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ABSTRACT

We consider the problem of sequential decision making in non-stationary

environments. In order to avoid solutions that are too conservative, we cap-

ture the degree of non-stationarity in real-world problems through different

mathematical models for the environment. In the first model, we add to the

environment a state that follows Markovian dynamics subject to limited levels

of non-stationary uncertainty. In the second model, we add non-stationary

constraints to the environment. In the third model, we limit the frequency of

non-stationary changes. In each of these models, we provide efficient learn-

ing algorithms and prove corresponding performance guarantees that depend

critically on the degree of non-stationarity.
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ABRÉGÉ

Nous étudions le problème de décisions séquentielles dans des environ-

nements non-stationnaires. Pour éviter des solutions trop conservatrices, nous

modelisons le degré de non-stationnarité à travers differents modèles mathéma-

tiques de l’environnement. Dans le premier modèle, nous ajoutons à l’environ-

nement un état qui suit une dynamique Markovienne, sujet à des niveaux

limités d’incertitude non-stationnaire. Dans le second modèle, nous ajoutons

des contraintes non-stationnaires à l’environnement. Dans le troisième modèle,

nous limitons la fréquence des changements non-stationnaires. Pour chaque

modèle, nous présentons des algorithmes d’apprentissage efficients et prouvons

des guaranties de performance qui dépendent du degré de non-stationnarité.
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CHAPTER 1

Introduction

This thesis deals with the theory of learning for machines. The goal

is to develop algorithms for making good decisions on the basis of past ob-

servations. The models that we study are generalized versions of sequential

decision-making problems, the simplest of which consists of predicting the next

element in a sequence that is generated by an unknown source. The classical

solution of statistical learning assumes that this source is stationary and uses

past observations to predict all the subsequent elements of the sequence. This

approach works as long as the source is stationary, but many problem in prac-

tice are not stationary, e.g., stock markets, and power distribution and data

networks. To address this shortfall, so-called online learning methods have

been developed in order to deal with these non-stationary (or unpredictable)

settings. These methods, however, have short-comings of their own. Due to

their simplistic representation of the non-stationary source as an arbitrary in-

dividual sequence, they produce solutions that are excessively conservative or

prohibitively inefficient. This thesis introduces a set of flexible models that

capture the notion of varying degrees of non-stationarity, and hence allow us

to design better suited solutions.

The motivation for online learning methods comes not only from the field

of machine learning. A wide range of problems can be modelled as sequen-

tial decision making in non-stationary environments. These problems come

from different parts of science and engineering. One example is power man-

agement in wireless networks [100], where the objective is to trade-off energy
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consumption and performance when service requests are unpredictable. An-

other example is routing packets of data in computer networks with unknown

traffic and demand [13, 14]. In information theory, the important problem of

compressing individual sequences [134] is also an instance of online learning.

In computer science, examples include the problem of caching data to mini-

mize memory access in the worst-case scenario [25, 61], and the construction

of data structures to minimize the worst-case access cost [26]. Online learning

methods can also be combined with other methods of machine learning in or-

der to select important features of high-dimensional data points and querying

for labelled training data points (active learning) [34].

The methods of online learning also have important applications in other

fields. Indeed, some of the early theoretical developments occurred in the

design of adaptive strategies for repeated games in game theory [64] and the

sequential design of experiments in statistics [85, 18]. These methods also have

a strong connection with strategies for playing adaptive games [55, 56, 52, 65].

Furthermore, these methods have led to applications in the design of clinical

trials in medicine [16], the pricing of commodities in economics [114], the se-

quential management of financial portfolios [38, 68], and the exploration for

mineral and petroleum resources [17]. Recent applications include the design

of online auction mechanisms [27, 76], the prediction of diseases [132], the de-

tection of malicious Internet content [89], and the development of competitive

algorithms for playing complex board games (e.g., game of go [125]).

This thesis is written from a machine learning perspective, but the same

general problem appears in the fields of control theory, game theory, operations

research, and economics. The methods and results are therefore presented

through abstract models, instead of specific applications, so that they may

easily be employed in the wide variety of applications just mentioned.
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The two common threads throughout the thesis are problems of sequential

decision and non-stationary settings. In Sections 1.1 and 1.2, we explain the

notion of non-stationary settings and the goal of sequential decision problems

in such settings. In Section 1.3, we illustrate these ideas with examples of

practical problems.

1.1 Non-stationary Environments

In statistical learning problems, the rewards to the decision maker, or

agent, form a stationary random process. In this thesis, we consider non-

stationary environments, i.e., where the sequence of observations from the

environment is non-stationary. This thesis considers a number of different

models for the environment—Markov decision processes and stochastic games,

sequential constrained optimization, and multi-armed bandits, each of which

has a notion of non-stationarity that is specific to the environment. In this

section, we present the common concepts and ideas, but we leave the specific

formalism to the respective chapters.

Statistical learning theory has brought significant improvements in im-

portant applications such as routing, classification, and speech recognition.

For these applications, the success of existing techniques, such as dynamic

programming [15], boosting [53], support vector machines [123] and LASSO

regularization [122], relies on the fundamental assumption that the observa-

tions are generated from a stationary source, which is fixed and does not

change over time. This simplifying assumption, however, does not accurately

reflect sources that change in an unpredictable fashion at unpredictable time

instants. In this thesis, our goal is to represent these sources with various

models of non-stationary environments.

In general, a non-stationary environment can be modelled as a source

that generates a deterministic sequence of observations. The elements of this
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sequence take arbitrary values from a given set and these values are a pri-

ori unknown to the agent. We call these sequences arbitrary or individual

sequences, as in [134].

Non-stationary environments can also be represented from the game the-

oretic perspective. In this case, the agent interacts (as in a repeated game)

with a non-rational or arbitrary opponent that may not have a well-defined

preference, i.e., the sequence of actions of this opponent is an arbitrary se-

quence. This opponent may represent an aggregate of other agents or Nature.

This useful view gives us access to tools from game theory and will be adopted

in Chapters 3 and 4.

A major advantage of modelling non-stationary environments with arbi-

trary sequences is simplicity: there is no need to make assumptions on the

source of observations and estimate its parameters. A possible pitfall, how-

ever, is that the model may be too general, the assumptions too weak. By

making no assumption, we must consider the worst case in our solution, and

hence, the solution may be too conservative. This thesis addresses this pitfall

by introducing models of non-stationary environments where different degrees

of non-stationarity can be distinguished, and hence more suitable algorithms

can be designed.

We can capture the notion of degrees of non-stationarity in a number of

different ways. For example, we can limit the degree of non-stationarity by

bounding the frequency of unpredictable events, restricting the magnitude of

unpredictable changes, or making one component of the source stationary. We

can also increase the degree of non-stationary by extending the source with

additional components such as non-stationary constraint sequences, and non-

stationary state-transition dynamics. Specifically, in this thesis, we distinguish

degrees of non-stationarity in the following models:

4



• Markov decision processes where the state-transition dynamic is station-

ary but the rewards are non-stationary and may possibly adapt to the

actions of the agent (Chapter 2);

• Markov decision processes where both rewards and state-transitions are

non-stationary, but where the magnitude of changes is bounded (Chap-

ter 3), which may also be interpreted as stochastic games against an

arbitrary opponent;

• Repeated games with side constraints against an arbitrary opponent (cf.

Chapter 4), which can also be interpreted as sequential optimization

problems where both rewards and constraints are non-stationary (Chap-

ter 5);

• Multi-armed bandit problems where the rewards are non-stationary, but

the frequency of changes is bounded (Chapters 6).

We present motivations for these problems in Section 1.3. In the next section,

we define our objective in these problems.

1.2 Objective

The goal in non-stationary sequential decision problems differs in a sig-

nificant way from the goal of learning problems in stationary environments.

For instance, since the reward process is stationary in the case of reinforce-

ment learning, the challenge arises from building a representative model and

estimating the unknown parameters of the model. Moreover, the agent may

hope to perform (asymptotically) as well as every alternative policy. In con-

trast, for the case of online learning, the challenge is to deal simultaneously

with all possible instances of a non-stationary environment. Consequently, we

seek a policy that performs well against every individual sequence of reward

functions. A solution of such generality can only be fairly evaluated against

a restricted set of alternatives—the set of stationary (time-invariant) policies,

5



for instance. We also refer to sequential decision making in a non-stationary

environment as online learning, and refer to the decision maker as the agent.

1.2.1 Notion of Regret

Throughout this thesis, we compare the actual performance of the agent

with the performance of the best alternative policy in retrospect. The differ-

ence between these two competing quantities is the regret. For example, the

agent’s actual performance is the reward accumulated by following a learning

algorithm. The baseline is the maximum reward that can be accumulated by a

policy from a limited set of alternative policies and it is evaluated in retrospect

against the same instance of the environment as observed by the agent. In-

tuitively, these two competing quantities incarnate the notions of adaptability

and foresight. Our results show that it is asymptotically possible to trade-off

one for the other.

Although the objective is slightly different in each chapter of the thesis,

the general goal is the same and the performance is evaluated in the same

fashion. We illustrate this with a simple sequential decision problem. A de-

cision maker has a set of action choices A at each time instant t = 1, 2, . . ..

There is an arbitrary sequence of bounded reward functions rt : A → R for

t = 1, 2, . . . that are initially unknown to the agent. At each time step t,

the decision maker takes an action at, and then observes the reward function

rt and receives a reward rt(at). An algorithm in this problem is a rule that

takes as input the history of observations available to the decision maker and

outputs an action. We will also consider randomized algorithms, which take

also as input a random variable. Suppose that the decision maker follows an

algorithm that dictates the sequence of actions a1, a2, . . .. The average regret

6



of this algorithm is

max
a∈A

1

T

T∑

t=1

rt(a) −
1

T

T∑

t=1

rt(at). (1.2.1)

The agent’s accumulated reward is averaged over the time steps 1, 2, . . . , T

and compared to a baseline. We take as baseline the maximum average reward

accumulated by alternative policies that always picks a single action a ∈ A.

The actual sequence of reward functions r1, r2, . . . observed by the agent is

also used to evaluate the baseline in retrospect.

Our main goal will be to describe the long-term behaviour of the regret.

We say that a policy minimizes regret, or is no-regret, if the average regret

vanishes almost surely as T → ∞ for every possible sequence of reward func-

tions r1, r2, . . .. Such algorithms are also said to be Hannan consistent [64]

and universally consistent [56]. The above regret notion arises naturally from

game theoretic considerations because a natural equilibrium is achieved if each

player in a repeated game plays a regret-minimizing strategy [34].

Just as we can apply regret minimization to different settings, different

notions of regret are suitable to different models: e.g., with different classes

of comparison, finite time-horizon or discounted rewards. For instance, when

the environment has a state and the accumulated reward depends on the

agent’s action-history as in Chapter 2, it is useful to consider the steady-

state regret. By introducing side-constraints to the online learning model

(Chapter 4), it is necessary to relax the baseline performance to its convex

hull. By restricting the frequency of non-stationary events in multi-armed

bandit problem (Chapters 6 and 7), it is more meaningful to extend the set of

comparison policies. In each chapter, we adapt the classical notion of regret

of (1.2.1) to the respective setting.
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1.2.2 Uniform and Asymptotic Guarantees

When dealing with non-stationary components of the environment—for

which no model exists, we must account for the worst case. Therefore, the

objective is to guarantee a certain performance uniformly against all possible

instances of the non-stationary environment. In this thesis, we seek solu-

tions that adapt to the non-stationary environments and are robust to the

degrees of non-stationarity outlined in Section 1.1. Hence, the results that we

present hold uniformly over all the individual sequences of observations from

the environment. From the game theoretic perspective, we seek strategies with

performance guarantees that hold regardless of the opponent’s motivation or

behaviour.

1.3 Examples

By virtue of robustness to non-stationary environment changes, the online

learning approach is suitable for real-world problems. More examples relevant

to the specific model of each chapter will be presented in the respective chapter.

In this section, we present intuitive examples that do not require delving into

the details of mathematical models.

The following example is a Markov decision process with an arbitrary

sequence of reward functions.

1

2

3idle

Figure 1–1: Example 1.1: Multi-armed bandit with three arms and an idle
state.

Example 1.1 (Multi-armed Bandit with Restrictions). Consider a non-stochastic

multi-armed bandit problem (e.g., [10]) with k arms and a special restriction
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(see Figure 1–1). The sequence of reward functions is arbitrary. When choos-

ing an arm, the agent may repeat the previous arm or switch to a different

arm. If it switches to a different arm, it must go through an additional in-

termediate state before completing the switch. We have one state for each of

the k arms, each with two actions (“repeat” and “switch”), and one “idle”

state with k actions leading to the corresponding arms. An instance of such

a model is an electrical power distribution network where generators cannot

turn on or off instantaneously due to inertia, but instead must ramp up and

down gradually [36]. In this case, the arbitrary reward can model the revenue

to the operator, which depends on complex and hard-to-predict factors such

as power outages, the quantity of power supplied by competing operators, and

a non-stationary demand. In Chapter 2, we will show that, under reasonable

assumptions, it is possible to achieve asymptotically a reward as high as that

of the best arm, regardless of extra delays and transition costs.

A Markov decision process model may also add other features to the clas-

sical multi-armed bandit problem, such as costs to transition between arms,

forbidden transitions between some arms. Since the MDP model contains

multiple states and a reward process that depends on states and actions, it

can capture real dynamics of the investment process, such as delays in com-

pleting transactions and commissions. Therefore, our results on MDPs with

arbitrary reward processes (Chapter 2) provide a solution to an open problem

of sequential investment [38].

Stochastic games [116] (e.g., [108]) arise as natural models for problems

where an agent interacts with an opponent in a Markovian environment, where

the state evolution depends on the actions of both the agent and the oppo-

nent. The reward to the agent likewise depends on both players’ actions. In

the following example, the opponent is not rational and plays an arbitrary
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sequence of actions. In this case, an online learning approach can be applied

to exploit the opponent that acts in a sub-optimal fashion.

Example 1.2 (Queuing System). As an example of a stochastic game, let

us consider a queueing system. At each time instant, the agent sends a job

to be serviced at one of several queues. A job incurs a delay in each queue

proportional to its congestion. Besides our agent, there are other agents send-

ing jobs to the same queues. If the other agents do not behave in a cohesive

manner, they can be aggregated into an arbitrary opponent. The congestion

pattern on all queues may be represented as a state that evolves according to

all the agents’ action and the movement of jobs through the queueing system.

Similar problems are encountered in networks, e.g., admission control, routing,

and transmission rate control [6]. An additional application to communication

over arbitrarily varying channels is described in [86].

1.4 Literature Overview

In this section, we survey works in the literature on sequential decision-

making in non-stationary environments. Besides the distinction between sta-

tionary and non-stationary environments, in this section, we further divide

online learning problems into two types: expert problems—in which the entire

reward function is revealed after each action of the agent—and bandit prob-

lems, in which only the reward corresponding to the agent’s action is revealed.

Since each of the following chapters considers a different model and employs

different methods, each chapter will contain a more specific literature survey,

where we put the results of that chapter in perspective with other works that

share similarities.

1.4.1 Non-stationary Settings

The basic version of the online learning problem, described in Section 1.2,

has been a topic of great interest for over five decades and across various fields
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of research. Hannan presents the first regret-minimizing algorithm based on

perturbed fictitious play in his seminal paper [64]. He proposes a randomized

policy whose regret is of the order of O(|A|
√
T ) after T plays, where |A| is the

number of actions available to the agent. The exponentially weighted average

forecaster algorithm, introduced in [87] and [124], reduces the regret to the or-

der of O(
√
T log |A|). A number of other no-regret algorithms have been intro-

duced, using methods such as Blackwell’s approachability-based scheme [23],

smooth fictitious play [56], calibrated forecasting [50], multiplicative weights

[54], and online gradient ascent [133].

The basic online learning problem has an equivalent repeated game formu-

lation, which assumes a reward function of the form rt(a) = R(a, bt), where bt

is the action chosen by an opponent, and R is a known payoff function. In this

case, observing the opponent’s action bt is equivalent to observing the reward

vector rt. Online learning in the two-player repeated game framework, without

any state dynamics, has been extensively studied in [64, 55, 56, 52, 65].

The online learning problem is also equivalent to the universal coding

problem in information theory, where the notion of regret is known as redun-

dancy. Algorithms for universal1 prediction [96] and universal coding [111]

are regret-minimizing algorithms. For the problem of universal data compres-

sion, where the source is unknown a priori, [134] presents a regret-minimizing

algorithm that encodes every individual sequence of this source as well as

all finite-state encoders in the long run. Similarly to our objective (cf. Sec-

tion 1.2.2), this result holds even as the number of finite-state machines in the

comparison class is allowed to increase as the length of the sequence increases.

1 This concept of universality refers to the fact that the regret bounds hold
uniformly over all sequences generated by a source.
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Depending on the form of the agent’s reward function and the extent of the

comparison class within some hierarchy, different bounds on regret are ob-

tained [96]. Regret minimization also appears in the frameworks of sequential

gambling [49] and sequential investment [38].

There are two important variants of the basic online learning problem:

expert-type and bandit-type problems. Expert-type problems, such as the

formulation of Section 1.2, where the entire reward function is observed, are

related to the problem of prediction with expert advice [87]. In bandit-type

problems, only the component rt(at) of the reward function, corresponding to

the taken action at, is observed at each time step. This corresponds to the

nonstochastic or adversarial multi-armed bandit problem [10], Another model

of partial observation is studied in [35].

Another important distinction exists between an oblivious opponent (or

environment) and a non-oblivious or adaptive one [34]. In the former case,

the reward vector sequence is assumed fixed in advance but unknown. In the

latter case, it may depend on the actions previously taken by the agent. This

distinction is crucial to [41] and Chapter 2.

An exact but computationally prohibitive solution to the online learning

problem exists when the time horizon T of the problem is known in advance.

This solution is based on the dynamic programming approach [15, 19], but

quickly becomes intractable as T increases. In this thesis, we seek efficient so-

lutions with asymptotic bounds on the regret that do not require prior knowl-

edge of the time horizon T . The notion of discounted regret is treated in

[34].

1.4.2 Stationary Settings

The problem of regret minimization is also studied in the case of station-

ary environments. In this case, the regret is defined similarly to Section 1.2,
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except that the baseline is actually the optimal expected reward, instead of

the reward in retrospect of the best alternative policy. The classical instance

of this problem is the stochastic multi-armed bandit, which is a fundamental

problem to statistics [112] and exemplifies the trade-off between exploitation

and exploration in reinforcement learning [121]. In the basic bandit problem,

there is a finite set of arms, where each arm generates an independent sequence

of random rewards according to an unknown probability distribution. The ob-

jective is to pull the arms sequentially so as to maximize the total reward. Lai

and Robbins showed that the regret is at least of the order of Ω(log T ) and pro-

vided a policy based on upper-confidence indices that achieves the lower bound

exactly in the limit [85]. This solution is an instance of the general method

of Gittins indices [59]. The UCB algorithm, with a uniform finite-time regret

bound of O(logT ), is presented in [9].

1.5 Contributions

This thesis deals with different degrees of non-stationarity in three settings

of sequential decision-making:

• Markov decision processes and stochastic games,

• sequential constrained optimization problems and constrained repeated

games,

• and multi-armed bandits.

In each of these settings, we present new algorithms that adapt to non-

stationary changes, along with performance guarantees in the form of finite-

time expectation bounds or probabilistic bounds on the performance loss. Be-

sides these theoretical properties, our algorithms are also computationally ef-

ficient. We validate their performance through experiments in Chapters 4, 5,

and 6.
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In Chapter 22 , only one of the two components of the environment is non-

stationary. The decision-maker interacts with a version of Markov decision

processes, where the state transitions occur according to stationary dynamics

(as in standard Markov processes), but where the reward function may change

in a non-stationary fashion over time. We present a method to perform as

well—in retrospect—as every stationary policy against every possible sequence

of reward functions. Our approach uses an efficient online algorithm—in the

spirit of reinforcement learning—that ensures that the average performance

loss vanishes over time, provided that the environment is oblivious to the

decision-maker’s actions. This generalizes the classical no-regret result for re-

peated games. Moreover, it is possible to modify the basic algorithm to cope

with instances where the decision-maker has only limited observations of the

rewards. We also present approximation techniques to reduce the computa-

tional cost at the expense of performance, and we extend our baseline policies

to include a subset of non-stationary policies.

In Chapter 33 , we generalize the MDP model of Chapter 2 to a much

harder model, where both the rewards and the state-transitions may change

in a non-stationary fashion. This setting is a generalization of ordinary on-

line learning problems and corresponds to a one-sided stochastic game against

a non-rational opponent. In order to obtain tractable solutions, we restrain

2 This work is published in the journal Mathematics of Operations Research
[131].

3 Parts of this work are published in the Proceedings of the International
Conference on Game Theory for Networks (GameNets) [129] and the Proceed-
ings IEEE Conference on Decision and Control [128].
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the degree of non-stationarity by the magnitude of the changes in the state-

transition probabilities. As in Chapter 2, we propose online learning algo-

rithms and provide guarantees on their performance evaluated in retrospect

against alternative policies. We first use an approach based on robust dynamic

programming, and then present a computationally efficient simulation-based

algorithm (in the style of Q-learning) that requires neither prior knowledge

nor estimation of the transition probabilities. The case of limited observation

of the rewards can also be handled with a modification. Unlike existing results

though, our guarantees depend critically on the magnitude of non-stationary

changes in the transition probabilities.

In Chapter 44 , we consider a sequential constrained optimization problem,

where the objective is to maximize the average reward subject to constraints

on the sample path. The challenge is that both the sequence of objective

functions and the sequence of constraints change in a non-stationary fashion.

Unlike the case where the sequence of constraints is stationary, it is not possible

to attain the average reward of the best stationary solution. The degree of

non-stationarity in this setting is such that it is necessary to relax the baseline

of our notion of regret. However, we identify the set of attainable average

rewards and present an algorithm using calibrated forecasting that attains

this set. We evaluate the performance of computationally efficient methods

based on non-calibrated forecasters in experiments.

4 This work is published in the Journal of Machine Learning Research [94].
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In Chapter 55 , we model a real-life power management problem as a

sequential optimization problem with non-stationary rewards and constraints.

The model is similar to that of Chapter 4, but the constraints and objective

are defined differently. For this setting, we provide a solution using prediction

with expert advice. In addition to theoretical guarantees, we validate its

performance through experiments.

In Chapter 66 , we consider a random source that is stationary over long

intervals, but may change distribution abruptly at unknown time instants. We

quantify the degree of non-stationarity by the frequency of changes from one

stationary distribution to another. This is the piecewise-stationary general-

ization of the classical multi-armed bandit problem. We evaluate the regret

with respect to the sequence of instantaneously optimal arms—which is more

competitive than the notion of regret for typical non-stationary settings, but

assume that side observations are revealed to the agent. We present an ef-

ficient solution that detects shifts in the mean of the reward function over

different windows. We show that the expected regret of this algorithm has

upper and lower bounds that match up to a constant factor.

In Chapter 7, we consider a different version of piecewise-stationary multi-

armed bandits than Chapter 6, where the set of arms is infinite—i.e., an

interval of the real line, but the arm rewards are related in an unimodal fashion.

In this setting, we provide an efficient algorithm that iteratively eliminates

subsets of arms based on samples of a small number of arms. We show that

5 Parts of this work are published in the Proceedings of the AAAI Confer-
ence on Artificial Intelligence [81] and the Proceedings of the International
Symposium on Artificial Intelligence and Mathematics [80].

6 This work is published in the Proceedings of the International Conference
of Machine Learning (ICML) [130].
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this algorithm minimizes the regret without requiring any side observation in

contrast to Chapter 6. Moreover, in the case where there are no change-points,

the regret bound of our algorithm matches existing lower bounds for similar

continuum-armed bandit problems.

Throughout this thesis, for simplicity of notation, we sometimes reuse

the same symbol (e.g., ǫ, δ, k, n) to denote different quantities across different

chapters. For instance, rt represents a deterministic reward function in one

chapter; but in another chapter, rt denotes a stochastic reward vector. Within

each chapter, however, each symbol consistently refers to the same notion.
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CHAPTER 2

Markov Decision Processes with Arbitrary Reward Processes

2.1 Introduction

In this chapter, we consider a learning problem where the decision maker

interacts with a standard Markov decision process, with the exception that

the reward functions vary arbitrarily over time. We show that, against every

possible realization of the reward process, the agent can perform as well—

in hindsight—as every stationary policy. This generalizes the classical no-

regret result for repeated games. Specifically, we present an efficient on-

line algorithm—in the spirit of reinforcement learning—that ensures that the

agent’s average performance loss vanishes over time, provided that the envi-

ronment is oblivious to the agent’s actions. Moreover, it is possible to modify

the basic algorithm to cope with instances where reward observations are lim-

ited to the agent’s trajectory. We present further modifications that reduce

the computational cost by using function approximation and that track the

optimal policy through infrequent changes.

A common theme in the majority of existing works is that the decision

maker faces an identical decision problem at each stage. This falls short of

addressing realistic decision problems that often take place in a dynamic and

changing environment. Such an environment is commonly captured by a state

variable, which evolves as a controlled Markov chain. The model thus obtained

is that of a Markov decision process (MDP), augmented by arbitrarily varying

rewards and (possibly) transitions. Furthermore, by modelling the arbitrary

elements as the actions of an opponent (actual or virtual), the model takes

the form of a two-person stochastic game [116], played between the decision
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maker and an arbitrary opponent. In this chapter, we consider MDPs where

only rewards change arbitrarily. Such a model arises as a simple extension to a

standard online decision problem, as illustrated by the examples of Section 1.3.

2.1.1 Related Works

Various versions of MDPs have been studied in a large number of works.

A well-known setting is that of reinforcement learning, where the rewards are

i.i.d. random variables generated by a fixed, but unknown, source. For exam-

ple, [48] considers MDPs where the state and action spaces and the transition

function are fixed but not known to the decision maker.

Regret minimization in such dynamic environments has been the topic of

only a handful of papers so far. This may seem surprising, given the prolifer-

ation of interest in no-regret algorithms, on the one hand, and the extensive

literature on MDPs and stochastic games, on the other hand. In [91], the

problem has been considered within the general stochastic game model, where

both the transition probabilities and the rewards are affected by the actions

of both players, the opponent is adaptive and the opponent’s actions are ob-

served at traversed states only. A central observation of that paper is that

no-regret strategies do not exist for the general model (where regret is defined

relative to the best stationary policy of the decision maker). An exception

is the case where the transition probabilities are controlled by the opponent

only, which can be treated by applying a no-regret algorithm at each state

separately and independently of other states. For the general model, a relaxed

goal was set and shown to be attainable by using approachability arguments.

We note that similar conclusions hold true for the (essentially simpler) model

of repeated games with varying stage durations, as reported in [93]. Merhav et

al. [97] have considered sequential decision problems where the loss functions
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have memory, which correspond to special MDPs, where every state is reach-

able from every other via a single action. They presented an algorithm using

piecewise-constant policies and provided regret-minimizing guarantees similar

to ours.

The paper [44], whose model is closest to the present one, focuses on

MDPs with arbitrarily varying rewards. Specifically, it assumes that (1) The

state dynamics is known, namely, the state transition probabilities are de-

termined by the decision maker alone; (2) Oblivious opponent: The reward

functions, while unknown to the decision maker, are fixed in advance; (3) Ob-

served reward functions: The entire reward function rt (for every state and

action) is observed after each stage t. As mentioned in [44], a simple-minded

approach to the problem could start by associating each deterministic station-

ary policy with a separate expert, and applying existing experts algorithms

in that setting. However, as the number of such policies is prohibitive for

all but the smallest problems, this approach is computationally infeasible and

slow to converge. Thus, more efficient algorithms must be devised. Under the

above assumptions, Even-Dar et al. propose an elegant no-regret algorithm,

and provide finite-time bounds on the expected regret. The suggested algo-

rithm places an independent experts algorithm at each state; however, the

feedback to each algorithm depends on the aggregate policy determined by

the action choices of all the individual algorithms and by the value function

which is computed for the aggregate policy.

Our chapter also relates to problems outside the regret minimizing frame-

work. Optimal control in MDPs with unknown, but stationary, reward pro-

cesses can be solved using reinforcement learning, e.g., model-based and Q-

learning algorithms [126]. In contrast to an ordinary stochastic game, the
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opponent in our model is not necessarily rational or self-optimizing. Our em-

phasis is providing the agent with policies that perform well against every

possible opponent. A max-min solution to a zero-sum stochastic game, such

as one produced by the R-max algorithm of [30], may well be too conservative

when the opponent is not adversarial. It may be in the agent’s interest to

exploit the non-adversarial characteristic of the opponent. Our model corre-

sponds to a stochastic game where an arbitrary opponent picks the reward

functions, but does not affect state transitions.

The basic model that we consider here is similar to [44]. We start by exam-

ining the above-mentioned assumptions, and show that the oblivious opponent

requirement is necessary for the existence of no-regret algorithms. This stands

is sharp contrast to the standard (state-less) problem of prediction with ex-

pert advice, where no-regret is achievable even against an adaptive opponent.

We then propose for this model a new no-regret algorithm in the style of [64],

which we call the Lazy follow-the-perturbed-leader (FPL) algorithm. This al-

gorithm periodically computes a single stationary policy, as the optimal policy

against a properly perturbed version of the empirically observed reward func-

tions, and applies the computed policy over a long enough time interval. We

provide a modification to this algorithm (the Q-FPL algorithm) that avoids

the exact computation of optimal policies by incorporating incremental im-

provement steps in the style of Q-learning [20]. Next, we extend our results

to the model where only on-trajectory rewards are observed; namely, only the

rewards along the actually traversed state-action pairs. Clearly, this is a more

natural assumption in many cases, and may be viewed as a generalization of

the bandits problem to the dynamic setting. Finally, we introduce a variant

of our basic algorithm that minimizes regret with respect to non-stationary

policies with infrequent changes, in the spirit of [70].
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Our emphasis in this chapter is on asymptotic analysis and almost-sure

convergence; namely, we show that the long-term average regret vanishes with

probability one. Explicit finite-time bounds on the expected regret are pro-

vided as intermediate results or as part of the proofs. To summarize, the main

contributions of this chapter are the following:

• Establishing the necessity of the oblivious opponent assumption in this

model.

• A novel no-regret algorithm for MDPs with arbitrarily varying rewards.

In contrast to [44], this algorithm is Hannan consistent and has dimin-

ishing average computational effort over time.

• The first reported no-regret algorithm for the MDP model when only

on-trajectory rewards are observed.

• The incorporation of Q-learning style incremental updates that alleviate

the computational load and spread out the load over time. Moreover,

the Q-learning style updates eliminate the requirement of knowing the

state transition probabilities.

The rest of the chapter is organized as follows. We describe the model

in Section 2.2, and motivate our obliviousness and ergodicity assumptions in

Section 2.3. Section 2.4 describes and analyzes our main algorithm. The Q-

FPL variant and related approximation results are described in Section 2.5.

The extension to the case of on-trajectory reward observations is described

in Section 2.6. In Section 2.7, we consider regret minimization with respect

to a subset of non-stationary policies: the policies with a limited number of

changes from one step to another.

2.2 Problem Definition

We consider an agent facing a dynamic environment that evolves as a

controlled Markov process with an arbitrarily varying reward process. The
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reward process can be thought of as driven by an abstract opponent, which

may stand for the collective effect of other agents, or the moves of Nature. The

controlled state component is a standard Markov decision process (MDP) that

is defined by a triple (S,A, P ), where S is the finite set of states, A is the finite

set of actions available to the agent, and P is the transition probability—that

is, P (s′ | s, a) is the probability that the next state is s′ if the current state is

s and the action a is taken.

The discrete steps are indexed by t = 0, 1, . . .. We assume throughout

the chapter that the initial state at step 0 is fixed and denoted s0. At the t-th

step, the following happen:

1. The opponent chooses a reward function rt : S × A→ [0, 1];

2. The state st is revealed;

3. The agent chooses an action at;

4. The entire reward function rt = {rt(s, a)}(s,a)∈S×A is revealed; the agent

receives reward rt(st, at);

5. The next state st+1 is determined stochastically according to the transi-

tion function P .

Remark 1 (Notation). When confusion is possible, we will write the random

variables with a bold typeface (e.g., st) to distinguish them from their realiza-

tions written with a normal typeface (e.g., st).

In general, the opponent determines a sequence of reward functions r0, r1, . . .,

where rt may be picked on the basis of the past state-action history

(s0, a0, . . . , st−1, at−1).

In most of the following development, we consider oblivious opponents that

pick the reward functions r1, r2, . . . independently of the past state-action his-

tory. This assumption is made exact in the following section.
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We are interested in policies that respond to the observed sequence of

rewards. When choosing action at at step t, we assume that the agent knows

the current state st, as well as the past state-action history and the past

reward functions. Hence, we define a policy as a mapping from the reward

history (r0, . . . , rt−1) and state-action history (s0, a0, . . . , st−1, at−1, st) to an

action in the simplex ∆(A)1 . A stationary policy is a function µ : S →

∆(A) that depends solely on the current state st—and not on the history

of the rewards or states. We denote by Σ the set of stationary policies. A

deterministic stationary policy is a mapping µ : S → A from the current

state to an action. We first present in Section 2.4 a policy for the agent that

assumes that the transition probability function P is known. However, this

requirement is not crucial and we shall dispense with it via simulation-based

methods in Section 2.5.

Let us consider a sequence of state-action pairs (st, at)t=0,1,... induced by

following a stationary policy µ and starting from the initial state s0. Let

dt(µ; s0) denote the probability distribution of (st, at). With respect to the

stationary policy µ, if it admits a unique stationary state-action distribution,

we denote the latter by π(µ). Given an arbitrary reward function r : S ×

A → [0, 1], we introduce the following inner product notations to denote the

expected reward at time step t starting from state s0 and following policy µ,

and the expected reward according to the stationary distribution associated

1 ∆(A) denotes the set of all probability vectors over A.
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with policy µ:

〈r, dt(µ; s0)〉 ,
∑

(s,a)∈S×A

r(s, a)Pµ
(
(st, at) = (s, a) | s0

)
, (2.2.1)

〈r, π(µ)〉 ,
∑

(s,a)∈S×A

r(s, a)π(µ)(s, a).

2.2.1 Assumptions

Our main results require the following assumptions. Their necessity will

become clear from the counterexamples of Section 2.3. We begin with the

following ergodicity assumption.

Assumption 2.1 (Uniform Ergodicity). The induced Markov chain is uni-

formly ergodic over the set of stationary policies. This guarantees that there

exists a unique stationary distribution π(µ) for each policy µ. Moreover, there

exists (cf. [28]) a uniform mixing time γ ≥ 0; i.e., there exists a finite γ ≥ 0

such that for every stationary policy µ ∈ Σ, every initial state s0, and t ≥ 0,

we have

‖dt(µ; s0) − π(µ)‖1 ≤ 2e1−t/γ .

Remark 2. The ergodic assumption is quite weak as it only requires that

all recurrent states in the Markov chain communicate and that the chain is

aperiodic. However, there may exist transient states—which may depend on

the stationary policy employed.

The main results of this chapter hold when the opponent is oblivious; in

other words, the sequence of reward functions does not depend on the state-

action history. There are two justifications for this approach. First, from

a modelling perspective, the agent may interact with other agents that are

truly oblivious, irrational, or have an unspecified or varying objective. This

renders their behaviour “unpredictable” and seemingly arbitrary. Second, in
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the presence of many agents, a single agent has little effect on the overall

outcome (e.g., price of commodities, traffic in networks) due to the effect of

large numbers [12]. Moreover, as Example 2.1 shows, the regret can not be

made asymptotically small when the opponent is not oblivious. Formally, we

state the obliviousness assumption as follows.

Assumption 2.2 (Oblivious Opponent). The reward functions r0, r1, . . . are

deterministic and fixed in advance.

Remark 3. Alternatively, we may assume that the reward functions r0, r1, . . .

are random variables on the null σ-algebra. Hence, for every random variable

Xt measurable by the σ-algebra generated by (s0, a0, . . . , st, at) satisfies the

following:

E
[
rt(s, a)Xt

]
= rt(s, a)E

[
Xt

]
, for all (s, a) ∈ S × A. (2.2.2)

The following results can be shown to apply even when the reward functions

are randomly chosen at each step, independently of the state-action history,

so that (2.2.2) holds. This case can be handled similarly to the deterministic

one, at the expense of somewhat more cumbersome notation that we avoid

here.

2.2.2 Regret

In general, the goal of the agent is to maximize its cumulative reward

∑T−1
t=0 rt(st, at) over a long time horizon of T steps, where T need not be

specified a priori. We shall focus on policies that minimize the regret, which

measures how worse off the agent is compared to the best stationary policy in

retrospect. This regret arises from the lack of prior knowledge on the sequence

of reward functions picked by the opponent. We present three related notions

of regret that differ in how the sequence of reward functions is retained, and

in the choice of initial state. All three definitions of regret for our model
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collapse to the classical notion of regret for repeated games (cf. [34]). Our

basic definition for regret is the following.

Definition 2.1 (Worst-case Regret). The worst-case average regret, with re-

spect to the realization r0, . . . , rT−1 of the reward process, is

LWT , sup
µ∈Σ

E

[
1

T

T−1∑

t=0

rt(s̃t, ãt)

]
− 1

T

T−1∑

t=0

rt(st, at), (2.2.3)

where E denotes expectation over the sequence (s̃t, ãt) induced by the station-

ary policy µ. It is implicitly understood that both sequences s̃t and st start at

the initial state s0 and follow the transition kernel P . This regret is a random

quantity since the trajectory (st, at) is random.

The above definition of regret is one possible extension of the concept

of regret introduced in [64]. However, it is not the only natural definition of

regret and we shall provide two additional notions of regret. An alternative

to defining the regret with respect to stationary policies is to take as basis

for comparison an agent that possesses only prior knowledge of the empirical

frequency of reward functions. In this case, it is natural to consider the MDP

where the states, actions, and transition probabilities are as before, but where

the reward function at every step t is

r̂T (s, a) ,
1

T

T−1∑

j=0

rj(s, a), for all (s, a) ∈ S ×A.

With this concept, we present the following definitions.

Definition 2.2 (Steady-state and Empirical-frequency Regret). The steady-

state average regret is

LST , sup
µ∈Σ

〈r̂T , π(µ)〉 − 1

T

T−1∑

t=0

rt(st, at). (2.2.4)
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The empirical-frequency average regret is

LET , sup
µ∈Σ

E

[
1

T

T−1∑

t=0

r̂T (s̃t, ãt)

]

− 1

T

T−1∑

t=0

rt(st, at). (2.2.5)

Under Assumptions 2.1 and 2.2, these three definitions are asymptotically

equivalent, as established in the following lemma. This result is independent

of the agent’s learning algorithm. The proofs of this and other lemmata are

provided in Section 2.8.

Lemma 2.1 (Asymptotic Equivalence). If Assumptions 2.1 and 2.2 hold, then

∣∣LET − LST
∣∣ ≤ 2eγ/T,

and

∣∣LWT − LST
∣∣ ≤ 2eγ/T.

This equivalence allows us to employ throughout our analysis the simpler

notion of steady-state regret ((2.2.4)). We say that an agent’s policy is a

no-regret policy, with respect to one of the three definitions of regret, if the

corresponding average regret tends to 0 with probability 1 as T → ∞.

2.3 Counterexamples

In this section, we present examples where vanishing average regret can

not be guaranteed. The first example considers a non-oblivious opponent that

modifies the reward function according to the agent’s action history. The

second example displays a periodic state trajectory.

Example 2.1 (Non-oblivious Opponent). Let the states S = {1, 2, 3} be

as in Figure 2–1. The agent has two actions to choose from: whether to

go left or right. The corresponding transition probabilities are shown in

Figure 2–1. The non-oblivious opponent assigns a reward of 0 to state 1
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1 − p 0

1 1

p

12 3

(a) Transition model if the agent
chooses to go left.

1 1

p

12 3

0 1 − p

(b) Transition model if the agent
chooses to go right.

Figure 2–1: State transitions for Example 2.1. Taking the left action in state
1 leads to state 2 with probability 1 − p. There is a small probability p
of staying in state 1, regardless of the action taken; thus making the MDP
aperiodic. From state 2 or 3, the agent moves to state 1 deterministically.

at all steps. It gives a reward of 1 to state 2 if the agent took the ac-

tion leading to state 3 at the previous time step; otherwise, it gives zero

reward to state 2. Similarly, the opponent gives a reward of 1 to state

3 if the agent took the action leading to state 2, and a zero reward oth-

erwise. Consequently, for every policy, the reward attained by the agent

is
∑T−1

t=0 rt(st, at) = 0. In contrast, by computing the stationary distribu-

tion for each fixed action, we have either limT→∞
1
T

∑T−1
t=0 E

[
rt(st, left)

]
≥

(1 − p)/(2 − p) or limT→∞
1
T

∑T−1
t=0 E

[
rt(st, right)

]
≥ (1 − p)/(2 − p). As a

result, the average worst-case regret is always positive and bounded away

from 0. Since the MDP is ergodic, a similar argument shows that the same

holds true for the two other definitions of regret.

We note that this example is stronger than the counterexample presented

in [91], where the non-vanishing regret is attributed to lack of observation of

the reward.

1 2

w.p. 1

w.p. 1

Figure 2–2: State transitions for Example 2.2.
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Example 2.2 (Periodic MDP). Consider an MDP with two states S = {1, 2}

as in Figure 2–2. The transition from state 1 to 2, and vice-versa, occurs with

probability 1. The agent has a number of identical actions (same transitions

and rewards). An oblivious opponent chooses the following rewards:

rt(1) = 1, rt(2) = 0, if t is even,

rt(1) = 0, rt(2) = 1, if t is odd.

It follows that r̂T (1) → 1/2 as T → ∞, and similarly for r̂T (2). If the initial

state s0 is 1, then the agent’s cumulative reward is T ; otherwise, if s0 is 2,

the cumulative reward is 0. This implies that the regret is either negative if

s0 = 1, or positive (and bounded away from zero) if s0 = 2. Therefore, using

the empirical-frequency or steady-state notion of regret, zero regret can not be

achieved for periodic MDPs, even if the opponent is oblivious. Nonetheless,

in this example, the regret is zero if we adopt the notion of worst-case regret

(2.2.3). In this example, the value of the accumulated reward depends solely

on the initial state s0. Since we are interested in characterizing regret with

respect to policies, such pathological cases shall be excluded.

In light of these counterexamples, we preclude via Assumptions 2.1 and 2.2

periodic MDPs and non-oblivious opponents.

2.4 Follow the Perturbed Leader

In this section, we present the basic algorithm of this chapter and show

that it minimizes the regret under full observation of the reward functions.

2.4.1 Algorithm Description

The proposed algorithm is based on the concept, due to [64], of following

the best action so far subject to random perturbations that vanish with time.

The algorithm works in phases. We partition the time steps 0, 1, . . . into phases
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(i.e., intervals of consecutive steps2 ), denoted by τ0, τ1, . . .. We denote by M

the number of phases up to step T . The phases are constructed long enough

so that the state-action distribution approaches stationarity. As a result, the

number of phases M also becomes sub-linear in T . The phases are nonetheless

short enough so that the agent adapts fast enough to changes in the reward

functions. This will be made precise in the results below. As a convention,

we let the index t denote a step, whereas m denotes the index of phase τm.

Moreover, we write τ0:m to denote the union of phases τ0 ∪ . . .∪ τm, and |τ0:m|

to denote its length. For ease of notation, we write the cumulative and average

reward over one or more phases as

Rτm(s, a) ,
∑

t∈τm

rt(s, a),

r̂τm(s, a) ,
1

|τm|
Rτm(s, a),

r̂τ0:m(s, a) ,
1

|τ0:m|
∑

t∈τ0:m

rt(s, a),

for all (s, a) ∈ S ×A. The algorithm takes as input the step index t ∈ τm, the

current state st, and the average reward function r̂τ0:m−1 . It outputs a random

action at. For the purpose of randomization, the algorithm samples a sequence

n1,n2, . . . of independent random variables in R
|A|. The distribution of these

random variables will be specified later.

Remark 4 (Computational cost). The Lazy FPL algorithm, as well as the

other algorithms presented in this chapter, has clear computational costs. In

particular, the main step of the Lazy FPL algorithm solves a standard MDP

2 The partition is constructed such that the order between steps within each
phase is preserved.

31



1. (Initialize.) For t ∈ τ0, choose the action at according to an
arbitrary stationary policy.

2. (Update.) At the start of phase τm, m = 1, 2, . . ., solve the
following linear program for (λm, hm):

min
λ∈R,h∈R|S|

λ (2.4.6)

subject to: λ+ h(s) ≥ r̂τ0:m−1(s, a) +
∑

s′∈S

P (s′ | s, a)h(s′),

for every (s, a) ∈ S ×A,

h(s+) = 0, for some fixed s+ ∈ S.

3. (Follow the perturbed leader.) For t ∈ τm, m = 1, 2, . . ., choose
the action

at = arg max
a∈A

{
r̂τ0:m−1(st, a) + nt(a) +

∑

s′∈S

P (s′ | st, a)hm(s′)
}
,

(2.4.7)

where the element of A with the lowest index is taken if the max
is not unique.

Algorithm 2–1: Lazy FPL

with the average-reward objective (2.4.6). This step can further be approxi-

mated by more efficient iterative methods such as Q-learning. Moreover, we

can use the methods of dynamic programming to deal with large state spaces

[20].

Observe that the linear program (2.4.6) is a standard optimization prob-

lem for obtaining the optimal value function (and hence an optimal policy) in

an average-reward MDP [19]. The Lazy FPL algorithm perturbs the average

reward function r̂τ0:m−1 with the random variable nt. Since the perturbing

random variables nt are identically distributed for all t ∈ τm, while the other

terms on the right-hand side of (2.4.7) are fixed, it follows that the actions at

follow the same mixed stationary policy over the phase τm. We denote this

policy by σm. The lazy aspect of this algorithm comes from the fact that it
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updates its policy only once each phase, similar to other lazy learning schemes

(e.g., [97]).

There are two ingredients to this solution: randomization and phases.

Randomization through small perturbations introduces continuity between

policies from one phase to the next; thereby averting the precedent of Buri-

dan’s ass. This approach is reminiscent of the regret minimization technique

in [64, 72] and smooth fictitious play in repeated games [55]. The motivation

of increasing phase lengths is twofold. Firstly, using a fixed policy over long

phases is computationally efficient. Secondly, in addition to vanishing expected

regret, we show that the regret vanishes almost surely, provided that the agent

does not change its policy too often. One intuition is that, on the one hand,

our bases for comparison are the steady-state rewards of stationary policies;

on the other hand, taking long phases ensures that the agent’s accumulated

reward in each phase approaches the steady-state reward of the corresponding

policy. At the same time, we ensure that these phases are also short enough

so that we may adapt to changes in the reward functions.

It is important to observe that prior knowledge of the time horizon T

is not necessary to run the Lazy FPL algorithm. The only prerequisite is a

pre-established scheme to partition every time interval into phases.

2.4.2 Results

In this section, we show that the Lazy FPL algorithm has the no-regret

property. Our main result shows that increasing phase lengths in the Lazy

FPL algorithm yields not only an efficient implementation, but also allows us

to establish almost-sure convergence for the average regret. The proof relies on

a probabilistic bound on the regret, which is derived using a modified version

of Azuma’s Inequality. The proof of this theorem will come after a number of

intermediate results.
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Theorem 2.2 (No-regret Property of Lazy FPL). Suppose that Assump-

tions 2.1 and 2.2 hold. Let the time horizon 0, 1, . . . be partitioned into phases

τ0, τ1, . . . such that |τm| = ⌈m1/3⌉, for m = 0, 1, . . .. Further, suppose that the

random variables nt(a), for t = 1, 2, . . . and a ∈ A, are independent and uni-

formly distributed3 over the support [−1/ζm, 1/ζm], where ζm ,
√

|τ0:m| and

t ∈ τm. Then, the average regret of the Lazy FPL algorithm vanishes almost

surely, i.e.,

lim sup
T→∞

LWT ≤ 0, w.p. 1.

Remark 5. Theorem 2.2 makes no assumption about the sequence of reward

functions r0, r1, . . . except for boundedness and obliviousness.

Remark 6. Observe that the partition of Theorem 2.2 can be constructed incre-

mentally over time, without prior knowledge of the time horizon T . Moreover,

having a slowly increasing phase length suffices for obtaining convergence.

Theorem 2.2 builds upon the following proposition that establishes the

rate of convergence of the expected average regret under the Lazy FPL algo-

rithm.

Proposition 2.3 (Expected Regret Bound). Suppose that the assumptions of

Theorem 2.2 hold. In particular, suppose that |τm| = ⌈m1/3⌉, for m = 0, 1, . . ..

Then, the expected average regret of the Lazy FPL algorithm is bounded as

3 The random variable nt(a) has probability density function

fnt(a)(z) =

{
ζm/2, if z ∈ [−1/ζm, 1/ζm] ,

0, otherwise.
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follows:

E
[
LWT
]
≤ 4

3

(
2eγ + 2 |A| + 4e+ 1 + 2(|S| + 3) |A|2 γ log(T )

)
T−1/4. (2.4.8)

Remark 7. The bound of (2.4.8) is weaker than the O(T−1/2) bound that was

obtained for the algorithm of [44]. This can be attributed to the fact that

the Lazy FPL algorithm computes a single policy each phase and follows it

throughout increasingly long phases. It is a common feature of lazy learning

schemes (cf. e.g., [97]).

The proof of Proposition 2.3 relies on the following lemmata. The proofs

of the lemmata are postponed to Section 2.8. The first lemma gives a conve-

nient expression for expected regret.

Lemma 2.4. Let s0 be an arbitrary state and µ be an arbitrary stationary

policy. Let (st, at) be the state-action pair at step t following policy µ and

starting at initial state s0. If the opponent is oblivious (Assumption 2.2), then

for every j = 0, . . . , T − 1, we have

E
[
rj(st, at)

]
= 〈rj, dt(µ; s0)〉, (2.4.9)

where the expectation is taken over both the MDP transitions and the random-

ization of policy µ.

Let t ∈ τm. We define the following unperturbed counterpart to the action

at of (2.4.7):

a+
t = arg max

a∈A

{
r̂τ0:m−1(st, a) +

∑

s′∈S

P (s′ | st, a)hm(s′)
}
,

where hm is part of the solution to the linear program (2.4.6). Note that at is

a random variable whereas a+
t is deterministic given the reward sequence. We
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also define the following stationary policies, for all (s, a) ∈ S ×A,

σm(a; s) = Pr(at = a | st = s),

σ+
m(a; s) = Pr(a+

t = a | st = s).

Note that σm is a mixed policy, whereas σ+
m is a deterministic one. Both are

determined by the sequence of reward functions, and hence, independent of the

state-trajectory. The following lemma—a consequence of [19, Section 4.3.3]—

asserts the optimality of σ+
m.

Lemma 2.5 (Optimality). Suppose that Assumption 2.1 holds. In phase τm,

the policy σ+
m is optimal against the reward function r̂τ0:m−1 in the sense that

〈r̂τ0:m−1 , π(σ+
m)〉 ≥ sup

µ∈Σ
〈r̂τ0:m−1 , π(µ)〉 ,

where π(σ+
m) is the stationary state-action distribution corresponding to policy

σ+
m.

Next, we bound the rate of change of the empirical average reward func-

tion.

Lemma 2.6 (Difference in Partial Averages). Let n and ℓ be non-negative

integers such that n ≥ ℓ, then

∥∥∥∥∥
1

n

n−1∑

j=0

rj −
1

ℓ

ℓ−1∑

j=0

rj

∥∥∥∥∥
∞

≤ 2
n− ℓ

n
.

The following lemma quantifies the change in policy of the Lazy FPL

algorithm from phase to phase.

Lemma 2.7 (Policy Continuity). Suppose that the assumptions of Theorem 2.2

hold. Then, for m = 0, 1, . . ., every s ∈ S, and for every positive integer g,

‖σm+1(·; s) − σm(·; s)‖1 ≤ (|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
,
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and

‖π(σm+1) − π(σm)‖1 ≤ (|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
g + 4e1−g/γ .

The following lemma characterizes the effect of randomization in the Lazy

FPL algorithm on the expected cumulative reward.

Lemma 2.8 (Effect of Randomization). Suppose that the assumptions of The-

orem 2.2 hold. For phases indexed m = 1, 2, . . ., we have

〈Rτ0:m−1 , π(σm)〉 ≥ 〈Rτ0:m−1 , π(σ+
m)〉 − 2 |A| |τ0:m−1|

ζ2
m

.

We now prove Proposition 2.3 and Theorem 2.2.

Proof. Proposition 2.3 The proof proceeds along the following lines. The obliv-

ious opponent assumption makes stationary policies as good as any other

within long phases. The ergodicity assumption allows us to concentrate on

the stationary distributions of the baseline policies, as well as the policies of

the sequence of phases. The perturbation noise enforces a certain continuity

between policies of consecutive phases, yet it vanishes quickly enough as not

to severely affect the optimality of the stationary policy computed at each

phase. Letting M denote the number of phases up to time step T , we divide

the proof into the following sequence of bounds.

T−1∑

t=0

E
[
rt(st, at)

]

(Step 0) ≥
M−1∑

m=0

(
〈Rτm , π(σm)〉 − 2eγ

)
(2.4.10)

(Step 1) ≥
M−2∑

m=0

(
〈Rτm , π(σm+1)〉 − 2eγ − 4e− 2(|S| + 3) |A|2 γ log(T )

)

(Step 2) ≥ T · sup
µ∈Σ

〈r̂T , π(µ)〉 − (M − 1)
(
2eγ + 4e+ 2(|S| + 3) |A|2 γ log(T )

)

− 2(M − 1) |A| −M1/3, (2.4.11)
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where the expectation E is over both the MDP transitions and the random-

ization through nt in Algorithm 2–1. (2.4.8) now follows from (2.4.11) by

Lemma 2.1 and the fact that since |τm| = ⌈m1/3⌉ for m = 0, . . . ,M − 1, we

have M ≤ (4/3)T 3/4.

Step 0. Let s− denote the state at the beginning of phase τm. By Lemma 2.4

and Assumption 2.1, for every phase τm, we have

∑

t∈τm

E
[
rt(st, at) | s−

]
=
∑

t∈τm

〈rt, dt(σm; s−)〉

≥
∑

t∈τm

〈rt, π(σm)〉 −
|τm|−1∑

t=0

2e1−t/γ

≥ 〈Rτm , π(σm)〉 − 2eγ,

as in (2.4.10).

Step 1. By Lemma 2.7 with ζm =
√
|τ0:m| for m = 0, 1, . . ., and by picking

g = γ log(|τ0:m+1|), we obtain

‖π(σm) − π(σm+1)‖1 ≤ g(|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
+ 4e1−g/γ

≤ 2(|S| + 3) |A|2 γ |τm+1| log(|τ0:m+1|)
|τ0:m+1|1/2

+
4e

|τ0:m+1|
.

It follows that

M−1∑

m=0

〈Rτm , π(σm)〉

≥
M−2∑

m=0

|τm| 〈r̂τm, π(σm+1)〉

− |τm|
(

2(|S| + 3) |A|2 γ |τm+1| log(|τ0:m+1|)
|τ0:m+1|1/2

+
4e

|τ0:m+1|

)

≥
M−2∑

m=0

(
〈Rτm , π(σm+1)〉 − 2(|S| + 3) |A|2 γ log(T ) − 4e

)
,
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where the second inequality follows from the construction of the partition.

Indeed, choosing |τm| = ⌈m1/3⌉ for m = 0, . . . ,M − 1 implies that

|τm| |τm+1| log(|τ0:m+1|) ≤ log(T ) |τ0:m+1|1/2 .

Step 2. In this step, we show that by taking into account rewards for

phases τm+1, . . . , τM−1, we cannot improve the expected reward for phases

τ1, . . . , τm−1. To this end, we show by induction on J = 0, . . . ,M − 2 that

M−2∑

m=0

〈Rτm , π(σm+1)〉 ≥
M−2∑

m=0

〈Rτm , π(σM−1)〉 − 2(M − 2) |A| (2.4.12)

For the base case of J = 0, we clearly have

〈Rτ0 , π(σ1)〉 ≥ 〈Rτ0 , π(σ1)〉.

Assume that for some J , we have

J∑

m=0

〈Rτm , π(σm+1)〉 ≥
J∑

m=0

〈Rτm , π(σJ+1)〉 − 2J |A| .

Then

J∑

m=0

〈Rτm , π(σm+1)〉 ≥ 〈Rτ0:J , π(σJ+1)〉 − 2J |A|

≥ 〈Rτ0:J , π(σ+
J+1)〉 − 2 |A| |τ0:J |

ζ2
J+1

− 2J |A|

≥ 〈Rτ0:J , π(σJ+2)〉 − 2(J + 1) |A| ,

where the first inequality follows by definition, the second inequality follows

from Lemma 2.8, and the third inequality use the assumption that ζm =
√

|τ0:m| and the optimality of the policy σ+
J+1. Finally, adding 〈RτJ+1

, π(σJ+2)〉

to both sides of the above inequalities, we complete the induction step:

J+1∑

m=0

〈Rτm , π(σm+1)〉 ≥
J+1∑

m=0

〈Rτm , π(σJ+2)〉 − 2(J + 1) |A| ,
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and (2.4.12) follows.

Finally, observe that

M−2∑

m=0

〈Rτm , π(σM)〉 − 2(M − 2) |A|

≥
M−1∑

m=0

〈Rτm , π(σ+
M)〉 − 2(M − 2) |A| − 2 |A| − |τM−1| (2.4.13)

by Lemma 2.8 and the fact that σ+
M is an optimal policy in an MDP with

reward function r̂T , r̂τ0:M−1
. (2.4.13) uses the fact that the reward attained

in phase τM−1 is bounded by |τM−1| ≤ M1/3. The required result of (2.4.11)

follows by observing that

M−1∑

m=0

〈Rτm , π(σ+
M)〉 = T 〈r̂T , π(σ+

M)〉 = T · sup
µ∈Σ

〈r̂T , π(µ)〉,

where the first equality is due to the linearity of the inner product and the

definition of r̂T , and the second equality is due to the optimality of σ+
M against

r̂T .

Proof. Theorem 2.2 The proof relies on a modified version of Azuma’s Inequal-

ity [34, Appendix A.6]. We first define:

Vm =
∑

t∈τm

E
[
rt(st, at)

]
− rt(st, at),

WM−1 =

M−1∑

m=0

Vm.

By Assumption 2.1, for all m, we have (with probability 1)

E
[
Vm | st, at, for t ∈ τ0:m−1

]
= 0.
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Next, observe that for every real-valued x,

E
[
exWM−1

]
= E

[
exWM−2E[exVM−1 | st, at, for t ∈ τ0:M−2]

]

≤ E
[
exWM−2

]
exp

(
x2

8
4 |τM−1|2

)
,

where the inequality follows from [34, Lemma A.1]. By recursion on M , we

obtain

E
[
exWM−1

]
≤ exp

(
x2

2

M−1∑

m=0

|τm|2
)

.

By Chebychev’s Inequality, for every real x, we obtain

Pr

(
1

T
WM−1 > δ

)
≤ E

[
exWM−1

]

exδT

≤ exp

(
−

(
δT
)2

2
∑M−1

m=0 |τm|2

)
, (2.4.14)

where the second inequality is obtained by choosing x to minimize the ex-

ponent. Next, observe that the phase partition |τm| = ⌈m1/3⌉ defined in

Proposition 2.3 implies that M ≤ (4/3)T 3/4. Hence, we have
∑M−1

m=0 |τm|2 ≤

(3/5)M5/3 ≤ (4/5)T 5/4. Following substitutions, we obtain

Pr

(
1

T

T−1∑

t=0

E
[
rt(st, at)

]
− 1

T

T−1∑

t=0

rt(st, at) > δ

)

≤ exp

(
− δ2 T 2

(8/5)T 5/4

)

= exp
(
−(5/8) δ2 T 3/4

)
.

Therefore, the right-hand side of (2.4.14) is summable over non-negative inte-

gers T for every δ > 0. An application of Proposition 2.3 and the Borel-Cantelli

Lemma completes the proof.

2.5 Approximate Algorithms

In many cases of interest, computing the exact policy σm at each phase

τm of the Lazy FPL algorithm might be intractable due to the size of the state

space. One solution is to compute an approximation ρm to σm. The policy
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ρm is still computed once every phase, but using a computationally efficient

method. We consider the approach of approximating the optimal state-action

value function or Q-function. Recall that in average-reward MDPs, the Q-

function Q : S×A→ R represents the relative utility of choosing a particular

action at a particular state. Let (λm, hm) denote the optimal solution to the

linear program (2.4.6) at the start of phase τm. The corresponding optimal

Q-function is therefore defined as

Q∗
m(s, a) = r̂τ0:m−1(s, a) +

∑

s′∈S

P (s′ | s, a)hm(s′).

Definition 2.3. Let ǫ and δ be non-negative constants. Consider an algorithm

that computes an approximate Q-function Qm for each phase τm, and chooses

an action

at = arg max
a∈A

{
Qm(st, a) + nt(a)

}

at every step t in phase τm, with the random variable nt distributed as in

Theorem 2.2. Such an algorithm is an (ǫ, δ)-approximation algorithm if there

exists an integer N such that, for m ≥ N ,

Pr
(
‖Qm(s, ·) −Q∗

m(s, ·)‖1 ≤ ǫ, for every s ∈ S
)
≥ 1 − δ, (2.5.15)

where Q∗
m is the optimal Q-function.

The following corollary (proved in Section 2.8) relaxes the need for an

exact optimization procedure.

Corollary 2.9. Let Pσ denote the matrix whose (s′, s)-element is P (s′ |

s, σ(s)), i.e., the transition matrix induced by the stationary policy σ : S → A.

Let Zσ denote the fundamental matrix (cf. [115]) associated with the same
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transition kernel P (s′ | s, σ(s)). In other words,

Zσ , [I − Pσ + P∞
σ ]−1, where P∞

σ , lim
K→∞

1

K

K∑

k=1

Pk
σ.

Further, let the norm ‖M‖∞ of a matrix M denote its maximum absolute row-

sum. Suppose that the assumptions of Theorem 2.2 hold. The average regret

of an (ǫ, δ)-approximation algorithm is bounded as follows:

lim sup
T→∞

LWT ≤ sup
σ∈Σ

‖Zσ‖∞ (ǫ+ δ), w.p. 1.

Remark 8. If an algorithm is an (ǫ, δ)-approximation for every pair of positive

numbers ǫ and δ, then the average regret tends to zero almost surely. It is

also possible to obtain almost-sure convergence of the average regret to zero

if the Q-functions Qm computed by an approximation algorithm improve in

accuracy from phase to phase, such that (2.5.15) holds for sequences ǫm and

δm that decrease quickly enough to zero.

In the following algorithm, we use Q-learning [20, Chapter 7] to compute

an approximation ρm to the policy σm of the Lazy FPL algorithm. In essence,

Q-learning is employed as a method of solving the linear program of the Lazy

FPL algorithm. It is well known that Q-learning is an iterative simulation-

based method that does not need to keep track of the transition probabilities.

Let Qt denote the sequence of Q-functions, and Qτ0:m−1 denote the Q-function

obtained at the last step of phase τm−1. During every step t of phase τm,

we choose our action to maximize the Q-function Qτ0:m−1 obtained over the

previous phases, perturbed by a random term nt; simultaneously, we update

the sequence of Q-functions Qt at every step.

Remark 9. As for the Lazy FPL algorithm, the reward function r̂τ0:m−1 is fixed

throughout phase τm.
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1. (Initialize.) For t ∈ τ0, set Qt = 0 and choose action at according
to an arbitrary deterministic policy µ : S → A.

2. (Update.) At every step t ∈ τm, for m = 1, 2, . . ., set κm = 1/
√
m

and update Qt iteratively as follows:

Qt(st−1, at−1) = (1 − κm)Qt−1(st−1, at−1)

+ κm

(
r̂τ0:m−1(st−1, at−1) + max

a∈A
Qt−1(st, a) −Qt−1(s

′, a′)
)
,

(2.5.16)

where s′ and a′ are fixed, and the term Qt−1(s
′, a′) serves the

purpose of normalization.
3. (Perturb.) At every step t ∈ τm, for m = 1, 2, . . ., choose action

at = arg max
a∈A

{
Qτ0:m−1(st, a) + nt(a)

}
,

where the random variables nt are distributed as in Theorem 2.2.

Algorithm 2–2: Q-FPL

The sequence κm is selected such that it satisfies the conditions for stochas-

tic approximation (cf. Section 4.3 of [29]). Let Q∗
τ0:m−1

denote the optimal

Q-function against the fixed reward function r̂τ0:m−1 . By [29, Theorem 2.4],

within each phase where the reward function is fixed and the length is long

enough, for every β > 0 and γ > 0, we have

Pr
(∥∥Qτ0:m−1 −Q∗

τ0:m−1

∥∥
1
> β

)
< γ, (2.5.17)

so that (2.5.15) holds4 . We observe that the Q-FPL Algorithm is in fact an

(ǫ, δ)-approximation algorithm for every positive ǫ and δ, which leads to the

following corollary by an argument similar to Theorem 2.2.

4 To be accurate, for the off-policy Q-function evaluation in Step 2 of the
Q-FPL algorithm to converge at the end of each phase, we must ensure that
the policy induced by Step 3 performs sufficient exploration. Hence, we sample
an independent perturbation nt at every time step.
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Corollary 2.10. Suppose that the assumptions of Theorem 2.2 hold. Then,

the average regret of the Q-FPL algorithm tends to zero almost surely.

Other algorithms, especially some actor-critic algorithms that are equiv-

alent to Q-learning [39], may be used as well, so long as they are (ǫ, δ)-

approximations for every pair of positive ǫ and δ.

Remark 10 (Computational Load). The Q-FPL algorithm has a fixed compu-

tational load per step. This complexity is less demanding than that of [44],

although the latter is also fixed per step. In comparison, the Lazy FPL algo-

rithm requires solving an MDP at the beginning of every phase, but it has the

advantage of diminishing the per-step complexity.

2.6 Observing Rewards Only on Trajectory

In this section, we present a modification of the Lazy FPL algorithm

in the spirit of [10] to deal with instances where the reward functions are

partially observed. More precisely, we consider the case where the agent only

observes the value of the reward function sequence on the traversed state-

action trajectory. Consequently, we restrict the space of the agent’s policies to

those that map the observed reward-history r0(s0, a0), . . . , rt−1(st−1, at−1) and

the current state st to a mixed action.

Our approach is to construct an unbiased estimate of r̂τ0:m−1 at each phase

τm. Following an initialization phase τ0, we construct a random reward func-

tion at every step t. The length of the phase τ0 and the policy adopted therein

are such that, for t ≥ |τ0|, Pr
(
(st, at) = (s, a) | s0

)
> 0 for all (s, a) ∈ S ×A.

For all t ≥ |τ0| and (s, a) ∈ S × A, we let

zt(s, a) =






rt(s,a)

Pr
(
(st,at)=(s,a) | s0

) , if (st, at) = (s, a),

0, otherwise.
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Observe that only the value of rt at the traversed state-action pair (st, at) is

required to evaluate zt. The probability Pr
(
(st, at) = (s, a) | s0

)
is readily

computed recursively using the transition probabilities associated with the

policy followed at step t−1. From the sequence zj , we construct ẑt , 1
t

∑t−1
j=0 zj

as an estimate of r̂t = 1
t

∑t−1
j=0 rj . In conformance with our notation, ẑτ0:m−1

denotes ẑt, where t is the first step of phase τm.

1. (Initialize.) Let the length of phase τ0 be long enough that
Pr
(
(st, at) = (s, a) | s0

)
> 0 for t ≥ |τ0| and (s, a) ∈ S × A.

For t ∈ τ0, choose action at uniformly at random over A.
2. (Estimate.) At every step t = 1, 2, . . ., compute the estimate ẑt

recursively.
3. (Sample.) At the start of phase τm, for m = 1, 2, . . ., sample

an independent Bernoulli random variable xm that takes value 1
with probability φm.

4. (Lazy FPL.) If xm = 0, by substituting ẑτ0:m−1 for r̂τ0:m−1 ,
solve the linear program (2.4.6) and follow the policy of (2.4.7)
throughout phase τm.

5. (Explore.) If xm = 1, for t ∈ τm and m = 1, 2, . . ., choose action
at uniformly at random over A.

Algorithm 2–3: Exploratory FPL

The following corollary (see Section 2.8 for a proof outline) asserts a result

analogous to Theorem 2.2 for the Exploratory FPL algorithm (Algorithm 2–3).

Corollary 2.11 (No-regret Property of Exploratory FPL). Suppose that the

assumptions of Theorem 2.2 hold. Let M denote the number of phases up to

time step T . Suppose that the agent follows the Exploratory FPL algorithm

with a sequence φm > 0, for m = 0, . . . ,M − 1, ensuring infinitely many

exploration phases, and such that

M−1∑

m=0

|τm|φm = O(M). (2.6.18)

Then, the average regret of the Exploratory FPL algorithm vanishes almost

surely.
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Remark 11. If φm is set to a positive constant, then the Exploratory FPL

algorithm reduces to an approximation algorithm governed by Corollary 2.9.

Remark 12. Corollary 2.11 guarantees that the Exploratory FPL algorithm

minimizes regret in generalized multi-arm bandit problems with a state vari-

able.

2.7 Regret with Respect to Dynamic Policies

In this section, we consider a more general notion of regret that encom-

passes some dynamic policies. Consider a sequence of policies ~µ = (µ0, . . . , µT−1),

where every element µj of the sequence is a deterministic policy µj : S → A.

Let the number of switches in this sequence of policies be

K(~µ) =
T−1∑

j=1

1[µj−1 6=µj ].

Let K0 be a fixed integer. A more challenging baseline of comparison for the

cumulative reward is

BT (K0) , sup
(µ0,...,µT−1):
K(~µ)≤K0

E

[
T−1∑

t=0

rt(s̃t, µt(s̃t))

]

, (2.7.19)

where (s̃0, µ0(s̃0)), . . . , (s̃T−1, µT−1(s̃T−1)) denote state-action pairs induced by

the sequence of policies µ0, . . . , µT−1, and the maximum is taken over all pos-

sible sequences of policies with at most K0 switches. If K0 = 0, then (2.7.19)

reduces to the baseline considered so far (cf. (2.2.3)). We present an algorithm

that guarantees a reward consistent with the above baseline. This algorithm

adapts the Fixed-share algorithm of [70] to the MDP framework.

Remark 13. Observe that, as before, the algorithm elects a single policy in each

phase and follows it throughout. The fixed-share scheme occurs once in each

phase—at the outset. Observe also that the uniformly random policy ym can

be constructed efficiently. As in the Fixed-share algorithm of [70], the action
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1. (Initialize.) Fix α ∈ [0, 1]. For t ∈ τ0, choose action at according
to an arbitrary deterministic policy µ : S → A.

2. (Sample.) At the outset of phase τm, for m = 1, 2, . . ., sample a
Bernoulli random variable xm with Pr(xm = 1) = α.

3. (Fixed-share.) If xm = 0, sample a policy ym uniformly at ran-
dom from the set of deterministic policies {µ : S → A}, then
follow the policy ym throughout phase τm.

4. (Lazy FPL.) If xm = 1, solve the linear program (2.4.6) and
follow the policy of (2.4.7) throughout phase τm.

Algorithm 2–4: Tracking FPL

at each step is equal to the previous action with probability 1 − α + α/ |A|,

and equal to each different action with probability α/ |A|.

Remark 14. In the MDP setting, the most obvious extension of the Fixed-

share algorithm of [70] is to associate an expert to every deterministic policy

µ : S → A. This creates an exponential number of such experts, which our

approach avoids.

The following analog of Theorem 2.2 guarantees that the regret with

respect to the reward achieved by the best sequence of policies with a finite

number of switches vanishes asymptotically if the agent employs the Tracking

FPL algorithm.

Theorem 2.12 (No-regret Property of Tracking FPL). Suppose that the as-

sumptions of Theorem 2.2 hold. Let K0 be a positive integer. Suppose fur-

ther that the agent follows the Tracking FPL algorithm with the parameter

α = K0/(⌈T/⌈T 1/3⌉⌉ − 1). Then, the average regret with respect to the base-

line of (2.7.19) vanishes almost surely, i.e.,

lim sup
T→∞

{
1

T
BT (K0) −

1

T

T−1∑

t=0

rt(st, at)

}

≤ 0, w.p. 1.

Remark 15. Although we only consider the case of a fixed number of switches

K0 and a fixed parameter α, it can be shown, by using doubling trick of [34,
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Section 3.2], that the result of Theorem 2.12 holds as long as the number of

switches K0 increases slowly enough in T .

The proof of this theorem hinges on a bound on the rate of convergence

of the expected regret similar to Proposition 2.3. To derive this bound, we

first prove a bound for a different hypothetical—and less practical—algorithm.

Consider Algorithm 2–5: a modified version of the exponentially weighted av-

erage forecaster [34], which also resembles the algorithm of [44]. To every

deterministic policy µ : S → A, we associate a weight wm(µ) that is updated

at every phase τm, for m = 0, 1, . . .. Once at the start of every phase, the algo-

rithm picks a deterministic policy with probability proportional to its weight,

and follows this policy throughout the phase. The weights are adjusted in the

spirit of the Fixed-share algorithm [70] to track infrequent changes in optimal

policy.

Remark 16. The main problem with the Lazy Tracking Forecaster algorithm

is that the number of weight variables |A||S| is exponential in the size of the

state space.

Remark 17. The term 〈Rτm−1 , π(µ)〉 in (2.7.20) approximates the expected

reward accumulated by following policy µ over the course of phase τm−1. The

weights are updated recursively according to each policy’s reward over the

previous phase. The probability measure defined in (2.7.21) tracks the optimal

policy in the fashion of the Fixed-share algorithm [70].

Remark 18. In contrast to the algorithms presented in the previous sections,

the length of every phase is kept the same. By using the doubling trick of

[34, Section 3.2], we can adapt the Lazy Tracking Forecaster algorithm to

problems where the time horizon T is unknown. This technique partitions the

time horizon into periods of exponentially increasing length and runs the Lazy

Tracking Forecaster algorithm on each period independently.
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1. (Initialize.) Fix α ∈ [0, 1] and η ∈ (0,∞). For every determinis-
tic policy µ : S → A, set

w0(µ) =
1

|A||S|
.

2. (Update weights & choose policy.) At the start of every phase
τm, for m = 1, 2, . . ., evaluate

wm(µ) = wm−1(µ) exp
(
η 〈Rτm−1 , π(µ)〉

)
, (2.7.20)

for every µ : S → A.

Sample a random variable qm over the set of deterministic poli-
cies {µ : S → A} and with the following probability measurea :

Pr(qm = µ) = (1 − α)
wm(µ)∑

µ′:S→Awm(µ′)
+ α

1

|A||S|
,

for all µ : S → A. (2.7.21)

3. (Follow chosen policy.) For t ∈ τm, and m = 1, 2, . . ., choose the
action at = qm(st).

a As in the Fixed-share algorithm of [70], the action at each step is
equal to the previous action with probability 1−α+α/ |A|, and equal
to each different action with probability α/ |A|.

Algorithm 2–5: Lazy Tracking Forecaster

As asserted in the following proposition, the Lazy Tracking Forecaster

(Algorithm 2–5) minimizes the regret with respect to the new baseline of

(2.7.19). The proof (in Section 2.8) derives from existing results on the Fixed-

share algorithm of [70].

Proposition 2.13 (Expected Regret of Lazy Tracking Forecaster). Let the

length of all phases be |τ | = ⌈T 1/3⌉. Suppose that Assumptions 2.1 and 2.2

hold. If the agent follows the Lazy Tracking Forecaster algorithm with param-

eters η = T−2/3 and α = K0/(⌈T/⌈T 1/3⌉⌉ − 1), then the following cumulative
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regret bound holds for large enough T :

BT (K0) −
T−1∑

t=0

E
[
rt(st, at)

]
≤ |S| log(|A|)(K0 + 1)T 2/3

+ 2K0 log
(
T 2/3/K0

)
T 2/3 +

1

2
T 2/3 + (2eγ)T 2/3.

Remark 19. Observe that this bound is tighter than the bound of Proposi-

tion 2.3.

We now prove Theorem 2.12.

Proof. Theorem 2.12 Consider the Tracking FPL algorithm (Algorithm 2–4)

and the Lazy Tracking Forecaster (Algorithm 2–5) with their parameters α

set equal. Let all phases for the Lazy Tracking Forecaster algorithm have

fixed length τ . Let M denote the number of phases for the Tracking FPL

algorithm. By their definition, at every given step t and with probability α,

the two algorithms follow a policy µ chosen uniformly at random. Hence,

the difference in their expected cumulative reward is 1 − α times the same

difference when the parameters α are set to 0. We will proceed to bound this

latter quantity.

Observe that the Tracking FPL algorithm with α = 0 is simply the Lazy

FPL algorithm. The Lazy Tracking Forecaster with α = 0 is just an expo-

nentially weighted average forecaster [34] with one phase as the fundamental

time step. Let at and bt denote the actions generated by the Lazy Tracking

Forecaster and the Tracking FPL algorithms, respectively. By setting the ar-

gument K0 to the baseline BT to 0, we shall derive the following bounds on

51



their respective cumulative regrets:

Ω
(√

T log(|A|)
)
≤ BT (0) −

T−1∑

t=0

E
[
rt(st, at)

]
≤ |S| log(|A|)

η
+
η ⌈T/ |τ |⌉ |τ |2

2
,

(2.7.22)

Ω
(√

T log(|A|)
)
≤ BT (0) −

T−1∑

t=0

E
[
rt(st,bt)

]
≤

4

3

(
2eγ + 2 |A| + 4e+ 1 + 2(|S| + 3) |A|2 γ log(T )

)
T 3/4+ǫ.

(2.7.23)

The upper bound of (2.7.22) follows from an argument similar to [34, Theo-

rem 2.1]; that of (2.7.23) follows from Proposition 2.3. Both lower bounds are

due to instances where the regret is no less than of the order of Ω(T 1/2) [34,

Theorem 3.7]. The above bounds combine to give

∣∣∣∣∣

T−1∑

t=0

E
[
rt(st, at)

]
−

T−1∑

t=0

E
[
rt(st,bt)

]
∣∣∣∣∣

≤ |S| log(|A|)
η

+
η ⌈T/ |τ |⌉ |τ |2

2

+
4

3

(
2eγ + 2 |A| + 4e+ 1 + 2(|S| + 3) |A|2 γ log(T )

)
T 3/4+ǫ, (2.7.24)

since the lower bounds are superseded by the upper bounds for all phase-

partitions consistent with the assumptions of Proposition 2.3. By substituting

the values |τ | = ⌈T 1/3⌉ and η = T−2/3 and compounding the bound of (2.7.24)

to that of Proposition 2.13, we obtain the following bound:

BT (K0) −
T−1∑

t=0

E
[
rt(st, at)

]
≤ |S| log(|A|)(K0 + 2)T 2/3 + 2K0 log

(
T 2/3/K0

)
T 2/3

+ T 2/3 + (2eγ)T 2/3 +
4

3

(
2eγ + 2 |A| + 4e+ 1 + 2(|S| + 3) |A|2 γ log(T )

)
T 3/4+ǫ.

(2.7.25)

At last, the claimed result follows by an argument similar to the proof of

Theorem 2.2.
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Remark 20. The bound on expected cumulative regret of the Tracking FPL

algorithm (cf. (2.7.25)) is of the same order as that afforded by the Lazy FPL

algorithm (cf. Proposition 2.3). This indicates that the critical factor in the

convergence of the algorithm is its “laziness.”

2.8 Proofs

Proof. Lemma 2.4 By introducing indicator functions, we obtain

E
[
rj(st, at)

]
= E





∑

(s,a)∈S×A

rj(s, a)1[(st,at)=(s,a)]




 (2.8.26)

=
∑

(s,a)∈S×A

rj(s, a) E 1[(st,at)=(s,a)] (2.8.27)

=
∑

(s,a)∈S×A

rj(s, a) Pr
(
(st, at) = (s, a)

)
, (2.8.28)

where (2.8.26) follows by definition and the use of indicator functions, (2.8.27)

is justified by Assumption 2.2, and (2.8.28) follows again by definition.

Proof. Lemma 2.1 By Lemma 2.4, for a stationary policy µ ∈ Σ, we have

1

T

T−1∑

t=0

E
[
rt(st, at)

]
=

1

T

T−1∑

t=0

〈rt, dt(µ; s0)〉.

By Assumption 2.1, and the summability of the sequence e1−t/γ , we have

∣∣∣∣∣
1

T

T−1∑

t=0

〈rt, dt(µ; s0)〉 −
1

T

T−1∑

t=0

〈rt, π(µ)〉
∣∣∣∣∣ ≤

1

T

T−1∑

t=0

2e1−t/γ = 2eγ/T.

By definition, we have

1

T

T−1∑

t=0

〈rt, π(µ)〉 = 〈r̂T , π(µ)〉.

Putting these pieces together, we obtain

∣∣∣∣∣
1

T

T−1∑

t=0

E
[
rt(st, at)

]
− 〈r̂T , π(µ)〉

∣∣∣∣∣ ≤ 2eγ/T.
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By a similar argument, we have

∣∣∣∣∣
1

T

T−1∑

t=0

E
[
r̂T (st, at)

]
− 〈r̂T , π(µ)〉

∣∣∣∣∣ ≤ 2eγ/T.

The two claims follow from taking the supremum over the set of stationary

policies.

Proof. Lemma 2.6 For non-negative integers n and m such that n ≥ m, alge-

braic manipulation yields

∥∥∥∥∥
1

n

n−1∑

j=0

rj −
1

ℓ

ℓ−1∑

j=0

rj

∥∥∥∥∥
∞

=

∥∥∥∥∥
1

n

ℓ−1∑

j=0

rj +
1

n

n−1∑

j=ℓ

rj −
1

ℓ

ℓ−1∑

j=0

rj

∥∥∥∥∥
∞

≤ 1

n

∥∥∥∥∥

n−1∑

j=ℓ

rj

∥∥∥∥∥
∞

+

∣∣∣∣
n− ℓ

n

∣∣∣∣

∥∥∥∥∥
1

ℓ

ℓ−1∑

j=0

rj

∥∥∥∥∥
∞

≤ 2
n− ℓ

n

where the last inequality follows from the fact that r0, r1, . . . are bounded by

1.

Proof. Lemma 2.7 Let t′ ∈ τm+1 and t ∈ τm. By the assumption of Theo-

rem 2.2, the cumulative distribution functions of nt′(a) and nt(a) satisfy the

following bounds for all z, z′ ∈ R:

∣∣Fnt′ (a)
(z) − Fnt(a)(z)

∣∣ ≤ ζm+1 − ζm
2ζm+1

,

∣∣Fnt′ (a)
(z) − Fnt′(a)

(z′)
∣∣ ≤ ζm+1

2
|z − z′|.

Likewise, for a, a′ ∈ A, we have:

∣∣Fnt′(a)−nt′ (a
′)(z) − Fnt(a)−nt(a′)(z)

∣∣ ≤ ζm+1 − ζm
2ζm+1

, (2.8.29)

∣∣Fnt′(a)−nt′ (a
′)(z) − Fnt′ (a)−nt′ (a

′)(z
′)
∣∣ ≤ ζm+1

2
|z − z′|. (2.8.30)
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By Lemma 2.6, we have

∥∥r̂τ0:m+1 − r̂τ0:m
∥∥
∞

≤ 2 |τm+1| / |τ0:m+1| . (2.8.31)

Observe that the linear programs (cf. (2.4.6)) at the m-th and m+1-th phases

differ only in their right-hand constraint vectors, whose difference is bounded

by (2.8.31). It follows by [110, Theorem 1.1] that the optimal values λm and

λm+1 satisfy

|λm+1 − λm| ≤
∥∥r̂τ0:m+1 − r̂τ0:m

∥∥
∞
.

Likewise, by [113, Corollary 3.1], the solutions hm+1 and hm differ as follows:

‖hm+1 − hm‖∞ ≤ (|S| + 1)
∥∥r̂τ0:m+1 − r̂τ0:m

∥∥
∞

(2.8.32)

≤ 2(|S| + 1) |τm+1| / |τ0:m+1| . (2.8.33)

Starting from the definition of Algorithm 2–1, for every s ∈ S, a ∈ A and

m = 0, 1, . . .,

σm+1(a; s)

, Pr(at′ = a | st′ = s)

= Pr
(
r̂τ0:m+1(s, a) +

∑

s′∈S

P (s′ | st, a)hm(s′) + nt′(a) > (2.8.34)

r̂τ0:m+1(s, a
′) +

∑

s′∈S

P (s′ | st, a′)hm(s′)
[
hm+1(st+1)

]
+ nt′(a

′), for all a′ 6= a
)

=
∏

a′ 6=a

Pr
(
nt′(a) − nt′(a

′) > r̂τ0:m+1(s, a
′) − r̂τ0:m+1(s, a) (2.8.35)

+
∑

s′∈S

P (s′ | st, a′)hm(s′) −
∑

s′∈S

P (s′ | st, a)hm(s′)
)
,

where the probability measure is over the randomization nt′ , whereas the ex-

pectation is over the transition probabilities of the MDP. (2.8.34) is due to the

definition of Algorithm 2–1 ((2.4.7)). (2.8.35) is obtained by independence of
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the random variables nt′(a), for a ∈ A. By comparing Equations (2.8.35) ap-

plied to σm+1 and σm, and using Equations (2.8.31), (2.8.33), (2.8.29) and (2.8.30),

we obtain

‖σm+1(·; s) − σm(·; s)‖∞

≤ (|A| − 1)

(
ζm+1

2
(4 + 2(|S| + 1))

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm

2ζm+1

)
,

for all s ∈ S. For the 1-norm, we have

‖σm+1(·; s) − σm(·; s)‖1 ≤ (|S| + 3) |A| (|A| − 1)

(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)

(2.8.36)

for all s ∈ S.

For the second part of the lemma, let Pµ be the transition matrix asso-

ciated with a stationary policy µ : S → A. The element of Pµ in row (s′, a′)

and column (s, a) is the probability that the next state-action pair is (s′, a′)

if the current one is (s, a) and policy µ is followed. Let d ∈ ∆(S × A) be a

probability vector specifying the initial state-action pair (s0, µ(s0)). We first

show by induction that

∥∥Pj
σm+1

d−Pj
σm
d
∥∥

1
≤ j(|S| + 3) |A|2

(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
(2.8.37)
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for j = 1, 2, . . .. Let e1, . . . , e|S×A| denote the elementary vectors in R
|S×A|.

For the base case j = 1, we have

∥∥Pσm+1d−Pσm
d
∥∥

1

≤ max
n=1,...,|S×A|

∥∥Pσm+1en − Pσm
en
∥∥

1

= max
(s,a)∈S×A

∣∣∣
∑

(s′,a′)∈S×A

P (s′ | s, a)σm+1(a
′; s′) − P (s′ | s, a)σm(a′; s′)

∣∣∣

= max
(s,a)∈S×A

∣∣∣
∑

s′∈S

P (s′ | s, a)
∑

a′

σm+1(a
′; s′) − σm(a′; s′)

∣∣∣

≤ max
s′∈S

∣∣∣
∑

a′∈A

σm+1(a
′; s′) − σm(a′; s′)

∣∣∣

= max
s′∈S

‖σm+1(·; s′) − σm(·; s′)‖1

≤ (|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
,

where the last inequality follows from (2.8.36). Next, suppose that for some

j, we have

∥∥Pj
σm+1

d− Pj
σm
d
∥∥

1
= j(|S| + 3) |A|2

(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
.

By the triangle inequality and the same argument as the base case, we obtain

∥∥Pj+1
σm+1

d−Pj+1
σm

d
∥∥

1

≤
∥∥Pσm+1P

j
σm+1

d−Pσm
Pj
σm+1

d
∥∥

1
+
∥∥Pσm

Pj
σm+1

d− Pσm
Pj
σm
d
∥∥

1

= (|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)

+ j(|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
,

which establishes (2.8.37). At last, by the triangle inequality, (2.8.37) and

Assumption 2.1, it follows that for an every positive integer g, and every
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initial state s0 and corresponding distribution d,

‖π(σm+1) − π(σm)‖1 =
∥∥Pg

σm+1
d−Pg

σm
d
∥∥

1

+
∥∥π(σm+1) − Pg

σm+1
d
∥∥

1
+
∥∥π(σm) − Pg

σm
d
∥∥

1

≤ g(|S| + 3) |A|2
(
ζm+1

|τm+1|
|τ0:m+1|

+
ζm+1 − ζm
ζm+1

)
+ 4e1−g/γ .

Proof. Lemma 2.8 Let t ∈ τm; let action a+
t follow policy σ+

m, and action at

follow σm. Recall that the action a+
t is an optimal action against an MDP with

fixed reward function r̂τ0:m−1 . Let us consider the following random variables,

for (s, a) ∈ S × A,

r̂τ0:m−1(s, a) +
∑

s′∈S

P (s′ | st, a)hm(s′) + nt(a). (2.8.38)

For ease of notation, we define, for (s, a) ∈ S ×A,

ξm(s, a) = r̂τ0:m−1(s, a) +
∑

s′∈S

P (s′ | st, a)hm(s′).

Observe that ξm(s, a+
t ) ≥ ξm(s, a) for every a 6= a+

t by definition. Let Ψ

denote the interval over which the supports of the random variables nt(a
+
t ) +

ξm(s, a+
t ) and nt(a) + ξm(s, a) overlap. This interval Ψ has length 2/ζm −

(
ξm(s, a+

t )−ξm(s, a)
)
. Combining this fact with the fact that nt(a

+
t ) and nt(a)

are independent and have uniform distributions specified by the assumption
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of Theorem 2.2, we have, for every s ∈ S,

Pr(at = a | st = s) = Pr
(
nt(a) + ξm(s, a) > nt(a

+
t ) + ξm(s, a+

t )
)

=
1

2
Pr
(
nt(a

+
t ) + ξm(s, a+

t ) ∈ Ψ,

nt(a) + ξm(s, a) ∈ Ψ
)

≤






ζm
4

(
2/ζm −

(
ξm(s, a+

t ) − ξm(s, a)
))2

,

if ξm(s, a+
t ) − ξm(s, a) ≤ 2/ζm,

0, otherwise.

(2.8.39)

Observe next that

∣∣〈Rτ0:m−1 , π(σm) − π(σ+
m)〉
∣∣

= |τ0:m−1|
∣∣〈r̂τ0:m−1 , π(σm)〉 − 〈r̂τ0:m−1 , π(σ+

m)〉
∣∣

≤ |τ0:m−1|max
s∈S

∑

a6=a
+
t

(
ξm(s, a+

t ) − ξm(s, a)
)
Pr(at = a | st = s)

≤ |τ0:m−1| (|A| − 1)(2/ζm)
ζm
4

(2/ζm)2

≤ 2 |A| |τ0:m−1|
ζ2
m

,

where the second to last inequality follows by (2.8.39).

Proof. Corollary 2.9 (Outline) The desired result follows an approach similar

to Proposition 2.3 and Theorem 2.2. First, let ρm denote the policy induced

by the (ǫ, δ)-approximation algorithm for the m-th phase. Let Pρm
and π(ρm)

denote the transition probability matrix and the stationary distribution asso-

ciated with ρm; and likewise for σm. Observe that, by Definition 2.3,

‖Pρm
−Pσm

‖∞ ≤ max
s∈S

‖ρm(·; s) − σm(·; s)‖1 ≤ ǫ+ δ.
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By [115, Section 6], the stationary distributions π(ρm) and π(σm) satisfy

‖π(ρm) − π(σm)‖1 ≤ ‖Zσm
‖∞ ‖Pρm

− Pσm
‖∞ ≤ sup

σ∈Σ
‖Zσ‖∞ (ǫ+ δ).

Hence, we have

T−1∑

t=0

E
[
rt(st, at)

]
≥

M−1∑

m=0

(
〈Rτm , π(ρm)〉 − 2eγ

)

≥
M−1∑

m=0

(
〈Rτm , π(σm)〉 − 2eγ

)
− sup

σ∈Σ
‖Zσ‖∞ (ǫ+ δ)T,

where the first inequality is justified by the same argument as Step 0 of the

proof of Proposition 2.3. This bound is similar to (2.4.10) of the proof of

Proposition 2.3 with one additional term. The claimed result follows by argu-

ments similar to the proofs of Proposition 2.3 and Theorem 2.2.

Proof. Corollary 2.11 (Outline) By introducing exploration phases as described

above, we ensure that zt is an unbiased estimator for rt. Indeed, observe that

for every (s, a) ∈ S ×A and t large enough,

Pr
(
(st, at) = (s, a) | s0

)
= Pr(st = s | s0) Pr(at = a | st = s)

≥ Pr(st = s | s0) φm/ |A| .

Next, observe that the ergodicity assumption (Assumption 2.1) guarantees

that there exists an ǫ > 0 such that for every s ∈ S and large enough t,

Pr(st = s | s0) > ǫ.

Moreover, we have φm > 0 by assumption. Hence, if the opponent is oblivious

and for large enough t, we obtain

E
[
zt(s, a)

]
= rt(s, a), for all (s, a) ∈ S ×A,
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and in turn,

E

[
1

t

t−1∑

j=0

zj(s, a)

]
= r̂t(s, a), for all (s, a) ∈ S × A.

Therefore, we conclude by Lemma 2.5 that the policy induced by the Ex-

ploratory FPL algorithm is still optimal against r̂τ0:m−1 +nt. All the remaining

steps of the proof of Proposition 2.3 hold unchanged, if we exclude the explo-

ration phases. Since these phases incur an overhead of the order of O(M) by

(2.6.18), we obtain a bound analogous to (2.4.8). Finally, the claim follows by

the same argument as the proof of Theorem 2.2.

Proof. Proposition 2.13 For ease of notation, we write M = ⌈T/ |τ |⌉ to denote

the number of phases of the Lazy Tracking Forecaster algorithm. Observe

that Lazy Tracking Forecaster is the same as the tracking forecaster of [70],

with the exception that the fundamental time step is an entire phase in our

new setting. Our claim follows from [34, Theorem 5.2 and Corollary 5.1] by

adjusting the time scale.

The crucial observation is that at Step 2 of Algorithm 2–5, the weights are

not updated according to the aggregate reward obtained by following policy

each µ over each phase τm, but according to the expected reward in the station-

ary state-action distribution of each policy µ in each phase τm. Consequently,

[34, Theorem 5.2] gives the bound

BT (K0) −
M−1∑

m=0

〈Rτm , π(qm)〉 ≤ |S| log(|A|)
η

(K0 + 1)

+
1

η
(M − 1)H

(
K0

M − 1

)
+
η M |τ |2

2
.

The required result follows by observing that we can approximate

∑

j∈τm

E
[
rj(sj , aj) | s−

]
,
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where the actions aj follow policy qm and s− is the state of the MDP at the

beginning of phase τm, by

〈Rτm , π(qm)〉 ,
∑

j∈τm

〈rj , π(qm)〉.

As shown in Step 0 of the proof of Proposition 2.3, we have

∣∣∣∣∣
∑

j∈τm

E
[
rj(sj, aj) | s−

]
− 〈Rτm , π(qm)〉

∣∣∣∣∣ ≤ 2eγ,

for m = 0, . . . ,M − 1, which accounts for the term 2eγM . Finally, the claim

follows by substituting |τ | = ⌈T 1/3⌉ and η = T−2/3, and observing that for

0 ≤ p < 1/2, we have

H(p) < 2p log(1/p),

so that, for large enough T ,

H

(
K0

⌈T/ |τ |⌉ − 1

)
< 2

K0

⌈T/ |τ |⌉ − 1
log

(⌈T/ |τ |⌉ − 1

K0

)
.

62



CHAPTER 3

Regret Minimization in Non-stationary Markov Decision Processes

3.1 Introduction

In this chapter, we consider decision-making problems in Markov decision

processes where both the rewards and the transition probabilities vary in an

arbitrary (e.g., nonstationary) fashion. We propose online learning algorithms

and provide guarantees on their performance evaluated in retrospect against

alternative policies. Unlike previous works, the guarantees depend critically

on the variability of the uncertainty in the transition probabilities, but hold re-

gardless of arbitrary changes in rewards and transition probabilities over time.

First, we use an approach based on robust dynamic programming and extend

it to observation of the reward is limited to the actual state-action trajectory.

Next, we present a computationally efficient simulation-based Q-learning style

algorithm that requires neither prior knowledge nor estimation of the transi-

tion probabilities. We show both probabilistic performance guarantees and

deterministic guarantees on the expected performance.

We consider a problem where an agent controls a system subject to un-

certainty. The system under control is modelled as a Markov decision process

(MDP). We consider a generalized version of the MDP model that captures

an additional feature of real-life problems: the rewards and transition proba-

bilities may change over time in an arbitrary and nonstationary manner (e.g.,

under the influence of an adversary or Nature). This generalized version is

reminiscent of stochastic games [116]. However, in stochastic games, one usu-

ally assumes that there is an adversary whose utility is well-defined. In our

setup, as in [44], [91], and more generally in the online learning setting [34],
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we do not assume that such an adversary exists, but rather that the reward

and transition processes are modulated1 by arbitrary individual sequences.

Uncertainty can be intrinsic and unavoidable to the system (probabilistic

transitions, uncertainty principles), or may arise from measurements. In many

decision-making problems, uncertainty exists in the rewards and transition

probabilities (cf. [101] and references therein). When this uncertainty follows

a stochastic model ([10, 30]), sampling can give estimates on the parameters

of the transition model, but some residual uncertainty always remains as a re-

sult of limited samples. Under these circumstances, if it is imperative to take

precautions against the worst possible occurrence, then a standard approach

is to handle this uncertainty through robust optimization. This approach typ-

ically assumes that the uncertainty has a fixed—albeit unknown—realization

and constructs a policy that performs well in the worst case. Since the uncer-

tainty evolves in a nonstationary fashion in our setting, the standard robust

approach does not offer a satisfying solution. In particular, it only guaran-

tees optimal performance against the worst realization of the environment. It

does not promise anything about the relative performance compared to the

best alternative policy in hindsight. The goal of this chapter is to address this

relative performance.

In this chapter, we distinguish between two notions of uncertainty: arbi-

trary variations in the reward function, and arbitrary, but constrained, varia-

tions in the transition probabilities. These notions have previously been studied

individually. Online learning yields solutions that are robust against arbitrary

1 This terminology refers to random processes whose parameters change
according to another process; e.g., a Markov modulated Bernoulli process is
a Bernoulli process whose success probability changes according to a Markov
chain [102].
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variations in the reward functions when the transition probabilities are fixed

([44] and Chapter 2). Robust dynamic programming has been used to control

MDPs where the transition probabilities may vary arbitrarily, but where the

reward functions may not [101]. In this chapter, we address both uncertainties

simultaneously.

It is important to note that, in contrast to most online learning settings,

the average regret (or performance-loss) does not vanish with time when the

transition probabilities can change arbitrarily over time. The regret actually

grows linearly with time for some sequences of transition probabilities [44].

Therefore, the setting of interest is where the uncertainty in the transition

probabilities is limited, whereas the uncertainty in the rewards is not. Our

results will quantify the extent to which the regret may grow as the transition

probabilities are given more leeway to change.

3.1.1 Related Works

Special cases of our model have been studied before. MDPs with fixed,

but unknown, reward functions and transition probabilities have been solved

using robust dynamic programming with finite- and infinite-horizon objectives

([101, 127]). In general, the models for nonstationary settings limit the non-

stationarity to either the rewards or the transition probabilities. The problem

of nonstationary MDPs where the reward and transition functions are known

a priori has been studied in [63]

MDPs where the reward functions may change arbitrarily, but the tran-

sition function is fixed, have been considered using regret-minimizing ap-

proaches. In ([91, 44] and Chapter 2), various notions of regret are introduced,

and solutions are proposed based on approachability theory, weighted-experts

forecasters, and perturbed dynamic programming. However, as we will show
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with a counterexample, some of the regret-minimizing strategies fail to ob-

tain acceptable performance when the transitions probabilities are allowed to

change arbitrarily. These works generalize the standard online learning prob-

lem, which does not include a notion of state. Such a model is suitable when

the transitions are so arbitrary as to make the notion of states meaningless.

This model has been extensively studied in the context of repeated games

[64], prediction with expert advice [87], the adversarial multi-armed bandit

[10], and the online shortest path problem [72].

In MDPs with arbitrarily varying transition functions, but a fixed reward

function, the reference [101] proposes a solution using robust dynamic pro-

gramming. However, this method of robustifying only against variations in

the transition model does not guarantee good performance when reward may

also change arbitrarily.

To the best of our knowledge, our work is the first to propose a solution

that handles nonstationary uncertainty in both rewards and transitions in the

online setting. In order to do this, we employ a combination of methods from

robust dynamic programming and regret-minimization. Although our algo-

rithms are similar to those of Chapter 2, the analysis differs greatly because

our model assumes that the uncertainty extends to both rewards and transi-

tions. For instance, it is not possible in our setting to achieve the same optimal

values as in [101] and Chapter 2, even approximately. We show methods to

achieve approximate optimality when the variability of transition uncertainty

is restricted.

3.1.2 Stochastic Games

Nonstationary MDPs can also be presented from a game theoretic per-

spective, where the rewards and state-transitions are controled by the actions

of the agent and an opponent. Consider a one-sided infinite-horizon stochastic
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game [116] between two players. By “one-sided,” we mean that the oppo-

nent’s preference relation is left unspecified. This model comprises elements

reminiscent of both MDPs and repeated games:

1. a finite set of states S, as in an MDP,

2. a finite set A of actions available to the agent,

3. a set B of actions at the disposal of the opponent,

4. a probability kernel P governing state transitions, i.e., P (s′ | s, a, b)

defines the probability that the next state is s′ if the current one is s

and the agent and opponent respectively play actions a and b.

5. a function r : S × A × B → [0, 1] that specifies the reward or payoff

r(s, a, b) to the agent, based on the current state s and the agent and

opponent’s current actions—a and b, respectively.

If the opponent follows a stationary policy, then stochastic game reduces

to a standard MDP from the perspective of the agent. If there is only one

state in S, then the stochastic game reduces to the repeated game setting of

online learning. Under the standard game theoretic assumption of rationality,

solution concepts exist for stochastic games. These settings have solutions

that can be computed efficiently [20, 34, 50, respectively].

Mannor and Shimking [91] consider stochastic games where the opponent

is possibly non-rational. They introduce a notion of regret based on the joint

frequency of state traversed and opponent actions, and show the existence of

a no-regret policy. However, computing this policy is a challenging task. For

example, one possibility is to first identify a target set, and then approach this

set by solving a standard MDP [118]. However, computing each value of the

target set boils down to the difficult task of computing the value of a zero-sum

stochastic game [109].
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3.1.3 Hardness

Robustness against arbitrary changes in the transition function is fun-

damentally different from robustness against arbitrary rewards. The known

regret-minimizing techniques do not apply directly because some sequences of

transition functions may prevent ergodicity or create periodicity, which causes

non-vanishing average regret Chapter 2. With the regret notion that we will

adopt, arbitrary transition functions P1, P2, . . . present a significant challenge.

Whereas it is possible to obtain asymptotically vanishing average regret when

only the reward functions r1, r2, . . . are arbitrary, if both the transition proba-

bilities and rewards are arbitrary, as in our model, it is NP -hard to compute

a policy that comes close to the best stationary policy [44]. Hence, with-

out an assumption that constrains the magnitude of changes in the sequence

{Pt}, it is unknown whether it is possible to obtain a tractable solution with

a non-trivial regret guarantee. Since vanishing regret can not be achieved,

we characterize the dependence of the regret on the variability of transition

uncertainty.

3.1.4 Contributions and Outline

In Section 3.2, we formulate a model for Markov decision processes with

arbitrarily modulated reward and transition functions. This model generalizes

existing models of time-varying MDPs; it also encompasses the general setting

of stochastic games, where both the agent and opponent affect the transitions,

but where the opponent may play an arbitrary sequence of actions. We show

by an example in Section 3.3 that standard online learning algorithms are not

robust against small but arbitrary changes in the transition function.

The following are our main contributions. In Section 3.4, we propose a so-

lution that uses online learning to adapt to time-varying reward functions and
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uses robust dynamic programming to deal with the range of possible transi-

tion models. We robustify a standard online dynamic programming algorithm

by solving an additional optimization over possible transition functions. In

Section 3.5, we extend the solution to the case where the agent’s observation

of rewards is limited to its state-action trajectory. In Section 3.6, we employ

a simulation-based method that eliminates the need to estimate the uncer-

tainty set of the transition probabilities. We take an approach that combines

an online learning solution for reward-uncertainty and a simulation-based (Q-

learning) solution that deals implicitly with the transition uncertainty. The

resulting algorithm has the benefit of being computationally efficient, and re-

quires neither the knowledge nor the estimation of the transition probabilities.

We give both a probabilistic bound on the regret and a bound on its expected

value. These bounds hold for finite time horizons and quantify the depen-

dence on the range of uncertainty in the transition probabilities. We give

comparisons and pose open problems in Section 3.7.

3.2 Setting

A Markov decision process is a standard sequential decision-making prob-

lem ([108, 20]). At each time step t ∈ {1, 2, . . .}, an agent takes an action at

from a finite set A. Starting from a fixed state s1, the agent occupies at each

time step t a state st belonging to a finite set S. The sets S and A are known

to the agent. Given the current state-action pair (st, at), the probability that

the next state st+1 will be some state s′ ∈ S is Pt(s
′ | st, at). The function

Pt that determines these transition probabilities is the transition function. At

every time step, the agent also receives a reward rt(st, at) depending on the

reward function rt, and its state st and action at. The agent’s objective is to

maximize a function of the rewards.
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In this chapter, we consider a general version of MDPs where the reward

functions rt and transition functions Pt are a priori unknown to the agent.

Furthermore, we do not assume—as is usually the case—that the sequences

r1, r2, . . . and P1, P2, . . . are stationary. We treat these as individual sequences

that change arbitrarily (e.g., in a nonstationary manner) over time. This

model generalizes the models of [101] and Chapter 2. In turn, we look for

solutions and guarantees that hold universally against every pair of individual

sequences r1, r2, . . . and P1, P2, . . ..

Remark 21. Another possible model for our setting is a one-sided stochastic

game with two players [116]. The opponent’s action bt at time t determines rt

and Pt, but the actions bt are chosen arbitrarily—without regard to optimizing

a fixed payoff function.

We assume that every reward function rt : S×A→ R takes values in the

interval [0, 1]. Let C denote a finite set of indices. Let each P c : S × S ×A→

[0, 1], for c ∈ C, denote a fixed transition function, where P c(s′ | s, a) is the

probability that the next state is s′ given that the current state is s and that

the agent takes action a. The transition functions {P c}c∈C form a basis for

the sequence of transition functions P1, P2, . . . as follows:

Pt(s
′ | s, a) =

∑

c∈C

δt(c)P
c(s′ | s, a), t = 1, 2, . . . ,

where δ1, δ2, . . . is the modulating sequence, and each element δt lies in an un-

certainty set D that is a subset of the simplex of C—denoted ∆(C). Hence, D

is a set of probability distributions over the basic transition functions {P c}c∈C .

For a fixed δ ∈ ∆(C), we also define the transition function P δ as follows: for

(s, a) ∈ S × A and s′ ∈ S,

P δ(s′ | s, a) =
∑

c∈C

δ(c)P c(s′ | s, a).
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Observe that P δ is a convex combination of the base transition functions

{P c}c∈C. We assume that the uncertainty set D and the basis {P c}c∈C are

known, whereas the sequences of reward functions r1, r2, . . . and transition

functions P1, P2, . . . are unknown but do not depend on the history of states

or agent actions. This last point is in contrast to the model of two-player

stochastic games [116].

We assume that the agent observes the states, its actions, and the re-

ward functions. The exception is Section 3.5, where we consider the case

where reward observations are limited to the agent’s state-action trajectory.

Accordingly, the agent’s action at at time t is a function of the history

(s1, a1, r1, . . . , st−1, at−1, rt−1, st)

up to time t, and, possibly, the agent’s individual randomization. In effect,

the agent adapts its policy in an online fashion. An algorithm for the agent is

a function that maps, at every time t, every history up to time t to an action

a ∈ A. A stationary policy σ : S → A for the agent assigns an action to each

state, irrespective of the time step and history.

3.2.1 Regret

To measure the performance of an algorithm, we shall compare its average

undiscounted reward to the reward that could have been obtained by follow-

ing alternative algorithms. To obtain meaningful results that hold for every

sequence of opponent actions, we restrict the class of comparison algorithms

to the set of deterministic and stationary policies {σ : S → A} that assign

actions based solely on the current state. We define the objective

ĴT , max
σ:S→A

1

T

T∑

t=1

E
[
rt(ŝt, σ(ŝt))

]
,
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where the initial state ŝ1 is fixed, each next state ŝt+1 is distributed according

to Pt(· | ŝt, σ(ŝt)), and the expectation is taken with respect to the sequence

ŝ1, ŝ2, . . ..

Given the sequences r1, r2, . . ., P1, P2, . . ., and the sequence a1, a2, . . . of ac-

tions generated by the agent’s algorithm, we define the expected time-averaged

regret—or simply called the regret—at time T as

L̂T , ĴT − 1

T

T∑

t=1

E
[
rt(st, at)

]
, (3.2.1)

where the initial state s1 is assumed fixed throughout the paper, each next

state st+1 is distributed according to Pt(· | st, σt(st)), and where the expec-

tation is taken with respect to the probabilistic transitions and the agent’s

randomization. In this chapter, we seek a universal solution in the following

sense: the objective is to minimize the regret with respect to every pair of

individual sequences {rt}t=1,2,... and {Pt}t=1,2,....

3.3 Examples and Motivation

Our model is motivated by the following problem.

Example 3.1 (Advertising Problem). Consider the problem of deciding what

advertisement to display on a webpage. There is a (finite) set C of types of

viewers. Each type of viewers behaves differently. For instance, some viewers

do not respond to advertisements, some respond to particular advertisements,

etc. The operator receives a payoff when viewers are redirected to an adver-

tiser. However, some of the redirected viewers may not return to the webpage.

This trade-off between the number of viewers and the payoff can be modelled

by an MDP. The instantaneous reward is the number of redirects. The state

captures the budgets of the advertisers, and the composition of viewers. A

similar problem is described in [1, 105].
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When there is a single viewer of type c, the state-transition function P c(· |

·, a) depends on both the agent’s action a and the type c. In general, however,

the group of viewers is heterogeneous. The overall transition function is more

accurately captured by a mixture of the functions {P c}c∈C ; each function P c

being weighted by the proportion δt(c) of viewers of type c.

Furthermore, in real life, the composition of viewers depends on time of

day, day of the week, and unpredictable events. Hence, we model the com-

position of viewers δt as a process that may change over time in an arbitrary

fashion. The instantaneous payoff to the owner is also a quantity that is dif-

ficult to predict: it depends on external factors such as the quality of articles

on the webpage, the relevance of the advertisement to the viewers, etc. Hence,

we model the sequence of reward functions r1, r2, . . . as an arbitrary sequence

as well.

Our model generalizes that of prediction with expert advice by adding

the notion of state. The state, which may specify the arm selected in the

previous step, evolves according to Markovian dynamics, but the transition

probabilities are uncertain, e.g., the next-state distribution following each arm-

selection is only specified within some range. This uncertainty may arise

from inaccurate measurement or estimation, from an uncertainty principle

[43], or from nonstationary variations in the probabilities. The latter occur, for

instance, in systems that rely on replaceable components whose specifications

fall within some ǫ-tolerance range (e.g., battery life, physical dimensions).

Our model also encompasses MDPs where the transition function may

change abruptly at unknown time instants [57], e.g., as a result of a me-

chanical break-down, or triggered by an adversary. Consequently, the true

state-transition model may deviate unpredictably from the nominal model.
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In the next example, we show that arbitrary changes in the transition

probabilities can cause large regret for online learning algorithms that compute

policies based on a chosen transition function that differs—however slightly—

from the true transition function. Protection against such breakdowns moti-

vates the introduction of the algorithms presented in the following sections.

1

23 4

1 − ǫ

1 − ǫ ǫǫ ǫ/2

1 − ǫ

ǫ/2ǫ

1 − ǫ
(a) Transition model Pt(· | ·,L) at even
time steps.

1

23 4

1 − ǫ

1 − ǫ

ǫǫ ǫ/2

1 − ǫ

ǫ/2

1 − ǫ

ǫ

(b) Transition model Pt(· | ·,L) at odd time
steps.

Figure 3–1: Transition models for Example 3.2 when agent chooses the action
L. Edges are labelled with transition probabilities.

Example 3.2. Consider an MDP with states {1, 2, 3, 4}. The choices of ac-

tions for the agent are L and R. The rewards are constant over time. Taking

action L at state 3 gives a reward of 1. Taking action R at state 4 gives a re-

ward of 7/8. All actions in other states give zero reward. Figure 3–1(a) shows

the nominal state-transition model when the agent takes action L. However,
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1 − ǫǫ

ǫ
(a) Transition model Pt(· | ·,R) at even
time steps.

1

23 4

1 − ǫ

1 − ǫ

1 − ǫǫ ǫ/2

ǫ/2

1 − ǫ

ǫ

ǫ

(b) Transition model Pt(· | ·,R) at odd time
steps.

Figure 3–2: Transition models for Example 3.2 when agent chooses the action
R. Edges are labelled with transition probabilities.

unknown to the agent, the transition model changes to that of Figure 3–1(b)

at odd time steps. This change is small in the sense that the probabilities

change by at most a fixed ǫ > 0. When the agent chooses the action R, the

transitions toward state 4 are more likely, as shown in Figure 3–2.

Suppose that the agent takes the transition model of Figure 3–1(a) as

the nominal model for all time steps in order to compute a regret-minimizing

policy by perturbing the optimal policy, e.g., using the Lazy FPL algorithm

of Chapter 2. The unperturbed optimal policy in this case is to take the L

action at every state. Since the random perturbation tends to zero, the regret-

minimizing policy also chooses the L action with arbitrarily high probability
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1

23 4

1 7/8

Figure 3–3: Rewards for Example 3.2.

after enough time. However, choosing the L action realizes an expected reward

of at most 1/2 per step when the actual transition model is that of Figure 3–

1(b), i.e., at the odd time steps. Since the expected average reward at even

time steps is at most 1, the overall expected average reward of this policy

is at most 3/4. In contrast, a policy that is robust with respect to the two

possible transition models (Figure 3–1(a) and 3–1(b)) chooses the action R

at all times; hence, generating an expected average reward greater or equal to

7/8−ǫ. The difference in average reward between the regret minimizing policy

and the robust policy can be made arbitrarily large by tuning the rewards.

One approach of minimizing the regret in this example is to combine

robust dynamic programming and online learning (Section 3.4). Another ap-

proach uses a simulation-based algorithm (Section 3.6), which eliminates the

need to observe or estimate the transition probabilities {Pt} and the modu-

lating sequence {δt}.

3.3.1 Assumptions

First, we make a standard ergodicity assumption for Markov decision

processes. This assumption excludes sequences of transition functions that

create periodicity and prevent vanishing regret, as shown in Chapter 2. Recall
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that for a fixed Markov chain x1, x2, . . . with state space S, the cover time is

Tcov = min{t : for every s ∈ S, there exists j < t such that xj = s},

i.e., the smallest integer t such that for every s ∈ S, there exists j < t with

xj = s. In turn, the expected cover time is

max
s∈S

Ex1=s [Tcov],

where the maximum is over all possible values of the initial state x1. Let dt

denote the distribution of the state xt at time t, and π denote the stationary

distribution. The mixing time of the Markov chain x1, x2, . . . is

min

{

t :
1

2

∑

s∈S

|dt(s) − π(s)| ≤ 1/4

}

.

Assumption 3.1 (Uniform Ergodicity). The sequence of transition functions

P1, P2, . . . is non-periodic. There exist constants τ and τcov such that for every

(mixed) policy σ : S → ∆(A) and every modulating vector δ ∈ ∆(C), the

Markov chain induced by the transition function P δ(s′ | s, σ(s)) is ergodic

with expected mixing time at most τ and expected cover time at most τcov.

Assumption 3.1 ensures that the Markov chain induced by every sequence

of transition functions P1, P2, . . . and every policy σ : S → A is ergodic: all

states in the induced Markov chain communicate and are aperiodic; moreover,

the Markov chain admits a unique stationary distribution.

In general, the state transition functions and the reward functions vary

quite differently. It may be appropriate to assume that the agent has more

control over the system’s state than the source of rewards (e.g., Nature). This

gives rise to some asymmetry in the extent of arbitrary uncertainty in the

rewards and transitions, as illustrated by the following game.
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Example 3.3 (AR-AT Games). Additive-reward additive-transition stochas-

tic games (cf. [50]) can provide natural examples where two players have

non-symmetric influence on the transition probabilities. In such games, the

agent’s reward and transition functions at each time t can be decomposed as:

Pt(s
′ | s, a) = (1 − λ)G1(s

′ | s, a) + λG2(s
′ | s, bt),

rt(s, a) = (1 − ν)f1(s, a) + νf2(s, bt),

where G1 and f1 are single-controller transition and reward functions in the

absence of an opponent. However, the opponent takes the action bt, and

influences the reward and state-transition through f2 and G2. Hence, the

functions Pt and rt depend on the opponent action bt, where the scalars λ and

ν control the extent of this dependence. An example of such a stochastic game

is the fishery game described in [50].

In light of the hardness of obtaining vanishing regret, we set out to quan-

tify the dependence of the regret on the variability in the transition probabili-

ties. To this effect, similarly to the role of the scalars λ and ν in Example 3.3,

we introduce the following assumption to limit the extent to which the tran-

sition functions {Pi : i = 1, 2, . . .} may vary when modulated by the arbitrary

individual sequence {δi ∈ ∆(C) : i = 1, 2, . . .}.

Assumption 3.2 (ǫ-arbitrary Transition Functions). Let Pδ denote the ma-

trix whose (s′, s)-element is P δ(s′ | s, σ(s)). Let Zδ denote the fundamental

matrix (cf. [115]) associated with the same transition function P δ, i.e.,

Zδ , [I − Pδ + Pδ
∞]−1, where Pδ

∞ , lim
K→∞

1

K

K∑

k=1

(Pδ)k.

Further, let the norm ‖M‖∞ of a matrix M denote its maximum absolute row-

sum. We assume that there exists a finite constant Z such that
∥∥Zδ

∥∥
∞

≤ Z
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for all δ ∈ D, and that there exists ǫ > 0 such that

∥∥∥Pδ − Pδ′
∥∥∥
∞
< ǫ

for every δ ∈ D and δ′ ∈ D.

3.4 Full Observation Case

In this section, we present a solution that combines robust optimization

and existing minimum-regret algorithms for single-controller stochastic games

(e.g., [50, 44]). In particular, we employ implementations of these algorithms

that follow the best policy with respect to the empirical observations thus

far, while subject to small perturbations. Our approach uses robust control

of MDPs with infinite-horizon average-reward objectives, whereas robust con-

trol of MDPs with finite horizons and discounted rewards may be solved by

the robust dynamic programming method of [101]. This robust dynamic pro-

gramming method may be adapted to MDPs with the infinite-horizon average-

reward objective by using appropriate Bellman equations (cf. [19]).

For this section, we begin by making some additional assumptions that

will be relaxed in the following sections. First, we assume that the agent

observes the reward function rt at the end of every time step t. Second,

we assume that the set of basic transition functions {P c : c ∈ C} and the

modulating sequence uncertainty set D are known to the agent. For ease of

exposition, we define the empirical average of reward functions observed from

time 1 to t− 1:

r̂t(s, a) ,
1

t− 1

t−1∑

i=1

ri(s, a), for all (s, a) ∈ S × A.

Consider the online robust dynamic programming (ORDP) algorithm of

Algorithm 3–1. This algorithm combines robust control of MDPs [101] with

regret-minimizing policies for single-controller stochastic games (e.g., [50, 44]).
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At every time step, the ORDP algorithm solves a robust dynamic program

with respect to the uncertainty set D, and with the average reward function

r̂t. The algorithm then acts according to a randomly perturbed version of the

optimal policy.

The ORDP algorithm uses the same ideas as the Lazy FPL algorithm of

Chapter 2, with the addition of a robust optimization step and the exception of

the time phases. However, the analysis differs significantly due to the changing

transition functions.

(Initialize.) At time step 1, output an arbitrary action a1.
At every time step t = 2, 3, . . .:

1. (Robust dynamic program.) Solve the robust MDP with state
space S, action space A, an uncertainty set D ⊆ ∆(C), and with
reward function r̂t. In other words, solve the following Bellman
equations for MDPs with infinite-horizon average-reward objec-
tive [19] (via linear programming or otherwise):

Vt(s) =max
a∈A

(
r̂t(s, a)

+ inf
δ∈D

∑

s′∈S

Vt(s
′)
∑

c∈C

δ(c)P c(s′ | st, a) − Vt(s0)
)
, s ∈ S,

(3.4.2)

where s0 ∈ S is a fixed state and Vt(s0) is a normalization term.
2. (Sample.) Sample a random variable nt uniformly over the sup-

port [−t−1/2, t−1/2]|A|.
3. (Follow the perturbed leader.) Output the action

at(st) = arg max
a∈A

(
r̂t(st, a)

+ nt(a) + inf
δ∈D

∑

s′∈S

Vt(s
′)
∑

c∈C

δ(c)P c(s′ | st, a)
)
. (3.4.3)

Algorithm 3–1: Online robust dynamic programming (ORDP) algorithm

Theorem 3.1. Suppose that Assumptions 3.1 and 3.2 hold. Then, for T ≥

4eτ/ǫ, the regret of the ORDP algorithm with respect to every sequence r1, r2, . . .
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and P1, P2, . . . is bounded as follows:

L̂T ≤ (Z + 1)ǫ+
√
|S| |A| /T + 4τ 2

√
log(|A|)/T + 4τ/T.

3.4.1 Proof of Theorem 3.1

Let a stationary policy µ : S → A and a modulating vector δ ∈ ∆(C)

be fixed, and let u be a state distributed according to the stationary state-

distribution π(µ, δ) associated with the transition function P δ(s′ | s, µ(s)). We

first define a relaxed objective:

ÎT , inf
δ∈∆(C)

max
µ:S→A

1

T

T∑

t=1

Eπ(µ,δ)

[
rt(u, µ(u))

]
, (3.4.4)

where the expectation Eπ(µ,δ) makes explicit the dependence of the distribution

of u on the modulating vector δ. Theorem 3.1 follows from two steps. First,

using the following Lemma 3.2, we relate the relaxed objective ÎT and the true

objective ĴT . Then, through Lemma 3.3 and Proposition 3.4, we bound the

regret with respect to the relaxed objective.

Lemma 3.2. Suppose that Assumptions 3.1 and 3.2 hold. Then, for every

sequence r1, r2, . . . and P1, P2, . . ., we have |ĴT− ÎT | ≤ (Z+1)ǫ, for T ≥ 2eτ/ǫ.

Proof. Let σ∗ denote a stationary policy that achieves the true objective:

max
σ:S→A

1

T

T∑

t=1

E
[
rt(̂st, σ(̂st))

]
.

Let δ∗ denote a modulating vector that achieves the following objective:

inf
δ∈∆(C)

1

T

T∑

t=1

Eπ(σ∗,δ)

[
rt(u, σ

∗(u))
]
.

Recall that π(µ, δ) denotes the distribution of u induced by the policy µ and

the transition function P δ. Observe that the policy σ∗ and P δ induce a Markov

chain with a unique stationary distribution π(σ∗, δ) by Assumption 3.1. Since

the transition functions are ǫ-arbitrary by Assumption 3.2, every such induced
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stationary distribution satisfies

‖π(σ∗, δ) − π(σ∗, δ∗)‖∞ ≤ Zǫ (3.4.5)

by [115, Section 6]. Let dt(σ
∗, δ) denote the distribution of ŝt when the agent

follows policy σ∗ and the transition function is P δ. By Assumption 3.1, every

Markov chain induced by σ∗ and P δ has a mixing time bounded by τ . Hence,

we have

‖dt(σ∗, δ) − π(σ∗, δ)‖∞ ≤ 2e1−t/τ . (3.4.6)

Let dt(σ
∗) denote the distribution of state ŝt following the transition func-

tions P1, . . . , Pt−1, while the agent follows policy σ∗. Observe that, by er-

godicity assumption, every transition matrix Pi has the spectral decompo-

sition Pi = UDiU
−1 for i = 1, . . . , t − 1. Let δ ∈ ∆(C) be such that

P δ = U(Dt−1 . . .D1)
1/(t−1)U−1, then we have

‖dt(σ∗) − π(σ∗, δ)‖∞ ≤ ‖dt(σ∗, δ) − π(σ∗, δ)‖∞

≤ 2e1−t/τ , (3.4.7)

where the last inequality follows from (3.4.6).

By observing that the rewards take values in [0, 1], it follows from (3.4.5)

and (3.4.7) that

1

T

T∑

t=1

E
[
rt(ŝt, σ

∗(ŝt))
]
− 1

T

T∑

t=1

Eπ(σ∗ ,δ∗)

[
rt(u, σ

∗(u))
]
≤ Zǫ+ 2eτ/T.

In turn, by definition of σ∗ and δ∗, and for T ≥ 2eτ/ǫ, we obtain

max
σ:S→A

1

T

T∑

t=1

E
[
rt(̂st, σ(̂st))

]
− inf

δ∈∆(C)

1

T

T∑

t=1

Eπ(σ∗,δ)

[
rt(u, σ

∗(u))
]
≤ (Z + 1)ǫ.
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By replacing the policy σ∗ in the negative term on the left-hand side by an

optimal one, we obtain:

max
σ:S→A

1

T

T∑

t=1

E
[
rt(̂st, σ(̂st))

]
− max

µ:S→A
inf

δ∈∆(C)

1

T

T∑

t=1

Eπ(µ,δ)

[
rt(u, µ(u))

]
≤ (Z + 1)ǫ.

The final result follows by observing that the relaxed objective is the value of

a game where the players’ actions are fixed policies. This value exists [101,

Theorem 4]; and hence,

inf
δ∈∆(C)

max
µ:S→A

1

T

T∑

t=1

Eπ(µ,δ)

[
rt(u, µ(u))

]
= max

µ:S→A
inf

δ∈∆(C)

1

T

T∑

t=1

Eπ(µ,δ)

[
rt(u, µ(u))

]
.

Lemma 3.3 ([45, Proposition 2]). Let an arbitrary δ ∈ ∆(C) be fixed. Sup-

pose that the sequence of transition functions is Pt = P δ for all t. Let the

uncertainty set be reduced to the singleton: D = {δ}. Then, the regret of the

policy sequence {σt} induced by the ORDP algorithm is bounded as follows:

max
µ:S→A

Eπ(µ,δ)

[
r̂T (u, µ(u))

]
− 1

T

T∑

t=1

E
[
rt(st, σt(st))

]

≤
√

|S| |A| /T + 4τ 2
√

log(|A|)/T + 4τ/T.

Proof. By [44, Theorem 6.2], for every δ, we have

1

T

T∑

t=1

E
[
r(st, σt(st))

]
− 1

T

T∑

t=1

Eπ(σt,δ)

[
rt(vt, σt(vt))

]

≤ 4τ 2
√

log(|A|)/T + 2τ/T,

where σt is the agent’s policy at time t, and vt is distributed according to the

stationary distribution π(σt, δ). By [44, Theorem 6.1], for every agent-policy

83



σ : S → A, we have

1

T

T∑

t=1

E
[
rt(st, σ(st))

]
≤ 1

T

T∑

t=1

Eπ(σt,δ)

[
rt(vt, σ(vt))

]
+ 2τ/T.

By [44, Theorem 5.2], for every σ, we also have

1

T

T∑

t=1

Eπ(σt,ψ)

[
rt(vt, σt(vt))

]
≥ 1

T

T∑

t=1

Eπ(σt,ψ)

[
rt(vt, σ(vt))

]
−
√
|S| |A| /T .

The claim follows by combining these three inequalities, and recalling the

definition:

1

T

T∑

t=1

Eπ(µ,δ)

[
rt(u, µ(u))

]
= Eπ(µ,δ)

[
r̂T (u, µ(u))

]
.

Proposition 3.4. Under the assumptions of Theorem 3.1, the regret of the

ORDP algorithm with respect to the relaxed objective ÎT is

ÎT − 1

T

T∑

t=1

E
[
rt(st, at)

]
≤
√

|S| |A| /T + 4τ 2
√

log(|A|)/T + 4τ/T, for all T.

(3.4.8)

Proof. Let {ρt} denote the sequence of policies induced by the ORDP algo-

rithm with nt = 0 for all t. The policy ρt solves a robust dynamic program

with an undiscounted average-reward objective; it can be obtained as the solu-

tion of a robust linear program [127]. Hence, by an argument similar to [101,

Theorem 3], the policy ρt inherits the following optimality property: at every

step t, and for every δ ∈ ∆(C),

Eπ(ρt,δ)

[
r̂t(v, ρt(v))

]
≥ max

µ:S→A
Eπ(µ,δ)

[
r̂t(u, µ(u))

]
.

By replacing the optimality property for dynamic programming by the above

optimality property for robust dynamic programming, the claimed result fol-

lows by Lemma 3.3.
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Since the ORDP algorithm solves a robust MDP at every time step, its

computational complexity increases linearly in time. However, the policies

computed by the ORDP algorithm change slowly in time, especially after a

long time period. This observation suggests the alternative of computing a

new policy only once in a while and following this policy in the meantime.

Choosing the length of the intervening intervals provides a mean of trade-off

between the regret bound and the computational complexity of the solution.

This approach is similar to other lazy algorithms [7].

The trade-off between regret and complexity can be achieved by modi-

fying the ORDP algorithm as follows. First, we partition the time horizon

1, 2, . . . into intervals of time steps, whose lengths increase over time. Next,

we compute a single stationary policy in each interval and follow it through-

out the interval. For instance, if only T 3/4 different policies are computed up

to time T , the corresponding regret bound is of the order of O(T−1/4) (cf.

Chapter 2).

3.5 Limited Observation of Rewards

In this section, we consider a limited-observation setting similar to the

multi-armed bandit setting [10]. At the end of every time step, instead of ob-

serving the full reward function rt, the agent observes only the reward rt(st, at)

that was received. This setting is representative of applications in sequential

clinical trials and sequential allocation of resources. Since the agent only ob-

serves the values of the reward functions on its state-action trajectory, our

solution maps the observed rewards rt(s0, a0), . . . , rt(st−1, at−1) and the cur-

rent state st to an action at. We present an algorithm that uses estimates of

the reward functions as in [10].

Our approach is to construct an interval estimate of r̂t at every t. To

this end, we construct a random interval [z−t , z
+
t ] at every step t as follows.
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Starting from the initial state s1, at every subsequent step t, we compute the

following lower and upper bounds for the state-distribution dst
of st:

d−st
(s) = inf

δ∈D
P δ(s | st−1, at−1), for all s ∈ S,

d+
st
(s) = sup

δ∈D
P δ(s | st−1, at−1), for all s ∈ S. (3.5.9)

Let σt denote the policy of the algorithm at time t, i.e., σt(a | s) is the

probability that its algorithm outputs at = a provided that st = s. Given a

fixed pair (s, a) ∈ S ×A, the probability that (st, at) = (s, a) is bounded from

above by σt(a | s) d+
st
(s). For time steps t such that σt(a | s) d+

st
(s) is positive,

we define

z−t (s, a) =






rt(s,a)

σt(a|s)d
+
st

(s)
, if (s, a) = (st, at),

0, otherwise.
(3.5.10)

Likewise, we define

z+
t (s, a) =






rt(s,a)

σt(a|s)d
−
st

(s)
, if (s, a) = (st, at),

0, otherwise.

To ensure that the probabilities are non-zero, we explore the state-action space

S×A during theN initial time steps, whereN is the earliest time step such that

d−st
(s) > 0 and d+

st
(s) > 0 for all s ∈ S. Observe that only the value rt(st, at) of

the reward at the traversed state-action profile (st, at) is required to evaluate

z−j and z+
j . From the sequences z−j and z+

j , we construct ẑ−t , 1
t−1

∑t−1
j=1 z−j

and ẑ+
t , 1

t−1

∑t−1
j=1 z+

j , which are lower and upper estimates of the empirical-

average reward function r̂t.

Next, we present an algorithm and its corresponding regret bound in the

limited-observation setting. Observe that since the algorithm follows a fixed

policy for t < N , then N is bounded from above by the cover time of the
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Markov chain induced by the fixed policy. Since the worst-case expected cover

time is τcov by Assumption 3.1, we have EN ≤ τcov.

(Initialize.) Fix φ ∈ (0, 1). Let N denote the smallest t such that
d+
st
(s) > 0 for all s ∈ S.
1. (Estimate.) At every time step t > 1, compute the reward func-

tion lower-estimate ẑ−t recursively from (3.5.9) and (3.5.10).
2. At time steps t < N , output an action at chosen uniformly at

random over A, i.e., with distribution σt(a | s) = |A|−1 for all
a ∈ A.

3. At time steps t ≥ N :
(a) (Sample.) Sample an independent Bernoulli random vari-

able xt that takes value 1 with probability φ.
(b) (Minimize regret.) If xt = 0, solve the robust MDP corre-

sponding to the Bellman equations (3.4.2) of Algorithm 3–1
with the reward function ẑ−t instead of r̂t. Output the ac-
tion at as in (3.4.3) of Algorithm 3–1 after replacing r̂t by
ẑ−t .

(c) (Explore.) If xt = 1, output an action at chosen uniformly
at random over A.

Algorithm 3–2: Exploratory ORDP

Observe that the fixed parameter φ > 0 ensures that each element of the

state-action space S×A is explored infinitely often as T → ∞. Similar results

may be obtained by decreasing the probability of exploration φ over time (cf.

[10]).

Theorem 3.5 (Exploratory ORDP). Suppose that Assumptions 3.1 and 3.2

hold. Let Pmin > 0 denote a positive constant such that d+
st
(s) > Pmin and

d−st
(s) > Pmin for every s ∈ S, initial state s0 ∈ S, and t ≥ τcov. If the agent

follows the Exploratory ORDP algorithm with a fixed φ ∈ (0, 1), then, for

every T ≥ max{τcov , 2eτ/ǫ}, the regret of the Exploratory ORDP algorithm

is bounded as follows:

L̂T ≤
( |A|
P 2

minφ
+ Z + 1

)
ǫ+ φ+

√
|S| |A|
T

+ 4τ 2

√
log |A|
T

+
4τ

T
+
τcov
T
.
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In particular, if φ =

√
|A|

Pmin

√
ǫ, we obtain

L̂T ≤ (Z + 1)ǫ+ 2

√
|A|

Pmin

√
ǫ+

√
|S| |A|
T

+ 4τ 2

√
log |A|
T

+
4τ + τcov

T
.

Remark 22. Compared to the full observation case (cf. Theorem 3.1), the

above regret bound for the limited observation model contains an additional

component of 2

√
|A|

Pmin

√
ǫ.

Proof outline. First, observe that, for all (s, a) ∈ S × A, the true unobserved

average reward function r̂t is bounded as follows:

E {ẑ−t (s, a) | st−1, at−1} ≤ r̂t(s, a) ≤ E {ẑ+
t (s, a) | st−1, at−1}.

Next, observe that
∥∥d−st

− d+
st

∥∥
∞

≤ ǫ by definition and Assumption 3.2. By

definition, we have

E
{∣∣z−t (s, a) − z+

t (s, a)
∣∣ | st−1, at−1

}
≤ rt(s, a)

σt(a | s)d−st
(s)d+

st
(s)

(d−st
(s) − d+

st
(s)),

for all (s, a) ∈ S ×A.

By definition of the Exploratory ORDP algorithm, we have σt(a | s) ≥ φ/ |A|.

Also, for t ≥ τcov, we have the bounds d−st
(s) ≥ Pmin and d+

st
(s) ≥ Pmin. It

follows that

E
{∣∣ẑ−t (s, a) − ẑ+

t (s, a)
∣∣ | st−1, at−1

}
≤ |A| ǫ
P 2

minφ

for every (s, a) ∈ S × A and t ≥ N . Thus, by replacing r̂t by ẑ−t —or an

arbitrary convex combination of ẑ−t and ẑ+
t , the Exploratory ORDP algorithm

incurs at most an additional regret of |A| ǫ/(P 2
minφ) over the ORDP algorithm.

Further, observe that the first N initialization steps incur an overhead regret of

at most N , whereas the recurrent exploration steps incur an expected overhead
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of φ T . Finally, we obtain the bound of Theorem 3.5 by combining these

additional terms with the bound of Theorem 3.1.

3.6 Unknown Transition Probabilities

In this section, we consider the case where the agent does not observe the

state-transition probabilities, but only the state trajectory. As in the previ-

ous sections, we assume that the changes in the transition function, although

arbitrary, are limited. One method is to estimate the transition probabilities

(as in [30]), define an appropriate uncertainty set, and employ the methods

of Section 3.4. We adopt a different method in this section. By using the Q-

learning approach [126], we eliminate the need to know a priori or to estimate

the transition probabilities.

Recall that in Example 3.2, we show that any discrepancy, no matter how

small, between transition function used to compute the policy and the true

transition function can cause arbitrarily high regret. Unlike the dynamic pro-

gramming approach of the previous sections however, the Q-learning approach

is simulation-based: the policy is generated according to the true state-action

trajectory, which is induced by the true transition function. Hence, as a second

advantage, this approach does not require an additional robust optimization

over the uncertainty set D of the transition functions. As in the previous

sections, the regret is proportional to the variability of the uncertainty.

For simplicity, we assume in this section that the reward function is fully

observed at each time step, as in Section 3.4. However, the method for limited

observation described in the previous section can be readily applied here as

well.
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3.6.1 Algorithm

Consider the Q-FPL algorithm of Algorithm 3–3, where an appropriate

Q-function recursion replaces the Bellman equations (3.4.2) of the ORDP al-

gorithm. We partition the time horizon 1, 2, . . . into intervals of time steps,

denoted by α1, α2, . . .. We denote by Km the length of each interval αm.

Within each interval αm, we use a fixed learning rate γm for the Q-function

iterations. Let tm denote the first step of the interval αm.

(Initialize.) For t ∈ α1, choose the action at(st) according to an arbi-
trary deterministic policy µ : S → A.
For every phase αm, where m = 2, 3, . . .:

1. (Q-learning.) At the first step t of interval αm, reset the Q-
function Qt to a vector of zeroes. At every step t + 1 ∈ αm,
recursively update the Q-function:

Qt+1(s, a) = Qt(s, a) + γm

(
r̂tm(s, a) + max

a′∈A
Qt(st+1, a

′)

−Qt(s, a) −Qt(s0, a0)
)
, if (s, a) = (st, at),

Qt+1(s, a) = Qt(s, a) otherwise,

where Qt(s0, a0) is a normalizing term, and the learning rate is
γm ∈ (0, 1/4).

2. (Follow the perturbed leader.) Let Qαm−1 denote the Q-function
computed at the end of the interval αm−1. At every step t ∈ αm,
choose the action

at(st) = arg max
a∈A

{
Qαm−1(st, a) + nt(a)

}
, (3.6.11)

where the element of A with the lowest index is taken if the
max is not unique, and where the random variable nt is sampled
uniformly over the support



−
(

m∑

i=1

Ki

)−1/2

,

(
m∑

i=1

Ki

)−1/2



|A|

.

Algorithm 3–3: Q-Follow the Perturbed Leader (Q-FPL) algorithm

The main feature of the Q-FPL algorithm is that it uses the policy learnt

in the previous interval while learning a new policy in the current interval.
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The details are as follows. Observe the sequence of Q-functions {Qt}t∈αm
is

determined by the fixed reward function r̂tm and the sequence of transition

functions {Pt}t∈αm
. The Q-FPL algorithm essentially performs standard Q-

learning within each interval. The Q-function computed at the final step of the

interval αm−1 is denoted by Qαm−1 and used to derive a new policy (cf. (3.6.11))

for use throughout the next interval αm. As in the ORDP algorithm, this

policy is computed according to the concept of “follow the perturbed leader”

([64, 72]), where continuity between successive policies is ensured by adding

a vanishing noise term nt to the Q-function Qαm−1 . However, the Q-FPL

algorithm is computationally more efficient: at each time step, we only iterate

the Q-function instead of solving a robust dynamic program as in the ORDP

algorithm.

For the purpose of analysis, we consider the synchronous version of the

Q-learning iteration in the Q-FPL algorithm and write it in the form of a

stochastic approximation algorithm (cf. [79]):

Qt+1 = Qt + γm(ht(Qt) +Mt+1), t ∈ αm,

ht(Q)(s, a) = r̂tm(s, a) +
∑

s′∈S

Pt(s
′ | s, a) max

a′′∈A
Q(s′, a′′) −Q(s, a) −Q(s0, a0),

Mt+1(s, a) = max
a′∈A

Qt(st+1, a
′) −

∑

s′∈S

Pt(s
′ | s, a) max

a′′∈A
Qt(s

′, a′′),

where the state st+1 is distributed according to Pt(· | s, a). Our analysis of

synchronous Q-learning can be extended to the asynchronous version, as done

in [29]. In contrast to the convergence analysis for average-reward Q-learning

([29, 2]), the function ht is not fixed, but may change arbitrarily in our setting.
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We also define the sequence Qδ
t with the fixed transition function P δ and

the following recursion:

Qδ
t+1 = Qδ

t + γm(hδ(Qδ
t ) +Nt+1), t ∈ αm,

hδ(Q)(s, a) = r̂tm(s, a) +
∑

s′∈S

P δ(s′ | s, a) max
a′′∈A

Q(s′, a′′) −Q(s, a) −Q(s0, a0),

Nt+1(s, a) = max
a′∈A

Qδ
t (s̃t+1, a

′) −
∑

s′∈S

P δ(s′ | s, a) max
a′′∈A

Qδ
t (s

′, a′′),

where the state s̃t+1 is distributed according to P δ(· | s, a). Observe that, for

every fixed δ ∈ ∆(C), the function hδ satisfies the sufficient conditions2 for

the convergence of Qδ
t . Furthermore, {Nt} is a martingale difference sequence.

By [29, Theorem 2.2], the sequence Qδ
t converges almost surely; we denote this

limit by Qδ.

In contrast to {Qδ
t}, the sequence {Qt} does not converge to a single limit

point due to the arbitrary sequence of transition functions P1, P2, . . .. In the

following section, we describe its convergence to a limit set.

3.6.2 PAC Regret Bound

In this section, we present a probably approximately-correct (PAC) bound

on the regret of the Q-FPL algorithm.

For every basic transition function P c, for c ∈ C, we define

hc(Q)(s, a) = r̂tm(s, a) +
∑

s′∈S

P c(s′ | s, a) max
a′′∈A

Q(s′, a′′) −Q(s, a) −Q(s0, a0).

Next, we define the convex hull in R
S×A:

G(Q) , conv({hc(Q) : c ∈ C}).

2 The sufficient conditions are that hδ is Lipschitz continuous and that there
exits a function h∞ such that limj→∞ hδ(jx)/j = h∞(x) for all x [29].
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We denote by dist(x, Y ) the distance of the point x to the set Y : infy∈Y ‖x− y‖∞.

Suppose that we write γ(t) to denote γm if t is a time step belonging to

αm. For every sequence of Q-functions {Qi}, we construct an interpolation

function q : R → R
|S×A| such that for every integer t, we have

q

(
t∑

i=1

γ(t)

)
= Qt.

Finally, we denote the invariant set of the differential inclusion dq(t)
dt

∈ G(q(t))

by

Ψ ,

{
q :

dq(t)

dt
∈ G(q(t)) for t ≥ 0

}
.

The following lemma due to [29] asserts that every function belonging to

the set Ψ of possible limit points is exponentially stable.

Lemma 3.6 ([29, Lemma 4.1]). Suppose that Assumption 3.1 holds. There ex-

ist constants C1 and C2 such that for every solution q∗ : R → R
|S×A| belonging

to the set Ψ, we have

|q∗(z)| ≤ C1e
−C2z |q∗(0)| , for z ≥ 0.

The following intermediary proposition describes the convergence of the

Q-FPL algorithm during a single interval. This is not the focal point of this

work, but a detailed account appears in ([29, 2]).

Proposition 3.7 (Q-learning PAC Bound). Suppose that Assumption 3.1

holds. Consider an arbitrary interval αm during which the learning rate is

γm. Let 1, . . . , Km denote the time steps of αm. Suppose that C1 and C2 are

as defined in Lemma 3.6. If γm ∈ (0, 1/4) and Km ≥ log(2C1)
C2γm

, then for every

ξ > 0,

Pr

(
inf
Q∗∈Ψ

‖QKm
−Q∗‖∞ > ξ

)
≤ 16

ξ2
γm.
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Remark 23. Proposition 3.7 requires that the length Km of each interval αm

increases as γm ց 0. A small value of γm entails a tighter bound, but also

slower convergence.

Proof. First, observe that since the functions ht are continuous (in the argu-

ment Q) and non-expansive for all t:

‖ht(Q) − ht(Q
′)‖∞ ≤ ‖Q−Q′‖∞ .

Hence, the stochastic approximation sequence Qt is stable without additional

constraints.

Observe that ht(Q) ∈ G(Q) for all t, so that we have

lim
n,m→∞

dist

(
1

m

n+m−1∑

i=n

hi(Q) , G(Q)

)

= 0.

Therefore, by [79, Theorem 5.6.3], with probability 1, the limit points of Qt

are contained in the invariant set Ψ.

By [29, Theorem 2.1], there exists a constant γ∗ = 1/4 such that if γm ∈

(0, γ∗), then

lim sup
K→∞

E ‖QK‖2
∞ <∞.

Let τ ∗(K) =
∑K

j=1 γm = Kγm. Since K ≥ log(2C1)
C2γm

by assumption, we obtain

C1e
−C2τ∗(K) ≤ 1/2.

Finally, by taking γm ∈ (0, γ∗), the assumptions of [29, Theorem 2.3] are

satisfied, and the claimed result follows from it.

The following theorem is the main result of this section.

Theorem 3.8 (PAC regret bound of Q-FPL). Suppose that Assumptions 3.1

and 3.2, and the the assumptions of Proposition 3.7 hold. Suppose that there
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exists x ∈ (0, 1/3) such that Km = O(mx) for every m. Let M(T ) denote

the number of intervals up to time step T . Then, for every ξ > 0 and every

T ≥ 2eτ/ǫ, the regret of the Q-FPL algorithm with respect to every sequence

r1, r2, . . . and every sequence P1, P2, . . . is bounded as follows:

ĴT − 1

T

T∑

t=1

rt(st, at) ≤ (Z + 2)ǫ+ ξ +R(T ) with probability 1 − 16

ξ2

M(T )∑

m=1

γm,

where R(T ) is of the order of O(T−1/4 log(T )).

Remark 24. By setting ξ = ǫ and γm = ǫ3

16M(T )
for all m, Theorem 3.8 gives

the following PAC bound:

ĴT − 1

T

T∑

t=1

rt(st, at) ≤ (Z + 3)ǫ+O

(
log(T )

T 1/4

)
with probability 1 − ǫ.

Observe that we may also let γm ց 0 and Km → ∞ as m→ ∞.

Proof. Using Lemma 3.2, our task is to bound the regret with respect to the

relaxed objective ÎT . We first bound the distance, at the end of each interval

αm, between the Q-function Qt generated by the Q-FPL algorithm and the

limit Qδ of the sequence {Qδ
t}. The claimed result then follows from the bound

on the regret associated with the policy induced by Qδ.

Observe that Qδ is a limit point belonging to this invariant set Ψ. Observe

also that by definition and Assumption 3.2, for every pair h(Q) ∈ G(Q) and

h′(Q) ∈ G(Q), we have

‖h(Q) − h′(Q)‖∞ ≤ ǫ.

Hence, for every limit point Q∗ belonging to the invariant set Ψ, we have

∥∥Qδ −Q∗
∥∥
∞

≤ ǫ.
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By Proposition 3.7, we obtain

Pr
(∥∥Qtm+Km

−Qδ
∥∥
∞
> ǫ+ ξ

)
≤ 16

ξ2
γm.

Let σm denote the policy generated by Qtm+Km
, and σδ denote the policy

induced by Qδ—the optimal policy in a standard MDP with transition function

P δ. By the definition of the Q-functions, it follows that, with probability

1 − 16
ξ2
γm,

1

Km

∑

t∈αm

r̂tm(st, σm(st)) ≥
1

Km

∑

t∈αm

r̂tm(ŝt, σ
δ(ŝt)) − ǫ− ξ,

≥ max
µ:S→A

1

Km

∑

t∈αm

r̂tm(s̃t, µ(s̃t)) − ǫ− ξ, (3.6.12)

where st is the true state trajectory, whereas ŝt and s̃t are induced by agent

policies σδ and µ with the fixed transition function P δ. The second inequality

is due to the fact that σδ is an optimal policy when the transition functions

are fixed to Pt = P δ for all t during interval αm.

Finally, by Proposition 2.3, while the transition function is fixed, the

expected average regret due to the arbitrary reward sequence rt is bounded

by

R(T ) = [16 + 3(|S| + 7) |A|2 τ log(T )]T−1/4.

The claim follows by combining the above bound with Lemma 3.2 and (3.6.12).

3.6.3 Expected Regret Bound

In this section, we show a bound on the expected regret of the Q-FPL

algorithm.

Theorem 3.9 (Expected regret of Q-FPL). Suppose that Assumptions 3.1

and 3.2 hold. Further, suppose that 0 ≤ γm ≤ min(1/4, ǫ3/16) and Km =
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log(2C1)
C2γm

for all m. Then, for T ≥ 2eτ/ǫ, the regret of the Q-FPL algorithm with

respect to every sequence r1, r2, . . . and every sequence P1, P2, . . . is bounded as

follows:

ĴT − 1

T

T∑

t=1

E
[
rt(st, at)

]
≤
(
Z + log(2C1)/C2 + 3

)
ǫ+R(T ),

where R(T ) is of the order of O(T−1/4 log(T )).

Remark 25. Compared to the regret bound for the ORDP algorithm (cf. The-

orem 3.1), the asymptotic regret has a larger leading factor.

Proof. Using Lemma 3.2, our task is to bound the regret with respect to the

relaxed objective ÎT . In Step 1, we show that, at the end of each interval αm,

the Q-function generated by the Q-FPL algorithm is within a distance of ǫ (in

expectation) from the limit Qδ of the sequence {Qδ
t}. In Step 2, we apply a

bound on the regret associated with the policy induced by Qδ.

(Step 1.) We define Pa
j as the matrix whose (s′, s)-element is Pj(s

′ | s, a),

and Pδ,a as the matrix whose (s′, s)-element is P δ(s′ | s, a). Let the norm

‖M‖∞ of a matrix M denote its maximum absolute row-sum. For simplicity,

let 1, . . . , K + 1 denote the set of time steps of interval αm. Let (s, a) ∈ S×A
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be an arbitrary state-action pair. Observe that

∣∣E QK+1(s, a) − E Qδ
K+1(s, a)

∣∣

≤ (1 − γm)
∣∣E QK(s, a) − E Qδ

K(s, a)
∣∣+ γm

∣∣E QK(s0, a0) − E Qδ
K(s0, a0)

∣∣

+ γm

∣∣∣∣∣E
∑

s′∈S

PK(s′ | s, a) max
a′∈A

QK(s′, a′) − E

∑

s′′∈S

P δ(s′′ | s, a) max
a′′∈A

Qδ
K(s′′, a′′)

∣∣∣∣∣

≤ (1 − γm)
∣∣E QK(s, a) − E Qδ

K(s, a)
∣∣+ γm

∥∥Pδ,a − Pa
K

∥∥
∞

∥∥E Qδ
K

∥∥
∞

+ γmmax
s′∈S

∣∣∣∣E max
a′∈A

QK(s′, a′) − E max
a′′∈A

Qδ
K(s′, a′′)

∣∣∣∣
∥∥Pδ,a

∥∥
∞

≤ (1 − γm)
∣∣E QK(s, a) − E Qδ

K(s, a)
∣∣+ γm

∥∥Pδ,a − Pa
K

∥∥
∞

1

+ γmmax
s′∈S

max
a′∈A

∣∣E QK(s′, a′) − E Qδ
K(s′, a′)

∣∣ (3.6.13)

≤ (1 − γm)
∣∣E QK(s, a) − E Qδ

K(s, a)
∣∣+ γm

∥∥Pδ,a − Pa
K

∥∥
∞

+ γm
∣∣E QK(s∗, a∗) − E Qδ

K(s∗, a∗)
∣∣

≤
∣∣E QK(s∗, a∗) − E Qδ

K(s∗, a∗)
∣∣ + γm

∥∥Pδ,a −Pa
K

∥∥
∞
, (3.6.14)

where s∗ and a∗ denote the solutions to the maximizations of (3.6.13). The

first inequality is due to taking expectation over the next-state variables.

For the second inequality, we use the triangle inequality and assume with-

out loss of generality that there exists a state-action pair (s0, a0) such that

E Qt(s0, a0) = E Qδ
t (s0, a0) for all t. The third inequality follows by algebra

and the fact that
∥∥E Qδ

K

∥∥
∞

≤ 1 since the rewards take values in the inter-

val [0, 1]. For the final inequality, we assume without loss of generality that
∣∣E QK(s, a) − E Qδ

K(s, a)
∣∣ ≤

∣∣E QK(s∗, a∗) − E Qδ
K(s∗, a∗)

∣∣; otherwise, we in-

terchange (s, a) and (s∗, a∗). By carrying on the recursion of (3.6.14), we

obtain

∣∣E QK+1(s, a) − E Qδ
K+1(s, a)

∣∣ ≤
∑

j∈αm

γm
∥∥Pδ,a −Pa

j

∥∥
∞
.
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By the ǫ-arbitrariness assumption (Assumption 3.2), there exists a fixed ǫ > 0

such that ‖Pa
t − Pa

t′‖∞ < ǫ for every pair of time instants t and t′. Therefore,

there exists a δ ∈ ∆(C) such that
∥∥Pδ,a − Pa

j

∥∥
∞
< ǫ, for all j ∈ αm. Moreover,

we have supm=1,2,...Kmγm ≥∑j∈αm
γm by definition. Hence, we obtain

∥∥E QK+1 − E Qδ
K+1

∥∥
∞

≤ log(2C1)

C2

ǫ.

The sequence Qδ
t converges to a limit that we denote Qδ. By Jensen’s

Inequality, Chebyshev’s Inequality and Proposition 3.7, we obtain

∥∥E Qδ
K+1 −Qδ

∥∥
∞

≤ E
∥∥Qδ

K+1 −Qδ
∥∥
∞

≤ ǫPr(
∥∥Qδ

K+1 −Qδ
∥∥
∞

≤ ǫ) + Pr(
∥∥Qδ

K+1 −Qδ
∥∥
∞
> ǫ)

≤ ǫ+
16

ǫ2
γm ≤ 2ǫ,

where the final equality follows by the assumption that γm ≤ ǫ3/16. It follows

that

∥∥E QK+1 −Qδ
∥∥
∞

≤
∥∥E QK+1 − E Qδ

K+1

∥∥
∞

+
∥∥E Qδ

K+1 −Qδ
∥∥
∞

≤ (log(2C1)/C2 + 2)ǫ. (3.6.15)

(Step 2.) Let σK denote the policy generated by QK+1, and σδ denote

the policy generated by Qδ. As shown in [29], σδ is an optimal policy when

the transition functions are fixed to Pt = P δ for all t during interval αm.

From (3.6.15), it follows that the average reward of policy σK differs from the
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optimal average reward as follows:

1

Km

∑

t∈αm

E r̂tm(st, σK(st))

≥ 1

Km

∑

t∈αm

E r̂tm(ŝt, σ
δ(ŝt)) − (log(2C1)/C2 + 2)ǫ,

≥ max
µ:S→A

1

Km

∑

t∈αm

E r̂tm(s̃t, µ(s̃t)) − (log(2C1)/C2 + 2)ǫ,

where st is the true state trajectory, whereas ŝt and s̃t are induced by agent

policies σδ and µ with the fixed transition function P δ. The rest of the proof

follows the same line as the proof of Theorem 3.8

3.7 Discussion

It is useful to compare the ORDP and Q-FPL algorithms. The ORDP

algorithm requires not only knowledge of the transition probabilities P c(s′ |

s, a)—for all c, s′, s, and a, but also of the uncertainty set D of the modulating

sequence {δt}. The Q-FPL algorithm requires only knowledge of the bound ǫ of

Assumption 3.2. Moreover, the Q-function iteration of the Q-FPL algorithm

is computationally more efficient than solving the robust dynamic program

of the ORDP algorithm. The only drawback is in the weaker bound on the

regret.

Our results clearly extend to the case where the transition functions are ǫ-

arbitrary over subintervals of the entire time horizon, provided that the agent

estimates the modulating term δt at each time t and resets the Q-learning

sub-algorithm when a sufficiently large shift in the modulating sequence is

detected. The uncertainty set D of the ORDP algorithm can also be regularly

updated to reflect the estimates {δ̂t}. Effectively, this allows us to replace the

ǫ-arbitrariness assumption of Theorem 3.1 by a more general assumption on

the accuracy |δ̂t − δt| of each estimate δ̂t.
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CHAPTER 4

Online Learning for Sequential Optimization with Constraints

4.1 Introduction

In this chapter, we study online learning when the objective of the de-

cision maker is to maximize her long-term average reward subject to certain

sample path average constraints. We define the reward-in-hindsight as the

highest reward the decision maker could have achieved, while satisfying the

constraints, had she known Nature’s choices in advance. We show that in

general the reward-in-hindsight is not attainable. The convex hull of the

reward-in-hindsight function is, however, attainable. For the important case

of a single constraint, the convex hull turns out to be the highest attainable

function. Using a calibrated forecasting rule, we provide an explicit strategy

that attains this convex hull. We also measure the performance of heuristic

methods based on non-calibrated forecasters in experiments involving a CPU

power management problem.

The model of this chapter is a repeated game from the viewpoint of a

decision maker (player P1) who plays against Nature (player P2). The op-

ponent (Nature) is “arbitrary” in the sense that player P1 has no prediction,

statistical or strategic, of the opponent’s choice of actions. This setting was

considered by [64], in the context of repeated matrix games. Hannan intro-

duced the Bayes utility with respect to the current empirical distribution of the

opponent’s actions, as a performance goal for adaptive play. This quantity, de-

fined as the highest average reward that player P1 could achieve, in hindsight,

by playing some fixed action against the observed action sequence of player

P2. Player P1’s regret is defined as the difference between the highest average

101



reward-in-hindsight that player P1 could have hypothetically achieved, and

the actual average reward obtained by player P1. It was established in [64]

that there exist strategies whose regret converges to zero as the number of

stages increases, even in the absence of any prior knowledge on the strategy

of player P2. For recent advances on online learning, see [34].

The objective in this model is to minimize the regret under sample-path

constraints. That is, in addition to maximizing the average reward, or more

precisely, minimizing the regret, the decision maker has some side constraints

that need to be satisfied on the average. In particular, for every joint action

of the players, there is an additional penalty vector that is accumulated by

the decision maker. The decision maker has a predefined set in the space of

penalty vectors, which represents the acceptable trade-offs between the differ-

ent components of the penalty vector. An important special case arises when

the decision maker wishes to keep some constrained resource below a certain

threshold. Consider, for example, a wireless communication system where the

decision maker can adjust the transmission power to improve the probability

that a message is received successfully. Of course, the decision maker does

not know a priori how much power will be needed (this depends on the be-

haviour of other users, the channel conditions, etc.). Still, a decision maker is

usually interested in both the rate of successful transmissions, and in the aver-

age power consumption. In an often considered variation of this problem, the

decision maker wishes to maximize the transmission rate, while keeping the

average power consumption below some predefined threshold. We refer the

reader to [92] and references therein for a discussion of constrained average

cost stochastic games and to [5] for constrained Markov decision problems.

This chapter is organized as follows. In Section 4.2, we present formally

the basic model, and provide a result that relates attainability with the value
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of the game. In Section 4.3, we provide an example where the reward-in-

hindsight cannot be attained. In light of this negative result, in Section 4.4

we define the closed convex hull of the reward-in-hindsight, and show that

it is attainable. Furthermore, in Section 4.5, we show that when there is a

single constraint, this is the maximal attainable objective. In Section 4.6,

we provide a simple strategy, based on calibrated forecasting, that attains

the closed convex hull. Section 4.7 presents heuristic algorithms derived from

an online forecaster, while incorporating strictly enforced constraints. The

application of the algorithms of Section 4.7 to a power management domain

is presented in Section 4.8.

4.2 Problem Definition

We consider a repeated game against Nature, in which a decision maker

tries to maximize her reward, while satisfying some constraints on certain

time-averages. The underlying stage game is a game with two players: P1

(the decision maker of interest) and P2 (who represents Nature and is assumed

arbitrary). For our purposes, we only need to define rewards and constraints

for P1.

A constrained game with respect to a set T is defined by a tuple (A,B,R,C, T )

where:

1. A is the set of actions of P1; we will assume A = {1, 2, . . . , |A|}.

2. B is the set of actions of P2; we will assume B = {1, 2, . . . , |B|}.

3. R is an |A| × |B| matrix where the entry R(a, b) denotes the expected

reward obtained by P1, when P1 plays action a ∈ A and P2 action

b ∈ B. The actual rewards obtained at each play of actions a and b

are assumed to be i.i.d. random variables, with finite second moments,

distributed according to a probability law PrR(· | a, b). Furthermore, the

reward streams for different pairs (a, b) are statistically independent.
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4. C is an |A|×|B| matrix, where the entry C(a, b) denotes the expected d-

dimensional penalty vector incurred by P1, when P1 plays action a ∈ A

and P2 action b ∈ B. The actual penalty vectors obtained at each play

of actions a and b are assumed to be i.i.d. random variables, with finite

second moments, distributed according to a probability law PrC(· | a, b).

Furthermore, the penalty vector streams for different pairs (a, b) are

statistically independent.

5. T is a set in R
d within which we wish the average of the penalty vectors

to lie. We assume that T is convex and closed. Since the entries of C

are bounded, we will also assume, without loss of generality, that T is

bounded.

The game is played in stages. At each stage t, P1 and P2 simultaneously

choose actions at ∈ A and bt ∈ B, respectively. Player P1 obtains a reward rt,

distributed according to PrR(· | at, bt), and a penalty ct, distributed according

to PrC(· | at, bt). We define P1’s average reward by time t to be

r̂t =
1

t

t∑

j=1

rj , (4.2.1)

and P1’s average penalty vector by time t to be

ĉt =
1

t

t∑

j=1

cj . (4.2.2)

A strategy for P1 (respectively P2) is a mapping from the set of all pos-

sible past histories to the set of mixed actions on A (respectively B), which

prescribes the (mixed) action of that player at each time t, as a function of the

history in the first t− 1 stages. Loosely, P1’s goal is to maximize the average

reward while keeping the average penalty vector in T , path-wise:

lim sup
t→∞

dist(ĉt, T ) → 0, a.s., (4.2.3)
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where dist(·) is the point-to-set Euclidean distance, i.e., dist(x, T ) = infy∈T ‖y−

x‖2, and the probability measure is the one induced by the policy of P1, the

policy of P2, and the randomness in the rewards and penalties.

We will often consider the important special case where T = {c ∈ R
d : c ≤

c0}, for some given c0 ∈ R
d, with the inequality interpreted component-wise.

We simply call such a game a constrained game with respect to (a vector) c0.

For that special case, the requirement (4.2.3) is equivalent to:

lim sup
t→∞

ĉt ≤ c0, a.s.. (4.2.4)

For a set D, we will use the notation ∆(D) to denote the set of all prob-

ability measures on D. If D is finite, we will identify ∆(D) with the set of

probability vectors of the same size as D. If D is a subset of Euclidean space,

we will assume that it is endowed with the Borel σ-field.

4.2.1 Reward-in-Hindsight

We define q̂t ∈ ∆(B) as the empirical distribution of P2’s actions by time

t, that is,

q̂t(b) =
1

t

t∑

j=1

1{bt=b}, b ∈ B. (4.2.5)

If P1 knew in advance that q̂t will equal q, and if P1 were restricted to using

a fixed action, then P1 would pick an optimal response (generally a mixed

action) to the mixed action q, subject to the constraints specified by T . In
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particular, P1 would solve the convex program1

max
p∈∆(A)

∑

a,b

p(a)q(b)R(a, b), (4.2.6)

s.t.
∑

a,b

p(a)q(b)C(a, b) ∈ T .

By playing a p that solves this convex program, P1 would meet the constraints

(up to small fluctuations that are a result of the randomness and the finiteness

of t), and would obtain the maximal average reward. We are thus led to define

P1’s reward-in-hindsight, which we denote by r∗ : ∆(B) 7→ R, as the optimal

objective value in the program (4.2.6), as a function of q.

For the special case of a constrained game with respect to a vector c0, the

convex constraint
∑

a,b p(a)q(b)C(a, b) ∈ T is replaced by
∑

a,b p(a)q(b)C(a, b) ≤

c0 (the inequality is to be interpreted component-wise).

4.2.2 The Objective

Formally, our goal is to attain a function r in the sense of the following

definition. Naturally, the higher the function r, the better.

Definition 4.1. A function r : ∆(B) 7→ R is attainable by P1 in a constrained

game with respect to a set T if there exists a strategy σ of P1 such that for

every strategy ρ of P2:

(i) lim inft→∞ (r̂t − r(q̂t)) ≥ 0, a.s., and

(ii) lim supt→∞ dist(ĉt, T ) → 0, a.s.,

where the almost sure convergence is with respect to the probability measure

induced by σ and ρ.

1 If T is a polyhedron (specified by finitely many linear inequalities), then
the optimization problem is a linear program.
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In constrained games with respect to a vector c0 we can replace (ii) in the

definition with

lim sup
t→∞

ĉt ≤ c0, a.s.

4.2.3 The Value of the Game

In this section, we consider the attainability of a constant function r :

∆(B) 7→ R, i.e., r(q) = α, for all q. We will establish that attainability

is equivalent to having α ≤ v, where v is a naturally defined “value of the

constrained game.”

We first introduce the assumption that P1 is always able to satisfy the

constraint.

Assumption 4.1. For every mixed action q ∈ ∆(B) of P2, there exists a

mixed action p ∈ ∆(A) of P1, such that:

∑

a,b

p(a)q(b)C(a, b) ∈ T . (4.2.7)

For constrained games with respect to a vector c0, the condition (4.2.7)

reduces to the inequality
∑

a,b p(a)q(b)C(a, b) ≤ c0.

If Assumption 4.1 is not satisfied, then P2 can choose a q such that for

every (mixed) action of P1, the constraint is violated in expectation. By

repeatedly playing this q, P1’s average penalty vector will be outside T , and

the objectives of P1 will be impossible to meet.

The following result deals with the attainability of the value, v, of an

average reward repeated constrained game, defined by

v = inf
q∈∆(B)

sup
p∈∆(A):

P

a,b p(a)q(b)C(a,b)∈T

∑

a,b

p(a)q(b)R(a, b). (4.2.8)

The existence of a strategy for P1 that attains the value was proved in [117]

in the broader context of stochastic games.
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Proposition 4.1. Suppose that Assumption 4.1 holds. Then,

(i) P1 has a strategy that guarantees that the constant function r(q) ≡ v is

attained with respect to T .

(ii) For every number v′ > v there exists δ > 0 such that P2 has a strategy

that guarantees that either lim inft→∞ r̂t < v′−δ or lim supt→∞ dist(ĉt, T ) >

δ, almost surely. (In particular, the constant function v′ is not attain-

able.)

Proof. The proof relies on Blackwell’s approachability theory [24]. We con-

struct a nested family of convex sets in R
d+1 defined by Sα = {(r, c) ∈ R×R

d :

r ≥ α, c ∈ T }. Obviously, Sα ⊂ Sβ for α > β. Consider the vector-valued

game in R
d+1 associated with the constrained game. In this game, P1’s vector-

valued payoff at time t is the d + 1 dimensional vector mt = (rt, ct) and P1’s

average vector-valued payoff is m̂t = (r̂t, ĉt). Since Sα is convex, it follows from

approachability theory for convex sets [24] that each Sα is either approachable

or excludable. If Sα is approachable, then Sβ is approachable for every β < α.

We define v0 = sup{β | Sβ is approachable}. It follows that Sv0 is approach-

able (as the limit of approachable sets; see [120]). By Blackwell’s theorem, for

every q ∈ ∆(B), an approachable convex set must intersect the set of feasible

payoff vectors when P2 plays q. Using this fact, it is easily shown that v0

equals v, as defined by (4.2.8)), and part (i) follows. Part (ii) follows because

a convex set which is not approachable is excludable.

Note that part (ii) of the proposition implies that, essentially, v is the

highest average reward P1 can attain while satisfying the constraints, if P2

plays an adversarial strategy. By comparing (4.2.8) with (4.2.6), we see that

v = infq r
∗(q). On the other hand, if P2 does not play adversarially, P1 may
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be able to do better, perhaps attaining r∗(q). Our subsequent results address

the question whether this is indeed the case.

Remark 26. It can be shown that in order to attain the value of the game,

P1 may have to use a non-stationary strategy. This is in contrast to standard

(non-constrained) games, in which P1 always has a stationary strategy that

attains the value of the game.

Remark 27. In general, the infimum and supremum in (4.2.8) cannot be in-

terchanged. This is because the set of feasible p in the inner maximization

depends on the value of q. Moreover, it can be shown that the set of (p, q)

pairs that satisfy the constraint
∑

a,b p(a)q(b)C(a, b) ∈ T is not necessarily

convex.

4.2.4 Related Works

Notwithstanding the apparent similarity, the problem that we consider is

not an instance of online convex optimization [133, 67]. In the latter setting,

there is a convex feasible domain F ⊂ R
n, and an arbitrary sequence of convex

functions fj : F → R. At every step j, the decision maker picks xj ∈ F based

on the past history, without knowledge of the future functions fj, and with

the objective of minimizing the regret

t∑

j=1

fj(xj) − min
y∈F

t∑

j=1

fj(y). (4.2.9)

An analogy with our setting might be possible, by identifying xj and fj with

aj and bj , respectively, and by somehow relating the feasibility constraints

described by F to our constraints. However, this attempt seems to run into

some fundamental obstacles. In particular, in our setting, feasibility is affected

by the opponent’s actions, whereas in online convex optimization, the set F

is fixed a priori. For this reason, we do not see a way to reduce the problem
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of online learning with constraints to an online convex optimization problem,

and given the results below, it is unlikely that such a reduction is possible.

4.3 Reward-in-Hindsight Is Not Attainable

As it turns out, the reward-in-hindsight cannot be attained in general.

This is demonstrated by the following simple 2 × 2 matrix game, with just a

single constraint.

Consider a 2 × 2 constrained game specified by




(1,−1) (1, 1)

(0,−1) (−1,−1)



 ,

where each entry (pair) corresponds to (R(a, b),C(a, b)) for a pair of actions a

and b. At a typical stage, P1 chooses a row, and P2 chooses a column. We set

c0 = 0. Let q denote the frequency with which P2 chooses the second column.

The reward of the first row dominates the reward of the second one, so if the

constraint can be satisfied, P1 would prefer to choose the first row. This can

be done as long as 0 ≤ q ≤ 1/2, in which case r∗(q) = 1. For 1/2 ≤ q ≤ 1,

player P1 needs to optimize the reward subject to the constraint. Given a

specific q, P1 will try to choose a mixed action that satisfies the constraint (on

the average) while maximizing the reward. If we let α denote the frequency

of choosing the first row, we see that the reward and penalty are:

r(α, q) = α− (1 − α)q , c(α, q) = 2αq − 1,

respectively. We observe that for every q, r(α) and c(α) are monotonically

increasing functions of α. As a result, P1 will choose the maximal α that

satisfies c(α) ≤ 0, which is α(q) = 1/(2q), and the optimal reward is 1/2 +
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Figure 4–1: The reward-in-hindsight of the constrained game. Here, r∗(q) is
the solid line, and the dotted line connects the two extreme values, for q = 0
and q = 1.

1/(2q) − q. We conclude that the reward-in-hindsight is:

r∗(q) =






1, if 0 ≤ q ≤ 1/2,

1

2
+

1

2q
− q, if 1/2 ≤ q ≤ 1.

The graph of r∗(q) is the solid line in Figure 4–1.

We now claim that P2 can make sure that P1 does not attain r∗.

Proposition 4.2. If c0 = 0, then there exists a strategy for P2 such that r∗

cannot be attained.

Proof. Suppose that the opponent, P2, plays according to the following strat-

egy. Initialize k to 1. Set ǫ > 0 be a fixed small constant. Let α̂t be the

empirical frequency with which P1 chooses the first row during the first t time

steps. Similarly, let q̂t be the empirical frequency with which P2 chooses the

second column during the first t time steps.

1. While k ≤ 1/ǫ or α̂t−1 > 3/4, P2 chooses the second column. Set

k := k + 1.

2. For the next k times, P2 chooses the first column.
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3. Reset k := 1, and go back to Step 1.

We now show that if

lim sup
t→∞

ĉt ≤ 0, a.s., (4.3.10)

then a strict inequality holds for the regret:

lim inf
t→∞

(r̂t − r∗(q̂t)) < 0, a.s.

Suppose that Step 2 is entered only a finite number of times. Then, after some

finite time, P2 keeps choosing the second column, and q̂t converges to 1. For

P1 to satisfy the constraint lim supt→∞ ĉt ≤ 0, we must have lim α̂t ≤ 1/2.

But then, the condition α̂t−1 > 3/4 will be eventually violated. This shows

that Step 2 is entered an infinite number of times. In particular, there exist

infinite sequences ti and t′i such that ti < t′i < ti+1 and (i) if ti < t ≤ t′i, P2

chooses the second column (Step 1); (ii) if t′i < t ≤ ti+1, P2 chooses the first

column (Step 2).

Note that Steps 1 and 2 last for an equal number of time steps. Thus,

we have q̂ti = 1/2, and r∗(q̂ti) = 1, for all i. Furthermore, ti+1 − t′i ≤ t′i, or

t′i ≥ ti+1/2. Note that α̂t′i ≤ 3/4, because otherwise P2 would still in Step 1

at time t′i + 1. Thus, during the first ti+1 time steps, P1 has played the first

row at most

3t′i/4 + (ti+1 − t′i) = ti+1 − t′i/4 ≤ 7ti+1/8.

This implies that r̂ti+1
≤ 7/8, and lim inft→∞(r̂t − r∗(q̂t)) ≤ 7/8 − 1 < 0.

Intuitively, the strategy that was described above allows P2 to force P1 to

move, back and forth, between the extreme points (q = 0 and q = 1) that are

linked by the dotted line in Figure 4–1. Since r∗(q) is not convex, and since

the dotted line is strictly below r∗(q) for q = 1/2, this strategy precludes P1

from attaining r∗(q). We note that the choice of c0 is critical in this example.
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With other choices of c0 (for example, c0 = −1), the reward-in-hindsight may

be attainable.

4.4 Attainability of the Convex Hull

Since the reward-in-hindsight is not attainable in general, we have to settle

for a more modest objective. More specifically, we are interested in functions

f : ∆(B) → R that are attainable with respect to a given constraint set T .

As a target we suggest the closed convex hull of the reward-in-hindsight, r∗.

After defining it, we prove that it is indeed attainable. In the next section, we

will also show that it is the highest possible attainable function, when there

is a single constraint.

Given a function f : X 7→ R, its closed convex hull is the function whose

epigraph is

conv({(x, r) : r ≥ f(x)}),

where conv(D) is the convex hull, and D is the closure of a set D. We denote

the closed convex hull of r∗ by rc.

We will make use of the following facts. Forming the convex hull and then

the closure results in a larger epigraph, hence a smaller function. In particular,

rc(q) ≤ r∗(q), for all q. Furthermore, the closed convex hull is guaranteed to

be continuous on ∆(B). (This would not be true if we had considered the

convex hull, without forming its closure.) Finally, for every q in the interior

of ∆(B), we have:

rc(q) = inf
q1,q2,...,qk∈∆(B),α1,...,αk

k∑

i=1

αir
∗(qi) (4.4.11)

s.t.
k∑

i=1

αiqi(b) = q(b), b ∈ B,

αi ≥ 0, i = 1, 2, . . . , k,
k∑

i=1

αi = 1,
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where k can be taken equal to |B| + 2 by Caratheodory’s Theorem.

The following result is proved using Blackwell’s approachability theory.

The technique is similar to that used in other no-regret proofs (e.g., [23, 91]),

and is based on the convexity of a target set in an appropriately defined space.

Theorem 4.3. Let Assumption 4.1 hold for a given convex set T ⊂ R
d. Then

rc is attainable with respect to T .

Proof. Define the following game with vector-valued payoffs, where the payoffs

belong to R×R
d×∆(B) (a |B|+d+1 dimensional space, which we denote by

M). Suppose that P1 plays at, P2 plays bt, P1 obtains an immediate reward

of rt and an immediate penalty vector of ct. Then, the vector-valued payoff

obtained by P1 is

mt = (rt, ct, e(bt)) ,

where e(b) is a vector of zeroes, except for a 1 in its bth component. It

follows that the average vector-valued reward at time t, which we define as

m̂t = 1
t

∑t
j=1mj , satisfies: m̂t = (r̂t, ĉt, q̂t), where r̂t, ĉt, and q̂t were defined in

Equations (4.2.1), (4.2.2), and (4.2.5), respectively. Consider the sets:

B1 = {(r, c, q) ∈ M : r ≥ rc(q)}, B2 = {(r, c, q) ∈ M : c ∈ T },

and let B = B1 ∩ B2. Note that B is a convex set. We claim that B is

approachable. Let m : ∆(A) × ∆(B) → M describe the expected payoff in a

single stage game, when P1 and P2 choose actions p and q, respectively. That

is,

m(p, q) =
(∑

a,b

p(a)q(b)R(a, b),
∑

a,b

p(a)q(b)C(a, b), q
)
.

Using the sufficient condition for approachability of convex sets [24], it suffices

to show that for every q there exists a p such that m(p, q) ∈ B. Fix q ∈ ∆(B).

By Assumption 4.1, the constraint
∑

a,b p(a)q(b)C(a, b) ∈ T is feasible, which
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implies that the program (4.2.6) has an optimal solution p∗. It follows that

m(p∗, q) ∈ B. We now claim that a strategy that approaches B also attains rc

in the sense of Definition 4.1. Indeed, since B ⊆ B2 we have that Pr(d(ct, T ) >

ǫ infinitely often) = 0 for every ǫ > 0. Since B ⊆ B1 and using the continuity

of rc, we obtain lim inf (r̂t − rc(q̂t)) ≥ 0.

Remark 28. Convergence rate results also follow from general approachability

theory, and are generally of the order of t−1/3; see [99]. It may be possible,

perhaps, to improve upon this rate and obtain t−1/2, which is the best possible

convergence rate for the unconstrained case.

Remark 29. For every q ∈ ∆(B), we have r∗(q) ≥ v, which implies that

rc(q) ≥ v. Thus, attaining rc guarantees an average reward at least as high as

the value of the game.

4.4.1 Degenerate Cases

In this section, we consider the degenerate cases where the penalty vector

is affected by only one of the players. We start with the case where P1 alone

affects the penalty vector, and then discuss the case where P2 alone affects

the penalty vector.

If P1 alone affects the penalty vector, that is, if C(a, b) = C(a, b′) for all

a ∈ A and b, b′ ∈ B, then r∗(q) is convex. Indeed, in this case, (4.2.6) becomes

(writing C(a) for C(a, b))

r∗(q) = max
p∈∆(A):

P

a p(a)C(a)∈T

∑

a,b

p(a)q(b)R(a, b),

which is the maximum of a collection of linear functions of q (one function for

each feasible p), and is therefore convex.

If P2 alone affects the penalty vector, that is, if c(a, b) = c(a′, b) for all

b ∈ B and a, a′ ∈ A, then Assumption 4.1 implies that the constraint is always
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satisfied. Therefore,

r∗(q) = max
p∈∆(A)

∑

a,b

p(a)q(b)R(a, b),

which is again a maximum of linear functions, hence convex.

We conclude that in both degenerate cases, if Assumption 4.1 holds, then

the reward-in-hindsight is attainable.

4.5 Tightness of the Convex Hull

We now show that rc is the maximal attainable function, for the case of

a single constraint.

Theorem 4.4. Suppose that d = 1, T is of the form T = {c | c ≤ c0}, where c0

is a given scalar, and that Assumption 4.1 is satisfied. Let r̃ : ∆(B) 7→ R be a

continuous attainable function with respect to the scalar c0. Then, rc(q) ≥ r̃(q)

for all q ∈ ∆(B).

Proof. The proof is constructive, as it provides a concrete strategy for P2

that prevents P1 from attaining r̃, unless rc(q) ≥ r̃(q) for every q. Assume,

in order to derive a contradiction, that there exists some r̃ that violates the

theorem. Since r̃ and rc are continuous, there exists some q0 ∈ ∆(B) and

some ǫ > 0 such that r̃(q) > rc(q)+ ǫ for all q in an open neighbourhood of q0.

In particular, q0 can be taken to lie in the interior of ∆(B). Using (4.4.11), it

follows that there exist q1, . . . , qk ∈ ∆(B) and α1, . . . , αk (with k ≤ |B| + 2,

due to Caratheodory’s Theorem) such that

k∑

i=1

αir
∗(qi) ≤ rc(q0) +

ǫ

2
< r̃(q0) − ǫ

2
;

k∑

i=1

αiq
i(b) = q0(b), ∀ b ∈ B;

k∑

i=1

αi = 1; αi ≥ 0, ∀ i.

Let j be a large positive integer (j is to be chosen large enough to ensure

that the events of interest occur with high probability, etc.). We will show
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Figure 4–2: For a fixed q, the triangular area shown is the set M(q). Further-
more, the shaded region corresponds to reward and cost pairs (r, c) associated
with feasible vectors p; cf. Equations (4.5.12) and (4.5.13).

that if P2 plays each qi for αij time steps, in an appropriate order, then either

P1 does not satisfy the constraint along the way or r̂j ≤ r̃(q̂j) − ǫ/2.

We let qi, i = 1, . . . , k, be fixed, as above, and define a function fi : R
d →

R ∪ {−∞} as:

fi(c) = max
p∈∆(A)

∑

a,b

p(a)qi(b)R(a, b), (4.5.12)

subject to
∑

a,b

p(a)qi(b)C(a, b) ≤ c, (4.5.13)

where the maximum over an empty set is defined to equal −∞. Observe that

the feasible set (and hence, optimal value) of the above linear program depends

on c, as illustrated in Figure 4–2. By viewing Equations (4.5.12)-(4.5.13)

as a parametric linear program, with a varying right-hand side parameter c,

we see that fi(c) is piecewise linear, concave, and non-decreasing in c [22].

Furthermore, fi(c0) = r∗(qi). Let f+
i be the right directional derivative of

fi at c = c0, note that f+
i ≥ 0. From now on, we assume that the qi have

been ordered so that the sequence f+
i is non-increasing (e.g., as in Figure 4–

3). To visualize the ordering that we have introduced, consider the set of

possible pairs (r, c), given a fixed q. That is, consider the set M(qi) = {(r, c) :

∃p ∈ ∆(A) s.t. r =
∑

a,b p(a)q
i(b)R(a, b), c =

∑
a,b p(a)q

i(b)C(a, b)}. The
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Figure 4–3: An example of functions f1, f2, and f3 ordered according to f+
i .

set M(qi) is the image of the simplex under a linear transformation, and is

therefore a polytope. (In Figure 4–2 we show two such sets.) The strategy

of P2 is to first play qi such that the p that maximizes the reward (4.5.12))

satisfies (4.5.13) with equality. (Such a qi results in a set M(qi) like the one

shown in Figure 4–2(b).) The ordering of such qi is set according to their slope

at c (i.e., f+
i ). After all these qi are played, P2 plays those qi for which the

p that maximizes the reward (4.5.12)) satisfies (4.5.13) with strict inequality

(and f+
i = 0). (Such a qi results in a set M(qi) like the one shown in Figure

4–2(a).)

Suppose that P1 knows the sequence q1, . . . , qk (ordered as above) in

advance, and that P2 follows the strategy described earlier. We assume that

j is large enough so that we can ignore the effects of dealing with a finite

sample, or of αij not being an integer. Let pi be the average of the mixed

actions chosen by P1 while player P2 plays qi. We introduce the constraints

ℓ∑

i=1

αi
∑

a,b

pi(a)qi(b)C(a, b) ≤ c0

ℓ∑

i=1

αi, ℓ = 1, 2, . . . , k.

These constraints must be satisfied in order to guarantee that ĉt has negligible

probability of substantially exceeding c0, at the “switching” times from one

mixed action to another. If P1 exploits the knowledge of P2’s strategy to
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maximize her average reward at time j, the resulting expected average reward

at time j will be the optimal value of the objective function in the following

linear programming problem:

max
p1,p2,...,pk

k∑

i=1

αi
∑

a,b

pi(a)qi(b)R(a, b) (4.5.14)

s.t.
ℓ∑

i=1

αi
∑

a,b

pi(a)qi(b)C(a, b) ≤ c0

ℓ∑

i=1

αi, ℓ = 1, 2, . . . , k,

pℓ ∈ ∆(A), ℓ = 1, 2, . . . , k.

Of course, given the value of
∑

a,b p
i(a)qi(b)C(a, b), to be denoted by ci, player

P1 should choose a pi that maximizes rewards, resulting in
∑

a,b p
i(a)qi(b)R(a, b) =

fi(ci). Thus, the above problem can be rewritten as

max
c1,...,ck

∑
αifi(ci) (4.5.15)

s.t.

ℓ∑

i=1

αici ≤ c0

ℓ∑

i=1

αi, ℓ = 1, 2, . . . , k.

We claim that letting ci = c0, for all i, is an optimal solution to the

problem (4.5.15). This will then imply that the optimal value of the objective

function for the problem (4.5.14) is
∑k

i=1 αifi(c0), which equals
∑k

i=1 αir
∗(qi),

which in turn, is bounded above by r̃(q0)− ǫ/2. Thus, r̂j < r̃(q0)− ǫ/2+ δ(j),

where the term δ(j) incorporates the effects due to the randomness in the

process. By repeating this argument with ever increasing values of j (so that

the stochastic term δ(j) is averaged out and becomes negligible), we obtain

that the event r̂t < r̃(q0) − ǫ/2 will occur infinitely often, and therefore r̃ is

not attainable.

It remains to establish the claimed optimality of (c0, . . . , c0). Suppose that

(c1, . . . , ck) 6= (c0, . . . , c0) is an optimal solution of the problem (4.5.15). If ci ≤

c0 for all i, the monotonicity of the fi implies that (c0, . . . , c0) is also an optimal
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solution. Otherwise, let j be the smallest index for which cj > c0. If f+
j = 0

(as in the case shown in Figure 4–2(b)) we have that fi(c) is maximized at c0

for all i ≥ j and (c0, . . . , c0) optimal. Suppose that f+
j > 0. In order for the

constraint (4.5.15) to be satisfied, there must exist some index s < j such that

cs < c0. Let us perturb this solution by setting δ = min{αs(c0−cs), αj(cj−c0)},

increasing cs to c̃s = cs + δ/αs, and decreasing cj to c̃j = cj − δ/αj. This new

solution is clearly feasible. Let f−
s = limǫ↓0(fs(c0) − fs(c0 − ǫ)), which is the

left derivative of fs at c0. Using the concavity of fs, and the earlier introduced

ordering, we have f−
s ≥ f+

s ≥ f+
j , from which it follows easily (the detailed

argument is omitted) that fs(c̃s) + fj(c̃j) ≥ fs(cs) + fj(cj). Therefore, the

new solution must also be optimal, but has fewer components that differ from

c0. By repeating this process, we eventually conclude that (c0, . . . , c0) is an

optimal solution of (4.5.15).

To the best of our knowledge, this is the first tightness result for a perfor-

mance envelope (the reward-in-hindsight) different than the Bayes envelope,

for repeated games. On the other hand, we note that our proof relies crucially

on the assumption of a single constraint (d = 1), which allows us to order the

f+
i .

4.6 Attaining the Convex Hull Using Calibrated Forecasts

In this section, we consider a specific strategy that attains the convex

hull, thus strengthening Theorem 4.3. The strategy is based on forecasting

P2’s action, and playing a best response (in the sense of (4.2.6)) against the

forecast. The quality of the resulting strategy depends, of course, on the

quality of the forecast; it is well known that using calibrated forecasts leads

to no-regret strategies in standard repeated matrix games. See [51, 34] for

a discussion of calibration and its implications in learning in games. In this
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section we consider the consequences of calibrated play for repeated games

with constraints.

We start with a formal definition of calibrated forecasts and calibrated

play, and then show that calibrated play attains rc in the sense of Definition

4.1.

A forecasting scheme specifies at each stage k a probabilistic forecast

qk ∈ ∆(B) of P2’s action bk. More precisely a (randomized) forecasting scheme

is a sequence of maps that associate with each possible history hk−1 during the

first k−1 stages a probability measure µk over ∆(B). The forecast qk ∈ ∆(B)

is then selected at random according to the distribution µk. Let us clarify that

for the purposes of this section, the history is defined to include the realized

past forecasts.

We shall use the following definition of calibrated forecasts.

Definition 4.2 (Calibrated forecasts). A forecasting scheme is calibrated if

for every (Borel measurable) set Q ⊂ ∆(B) and every strategy of P1 and P2

lim
t→∞

1

t

t∑

j=1

1{qj∈Q}(e(bj) − qj) = 0, a.s., (4.6.16)

where e(b) is a vector of zeroes, except for a 1 in its bth component.

Calibrated forecasts, as defined above, have been introduced into game

theory in [51], and several algorithms have been devised to achieve them (see

[34] and references therein). These algorithms typically start with predictions

that are restricted to a finite grid, and gradually increase the number of grid

points.

The proposed strategy is to let P1 play a best response against P2’s

forecast play while still satisfying the constraints (in expectation, for the single
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stage game). Formally, we let:

p∗(q) = arg max
p∈∆(A)

∑
a,b p(a)q(b)R(a, b) (4.6.17)

s.t.
∑

a,b p(a)q(b)C(a, b) ∈ T ,

where in the case of a non-unique maximum we assume that p∗(q) is uniquely

determined by some tie-breaking rule; this is easily done, while keeping p∗(·)

a measurable function. The strategy is to play pt = p∗(qt), where qt is a

calibrated forecast of P2’s actions2 . We call such a strategy a calibrated

strategy.

The following theorem states that a calibrated strategy attains the convex

hull.

Theorem 4.5. Let Assumption 4.1 hold, and suppose that P1 uses a calibrated

strategy. Then, rc is attainable with respect to T .

Proof. Fix ǫ > 0. We need to show that by playing the calibrated strategy,

P1 obtains lim inft→∞(r̂t − rc(q̂t)) ≥ 0 and lim supt→∞ dist(ĉt, T ) ≤ 0, almost

surely.

Fix some ǫ > 0. Consider a partition of the simplex ∆(B) to finitely many

measurable sets Q1, Q2, . . . , Qℓ such that q, q′ ∈ Qi implies that ‖q − q′‖ ≤ ǫ

and ‖p∗(q)−p∗(q′)‖ ≤ ǫ. (Such a partition exists by the compactness of ∆(B)

and ∆(A). The measurability of the sets Qi can be guaranteed because the

mapping p∗(·) is measurable.) For each i, let us fix a representative element

qi ∈ Qi, and let pi = p∗(qi).

Since we have a calibrated forecast, (4.6.16) holds for every Qi, 1 ≤ i ≤

ℓ. Define Γt(i) =
∑t

j=1 1{qj∈Qi} and assume without loss of generality that

2 When the forecast µt is mixed, qt is the realization of the mixed rule.
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Γt(i) > 0 for large t (otherwise, eliminate those i for which Γt(i) = 0 for all t,

and renumber the Qi). To simplify the presentation, we assume that for every

i, and for large enough t, we have Γt(i) ≥ ǫt. (If for some i, and t this condition

is violated, the contribution of such an i in the expressions that follow will be

O(ǫ).)

By the strong law of large numbers, we have

lim
t→∞

(

ĉt −
1

t

t∑

j=1

C(aj, bj)

)

= 0, a.s. (4.6.18)

By definition, we have

1

t

t∑

j=1

C(aj , bj) =
∑

i

Γt(i)

t

∑

a,b

C(a, b)
1

Γt(i)

t∑

j=1

1{qj∈Qi}1{aj=a}1{bj=b}.

Observe that whenever qt ∈ Qi, we have ‖pj − pi‖ ≤ ǫ, where pj = p∗(qj) and

pi = p∗(qi) because of the way the sets Qi were constructed. By the strong

law of large numbers, the frequency with which a will be selected whenever

qj ∈ Qi and bj = b, will be approximately pi(a). Hence, for all b,

lim sup
t→∞

∣∣∣∣∣
1

Γt(i)

t∑

j=1

1{qj∈Qi}1{aj=a}1{bj=b} − pi(a)
1

Γt(i)

t∑

j=1

1{qj∈Qi}1{bj=b}

∣∣∣∣∣ ≤ ǫ,

a.s. By the calibration property (4.6.16) for Q = Qi, and the fact that when-

ever q, q′ ∈ Qi, we have ‖q − q′‖ ≤ ǫ, we obtain

lim sup
t→∞

∣∣∣∣∣
1

Γt(i)

t∑

j=1

1{qj∈Qi}1{bj=b} − qi(b)

∣∣∣∣∣ ≤ ǫ, a.s.

By combining the above results, we obtain

lim
t→∞

∣∣∣∣∣ĉt −
∑

i

Γt(i)

t

∑

a,b

C(a, b)pi(a)qi(b)

∣∣∣∣∣ ≤ Kǫ, a.s., (4.6.19)

for some absolute constant K.

123



Note that the sum over index i in (4.6.19) is a convex combination (be-

cause the coefficients Γt(i)/t sum to 1) of elements of T (because of the def-

inition of pi), and is therefore an element of T (because T is convex). This

establishes that the constraint is asymptotically satisfied within O(ǫ). Note

that in this argument, whenever Γt(i)/t < ǫ, the summand corresponding to i

is indeed of order O(ǫ) and can be safely ignored, as stated earlier.

Regarding the average reward, an argument similar to the above yields

lim inf
t→∞

r̂t ≥ lim inf
t→∞

∑

i

Γt(i)

t

∑

a,b

R(a, b)pi(a)qi(b) −K ′ǫ, a.s.,

for some absolute constant K ′. Next, observe that

∑

i

Γt(i)

t

∑

a,b

R(a, b)pi(a)qi(b) =
∑

i

Γt(i)

t
r∗(qi) ≥ rc

(∑

i

Γt(i)

t
qi
)
,

where the equality is a consequence of the definition of pi, and the inequality

follows by the definition of rc as the closed convex hull of r∗. Observe also

that the calibration property (4.6.16), with Q = ∆(B), implies that

lim
t→∞

∥∥∥∥∥q̂t −
1

t

t∑

j=1

qj

∥∥∥∥∥ = 0, a.s.

In turn, since ‖qj − qi‖ ≤ ǫ for a fraction Γt(i)/t of the time,

lim sup
t→∞

∥∥∥∥∥q̂t −
∑

i

Γt(i)

t
qi

∥∥∥∥∥ = lim sup
t→∞

∥∥∥∥∥
1

t

t∑

j=1

qj −
∑

i

Γt(i)

t
qi

∥∥∥∥∥ ≤ ǫ, a.s.

Recall that the function rc is continuous, hence uniformly continuous. Thus,

there exists some function g, with limǫ↓0 g(ǫ) = 0, such that when the argument

of rc changes by at most ǫ, the value of rc changes by at most g(ǫ). By

combining the preceding results, we obtain

lim inf
t→∞

r̂t ≥ rc(q̂t) −K ′ǫ− g(ǫ), a.s.
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The above argument involves a fixed ǫ, and a fixed number ℓ of sets Qi,

and lets t increase to infinity. As such, it establishes that for any ǫ > 0 the

function rc − K ′ǫ − g(ǫ) is attainable with respect to the set T ǫ defined by

T ǫ = {x | dist(x, T ) ≤ Kǫ}. Since this is true for every ǫ > 0, we conclude

that the calibrated strategy attains rc as claimed.

4.7 Algorithms

The results in the previous section motivate us to develop algorithms for

online learning with constraints, perhaps based on calibrated forecasts. For

practical reasons, we are interested in computationally efficient methods, but

there are no known computationally efficient calibrated forecasting algorithms.

For this reason, we will consider related heuristics that are similar in spirit,

even if they do not have all the desired guarantees.

We first consider a method based on the weighted average predictor [34].

The algorithm in Algorithm 4–1 keeps track of the performance of the different

actions in the set A, updating a corresponding set of weights accordingly at

each step. The main idea is to quantify “performance” by a linear combina-

tion of the total reward and the magnitude of the constraint violation. The

parameter λ > 0 of the algorithm, which acts similar to a Lagrange multiplier,

determines the trade-off between these two objectives. When the average

penalty is higher than c0 (i.e., there is a violation), the weight of the cost term

increases. When the average penalty is lower than c0, the weight of the cost

term decreases. The parameters M and M are used to bound the magnitude

of the weight of the cost term; in the experiments reported in Section 4.8, they

were set to 1000 and 0.001, respectively.

The second algorithm uses the tracking forecaster [90] as the forecasting

method. This forecaster predicts that the distribution of the next action as a

weighted average of previous actions, weighing recent actions more than less
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1. Set λ > 0, w0, M , and M .
2. For t = 1, 2, . . ., compute

wt(a) = wt−1(a) exp
(
η
(
R(a, bt) − λC(a, bt)

))
, a ∈ A,

(4.7.20)

sample an independent random variable at distributed so that

at = a, with probability
wt(a)∑
a∈A wt(a)

for a ∈ A. (4.7.21)

3. For t = 1, 2, . . ., update λ as follows:

λ :=

{
min(2λ,M), if ĉt > c0,

max(λ/2,M), otherwise.

Algorithm 4–1: Exponentially weighted average predictor.

recent ones others. For the special case of only two actions, it is calibrated,

but not calibrated in general. There are, however, some special cases where

it is calibrated, in particular if the sequence it tries to calibrate comes from

a source with some specific properties; see [90] for details. The algorithm is

presented in Algorithm 4–2. If there is a current violation, it selects an action

that minimizes the immediate forecast cost. If the current average penalty

does not violate the constraint, it selects a best response to the forecast action

of P2, while satisfying the constraints.

4.8 Experimental Setup

Our experimental testbed addresses the problem of minimizing power

consumption minimization in a computer with a human user. The agent is

a low-level software controller that decides when to put the central processor

(CPU) into a low-power state, thereby reducing power expenditures during

periods when the user is idle. The system is driven by a human user, as well

as different hardware processes, and can be realistically assumed to be non-

stationary. The actions of the system correspond to hardware interrupts (most

interrupts are generated by hardware controllers on the motherboard such as
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1. Set γ ∈ (0, 1), c0, and f0 = (1/|B|)~1.
2. For t = 1, 2, . . .:

• If ĉt > c0, choose an action that minimizes the worst-case
cost:

at ∈ arg min
a∈A

(C(a, b)ft(b)) ,

• Otherwise (if ĉt ≤ c0), solve

max
p∈∆(A)

∑

a,b

p(a)R(a, b)ft(b),

subject to
∑

a,b

p(a)C(a, b)ft(b) ≤ c0.

and choose a random action distributed according to the
solution to the above linear program.

3. For t = 1, 2, . . ., update the forecast ft on the probability distri-
bution of the next opponent action bt+1 by letting

ft+1 = ft +

(
1

t+ 1

)γ
(ebt − ft),

where eb is a unit vector in R
|B| with the element 1 in the com-

ponent corresponding to b ∈ B.

Algorithm 4–2: Tracking forecaster.

direct memory access, hard disk interrupts and networking interrupts) and

the ongoing running processes. In the particular application at hand, there is

a software interrupt (generated by the Windows operating system) every 16

milliseconds. The times of these interrupts are the decision epochs, at which

the software controller can decide if and when to put the CPU to sleep before

the next scheduled periodic interrupt.

However, saving energy by putting the processor in the low-power state

comes at a cost. In the low-power state, a delay is incurred each time that the

processor moves back into the high-power state in response to user-generated

interrupts. We wish to limit the delay perceived by the human user. For

this purpose, we assign a cost to the event that an interrupt arrives while
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the processor is in the low-power state, and impose a constraint on the time

average of these costs. A similar model was used in [81], and we refer the

reader to that work for further details.

We formulate the problem as follows. We divide a typical 16 millisecond

interval into ten intervals. We let P1’s action set be A = {0, 0.1, 0.2, . . . , 1},

where action a corresponds to turning off the CPU after 16a milliseconds (the

action a = 1 means the CPU is not turned off during the interval while the

action a = 0 means it is turned off for the whole interval). Similarly, the

action set of P2 is B = {0, 0.1, 0.2, . . . , 0.9}, where action b corresponds to an

interrupt after 16× b milliseconds. (Note that the action b = 0 means there is

no interrupt and that there is no point in including an action b = 1 in B since

it would coincide with the known periodic interrupt.) The assumption is that

an interrupt is handled instantaneously so if the CPU chooses a slightly larger

than b it maximizes the power savings while incurring no penalty for observed

delay (it is assumed for the sake of discussion that only a single interrupt is

possible in each 16 millisecond interval). We define the reward at each stage

as follows:

R(a, b) =






1 − a, if a > b,

1, if a = b = 0,

b− a, if b ≥ a > 0.

The cost is:

C(a, b) =






1, if a ≤ b and b > 0,

0, otherwise.

In “normal” operation where the CPU is powered throughout, the action is

a = 1 and in that case there is no reward (no power saving) and no cost (no

perceived delay). When a = 0 the CPU is turned off immediately and in this

case the reward will be proportional to the amount of time until an interrupt
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Figure 4–4: Plot of average reward against constraint violation frequency from
experiments in power management for the MM05 data.

(or until the next decision). The cost in the case a = 0 is zero only is there is

no interrupt (b = 0).

We used the real data trace obtained from what is known as MobileMark

2005 (MM05), a performance benchmark that simulates the activity of an av-

erage Microsoft Windows user. This CPU activity trace is 90 minutes long

and contains more than 500000 interrupts, including the periodic scheduled

interrupts mentioned earlier. The exponentially weighted algorithm (Algo-

rithm 4–1) and the tracking forecaster (Algorithm 4–2) were run on this data

set. Figure 4–4 shows the performance of the two algorithms. The straight

line shows the trade-off between constraint violation and average reward by

picking a fixed action over the entire time horizon. The different points for

the exponential weighted predictor (Algorithm 4–1) or the tracking forecaster

(Algorithm 4–2) correspond to different values of c0. We observe that for

the same average cost, the tracking forecast performs better (i.e., gets higher

reward).

We selected c0 = 0.3 and used both algorithms for the MM05 trace. Fig-

ures 4–5(a) and 4–5(b) show the instantaneous cost incurred by the tracking

forecaster and the weighted average forecaster over the same short period. It
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Figure 4–5: Instantaneous cost incurred by the tracking forecaster and
weighted average predictor with target constraint c0 = 0.3 for the MM05
data.

should be observed that the cost of the algorithms is different, reflecting the

fact that different policies are employed. Figures 4–6(a) and 4–6(b) show the

time evolution of the average reward and average cost for the same experi-

ment. In spite of not being calibrated, the tracking forecast based algorithm

outperforms the exponentially weighted based algorithm.
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Figure 4–6: Time evolution of average reward and average cost for the tracking
forecaster and weighted average forecaster with c0 = 0.3 for the MM05 data.
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CHAPTER 5

Constrained Online Learning for Power Management

5.1 Introduction

In this chapter, we demonstrate an application of a model of online opti-

mization with side constraints similar to that of Chapter 4. The objective is

to maximize the average reward accumulated over time subject to side con-

straints. Side constraints are common in real-world problems. For instance,

power management problems are often formulated as maximizing power sav-

ings subject to an average performance criterion. This criterion restrict the

rate of actions that impede the intended purpose of the system. In a com-

puter system for example, power savings can be obtained by turning down the

processor at appropriate moments. This also has the negative side effect of

introducing delays in the performance of useful computations. A performance

criterion in this example can be represented by a constraint on the average

delay.

Online learning methods [34] have been studied extensively and have also

been successfully used to solve many real-world problems, such as adaptive

caching [62] and power management [69, 42, 82]. The novelty of our model

is that in addition to nonstationary reward functions, the constraints are also

nonstationary, e.g., controlled by an opponent.

Our goal is to solve our problem in an efficient manner. To achieve this,

we consider a solution concept different from the notion of attainability of

Chapter 4. We present an efficient expert-algorithm with a guarantee that the

average regret vanishes over time while the frequency of constraint violations

remains bounded. The performance of this algorithm is further demonstrated
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on a real-world power management problem. Our results suggest that non-

stationary online optimization with constraints can be done successfully in

practice.

This work makes two contributions. First, we apply prediction with ex-

pert advice to solve online optimization problems with nonstationary rewards

and constraints efficiently. Our solution is based on mixing policies with a

bounded number of constraint violations. Based on our knowledge, this is the

first online solution to our problem that is efficient and has performance guar-

antees. This solution is suitable for real-world optimization problems, where

we need to adapt to the environment over time without making any statistical

assumptions on the environment. To support this claim, we demonstrate the

performance of our solution in a real-world power management domain. This

is our second contribution.

This chapter is structured as follows. First, we formulate our optimization

problem and relate it to existing works. Second, we propose and analyze

a practical solution to the problem based on prediction with expert advice.

Third, we evaluate our solution on a real-world power management problem.

5.2 Online Constrained Optimization

In this chapter, we study an online learning problem, where an agent

wants to maximize its total reward subject to temporal constraints. At every

time instant t, the agent takes some action θt from the action set A, and

then receives a reward rt(θt) ∈ [0, 1] and a cost ct(θt) ∈ [0, 1]. We assume

that our agent has no prior knowledge on the sequence of reward and cost

functions r1, r2, . . . and c1, c2, . . . except that they are bounded. Therefore,

they can be generated in a non-stationary or even adversarial way. The agent

may consider only the past reward functions r1, . . . , rt−1 and the past cost

functions c1, . . . , ct−1 when deciding what action θt to take.
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To situate our online learning problem and its challenges, we first define

an offline version of the problem. This offline version simply assumes that

our agents knows all reward and cost terms in advance. In such a setting, the

optimal strategy of the agent is a solution to the optimization problem:

max
θ

1

T

T∑

t=1

rt(θt) (5.2.1)

subject to: gt(θ) ,
1

τ

t∑

ℓ=t−τ+1

cℓ(θℓ) ≤ c0 for t ∈ G, (5.2.2)

where we seek a sequence of actions θ = (θ1, . . . , θT ) that maximizes the

average reward over T time steps subject to a set of constraints indexed by a

subset G of the time horizon 1, . . . , T . Observe that each constraint function

gt(θ) is an average of the instantaneous cost functions over a window of τ time

instants ending at time t. Note that τ , c0 and G are given parameters of this

problem.

Instances of the above problem are common in the field of engineering.

For example, most power management problems can be formulated as maxi-

mizing power saving subject to some performance criteria. These criteria are

represented by the sequence of constraints

gt(θ) ≤ c0, for t ∈ G.

The scalar c0 is a strict bound on the tolerable range of average cost.

The offline version of our online optimization problem (5.2.1) can be

solved by standard optimization techniques [21]. In this chapter, however,

we solve this problem in an online fashion. Similarly to the settings of the pre-

vious chapters, we assume that the time horizon T is unknown and we make

no statistical assumption about the reward functions r1, r2, . . . and cost func-

tions c1, c2, . . .. As a result, we can not expect to learn a policy that achieves
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the optimal solution of the offline setting. Our objective is more modest: We

want to learn a policy that performs over the long-term as well as the best

policy from a limited set of alternative policies. Moreover, at the same time,

our policy must also satisfy a given fraction of the constraints.

5.2.1 Objective

Suppose that we have access to set of experts ξ1, . . . , ξN . Each expert ξn

is a policy that outputs an action ξn(t) at every time instant t (based on the

same observations as the agent). We seek an online algorithm that generates

a sequence of actions θ1, θ2, . . . such that the regret is sub-linear, i.e.,

lim sup
T→∞

{
max

n=1,...,N

1

T

T∑

t=1

rt(ξn(t)) −
1

T

T∑

t=1

Ert(θt)

}
≤ 0; (5.2.3)

moreover, the frequency of constraint violations1 is bounded:

lim sup
T→∞

1

|G|
∑

t∈G

1[gt(θ)>c0] ≤ ǫ, a.s. (5.2.4)

In other words, we want to achieve close-to-optimal rewards as T →∞

while violating a vanishing number of constraints. These two objectives are

optimized independently instead of being combined. This allows us to provide

separate guarantees on the regret and constraint violation of learned policies.

Therefore, our approach is suitable for constrained optimization problems,

where the trade-off between the two objectives is hard to quantify, or it cannot

be established at all.

5.2.2 Related Works

The model of this chapter is similar to that of Chapter 4, and hence

share the same literature of related works. The difference of this chapter

1 This work can be extended to other constraint violation metrics, such as
the magnitude of violated constraints

∑
t∈G [gt(θ) − c0]

+.
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are the solution concept and the solution approach. Instead of the notion

of attainability, we consider the solution concept of Section 5.2.1. Another

difference is in terms of the constraints: our goal is to satisfy a sequence of

finite-horizon constraints

1

τ

t∑

ℓ=t−τ+1

cℓ(θℓ) ≤ c0 for t ∈ G,

rather than a sequence of terminal constraints (cf. Section 4.2)

1

t

t∑

ℓ=1

cℓ(θℓ) ≤ c0, t = 1, 2, . . . .

5.3 An Online Learning Solution

We propose a solution by modifying the exponentially weighted forecaster

[34]. This solution is based on a set of experts ξ1, . . . , ξN , each of which is

a policy that produces a solution to the constrained optimization problem

(5.2.1) that satisfies a specified fraction of constraints. These experts are

often available in practice. For instance, in the power management domain,

these experts may represent heuristic policies that are conservative enough to

satisfy the specified fraction of constraints.

5.3.1 Non-overlapping Constraints and Ideal Experts

First, let us assume that we have access to a pool of experts ξ1, . . . , ξN that

never violate the constraints (5.2.2). Moreover, we assume that the constraints

of (5.2.2) are non-overlapping, i.e., if gt(θ) ≤ c0 and gt′(θ) ≤ c0 are two

constraints with t and t′ belonging to G, then |t− t′| ≥ τ . An example of

such a sequence of constraints is shown in Figure 5–1a. Observe that each

constraint span τ time steps and consecutive constraints occur at intervals of

τ time steps (i.e., at time instants t = τ, 2τ, 3τ, . . .. We shall forgo these two

assumptions in later sections.
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Figure 5–1: a. An online optimization problem with non-overlapping con-
straints. The example involves expert policies ξ1 and ξ2, side constraints, and
the sequence of actions θ generated by the lazy learner algorithm. The actions
are listed chronologically. The temporal span of each constraint is illustrated
by arrows. Time steps at which the lazy learner may switch between experts
are denoted by dotted lines. b. An online optimization problem with overlap-
ping constraints. Constraints that may be violated when switching between
two experts at the instants depicted by jagged arrows.
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(Initialize.) Fix the learning window L, learning rate η, expert policies
ξ1, . . . , ξN . Initialize the expert weights wt−1(1), . . . , wt−1(N) to 1/N .
For t = 1, 2, . . .:

1. If (t (mod L) ≡ 1), randomly choose an expert et according to
the distribution

P (et = j) =
wt−1(j)∑N
n=1wt−1(n)

, j = 1, . . . , N ;

2. Otherwise, set et = et−1.
3. Play an action θt = ξet

(t).
4. For every n = 1, . . . , N , update:

wt(n) = wt−1(n) exp[ηrt(ξn(t))].

Algorithm 5–1: The lazy learner algorithm.

Consider the lazy learner algorithm (Algorithm 5–1). We choose an inte-

ger L that is a multiple of the constraint span τ , then we partition the time

steps 1, . . . , T into intervals P1, . . . ,PT/L of the length L each. Observe that,

as a consequence, every constraint belongs to a single interval (cf. Figure 5–

1a). The lazy learner algorithm is a modification of the exponentially weighted

forecaster [34] where the algorithm may switch between experts at the begin-

ning of each interval, i.e., once every L time steps. The learning window L is

the main parameter of the algorithm.

The following proposition bounds the regret and frequency of constraint

violations for the lazy learner algorithm.

Proposition 5.1. Suppose that the constraints do not overlap. Let ξ1, . . . , ξN

be expert policies that satisfy all constraints. Then the regret of the lazy learner

(Algorithm 5–1) is bounded as follows:

max
n=1,...,N

T∑

t=1

rt(ξn(t)) −
T∑

t=1

Ert(θt) ≤
log(N)

η
+
ηTL

2
. (5.3.5)

Moreover, the lazy learner does not violate any constraint.

138



Proof. Our first claim is proved by an analysis similar to the exponentially

weighted forecaster with a convex reward function Ert(θt) =
∑

j=1,...,N P (j)rt(ξj(t)):

max
n=1,...,N

T∑

t=1

rt(ξn(t)) −
T∑

t=1

Ert(θt)

= max
n=1,...,N

T/L−1∑

m=0

(m+1)L∑

t=mL+1

(rt(ξn(t)) − Ert(θt))

≤ log(N)

η
+
η

2

T/L−1∑

m=0

max
n=1,...,N




(m+1)L∑

t=mL+1

(rt(ξn(t)) − Ert(θt))




2

≤ log(N)

η
+
η

2

T

L
L2

=
log(N)

η
+
ηTL

2
.

The first step of the proof follows by algebra, the second step is based on

Theorem 2.1 [34], and the third step results from the reward terms rt being

bounded on the interval [0, 1].

Our second claim follows from two assumptions. First, no constraint is

violated by the experts. Second, no constraint is violated due to switching

between the experts. Since our constraints do not overlap, and every expert

satisfies all the constraints, the lazy learner also satisfies all the constraints.

The parameters η and L can be set such that the regret bound in Propo-

sition 5.1 is sub-linear in T . From now on, we set the learning rate to η =
√

2 log(N)/(TL). For instance, if we set L= T 1/2 and η =
√

2 log(N)T−3/4,

the bound is of the order of O(T 3/4). Therefore, the average regret of the lazy

learner vanishes as T increases.
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In the rest of the chapter, we study the lazy learner in a more general

context. Specifically, we relax the assumptions that constraints do not overlap

and that the experts do not violate any constraint. It turns out that the

parameter L has an important role in this new setting. It allows a trade-off

between the regret and the frequency of constraint violation.

5.3.2 Experts with Bounded Constraint Violation Frequency

Building of expert policies that satisfy all constraints may be too difficult

in practice. In this section, we relax this assumption.

We construct experts that violate a bounded fraction ǫ of constraints

as follows. First, we assume that there exists an action θ0 that guarantees

ct(θ
0) = 0 for every time step t. This action is called the arbitration action.

For a fixed ǫ > 0, we can modify every expert so that it does not violate more

than a fraction ǫ of the constraints by taking the action θ0 when the empirical

frequency of constraint violations is about to exceed ǫ. We refer to this process

as ǫ-arbitration.

The existence of an arbitration action is standard in most real-world do-

mains. In the power management domain, for instance, it corresponds to tak-

ing no power management action. It is conceptually equivalent to requiring

that the feasible set be non-empty for an optimization problem. The drawback

of the arbitration action θ0 is that it yields low reward.

From the preceding discussion and Proposition 5.1, we obtain the follow-

ing guarantees on the regret and the frequency of constraint violations for the

lazy learner.

Corollary 5.2. Suppose that the constraints do not overlap. Suppose that

the experts ξ1, . . . , ξN are ǫ-arbitrated. Then the regret of the lazy learner is
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bounded as in (5.3.5) while its constraint violation frequency is bounded as

1

|G|
∑

t∈G

1[gt(θ)>c0] ≤ ǫ, a.s.

5.3.3 Overlapping Constraints

Constraints have been assumed to be non-overlapping up to this point.

In this section, we remove this assumption. A simple example of constraints

that overlap is depicted in Figure 5–1b. Observe that the constraints span

τ time steps. When the lazy learner switches between two experts, it may

violate a constraint because the corresponding costs depend on the policies of

two different experts.

Fortunately, if the number of overlapping constraints at the boundary of

two consecutive intervals Pℓ and Pℓ+1 is bounded, the following proposition

holds. This is the case in application domains where the constraints occur

periodically

Proposition 5.3. Suppose that the experts ξ1, . . . , ξN are ǫ-arbitrated. Then

the lazy learner has regret bounded as

max
n=1,...,N

T∑

t=1

rt(ξn(t)) −
T∑

t=1

Ert(θt) ≤
log(N)

η
+
ηTL

2
,

and constraint violation frequency

1

|G|
∑

t∈G

1[gt(θ)>c0] ≤ ǫ+
Tτ

L |G| , a.s.

Proof. The regret bound is proved as in Proposition 5.1. The first term in

the constraint violation bound comes from Corollary 5.2. The second term

accounts for constraint violations due to switching between experts. Observe

that at most τ constraints overlap between any two intervals Pℓ and Pℓ+1.

141



Observe that if we set L=T 1/2 and η =
√

2 log(N)T−3/4, the regret bound

is of the order of O(T 3/4). Moreover, if the number of constraints is |G| = T/C

for some constant C, then the constraint violation frequency is bounded by

ǫ + CτT−1/2, which converges to ǫ asymptotically. In addition, observe that

the value of the learning window L allows a trade-off between the regret and

the constraint violation frequency.

In the rest of the chapter, we evaluate the performance of the lazy learner

in a power management problem. The nature of the problem is not adversarial

as typically assumed in other works in online learning. Therefore, the actual

performance of the lazy learner is better than the bounds in our guarantees.

5.4 CPU Power Management

We evaluate the proposed solution on the challenging real-world problem

of power management in a central processing unit (CPU) including multi-core

processors, L1 and L2 caches, and associated circuitry. Solving this power

management problem is important because the CPU may account for as much

as 40 percent of the power consumed in a mobile computer.

The primary goal of CPU power management is to minimize the power

consumption without impacting the performance, i.e., without increasing the

perceived latency. This objective can be stated as maximizing the power saving

(or residency) of the CPU in low power states subject to constraints on the

latency in serving hardware interrupts. The latency is a delay incurred when

waking up the CPU from low power states. Some interrupts are generated

periodically by the OS. Hardware interrupts, e.g., generated by key strokes or

other hardware, are uncertain. If an unpredicted interrupt occurs when the

CPU is in a low power state, the CPU must wake up in order to serve it; hence,

incurring a latency cost. The power management predicts whether the next
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interrupt will occur sufficiently far away to power down the CPU for an period

without affecting the latency. This prediction is made at regular periods.

The existing solutions to CPU power management consist of static time-

out policies. A static timeout policy [73] is a simple strategy parametrized

by a timeout parameter: if the CPU remains idle for more than the timeout

parameter, the policy puts the CPU into a low power state. In the following

sections, we employ the lazy learner algorithm with a pool of experts composed

of adaptive timeout policies.

5.5 Experiments

The main goal of this section is to demonstrate online learning with con-

straints in practice—specifically, in power management problem. First, we

collect data, or traces, of CPU activity from two experiments. The power

savings and the interrupts are recorded by external measurement devices con-

nected to the CPU. Then, we evaluate our algorithm on these traces through

simulation in MATLAB. It should be noted that the lazy learner algorithm

keeps track of a single index for each expert. Hence, it can be efficiently

implemented and run online without affecting the overall performance of the

system.

5.5.1 Setting

The first trace is recorded by running MobileMark 2005 (MM05), which is

a performance benchmark simulating the activity of a Microsoft Windows user.

The corresponding CPU activity trace is 90 minutes long and contains more

than 500000 operating system (OS) interrupts. The second trace is generated

by running in real-time the following applications: Adobe Photoshop, Mi-

crosoft Windows Explorer, Microsoft WordPad, and Microsoft Media Player.

We refer to this trace as the heavy workload trace; it reflects 30 minutes of

human activity and contains over 200000 OS interrupts.
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In the model of online constrained optimization, each action θt represents

the time instant when the CPU is put in its low power state, the instantaneous

reward rt(θt) represents the power saving (or residency), whereas the cost ct(θt)

represents the latency. In order to guarantee an acceptable perceived latency,

our latency constraints average the latency costs over periods of 10 seconds or

τ = 640 time steps.

We apply the lazy learner (Algorithm 5–1) to this online constrained opti-

mization problem. For the component experts ξ1, . . . , ξN , we employ adaptive

timeout policies [82]. Each such policy adapts its timeout parameter period-

ically (at every OS interrupt) based on the empirical frequency of interrupts

and according to the fixed-share algorithm [71]. Moreover, these policies are

arbitrated to satisfy the latency constraints.

Unless specified otherwise, our experiment settings are as follows. The

side constraints are defined at intervals of τ = 640 time instants, such that

G = {640, 1280, 1920, . . .}. The latency threshold c0 is set to 0.03 and the

learning window L is set to the same value as τ . Since the lazy learner is a

randomized algorithm, we report empirical results that correspond to averages

over ten simulations.

5.5.2 Results

Figure 5–2 shows that the lazy learner performs almost as well as the best

expert in hindsight. Here, we assume non-overlapping constraints (Figure 5–

1a) that are satisfied by every expert. The expected regret of the lazy learner

is less than 2 percent. The lazy learner clearly performs better static timeout

policies, which are currently the only employed methods of CPU power man-

agement. On the heavy workload trace with c0 = 0.06, for instance, none of

the static timeout policies yield more than 5 percent power saving, whereas

the lazy learner algorithm achieves over six times more power saving.
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Figure 5–2: Comparison of the lazy learner and the pool of experts (E1, . . . ,
E6). The power saving (residency) of the policies are plotted for different la-
tency thresholds c0: 0.02 (black bars), 0.04 (dark grey bars), and 0.06 (light
grey bars). We also show the lower bounds (LB) on the power saving (resi-
dency) of the lazy learner according to Proposition 5.1.
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Figure 5–3: The instantaneous power saving (residency) of the lazy learner
for three versions of ǫ-arbitration: ǫ = 0 (light grey lines), ǫ = 0.5 (dark grey
lines), and ǫ = 0 (black lines). The power saving is depicted as a function of
the time in minutes.
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Figure 5–4: Constraint violation frequency (dark grey line) and power saving
(residency) regret (light grey line) of the lazy learner as a function of the
learning window L = kτ for different values of k.

Figure 5–3 shows the instantaneous power saving of the lazy learner with a

pool of ǫ-arbitrated experts for different values of ǫ. We also assume here non-

overlapping constraints (Figure 5–1a). We set the learning window to L = 10τ .

As expected, by relaxing the ǫ-arbitration process, the corresponding power

saving increases.

Figure 5–4 shows the effect of the learning window L on the regret and

constraint violation of the lazy learner algorithm. Here, we assume overlapping

constraints (Figure 5–1b) defined at intervals of 1 second. As guaranteed by

Proposition 5.3, the parameter L trades off regret and constraint violation. A

higher value of L causes higher regret but lower constraint violation frequency.
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CHAPTER 6

Piecewise-Stationary Bandit Problems with Side Observations

6.1 Introduction

In this chapter, we consider a sequential decision problem where the re-

wards are generated by a piecewise-stationary distribution. However, the dif-

ferent reward distributions are unknown and may change at unknown instants.

Our approach uses a limited number of side observations on past rewards, but

does not require prior knowledge of the frequency of changes. In spite of the

adversarial nature of the reward process, we provide an algorithm whose re-

gret, with respect to the baseline with perfect knowledge of the distributions

and the changes, is O(k log(T )), where k is the number of changes up to time

T . The baseline of the notion of regret in this chapter is much more general:

it including every sequence of policies.

In some learning scenarios, the agent is confronted with an adversarial

opponent that can be very general and difficult to model, and is therefore

modelled as an arbitrary non-stochastic process. In other scenarios, the oppo-

nent is stochastic, which may be characterized and adapted to. What about

opponents that fall between these two extremes? An instance of the adversar-

ial scenario is the expert problem [87], where the agent observes sequentially

the performance of a number of experts, and (choosing one expert at each

time step) tries to match the performance of the best expert in retrospect.

An instance of the stochastic scenario is the multi-armed bandit problem [85],

where each of n arms has a fixed reward distribution, and where the agent

tries to obtain the performance of the best arm by picking and observing one

arm each time step—without observing the reward of any other arm.

147



We consider a model that combines the bandit and expert models, and

shall refer to the arms of the bandit and the experts interchangeably. The

reward process of the arms is non-stationary on the whole, but stationary

on intervals. This piecewise-stationary reward process is similar to that of the

non-stationary bandit problem of [66, 58], or that of the multiple change-point

detection problem of [4].

In our variant of the non-stationary bandit problem, the agent has the

benefit of querying and observing some of the past outcomes of arms that have

not been picked. This is the same benefit available to the agent in the expert

problem (cf. [70]). The following examples motivate our model.

Example 6.1 (Investment options). Consider the problem of choosing every

day one of n investment options, say mutual funds. Our model assumes that

the outcomes of these investments undergo changes reflecting changes in mar-

ket conditions. Otherwise, the outcomes remains stationary over the periods

between two changes, e.g., they follow bearish or bullish trends. Suppose that

the outcomes of the previous day’s investment options are revealed today, e.g.,

in the newspaper. Suppose that observing the outcome of each option requires

a query (looking up a price history), which incur a querying cost. By limiting

the number of queries allowed at each step, we can model the trade-off between

the cost of observations and the regret due to insufficient observations.

Example 6.2 (Dynamic pricing with feedback). As a second example, we

consider a vendor whose task is to sell commodity X. Potential customers

arrive sequentially, one after the other, and the demand for commodity X

(for various prices) is modelled as a stationary process that may nonetheless

change abruptly at unknown instants. To each customer, the vendor offers one

of n possible prices. If the customer accepts, a corresponding profit is made.

Bargaining is not an option, but after each transaction, the vendor has the
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leisure to ask the customer if the outcome would have been different had a

different price been offered (e.g., through a short survey). A partial goal is to

achieve as much profit as if the distribution of the demand were known at all

times (even though unknown changes occur at unknown instants). A second

goal is to minimize the cost associated with conducting surveys for feedback.

A similar problem of dynamic pricing with partial-monitoring is also described

in [34].

We present the setting in Section 6.2, followed by a survey of related

works in Section 6.3. We present a solution and its guarantee in Section 6.4.

In Section 6.6, we compare our solution with other solutions via simulation.

In Section 6.7, we conclude with a discussion.

6.2 Setting

We consider the following sequential decision problem. Let {α1, . . . , αn}

denote the n arms of a multi-armed bandit—or n experts of an online learning

problem. Let r1, r2, . . . be a sequence of reward vectors in R
n. The element

rt(i) of rt, for i = 1, . . . , n and t = 1, 2, . . ., represents the reward associated

with the i-th arm αi at time t. For clarity of notation, we shall sometimes

write rt(i) instead of rt(αi). We assume that the rewards take values in the

unit interval [0, 1], i.e., rt(i) ∈ [0, 1] for all i and t.

6.2.1 Reward Process

In our model, the source of rewards is piecewise-stationary: i.e., it changes

its distribution arbitrarily and at arbitrary time instants, but otherwise re-

mains stationary. The reward process r1, r2, . . . is an independent sequence of

random variables that undergoes abrupt changes in distribution at unknown

time instants ν1, ν2, . . ., which are called change-points. By convention, we

let ν1 = 1. Let ft denote the distribution (probability density function) of

rt. Hence, rν1, . . . , rν2−1 are i.i.d. with common distribution fν1, as is the case
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for stochastic learning problems (cf. [85]). Likewise, rνj
, rνj+1, . . . , rνj+1−1 are

i.i.d. with distribution fνj
, for j = 1, 2, . . .. The intervals are illustrated as

follows:

r1, r2, . . . , rν2−1︸ ︷︷ ︸
distribution fν1

, rν2, . . . , rν3−1︸ ︷︷ ︸
distribution fν2

, . . . , rνj
, . . . , rνj+1−1︸ ︷︷ ︸

distribution fνj

. . . .

Similarly to adversarial learning problems (cf. [34]), both the change-

points ν1, ν2, . . . and the distributions fν1, fν2, . . . are unknown. We can think

of an opponent deciding the time instants (and frequency) of the changes, as

well as the distribution after each change.

Remark 30. It is important that the changes occur at arbitrary instants. Oth-

erwise, we only need to reset an algorithm for the multi-armed bandit problem

at the appropriate instants.

The model of piecewise-stationary rewards combines two important mod-

els. If there are no changes, then we recover the stochastic source of the multi-

armed bandit problem. If there is no constraint on the number of changes,

we obtain the source of rewards adopted by the oblivious adversarial model

of prediction with expert advice. We consider the interesting case where the

frequency of changes is between these two extremes, i.e., where the number of

change-points

k ≡ k(T ) ,

T−1∑

t=1

1[ft 6=ft+1]

up to time T increases with T . To simplify notation, we shall simply write k

in place of k(T ).

6.2.2 Decision-Maker

At each time step t > 1, the agent picks an arm at ∈ {α1, . . . , αn}

and makes ℓ (where 1 ≤ ℓ ≤ n) observations on the individual arm-rewards
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rt−1(1), . . . , rt−1(n) of the previous step. This is captured in the following

assumption.

Assumption 6.1 (Partial observation). At time 1, the agent chooses an action

a1 and an ℓ-subset S1 of the arms {α1, . . . , αn}. At every time step t > 1, the

agent chooses (deterministically) an ℓ-subset St and takes an action at that is

a function of the reward observations

{rj(i) | j = 1, . . . , t− 1, αi ∈ Sj}.

Partial observation allows us to capture querying costs associated with

observations, and to quantify the total query budget.

6.2.3 Notion of Regret

At each time instant t, the agent chooses and activates an arm at ∈

{α1, . . . , αn} and receives the corresponding reward rt(at). Let ρt = Ert de-

note the mean of the reward vector rt. The agent’s baseline—or objective—is

the reward accumulated by picking at each instant t an arm with the max-

imal expected reward. Letting k denote the number of changes in reward

distribution up to time T , the baseline is

T∑

t=1

max
i=1,...,n

ρt(i) = max
a′1,...,a

′
T

: k changes

T∑

t=1

E[rt(a
′
t)],

where the maximum is taken over sequences of arms with only as many changes

as change-points in the reward sequence r1, . . . , rT , i.e., over the set

{(a′1, . . . , a′T ) | a′νj
= . . . = a′νj+1−1 for j = 1, . . . , k}.

Despite the appearance, this objective is reasonable when the number of

changes k is small; it is also the same objective as in the classical stochas-

tic multi-armed bandit problems. Hence, for a given reward process r1, r2, . . .,
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we define the expected regret of the agent at time T as

LT ,

T∑

t=1

max
i=1,...,n

ρt(i) −
T∑

t=1

E[rt(at)], (6.2.1)

where the expectation E is taken with respect to the sequence r1, r2, . . ..

6.3 Related Works

In this section, we survey results concerning related models. The different

models are distinguished by the source of the reward process, the observability

of the rewards, and the baseline for the notion of regret.

6.3.1 Stochastic Multi-Armed Bandit

In stochastic multi-armed bandit problems [85, 9], the reward sequence

r1, r2, . . . is a sequence of i.i.d. random vectors from a common unknown dis-

tribution ρ1 = ρ2 = . . .. The reward observations are limited to rewards

r1(a1), r2(a2), . . . corresponding to the arms chosen by the agent. This invites

the agent to trade-off exploring the different arms to estimate their distribu-

tions and exploiting the arms with the highest empirical reward. The notion

of regret is the same as ours (6.2.1). However, the optimal reward of the base-

line can be obtained by a single fixed arm. In such problems, a number of

algorithms, e.g., [85, 9, 78], achieve the optimal expected regret of the order

of O(n log(T )/∆), where ∆ denotes the difference in mean between the best

and second-best arms.

6.3.2 Adversarial Expert Problem

Many learning problems take the adversarial setting, e.g., prediction with

expert advice, etc.—see [34] for a comprehensive review. The sequence of

rewards achieved by the experts is arbitrary; i.e., no assumption is made

regarding the joint distribution of r1, r2, . . .. This approach essentially makes

provisions for the worst-case sequence of reward. At time t, the past reward

vectors r1, . . . , rt−1 are observable by the agent. In this case, the notion of
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adversarial regret is adopted, whose baseline is the reward accumulated by

the best fixed expert, i.e., maxi=1,...,n

∑T
t=1 rt(i). For every sequence r1, r2, . . .,

the (expected) adversarial regret

max
i=1,...,n

T∑

t=1

rt(i) −
T∑

t=1

E[rt(at)]

is of the order of O(
√
T log(n))—see [34] for a detailed account. A bound of

O(
√
Tn log(n)) holds when the observations are limited to the chosen arms:

r1(a1), r2(a2), . . . [10].

The baseline in the adversarial case is limited to a single fixed expert,

whereas our baseline in (6.2.1) is the optimal expected reward. Our base-

line, which contains as many switches as changes in distribution, is similar

to the baseline defined by appropriately chosen shifting policies in [70]. The

fixed-share algorithm or one of its variants [70, 10] can be applied to our

setting, if the number of changes k is given in advance, yielding a regret of

O(
√
nkT log(T )) [8]. We present an algorithm with a regret of O(nk log(T ))

without prior knowledge of k. It should be noted that when k is of the same or-

der as T , it is hopeless to minimize the regret of (6.2.1): consider an adversary

that picks the new distribution after each change-point.

6.3.3 Non-stationary Bandits

Our problem is reminiscent of the non-stationary bandit problem of [66,

58]. The reward process and the notion of regret are similarly defined, as

in Section 6.2. However, in those works, observation of the past rewards is

limited to the chosen arms; hence, at time t, the agent’s choice at is a function

of r1(a1), r2(a2), . . .. Using a statistical change detection test, Hartland et al.

present a partial solution for instances where the best arm is not superseded

by another arm following a change. In the event that an oracle reveals a-priori
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the number of changes k up to time T , Garivier and Moulines provide upper-

confidence bound algorithms that achieve a regret of O(n
√
kT log(T )/∆), and

show a lower-bound of Ω(
√
T ) for the regret.

With respect to the above non-stationary bandit model, the distinguishing

feature of our model is that, in addition to activating an arm at each time

instant, the agent may query the current reward of one or more arms. We

show that with T queries in total, the regret is bounded by O(nk log(T )/∆).

Hence, queries reduce significantly the regret with respect to the results of

[58].

6.3.4 Change-Detection

A classical problem in statistics is that of detecting an abrupt change of

distribution in an otherwise i.i.d. sequence of random variables (see [84] for a

survey).

A standard assumption in change-detection problems is that the initial

distribution is known, whereas the distribution after the change can be either

known or not. Another common feature is the assumption that the distribu-

tions belong to one parametric family.

Methods based on CUSUM [103] and Shiryayev-Roberts (SR) rules solve

the change-point detection problem optimally according to the expected run

length criterion (in a minmax sense and in the asymptotic limit) [88]. The

Shiryayev-Roberts method has the advantage that it can be used when the

post-change distribution is not specified [107]. The unknown post-change dis-

tribution is usually specified up to an unknown parameter (parametric case).

The method of generalized likelihood ratio with supremum over the unknown

parameter θ, but no efficiency guarantee. If the unknown distribution after the

change is from an exponential family with parameter θ, the method of assign-

ing a distribution to θ [107] works. For nonparametric unknown post-change
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distribution and the sequential nonparametric likelihood ratio approach, an ad-

ditional assumption that the post-change distribution is stochastically larger

than pre-change is required [60].

We consider a more general setting where in addition to the post-change

distribution, the pre-change distribution (before every individual change) is

also unknown. Moreover, both pre-change and post-change distributions are

assumed to non-parametric. The case of pre-change and post-change distri-

butions both unknown but parametric is considered in [95], however, with a

special notion of optimality.

Another problem related to ours is that of fault detection-isolation [84].

In that problem, the goal is to detect the change, and classify the post-change

distribution within a finite set of possibilities. In our problem, the distribution

after the change can be arbitrarily different. Moreover, we do not classify;

instead, we apply a minimum-regret learning algorithm. In contrast to the

change-detection literature, we consider a more complex setting, where the

sequence r1, r2, . . .may have multiple (arbitrarily many) changes. The problem

of joint-detection of multiple change-points is addressed in [4] and references

therein.

Since our notion of expected regret considers the expected rewards, our

approach is to detect changes in the mean. Moreover, for some families of

distributions (e.g., Bernoulli, Geometric, etc.), a change in distribution results

in a change in mean. In the special case of a sequence of normal random

variables, changes in the mean can be detected using a moving-average method

as in [83]. In nonparametric settings, limit theorems for detecting changes in

the mean is studied in [40, Chapter 2].
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6.4 Multi-armed Bandits with Queries

In this section, we present an algorithm for our setting and provide its

performance guarantee. We begin with two assumptions. We shall use as a

component of our solution a typical multi-armed bandit algorithm described

in the first assumption. The second assumption describes a limitation of our

algorithm.

Assumption 6.2 (MAB algorithm for k = 1). Consider a multi-armed bandit

where there are no distribution changes (except at time 1). Let the i.i.d. reward

sequence r1, r2, . . . have mean r̄. Let αi(1) and αi(2) denote, respectively, the

arm with the highest and second-highest mean. Let ∆ denote their mean

difference:

∆ = r̄(i(1)) − r̄(i(2)).

Let A be an algorithm that guarantees a regret of at most Cn log(T )/∆, for

some constant C. At each step t > 1, algorithm A receives as input the

reward rt−1(at−1) obtained in the previous step, and outputs a new arm choice

at. Examples of candidate algorithms include those of [85, 9].

In this chapter, we are concerned with detecting abrupt changes bounded

from below by some threshold; we exclude infinitesimal changes in the following

assumption.

Assumption 6.3. Recall that ρνj
(i) and ρνj+1

(i) denote the pre-change and

post-change means of the arm αi at the change-point νj+1. There exists a

known value ǫ > 0 such that, for each j = 1, 2, . . ., there exists an arm αi such

that

∣∣ρνj
(i) − ρνj+1

(i)
∣∣ > 2ǫ.
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6.4.1 The WMD Algorithm

Our algorithm (Algorithm 6–1) detects changes in the mean of a pro-

cess, in the spirit of statistical methods for detecting an abrupt change of

distribution in an otherwise i.i.d. sequence of random variables (see [84] for

a survey). The algorithm partitions the time horizon into intervals of equal

length τ . Hence, for m = 1, 2, . . ., the m-th interval is comprised of the time

instants (m−1)τ+1, (m−1)τ+2, . . . , mτ . The algorithm computes iteratively

empirical mean vectors r̂1, r̂2, . . . over intervals (windows) of length τ , in the

following fashion:

r1, r2, . . . , rτ︸ ︷︷ ︸
br1

, rτ+1, . . . , r2τ︸ ︷︷ ︸
br2

, . . . , r(m−1)τ+1, . . . , rmτ︸ ︷︷ ︸
brm

. . . .

The algorithm follows a multi-armed bandit algorithm A with a regret guaran-

tee in the absence of changes (Assumption 6.2). When it detects a mean shift

with respect to a threshold given by Assumption 6.3, it reset the sub-algorithm

A.

6.4.2 Regret Bound

The following theorem bounds the expected regret of the WMD algorithm.

Theorem 6.1 (WMD regret). Suppose that Assumption 6.1 holds. Suppose

that the agent employs the WMD algorithm with a sub-algorithm satisfying

Assumption 6.2, a threshold ǫ satisfying Assumption 6.3, and intervals of

length τ = ⌊n
ℓ
⌋ · ⌊ log(T )

2ǫ2
⌋. Then, for every sequence of change-points ν1, ν2, . . .

and every choice of post-change distributions fν1 , fν2, . . ., the expected regret is

bounded as follows:

LT ≤ 7

ǫ2
kn

ℓ
log(T ) +

C

∆
kn log(T ) +

6C

∆
n2, (6.4.2)

where C is the constant of Assumption 6.2.
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Input: interval length τ > 0, threshold ǫ > 0, and ℓ queries per step.
Initialize r := 1.
At each step t:

1. (Follow A.) Follow the action of an algorithm A satisfying As-
sumption 6.2.

2. (Querying policy.) If t belongs to the m-th interval except its
first step, i.e., if t ∈ [(m−1)τ+2, . . . , mτ ], let Σt−1(i) denote the
number of queries arm αi has received since the start of the m-th
interval until step t−1. Order the arms {α1, . . . , αn} according to
Σt−1(1), . . . ,Σt−1(n). Query the set St of arms that received the
fewest queries. Update the following elements of the empirical
mean r̂m:

r̂m(i) :=
Σt−1(i) r̂m(i) + rt−1(i)

Σt−1(i) + 1
, for every i ∈ St.

3. (Detect change.) At the start of the m-th interval, i.e., if t =
(m − 1)τ + 1 for some m = 3, 4, . . .. If

∥∥r̂m − r̂r
∥∥
∞
> ǫ, reset

(i.e., re-instantiate) algorithm A and set r := m. The index r
denotes the last interval at which the algorithm A was reset.

Algorithm 6–1: Windowed mean-shift detection (WMD) algorithm

Remark 31. The WMD algorithm requires as input the threshold ǫ and the

time horizon T , but it does not require prior knowledge of the number of

distribution changes k.

Remark 32 (Query-regret trade-off). The bound of Theorem 6.1 indicates a

way to trade-off the number of queries ℓ per step and the expected regret per

step. Suppose that an increasing function CQ assigns a cost, in the same unit

as the rewards and the regret, to the rate of queries ℓ. The corresponding new

objective thus becomes the sum of two components: query cost and regret.

This overall expected cost-per-step at time T is CQ(ℓ) + LT /T . With the

implicit assumption that the bound (6.4.2) is tight in the duration T , the

number of changes k, and the query rate ℓ, this cost can be optimized with

respect to ℓ. If each query is assigned a constant cost cq, i.e., CQ(ℓ) = cq·ℓ, then
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the (non-discrete) optimal query rate is ℓ∗ =
√

(7kn/CQ) log(T )/(ǫ2T ). This

is the type of optimization problem that has to be resolved in Example 6.2.

Proof of Theorem 6.1. The proof is composed of five steps. In the first step,

we identify the components of the regret. In the second step, we analyze the

empirical means computed by the WMD algorithm. In the successive steps,

we bound the components of the regret. The components are combined in the

final step.

Step 1. Let M(T ) denote the expected number of intervals after a change-

point νj occurs before it is detected by the WMD algorithm (i.e., algorithm A

is reset). Let N(T ) be the expected number of false detections up to T , i.e.,

instances when the algorithm A resets when no change-point has occurred

since the last time A was reset. Observe that the total number of times

the algorithm resets is bounded from above by k + N(T ). Hence, over a

T -step horizon, there are at most k + N(T ) interval-periods during which

the algorithm resets once and the source distribution does not change. By

Assumption 6.2, during each such period, the expected regret is of the order

of Cn log(Γ)/∆, where Γ is the length of the period. Since log is a concave

function and Γ ≤ T , the expected regret over all such periods is at most

(Cn/∆)(k +N(T )) log(T ).

The algorithm may also incur regret during the delay between distribution

change and its detection. Since there are k distribution changes, each occurring

at most ⌈M(T )⌉τ time steps before the algorithm A resets. Hence, the total

regret of this algorithm is at most

k(M(T ) + 1)τ +
Cn

∆
(k +N(T )) log(T ). (6.4.3)

Next, we bound N(T ) and M(T ), starting with N(T ). Observe that the

term kτ accounts for the regret within intervals during which a change occurs.
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Hence, for the remainder of the proof, we consider only the intervals that do

not contain a distribution change.

Step 2 (Empirical means). Consider the empirical mean over each interval

that does not contain a change. Let γ = τ/⌊n
ℓ
⌋ = ⌊ log(T )

2ǫ2
⌋. Observe that by

the construction of the WMD algorithm, after the end of the m-th interval,

spanning time steps (m − 1)τ + 1, . . . , mτ , every arm is queried either γ or

γ+1 times. In the former case, the empirical mean for an arm αi is the mean

of γ i.i.d. random variables

r̂m(i) =
1

γ

mτ∑

t=(m−1)τ+1

rt(i) · 1[i∈St].

The expression for the latter case (of γ + 1 queries) is similar, and is omitted

in this proof.

Step 3 (Number of false detections). Suppose that in the opponent action

sequences during the m-th and r-th intervals are generated from the same

distribution with expected value denoted, with an abuse of notation, by ρm.

Observe that

N(T ) ≤ ⌈T/τ⌉P (‖r̂m − r̂r‖∞ > ǫ)

≤ n⌈T/τ⌉ min
i=1,...,n

P (|r̂m(i) − r̂r(i)| > ǫ) ,
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since there are at most ⌈T/τ⌉ intervals. Observe that, for every i = 1, . . . , n,

P (|r̂m(i) − r̂r(i)| > ǫ)

= P (|r̂m(i) − r̂r(i)| > ǫ, |r̂m(i) − ρm(i)| ≤ ǫ)

+ P (|r̂m(i) − r̂r(i)| > ǫ, |r̂m(i) − ρm(i)| > ǫ)

≤ P (|r̂m(i) − r̂r(i)| > ǫ | |r̂m(i) − ρm(i)| ≤ ǫ)

+ P (|r̂m(i) − ρm(i)| > ǫ)

≤ P (|r̂r(i) − ρm(i)| > 2ǫ) + P (|r̂m(i) − ρm(i)| > ǫ) (6.4.4)

≤ exp
(
−8γǫ2

)
+ exp

(
−2γǫ2

)
,

where the last inequality follows by Step 2 and Hoeffding’s Inequality (recall

that r̂r(i) and r̂m(i) have the same distribution). Hence, we have

N(T ) ≤ 2n exp
(
−2γǫ2

)
(T/τ + 1). (6.4.5)

Step 4 (Delay in change detection). Next, we bound M(T ). Suppose that

there is a reset at the s-th interval. The WMD algorithm compares successively

the empirical means r̂s+1, r̂s+2, . . . to r̂s. Suppose that the following change

occurs during the (m − 1)-th interval. Let ρm and ρs denote the expected

reward vectors during m-th and s-th intervals, respectively. By the same

argument as the first occurrence of an event in an i.i.d. random sequence, we

have

M(T ) ≤ 1
/
P (‖r̂m − r̂s‖∞ > ǫ) . (6.4.6)
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Observe that, for every i = 1, . . . , n,

P (‖r̂m − r̂s‖∞ > ǫ)

≥ P (|r̂m(i) − r̂s(i)| > ǫ)

≥ P (|r̂s(i) − ρm(i)| > 3ǫ/2, |r̂m(i) − ρm(i)| ≤ ǫ/2)

= P

(
|r̂s(i) − ρm(i)| > 3ǫ

2

)
P
(
|r̂m(i) − ρm(i)| ≤ ǫ

2

)

≥ P

(
|r̂s(i) − ρm(i)| > 3ǫ

2

)(
1 − e−γǫ

2/2
)
, (6.4.7)

where the equality is due to independence, and the final inequality follows by

Hoeffding’s Inequality. Next, we bound the first term of (6.4.7). Suppose,

without loss of generality, that ρs(i) > ρm(i); let δ denote ρs(i) − ρm(i); we

obtain, for some i:

P (|r̂s(i) − ρm(i)| > 3ǫ/2)

= P (|r̂s(i) − ρs(i) + δ| > 3ǫ/2)

= 1 − P (δ − 3ǫ/2 ≤ r̂s(i) − ρs(i) ≤ δ + 3ǫ/2)

≥ 1 − P (δ − 3ǫ/2 ≤ r̂s(i) − ρs(i))

≥ 1 − exp(−2γ(δ − 3ǫ/2)2) ≥ 1 − exp(−γǫ2/2), (6.4.8)

where the last two inequalities follows from the fact that δ = ρs(i)−ρm(i) > 2ǫ

for some i by Assumption 6.3. Hence, (6.4.7), (6.4.8) and (6.4.6) give

M(T ) ≤ 2
/ (

1 − exp
(
−γǫ2/2

))
. (6.4.9)

Step 5 (Tying up). By combining (6.4.3) with (6.4.5) and (6.4.9), we find

that expected regret is at most:

2kτ

(1 − exp(−γǫ2/2))
+ kτ +

Cn

∆

(
k + 2n exp

(
−2γǫ2

)
(T/τ + 1)

)
log(T ),
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from which (6.4.2) follows by substituting the values τ = ⌊n
ℓ
⌋ · ⌊ log(T )

2ǫ2
⌋ and

γ = ⌊ log(T )
2ǫ2

⌋.

6.5 A Lower Bound

In the previous section, we showed an upper bound on the regret using a

simple mean-shift detection scheme. In this section, we present a lower bound

on the regret for a class of algorithms. This class consists of algorithms where

the expected number of changes in the sequence of selected arms is bounded

by the number of distribution changes up to an additive constant. This class

encompasses algorithms that detect changes and reset, such as the WMD

algorithm. Another example of algorithm of this class uses a combination

of optimal change-point detection (e.g., the Shiryayev-Roberts scheme) and

optimal sampling in multi-armed bandits. We show that the lower-bound for

this class of algorithms matches the upper-bound for the WMD algorithm.

More precisely, we consider the class of algorithms that generate an action

sequence a1, a2, . . . satisfying the following constraint:

E

[
T−1∑

t=1

1[at 6=at+1]

]
≤ k + c, (6.5.10)

for all T and some constant c. This constraint is motivated by the fact that

if the entire sequence of expected reward vectors ρ1, ρ2, . . . is known a priori,

then the optimal algorithm also satisfies the constraint of (6.5.10).

6.5.1 Lower Bound for Change-Detection

In this section, we present a result (cf. [107]) on the expected run lengths

of the SR method for change-detection that will be used subsequently. Con-

sider a sequence of random variables r1, . . . , rν−1, rν , rν+1, . . ., where r1, . . . , rν−1

are i.i.d. with distribution f0, whereas , rν , rν+1, . . . are i.i.d. with distribution

fθ. We assume that ν is unknown, as well as fθ. However, we assume that f0

is known and that f0 and fθ belong to an exponential family of distributions.
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Assumption 6.4. Every element of the random vectors r1, r2, . . . is distributed

according to a distribution belonging to the exponential family of distributions:

fy(x) = eyx−ψ(y), y ∈ Ω,

where Ω is some interval of R, and ψ(0) = ψ′(0) = 0.

Examples of distribution families satisfying Assumption 6.4 include Bernoulli,

geometric, and beta distributions.

The following theorem states that in order to have an average run-length

(ARL) to a false detection of at least V , the ARL to detection is of the order

of Θ(log V ). This result is a consequence of [107, Theorem 1 and 4] and [106].

Theorem 6.2 (Average run-lengths [106, 107]). Suppose that a change-detection

algorithm raises an alarm at time U and that E∞[U ] ≥ V when there is no

change-point, i.e., ν = ∞. Then, if ν = 1, i.e., a change occurs at time 1, and

θ is in the interior of Ω, then

E1[U ] ≥ C1[log V + log log V + C2], (6.5.11)

where C2 is a constant, C1 = 1/D(fθ; f0), and D denotes the Kullback-Leibler

divergence.

Let G be a probability measure on Ω such that G({0}) = 0, and its

first derivative G′ exists, is positive and continuous in the interior of Ω. The

following change-detection stopping-time satisfies the lower bound (6.5.11)

with equality:

U(V,G) = min

{
t :

∫ t∑

k=1

exp
(
y

t∑

i=k

ri − (t− k + 1)ψ(y)
)
dG(y) ≥ V

}
, V > 0.

6.5.2 Lower Bound for the Regret

Theorem 6.3 (Regret lower-bound). For every fixed algorithm of our class

(fixed ℓ and query mechanism), there exists a piecewise-stationary source such
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that detect-and-react algorithm has a regret of at least

LT ≥ C1k
n

ℓ
[logT + log logT + C2].

where C1 and C2 are the same constants as in Theorem 6.2.

Proof. We consider a Bernoulli-distributed piecewise-stationary sequences of

reward vectors, so that detecting changes in the mean is equivalent to detecting

changes in distribution. Hence, Theorem 6.2 holds.

Consider an arbitrary interval from νj−1 to νj+1 for j = 1, . . . , k − 1.

We denote the length of this interval by τj = νj+1 − νj−1. Let Xj denote

the expected delay in detecting the change-point νj. We can easily construct

examples where the expected regret is at least

LT ≥
k−1∑

j=1

Xj.

By Theorem 6.2, if an algorithm satisfies the constraint of (6.5.10) (a

constant expected number of false detections over a horizon of T time steps),

the expected delay to detection Xj is at least

X2
j , C1

n

ℓ
[log T + log log T + C2].

where the factor n/ℓ comes from the fact that we sample only ℓ of the n arm

rewards at each time step whereas Theorem 6.2 assumes that all n arms are

observed at each time step. Hence, the result follows.

6.6 Simulations

In this section, we present an empirical comparison of the WMD algo-

rithm with other algorithms for multi-armed bandit problems. As reference,

we consider two algorithms based on upper confidence bounds: the UCB1
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algorithm of [9], and the Discounted-UCB algorithm of [78, 58]. For com-

parison purpose, we employ the UCB1 algorithm as the component A of the

WMD algorithm. The resulting combination is referred to as the WMD-UCB

algorithm.
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Figure 6–1: Expected reward of the arms of a 4-armed bandit.

For our setting, we take a bandit with 4 arms, whose rewards are piecewise-

stationary with Bernoulli distributions. The sequence of expected rewards

ρt(i) for each arm αi is illustrated in Figure 6–1. The Discounted-UCB algo-

rithm is provided with prior knowledge of the number k of changes to come in

the reward sequence, and its parameters are accordingly set to optimal values

[58]. Neither the UCB1, nor the WMD-UCB algorithm require this prior in-

formation. However, the WMD-UCB algorithm has the privilege to query the

previous rewards of some of the arms.

Figure 6–2 shows the evolution of the average reward of the three algo-

rithms. In this experiment, the WMD-UCB algorithm queries only one arm

per step; its average reward is close to optimal with respect to the baseline of

(6.2.1). Figure 6–3 illustrates the benefit of increasing the number of queries

per step of the WMD-UCB algorithm (with the interval length τ held fixed).
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Figure 6–2: Average expected regret of UCB, Discounted-UCB, and WMD-
UCB against the bandit of Figure 6–1. The WMD-UCB uses the threshold ǫ =
0.3 and makes 1 query per step. Changes in the reward sequence distribution
are indicated by vertical lines, whereas instants at which the WMD-UCB
algorithm resets are indicated by diamonds. The baseline of our notion of
regret (6.2.1) is also plotted.

6.7 Discussions

The WMD algorithm uses a very simple scheme to detect changes in

the mean. In its place, we may employ more sophisticated change-detection

schemes, e.g., CUSUM [103] and the Shiryayev-Roberts rule [119]. Modifica-

tions are nonetheless required to make them applicable to our problem: the

reward distributions must be parametrized; and the pre-change distribution

is unknown and must be estimated (cf. [95]). There also exist schemes that

detect changes when the reward process follows one of many Markovian pro-

cesses [57], as is the case for restless bandit problems. Despite the drawback

of complexity, these schemes detect changes with optimal delay, and do not

require prior knowledge of the parameter ǫ of Assumption 6.3. Yet, they also

incur a regret of the order of log(T ) due to an inevitable logarithmic delay to
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Figure 6–3: Average expected regret of the WMD-UCB algorithm with 1, 2,
and 3 queries per step against a 4-armed bandit. The threshold parameter ǫ
is 0.2.

detection [88, 107]. This is the basis of the lower-bound on the regret of the

class of algorithms described in Section 6.5, which includes algorithms that

detect the unknown changes and then react.

The side information obtained through queries can be applied to two pur-

poses: detecting changes and improving the performance of the multi-armed

bandit algorithm of Assumption 6.2. In this work, the queries serve only

the purpose of change detection. Because of the aforementioned lower regret-

bound intrinsic to change detection schemes, we have neglected the question

of accelerating the exploration of the sub-algorithm of Assumption 6.2. The

action elimination method of [47] presents another possible improvement to

the sub-algorithm of Assumption 6.2. As a further improvement to the detec-

tion component of the WMD algorithm, it is sufficient, when the distribution

changes are not adversarial, to limit detections to changes where the current

best arm is no longer the best.
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CHAPTER 7

Unimodal Piecewise-Stationary Bandits

7.1 Introduction

In this chapter, we consider another version of the piecewise-stationary

bandit problem of Chapter 6. The main differences are the following. First,

we allow the set of arms to be an interval of the real line. Second, we employ a

new strategy of detecting change-points that does not require queries for side

observations. The notion of regret, the objective, and the presence of abrupt

changes in the reward distribution at unknown time instants, remain the same

as in Chapter 6.

In order avoid a regret dependent on the number of arms, it is necessary

to offset the infinite number of arms by an assumption of dependence between

the reward distributions of the arms. In addition to a standard Lipschitz

(or Hölder) continuity condition (e.g., [3]), we also assume that the expected

reward function is unimodal over the set of arms. However, we do not require

convexity or differentiability as is the case in [75, 37]. In this setting, we

present an algorithm with a finite-time regret bound that is tight up to a

logarithmic factor of the time.

An additional consequence of the unimodality assumption is the possibil-

ity of detecting abrupt changes in the arms’ reward distributions efficiently.

We present a method that simultaneously detects change-points occurring at

unknown instants and minimizes the regret. This method chooses arms in the

neighbourhood of the optimal arm so as to trade-off the regret due to choosing

suboptimal arms and the regret due to the delay in detecting abrupt changes.
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We consider a model that is partly more general in the sense that the

sequence of change-points dictates whether the environment is more stochastic

or more adversarial. Our model is also partly more specific because we assume

that the expected reward is unimodal on the continuum of arms. Beside

bandit problems with intrinsic unimodality, this model also suggests a new

solution method when the set of arms can be partitioned into subsets where

the unimodal condition holds.

We organize this chapter as follows. In Section 7.2, we motivate our model

and survey related works. We present the details of our model through as-

sumptions and an example in Section 7.3. In Section 7.4, we present a solution

for the setting of unimodal bandits without change-points, using a sampling

scheme that finds an approximately correct arm with high probability. We give

both a bound on the expected regret and a probably approximately correct

(PAC) guarantee. In addition to a continuum set of arms, we also consider

finitely many arms (Section 7.4.4). and arms represented by vertices in a graph

(Section 7.4.5). We define in Section 7.5 the notion of changes in the reward

distributions and present an algorithm that simultaneously minimizes regret

and detects changes.

7.2 Related Works and Motivation

Multi-armed bandit problems are central to machine learning and have

numerous applications. With a finite set of arms, index-based solutions ex-

ist, whether the rewards are stochastic or adversarial [9, 10]. The case of a

continuum of arms has become the object of great interest due to applica-

tions, such as the design of auction mechanisms [27, 76] and routing [14]. The

one-dimensional case was first studied in [3] with a Hölder condition. With

similar conditions, Kleinberg presents an algorithm based on discretization

that achieves a regret of O(T 2/3), which is optimal up to a logarithmic factor

170



[75]. In this work, we obtain a regret of the order of O(
√
T log(T )) under an

additional unimodality assumption. This regret is of the same order as [11],

which also considers the model of [75] with additional assumptions. The case

of arms in more general metric spaces and topological spaces is studied in

[77, 31]. The critical assumption in bandit problems with an infinite number

of arms is dependence between the rewards of nearby arms. The notion of de-

pendence between arm rewards also helps in the case of bandits with finitely

many arms, as shown in [104, 98].

Our model is a special case of the model of [75], where we assume that

the expected reward is unimodal over the set of arms. This is similar to

one of the assumptions of [37], with the notable difference that we do not

require the expected reward function to be three-times differentiable. Cope

considers a multidimensional unimodal expected reward function and shows

that the Kiefer-Wolfowitz stochastic approximation algorithm achieves a regret

of the order of O(T 1/2). It is however well-known that Kiefer-Wolfowitz type

algorithms require suitable differentiability assumptions and no convergence

rate result is available for these algorithms [3]. Correspondingly, the regret

guarantees of [37] are asymptotic. In contrast, we show finite-time bounds with

explicit constants using a particularly efficient algorithm based on a simple

one-dimensional line search method combined with an appropriate sampling

method. Our algorithm iteratively eliminates subsets of arms. This approach

is reminiscent of algorithms such as the successive elimination algorithm for

the case of finite bandit problems [46].

Bandit problems with abrupt changes at unknown time instants of the re-

ward distributions is a generalization of two important models. The stochastic

bandit corresponds to case without changes, whereas the adversarial bandit

corresponds to the case of changes at each time instant. This generalization
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is similar to the non-stationary bandit problem of Chapter 6. However, our

model differs in having a continuum of arms and the unimodality of expected

rewards. Our solution technique is completely different, relying on a simple

and efficient sampling scheme. We do not require additional assumptions such

as side observations (as in Chapter 6), or knowledge of the frequency of changes

[58].

7.3 Assumption of Unimodality

Because of the infinite number of arms considered in our model, we need a

dependence assumption between the arms’ expected rewards. In this section,

we state and motivate our assumption of unimodal rewards. The notion of

change-points in the sequence of reward distribution functions is the same as

in [130]. For simplicity, we only introduce change-points in Section 7.5.

We consider a bandit problem where the set of arms is the interval [0, 1]

of the real line. As an example, consider a sequential pricing problem with the

goal of maximizing the total revenue from the sale of a sequence of identical

items. We may think of the arms as the possible prices for an item. At each

time instant t, the agent chooses a price xt from an interval [0, 1]. The reward

of the arm x ∈ [0, 1] at time t is a random variable

rt(x) = x wt,x.

For a fixed x, the sequence w1,x, w2,x, . . . is a sequence of i.i.d. Bernoulli random

variables. Each Bernoulli random variable wt,x corresponds to whether an item

is sold at time t. Hence, for a fixed x, the sequence r1(x), r2(x), . . . is also an

i.i.d. random sequence. The expected reward of a fixed arm x at every time t

is

r̄(x) , E[x wt,x] = xPr(wt,x = 1), x ∈ [0, 1]
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Figure 7–1: Cases to avoid: sharp peak and flat plateau.

which is independent of t. The function r̄ is the expected reward function over

the set of arm [0, 1].

We do not know the probability Pr(wt,x = 1) of sale of the item (i.e.,

success) for each price x. However, we assume that the success probabilities are

monotonously decreasing in the price. Hence, these probabilities are ordered:

if we have two arms x and y such that x ≤ y, then

Pr(w∗,y = 1) ≤ Pr(w∗,x = 1).

This leads to the following unimodality property on the expected reward func-

tion r̄, which is the main assumption of this chapter.

Assumption 7.1 (Unimodal). The expected reward function r̄ is unimodal,

i.e., there exists an optimal arm x∗ ∈ [0, 1] such that r̄ is monotonically

increasing in the interval [0, x∗], and monotonically decreasing in the interval

[x∗, 1].

Observe that Assumption 7.1 also ensures the uniqueness of the optimal

arm x∗.

We also need the following assumption to avoid the situations depicted

in Figure 7–1. First, we need an upper bound on the rate of increase of r̄

to avoid sharp peaks that induce high regret even when we choose arms very

close to the best arm. Second, we need a lower bound on the rate of increase
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of r̄ to avoid intervals where there is too little separation between expected

reward values.

Assumption 7.2 (Strong max). Suppose that r̄ is unimodal with the max-

imum at x∗. The function r̄ has a strong maximum at x∗, i.e., there exist

positive Lipschitz constants CL > 0 and CH > 0 such that

CL |x− y| ≤ |r̄(x) − r̄(y)| ≤ CH |x− y| ,

for all pairs x, y ∈ [0, x∗] or x, y ∈ [x∗, 1].

Remark 33. Assumption 7.2 is a strong assumption that excludes functions

that are smooth around the maximum.

Suppose that an algorithm generates the sequence of actions x1, x2, . . ..

The corresponding total expected reward is
∑T

t=1 r̄(xt). The unimodal regret

of this algorithm is

LU
T ,

T∑

t=1

(r̄(x∗) − Er̄(xt)).

This notion of average expected regret is similar to that of [85, 9]. We use this

notion of regret in Section 7.4.

When the sequence of reward distributions contains change-points, we do

not have a fixed expected reward function r̄ for all time instants. In that case,

we use the following notion of regret:

LUPS
T ,

(
T∑

t=1

max
x∈[0,1]

r̄t(x)

)
−
(

T∑

t=1

Er̄t(xt)

)
,

where r̄t denotes the expected reward function at time t. The baseline of

comparison for the above regret is the average of optimal expected rewards,

which differs entirely from the baseline used in the adversarial bandit problem

(cf. [10]). We call this the unimodal piecewise-stationary regret and use it in

Section 7.5.

174



7.4 Unimodal Bandit Without Changes

In this section, we consider the bandit problem when there are no change-

points. First, we present a simple algorithm for the stochastic multi-armed

bandit problem with a probably approximately correct (PAC) guarantee. The

sampling algorithm (Algorithm 7–1) works on a finite set of arms {1, . . . , m}.

It takes two parameters ǫ and δ as input and samples the arms sequentially in

the order

arm 1, arm 2, . . . , arm m, arm 1, arm 2, . . . ,

and stops after 4m
ǫ2

log(2m
δ

) time steps.

(Initialization.) Fix ǫ > 0 and δ > 0.
1. Sample all arms 1, . . . , m sequentially, until each arm has been

sampled 4
ǫ2

log(2m
δ

) times.
2. Let the sample-average reward of arm i be denoted by r̂(i). Out-

put the arm arg maxi=1,...,m r̂(i).

Algorithm 7–1: Sampling algorithm

Theorem 7.1 (Theorem 1 of [46]). With probability 1− δ, the sampling algo-

rithm outputs an arm j that is ǫ-optimal, i.e., which has average reward

r̄(j) ≥ max
i=1,...,m

r̄(i) − ǫ.

We also say that the output arm of the sampling algorithm is (ǫu, δu)-PAC.

Next, we present our algorithm for the unimodal bandit problem, along

with its performance guarantees.

7.4.1 The LSE algorithm

Consider the LSE algorithm (Algorithm 7–2). At every iteration of the

main loop, it narrows down the sampling interval [xL, xH ] in which the true

optimal arm x∗ lies with high probability. During each iteration, the LSE

algorithm runs the sampling algorithm over four arms xL, xM , xN , xH . These
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xL xM xN xH

Figure 7–2: The four sampled arms and their expected rewards during one
iteration. The interval [xN , xH ] is eliminated with high probability at the end
of this iteration. If |xH − xL| = 1, then the distances between the points are:
|xM − xL| = ϕ−2, |xN − xM | = ϕ−3 = (2/ϕ− 1), and |xH − xN | = ϕ−2.

four arms are chosen as in Kiefer’s golden section search algorithm [74]. Three

of these arms are kept from one iteration to the next; the fourth arm is new.

At the end of each iteration, the algorithm narrows down the sampling interval

by a constant factor 1/ϕ, where ϕ is the golden ratio. Figure 7–2 illustrates

the four arms and their true expected rewards during one iteration. Over time,

the goal is to eliminate intervals that do not contain the optimal arm with high

probability, such as [xN , xH ] in Figure 7–2, at the end of each iteration, and

hence narrow down to smaller and smaller sampling intervals what contain the

optimal arm x∗ with high probability.

Remark 34 (Notation). Although the arms xL, xM , xN , xH change from one

iteration to another, for simplicity of notation, we shall sometimes omit the

subscript n. Hence, we write xL instead of xLn when the n-th iteration is

implicitly understood.

Remark 35. Observe that, from one iteration of the LSE algorithm to the next,

three of the four arms do not change. These arms have samples from previous

iterations, and hence, we can save on sampling by reusing these samples.

Unfortunately, however, we can not detect change-points at the same time as

recycling samples. This will become clear in Section 7.5.
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(Initialization.) Set [xL, xH ] = [0, 1]. Set xM such that xH−xM

xM−xL = ϕ (cf.

Figure 7–2), where ϕ is the golden ratio. Set xN in [xM , xH ] such that
xN−xL

xH−xN = ϕ.
For iterations n = 1, 2, . . .:

1. (Find (ǫn, δn)-PAC arm.) Use the sampling algorithm (Algo-
rithm 7–1) on the arms {xL, xM , xN , xH} with parameters ǫn and
δn, returning the (ǫn, δn)-PAC arm x∗n.

2. (Interval elimination.)
• If x∗n = xN or x∗n = xH , then eliminate the interval [xL, xM ].

Update the points xL := xM and xM := xN , and xN =
(xL + ϕxH)/(1 + ϕ).

• Else, eliminate [xN , xH ]. Update the points xH := xN ,
xN := xM , and xM = (ϕxL + xH)/(1 + ϕ).

Algorithm 7–2: Line search elimination (LSE) algorithm

7.4.2 Regret Bound

Next, we show that the regret of the LSE algorithm is of the order of

O(
√
T log(T )).

Theorem 7.2 (Expected regret of LSE). Suppose that Assumptions 7.1 and 7.2

hold. Let T be fixed and known. Let δn = 8/T and ǫn = (2/ϕ − 1)CL/ϕ
n for

every interval n. Then the expected regret of the LSE algorithm is

LU
T ≤ 32ϕ

(2/ϕ− 1)2(ϕ− 1)

CH
C2
L

√
1 + C2

LT log(T )

+ 2 log2
ϕ(1 + C2

LT ),

where ϕ = (1 +
√

5)/2 is the golden ratio.

Remark 36. Other algorithms exist that have similar or better performance

guarantees. For example, in a more general setting that does not assume

unimodality, the HOO algorithm of [31] achieves a regret of the order of

O(
√
T log T ) without prior knowledge of the time horizon T .

Remark 37. This upper bound is independent of the number of arms and the

difference between the best and second-best distributions, but depends on the
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Lipschitz constants. Moreover, it matches the lower bounds of [11, 37] up to

a logarithmic factor.

Remark 38. For this and the subsequent results, we assume that the time

horizon T is known. This assumption can be easily removed by employing the

doubling trick [34]. This trick consists of starting with an arbitrary horizon,

then, at the end of that horizon, we reset and restart our algorithm with a

new horizon twice as long.

First, we prove the following lemma.

Lemma 7.3. Suppose that the assumptions of Theorem 7.2 hold. Then, at

the n-th interval of the LSE algorithm, we have:

Pr(x∗ 6∈ [xLn , x
H
n ]) ≤

n∑

i=1

δi.

Proof. We can write the above probability recursively:

Pr(x∗ 6∈ [xLn , x
H
n ])

= Pr(
{
x∗ 6∈ [xLn−1, x

H
n−1]

}
∧
{
x∗ 6∈ [xLn , x

H
n ]
}
)

+ Pr(
{
x∗ ∈ [xLn−1, x

H
n−1]

}
∧
{
x∗ 6∈ [xLn , x

H
n ]
}
)

= Pr(x∗ 6∈ [xLn−1, x
H
n−1])

+ Pr(
{
x∗ ∈ [xLn−1, x

H
n−1]

}
∧
{
x∗ 6∈ [xLn , x

H
n ]
}
). (7.4.1)

Let τn denote the length of the n-th iteration. During the n-th iteration,

we employ the sampling algorithm to find an ǫn-optimal arm with probability

1 − δn, denoted x∗n. Since τn ≥ 16
ǫ2n

log(8/δn), by Theorem 7.1, the sampling

algorithm outputs an ǫn-optimal arm with probability 1 − δn.

Observe that, by definition of the golden section search algorithm of [74],

min{xMn − xLn , xNn − xMn , xHn − xNn } = (2/ϕ− 1)/ϕn.
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Suppose that the arm x∗n is xL or xM , then by Assumption 7.2 and the fact

that ǫn = (2/ϕ−1)CL/ϕ
n, the true optimal arm x∗ lies in the interval [xN , xH ]

with probability at most δn. Similarly, if the arm x∗n is xN or xH , then the

optimal arm x∗ lies in the interval [xL, xM ] with probability at most δn. Hence,

the LSE algorithm eliminates the optimal with probability at most δn, i.e.,

Pr(
{
x∗ ∈ [xLn−1, x

H
n−1]

}
∧
{
x∗ 6∈ [xLn , x

H
n ]
}
) ≤ δn.

Substituting this in (7.4.1) and carrying-out the recursion, we obtain the claim.

7.4.3 PAC Guarantee

Observe that the LSE algorithm continues exploration (narrowing down

the sampling interval [xL, xH ]) until the end of the time horizon T . A nat-

ural alternative is the following: once the sampling interval [xLn , x
H
n ] is small

enough, we may cease the sampling and elimination process and exploit arms

from that interval. Hence, we have a modified version of the LSE algorithm,

which follows the LSE algorithm until the beginning of the n-th iteration, and

thereafter, picks one of the arms in the interval [xLn , x
H
n ]. We call this modified

algorithm the stopped LSE algorithm. Next, we present a PAC guarantee for

the performance of the stopped LSE algorithm, in the spirit of [46].

Theorem 7.4 (PAC arm). Suppose that we run the LSE algorithm with pa-

rameters ǫn ≤ (2/ϕ − 1)CL/ϕ
n and δn. for n = 1, 2, . . .. Let τn = 16

ǫ2n
log( 8

δn
)

denote the length of the n-th iteration. Then, after
∑n

i=1 τi time steps, every

arm in the interval [xLn , x
H
n ] has CH

ϕn -optimal expected reward with probability

1 −
∑n

i=1 δi.

Proof. Since ǫn ≤ (2/ϕ− 1)CL/ϕ
n, by Theorem 7.1, we have enough samples

at the n-th iteration to find the best arm from the four arms {xLn , xMn , xNn , xHn }

with probability δn.
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By Lemma 7.3, we have

Pr(x∗ 6∈ [xLn , x
H
n ]) ≤

n∑

i=1

δi.

Hence, after
∑n

i=1 |τi| time steps, with probability 1 −
∑n

i=1 δi, we have

x∗ ∈ [xLn , x
H
n ]

in which case, by Assumption 7.2, every arm in the interval [xLn , x
H
n ] is an

CH

ϕn -optimal arm.

Corollary 7.5. Suppose that the assumptions of Theorem 7.4 hold. Let T be

a fixed and known integer. After

ϕ2n+2 − 1

ϕ2 − 1

16

(2/ϕ− 1)2C2
L

log(T )

time steps, every arm in the interval [xLn , x
H
n ] has CH

ϕn -optimal expected reward

with probability 1 − n/T .

Proof. Observe that if we let ǫn = (2/ϕ − 1)CL/ϕ
n and δn = 8/T , then we

have

n∑

i=1

τi =

n∑

i=1

16

(2/ϕ− 1)2C2
L

ϕ2n log(T )

=
ϕ2n+2 − 1

ϕ2 − 1

16

(2/ϕ− 1)2C2
L

log(T ).

7.4.4 Unimodal Bandit with Finitely Many Arms

We consider in this section a special case of the unimodal bandit with a

finite ordered set of arms (v1, . . . , vm). Accordingly, we modify the unimodality

assumption as follows.
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Assumption 7.3 (Finite unimodality). The expected reward function r̄ over

(v1, . . . , vm) is unimodal with a maximum at vk, i.e.,

r̄(vi) ≤ r̄(vk) for all i < k

and r̄(vj) ≥ r̄(vk) for all j > k.

With finitely many arms, we also need a version of the strong maximum

assumption that does not depend on distances. The following assumption

bounds on the separation in expect rewards of adjacent arms.

Assumption 7.4 (Finite strong max). There exist positive constants DL and

DH such that

DL ≤ |r̄(vi) − r̄(vi+1)| ≤ DH ,

for every pair of adjacent arms vi and vi+1.

The LSE algorithm can be modified for finitely many arms as follow.

To each arm vi of (v1, . . . , vm), we assign the interval [ i−1
m
, i
m

) ⊂ [0, 1], for

i = 1, . . . , m. Then, we replace every reference in the LSE algorithm to an

arm x in the interval [ i−1
m
, i
m

) by the arm vi. With this modification, we can

show the following O(logT ) bound on the regret.

Theorem 7.6 (Finite unimodal bandit). Suppose that Assumptions 7.3 and 7.4

hold. Let T be fixed and known. Suppose that we run the LSE algorithm (mod-

ified for m arms) with parameters ǫn = DL and δn = 8/T for all n. Then, the

expected regret is at most

LF
T ≤ 16CH

D2
L

(
2

1 − 1/ϕ
+

8 log2
ϕ(m)

T

)
log(T ) + 8CH logϕ(m).
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Proof. As in the proof of Theorem 7.2, the regret of the n-th iteration is

bounded by

LIn ≤ 2
CH
ϕn

τn + CHτn

n∑

i=1

δi.

Since the sampling interval [xLn , x
H
n ] is 1/ϕn at the n-th iteration, the sampling

interval is at most 1/m wide after logϕ(m) and hence contains a single arm.

Therefore, the LSE algorithm continues picking the same arm after logϕ(m)

iterations.

Observe that, by Assumption 7.4 and Lemma 7.3, this final arm is the

optimal arm with probability at least 1 −
∑logϕ(m)

i=1 δi. Observe also that the

length of the n-th iteration of the LSE algorithm is τn = 16
D2

L

log( 8
δn

) for all n.

Hence, the total regret is

LF
T ≤

logϕ(m)∑

n=1

(

2
CH
ϕn

τn + CHτn

n∑

i=1

δi

)

+ TCH

logϕ(m)∑

i=1

δi

≤
logϕ(m)∑

n=1

CH

(
16

D2
L

log(T )

)(
2

ϕn
+ 8n/T

)
+ 8CH logϕ(m)

≤ CH
16

D2
L

log(T )

(
2

1 − 1/ϕ
+

8 log2
ϕ(m)

T

)
+ 8CH logϕ(m),

where the second inequality follows by setting δn = 8/T .

7.4.5 Bandit on Unimodal Graphs

In addition to having an unimodal structure, the expected reward function

may have other interesting structures. A particularly interesting one arises in

the context of networks, e.g., social networks, communication networks. Here,

the arms of the bandit correspond to vertices in a graph and their relation is

captured by the edges of the graph. It is possible to take advantage of this

structure, especially when the number of edges is relatively small (as in sparse

graphs), in order to find the best arm.
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Bandit problems on graphs has only recently begun. In the case of

stochastic rewards on tree-structured arms, a variant of the UCB algorithm

has been proposed in [78]. For graphs where the rewards are nonstochastic

(adversarial), but the agent fully observes the rewards, the online learning

problem has recently been studied in [32, 33]. In this section, we consider

graphs where vertices have stochastic rewards and with limited observation

(the bandit setting). First, we make the following unimodality assumption.

Assumption 7.5 (Unimodality on graphs). Let G = (V, E) be a graph, and

r̄ : V → [0, 1] be an expected reward function that assigns a value to each

vertex. We assume that r̄ is unimodal along every path of G, as defined in

Assumption 7.3.

A heuristic solution is to combine the modification of the LSE algorithm

for finitely many arms with a greedy search method, we obtain the following

algorithm (Algorithm 7–3) for bandits with unimodal rewards on a graph. Al-

though the performance of the component LSE algorithm has clear guarantees,

the performance of the GLSE algorithm as a whole, however, depends criti-

cally on the characteristics of the graph that affect the number of iterations

of the main loop.

7.5 Unimodal Bandit with Changes

First, we define the notion of abrupt changes in the reward distributions.

We assume that there is a sequence of change-points ν1, ν2, . . . such that be-

tween consecutive change-points νi and νi+1, the rewards of the arms are i.i.d.

random variables. Similarly to adversarial learning problems (cf. [34]), both

the change-points ν1, ν2, . . . and the reward distributions are unknown. We

are interested in the case where the change-point occur with small frequency.

In this section, we show that with the strong maximum assumption, there

exists an efficient way to detect changes when the expected reward function
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(Initialization.) G1 = G. Fix the pivot v+
1 . The vertex set of G is the

set of arms.
Construct a minimal spanning tree for the graph.
For i = 1, 2, . . .:

1. Pick an arbitrary maximal path P on the spanning tree through
v+
i .

2. Run the LSE algorithm on this path until only one vertex is left:
this vertex is v+

i . Let P \ v+
i denote the eliminated vertices.

3. Eliminate P \ v+
i from the Gi:

Gi+1 = Gi \ {P \ v+
i }.

4. If Gi+1 is a single vertex, then stop and output Gi+1.

Algorithm 7–3: Graphical line search elimination (GLSE) algorithm

after each change-point is also unimodal. One approach is to use the windowed

mean-shift detection scheme of Chapter 6. Another method is to detect when

the current best arm is no longer the best: i.e., by sampling the current best

arm, an arm to its left and an arm to its right. We take the second approach

in this chapter.

Our objective is to detect changes, but we exclude infinitesimal changes

in the following assumption.

Assumption 7.6. Suppose that Assumptions 7.1 and 7.2 hold. Let ν denote

a change-point. Let r̄ν−1 and r̄ν+1 denote the expected reward functions before

and after the change-point ν. Let x∗(ν − 1) and x∗(ν + 1) denote the optimal

arms for r̄ν−1 and r̄ν+1. We assume that there exists a constant β > 0 such

that

|x∗(ν − 1) − x∗(ν + 1)| > β

for every change-point ν.
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Remark 39. By Assumption 7.2, if we do not detect a change-point ν where

|x∗(ν − 1) − x∗(ν + 1)| ≤ β, then we incur a regret of at most CHβ per time

step, where β can be chosen appropriately small.

The following lemma gives the main idea of our method.

Lemma 7.7. Suppose that Assumptions 7.1 and 7.2 hold. Let the three arms

z1 < z2 < z3 be given, such that z2 = (z3−z1)/2 and |z3 − z1| = 3β/2. Suppose

that the true optimal arm x∗ belongs to the interval [z2−β/4, z2+β/4] before a

change-point ν satisfying Assumption 7.6. Suppose that, after the change-point

ν, we run the sampling algorithm on {z1, z2, z3} with parameters ǫ = CLβ/4

and δ = γ, and obtain the output z∗. Then, we have P (z∗ 6= z2) ≥ 1 − γ, i.e.,

we detect the change-point ν with probability 1− γ after 4
ǫ2

log(2n
γ

) time steps.

Proof. First, observe that since x∗ ∈ [z2 − β/4, z2 + β/4] before the change-

point ν, we have

r̄ν−1(z2) ≥ r̄ν−1(z1) + CLβ/2

and r̄ν−1(z2) ≥ r̄ν−1(z3) + CLβ/2

Observe also that, by Assumption 7.2, after a change-point where |x∗(ν−1)−

x∗(ν + 1)| > β, we have either

r̄ν+1(z1) ≥ r̄ν+1(z2) + CLβ/2

or

r̄ν+1(z3) ≥ r̄ν+1(z2) + CLβ/2.

Therefore, since ǫ = CLβ/4, the (ǫ, γ)-PAC arm z∗ is not z2 with probability

1 − γ by Theorem 7.1.
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z1 z2 z3
(a) Expected reward
function r̄ν−1 before
ν.

z1 z2 z3
(b) Expected reward
function r̄ν+1 after ν.

Figure 7–3: Typical expected reward of arms z1, z2, z3 before and after change-
point ν.

Lemma 7.7 gives a new method of change-detection when the average

reward functions before and after the change-point satisfy the assumptions:

we repeatedly use the sampling algorithm on the three arms z1, z2, z3 to find

the appropriate PAC arm, and raise and alarm when this arm is no longer

z2. Figure 7–3 shows an example where the best arm changes from z2 to z3,

indicating that a change-point has occurred.

7.5.1 The LCD Algorithm

Piecewise-stationary bandit problems are hard. Even with a linear num-

ber of additional queries for side observations, the delay for detecting changes

is logarithmic Chapter 6. With the assumptions of this chapter, we show that

piecewise-stationary bandits can be solve efficiently without side observations.

Our approach combines regret minimization and change-detection, as de-

tailed in Algorithm 7–4. The LCD algorithm employs the stopped LSE algo-

rithm to narrow down the sampling interval and the sampling algorithm to

detect changes.

7.5.2 Regret Bound

By combining Theorem 7.4 and Lemma 7.7, we obtain the following bound

on the expected regret of the LCD algorithm. Our notion of expected regret

LUPS
T is similar to Chapter 6.
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(Initialization.) Fix u. Set xL = 0 and xH = 1.
(Phase 1. Stopped LSE.) Run the LSE algorithm for u iterations.
After u iterations, pick three points z1, z2, z3 as followsa : z1 = xLu −
1/ϕu, z2 = (xHu − xLu )/2, and z3 = xHu + 1/ϕu.
(Phase 2. Change-detection.) Run the sampling algorithm on z1, z2, z3
with parameters ǫ = CL

2ϕu and δ = γ. If the output z∗ is not z2, then

a change is detected: reset xL = 0 and xH = 1, and go to Phase 1.
Otherwise, repeat Phase 2.

a We allow the arms z1 and z3 to take values outside [0, 1], but such
arms are artificial and always generate zero reward.

Algorithm 7–4: The LSE with change-detection (LCD) algorithm

Theorem 7.8 (Regret of LCD). Suppose that Assumptions 7.1 and 7.2 hold.

Suppose also that every change-point ν satisfies Assumption 7.6. Suppose that

we run the LCD algorithm with the parameters ǫn = (2/ϕ − 1)CL/ϕ
n, δn =

6/T , γ = 6/T , and the parameter u is set to u = 1
3
logϕ

(
C2

LT

48 log T

)
and such

that u > logϕ(2/β). Then, the regret of the LCD algorithm when there are k

changes up to time T is at most

LUPS
T ≤ (2k + 1)CHT

2/3

(
48

C2
L

log T

)1/3

+ (k + 7)LU
T

+ 8CH
1

3
logϕ

(
C2
LT

48 logT

)
,

for T ≥ 12 + 16u.

Remark 40. This upper bound is of the order of O(T 2/3 log T ), as that of

[75]. However, our notion of regret LUPS
T is different. It includes, as basis for

comparison, policies that may change arms at the change-points.

Remark 41. The unimodal bandit problem with change-points presents a

trade-off in the width of the sampling intervals. On the one hand, a small

sampling interval [xLu , x
H
u ] ensures smaller regret. On the other hand, the

sampling interval [z1, z3] must be large enough so that changes are detected

quickly.

187



CHAPTER 8

Conclusion

In this thesis, we considered the problem of sequential decision making in

non-stationary environments. We introduced models that capture various de-

grees of non-stationarity that better reflect real-world problems. In particular,

we increase the degree of non-stationarity with the addition of non-stationary

state-transition dynamics and non-stationary constraints. We limit the degree

of non-stationarity by limiting the magnitude and frequency of non-stationary

changes. These models allow us to provide more competitive solutions than

generic regret-minimizing algorithms for worst-case non-stationary environ-

ments. In each of these models, we provide efficient learning algorithms and

prove corresponding performance guarantees that depend critically on the de-

gree of non-stationarity. We conclude this thesis by repeating the main ideas

and mentioning some open problems.

For the case of Markov decision processes with non-stationary rewards and

stationary transitions (Chapter 2), we considered no-regret policies within the

extended model of MDPs with arbitrarily varying rewards. We showed that

a simple reinforcement learning algorithm achieves diminishing average regret

against any oblivious opponent. In contrast to most of the online learning

literature, the obliviousness of the opponent plays a key role in character-

izing the performance that the agent can achieve. Various techniques were

introduced to deal with possible challenges. The Lazy FPL algorithm deals

with the Markovian dynamics and an unknown time horizon T . The Q-FPL

algorithm circumvents the need to calculate the exact value functions. The

Exploratory FPL algorithm overcomes partially observable reward functions.

188



The Tracking FPL algorithm surmounts a more ambitious comparison baseline

of regret composed of dynamic policies with infrequent changes. The salient

features of all these algorithms can be combined to deal with combinations of

the mentioned challenges.

Observe that an oblivious environment (cf. Assumption 2.2) and a com-

pletely non-oblivious one are two opposite extremes. An interesting alternative

notion for the degree of non-stationarity is to model the opponent’s level of

obliviousness and study the effect on the achievable regret. For example, one

can consider opponents that have limited memory, or that have delayed in-

formation or imperfect observations of the history (e.g., opponents that only

observe visits by the agent to particular states). Optimizing the convergence

rate of the regret remains another open problem.

In Chapter 3, we considered the more general case where both rewards

and state-transitions are subject to non-stationary changes. Although a van-

ishing regret is not possible in this case, we present algorithms whose regret

is bounded in terms of the magnitude of the non-stationary changes. One ap-

proach is robust dynamic programming, another more efficient approach uses a

simulation-based method. An open problem is quantifying the degradation of

the regret of the ORDP algorithm when the uncertainty set D is mismatched,

i.e., when the ORDP algorithm is robustified with respect to an uncertainty

set that is slightly different from the true uncertainty set.

In Chapter 4, we showed that in sequential convex optimization with

non-stationary constraints, it is necessary to relax the notion of regret. Our

formulation of sequential optimization is only a first step in considering multi-

objective problems in online learning. Other formulations, such as considering

the number of times that the constraints are violated, are of interest. The

first open question that remains is the issue of convergence rate. We noted
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that there exists an algorithm based on approachability that converges at the

rate of t−1/3, and that the usual lower bound of t−1/2 holds. The algorithm

that is based on calibration suffers from potentially even worse convergence

rate, as we are not aware of of any approximate calibration algorithm with

comparable convergence rates. Second, the complexity of the online learning

algorithms we presented leaves much to be desired. The complexity of a policy

based on approachability theory is left undetermined because we do not have

a specific procedure for computing the agent’s action at each stage. The per

stage complexity is unknown for calibrated forecasts, but is exponential in the

approximation level for approximately calibrated schemes [34]. Moreover, it is

not clear whether online learning with constraints is as hard computationally

as finding a calibrated forecast. Third, we only established the tightness of

the lower convex hull of the Bayes envelope for the case of a one-dimensional

penalty function. While this is a remarkable result because it establishes

the tightness of an envelope other than the Bayes envelope, and we are not

aware of any such results for similar settings. However, it is not clear whether

such a result also holds for two-dimensional penalties. In particular, the proof

technique of the tightness result does not seem to extend to higher dimensions.

We considered another sequential constrained optimization problem in

Chapter 5, with temporal constraints that have not been studied before. We

proposed a efficient expert-based algorithm and provided guarantees in the

form of bounds on the regret and the frequency of constraint violation. Ex-

periments show that this solution brings significant improvements over existing

methods in real-world power management problem. An interesting general-

ization of this solution is to minimize the regret with respect to policies that

switch between experts over time. An open question is whether constraint
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violation can be limited by other techniques than arbitration, such as penalty

methods.

In Chapter 6, we present efficient method to minimize the regret in bandit

problem where the rewards undergo abrupt changes at unknown time instants,

but remain otherwise stationary. This method queries for side observations to

detect changes in the empirical mean. Its logarithmic regret is optimal up to

a constant factor due to the unavoidable delay in change-detection. It would

be interesting to consider different models of querying for side information:

for instance, the case when queries may succeed or fail according to an i.i.d.

random sequence, or the case where the agent queries two arms and then

receives the reward of the better of the two.

In Chapter 7, we also consider bandits with a limited number of non-

stationary changes, but with an unimodality assumption and a continuum of

arms. We provide algorithm that minimizes the regret and detects change-

points at the same time. One important advantage of the unimodal setting

is that no side observations are necessary to detect non-stationary changes.

This algorithm is also of independent interest in the case of unimodal bandits

without change-points, in which case, its regret bound matches the known

lower bound (up to a logarithmic factor). One interesting open problem is

to generalize our results to higher dimensions. Another open problem is to

modify our algorithms into so-called anytime bandit algorithms—which do no

require prior knowledge of the time horizon T—without the doubling trick.

This algorithm also has a promising application in large-scale optimizations

with uncertain parameters—e.g., where the objective function is prohibitively

difficult to evaluate or observed through noisy measurements.
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