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Abstract 

A numerical investigation of heat conduction and laminar natural convection in ice-water 

systems containing porous metal foams, undertaken in the context of computationally 

convenient two-dimensional steady-state problems, is presented in this thesis. The overall 

goals of this work are to provide improvements to available cost-effective mathematical 

models of these phenomena, solve these models numerically, and investigate the influence of 

the porous metal foam on fluid flow and heat transfer in ice-water systems. The long-term 

goal (and the motivation for this work) is to contribute to the development of mathematical 

models and numerical solution methods for simulations of enhanced ice-water seasonal cold-

storage systems. 

The proposed mathematical models are based on the local volume-averaging method. A 

Darcy-Brinkman-Forchheimer model is used for the momentum equations. For the heat 

transfer, volume-averaged equations governing two intrinsic phase-average temperature 

fields are used: one for the metal foam and the other for the water (solid or liquid). The 

following improvements to available two-temperature models are proposed: novel 

expressions for the interfacial heat transfer coefficient in both the conduction and convection 

regimes; and modified effective thermal conductivity models that provide consistency 

between predictions of one-temperature and two-temperature models in the limit of local 

thermal equilibrium. 

A well-established fixed-grid, co-located, finite volume method (FVM) is adapted for the 

numerical solution of the aforementioned mathematical models. All of the computer 

simulations are done with rectangular calculation domains, cooled and heated on the opposite 

side walls, and the adiabatic condition is imposed on the top and bottom walls. 

The FVM is first validated by the comparing the predicted results to experimental data for 

steady-state conduction and laminar natural convection in square enclosures containing pure 

liquid water and ice-water systems (no foam), with temperatures spanning the density 

inversion point of water. The problem involving natural convection in pure liquid water is 

solved using a variable-property model (VPM) and also a constant-property model (CPM), 

with the constant fluid properties evaluated at several reference (or average) temperatures, 
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and the reference (or average) temperature that yields the lowest differences between the 

results obtained with the VPM and CPM is determined. 

The FVM is then used to predict laminar natural convection flow fields and average heat 

transfer rates at the walls in square horizontal enclosures containing liquid water and 

aluminum foam. The left wall-temperature is fixed at 0 C while the right-wall temperature is 

assigned two different values above the density inversion temperature of water. The effect of 

changes in the dimensions of the enclosure is investigated with no foam and the results are 

compared to those of simulations with five different foams. The effects of thermal dispersion 

and of the Forchheimer drag term on the computed heat transfer rates are quantified. 

Finally, a demonstration problem involving conduction and laminar natural convection in 

ice-water-metal-foam systems is investigated, for a representative porous foam made of 

aluminum, and other parameters in ranges relevant to seasonal cold-storage applications. The 

rectangular enclosure is maintained in a vertical position with respect to the gravitational 

acceleration vector. Its width in the horizontal direction is 10 cm, its height is varied between 

10 to 50 cm, and the imposed cold and hot wall temperatures are -20°C and 20°C, 

respectively. The computed streamlines, water-ice interface positions, and wall heat transfer 

rates are compared to the corresponding results obtained with open domains (no foam). The 

influence of the aspect ratio of the enclosure is also investigated and the results are presented. 
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Résumé 

Une étude numérique portant sur la conduction thermique et la convection naturelle laminaire 

dans des systèmes glace-eau contenant des mousses métalliques poreuses est présentée dans 

cette thèse. Elle est réalisée grâce à la résolution de problèmes bidimensionnels et 

stationnaires. Les objectifs principaux de cette étude sont d’améliorer les modèles existants 

pour ces phénomènes et de les résoudre numériquement afin d’examiner l’influence de 

l’ajout de  mousse métallique sur les écoulements et les transferts thermiques dans les 

systèmes glace-eau. L’objectif à long terme ayant motivé cette étude est de contribuer au 

développement de modèles mathématiques et méthodes numériques capables de simuler des 

systèmes glace-eau optimisés pour le stockage saisonnier de froid. 

Les modèles mathématiques proposés sont basés sur la méthode de moyenne sur volume 

représentatif. Un modèle type Darcy-Brinkman-Forchheimer est utilisé pour les équations 

d’écoulement fluide. Pour les équations gouvernant le transfert de chaleur, on considère deux 

champs de température moyennés sur chacune des phases : un pour la mousse métallique et 

un autre pour l’eau (solide ou liquide). Les améliorations suivantes sont proposées pour les 

expressions semi-empiriques données aux paramètres de ces équations: de nouvelles 

expressions pour le coefficient de transfert thermique entre les phases sont développées, à la 

fois dans le régime de pure conduction thermique et dans le régime de convection; des 

modifications sont apportées aux modèles de conductivité effective afin d’assurer la 

cohérence des modèles considérant un seul champ de température et ceux en considérant 

deux. 

Une méthode de type volume fini (FVM dans le texte) à grille fixe est adaptée et toutes les 

simulations sont réalisées sur des domaines rectangulaires. Les parois de droite et de gauche 

sont respectivement chauffées et refroidies et celles du haut et du bas sont adiabatiques. 

La méthode numérique est tout d’abord validée grâce à une comparaison à des résultats 

expérimentaux de convection naturelle laminaire dans des cavités carrées contenant de l’eau 

liquide et des systèmes glace-eau (pas de mousse de métal), dans des conditions 

stationnaires. Les températures des parois sont choisies de part et d’autre de la température 

de densité maximale de l’eau. Le problème est simulé avec un modèle à propriétés variables 
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(VPM) et un modèle à propriétés constantes (CPM). Les propriétés sont évaluées à plusieurs 

températures de référence, et celle qui implique la plus faible différence entre le VPM et le 

CPM est déterminée. 

Le code est ensuite utilisé pour prévoir les champs de vitesse liés à la convection naturelle 

laminaire et le transfert thermique moyen depuis les parois de cavités carrées horizontales 

contenant de l’eau liquide et de la mousse d’aluminium. La température de la paroi de gauche 

est fixée à 0 C tandis que celle de la paroi de droite prend deux valeurs différentes. 

L’influence des dimensions de la cavité est examinée en l’absence de mousse métallique et 

les résultats  sont comparés à ceux obtenus avec cinq mousses différentes. Les effets de la 

dispersion thermique et du terme de traînée de Forchheimer sont quantifiés.  

Enfin, un problème de démonstration est simulé. La conduction thermique et convection 

naturelle laminaire dans des systèmes glace-eau-mousse-métallique est étudiée avec une 

mousse d’aluminium typique, les autres paramètres étant choisis pour correspondre à des 

situations de stockage saisonnier de froid. La cavité rectangulaire est verticale, sa longueur 

fixée à 10 cm, sa hauteur comprise entre 10 et 50 cm et les parois froides et chaudes sont 

maintenues à -20°C et 20°C respectivement. Les résultats des simulations en termes de lignes 

de courant, positions de l’interface glace-eau et flux thermiques depuis les murs sont 

comparés aux résultats de simulations sans mousse métallique. L’influence du rapport 

d’aspect de la cavité est aussi examinée et les résultats sont présentés. 
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Nomenclature 

        AR  Aspect ratio of the enclosure 

                     ,P NBa a   Coefficients in the discretized equation for   

     sfa   Foam specific area 

               
DC

   
Thermal dispersion coefficient 

                Pc   Specific heat at constant pressure 

       df  Fiber diameter 

       dp  Pore diameter 

        Da  Darcy number 

        f             Forchheimer coefficient 

                 g   Magnitude of the gravitational acceleration 

             
fdGr   Local Grashof number based on the fiber diameter 

                             h   Surface heat transfer coefficient 

   ,i lh h   Ice and water interfacial heat transfer coefficients 

   wallh   Average heat transfer coefficient at the walls (left or right) 

                    ,x yH H   Cavity dimensions in the x and y directions 

                 k   Thermal conductivity 

      Dk   Thermal dispersion thermal conductivity 

        ,
i leff effk k   Total effective conductivities 

          ,si slk k   Coupled effective conductivities 

     , ,ss ll iik k k                Solid (foam), liquid water and ice effective conductivities 

                 K             Permeability 

           wallNu   Average wall Nusselt number 

             Nusf  Interfacial Nusselt number 

                 p   Static pressure 

                 P   Reduced pressure 

                            Pr   Prandtl number 

      Ra  Modified Rayleigh number 

            Re
fd
             Local Reynolds number based on the fiber diameter 

             ReK              Permeability Reynolds number 

 Su, Sv, SE, ST  Source terms 

                 T   Temperature 

                 ,C HT T   Cold (left) and Hot (right) wall temperatures 

           meltT   Melting temperature tolerance 

               *

mT
   

Density inversion parameter 

       u   Darcy velocity 

                 u   Velocity component in x-direction 

       v   Velocity component in y-direction 



x 

 

      x,y  Cartesian coordinate axes 

           Porosity 

           
, , ,u v P T      Under-relaxation factors 

          Diffusion coefficient for variable   

          Enclosure inclination angle 

       
    Second coefficient of viscosity 

          Dynamic viscosity 

          Density 

          Dependent variable 

 

Subscripts 
                              0  constant property

                              i  ice

                              l  liquid water

                             m  maximum (refers to the maximum density of water) 

 melt  pertaining to melting temperature of ice (0 
o
C in this work) 

                              s  solid (refers to the foam) 

                             w  water (could be liquid water or ice) 
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 Chapter 1: Introduction 

1.1 Motivation, overall goals and background 

This thesis is an endeavor of the author, in collaboration with his supervisor, to contribute 

to ongoing worldwide efforts to develop and implement enhanced thermal energy storage 

systems. The overall goals of this work are to provide improvements to cost-effective 

mathematical models of fluid flow and heat transfer in ice/water systems containing 

porous metal foams, solve these models numerically, and investigate the influence of this 

additional porous structure on steady-state conduction and laminar natural convection. 

Thermal energy storage (TES) has been an active area of research over the last 50 years 

mainly because it is useful for enhancing the efficiency of energy-conversion and 

heating/cooling systems, by matching energy (or cold) supply and demand during 

summer-winter, day-night, and peak-off-peak periods. TES systems are divided into two 

main categories: sensible systems, in which energy is stored by changing the temperature 

of a suitable material; and latent-heat systems, in which change of phase of a suitable 

material is used to store energy. The materials used in latent-heat systems are called 

phase-change materials (PCMs), and gas-liquid, solid-gas, or solid-liquid phase-change 

processes may be involved. Solid-liquid latent-heat TES systems are particularly 

attractive since they provide a high energy storage density compared to sensible TES, and 

the mass density change of the PCM during the phase-change process is not overly large. 

For example, the latent heat of fusion of a mass pure water (a popular PCM for so-called 

“cold storage”) is approximately equal to the energy necessary to raise the temperature of 

an equivalent mass of this substance from 0°C to 80°C; and the change in density of pure 

ice to pure water at 0 °C is about 10%. Furthermore, the phase-change process for a PCM 

in a latent-heat TES system takes place at an essentially constant temperature (the 

melting point), as the related variations in pressure are usually insignificant, so the 

overall temperature swings during the charging (storage) and discharging (harvesting) 

periods are relative small compared to those in sensible systems. 
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Several reviews of latent-heat TES systems and the PCMs used in these systems were 

written in the last decade. Zalba et al. (2003) gave an overview of different PCMs and 

their applications. Farid et al. (2004) and Sharma et al. (2009) provided useful reviews of 

such systems. In the reviews prepared by Khudhair and Farid (2004), Zhang et al. 

(2006,2007) and Pasupathy et al. (2008) the focus is on applications of latent-heat TES 

systems for buildings, and Jegadheeswaran and Pohekar (2009) have reviewed the 

methods that are used to improve the performance of such systems. Saito (2002) focused 

on cold storage in his review.  

Heat and cold storage can be classified as either seasonal (long-term) or daily (short-

term; diurnal). The charging (storage) and discharging (harvesting) periods in seasonal 

and daily TES systems are typically of the order of half-year and half-day, respectively. 

Daily TES is the most widely used and investigated, but there are also a few examples of 

seasonal TES in the literature. Özturk (2004) tested seasonal latent-heat TES with 

paraffin wax as a PCM, for a full-size greenhouse. He concluded that such systems were 

viable, but proper modeling of the charging and discharging processes was crucial for 

optimizing them. The work reported in this thesis is relevant for designs of both seasonal 

and daily latent-heat TES systems. 

The choice of the PCM used in a latent-heat TES system depends on the application. 

Abhat (1983) is the first author to provide a classification of PCMs for such systems. He 

studied PCMs with melting points ranging from 0°C to 120°C, and grouped them in the 

following categories: paraffins, fatty acids, inorganic salt hydrates, and eutectic 

compounds. The key considerations in the choice of a PCM for a particular application 

are its melting temperature, heat of fusion, thermal conductivity, and mass density. Zalba 

et al. (2003) provided a summary of these characteristics for some organic and inorganic 

PCMs which have been studied by different researchers for their potential use in TES 

systems. Commercially available paraffins are widely used in TES systems for solar 

energy: they melt at temperatures between 9°C and 112°C [Zalba et al. (2003)], and the 

stored thermal energy can be used for space heating in buildings. Papers on this class of 

materials include those by Hong and Xin-shi (2000) and Sari (2004). PCMs to be used for 

so-called cold storage need to have a melting point below the ambient air temperature. 
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Examples of such PCMs are salt solutions and pure water. As pointed out in ASHRAE 

Handbook, HVAC Applications (2007), water is the most common PCM used for cooling 

applications of latent-heat TES systems. Ice-water TES systems are attractive because 

they are reliable, safe and inexpensive, and have a relatively high latent heat of fusion 

(333 kJ/kg [Zalba et al. (2003)]). The practice of seasonal storage of ice has been around 

for over two thousand years, dating back to 400 BC in Iran. Until recently, the Hungarian 

parliament building in Budapest was cooled in the summer using ice harvested in the 

winter. 

In latent-heat TES systems, containment has a strong influence on the heat transfer rate 

from and to the PCM. As described by Khudhair et al. (2004), three main methods are 

used in building applications: incorporation, impregnation, and encapsulation. Regin et 

al. (2008) wrote a useful review on the heat transfer characteristics of encapsulated 

PCMs. There are many advantages of microencapsulating PCMs, such as increasing the 

heat transfer area, eliminating adverse interactions with the outside environment 

(corrosion for example), and controlling PCM volume expansion. But the price of 

encapsulation makes it undesirable in the context of the present study, in which the focus 

is on models and methods relevant to inexpensive, and yet efficient, latent-heat systems 

for cold storage, with applications to residential and small commercial buildings. 

Additional information on microencapsulated PCMs is available in reviews written by 

Hawlader et al. (2003) and Alkan et al. (2009). 

As was stated earlier, the underlying concept of latent-heat ice-water TES systems for 

seasonal cold storage, namely, freezing water in suitable containment vessels in the 

winter and using it for air conditioning in the summer, is not new. However, novel 

approaches are needed for enhancing the effectiveness of such systems. For example, 

several techniques for increasing the effective thermal conductivities (and the rates of 

heat transfer) in such systems are being actively developed (descriptions are provided in 

the literature review, Section 1.2). One such technique involves the insertion of porous 

metal foams (akin to that shown in Fig. 1.1) in ice-water systems, for obtaining 

significant increases in the effective thermal conductivity of both the liquid water and ice, 

with only small (less than 10%) reductions in their energy density. Optimal thermal 



4 

 

  

designs of such ice-water-porous-metal-foam systems for cold storage can be obtained 

using numerical solutions of available cost-effective mathematical models of the related 

fluid flow and heat transfer phenomena. 

 

Figure 1.1: Photomicrograph of a porous aluminum foam with ten pores per inch [Tadrist et al. 

(2004)] 

The above-mentioned cost-effective mathematical models of fluid flow and heat transfer 

in ice-water-porous-metal-foam systems are typically based on local volume-averaging 

and two intrinsic phase-average temperature fields, one for the metal foam and the other 

for the water (solid or liquid). They require semi-empirical expressions for the 

permeability of the metal foam, Forchheimer coefficient (associated with inertial or form 

drag at the pore level), effective thermal conductivities of the metal foam and water 

(liquid or solid), dispersion thermal conductivity, pore-level interfacial heat transfer 

coefficient, and specific interfacial area. The calculation domain geometry and boundary 

conditions, porosity and pore size of the metal foam, and properties of the metal, ice, and 

liquid water are provided as inputs to these models. In the work reported in this thesis, the 

applicability of such models to heat conduction and laminar natural convection in ice-

water-porous-metal-foam systems was assessed, in the context of computationally 

convenient two-dimensional steady-state problems in rectangular enclosures akin to the 
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one depicted schematically in Fig. 1.2. Improvements to some of the aforementioned 

semi-empirical expressions were also proposed. A well-established fixed-grid finite 

volume method (FVM) was adapted for numerical solutions of the mathematical models, 

and validated using available experimental data of Elkouh (1996) for steady-state 

conduction and laminar natural convection in pure ice-water systems.  

 

Figure 1.2: Steady-state two-dimensional conduction and laminar natural convection heat transfer in 

an ice-water-porous-metal-foam system contained in a rectangular enclosure; schematic 

representation of the calculation domain and boundary conditions used in the numerical simulations. 
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1.2 Literature review 

This section is not intended to be an exhaustive review of the numerous publications on 

the various areas of interest in this work. Rather, the objectives here are to concisely 

review some of the key publications directly relevant to this project and provide the 

interested reader with references to several reviews, textbooks, and handbooks on the 

areas of interest. This section is divided into three main parts: latent-heat TES using ice-

water systems; mathematical models of fluid flow, heat transfer, and solid-liquid phase-

change phenomena in porous metal foams; and notes on some key textbooks and 

handbooks. 

1.2.1 Latent-heat thermal energy storage using ice-water systems 

Latent-heat solid-liquid TES systems that use water as the PCM are promising, but they 

have some limitations that have prevented them from being widely used. The methods to 

overcome these limitations, and some of the research and development works for 

overcoming them, are discussed in this section. 

Heat transfer enhancement techniques 

Most solid-liquid PCMs used in latent-heat TES systems have relatively low thermal 

conductivity ( 5 W/m.K , [Zalba et al. (2003)]). Several techniques have been proposed 

to increase the effective thermal conductivity, heat transfer rates, compactness, and 

efficiency of such systems. The most up-to-date and thorough review of such techniques, 

and their advantages and drawbacks, is the one by Jegadheeswaran and Pohekar (2009).  

Two techniques on which researchers have been mostly focusing in the last decade are 

the addition of metal or graphite fibers to the PCM, and the use of porous metal foams 

embedded within the PCM. For useful references on classical techniques such as finned 

tubes, the reader is referred to the works of Velraj et al. (1999) and Jegadheeswaran and 

Pohekar (2009).  
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Fukai et al. (2002) studied composites of carbon brushes and n-octadecane, placed around 

heat exchanger tubes in a fin-type anisotropic configuration. The transient thermal 

responses of the composites were measured for different fiber diameters and 

concentrations. The authors also developed a numerical model that takes account of the 

anisotropy of the medium. It gave good predictions of the experimental results and 

allowed them to derive a critical diameter above which further improvement is not 

possible, due to thermal resistance between the brushes and the tube surface. With a 

properly chosen diameter, for a carbon-brushes volume fraction of just 1%, the effective 

thermal conductivity was increased by a factor of five (compared to that of just the 

PCM). 

Xiao et al. (2002) formed a composite paraffin (styrene-butadiene-styrene) PCM with 

graphite as the agent for enhancing the effective conductivity. They also incorporated 

thermoelastic elastomers, which provided shape-stability to commercially available 

paraffin. This innovative material exhibited the same phase-transition characteristics as 

paraffin and 80% of its latent heat of fusion, while the effective thermal conductivity was 

significantly increased. Mettawee and Assassa (2007) enhanced the thermal conductivity 

of a paraffin wax by adding to it a small mass fraction (about 0.5%) of aluminum powder. 

They compared the progress of the melting surface (front) in both the composite 

compound and the pure paraffin, as part of a PCM solar thermal collector, and found 

significant differences. They also found that with the composite compound, the charging 

time was reduced by approximately 60%. 

Frusteri et al. (2005) studied another simple configuration, in which carbon fibers were 

randomly mixed with a PCM (inorganic PCM44, a eutectic mixture). They measured the 

effective thermal conductivity of the composites and found that it could be approximated 

by a linear function of the fiber weight fraction, for up to 10% mass fraction. With 7% 

weight fraction of the micro-fibers used, the effective thermal conductivity was increased 

by a factor of about four (compared to that of just the PCM). Randomly-mixed fibers are 

much easier to use than structured brushes or foams, but this ease of use comes at the cost 

of thermal performance, because of the lack of contact between the fibers. Furthermore, it 
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is hard to avoid separation (sedimentation) of the fibers from the PCM. In the 

aforementioned experiment, the composite was shaken vigorously right before the 

experiments, a procedure which would be inapplicable or impractical in the case of 

seasonal or diurnal cold storage. 

Cabeza et al. (2002) wrote an article devoted to heat transfer enhancement techniques 

with water as the PCM. They compared three methods: addition of stainless steel pieces, 

addition of copper pieces, and use of a graphite matrix. The last technique showed the 

best results, suggesting that embedding high-conductivity porous foams is good for heat 

transfer enhancement in solid-liquid latent-heat TES systems.  

Some issues associated with the use of water as the PCM 

A significant amount of information on latent-heat TES systems that use water as the 

PCM is available in the literature. An excellent synopsis of such systems and related 

issues can be found in the ASHRAE Handbook, HVAC Applications (2007). Accurate 

mathematical models and numerical solution procedures are necessary for designing such 

systems properly, because of the particular properties of water, such as supercooling, 

density inversion at 4°C, and random character of crystallization.  

Supercooling can have drastic effects on the freezing of water [Angell (1983)]. This 

phenomenon has been reviewed by Mishima and Stanley (1998) and Debenedetti and 

Stillinger (2001). The inclusion of a structure such as porous media strongly affects this 

phenomenon, as pointed out by Warnock (1986), who used optical techniques to measure 

supercooling in a transparent porous glass.  

Supercooling in salt hydrates can be limited by mixing the PCM with other compounds 

such as nucleating agents (which prevent or limit supercooling) and thickeners (which 

ensure phase stability). These techniques were summarized in the review by Farid et al. 

(2004). For pure water, the main works on the control of supercooling were described by 

Saito et al. (1992). They pointed out that the degree of supercooling is highly dependent 

on the cooling rate, surface properties, and surface area of the container. Active methods 
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to control the initiation of freezing of supercooled water have developed over the years, 

and include application of electric fields and ultrasonic vibrations. A few authors have 

proposed approaches for including supercooling in numerical simulations of latent-heat 

TES systems, and a general adaptive solution algorithm has been proposed by Günther et 

al. (2007). However, in latent-heat ice/water TES systems, the impurities found in potable 

water or intentional agitation are generally sufficient to initiate nucleation of ice crystals. 

Residual ice also prevents supercooling. Therefore, the size of ice/water TES systems 

should be chosen so that some residual ice is always present, at the end of the melting and 

start of the freezing periods. 

Corrosion can cause serious problems in latent-heat TES systems, so the compatibility of 

the PCM and the container must be carefully verified. Corrosion experiments on salt 

hydrates as the PCMs were conducted by Cabeza et al. (2001). With sodium carbonate, 

they concluded that steel and stainless steel can be used without problems, but not 

copper, aluminum, and brass. With potassium carbonate, steel, stainless steel, and 

aluminum are all suitable. When the PCM is potassium chloride, only stainless steel can 

be used for long-term TES applications. The use of steel for the construction of the 

container results in significant corrosion problems when water is used as the PCM, as in 

this project, but copper, aluminum, and brass are all fine. 

The mass density of pure water reaches its maximum value at the density inversion point, 

4°CmT  , and has an essentially parabolic variation with temperature about this point. 

An accurate expression for the variation of water density with temperature in the vicinity 

of the density inversion temperature was provided by Kukulka et al. (1987). Their 

expression was used in the work reported in this thesis. Buoyancy-driven natural 

convection in pure water at temperatures that span the density inversion point is 

significantly different, in both fluid flow and heat transfer characteristics, from that in 

fluids with densities that vary monotonically with temperature. A thorough review of the 

works done on steady-state natural convection in pure water with temperatures spanning 

the density inversion point can be found in the thesis by Elkouh (1996).  From his review 

and work, it is useful (for the purposes of the work reported in this thesis) to note the 
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following key points pertaining to natural convection in water contained in a vertical 

rectangular cavity, with one vertical wall heated and maintained at a hot temperature HT , 

the opposite vertical wall cooled and maintained at a cold temperature CT , and the top 

and bottom (horizontal) walls very well insulated (essentially adiabatic): 

 A density inversion parameter,
* ( ) / ( )m m C H CT T T T T   , plays a key role 

in the fluid flow and heat transfer process. When it is in the 0 – 1 range, 

the water along the cold wall has a negative thermal expansion coefficient 

while the water along the hot wall has a positive one. Therefore, two 

recirculating cells develop within the enclosure, with fluid flow in 

opposite directions. 

 When the density inversion parameter 
*

mT  has a value in the vicinity of 

0.5, the fluid flow is particularly sensitive to even minor changes in 

boundary conditions. The published numerical and experimental results do 

not agree well for these conditions, due to their sensitivity to intrinsic 

uncertainties in the experimental data. For a given Rayleigh number, the 

overall Nusselt number is a minimum when
* 0.5mT  . 

 There is no consensus regarding the temperature at which the 

thermophysical properties of water should be evaluated when a constant-

property model is used. Elkouh (1996) suggested a zonal temperature, 

which will be elaborated in chapters 2 and 4. 

 

1.2.2 Mathematical models of fluid flow, heat transfer, and solid-liquid phase-

change phenomena in porous metal foams 

In this section, publications on practical approaches to the mathematical modeling of 

fluid flow, heat transfer, and solid-liquid phase-change phenomena in porous metal foams 

are reviewed, along with some key publications on thermophysical properties of such 

foams. 
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Volume-averaging approach 

The most intuitive and exact approach to the modeling of flows in porous media is the 

complete local or the microscopic-scale description. In this approach, the Newtonian 

fluid flow and heat transfer in the pores of the porous medium are modeled using the 

continuity, Navier-Stokes, and energy equations, and the no-slip, impermeability, 

continuity of temperature, and continuity of heat flux conditions are applied at all fluid-

solid boundaries. This approach cannot be used in most practical problems for two main 

reasons: the computational time requirements and costs are far too large, and the exact 

description of the geometry at this scale is rarely available due to the high local 

heterogeneity of most porous structures [Nield and Bejan (2006)]. 

The most famous early contribution to practical models of flows in porous media was 

made by Darcy in 1856 [Kaviany (1999); Nield and Bejan (2006)]. In his model, which is 

now called the Darcy model, a volume-averaged velocity (the so-called superficial or 

Darcy velocity) is assumed to be proportional to gradient of the intrinsic phase-averaged 

pressure. The proportionality constant is defined via a geometric property of the porous 

media, the permeability, which is determined semi-empirically [Kaviany (1999); Nield 

and Bejan (2006)]. This Darcy model has also been derived theoretically by Whitaker 

(1999). This model holds only for low values of the superficial velocity, when the values 

of the pore-scale Reynolds number are smaller or of the order of unity [Nield and Bejan 

(2006)]. 

Over the years, the Darcy model has been progressively improved, thanks to numerous 

experimental and theoretical investigations. Many of these investigations have been 

reviewed and summarized in classical porous media textbooks, such as the ones by 

Kaviany (1999) and Nield and Bejan (2006). A thorough derivation of the volume-

averaged governing equations is available in Whitaker (1999). The following key 

improvements and modifications have been proposed: i) inclusion of the Brinkman term 

(effective diffusion term analogous to the viscous term in the Navier-Stokes equations, 

which introduces the so-called effective or Brinkman viscosity and enables the 
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imposition of the no-slip condition at solid-wall boundaries and stress-matching 

conditions at interfaces with open domains); and ii) accounting of the inertial drag (also 

called form or quadratic drag) through the inclusion of the Forchheimer term, which 

brings in a Forchheimer or form drag coefficient. The resulting generalized governing 

equations, which account for the so-called non-Darcian effects, are referred to as the 

extended Darcy-Brinkman-Forchheimer equations. There are some limitations to these 

equations, especially with non-uniform porosity or at the interface between porous and 

open domains. These limitations, as well as suitable modifications, are described in 

Kaviany (1999) and Whitaker (1999). 

With regard to convective heat transfer in porous media, practical volume-averaged 

approaches have yielded two types of models. If local thermodynamic equilibrium 

between the fluid and the solid (porous medium) can be assumed, the conditions for 

which are discussed in Kaviany (1999) and Nield and Bejan (2006), the local intrinsic 

phase-averaged temperatures of the fluid and the solid are essentially the same, and a 

single-temperature or homogeneous model is adequate. However, if the conditions 

necessary for local thermodynamic equilibrium do not apply, then two separate volume-

averaged energy equations, one for each of the intrinsic phase-averaged temperatures of 

the fluid and the solid (porous medium), must be used, leading to a two-temperature 

model. In the two-temperature model, interfacial heat transfer between the fluid and the 

solid porous medium, at the pore level, must be handled. This is usually done through a 

semi-empirically determined interfacial heat transfer coefficient and the specific area. 

Extensive experimental work has been carried out to determine these interfacial 

parameters in packed beds of spheres [Wakao et al. (1979)], but metal foams have not 

been studied in similar detail. In both the one- and two-temperature models, the volume-

averaged energy equations involve effective thermal conductivities, which depend on the 

conductivities of the porous structure and the interstitial fluid. Semi-empirical approaches 

are necessary for determining these effective thermal conductivities. The numerous 

attempts to quantify these parameters in porous media are discussed concisely in the next 

section of this literature review, with special attention to porous metal foams. 
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In the derivation of the governing equations in the above-mentioned volume-averaged 

approaches to the modeling of fluid flow and heat transfer in porous media, it is assumed 

that the pore-scale variations (over a representative elementary volume) of the properties 

of the fluid can be neglected [Whitaker (1999)]. However, to the best knowledge of the 

author, in all available publications on this topic, there is no rigorous volume-averaging 

of the terms in the Navier-Stokes and energy equations that are associated with the 

variations of mass density, dynamic viscosity, specific heat at constant pressure, and the 

thermal conductivity of the fluid. Thus, available volume-averaged models of fluid flow 

and heat transfer in porous media are essentially limited (strictly) to cases in which the 

properties of the fluid can be assumed to be constant, evaluated at a suitable reference 

temperature. In the problems of interest in this thesis (conduction and natural convection 

in ice-water systems containing porous metal foams), the proper choice of this reference 

temperature is critically important. This point is elaborated further in Chapters 2 and 4. 

Metal foams and their thermal properties 

The manufacturing techniques used for fabricating metal foams, and the difficulties in 

precisely characterizing their complex structure, have been discussed in a design guide by 

Ashby et al. (2000) and a review article by Ashby and Lu (2003). At present, most 

commercially available metal foams are made of aluminum, copper, bronze, steel, and 

nickel. Ashby et al. (2000) have presented and discussed the mechanical and thermal 

properties of a great variety of metal foams, and also provided models for predicting 

these properties. An overview of the applications (including TES and heat exchangers) in 

which these materials can be used is also presented. Banhart (2001) has also provided a 

review of metal foams, including a description of the various techniques used to 

manufacture them, and their possible applications such as acoustic control, water 

treatment, and heat exchangers. 

In cooling applications with water as the working fluid, foams with high values of 

porosity and specific interfacial surface area are used, and copper and aluminum are the 

preferred metals. Pure copper is more conductive than pure aluminum (400 W/m.K 

versus 236 W/m.K), but it is much heavier (8960 kg/m
3
 versus 2700 kg/m

3
) and more 
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expensive. Aluminum is therefore the preferred material for the porous metal foams 

investigated in this thesis, but the proposed models and solutions methods can be used 

with porous foams made of any of the other aforementioned metals. 

Calmidi (1998) and Calmidi and Mahajan (1999) have presented a model of the effective 

thermal conductivity of porous metal foams, assuming one-dimensional conduction in the 

ligaments of an array of hexagonal cells. They experimentally determined a parameter 

that is needed as an input in their model, the ratio of the radius of the fibers to that of the 

fibers intersections or bulb. It was found to be approximately 0.3. Their model was 

validated against experimental data for water-foam and air-foam combinations, with a 

porosity range of 0.9-0.98 (though it is assumed to be valid for a wider range). 

Bhattacharya et al. (2002) extended the model proposed by Calmidi and Mahajan (1999), 

the structure now presenting a six-fold rotational symmetry. The value of fibers to bulb 

radii ratio was this time determined from microscopic pictures of the foam, rather than 

from the earlier experimental correlations. They also proposed a simple empirical 

correlation, assuming that the effective thermal conductivity could be expressed as a 

weighted average of the parallel-conduction and series-conduction models of effective 

thermal conductivities [Nield and Bejan (2006)]. Jagjiwanram and Singh (2004) and 

Singh and Kasana (2004) have also developed their own semi-empirical model, using an 

approach similar to the one adopted by Bhattacharya et al. (2002). 

Boomsma and Poulikakos (2001) independently developed their own model of effective 

thermal conductivity of porous foams, using semi-empirical approaches. In their model, 

the porous structure was assumed to be composed of tetrakaidecahedrons with cubic 

nodes. The required geometrical data was obtained using experiments conducted on 

aluminum foams, successively saturated with water and air. Their model gave very 

accurate predictions, and they pointed out that in their experiments, the thermal 

conductivity of the fluid (water or air) had only little influence on the effective thermal 

conductivity of the porous structure. 

Wang and Pan (2008) developed a random-generation growth model to simulate the 

fabrication of metal foams, and used it to compute their effective thermal conductivity 
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from the solution of the microscopic (as opposed to volume-averaged) energy equations 

in two-dimensional projected microstructures. Their first model ignored radiation and 

gave rather poor results, but they improved it by including this effect. Their final model 

predicted quite well the effective conductivity of the tested foams. Their results showed 

that the effective conductivity of metal foams is much higher than that of a rock-bed 

structure of the same porosity, thanks to their net-like (connected) morphology. This 

article illustrates the possibilities offered by complex computational models of metal 

foams. In the previous works, foams were modeled as periodic repetitions of 

representative modules or portions, ignoring heterogeneities in pore size and shape.  

Bodla et al. (2010) also departed from the periodic models, proposing a precise network-

based thermal conductivity model. They considered one-dimensional conduction in the 

fibers, but numerically built up the structure from X-ray micrographs of the metal foams. 

From this representation, they could extract statistical distributions of pore and fiber 

diameters, which were then used to estimate the effective thermal conductivity of 

different types of foams.  

The papers discussed in the previous two paragraphs use the most realistic 

representations of metal foams, but no simple and general expressions for effective 

conductivity can be extracted from the works reported in them. Thus, in this work, the 

semi-empirical models described earlier in this section were assessed and compared. 

However, these semi-empirical models need to be suitably adjusted before being used, 

because in all of the cases discussed, the sum of the solid (foam) and fluid effective 

thermal conductivities (needed separately in the two-temperature model) is not equal to 

the effective thermal conductivity of the foam-fluid composite (needed in the one-

temperature model). This consistency issue is discussed in detail in Chapter 2. 
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Investigations of fluid flow and heat transfer in metal foams with no phase change 

Calmidi and Mahajan (2000) conducted experiments on forced convection in aluminum 

foams with porosities ranging from 0.89 to 0.97. They measured heat transfer rates from 

the bottom of a rectangular box filled with metal foam, subjected to a fully-developed 

transverse air flow, and an adiabatic top wall, and then compared these measurements to 

numerical results obtained with a model based on the extended Darcy-Brinkman-

Forchheimer momentum and the two-temperature energy equations. The effect of thermal 

dispersion was included, using an expression proposed by Hunt and Tien (1988). The 

interfacial heat transfer coefficient was estimated by adapting the classical correlation of 

Zukauskas (1987) for forced convection from single cylinders in uniform cross-flow. The 

dimensionless coefficients involved in the aforementioned correlations were adjusted 

using the experimental data. They obtained very good agreement between the 

experimental and numerical results, which validated these choices. However, their 

parameters and correlations could not be directly used in the work reported in this thesis, 

since the velocities encountered in forced convection are significantly greater than those 

involved in natural convection. 

Phanikumar and Mahajan (2002) numerically studied natural convection in an enclosure 

heated from below, with metal foam in a corner. They used a model based on the Darcy-

Brinkman momentum equations and the two-temperature energy equations. Their results 

were validated using data from experiments with different foam-fluid combinations, 

including aluminum-air and aluminum-water (away from the density-inversion 

temperature of water), and several different foam structures. They also used the 

Zukauskas (1987) correlation, for forced convection from cylinders in uniform cross-

flow, to estimate the interfacial heat transfer coefficient between the solid matrix (porous 

foam) and the fluid, even though the values of pore-level Reynolds number encountered 

in their natural convection simulations were quite low. They used the same thermal 

dispersion correlation as Calmidi and Mahajan (2000), and observed that its effect could 

account for up to 10% of the heat transfer. Heat transfer enhancement up to a factor of 16 

was observed for aluminum foam filled with water. These authors pointed out that the 
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single-temperature model resulted in significant errors even in natural convection 

simulations. 

Zhao et al. (2005) investigated the influence of natural convection on heat transfer in 

metal foams heated from below, isolating the influence of the Darcy and Rayleigh 

numbers, thanks to both numerical and experimental investigations. They used a classical 

natural convection correlation provided by Churchill and Chu (1975) for estimating the 

local interfacial heat transfer coefficient. This assumption was, however, not justified. In 

the case of air as the working fluid and for the conditions of their experiments, natural 

convection was found to account for up to 50% of the total heat transfer. Zhao et al. 

(2006) used the same mathematical model as that of Zhao at al. (2005) to predict heat 

transfer rates for a heat exchanger, with metal foams on both the cold and hot sides. They 

investigated the influence of pore size, porosity, and geometrical size and predicted an 

optimum foam-area ratio for a counter-flow tube-in-tube heat exchanger filled with 

porous metal foam. 

Investigations of fluid flow and heat transfer in metal foams with phase change 

Phase change in porous media is a vast subject, which could involve changes in gas, 

liquid, and solid phases of the substance in the void spaces of the porous medium. The 

structure of the porous medium may be rigid or change its shape as a result of the phase-

change phenomena. In this part of the literature review, the focus is on solid-liquid phase-

change phenomena in rigid porous metal foams. However, the numerical method used in 

this work for predicting heat transfer in ice-water systems containing porous metal foams 

was tested by first applying it to such systems without the porous metal foams. Thus, a 

very brief review of some publications on problems involving solid-liquid phase-change 

of pure substances without porous metal foams is presented next. 

Multidimensional melting and freezing of pure substances is a classical problem that has 

been the subject of numerous investigations. Lazaridis (1970) was one of the first 

researchers to present a multidimensional numerical solution to such problems, solving 

the set of unsteady, nonlinear governing equations, using both explicit and implicit finite 
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difference methods. Viskanta (1985) has surveyed the literature (up to the mid-1980s) 

related to investigations of natural convection in melting and solidification problems. 

Two main categories of models are used in numerical predictions of heat transfer in solid-

liquid phase-change problems: enthalpy models and temperature models. In enthalpy 

models, the specific enthalpy of the PCM is used as a dependent variable along with the 

temperature, and the position of the solid-liquid interface is determined by an 

examination of the enthalpy distribution. In temperature models, the energy equations for 

the solid and liquid phases are solved separately, and the conditions of continuity of 

temperature and heat flux at the solid-liquid interface are used to match the solutions. 

When temperature models are used, the time-varying solid-liquid interface must be 

tracked, and numerical methods based on adaptive grids are deemed desirable. A 

thorough discussion of the fundamental aspects of both enthalpy and temperature models, 

and their pros and cons, was provided by Crank (1988). A thorough review of 

experiments and numerical simulations of water-ice phase-change phenomena is 

available in the PhD thesis by Elkouh (1996). His steady-state experiments on natural 

convection in pure water and water-ice systems in open domains (without porous metal 

foams) were used as test problems to check the numerical methods and computer codes 

used in this work. Details of these tests will be provided in Chapter 4 of this thesis. 

Kazmierczak et al. (1986) conducted a computational investigation of solid-liquid phase-

change in a porous medium, with an embedded heated flat plate in both vertical and 

horizontal positions. Their main focus was on the effect of natural convection on the 

melting rate and the shape of the melting front. Beckermann and Viskanta (1988) 

undertook complementary numerical and experimental investigations of solid-liquid 

phase-change in a vertical square enclosure, with gallium as the PCM (fusion point of 

29.8°C) and close-packed glass beads as the porous medium. Their volume-averaged 

model gave good predictions of the temperature profile and melting front location, and 

the results appeared to be strongly influenced by natural convection and the thermal 

conductivity of the solid, but not significantly by the thermal conductivity of the fluid. 

Their results were later used as benchmark data in several papers, including the numerical 

study of solid-liquid phase-change in porous metal foams by Krishnan et al. (2005). 
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Solid-liquid phase-change phenomena in metal foams have been the subject of several 

studies over the last decade, mostly because of the possibilities they offer for latent-heat 

TES systems. Mesalhy et al. (2004) numerically investigated melting of a PCM 

embedded in a porous metal foam, solving the volume-averaged conservation equations. 

They included the Darcy, Brinkman, and Forchheimer effects in the volume-averaged 

momentum equations, and used a two-temperature model for heat transfer. The domain 

they considered was the space between two concentric cylinders, akin to the annular 

space in a double-pipe heat exchanger. Their computer code could also be used for 

predictions of PCM melting in open domains (without porous media). The results showed 

that the addition of a porous matrix had significant influence on the rates of melting and 

heat transfer. Their results also demonstrated that decreasing the porosity of the matrix 

increases the melting rate, but it also dampens the convective fluid flow. 

Krishnan et al. (2005) conducted a numerical study of solid-liquid phase-change 

phenomena in a two-dimensional rectangular domain filled with metal foams and PCMs. 

They used a finite-volume method with fixed grids to solve a model based on the 

extended Darcy-Brinkman-Forchheimer momentum and two-temperature energy 

equations. They validated their model and method by comparing the results to those of 

the melting-solidification experiments conducted by Beckermann and Viskanta (1988). 

The emphasis in their study was on the influence of the Rayleigh, Stefan, and interfacial 

Nusselt numbers. Their results showed that if the interfacial Nusselt number based on the 

pore diameter was greater than 5.9, a single-temperature model was sufficient. The value 

of this Nusselt number in porous metal foams filled with water was not determined, but a 

review of some of the available correlations that could serve as required inputs to their 

model was provided. However, none of these correlations appeared to accurately deal 

with interfacial heat transfer in the pure-conduction limit (very low values of the pore-

scale Reynolds number). 

Yang and Garimella (2010) extended the work of Krishnan et al. (2005) to include the 

effects of volume change in the PCM during melting. Their numerical results showed that 
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the melting rates were changed by about 10% by the inclusion of the volume-change 

effects. 

Lafdi et al. (2006) used the mathematical model, numerical method, and results of 

Mesalhy et al. (2004) to investigate applications of PCM-foam composites to space and 

terrestrial latent-heat TES systems. Their simulations were carried out using the 

properties of commercially available paraffins, and a carbon-matrix porous foam. They 

averaged the results for several melting-solidification cycles and found that with the 

foam, the rates of heat transfer increased by eight and five times (compared to those 

without the foam) for space and terrestrial applications, respectively. 

With respect to the reviewed investigations of fluid flow and heat transfer in porous metal 

foams, with and without solid-liquid phase-change, some of the key results and 

comments pertinent to the work reported in this thesis are summarized here: 

 The usefulness of porous metal foams for heat transfer enhancement in latent-

heat TES systems (for both heat and cold) has been demonstrated 

experimentally in multiple investigations, but the mathematical modeling of 

the related thermofluid phenomena still presents multiple difficulties. 

 The two-temperature model is necessary to treat porous metal foams filled 

with air or water, both for both forced and natural convection. 

 There does not seem to be a consensus on the recommended correlation for 

estimation of the interfacial Nusselt number in the liquid-PCM-foam regions, 

especially for cases involving low values of the pore-level Reynolds number, 

and also for frozen-PCM-foam heat exchange. 

 In most of the published investigations, thermal dispersion is modelled using 

classical isotropic dispersion correlations, but the thermal dispersion 

coefficient has not been determined precisely. The effect of thermal dispersion 

does not seem negligible in general. 
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 Several semi-empirical effective conductivity models were developed over the 

last decade but, to the best knowledge of the author, their adaptation to or 

incorporation in two-temperature models has not been critically assessed. 

 To the best knowledge of the author, no experimental or numerical study on 

fluid flow and heat transfer in metal foams filled with water in the vicinity of 

its density inversion temperature is available in the literature. 

1.2.3 Key textbooks and handbooks 

Dinçer and Rosen (2002) have written a very useful textbook on thermal energy storage 

(TES) systems, in which they describe the principles, types, and applications of such 

systems. Mehling and Cabeza (2008) have focused on solid-liquid latent-heat TES 

systems, and provided overviews of the related thermofluid phenomena and practical 

aspects, from the classical Stefan melting problem to the potential applications, especially 

in buildings. 

Several excellent textbooks on the general field of heat transfer, for both teaching and 

research purposes, are available. An example is the textbook by Incropera and Dewitt 

(2002). 

The physics of fluid flow and heat transfer phenomena in porous media, mathematical 

models of these phenomena, and some experimental investigations and results have been 

discussed in textbooks by Bear (1988), Kaviany (1999), and Nield and Bejan (2006). 

Comprehensive discussions of volume averaging, as applied to modeling of thermofluid 

phenomena in porous media, are presented in a book by Whitaker (1999). Review and 

discussions of various aspects of fluid flow and heat transfer in porous media are 

available in a handbook edited by Vafai (2000). Ashby et al. (2000) have provided a 

design guide to metal foams. 

Patankar (1980) has presented and discussed numerical methods for heat transfer and 

fluid flow, with an emphasis on finite volume methods for predicting incompressible 

fluid flow. Comprehensive review articles on mathematical models and numerical 
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solution methods for predictions of a wide range of thermofluid phenomena are available 

in a handbook edited by Minkowycz et al. (2006). 

1.3 Specific objectives 

The work reported in this thesis involved cost-effective volume-averaged mathematical 

models of conduction and laminar natural convection in ice-liquid-water-porous-metal-

foam systems, and their numerical solution in the context of computationally convenient 

state-state, planar two-dimensional problems. This work was undertaken in two main 

parts. In the first part, the objectives were the following: 

 Develop a novel expression for the interfacial heat transfer coefficient in the 

pure conduction limit, using models and numerical solutions for metal foams 

with periodic two-dimensional structures.  

 Critically assess several existing semi-empirical expressions for effective 

conductivity of porous metals foams with their void spaces filled with another 

substance (liquid or solid), and suitably adapt the chosen expressions to 

ensure consistency of the one-temperature and two-temperature models of 

heat transfer in such systems.   

In the second part of this work, the specific objectives were the following: 

 Take an in-house two-dimensional, co-located, equal-order finite volume 

method and the corresponding computer program for fluid flow and heat 

transfer in open domains, without embedded solid obstructions or porous 

foam, and adapt it for predicting fluid flow and heat transfer in pure water-ice 

systems in open domains and domains containing porous metal foams. 

 Benchmark the above-mentioned adapted finite volume method by applying 

it to conduction and natural convection phenomena in pure ice-water systems 

in open domains (without porous foams), and comparing the results to those 

of the experimental and numerical investigations performed by Elkouh 

(1996).  
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 Quantify the error resulting in the assumption of constant fluid properties in 

simulations of natural convection in pure water, contained in rectangular 

enclosures and with temperatures spanning the density inversion point, and 

recommend a suitable average (reference) temperature for the calculation of 

the values of these properties. 

 Compute and compare the fluid flow, temperature, and heat transfer rates 

when a representative porous metal foam (Aluminum; 10 PPI, or pores per 

inch; 0.95 porosity) is added to six pure liquid-water and two pure ice-water 

configurations (without porous metal foam) studied earlier by Elkouh (1996). 

 Compare the steady, two-dimensional natural convection heat transfer rates 

obtained in square enclosures (akin to the one illustrated schematically in Fig. 

1.2) filled with pure liquid water and five different porous metal foams to 

those obtained in the same systems but without the porous metal foams, for a 

wide range of Rayleigh numbers. Assess the sensitivity of the results to 

changes in the conduction interfacial heat transfer coefficient. 

 Discuss the impact of thermal dispersion and of the Forchheimer drag term, 

as well as the division of the heat transfer rates between the foam (10 PPI, 

0.95 porosity) and the pure liquid water, for natural convection in enclosures 

akin to that shown schematically in Fig. 1.2, with the same two sets of wall 

temperatures and Rayleigh number ranges as in the previous section. 

 Investigate a demonstration problem involving steady, two-dimensional, 

conduction and natural convection in ice-water-porous-metal-foam systems 

akin to that shown schematically in Fig. 1.2, with 10 cmxH  , 

10 <50 cmyH , 20°CCT   , and 20°CHT  , discuss the influence of the 

aspect ratio of the enclosure, and compare the results with those obtained 

with an open domain (no porous metal foam). 
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 Chapter 2: Mathematical Models 

The numerical simulations undertaken in this work were performed with rectangular 

enclosures as the calculation domain, akin to that illustrated schematically in Fig. 1.2. 

Only steady-state, laminar, two-dimensional, fluid flow and heat transfer problems were 

considered in this work. 

In this chapter, first, the equations that govern conduction and natural convection in ice-

water systems in open domains (without foam) are presented, taking into account the 

variation of the thermophysical properties of liquid water and ice with temperature (the 

variation of these properties with pressure are negligibly small for the problems 

considered in this thesis). Following that, the governing equations for conduction and 

natural convection in ice-water-metal-foam systems and related issues are presented and 

discussed, with the assumption that the thermophysical properties of the liquid water, ice, 

and metal foams may be treated as essentially constant at values calculated at appropriate 

reference (or average) temperatures. Finally, the dimensionless parameters in the 

problems of interest are presented. 

In this thesis, the subscript w is be used to indicate dependent variables, properties, and 

quantities pertaining to water. When a distinction between liquid water and ice is 

necessary, the subscripts l and i are used, respectively. Dependent variables, properties, 

and quantities associated with the embedded metal foam (referred to as the solid) are 

indicated by the subscript s. Regarding the properties, the subscript 0 is added to denote 

values calculated at a suitable reference (or average) temperature and assumed to remain 

constant (in the context of the Boussinesq assumption for the mass density of liquid 

water). Thus, for example, the temperature-dependent dynamic viscosity of liquid water 

is denoted by  l l wT  , and 
0l

 denotes the value of dynamic viscosity of water 

calculated at a suitable reference (or average) temperature and is assumed to remain 

constant. 
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2.1 Conduction and natural convection in ice-water systems in open 

domains 

The governing equations in open domains (no foam) are well-established, and they were 

directly taken from previous publications. So they are presented here in a very compact 

manner (mainly for the sake of completeness of this document). The reader requiring 

access to a derivation of these equations and related references is requested to refer to the 

Ph.D. thesis of Elkouh (1996). 

With respect to the Cartesian coordinate system, calculation domain (without the foam), 

and boundary conditions schematically illustrated in Fig. 1.2, the continuity, x- and y-

momentum, and energy equations that govern the fluid flow and heat transfer in the 

liquid-water region are cast in the following forms:  

Continuity equation:  

     0l lu v
x y
 

 
 

 
 2.1 

x-momentum equation: 

    l l l l u

P u u
uu vu S

x y x x x y y
   

        
        

         
 2.2 

y-momentum equation:  

    l l l l v

P v v
uv vv S

x y y x x y y
   

        
        

         
 2.3 

In equations 2.2 and 2.3, uS and vS  denote volumetric (per unit volume) source terms 

that are necessary to account for the temperature-dependence of the thermophysical 

properties of liquid water and the buoyancy force: 
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  
0u l l l l l x

u v u v
S g

x x y x x x y
    

           
           
            

 2.4 

  
0v l l l l l y

v u u v
S g

y y x y y x y
    

            
           
            

 2.5 

In these equations, sinxg g   and cosyg g    are components of the gravitational 

acceleration vector in the positive x and y directions shown in Fig. 1.2. The term l  is the 

second coefficient of viscosity. It is calculated by invoking the Stokes hypothesis, in 

which the bulk viscosity of the liquid water is set equal to zero: 

 
2

0
3

l l    2.6 

P  is the reduced pressure, which is related to the static pressure as follows: 

 
0
( )l x yP p xg yg    2.7 

The absolute pressure has no significance if the thermophysical properties of water can 

be considered to be essentially independent of pressure (an assumption that applies in the 

problems of interest in this work). Thus, for convenience, the value of the reduce 

pressure, P , was arbitrarily set to zero at the top-right-hand corner of the rectangular 

enclosure shown in Fig. 1.2 (in all of the numerical simulations). It should be noted here 

that if the constant-properties assumption is invoked in the context of the Boussinesq 

approximation (density is constant in all terms except those related to the buoyancy), then 

the volumetric source terms are given by:  
0u l l xS g    and  

0v l l yS g   . 

The energy equation is the following [Elkouh (1996)]: 

    
0 0l l

l w l w
l w l w E

p p

k T k T
uT vT S

x y x c x y c y
 

        
      

           

 2.8 
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    E l w l wS uF T vF T
x y

 
  

           
 2.9 

The volumetric source term in this equation arises due to the variation of specific heat 

with temperature: the term ( )F T  is related to the variations of 
lpc with temperature, and 

is defined as follows: 

 
0
(1 ( ))

l lp pc c f T     and       ( ) ( ') 'F T f T dT   2.10 

In the ice region, the only governing equation is the heat conduction equation: 

 0w w
i i

T T
k k

x x y y

     
    

      
 2.11 

The water-ice interface is at the freezing temperature at any point on it: 

 
interface

0°Cw meltT T   2.12 

In addition, under steady-state conditions, the heat fluxes normal to the water-ice 

interface are related by the following equation:  

 w w
i l

ice water

T T
k k

n n

    
   

    
 2.13 

The expression for the variation of the density of liquid water with temperature was taken 

from the works of Kukulka et al. (1987) and Elkouh (1996): 

  1 wl

q

mm T T     2.14 

In this equation, -31000 kg.mm  is the maximum density of liquid water; this maximum 

occurs at 4.029325 °CmT  ;  
-q69.297173 10 °C   ; and 1.894816q  . This 

relationship is valid between 0°C  and 20°C : a graphical representation is shown in Fig. 
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2.1. For the other thermophysical properties of the liquid water, the following expressions 

proposed by Elkouh (1996) were used (with wT
 
expressed in °C ): 

   3 5 6 2 8 3(kg/m.s) 1.7910 10 6.144 10 1.4510 10 (1.6826 10 )l w w wT T T             2.15 

   3 6 2J/kg.°C 4.2074 10 (1.3610) 1.5916 10
lp w wc T T      2.16 

   3 6 2W/m.°C 0.5654 (1.700 10 ) 5.944 10l w wk T T       2.17 

   2 5 2W/ m.°C 2.22 (1.00 10 ) 3.45 10i w wk T T       2.18 

It should be noted here that between 0°C and 20°C, the mass density of liquid water 

changes by only 0.18%, but its dynamic viscosity decreases by 43.7%, its conductivity 

increases by 5.6%, its specific heat decreases by 0.50%, and the resulting Prandtl number 

decreases by 47%, going from 13.3 to 7.0. In the context of these observations, it is 

imperative to carefully examine the errors caused if a constant-property assumption are 

invoked, and determine a suitable reference (or average) temperature for the evaluation of 

the values of the properties in the corresponding model (one that minimizes the errors 

caused by the constant-property assumption). Such an investigation was undertaken in 

this work for natural convection in liquid water with no ice, in open media (no foam). 

The results are provided in Section 4.1. The expression for the thermal conductivity of ice 

is valid between -173°C  and 0°C . In the problems considered in this work, the 

temperature of ice was varied between 0°C  to -20°C , and in this range, the thermal 

conductivity of ice decreases by 8.8%. 

It should also be noted that at the ice-liquid-water interface, for the steady-state problems 

considered in this work, the liquid water velocity is zero, and the influence of surface 

tension is negligible. 
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Figure 2.1: Variation of mass density of liquid water with temperature [Kukulka et al. (1987)]. 

 

With respect to the calculation domain illustrated in Fig. 1.2 (with no foam), the no-slip 

conditions applies at all four walls ( 0u v   at 0 ,  0 ,   and  x yx y x H y H    ), and 

the temperatures of the cold and hot side walls are maintained constant: 

 
    at      0

    at      

w C

w H x

T T x

T T x H

 


 
 2.19 

At the top and bottom walls, adiabatic conditions are imposed: 

 
0

0

y

w w

y y H

T T

y y 

 
 

 
 2.20 

2.2 Conduction and natural convection in ice-water-metal-foam systems 

The equations that govern steady-state fluid flow and heat transfer in rectangular 

enclosures (see Fig. 1.2) containing ice-water-metal-foam systems are presented in this 

section. The properties of the liquid water, ice, and porous metal foam are evaluated at 

suitable reference (average) temperatures, for each of the cases considered in this work, 
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and assumed to remain constant. Recommendations for these temperatures are presented 

and discussed in Chapter 4. 

2.2.1 Some definitions 

As was pointed out in the literature review, the volume-averaging technique is the most 

common method that is used to obtain cost-effective (practical) mathematical models of 

fluid flow and heat transfer in porous media. Derivations of the volume-averaged 

governing equations are available in the works of Whitaker (1999) and Nield and Bejan 

(2006). These derivations start with equations that govern fluid flow and heat transfer in 

the pores of the porous medium, and heat conduction in the solid portion of the porous 

medium, and then apply suitable volume-averaging techniques to these equations. The 

volume-averaging is done over representative elementary volumes (r.e.v.), such as the 

one shown schematically in Fig. 2.2. 

 

Figure 2.2: A representative elementary volume [Nield and Bejan (2006)]. 

The size of the representative elementary volume is chosen to be as small as possible 

with respect to the overall dimensions of the problems of interest, but still large enough to 

yield statistically meaningful local average quantities [Whitaker (1999)]. 

The porosity is defined as the ratio of volume of water (liquid or ice) to the total volume: 



31 

 

  

 
s

w w

w

V V

V V V
  


 2.21 

The volume average of a given quantity   is defined as: 

 
1

V

dV
V

    2.22 

The intrinsic phase average of this quantity represents its volume average over a given 

phase, water (liquid or ice) and solid (material of the porous medium): 

 
1

wV

w

w

dV
V

      and   
1

s

s

s V

dV
V

    2.23 

  1
w s

        2.24 

For quantities defined only in the water (liquid or ice), the volume-average value is 

related to the intrinsic-phase-average value by the following equation: 

 
`w w

w
    2.25 

The volume-average velocity vector, 
ww

w
u u  , is commonly referred to as the 

Darcy or superficial velocity vector. For convenience in this presentation, the following 

simplified notation is used for this Darcy or superficial velocity: 
w

w

w u u u  . The 

following expressions apply to volume-averaging of the gradient and divergence 

operators [Whitaker (1999)]:  

 
1

  
Asf

dA
V

       2.26 

 
1

. . .
Asf

V
    b b b dA  2.27 
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2.2.2 Governing equations 

In the available literature, the volume-averaged governing equations for fluid flow and 

heat transfer in porous media are usually derived for essentially constant thermophysical 

properties or for cases where the variations of these properties are negligible over the 

representative elementary volume [Whitaker (1999)]. However, the volume-averaged 

expressions for the source terms associated with non-constant fluid properties are, to the 

best knowledge of the author, not available in the literature. The derivation of such 

expressions would be, in itself, an interesting and challenging task, but it is not within the 

scope of this thesis. In this work, the constant-property assumption (in the context of the 

Boussinesq approximation) was invoked in the derivation and use of the volume-

averaged governing equations for fluid flow and heat transfer in porous metal foams. The 

resulting errors (compared to predictions with variable-property models) were assessed 

for natural convection with pure water in open domains (no-foam). With a suitable 

reference (average) temperature for the evaluation of the values of the constant 

properties, the aforementioned errors were found to be quite small. These results are 

presented and discussed in Chapter 4.  

Volume-averaged continuity and momentum equations in the liquid-water-metal-

foam regions 

These equations are presented here for steady-state conditions and the constant-property 

assumption (in the context of the Boussinesq approximation). The continuity equation for 

the liquid in the pores of the porous medium is the following: 

 . 0l u  2.28 

Here, lu  is the water velocity vector in the pores. Volume-averaging of this equation is 

done over the representative elementary volume illustrated in Fig. 2.2, using equation 

2.27 and the no-slip condition at the water-metal-foam interface. The resulting volume-

averaged continuity equation in terms of the Darcy or superficial velocity is:  

 . 0 u  2.29 
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The steady-state momentum equation (Navier-Stokes equations) for the liquid water in 

the pores of the porous medium is the following: 

  
0 0 0

. ( )l l l l l l lP         u u u g  2.30 

The volume-averaged form of this equation is the following (adaptation of the expression 

put forward by Hsu (1990)): 

  0

0

2

2

.

ε ε

w

l

l
P





    

uu
u S  2.31 

In this equation, the source term S is the sum of two drag terms and a buoyancy term 

associated with natural convection: 

  
0

w

l l  S r g  2.32 

Here, r is the total drag term per unit volume, applied on the water by the solid phase: 

  
1

.l

Asf Asf

P d
V V


    r dA u A  2.33 

It cannot be evaluated analytically, unless the structure of the porous medium and the 

fluid flow within it are known exactly. At low values of Reynolds number, the pressure 

drop is related to the velocity and permeability K  by the Darcy law: 

  0
2w l

P o
K


  

u
u  2.34 

However, a second-order term is often introduced, since inertial (or form drag) effects 

cannot be neglected when the Reynolds number increases. It is quantified by a form-drag 

or Forchheimer coefficient, f, which is a function of the geometry of the metal foams 

[Calmidi (1998)]. With this modification, r is expressed as follows: 
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 0 0l l f

K K


  

u
r u u  2.35 

In this study, the following correlations proposed by Calmidi (1998) were adopted, as 

they show excellent agreement with available experimental data: 

  

1.11

0.2242 0.00073 1
f

p

p

d
K d

d



  
       

 

 2.36 

  

1.63

0.132
0.00212 1

f

p

d
f

d



  
      

 

 2.37 

The volume-averaged buoyancy term is: 

  
0 0

1
w

q

w

w

ml l m lT T   
  

    
 

 


g g  2.38 

It is difficult to rigorously determine this term in the computer simulations, because of 

the non-linear variation of the liquid water density with temperature. In this work, it was 

assumed that the pore-scale variations of the fluid temperature are small enough to justify 

the following approximation:  

  
0 0

1
q

w

w m

w

l l m lT T   
  

      



g g  2.39 

The final form of the momentum equation is the following:  

  0 0

0

0

0

2

2

.
1

ε ε

q
w l

m

wl l

l w m l

f
T T

K K
P

 
  

   
       

 




 
  

uuu
u u u g  2.40 

The boundary condition for the velocity field, with and without the porous metal foam, is 

the following: 0u  at all boundaries ( 0 ,  0 ,   ,  x yx y x H y H    ). 
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Energy Equations 

Full details of the derivation of the energy equations are presented and discussed in 

Whitaker (1999). Heat transfer in porous media can be studied with the assumption of 

local thermal equilibrium between the two phases (fluid and solid), when certain 

conditions or criteria are satisfied. For a discussion of these criteria, the reader is referred 

to the works of Whitaker (1999) and Nield and Bejan (2006). With this assumption, a 

single energy equation is used to describe the evolution of the intrinsic-phase-average 

temperatures, 
s w

s wT T T  .  

In the liquid-water-metal-foam region of the calculation domain, the one-temperature 

model of the energy equation is: 

     
00

. . ε
lpl Dl effc T k k T     u  2.41 

In the ice-metal-foam region of the calculation domain, the one-temperature model yields 

the following form of the energy equation: 

  0 .
ieffk T    2.42 

In these equations, 
leffk and

leffk  are the effective thermal conductivities when the porous 

metal foam is filled with liquid water and ice, respectively. In general, the effective 

thermal conductivity has to be expressed as a second-order tensor, but in the case of 

essentially isotropic porous media (over a representative elementary volume), such as the 

porous metal foams considered in this work, it can be approximated as a scalar. As was 

mentioned before, the liquid-water, ice, and porous metal properties were assumed to be 

essentially constant at suitable reference (average) temperatures in each of the cases 

considered in this work. The expressions for the effective thermal conductivities invoke 

this constant-property assumption. Strictly, the subscript 0 is necessary to indicate these 

constant properties, however, for convenience and simplicity in the presentations, this 

subscript will be dropped in the following discussions.  
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The thermal dispersion conductivity, ε Dk , is included to account for heat transfer 

enhancements due to hydrodynamic mixing of the fluid phase in the pores of the porous 

medium. A pore-level study of such flows could give an estimate of this coefficient, but 

there only are few studies of this type available in the literature, an example is the work 

of Pedras and De Lemos (2008). In general, thermal dispersion is non-isotropic. 

However, while the thermal dispersion in directions normal to the local (in the volume-

averaged sense) superficial velocity vector can be significant, it is usually negligible in 

the direction of this velocity vector, compared to the corresponding advection transport. 

Thus, often, it is adequate (and simple) to assume that an expression for thermal 

dispersion transverse to the local superficial velocity vector is also applicable in all 

directions. 

In natural convection problems involving liquid-water-porous-metal-foam systems, the 

fluid velocity is usually quite low, so the thermal dispersion can be assumed to be 

negligible. In this work, the applicability of this assumption was checked by using a 

relatively simple and adequate (in the context of the discussions given at the end of the 

previous paragraph) isotropic thermal dispersion model proposed by Hunt and Tien 

(1988)]: 
0 0

w

D D l p wlck C K u  . Thus:  

 fD D f pk C Kc  u  2.43 

Calmidi and Mahajan (2000) empirically estimated 0.06DC  . Their DC  value was used 

in this work.  

In the problems considered in this work, because of the large differences between the 

values of thermal conductivity of the metals (used to make the porous foam) and water 

(liquid and ice), the one-temperature model may not be valid, even under steady-state 

conditions [Whitaker (1999)]. A two-temperature model was therefore adopted. As was 

stated earlier, in the two-temperature model, the intrinsic-phase-average temperatures of 

the water (liquid or ice) and the solid (porous metal foam), 
w

wT  and 
s

sT , respectively, 

as not assumed to be locally equal, and two different energy equations are used for these 
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temperatures, in both the liquid-water-metal-foam and ice-metal-foam regions of the 

calculation domain. 

The energy equations in the two-temperature model of the liquid-water-metal-foam 

region are the following: 

 
    
    

0 0
..

.0

s

ll sl D sf l

w w w

l p s

s s

ss sl s sf l s

l w w w

w

w

c T k k k T a h T T

k T a Tk h T

      

  



 

u
 2.44 

In the ice-metal-foam region, the energy equations in the two-temperature model are the 

following: 

 
    
    

0

0

.

.

s

ii si sf

w w

i s

s

ss si sf i s

w w

s w

s w

k T a h T T

k a T

k

T hk T

  

   

 
 2.45 

In these equations, ssk  is the solid (metal foam) effective thermal conductivity; llk and iik  

refer to the effective thermal conductivities of the liquid water and ice, respectively; and 

slk and sik  are the so-called coupling thermal conductivities, which arise from volume-

averaging of the heat conduction terms in the energy equations. Strictly, the term 

 ii s wi

w
kk T  should be replaced by (

w

i

s

w si sik T k T  ) in equation 2.45, but in 

this work, the local gradient equilibrium hypothesis validated by Quintard and Whitaker 

(1995) is used. Thus, 
w

wT and 
s

sT  are assumed to be close enough for the coupled 

thermal conductivities to be used as simple additional effective conductivities in both the 

solid (metal foam) and the water (liquid or ice) regions. A close look at their definition 

shows that sl lsk k and si isk k . With the effective conductivity model used in this work, 

these coupled contributions represented only 1% to 3% of the effective thermal 

conductivities. 

The terms lh and ih  are the interfacial heat transfer coefficients at the liquid-water-metal-

foam and ice-metal-foam interfaces, respectively. They are used to model the rate of heat 
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transfer between the water (liquid or ice) and the metal foam, caused by differences in 

their intrinsic-phase-average temperature:  

 
''

water to solid

w s

w s

q
h

T T



 2.46 

The coefficient ih  quantifies the interfacial heat transfer by pure conduction between the 

ice and the metal foam. However, at the interface between the liquid-water and the metal 

foam, the heat transfer is also influenced by convection around the foam fibers. Novel 

expressions for these coefficients are proposed in Section 2.2.5. The term sfa  is the 

specific (per unit volume) interfacial area over which the aforementioned heat exchanges 

occurs, and it is a purely geometrical parameter. 

If local thermal equilibrium is achieved (
w s

swT T T  ), the summation of the two 

equations in each set of equations 2.44 or equations 2.45 should yield the single-

temperature equations 2.41 and 2.42, respectively. The necessary conditions for 

achieving these consistency requirements are the followings: 

 2
leff l sl sslk kk k        and      2

ieff i si ssik kk k   2.47 

These consistency issues, as well as the choice of the best available effective thermal 

conductivity expressions, will be tackled in Section 2.2.4. 

The boundary conditions of the problem numerically studied in this work are reported in 

Fig. 1.2; the temperatures of the cold and hot side walls are again maintained constant: 

 
    at      0

    at      

w s

w s C

w s

w s H x

T T T x

T T T x H

   


  

 2.48 

At the top and bottom walls, the adiabatic conditions impose: 
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 2.49 

In addition, under steady-state conditions, the heat fluxes normal to the water-ice 

interface are related by the following equations:  

 

   

   

ice water

ice water

w w

w w

ii si ll sl

s s

s s

ss si ss sl

T T
k k k k

n n

T T
k k k k

n n

    
     

    
   

    
     

   






 
   





 2.50 

2.2.3 Geometrical characteristics of porous metal foams 

A close look at the structure of open-cell metal foams (akin to that shown in Fig. 1.1, in 

Chapter 1) reveals that at the pore-level, it is highly anisotropic, and its full geometric 

characterization is complex and requires numerous parameters. However, foam 

manufacturing processes (for example, air bubbling and particle decomposition) give 

random orientations to the cells within the foam. Thus, over a representative elementary 

volume, metal foams can be assumed to be essentially isotropic.  

Most manufacturers of porous metal foams only provide their clients with values of a 

parameter called pores-per-inch (PPI) and the porosity. From this data, it is necessary to 

estimate the pore diameter, ligament diameter, and specific area. Calmidi (1998) 

modelled the foam as a periodic hexagonal structure with cylindrical ligaments, and used 

a geometrical analysis to conclude that the pore and ligament diameters could be linked 

by the following relationship: 

 
1 1

1.18
3 ( )

f

p

d

d G

 



 2.51 
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A typical value of ( / )f pd d  is 0.1 note  0.1205  at   =0.95
f

p

d

d

 
   

 

. (G   is a shape 

function determined experimentally, and it quantifies the deformation of the fiber cross-

section as the porosity increases. Indeed, observations show that the fiber cross-section 

goes from a circle to a triangle as the porosity of metal foams is increased. 

 
(1

0.04( 1G e




    2.52 

This relationship was validated on foams with porosities ranging from 0.9 to 0.98. 

Knowing any two of the aforementioned parameters (porosity, pore diameter, and fiber 

diameter), the third one can be determined. The PPI value of a foam is supposedly linked 

to the pore diameter by the relationship 
1

( )pd inch
PPI

 . But experimental data show 

that this relationship does not apply, especially at high values of pore density. It is, 

however, reasonable to assume that each PPI value corresponds to a single average pore 

diameter, as is shown by the data displayed in Fig. 2.3. This data also shows that there is 

no clear dependence of the pore diameter on porosity. For the data shown graphically in 

Fig. 2.3, the assumption of a constant average pore diameter for a given value of the PPI 

parameter, leads to an average quadratic (rms) error of only 4.82%, and all the errors are 

below 10%. The values adopted for these metal foams (the ones for which the data in Fig. 

2.3 applies) are listed in Table 2.1. 
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Figure 2.3: Pore diameter as a function of porosity for 22 different metal foams: experimental data 

from Bhattacharya et al. (2002). 

 

Foam Type pd (mm) fd (mm), for 0.95   

5 PPI 4.01 0.48 

10 PPI 3.22 0.39 

20 PPI 2.72 0.33 

40 PPI 1.90 0.23 
 

Table 2.1: Average values of pore diameter for porous metal foams with PPI values of 5, 10, 20, and 

40, and corresponding values of ligament diameter for porosity of 0.95. 

Using equation 2.51 and the values of 
pd  from Table 2.1, the predicted values of fd , 

with 0.9 0.98   show an average quadratic (rms) difference of 7.2% and a maximum 

difference of 21.1% compared to available experimental data, the highest difference 

occurring for the most porous foam. These results validate the analytical model leading to 

equation 2.51 (it was adopted in this work). For the metal foams considered in this work, 

the chosen values of pore diameter and the corresponding ligament diameter are 

summarized in Table 2.1 for 0.95  . 
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The corresponding expression for the specific (per unit volume) interfacial area for the 

metal foams considered in this work is the following [Calmidi (1998)]: 

 
 

2

3
( )

0.59

sf f

sf

p

A d
a G

V d


  


 2.53 

2.2.4 Comparison and adaptation of effective thermal conductivity models 

The effective thermal conductivity of low porosity media, such as rock beds, saturated 

with water can be reasonably well-approximated by the parallel-conduction model: 

 ( 1 )weff sk k k    . However, experimental measurements of the effective thermal 

conductivity of highly-porous metal foams saturated with water show that the parallel-

conduction model leads to significant overestimations [Calmidi (1998); Bhattacharya et 

al. (2002)]. The predictions yielded by the semi-empirical models of effective thermal 

conductivity proposed by Calmidi and Mahajan (1999), Boomsma and Poulikakos 

(2001), Bhattacharya et al. (2002), and Jagjiwanram and Singh (2004) are presented 

graphically in Fig. 2.4, for aluminum foams saturated with liquid water. Corresponding 

experimental data from Bhattacharya et al. (2002), for 11 water-saturated aluminum 

foams with porosity in the range 0.906 to 0.978, are also presented in this figure. The 

differences between the predictions provided by the aforementioned correlations and the 

experimental measurements of Bhattacharya et al. (2002) are presented in Table 2.2. All 

of these models are suitable for use in the volume-averaged one-temperature model of the 

energy equation. The modifications needed for using or extending these models for use 

with volume-averaged two-temperature models of the energy equation are presented later 

in the section. 
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Figure 2.4: Effective thermal conductivity of aluminum foams saturated with liquid water: 

predictions obtained with several models, and experimental data of Bhattacharya et al. (2002).  

 

Model 
Quadratic (rms) 

difference (%) 

Maximum absolute 

difference (%) 

Parallel-conduction 140.2 180.0 

Series-conduction 86.6 91.1 

Calmidi and Mahajan (1999) 5.3 11.0 

Bhattacharya et al. (2002) 12.8 24.7 

Boomsma and Poulikakos (2001) 31.0 51.2 

Jagjiwanram and Singh (2004) 7.5 12.9 
 

Table 2.2: Differences between the predictions yielded by several thermal conductivity models and 

the experimental measurements of Bhattacharya et al. (2002).  

As can be seen from the results presented in Fig. 2.4, the parallel-conduction model over-

predicts the effective thermal conductivity of metal foams saturated with water, and the 

series-conduction model leads to underestimations of this property over the entire 

porosity range considered, 0.906 to 0.978. In the derivations of the models of Calmidi 

and Mahajan (1999) and Boomsma and Poulikakos (2001), the effective thermal 
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conductivity is estimated by analytically modelling the foams as regular periodic 

structures and adjusting a geometrical parameter, for example, fiber-to-bulb-radius ratio 

in the work of Calmidi and Mahajan (1999), to fit the experimental data. In the 

derivations of the models of Bhattacharya et al. (2001) and Jagjiwanram and Singh 

(2004), it was assumed that the effective thermal conductivity can be expressed as a 

suitable combination of the parallel and series contributions, and the related coefficients 

were determined empirically. All of the aforementioned models respect the limit 

s w
eff wk k

k k


 . It should be noted that the model of Boomsma and Poulikakos (2001) 

cannot be used for open (non-porous) media, since it does not respect the requirement 

1eff wk k


 . 

An analysis of the results presented in Fig. 2.4 shows that for aluminums foams saturated 

with water, the best predictions of effective thermal conductivity are obtained with the 

model proposed by Calmidi and Mahajan (1999), with a quadratic (rms) error of 5.3% 

and a maximum error of 11.0%. Therefore, their model was adopted for the work 

reported in this thesis. This model is also the most consistent of the aforementioned 

models when transposed to the two-temperature model (additional discussions presented 

later in this section).  

For predicting the effective thermal conductivity of water-saturated aluminum foams, the 

model proposed by Calmidi and Mahajan (1999) can be cast in the following form: 

 

   

1

31
2 2

3

3

2 4
1

3 33

eff

s w
w w ws sww

r

k
b b br r
L L L

b bb k k
k k k k k kk

L LL


    

         
      

   
  

 
 

 
 

 2.54 

In this equation, 
b

L
 is the bulb-radius-to-fiber-length ratio. It can be expressed as a 

function of porosity [Calmidi and Mahajan (1999)]:  
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The fiber-radius-to-bulb-radius ratio, /r t b , was determined experimentally by 

Calmidi and Mahajan (1999) and validated for aluminum foams with porosity values 

between 0.9 and 0.98, saturated with air or water. The best fit was obtained with the value 

0.09r  . In this thesis, when the aluminum foam is filled with liquid water, 
0w lk k , and 

the effective thermal conductivity is denoted as 
leffk ; and when it is filled with ice,  

ow ik k  and 
ieff effk k . 

In the two-temperature model of the volume-averaged energy equations (equations 2.44 

and 2.45), five thermal conductivities are required: the effective thermal conductivities of 

the solid (aluminum foam), liquid water,  ice, and two coupling thermal conductivities. 

The effective thermal conductivities of the solid (aluminum foam), liquid water, and ice   

( ssk , llk and iik ) needed in the two-temperature model of the energy equations are 

calculated using the following substitutions in equation 2.54, which was originally 

derived for use in the single-temperature model of the energy equation [Calmidi and 

Mahajan (1999)]: for obtaining 
ssk  from the expression for 

effk , set 
0s Alk k  and 0wk  ; 

for obtaining 
llk  from the expression for 

effk , set 0sk   and 
0w lk k ; and for obtaining 

iik
 
from the expression for 

effk , set 0sk   and 
0w ik k . It should also be noted that this 

approach cannot be used with the purely empirical correlations of Bhattacharya et al. 

(2002) and Jagjiwanram and Singh (2004), because ssk  would tend to infinity when the 

porosity approaches 1. Their correlations were designed only for use with one-

temperature models, and they cannot be transposed to two-temperature models. 

In most publications on the two-temperature model of convective heat transfer in porous 

metal foams, the coupling thermal conductivities, slk and sik , are ignored or assumed to 
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be negligible. Without the coupling thermal conductivities, the consistency conditions 

expressed in equations 2.47 reduce to the following forms: 
leff ssllk k k   and 

ieff ssiik k k  . These reduced conditions are met only by the parallel-conduction model, 

and not by any of the other above-mentioned models. When the consistency conditions 

are not met, the rates of heat transfer obtained with the single-temperature and two-

temperature models are not the same even in the limit where 0
w s

w sT T   (this limit 

is approximated at small values of the Rayleigh number in natural convection problems, 

for example, as will be shown in Chapter 4). Therefore, the coupling thermal 

conductivities are not ignored in this work. In addition, a simple, but effective, 

formulation is proposed to ensure that the aforementioned consistency is respected. 

In this work, the following equations are used to represent the coupling thermal 

conductivities: 

 
- -

2
leff ss ll

sl

k k k
k        and       

- -

2
ieff ss ii

si

k k k
k   2.56 

This proposed formulation for representing the coupling thermal conductivities ensures 

that the conditions given in equation 2.47 are satisfied. The contributions of llk , ssk , and 

slk  to the effective thermal conductivity 
leffk  for foams saturated with liquid water and 

porosity values in the range 0.9 to 0.98 are shown graphically in Fig. 2.5. For the results 

shown in this figure, the Calmidi an Mahajan (1999) model was used for calculations of 

llk , ssk , and 
leffk , and  the first of equations 2.53 was used for calculating slk . These 

results show that the coupled thermal conductivity contributes to the effective thermal 

conductivity by only 1.8% (average value over the considered porosity range); but on the 

average, it is 17.3% of the effective thermal conductivity of the liquid water. Thus, the 

coupled thermal conductivity has a significant influence on the volume-averaged energy 

equation for the liquid water in the two-temperature model. 
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Figure 2.5: Contributions of the solid, liquid water, and coupled effective thermal conductivities to 

the overall effective thermal conductivity of porous aluminum foam saturated with liquid water at 

10°C: predictions obtained with the model of Calmidi and Mahajan (1999). 

 

2.2.5 Interfacial heat transfer coefficients for pore-scale heat exchange in the 

metal-foam-liquid-water and metal-foam-ice regions 

In the metal-foam-liquid-water region, the interfacial heat transfer at the surface of the 

foam ligaments can be due to local natural convection, forced convection, or mixed 

convection. An adaptation of correlations for mixed convection from cylinders was used 

to determine the corresponding interfacial heat transfer coefficient, 
lh . In the metal-

foam-ice region, the heat transfer at the surface of the foam ligaments is due to pure 

conduction at the pore level, and proper correlations for the corresponding interfacial heat 

transfer coefficient 
ih  are not provided (or ignored) in the literature. In this section, 

novel expressions for both the interfacial heat transfer coefficient in the metal-foam-

liquid-water region and the metal-foam-ice region are proposed and discussed. 
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Interfacial convection heat transfer in the metal-foam-liquid-water region 

The relative importance of forced, natural, and mixed convection to the interfacial heat 

transfer in the metal-foam-liquid-water region was assessed using the following criterion 

[Incropera and DeWitt (2002)]: if 
2/(Re ) 1

f fd dGr  , natural convection is negligible and 

forced-convection dominates; if 
2/(Re ) 1

f fd dGr  , the local heat transfer is natural-

convection; and if 
20.1 /(Re ) 10

f fd dGr  , mixed convection prevails. Here, 
fdGr  is the 

local Grashof number based on the ligament diameter. In the problems of interest, the 

temperature difference responsible for pore-scale natural convection in the metal-foam-

liquid-water region is 
s

w

w

s
T T , and it involves temperatures that span the density 

inversion point for water. Thus, the following adapted definition of a modified Grashof 

number [Elkouh (1996)] was used for 
fdGr : 

 

3

0

2

0
f

q
w

m f w

s

s

d

g d T
Gr

T  




  2.57 

Re
fd
is the local Reynolds number based on the ligament diameter: 
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0 0
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f
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l w f l f
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l l

d d 
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u u
 2.58 

The interfacial Nusselt number is based on the fiber diameter and a suitable average 

thermal conductivity: 
0

convectionconvection f lNu h d k . In this work, the criterion for assessing 

the importance of forced, natural, and mixed convection to the interfacial heat transfer in 

the metal-foam-liquid-water region was recast as follows: 
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 2.59 

A summary of many of the empirical correlations for forced convection around cylinders 

can be found in Incropera and DeWitt (2002). They have the following general form: 

 Re Prm n

D

f

hD
Nu C

k
   2.60 

D id the cylinder diameter C , n  and m  are determined using experimental data, and 

depend on the range of Reynolds number. For water-saturated metal foams, Calmidi and 

Mahajan (2000) developed a correlation similar to one proposed by Zukauskas (1971): 

they assumed 0.5m   and 0.37n   and correlated experimental data obtained with 

seven different metal foams to equation 2.60. Their final result is the following: 

 
0

0.5 0.37

forced convection 0.52Re Pr
fd lNu   2.61 

This result is not purely experimental, since the local (pore-level) heat transfer coefficient 

cannot be directly measured. Thus, Calmidi and Mahajan (2000) used a two-temperature 

model to predict the total heat transfer from a metal foam subjected to forced convection, 

and determined the values of the interfacial heat transfer coefficient which gave the best 

agreement with their experimental data. Their results and correlations must therefore be 

adopted with some caution, since they are influenced by the uncertainties in various other 

parameters of the two-temperature model, such as effective thermal conductivities and 

thermal dispersion conductivity, for example. 
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For the pore-scale natural convection, an equation proposed by Zhao et al. (2005) was 

adopted (it was inspired by a correlation proposed by Churchill and Chu (1975) for 

natural convection around cylinders): 

 

 
0

1/4

natural convection 9/16
0.36 0.518

1 0.559 / Pr

fd

l

Ra
Nu

 
  
 
 

 2.62 

In this equation, 
fdRa  is the fiber-diameter-based local Rayleigh number, 

0
Pr

f fd d lRa Gr . 

When pore-scale mixed-convection prevails in the metal-foam-liquid-water region, the 

following relation based on a combination of heat transfer coefficients for transverse 

forced and natural convection around cylinders [Incropera and DeWitt (2002)] was used: 

  
1

4 4 4

mixed convection forced convection natural convectionNu Nu Nu   2.63 

Interfacial conduction heat transfer in the metal-foam-ice region 

In the metal-foam-ice region, there is no fluid flow, and the interfacial heat transfer is due 

to pure conduction. The corresponding interfacial conduction heat transfer coefficient in 

this region has not been studied with care in the published literature, to the best 

knowledge of the author. It is convenient to estimate the conduction-limit Nusselt number 

in this region by simply setting the Reynolds and Rayleigh numbers to zero, as has been 

done in several recent publications, but this approach in inaccurate and inapplicable. 

Furthermore, the forced-convection Nusselt number goes to zero when the value of zero 

is substituted for the Reynolds number in the corresponding correlations (see expression 

in the previous section, for example). Thus, a novel approach is needed for prescribing a 

suitable interfacial conduction heat transfer coefficient. 

A full three-dimensional model of conduction heat transfer in a representative module of 

the porous-metal-foam-ice region, akin to that used by Boomsma and Poulikakos (2001), 

could be used to obtain insights and data for prescribing a correlation for the conduction 



51 

 

  

heat transfer coefficient. However, as was discussed in the previous section, Nusselt 

number correlations for steady, two-dimensional, forced and natural convection from 

cylinders have been adapted with considerable success to estimate the interfacial 

convection heat transfer coefficient. Drawing inspiration from that success, in this work, 

relatively simple models of steady-state, two-dimensional, heat conduction in a constant-

property substance occupying the interstices of regular arrays of in-line and staggered 

rods were solved numerically, and the results were used to formulate a correlation for an 

interfacial conduction Nusselt number ( conductionNu ) as a function of porosity in the 

porous-metal-foam-ice region. 

Experimental observations of the fibers (or ligaments) of porous metal foams show that 

their cross-section is not perfectly circular, but has a shape somewhere between a triangle 

and a circle, especially at high values of porosity [Calmidi (1998)]. Therefore, rods of 

circular, square, and triangular cross-sections were considered in this study. The in-line 

and staggered arrays of such rods that were used in the above-mentioned models of 

steady-state, two-dimensional, heat conduction are illustrated in Figures 2.6 to 2.9. For 

each of these arrays, the distance between the centers of the rods is denoted by L. Other 

geometrical features of the arrays and related notation are indicated in the figures. 

 

Figure 2.6: Regular array of staggered rods of circular cross-section used in computations of an 

interfacial conduction Nusselt number: Case 1. 
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Figure 2.7: Regular array of in-line rods of circular cross-section used in computations of an 

interfacial conduction Nusselt number: Case 2. 

 

Figure 2.8: Regular array of in-line rods of square cross-section used in computations of an 

interfacial conduction Nusselt number: Case 3. 

 

Figure 2.9: Regular array of in-line rods of triangle cross-section used in computations of an 

interfacial conduction Nusselt number: Case 4. 
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Each of the rod arrays illustrated in Figures 2.6 to 2.9 has numerous symmetry surfaces 

(shown by dotted lines in these figures) that allow delineation of representative periodic 

modules or unit cells. Examples of these unit cells for the four cases considered (Cases 1 

– 4) are shown shaded in Figures 2.6 to 2.9. Detailed illustrations of individual unit cells 

for each of these four cases are provided in Fig. 2.10. The thermal boundary conditions 

for each cell are the following (also illustrated for Case 1 in Fig. 2.10): CT T  at the 

right (vertical) boundary; HT T  at the left boundary (rod surface); and the no-normal-

flux condition is imposed on the symmetry surfaces. The rods were considered to have a 

uniform temperature ( HT ), since the thermal conductivity of aluminum (solid material of 

the foam) is much greater than that of ice and also liquid water: 
0

2( / ) 1 10 1s ik k   and 

0

2( / ) 4 10 1s lk k  . 

 

Figure 2.10: Unit cells in the four configurations, Cases 1 – 4. 

Steady-state heat conduction in a constant-property substance (ice in this case) occupying 

the space between the rod surface and the other boundary surfaces of each unit cell 

shown in Fig. 2.10 is governed by the following equation: 
0

.( ) 0ik T   . This equation, 
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subjected to the thermal boundary conditions discussed in the previous paragraph, were 

solved using an in-house computer code based on a control-volume finite element method 

(CVFEM) described fully in Baliga and Atabaki (2006). In each case of interest, the 

CVFEM code was used to compute the temperature distribution and also the rate of heat 

transfer per unit depth (q’) from the rod surface to the ice in the unit cell. Then, the 

average interfacial conduction heat transfer coefficient and the corresponding average 

interfacial Nusselt number at the surface of the rod were calculated using the following 

equations:  '/ ( )H Ch q l T T    and 
0

/sf c iNu hl k , where l  is the rod surface per unit 

depth in the unit cell, and cl  is a suitable characteristic length. This characteristic length 

is defined as follows: 

 (Area of longitudinal surface of fiber per unit length)/cl   2.64 

A summary of the geometrical properties of the unit cell for all four cases illustrated in 

Fig. 2.10 is provided in Table 2.3. 

 

Case 1: 

staggered 

circular rods 

Case 2: 

in-line circular 

rods 

Case 3 : 

in-line square 

rods 

Case 4 : 

Staggered 

triangular rods 

Unit cell base angle 30
 

45
 

45
 

60
 

Porosity 

2

22 3

fd

L


   

2

24

fd

L


   

2

2

B

L
   

2

23

B

L
   

Characteristic length 

in the Nusselt number 

definition 
c fl d  

c fl d  
4

c

B
l


  

3
c

B
l


  

Unit cell rod surface 

area per unit depth 12

fd
l


  

8

fd
l


  

2

B
l   

2

B
l 

 

Unit cell right 

boundary height 2 3
top

L
y 

 2
top

L
y 

 2
top

L
y 

 
3

2
top

L
y 

 
 

Table 2.3: Geometrical properties of the unit cells for the four cases considered in the study for 

determining the interfacial conduction Nusselt number. 

In Cases 1 – 4 for which the unit cells are depicted in Fig. 2.10, the heat flux cannot be 

determined analytically, so numerical solutions were obtained using a CVFEM [Baliga 
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and Atabaki (2006)]. However, in Case 1, the unit cells can be combined to yield a 

domain that is quite similar to the annular region in between two concentric cylinders 

(see Fig. 2.11) with specified temperatures of the inside and outside surfaces, and in 

which the heat conduction is one-dimensional radial. 

 

Figure 2.11: Domain created by combining 12 unit cells for Case 1 and the annular region in between 

two concentric cylinders. 

The thermal resistance per unit depth for steady-state one-dimensional radial heat 

conduction through the annular region in between two concentric cylinders (with constant 

thermal conductivity, 
0i

k , and the domain shown in Fig. 2.11) can be obtained 

analytically [Incropera and DeWitt (2002)]: 

 
0th, hollow cylinder ln 2 i

f

L
R k

d


 
   

 

 2.65 

Using this equation, the corresponding conduction heat transfer coefficient and Nusselt 

number are given by: 

 
0th, hollow cylinder1 ( ) (2 / ) ln /f i f fh R d k d L d 

 
   and     hollow cylinder 2 ln / fNu L d  2.66 

For the annular region between two concentric cylinders, the porosity can be defined as 

the ratio of the fluid surface to total surface: 
2 21 ( / )fd L   . In terms on this porosity, 

the Nusselt number given in the previous equation can be expressed as follows: 
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 hollow cylinder

4

ln 1
Nu




 
 2.67 

As was stated earlier, predictions of steady-state two-dimensional heat conduction in the 

unit cells for Cases 1 – 4 illustrated in Fig. 2.10 were obtained using a CVFEM [Baliga 

and Atabaki (2006)]. In each case, grids of 81 x 81 nodes were used, as grid-

independence checks showed that the corresponding results differed by less than   1% 

from the essentially grid-independent values obtained using a modified Richardson 

extrapolation technique [Baliga and Atabaki (2006)]. These predictions were used to 

compute values of the conduction Nusselt number for porosity values in the range 0.9 – 

0.98. The variation in porosity for each of the cases was achieved by keeping the distance 

L between the centers of adjacent rods constant and adjusting the fiber diameter, 
fd , or 

the base length, B . As was expected, the conduction Nusselt number did not depend on 

the thermal conductivity (
0i

k ), the imposed temperatures ( HT  and CT ), or L. Examples of 

the resulting temperature fields for 0.9   for Cases 1 – 4 are shown in Fig. 2.12.  

 

Figure 2.12: Pictorial representation of the dimensionless temperature field,     (    ) (     )⁄  

in the unit cells for Cases 1 – 4 and        .  

The difference between the highest and lowest predicted values of the conduction Nusselt 

number ranged from 28% at 0.9   to 18% at 0.98  . Case 4 (the one with rods of 

triangular cross-section) always yielded the highest value of the conduction Nusselt 

number, while Case 1 (the one with staggered rods of circular cross-section) always 
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yielded the lowest value of this Nusselt number. At was pointed out earlier, the inputs to 

the computer simulations were taken from experimental data for rods of essential circular 

cross-section. Therefore, more trust was put in predictions obtained for Cases 1 and 2, 

and the following correlation was obtained using the corresponding results: 

 
 conduction

4.1

ln 1
Nu




 
 2.68 

The values of the conduction Nusselt number calculated using the CVFEM predictions, 

the analytical solution for the annular region in between concentric cylinders, and the 

correlation given in equation 2.68 are presented graphically in Fig. 2.13. These results 

show that the proposed correlation yields results that are in very good agreement with 

those yielded by the CVFEM predictions for Cases 1 and 2, and reasonably good 

agreement with the predictions for Case 3. 

 

Figure 2.13: Conduction Nusselt number calculated using the CVFEM predictions, the analytical solution for 

the annular region in between concentric cylinders, and the proposed correlation. 
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It is acknowledged here that using Cases 1 – 4 to approximate the conduction heat 

transfer in the metal-foam-ice region, and also situations in which the fluid flow in the 

metal-foam-liquid-water region is very low, is somewhat ad hoc. Therefore, the 

predictions yielded by the proposed correlation in equation 2.68 must be treated as only 

somewhat rough estimates of the actual values of 
sfNu in conduction-dominated 

situations. In addition, it would be useful to conduct studies to assess the sensitivity (to 

the values of the conduction Nusselt number) of the simulations of conduction and 

natural convection in ice-liquid-water-porous-metal-foam systems. Such sensitivity 

checks were undertaken in this work, by first using equation 2.68 for calculating the 

values of the conduction Nusselt number and then doing the same calculations with these 

values multiplied first by 0.5 and then by 2. The results are presented in Chapter 4. 

Transition between the conduction and convection regimes in the interfacial heat 

transfer 

In the metal-foam-ice region, the conduction Nusselt number was calculated using the 

correlation given in equation 2.68: 

 
 

0

4.1

ln 1i

i f

sf

i

h d
Nu

k


 

 
 2.69 

In the metal-foam-liquid-water region, it must be ensured that the interfacial values of 

lsfNu  is not be less than the corresponding value of conductionNu , and this requirement was 

ensured by using the following equation:  

 
 

0

convection

4.1
max    ,    

ln 1l

l f

sf

l

h d
Nu Nu

k

 
   

  
 2.70 
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2.3 Dimensionless parameters 

For natural convection in open rectangular enclosures (no foam) akin to that shown in 

Fig. 1.2, with only liquid water (no ice; 0°CCT  ) and temperatures spanning the density 

inversion point, the following five independent dimensionless parameters apply: 

0 0

0 0

3

l

q

m l x H C p

l l

g H T T c
Ra

k

  




 ,   

* m C
m

H C

T T
T

T T





,   0 0

0

Pr
l pl

l

c

k


 ,     

y

x

H
AR

H
    and     2.71 

The modified Rayleigh number, Ra , is an adaptation of the classical Rayleigh number 

[Elkouh (1996)], and accounts for the particular nonlinear variation of the density of 

water with temperature. The parameter   (in radians) quantifies the inclination of the 

enclosure from the vertical. *

mT  is the density inversion parameter, which quantifies the 

relative position of the density inversion temperature with respect to the wall 

temperatures. If 
* 1mT  , then m HT T  and the water behaves as a fluid with a negative 

value of the classical thermal volumetric expansion coefficient, ( / ) /l p lv T v   ; if 

* 0mT  , then m CT T
 
and the water behaves as a fluid with a positive value of  . The 

value of the density inversion parameter has a strong influence on the fluid flow pattern 

inside the cavity and the heat transfer rates, as will be shown by the results presented in 

Chapter 4. For ice-water systems in open (no foam) rectangular enclosures, CT  is 

replaced by 0°C  in the definitions of the Rayleigh number, Ra , and the density 

inversion parameter, *

mT . 

When porous metal foam is included in the rectangular enclosure, and ice-liquid-water-

metal-foam systems are considered, four additional independent dimensionless 

parameters are involved: the porosity of the metal foam; the water-to-foam thermal 

conductivity ratio, which is 
0

/i sk k  in the ice-metal-foam region and 
0

/l sk k  in the liquid-

water-metal-foam region, and the Darcy number. The Darcy number is the normalized 

permeability [Nield and Bejan (2006)]: 
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x

K
Da

H
  2.72 

All the other commonly used dimensionless parameters involved in ice-liquid-water-

metal-foam systems can be expressed as functions of the above-mentioned independent 

dimensionless parameters: the dimensionless pore diameter, /p p xD d H  can be 

calculated from the porosity and Darcy number, thanks to equations 2.36, 2.51, 2.52, and 

2.72; the dimensionless fiber diameter can be calculated using the porosity, the 

dimensionless pore diameter and equations 2.51 and 2.52; and the Forchheimer 

coefficient can be calculated using equation 2.37.  The specific area, 
sfa , and the 

interfacial Nusselt number, 
lsfNu , needed in the two-temperature models, can be 

calculated using equations 2.53 and 2.70, respectively. 

The predicted values of the average rates of heat transfer on the left or right wall will be 

presented (in Chapter 4) in dimensionless forms as wall-average Nusselt number: 

 
0

/wall wall x lNu h H k  2.73 

In this equation, wallh  is the average heat transfer coefficient on the left or right wall, 

defined as follows: 

 
 

'

wall
wall

y H C

q
h

H T T



 2.74 

In open domains (no foam), the total rate of heat transfer per unit depth, '

wallq , into the 

enclosure at the heated wall and out of the enclosure at the cooled wall, is calculated as 

follows: 

 
0

'

 (no foam)
0

( )
yH

wall w wall

T
q k dy

x




  2.75 
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In this equation, 
0wk is the suitably averaged thermal conductivity along the wall, equal to 

0l
k  if the wall temperature is greater than meltT , and equal to 

0i
k  if the wall temperature is 

less than meltT . 

When the metal foam is included in the domain, the wall Nusselt number can be written, 

for both the cold and hot walls, as the sum of a fluid (ice or liquid water) Nusselt number 

and foam Nusselt number: 

 
foam left fluid left foam right fluid rightwallNu Nu Nu Nu Nu     2.76 

 

 

 

 

 

0

0

0

0

foam left
0

0

fluid left
0

0

foam right
0

fluid right

(1/ )
( )

(1/ )
( )

(1/ )
( )

(1/ )
(

y

y

y

x

H
s

ss sw
xl H C

H f

ww sw
xl H C

H
s

ss sw
x Hl H C

ww

l H C

TAR
Nu k k dy

k T T x

TAR
Nu k k dy

k T T x

TAR
Nu k k dy

k T T x

AR
Nu k

k T T







 
  

  

 
  

  

 
  

  










0
)

y

x

H f

sw
x H

T
k dy

x 











  

  
  



 2.77 

The equality of equation 2.76 always holds under steady-state conditions, but the 

repartition of the rates of heat transfer between the metal foam and the fluid (ice or liquid 

water) can be different on the two walls: thus, for example foam leftNu  can be significantly 

different from 
foam rightNu . 
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 Chapter 3: Numerical Method 

This chapter is organized as follows: first, a synopsis of a finite volume method (FVM) 

described by Baliga and Atabaki (2006) for the solution of steady, two-dimensional 

(Cartesian), Newtonian fluid flow and heat transfer problems in open domains (without 

porous media) is provided; then, modifications needed to adapt this FVM for solving the 

mathematical models of the water-ice-metal-foam systems of interest (described in 

Chapter 2) are summarized. A control-volume finite element method (CVFEM) was used 

for the determination of a correlation for the interfacial conduction Nusselt number, using 

a formulation and procedures described in Section 2.2.5. For full details and discussions 

of this CVFEM, the interested reader is referred to the work of Baliga and Atabaki 

(2006). The CVFEM described in their work was used here without any modifications. 

3.1 Synopsis of a Finite Volume Method for steady, two-dimensional, fluid 

flow and heat transfer in open domains 

A detailed description of this finite volume method (FVM) is available in Baliga and 

Atabaki (2006). Thus, only a synopsis is provided here. 

3.1.1 Governing equations 

As was mentioned above, this FVM is designed for solving steady, two-dimensional 

(Cartesian), Newtonian fluid flow and heat transfer problems in open domains. In the 

Cartesian coordinate system, and the equations that govern these problems can be cast in 

the following forms: 

Continuity equation:  

     0l lu v
x y
 

 
 

 
 3.1 
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x-momentum equation : 

    l l l l u

P u u
uu vu S

x y x x x y y
   

        
        

         
 3.2 

y-momentum equation :  

    l l l l v

P v v
uv vv S

x y y x x y y
   

        
        

         
 3.3 

Energy equation: 

    
0 0

l w l w
l w l w T

pl pl

k T k T
uT vT S

x y x c x y c y
 

       
      

           

 3.4 

In equations 3.1–3.4, uS , vS , and 
0

/T E plS S c  are volumetric source terms, which can 

be used to model actual physical sources of x-momentum, y-momentum, and thermal 

energy, respectively, and also include all terms that are not explicitly shown in these 

equations [Patankar (1980); Baliga and Atabaki (2006)]. Following Patankar (1980), it is 

noted that equations 3.1-3.4 are all specialized versions of a general form of these 

governing equations. This general equation is given below: 

    l lu v S
x y x x y y

  

 
   

       
        

        
 3.5 

In this equation,   denotes a general specific (per unit mass) scalar dependent variable, 

  a diffusion coefficient associated with  , and S  the corresponding volumetric (per 

unit volume) source term. If needed, all of the source terms are linearized and cast in the 

following form [Patankar (1980)]: 

 C PS S S 

    3.6 
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3.1.2 Domain discretization 

The domains of interest are first discretized into contiguous rectangular control volumes 

that fill the domain exactly. Then, the nodes or grid points are located at the geometric 

centers of the control volumes, the centers of the control volume faces that coincide with 

the boundaries of the domain, and the corners of rectangular domain. The grid points or 

nodes lie on lines that are parallel to the grid axes, and these grid lines could be non-

uniformly spaced. This domain discretization scheme is illustrated in Fig. 3.1. All 

dependent variables are located (stored) at the same set of nodes (co-located 

formulation). The same set of nodes also serve as storag locations for l , l , lk , 
plc , uS

, vS , TS ,  , and S . 

 

Figure 3.1: Discretization of a rectangular calculation domain: dashed lines indicate control volume 

faces; solid dots indicate nodes or grid points; and solid lines denote grid lines. 

The notations that are used to denote grid details for interior and boundary nodes are 

provided in Figures 3.2 (a) and (b), respectively. 
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                                         (a)                                                           (b) 

Figure 3.2: Notations associated with (a) interior nodes and (b) boundary nodes. 

3.1.3 Discretized equations 

The governing differential equations are first integrated over the control volumes shown 

in Figures 3.1 and 3.2, and algebraic approximations to the integral conservation 

equations are then derived. These algebraic approximations are called the discretized 

equations. In the derivation of these discretized equations, the advection and diffusion (or 

viscous and conduction) terms are discretized using the hybrid scheme [Patankar (1980); 

Baliga and Atabaki (2006)], which is second-order accurate at low velocities (strictly, at 

grid Peclet number values less than 2) and uniform grids. Quadratic interpolation is used 

at the boundaries, appropriately adjusted to incorporate the specified boundary conditions 

and designed to ensure second-order accuracy [Baliga and Atabaki (2006)]. The reduced 

pressure is interpolated using piecewise-linear functions between the nodes. In the mass 

flow rate terms, the velocity components are interpolated using the so-called momentum 

interpolation scheme [Rhie and Chow (1983); Baliga and Atabaki (2006)], to avoid 

undesirable checkerboard pressure and velocity distributions that would otherwise afflict 

this equal-order co-located FVM [Patankar (1980)]. The values of thermophysical 

properties stored at the nodes are interpolated to locations where the grid lines intersect 

the control-volume faces using a resistance analogy (which reduces to the harmonic mean 

on uniform grids), as described in Patankar (1980) and Baliga and Atabaki (2006). The 
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resulting discretized equations for u, v, P, T, and   can be cast in the following forms 

[Baliga and Atabaki (2006)]. 

Discretized u equations: 

  
, , ,

/u u u

C C nb nb C C

nb E N W S

a u a u b P x Vol


      3.7 

Discretized v equations: 

  
, , ,

/v v v

C C nb nb C C

nb E N W S

a v a v b P y Vol


      3.8 

Discretized P equations: 

 
, , ,

P P P

C C nb nb C

nb E N W S

a P a P b


   3.9 

Discretized T equations: 

 
, , ,

T T T

C C nb nb C

nb E N W S

a T a T b


   3.10 

Discretized   equations: 

 
, , ,

C C nb nb C

nb E N W S

a a b   


   3.11 

In equations 3.7 and 3.8,  /P x   and  /P y   are the reduced pressure gradients in 

the x and y directions, respectively, averaged over the control volume, CVol , associated 

with the node C. 

3.1.4 Solution of the discretized equations 

The sets of discretized equations, represented by equations 3.7 to 3.11, were solved using 

a sequential iterative variable adjustment (SIVA) procedure. In each overall (or outer) 

iteration of this procedure, linearized (if required) and decoupled sets of the discretized 
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equations for u, v, P, and other dependent variables, as needed, are solved sequentially; 

and in this sequence, each linearized and decoupled set of discretized equations for each 

dependent variable is solved using an iterative line-Gauss-Seidel scheme (inner 

iterations), which involves a line-by-line application of the tri-diagonal-matrix-algorithm 

(TDMA). The overall iterations of the SIVA procedure are repeated until a suitable 

convergence criterion is met. Full details of the SIVA procedure are available in Baliga 

and Atabaki (2006), so they are not repeated here. 

To ensure convergence of the SIVA procedure, it is essential to under-relax the 

discretized equations. The implicit under-relaxation procedure of Patankar (1980) was 

used in this work. Thus, for example, the set of discretized equations for the general 

variable,  , is first under-relaxed and rewritten as follows, and then solved: 

 *

, , ,

1
C

C nb nb C C

nb E N W S

a
a b a


  

 


  

 

     
         

     
  3.12 

In this equation,   is the under-relaxation parameter associated with the dependent 

variable  , and 
*

C  is the latest available value (or guess value at the start of the overall 

iterations) of   at the node under consideration. The following values of the under-

relaxation parameters are recommended by Baliga and Atabaki (2006) and were found to 

work well in this work: u  = v  = 0.5; P  = 1.0. The temperature under-relaxation 

parameter was set to 0.9T  . 

The iterations of the SIVA procedure were assumed to have converged when the 

maximum values of suitably normalized absolute residues of the sets of discretized 

equations of all dependent variables had all fallen below 10
 – 6

. 
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3.2 Finite Volume Method for simulation of steady, two-dimensional, fluid 

flow and heat transfer in Water-Ice-Metal-Foam systems 

The modifications that were necessary to adapt the FVM (described in Section 3.2) for 

solving the mathematical models of fluid flow and heat transfer in the water-ice-metal-

foam systems of interest are summarized in this section.  

3.2.1 Recasting of the governing equations 

First, equations 2.29 and 2.40 were recast in the following forms: 
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The energy equations for the intrinsic-phase-average temperatures of the solid (metal 

foam) and water (ice or liquid), equations 2.44 and 2.45, were also recast as follows: 

In the liquid-water-metal-foam region: 
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In the ice-metal-foam region: 
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Under steady-state conditions, the values of the ice and foam specific heat at constant 

pressure, 
0pic and 

0psc , do not influence the solution of the governing equations, but they 

were included for consistency and also potential extensions to unsteady simulations. 

3.2.2 Modifications implemented for computing fluid flow and pressure 

In the liquid-water-metal-foam region, the steady-state FVM described in Section 3.1 was 

adapted for solving the set of equations that govern the superficial (or Darcy) velocity, u , 

and the intrinsic-phase-average reduced pressure,
w

P (equations 3.13 and 3.14) using the 

following minor modifications: 1) the term CVol  in equations 3.7 and 3.8 is replaced by 

2

CVol ; and 2) the dynamic viscosity, 
0l

 , is replaced by 
0l

 . In addition, the source 

terms in the x and y momentum equations were set equal to the following values:  
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Here, xg  and 
yg  are components of the gravitational acceleration vector in the positive x 

and y directions, respectively. 

At the nodes associated with control volumes in the ice-metal-foam region, the velocity 

was set to zero. This was done by modifying the coefficients in the discretized 

momentum equations as follows: 

 
, , ,1    ;    0    ;    0u v u v u v

P nba a b    3.18 

The treatment of the coefficients in the discretized pressure equation was similar, but 

done in the context of additional modifications. The reduced pressure values at nodes 

inside the ice-metal-foam region were totally decoupled from the rest of the fluid domain, 
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by imposing zero values of the interpolated pseudo-velocities u  and v , and also zero 

values of  du and 
yd , using the definitions and procedures proposed by Baliga and 

Atabaki (2006). After that, the reduced pressure in the ice-porous-metal region was fixed 

to the convenient value of zero, using the following modifications of the coefficients in 

the corresponding discretized equation: 

 1    ;    0    ;    0p p p

P nba a b    3.19 

At any solid boundary, the mass flow rates that are used to approximate advection at the 

control-volume faces were also set equal to zero. Furthermore, the volume-averaged 

gradients of the reduced pressure,  /P x   and  /P y  , were calculated in a modified 

manner for control volumes in the liquid-water-porous-foam region, but immediately 

adjacent to (one or more faces on) the ice-porous-foam region: the terms  /P x   and 

 /P y   were computed using only the values of reduced pressure at nodes in the liquid-

water-porous-foam region, since the zero values of the reduced pressure imposed at the 

nodes inside the ice-porous-foam region have no physical relevance in the context of this 

FVM. 

3.2.3 Modifications implemented for computing intrinsic-phase-average 

temperatures 

Modifications of the FVM (described in Section 3.1) to enable solutions of equations 

3.15 and 3.16 that govern the intrinsic-phase-average temperatures of the solid (metal 

foam) and water (ice or liquid water), 
s

sT  and 
w

wT , respectively, in the liquid-water-

porous-metal-foam and ice-porous-metal-foam regions are summarized in this 

subsection. First, the relevant diffusion coefficients and source terms were set as follows: 

In the liquid-water-metal-foam region: 
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In the ice-metal-foam region: 
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An additional binary integer variable called the solid-liquid indicator ISL was used in the 

computations to indicate and determine whether a node was located in the ice-metal-foam 

region or the liquid-water-metal-foam region. Its value was set equal to one (1) at nodes 

(grid points) in the liquid-water-metal-foam region, and to zero (0) at the grid points in 

the ice-metal-foam region. In addition, to avoid uncontrollable oscillations of the water-

ice interface and potential divergence of the FVM solution, prescription of a melting 

temperature tolerance, meltT , was found to be necessary. If the conditions at a node 

corresponded to the ice-metal-foam region in a particular overall iteration of the FVM, 

then in the next iteration, these conditions were change to those corresponding to the 

liquid-water-metal-foam region only if the computed value of 
w

wT  was greater than 

melt meltT T  . Similarly, in successive overall iterations of the FVM, the conditions of 

liquid-water-metal-foam at a node were changed to those of ice-metal-foam only if the 

computed temperature of value of 
w

wT  was smaller than melt meltT T . In the final 

simulations, each case of interest was started with a relatively large value of meltT  (of 

the order of 1 or 2 
o
C, or as need to get convergence), and then the value of  meltT  was 

gradually reduced until its influence on the final results for this case became negligible.  
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3.3 Continuation method 

A so-called continuation method was used to facilitate convergence of the FVM in the 

final simulations. In a series of runs, after a converged solution (values of the dependent 

variables u , 
w

P , 
s

sT , and 
w

wT , and also ISL ), was obtained for a case of interest 

(with a given set of input parameters xH , 
yH ,  , ,  ,  ,  H C pT T d  and meltT ), this 

solution was used as the initial guess for the next case of interest. This method saved a 

considerable amount of computational time in the final simulations. It also provided 

another very important advantage: converged solutions could be obtained for difficult 

cases (for example, cases in which the density inversion parameter was close to 0.5, or 

the value of Rayleigh number was quite high), by starting with a fully converged solution 

to a less difficult case, and then slowly changing the set of inputs towards those of the 

difficult case, using the continuation method to obtain fully-converged intermediate and 

final solutions. Examples of results yielded by continuation method are presented in 

Chapter 4. 
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 Chapter 4: Results and Discussions 

Applications of the mathematical models and the finite volume method (FVM) proposed 

in Chapters 2 and 3 to test and demonstration problems, and the results obtained, are 

presented and discussed in this chapter. As was mentioned and discussed in Chapters 1 

and 2, attention was limited in this work to steady-state, two-dimensional planar, 

conduction and laminar natural convection heat transfer in ice-liquid-water systems 

contained in rectangular enclosures, with and without porous metal (aluminum) foams. 

In this chapter, first, results for laminar natural convection in liquid water in open square 

enclosures (no ice; no porous metal foam), with temperatures spanning the density 

inversion point, are presented and compared to the experimental and numerical results of 

Elkouh (1996). This problem was first solved using a variable-property model (VPM) 

and then a constant-property model (CPM), with the constant fluid properties evaluated at 

several different reference (or average) temperatures, and the reference (or average) 

temperature that yields the lowest differences between the results computed with the 

VPM and CPM was determined. These results are also presented and discussed. 

Next, results for conduction and laminar natural convection in ice-liquid-water systems in 

open square enclosures (no porous metal foam) are presented and compared to some 

experimental and numerical results presented by Elkouh (1996). Particular attention is 

given to the influence of the Rayleigh number on the streamlines and ice-liquid-water 

interface position. 

Following that, results obtained for conduction and laminar natural convection in liquid-

water-porous-metal-foam systems contained in square enclosures are presented and 

discussed. The effects of adding five different porous metal foams to the liquid water 

problems considered by Elkouh (1996) are discussed first, and then simulations and 

results that were used to assess the influence of Rayleigh number, thermal dispersion, and 

Forchheimer drag on the streamlines and values of average Nusselt number are presented. 

Finally, simulations of a demonstration problem involving conduction and laminar 

natural convection heat transfer in ice-liquid-water-metal-foam systems contained in 
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rectangular enclosures are presented, for enclosure dimensions and wall temperatures that 

are relevant to cold-storage situations. Results obtained with and without the foam are 

compared and the effect of aspect ratio is quantified.  

4.1 Natural convection in liquid water contained in open square enclosures 

(no foam), with temperatures spanning the density inversion point 

This problem was used to validate the proposed mathematical models and FVM. The 

calculation domain is the rectangular enclosure illustrated schematically in Fig. 1.2, but 

with no ice and no foam (in this test problem). First, the results obtained for 12 different 

cases simulated using the variable-property model (VPM) described in Chapter 2 are 

presented and compared to the experimental and numerical results of Elkouh (1996). 

These cases were also simulated using the constant-property model (CPM) discussed in 

Chapter 2, with the constant fluid properties evaluated at several reference (or average) 

temperatures. Then, the reference (or average) temperature that yields the lowest 

differences between the results computed with the VPM and CPM was determined. These 

results are also presented and discussed in this section. 

In the experiments of Elkouh (1996) for this problem, the dimensions of the square 

enclosure were kept constant at 6.012cmx yH H H   , its left-wall temperature was 

maintained as close as possible to 0°C , and its right-wall temperature was maintained at 

different values between the density inversion temperature of water and C . The 

inclination angle,  , was 0°  in the first six runs, and 45°  in the next six runs. The 

conditions for the 12 cases (Runs # 1 – 12) of this problem investigated experimentally 

by Elkouh (1996) are summarized in Table 4.1. Also provided in this table are values of 

the Rayleigh and Prandtl numbers calculated using the definitions given in Chapter 2, and 

with water properties based on a zonal temperature that is defined later in this section. 

Elkouh (1996) used a dye-injection technique to obtain photographs of the streamline 

patterns for the aforementioned 12 runs, but he did not present any quantitative data 

related to the natural convection heat transfer. Thus, only qualitative comparisons were 

possible between his experimental results and the numerical predictions obtained in this 

work.  
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Run 

number 

Cavity 

angle   
 ( C)CT    ( C)HT   

Density inversion 

parameter *

mT  

Rayleigh 

number 

Prandtl 

number 

1   0.00 4.01 1.006 61.22 10  12.4 

2   0.01 6.02 0.669 62.63 10  12.4 

3   0.00 8.04 0.501 64.56 10  12.4 

4   0.03 10.00 0.401 67.91 10  10.4 

5   0.04 14.98 0.267 71.82 10  9.56 

6   0.00 20.00 0.202 73.37 10  8.84 

7   0.00 4.04 1.001 61.24 10  12.4 

8   0.00 6.01 0.670 62.63 10  12.4 

9   0.01 8.02 0.502 64.53 10  12.4 

10   0.01 10.00 0.402 67.95 10  10.4 

11   0.03 15.00 0.267 61.83 10  9.56 

12   0.03 19.99 0.201 63.36 10  8.84 

 

Table 4.1: Laminar natural convection in liquid water contained in an open square enclosure: 

summary of parameters for the 12 cases investigated experimentally by Elkouh (1996). 

As was mentioned in Chapter 2, in the published literature [Whitaker (1999); Nield and 

Bejan (2006)], the derivations of volume-averaged governing equations for fluid flow and 

heat transfer in fluid-saturated porous media are done assuming that the properties of the 

fluid are essentially constant (no terms that arise due to variable density, viscosity, 

specific heat at constant pressure, and thermal conductivity of the fluid are considered in 

these derivations). Thus, the models of conduction and laminar natural convection in ice-

liquid-water-porous-metal-foam systems discussed in Chapter 2 must be used with the 

assumption that the properties of the water (ice and liquid) calculated at a suitable 

reference (or average) temperature remain essentially constant for each case considered. 

This requirement brings up the question of the best reference (or average) temperature for 

basing the constant fluid properties in each of the cases of interest. This question was 

answered by simulating each of the 12 cases of this test problem (see related parameters 

in Table 4.1) using the variable-property model (VPM) and the constant-property model 

(CPM), with the constant fluid properties in the CPM evaluated at several different 
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reference (or average) temperatures. Then, the reference (or average) temperature that 

yields the lowest differences between the results computed using the VPM and CPM was 

determined. This reference (or average) temperature was used for calculating the constant 

fluid properties used in the constant-property models (CPMs) of conduction and laminar 

natural convection in the liquid-water-porous-metal-foam and ice-liquid-water-porous-

metal-foam systems investigated in this work. 

For the problems considered in this work, the most intuitive choice of the reference (or 

average) temperature on which to base the values of the constant fluid properties is the 

arithmetic-average of the cold- and hot-wall temperatures: ( ) / 2av C HT T T  . Some 

authors have used the cold-wall temperature as the reference (or average) temperature, 

av CT T ; and others have used the density inversion temperature of water, at which the 

density achieves its maximum value, as the reference (or average) temperature, 

o 4.029325 Cav mT T  . Elkouh suggested that a zonal temperature be used as the 

reference (or average) temperature: av zonalT T . This zonal temperature is defined as 

follows, with reference to values of the density inversion parameter, *

mT , defined in 

Section 2.3: if *0.5 1mT  , then ( ) / 2zonal C mT T T  ; if *0 0.5mT  , then 

( ) / 2zonal m HT T T  ; if * 0.5mT  , then zonal mT T ; and if * 0mT   or * 1mT  , then 

( ) / 2zonal C HT T T  . The logic underlying the choice of the zonal temperature is that if 

*0 1mT  , then fluid flow and heat transfer phenomena are dominated by the larger of 

the two main counter-rotating recirculation cells within the enclosure for any given value 

of *

mT , except at *

mT  = 0.5 for   = 0
o
, where both these cells exert almost the same 

influence [Elkouh (1996)]. It should also be noted that in cases involving ice and liquid 

water within the enclosure, with or without the porous metal foam, o 0 CmeltingT   is used 

in place of CT  in the definition of zonalT , since the cold-boundary of the liquid-water 

region inside calculation domain is the ice-liquid-water interface and its temperature is 

the melting temperature of water (ice). 
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The values of the average Nusselt number on the hot wall of the square enclosure (note 

that hot wall cold wall wallNu Nu Nu   in this problem, for fully converged solutions) obtained 

using the VPM and the CPM were compared to assess the suitability of the 

aforementioned four candidates for the reference (or average) temperature. To ensure 

consistency in this particular series of comparisons, the value of thermal conductivity 

used in the definition of this Nusselt number, in all cases, was based on the zonal 

temperature. Thus,  

 
0 0

'( ) / {( / ) / ( )} /wall wall x l towater at hot wall y H C x lNu h H k q H T T H k    4.1 

    
0

3 6 20.5654 1.700 10 5.944 10l zonal zonalk T T       4.2 

Here, zonalT  is in 
o
C, and the thermal conductivity of the liquid water at this temperature, 

0l
k , is expressed in W/m.°C . 

The results of grid-independence checks for Run # 6, for which the Rayleigh number 

value was the highest, so the normal gradients of the temperature and velocity fields at 

the hot and cold walls were also the highest, are presented in Table 4.2. Seven different 

uniform grids (Grids # 1 – 7) were used, and the simulations were carried out using the 

CPM, with the constant fluid properties based on the zonal temperature. The results in 

Table 4.2 show that the difference in the value of the average Nusselt number on the hot 

wall (see equations 4.1 and 4.2) yielded by any particular grid and the extrapolated grid-

independent value, obtained using Richardson extrapolation [Baliga and Atabaki (2006)] 

of values yielded by Grids # 6 and 7 (the finest two grids), decreases monotonically as 

the grid is refined. With a grid of 105 x 105 nodes, this difference was 1.49%, which was 

considered acceptable for the purposes of this study. It should be noted here that in 

similar grid checks done for Runs # 1 – 5 and 7 – 12, this level of precision was achieved 

with grids of 75 x 75 nodes. Thus, all final simulations undertaken in this test problem 

were carried out with uniform grids of 105 x 105 nodes. 
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Grid # Number of nodes wallNu  (see 

equation 4.1) 

Difference with 

respect to extrapolated 

grid-independent 

value (%) 

1 55 55  22.8778 11.40 

2 75 75  21.4759 4.57 

3 95 95  20.9643 2.08 

4 105 105  20.8434 1.49 

5 115 115  20.7643 1.11 

6 155 155  20.6307 0.46 

7 205 205  20.5906 0.26 

Extrapolated grid-independent value (obtained 

using Richardson extrapolation of results from 

Grids # 6 and 7) 

20.5371 - 

 

Table 4.2: Results of grid-independence checks performed for Run # 6. 

For Runs # 1 – 6 (specifications given in Table 4.1), Fig. 4.1 shows dye-injection 

photographs and computed streamline patterns obtained by Elkouh (1996), along with the 

computed streamline patterns obtained in this work with the variable-property model 

(VPM) and uniform grids of 105 x 105 nodes (in the last column of this figure). These 

results show very good agreement for all runs, except Run # 3, which corresponds to

* 0.5mT  . At or in the vicinity of this value of the density inversion parameter, Elkouh 

(1996) has established (experimentally and numerically) that the results, especially 

streamline patterns, are extremely sensitive to even minute variations in the values of CT  

and HT : so the experimental results (with the associated uncertainties) are difficult to 

duplicate numerically; and the numerical results are very sensitive to the computational 

grids employed and the criteria used to check convergence of the overall iterative 

solution. 
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Figure 4.1: Comparison of dye-injection photographs and computed streamlines obtained by Elkouh 

(1996) to streamlines computed using the variable-property model (VPM), for Runs # 1 – 6. 
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Run # 

wallNu  

Results 

obtained 

using VPM 

Results obtained using CPM, with four different avT  

(Percentage error with respect to results obtained using VPM) 

2

H C
av

T T
T


  av CT T  av mT T  av zonalT T  

1 9.742 
9.766 

(+0.24%) 

9.543 

(-2.04%) 

9.989 

(+2.54%) 

9.767 

(+0.26%) 

2 8.651 
8.756 

(+1.21%) 

8.461 

(-2.21%) 

8.855 

(+2.35%) 

8.658 

(+0.08%) 

3 6.250 
6.444 

(+3.1%) 

6.162 

(-1.41%) 

6.445 

(+3.11%) 

6.304 

(+0.86%) 

4 10.27 
10.05 

(-2.13%) 

9.506 

(-7.46%) 

9.947 

(-3.17%) 

10.27 

(-0.04%) 

5 16.30 
16.06 

(-1.51%) 

14.79 

(-9.29%) 

15.47 

(-5.10%) 

16.38 

(+0.50%) 

6 20.82 
20.56 

(-1.26%) 

18.45 

(-11.38%) 

19.31 

(-7.24%) 

20.84 

(+0.11%) 

Average absolute error for 

Runs # 1 – 6 (
o 0  ) 

1.57% 5.63% 3.92% 0.31% 

7 2.977 
2.980 

(+0.10%) 

2.936 

(-1.39%) 

3.024 

(+1.56%) 

2.980 

(+0.10%) 

8 3.132 
2.970 

(-5.17%) 

2.862 

(-8.61%) 

3.013 

(-3.78%) 

2.932 

(-6.38%) 

9 6.895 
6.688 

(-3.00%) 

6.426 

(-6.80%) 

6.689 

(-2.99%) 

6.559 

(-4.88%) 

10 10.54 
10.27 

(-2.64%) 

9.771 

(-7.33%) 

10.17 

(-3.54%) 

10.46 

(-0.80%) 

11 16.16 
15.95 

(-1.33%) 

14.80 

(-8.45%) 

15.42 

(-4.60%) 

16.24 

(+0.50%) 

12 20.09 
19.87 

(-1.08%) 

18.00 

(-10.37%) 

18.77 

(-6.58%) 

20.22 

(+0.68%) 

Average absolute error for 

Runs # 7 – 12 (
o 45  ) 

2.22% 7.16% 3.84% 2.22% 

Average absolute error for 

Runs # 1 – 12 
1.90% 6.39% 3.89% 1.27% 

 

Table 4.3: Hot-wall Nusselt number values computed using the variable-property model (VPM) and 

constant-property model (CPM), the latter with four different reference (or average) temperatures. 

 

Table 4.3 presents values of the average Nusselt number on the hot wall computed using 

the VPM and the CPM, the latter with values of the constant fluid properties based on the 

four above-mentioned reference (or average) temperatures, for Runs # 1 – 12 
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(specifications given in Table 4.1). The wallNu  values obtained with the VPM were 

regarded as benchmark results, so the differences between the various CPM results and 

the corresponding VPM results are referred to as errors. The zonal temperature gives the 

best results, with an average absolute error over Runs # 1 – 12 of only 1.27%. The 

comparative advantage of the zonal temperature is particularly evident for cases with 

0    (Runs # 1 – 6), for which all the errors are below 1%. When the cavity is inclined 

at 45   , the dominant recirculation flow cell is determined by not just the value of the 

density inversion parameter, *

mT , but also by the inclination of the enclosure with respect 

to the gravitational acceleration vector: thus, for Runs # 7 – 12, the individual CPM 

errors associated with the zonal temperature are comparable to those associated to the 

classical arithmetic-average temperature. On the basis of these results, for all 

computations undertaken in this work with the CPM, the zonal temperature was chosen 

for calculating the properties of the fluid. It should also be noted that in all CPM 

simulations of ice-liquid-water-porous-metal-foam systems considered in this work, the 

thermal conductivity of ice, ik , was based on 0°Cav meltingT T  , as the cold-wall 

temperature in these systems was maintained in the range o o20 C 0 CCT   , and the 

changes of ik  in this temperature range are negligibly small compared to its value at 
o0 C

; and the properties of the metal (aluminum) were based on ( ) / 2av C HT T T  . For this 

test problem, additional computations, complementary to those discussed in the previous 

paragraph and with results summarized in Table 4.3, were undertaken with the VPM, but 

with only one of the liquid-water properties ( l , 
plc , or lk ) maintained constant, 

individually, at the zonal temperature. It should be noted that the density of water was 

always assumed constant in all terms except those related to buoyancy term, in the 

context of the Boussinesq assumption, as was discussed in Chapter 2. These additional 

computations showed that the assumption of constant dynamic viscosity (
0l l  = 

constant) caused the biggest errors, relative to those caused by assuming 
0pl plc c   

constant and 
0l lk k   constant, individually. Since a volume-averaged approach to 

porous media is used in the thesis, it is assumed that the justification of the use of CPM 
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and the determination of the best averaging method presented in this section can be 

reasonably extrapolated to simulations of fluid flow and heat transfer in metal foams 

filled with water. 

4.2 Conduction and natural convection in ice-liquid-water systems 

contained in open square enclosures (no foam) 

4.2.1 Validation of the proposed mathematical model, verification of the FVM, and 

illustration of the proposed continuation method 

Validation of the proposed mathematical model (VPM) and verification of the FVM were 

done by undertaking simulations of two cases of this problem investigated experimentally 

and numerically by Elkouh (1996), and labelled Runs A and C by him, and using his 

results to check the numerical predictions. The dimensions of the square enclosure in 

these two runs were maintained constant at 6.012 cmx yH H H   , as was done in the 

experiments of Elkouh (1999). The other pertinent conditions in the experiments of 

Elkouh (1996) and the corresponding values of the Rayleigh and Prandtl number in the 

liquid-water region (with the properties used to compute these parameters based on the 

above-mentioned zonal temperature) for these two runs are summarized in Table 4.4. The 

properties of the ice were maintained constant at values corresponding to 0°CmeltT  . 

Run 
Cavity 

angle θ  
 ( C)HT    ( C)CT   

Density 

inversion 

parameter *

mT  

Rayleigh 

number 

Prandtl 

number 

A   10.00 -8.71 0.4029 67.94 10  10.4 

C   5.98 -4.69 0.6738 62.59 10  12.4 

 

Table 4.4: Summary of conditions for two liquid-water-ice problems studied experimentally by 

Elkouh (1996), and used for validating the mathematical model and FVM proposed in this work. 

Based on findings of grid-independence checks akin to those describe in Section 4.1, 

fixed uniform grids with 101 101  nodes were found to yield satisfactory results, and 

used to obtain the results reported in this section. It should also be noted that for both of 

the cases considered (Runs A and C), converged solutions could only be obtained using 
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the continuation method described in Chapter 3. For Run A, a 17-step continuation 

method (with the conditions for each step summarized in Table 4.5) was necessary to 

obtain a converged solution (criteria given earlier in Chapter 3): in the first six of these 

steps, the value of the cold-wall temperature, CT , was started at 0°C  and then 

progressively decreased to the desired value of -8.71°C ; and in Steps 7 – 17, meltT  was 

started at a value of 1°C  and then progressively decreased to a value of 0.02°C , which 

ensured essentially no influence of this parameter on the computed results. A similar 

continuation method was used to obtain a converged solution for Run C, but only five 

steps were necessary, as the value of Rayleigh number in Run C is not as high as that in 

Run A, and the left recirculating flow cell is in contact with the full water-ice interface, 

which is consequently smoother (as can be seen in the ice-liquid-water interface position 

and streamline patterns presented in Fig. 4.2). In the continuation method used for Run C, 

the value of  meltT  was started at 1°C  and then progressively decreased to 0.025°C , 

which ensured essentially no influence of this parameter on the computed results. 

Step number  ( C)HT    ( C)CT   ( C)meltT   

1 10.00 0.00 - 

2 10.00 -3.00 1.000 

3 10.00 -5.00 1.000 

4 10.00 -5.00 0.500 

5 10.00 -7.00 1.000 

6 10.00 -8.71 1.000 

7 10.00 -8.71 0.700 

8 10.00 -8.71 0.600 

9 10.00 -8.71 0.400 

10 10.00 -8.71 0.300 

11 10.00 -8.71 0.200 

12 10.00 -8.71 0.150 

13 10.00 -8.71 0.100 

14 10.00 -8.71 0.050 

15 10.00 -8.71 0.030 

16 10.00 -8.71 0.025 

17 10.00 -8.71 0.020 

 

Table 4.5: Summary of the conditions used in a 17-step continuation method that was necessary to 

obtain a fully-converged solution for Run A. 



84 

 

  

The fully-converged values of hot wallNu  obtained with the VPM for Runs A and C were 

5.5190 and 5.2155, respectively. 

In Fig. 4.2, the ice-liquid-water interface and streamlines in the liquid-water region for 

Runs A and C obtained experimentally and numerically by Elkouh (1996) are compared 

to the corresponding results obtained computationally in this work. The experimental 

results of Elkouh (1996) were obtained using laser shadowgraphy and dye injection. He 

computed the streamlines in the liquid-water region using a control-volume finite element 

method, with the left-boundary shape and conditions of this region specified using the 

ice-liquid-water interface profile (and 0°CmeltingT  ) determined in his experimental 

investigation. The agreement between these results of Elkouh (1996) and those obtained 

in this work is qualitatively excellent, with no noticeable differences. 

The vertical dotted lines associated with the results of this investigation presented in Fig. 

4.2 represent the ice-liquid-water interface in the pure-conduction limit (no natural 

convection in the liquid water region). In this pure-conduction limit, the problem 

becomes one-dimensional (the temperatures in the ice and the liquid-water regions vary 

only in the x direction); and at the ice-liquid-water interface, the temperature is 

0°CmeltingT   and the heat flux normal to the interface on the liquid-water side is equal to 

that away from the interface on the ice side. A CPM model of this one-dimensional 

problem was solved analytically. The values of the hot-wall Nusselt number (which is 

equal to the cold-wall Nusselt number under steady-state conditions) in this one-

dimensional pure-conduction problem were determined to be 2.3946 and 2.3096 for 

boundary conditions corresponding to those in Runs A and C, respectively. Comparing 

these values of wall Nusselt number to those obtained for the actual Runs A and C 

(5.5190 and 5.2155, respectively), it can be deduced that natural convection in the liquid-

water enhances the overall rates of heat transfer in these runs by about 130% and 126%, 

respectively.  

In these runs, the shape and position of the interface are influenced by both the density 

inversion parameter and the Rayleigh number. As can be seen from the results presented 
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in Fig. 4.2, when the density inversion parameter is smaller than 0.5 (Run A), the right 

counter-clockwise flow recirculation cell dominates, and since it brings relatively hot 

water to the top of the enclosure, the upper portion of ice-water interface bends to the 

left; and when this parameter is greater than 0.5 (Run C), the left clockwise flow 

recirculation cell dominates and the interface is bent to the right. Run A is particularly 

interesting since the right flow recirculation cell is strong enough and large enough to 

reach the ice-liquid-water interface, causing its particular shape: the two flow 

recirculation cells meet at the rightmost point of this interface, and a strong jet of 

relatively cold water leaves the interface at this point and flows towards the right wall; 

above this point, the interface is bent to the left, while it is bent to the right below it. 

     

Figure 4.2:  Ice-liquid-water interface and streamlines in the liquid-water region for Runs A (above) 

and C (below): comparison of the experimental and numerical results of Elkouh (1996) with the 

numerical results obtained in this work (rightmost figures). 

Elkouh (1996) also investigated another case of this problem (he called it Run B), with 

the following conditions: 4.58°CCT   , 8.01°CHT  , and * 0.503mT  . In this work, an 
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attempt was made to apply the proposed mathematical model (VPM) and FVM to this 

case, but without success. The closeness of the density inversion parameter ( *

mT ) in this 

case to 0.5 and with   = 0
o
, a converged solution was essentially impossible to obtain. 

Attempts were made to apply the continuation method to this case, starting with a 

solution for an inclined enclosure with   = 10
o
, and then progressively reducing the 

value of   to the desired value of 0
o
. However, satisfactory convergence of the solutions 

could be achieved only for 4   . 

4.2.2 Flow patterns and ice-liquid-water interface shapes for high values of the 

Rayleigh number 

After the completion of the simulations described in the previous subsection, the 

proposed VPM and FVM were used to investigate the influence of higher values of 

Rayleigh number on the natural convection flow patterns and ice-liquid-water interface 

shapes, in problems involving ice-liquid-water systems in open (no foam) square 

enclosures. In these simulations, the walls temperatures of Run C (see Table 4.4) were 

used throughout, and the values of Rayleigh number were increased by changing the 

dimensions of the square enclosure: 
x yH H H  , with 6.012cm 35cmH  , which 

produce Rayleigh number values in the range 
6 82.59 10 5.12 10Ra    . The 

continuation method was used to progressively advance the values of H from 6.012 cm to 

35 cm in eight runs. For each of these runs, 4 – 6 additional steps of the continuation 

method were used, starting with 1°CmeltT   and then progressively pushing this value 

down to 0.05°CmeltT  , at which its influence on the results was negligibly small. The 

values of the Rayleigh number explored experimentally by Elkouh (1996) were all less 

than or equal to 
73.37 10 . The computed streamline patterns and ice-liquid-water 

interface positions obtained in this work are shown in Fig. 4.3 for four different values of 

Rayleigh number, Ra = 2.59 x 10
6
, 6.11 x 10

6
, 2.06 x 10

7
, and 9.55 x 10

7
, obtained with 

H = 6.012 cm, 0.08 m, 12 cm, and 20 cm, respective. With H = 6.012 cm, this problem is 

identical to Run C discussed in the previous section.  
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Figure 4.3: Effect of increasing values of Rayleigh number on the streamlines and ice-liquid-water 

interface position. 

The results in Fig. 4.3 show that with increasing values of Rayleigh number, the ice-

liquid-water interface shifts to the left, the dominant recirculation flow cell adjacent to 

this interface becomes larger, and the smaller recirculation flow cell (in the bottom right-

hand corner of the enclosure) cell shrinks, mainly from the left side and eventually 

reaches approximately one-fifth of its original size. Two additional cells within the 

dominant cell start to appear around 
65 10Ra   , and multiple cells form for values of 

Rayleigh numbers greater than 
75 10 . At Ra = 5.12 x 10

8
, the ice-liquid-water interface 
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was nearly vertical and very close to the left (cold) wall, with multiple flow recirculation 

cells and the first signs of turbulence. Converged solutions for this problem could not be 

obtained for Ra > 5.12 x 10
8
. 

4.3 Natural convection in liquid-water-porous-metal-foam systems 

contained in square enclosures 

The results of simulations that were undertaken to determine the influence of the addition 

of porous metal foams on the conduction and natural convection in square enclosures 

filled with liquid water are presented and discussed in this section. The schematic 

illustration in Fig. 2.1 also applies to this problem, but with no ice and 0   . In all 

cases considered in this portion of the present investigation, the temperature of the left 

(cold) wall of the square enclosure was kept constant at 0°C, to ensure relevance and 

similarity to the left (cold) boundary temperature of the liquid-water region in ice-liquid-

water-porous-metal systems contained in similar enclosures. Using grid-independence 

checks akin to those discussed in Section 4.1, it was determined that for the highest value 

of the Rayleigh number (details presented in Section 4.3.2), the value of the hot-wall 

Nusselt number obtained with a uniform grid of 101 x 101 nodes was only about 0.576% 

different from an essentially grid-independent value obtained with Richardson 

extrapolation of results yielded by uniform grids of 151 x 151 and 201 x 201 nodes. Thus, 

all final simulations discussed in this section were done with uniform grids of 101 x 101 

nodes. 

4.3.1 Comparison of natural convection with and without porous metal foam 

These simulations were done for the conditions for the first six runs (Runs # 1 – 6) listed 

in Table 4.1, with an open domain (cases already presented earlier in Section 4.1) and 

with a porous aluminum foam of PPI = 10 and   = 0.95. This particular foam is referred 

to as the ‘reference’ foam in the rest of this section and also in the next section. As was 

mentioned above, all simulations were done with uniform grids of 101 x 101 nods. In the 

pure-conduction limit (no natural convection), the intrinsic-phase-average temperature 

fields of the foam and the liquid are both one-dimensional, varying only in the x 
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direction. For this pure-conduction limit, the governing equations were solved 

analytically and the following expressions were derived for the Nusselt numbers at the 

left (cold) and right walls: 

 
0 0

0

foam left foam right fluid left fluid right;

l

ss ls ll ls

l l

eff
wall

l

k k k k
Nu Nu Nu Nu

k k

k
Nu

k

 
   



 4.3 

These pure-conduction-limit Nusselt numbers on the left and right walls depend only on 

the thermal conductivity of the metal (aluminum; based on ( ) / 2av C HT T T  ), foam 

porosity, and liquid-water thermal conductivity based on the zonal temperature 

(discussed in Section 4.1). With the reference foam, the computed value of the pure-

conduction-limit wall Nusselt number was 8.6. 

The Prandtl and Rayleigh numbers for the runs considered in this study were calculated 

using liquid-water properties based on the zonal temperature. Values of the wall Nusselt 

number computed for Runs # 1 – 6 (conditions given in Table 4.1) without and with the 

reference foam are presented in Table 4.6, along with the foam contributions to these 

values on both the left (cold) and right (hot) walls (related definitions were presented in 

Chapter 2). These results show that inclusion of the foam increases the values of the wall 

Nusselt number in Runs # 2, 3, and 6, compared to the values obtained for these runs 

without the reference foam; and lowers the values of the wall Nusselt number for Runs # 

1, 4, and 5. 

The results obtained for Runs # 1 – 6 also showed that the natural convection flow pattern 

for each case with the reference foam was similar to that obtained at a lower value of 

Rayleigh number for the same case without the foam. To illustrate this observation, 

sample streamline patterns for Run # 4 without and with the reference foam are shown in 

Fig. 4.4.  
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Run #  

wallNu  

Open-Domain 

FVM 

Simulations 

(with CPM, 

av zonalT T ) 

With Reference Foam 

Pure-Conduction 

Limit 

(analytical  results) 

Results of FVM Simulations  

wallNu  

Foam 

contributi

on (%) 

wallNu
 

(difference 

with respect 

to pure-

conduction 

limit) 

Foam 

contribution 

on the left 

wall 

foam left

wall

Nu

Nu
 

(%) 

Foam 

contribution 

on the right 

wall 

foam right

wall

Nu

Nu
 

 (%) 

1 9.767 8.5871 87.80 
9.113 

(+2.9%) 
87.74 87.78 

2 8.658 8.5871 87.80 
9.024 

(+1.9%) 
87.73 87.79 

3 6.304 8.5871 87.80 
8.930 

(+0.8%) 
87.74 87.74 

4 10.27 8.7480 87.65 
9.389 

(+7.3%) 
87.60 87.40 

5 16.38 8.6963 87.57 
15.69 

(+80.4%) 
87.47 86.31 

6 20.84 8.6458 87.50 
25.56 

(+195.6%) 
86.18 84.35 

 

Table 4.6: Values of wall Nusselt number for Runs # 1 – 6, without and with the reference foam 

(porous aluminum foam with 10 PPI and   = 0.95) 

Open media                                    Reference foam 

 

Figure 4.4: Streamline patterns for Run # 4, without and with the reference foam. 
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The results in Table 4.6 show that for Runs # 1 – 3, the values of the wall Nusselt number 

are very close to those for the pure-conduction limit, with all differences less than 3%, 

and the foam carries about 88% of the rates of heat transfer at both the left (cold) and 

right (hot) walls in these runs. For Runs # 4 – 6, the influence of natural convection is 

significant (values of wall Nusselt number considerably greater than the corresponding 

values for the pure-conduction limit), but the foam still roughly carries 88% of the rates 

of heat transfer at both the left (cold) and right (hot) walls, as the no-slip condition 

applies at the walls with the Darcy-Brinkman-Forchheimer momentum equation, and the 

superficial velocity of the fluid in the immediate vicinity of the walls is quite low. 

4.3.2 Influence of Rayleigh number and five different foams 

Results of simulations that were used to assess the influence of the Rayleigh number and 

five different porous aluminum foams are presented in this section. The temperature of 

the left (cold) and right (hot) walls were kept constant at 0°C  and 20°C , respectively, 

conditions that correspond to Run # 6, investigated here without and with the five foams. 

These wall temperatures yield a value of the density inversion parameter of 0.202; this 

value is sufficiently far from 0.5, so this parameter did not cause any special convergence 

issues in the simulations (see related discussions in Section 4.1). A summary of the 

characteristics of the five foams considered in this study are provided in Table 4.7. 

Foam Number Porosity Foam PPI 

Foam 1 

(the reference foam) 
0.95 10 

Foam 2 0.90 10 

Foam 3 0.98 10 

Foam 4 0.95 20 

Foam 5 0.95 40 

 

Table 4.7: Characteristics of the five porous aluminum foams considered in this work. 

The continuation method was used to progressively change the enclosure dimensions 

from 0.005 m x 0.005 m to 0.30 m x 0.30 m, which produced Rayleigh number values in 

the range 1.93 x 10
4
 to 4.18 x 10

9
. The corresponding values of Darcy number for the 

reference foam (see Table 4.7) ranged from 1.3 x 10
-3

 to 7.9 x 10
-2

. The enclosure with 
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the smallest dimensions (0.005 m x 0.005 m) corresponds to approximately twice the 

pore diameter for the porous aluminum foams with 10 PPI: thus, the requirements of the 

volume-averaging procedure are not strictly met for this enclosure; so the results for the 

corresponding low values of the Rayleigh number should be accepted cautiously (with 

this limitation in mind). To ensure consistency in the comparison exercises, the CPM 

with fluid properties based on the zonal temperature was adopted for simulations, with 

and without the foams. 

 

Figure 4.5: Influence of the Rayleigh number on wall Nusselt number for Foams # 1 – 3 and open 

domain (no foam); wall temperatures correspond to those for Run # 6 in all cases. 

The influence of the Rayleigh number on the wall Nusselt number with Foams # 1, 2, and 

3 (same PPI or pore diameter, but different porosities) and also with no foam (open 

domain) is illustrated by the results presented in Fig. 4.5 (here, and also in all other 

similar figures in this chapter, curves drawn through the symbols represent trend lines). 

In all cases, for low values of the Rayleigh number, the values of the wall Nusselt number 

are essentially equal to those of the pure-conduction limit (analytical solution given in 

equation 4.3 for the cases with foam; equal to one (10
0
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open-domain). For high enough values of the Rayleigh number, for all cases (with and 

without foam), the log-log plots of wall Nusselt number versus Rayleigh number in Fig. 

4.5 are essentially straight lines, indicating the suitability of the following power-law fit:  

 
n

wallNu C Ra   4.4 

The best fit values of the exponent n in this equation was determined to be 0.22n  , 

0.22n  , and 0.23n   for Foams # 1, 2, and 3, respectively. The start of the power-law 

regime power lawRa
 
is defined in each case as the Rayleigh number of the first experiment 

presenting less than a 5% difference to the power-law regime (first defined on the five 

highest Rayleigh number experiments). 

Porosity of the foam influences the value of the Rayleigh number at which natural 

convection becomes significant: lower the value of porosity, higher the value of the 

Rayleigh number necessary for the onset of significant natural convection. However, in 

the pure-conduction limit, Foam # 2 (the least porous) leads to 1.71 and 3.16 times higher 

rates of overall heat transfer than Foams # 1 and 3, respectively. When the power-law 

regime is reached for the three foams (for 
810Ra  ), these ratios of the enhancement of 

the rates of heat transfer are only about 1.3 and 1.7, respectively, and remain 

approximately constant. Of the three foams considered in the study, Foam # 2 always 

yields the highest overall rate of heat transfer. 

For Run # 6 with open domain (no foam), the influence of natural convection is 

significant (values of wall Nusselt number at least 5% higher than the value for the pure-

conduction limit, 1wallNu  ) for values of Rayleigh number as low as 
310 . A power-law 

regime was also observed for this case (no foam), with an exponent of n = 0.29, which is 

higher than the exponent value of n = 0.22 obtained for the cases with foams. At the 

highest Rayleigh number for which converged solutions could be obtained, the no-foam 

value of wall Nusselt number falls in between those for Foams # 1 and 3. 

The influence of the pore diameter was evaluated by comparing the results for foams of 

the same porosity but different pore diameters: Foams # 1, 4, and 5. The temperatures of 
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the left (cold) and right (hot) walls were fixed at o 0 CCT   and o 20 CHT   (conditions 

corresponding to Run # 6). Again, the enclosure dimensions were adjusted to obtain 

values of Rayleigh number in the range 1.93 x 10
4
 to 4.18 x 10

9
. The variations of wall 

Nusselt number with the Rayleigh number for these cases are presented in Fig. 4.6. Since 

the effective thermal conductivity does not depend on the pore diameter (see definitions 

given in Chapter 2), the Foams # 1, 4, and 5 yield the same values of wall Nusselt 

number in the pure-conduction limit. With a foam of smaller pore diameter, the drag 

force is greater and the natural convection becomes significant at a higher value of the 

Rayleigh number. A power-law regime is exhibited by the plots for all three foams in Fig. 

4.6, with the value of the exponent essentially independent of the PPI value. The values 

of wall Nusselt number for Foams # 4 and 5 (20 PPI and 40 PPI) are 1.2 and 1.9 times 

lower, respectively, than the values for Foam # 1 (10 PPI) in the power-law regime. 

A quantitative presentation of some of the key results for the five foams (Foams # 1 – 5) 

and also the open domain (no foam), for wall temperatures corresponding to Run # 6, are 

presented in Table 4.8.  

 

Figure 4.6: Influence of the Rayleigh number on the wall Nusselt number for Foams 1, 4, and 5, 

which have the same porosity but different pore diameters: wall temperatures correspond to those 

for Run # 6 in all cases. 
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Wall 

temperatures 

Foam number and 

characteristics 

wallNu
 

Pure-

conduction 

limit 

Start of the 

power-law 

regime 

power lawRa  

Exponent 

in the 

power-law 

regime 
n  

0.00°CCT   

20.00°CHT 

 

1: 0.95  , 10 PPI 8.65 62 10  0.22 

2: 0.90  , 10 PPI 14.75 72 10  0.22 

3: 0.98  , 10 PPI 4.67 52 10  0.23 

4: 0.95  , 20 PPI 8.65 65 10  
0.22 

5: 0.95  , 40 PPI 8.65 74 10  
0.21 

Open domain 1 310  0.29 

 

Table 4.8: Summary of some key results for natural convection with liquid water and Foams # 1 – 5, 

and also in open domains (no foam); and wall temperatures corresponding to Run # 6. 

As was pointed out in Chapter 2, the correlation for the interstitial interfacial heat transfer 

coefficient used in the two-temperature model of heat transfer in ice-porous-metal-foam 

and liquid-water-porous-metal-foam regions in the pure-conduction limit was obtained 

using numerical solutions of heat conduction in relatively simple two-dimensional unit-

cell models of the porous metal foam. To assess the sensitivity of the results to this 

correlation, simulations with the reference foam (Foam # 1 in Table 4.7) and wall 

temperatures corresponding to Run # 6 were redone with the correlation for the 

interstitial interfacial conduction Nusselt number calculated using the following 

expressions: conduction 2( 4.1/ ln(1 ))Nu    ; conduction 0.5( 4.1/ ln(1 ))Nu    . The 

maximum differences between the results obtained with the proposed correlation and 

those with twice and one-half this correlation were 0.6% and 2.4%, respectively. 
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4.3.3 Influence of thermal dispersion and Forchheimer drag term 

An examination of the Darcy-Brinkman-Forchheimer momentum equation and the fluid 

energy equation in the two-temperature model (discussed in Chapter 2) reveals that the 

relative importance of the thermal dispersion and Forchheimer drag terms is proportional 

locally to the permeability Reynolds number defined by
0 0Re /K l K  u : 

 0
0Pr Red

D K

effeff

k k
C

kk

  
   
 

       and         
Forchheimer drag term

Re
Darcy drag term

Kf  4.5 

The variations of the maximum and spatial-average values of ReK  as a function of Ra , 

with the wall temperatures of Run 6, the reference foam, and 
4 91.93 10 4.18 10Ra     

are presented in Fig. 4.7. As the Rayleigh number increases, natural convection is 

stronger and the maximum value of ReK  keeps increasing until it reaches its highest 

value, Re 0.47K  , at the maximum Rayleigh number, Ra  = 
94.18 10 . This maximum 

value of ReK  always occurs in the dominant recirculation flow cell, in the boundary-

layer-like flows in the vicinity of the walls. On the other hand, the spatial-average ReK  

peaks at around 0.091 at 
610Ra  , which corresponds to the following spatial-average 

values of the ratios of equation 4.5: 0.56%d

eff

k

k


  and 

Forchheimer drag term
0.90%

Darcy drag term
 , 

and then decreases. This seems to indicate that as the Rayleigh number increases, the area 

of the high-velocity boundary-layer region does not increase as fast as (proportionally to) 

the size of the cavity. To illustrate this phenomenon, the dimensionless area of a “high-

velocity-zone” is also plotted in Fig. 4.7: 

 
high-velocity

Area of the high-velocity zone

x y

A
H H




 4.6 

For each value of the Rayleigh number, the high-velocity zone is defined as the region in 

which the magnitude of the velocity is at least 30% of the magnitude of the maximum 
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velocity in the calculation domain. As is shown by the corresponding results plotted in 

Fig. 4.7, 
high-velocityA  decreases monotonically with increasing Rayleigh number, from 73% 

to 4.9%. 

 

Figure 4.7: Variations of the maximum and spatial-average values of the permeability Reynolds with 

Rayleigh number, for the wall temperatures of Run # 6 and the reference foam. The evolution of the 

dimensionless area of the high-velocity zone is also presented. 

Based on the results presented in Fig. 4.7, it can be concluded that the maximum relative 

effects of the thermal dispersion and the Forchheimer drag term increase as the Rayleigh 

number increases (as their influence gets stronger at points inside the high-velocity 

boundary-layer region), but their average effects may increase or decrease marginally.  
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4.4 Conduction and natural convection in ice-liquid-water-porous-metal-

foam systems contained in rectangular enclosures 

4.4.1 Comparison of results obtained with and without porous metal foam 

Results obtained from simulations of conduction and natural convection in ice-liquid-

water and ice-liquid-water-porous-metal foam systems in two square enclosures with 

dimensions, cold- and hot-wall temperatures, and parameters akin to Runs A and C (see 

Table 4.4) are presented in this section. The reference porous metal foam, Foam # 1 

(aluminum; 10 PPI; and   = 0.95), was used in this study. In the pure-conduction limit 

(no natural convection), this problem becomes one-dimensional, and it is possible to 

solve the governing equations of the two-temperature model analytically and determine 

the following solutions to the ice-liquid-water interface position (xint), wall Nusselt 

number, and flux repartition between water and foam at each wall: 

 

0

int         ,        1 1

1

i l

l i

i

eff effx H melt
wall

effH melt l H C eff

melt C eff

k kH T T
x Nu

kT T k T T k

T T k

  
     

      


 4.7 

 
foam rightfoam left         ,        

i l

ss is ss ls

wall walleff eff

NuNu k k k k

k kNu Nu

 
   4.8 

Since ice is more thermally conductive than liquid water, the foam contribution is always 

smaller at the left (cold) wall than at the right (hot) wall in the pure-conduction limit: 

foam left foam rightNu Nu . A uniform grid with 101 x 101 nodes was used in this study. The 

continuation method was also necessary to achieve converged solutions. In particular, for 

each case, the value of meltT  was progressively decreased from about 1
o
C to the 

following levels, where its effect on the results was negligible (error in wallNu  less than 

0.1%): for condition corresponding to Run A, 0.01°CmeltT  ; and for conditions 

corresponding to Run C, 0.002°CmeltT  . The computed values of total Nusselt number 

and the heat flux repartitions for these cases on the two walls are reported in Table 4.9. 

The streamlines and water-ice interface positions are compared to the open-domain (no 
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foam) results in Fig. 4.8. Both the ice-liquid-water interface positions and the heat 

transfer results for the two cases with the foam show that effect of natural convection is 

mostly negligible: the heat transfer rates are within 1% of those in the pure-conduction 

limit; and the ice-liquid-water interfaces are almost superimposed on the corresponding 

vertical dotted lines that represent the pure-conduction-limit solutions. 

Run A C 

wallNu  

Open-media results (CPM, av zonalT T ) 
5.5190 5.2155 

With 

Reference 

Foam 

Pure-

conduction 

limit 

(analytical) 

wallNu  10.3359 10.3857 

Foam contribution, left wall (%) 66.1 66.1 

Foam contribution, right wall (%) 87.6 87.8 

Results 

obtained with 

FVM 

wallNu
 

(difference with respect to the pure-

conduction limit) 

10.4006 

(+0.63%) 

10.4150 

(+0.28%) 

Foam contribution, left wall (%) 66.1 66.1 

Foam contribution, right wall (%) 87.4 87.8 

 

Table 4.9: Values of Nuwall with and without the reference foam (aluminum, 10 PPI, 95% 

porosity) with the parameters corresponding to Runs A and C.  
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Figure 4.8: Comparison of streamlines and water-ice interface positions with and without the 

reference foam (aluminum, 10 PPI, 95% porosity) with the parameters corresponding to 

Runs A and C.  

4.4.2 Demonstration problem 

In this demonstration problem, ice-liquid-water-porous-metal-foam systems contained in 

rectangular enclosures were considered, with the following parameters typical of those 

encountered in cold-storage applications:   = 0
o
, xH  = 10 cm, and 10 cm 50 cmyH   

(the aspect ratio, 
y xAR H H , ranged from 1 to 5). The imposed cold- and hot-wall 

temperatures were also similar to those typically encountered in cold-storage applications 

during freezing and melting operations: 20°CCT    and  20°CHT  . The reference 

foam (aluminum, 10 PPI, 95% porosity) was used. The results for this demonstration 

problem were obtained with and without this foam, and then compared. The open-domain 
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(no foam) simulations were limited to values of aspect ratio that were lower than the 

maximum value used in case with the foam, due to convergence problems. 

All the simulations were performed using uniform grids: 101 x 101 grid points were used 

for square domains (AR = 1), while uniform grids with 101 x { (100 ) 1AR  } points 

were used to discretized rectangular domains, with an upper limit of 301 grid points in 

the y direction (invoked to keep computational costs and times manageable on readily 

available personal computers (PCs) fitted with quad-core CPU). 

The continuation method was also used in this problem to facilitate the solutions on finer 

grids: a simple code was written for bi-linear interpolation of the dependent-variable 

fields obtained from simulations with a given grid, to any finer grid, so that they could be 

used as starting guess values in the finer-grid simulation. The independence of the results 

from the values of meltT  (within 0.1%) was reached in all cases considered for 

CmeltT   . 

The Rayleigh number was again based on the horizontal dimension, xH , and was, 

therefore, the same in all the simulations: 
81.55 10Ra   . This choice was justified by 

the observation that in natural convection experiments in rectangular enclosures akin to 

those used in this demonstration problem, the dependence of the heat transfer rate on the 

vertical dimension, Hy, is, in general, much weaker than its dependence on the horizontal 

dimension, Hx [Incropera and DeWitt (2002)]. However, increases in the vertical 

dimension can lead to turbulence, since the liquid water flows along vertical surfaces 

(right wall or the ice-liquid-water interface) have more space to develop. Thus, converged 

solutions in the open-media simulations could not be achieved for 15cmyH  .  



102 

 

  

 

Figure4.9: Comparison of streamlines and ice-liquid-water interface position with and without foam 

for AR=1 and AR=1.5 in the demonstration problem. 

Comparisons of the computed streamlines and ice-liquid-water interface position with 
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portion of the calculation domain in cases with the foam, even though the position of the 

ice-liquid-water interface in the pure-conduction-limit is closer to the left wall with the 

foam (because 
0 0l ieff eff l ik k k k ). The two open-media flow fields exhibit multiple flow 

recirculation cells, with more such cells in the case with AR=1.5 than that in the case with 

AR = 1. 

The wall Nusselt number is plotted as a function of the aspect ratio, with and without the 

foam, in Fig. 4.10. It decreases as the aspect ratio gets higher, because of boundary layer 

thickening along the upper portions of the right wall, and the following power-law 

function provides a good fit to the results for the cases with the foam: 

 

n

y
wall wall square

x

H
Nu Nu

H

 
  

 
. Despite the small number of points for the open-media cases, 

a power-law function was also fitted to their results. A quantitative representation of 

these results is given in Table 4.10. In both cases (with and without the foam) the 

exponent is roughly 1/ 4 , a value that is also found in the classical experimental 

correlations for open-media laminar natural convection in rectangular enclosures 

[Incropera and DeWitt (2002)]. 

 

Figure 4.10: Variation of wall Nusselt number with aspect ratio and power-law fit with and without 

the foam for the demonstration problem 
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 AR range 
wallNu  

Square 

enclosure 

n , exponent of 

the power-law 
Average rms error (%) 

Reference foam 1 – 5 20.84 -0.252 1.26% 

Open media 1 – 1.5 19.68 ~ -0.3 (not enough points) 

 

Table 4.10: Power-law correlations for variation of wall Nusselt number with aspect ratio, with and 

without the foam, for the demonstration, 

Streamlines and ice-liquid-water interface position for the biggest aspect ratio (AR=5, 

with foam) are presented in Fig. 4.11. In the central part of the vertical enclosure, the ice-

liquid-water interface almost corresponds to that in the pure-conduction limit. In the 

upper portion of this vertical enclosure, the ice-liquid-water interface bends to the left, 

due to the impingement of the relative hot water coming off the right wall in this region; 

and the opposite phenomena take place in the lower reaches of the vertical enclosure.  

 

Figure 4.11: Streamlines and the ice-liquid-water interface in the demonstration problem for AR = 5. 

Axes are not drawn to scale. 
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4.5 Interstitial heat transfer 

In this study, in all of the cases with porous metal foams, as the Rayleigh number was 

increased, both the flow velocity and temperature difference between foam and water 

increased, but there was uncertainty about whether the interstitial heat transfer is natural-

convection or forced-convection domination. An observation of the computed local 

values of  
2

Re
f fd dGr  from the liquid-water simulations with foam (see Section 4.3), 

showed that for small Rayleigh numbers, the three interstitial convection regimes coexist: 

natural convection adjacent to the top and bottom walls; forced convection along the right 

and left walls; and mixed convection in between. As the Rayleigh number increases, the 

interstitial natural- and mixed-convection regions shrink and the interstitial convective 

heat transfer is mostly forced-convection-dominated. In all of the ice-liquid-water-metal-

foam simulations discussed in Section 4.3, the interstitial convective heat transfer was 

found to be forced-convection-dominated, except in the top-left and bottom-right corners 

of the liquid-water region where the mixed convection correlation prevailed. 

However, in all the simulations with the porous metal foams, the correlations for the 

interstitial convection Nusselt number did not influence the results because their 

predictions were always lower than those of the correlation for the pure-conduction-limit 

Nusselt number: at all points, convection

4.1

ln(1 )
Nu




 
. The highest observed local value of 

convectionNu  in the liquid-water-foam cases was 0.86, found with wall temperatures of Run 

# 6, the biggest cavity size, and the most porous foam ( 0.98  ). This value is smaller 

than the minimum value of the interstitial conduction Nusselt number: conduction 1.05Nu   

for 0.98  . In the ice-liquid-water-metal-foam cases, convectionNu  locally peaked around 

0.75, independently of the aspect ratio. 

These rather counter-intuitive observations show the necessity of further detailed 

investigation of the interstitial heat transfer processes in metal foams.  
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 Chapter 5: Conclusion 

In this final chapter, first, a brief review of the work reported in this thesis and its main 

contributions are presented. After that, a few suggestions regarding possible extensions of 

this work are proposed. 

5.1 Review of the work and its main contributions 

In this section, a review of the work reported in this thesis and its main contributions are 

presented in four main parts, which correspond to the first four chapters. 

1.  In the first chapter, first, the motivation, overall goals, and background of this 

work were presented. A review of the published literature relevant to this work 

was presented next, along with a summary of some key results and comments. 

Finally, the specific objectives of this work were presented. 

2.  In the second chapter, the mathematical models adopted for steady-state 

conduction and laminar natural convection in ice-liquid-water-metal-foam 

systems were presented. The Darcy-Brinkman-Forchheimer momentum equations 

were adapted to the particular nonlinear variation of the density of water for 

temperatures that span its inversion point. Empirical correlations for the 

permeability and the Forchheimer coefficient were taken from the work of 

Calmidi (1998). For the volume-averaged energy equations, a two-temperature 

model with isotropic thermal dispersion in the liquid water was adopted. 

A semi-empirical model for effective thermal conductivity proposed by Calmidi 

and Mahajan (1999) was adapted for the two-temperature model, with a special 

modification that ensures consistency of the predictions obtained with the one-

temperature and two-temperature models in the limit of local thermal equilibrium. 

Novel expressions for the interstitial interfacial (foam-metal-water) heat transfer 

coefficients in both the conduction and convection regimes were developed. The 

correlation for the conduction-regime interstitial Nusselt number was determined 

using CVFEM simulations of steady-state heat conduction in four different 



107 

 

  

representative two-dimensional unit cells, and a critical analysis of the results. 

The correlation for the interstitial interfacial (foam-metal-water) Nusselt number 

in the convection regime was developed by adapting existing mixed convection 

correlations for fluid flow around solid cylinders. 

3.  In the third chapter, a well-established, fixed-grid, co-located finite volume 

method (FVM) for predicting fluid flow and heat transfer phenomena in open 

domains (no ice; no porous metal foam) was adapted for solving the mathematical 

models of conduction and laminar natural convection in ice-liquid-water systems 

in open domains (no foam) and in ice-liquid-water-metal-foam systems. A special 

approach involving a melting-temperature tolerance was proposed to resolve 

interface-oscillation and convergence issues encountered during solutions of ice-

liquid-water problems, with and without the porous metal foams. Finally, a 

continuation method that facilitates solutions of the liquid-water, ice-liquid-water, 

and ice-liquid-water-metal-foam problems of interest was described. 

4.  The results obtained in this work were presented and discussed in the fourth 

chapter. The main points of note and the related findings are summarized below: 

 The proposed FVM was first validated by the comparing the predicted 

results to those obtained experimentally and numerically by Elkouh (1996) 

for steady-state conduction and laminar natural convection in square 

enclosures containing pure liquid water and ice-liquid-water systems (no 

foam), with temperatures spanning the density inversion point of water. 

For laminar natural convection in pure liquid water (no ice), the agreement 

between the results obtained in this work and those of Elkouh (1996) was 

excellent for all cases tested, except the one in which the density inversion 

parameter was close to 0.5, for which satisfactory convergence could not 

be achieved. These simulations were conducted using a variable-property 

model (VPM) and also a constant-property model (CPM), with the 

constant fluid properties evaluated at several reference (or average) 

temperatures. It was found that a special zonal reference (or average) 
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temperature yields the lowest differences between the results yielded by 

the VPM and CPM. 

For conduction and laminar natural convection in ice-liquid-water systems 

in open domains (no foam), two cases were investigated. The predicted 

streamlines and ice-liquid-water interface positions showed excellent 

agreement with the experimental and numerical results of Elkouh (1996). 

The continuation method was found to be critically important for 

achieving converged solutions to these problems. 

 The proposed mathematical models and FVM were used to predict laminar 

natural convection flow fields and average heat transfer rates at the walls 

in square horizontal enclosures containing liquid water and aluminum 

foam. The left-wall temperature was fixed at 0 C , while the right wall 

temperature was assigned two different values above the density inversion 

temperature of water. The effect of changes in the dimension of the 

enclosure (yielding a wide range of Rayleigh number) was investigated 

with no foam and the results were compared to those of simulations with 

five different aluminum foams. 

The results showed that the addition of porous foams resulted in weaker 

natural convection (heat transfer due to gradients of the intrinsic-phase-

average temperature of the fluid and the associated thermal conductivities) 

but higher conduction (heat transfer due to gradients of the intrinsic-phase-

average temperature of the aluminum foam and the associated thermal 

conductivities). Foams with higher porosity had smaller weakening effect 

on the natural convection, but also a lower enhancing effect on the 

conduction. Foams with lower porosity had more of a weakening effect on 

the natural convection, but a higher enhancing effect on the conduction. In 

general, the resulting average total (conduction + convection) Nusselt 

numbers at the walls obtained with the foams were found to be comparable 

to those obtained in corresponding cases for open domains (no foam). 
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In all these simulations, the variation of the average total Nusselt number 

with Rayleigh number, when natural convection was well established (at 

high enough values of Ra), was found to follow a power-law: 

n
wallNu C Ra  . The value of n was found to be common to all foams 

tested, around 0.22. With no foam, the best fit was found for n=0.29. 

The influences of the Forchheimer drag term in the momentum equations 

and the thermal dispersion in the energy equation were investigated. Their 

local contributions to the volumetric-drag and heat-conduction terms in the 

governing momentum and energy equations, respectively, were shown to 

be proportional to the local permeability Reynolds number. 

 Finally, the proposed mathematical models and FVM were applied to 

problems involving conduction and laminar natural convection in ice-

liquid-water-porous-metal-foam systems contained in vertical rectangular 

enclosures. 

First, two cases studied earlier by Elkouh (1996) and also in this work for 

ice-liquid-water systems in an open enclosure (no foam) were investigated 

with the inclusion of a porous metal foam. In both cases, with the 

inclusion of the porous metal foam, the results were very close to the pure-

conduction limit, in terms of ice-liquid-water interface position and values 

of the average total Nusselt number on the walls. 

Then, a demonstration problem with a representative porous foam made of 

aluminum, and other parameters in ranges relevant to seasonal cold-

storage applications, was investigated. The rectangular enclosure was 

maintained in a vertical position with respect to the gravitational 

acceleration vector. Its width in the horizontal direction was 10 cm, its 

height was varied between 10 to 50 cm, and the imposed cold and hot wall 

temperatures were -20°C and 20°C, respectively. The Rayleigh number 

was maintained constant at 
81.55 10Ra   . The computed streamlines, 

water-ice interface positions, and wall heat transfer rates were compared to 
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the corresponding results obtained with open domains (no foam), to the 

extent possible (without the foam, convergence could not be achieved for 

AR > 1.5, and the appearance of multiple recirculating flow cells and 

chaotic flow fields during the iterative solution process indicated possible 

transition to turbulence). In cases for which converged solution could be 

obtained with and without the foam, comparable values of the average 

total wall Nusselt number were obtained. This Nusselt number was found 

to decrease as the aspect ratio (AR) increased, and a power-law function 

with an exponent of -0.252 gave a good fit to the results. 

 Finally, the values of the computed interfacial (foam-metal-water) Nusselt 

number were checked a posteriori. In all of the liquid-water-metal-foam 

and ice-liquid-water-metal-foam simulations undertaken in this work, the 

interstitial interfacial (foam-metal-water) heat transfer was found to be 

conduction-dominated throughout the calculation domain. 

5.2 Suggestions for extensions of this work 

A few suggestions for extensions of this work are listed in this section.  

As was mentioned in Chapter 2, cost-effective volume-averaged mathematical models of 

fluid flow and heat transfer in porous metal foams are quite complex to formulate 

rigorously, and some improvements in the semi-empirical inputs to these models would 

be useful. Correlations that bring in the influence of the structure of the porous metal 

foam could be improved to better account for non-uniformities of pore-diameter and 

variations in the shape of the ligament cross-section. Approaches akin to those proposed 

by Wang and Pan (2008) and Bodla et al. (2010) would provide a good starting point in 

this regard. The treatment of interfacial (foam-metal-water) heat transfer coefficients 

could be improved by undertaking simulations with three-dimensional unit-cell models of 

the foam. Furthermore, the transition between conduction and mixed-convection regimes 

in the interstitial interfacial heat transfer should be fundamentally investigated. 
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For designing and optimizing cold-storage systems, the implementation of an unsteady 

numerical model for simulating thermal-energy charging and discharging periods is 

necessary. Unsteady phase-change problems need to be treated with adapted techniques 

such as interface-tracking or the enthalpy method [Crank (1988)]. These techniques 

should be adapted to ice-liquid-water-metal-foam systems. Such models could then be 

applied to practical cold-storage units, and the best unit size and foam type (porosity and 

pore diameter) could be determined using suitable optimization techniques. 

Finally, complementary experimental investigations of fluid flow and heat transfer in ice-

liquid-water-metal-foams systems contained within rectangular enclosures would be very 

useful for checking and refining the proposed mathematical models and numerical 

solution methods. 
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