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Abstract

Text-based games are an interesting domain at the intersection of natural language pro-
cessing and reinforcement learning. From reinforcement learning perspective, they pose
various challenges: combinatorial state and action space, sparse rewards and partial ob-
servability, i.e., the agent is informed of the consequences of its actions through textual
feedback. Emphasising the later point, we design deep reinforcement learning algorithms
which learn from feedback alone. We take advantage of the structural characteristics com-
mon to these games and propose two algorithmic improvements in applying Deep RL to
play these games. We first propose a contextualisation mechanism, based on accumulated
reward, which simplifies the learning problem and mitigates partial observability. We then
study different methods that rely on the notion that most actions are ineffectual in any
given situation, following Zahavy et al.’s idea of an admissible action. We evaluate these
techniques in a series of text-based games of increasing difficulty based on the TextWorld
framework, as well as the iconic game ZORK. Empirically, we find that these techniques
improve the performance of a baseline deep reinforcement learning agent applied to text-
based games.
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Abrégé

Les jeux basés sur du texte sont un domaine intéressant à l’intersection du traitement du
langage naturel et de l’apprentissage par renforcement. Du point de vue de l’apprentissage
par renforcement, ils posent divers défis: état combinatoire et espace d’action, récompenses
clairsemées et observabilité partielle, c’est-à-dire que l’agent est informé des conséquences
de ses actions par un retour textuel. En mettant l’accent sur le dernier point, nous concevons
des algorithmes d’apprentissage par renforcement profond qui apprennent uniquement à
partir des commentaires. Nous profitons des caractéristiques structurelles communes à ces
jeux et proposons deux améliorations algorithmiques dans l’application de Deep RL pour
jouer à ces jeux. Nous proposons d’abord un mécanisme de contextualisation, basé sur la
récompense accumulée, qui simplifie le problème d’apprentissage et atténue l’observabilité
partielle. Nous étudions ensuite différentes méthodes qui reposent sur la notion que la
plupart des actions sont inefficaces dans une situation donnée, en suivant l’idée de Za-
havy et al. D’une action admissible. Nous évaluons ces techniques dans une série de jeux
textuels de difficulté croissante basés sur le framework TextWorld, ainsi que le jeu iconique
ZORK. Empiriquement, nous constatons que ces techniques améliorent les performances
d’un agent d’apprentissage de renforcement profond de base appliqué aux jeux basés sur
du texte.
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Contribution of authors

• Chapter 1 originates from Introduction in our peer-reviewed conference paper [JFL`20].
It has been rewritten in this thesis to add new insights.
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1
Introduction

In a text-based game, also called interactive fiction (IF), an agent interacts with its envi-
ronment through a natural language interface. Actions consist of short textual commands,
while observations are paragraphs describing the outcome of these actions. Playing a text-
based is akin to having a dialog. In real life conversations of an agent with an end user, the
agent needs to understand the end user’s feedback as well as generate/choose a command
which seeks to accomplish some goal (in this case, it might be to satisfy the customer). In
such a situation, the agent needs to develop natural language understanding as well as take
the right decisions. Although a text-based game is a more controlled environment, it em-
bodies the challenges of a real life dialog, hence it has emerged as an important challenge
for AI techniques in the sphere of natural language understanding and sequential decision
making.

In this work, we view the task of creating an agent for playing these games from a
reinforcement learning lens. While playing these games, the agent faces the challenges of
partial observability, large state and action space and sparse rewards. Since these games are
partially observable, the agent’s choice of action at every timestep during the gameplay is
dependent on history. To deal with this, Yuan et al. [YCS`18] provides agent with memory
in form of LSTM. In fact, even before learning an optimal strategy, the agent needs to deal
with huge action space since every sentence is a command. However, most of the actions
are inadmissible, i.e., they have no effect in a given state. Using this notion of admissibil-
ity, AE-DQN [ZHM`18] dealt with large action space by eliminating actions. Similarly,
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Introduction

the state space is typically combinatorial in nature, due to the presence of objects and
characters with which the player can interact. Moreover, these games are also Montezuma-
Revengesque [BNVB13, Ope18], i.e., they exhibit reward sparsity. Usually the number of
steps required to get a reward are anywhere between 10-20. So, the agent needs to employ
better exploration strategy with these games.

Although the previous works make progress in dealing with some of the challenges,
they simplify the task by creating a better state representation: using combination of LOOK

and INVENTORY description. We call LOOK and INVENTORY as information gathering ac-
tion since these actions help in revealing information about the hidden state. We forego
using these information gathering actions by learning directly from the feedback. Learning
from feedback alone means that the agent learns from the natural language observations
provided by the game. It doesn’t use any crutches in the form of walk-through, command
templates or LOOK and INVENTORY description provided by the TextWorld [CKY`18].
This makes sense for the games outside the purview of TextWorld since executing infor-
mation gathering actions costs a game step. In a life-death situation for the agent, incurring
this cost may result in it loosing to an adversary.

On a different note, these games also have an interesting reward structure which makes
further progress possible. Essentially, a text based game could be broken down into se-
ries of subtasks. Each subtask then corresponds to a different phase in the game. In this
work, we use score, i.e., accumulated reward as a proxy for progress in the game. Once the
agent receives this additional context, the issue of credit assignment becomes easier as the
agent could effectively learn separate value function for different phases of the game. This
ultimately results in faster game completion.

We now summarise three key contributions of this work:

‚ score contextualisation architecture which uses this special reward structure and em-
beds accumulated reward (score) as an additional context in the architecture to miti-
gate further the negative aspects of partial observability and ease credit assignment.

‚ extending Zahavy et al.’s [ZHM`18] work on action elimination, we introduce gating
mechanisms such as masking, dropout and consistent Q-learning which are simpler
in spirit and can be learned from feedback alone.
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Introduction

‚ a synthetic benchmark comprising of levels of increasing difficulty is introduced to
test the effectiveness of the described algorithmic techniques.

Previous works ([ZHM`18, YCS`18]), have either tackled the issue of partial observ-
ability or large action space. With this work, we bring forth two algorithmic improve-
ments in applying Deep Reinforcement Learning techniques to IF and tackle the challenges
of partial observability and large action space simultaneously. Furthermore, the synthetic
benchmark provides us with graded difficulty to check the effectiveness of the proposed
techniques. It should be noted that this work has been accepted for oral presentation at
AAAI’20 [JFL`20].

Finally, the thesis is organised as follows:

‚ chapter 2 describes the history, gameplay and challenges concerning the text-based
games.

‚ chapter 3 delves into the background necessary to understand this work.

‚ chapter 4 discusses the algorithmic techniques, score contextualisation and gating
mechanism and in the end an algorithm for learning in these domain is proposed.

‚ chapter 5 describes the various ablative studies to test the effectiveness of the pro-
posed algorithmic techniques.

‚ chapter 6 concludes with future directions and discussion.

3



2
Text-based games

2.1 History and Now

Before the graphical displays became ubiquitous, text-based games were one of the first
games that owe their existence to the computing revolution. The first text-based game
"Colossal Cave" was written by Will Crowther in 1976. Soon after that, many titles such
as the ZORK series swept the market and are still popular among the IF community. The
classical games such as the Zork series and Adventureland focused on solving the game by
collecting treasures that were spread across the game map. Modern games have focused on
intricate storytelling and creating an enriching experience for the gamer while interacting
with the game. These games are known as interactive fiction (IF), involve an agent inter-
acting with its environment through a natural language interface; actions consist of short
textual commands, while observations come in the form of paragraphs describing the out-
come of these actions (Figure 2.1). With such immersive gameplay and the rich storylines
created by an active IF community, text-based games have seen a resurgence.

From an AI perspective, IF has emerged as an important challenge [ABC`18], in great
part because the genre combines natural language with sequential decision-making.
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2.2 Gameplay

Figure 2.1: ZORK1 gameplay detailing interaction between the agent and the environment.

2.2 Gameplay

Text-based games can be classified on the basis of how player interacts with the game: in
parser-based games, the player inputs the command by typing it character by character;
in choice-based games, the player needs to select one of the commands from the given
options; in hypertext-based games, the player interacts by clicking on one of the several
links in the description. In this work, we deal with parser-based games.

Figure 2.2: Different genres.

In text-based games, when a player interacts with the game, it receives feedback in
the form of text description and the next game score. This feedback is contingent on the

5



2.3 Text-based Game as Reinforcement Learning Domain

command that a player issues to the game engine and the state of the game at that time.
For instance in Fig 2.1, read leaflet produces sensible feedback only when the player
has leaflet in his possession. In this case, take leaflet should be issued before issuing
read leaflet command. During the gameplay, the player gets a chance to explore
the game map which consists of different rooms and objects. These rooms are discrete
in-game locations. To reach one of these locations, player issues navigation commands
go followed by {north,east,...} or orthogonal directions {up,down}. Once the
player reaches a room, he receives the room description as the feedback. As in Fig 2.1, once
the player moves south, it receives the description of the location South of House.
Alternatively, if the player forgets his current location, these games provide an information
gathering command called LOOK to get the current location description. Navigation-wise
text-based games could be quirky: room exits and entrances do not always match (e.g.
go east and then go west command may not result in the player coming back to the
starting point).

Apart from the navigation commands, the player can issue commands such as read
leaflet. These type of commands helps the player explore different objects he finds in
the game. Text-based games involve extensive use of such interactive commands to explore
the game state space further making these games AI-hard [Mue87]. In Fig 2.1 without is-
suing open mailbox command first, the player wouldn’t know that there is a leaflet
that could be read. However, not all commands issued are understood by the parser or are
valid forms of interaction. For instance, if the player finds mailbox in the current loca-
tion description, open mailbox is a valid command whereas eat mailbox might be
invalid. These behaviors that are valid given a situation are called affordances [Gib77].

2.3 Text-based Game as Reinforcement Learning Domain

With the gameplay described in the previous section, a text-based game lends itself to being
treated as a sequential decision-making problem. Since the games are partially observable,
the feedback received by the player doesn’t describe the state of the environment. The en-
vironment state in a text-based game contains the information about each room, every trea-
sure, player health, and non-player characters if present. The action that the player takes is
a sentence. Once this action is executed by the game, the player receives the next feedback

6



2.4 Challenges

and the score. The reward received can then be easily calculated as a score differential.

2.4 Challenges

From a reinforcement learning perspective, IF domains pose a number of challenges. In
this section, we list all of them.

2.4.1 Partial Observability

Text-based games are partially observable. Only information pertaining to the current in-
game location and the player’s inventory is made available by the information gathering
actions. For instance, the player might issue a command press red button and the
feedback is You press red button. However, in some other location, there is a chest
that is opened now; the player has no way to know whether the command was useful or
not as the immediate feedback or the description of the current location does not contain
information about the change in the other game location. Moreover, to play these games
skillfully, the player can not just rely on the latest observation to issue the next command;
it needs to take into account the previous feedbacks received and commands issued. For
example, the commands take apple and take red key would give the same feed-
back Taken and relying on this immediate feedback alone wouldn’t be a great strategy. To
issue the next command, the player would also need to consider the previous command (in
this case take red key or take apple).

2.4.2 Combinatorial State and Action Space

In classic text-based game ZORK, there are 85 rooms and 20 treasures. A room here is an
in-game location. These treasures can easily be transported from one location to another.
So, every room in ZORK could have more than one of these treasures. Thus, the size of
the state space in ZORK ą 2085 since a treasure could be found in any one of the rooms
in the game. The state space is therefore combinatorial in nature which makes applying
tabular reinforcement learning for learning optimal policies an infeasible proposition. In
a similar vein, every sentence can be issued as a valid command, which makes the action
space combinatorial as well. However, not all actions are valid given the current situation.
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2.4 Challenges

The actions which actually result in a change in the underlying hidden state are called
admissible actions [ZHM`18]. Usually, the number of such admissible actions is smaller
than the combinatorial action set. The challenge of determining admissible actions at run-
time is unique to text-based games as most of the reinforcement learning domains such
as Arcade Learning Environment are strongly operationalized, i.e., the set of action which
leads to state change is known in advance1 [ABC`18]. Text-based games test the epistemic

feasibility of the agent, i.e., can the agent efficiently derive that a particular action even
exists in a current situation [McC77]? So, it is not just the combinatorial nature of the
state and action space that an agent has to deal with, it has to develop reasoning to choose
admissible actions and progress further in the game.

2.4.3 Reward Sparsity

The credit assignment problem concerns determining how the success of a system’s overall
performance is due to the various contributions of the system’s components [Min61, SB98].
In an environment where the rewards are sparse, accurately determining the contributions of
the various state-action pairs in getting that elusive reward is even more difficult. For most
of the text-based games, their reward structure is usually sparse, with non-zero rewards
only received when the agent accomplishes something meaningful, such as retrieving an
important object or unlocking a new part of the domain. With sparse rewards, the agent
indulges in random exploration until it receives the reward. This exercise is costly in terms
of time and transitions sampled.

Recent works have used the concept of intrinsic motivation resulting in a more directed
and sensible exploration strategy [BOG`16, PAED17]. Text-based games being partially
observable exacerbate the issue of reward sparsity because even after receiving the sparse
reward, the agent needs to take history into consideration to determine the right state to
assign the credit. This exercise is inherently difficult since the action chains might contain
irrelevant actions due to random exploration.

1ALE 0.6 provides a large action set and a minimal action set for each game. In practice, minimal action
set is used since every action in the set leads to change in game state.
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2.5 Contrasting with ALE

2.5 Contrasting with ALE

Bellemare et al. [BNVB13] introduced Arcade Learning Environment (ALE) as a Rein-
forcement learning testbed. Narsinham et al. [NKB15] introduced the first Deep Reinforce-
ment Learning agent for a text-based game. We list points contrasting ALE with text-based
games domain:

‚ Output by ALE games is visual in nature whereas, for text-based games, it is textual.
This results in different architectural choices.

‚ ALE originally didn’t have stochasticity; the recent version introduces stochasticity
using sticky actions [MBT`18]. On the other hand, stochasticity in a text-based game
comes naturally due to the presence of non-player characters (NPC). But, even NPCs
could be deterministic implying that a text-based game could be deterministic as
well.

‚ For text-based games, the effectual action set is not known in advance. In the case
of ALE, the research community uses minimal action set which happens to be an
effectual action set. Effectual action set here means that every action in the set results
in state change when executed.

9



3
Background

In this work, we would like to design an agent that deals with the sequential decision
making as well as the natural language understanding aspect involved in solving the text-
based games. To this end, we firstly introduce concepts related to reinforcement learning
which will lay the foundation for tackling the decision making aspect of the problem. In
the later parts of the chapter, we present concepts necessary in creating good representation
for natural language understanding. Parts of this chapter that introduce contextual setting
and admissibility have appeared in peer-reviewed conference paper [JFL`20].

3.1 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning where the agent interacts
with the environment to maximize its cumulative reward [SB98]. In a supervised learn-
ing paradigm, input-output pairs are provided which helps the agent to learn an accurate
mapping from the input space to the output space, whereas in RL there is no training data
provided beforehand; the agent needs to collect this data via exploration. This results in the
exploration v/s exploitation trade-off. The exploration-exploitation trade-off means that the
agent needs to balance exploring the uncharted parts of the environment to collect more in-
formation and exploitation of the acquired information thereof.

In RL setting, the agent interacts with the environment in discrete time steps. At a time
step t, the agent receives the information from the environment st and the reward signal rt.

10



3.2 Markov Decision Process

Figure 3.1: RL environment diagram

Based on this information, the agent executes action at and the environment responds with
the next state st`1 and the reward signal rt`1 (see Fig. 3.1). The material presented in this
section and the subsequent ones concerning RL only address the parts which are relevant
for this study. For a more thorough and rigorous treatment of RL, refer these textbooks
[SB98, Sze10].

3.2 Markov Decision Process

To mathematically formalize the agent-environment interaction, Markov Decision Process
provides us with an excellent toolkit [Bel56]. A Markov Decision Process (MDP) M is a
tuple pS,A,P ,R, γq where

‚ S is the set of states.

‚ Apsq is the set of actions available for state s P S .

‚ Pps, s1, aq is the transition probability function from s to s1 given action a is taken.

‚ Rps, s1, aq is the immediate reward received when the agent transitions from s to s1

when action a is taken.

‚ γ P r0, 1q is the discount factor determining the agent’s preference for future or
immediate rewards. A low γ implies that the agent values immediate rewards more.

Interestingly, the transition probability P follows the Markov property, i.e.,

Ppst, st´1, at´1q “ Prpst|st´1, at´1q “ Prpst|st´1, at´1, st´2, . . . , s0, a0q

11



3.3 Text-based Games as POMDPs

Essentially, in a Markovian environment, the agent’s next state depends on its current state
and the action regardless of past history. Although the Markovian assumption reduces the
memory load of the agent, in a text-based game setting this assumption is invalid as the
game is partially observable (see Section 2.4). In this case, we need a mathematical for-
malism that encapsulates the notion of partial observability (See Section 2.4.1). We will
describe this formalism in the next section.

3.3 Text-based Games as POMDPs

As detailed in Section 2.4.1, partial observability is one of the key challenges in solving
text-based games. We formalise text-based games as a partially observable Markov deci-
sion process (POMDP) pS,A,P ,R,O, φ, γq [KLC98], where

‚ S is a set of environment states. At time t, in a text-based game, the environment
state st contains all the necessary information about all the rooms and the objects
and the player health.

‚ A is a set of available actions. At time t, the player executes action at.

‚ Pps, s1, aq is the transition probability from s to s1 given action a is taken.

‚ Rps, s1, aq is the immediate reward received when the agent transitions from s to s1

when action a is taken.

‚ O is the set of observations available. In text-based games, an observation at time t,
ot is the feedback that is received by the agent.

‚ φ : S ˆAÑ O describes the observation o “ φps, aq when action a is taken in state
s.

‚ γ P r0, 1q is the discount factor.

3.4 Policies and Value functions

In reinforcement learning, the agent needs to estimate how useful it is to be in the current
state. We call this utility a state’s value. In a similar vein, we define a state-action’s value

as the utility of taking an action in the current state. Moreover, we define π : S Ñ A as a
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3.5 Q-Learning

mapping from states to the action. Generally, in RL, the policy is stochastic, i.e., the policy
is formulated as conditional probability distribution πpa|sq over the action set A. Since π
drives the agent’s interaction with the environment and essentially determines the future
reward the agent receives, the agent’s state value (or state action value) is dependent on π.

When the agent follows the policy π, the state-value function V π is defined as

V π
psq :“ E

“

8
ÿ

t“0

γtrt`1
ˇ

ˇss

where rt corresponds toRpst, st`1, atq.

Similarly, the action value-function Qπps, aq is defined as

Qπ
ps, aq :“ E

“

8
ÿ

t“0

γtrt`1
ˇ

ˇs, as

The main aim of an agent is to find a policy that achieves a maximum value of V π or
Qπ. To do so, we need to define a partial ordering over the policies. We consider policy π
to be dominated by π1 when V π1psq ě V πpsq for all the states s in the state space S. We
term policy π˚ to be optimal when π˚ ą π for all the policies π P Π. Here Π is the set of
stationary policies. For such a policy, we define the optimal value function V ˚ as

V ˚psq :“ max
π

V π
psq

Similarly, the optimal action value function can be defined as

Q˚ps, aq :“ max
π

Qπ
ps, aq

3.5 Q-Learning

To solve an MDP, the agent needs to either learn an optimal policy or an optimal value
function. The agent could learn the concerned policy or value function either on-policy,
i.e., the agent learns the same policy while using it to make decisions. Whereas in the case

13
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of off-policy learning, the agent utilizes the experiences from behavior policy to improve
the value function estimates for another policy.

Q-Learning [Wat89] was one of the earliest breakthroughs in off-policy learning and
it is used to estimate the optimal value function. In the case of Q-Learning, the behavior
policy is usually an ε-greedy policy and the policy being optimized is the greedy policy. An
ε-greedy policy is a policy that chooses an action uniformly at random with probability ε
and with 1´ ε probability chooses the action with the highest value function. When ε “ 0,
we get the greedy policy.

Specifically, Q-Learning iteratively learns the estimates of state-action value (also called
Q-values) by updating it towards the observed reward and the max Q-value over all actions
in the resulting state

Qpst, atq Ð Qpst, atq ` αδt (3.1)

where δt “ rt`1 ` γmaxat`1 Qpst`1, at`1q ´ Qpst, atq is the TD error [SB98] and
α P r0, 1q.

3.6 Consistent Q-Learning

In the Q-Learning update rule (equation 3.1), the use of the max operator to determine
the value of the next state can cause large overestimations of the action values. Hasselt
et. al. [Has10] show that Q-learning can suffer a large performance penalty because of
a positive bias that results from using the maximum value as an approximation for the
maximum expected value. Consistent Q-Learning [BOG`16] is one way to deal with such
overestimations and get rid of the positive bias. It learns a value function which is consistent
with respect to a local form of policy stationarity. Defined for a Markov decision process,
it replaces the term δt in equation 3.1 by

δCQL
t :“ rt `

#

γmaxaPAQpst`1, aq ´Qpst, atq st`1 ‰ st

pγ ´ 1qQpst, atq st`1 “ st.
(3.2)

Consistent Q-learning can be shown to decrease the action-value of suboptimal actions
while maintaining the action-value of the optimal action, leading to larger action gaps and
a potentially easier value estimation problem.
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3.7 Contextual Setting

At time step t, the agent selects an action according to a policy π which maps a history ht :“

o1, a1, . . . , ot to a distribution over actions, denoted πp¨ |htq. This history is a sequence
of observations and actions which, from the agent’s perspective, replaces the unobserved
environment state st. We denote by Bps |htq the probability or belief of being in state s
after observing ht. Finally, we will find it convenient to rely on time indices to indicate the
relationship between a history ht and its successor, and denote by ht`1 the history resulting
from taking action at in ht and observing ot`1 as emitted by the hidden state st`1.

The action-value function Qπ describes the expected discounted sum of rewards when
choosing action a after observing history ht, and subsequently following policy π:

Qπ
pht, aq “ E

“

ÿ

iě0

γirpst`i, at`iq |ht, a
‰

,

where we assume that the action at time t`j is drawn from πp¨ |ht`jq; note that the reward
depends on the sequence of hidden states st`1, st`2, . . . implied by the belief stateBp¨ |htq.
The action-value function satisfies the Bellman equation over histories

Qπ
pht, aq “ E

st,st`1

“

rpst, aq ` γmax
a1PA

Qπ
pht`1, a

1
q
‰

.

When the state is observed at each step (O “ S), this simplifies to the usual Bellman
equation for Markov decision processes:

Qπ
pst, aq “ rpst, aq ` γ E

st`1„P
max
a1PA

Qπ
pst`1, a

1
q. (3.3)

In this fully observable case we will conflate st and ht in the notation.

The Q-learning algorithm [Wat89] over histories maintains an approximate action-value
function Q which is updated from samples ht, at, rt, ot`1 using a step-size parameter α P
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r0, 1q:

Qpht, atq Ð Qpht, atq ` αδt

δt “ rt ` γmax
aPA

Qpht`1, aq ´Qpht, atq. (3.4)

Q-learning is used to estimate the optimal action-value function attained by a policy which
maximizes Qπ for all histories. In the context of our work, we will assume that this pol-
icy exists. Storing this action-value function in a lookup table is impractical, as there are
in general an exponential number of histories to consider. Instead, we will make use of
recurrent neural networks to maintain the approximation learned by Q-learning.

It should be noted that consistent Q-learning (see Section 3.6) is not immediately adapt-
able to the history-based formulation, since ht`1 and ht are sequences of different lengths
(and therefore not comparable). In the following sections, we derive a related algorithm
suited to the history-based setting.

3.8 Admissibility

We will make use of the notion of an admissible action, following terminology by Zahavy
et al. [ZHM`18].1

Definition 1 An action a is admissible in state s if

P ps | s, aq ă 1.

That is, a is admissible in s if its application may result in a change in the environment

state. When P ps | s, aq “ 1, we say that an action is inadmissible.

We extend the notion of admissibility to histories as follows. We say that an action a is
admissible given a history h if it is admissible in some state that is possible given h, or
equivalently:

ÿ

sPS
Bps |hqP ps | s, aq ă 1.

1Note that our definition technically differs from Zahavy et al. [ZHM`18]’s, who define an admissible
action as one that is not ruled out by the learning algorithm.
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We denote by ξpsq Ď A the set of admissible actions in state s. With some abuse of
notation, we define the admissibility function

ξps, aq :“ IraPξpsqs
ξph, aq :“ Prta P ξpSqu, S „ Bp¨ |hq.

We write At for the set of admissible actions given history ht, i.e., the actions whose ad-
missibility in ht is strictly greater than zero. In IF domains, inadmissible actions are usually
dominated, and we will deprioritize or altogether rule them out based on our estimate of
ξph, aq.

3.9 Function Approximation

For simpler MDPs with finite state space and action space, it is assumed that values are
stored in table. However, once the state space becomes exponentially large wrt input fea-
tures/dimensions, we encounter the curse of dimensionality [Bel56]. To deal with this phe-
nomenon, we need to approximate the value functions by a function approximator. This
function approximator could be a linear function, a neural network or any other function.

When using a function approximator, Qpst, atq « Qpst, at; θtq where θt are the param-
eters corresponding to the function approximator.

3.10 Neural Network

In this work, we use a Neural network as the function approximator. A Neural Network
consists of a multiple layers of interconnected nodes. The initial layer receives the input
and the output layer has output signals to which input might map. The middle layers are
called hidden layers. These layers are responsible for capturing the inherent pattern in the
data so that error is minimal. Each layer also applies a non-linear activation function ψ to
the output value produced by the nodes. For a node with a weight vector w and a bias b,
the output fpxq is defined as

fpxq :“ ψpw ¨ x` bq
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3.11 Gradient Descent

In theory, it has been shown a Neural Network with even one hidden layer is capable
of classifying input which is not linearly separable. Linear separability here means that the
classes with the input of dimension n can be separated by a hyperplane of dimension n´1.
Additionally, a neural network with only one hidden layer has been shown to be a universal
function approximator [Hor91].

3.11 Gradient Descent

Learning a neural network means that there is a loss function that needs to be minimized.
To do so, an input vector x and a desirable output vector y is provided. The neural network
then uses an optimization algorithm to minimize the loss between the output of the neural
network and y.

One of these optimization algorithms is Backpropagation [Hec89, RHW`88]. Back-
propagation, as the name suggests, computes the error in the output layer and propagates
it back through the rest of the network. Specifically, it calculates the gradient of the cost
function with respect to the outer layer. The gradients of the inner layer are computed via
the chain rule from the gradient values of the outer layer.

To update the weights using backpropagated errors, we can then use stochastic gradient
descent

wÐ w ´ α∆

where ∆ is the computed gradient and α is the learning rate.
Alternatively, we could use Adam [KB15] or RMSprop [TH12] which vary learning rates
depending on changing gradients and work better in practice.

3.12 Recurrent Neural Network

A class of neural network that has been successfully used for language tasks is the class of
Recurrent Neural Network (RNN). In RNN, as the name suggests, there are additional re-
current connections in the node apart from the "normal" input. With these recurrent connec-
tions, the network is able to exhibit temporal behavior as it uses its hidden state (memory)
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to retain past behavior as well as capture long-term dependencies.

Training RNN requires a different type of backpropagation called Backpropagation
Through Time (BPTT) [Wer90]. BPTT essentially unfolds the network and propagates the
error to the earlier timesteps. In practice though, it is observed that an RNN fails to retain
important information for long enough, thus it fails to learn important dependencies when
there are too many timesteps in between [Hoc91, BSF94].

To tackle the issue of not capturing long-term dependencies, LSTM was introduced
[HS97]. The authors proposed the concept of gates in the cell to regulate the flow of infor-
mation. There are three gates: input gate, output gate and forget gate; together these gates
with their thresholding mechanism control the information flow thus easing the issue of not
retaining long-term dependencies. For a more detailed introduction, see Chris Olah’s blog
[Ola15].

3.13 Word Embedding

To effectively use high dimensional complex data such as text as the input in the neural
network, the text data needs to be converted into a real vector. A Word embedding takes
a word or phrase from the vocabulary and maps it to a real vector. Several methods have
been proposed to generate this mapping such as using neural networks [MSC`13], dimen-
sionality reduction of window-based co-occurrence matrix [LC14], probabilistic models
[GCPT07] to name the few.

In this work, we use a separate neural network layer that learns these embeddings. With
a huge vocabulary, we desire to learn a mapping in such a way that words having similar
connotations, their real vectors are close enough. For this work, we learn the embeddings
from scratch. Learning from scratch means that we don’t use pre-trained word embeddings
such as Word2Vec [MSC`13], GloVe [PSM14] or others. Our neural net architecture which
includes the embedding layer is initialized randomly. The weights of the embedding layer
along with the rest of the architecture are then learned end to end from the losses.
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4
Algorithmic Contributions

In this chapter, we would like to design an agent that learns to play a text-based game from
feedback alone. Fortunately, there are three structural aspects of this domain that makes
progress possible:

‚ Rewards from Subtasks. The optimal behaviour completes a series of subtasks to-
wards the eventual game end;

‚ Transition Structure. Most actions have no effect in a given state;

‚ Memory as State. Remembering key past events is often sufficient to deal with par-
tial observability.

Although previous works [NKB15, ZHM`18] have remarked on these properties, we
forego previously made assumptions and provide fresh tools to more tractably solve IF do-
mains. More generally, we believe these tools to be useful in partially observable domains
with a similar structure. In the following section, we propose two algorithmic improve-
ments in applying Deep Reinforcement Learning to these games. The section has appeared
in a peer-reviewed conference paper [JFL`20]. We then propose an algorithm that applies
these techniques while training the agent. We conclude this chapter by discussing the re-
lated works and their contributions in progressing the state of art in IF.
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4.1 More Efficient Learning for IF Domains
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Figure 4.1: Our IF architecture consists of three modules: a representation generator ΦR

that learns an embedding for a sentence, an action scorer ΦA that chooses a network
head i (a feed-forward network) conditional on score ut, learns its Q-values and outputs
Qpht, :, utq and finally, an auxilliary classifier ΦC that learns an approximate admissibility
function ξ̂pht, :q. The architecture is trained end-to-end.

4.1 More Efficient Learning for IF Domains

We are interested in learning an action-value function that is close to optimal and from
which can be derived a near-optimal policy. We would also like learning to proceed in a
sample-efficient manner. In the context of IF domains, this is hindered by both the par-
tially observable nature of the environment and the size of the action space. In this section,
we propose two complementary ideas that alleviate some of the issues caused by partial
observability and large action sets. The first idea contextualizes the action-value function
on a surrogate notion of progress based on total reward so far, while the second seeks to
eliminate inadmissible actions from the exploration and learning process.
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4.1 More Efficient Learning for IF Domains

Although our ideas are broadly applicable, for concreteness we describe their imple-
mentation in a deep reinforcement learning framework. Our agent architecture (Figure
4.1) is derived from the LSTM-DRQN agent [YCS`18] and the work of Narsimhan et
al. [NKB15].

4.1.1 Score Contextualisation

When games are used as a test-bed for applying reinforcement learning algorithms, it is
now customary to translate the player’s score differential into rewards [BNVB13, Ope18].
Our setting is similar to Arcade Learning Environment in the sense that the environment
provides the score. In IF, points are awarded when the player acquires an important object
or completes a relevant subtask in the game. Usually, these awards are a good enough proxy
for player’s progression in the game and occur in a linear or almost linear structure. For
text-based games, rewards are relatively sparse. We emphasize that this is in contrast to the
more general reinforcement learning setting, which may provide a reward for surviving or
achieving something at a certain rate. In the video game SPACE INVADERS, for example,
the notion of “finishing the game” is ill-defined: the player’s objective is to keep increasing
their score until they run out of lives.

We make use of the IF reward structure as follows. We call score the agent’s total
(undiscounted) reward since the beginning of an episode, remarking that the term extends
beyond game-like domains. At time step t, the score ut is

ut :“
t´1
ÿ

i“0

ri.

Since the score denotes the agent’s progression in a text-based game, using it as a state
variable is a sensible choice. We now propose an approach called score contextualisation.
In this approach, a separate action-value function for each possible score is maintained.
This action-value function is denoted Qpht, at, utq. The use of additional context variables
has by now been demonstrated in a number of settings ([RZQ`19]; [IKVM18]; [GSR`18]).
First, credit assignment becomes easier since the score provides clues as to the hidden state.
Second, in settings with function approximation we expect optimization to be simpler since
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for each u, the function Qp¨, ¨, uq needs only be trained on a subset of the data and hence
can focus on features relevant to this part of the environment.

In a deep network, we implement score contextualisation using K network heads and a
map J : N Ñ t1, . . . , Ku such that the J putqth head is used when the agent has received
a score of ut at time t. This provides the flexibility to either map each score to a separate
network head, or multiple scores to one head. Taking K “ 1 uses one monolithic network
for all subtasks, and fully relies on this network to identify state from feedback. In our
experiments, we assign scores to network heads using a round-robin scheme with a fixed
K. Using Narshimhan et al.’s [NKB15] terminology, our architecture consists of a shared
representation generator ΦR withK independent LSTM heads, followed by a feed-forward
action scorer ΦApiq which outputs the action-values (Figure 4.1).

4.1.2 Action Gating Based on Admissibility

Using the notion of admissibility introduced in Section, we now seek to eliminate or more
generally gate actions. Consider an action a which is inadmissible in state s. By definition,
taking this action does not affect the state. We further assume that inadmissible actions
produce a constant level of reward, which we take to be 0 without loss of generality:

a inadmissible in s ùñ rps, aq “ 0.

This assumption is reasonable in IF domains, and more generally holds true in domains that
exhibit subtask structure, such as the video game MONTEZUMA’S REVENGE [BSO`16].
We can combine knowledge of P and r for inadmissible actions with Bellman’s equation
to deduce that

a inadmissible in s ùñ Qps, aq “ 0. (4.1)

If we know that a is inadmissible, then we also know its action-value without needing to
learn it.

We propose learning a classifier whose purpose is to predict the admissibility function.
Given a history h, this classifier outputs, for each action a, the probability ξ̂ph, aq that this
action is admissible. Because of state aliasing, this probability is in general strictly between
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0 and 1; furthermore, it may be inaccurate due to approximation error. We, therefore, con-
sider action gating schemes that are sensitive to intermediate values of ξ̂ph, aq. The first two
schemes produce an approximately admissible set Ât which varies from time step to time
step; the third directly uses the definition of admissibility in a history-based implementation
of the consistent Bellman operator.

Dropout. The dropout method randomly adds each action a to Ât with probability
ξ̂pht, aq.

Masking. The masking method uses an elimination threshold c P r0, 1q. The set Ât
contains all actions a whose estimated admissibility is at least c:

Ât :“ ta : ξ̂pht, aq ě cu.

The masking method is a simplified version of Zahavy et.al’s [ZHM`18] action elimina-
tion algorithm, whose threshold is adaptively determined from a confidence interval, itself
derived from assuming a value function and admissibility functions that can be expressed
linearly in terms of some feature vector.

In both the dropout and masking methods, we use the action set Ât in lieu of the full
action set A when selecting exploratory actions.

Consistent Q-learning for Histories (CQLH). The third method leaves the action set
unchanged but instead drives the action-values of purportedly inadmissible actions to 0.
This is done by adapting the consistent Bellman operator (3.2) to the history-based setting.
First, we replace the indicator Irst`1‰sts by the probability ξ̂t :“ ξ̂pht, atq. Second, we
drive Qpst, atq to 0 in the case when we believe the state is unchanged, following the
argumentation of (4.1). This yields a version of consistent Q-learning which is adapted to
histories, and makes use of the predicted admissibility:

δCQLH
t :“ rt ` γmax

aPA
Qpht`1, aqξ̂t

` γQpht, atqp1´ ξ̂tq ´Qpht, atq.
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One may ask whether this method is equivalent to a belief-state average of consistent Q-
learning when ξ̂pht, atq is accurate„ i.e., equals ξpht, atq. In general, this is not the case: the
admissibility of an action depends on the hidden state, which in turn influences the action-
value at the next step. As a result, the above method may underestimate action-values
when there is state aliasing (e.g., ξ̂pht, atq « 0.5), and yields smaller action gaps than the
state-based version when ξ̂pht, atq “ 1. However, when at is known to be inadmissible
(ξ̂pht, atq “ 0), the methods do coincide, justifying its use as an action gating scheme.

We implement these ideas using an auxiliary classifier ΦC . For each action a, this clas-
sifier outputs the estimated probability ξ̂pht, aq, parametrized as a sigmoid function. These
probabilities are learned from bandit feedback: after choosing a from history ht, the agent
receives a binary signal et as to whether a was admissible or not. In our setting, learn-
ing this classifier is particularly challenging because the agent must predict admissibility
solely based on the history ht. As a point of comparison, using the information-gathering
commands LOOK and INVENTORY to establish the state, as proposed by Zahavy et al.
[ZHM`18], leads to a simpler learning problem, but one which does not consider the full
history. The need to learn ξ̂pht, aq from bandit feedback also encourages methods that gen-
eralize across histories and textual descriptions.

4.2 Algorithm

4.2.1 Minibatch Sampling

For sampling mini-batch, we use prioritised sampling [MA93] over episodes, i.e., we sam-
ple τp fraction of episodes that had atleast one positive reward, τn fraction with atleast one
negative reward and 1´τp´τn from whole episodic memoryD. For each sampled episode,
we further sample transition sequence starting from random step j in the episode [HS15].

4.2.2 Notations

Following are the notations important to understand the algorithm:

‚ ot, rt, et : observation (,i.e., feedback), reward and admissibility signal received at
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time t.

‚ at : command executed in game-play at time t.

‚ ut : cumulative rewared/score at time t.

‚ ΦR : representation generator.

‚ ΦC : auxiliary classifier.

‚ K : number of network heads in score contextualisation architecture.

‚ J : dictionary mapping cumulative rewards to network heads.

‚ Hpkq : LSTM corresponding to network head k.

‚ ΦApkq : Action scorer corresponding to network head k.

‚ ht : agent’s context/history state at time t.

‚ T : maximum steps for an episode.

‚ pi : boolean that determines whether +ve reward was received in episode i.

‚ qi : boolean that determines whether -ve reward was received in episode i.

‚ τp : fraction of episodes where Dt ă T : rt ą 0

‚ τn : fraction of episodes where Dt ă T : rt ă 0

‚ l : sequence length.

‚ n : minimum history size for a state to be updated.

‚ A : action set.

‚ Ât : admissible set generated at time t.

‚ Itarget : update interval for target network

‚ ε : parameter for ε´greedy exploration strategy.

‚ ε1 : softness parameter, i.e., ε1 fraction of times Ât “ A.

‚ c : threshold parameter for action elimination strategy Masking.

‚ Gmax : maximum steps till which training is performed.

Full training procedure is listed in Algorithm 1.
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Algorithm 1 General training procedure

1: function ACTpot, at´1, ut, ht´1,J , ε, ε1, c, θq
2: Get network head k “ J putq.
3: ht Ð LSTM Hpkqrwt, ht´1s.
4: Qpht, :, ut; θq Ð ΦApkqphtq; ξ̂pht, a; θq Ð ΦCphtq.
5: Generate Ât (see Section 4.1.2).
6: With probability ε, at Ð UniformpÂtq, else at Ð argmaxaPÂt

Qpht, a, ut; θq
7: return at, ht
8: end function
9: function TARGETSpf, γ, θ´q

10: pa0, o1, a1, r2, u2, e2, o2, . . . , ol, al, rl`1, el`1, ul`1q Ð f ;hb,0 Ð 0
11: Pass transition sequence through H to get hb,1, hb,2, . . . , hb,l
12: Eb,i Ð ξphb,i, ai; θ

´q

13: yb,i Ð maxaPAQphb,i`1, a, ub,i`1; θ´q
14: yb,i Ð Eb,iyb,i ` p1´ Eb,iq Qphb,i`1, ai, ub,i`1; θ

´q if using CQLH.
15: yb,i Ð ri`1 if oi is terminal else yb,i Ð ri`1 ` γyb,i
16: return yb,:, Eb,:
17: end function
18:
19: Input: Gmax, Ilook, Iupdate, γ, ε1, ε, c,K, IrusingΦC s

, n

20: Initialize episodic replay memory D, global step counter GÐ 0, dictionary J “ tu.
21: Initialize parameters θ of the network, target network parameter θ´ Ð θ.
22: while G ă Gmax do
23: Initialize score u1 “ 0, hidden State of H , h0 “ 0 and get start textual description

o1 and initial command a0 “ ’look’. Set pk Ð 0, qk Ð 0.
24: for tÐ 1 to T do
25: at, ht Ð ACTpot, at´1, ut, ht´1,J , ε, ε1, c, θq
26: at Ð ’look’ if t mod 20 ““ 0
27: Execute action at, observe trt`1, ot`1, et`1u.
28: pk Ð 1 if rt ą 0; qk Ð 1 if rt ă 0; ut`1 Ð ut ` rt
29: Sample minibatch of transition sequences f (See Section 4.2.1)
30: yb,:, Eb,: Ð TARGETSpf, γ, θ´q
31: Perform gradient descent on Lpθq “

řj`l
i“j`n´1ryb,i ´ Qphb,i, ai, ub,i; θq

2 `

IrusingΦC s
BCEpei, Eb,iqs

32: θ´ Ð θ if t mod Iupdate ““ 0
33: GÐ G` 1
34: End episode if ot`1 is terminal.
35: end for
36: Store episode in D.
37: end while
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4.3 Related Work

RL applied to Text-based Games: LSTM-DQN [NKB15] deals with parser-based text
adventure games and uses an LSTM to generate feedback representation. The represen-
tation is then used by an action scorer to generate scores for the action verb and objects.
The two scores are then averaged to determine Q-value for the state-action pair. In the
realm of choice-based games, He et al. [HCH`16] uses two separate deep neural nets to
generate representations for feedback and action respectively. Q-values are calculated by
dot-product of these representations. None of the above approaches deals with partial ob-
servability in text-based games.

Admissible Action Set Learning: Tao et al. [TCYA18] approach the issue of learning
admissible set given context as a supervised learning one. They train their model on (input,
label) pairs where input is context (concatenation of feedbacks by LOOK and INVENTORY)
and the label is the list of admissible commands given this input. AE-DQN [ZHM`18]
employs an additional neural network to prune in-admissible actions from the action set
given a state. Although the paper doesn’t deal with partial observability in text adventure
games, authors show that having a tractable admissible action set led to faster convergence.
Fulda et al.’s agent [FRMW17] work on bounding the action set through affordances. Their
agent is trained through tabular Q-Learning.

Partial Observability: Yuan et al. [YCS`18] replace shared MLP in [NKB15] with
LSTM cell to calculate context representation. However, they use the concatenation of
feedbacks by LOOK and INVENTORY as the given state to make the game more observable.
Their work also doesn’t focus on pruning in-admissible actions given a context. Finally,
Ammanabrolu and Riedl [AR19] deal with partial observability by representing the state
as a knowledge graph and continuously updating it after every game step. But, the graph
updation is hand-crafted, i.e., after every command executed and feedback received, there
are hand-crafted update rules that prune and add edges in the graph. It would have been
interesting if the agent could have learned these update rules during the gameplay.
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5
Experiments and Discussion

In chapter 4, we discussed algorithmic improvements to apply Deep RL for IF. In this chap-
ter, we will introduce a synthetic IF benchmark. This benchmark provides a graded measure
to test the agent on challenges presented by text-based games namely large action space,
combinatorial state space, partial observability, and reward sparsity. Finally, we will dis-
cuss various ablation studies that investigate the effectiveness of the score contextualisation
and action gating in various settings. The section on ablation studies, i.e., “Empirical Anal-
ysis” has appeared in a peer-reviewed conference [JFL`20]. It has been lightly modified to
include more figures and analysis.

5.1 A Synthetic IF Benchmark

Both score contextualisation and action gating are tailored to domains that exhibit the struc-
ture typical of IF. To assess how useful these methods are, we will make use of a synthetic
benchmark based on the TextWorld framework [CKY`18]. TextWorld provides a reinforce-
ment learning interface to text-based games along with an environment specification lan-
guage for designing new environments. Environments provide a set of locations, or rooms,
objects that can be picked up and carried between locations, and a reward function based on
interacting with these objects. Following the genre, special key objects are used to access
parts of the environment.

Our benchmark provides seven environments of increasing complexity, which we call
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5.1 A Synthetic IF Benchmark

Table 5.1: Main characteristics of each level in our synthetic benchmark.

LEVEL # ROOMS # OBJECTS # SUB-TASKS |A|

1 4 2 2 8
2 7 4 3 15
3 7 4 3 15
4 9 8 4 50
5 11 15 5 141
6 12 20 6 283
7 12 20 7 295

levels. We control complexity by adding new rooms and/or objects to each successive level.
Each level also requires the agent to complete a number of subtasks (Table 5.1), most of
which involve carrying one or more items to a particular location. The reward is provided
only when the agent completes one of these subtasks. Thematically, each level involves
collecting food items to make a salad, inspired by the first TextWorld competition. Example
objects include an apple and a head of lettuce, while example actions include get apple

and slice lettuce with knife. Accordingly, we call our benchmark SaladWorld.
For possible scores and subtasks information for each level of the suite, see Table 5.2.

5.1.1 Why Introduce a Benchmark?

Rather than introducing a difficult game, we introduce a benchmark since it gives us an
opportunity to test whether our ideas of score contextualisation and action gating hold
across the varying levels of complexity in the suite. It should be noted, in this work, we
don’t intend to solve all the levels. In the following subsections, we describe the challenges
that the suite presents.

Large Action Space

In IF, there are multiple ways to interact with an object given a context. One of these in-
teractions could be directly using the portable object (e.g. eat lettuce) and another
could be using it in conjunction with another object (in most cases stationary) e.g. put
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5.1 A Synthetic IF Benchmark

lettuce on counter. As seen in Table 5.1, this results in many possible potential
commands for the more complex levels in the suite when the number of objects (both
portable and stationary) increases, making gameplay difficult. In fact, the action space be-
comes combinatorial as the number of object increases. To simplify the settings here a bit,
we constrain the action set by limiting the possible interactions. Still, there is a noticeable
increase in the action set as the level increases.

Combinatorial State Space

In a text-based game, the agent could transport a portable object from one room to another,
changing the environment state. This agent behavior results in it encountering combina-
torial possibilities of room-object combinations when the number of objects and rooms
increases in the later levels of the suite, hence the issue of combinatorial state space. Not
only this, but the state of an environment could also change even when the agent uses a
portable object in conjunction with another object (e.g. putting the lettuce on the counter
in kitchen changes the state of the kitchen, hence changing the environment state).

Partial Observability and Sparse Rewards

Completing each subtask requires memory of what has previously been accomplished,
along with where different objects are. Together with this, each level in the SaladWorld
involves some amount of history-dependent admissibility i.e the admissibility of the action
depends on the history rather than the state. For example, put lettuce on counter

can only be accomplished once take lettuce (in a different room) has happened. Re-
garding reward sparsity in text-based games, each subtask usually involves 10-20 steps in
the case when the agent acts optimally. Moreover, with each successive level, the reward to
complete additional subtask becomes sparser.

Finally, with successive levels, as demonstrated the action set size increases and state-
space becomes combinatorially large. This implies that the same quest in Level i is tougher
to solve than in Level j where i ą j due to the increased difficulty in exploring state
space as well as action space. Moreover, as the number of sub-tasks and their complexity
increases, the higher levels become more difficult to solve. This requires better exploration
strategies both in action space as well as state space.
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5.1 A Synthetic IF Benchmark

Table 5.2: Subtasks information and scores possible for each level of the suite.

Level Subtasks Possible
scores

1 Following subtasks with reward and fulfilling condition:

‚ 10 points when the agent first enters the vegetable market.

‚ 5 points when the agent gets lettuce from the vegetable mar-
ket and puts lettuce on the counter.

10, 15

2 All subtasks from previous level plus this subtask:

‚ 5 points when the agent takes the blue key from open space,
opens the blue door, gets tomato from the supermarket and
puts it on the counter in the kitchen.

5, 10, 15,
20

3 All subtasks from level 1 plus this subtask:

‚ 5 points when the agent takes the blue key from open space,
goes to the garden, opens the blue door with the blue key,
gets tomato from the supermarket and puts it on the counter
in the kitchen.

Remark: Level 3 game differs from Level 2 game in terms of
number of steps required to complete the additional sub-task
(which is greater in case of Level 3)

5, 10, 15,
20

4 All subtasks from previous level plus this subtask:

‚ 5 points when the agent takes parsley from the backyard
and knife from the cutlery shop to the kitchen, puts parsley
into fridge and knife on the counter.

5, 10, 15,
20, 25

Continued on next page
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5.2 Empirical Analysis

Table 5.2 – Continued from previous page

Level Subtasks Possible
scores

5 All subtasks from previous level plus this subtask:

‚ 5 points when the agent goes to fruit shop, takes chest key,
opens container with chest key, takes the banana from the
chest and puts it into the fridge in the kitchen.

5, 10, 15,
20, 25, 30

6 All subtasks from previous level plus this subtask:

‚ 5 points when the agent takes the red key from the super-
market, goes to the playroom, opens the red door with the
red key, gets the apple from cookhouse and puts it into the
fridge in the kitchen.

5, 10, 15,
20, 25, 30,
35

7 All subtasks from previous level plus this subtask:

‚ 5 points when the agent prepares the meal.

5, 10, 15,
20, 25, 30,
35, 40

5.2 Empirical Analysis

In the first set of experiments, we use SaladWorld to establish that both score contex-
tualisation and action gating provide positive benefits in the context of IF domain. We
then validate these findings on the celebrated text-based game ZORK used in prior works
[FRMW17, ZHM`18]. The second set of experiments investigates the effect of prioritiza-
tion and infrequent LOOK during the training. In our work, training is done using a balanced
form of prioritized replay (see Section) which we found improves baseline performance on
ZORK appreciably. We also find that, for simplifying the exploration problem, our agent
that takes a forced LOOK action every 20 steps performs better than the one that doesn’t.

Our baseline agent is the LSTM-DRQN agent [YCS`18] but with a different action rep-
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5.2 Empirical Analysis

resentation. We augment this baseline with either or both score contextualisation and action
gating and observe the resulting effect on agent performance in SaladWorld. We measure
this performance as the fraction of subtasks completed during an episode, averaged over
time. In all cases, our results are generated from 5 independent trials of each condition. To
smooth the results, we use the moving average with a window of 20,000 training steps. The
graphs and the histograms report average ˘ std. deviation across the trials.

5.2.1 Hyper-parameters

Training hyper-parameters: For all the experiments unless specified, γ “ 0.9. Weights
for the learning agents are updated every 4 steps. Score contextualisation uses K “ 5

network heads; the baseline corresponds to K “ 1. Parameters of score contextualisation
architecture are learned end to end with Adam optimiser [KB15] with learning rate α “
0.001. To prevent imprecise updates for the initial states in the transition sequence due
to in-sufficient history, we use the updating mechanism proposed by Lample and Chaplot
[LC17]. In this mechanism, considering the transition sequence of length l, o1, o2, . . . , ol,
errors from o1, o2, . . . , on aren’t back-propagated through the network. In our case, the
sequence length l “ 15 and minimum history size for a state to be updated n “ 6 for
all experiments. Score contextualisation heads are trained to minimize the Q-learning loss
over the whole transition sequence. On the other hand, ΦC minimizes the BCE (binary
cross-entropy) loss over the predicted admissibility probability and the actual admissibility
signal for every transition in the transition sequence. The behavior policy during training
is ε´greedy over the admissible set Ât. Each episode lasts for a maximum of T steps. For
Level 1 game, we anneal ε “ 1 to 0.1 over 1000000 steps and T “ 100. For rest of the
games in the suite, we anneal ε “ 1 to 0.1 over 1000000 steps and T “ 200. To simplify
exploration, our agent further takes a forced LOOK action every 20 steps.

Architecture hyper-parameters: In representation generator ΦR, word embedding
size is 20 and the number of hidden units in encoder LSTM is 64. For a network head
k, the number of hidden units in context LSTM is 512; action scorer ΦApkq is a two-layer
MLP: sizes of the first and second layer are 128 and |A| respectively. Auxilliary classifier
ΦC has the same configuration as ΦApkq.
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Figure 5.1: Fraction of tasks solved by each method at the end of training for 1.3 million
steps. The tabular agents, which do not take history into account, perform quite poorly. LI
stands for “look, inventory” (see text for details).

5.2.2 Score Contextualisation

Learning Curves With and Without Oracle Gating (Level 1)
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Figure 5.2: Comparing whether score contextualisation as an architecture provides a useful
representation for learning to act optimally. Column 1 and 2 correspond to Level 1 and 2
respectively.

We first consider the effect of score contextualisation on our agents’ ability to complete
tasks in SaladWorld. We ask,

Does score contextualisation mitigate the negative effects of partial observ-
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5.2 Empirical Analysis

ability?

We begin in a simplified setting where the agent knows the admissible set At. We call this
setting oracle gating. This setting lets us focus on the impact of contextualisation alone. We
compare our score contextualisation (SC) to the baseline and also to two “tabular” agents.
The first tabular agent treats the most recent feedback as a state, and hashes each unique
description-action pair to a Q-value. This results in a memoryless scheme that ignores
partial observability. The second tabular agent performs the information-gathering actions
LOOK and INVENTORY to construct its state description, and also hashes these to unique
Q-values. Accordingly, we call this the “LI-tabular” agent. This latter scheme has proved to
be a successful heuristic in the design of IF agents [FRMW17], but can be problematic in
domains where taking information-gathering actions can have negative consequences (as
is the case in ZORK).

Figure 5.1 shows the performance of the four methods across SaladWorld levels, after
1.3 million training steps. We observe that the tabular agents’ performance suffers as soon
as there are multiple subtasks, as expected. The baseline agent performs well up to the third
level, but then shows significantly reduced performance. We hypothesize that this occurs
because the baseline agent must estimate the hidden state from longer history sequences
and effectively learn an implicit contextualisation. Beyond the fourth level, the performance
of all agents suffers, suggesting the need for a better exploration strategy, for example using
expert data [TZC`19].

We find that score contextualisation performs better than the baseline when the admissi-
ble set is unknown. Figure 5.2 compares learning curves of the SC and baseline agents with
oracle gating and using the full action set, respectively, in the simplest of levels (Level 1
and 2). We find that score contextualisation can learn to solve these levels even without ac-
cess to At, whereas the baseline cannot. Our results also show that oracle gating simplifies
the problem, and illustrate the value in handling inadmissible actions differently.

We hypothesize that score contextualisation results in a simpler learning problem in
which the agent can more easily learn to distinguish which actions are relevant to the task
and hence facilitate credit assignment. Our result indicates that it might be unreasonable to
expect contextualisation to arise naturally (or easily) in partially observable domains with
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5.2 Empirical Analysis

large action sets. We conclude that score contextualisation mitigates the negative effects of
partial observability.
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Figure 5.3: Fraction of tasks solved by each method at the end of training for 1.3 million
steps. Except in Level 1, action gating by itself does not improve end performance.
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No gatingDropout
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No gating
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Figure 5.4: Effectiveness of action gating with score contextualisation in Level 3. Of the
three methods, masking performs best.

5.2.3 Score Contextualisation with Learned Action Gating

The previous experiment (in particular, Figure 5.2) shows the value of restricting action
selection to admissible actions. With the goal in mind of designing an agent that can operate
from feedback alone, we now ask:
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Can an agent learn more efficiently when given bandit feedback about the ad-

missibility of its chosen actions?

We address this question by comparing our three action gating mechanisms. As discussed
in Section 4.1.2, the output of the auxiliary classifier describes our estimate of an action’s
admissibility for a given history.

As an initial point of comparison, we tested the performance of the baseline agent when
using the auxiliary classifier’s output to gate actions. For the masking method, we selected
c “ 0.001 from a larger initial parameter sweep. The results are summarized in Figure
5.3. While action gating alone provides some benefits in the first level, performance is
equivalent for the rest of the levels.

However, when combined with score contextualisation (see Fig 5.4, 5.5), we observe
some performance gains. In Level 3 in particular, we almost recover the performance of
the SC agent with oracle gating. From our results, we conclude that masking with the right
threshold works best, but leave as an open question whether the other action gating schemes
can be improved.

Figure 5.6 shows the final comparison between the baseline LSTM-DRQN and our new
agent architecture which incorporates action gating and score contextualisation (see Figure
5.7). Our results show that the augmented method significantly outperforms the baseline,
and is able to handle more complex IF domains. From level 4 onwards, the learning curves
in the appendix show that combining score contextualisation with masking results in faster
learning, even though final performance is unchanged. We posit that better exploration
schemes are required for further progress in SaladWorld.

5.2.4 ZORK

As a final experiment, we evaluate our agent architecture on the IF ZORK I, the first in-
stallment of the popular trilogy. ZORK provides an interesting point of comparison for our
methods, as it is designed by and for humans – following the ontology of Bellemare et al.
[BNVB13], it is a domain which is both interesting and independent. Our main objective is
to compare the different methods studied with Zahavy et al.’s AE-DQN agent [ZHM`18].
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Figure 5.5: Fraction of tasks solved by each method at the end of training for 1.3 million
steps. For first 3 levels, SC + Masking is better or equivalent to SC. For levels 4 and beyond,
better exploration strategies are required.
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Figure 5.6: Score contextualisation and masking compared to the baseline agent. We show
the fraction of tasks solved by each method at the end of training for 1.3 million steps.
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Figure 5.7: Learning curves for Score contextualisation (SC : red), Score contextualisation
+ Masking (SC + Masking : blue) and Baseline (grey) for all the levels of the SaladWorld.
For the simpler levels, i.e., level 1 and 2, SC and SC + Masking perform better than Base-
line. With difficult level 3, only SC + Masking solves the game. For levels 4 and beyond,
we posit that better exploration strategies are required.
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SC

Baseline

SC + Masking

Figure 5.8: Learning curves for different agents in ZORK.

Following their experimental setup, we take γ “ 0.8 and train for 2 million steps. All
agents use the smaller action set (131 actions). Unlike AE-DQN, however, our agent does
not use information-gathering actions (LOOK and INVENTORY) to establish the state.

Figure 5.8 shows the corresponding learning curves. Despite operating in a harder
regime than AE-DQN, the score contextualizing agent reaches a score comparable to AE-
DQN, in about half of the training steps. All agents eventually fail to pass the 35-point
benchmark, which corresponds to a particularly difficult in-game task (the “troll quest”)
which involves a timing element, and we hypothesize requires a more intelligent explo-
ration strategy.

5.2.5 Prioritised Sampling and Infrequent LOOK

Our algorithm uses prioritised sampling and executes a LOOK action every Ilook “ 20 steps.
The baseline agent LSTM-DRQN follows this algorithm. We now ask,

Does prioritised sampling and an infrequent LOOK play a significant role in
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Baseline Ablation Study (Zork)

Baseline

No look

No priority 

Figure 5.9: Learning curves for baseline ablation study.

the baseline’s performance?

For this experiment, we compare the Baseline to two agents. The first agent is the Baseline
without prioritized sampling and the second is the one without an infrequent look. Accord-
ingly, we call them “No-priority (NP)" and “No-LOOK (NL)" respectively. We use ZORK

as the testing domain.

From Fig 5.9, we observe that the Baseline performs better than the NP agent. This
is because prioritized sampling helps the baseline agent to choose the episodes in which
rewards are received in, thus assigning credit to the relevant states faster and overall better
learning. In the same figure, the Baseline performs slightly better than the NL agent. We
hypothesize that even though LOOK command is executed infrequently, it helps the agent
in exploration and do credit assignment better.
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6
Final Conclusion and Future Work

In this work, we introduced two algorithmic improvements for deep reinforcement learning
applied to interactive fiction (IF). While naturally rooted in IF, we believe our ideas extend
more generally to partially observable domains and large discrete action spaces. Our results
on the synthetic domain SaladWorld and the IF domain ZORK shows the usefulness of these
improvements.

Future research should focus on developing better exploration strategies that can help
progress further in more difficult levels of the SaladWorld. It would be interesting to see
how the existing exploration methods fare in the IF domains. One could start with adapting
easier exploration methods such as pseudo-counts [BSO`16] to these domains. Since IF
domains exhibit partial observability, the newer exploration methods developed might be
transferable to other partially observable domains.

In future, using state of the art language models such as transformers [VSP`17] should
help with the issue of representation learning. Going forward, we believe better contextual-
isation mechanisms should yield further gains. In ZORK, in particular, we hypothesize that
going beyond the 35-point limit will require more tightly coupling exploration with repre-
sentation learning – in our case, score contextualisation. An interesting avenue for future
research could be developing a language model particularly suited to IF. This makes sense
since the language pertinent to IF is a small subset of the English language. Furthermore,
this language model could be fine-tuned when the agent interacts with the IF domains.
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Final Conclusion and Future Work

Another interesting direction could be using hierarchical reinforcement learning. Text-
based games fit as a natural domain for testing hierarchical reinforcement learning ap-
proaches since a text-based game could be broken down into subtasks; each subtask re-
quiring usage of different skill. In games that have a similar theme for instance cooking,
learning a skill such as taking an object or cutting an object while training becomes useful
because during the test time, agent is able to solve an unseen game faster. This means that
learning these skills is a key to achieve generalization in text-based games.
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