and the shell can manifest
itself in several other ways. In the case of shells
partially filled with liquid free-surface motions may be
coupled to the shell motions. This is of particular interest
in liquid-propelled rockets; in cases of proximity or
coincidence of the natural frequencies of the free-surface
motion and that of the shell, large oscillations may develop
in the propellant tanks and are normally referred to as
sloshing. Nonlinear coupling may also induce sloshing; in

this case subharmonic excitation of free-surface modes is



involved.

Other effects of coupled fluid-shell motions occur
when the fluid is flowing. Depending upon the boundary
conditions, if the flow velocities are large, buckling
or oscillatory flexural instabilities are possible (§1.2).
More recently, the existence of flutter in the shell-modes
was discovered (81.2).

Similarly, in considering the response of cylindrical
shells, considerable interest exists in the case where
the excitation is transmitted through, or arises from,
the contained fluid. This could take the form of pressure
waves transmitted through the fluid; or, if the fluid is
flowing, the excitation could arise from gross pressure
perturbations due to disturbances in the flow, or from
boundary-layer perturbations. It is known that vibration
caused by these pressure fluctuations may, in certain
circumstances, cause fatigue failures of the structures
involved.

In this thesis we shall concerﬂ ourselves with the
development of a novel theory for the dynamical analysis
of axially non-uniform shells. We shall study (a) the free
vibration characteristics of such shells empty, and completely
or partially filled with liquid, and (b) the response of
such shells to an arbitrary pressure field, and specifically

to a pressure field arising from the subsonic boundary layer



of an internally flowing fluid.

1.2 Literature Review

The first attempt to formulate a bending theory
of thin shells from the general equations of elasticity was
made by Aron in 1874, and was followed in 1888 by a
successful approximate theory known as Love's first
approximation (;)* - (3). Since then, the theory of elastic
shells has repeatedly been re-examined in the literature,
e.g. (3) - (9).

Several methods have been developed for the dynamical
analysis of shelis. Of these the most versatile have
proved to be Rayleigh-Ritz methods, e.g. (10), (l1l), Stodola-
type iteration methods, e.g. (12), finite-difference methods,
e.g. (13), and finite-element methods (14) - (20). All
these methods and their variants have their advantages and
disadvantagés. One of the criteria of success of a method
may be considered to be its capability of yielding the high
as well as the low characteristic frequencies and modal
shapes with comparable, high accuracy. This requirement is
not really met by the finite-difference and Stodola-type
methods [cf. (12)]. The Rayleigh-Ritz and finite-element
methods, on the other hand, are satisfactory from this point

of view; furthermore, because they lead to a symmetric

* yUnderlined numbers in parentheses denote references,
listed separately.



eigenvalue problem, they are easily amenable to solution
by digital computer, which is a great advantage. The

finite-element method has added advantages in terms of
ease of formulation, and because numerical convergence is
not as sensitive to particular sets of boundary conditions
as is the case with the Rayleigh-Ritz method (21).

Here we are specifically interested in free vibration
and response to random pressure-fluctuations of uniform
and non-uniform thin cylindrical shells. Accordingly,
we shall review the pertinent literature in these areas,
as follows: firstly, on free vibration of empty cylindrical
shells; secondly, on free vibration of fluid-filled shells;
thirdly, on the response of cylindrical shells subjected
to random force fields. |
Arnold and Warburton's (47) pioneering work on the

vibration of uniform cylindrical shells derives the frequency
equation by the energy method using Timoshenko's strain
relations. Lagrange's equations are used to derive the
dynamical equations, eventually leading to a determinantal
equation which yields the frequencies. Baron and Bleich (48)
have based their theory on an energy method in which the
shell is first treated as a membrane and the bending effects
are subsequently introduced as corrections. Galletly (49)
extends Arnold and Warburton's theory to ring-stiffened shells.

Michalopoulos and Muster (46), also studying ring-stiffened



shells, proceed essentially as in (47), but express
displacements in the kinetic and strain energy expressions
in general, series form; the frequencies are found by the
Jacobi iteration method. Sewall and Naumann (11) studied
uniform and axially stiffened shells; they obtained their
natural frequencies by application of the energy method,
using Novozhilov's strain-displacement relations and employing
the Rayleigh-Ritz procedure. Weingarten (50) neglecting
rotary inertia effects, derived a Donnell-type equation for
a general orthotropic conical shell. He then reduced the
ring-stiffened shell to an equivalent orthotropic conical
shell. The cylindrical shell in this case may be considered
as the limiting case of a conical one. Finally, the free
vibration characteristics of shells with a thickness
discontinuity were studied theoretically by Warburton and
Al-Najafi (51) and both theoretically and experimentally

by Falkiewicz (52).

The above is not meant to be an exhaustive literature
survey of the field of free vibration of thin cylindrical
shells; no such survey is presented here, mainly because
most of the papers are concerned with uniform cylindrical
shells, whereas we are here interested in (axially) non-
uniform ones. In this latter category there are few papers
indeed, namely Warburton's and Al-Najafi's (51) work, and

the work on ring-stiffened shells discussed above.



Considering fluid-filled shells next, a considerable
volume of work exists dealing with the effect of the fluid
on the dynamics of the shell. Once again, we shall not
attempt a complete literature review, for similar reasons
to those given above. Niordson (33), in 1953, was the
first to present a systematic - and elegant - theory for
the effect of internal and external fluids on the vibration
of shells (also considering the case of flowing fluids).
Fung et al. (37), and Berry and Reissner (32) investigated
the effect of pressurization (by compressible fluids) on
the vibration of freely supported cylindrical shells, both
theoretically and experimentally. Lindholm et al. (36)
studied the free vibration of a completely liquid-filled
tank, essentially unpressurized. They also performed

experiments in the case of partially liquid-filled shells.

Parenthetically considering coupled fluid-shell
motions in cases when the fluid is flowing, it was found
that, depending on the boundary conditions, if the flow
velocities are large enough, buckling or oscillatory
instabilities are possible (33), (34). More-recently, the
existence of flutter instabilities in the shell modes was
discovered by Paidoussis (35).

Finally, we consider the literature on the vibration
of shells subjected to a random force field. We shall

by-pass references on the response of cylindrical shells



subjected to either static or dynamic deterministic

force fields, which are of no interest to us here. Several
theories do exist for the response of bars, beams and

plates subjected to general, randpm pressure fields, and in
the particular case of a boundary-layer pressure field,

e.g. (53) - (57). To the author's knowledge no such general
theory exists for cylindrical shells. However, a study
concerned "with the vibratory motion of a simply supported
finite, elastic, circular cylindrical shell due to random
pressure field" was made by Cottis et al. (45). That study,
apart from being limited to simply-supported shells, derives
only the space-time correlation function, rather than the
mean-square response; moreover, numerical solution of

the problem is not attempted.

1.3 The Present Theory

In this Thesis we are concerned with the dynamics

of thin cylindrical shells. Such shells can vibrate in

many ways. Here we shall only concern ourselves with the
class of vibrations where the shell motions are predominantly
radial. More specifically, we shall only consider flexural
vibrations of the shell walls, in the modes sometimes
designated as "breathing" vibrations, thus excluding the
particularly simple case where the shell vibrates essentially
as a beam.

The theory to be developed will be capable of analysing

geometrically axially-symmetric shells which are not necessarily



uniform, i.e. allowing for axial variations in wall-

thickness and elastic properties. The theory will be

capable of yielding the free-vibration characteristics of
such shells, and their response when subjected to a random
pressure field. The theory can also deal with shells
partially filled with liquid.

This theory is a hybrid finite-element theory in
the sense that, whereas it uses the framework o the finite-
element method, the displacement functions are determined
by classical shell theory. The finite element chosen is
a cylindrical frustum, rather than the more usual triangular
or rectangular flat plate elements [cf. (22) - (25)]. This
allows us to use the thin shell equations in full for the
determination of the displacement functions, and hence the
mass, stiffness and stress-resultant matrices - instead of
the more usual polynomial displacement functions.

As no geometric modelling of the structure is
involved, and as the shell equations are used for the
determination of displacements within each finite element,
it is reasonable to expect that this approach is capable
of high accuracy.

Calculations of the free vibration characteristics
(i.e. the eigenvalues and modal shapes) of uniform and non-

uniform shells will be presented. 1In the latter case, shells
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with a thickness discontinuity and ring-stiffened shells
are analysed, as well as shells partially filled with
liquid. Specifically, for particular uniform or axially
non-uniform cylindrical shells, the flexural natural
frequencies and the eigenvectors are calculated for various
combinations of the circumferential wave-number, n, and
number of axial half-waves, m. The calculations are
confined to n > 2 which is a limitation of the theory as

it stands. In this connection, it should be remarked that
for n = 1 the vibration is essentially that of a beam and
its characteristics may be determined by much simpler theory.
For n = 0 the deformation of the shell is axially symmetric,
and this case will likewise not be considered here.

Finally, the r.m.s. response of uniform and axially
non-uniform shells subjected to subsonic boundary-layer
pressure fluctuations is also calculated, analytically and
numerically. In all the above cases, whenever possible,
the theoretical results will be compared with available
experimental data and with others' theories.

The original contributions of this Thesis may be
considered to be the following: (i) the development of a
new concept for the analysis of shells, by utilizing the
versatility of the finite-element method, on the one hand,
and the precision of classical shell theory, on the other;

(ii) the use of this concept in developing a new finite
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element formulation for thin cylindrical, axially non-
uniform or uniform, shells; (iii) the development of a
theory capable of statically and dynamically analysing
any axially non-uniform shell, including the case of
partially liquid-filled shells (as will be seen, with
consistently good accuracy); (iv) the analysis of
uniform and non-uniform thin cylindrical shells subjected
to a subsonic boundary-layer pressure field, to the point

of predicting r.m.s. amplitudes of vibration.

1.4 Organization of this Thesis

The study is divided into nine Chapters. We shall
briefly outline the contents of each.

Chapter II is devoted to general, theoretical aspects
of the finite-element method, and to the basic theory of
thin elastic shells, with particular attention to Sanders'

theory.

In Chapter III we establish the pertinent displacement

functions for the finite element selected from the theory

of thin elastic shells.

The construction of the stiffness, mass and stress-
resultant matrices for one finite element and for the whole
shell is developed in Chapter 1V, as well as an outline of
the method of analysis of shells subjected to static loads.

Chapter V considers the free vibration characteristics,

the effect of enclosed stationary liquid on the dynamics of
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partially filled shells, and the determination of the
response to random pressure fields, of uniform and non-
uniform shells.

In Chapter VI we determine the longitudinal and
lateral spatial correlation functions for the case of
subsonic boundary-layer pressure fluctuations. We also
obtain expressions for the r.m.s. response of shells
subjected to such pressure fluctuations.

Chapter VII describes a procedure for computing the

vibration modes and frequencies, both for the case of empty
shells and also for the case of shells completely or
partially filled with liquid; also the method of computing
the r.m.s. response to subsonic boundary-layer pressure
fluctuations.

In Chapter VIII are presented the results of some

calculations undertaken to test the theory.

The first set of calculations involves uniform shells,
the main aim being (i) to check the correctness of the mass
and stiffness matrices as derived in Chapter IV, (ii) to
test the rate of convergence of the computed natural
frequencies to the correct value with increasing number of
finite elements, and (iii) to test the sensitivity of the
new theory to boundary conditions.

The second set of calculations is with non-uniform

shells. A shell made up of two segments of unequal wall-
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thickness and another which is ring-stiffened are
analysed. The third set involves natural frequencies of
uniform shell completely or partially - filled with
liquid.

Finally, the r.m.s. response to subsonic boundary-
layer pressure fluctuations is determined for one specific

shell configuration.

Finally, Chapter I¥ presents some general conclusions.



CHAPTER II

BASIC THEORY

2.1 Introduction

The general method used in this study is the finite-
element method. The shell is subdivided into cylindrical
finite elements, and the displacement functions are obtained
using Sanders' equations for thin cylindrical shells in
full. This approach appears to offer considerable advantages,
and its relatively simple logic makes it ideally suited for
the computer.

As this is a relatively new technique, a short
outline of the finite-element method and of Sanders' theory
for thin shells will be given next. For further information,

the reader is referred to (25) and (8).

2.2 Finite-element Method

2.2.1 General outline of the procedure

The finite-element method proceeds as follows (25):

(i) the continuum is separated by imaginary lines or surfaces
into a number of 'finite elements';

(ii) the elements are assumed to be interconnected at a
discrete number of nodal points situated at their

boundaries, the displacements of these nodal points
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being the basic unknown parameters of the problem;

(iii) functions are chosen to uniquely define dis?lacement
within each finite element in terms of its nodal
displacements;

(iv) as the displacement functions uniquely define the
state of strain within each element, this strain,
together with any initial strain, and the elastic
properties of the material will define the state of
stress throughout the element and on its boundaries.

Suppose that we have a cylindrical finite element
defined by two nodes i and j and nodal surface boundaries

(figure 1). Then the displacements within the element, i.e.

the displacement funétions, may be defined by

U(x,$) 5.
{W(""”} =[N]{st} ) (2.1)
VACK )

where {?‘krepresents the nodal displacements, and the elements

of [N] are in general functions of p051t10n.

With displacements now known throughout the element,

the strain matrix {ec} may be written as

= ()% (2.2)
(€} [B]{sj}.

Assuming general elastic behaviour, the relationship
between the stress matrix, {o}, and the strain matrix will

be linear and of the form

(o) = ()(ey =(eXe)g}=tsTHE) . (2.3)

where [P] is the elasticity matrix containing the appropriate
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material properties.

Finally, the equivalent values of the nodal forces,

{F}e, may be written as follows (25):

{F*=[ [te1 P][B]d.(volume)]{ig Jolof TN dcstomer) {;} , (2.4)
j

where p is the density. Equation (2.4) simply states that
the equivalent force is due to stress, within the element,
associated with deformation and inertial loading, and is
recognized as the typical dynamical equation for any
structural element. Accordingly, it defines the stiffness
and mass matrices, (k] and [m], respectively, associated

with the finite element, i.e.

2.5
(41= (8)7[P)[B] divolume) , (2.3)

and

() = pfINTIN] devolume) - (2.6)

2.2.2 Convergence criteria

It is noted that the finite-element method yields
useful results provided that the displacement functions
chosen represent well the true displacements. To this end,
the displacement functions should satisfy the following
'convergence' criteria (25):

(i) the displacement functions should be such that they

do not permit straining of an element when the nodal
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displacements are generated solely by rigid-body
displacements:

(ii) the displacement functions should be such that if the
nodal displacements are compatible with a constant
strain condition, such constant strain will in fact
be obtained.

It is noted that the second criterion incorporates the

requirements of the first one, as rigid body displacements

are a particular case of constant strain, namely zero

strain.

2.3 Basic Theory of Thin Elastic Shells

The linear theories of thin elastic shells may be
divided into two categories:

(a) Theories based on Love's first approximation

The assumptions in this case are the following: (i) the
thickness of the shell is small compared with the least
radius of curvature (Rmin) of the middle surface, i.e.
(t/Rmin << 1); (ii) the strains and displacements are
sufficiently small, so that the quantities of the second-

and higher-order magnitudes in the strain-displacement
relations may be neglected in comparison with the first-order
terms; (iii) the component of stress normal to the middle
surface is small compared with other normal components of
stress and may be neglected in the stress-strain relations,
and (iv) the normals to the undeformed middle surface remain

normal to the deformed middle surface and suffer no extension.
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(b) Theories based on Love's second approximation

_ These are distinguished from those of (a) in that here

the effects of transverse shear and normal strain are not

'neglected.

The first assumption in (a) defines what is meant by
a "thin shell". The second assumption ensures the linearity
of the resultant differential equations. The third and
fourth assumptions, respectively, imply the neglect of
transverse normal stress (on = 0) and transverse shear
deformation.

Here we shall use a theory based on Love's first
approximation which is quite adequate for thin shells. However,
most forms of the equations based on this approximatién contain
an inconsistency; this is that, except for the special case
of axisymmetric loading of shells of revolution, the strains
do not all vanish for small rigid-body rotations of the shell
(e.g. theories of Love (1), VIasov (4), Reissner (3),
Timoshenko (26)). On the other hand, Sanders (8), and
Budiansky and Sanders (9) developed a modified theory based
on Love's first approximation which removes this inconsistency
without complicating the equations; (in Sanders' theory all
strains vanish for small rigid body motions). This is the
theory we shall use.

The analysis proceeds as follows. First, an appropriate

system of coordinates on the shell is introduced (figure 4)
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and certain geometrical relations established; then the
strain-displacement relations are derived from strictly
geometrical considerations of the process of deformation.
Then, the equations of motion which are obtained from a
balance of the forces acting on some fundamental element
of the medium are considered (figure 6). Finally, the
system of equations is completed by deriving the relations
between displacement components and stress-resultant
components in the elastic medium by using the law of
elasticity (Hooke's Law).

This matter (Sanders' theory of shells) is further
elaborated in Appendix A, where the equilibrium equations
are also given, in terms of the axial, circumferential
and radial displacements of the middle surface, U, V and

W, respectively.



CHAPTER III

THE DISPLACEMENT FUNCTIONS

3.1 Selection of the Displacement Functions

The finite element used in this theory, as shown in
figure 1, is a cylindrical frustum defined by two nodal
circles and two nodal points i and j. As stated in the
Introduction, in the present theory we shall employ Sanders'
equations of thin cylindrical shells to obtain the pertinent
displacement functions, rather than using the more common
arbitrary polynomial forms. This is the point of departure
of the present theory from, what might be termed, the
classical finite-element theory.

We now consider the effects of loads applied to the
nodes i and j. Three components of displacement (U,V,W)
describe the movement of a point of the middle surface
(see figures 1 and 2). The general expression for the edge
displacement must be found from equation (A.10) of the

shell theory. See also (59) for further details.

3.2 Determination of the Displacement Functions

We assume, in the normal manner [cf. (6)], that

U = u_ (x)coshy, V = v (x)sinpg) W = w (x)coshd), (3.1)
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where n is the circumferential wave-number. Upon
substituting into (A.10) we find that we can further
assume

wat)= A M ) 2B 7, Wa ) m €T (3.2)

which substituted into the equations yield three ordinary

linear equations in A,B,C of the form

A
C

For non-trivial solution the determinant of [H] must vanish

yielding the characteristic equation
- 4n’/\‘+[%"+ ondinto] 2~ an2(nt-) Nprt(ni-) w0 | (3.4)

This is a quartic in Az and its roots may be written in
the form
A =m=k+ip, , Ag=k¢+ TN
k;s ’kn’ip. ) AG w K, 'i',‘u }
ng"t"t}ll ’ l7‘ K’-’i’)“‘l ’ (3‘5)
N- -K2 -L"i. ) >°=‘1’LP1 )
where Ky and u, are real. Each Ai yields a solution of
equations (A.10), the complete solution being obtained by
the sum of all eight and involving the constants A_, Bj' Cj
where j = 1,2,°°°,8.
As the Aj' Bj and Cj are not independent, we shall
next express the Aj and Bj in terms of Cj so that the u .

vy and w, can be expressed in terms of only eight constants.

To this end we let
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AjguJ'Cj s BJ-stCj y j=h2,.,8 (3.6)

where aj and Bj are complex. Substituting (3.6) into
(3.3) we may now determine a. and Bj. The o, and Bj are
so interconnected, because of the form of (3.3), that we

need only solve two pairs of equations, (say obtaining the

real and imaginary parts of ay . Bl’ e, and 83), the

remainder being obtainable from them, as done by Fliigge (6).

Thus for j = 1 and 3 we obtain

e lli) = Eoal

where
Q= ( )’:i - =y 1\_’-(i+%.)] ) Qa2 =[_ “-;—”Azjﬂ\’U*‘-)’sg"”‘-l}] )
(=V)g 5.
Q’“"'Gzlj["(' + %"’) +(1- %!')] ) Qiy=[v) -'T-kljn.’] )
0%y (3-v)p 3
ay=a, , ass=[n(i+ntk) 8y,

noting that Gaa.,-a,,a,,.-(_'ii)(p_nz)i,,_.o . The other aj, Bj

may be obtained from the following relationships:

“.I:.Q;;a ) dg--d; ) \

Oygm &, ~lol, , g « -, ,
Oy oty + {80, , Oym —Og,

Olg = u,-i.&',, Kg = —ug'

(3.8)
po=f “F’,' Ps = pa ,

P""F—:'i’p" P"P' )
p‘ ‘P!‘i'F“l p, = PO )
Be “F:-LFM PQ'P:'
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Since the displacements are real functions, the

final form of un, vn and wn must also be real. The final

expressions may be written as

)

where the matrices (T] and [R] are shown in Appendix B

{°}={:. (3.10)

is a set of constants [the Ej being linear combinations

[(T] [(R] {(cC}, (3.9)

and

of the Cj' (6)]. The Ej are the only free constants in our
problem and must be determined from eight boundary
conditions, four at each edge of constant x.

We are now in a position to specify the displacement
functions. At each node (figure 2), the axial,
circumferential and radial displacements, as well as a
rotation will be prescribed. The 'displacement' of node i

can thus be defined by the vector

Un,;
- WM'
(&) ={(dwa/dski] >

Vnt

where all these components represent amplitudes of U,V,W

and dWw/dx associated with the nth circumferential wave-
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number. The element, having two nodes and eight nodal

degrees of freedom, will have nodal displacements

8;, - Vm._ _
{SJ} =9 :;-;J [ = [A]{C} ’ (3.11)
(&nh&k

Vn; J

where [A] is given in Appendix B, the terms of [A] being
obtainable from the terms of [R]. Now pre-multiplying

by (a]"l, we obtain

{c} -[AJ"{§;} ) (3.12)

and substituting into (3.9) we obtain

{§ }=[T][R][A]-'{§;} =[N] {g, : (3.13)

This equation defines the displacement functions.

In Chapter VIII, rigid-body motions are considered,
with the aim of testing whether the displacement functions
selected above satisfy the convergence criteria of the

finite-element method. It is shown that they do.

B e
CwiRes T



CHAPTER IV

MATRIX FORMULATION

In this section, expressions for the strain,
elasticity, mass, stiffness and stress-resultant matrices
are obtained, and the method for constructing the
equivalent global matrices is given. Also a method of
solving problems of cylindrical shells subjected to static

loads is mentioned.

4.1 Strain Matrix

The strain vector may be found by using equations

(2.2), (A.7) and (3.12), i.e.

G;

{e}=1% [{o}{ﬂ]m}n" } [3]{} ' (4.1)
z;:,

where the matrices [T], [A] and [Q] are given in Appendix B

-

4.2 Elasticity Matrix

Similarly, the stress-resultant matrix may be found

from equations (2.3), (A.8) and (4.1), i.e.

(e} = {% t = (P2 tee) {5} =15 ) (4.2)

e e et o
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where [P], the elasticity matrix, is given by

O w 0 o o o]
Vo D ° o O (o]
] 0 [o} DG1-V) o o - le]
P) = )
o 0O (o] K K o) (4.3)
o 0 0 YK K (o]
| =V
LO (o] 0 (o) 0 i

D and K being given by (A.9) for an isotropic elastic
material. We note, however, that [P] can be quite general, so
that the theory may also apply to anisotropic shells provided

their characteristics are known.

4.3 Stiffness and Mass Matrices

The stiffness and mass matrices may now be expressed

as in (2.5) and (2.6)

(1= [[teI'tPI81dA
(4.4)
(= pt{[IN]TN] dA |,

where dA = rdedx.
Here [N], [B] and [P} are defined in (3.13), (4.1)
and (4.3). Using these equations in (4.4) and integrating

over ¢ we obtain

t
18] = [[A]"]T[mr (oﬂpnaldx]w'- (SyHQIDEE (4.5)

[m]= pt[tAT ]'[nr (RITRJds] AT o] At (4.6)
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where [G] and [S] are defined by the above equations.

4.3.1 Determination of the terms of [G] and [S]

Before integrating over x in equations (4.5) and
(4.6), it was found advantageous to express [Q] and (R]

as follows:

(al=(rllz] , [R}={AD])(Z), (4.7)

where [I'] and [A] are given in Appendix B and their elements
are constants; the elements of [2], which is also given in
Appendix B, are functions of x.

Substituting [Q] and [R] into (4.5) and (4.6) we
obtain for [G] and [S]

¢ 2 g T, ¢ ¢
[6) =xr(2) (] PIr)[2Z) dx=nr (2)Tv)[z)dx = (zY])dx, (4.8)

¢ \ f T ¢ !
(s]= xrj{Z] (A) [A][Z]d.u.ﬂr[[Z]T[RJ][Z]d.x=mf[ZJ]dx ) (4.9)

the advantage in introducing ('], [A) and [2] via (4.7)
becoming obvious upon realizing that (Y] = [F]T[P] (T] and
(RJ]) = [A]T[A] are constant matrices. [2Y] and [2J) are
given in Appendix B.

We now proceed to obtain [G] and [S]. We may write

the general term of [G] as follows:
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t ¢
6té,jy=ne{ faip " Posfai pileosfc. i dn

¢
i
+ f DL, j)e“‘ "”éin[a.(i., )] cos[C,(¢,j)x])dx

> (4.10)

g .
+J.D,(L. j) e""“J )xcos[B,(i., j)x] sin[c, (i, frx] dx
(-]

*ﬁo("be"“'”“,; n{g'(g,j)x]sin[c.(l..j)x]dx} ) }

which apply to all i, j =1, 2, """, 8, except for the

following elements:
G(1,5), G(1,6), G{(2,5), G(2,6), G(3,7), G(3,8), G(4,7), G(4,8),
G(5,1), G(6,1), G(5,2), G(6,2), G(7,3), G(8,3), G(7,4), G(8,4),

which can be written as follows:

¢
G(i,j)= nr{ ID,(L,j) cos*[B,(L, )x] dx

"an (L,§) +Dy(¢. )] sinfB (L, )x] cosfB.LE, jIx ] dx (4.11)
t

+{D‘(i.j)siu’[8.(|”j)x] dx .

The matrices [A;1, [By], [C;], [D;], [D,], (D3], (D,]

are given in Appendix B. Now, integrating over x, we obtain
equations (4.12a) and (4.12b), where the indices (i,j) have
been omitted from elements Al(i,j), Bl(i,j) , etc., for

simplicity.

¢ e ——p———e
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The (i,j)th term of [G] is given by

2 iy oMUf [1D.=D)A,~(Dy+Dy)(B,+C)Jcos[(B+CR] )
er“’J)'e { ‘[Af f(B.’*C-)’J

, [0-D)(B.+C) +(D1+D))A.] sin{(B,+CE]
[A? +(B,+C)]

+ [‘D""D‘)Al_(Dl'b)){BI-CI)]ws[(al-cl)tl L

[A‘l +(B,-C.)‘] (4.128.)

#[(D#De)(B,-C)) +(Da =D3)A, ) sin[(B,-C)E] }
[A? +(8,- C,)"]

+ (Bo 'OC.)( DQ. + D.) -AI(DI - D‘) ’(aa'C!xb‘l"bl)‘Al( Dn*bq.)
(A} +(v.4C)2) [AY+(B,-C)?]

for all i, j =1, 2, °°°, 8, except for the following

elements:

G(1,5), G(1,6), G(2,5), G(2,6), G(3,7), G(3,8), G(4,7), G(4,8),
G(s,1), G(6,1), G(5,2), G(6,2), G(7,3), G(8,3), G(7,4), G(8,4),

which can be written as follows:

oY 2
(D,-D,) sin.(2B.L) + 2(D, +Dy)sid(h mob.)!] . (4.12b)

G(L’j)-ng[ 28,

Similarly, after integrating the general term of
matrix [2J], we obtain the general term of matrix [S], as

follows:
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,% Stihj) = M {UE- -E4)A, —(E1 +E,)(B,+C)]cos [(8,+¢.)8] \
[A? +(8,+C)?)

HU(E-ELXB.+C,) +(E;rEpA Jsin{(B, +C L]
[Af +1(8, ’cl)zJ

+[(E|*EG)AI -(EL'ED)(BJ—CI)]C‘S[(B;'C:)l] $ (4 . 13a)
(A +(8,-C.)*]

HUELENB,-C) +(Es-E))A ] sin [(B,-Cl]
[A'; + (B|- C.)z ]

(B CNE1+Ey) -A(E -Ey) (B, ~CXE2-E3)-A,(E\+Ed)
(A3 +(B, +C.)‘J [A: +(B,-C,)?) J

for all i, j=1, 2, °°°, 8, except for the following

elements:

s(1,5), S(1,6), s(2,5), s(2,6), S(3,7), S(3,8), s(4,7), s(4,8),

s(s,1), s(6,1), s(5,2), s(6,2), s(7,3), S(8,3), s(7,4), s(8,4),

which can be written as follows:

S(t,j)= %[(E.-&)am.tz; # 206, +E4)sin’(B,0) HE+EN ] . (4.13b)
(]

Here again, El' E,, Ej, E,. B1 and Cl' in (4.13a) and
(4.13b), represent the (i,j)th elements of the corresponding

matrices given in Appendix B.

4.4 The Stress-Resultant Matrix

Finally, the stress-resultant matrix for the stress

resultants at node i (x = 0; see figure 2) may be obtained
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from equation (4.2), such that

{11lo) .
{s} = [Lo] [%][PJ[Q;][AJ"{%} (4.14a)

where [Qi] is obtained from [Q] by putting x = 0.
Similarly the stress-resultant matrix of node j (x = %)

is given by
(T} (o) 10 a1
(g} = [101 m]m[mjw {sj}' (4.14b)

The corresponding stress-resultant matrix for both nodes

of the finite element is given by

(t1(o]
{q} - [;][:] [ © ] [[P][Q.-J[A]" {&}r_ (sT] {8-.} y (4.15)
g [ o J [T)(o] 5 %

PILQ;](A)
(oliT) (PXQJA)

where [A], [Qi] and [Qj] are given in Appendix B.

4.5 The Stiffness and Mass Matrices for the Whole Shell

As previously mentioned, the complete shell is
divided into finite elements each of which is a cylindrical
frustum (figure 3). The position of the nodal points (nodal

circles) may be chosen arbitrarily.

The vectors {Fi}, {Fj} represent the internal forces
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acting at nodes i and j, respectively, and {Gi}, {Gj} are
the corresponding displacements. As the shell is continuous,
the sum of forces and moments at a particular node must be
equal to the external forces and moments applied at the
node. Thus

{FY= {7} +{Fd s
moreover, the displacements must be continuous, and

{85} S{slﬂ} '

These relationships allow us to superimpose the mass and
stiffness matrices of individual finite elements, to obtain
the global mass and stiffness matrices {M] and [K] for
the whole shell. This is shown diagrammatically in
figure 3. [K] and [M] will be square matrices of order

4 (N+1), where N is the number of finite elements.

4.6 Analysis of Shells Subjected to Static Loads

We are now in a position to solve problems of
cylindrical shells subjected to static loads. The
dynamical problem will be discussed in Chapter V.

From equation (2.4) we see that for static loads

we can write
(K] {6} = {F}® (4.16)

where (K] is the global stiffness matrix, {§} the vector
of all nodal displacements, and {F}® the nodal load vector.

We may partition (4.16) as follows:
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K.: K, ][5 F,
: (4.17)

K, Kol (8 LF
where {Fl} represents the loads applied to the shell and
{Fz} are unknown reactions at points where the displacements
are specified, and {61} and {62} are the unknown and

specified displacements, respectively.

Equation (4.17) may be solved to give
(8} =K1 ( (R} - (K, I{8}),
{Fz} = [Kzll{s'} + [Kzz]{sl}‘

Finally, the stresses can then be found from the

(4.18)

displacements by a relationship of the type
{e} = [sT1{5}, (4.19)

where [ST] is given by equation (4.15).



CHAPTER V

FREE VIBRATION AND

RESPONSE TO RANDOM PRESSURE FIELD

5.1 Introduction

Vibrations of shells in which the wall motions
are predominantly radial, such that flexure and stretching
of the wall occur while the longitudinal axis of the shell
remains straight, are often referred to as "breathing
vibrations". For the purposes of this thesis, the term
"breathing vibration" will include shell modes for various
combinations of the circumferential wave-number, n, and
number of axial half-waves, m; however, the rotationally
symmetric modes, where n = 0, are excluded. This type of
vibration is very important in shell structures where the
walls are thin compared to other dimensions.

The differential equations of motion for a system

in which viscous damping is present are given by

M {3} + [d] {;}}Jf[x]{% = {Feet) Lo

where {2 (x,cat)} is the displacement vector,{F(‘z,cp,t)}
"is a vector of external forces; [M], [(C] and [K] are the

" mass, damping and stiffness matrices, respectively. The
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study of vibration of non-uniform thin cylindrical shells,
subjected to a random pressure field, was divided into
two parts, namely free vibration and response, following
the normal procedure for the study of dynamical problems.
Sections 5.4 et seq. all deal with the response aspect of

the problem.

5.2 Free, Breathing Vibration

If no external forces are operative, the equations

of motion (5.1) may be written in the form

§ 3

(M) ¢( . + [K] = {0}, (5.2)
N

NH SNﬂ
where N is the total number of finite elements (see figure 3),
[M] and (K] are real, symmetric matrices of order

4 (N+1) x 4(N+1l); the nodal displacement vectors {Gi} are

of the form

~ -
u_,
ni
_ W_ .
{éi} = ) ni (5.3)
(dwn/dx)i r
v .
ni

where uni’ wni' and vni are respectively, the axial, radial

and circumferential displacement amplitudes associated with
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th

the n circumferential wave-number at node i.

Introducing now
r 8 b ~ ~
. St

Y
.

” sin (Qit + 0)

SNH :5 +1
K3

and substituting into (5.1) we obtain

~ B

S

‘mnd L = {0}, (5.4)

([k] - a,

?Nﬂ)
L Y,

which leads to the standard eigenvalue problem. Here

Qi is the ith natural frequency. [K] and [M] being of
4(N+1)th order,we shall obtain 4(N+1l) natural frequencies,
each of which will be associated with a particular eigenvector

3,
{f , also called a modal column of the system. The
&

matrix

. 2R
[CID] e 65‘0 3 (5.5)

& 5
(n4), %w), ™),
L 1 < preca

is called the modal matrix of the system.

Of course, before the eigenvalues and eigenvectors
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of a particular shell can be computed, the boundary
conditions must be specified and taken into account. This
aspect of the problem, as well as a fairly detailed
description of the computational method employed, will be

discussed in Chapter VII.

5.3 Free Vibration of a Liquid-Filled Cylindrical Shell

The previous section dealt, strictly speaking, with
vibration of shells in vacuo. We can usually assume that
the effect of the surrounding fluid (normally air at normal
pressures) on vibration is negligible. This is not the
case, however, if the shell contains, or for that matter
is immersed in, a fluid of considerable density.

We shall now consider cylindrical shells either
partially or completely filled with stationary liquid. In
cases where the shell is partially filled, it is assumed that
it is vertical so that there is a horizontal free surface.
Free surface effects are neglected. This may be justified
as follows: the natural frequencies of the empty shells
in the modes under considerafion are likely to be high

(certainly in the 102

Hz region):; on the other hand, the
natural frequencies of free surface phenomena are likely
to be low, at least in the lowest modes: moreover, the

amplitudes associated with the higher free-surface modes

may be expected to be small because of dissipation. Accordingly,

it may be concluded that coupling between the shell modes
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under consideration and the free-surface resonances

would normally be weak and hence negligible. Actually,

as Lindholm et al. (36) have found experimentally, there

is a possibility of nonlinear coupling between the free-
surface motion and that of the shell, resulting in
subharmonic excitation of the free surface at low frequencies,
while the shell itself is vibrating at high frequency. This
phenomenon, however, is incompletely understood and it will
not be attempted to take it into account here.

It is also assumed that the effect of the internal
static pressure is small and may be neglected. This means
that (a) in the case of completely filled shells we shall
nét consider pressurized shells, and (b) in the case of
partially filled shells, which must be vertical, we shall
not consider very long shells. However, static pressure
effects can be taken into account, by slightly extending
the present theory, essentially by taking into account the
initial strain energy induced by the gravity potential.
Finally, it is assumed that the contained liquid is
incompressible. Here again compressibility could have been
taken into account, as was done by Niordson (33) for
instance. However, Niordson found that for water-filled
shells the effect of compressibility is negligible.

Having made these assumptions, it is clear that the

only effect the fluid will have on motions of the shell will

e e s et em————— o = 15
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be that of inertial hydrodynamic loading. The dynamical
effect of the contained fluid can be taken into account
by taking into consideration the apparent, or virtual,
mass of the fluid, which is added to the mass of the shell
itself (33). For beam vibration the apparent mass of the
fluid is simply the mass of the enclosed fluid, at least
at low frequencies, as no deformation of the cross-section
is involved. For shell vibrations, on the other hand,

the situation is not so simple, and it is found that the
apparent mass is a function of frequency. In order to
determine the apparent mass of the fluid in such cases the
fluid mechanics of the enclosed fluid must be studied.

Fung et al. (37) and Berry and Reissner (32) studied
the effect of pressurization on cylindrical shells containing
compressible fluid, using the wave equation to describe
the motion of the contained fluid. For small motions, they

obtained the following expressions for the fluid apparent

mass:

o] I (VR o & h
=k vire 1, (VRE) P Rt

omd (5.6)
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where pp is the fluid density, A\ =T w/,@ , «2, = JL. 7D/C° ,
C A
o being the velocity of sound in the fluid and Jn and In

are the ordinary and modified nth

order Bessel functions,
respectively.

On the other hand, Lindholm et al. (36) developed
a frequency equation for completely liquid-filled
cylindrical shells. Incompressible fluid theory was used and
Laplace's equation was utilized to describe the motion of

the fluid. The liquid apparent mass per unit area in this

case is

= e [T-N(M AMI;(%,.D] . (57

where )\nw= om T N/ﬂ .

It is noted that this expression is the same as
equation (5.6) when kc + 0 or when Cqy > - Here we shall
use m, as given by (5.7), as we are only concerned with
incompressible fluids.

In the present theory, as the only effect of the
enclosed liquid to be taken into account is that of inertial
hydrodynamic loading, the analysis of liquid-filled shells
is particularly simple. Thus, for a partially-filled shell,
the shell is first subdivided into two: one part is empty
and the other liquid-filled; then in the formulation of the

mass matrix, the mass per unit area of the elements in the

empty shell is pt (see equation (4.6)), while that of the
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filled-shell finite elements is (pt + mF), where mp is

given by equation (5.7).

5.4 Response to Random Pressure Field

The external forces {F} of equation (5.1) may be
harmonic, periodic, aperiodic or random. In this thesis
we shall only concern ourselves with the last eventuality:
the vector {F} is considered to represent nonperiodic,
random forces. Moreover, we shall assume that these forces
are due to pressure fluctuations so that they are normal
to the surface of the cylinder. A method of solution for
such (vibration) problems is déveloped in this section.

It is important, at first, to emphasize that while
the pressure field varies from point to point at any instant,
its variation at any given point fluctuates irregularly
with time, and the frequency spectrum results in many modes
of vibration being excited with a statistical dependence
between them. However, the forced vibration can be
represented by synthesis of the natural modes; this assumption
is generally permissible only for such structures where
nonlinearities can be ignored.

After solving the usual equations of motion for an
uncoupled mode, a generalization is made by putting the solution
in the form of spectra. The cross-correlation spectral
density of displacements at some point in the structure, can

then be determined in terms of the cross-correlation spectral
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density of the pressure perturbations. This allows the
r.m.s. value of the displacements to be determined.

We restrict ourselves to weak stationary random
processes. Weak stationarity implies that the expected
value and the covariance of F(t +7% ) in the sample space
are identical with those of F(t) independently of § . 1It
is also assumed that the random process has a weak ergodic
property. This means that a statistical average of F(t),
or any function of F(t), over the sample space, can be
replaced by a "long" time average over a single sample
function F(t). Finally, it is assumed that the variables
have a Gaussian (normal) probability distribution.

Before we can proceed with the evaluation of the

response, we must first decouple the equations of motion .

5.5 Decoupling of the Differential Equations of Motion

Any arbitrary motion {y} can be expressed by

superposition of all of the normal modes taken in appropriate

proportions. Therefore

3(xq>t) {,}{ } { }:{Z(t)} <1>]{Z(t)} 7 (5.8)

where {Z(t)} represents the normal coordinates, and [$] is

the modal matrix in which each column is a modal column of

e .
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the system. Substituting equations (5.8) into (5.1)

and premultiplying by the transpose of [¢], equation (5.1)
becomes

BB THEE - TR6E -4

(5.9)
Due to the orthogonality of the normal modes,
products such as
T -
{¢} [M] {(j)} =0 {,@ FEA. (5.10)
n 2

Furthermore, it is always possible to normalize the modes
such that

{CP}L[M] {‘%E =M, whem r=s=4.

A similar result is valid for the matrix [K].
follows, therefore, that

] [ (4]
8] [ [a]

(5.11)

It

] i

‘ b/"—?
[

DAY

N

?3 N

_ {(5.12)
= |'K
\] [ "'\J >

where [‘ch and [~K,<] are diagonal matrices. Comparing
now the triple matrix product [¢]T[C] [(¢] with equation (5.12),
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it becomes apparent that this triple product will result

in a diagonal matrix only when the damping matrix [C] is
proportional to either [M] or [K], or to a linear combination
of the two. If [C] is taken to be proportional to [M] and

[K], then,

[CP]T [C] [C—P] = [Crv;] = 2. F“',J%,., M,u] , (5.13)

where Qr is the rth

natural frequency, 9? is the generalized
r
damping factor and PC%] is the diagonal viscous damping matrix

in which a typical element can be written as

Cr =2.9 /KMy, - 510

Substitution of relations (5.12) and (5.13) in
equation (5.9) results in a set of 4(N+l)-J decoupled

differential equations of motion

M+ o belbdfe)e B - W e

where N is the number of finite elements and J is the number
of constraint equations imposed (see Chapter VII). The

rth equation of (5.15) has the form

gx’*"z‘(i,amz.n*@iz,b =—PI'T{4)}{F} . (5.16)

e
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From equation (5.8), the response yt(xAp,t) of
point t, defined by the coordinates (x,¢) at time t, can
be expressed in terms of the normal modes ¢r(x,?) and

normal coordinates Zr(t) such that

4(N+)-J
2,Pt) = ®, t) . (5.17)
=t = 2 f=a) 20
5.6 Representation of Continuous Random Pressure Field

at the Nodal Points

It is well known that a set of forces on a rigid
body may be represented by another set of forces acting at
a different point, along with appropriate couples. The
continuous random pressure field of the deformable body will
be approximated here by a finite set of discrete forces and
moments acting at the nodal points (60).

As previously mentioned in Chapter IV, the complete
shell is divided into N finite elements each of which is a
cylindrical frustum. The position of the (N+1l) nodal points
may be chosen arbitrarily (figure 3).

Any pressure field is considered to be acting on an
area & surrounding the node e of coordinate 2: as shown
in figure 7a. This area S, is limited by the positions Qe
and 'ee' with respect to the origin in the x direction. It
is therefore possible to approximate the pressure distribution
acting over the area Se by two mutually perpendicular

forces per unit length. These forces P ('aa, t)
R
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A
b

e

and f('z,t) , at time t, are at distance Xq from the
c
origin of the shell as shown in figure 7a; and these

values are simply

f‘R('Je'@ = ki I’ (2 ¢:t) cos (Pde (5.18)

2T

fc(z’t) =X I"(xlq’/t) SIN (@) AJCP) (5.19)

where ,g(x,q,t) is the instantaneous pressure on the
surface.

These two forces, {;.and {; , acting at point'A‘
are transformed to two forces and one moment (ﬂ%) acting
at the node e as shown in figure 7b.

The external force vector at a typical node e can

be written in the following form:

r -
(0

Lf;\[‘g("%)t) d;

4 L;é ('aeé-- 9,:) fg(z i ,t) dz;
2
je;, fo (%) 42 -

. ! y ’ ! 3
where 2£=-Q3=Lr=le ' 2L=ﬁé= »Qr=£e and 2:= P.N .

F ('z,t) =

€ (5.20)
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5.7 Fourier Transform Representation of Nonperiodic

Forces

As previously mentioned, the vector {F(t)} represents
the nonperiodic forces due to the pressure fluctuations.
This nonperiodic force can be treated as a periodic one
having~a period 2T of infinite duration (T+~). It follows
then, that the nonperiodic force function can be synthesized
from harmonic gomponents whose frequencies form a continuous
spectrum. This synthesis is accomplished by the use of the

Fourier integral. It is known that in general we may

write
e wat
] 1 £ .
F;(t) = o= gFé( ) e da (5.21)

where Q is the forced frequency in radians per second, and

SF (), called the Fourier transform of Fj(g), is given by

it
S (JL) =j Fé(t) e AL . (5.22)
i Ze0
F3
5.8 Cross-correlation Spectral Density of Displacements in

Terms of the Cross-Correlation Spectral Density of the

Pressure Field

The excitation spatial correlation function is defined

as
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q/%%(x,cp,z) = LoD Y metd , .2

where T 1is tlhe time delay, and the barred quantity denotes

a time average. The stationary random process being ergodic,

we can write

q{j‘.’a.(x,cp,z;) = ‘}A;("/‘P't) ’}9(”—, ¢, t+3) (5.24)

:
= A 1
L z;j_T;L,;w) 4 ot

where 2T is the period.

By using the correlation theorem, we can also write

&, (07) =
“ - (5.25)

¥
. 1 iat
e ) 2 oS, (i) b,

where Sy.‘.‘@“-;‘f’;n';.'j ’ ‘S;'a'-(%’(p’n’ﬂ are the finite Fourier
transforms of ?i(m)%t) and a_é@g)q),t) , rsspectively,
)
such that Sm('x/cp) .ns,‘l)_-_ S_‘;'\az(’ac)cplt)e dt , and
similarly for Sa, the asterisk denotes the complex conjugate.
r

Now for & =0 and i = j = t, equation (5.25) becomes
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¢, (%0)= z("‘%‘?,t)
Be ) ‘%Mw > (5.26)
B T"MZTS S?(z"?""’ﬂ 5 tq"/q’: Do

*
: ]
Since '55" Sﬂ't Z9 ,19 (’Zqo) ,1) is an even function of Q,

equation (5.26) can be wrltten in the form

LV 'Z/(P o A= N
7*1( ! ) ?t(z’ce'@ ”* (5.27)
= Qi L g (z,cp,.nn) S‘a'(zlcp,n,r ddu.
t t :

Tseo 21T
[

By taking the Fourier transform of eguations (5.16)

and (5.17), the following relation is obtained

g@”)" -~6 {4?} {S(&T)} 5 (5.28)
s fu-eyT e

natural frequency, 9 is the forced

where Qr is the rth

frequency, and er is the phase lag of the displacement

relative to the driving force and is given by

A o A
L)
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Also
4(NtD)-T

S?t("%%nﬁ) = :A}l @t )&ae,@) gzh(,rz,,-r) (5.29)

By introducing equations (5.28) and (5.29) in

(5.27), we obtain
%,¢,0) = Y (=, @t
W}t( ,0) 4 (=00

4(Ne1)-T 4
=2, 7@1“) T Py, (zq)ét('xce) (5.30)

=t A o 2 M, My
oO
L 2| O Mgt potfellle o
(o]

where

- )/3

o]

is the magnification factor. Figure 8 shows IHr(Q)I

for a lightly damped multi~degree-of-freedom system. This
magnification factor has regions of pronounced peaks in
the neighbourhood of the corresponding natural frequencies
Q_. The products IHr(Q)Ilﬂs(Q)l for r # s are seen to be
small in comparison with the same products for r = s. In

addition, the terms in equation (5.30) with r # s may be

negative or positive depending upon the sign of the product



Qtr(x’?) @ts(x,¢), while terms with r = s are always

positive.

- 5] -

Therefore, the contribution of cross-product

terms (r # s) to the mean square response will always be

small and can be ignored (38):

be written as

LV? (2,49

.ﬁm

>

Jo=

?" (=, @t

Y3

P in (= @)

l &4' M?J

b e o e e fgr) e

eguation (5.30) can then

(5.31)

The external force vector at each node is given by

equation (5.20); the corresponding Fourier

its conjugate can be written as

.

o
e

jei- B () da

Saﬂa 28 ¢ (%07) de

Sl,. fc(z n.T) ol/:e.P

integral and

(5.32)
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O

Lu
Qu

S;R. (z"')n’-') al"z“’

)g (2 m')d.zP

anr *
| S . g g (=, 57) A2y

=

]

where the indices i and u represent the radial forces,

and p and v the circumferential forces.

and k correspond to the moments.

Substituting equation (5.32) into (5.31) and

expanding, we obtain

G(N+9-T

,

N+l N+l

>, 2 ¢
A=1 &=
N+t N+I
N+l N+t

+2, 2.0 &

4*! =1

+ 3 &

2 2 nm

% kn

Al op

ke

.

[ 4

(z ¢, o) ‘2* (z ‘Plt) - Z‘

W(.n.z 2

RC

a0

v, (=,9)
ot M" a.w

The indices j

{:f. z’f{ L:)W (o) %)%, )9 42

(5.32)
> 7cont'

Jl H ,gn)}z.

ffW(.naz'zoo\,za\,t

D)dm‘-'m"\ +

(5.33)
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N+ N

+5,> % %

4= w=r AT “’)"

N4l N 8 du

AW

b
4e1 el 0

+ :‘:.Z‘ %CPW Jo.;. LL(ZE L) W{cﬁ %%, dn bz
Nel N ¢

* y}; n% érfvéam JQF 2,’.,w c(‘n"qel“’75 ;9 J”‘Pmnr,} A ,

, .
where \A/.F('n-', 7‘79‘,“’)‘:_‘%:"" [T S(?'; T)S k"“ -‘?1 is
the cross-correlation spectral den51ty Functlon of the

!
force field'{ .
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5.9 Calculation of the Cross-Correlation Spectral
(Q:x,x' ;0)

Density wf of the Force Field 'f'.

This quantity Wf(Q;x,x';O) can be obtained
electronically by multiplying f(x,t) and f(x',t) and
passing it through a narrow-band filter whose central
frequency is varied slowly through the desired frequency

range. (Here f(x,t) represents the force per unit length.)

Then

{m(?ﬁ,t) {J‘x,’t) = WF (:Da,' =,2’0) , (5.34)

where the quantity fo'Q denotes the mean per unit band-
width,

The pressure field is assumed to be homogeneous,
and hence the resultant force field will also be homogeneous.
This assumption permits writing the cross-correlation
spectral density of the force field as a function of the

1
separation (x-x ) and the frequency Q: thus

WF (; z,z//.o):wg (.rb,"g)-o)) (5.35)

where ‘g’_-: ‘2-7’l . Substituting equations (5.18) and
(5.19) in (5.34), the mean-square values of the fluctuating

radial and circumferential forces per unit band-width are
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€0) = ](’ wt){(kt (5.36)
=x [ [ h» (Z#Yp (Z 7t cos( @)-cos( €)',

Wﬂ(ﬂz‘é’:") = L) £ =Y (5.37)
f ”f 2,288 b (#/0/t) sin( g)sn( ¢)dg d@ s

NG DRNCETE

(5.38)

= n”-J:Y”f,“(gmt) P @ 9t) cos( ®.sin( ¢)de d‘P’;
W‘Fcz(&/‘g’ o) = \h/fgc(tﬂl,(g/o) .

5.9.1 Calculation of Pa (22, <P,t)%k_>_¢?,'05 t)

(5.39)

The normalized space-time correlation function of

the fluctuating pressure is defined as

q) (f 'ZI'E) _ P pE: ezt © (5.40)
P79

’ p ‘ N
where ‘g =|ge_,x|,'zgl(¢_q))m‘ 5 i & is the time
delay and '_.,?-(zlc.p,t) is the mean square of pressure
fluctuations. The spatial correlation function in the

frequency domain, for G =o©, becomes
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(fx t:) 2+%, Py t
Y )= Bl e (=58

(5.41)

where the subscript Q represents the geometric mean
centre-frequency of the octave band (forced frequency,
rad/sec), Pz(dblﬁh> is the mean-square pressure per unit
band~width, and the subscript Re indicates the Reynolds
number for a given measurement. The longitudinal and
lateral spatial correlation functions are particular cases

of the space-time correlation function (-VPA(R:Q/,”Z, 0) and

are given respectively by LV (‘g, o, o) and q} JSOR;"Z' o}

Assuming that o

W (‘%’no) LP (L‘? °).Y (e7,0) 5 (5.42)

thFk r.n-?e

and substituting equation (5.42) into (5.41) we obtain

b (=28 p e e, Y =Y (Seaw e /%9) P, Re) . (5.43)

5.10 Summary

In §5.2 was presented the general formulation for
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obtaining the free vibration characteristics of non-
uniform cylindrical shells. Solution of equation (5.4),
with the pertinent boundary conditions taken into account,
will yield the eigenvalues (and hence the natural frequencies)
and eigenvectors of the system.

The necessary modifications for the analysis of

shells partially or completely filled with liquid were

presented inj 5.3. To obtain the free vibration characteristics

of liquid-filled shells, we must again solve equation (5.4),
where [M] must now be modified to take ;nto account the
virtual mass of the fluid.
The subsequent sections dealt with the response of
a shell subjected to an arbitrary random pressure field.
Equation (5.33) iJng.B gives the mean-square response of
the shell in terms of the cross-correlation spectral
density of the pressure field. Inj'5.9 this cross-
correlation spectral density is expressed in terms of the
pertinent pressure correlations [equations (5.36) - (5.39)].
Finally, these pressure correlations are expressed in terms
of spatial cross-correlation functions of the pressure field
and the mean-square spectral density, by equations (5.43),
in the particular case of a homogeneous pressure field.
Thus, if the mean-square spectral density,F57;:155 '
and the spatial cross-correlation functions,q/(glo,o) and

q/(o,'z,o), of the pressure field are known, the cross-
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correlation spectral density of the field is known,
in terms of equations (5.36) - (5.39): the response may

then be computed by using equations (5.33).



CHAPTER VI

SHELL RESPONSE TO SUBSONIC BOUNDARY-LAYER

PRESSURE FLUCTUATIONS

6.1 Introduction

In the previous Chapter we obtained expressions
for the response of a shell subjected to an arbitrary random
pressure field. The origin of the pressure field was left
undefined, although the indicial notation'Re' for Reynolds
number anticipated a flow situation. In this Chapter we
shall consider the particular case where the pressure field
arises from pressure fluctuations in the subsonic, turbulent
boundary layer of a fluid flowing inside the shell,

In the previous Chapter we have indicated how the
inertial effects of a fluid contained by the shell may be
taken into account. However, when the fluid is flowing,
there are additional factors that must be considered; thus
the shell will be subjected to centrifugal forces proportional
to ﬁf (azw/a x") and Coriolis forces proportional to
Qﬁg('b‘w/aae at) , where U'Qis the mean flow velocity (33).
The former have the effect of decreasing the natural
frequencies of the system (34), kgg), vhile the latter
effectively have a damping effect on vibrations in cases

where one end of the shell is free (34). The magnitude of
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these effects depends on a dimensionless flow velocity
given byU:ﬁQ(f 1:_523‘)'/2’ . Unless we are dealing with

very flexible shells (e.g. rubber shells), where E is

very small, or with very high flow velocities, these

effects are small and may be neglected. Thus for a
cylindrical shell with L/r = 26, t/a = 2.3 x 10_2 and

both ends clamped, the frequencies for n = 2 are diminished
by 3% when U = 0.20 (58); for a steel shell containing air
flow, the dimensional velocity associated with this U is
3330 ft/sec, which is beyond the range we shall be considering.
(Actually, the Coriolis forces may be taken into account by
incorporating their effect in the overall damping of the
system.) 1In any case, for metal shells conveying fluid with
flow velocity in the nofmal engineering range, these effects
are negligible and will not be taken into account in the
present theory.

It is also assumed that the internal pressures are
not unduly high, so that pressurization of the shell is
negligible. We further assume that pressure drop in the
length of the shell is sufficiently small for the mean
pressure to be considered constant over the length of the
shell (thus excluding very long, slender shells): this,
however, is not a limitation of the theory, but a

simplification introduced for convenience.

For the case of subsonic boundary-layer pressure
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fluctuations, the longitudinal and lateral space correlation
functions have been determined experimentally and

theoretically by several investigatofs, (39) - (44).

Bakewell, (39)and(44), has measured, and derived a formula

for, the longitudinal and lateral spatial correlation

functioné over a range of Reynolds numbers from 100,000 to
300,000. 1In the experiments, the fluid was air. Compressibility
effects were ignored because the highest local Mach number

was 0.185, which is well below the nominal 0.3 Mach number
generally used as the lower limit of compressibility

phenomena.

6.2 Longitudinal and Lateral Correlation Functions

The longitudinal correlation function WPF(R‘E'O/O)
’ ‘,

and the lateral correlation function (°/%ﬁ» are plotted

lp,ﬂ
against the axial and circumferential Strouhal numbers,

*
S.= Yo‘g/() and S =£°’L/U , in figures 3 and 4 as
% Conv. 4 ¢
given by references (39) and (44). Ut and UCONV are the
centreline and convection velocities, respectively.
The data of the longitudinal and lateral correlation

functions, for all Reynolds numbers, frequencies, and

separations plotted in figures 9 and 10 respectively, appear

* £ and 2 both represent the forced frequency; fo is given
iR Hz and Q in radians per second.
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to define the following curves [given by (39) and (44)]

Ly,"fosg‘fl 0,0)_—:._, e-blgg‘cos a,s‘g 2 (6.1)

whf,,ze(o’%o) x (1 +c S{)-'-l(.a - e-‘LS’:)-' > (s.é)

where a,b,c and d are constants determined from experimental
data. |

The values of the constants used in these two
expressions for longitudinal and lateral correlations
depend on the fluid. For turbulent flow in air, the
values of a,b,c and d for Strouhal number based on centre-

line velocity tLE' as given in (39) and (44) are

Q@ = 8.72@6 2 b:l.D) -FO"J gg=‘gfo/U€ 5
¢ = 20 )J.-=|OO) %W S,z:qZ,Fo/Ue o

Bakewell (44) reported that work to determine these

(6.3)

" constants, for turbulent flow in water, is in progress

at the Underwater Sound Laboratory (U.S. Navy). It may be
expected, nevertheless, that these constants would be the
‘same for different fluids at the same Strouhal number, at
least for sufficiently high Reynolds number.

It should also be noted that the empirical expressions
for the lateral and longitudinal correlation functions satisfy

the following general requirements (39):
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Yrelooe) =1,
g,: e (¢0,0) =

%zh;v-o q’r.fo-.ﬁeb"z")) i

*, {., Re (%,00) PAA .,(o ) _o . (6.4)

9‘5-- EX ’

“b 1,

/

oo) q/ ( ‘; o, O)
L}/,D’ f‘,/ ,"z , o) ('Vb 0)

On the other hand, the mean square pressure per

unit band-width,r,‘({”g‘) in equation (5.43), is plotted

in non-dimensional form against the Strouhal number
(s=z{.m/ue> . This plot, also obtained by Bakewell (39),
is reproduced here in figure 1ll. For the purposes of this
analysis, a functional expression for this curve was obtained,

as follows

for
P ({,R) = 2‘& f:cU e_d' Ue (6.3)
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where k, = 2 X 1078 ana k, = 0.25.

Substitution of relations (5.43) in equations

(5.36) - (5.39) gives

WF (f (;,0) = rn. F(ﬂ,%)@ (6,0 )

b, { Re (6.6)
an
S S W (o,oz,o) cos( Q} cos( lP) JQJ“(’;

o] 0 B1Y;

We (£5%,0) = n. r‘<<~ﬂ=> W, L& 00 6.7

IOI

. S S g (o, 'rz, 0).swn( ).stu( ?)-Mwl)

7 Yo,

We £ 69 = 2 Fm.w, (Eod o
ij L\’ (°%°) cos( @-ste( @).dpde’,

J—
o (o) 2 i

where LP\’,f.IEe(Lg’o’ )’LV,G.,(n'qz'D) and F ({01 R¢> are given

by equations (6.1), (6.2) and (6.5), respectively; and the

integrals of equations (6.6) - (6.8) are evaluated in

Appendix C

6.3 Mean Square Response

Substitution of equations (12C) - (14C) into (5.33)

leads to the following expression:



- 65 -~

4(N+)-3
i) 2 Z cptnk" ‘9))1}' .
W}(aeq’,) (> W (2,0,t) = e e

'L FECRRD-T(5)- || -
{:ét ;%;; é{n%‘% 52“5 w (%0 o).cllae;.ob&w)

fRe

N+ N+

+Q§§%‘%S (Gt Godama] O
N+l N+
-+‘§%%»¢ka g@‘ 2)( )
™ (,<i'0°> d’z’a’
N+t N+! e
+T§: :é’ djr%%n j)"{ LVH(ZOOJ ‘H:o 2

where l:"({,/ Re) is given by the equation (6.5), T(f,)

is evaluated in Apoendix C, equation (11C), and can be

written as follows

- - e e
W= (emo " aprapcma]
C-en/uy , D=d/ U

(6] ={[1(%0 > ]:( ¢ J}-Vz )
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fr is the rth natural frequency in Hz and fo is the forced

frequency in Hz.

By substituting relations (6.1) in equation (6.9)

and integrating over x and x', the following is obtained

jj (ae. ) h) o (§100) da dm, =

; Bl
‘((A% ) g (3 A)(!, h.) - z)e cos[fAll Lh.l]
-zAB(?.-Q,,)( ) Rl 'gl"[f.“l‘i'lhl]
~(-R)(8: z..>(t.. )" o "'cos[f 140]

+.zAs(£ th)(t,, 3 'f it sm[fMe 4]

~(BA )(e-th)(a-e.)e wallyt 'cos[mo,- A .
+zA3(e Lk)(eN t,) fm’ ‘lm[fAll t,J]

f.l
+(.B )(l‘ch)( - ) 3 h]cos[f |¢5-£,‘|]
- ! ’
-Q.ABQ tk)(e eb) 8l hlsm[f.‘lt;""ul]i
. -£3"“!’h,
+ = ‘iB" .} B(3A%8 )(l +1 -0,-2‘) cos[fAlL-0/]
A+ .
. FAsR) (U - )¢ &+ “"sw[f 14-4]

-8 (3A=8)(L, +n-ta L)e -fﬂla cos[ AE- M]
AR (Lt h) e 'mlas;"[“ ]
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4 k3 _ - '
-s(sA"-s')(lN+ t’-e.-z’) e LelY Q"lcos[f.qzj-lh\]

N 3 'k
A ! - E'-t' l '
_A(352'-A2)(L:+2:-la"ah) €£B| 3 hSIN[‘F,A‘%’QhU

ST X [ 1o 1 ,
+ B(sAz-B? (2:+ 22- ?‘j'ek) e s hcosBC.AlQ'j— Qhﬂ
A (a2 ) (G 02- 60, Shelti s fr m’kq]}
| 2 zz‘ 2 02 _f.BlE"Qh,
+f_4(f_*1'5")7§ [(A -8) -4 AB €0 eos [Alh ]
° I
s [£. 1057

_£Blb:-
_[(Az_Ba.)z-4 A).Bﬂ.] ef.Bl d ’:Q‘S[{;A‘eé‘zhl]

. _£8]¢5- bl ‘
-4A3(A".5‘) e £81% st[{,klﬁé’Lgﬂ (6.10)
_£.8] o‘a__ QL‘ cont'

— [(Az_ Ba.)z'. 4 Azsz] e ' coS [£A| 23 -2;‘]
— 4AB (A"-B’) e'f‘B'eé- tl SIN EF,A |5- QLl]
o[ 8= ans) 5 L pan)

- QI”zl ’ ’
+4 AB(A‘-B’j e 814 bl SIN [;,Aua.-eh[]} 5

-1,818;-2
+4nB(atEY) € K

L 1Y k
[ty im -
i | bt
_3_1_..’_.{ [.B‘- 3A"8] e ke cas[{,Alek- l;l}
. (x+8%) L o st
+ [A -SAB] e sm[f,A,l.,.-ﬁ,;l]

£812,-Lil (6.11)

-[8-34'8] € cos[f,A&Ll]
'-l- ,
- [As_ 3A82'] e-f"B‘ell "lsm[ﬁA Ilgl;_l]
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_£8lleL:

3 _ .2 ‘ !
"[B-3A .BJ e cos[_f,Alﬁg l;\]

-£BI4 L ,
-[A 38 € T CsinlfAly G|
1,810k )y
+|:Bs-3A2'B] e * cos [ﬂA“k-Qiﬂ
-F.BIQ'-Q:" 1
s[tand] & L g
: | (6.11)
| (B a%) (¢ _2:: -foB8,-U!
v £’(A‘+B‘)’{ o . )fsn..uk cos[fAl-4] cont’
—-‘LAB(D.h-QN)e e “'.stN(}.A[Q.l.-'-d]
- (B2 ) (L) e RBl el cosfg a1, ]
+2A3(QL"Q:) e-c.BlQ'b'ni' -SIN[&A"_"!-‘;D
-(B‘-A’)(Q,;Q,':) e—fasnh'eft\ C°SB“.A‘QFQ’I'I]
+ a8 (QH-QZ) e.l;,B(Ob-li-l s:»EF.AIQr Q'CB
+ (B'-A‘) (Q'—E:) e-f.Blelh-l'i[ cos B. AML'Q"B
~2AB() _ ok -fBlet-0" : ‘
(- 4) @ MBltc Ll sxnl}.A\e;-e';B} )

[ [

-f.8l '{Ll {82
T'%T”' (8*A)€" cosf Al ,,,ﬂ _anse ™ (LA
> (B%A7) _£810}-L.] it

o ' e E-l"l !
-@-K)e” cos[fall; I+ e’ STN [{okfﬁ‘.‘fuﬂ

(g2 ol AIe-5]

+3AB € ,c.sle‘--l.LwBoA 12,;-1.;.]]
~§ B|0:- b
+ (Bz- A’) e falt; coi [{,A[Q:;-l;l:l

-f.BIL;- L] ,
-2p8 e sw[{.mg-t;ﬂf 5

(6.12)
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where A = a/U¢_ , B = b/Uq, ‘a and'b‘ are given by equation (6.5),
and J,e ' ‘Q,e ’ Q: represent the coordinates of the area
surrounding the node e (figure 7). In this case e may have
the values i,j,k,p,u or v. The expression

j ,(QM hfo (f, o )du_ dre  can also be obtained from
equatlon (6.12) by substltutlng in this equation the indices

p and v in place of i and u, respectively.

Next, the product \: (JF° ,Re) T({ \-\H Lﬂ\

equation (6.9), gives the relation

(7T | =
<, -(K{’ * Ci/fo)

{'C[( )f (4%.- ){,‘4_1] (6.13)

K, _(K ;,4-1)/{.)
R
where _2,& QIUU 5 K-—-‘L'?!"‘/Uq;_)c 1/V‘_-’)

C,,_.\/'"l'.2 ”"]; Di= VIn2/5 ,D,=2Wpa [i- Sima],

C= CW/U ,p_i’?/U Iz')laand a,b,c,d are constants given by
equations (6.5) and (6.3), respectively.

Substitution of relations (6.10) - (6.13) in
equation (6.9) results in an expression of the following

form:

e s
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4(N+1)-J
= t —4 Z ¢z (2’ ('? . )1'2’ .
L}jy,t(z,?/ O) —yr (2) ‘P)) ol 2 ) " K1¥: m:
N+{ N+1 i N+

. Z 2. ¢ ¢ IT ,+24 2121 1 b“;:‘ll (6.14)

,"-1 “_1 RJL ‘L"p

+§f"2"@¢ r””[ Nﬁ§f¢ | p]

3t ket §% R r:v:)"’"’”"

1:: = . z{(ﬁ' y, [F (%0 B 1,0 -F k) +F°(z;,e;,)]
(5 N +,J.A3[.§ Qo b)+F (G046 (8,05 (&, »)]% ,
(6.15)
L= " ,_) {(B-3A4B)[F(ek,t) E L)) +F (G ,')]

+(A SAB)[F;( F(e e -F A ‘) 4(2,‘,6&)]}
i(s 49 (0 by) [F CRARACIAY
-E0-L) [RT0L) R 8,L)]
'ZAB(QI{Q‘: )[R £l 4]
+2 AB(L [F (0.k) - (z;,t;)]}

6.16
(A" 5’) (6.16)
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M
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[t 5
F;°<n;,e~)=-ggj - coaldeLlt] i

[( )F +(4S§m f * 1] (6.19)
J S ‘{Jil][ i 4f

PG e b

rL

oo - (ke8I ) £/
F‘;(Q&)QA):KJ 3| 5 LAl 9.\1‘]#’
%) ﬁ[(]cw>f4 (4%, 2){ +1]

+ L) §. +( AR
+Kzf el ey RS Jfo;

D, ) ]['-” [("E) F“".*. (’ﬂﬁ,,?f_) ﬂ +1J

(6.20)

Ec(ﬂi)ﬂw) = "—a,c(z,;,p'w)/fo ) (6.21)
E}b(‘e'bow = F;A(ﬂ&, L) /]Co 2 (6.22)
FSC(ZA") g,“, = F.;C( 2&) lm)/ Foz > (6.23)

Ep(eg,ﬂw = Ek(ﬂ;,tw)/](:z’ 5 (6.24)
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The above integrals, (6.19) - (6.24), are evaluated and
listed in Appendix C, [(25C) - (30C)]; they are given by
-8 A -, -
Q“)___Z-._ 46 SINKz-4. e smx4+‘ (e c:o.sx;b+€ e’c.assbléT
()

-% -
"'—LE.e 2w, "4 € smf'*' ( Ygosxé+e cosxa)

87§, 3
(6.25)
Py
E (9,,19“,) ’L&LPG cosb"'4e cos)';‘-f' (e-sxul' +e sznx)]
8C.f 1
(6.26)
+ Tt_K&_["ec s\' -4€ c.osx +— (€ sml’+e smb’]
o %Y o
821,{"‘ ‘qp( J
FC K -¥3 s . £
(24:)9,“>=1L [e sing,-e sth}-@-_K_&_ [esmx -¢ s1w K]
8C 821,
(6.27)
55 k)
—r ¥ %, ¥
ia (1627 )= 1.‘5&—3—[8 csosl%-ef—_osx]ﬂt_&__[exc,sx ecs;sx]
8 G 1, T
(6.28)
. n
n
¢ _ 2 < ¢
Fs (Q,Q.‘,)"FUE; =k, (6.29)
r
3 A »n
Fs (E;A,):E_F “‘L'?.F; ) (6.30)
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where

b’ = [ k*|t:-L.| (r€+B)] § + &
[t bl (g e

Yy = [k G IheLl (o s‘g,,]f;{c('“?'% )

[ Kyt 8 Lu| (AY 5)_]10,; ﬁ(*‘ﬁ) 2
%= [ b (ar sy I+ S,

ﬁk‘?)
¥, [K+}2£l(h‘§+8)].ﬁb f( 4

8’ K"q 1sz gb ) q%u
Lrsoeuie-es )i ooty
K+l (a¢-8) | £
b 9] b - Py

3' =~ - + + D, Cs’D'U

o= [N %l bl (Ae g 2 ARk
K"‘z’&i"‘/ui ) Ka."'?"zg.ﬁ"‘uiz

C= L/VT, C= VE‘(z-eD/c) ;

D= Va2/p , Dy=2VPa'[i-$ha],

(6.31)

* here the arguments (2., £ ) have been omitted from
(2 L ) 72(2 L f egc for simplicity.
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A=a//u{ , .. B= l>/U€>
2 2 2 2
C=<erfuy ,  D=4rfyg,
1 and a,b,c,d are constants given by equations (6.5)

2’
and (6.3) respectively, fr is the rth natural frequency

k k

in Hz, r is the mean radius in inches, M, is the element
of the matrix given by 'equation (5.12), Ui is the centre-
line velocity in in./sec., Pp is the fluid density in
(lb.sec.z/in.4) ' (gw is the generalized damping factor
given by equation (5.14), ( B‘-‘, 2:' ' Q;, 23 ’ 2; ' .Q:, etc...)
are the coordinates of the field force (figure 7) surrounding
the nodes (i,j, etc...) given in inches; and @ ' ' 4) ’
CR", 4)"', Cpﬂmrepresent the elements of the m;c;l :g'lun?:

th

of the r natural frequency in the modal matrix corresponding

to the radial displacement, rotation and circumferential

displacement, in respective pairs. Finally yf’t(g'cp,t) is

the mean square response (displacements) at the node t.



CHAPTER VII

METHOD OF CALCULATION

This Chapter describes a procedure for computing
the vibration modes and frequencies, both for the case
of the empty non-uniform cylindrical shell and also for
the case of the shell completely or partially filled with
fluid. Also, the root-mean-square (r.m.s.) response
to subsonic boundary—layer pressure fluctuations is
obtained. The procedure is based on the theory developed

in the previous Chapters.

7.1 Computational Method and Computer Program

To determine the eigenvalues, eigenvectors and

the response of a given uniform or non-uniform cylindrical
shell, we first subdivide it into a sufficient number of
finite elements (sufficiency in this context will be
discussed later). The calculation is then done with the
aid of a digital computer program which, for given input
data, calculates the mass, stiffness and stress-resultant
matrices for each element, assembles the global mass and

stiffness matrices for the whole shell, and calculates the

~natural frequencies, the eigenvectors, and finally the r.m.s.
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response at each node.

In this section, the necessary steps of the
computational method will be outlined. The steps are
specific enough to allow a digital computer program to
be written by using them as a guide.

The basic organization of the computer program
used in the present analysis is shown in figure 12.

A - The necessary input data are the mean radius, wall

thickness, and length of each individual element, and the

respective modulus of elasticity, Poisson's ratio, material

density and fluid density; also the values of n(>2) which

should be calculated. To find the r.m.s. response,

additional input data are required at each node such as

the centreline velocity, viscous damping or damping factor,

and the constants a,b,c,d,k1 and k2 given by the expressions

(6.3) and (6.5).

B - The computer program then proceeds as follows for

each element:

(1) the eight complex roots of the characteristic equation,
Aj’ are calculated by the Newton-Raphson iterative

technique, and hence, we obtain Kir Kop Hpr Moy Qs 8.,

J J
j = ’ l'..l ’ d- -°7
(3 1,2 8), an Y B:|
(ii) the intermediate matrices ([R}, [(A], [T], (A}, [RJ] =
[A]T[A] and [Y] = [F]T[P][r] given in Appendix B are

determined;
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(iii) the displacement functions, mass, stiffness and
stress~resultant matrices, [N], [m], (k] and [ST],
respectively, are computed by the relationships
given by equations (3.13), (4.5), (4.6) and (4.15).

c - When the stiffness and mass matrices have thus been

computed for each element, the matrices are superimposed

to form the global shell stiffness and mass matrices, in

the manner described in.§4.5.

D - If the shell has rigid edge constraints, then

appropriate rows and columns of [K] - Qi [M] given by

equation (5.4), are deleted to satisfy these constraints.

Accordingly, [K] and [M] are reduced to square matrices

of order 4(N+1)-J, where J is the number of constraint

equations imposed. The form and character of equation (5.4)

is not affected, except in that the reduced [K] and [M] are

positive definite instead of being, generally, positive semi-
definite. It is noted that only kinematic boundary conditions
are specified. Thus for a free shell, no specification of
boundary conditions need be made, and J = 0; for a shell with
two edges simply supported (vn =w, = 0) J = 4, and for one

with two clamped edges J = 8.

E - With the reduced [M] and [K] determined, the computer

program proceeds to find the natural frequencies, Qi, where

i=1,2,""", 4(N+1)-J for each n, and the corresponding

eigenvectors of a real square non-symmetric matrix of the
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special form [M]-1 [K], where both [M] and [K] are real,

symmetric matrices and [M] is positive definite (31).

F - Finally, if the r.m.s. response to a subsonic
boundary layer is required, the diagonal matrices [VLJ and
[Kklmust bevcomputed by the relationships given by
equation (5.6). It follows that the calculation of the
amplitude of the r.m.s. axial, radial, circumferential
displacements and the rotation at each node can be done
with the aid of equation (6.14).

A computer program, based on this procedure, has been
coded in FORTRAN IV for the IBM 360/75 computer. Double
precision arithmetic was used throughout the eight overlays
shown in figure 12. The maximum capability of the solution
for the eigenvalue problem is limited to 30 elements, which
corresponds to 400K bytes of core memory.

The program, involving approximately five thousand
cards, is compiled in 3 minutes, and the necessary time

for the calculation of the eigenvalues and eigenvectors of

a given shell subdivided into 15 elements is about 2.5 minutes

for each value of n. But, for the calculation of r.m.s.
response due to random pressure, the execution time for a
typical case involving five finite elements is approximately
30 minutes. However, for the case of 10 elements, the

time involved is around 130 minutes of CPU.
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The computer time for the calculation of r.m.s.
response seems to be high. The time quoted above refers
to the case where all the computed natural frequencies
are used in the calculation of response. However, if
only a few of the lowest natural frequencies are used
in the calculation, the response may be computed to an
acceptable degree of accuracy, but with. a considerable
saving in computational cost; thus, if only 15% of the
natural frequencies are utilized, then the time given
above may be reduced by a factor of 1/8 approximatively.

To illustrate the utility of the computer program
described above, the results (INPUT, OUTPUT) for one

example problem are listed in Appendix D.



]

CHAPTER VIII

CALCULATIONS AND DISCUSSION

8.1 Introduction

The aim of the calculations presented in this
Chapter was to test the theory as to correctness,
precision and versatility and, accordingly, a wide variety
of cylindrical shells and boundary conditions was chosen.
Most of the calculations were aimed at determining the
free vibration characteristics of shells.

The first set of calculations (§8.3,§ 8.4) were
all for uniform shells with wvarious boundary conditions.
In each case the eigenvalues and eigenvectors were calculated
for various combinations of n and m. The first calculation
in this set (§8.3) was with a single, completely free,
finite element in order to investigate rigid-body motions,
with the aim of testing whether the displacement functions
selected satisfy the convergence criteria of the finite-
element method.

The second set of calculations (§8.5, § 8.6) deals
with the free vibration characteristics of non-uniform

shells. A shell made up of two segments of unequal wall-
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thickness and another which is ring-stiffened are
analysed.

The third set (§8.7) deals with the free-vibration
characteristics of a uniform shell completely or partially-
filled with liquid.

Finally, the r.m.s. response to subsonic boundary-
layer pressure fluctuations is determined for one particular
case in § 8.8.

In all cases but the last,the results obtained by
this theory are compared with other theories or éxperiments,

or both.

8.2 Characteristic Equation

The computational task is quite complex and the
author was constantly aware that it would be easy for an error
to slip into the computer program and remain undetected.
For this reason the results were checked at each stage.
Starting with the characteristic equation, the values of
Aj obtained by the computer program were compared with
existing values using other theories. One such set of
calculations is shown in Table 10, where it may be seen
that the computed values based on Sanders' characteristic
equation are comparable with those from other theories.

Next, the elements of the displacement function

matrix, [N], were calculated for a wide variety of input
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parameters. The results for a typical case are shown

in Table 11, where the elements of [N] were calculated

at x = 0 and x = & respectively. 1In such a case we
should obtain a matrix with zero elements throughout,
except for some elements equal to unity corresponding to
displacements being equal to nodal displacements. Aé may

be seen this is indeed the case, and with very good accuracy.

8.3 Rigid-Body Motions

For a finite-element free at both ends the solution
of equation (5.4) should give the rigid-body modes of
vibration, which should be two in number (for n > 2) and
have zero frequencies in addition to the flexural modes.

The results of one such calculation will be given
here for a particular element with E = 106 lb/in.z,
»=0.3, p=11b. sec?/in.®, r = 60.523 in., t = 1 in.,
L

40 in., for n = 2. The computer program, described

in Chapter VII, yields the following eight eigenvalues:

22 = 0.0478 02 = 1390.8
2 = 0.2187 02 = 3072.4
2 = 348.22 a2 = 5585.6
02 = 424.28 a2 = 6273.9

all in (rad/sec)z.
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We see that the first two eigenvalues are
essentially zero when compared with the others, within
the accuracy of the computer manipulation (although double
precision was used). The corresponding eigenvectors

associated with the first and second modes are listed in

Table 12.
We note that for the first mode u = un ~ 0,
i 3
(dwn/dx)i = (dwn/dx)j:z 0, wni = wnj and vni = v j' i.e.

this mode involves puré translation in w and v. The second
mode, on the other hand involves rotation about the centre
of the element and axial translation.

Taking 3Y/3x = (vn - vy )/%, etc. and using
j i

equations (3.1), (A.7) and the values of Table 10, the
strains are found to be all of order 10'_4 or less. This

is not true for eigenvectors corresponding to 2, and higher.

3
It may be concluded, therefore, that the displacement
functions chosen satisfy the convergence criteria of the

finite-element method with good accuracy.

8.4 Calculations for Uniform Shells

The eigenvalues and eigenvectors of uniform shells
may, of course, be calculated by much simpler hethods than
by this theory. The main aim here is to test the correctness
of the mass and stiffness matrices in their general form as
derived in previous Chapters.

The first calculation involves the determination of
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the natural frequencies and eigenvectors of a particular
simply-supported shell which has been analysed by
Michalopoulos and Muster (46), not only by their own
theory but also by the theory of three other investigators.

The data for the shell are as follows: = 4.08 in.,

r
t = 0.047 in., L = 18.54 in., E = 3 x 10/
4

1b/in.%, ¥ = 0.3
and p = 7.324 x 10 ° 1b. sec.z/in.4. The natural fregquencies
of this shell for n = 2 to 5 and m = 1 are shown in Table 13,
as calculated by Michalopoulos and Muster according to
various theories, and by the author.

Arnold and Warburton's (47) pioneering work derives
the frequency equation by the energy method using &imoshenko's
strain relations; the strain and kinetic energies are evaluated
and, with the nodal configuration assumed, Lagrange's
equations are used to derive the dynamical equations,
eventually leading to a determinantal equation which yields
the frequencies. Three natural frequencies are obtained
for each nodal configuration, of which only the lowest is
of interest here and corresponds to vibration mainly radial
in character. Baron and Bleich's (48) theory is based on
an energy method in which the shell is first treated as a
membrane and the bending effects are subsequently introduced
as corrections. Galletly's theory (49) is quite similar to

Arnold and Warburton's but is extended to ring-stiffened

shells. Finally, Michalopoulos and Muster's (46) theory
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which also deals with ring-stiffened shells, proceeds
essentially as in (47), but expresses displacements in

the kinetic and strain energy expressions in general,
series form; the equations of motion are written in matrix
form and the frequencies are found by the Jacobi iteration
method, yielding also the eigenvectors.

The results obtained by our theory were calculated
using ten equal finite elements. As may be seen in Table 13,
the results obtained by this theory are in quite good
agreement with those from other theories, and particularly
those of (46) which may be considered to be the most precise.

We also note in Table 13 that the frequencies are
not in ascending order of magnitude with increasing n, and
that the lowest frequency is not associated with n = 2, in
this particular case at least. This matter was first
observed and explained by Arnold and Warburton (47) and will
not be elaborated upon here.

The eigenvectors were also computed for this shell
and are shown in figure 13 in normalized form. Once
normalized, the eigenvectors are identical for n = 2,3,4 and
5 to eight significant figures; moreover, they are indistinct
from the corresponding sine and cosine half-waves, as they
should be for a simply-supported shell. As may be seen in
the table at the bottom of the figure the motion is mainly

radial; thus v / 1

max’ “max < 0f10

).

~ 1/n d W
=~ 1/n an umax/ max
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Accordingly, the computed frequencies correspond to the
lowest of the three frequencies determined by Arnold and
Warburton's and Michalopoulos and Muster's theories, as
expected.

Another set of calculations was undertaken to
determine the requisite number of finite elements for a
precise determination of the natural frequencies.

Calculations were made for the same shell as above for

n 2 to 5, and with the number of finite elements

N

2,4,6,8 and 10. The results for m = 1 are shown in
figure 1l4a and those for m = 2 and 3 in figure 14b. From
figure l4a it is cleai ﬁhat for m = 1, the higher n is,

the larger the number of finite elements required: thus

for n = 2 and 3 the frequencies may be adequately determined
with N = 6, while for the higher n at least W = 8 or 10

is required. However, the rate of convergence is not the
same for different m as may be seen by comparing figures 1l4a
and 14b. For m = 2 and 3 it is the frequencies associated
with n = 2 which converge slowest, while for m = 1 the
frequency for n = 2 converges fastest. Finally, attention
is drawn to the purposely expanded ordinate of the figures
which accentuates differences in frequency: thus, in all
cases shown, the values for N = 8 differ from those of

N = 10 by less than 2%.
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Next, the natural frequencies of another uniform
shell were calculated for various boundary conditions and
combinations of n and m. The shell analysed is one already
studied, both theoretically and experimentally, by Sewall
and Naumann (11), with whose results those of this theory
will be compared. The data for the shell are as follows:

9.538 in., £ = 0.0255 in., E = 10’ 1b/in.2, v = 0.315,

4 1b.sec2/in.4; the length is L = 25.125 in.,

r

2.54 x 10

P
24.625 in. and 24.0 in., respectively, for the free-free,
clamped-free, and clamped-clamped configurations.

The analytical natural frequencies in (ll) were
obtained by application of the energy method using
Novozhilov's strain-displacement relations and employing
the Rayleigh-Ritz procedure. The modal functions used
in connection with'the Rayleigh-Ritz procedure assume
axial variation in displacements proportional to the
corresponding beam eigenfunctions; this has certain inherent
limitations, namely (i) in connection with free-free boundary
conditions, not all possible rigid-body motions are allowed,
and (ii) in cases of a clamped end, there is the contradiction
of having both v = 0 and qu = 0 at that end (l1l).

The results obtained by our theory were computed
with N = 10, and are compared with those of (ll) in
figures 15 - 17. As may be seen, the results obtained by

this theory are in fairly good agreement with those of (11)
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and, what is more gratifying, they are in better agreement
with the experiments of (ll1j*. This is particularly

noticeable in the case of both ends clamped (figure 16),

where the effect of the aforementioned difficulty arising

from the modal functions chosen in (l1) would be greatest.
Detailed discussion of the results obtained and

their significance will not be undertaken here as this

has already been done by others, notably in (47) and (46).
The evident success of this theory in analysing

uniform cylindrical shells is considered to have provided

adequate proof of the soundness of the theory as a whole

and of the correctness of the expressions of the stiffness

and mass matrices derived here.

8.5 Calculations for Ring-Stiffened Shells

A particular ring-stiffened cylindrical shell with
clamped ends is analysed. This shell was first studied,
theoretically and experimentally, by Weingarten (50) and,

subsequently, also by Sewall and Naumann (11). The shell

data are as follows: r = 3.03 in., t = 0.06 in., L = 5.375 in.,

7 2

E = 10’ 1b./in.%, ¥ = 0.315 and p = 2.54 x 10 %
The 'rings', eleven in number, are actually integral with
the shell in the form of external ribs of height 0.095 in.
(measured from the shell mean radius), of width 0.125 in.

each, and equispaced at a pitch of 0.50 in.

* It is possible, of course, that the better agreement is
fortuitous, arising from the difficulty of obtaining
truly a clamped boundary condition in the experiments.

1b. secz/in.
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Weingarten (50) neglecting rotary inertia effects,
derived a Donnell-type vibration equation for a general
orthotropic conical shell, so that the cylindrical
configuration is a particular case. He then reduced the
ring-stiffened shell to an equivalent orthotropic shell
using Bodner's method. The free vibration characteristics
of this equivalent shell were then determined by application
of the Galerkin method, using matrix iteration techniques.

Sewall and Naumann's (ll) method of analysis has
already been outlined. 1In dealing with stiffened shells
(mainly with axial stiffeners) they assumed the stiffeners
to be sufficiently closely spaced for their effect to be
averaged, or 'smeared' as they put it, over the whole shell
surface; eccentricity effects are explicitly taken into
account.

In the calculations done by our theory the shell
was divided into 23 finite elements, each corresponding
alternately to stiffened and unstiffened portions of the
shell. The difference in mean radii of stiffened and
unstiffened sections was taken into account.

The natural frequencies of both the stiffened and
the 'unstiffened' shell were calculated, the latter being a
uniform shell with the rings obliterated, for n = 2 to 14
and m = 1,2,3 ... 4N+1)-J.

The results for the unstiffened shell are shown in
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figure 18 for m = 1,2 and 3 where they are compared with
Weingarten's theoretical and experimental results.
Agreement with both Weingarten's theory and experiments
is fairly good.

The results for the stiffened shell are shown in
figures 19 - 21, where they are compared with Weingarten's
theory and experiments and with Sewall and Naumann's
theory. We note that the theories of (11) and (50) are in
close agreement, but they both somewhat overestimate the
frequencies, particularly at high n - assuming, of course,
that the experiméntal values are correct. This theory,
on the other hand, is in considerably closer agreement with

*
the experiments.

8.6 Calculations for Shells with Thickness Discontinuity

The particular shells considered here are made up

- of a length Ll of uniform thickness t and a length L,

of uniform thickness t, > t) and a constant mean radius over

the total length L; they are simply-supported. The free

vibration characteristics of such shells were recently

studied theoretically by Warburton and Al-Najafi (51) and

both theoretically and experimentally by Falkiewicz (52).
Falkiewicz's theoretical results were not available

to the authors at the time of writing and will not be

~ discussed. Warburton and Al-Najafi presented two theories.

* See footnote on p. 89.
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One is based on a classical theory which has been used

by Warburton previously for uniform shells, and is
extended in (51) to deal with shells with a thickness
discontinuity by using appropriate continuity conditions
at the intersecéion of the two segments. Their second
method is a finite-element method employing ring-type
elements with displacement functions which are polynomials
in x and trigonometric functions in ng.

Calculaéions for three different steel shells were
undertaken in (51) involving different t; and t,, for
various values of Ll/L and some values of n and m. Here
only two of the cases are analysed, one with tl = 0.1875 in.
and the other with tl = 0.125 in., and both with r = 2.073 in.,
L = 17.56 in. and ty, = 0.25 in.; attention was focused on
only those of the cases presented in (51) where there were
appreciable discrepancies between theory and experiment.

The calculations by our theory were done using 20
finite elements throughout. The results are shown in
figures 22 - 24 where they are compared with Warburton
and Al-Najafi's theoretical results and Falkiewicz's
experimental fesults. In figure 22, where tl = 0.1875 in.,
the finite-element calculations of (51) were done using
nine or ten finite elements. In figure 23, where tl = 0.125 in.
and n = 4, the corresponding calculations of (51) were done

with 25 finite elements; in this case the dashed line for
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m = 1 is not shown as it essentially coincides with the
full one, i.e. the results of the two finite-element
theories coincide. Finally, in figure 24, where t; = 0.125 w.
and n = 5, the finite-element calculations of (51) were
done using ten elements. This figure also shows the
frequencies for m = 3 and 4 which are not available in
(51).

We note that in most cases the classical shell
theory of (51) agrees well with the experiments; that
theory, however, was only used to obtain frequencies for
a limited range of Ll/L. The agreement with the finite-
element method of (51), on the other hand, is generally
not as good. The results obtained by our theory are seen
to be generally in quite good agreement with the classical
theory of (51) and also with the experiments of (52), with
some notable exceptions. Thus for m = 1 and n = 2 (figure 10),
n = 4 (figure 23), and n = 5 (figure 24), the experimental
points for Ll/L < 0.25 are at variance with all theories,
which throws some doubt on these specific measurements.
There are also some discrepancies between our theory and
the classical theory of (51), for Ll/L < 0.125 and m =1
in figure 24, which remain unexplained.

It may be said that, on the whole, the frequencies
obtained by this theory are superior to those calculated

by the finite-element theory of (51). The reason for this
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lies in the better choice of displacement functions,

and also because in figures 22 and 24 more finite elements
were employed. However, our theory has been shown to

vield equally good results for any set of boundary conditions;
this is not generally true with ordinary type of finite-
element theories.

It is also noted that the computational task for
the full analysis is comparable in the two finite-element
methods. Thus for ten elements both Warburton and
Al Najafi's matrices and ours are of order 40 x 40. However,
in (51) the problem is reduced prior to calculation, by
Guyan's method, by expressing u, v and dw/dx in terms of w;
this reduces the 40 x 40 matrices to order 9 x 9, but
raises the frequencies, as additional constraints are thus
imposed on the system.

Now comparing the classical theory of (51) with our
theory it is noted that they yield comparable results.
Accordingly, there is no advantage either way, for this
particular shell. However, in dealing with a shell with
several discontinuities, or a ring-stiffened shell such as
the one of the previous section, Warburton and Al Najafi's
analysis, or any other truly classical theory, would have
to be reformulated for the particular shell at hand. Our
theory, on the other hand, because it employs the finite-

element framework, requires no special reformulation.
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B.7 Calculations for Shells Completely or Partially

Filled with Liguid

A particular simply-supported cylindrical shell
partially filled with water is analysed. The free vibration
characteristics of such a shell were studied experimentally
by Lindholm et al. (36). Based on the theory discussed
in section 5.3, Lindholm et al. (36) developed a frequency
equation for the completely liquid filled tank, using
incompressible theory for the fluid, in an unpressurized
circular cylindrical shell. Also experimental data
was obtained in (36) in order to determine the effect of
the liquid on frequency at partial liquid depths. The
shell data are as follows: r = 1.48425 in., t = 0.0090157 in.,

L = 9.2126 in., E = 0.29 x 108 1b./in.%, ¥ = 0.29,

3 4

3

0.75017 x 10

lb.sec.z/in.4.

o 1b.sec.?/in.? and o, = 0.096066 x 10~
The investigations made in (36) involve different
values of b/L (= 0, 0.25, 0.5, 0.75, 1.0), where b is the
depth of liquid, and some values of n and m. The calculations
by our theory were done using 10 finite elements and with
b/L = 0.0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 1.0. The
results are shown in figures 25 - 33.
Our theoretical results are plotted on figures 25 - 27

for m = 1,2 and 3. We note that for m = 1 all the curves

have same form, with the change of curvature of the curves
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occurring at a fractional depth of about 1/4. As shown
in figures 28-30, agreement between the present theory
and experiment of (36) is seen to be relatively good.
Also, it can be seen that the natural frequencies decrease
significantly with the liquid depth.

On the other hand, figures 31 - 33 show the modal
shapes of the system for n = 5, and m = 1,2, and 3 for
the empty, 1/4-, 1/2-, 3/4-, and completely-filled shells.
It is clear that the peaks of the displacements tend to
shift towards the base of the tank as the depth is decreased
(but non-zero).

However, for the cases of an empty (b/L = 0.0) or
a full shell (b/L = 1), the modal shapes are theoretically
the same. But for the experimental modes (m = 3 and 4)
reported in (36), difference was noted between the shapes
corresponding to the empty and full cases. This difference
according to Lindholm et al. (36) is "not felt to be
significant because of the difficulty in obtaining a clean

mode shape at the higher frequencies”.

8.8 Calculations of the r.m.s. Response for Shells

Subjected to Subsonic Boundary Layer Pressure

Fluctuations

As developed in Chapter VI, the present theory is
capable of determining the r.m.s. response for the most

general case: axially non-uniform, thin cylindrical shells,
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subjected to subsonic boundary layer pressure fluctuations
with arbitrary boundary conditions, are within the
capabilities of the computer program described in Chapter VII.
However, due to the high computational cost of this
analysis (cf. Chapter VII), only one case of a simply-
supported uniform shell was treated. The free vibration
characteristics of this particular shell was studied in
section 8.4. From figures l4a and 1l4b, it is clear that
an idealization of 5 elements is sufficient to yield
reasonably accurate results for low as well as high natural
frequencies.
The shell dimensions and material properties are
as follows: r = 4.08 in., t = 0.047 in., L = 18.54 in.,

E=3x 10’ 2 4

sec.z/in.4.

1b./in.“, ¥ = 0.3 and p = 7.324 x 107 1b.-

The fluid is air at 70°F and atmospheric pressure,

flowing through the shell. The fluid properties are:

pp = 0.23292 x 102 1b.sec.2/£t.4, u = 0.038 x 107° 1lb.sec./ft.2,

andvF = 1.63147 x 1074 ft.z/sec..

The first case studied was for mean centreline

velocity of 24 ft./sec. corresponding to Re = 105

damping factor of L%&f 10_5. The results of maximum r.m.s.

and a

response for n = 2,3,4 and 5 are shown in figure 34. The

peak values for(‘Vn_r_j‘)mw ,(\’Ii) énd( wj)
. ~mask.

mane .
are at n = 3. This confirms the theoretical derivations

e e A A A A " R £
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as obtained in equation (6.14) where the r.m.s. response

is inversely proportional to the square of the natural
frequency, fr.

It is evident, therefore, that the r.m.s. response
of interest, for this particular case, is at n = 3.
Consequently all subsequent calculations will be confined
to this particular value of the circumferential wave-
number.

Figure 35 shows the r.m.s. response for different
mean velocities, namely 24, 75, 120 and 240 ft./sec.,

using %a’= 1073 and 1072

as damping factors. It is seen,
from the results plotted in figure 35, that the r.m.s.
displacement is inversely proportional to the damping
factor and proportional to the mean axial flow velocity
raised approximately to a power 2, both effects being

as could have been anticipated.

Unfortunately, in this case no experimental results

are available to check the theory.



CHAPTER IX
CONCLUSION

The accuracy of the finite-element method depehds
primarily on the number and size of the finite elements
into which the structure is divided. Good accuracy can
generally be obtained with a sufficiently large number of
small elements.
The optimum degree of approximation in the element
stiffness and mass matrices will depend on many factors,
the most important perhaps being the choice of the displacement
functions and the degree to which they satisfy the convergence
criteria of the fini@e-element method. (Here we do not
mean numerical convergence but absolute convergence to the
continuum.) The usual type of displacement functions are
polynomials of the type
U=C, +C,yx,
W =Cy 4 Cox+Csx"+ Cox?,
(15) - (17), (20) and (22) - (253). Such displacement
functions can never exactly satisfy the convergence
criteria, but may satisfy them approximately if a sufficiently
large number of small finite elements is used.

In this work the displacement functions are derived
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from the equations of thin cylindrical shells based on
Sanders' theory. As Sanders showed (8), for small rigid-
body motions the strains all vanish for his theory, while
they do not if the strain-displacement relations are

taken as given by Love (2), or Novozhilov (27), for
instance. This is because the sixth equation of motion
(A.5) is violated in all but Sanders' theory. Flﬁgge puts
the matter as follows: "There is one point of fundamehtal
interest which may be discussed at once. In the simplified
formulas the difference between the shearing forces N‘ex
and wa has disappeared. The sixth condition of equilibrium,
(rN -. rN + M x = 0), is therefore no longer satisfied

xq ¢x (1]
if M % # 0, which is generally the case. This violation of

¢

one of the fundamental principles of mechanics is a serious
drawback for all theory founded thereon. 1In most cases,
small and otherwise insignificant changes of N¢x and Nx¢
will be sufficient to adjust the equilibrium, but during
the mathematical handling of the equations it may happen
that the large terms cancel and just the small ones become
decisive."

The difficulties anticipated by Flﬁgge were by-
passed in this work by the use of Sanders' theory. As was
shown in Chapter VIII no strains are induced by rigid-body

motions, as evidenced by the fact that the frequencies

associated with rigid-body motions of a free-free element
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are zero. Accordingly, one of the main practical difficulties
associated with the use of the finite-element method, is
absent from this theory.

The hybrid finite-element, classical theory developed
in this thesis has been used, with considerable success,
to obtain the free vibration characteristics of a variety
of uniform and non-uniform circular cylindrical shells,
empty and partially or completely filled with liquid. The -
data obtained was compared with that of other theories and
experiments. If one accepts the validity and precision of
the available experimental data for the shells used, then
it may be stated that this theory is, in general, more
successful than at least some of the others already referred
to in this Thesis. This is hardly surprising if one considers
that it is basically a classical theory put on a finite-
element framework for the sake of versatility. Moreover,
the shell equations employed, which are solved for the
determination of the displacement functions, are such that
the convergence criteria of the finite-element method are
satisfied.

It is clear that this theory enjoys at once the
advantages of the finite-element method and the precise
formulation of classical shell theory. Yet the difficulties
often encountered by classical analysis with certain

boundary conditions (e.g. clamped-free), even fdf uniform
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shells, are absent here. Also the computational difficulties
in classical analysis arising from the vanishing determinant
of the boundary conditions, which contains both large and

small terms of the type ei )\jL/r

, are not encountered here;
difficulties due to such terms in this theory are easily
overcome either by increasing N or by matrix manipulations.

Only a few cases have been presented here, a
sufficient number, the author believes, to illustrate the
capabilities of the theory. Several other cases could also
have been tackled, but were not because of the computational
cost. Thus shells with several discontinuities in thickness
and material properties, conical shells, and non-isotropic
shells can be easily analysed by this theory.

The second part of this thesis dealt with the
response of thin circular cylindrical shells (uniform or
axially non~uniform) when subjected to amfandom pressure
field. The theory was developed in general for an arbitrary
random pressure field, and in particular in the case where
the pressure field arises from pressure fluctuations in
the turbulent, subsonic boundary layer of an internally
flowing fluid (air). This latter case was incorporated in
the computer program, which also determines the free-vibration
characteristics of the shell, and yields the r.m.s. response
of the shell. One calculation was undertaken, the results

of which appear to be reasonable: however, the absence of
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«

data precludes comparison with experiment.

This theory may also be applied to shells

‘subjected to subsonic boundary-layer pressure fluctuations

when the fluid is other than air, by using the values
gf the constants a,b,c and d given by expression (6.3).
Further work on boundary-layer pressure fluctuations by
Willmarth and Wooldridge (61), Willmarth and Roos (62)
support the original measurements and assumptions made

by Bakewell (39), (44) and used in this thesis.

The analysis of the random vibration of the shell
is restricted to light damping (?; << 1); this restriction
can be relaxed by considering the contribution of cross-
product terms in equation (5.30). However, the results
obtained here, for‘@r << 1, will still_constitute an
important part of the total solution. Finally, it is
stressed that pressure correlation functions used in the
analysis are applicable only for flow velocities corresponding
to Mach number 0.3 or less; there is no assurance that such
correlation functions can be applied at higher Mach numbers

when compressibility effects become important.

Future Work

This theory can of course only deal with geometrically

axially-symmetric, non-uniform cylindrical and conical shells.
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Nevertheless, considering the extensive literature on
the topic, it is clear that the analysis of such shells
is of considerable practical importance. Accordingly,
the effort involved in producing a theory such as this,
of superior precision and accuracy than existing theories,
is deemed to be justified. Moreover, the success of this
theory indicates that the basic approach adopted, namely
using classical theory for the determination of the
displacement functions, is both sound and practicable.
Therefore, its extension to the more general case of curved-
shell finite eleménts is envisaged, with which shells of
any shape could be analysed with enhanced precision.
Another extension to this work will be to consider
the effects of all the components arising from the presence
of flowing or stationary fluids, on the natural frequencies
for the cases ;f completely or partially-filled shells.
Finally, it would be of interest to compare the theoretical
r.m.s. response of this theory to experimental data which

will hopefully become available in future.
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APPENDIX A

SANDERS' THEORY OF SHELLS

A.l The Coordinate System

The location of a point of the shell is given by
three parameters, two of which are along the middle surface
of the shell and the third along the normal to the middle
surface. The condition we impose on the parametric curves
is that they form a three-dimensional orthogonal system
(see figure 4).

To describe the location of an arbitrary point in
the space occupied by a thin shell, we define the following

position vector (see figures 4 and 5):

R(5 5,/ 5)= £(5,5) + $8EE) w

where r is the position vector of a corresponding point

on the reference surface, n is the unit vector from the
reference surface to the point in question, g}= constant
and fif=constant are the parametric curves which follow
the lines of principal curvature of the shell on the middle
surface, and g is the distance of the point from the
middle surface measured along the unit normal vector n. All

of the necessary concepts and results from differential
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geometry are developed in (29) and (30).

A.2 Equations of Motion

Consider an element of the shell bounded by surfaces
% = constant,? +¢L(§ = constant, and g’ = tt/2. Forces

and moments acting on all six faces must be in equilibrium
(see figure 6). We denote by N the force resultants and
by M the moment resultants, per unit of length measured
along the parametric curves on the middle surface. By gq
we denote the external force per unit of area of the middle
surface.

We may use Hamilton's principle for the derivation
of the equations of motion of a thin elastic shell because
it gives us, at the same time, the natural boundary
conditions that are to be used with the theory.

Hamilton's principle states that the actual path

followed by a dynamical process is such as to make
%
Sf(n -K)dt =0, (A.2)
to

where IT is the pofential energy, and K is the kinetic
energy. If the process is steady, the above principle

reduces to the principle of minimum potential energy, or
Sn::o 5> T = minimum, (A.3)

For a thin elastic shell this may be written in the form
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tl
SL(U-WS—W§|-W§2-K)dt =0, (A.4)

where U is the strain energy,‘ws is the work of the body
and surface forces,wg and V\/g represent the work of

the edge stresses on edges of cZnstant l and E
respectively, and K is the kinetic energy. The development
of the equations of static equilibrium from (r.4) can

be found in many papers, e.d. (29), (30), (3). Here we

only list the final six scalar equations of motion, as

follows:

MzNu ANy AA
St el e )

AgNg 2&_23 M\ A, AA
+N, Ny, 4 2 o,
bgl 23 %, Oy %," R, Q,=

2y 2w a (R e i) =0
]

(A.5)

MMy _2AM,, 24, 2As
+ + M M, -AAQ,= O
bg bgn m;z ([ 'g 111 4, )

dAiMyy . 2AM 2A A
ety , My , sy, - 2 M -AMQ, = O
it AR LI

Nig = Ny + -ﬁ?—-’%:— - 0.

(figure 6), where distributed load terms have been omitted



- 116 -

for simplicity.

In the usual derivation of the eguations based
on Love's first approximation, the distinction between
M,, and M21 is dropped and the last of equations (A.5)
is suppressed. Accordingly, most theories violate this
equation, unless the shell is spherical, or a flat plate,
or if it is a symmetrically loaded shell of revolution.
This is not the case with Sanders' theory; consequently, as
is shown in (8), all strains vanish for small rigid-body
motions. Accordingly, if we select displacement functions
based on this theory, we should expect to be able to
satisfy the convergence criteria of the finite-element
method.

We now consider a circular cylindrical shell and
express the movement of the middle surface in terms of
the axial, tangential and radial displacements, U,V and W,

respectively. In equations (A.5) we now have

E'x »Y, =0, Rymoo , A=l , }

§=¢, UraV, Ra=T , Ajar. (A.6)
The modified strain-displacement relations are
given by
comtipt¥ ‘?"F"‘%%+#% ' (A.7)
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The appropriate set of stress-strain relations (see
figure 1lb) are given by

NX- D(ex"';"o’) ) Mn=K(K,+ \’Kq),
N,- D(€?+961) ’ M,:K(K?'PVK;)n , (A.B)

N"g D(“’)el? ) ﬁx?'-'-“(‘“v)znqp
where qu = %(Nx‘o + Nqox) and che = lg(Mx‘P + M<px); for an
isotropic elastic material, the stiffness parameters K and

D are given by

K = Et3/12(1-y%), D = Et/(1-y). (A.9)

Upon substituting (A.6), (A.7) and (A.8) into (A.5),
after considerable manipulation, one obtains the equations

of equilibrium in terms of U,V and W, namely (8)

QBU+_-_u)a’U risv) 3'V +Nm+£[1%,u_b_’g \

ax2 " 2 bcp' 2 xop d¢2
_30-v) ?w -
Ov T Dxbvf LT.J 3,3?2.] 0,
%) 'V (-v)r2dtv -
e L2+ Tt S Jp+ bEasUr 28
$ (A.10)
Y _pour? 2w W
+5 2wt 2Y ”a i (}_va e b?’] ,
wrdU_ 3V _ . ‘_[N—Qr‘ 340) + (3-v)r v
x g 2 m: -z ﬂq"
v oaﬂv 2w ?'w - J
-}—'-f m"‘ ('. ] 0,

where k = (1/12) (t/r)z.
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For an edge of constant x, the boundary conditions

are given by specified values of the following quantities

=U

ci

N, =Ny o )
TogmFapt EMyy o V=V, B.11)
V"Q,*%b%“-ﬂj .°' W=W,
foam o« @)=

where the double-barred quantities refer to the boundary

values.
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APPENDIX B

List of Matrices

This appendix contains the matrices referred to
in the text which were too large to be included therein.

The matrices are listed as follows:

(R], [T] in Table 1
[A] " " 2
[Q] " " 3
[I"] " 1] 4
(ay, [z] " " 5
*
lzyl " ] 6
(a1, (841, [¢)) T
*
(0,1, [D,1, (D3], [D,] 8
[Q-] " " 9

1

The matrices [2J] and [EI]’ [E2], [E3], [E4] are obtained

respectively, from matrices [2zY] and [Dll, [Dzl, [D3], [D4]

by substituting in these matrices the elements of matrix-

i¥] = (F1T[P]IF) by the elements of matrix [RJ] = (417 (a].
The matrix [Qj] is obtained from matrix [Q] by

substituting in this matrix wl' wz, Ly %y by Wys Woo Nyr Nov

* in these matrices are elements of the [Y] matrix

Y.
gi%en above.
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respectively, where these terms are defined in Table 4.

e e uee e i - AT SR ST e A T T
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APPENDIX C

EVALUATION OF SOME INTEGRALS OF CHAPTER VI

c-1 Evaluation of the Integrals given by Equations (6.6) - (6.8)

e, 2T
P- S qu (Omz,,o) cos( @).cos( @).d@.do’ (C.1)

1~

IO’

am 2T !
P ___S J o, (0 %,0).szn( @)-s3N( @).de.d@' 5  (c.2)

l ‘FalRe

L= fﬁ Ty f‘%,o) cos( @-seo( @)de-d@, (c.3)

o e (o,az,o) (1+c5 )_‘ <2, -J.S ) and

S, = §+1)0g = f1(2-9) /Uy

Equation (C.1l) can be written as
QLT

P, jCos( )d..(pj [::sc((:)cpo;‘i@— AT q’)z] 5 (C.4)

where Cy=c¢ F,z ’tz/U: amds % =d f:‘"}/ U: .

where (__\J

/

el P J
Consider w. = e @ and let
° [H-C q- 4’):“: S sle- a?)‘]
@
2: e, where =V—1. Then

A,} =A',Zo[,q)'/ CP’=—LL’"9. such that
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1 A3
2 Z T, _gm)?‘) (C.5)
. - + A
y [“ %(qua,ﬂ,wz)][i_ B 3 ]
where C' is ;:he circle of unit radius with center at the
origin I\ = . The integrand (C.5) has simple poles at

"/
1 CS(L?-FA,'QMI%) =0, OV é,—- é¢£ 1/"—_’; (C.6)

and other simple poles at

D (P+4ilnz)® L +\/Z~z/1>3
22— O }— e e (c.7)
/
Finally, the integrand has a simple pole at
Y + 1/\C Y |/?m.z
}: ebcpe— /V—; and at 5,:: eMP ei /Ps 5 however
only }: e&‘Pe—l/ s omd- 5,':’- e"'?e‘ W2/Ps

lie inside C'.
wdweo'.? Luf&
ot e ooV T
uP ~flycy ]
[ (3-€"¢"")

L'"e'?-wz-* o7 [ (€.8)
3~ 3 [1.+% ‘?*‘”""3)7[2" e‘%(‘0+~2~3) ] .
L

-

P i/ves
-?/Vc_g -L:Q.-— eD;/Csj ’

and
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Resipue oi LW i@ - Vima/2,

e e . (c.9)

&Qe—VszLD; = o
2 1—-_§.Jb~‘2,]
4V 9, v [ >
Then, equation (C.5) becomes
: I
o [ - WYE Vel
W, =2Te ﬁ e . L_.(C.lo)
-‘1%[1 e” 3] 400%[ Bsz]
_

The expression of equation

2T
j cos( @) dc?’
L ool &

(C.4) is equal to the real part ofurR; therefore

__1/1/'63' _ Vs 1 e

I? —— 2 Cos
.1 V——-[i e,/c_,,] 4W[I‘C szj 5 ( @‘LCP
P4=T[zT<1C°> P (C.11)
-1/N" _ VRV
where T({.) —_—

S T

= 2
C?b/U and D":J/}Lz/U‘E .
Similarly, P becomes equal to Pl, P3 is zero and

_ equations (6.6) - (6.8) give
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W&( Fo,f/ o> — T ‘a”( f,,Rc).T(fo).%'gi:, %) , (C.12)

W'FC({;/ ?,‘9 = _“:2: )(,2', i’ﬂz(folke')'T(§°)‘q;'$€'°’°)) (C.13)

o, e
= . O
W](‘RC( £,€, O) ©.o , (C.14)
where T(fo) is given by the equation (C.11).

Cc-2 Evaluation of the integrals given by the Equations

(6.19) - (6.24) in the Main Text

_[Mz-LNZ+P/Z]
§) e ol Z
We consider (C.15)
C

22" (—%—') 2]

n

where C islthe semi-circular arc of radius R shown here
: T

-R R , (M,N,P) are positive constants,
i= V -1 and 2 is a complex variable.
The integrand has pole of order 3 at Z = 0, and

4 simple poles at

Z =-f Vil (-gD)
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1

= F’D\/1—L‘~§:+L%‘§m(\}|—¢§:> 5
z=-f V1-24) 529,07 97)

and

Z = ]E"' \ﬁ— Lc;wz—""z’%u“"%: )‘ ?

@) Z=o,
b zZ-= {: < ‘§ +uz‘§ (1 lg)'/a)/fb
9 Zz—fm<-2‘§m —A'L“;)U(l-‘gﬂ/)/&

lie within C.

a) Residue at Z = 0 is

)
_[Mz-4NZ2+F
By d¥ | z> SRR - o.

I

Z—0 JZ*° Zs [(—‘f_“-) Z4+ (4‘?,::2) 'Z:z-i- l:l
v )c

b) Residue at

is

Do {[z fLC)* e

_[Mz-iNz+B/2] ]

z—f( )% [(fw)z+(4°¢mm )z"+1]

(C.16)

Z = ]C,b(1 24+ (i ‘;,u)/") f( )

Y
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By neglecting the terms of third and higher-order
of magnitude for the generalized damping factor Q%w’ we

obtain

2z = £ >‘/*’}=

e [Af'] | —4 — 4 C;wO'f%a
8 {, G

The residue Zf

(C.17)

where -.*_—_— i- +4 ) (M-
Al F( L‘é 2:“70 7» )‘(M h9 (2‘%‘-2‘?(‘9’)?/”

c) Similarly, the residue of (C.15) at

{Z= - &,(l—2‘?:—&2,‘1;’”(1-?:)‘/’)‘/& becomes

—[231 4 -4 ¢ (1-3%.) P (C.18)
8 4 G

e K=o (it o B

n

By considering equations (C.16), (C.17) and (C.18); we

{[A] [A_z__[EA] -[A{ ]}}

4%

obtain

_TMZ -ANE+ B/z]
§ e[ dZ

(e ()2

—
-

s*z\"

(C.19)
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This equation (C.19) can be reduced to the following

expression

K, _K' \ _ ! , _ ' \
& = 'E‘?, & 4 € sun(sy) —4 € s?zu(x4)+‘_[e 7’z’;.,s,(z;“)J,e“'cos(zsl)]
¢ 4fy %

+UBQ cos 4)-4. e.\f;';s(x,'_) +'?(e_§31m(x;) +éx;:M(K;)B} )

where X: = M{m-\- N Fw?m + (P/\Cm(wﬁ;;)) (C.20)
K_.; =-M ¥w(§m+N {:’v-\- (F’\?,u/{m(l-k‘g:)) J
ty=-Mf,+NES -2/l )
=-Mf 4 _Nf,+ (f ‘;,,,/]cm(m;;) .
On the other hand, since
_[Mz+P2] Nz
&ce , 84‘9, 4T = (C.21)
z [( ﬁ)z“( £ ) “]
R _[M{‘+P/f.]e¢u{. 6 Je [Mz+P/z] Zd%
3 2 2 +
N ERES R AR,

where C is the semi-circular arc of radius R and T is

uor
the curve

-R T R
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Taking the limit of equation (C.21) as R » =
*
and using the theorem which proves that the integral

around I' approaches zero, the following is obtained

_mz+p/2] .
§ e'™ iz _

]
c 2 L - (C.22)

=0 [Mf.,*rf/{,] [M{o+ B/5.]
2 Cos(N{o) dfo +~z(e SIN(N{) dfo

o,cj[('ﬁ,,( 4] of[{q «&L){ ]

Comparing equation (C.22) with (C.21), then

_Mfet P/le{)at{ ¥i
e cosS(Nto)dto — TC esm(b’ )_e szu(h’)+—ecos(b")+éc'os(3’)
= 1 -‘*fn{ 2 i

(C.23)

w

_[Mfo"\' E/{. _xs’ x
sIn(nfe) aLf = __Je cos(y)- Ecos(t)+ L |€ 51" %)+e SW(‘
T AR *
O s r
(C.24)

1 ! ' !
where K‘ v ¥q )’3 and \‘4, are given by equation (C.20).

+ 1¢ |£(2)| < M/RY, for 2 = R€ , where (k>0) and "
are constants, then . J ‘_W;{(z) Az =oO-
T
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By using the above two equations (C.23) and (C.24),
4 2
the expressions F; (l.\;, Q,..) and F_; (a,,;‘ﬂ“) , given by

(6.19) and (6.20) in the main text, can be written as

follows:

-8
F; (QMQ“ —__a_Ete smb’z 4.e sz4+‘ (e co.s‘b' +€xcosX)

n

+8p 2 [4e s;u‘( -46 srrJf +_'_(e COSXG'\"e C°5x8) 9
2,

(C.25)

p
E ( v, [48 cos)'-4e cos\’z-r? (e swx +e 5;,,!)]

+~'n:K

8&{,&[4

e c.os¥ 48 cosxc-i'——(e smfi-e szux] )
G

(C.26)

Using the same method, developed in this Appendix to
n

evaluate F;C(E‘;,&..) and f (.Q,;,,Q...) given above,

integration of the expressions given by the equations

(6.21) - (6.24) can be performed. Thus
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= 1
E;(e,v,e,b—_&_ ¢ en¥-E sz]-(-‘L&._ [el‘ix g x] ©.27)

2
%1, 8%
"4 5 L
; ‘Fru
A %b)= ™K [ sk - b oy
4 ()= € cos¥,-e cos"]-\-sz [ co K e co K
) 86 * : B,Q{fme ) s] (C.28)
t— gh(‘e&/ QM
%
E(L )= 2 ESL_ES
(4\.} Qm) fw 4 'f,:J 3 2 (C.29)

{m‘4 —‘E: (C.30)

where
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O(

[K #]t-L] (A48 f, fn,( ‘ib)

)( +]8-L.)(A-B%, ) |+ + ——=—
| [ K6 +|4-L.)(A-89,) ]fw ‘Fu. Li‘)
[ L+I2~ L) (A% 5)]10,0’ fUL; oK
‘ -8 (a+ T
=g sl ot ﬁ,( &5’

Ks"’[mw 499 ] £, - f( ‘7)

= [ bl (-84 )], + 2 fbif‘; )

kK +14-L (A
[ -l (A B)]'F"-' _Fm(|+‘§)
D%
[K‘§ |- lw[(A+B‘§)J£u i H%)
=.2,£1 rc/uﬁ y K.z,""‘?'&a,ﬁ: wU‘E,
¢ W, a=ve(e-€7)
D, = \/@:E/_;, Dz, =2 VP [' sz]

A=°-/U¢_ 5 -}’/Uep_ 1C‘°"'/U£ , D= oLh-/U:.

* here the arguments (4., 2 ) have been omitted from
yl(z L ) 72(2. 2 )' egc for simplicity.




APPENDIX D

OUTPUT DATA

NATURAL VIBRATION CF NCNUNIFORM THIN CYLINC SHELLS BY FINITE-ELEMENTS METHOOD

INPUT CATA

SECTION NUMBER 1
YCUNG.S MODLLLS OF ELASTICITY E=LB/(IN-SQUARE) C,300CID 08
PCISSON.S RATIO NU . 3. 30000D 20
MEAN RACIUS OF SHELL ELEMENT RA=IN -==--=c---- C.40820D0 C1
TRICKNESS OF SHELL ELEMENT TH=IN --=—==-—=-==- £, 47009D-C1

LENGTE OF AN INCIVIDUAL SHELL ELEMEN LE=IN. 0 463570 91
MASS PER UNIT VOLUME OF THE SHELL ELEMENT RHO Ce 73240D-03
COEFFICIENTS IN SHELL EQUATICAN D=E*T/(1-NUx+2) £. 154950 (7
K =E*T=£3/12%(1-NU%%2) = 285230 C3
SMALL K =T##2/12¥RA%#%*2 (,113580-04

N.B. RHO= (L B/ IN/SEC*+2)/( IN%%23)

FLUID CENSITY= C.112320-06

SECTICN NUMBER 1

ELASTICITY MATRIX PZI,€96< -FOR ISOTROPIC MATERIAL-
J.15465C €7 O.,46484D 6 ( C 0.0 ¢.0
2.46484D C€ 0 1854950 &7 (.C 0.0 0.0
3.0 n.o C 542310 06 0.0 0.0
9.0 o0 c¢c 0,28523C 533 ).85568D C2
2.0 0.7 .C 0,85568C 22 2.28523D 23
.0 0.c c.c 0.0 Ue 0

,9982(¢D 22

- CET -




[

THE NUMBER OF CIRCULNFERENTIAL WAVES IS N = 3.

SECTION NLPBER 1

pa sy S L L

NSTURAL VIERATICN CF NCNUNIFORM THIN CYLIND. SFELLS BY FINIVE-ELEMENTS METHOD

cmcehecmescamemecenaeee—~CHIRACTERISTIC  EQUATION
THE EIGHT RGCTS CF THE CHARACTERISTIC EQUATICN ARE =
LAMCAL = -0.,36349D CO 0.343€2C CO *1  LANCAS

-

LANLA2 = -0.36349D0 00-0.34382C 00 *! LAMCAG

LANCAY = -0.12381C 02 9.11611C 02 ¢! LAMCAT
L]

0.363490 0U 0.34382D0 00 *1
0. 363490 00-0, 343820 00 =1
0.12361D 02 0.11611D 02 *1
0.123610 02-0.116110 02 *1

LANCAS

«0.123€1C 02-0,116110 €2 *1 LANDAS

€ACH GF THE @ VALUES -LAPDA- YIELDS CNE
AND THE COMPLETE SOLUTION
ITH 8 INDEPENDENT SETS OF

OF ECUATICNS OF MOTICA,
IS TrE SUm OF ALL THEM W
CCASTANTS  ALJ) , 84J)

Ald) = CONSTANTS OF
8(J) = CCNSTANTS CF
CtJ) = CCNSTAATS OF

o ClI) »

SOLUTION

U = AXIAL DISPLACEMENT EQUATION
V = TANGENTIAL DISPLACEMENT EQUATION
W = RADIAL DISPLACEMENT EQUATION

SUCH THAT = ALJ) = ALPHALJY ¢ CLN)

8(J) = BETAL
AND=

Jy = CiJ)

0.123070-14

CISPLACEMENY
0.250130-15%
Ce 10575D-13

=0. 74606D-16

-~0.¢91170-17 C.10c00C0 G1

FUNCTION MATRI> AT XelE= 0.463%0C ol

-C. 200850-16
«0.677410-1%

{_0.402060-14 =0,241360-13

~0.5046CD-17  0.2372420-15
«C.126830-15 0. 82434014
-C,526870-16 _ ©.18171D-]4

0.130720-14

0.1CC000 01
0.136750-13
0.483730-14

ALPHALl  0.379010-01-0.40820C-01 ¢! BETAl = -0.333620 00-0-260480-02 ol
ALPFA2 * 0.37981C-01 C.400200-01 ¢I BETA2 = -2.33362D 00 O 280480-02 *I
ALPRAY o 0.1C068C-01 0.142¢8C-01 o1 BETA3 =« G.19894D-03 0.240380-01 1
ALPHAG = 0.1C8680-01-0.142¢8C-01 ¢l BETA4 = G.19894D-03-0.24038D0-01 hd.
ALPHAS = -0.37961C-01-0.40820C-C1 oI BETAS = -0.33362D 00 J.280480-02 (3]
ALPHAG = -0.376€10-31 9.495820C-01 *1 BETAS » -G.33362D 00-0.280480-02 el
ALPHA? = -C.1C0¢8C-01 O.142¢8C-01 ot BETAT = C.19894D-03-0.24038D-01 *I
ALPFAS = -0.1C8880-01-0,142¢8C~01 *1 BETAS = 0.19894D-03 0.240380-01 *1
C™EGAL » 0.412$3C 00 ETAY = (.39039D OC
CYEGA2 = C.14043C 02 ET82 = (C.131900 02
CISPLACENENT FUNCTION WATRIX AT XeLEs 0.0
Co 100030 01 Qs 179190-16 0.416370-18 ~-0.404770-16 0.297790-1% -0.909170-17
=2.36549C~14 0,1C0000 O1 C.65€120-16 ~C.28184D-14 -0.45658D-14 =0 165690-15

C,62551D-16

G.525300-16
0.10000D O1
0,145720-15

0.109810-17
0.50624D~-16
0 14346D0-16

-0 76436D-17
-0.97145D0-16
~0 364290-16

© 913C4D-16
-0.225680-15
€.147630-15

-0, 30444015
-C £44C9D-14&
0 _100COD 01

- €€1



0.3796810-01
0.1€0C00 C1
-0,89091C-01
=-C.333620 OC
9.333526C-01
C.611870 0O
~-C.757420-C)
~0,203430 OC

-0,269660 02
-0,664450 02
~Ce 404570 CC
0,806330-02
0.,27481C €2
=C,879380 01
0.433080-07
=2, 147120-C¢

0+278040 04
04790960 02
«0.13183C 04
Ce1154SC 04
3.333410 C4
0.13728C C4
0.219120 €S
«0,200040 1C

0.712270 01
-0,808040 0%
-0. 741420 02

9.164160 017
=0.739260 0¢

0,27C¢80 €3
-0,114600 0%
-0.17966C C?

NAYUIDL Vllll!lCN GF NNUNIFORP THIN CYLINC. ShELLS

BY FINITE-ELEMENTS METHOD

THE AUMBER OF CTRCLNFEREATIAL WAVES IS N =

TRAASFCRN WATRIX G YO
K o (TRANSFOSE

THE ACCAL DISPLACEMENTS
(UM BETA,V) AT PCINTS

SECTION

NUNBER )

Jrve mavarx s ¢ 5,008 ) 1S

-0.4C8300-01
0. €
€.8427C0-01

=(,280420-02

=0, 15414D0-01
C. 251930 00
€.291170-01
=0.857640-01

THE TRANSFCRMATION MATRIX

c.1171%0 01
C.224580 91
C.942640 00
C. 994430 00
=C.1114230 01
0.470835D0 00
-0.576760-98
C.0417350-08

THE GENERALIZED CCORDINAYE

0. 198960 02
Co 204780 04
=9, 173840 04
=Ce 196960 04
0.137280 04
=0.333420 04
=Ce 142040 10
=C. 00130 09

-£. 808060 05
3. 359110 06
C.%56380 G5
C. 100340 07

=2.27C680 25

=G 238830 04
0.6€678D 03
C.e522¢0 05

THIS WATRIX K IS THE STIFFNESS MATRIX

ARE IN THE FCLLCWING CRDER
1(X=0) MND JUX=LE) lESPECTlVELV

eesefecemmeremnracceneamaanca=QUTPUT MNATRICES-

€.1€0680-01
¢.10C00D O1
~0. 302970 01
0. 198940-03
C.302410-09
Co84L064D-06
=Ce32£390-03
=Ce11C620~07

=JAVERSE OF A-
C.208750 00
0.501590 CO

=-0,2049230-01
€. 328430 00

~C.26£€26D 00
0.125870 00

-0.1712910-08
0.158360-08

3.

0. 142680-01
6.0

€. 204580 01
€. 24C380-01
0 14286D-C7
0.46%520-06
C.42682D0-06
€. 15636D0-07

1S
=0. 181780 02
-0, 195420 02
0.271400 O1
0.27134D 01
0.15464D0 02
=0,$6820D0 01
0.177800-06
=-0.10€150-06

STIFENESS CF THE ELERENY G
04

-Ce131830

=Cs17264D 04
C.187950 06
0.33509D 04

=0 105400 04
C.12578D 04
Ce17C64D 06
C.12208%0 06

-C. 741420 03
Ce 566580 05
€.2C€0%0 05
C. 155990 06

-Ce114608D0 03

-C.00678D 03
C.184510 03
C.15C38D 05

0.115490 04
=0, 196960 C4
0.335090 04
C.19519D 06
0.1082120 04
0. 124610 C4
0.122840 06
«C.170640 06

0.164190 07
C. 103340 07
€ 159990 Co
0.39330D 07
0.175660 07
0.65226D 05
=-0.150380 05
-0. 713970 06

-0.,379610-01
0.100000 01
0.890910-01

-0.333620 00

-0.295830-01
0139740 01
0. 760100-01

«0.467820 00

-0.333010 02
-0.28284D0 02
0.617320-01
-0.18308D 00
0.332390 02
-0.338620 02
0.309850-06
0.230980-36

t 1.8,8) IS
0.33341D 04
0.13728D0 04

-0.18540D 04
0.183120 04
0.65009D 04

-0,183860 03

-0.255340 10

-0.25814D 10

THE DESIRED NODAL PCINT STIFFNESS ,SUCH THAT
OF INVERSE CF A) ¢ G ¢ ( INVERSE OF A )

-0,739260 06
~0,270690 05
-0.114680 05
0.17966D 07
0.712270 O7
0. 808060 05
-0.741420 03
-0.,164190 07

=-0.408300-01
o.o

C¢,842700-01
0. 28048D-C2
-0.769100-01
€. 575380 00
0. 169020 00
-0.18804D 00

-0, 128140 01
=G+ 131020 C1
=0 116890-02
=Ce 10766D-01
C. 128260 C1
=C. 107900 €1
0.107250-95
«0, 20422006

0.137280 04
-C. 333420 04
0. 125780 04
0. 124610 04
-0. 183860 03
0.63534D 04
C+ 423290 10
«C. 223670 10

04270690 05
-0. 238830 04
-0. 686780 03

€. 652260 €5

0.808C6D €5

C. 359110 Co
-0,596580 05

0.1CC34D C7

OF ANY FCRM OF STRUCTURAL ELENENT

-0.108680-01
0.10000D0 01
0 302970 0}
0. 19894D-93

-0 215320 05
€.101860 07
0,99919D 06
0.17829D 05

0.302440 00
04330250 00
€. 600020-93
0.288090~-02
-0.30304D0 00
0,234160 00
=0.139640-06
0,221920-06

219120 09
~0.14804D 10
0.17064D 06
0.12284D 06
-0.25534D0 10
0.42329D 10
04304950 18
-0.70786D 16

-0.114680 05
C.68678D 03
0.184510 03

-0.15038D0 05

=0.741420 03

-0. 596580 05
0,208770 25

=0e159990 06

0 142680-01

0.0

© 284580 01
=€, 240380-01

©. 656400 04

0.733270 06
€.512020 07
~0. 243380 0%

¢ 160390 02
0.224280 02
©.10766D 00
0.232380 00
«0.16147D 02
0.762230 01
© 301820-0%
-0.491170-06

-C.20604D 10
-0,600130 939

C. 122850 06
«0.170840 06
-0,25814D0 10
-0.223670 10
-0, T0786D 16

0.2985%0 18

-0.179660 07
0.652260 05
0.15038D 05

-0. 713970 06

-C.164190 07
0.10034D 07

=-Cs 159990 06
€.393300 07

- bET




NATURAL VIBRATICN OF NGNUNI FORM THIN CYLIND.

—-----—---——-————-—-—o—-—-—--——----- - i - — - - -

FLUID DENSITY= 0.11233D-06

NC. LAMCA 1 (LAMDA) 1 (LAMDA) TOTAL MASS PER UNIT SURFACE
N+1 STRULC TURE+FLUID

N
1 0.27¢54D Ol €.69632D0 CC 0.220720 9C Te 345410-04

- GET -



NATURAL VIERATICN OF NCNUNIFORK THIN CYLINC.

THE AUMBER OF CIRCLMFERENTIAL WAVES IS N = 3.

D el

SHELLS BY FINITE-ELEMENTS METHOD

THE MATRIX A ( 1:8,0 ) IS

0.379810-01
0.100€00 01
-C.89CS10-01
=0.333620 CC
0.335260-C1
c.61187°C CC
=0, 757420-01
=0.203430 €C

SECTION NUFBER 1

—==CUTPUT MAT

-0.4608300-01  C.1C0680-01
Ce0 C.1¢C00D 01
C.842700-01 =-C.30297D 01
-(.28048D0-02 0.198940-03
-0.154140-01  C.38%5410-09
Co2%51630 00  Co84E064D-06°
£e291170-01 =~C.32€390-05
=Co85766D~01 ~0.110620-07

THE TRANSFCRMATION MATRIX

-0,265660 02
«0.664480 02
~0.4849170 0OC
C.8C633C-02
0.27451C C2
-C.0876380 01
C.4530080-C1
-0.147120-0¢

0.117150 01

C.224500 0L

C.94264D 00
C.$94430 00
=C.111420 01}
0. 472850 00
-C.576760-08
C.641730-08

THE GENERALIZED CCORDINATE

L
0.467710 02
-0.258%00 01
-0.72784C CC
C€.51603D 02
-0.301800 €2
=J+245790 C1
0. 126410 0C
0.%48340 C2

-C. 258900 01
0.364560 01
C. 472010 00

-, 750370 01
€.245790 31
0.1705C0 00

-0.404180-91

=0. 356620 01

~INVERSE OF A-

€. 208750 00
€. 501590 00
=Ce204930-01
0. 32843D 00
-C.26£260 00
0.125870 00
-C.17291D-08
0.15¢360-00

MASS OF 7
-C.12784D 00
0.47201D0 00
0.912220-01
-Ces21€260 01
C. 72¢410 00
C.48416D-01
-C.13€060-01
~0.,965580 00

TRANSEORM —RATRIX RHO®TeS (1 48,81~ TO THE
N = (TRANSPOSE OF INVERSE

OF A) © RHOsT®S(1,8

RICES~==

0.142680-01

0.0

€. 284580 01
0.24038D0-01
0. 14286D-C7
0. 46552006
0.429820-C6
C.15636D-07

15
-0. 181780 02
-0.195420 02
0.271400 O1
€. 27134D 01
0.15464D 02
-0. 560200 O1
0.177800-06
-C.100150-06

~0.379810-01
0.100000 01
0.890910-21
-0.33362D 00
-0.295830-01
0.139740 01
0.76010D0-01
-0.467820 20

-0.333C1D 02
-0.,2680840 02
0.617320-01
-0.,18308D0 00
0.33239D 02
-0.338620 02
0.309850-06
0.230980-06

HE ELEMENT RHOSTSSTI 8,8<

0. 516830 02
-0. 150370 01
-C. 218260 01

0.122250 03
-0, 546540 02
-0.356620 01

0. 595580 00

0.71574D0 02

-0.301800 02
0.245790 01
04726410 00

-0.546540 02
0.46771D 02
0.2568500 01

-0.72784D 00

-0.51683D0 02

~0, 408300-0}
0.0
0, 842700-01
0,28048D-02
-0 789100-C1
0.575380 00
G.169C2D €O
-0,18804D €O

4

~0e12814D 01
-0.131020 01
«0.11689D-02
-0.10766D-01
0.126260 01
=0. 107900 °1
04107250-C5
=04 204220-06

1S

=0,245790 01
0. 170500 00
Ce 48416D-01

=Ce 356620 O1
0.258500 01
0. 364560 01

-0,472010 00

-0, 750370 01

DESIREC NODAL POINT MASS SUCH THAT

o8) ¢ (INVERSE OF A )

0.161880-C2 =0.892880-04 =C.2%140D0-04 C.17E520-02 <~0.104240-02
-0, 292880~-04 0. 145620-0) C.16304D-04 =C.2551680-C3 0.848990-04
-0.231400-04 €+ 163040-04 Ce31509D0-05 ~=0.7523880-04 0.250910-04
0.179¥520-C2 ~C.259180-03 <Co75388D-04  C.425730-02 -0.188780-02
-0.104240-02 0.0848990-04 C.25C910-04 =C.188780-C2 0.161550-02
-0, £48S9C-04 C.%8€630-05 C.167230-05 =C.122160-03 089288004
0.29C910-04 =0.167230-03 -C.466960-06  C.343880-04 =0.25140D-94
Cc.188780-Ci ~0.123180-03 «C.3438080-04 0.247220-02 =-0.17852D0-02

THIS PATRIX M 1S ThE NASS

THE NCCAL OISPLACENENTS ARE IA THE FOLLOWING CRCER =
(UeMoBETA,V) AT POINYS 11 Xe() AND JIXsLE) RESPECTIVELY

~0e 84899D-04
0. 588930-05
Ce16723D-05
-0e123180-03
C.89288D0-04
C. 125920-C3
~0. 163064D-04
-n,259180-03

PATRIX OF ANY FCRM OF STRUCTURAL ELEHENT

~0.10868D-0%
0.100000 €1
0.302970 01
C. 19894D-03
~0.215320 05
0.10186D 07
0.999190 06
0.1782%D 05

0. 302440 00
€. 330250 00
0. 600020-03
0.288090-02
-0.3G3C4D 00
0.234160 00
~-0¢ 13964D-06
0,221920-06

0. 726410 00
-0+ 48416D0-01
~-0.136060-01

0.99558D 00
-0.7276840 09
-0.47201D0 00

0.912220-01

0.218260 O1

0. 250910-04
-0.167230-0%
-0, 469960-06

0. 34388D0-04
-0.251400-04
-0.16304D-04

0.315790-0%5

0. 753880-04

0.14268D-01
20
€.284580 O1
-0.240380-01
0.£5640D 04
C.73327D 06
0. 512020 07
~Ce 243380 05

0.160390 02
0. 224280 02
0,107660 00
0,232360 00
-0.16147D 02
0.762230 01
©,301820-05
-0, 4911 70-06

€. 546540 02
-0.356620 01
=0.995580 00

0. 15740 02
~-0.51683D 02
=-0,750370 01

0.21828D 01

0.12325D 03

0.188780-02
~0.123180-03
=0, 3436680-04

0,267220-92
-0.176%520-02
-0,259180~03

0. 75388D0-04

0. 425730-02

- 9¢1 -
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NATURAL VIERATICN OF NCNUN!'O&’ THIN CYLIND. SHELLS BY FINITE-ELEMENTS METHCO

TRE AUPBER OF CIRCLPFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0.112330-06

GECMETRICAL ANC ELASTIC PRCPERTIES OF STRUCTURE

ELEMENT NOCE CCORDINATES THICKNESS(IN) ELASTIC CONSTANTS MASS/UNIT VCLUME
NC. NOS. Xt IND RUIN) E(LB/INe=»2) NU (LB/IN/SEC*82)/{IN**3)
1 1 0.0 C.408C0D 01 0.47000D0-01 C. 309000 08 0.30000D 00 7 132400-03
2 Cs 463520 C) 0, 408000 01
L 2 0.4633C0 C1 C.408€00 01 0.470000-01 0. 300000 08 0 300000 OC 0. 732400-03
2 €. 5273C0 C1 0.408000 01
3 L] 0.827(0 C1 0.408C0D O1 0.47000D-01 9. 30C000 08 0 300000 00 0. 73240D0-03
4 0.1390%0 C2 0,408000 01
4 L) 0.1390¢D 02 0.408C0D 21 0.470000-01 <.3009¢D 08 0 300090 00 7. 732400-03
- 0.1854C0 02 0.408000 01

LET



N, 27470C €4
Cc.877880 0%
aCh NUMBER 1
«0,44740C-C1
2. 14276C-%2
RO NUPBER 2
2.,111¢8¢C ¢
~.37695D0 CC
ACw NUNBER 2
-0.31¢410-C1)
-0.76747C-12
ACw NURBER &
n,46346C 0C
0. 25C600-01
RCh NUMBER S
c.78%25C-01
0.431720-11
RCw NUMBER &
-0,15¢%68C CC
n,136230-028
RCw NUMBER 7
C.996340-18
-N.14276C-C2
ACu NUPBER @&
c.t9%430 CC
-0.16£350-12
RCw NUMBER 9
«Co47CTSC~14
«0,37695C CC
aCw NUUBERIC
-0.22119C CC
0.149030-13
RCW NUPBER]L
c.316410-01
-0, 7534%0~-12
RCw NLMBERL2
n.a8348C CC
-C.25C860-01
ACW NUMBERLD
-0.705250-01
Ce 154430D-11
.ACW NUMOBIR1A
=9,15¢380 CC
~Co 739230-02
ACW NUMBERLS
C.04748C-Cl
0e14276D-02
aCw NUNMBERLSE
-0.111C%0 C¢C
04576980 CC

€ E1CEAVALUES

0.872260 04
£.882600 03

0,611830-01
-0.263870-02

-C.2C08210 00
=0, 577290 20

C.%75220-14
-0.186580-02

-C.620720 00
-C,. £40250-02

n.11€720-12
-0,408210 00

0.2C58¢D 00
-0.193480-02

-C.611830-01
C.627880-14

(e 81944D-13
-0.90%430-02

0.,208210 2C
0.178430-13

C.2%6780-13
-00273¢30-02

=Ce530620-14
C.386580-02

€. 623720 00
~0.8402%0-02

-0.444260-12
0.408210 00

-0.206080 00
«C.193480-02

C.611030-01
0.263810-02

-0.,208210 00
0.577290 00

C.17573D 05
C. 283320 05

C.2C2410-01
0.276540-07

-C.25529D OC
Ce447210 OO

Z¢.35597D-01
0.27¢54D-C2

-C.425850 CO
-C.233070-12

€.108(520 CC
Ce447210 00

C.13464D 00
~C.12750D0-12

~C.5710CD-13
Ce27654D-C2

C.£2182D 00
=C.199690-13

-€.2C€77CD-13
Ce.44721D 00

~Ce15C4CD 00
Ce618660-14

€. 355970-01
C.27654D0-02

-€.42555D 00
Co264400-12

-C.108C520 00
C.447210 00

0.134064D 00
Ce11€080-12

-€.503410-01
Ce278540-02

€.25%290 00
C.44721D0 00

C 49830 05
c.973180 €5

C.402330-01
0.125620-01

-0.445400 00
0. 447040 00

-0.402300-01
-0.125620-01

-C.24C720-12
-0+ 10C280-12

C. 445400 00
-0. 447040 €O

«0.472440-13
-0.258660-13

0.402300-01
0.125620-C1

=Co 264430-12
-0.101950-12

-0.445400 00
0. 447040 00

Ce 749240-14
C.10821D-13

-0, 402300-01

-0.125620-C1

-Co222100-12
0. 68423014

C.44%400 00
«0. 44704D 00

0. 50865015
~C. $74990-14

0.402300-01
0.125620-01

-0. 445490 00
Q. 44 704D 00

0.561130 05
0.1C436D 06

-0.455610-01
-0.316080-01

0.55407D 00
-0,.574980 0C

0432924D-01
0.223500-C1

~-0.13458D0 00
0.329230-71

-0.391790 3C
0.40657D 00

0436444D-02
0.146160-21

0,218230-13
0.980040-14

04190320 00
-0,465600-C1

0.164450-12
0.32921D-13

-0.515400-02
-0.,206700-01

~04329240-21
-0.2235C0-01

-0.13458D 00
0.329230-01

0.391790 0C
=0,406570 0

0.364440-02
0.146160-01

0.465610-01
0.3160680-21

-0.55407D 00
0.57498D 00

0.626770 0S5
C. 105670 08

€. 498220-01
-C,272210 00

-0,502890 00
0.354820 00

-0.,869980-13
-C.272210 00

C.34173D0 00
-0, 714830-11

-0, 134330-11
0. 354820 00

0.122240-01
-0.23783D~11

-0.498220-01
-0+ 272210 CC

-0.156670-11
Ce219880-11

0.532890 00
Ce 354820 00

Ca 64£230-13
-0.108210-12

e 673680-13
~0.272210 0O

-0. 341730 00
¢.105220~-10

-C.370190-11
0. 354820 00

-04122240-01
0,285990-11

¢.498220-01
-Ce 272210 00

-Ce 502890 0C
Ce 354820 00

0.671810 05
0.11544D 06

0.553690-01
-C. 503080 00

-0.372720 00
-0.410770-01

0.39152D0-01
-0.35573D0 00

0.377770 OC
0.21904D 00

-0, 263550 00
-0.29046D-01

0.28280D0-01
0.10458D 00

-0.125510-12
N.154480-12

0.534250 00
0309770 00

-0.T74230-12
0.97399D-12

0.39994D-01
0.147900 00

-0.391520-01
0.355730 00

0.377770 00
0.21904D 00

0.263550 0C
0.29046D-01

0.282800-01
0. 104580 00

-0.553690-01
0.503080 00

0,372720 00
0. 410770-01

r,857C10 05
0. 120460 C&

CG.154320-02
-0.12816D0 00

-0,57363D 00
-0.550240 CC

-0, 109120-02
-C.414870-13

-0.566430-01
€.127560 00

C.40562D0 00
£,7907T1D-11

-0.150250-01
¢, 702910-01

0.196530-14
0.,12816D 0O

0.772770-01
0. 498530-12

0.675420-14
€, 550240 00

0.212480-01
~C.319830-13

0,109120-02
-C.805950-13

«0,546430-01
-0.127560 00

-0, 405620 00
C. 479430-11

=0,150250-01
-0+ 702910-01

-Co 154320-02
-0.12816D 00

0, 573630 00
-0.55024D 0O

- 8T



NATURAL VIBRATICN CF NCNUNIFORM THIN CYLIND. SHELLS BY FINITE-ELEMENTS METHCD

TRE NUMBER OF CIRCLMFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0.,11233D-%6

- 6T -

THE FREQUENCY IS = 0427470C €4 RADJ/SECs = 0437200 03 CYCLES/SEC. FREQ. NG. 1

THE CCRRESPCANCING SHAPE IS
UNAX= 0,44748D-C1 WMAX= 2.65543D 00 BMAX= 0.11105D 07 VMAX= 0.22115D 00

NCDE NO. X/L AXIAL/UMAX RADIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAL /VMAX
1 0.0 -0.1€0C0C300 01 0,0 2 100GO0COD 01 0.0
2 3425GC3C 00 -C.7C712678D OC 0. 7C710678D 00 C 7C710678D 00 -C,7C7106780 10
3 9,8Ca3ccp €N 0.132393678D~13 C. 100200000 91 - .42393767D0-13 -0 100000000 01
4 N,75C30D (0O 0.7C71C678D QC 2, 707106780 00 -0 707106780 0OC -0, 707106780 M0
5 G.1€¢3C2C 01 C.1C000C00D0 C1 L. 0 -0 1C00500GD 01 0.0

REMAKK= LISTED ABOVE,CNZ HARMCNIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION
THESE SHOULO BE MULTIPLIEC RESPECTIVELY BY COS(N*PHI),COS(N*PHI),COS(N*PHI} AND SIN{N<*PHI)
FOR CIRCUMFERENTIAL WAVE NUMBER N ANC CIRCUMFERENTIAL ANGLE PHI.



ThE NUMBER OF CIRCLMFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0.,11233D-16

- O%T -

THE FREGUENCY IS = C.87226C 04 RAD./SEC. = (.12883D 04 CYCLES/SEC. FREQ. NO. 2

THE CCRRESPCNCING SHAPE IS
UMAX= 0.61183D-Cl WMAKX= 0.62073D 00 BMAX= 0.20821D 20 VMAX= N 209880 00

NCDE NO. X/L AXTAL/UMAX RADTAL/WMAX ANGULAR /7B MAX CIRCUMFERENTIAL /VMAX
1 0.0 €.100Cc0C00D Ol 0.0 -n.100000000 01 on
2 0.,250000 CO €. 54032¢580-13 -0. 10000000 Ol 0.57019738D-12 0. 100000000 €1
3 0.56€CCC0 (O -0.10000300D0 01 -0.13201128D0-12 0 100000000 01 n,12377378D-12
“ 0.75CCCD 00O -C.86T7258200~-13 0. 100000000 01 -C 21337016D-11 -0.100CCOCCD 01
5 c.10CC00 J1 C.1CCCN00O0D N1 0.0 -0.1C000000D0 01 0:0

REMARK= LISTEC ABOVE,CNE HARMCAIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION
THESE SHOULD BE MULTIPLIED RESPECTIVELY BY COS(N=PHI),COS (N*PHI ), COS(N*PHI) AND SIN(N®PHI)
FGR CIRCUMFERENTIAL WAVE ARUMBER N ANC CIRCUMFERENTIAL ANGLE PHI.




e

NATURAL VIEBRATICN OF NCNUNIFORM THIN CYLIND. SHELLS BY FINITE-ELEMENTS METHOD

THE NUMBER OF CIRCUMFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0.11233D0-06

THE FREQUENCY IS = 0.17573C C5 RADe/SEC. = 0279680 04 CYCLES/SEC.

THE CCRRESPCNCING SHAPE 1S

NODE NO. X/L
1 0.0
2 0.250000 20
3 0.50000D0 9
4 0.75CCCD GC
5 0.1€CG000 91

- I¥T -

FREQ. NO. 3

UMAX= 0,5C341D-01 WMAX= 0.60182D0 00 BMAX= €.25529D 0D VMAX= 2 19040D 00

AXIAL/UMAX RADIAL/WMAX ANGUL AR /BMAX CIRCUMFERENTIAL /VMAX
0.1CNCO00COD 01 0.0 -0 10n02000D 01 2,7
-0, 7€710678D OC -0, 70710678D 00 0.7C7106780 00 N, 707106780 00
-0.113425310~-11 0. 100200000 O1 -0 .81356860D-13 -4 1n0n 000D 01
0.7C€710678D0 OC -0. 707106780 00 -0.70710678D 0C 0.70712678D 00
-C.1C0000000 01 c.0 2 12000000D 01 0.0

REMARK= LISTED ABOVE,ONE HARMCAIC AT A TIME, ARE THE AMPLITUDES OF THE VARTATION IN CIRCUMFERENTIAL DIRECTION
THESE SHOULD BE MULTIPLIED RESPECTIVELY BY COS(N*PHI ) ,COS(N*PHI ), COS(N#PHI) AND SIN{N*PHI)
FOR CIRCUMFERENTIAL WAVE NUMBER N ANC CIRCUMFERENTIAL ANGLE PHI.



THE NUMBER OF CIRCUMFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0,11233D0-06

- R s S D S WD S DD D D G W e e WS b An e - - - WD R M A WD W WD b S G W

- ¢yt -

THE FREQUENCY 1S = 0.4$083C C5 RAD./SEC. = C.78118D 04 CYCLES/SEC. FREQ. NO. 4

THE CCRRESPCNCING SHAPE IS
UMAX= 0,402300-01 WMAX= 0,26443D-12 BMAX¥ 0. 445400 00 VMAX= 0.,47244D-13

NODE NOU. X/L AXTAL/UMAX RADIAL/WMAX ANGULAR /BMAX CIRCUMFERENTIAL /VMAX
1 0.0 €.1€0320C00D Ol 0.0 -0,100000000 0Ol 3.0
2 0.250000 Q0 -C. 100000000 01 -0.910342710 00 0.10000000D0 01 -0, 100000900 01
3 0.5CACCD ¢O 0.100000000 01 -C.10000000D 01 -J 100000000 21 n,15859002D GO
4 €.75¢GC0D0 00 -C.1€0C0OC0200 Ol -0, 839916690 00 ¢ .1¢0097¢C00D 01 G.192332108D-C1
5 0.,1€0%00 11 . c.1C0000C0D 01 0.0 -0,10000000D0 01 0,0

REMARK= LISTEC ABCVE,CNE HARMCAIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION
THESE 7 OULD BE MULTIPLIEC RESPECTIVELY BY COS{N*PHI) ,COS(N*PHI ), COS(N*+PHI) AND SIN(N#PHI)

FOR CIRCUMFERENTIAL WAVE NUMBER N ANC CIRCUMFERENTIAL ANGLE PHI.



|

NATURAL VIBRATICN OF NCNUNIFORM THIN CYLIND.

THE FREQUENCY IS = 0.56113C C5 RAD./SEC. = 0.85307D 04 CYCLES/SEC FREQ. NO. 5

THE CCRRESPCNDING SHAPE 1S
UMAX= 0.465610-01

NGDE NO. X/L AXTAL/UMAX
1 0.0 -C.160%0020D 01
2 .25000C 99 n.7C710678D0 0OC
3 0.50CCCD CO 0.468693750~-12
4 0. 75000C 00 -0,767106780 0OC
5 0.100000 01 0.1€000000D0 01

- e - e on - -

SHELLS BY FINITE-ELEMENTS METHOD

- EVT -

WMAX= 0.19032D 00 BMAX= 0.55407D 00 VMAX= 0.,515400-02

RADIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAL/VMAX
0.0 0 100000000 01 0.0

-0. 707106780 00 -0.7¢710678D 00 0, 707106780 OC

0. 100000COD O1 0 29680394D-12 -0, 170000000 1}
-J. 707106780 00 0.70710678D0 00 0. 707106780 20
0.0 -1 .10000000D 01 0.0

REMARK= LISTED ABOVE.CNE HARMCANIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTIONM
THESE SHOULD BE MULTIPLIED RESPECTIVELY BY COS(N*PHI),COS(N‘PHI).CDS(N*PHI) AND SIN(N%*PHI)
FOR CIRCUMFERENTIAL WAVE NUMBER N ANC CIRCUMFERENTIAL ANGLE PHI.



NATURAL VIERATICN OF NCNUNIFORM THIN CYLIND, SHELLS BY FINITE-ELEMENTS METHCD

THE NUMBER OF CIRCLMFERENTIAL WAVES IS N = 3, FLUID DENSITY= 0,11233D-06

- v -

THE FREQUENCY IS = 0,62677C €5 RAD./SECe = 0,95753D 04 CYCLES/SEC. FREQ. NO. 6

THE CCRRESPCNCING SHAPE IS
UMAX= 0,458220-C1 WMAX= 04341730 00 BMAX= 0.50289D 00 VMAX= 0,12224D-01

ACDE NO. X/L AXTAL/UMAX RADIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAL /VMAX
1 0.0 C.16070C00D 01 Je 0 -0-1000000GD 01 0.0
2 0.25000D J0 =Ca 17461742011 0. 100000000 0! =0.26651565D-11 0. 1000000CD C1
3 0.5C000D 20 -C.190C0000D 01 -C.458451320-11 C.10000000D €1 0.52868034D-11
4 C.759000 20 €.12521561D-11 -0.100000000 O1 -0.73612C46D-11 -, 1nIN0NOCD O
5 0.10000D 91 ¢, 100000000 01 .0 -0.1¢000000D0 01 0.0

REMARK= LISTEC ABOVE,CNE HARMCNIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION
THESE SHOULD BE MULTIPLIED RESPECTIVELY BY COS(N*PHI)oCOS(N*PHI )4 COS(N*PHI) AND SIN(N#*PHI)
FOR CIRCUMFERENTIAL WAVE MNUMBER N AAC CIRCUMFERENTIAL ANGLE PHI.



e

- G%1 -

TFE NUMBER OF CIRCLMFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0.11233D-06

- e AR =D WP WP e Ee - W W D R n S @R D D G R D S D - an o @ an -

THE FRECUEACY IS = 0.67181C C5 RAD./SEC. = 0.1€652D 05 CYCLES/SEC. FREQ. NO. 7

THE COKRESPCNCING SHAPE IS
UMAX= 0,553690-01 WMAX= 0.53425D 00 BMAX= 0,37272D 03 VMAX= 0.39994D-01

NODE NO. X/L AXIALZUMAX RADIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAL /VMAX
1 0.0 €C.10000000D0 Ol 0,C -£.10000C00D 01 0.0
2 0.25C000 20 C.7C7106780 CC 0. 70710678D 00 -0,7C¢710678D 00 0. 7771G678D0 00
3 0.5C0CCD €0 -0.22667516D-11 0. 10C092000D 01 -(,207724720-11 0. 190G000CD 1
] 7.750000 <O -C. 707106780 00 24707106780 00 0.70710678D0 00 0., 70719678D 09
9 0.1€CC00D 91 -C.1C000000D0 Ol 0.0 0.10000020D0 01 0.0

REMARK= LISTEC ABOVE,CNE HARMCNIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION

THESE SHOULD BE MULTIPLIED RESPECTIVELY BY COS{N*PHI ) yCOS (N*PHI )y COSIN*PHI) AND SIN(N*PHI)
FOR CIRCUMFERENTIAL WAVE NUMBER N AMND CIRCUMFERENTIAL ANGLE PHI.




PO

NATURAL VIBRATICN OF NGNUNIFORM THIN CYLIND. SHELLS BY FINITE-ELEMENTS METHQD

- 9T -

THE NUMBER OF CIRCUMFERENTIAL WAVES IS N = 3. FLUID DENSITY= 0.11233D-06

THE FREQUENCY IS = 0.85701C C5 RAD./SEC. = 0.13640D 05 CYCLES/SEC. FREQ. NO., 3

THE CCRRESPCNCING SHAPE IS
UMAX= 0.15432D-02 WMAX= 0.77277D0-01 BMAX= 0.57363D 07 VMAX= 6.21248D-91

NCDE NO. X/L AXIAL/UMAX RADIAL/WMAX ANGULAR /7BMAX CIRCUMFERENTIAL /VMAX
1 0.0 €. 100C0000D O1 0,0 -0.10000000D 01 N,
2 0.2%5000D 09 -C,7C710678D OC -0, 70710678D 00 0.70710£780 0OQ -0.70710678D 9
3 0.5¢00CD QO Ce127353840-11 0. 100000000 C1 0.11774475D-13 N, 1002000CD 01
4 0.750000 CO C.7C71C678D CC -N0. 7067106780 00 -0.7CT10€78D0 0O -0.70710678D0 00
5 0.100600 921 -C.1€000000D 01 0.0 0.10000000D 01 0.0

REMARK= LISTED ABGVE,CNE HARMCNIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION
THESE SHOULD BE MULTIPLIED RESPECTIVELY BY COS{N#PHI),COS{N&PHI),COS(N*PHI) AND SIN{(N*PHI)
FOR CIRCUMFERENTIAL WAVE NUMBER N AND CIRCUMFERENTIAL ANGLE PHI.



PR

THE FREQUENCY IS = 0.£87788C C5 RAD./SEC. = 0.13972D 05 CYCLES/SEC.,

THE CCRRESPCNCING SHAPE IS
UMAX= 0,14276D-C2

NCDE NO. X/L AXIAL/ZUMAX
1 0.0 C.10000000D0 01
2 0.250300 20 -C.52758C700-059
3 0.5C2CQL J0 -G. 100C0000D 01
4 0.75CCcD €O -C.527786C2D-05
5 0.1€3000 01 0.101770C00D 01

-
-
[
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o
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m
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o
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[ d
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- Ly -

FREQ- NO. S

WMAX= 0,25066D-01 BMAX= 0.57695D 20 VMAX= 1 .73923D-02
RADIAL/WMAX ANGULAR/BMAX CIRCUMFERENTIAL /VMAX
0,0 0.1G000CC0D C1 0.0
0, 100000000 01 0,74826714D-11 0. 1517000000 C1
~0.663642180-11 -0.1c000C000 01 0,20159661ND-11
-2.10%000000 01 0.130T76497D-10 -0.1072000G0 €1
C.0 ¢.10000000D0 Gl 0.0

REVMARK= LISTED ABCVE,CNE HARMCANIC AT A TIME, ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTTAL DIRECTION

THESE SHOULD BE MULTIPLIED RESPECTVIVELY
N AND CIRCUMFERENTIAL ANGLE PHI.

FOR CIRCUMFERENTIAL WAVE NUMBER

BY COS(N*PHI),COS{N®PHI),COSIN*PHI) AND SIN(N=PHI)
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NATURAL VIBRATICN OF NCNUNIFORM THIN CYLIND. SHELLS BY FINITE-ELEMENTS METHCD

- em et e e @ was = e .-—-—-—---—----—--——-----'-—--—-—-————----«--—-—--—--cn---—-----.

THE NUMBER OF CIRCUMFERENTIAL

WAVES IS N = 3. FLUID DENSITY= 0.11233D-06

- 8%1 -

- - > s D WD D > D D WS e W R W WD D G D D S W R D D D WD S A D G e -

THE FREQUEANCY IS = 0.88260C G5 RAD./SEC. = 0.14047D 05 CYCLES/SEC, FREQ. NO. 10

THE CCRRESPCNDING SHAPE IS

NCDE NO. X/L
1 0.C
2 0.250000 00
3 C.5C0C0D CO
4 0.750000 Q0
S 0.100000 21

UMAX= 0,26387D-C2

AXTAL/UMAX
-C.1€0130000D0 O1
-0,7C710678D0 9C

C.23795308D-11
C.7C710678D 00
0.1€200000D 01

REMARK= LISTEC ABOVE,CNE HARMCNIC AT A TIME,
THESE SHUULC BE MULTIPLIED RESPECTIVELY BY COS(N*PHI ) 4COS(N*PHI ), COS(N*PHI) AND SIN(N*PHI)

FOR CIRCUMFERENTIAL WAVE NUMBER

WMAX= J.,90545D-02 BMAX= 0,57729D 20 VMAX= 0.27363D-02

RADIAL/WMAX ANGULAR /BMAX CIRCUMFERENTIAL/VMAX
0.0 -0,1060C00000 01 0.0
-C.70710678D Q0 -0,70710678D N6 -0, 7T0TLN6T78D OO
~GCe 10000000D 01 € .309073720-13 -0, 12c0007C0 O1
-0, 7T0710678D 920 G.70T710678D OC -0, 70710678D €D

Je O ¢.1coococon C1 e 0

ARE THE AMPLITUDES OF THE VARIATION IN CIRCUMFERENTIAL DIRECTION

N ANC CIRCUMFERENTIAL ANGLE PHI,.




MEAN SQUARE RESPONSE CF NONLNIFORM THIN CYLIND. SHELLS

CIRCUMFERENTIAL WAVES NUMBER N =2, FLUID DENSITY= 0.11233D-06 LB-SEC*%*2/ (IN**4&)

CENTRE LINE VELCGCITY VECTOR, (UCL(I),I=1,NN_"ES)= (IN./SEC.)
0. 288000 C3 0.28800D J)3 (.28800D G3 0.2880w0 03 0,28800D C3

CIAGCANAL MASS VECTOR, (M(I),I=14NREDUC)= (LB-SEC*SEC/IN)

0.192270-02 0,147520-92 (.,€5455D-03 0,545620-04 0.44417D-04 0N.73997D-04
0.151770-€C3 0.78454D-05 C(C.4C610D-05 0.3€534L~-05 0.43234D0-05 0.4631CD-05
C.758C6D~-C5 0.,34250D-C3 (.€1786D-03 0.54269C-04

CIAGCNAL STIFFNESS VECTOR, (K(I)aI=1,NREDLC)= (LB/IN)
0s14584D0 C5 0.11224D C6 C.26403D 06 0J.13145C 06 0.13985D 06 (0.29069D 06

C.68466D C¢ 0.57622D <5 (.212S7D CS C.28459C 05 0.33734D 05 0.43859D C5
Je82559D CE 0.382¢10 C7 (.€234CD C7 O0.T7€7480 06

VISCOUS CAMPING VECTCR, (C(I),I=1,NREDUC)= (LE-SEC/IN)
Cel0€18D-03 0.25734D-03 »3705CD-03 0.53562C-74 0,49847D-04 0.92758D-04

0.2)3920-C3 0.12447D-C4 (.7130¢D-05 0,64489C-05 0.,76380D0-05 0.90137D-05
0.15822C-C4 1,723820-23 (.1426%D-02 0.13C75C-03

DAMPING FACTQOR, (ZETA(I),I1=1,NREDUC),

D« 100000-04 0.1C00)3D0-34 (C.13000D-04 0.100COC-04 J.10000D-C4 9.100000-04
C.l10CCO0-04 90,1CA000-04 (C.1C0C0D-04 D.,100C0C-%4 2,10030D-04 2.17000D-04
0.17CCCC-04 C.1C0002D0-C4 (.1CC03D-04 2.1C0COC-Ca

- 6T -



MICAN SOUARE DTSPONSE OF NONMUNIFONM THIN CYLIND. SHELLS

SURJICTEN TN INTFTNAL RANDIN PRESSUNE

CIPCUMEERFNTI AL WAVFS MUMAER N =3 FLUID DEMSITY= 0.11233D0-06 LR-SEC%%2/ { IN¥%4)

PeMeSe ReMeSe ReMeSe ReMeSe
NODE x(1) AXTAL RADT AL ANCUL AR CIRCUMIFERENTIAL
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i o AP it S 4 - | W L n o

n= 2 n=3 n=10

)w )‘l j\l )\2. 7\0 7\2

SANDERS * 10.202 .17570 10.465 43961 15.286 5.2613

+9.80261 +.170514 +9.56821 +.405981 +7.39651 +2.5783

BIEZENO and ** 10.1953 0.1758 10.4583 .4399 15.2534 5.2609
GRAMMEL +9.81051 +.17041 4+9,57631 +.40561 +7.48531 +2.5719i

FLUGGE ** 10.1952 1758 10.4581 4399 15.2533 5.2610
4+9.81041 +.17044 t9.576i +.40571 +7 .48511 +2.57191

VLASOV %% 10.1955 .1756 10.4591 .4396 15.2881 5.2579
+9.81074 +.17061 +9.57711i +.40591 +7.41831 f2.5766i

MORLEY ** 10.1781 .1761 10.4414 4406 15.2678 5.2678
+9.82831 +.,17011 +9.59441 +.4049i 47 .4348i1 +2.56521

TIMOSHENKQ %% 10.2025 .1758 10.4652 44 15.2840 5.2645
4+9.80271 +.17041 +9.56321 +.4056i +7.3951i f2.57411

BIJLAARD ** 10.2024 .1707 10.4651 4382 15.284 5.2643
4+9.80251 +.16551 +9.56811 +.40411 +7.39501 +2.57411

NOVOZHILOV ** 10.2022 1757+ 10.4645 .4396 15.2796 5.2657
+9.80241 +.17051 19.56741 +.40601 +7.38591 +2.,57791

NAGHDI and ** 10.2027 .1760 10.4660 4403 15.2737 5.2860
BERRY +9.8031 +.17021 +9.569i +.40521 +7.40301 +2.53421
KENNARD %% 10.2033 .1767 10.467 4418 15.289 5.2691
+9.80361 +.16941 +9.57031 +.40151 +7.41371 +2.53401

TABLE 10 Roots of Characteristic Equations for (1 - ﬂz)/k = 4 x 104 and w¥= 0.3

* This data comes from the authors' computer program.
** This data is given in Reference (28).
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=0.57a87 =12

u (0)
n 2.1995090 C} N, 2T8450=-12 0. 150510=13 =C.675020-113 2.21202D-13 -0.277S6D~-12 0.175889~12 0.68223)-1) 8&
[ 9.5%«1790n-11 0.1000CY M -3,272690=11 C.127260=1L  =C273110-1Y 0.23538D-11 «0.25331D~-11 ~0.812200-12
er(o) Tl=0.%a0s70=14  n,274360-11  D.2C56aD-11  ©.10000" €1 ~C.15384D-13 =0,332750-11 0.219257-11 C.47017D-12 S.
v (0) )
n
(a)
]
un(h _ .
~0.A83230-14 0.i%9029=12 0.7904ED=123 =0,%88400=]11 V170000 91 =J.187HSD=-12 0.71274D-112 0.54R2730-13 L [\*]
-0.3145R20=11 0.1823H4)-11 «0,32034D-113 0.102020 01 ~0.217740~11 =0.17633D=11
11 =0.10188D=13 =C,&124+50~-11 0.321520=11 C.100020 01 Sj 1

Q.621750=-11 =0.4103eD=11

wn(‘) “1-06.102810-123 N, 16892011 CaeIPE T~

v ()
n
(b)
TABLE 11. The elements of the displacement function matrix for (a) x 0, and (b) .x =8,

Note: Terms such as 0.54179D-13 mecan 0.54179 x 10




H
-»

uni w“i (dwn/dx)i vni unj wnj (dwn/dx)j vnj
-5 -3 -5 -3
irst -.55x10 -.633 .927x10 .31515 .55x10 -.633 -.927x10 .31515
Mode
Second .3967 .5227 -.02633 -.262 .3967 -.5227 -.02633 .262
Mode

TABLE 1 2.

The eigenvectors of the

first and second modes of

a free element.
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n Arnold and Baron Galletly Michalopoulos This theory

Warburton and and
Bleich Muster
2 748 760 744 750 752.3
3 435 435 435 436 436.3
4 469 463 467 467 468.7
5 675 670 675 675 678.3

TABLE 13. Natural frequencies, in Hz, for a particular uniform shell,
as calculated by various theories (m = 1)
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FIGURE 1.

(a) (b)

(a) Axi-symmetric shell showing a cylindrical finite element defined by nodes i and j;
(b) Stress resultants on an element of the shell within the finite element (with
transverse shear forces omitted for clarity).
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FIGURE 2. Nodal displacements at points i and j.




FIGURE 3.

I8 cols—~

Illustration of the construction of stiffness and mass matrices for the whole shell.

(N = number of elements).
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FIGURE 4. Parametric curves of the surface where
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Reference Surface

pifferential element of a shell.

FIGURE 5.
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P

(a)

(b)

FIGURE 6. (a) Stress resultants and surface loads acting on a
differential element, and (b) stress couples acting on a

differential element.
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7a 7b

FIGURE 7. Illustration of the construction of the
continuous random pressure field at the
nodal points.
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|He)|

FIGURE 8. Magnification factors for a lightly damped
multi-degree-of-freedom system.
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INPUT

CIRCUMFERENTIAL WAVE-NUMBER, n = 2,3,""°,I

COMPUTE THE INTERMEDIATE MATRICES AND
ALL ELEMENT STIFFNESS MATRICES

[COMPUTE ALL ELEMENT MASS MATRICES |

SUPERIMPOSE ELEMENT MATRICES TO OBTAIN
STIFFNESS MATRIX FOR AN UNCONSTRAINED
SHELL.

a)

Overlay #1

#2

b) DELETE APPROPRIATE ROWS AND COLUMNS #3
FROM THE STIFFNESS MATRIX TO SATISFY
EDGE CONSTRAINTS.
- MASS MATRIX -
(SAME PROCEDURE AS IN OVERLAY #3) 44
SOLVE EIGENVALUE AND EIGENVECTOR #5
PROBLEM
RMS
RESPONSE NO
REQUIRED
YES
FIND [Ma] = (617 (4] 1) 46
?
PIND  [k,] = (017 [K][6] #7
(COMPUTE _THE_RMS RESPONSE DUE TO PRESSURE | #8
J////%\\\\\
NO n=1
YES FIGURE 12. Computational

flow diagram.
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v W
0 C -
-1

N |Upmax/Wmax | Vmax/ Wmax

2 | 01342 0-5098

3 | 00683 0.3374

4 | 0.0404 0.-2520

5 | 0-0265 0 2011

PIGURE 13 Normalized eigenvectors for n = 2,3,4,5

and m = 1 for a uniform, simply-supported

shell,
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PIGURE 14a The natural frequencies of a uniform simply-

supported shell as a function of the number
of finite elements, N, for m = 1.

(continuous 1lines drawn through discrete points

at integral N.)
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PIGURE 14b The natural frequencies of a uniform simply-

supported shell as a function of N, for
m = 2 and 3. (Continuous lines drawn through

discrete points at integral N.)

o o e e —————— e 0. S = T



<>

1000

800

)
@
O

FREQUENCY , Hz

400

200

- 180 -

This theory

———~Theory of (11)
a,0 Exp. of (1)

4 8 12 16

FIGURE 15 Natural frequencies of a free-free uniform

shell as a function of the number of

circumferential waves, n.
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PIGURE 16 Natural frequencies of a clamped-clamped

uniform shell.
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FIGURE 17 Natural frequencies of a clamped-free
uniform shell.
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FPIGURE 18 Natural frequencies of the unstiffened

(uniform) shell studied by Weingarten (50).
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PIGURE 19 Natural frequencies of the ring-stiffened
shell first studied by Weingarten (50);

m=1.
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FIGURE 20 Natural frequencies of the ring-stiffened

shell first studied by Weingarten (s0);m = 2.
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FIGURE 21 Natural frequencies of the ring-stiffened

shell first studied by Weingarten §0);
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FIGURE 22 Some natural frequencies of a simply-
supported shell with thickness discontinuity

(tl = 0.1875 in., t, = 0.25 in.)
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FIGURE »3 Natural frequencies of a simply-supported
shell with thickness discontinuity

(t1 = 0.125 in., t, = 0.25 in.); n = 4,
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PIGURE 24 Natural frequencies of a simply-supported
shell with thickness discontinuity

(¢, = 0.125 in., t, = 0.25 in.); n = 5.

2




FREQUENCY , kHz

K
¢
YN
(V) i 0)] i ~

25

- 190 -

20

4

FIGURE 25.

Variation of natural frequencies with liaquid
depth of a liquid filled shell, this theory:
m= 1,
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FIGURE 26. variation of natural frequencies with liquid
depth of a liquid-filled shell, this theory:
= 2.
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FIGURE 27. Variation of natural frequencies with liquid
depth of a ligquid-filled shell, this theory:
m= 3.
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FIGURE 28. Comparison of this theory with experiments
: of (36) for liquid-filled shells; m = 1.
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FIGURE 29. Comparison of this theory with experiments

of (36) for liquid-filled shells; m = 2.
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m=1

S

FIGURE 3l. Eigenvectors of liquid-filled shells, as
functions of liquid depth, b; for n = 5,
m= 1.
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FIGURE 32. Eigenvectors of liquid-filled shells, as
functions of liquid depth, b; for n = 5,
m= 2.
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FIGURE 33. Eigenvectors of liquid-filled shells, as
functions of liquid depth, b: for n = 5,
m= 3.
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FIGURE 34. Maximum of r.m.s. displacements as functions
- of n; Re = 105 and = 10-5.
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