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Abstract

A numerical investigation of heat conduction and laminar natural convection in ice-water
systems containing porous metal foams, undertaken in the context of computationally
convenient two-dimensional steady-state problems, is presented in this thesis. The overall
goals of this work are to provide improvements to available cost-effective mathematical
models of these phenomena, solve these models numerically, and investigate the influence of
the porous metal foam on fluid flow and heat transfer in ice-water systems. The long-term
goal (and the motivation for this work) is to contribute to the development of mathematical
models and numerical solution methods for simulations of enhanced ice-water seasonal cold-

storage systems.

The proposed mathematical models are based on the local volume-averaging method. A
Darcy-Brinkman-Forchheimer model is used for the momentum equations. For the heat
transfer, volume-averaged equations governing two intrinsic phase-average temperature
fields are used: one for the metal foam and the other for the water (solid or liquid). The
following improvements to available two-temperature models are proposed: novel
expressions for the interfacial heat transfer coefficient in both the conduction and convection
regimes; and modified effective thermal conductivity models that provide consistency
between predictions of one-temperature and two-temperature models in the limit of local

thermal equilibrium.

A well-established fixed-grid, co-located, finite volume method (FVM) is adapted for the
numerical solution of the aforementioned mathematical models. All of the computer
simulations are done with rectangular calculation domains, cooled and heated on the opposite

side walls, and the adiabatic condition is imposed on the top and bottom walls.

The FVM is first validated by the comparing the predicted results to experimental data for
steady-state conduction and laminar natural convection in square enclosures containing pure
liquid water and ice-water systems (no foam), with temperatures spanning the density
inversion point of water. The problem involving natural convection in pure liquid water is
solved using a variable-property model (VPM) and also a constant-property model (CPM),

with the constant fluid properties evaluated at several reference (or average) temperatures,
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and the reference (or average) temperature that yields the lowest differences between the

results obtained with the VPM and CPM is determined.

The FVM is then used to predict laminar natural convection flow fields and average heat
transfer rates at the walls in square horizontal enclosures containing liquid water and
aluminum foam. The left wall-temperature is fixed at 0°C while the right-wall temperature is
assigned two different values above the density inversion temperature of water. The effect of
changes in the dimensions of the enclosure is investigated with no foam and the results are
compared to those of simulations with five different foams. The effects of thermal dispersion

and of the Forchheimer drag term on the computed heat transfer rates are quantified.

Finally, a demonstration problem involving conduction and laminar natural convection in
ice-water-metal-foam systems is investigated, for a representative porous foam made of
aluminum, and other parameters in ranges relevant to seasonal cold-storage applications. The
rectangular enclosure is maintained in a vertical position with respect to the gravitational
acceleration vector. Its width in the horizontal direction is 10 cm, its height is varied between
10 to 50 cm, and the imposed cold and hot wall temperatures are -20°C and 20°C,
respectively. The computed streamlines, water-ice interface positions, and wall heat transfer
rates are compared to the corresponding results obtained with open domains (no foam). The

influence of the aspect ratio of the enclosure is also investigated and the results are presented.
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Résumé

Une étude numérique portant sur la conduction thermique et la convection naturelle laminaire
dans des systémes glace-eau contenant des mousses métalliques poreuses est présentée dans
cette thése. Elle est réalisée grace a la résolution de problémes bidimensionnels et
stationnaires. Les objectifs principaux de cette étude sont d’améliorer les modeles existants
pour ces phénoménes et de les résoudre numériquement afin d’examiner I’influence de
I’ajout de mousse métallique sur les écoulements et les transferts thermiques dans les
systémes glace-eau. L’objectif a long terme ayant motivé cette étude est de contribuer au
développement de modeles mathématiques et méthodes numériques capables de simuler des

systémes glace-eau optimisés pour le stockage saisonnier de froid.

Les modeles mathématiques proposés sont basés sur la méthode de moyenne sur volume
représentatif. Un modele type Darcy-Brinkman-Forchheimer est utilisé pour les équations
d’écoulement fluide. Pour les équations gouvernant le transfert de chaleur, on considére deux
champs de température moyennés sur chacune des phases : un pour la mousse métallique et
un autre pour 1’eau (solide ou liquide). Les améliorations suivantes sont proposées pour les
expressions semi-empiriques données aux parametres de ces équations: de nouvelles
expressions pour le coefficient de transfert thermique entre les phases sont développées, a la
fois dans le régime de pure conduction thermique et dans le régime de convection; des
modifications sont apportées aux modeles de conductivité effective afin d’assurer la
cohérence des modéles considérant un seul champ de température et ceux en considérant

deux.

Une méthode de type volume fini (FVM dans le texte) a grille fixe est adaptée et toutes les
simulations sont réalisées sur des domaines rectangulaires. Les parois de droite et de gauche

sont respectivement chauffées et refroidies et celles du haut et du bas sont adiabatiques.

\

La méthode numérique est tout d’abord validée grace a une comparaison a des résultats
expérimentaux de convection naturelle laminaire dans des cavités carrées contenant de 1’eau
liquide et des systetmes glace-eau (pas de mousse de métal), dans des conditions
stationnaires. Les températures des parois sont choisies de part et d’autre de la température

de densité maximale de I’eau. Le probléme est simulé avec un modele a propriétés variables



(VPM) et un modele a propriétés constantes (CPM). Les propriétés sont évaluées a plusieurs
températures de référence, et celle qui implique la plus faible différence entre le VPM et le

CPM est déterminée.

Le code est ensuite utilisé pour prévoir les champs de vitesse liés a la convection naturelle
laminaire et le transfert thermique moyen depuis les parois de cavités carrées horizontales
contenant de I’eau liquide et de la mousse d’aluminium. La température de la paroi de gauche
est fixée a 0°C tandis que celle de la paroi de droite prend deux valeurs différentes.
L’influence des dimensions de la cavité est examinée en I’absence de mousse métallique et
les résultats sont comparés a ceux obtenus avec cinqg mousses différentes. Les effets de la

dispersion thermique et du terme de trainée de Forchheimer sont quantifiés.

Enfin, un probléme de démonstration est simulé. La conduction thermique et convection
naturelle laminaire dans des systémes glace-eau-mousse-métallique est étudiée avec une
mousse d’aluminium typique, les autres paramétres étant choisis pour correspondre a des
situations de stockage saisonnier de froid. La cavité rectangulaire est verticale, sa longueur
fixée a 10 cm, sa hauteur comprise entre 10 et 50 cm et les parois froides et chaudes sont
maintenues a -20°C et 20°C respectivement. Les résultats des simulations en termes de lignes
de courant, positions de l’interface glace-eau et flux thermiques depuis les murs sont
comparés aux résultats de simulations sans mousse métallique. L’influence du rapport

d’aspect de la cavité est aussi examinée et les résultats sont présentés.
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Nomenclature

AR Aspect ratio of the enclosure
Ap,Qyy Coefficients in the discretized equation for ¢
a, Foam specific area
C, Thermal dispersion coefficient
Cp Specific heat at constant pressure
dr Fiber diameter
d, Pore diameter
Da Darcy number
f Forchheimer coefficient
g Magnitude of the gravitational acceleration
Gr,, Local Grashof number based on the fiber diameter
h Surface heat transfer coefficient
h;,h, Ice and water interfacial heat transfer coefficients
Fa Average heat transfer coefficient at the walls (left or right)
H. .H, Cavity dimensions in the x and y directions
k Thermal conductivity
k, Thermal dispersion thermal conductivity
keff, , k@m Total effective conductivities
k,.k, Coupled effective conductivities
k. .k k, Solid (foam), liquid water and ice effective conductivities
K Permeability
Nutan Average wall Nusselt number
Nuy Interfacial Nusselt number
4 Static pressure
P Reduced pressure
Pr Prandtl number
Ra Modified Rayleigh number
Re, Local Reynolds number based on the fiber diameter
Re, Permeability Reynolds number
Su, Sy, Sg, St Source terms
T Temperature
1..T, Cold (left) and Hot (right) wall temperatures
AT, Melting temperature tolerance

*

Density inversion parameter

Darcy velocity
Velocity component in x-direction
Velocity component in y-direction

AR —



X,y Cartesian coordinate axes
€ Porosity
a,,a,, oo Under-relaxation factors

L, Diffusion coefficient for variable ¢

0 Enclosure inclination angle

A Second coefficient of viscosity
U Dynamic viscosity

P Density

¢ Dependent variable

Subscripts

constant property

ice

liquid water

maximum (refers to the maximum density of water)
pertaining to melting temperature of ice (0 °C in this work)
solid (refers to the foam)

water (could be liquid water or ice)
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Chapter 1: Introduction

1.1 Motivation, overall goals and background

This thesis is an endeavor of the author, in collaboration with his supervisor, to contribute
to ongoing worldwide efforts to develop and implement enhanced thermal energy storage
systems. The overall goals of this work are to provide improvements to cost-effective
mathematical models of fluid flow and heat transfer in ice/water systems containing
porous metal foams, solve these models numerically, and investigate the influence of this

additional porous structure on steady-state conduction and laminar natural convection.

Thermal energy storage (TES) has been an active area of research over the last 50 years
mainly because it is useful for enhancing the efficiency of energy-conversion and
heating/cooling systems, by matching energy (or cold) supply and demand during
summer-winter, day-night, and peak-off-peak periods. TES systems are divided into two
main categories: sensible systems, in which energy is stored by changing the temperature
of a suitable material; and latent-heat systems, in which change of phase of a suitable
material is used to store energy. The materials used in latent-heat systems are called
phase-change materials (PCMs), and gas-liquid, solid-gas, or solid-liquid phase-change
processes may be involved. Solid-liquid latent-heat TES systems are particularly
attractive since they provide a high energy storage density compared to sensible TES, and
the mass density change of the PCM during the phase-change process is not overly large.
For example, the latent heat of fusion of a mass pure water (a popular PCM for so-called
“cold storage”) is approximately equal to the energy necessary to raise the temperature of
an equivalent mass of this substance from 0°C to 80°C; and the change in density of pure
ice to pure water at 0 °C is about 10%. Furthermore, the phase-change process for a PCM
in a latent-heat TES system takes place at an essentially constant temperature (the
melting point), as the related variations in pressure are usually insignificant, so the
overall temperature swings during the charging (storage) and discharging (harvesting)

periods are relative small compared to those in sensible systems.



Several reviews of latent-heat TES systems and the PCMs used in these systems were
written in the last decade. Zalba et al. (2003) gave an overview of different PCMs and
their applications. Farid et al. (2004) and Sharma et al. (2009) provided useful reviews of
such systems. In the reviews prepared by Khudhair and Farid (2004), Zhang et al.
(2006,2007) and Pasupathy et al. (2008) the focus is on applications of latent-heat TES
systems for buildings, and Jegadheeswaran and Pohekar (2009) have reviewed the
methods that are used to improve the performance of such systems. Saito (2002) focused

on cold storage in his review.

Heat and cold storage can be classified as either seasonal (long-term) or daily (short-
term; diurnal). The charging (storage) and discharging (harvesting) periods in seasonal
and daily TES systems are typically of the order of half-year and half-day, respectively.
Daily TES is the most widely used and investigated, but there are also a few examples of
seasonal TES in the literature. Ozturk (2004) tested seasonal latent-heat TES with
paraffin wax as a PCM, for a full-size greenhouse. He concluded that such systems were
viable, but proper modeling of the charging and discharging processes was crucial for
optimizing them. The work reported in this thesis is relevant for designs of both seasonal

and daily latent-heat TES systems.

The choice of the PCM used in a latent-heat TES system depends on the application.
Abhat (1983) is the first author to provide a classification of PCMs for such systems. He
studied PCMs with melting points ranging from 0°C to 120°C, and grouped them in the
following categories: paraffins, fatty acids, inorganic salt hydrates, and eutectic
compounds. The key considerations in the choice of a PCM for a particular application
are its melting temperature, heat of fusion, thermal conductivity, and mass density. Zalba
et al. (2003) provided a summary of these characteristics for some organic and inorganic
PCMs which have been studied by different researchers for their potential use in TES
systems. Commercially available paraffins are widely used in TES systems for solar
energy: they melt at temperatures between 9°C and 112°C [Zalba et al. (2003)], and the
stored thermal energy can be used for space heating in buildings. Papers on this class of
materials include those by Hong and Xin-shi (2000) and Sari (2004). PCMs to be used for

so-called cold storage need to have a melting point below the ambient air temperature.



Examples of such PCMs are salt solutions and pure water. As pointed out in ASHRAE
Handbook, HVAC Applications (2007), water is the most common PCM used for cooling
applications of latent-heat TES systems. Ice-water TES systems are attractive because
they are reliable, safe and inexpensive, and have a relatively high latent heat of fusion
(333 kJ/kg [Zalba et al. (2003)]). The practice of seasonal storage of ice has been around
for over two thousand years, dating back to 400 BC in Iran. Until recently, the Hungarian
parliament building in Budapest was cooled in the summer using ice harvested in the

winter.

In latent-heat TES systems, containment has a strong influence on the heat transfer rate
from and to the PCM. As described by Khudhair et al. (2004), three main methods are
used in building applications: incorporation, impregnation, and encapsulation. Regin et
al. (2008) wrote a useful review on the heat transfer characteristics of encapsulated
PCMs. There are many advantages of microencapsulating PCMs, such as increasing the
heat transfer area, eliminating adverse interactions with the outside environment
(corrosion for example), and controlling PCM volume expansion. But the price of
encapsulation makes it undesirable in the context of the present study, in which the focus
is on models and methods relevant to inexpensive, and yet efficient, latent-heat systems
for cold storage, with applications to residential and small commercial buildings.
Additional information on microencapsulated PCMs is available in reviews written by

Hawlader et al. (2003) and Alkan et al. (2009).

As was stated earlier, the underlying concept of latent-heat ice-water TES systems for
seasonal cold storage, namely, freezing water in suitable containment vessels in the
winter and using it for air conditioning in the summer, is not new. However, novel
approaches are needed for enhancing the effectiveness of such systems. For example,
several techniques for increasing the effective thermal conductivities (and the rates of
heat transfer) in such systems are being actively developed (descriptions are provided in
the literature review, Section 1.2). One such technique involves the insertion of porous
metal foams (akin to that shown in Fig. 1.1) in ice-water systems, for obtaining
significant increases in the effective thermal conductivity of both the liquid water and ice,

with only small (less than 10%) reductions in their energy density. Optimal thermal



designs of such ice-water-porous-metal-foam systems for cold storage can be obtained
using numerical solutions of available cost-effective mathematical models of the related

fluid flow and heat transfer phenomena.

Figure 1.1: Photomicrograph of a porous aluminum foam with ten pores per inch [Tadrist et al.
(2004)]

The above-mentioned cost-effective mathematical models of fluid flow and heat transfer
in ice-water-porous-metal-foam systems are typically based on local volume-averaging
and two intrinsic phase-average temperature fields, one for the metal foam and the other
for the water (solid or liquid). They require semi-empirical expressions for the
permeability of the metal foam, Forchheimer coefficient (associated with inertial or form
drag at the pore level), effective thermal conductivities of the metal foam and water
(liquid or solid), dispersion thermal conductivity, pore-level interfacial heat transfer
coefficient, and specific interfacial area. The calculation domain geometry and boundary
conditions, porosity and pore size of the metal foam, and properties of the metal, ice, and
liquid water are provided as inputs to these models. In the work reported in this thesis, the
applicability of such models to heat conduction and laminar natural convection in ice-
water-porous-metal-foam systems was assessed, in the context of computationally

convenient two-dimensional steady-state problems in rectangular enclosures akin to the



one depicted schematically in Fig. 1.2. Improvements to some of the aforementioned
semi-empirical expressions were also proposed. A well-established fixed-grid finite
volume method (FVM) was adapted for numerical solutions of the mathematical models,
and validated using available experimental data of Elkouh (1996) for steady-state

conduction and laminar natural convection in pure ice-water systems.

Adiabatic Wall /

Ice/Water interface

Liquid water
+ H,,
(070)
Adiabatic Wall

Figure 1.2: Steady-state two-dimensional conduction and laminar natural convection heat transfer in
an ice-water-porous-metal-foam system contained in a rectangular enclosure; schematic
representation of the calculation domain and boundary conditions used in the numerical simulations.



1.2 Literature review

This section is not intended to be an exhaustive review of the numerous publications on
the various areas of interest in this work. Rather, the objectives here are to concisely
review some of the key publications directly relevant to this project and provide the
interested reader with references to several reviews, textbooks, and handbooks on the
areas of interest. This section is divided into three main parts: latent-heat TES using ice-
water systems; mathematical models of fluid flow, heat transfer, and solid-liquid phase-
change phenomena in porous metal foams; and notes on some key textbooks and

handbooks.

1.2.1 Latent-heat thermal energy storage using ice-water systems

Latent-heat solid-liquid TES systems that use water as the PCM are promising, but they
have some limitations that have prevented them from being widely used. The methods to
overcome these limitations, and some of the research and development works for

overcoming them, are discussed in this section.

Heat transfer enhancement techniques

Most solid-liquid PCMs used in latent-heat TES systems have relatively low thermal
conductivity (<5 W/m.K, [Zalba et al. (2003)]). Several techniques have been proposed
to increase the effective thermal conductivity, heat transfer rates, compactness, and
efficiency of such systems. The most up-to-date and thorough review of such techniques,

and their advantages and drawbacks, is the one by Jegadheeswaran and Pohekar (2009).

Two techniques on which researchers have been mostly focusing in the last decade are
the addition of metal or graphite fibers to the PCM, and the use of porous metal foams
embedded within the PCM. For useful references on classical techniques such as finned
tubes, the reader is referred to the works of Velraj et al. (1999) and Jegadheeswaran and

Pohekar (2009).



Fukai et al. (2002) studied composites of carbon brushes and n-octadecane, placed around
heat exchanger tubes in a fin-type anisotropic configuration. The transient thermal
responses of the composites were measured for different fiber diameters and
concentrations. The authors also developed a numerical model that takes account of the
anisotropy of the medium. It gave good predictions of the experimental results and
allowed them to derive a critical diameter above which further improvement is not
possible, due to thermal resistance between the brushes and the tube surface. With a
properly chosen diameter, for a carbon-brushes volume fraction of just 1%, the effective
thermal conductivity was increased by a factor of five (compared to that of just the

PCM).

Xiao et al. (2002) formed a composite paraffin (styrene-butadiene-styrene) PCM with
graphite as the agent for enhancing the effective conductivity. They also incorporated
thermoelastic elastomers, which provided shape-stability to commercially available
paraffin. This innovative material exhibited the same phase-transition characteristics as
paraffin and 80% of its latent heat of fusion, while the effective thermal conductivity was
significantly increased. Mettawee and Assassa (2007) enhanced the thermal conductivity
of a paraffin wax by adding to it a small mass fraction (about 0.5%) of aluminum powder.
They compared the progress of the melting surface (front) in both the composite
compound and the pure paraffin, as part of a PCM solar thermal collector, and found
significant differences. They also found that with the composite compound, the charging

time was reduced by approximately 60%.

Frusteri et al. (2005) studied another simple configuration, in which carbon fibers were
randomly mixed with a PCM (inorganic PCM44, a eutectic mixture). They measured the
effective thermal conductivity of the composites and found that it could be approximated
by a linear function of the fiber weight fraction, for up to 10% mass fraction. With 7%
weight fraction of the micro-fibers used, the effective thermal conductivity was increased
by a factor of about four (compared to that of just the PCM). Randomly-mixed fibers are
much easier to use than structured brushes or foams, but this ease of use comes at the cost

of thermal performance, because of the lack of contact between the fibers. Furthermore, it



is hard to avoid separation (sedimentation) of the fibers from the PCM. In the
aforementioned experiment, the composite was shaken vigorously right before the
experiments, a procedure which would be inapplicable or impractical in the case of

seasonal or diurnal cold storage.

Cabeza et al. (2002) wrote an article devoted to heat transfer enhancement techniques
with water as the PCM. They compared three methods: addition of stainless steel pieces,
addition of copper pieces, and use of a graphite matrix. The last technique showed the
best results, suggesting that embedding high-conductivity porous foams is good for heat

transfer enhancement in solid-liquid latent-heat TES systems.

Some issues associated with the use of water as the PCM

A significant amount of information on latent-heat TES systems that use water as the
PCM is available in the literature. An excellent synopsis of such systems and related
issues can be found in the ASHRAE Handbook, HVAC Applications (2007). Accurate
mathematical models and numerical solution procedures are necessary for designing such
systems properly, because of the particular properties of water, such as supercooling,

density inversion at 4°C, and random character of crystallization.

Supercooling can have drastic effects on the freezing of water [Angell (1983)]. This
phenomenon has been reviewed by Mishima and Stanley (1998) and Debenedetti and
Stillinger (2001). The inclusion of a structure such as porous media strongly affects this
phenomenon, as pointed out by Warnock (1986), who used optical techniques to measure

supercooling in a transparent porous glass.

Supercooling in salt hydrates can be limited by mixing the PCM with other compounds
such as nucleating agents (which prevent or limit supercooling) and thickeners (which
ensure phase stability). These techniques were summarized in the review by Farid et al.
(2004). For pure water, the main works on the control of supercooling were described by
Saito et al. (1992). They pointed out that the degree of supercooling is highly dependent

on the cooling rate, surface properties, and surface area of the container. Active methods



to control the initiation of freezing of supercooled water have developed over the years,
and include application of electric fields and ultrasonic vibrations. A few authors have
proposed approaches for including supercooling in numerical simulations of latent-heat
TES systems, and a general adaptive solution algorithm has been proposed by Giinther et
al. (2007). However, in latent-heat ice/water TES systems, the impurities found in potable
water or intentional agitation are generally sufficient to initiate nucleation of ice crystals.
Residual ice also prevents supercooling. Therefore, the size of ice/water TES systems
should be chosen so that some residual ice is always present, at the end of the melting and

start of the freezing periods.

Corrosion can cause serious problems in latent-heat TES systems, so the compatibility of
the PCM and the container must be carefully verified. Corrosion experiments on salt
hydrates as the PCMs were conducted by Cabeza et al. (2001). With sodium carbonate,
they concluded that steel and stainless steel can be used without problems, but not
copper, aluminum, and brass. With potassium carbonate, steel, stainless steel, and
aluminum are all suitable. When the PCM is potassium chloride, only stainless steel can
be used for long-term TES applications. The use of steel for the construction of the
container results in significant corrosion problems when water is used as the PCM, as in

this project, but copper, aluminum, and brass are all fine.

The mass density of pure water reaches its maximum value at the density inversion point,

1, =4°C, and has an essentially parabolic variation with temperature about this point.

An accurate expression for the variation of water density with temperature in the vicinity
of the density inversion temperature was provided by Kukulka et al. (1987). Their
expression was used in the work reported in this thesis. Buoyancy-driven natural
convection in pure water at temperatures that span the density inversion point is
significantly different, in both fluid flow and heat transfer characteristics, from that in
fluids with densities that vary monotonically with temperature. A thorough review of the
works done on steady-state natural convection in pure water with temperatures spanning
the density inversion point can be found in the thesis by Elkouh (1996). From his review

and work, it is useful (for the purposes of the work reported in this thesis) to note the
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following key points pertaining to natural convection in water contained in a vertical

rectangular cavity, with one vertical wall heated and maintained at a hot temperature 7, ,
the opposite vertical wall cooled and maintained at a cold temperature 7., and the top

and bottom (horizontal) walls very well insulated (essentially adiabatic):

e A density inversion parameter, 7, = (T, —T..)/(T,, — T..), plays a key role
in the fluid flow and heat transfer process. When it is in the 0 — 1 range,
the water along the cold wall has a negative thermal expansion coefficient
while the water along the hot wall has a positive one. Therefore, two
recirculating cells develop within the enclosure, with fluid flow in

opposite directions.
e When the density inversion parameter 7, has a value in the vicinity of

0.5, the fluid flow is particularly sensitive to even minor changes in
boundary conditions. The published numerical and experimental results do
not agree well for these conditions, due to their sensitivity to intrinsic
uncertainties in the experimental data. For a given Rayleigh number, the

overall Nusselt number is a minimum when7, =0.5.

e There is no consensus regarding the temperature at which the
thermophysical properties of water should be evaluated when a constant-
property model is used. Elkouh (1996) suggested a zonal temperature,
which will be elaborated in chapters 2 and 4.

1.2.2 Mathematical models of fluid flow, heat transfer, and solid-liquid phase-

change phenomena in porous metal foams

In this section, publications on practical approaches to the mathematical modeling of
fluid flow, heat transfer, and solid-liquid phase-change phenomena in porous metal foams
are reviewed, along with some key publications on thermophysical properties of such

foams.
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Volume-averaging approach

The most intuitive and exact approach to the modeling of flows in porous media is the
complete local or the microscopic-scale description. In this approach, the Newtonian
fluid flow and heat transfer in the pores of the porous medium are modeled using the
continuity, Navier-Stokes, and energy equations, and the no-slip, impermeability,
continuity of temperature, and continuity of heat flux conditions are applied at all fluid-
solid boundaries. This approach cannot be used in most practical problems for two main
reasons: the computational time requirements and costs are far too large, and the exact
description of the geometry at this scale is rarely available due to the high local

heterogeneity of most porous structures [Nield and Bejan (2006)].

The most famous early contribution to practical models of flows in porous media was
made by Darcy in 1856 [Kaviany (1999); Nield and Bejan (2006)]. In his model, which is
now called the Darcy model, a volume-averaged velocity (the so-called superficial or
Darcy velocity) is assumed to be proportional to gradient of the intrinsic phase-averaged
pressure. The proportionality constant is defined via a geometric property of the porous
media, the permeability, which is determined semi-empirically [Kaviany (1999); Nield
and Bejan (2006)]. This Darcy model has also been derived theoretically by Whitaker
(1999). This model holds only for low values of the superficial velocity, when the values
of the pore-scale Reynolds number are smaller or of the order of unity [Nield and Bejan

(2006)].

Over the years, the Darcy model has been progressively improved, thanks to numerous
experimental and theoretical investigations. Many of these investigations have been
reviewed and summarized in classical porous media textbooks, such as the ones by
Kaviany (1999) and Nield and Bejan (2006). A thorough derivation of the volume-
averaged governing equations is available in Whitaker (1999). The following key
improvements and modifications have been proposed: 1) inclusion of the Brinkman term
(effective diffusion term analogous to the viscous term in the Navier-Stokes equations,

which introduces the so-called effective or Brinkman viscosity and enables the
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imposition of the no-slip condition at solid-wall boundaries and stress-matching
conditions at interfaces with open domains); and ii) accounting of the inertial drag (also
called form or quadratic drag) through the inclusion of the Forchheimer term, which
brings in a Forchheimer or form drag coefficient. The resulting generalized governing
equations, which account for the so-called non-Darcian effects, are referred to as the
extended Darcy-Brinkman-Forchheimer equations. There are some limitations to these
equations, especially with non-uniform porosity or at the interface between porous and
open domains. These limitations, as well as suitable modifications, are described in

Kaviany (1999) and Whitaker (1999).

With regard to convective heat transfer in porous media, practical volume-averaged
approaches have yielded two types of models. If local thermodynamic equilibrium
between the fluid and the solid (porous medium) can be assumed, the conditions for
which are discussed in Kaviany (1999) and Nield and Bejan (2006), the local intrinsic
phase-averaged temperatures of the fluid and the solid are essentially the same, and a
single-temperature or homogeneous model is adequate. However, if the conditions
necessary for local thermodynamic equilibrium do not apply, then two separate volume-
averaged energy equations, one for each of the intrinsic phase-averaged temperatures of
the fluid and the solid (porous medium), must be used, leading to a two-temperature
model. In the two-temperature model, interfacial heat transfer between the fluid and the
solid porous medium, at the pore level, must be handled. This is usually done through a
semi-empirically determined interfacial heat transfer coefficient and the specific area.
Extensive experimental work has been carried out to determine these interfacial
parameters in packed beds of spheres [Wakao et al. (1979)], but metal foams have not
been studied in similar detail. In both the one- and two-temperature models, the volume-
averaged energy equations involve effective thermal conductivities, which depend on the
conductivities of the porous structure and the interstitial fluid. Semi-empirical approaches
are necessary for determining these effective thermal conductivities. The numerous
attempts to quantify these parameters in porous media are discussed concisely in the next

section of this literature review, with special attention to porous metal foams.
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In the derivation of the governing equations in the above-mentioned volume-averaged
approaches to the modeling of fluid flow and heat transfer in porous media, it is assumed
that the pore-scale variations (over a representative elementary volume) of the properties
of the fluid can be neglected [ Whitaker (1999)]. However, to the best knowledge of the
author, in all available publications on this topic, there is no rigorous volume-averaging
of the terms in the Navier-Stokes and energy equations that are associated with the
variations of mass density, dynamic viscosity, specific heat at constant pressure, and the
thermal conductivity of the fluid. Thus, available volume-averaged models of fluid flow
and heat transfer in porous media are essentially limited (strictly) to cases in which the
properties of the fluid can be assumed to be constant, evaluated at a suitable reference
temperature. In the problems of interest in this thesis (conduction and natural convection
in ice-water systems containing porous metal foams), the proper choice of this reference

temperature is critically important. This point is elaborated further in Chapters 2 and 4.

Metal foams and their thermal properties

The manufacturing techniques used for fabricating metal foams, and the difficulties in
precisely characterizing their complex structure, have been discussed in a design guide by
Ashby et al. (2000) and a review article by Ashby and Lu (2003). At present, most
commercially available metal foams are made of aluminum, copper, bronze, steel, and
nickel. Ashby et al. (2000) have presented and discussed the mechanical and thermal
properties of a great variety of metal foams, and also provided models for predicting
these properties. An overview of the applications (including TES and heat exchangers) in
which these materials can be used is also presented. Banhart (2001) has also provided a
review of metal foams, including a description of the various techniques used to
manufacture them, and their possible applications such as acoustic control, water

treatment, and heat exchangers.

In cooling applications with water as the working fluid, foams with high values of
porosity and specific interfacial surface area are used, and copper and aluminum are the
preferred metals. Pure copper is more conductive than pure aluminum (400 W/m.K

versus 236 W/m.K), but it is much heavier (8960 kg/m’ versus 2700 kg/m’) and more
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expensive. Aluminum is therefore the preferred material for the porous metal foams
investigated in this thesis, but the proposed models and solutions methods can be used

with porous foams made of any of the other aforementioned metals.

Calmidi (1998) and Calmidi and Mahajan (1999) have presented a model of the effective
thermal conductivity of porous metal foams, assuming one-dimensional conduction in the
ligaments of an array of hexagonal cells. They experimentally determined a parameter
that is needed as an input in their model, the ratio of the radius of the fibers to that of the
fibers intersections or bulb. It was found to be approximately 0.3. Their model was
validated against experimental data for water-foam and air-foam combinations, with a
porosity range of 0.9-0.98 (though it is assumed to be valid for a wider range).
Bhattacharya et al. (2002) extended the model proposed by Calmidi and Mahajan (1999),
the structure now presenting a six-fold rotational symmetry. The value of fibers to bulb
radii ratio was this time determined from microscopic pictures of the foam, rather than
from the earlier experimental correlations. They also proposed a simple empirical
correlation, assuming that the effective thermal conductivity could be expressed as a
weighted average of the parallel-conduction and series-conduction models of effective
thermal conductivities [Nield and Bejan (2006)]. Jagjiwanram and Singh (2004) and
Singh and Kasana (2004) have also developed their own semi-empirical model, using an

approach similar to the one adopted by Bhattacharya et al. (2002).

Boomsma and Poulikakos (2001) independently developed their own model of effective
thermal conductivity of porous foams, using semi-empirical approaches. In their model,
the porous structure was assumed to be composed of tetrakaidecahedrons with cubic
nodes. The required geometrical data was obtained using experiments conducted on
aluminum foams, successively saturated with water and air. Their model gave very
accurate predictions, and they pointed out that in their experiments, the thermal
conductivity of the fluid (water or air) had only little influence on the effective thermal

conductivity of the porous structure.

Wang and Pan (2008) developed a random-generation growth model to simulate the

fabrication of metal foams, and used it to compute their effective thermal conductivity
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from the solution of the microscopic (as opposed to volume-averaged) energy equations
in two-dimensional projected microstructures. Their first model ignored radiation and
gave rather poor results, but they improved it by including this effect. Their final model
predicted quite well the effective conductivity of the tested foams. Their results showed
that the effective conductivity of metal foams is much higher than that of a rock-bed
structure of the same porosity, thanks to their net-like (connected) morphology. This
article illustrates the possibilities offered by complex computational models of metal
foams. In the previous works, foams were modeled as periodic repetitions of

representative modules or portions, ignoring heterogeneities in pore size and shape.

Bodla et al. (2010) also departed from the periodic models, proposing a precise network-
based thermal conductivity model. They considered one-dimensional conduction in the
fibers, but numerically built up the structure from X-ray micrographs of the metal foams.
From this representation, they could extract statistical distributions of pore and fiber
diameters, which were then used to estimate the effective thermal conductivity of

different types of foams.

The papers discussed in the previous two paragraphs use the most realistic
representations of metal foams, but no simple and general expressions for effective
conductivity can be extracted from the works reported in them. Thus, in this work, the
semi-empirical models described earlier in this section were assessed and compared.
However, these semi-empirical models need to be suitably adjusted before being used,
because in all of the cases discussed, the sum of the solid (foam) and fluid effective
thermal conductivities (needed separately in the two-temperature model) is not equal to
the effective thermal conductivity of the foam-fluid composite (needed in the one-

temperature model). This consistency issue is discussed in detail in Chapter 2.
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Investigations of fluid flow and heat transfer in metal foams with no phase change

Calmidi and Mahajan (2000) conducted experiments on forced convection in aluminum
foams with porosities ranging from 0.89 to 0.97. They measured heat transfer rates from
the bottom of a rectangular box filled with metal foam, subjected to a fully-developed
transverse air flow, and an adiabatic top wall, and then compared these measurements to
numerical results obtained with a model based on the extended Darcy-Brinkman-
Forchheimer momentum and the two-temperature energy equations. The effect of thermal
dispersion was included, using an expression proposed by Hunt and Tien (1988). The
interfacial heat transfer coefficient was estimated by adapting the classical correlation of
Zukauskas (1987) for forced convection from single cylinders in uniform cross-flow. The
dimensionless coefficients involved in the aforementioned correlations were adjusted
using the experimental data. They obtained very good agreement between the
experimental and numerical results, which validated these choices. However, their
parameters and correlations could not be directly used in the work reported in this thesis,
since the velocities encountered in forced convection are significantly greater than those

involved in natural convection.

Phanikumar and Mahajan (2002) numerically studied natural convection in an enclosure
heated from below, with metal foam in a corner. They used a model based on the Darcy-
Brinkman momentum equations and the two-temperature energy equations. Their results
were validated using data from experiments with different foam-fluid combinations,
including aluminum-air and aluminum-water (away from the density-inversion
temperature of water), and several different foam structures. They also used the
Zukauskas (1987) correlation, for forced convection from cylinders in uniform cross-
flow, to estimate the interfacial heat transfer coefficient between the solid matrix (porous
foam) and the fluid, even though the values of pore-level Reynolds number encountered
in their natural convection simulations were quite low. They used the same thermal
dispersion correlation as Calmidi and Mahajan (2000), and observed that its effect could
account for up to 10% of the heat transfer. Heat transfer enhancement up to a factor of 16

was observed for aluminum foam filled with water. These authors pointed out that the



17

single-temperature model resulted in significant errors even in natural convection

simulations.

Zhao et al. (2005) investigated the influence of natural convection on heat transfer in
metal foams heated from below, isolating the influence of the Darcy and Rayleigh
numbers, thanks to both numerical and experimental investigations. They used a classical
natural convection correlation provided by Churchill and Chu (1975) for estimating the
local interfacial heat transfer coefficient. This assumption was, however, not justified. In
the case of air as the working fluid and for the conditions of their experiments, natural
convection was found to account for up to 50% of the total heat transfer. Zhao et al.
(2006) used the same mathematical model as that of Zhao at al. (2005) to predict heat
transfer rates for a heat exchanger, with metal foams on both the cold and hot sides. They
investigated the influence of pore size, porosity, and geometrical size and predicted an
optimum foam-area ratio for a counter-flow tube-in-tube heat exchanger filled with

porous metal foam.

Investigations of fluid flow and heat transfer in metal foams with phase change

Phase change in porous media is a vast subject, which could involve changes in gas,
liquid, and solid phases of the substance in the void spaces of the porous medium. The
structure of the porous medium may be rigid or change its shape as a result of the phase-
change phenomena. In this part of the literature review, the focus is on solid-liquid phase-
change phenomena in rigid porous metal foams. However, the numerical method used in
this work for predicting heat transfer in ice-water systems containing porous metal foams
was tested by first applying it to such systems without the porous metal foams. Thus, a
very brief review of some publications on problems involving solid-liquid phase-change

of pure substances without porous metal foams is presented next.

Multidimensional melting and freezing of pure substances is a classical problem that has
been the subject of numerous investigations. Lazaridis (1970) was one of the first
researchers to present a multidimensional numerical solution to such problems, solving

the set of unsteady, nonlinear governing equations, using both explicit and implicit finite
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difference methods. Viskanta (1985) has surveyed the literature (up to the mid-1980s)
related to investigations of natural convection in melting and solidification problems.
Two main categories of models are used in numerical predictions of heat transfer in solid-
liquid phase-change problems: enthalpy models and temperature models. In enthalpy
models, the specific enthalpy of the PCM is used as a dependent variable along with the
temperature, and the position of the solid-liquid interface is determined by an
examination of the enthalpy distribution. In temperature models, the energy equations for
the solid and liquid phases are solved separately, and the conditions of continuity of
temperature and heat flux at the solid-liquid interface are used to match the solutions.
When temperature models are used, the time-varying solid-liquid interface must be
tracked, and numerical methods based on adaptive grids are deemed desirable. A
thorough discussion of the fundamental aspects of both enthalpy and temperature models,
and their pros and cons, was provided by Crank (1988). A thorough review of
experiments and numerical simulations of water-ice phase-change phenomena is
available in the PhD thesis by Elkouh (1996). His steady-state experiments on natural
convection in pure water and water-ice systems in open domains (without porous metal
foams) were used as test problems to check the numerical methods and computer codes

used in this work. Details of these tests will be provided in Chapter 4 of this thesis.

Kazmierczak et al. (1986) conducted a computational investigation of solid-liquid phase-
change in a porous medium, with an embedded heated flat plate in both vertical and
horizontal positions. Their main focus was on the effect of natural convection on the
melting rate and the shape of the melting front. Beckermann and Viskanta (1988)
undertook complementary numerical and experimental investigations of solid-liquid
phase-change in a vertical square enclosure, with gallium as the PCM (fusion point of
29.8°C) and close-packed glass beads as the porous medium. Their volume-averaged
model gave good predictions of the temperature profile and melting front location, and
the results appeared to be strongly influenced by natural convection and the thermal
conductivity of the solid, but not significantly by the thermal conductivity of the fluid.
Their results were later used as benchmark data in several papers, including the numerical

study of solid-liquid phase-change in porous metal foams by Krishnan et al. (2005).
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Solid-liquid phase-change phenomena in metal foams have been the subject of several
studies over the last decade, mostly because of the possibilities they offer for latent-heat
TES systems. Mesalhy et al. (2004) numerically investigated melting of a PCM
embedded in a porous metal foam, solving the volume-averaged conservation equations.
They included the Darcy, Brinkman, and Forchheimer effects in the volume-averaged
momentum equations, and used a two-temperature model for heat transfer. The domain
they considered was the space between two concentric cylinders, akin to the annular
space in a double-pipe heat exchanger. Their computer code could also be used for
predictions of PCM melting in open domains (without porous media). The results showed
that the addition of a porous matrix had significant influence on the rates of melting and
heat transfer. Their results also demonstrated that decreasing the porosity of the matrix

increases the melting rate, but it also dampens the convective fluid flow.

Krishnan et al. (2005) conducted a numerical study of solid-liquid phase-change
phenomena in a two-dimensional rectangular domain filled with metal foams and PCMs.
They used a finite-volume method with fixed grids to solve a model based on the
extended Darcy-Brinkman-Forchheimer momentum and two-temperature energy
equations. They validated their model and method by comparing the results to those of
the melting-solidification experiments conducted by Beckermann and Viskanta (1988).
The emphasis in their study was on the influence of the Rayleigh, Stefan, and interfacial
Nusselt numbers. Their results showed that if the interfacial Nusselt number based on the
pore diameter was greater than 5.9, a single-temperature model was sufficient. The value
of this Nusselt number in porous metal foams filled with water was not determined, but a
review of some of the available correlations that could serve as required inputs to their
model was provided. However, none of these correlations appeared to accurately deal
with interfacial heat transfer in the pure-conduction limit (very low values of the pore-

scale Reynolds number).

Yang and Garimella (2010) extended the work of Krishnan et al. (2005) to include the

effects of volume change in the PCM during melting. Their numerical results showed that
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the melting rates were changed by about 10% by the inclusion of the volume-change

effects.

Lafdi et al. (2006) used the mathematical model, numerical method, and results of
Mesalhy et al. (2004) to investigate applications of PCM-foam composites to space and
terrestrial latent-heat TES systems. Their simulations were carried out using the
properties of commercially available paraffins, and a carbon-matrix porous foam. They
averaged the results for several melting-solidification cycles and found that with the
foam, the rates of heat transfer increased by eight and five times (compared to those

without the foam) for space and terrestrial applications, respectively.

With respect to the reviewed investigations of fluid flow and heat transfer in porous metal
foams, with and without solid-liquid phase-change, some of the key results and

comments pertinent to the work reported in this thesis are summarized here:

e The usefulness of porous metal foams for heat transfer enhancement in latent-
heat TES systems (for both heat and cold) has been demonstrated
experimentally in multiple investigations, but the mathematical modeling of
the related thermofluid phenomena still presents multiple difficulties.

e The two-temperature model is necessary to treat porous metal foams filled
with air or water, both for both forced and natural convection.

e There does not seem to be a consensus on the recommended correlation for
estimation of the interfacial Nusselt number in the liquid-PCM-foam regions,
especially for cases involving low values of the pore-level Reynolds number,
and also for frozen-PCM-foam heat exchange.

e In most of the published investigations, thermal dispersion is modelled using
classical isotropic dispersion correlations, but the thermal dispersion
coefficient has not been determined precisely. The effect of thermal dispersion

does not seem negligible in general.
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e Several semi-empirical effective conductivity models were developed over the
last decade but, to the best knowledge of the author, their adaptation to or
incorporation in two-temperature models has not been critically assessed.

e To the best knowledge of the author, no experimental or numerical study on
fluid flow and heat transfer in metal foams filled with water in the vicinity of

its density inversion temperature is available in the literature.

1.2.3 Key textbooks and handbooks

Dinger and Rosen (2002) have written a very useful textbook on thermal energy storage
(TES) systems, in which they describe the principles, types, and applications of such
systems. Mehling and Cabeza (2008) have focused on solid-liquid latent-heat TES
systems, and provided overviews of the related thermofluid phenomena and practical
aspects, from the classical Stefan melting problem to the potential applications, especially

in buildings.

Several excellent textbooks on the general field of heat transfer, for both teaching and
research purposes, are available. An example is the textbook by Incropera and Dewitt

(2002).

The physics of fluid flow and heat transfer phenomena in porous media, mathematical
models of these phenomena, and some experimental investigations and results have been
discussed in textbooks by Bear (1988), Kaviany (1999), and Nield and Bejan (2006).
Comprehensive discussions of volume averaging, as applied to modeling of thermofluid
phenomena in porous media, are presented in a book by Whitaker (1999). Review and
discussions of various aspects of fluid flow and heat transfer in porous media are
available in a handbook edited by Vafai (2000). Ashby et al. (2000) have provided a

design guide to metal foams.

Patankar (1980) has presented and discussed numerical methods for heat transfer and
fluid flow, with an emphasis on finite volume methods for predicting incompressible

fluid flow. Comprehensive review articles on mathematical models and numerical
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solution methods for predictions of a wide range of thermofluid phenomena are available

in a handbook edited by Minkowycz et al. (2006).

1.3 Specific objectives

The work reported in this thesis involved cost-effective volume-averaged mathematical

models of conduction and laminar natural convection in ice-liquid-water-porous-metal-

foam systems, and their numerical solution in the context of computationally convenient

state-state, planar two-dimensional problems. This work was undertaken in two main

parts. In the first part, the objectives were the following:

Develop a novel expression for the interfacial heat transfer coefficient in the
pure conduction limit, using models and numerical solutions for metal foams
with periodic two-dimensional structures.

Critically assess several existing semi-empirical expressions for effective
conductivity of porous metals foams with their void spaces filled with another
substance (liquid or solid), and suitably adapt the chosen expressions to
ensure consistency of the one-temperature and two-temperature models of

heat transfer in such systems.

In the second part of this work, the specific objectives were the following:

Take an in-house two-dimensional, co-located, equal-order finite volume
method and the corresponding computer program for fluid flow and heat
transfer in open domains, without embedded solid obstructions or porous
foam, and adapt it for predicting fluid flow and heat transfer in pure water-ice
systems in open domains and domains containing porous metal foams.

Benchmark the above-mentioned adapted finite volume method by applying
it to conduction and natural convection phenomena in pure ice-water systems
in open domains (without porous foams), and comparing the results to those
of the experimental and numerical investigations performed by Elkouh

(1996).
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Quantify the error resulting in the assumption of constant fluid properties in
simulations of natural convection in pure water, contained in rectangular
enclosures and with temperatures spanning the density inversion point, and
recommend a suitable average (reference) temperature for the calculation of
the values of these properties.

Compute and compare the fluid flow, temperature, and heat transfer rates
when a representative porous metal foam (Aluminum; 10 PPI, or pores per
inch; 0.95 porosity) is added to six pure liquid-water and two pure ice-water
configurations (without porous metal foam) studied earlier by Elkouh (1996).
Compare the steady, two-dimensional natural convection heat transfer rates
obtained in square enclosures (akin to the one illustrated schematically in Fig.
1.2) filled with pure liquid water and five different porous metal foams to
those obtained in the same systems but without the porous metal foams, for a
wide range of Rayleigh numbers. Assess the sensitivity of the results to
changes in the conduction interfacial heat transfer coefficient.

Discuss the impact of thermal dispersion and of the Forchheimer drag term,
as well as the division of the heat transfer rates between the foam (10 PPI,
0.95 porosity) and the pure liquid water, for natural convection in enclosures
akin to that shown schematically in Fig. 1.2, with the same two sets of wall
temperatures and Rayleigh number ranges as in the previous section.
Investigate a demonstration problem involving steady, two-dimensional,
conduction and natural convection in ice-water-porous-metal-foam systems

akin to that shown schematically in Fig. 1.2, with H =10cm ,
10<H <50cm, T, =-20°C, and 7,, =20°C, discuss the influence of the

aspect ratio of the enclosure, and compare the results with those obtained

with an open domain (no porous metal foam).
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Chapter 2: Mathematical Models

The numerical simulations undertaken in this work were performed with rectangular
enclosures as the calculation domain, akin to that illustrated schematically in Fig. 1.2.
Only steady-state, laminar, two-dimensional, fluid flow and heat transfer problems were

considered in this work.

In this chapter, first, the equations that govern conduction and natural convection in ice-
water systems in open domains (without foam) are presented, taking into account the
variation of the thermophysical properties of liquid water and ice with temperature (the
variation of these properties with pressure are negligibly small for the problems
considered in this thesis). Following that, the governing equations for conduction and
natural convection in ice-water-metal-foam systems and related issues are presented and
discussed, with the assumption that the thermophysical properties of the liquid water, ice,
and metal foams may be treated as essentially constant at values calculated at appropriate
reference (or average) temperatures. Finally, the dimensionless parameters in the

problems of interest are presented.

In this thesis, the subscript w is be used to indicate dependent variables, properties, and
quantities pertaining to water. When a distinction between liquid water and ice is
necessary, the subscripts / and i are used, respectively. Dependent variables, properties,
and quantities associated with the embedded metal foam (referred to as the solid) are
indicated by the subscript 5. Regarding the properties, the subscript 0 is added to denote
values calculated at a suitable reference (or average) temperature and assumed to remain
constant (in the context of the Boussinesq assumption for the mass density of liquid

water). Thus, for example, the temperature-dependent dynamic viscosity of liquid water
is denoted by g, = y,(Tw), and g denotes the value of dynamic viscosity of water

calculated at a suitable reference (or average) temperature and is assumed to remain

constant.
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2.1 Conduction and natural convection in ice-water systems in open

domains

The governing equations in open domains (no foam) are well-established, and they were
directly taken from previous publications. So they are presented here in a very compact
manner (mainly for the sake of completeness of this document). The reader requiring
access to a derivation of these equations and related references is requested to refer to the

Ph.D. thesis of Elkouh (1996).

With respect to the Cartesian coordinate system, calculation domain (without the foam),
and boundary conditions schematically illustrated in Fig. 1.2, the continuity, x- and y-
momentum, and energy equations that govern the fluid flow and heat transfer in the

liquid-water region are cast in the following forms:

Continuity equation:

0 0
a(plu)'Fa(pr):O 2.1
X-momentum equation:
2(:01“”)"'i(pzw”):_a_]:)"'i[/uz 8_uj+£ ,Uza_u +5, 2.2
ox oy ox ox\' ox) Oy oy
y-momentum equation:
g(pluv)+£(plvv):—8—P+i[u,@j+£ ,ul@ +S, 23
ox oy oy Ox ox) oy oy

In equations 2.2 and 2.3, § and S, denote volumetric (per unit volume) source terms

that are necessary to account for the temperature-dependence of the thermophysical

properties of liquid water and the buoyancy force:
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o( ou) o ov) ol.(ou ov)]
S =—\u—|+—|\u—|+—| 4| —+—||+|p, — 24
“ T 5 (:Uz ﬁxj 5‘)/(#[ ax] ox| l(ax ayj_ (pz plo)gx

0 ov) 0 0 0 ou O
e i e I e B e | F PR 2.5
o\ oy) ox\" ay) oy ax  y)

In these equations, g =gsinf and g, =—gcos@ are components of the gravitational

acceleration vector in the positive x and y directions shown in Fig. 1.2. The term A, is the

second coefficient of viscosity. It is calculated by invoking the Stokes hypothesis, in

which the bulk viscosity of the liquid water is set equal to zero:
2
A+—u =0 2.6
3
P is the reduced pressure, which is related to the static pressure as follows:

P=p-p, (xg.+yg,) 2.7

The absolute pressure has no significance if the thermophysical properties of water can
be considered to be essentially independent of pressure (an assumption that applies in the
problems of interest in this work). Thus, for convenience, the value of the reduce
pressure, P, was arbitrarily set to zero at the top-right-hand corner of the rectangular
enclosure shown in Fig. 1.2 (in all of the numerical simulations). It should be noted here
that if the constant-properties assumption is invoked in the context of the Boussinesq

approximation (density is constant in all terms except those related to the buoyancy), then

the volumetric source terms are given by: S, = ( pi=p, ) g . and S = ( =P, ) g,

The energy equation is the following [Elkouh (1996)]:

ﬁ(pluTw)jLﬁ(plva):Q kO |\, O K OL, | g 78
ox oy ox\c, Ox aylc,,
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S, =—(a—ax[p,uF(Tw)]+§[p,vF(TW)]j 2.9

The volumetric source term in this equation arises due to the variation of specific heat

with temperature: the term 7(7') is related to the variations of ¢, with temperature, and

1s defined as follows:

¢, =c, (I+f(T)) and F(T):j F(TaT! 2.10

In the ice region, the only governing equation is the heat conduction equation:

ﬁ(kiai}ﬁ k|20 211
ox ox oy oy

The water-ice interface is at the freezing temperature at any point on it:

T =7 ,=0°C 2.12

Winterface melt

In addition, under steady-state conditions, the heat fluxes normal to the water-ice

interface are related by the following equation:

(kaij :(k,aij 213
8}1 ice 8}1 water

The expression for the variation of the density of liquid water with temperature was taken

from the works of Kukulka et al. (1987) and Elkouh (1996):

0 =p, (1—a|Tw—qu) 2.14

In this equation, p, =1000 kg.m™is the maximum density of liquid water; this maximum

occurs at 7, =4.029325°C ; a=9.297173x10°(°C)" ; and ¢=1.894816 . This

relationship is valid between 0°C and 20°C: a graphical representation is shown in Fig.
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2.1. For the other thermophysical properties of the liquid water, the following expressions

proposed by Elkouh (1996) were used (with T, expressed in °C ):

#(kg/m.s) =1.7910x107° —(6.144 x107) T, +(1.4510 x10™°) ;) —(1.6826 x10*)T,) 2.15

¢, (Wkg.°C) =4.2074x10° —(1.3610)T,, +(1.5916x 10 ) T 2.16
k,(W/m.°C) = 0.5654 +(1.700 x10)T, —(5.944 x10°*) T} 2.17
k,(W/m.°C)=222-(1.00x10°)T, +(3.45x107)T; 2.18

It should be noted here that between 0°C and 20°C, the mass density of liquid water
changes by only 0.18%, but its dynamic viscosity decreases by 43.7%, its conductivity
increases by 5.6%, its specific heat decreases by 0.50%, and the resulting Prandtl number
decreases by 47%, going from 13.3 to 7.0. In the context of these observations, it is
imperative to carefully examine the errors caused if a constant-property assumption are
invoked, and determine a suitable reference (or average) temperature for the evaluation of
the values of the properties in the corresponding model (one that minimizes the errors
caused by the constant-property assumption). Such an investigation was undertaken in
this work for natural convection in liquid water with no ice, in open media (no foam).
The results are provided in Section 4.1. The expression for the thermal conductivity of ice
is valid between -173°C and 0°C . In the problems considered in this work, the
temperature of ice was varied between 0°C to -20°C, and in this range, the thermal

conductivity of ice decreases by 8.8%.

It should also be noted that at the ice-liquid-water interface, for the steady-state problems
considered in this work, the liquid water velocity is zero, and the influence of surface

tension is negligible.
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Figure 2.1: Variation of mass density of liquid water with temperature [ Kukulka et al. (1987)].

With respect to the calculation domain illustrated in Fig. 1.2 (with no foam), the no-slip

conditions applies at all four walls (u=v=0at x=0,y=0,x=H and y=H ), and

the temperatures of the cold and hot side walls are maintained constant:

I =1. at x=0
T,=T, at x=H

X

At the top and bottom walls, adiabatic conditions are imposed:

or, et _,
@}‘y:O a.y‘y:HV

2.2 Conduction and natural convection in ice-water-metal-foam systems

2.19

2.20

The equations that govern steady-state fluid flow and heat transfer in rectangular

enclosures (see Fig. 1.2) containing ice-water-metal-foam systems are presented in this

section. The properties of the liquid water, ice, and porous metal foam are evaluated at

suitable reference (average) temperatures, for each of the cases considered in this work,
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and assumed to remain constant. Recommendations for these temperatures are presented

and discussed in Chapter 4.
2.2.1 Some definitions

As was pointed out in the literature review, the volume-averaging technique is the most
common method that is used to obtain cost-effective (practical) mathematical models of
fluid flow and heat transfer in porous media. Derivations of the volume-averaged
governing equations are available in the works of Whitaker (1999) and Nield and Bejan
(2006). These derivations start with equations that govern fluid flow and heat transfer in
the pores of the porous medium, and heat conduction in the solid portion of the porous
medium, and then apply suitable volume-averaging techniques to these equations. The
volume-averaging is done over representative elementary volumes (r.e.v.), such as the

one shown schematically in Fig. 2.2.

Representative
elementary
volume (r.e.v.)

Flow domain

Figure 2.2: A representative elementary volume [Nield and Bejan (2006)].

The size of the representative elementary volume is chosen to be as small as possible
with respect to the overall dimensions of the problems of interest, but still large enough to

yield statistically meaningful local average quantities [ Whitaker (1999)].

The porosity is defined as the ratio of volume of water (liquid or ice) to the total volume:
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E= £ 2& 2.21
v.+V, ¥V

The volume average of a given quantity @ is defined as:
(@) =ljc1>dV 222
V vV

The intrinsic phase average of this quantity represents its volume average over a given

phase, water (liquid or ice) and solid (material of the porous medium):

<®>”’=Vi [@av  and (@)Sle Joar 2.23
(@)=e(D)" +(1-¢)(D) 2.24

For quantities defined only in the water (liquid or ice), the volume-average value is

related to the intrinsic-phase-average value by the following equation:
(@,)=e(D®,)" 2.25

The volume-average velocity vector, (u, )=¢(u,)" , is commonly referred to as the
Darcy or superficial velocity vector. For convenience in this presentation, the following
simplified notation is used for this Darcy or superficial velocity: u=(u,)=¢(u )" . The

following expressions apply to volume-averaging of the gradient and divergence

operators [ Whitaker (1999)]:

(VD) = v<q>>+% [ @as 2.26
(V.b) = V.<b>+% [baa 2.27
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2.2.2 Governing equations

In the available literature, the volume-averaged governing equations for fluid flow and
heat transfer in porous media are usually derived for essentially constant thermophysical
properties or for cases where the variations of these properties are negligible over the
representative elementary volume [Whitaker (1999)]. However, the volume-averaged
expressions for the source terms associated with non-constant fluid properties are, to the
best knowledge of the author, not available in the literature. The derivation of such
expressions would be, in itself, an interesting and challenging task, but it is not within the
scope of this thesis. In this work, the constant-property assumption (in the context of the
Boussinesq approximation) was invoked in the derivation and use of the volume-
averaged governing equations for fluid flow and heat transfer in porous metal foams. The
resulting errors (compared to predictions with variable-property models) were assessed
for natural convection with pure water in open domains (no-foam). With a suitable
reference (average) temperature for the evaluation of the values of the constant
properties, the aforementioned errors were found to be quite small. These results are

presented and discussed in Chapter 4.

Volume-averaged continuity and momentum equations in the liquid-water-metal-

foam regions

These equations are presented here for steady-state conditions and the constant-property
assumption (in the context of the Boussinesq approximation). The continuity equation for

the liquid in the pores of the porous medium is the following:

Vo, =0 2.28

Here, u, is the water velocity vector in the pores. Volume-averaging of this equation is

done over the representative elementary volume illustrated in Fig. 2.2, using equation
2.27 and the no-slip condition at the water-metal-foam interface. The resulting volume-

averaged continuity equation in terms of the Darcy or superficial velocity is:

Vau=0 2.29
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The steady-state momentum equation (Navier-Stokes equations) for the liquid water in

the pores of the porous medium is the following:

p,Vuu, = _VP+:L’10V(V“1)+(/71 —P,)8 2.30

The volume-averaged form of this equation is the following (adaptation of the expression

put forward by Hsu (1990)):

V.uu w o My
p108—2:—V<P> +?I(V2u)+S 2.31

In this equation, the source term S is the sum of two drag terms and a buoyancy term

associated with natural convection:

S=r+(<p1>w—plo)g 232

Here, r is the total drag term per unit volume, applied on the water by the solid phase:

1 H
r=-_ [ PdA+Z [ (Vu,).dA 2.33

Asf Asf

It cannot be evaluated analytically, unless the structure of the porous medium and the
fluid flow within it are known exactly. At low values of Reynolds number, the pressure

drop is related to the velocity and permeability K by the Darcy law:

wo Mlou 2
V{P) == +0(||u|| ) 2.34
However, a second-order term is often introduced, since inertial (or form drag) effects
cannot be neglected when the Reynolds number increases. It is quantified by a form-drag
or Forchheimer coefficient, f, which is a function of the geometry of the metal foams

[Calmidi (1998)]. With this modification, r is expressed as follows:
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r=- 7“ G o u 2.35

In this study, the following correlations proposed by Calmidi (1998) were adopted, as

they show excellent agreement with available experimental data:

-1.11
o[ d
K =d?x0.00073x(1-¢) """ [d—f] 2.36
P
d -1.63
f=0.00212x(1-¢)""" (d—f] 2.37
P

The volume-averaged buoyancy term is:

((p) =, )e {pm (1—a<|TW —Tm|q>wj—p[0}g 2.38

It is difficult to rigorously determine this term in the computer simulations, because of
the non-linear variation of the liquid water density with temperature. In this work, it was
assumed that the pore-scale variations of the fluid temperature are small enough to justify

the following approximation:

(o))" —pzo)g{/om (1—a\<Tw>W—Tm

q]—plo}g 2.39

The final form of the momentum equation is the following:

V.uu:_v<P>w Hy (VZ) L v ||u||u+{pm(l a" -T

pl(, 82 € K \/_ m

qj—plo}g 2.40

The boundary condition for the velocity field, with and without the porous metal foam, is

the following: u=0 at all boundaries (x=0, y=0,x=H _,y=H ).
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Energy Equations

Full details of the derivation of the energy equations are presented and discussed in
Whitaker (1999). Heat transfer in porous media can be studied with the assumption of
local thermal equilibrium between the two phases (fluid and solid), when certain
conditions or criteria are satisfied. For a discussion of these criteria, the reader is referred
to the works of Whitaker (1999) and Nield and Bejan (2006). With this assumption, a

single energy equation is used to describe the evolution of the intrinsic-phase-average

temperatures, (7,)" =(7,)" =(T).

w

In the liquid-water-metal-foam region of the calculation domain, the one-temperature

model of the energy equation is:

Py V-(u(T)) = V.((key, +8k, ) V(T)) 2.41

In the ice-metal-foam region of the calculation domain, the one-temperature model yields

the following form of the energy equation:
0=V.(k,,V(T)) 2.42

In these equations, k; andk,, are the effective thermal conductivities when the porous

metal foam is filled with liquid water and ice, respectively. In general, the effective
thermal conductivity has to be expressed as a second-order tensor, but in the case of
essentially isotropic porous media (over a representative elementary volume), such as the
porous metal foams considered in this work, it can be approximated as a scalar. As was
mentioned before, the liquid-water, ice, and porous metal properties were assumed to be
essentially constant at suitable reference (average) temperatures in each of the cases
considered in this work. The expressions for the effective thermal conductivities invoke
this constant-property assumption. Strictly, the subscript 0 is necessary to indicate these
constant properties, however, for convenience and simplicity in the presentations, this

subscript will be dropped in the following discussions.
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The thermal dispersion conductivity, €k, , is included to account for heat transfer

enhancements due to hydrodynamic mixing of the fluid phase in the pores of the porous
medium. A pore-level study of such flows could give an estimate of this coefficient, but
there only are few studies of this type available in the literature, an example is the work
of Pedras and De Lemos (2008). In general, thermal dispersion is non-isotropic.
However, while the thermal dispersion in directions normal to the local (in the volume-
averaged sense) superficial velocity vector can be significant, it is usually negligible in
the direction of this velocity vector, compared to the corresponding advection transport.
Thus, often, it is adequate (and simple) to assume that an expression for thermal
dispersion transverse to the local superficial velocity vector is also applicable in all

directions.

In natural convection problems involving liquid-water-porous-metal-foam systems, the
fluid velocity is usually quite low, so the thermal dispersion can be assumed to be
negligible. In this work, the applicability of this assumption was checked by using a
relatively simple and adequate (in the context of the discussions given at the end of the

previous paragraph) isotropic thermal dispersion model proposed by Hunt and Tien

(1988)]: k, = Cpp, ¢, NK H<uw>wH . Thus:

ek, = CDpfcpfﬁ”u” 2.43

Calmidi and Mahajan (2000) empirically estimated C,, =0.06. Their C, value was used

in this work.

In the problems considered in this work, because of the large differences between the
values of thermal conductivity of the metals (used to make the porous foam) and water
(liquid and ice), the one-temperature model may not be valid, even under steady-state
conditions [Whitaker (1999)]. A two-temperature model was therefore adopted. As was

stated earlier, in the two-temperature model, the intrinsic-phase-average temperatures of
the water (liquid or ice) and the solid (porous metal foam), (7,)" and (7, )", respectively,

as not assumed to be locally equal, and two different energy equations are used for these
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temperatures, in both the liquid-water-metal-foam and ice-metal-foam regions of the

calculation domain.

The energy equations in the two-temperature model of the liquid-water-metal-foam

region are the following:

P,en 0V (T,)" = V(e + ki, + £k )V (T, )" )=, ((T,)" ~(T.)')

0=.((k, +k,)V(L) ) +a,h ((T.)" ()

In the ice-metal-foam region, the energy equations in the two-temperature model are the

following:

0=V.((k, +k,)V(T,

0=.{(k, +£,)V(L) ) +a,h (1) ~(L.))

~
2
=
-
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2.45

In these equations, £ is the solid (metal foam) effective thermal conductivity; &, and &,
refer to the effective thermal conductivities of the liquid water and ice, respectively; and
k,and k, are the so-called coupling thermal conductivities, which arise from volume-

averaging of the heat conduction terms in the energy equations. Strictly, the term

(kﬁ +kﬂ.)V<Tw>w should be replaced by (k,V(T,)" +k,V(T,)") in equation 2.45, but in
this work, the local gradient equilibrium hypothesis validated by Quintard and Whitaker
(1995) is used. Thus, V(T,)"and V(T,)" are assumed to be close enough for the coupled

thermal conductivities to be used as simple additional effective conductivities in both the
solid (metal foam) and the water (liquid or ice) regions. A close look at their definition

shows that k, =k, and k =k . With the effective conductivity model used in this work,

these coupled contributions represented only 1% to 3% of the effective thermal

conductivities.

The terms /,and A, are the interfacial heat transfer coefficients at the liquid-water-metal-

foam and ice-metal-foam interfaces, respectively. They are used to model the rate of heat
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transfer between the water (liquid or ice) and the metal foam, caused by differences in

their intrinsic-phase-average temperature:

h — q:vater to solid 2 4 6

(T.) =)

The coefficient A, quantifies the interfacial heat transfer by pure conduction between the

ice and the metal foam. However, at the interface between the liquid-water and the metal
foam, the heat transfer is also influenced by convection around the foam fibers. Novel
expressions for these coefficients are proposed in Section 2.2.5. The term a is the

specific (per unit volume) interfacial area over which the aforementioned heat exchanges

occurs, and it is a purely geometrical parameter.

If local thermal equilibrium is achieved ((7') =(T7,,)" =(T.)"), the summation of the two

equations in each set of equations 2.44 or equations 2.45 should yield the single-
temperature equations 2.41 and 2.42, respectively. The necessary conditions for

achieving these consistency requirements are the followings:
ke_m =k, +2k,+k, and keﬁ; =k, +2k, +k_ 2.47

These consistency issues, as well as the choice of the best available effective thermal

conductivity expressions, will be tackled in Section 2.2.4.

The boundary conditions of the problem numerically studied in this work are reported in

Fig. 1.2; the temperatures of the cold and hot side walls are again maintained constant:

2.48

At the top and bottom walls, the adiabatic conditions impose:
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ofr,)” _oL)y _ony _oL) _, 2.49

5_\)/ ‘y:() ay ‘y:H a.y ‘y:O ay ‘y:H

»

In addition, under steady-state conditions, the heat fluxes normal to the water-ice

interface are related by the following equations:

(kﬁ +kSi)L%J = (k” +ks1)(a<;‘;>wJ
(k‘“ ’ kﬂ)(@J - (k‘“ +k )(ag}z)v J

n

2.2.3 Geometrical characteristics of porous metal foams

A close look at the structure of open-cell metal foams (akin to that shown in Fig. 1.1, in
Chapter 1) reveals that at the pore-level, it is highly anisotropic, and its full geometric
characterization is complex and requires numerous parameters. However, foam
manufacturing processes (for example, air bubbling and particle decomposition) give
random orientations to the cells within the foam. Thus, over a representative elementary

volume, metal foams can be assumed to be essentially isotropic.

Most manufacturers of porous metal foams only provide their clients with values of a
parameter called pores-per-inch (PPI) and the porosity. From this data, it is necessary to
estimate the pore diameter, ligament diameter, and specific area. Calmidi (1998)
modelled the foam as a periodic hexagonal structure with cylindrical ligaments, and used
a geometrical analysis to conclude that the pore and ligament diameters could be linked

by the following relationship:

QU
—
|
m
[a—

L =1.18,]—

4 2.51
d, 37 G(e)
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d
A typical value of (d,/d,) is 0.1 {note d—f:O.1205 at 820.95j. G(e) is a shape

p
function determined experimentally, and it quantifies the deformation of the fiber cross-
section as the porosity increases. Indeed, observations show that the fiber cross-section
goes from a circle to a triangle as the porosity of metal foams is increased.

_(-¢)
G(e)=1—e 004 2.52

This relationship was validated on foams with porosities ranging from 0.9 to 0.98.

Knowing any two of the aforementioned parameters (porosity, pore diameter, and fiber

diameter), the third one can be determined. The PPI value of a foam is supposedly linked
to the pore diameter by the relationship d,(inch) =%. But experimental data show

that this relationship does not apply, especially at high values of pore density. It is,
however, reasonable to assume that each PPI value corresponds to a single average pore
diameter, as is shown by the data displayed in Fig. 2.3. This data also shows that there is
no clear dependence of the pore diameter on porosity. For the data shown graphically in
Fig. 2.3, the assumption of a constant average pore diameter for a given value of the PPI
parameter, leads to an average quadratic (rms) error of only 4.82%, and all the errors are
below 10%. The values adopted for these metal foams (the ones for which the data in Fig.

2.3 applies) are listed in Table 2.1.
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Figure 2.3: Pore diameter as a function of porosity for 22 different metal foams: experimental data
from Bhattacharya et al. (2002).

Foam Type d , (mm) d, (mm), for £€=0.95
5 PPI 4.01 0.48
10 PPI 3.22 0.39
20 PPI 2.72 0.33
40 PPI 1.90 0.23

Table 2.1: Average values of pore diameter for porous metal foams with PPI values of 5, 10, 20, and
40, and corresponding values of ligament diameter for porosity of 0.95.

Using equation 2.51 and the values of d, from Table 2.1, the predicted values of @,

with 0.9 <& <0.98 show an average quadratic (rms) difference of 7.2% and a maximum
difference of 21.1% compared to available experimental data, the highest difference
occurring for the most porous foam. These results validate the analytical model leading to
equation 2.51 (it was adopted in this work). For the metal foams considered in this work,
the chosen values of pore diameter and the corresponding ligament diameter are

summarized in Table 2.1 for £=0.95.
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The corresponding expression for the specific (per unit volume) interfacial area for the

metal foams considered in this work is the following [Calmidi (1998)]:

3rd,
a, =" =—"-""—G() 2.53
V' (0.59xd,)

2.2.4 Comparison and adaptation of effective thermal conductivity models

The effective thermal conductivity of low porosity media, such as rock beds, saturated

with water can be reasonably well-approximated by the parallel-conduction model:

k. =(¢k, +(1—¢)k,). However, experimental measurements of the effective thermal

conductivity of highly-porous metal foams saturated with water show that the parallel-
conduction model leads to significant overestimations [Calmidi (1998); Bhattacharya et
al. (2002)]. The predictions yielded by the semi-empirical models of effective thermal
conductivity proposed by Calmidi and Mahajan (1999), Boomsma and Poulikakos
(2001), Bhattacharya et al. (2002), and Jagjiwanram and Singh (2004) are presented
graphically in Fig. 2.4, for aluminum foams saturated with liquid water. Corresponding
experimental data from Bhattacharya et al. (2002), for 11 water-saturated aluminum
foams with porosity in the range 0.906 to 0.978, are also presented in this figure. The
differences between the predictions provided by the aforementioned correlations and the
experimental measurements of Bhattacharya et al. (2002) are presented in Table 2.2. All
of these models are suitable for use in the volume-averaged one-temperature model of the
energy equation. The modifications needed for using or extending these models for use
with volume-averaged two-temperature models of the energy equation are presented later

in the section.
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25 1 1 1

—¥— parallel-conduction model

¥ series-conduction model

----- Calmidi and Mahajan (1999)

——— Bhattacharya et al. (2002)

—— Boomsma and Poulikakos (2001)

--------- Jagjiwanram and Singh (2004)

+ experimental data [Bhattacharya et al. (2002)]

Effective thermal conductiviy (W/m.K)

8.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
Porosity

Figure 2.4: Effective thermal conductivity of aluminum foams saturated with liquid water:
predictions obtained with several models, and experimental data of Bhattacharya et al. (2002).

Model Quadratic (rms) Maximum absolute
difference (%) difference (%)
Parallel-conduction 140.2 180.0
Series-conduction 86.6 91.1
Calmidi and Mahajan (1999) 53 11.0
Bhattacharya et al. (2002) 12.8 24.7
Boomsma and Poulikakos (2001) 31.0 51.2
Jagjiwanram and Singh (2004) 7.5 12.9

Table 2.2: Differences between the predictions yielded by several thermal conductivity models and
the experimental measurements of Bhattacharya et al. (2002).

As can be seen from the results presented in Fig. 2.4, the parallel-conduction model over-
predicts the effective thermal conductivity of metal foams saturated with water, and the
series-conduction model leads to underestimations of this property over the entire
porosity range considered, 0.906 to 0.978. In the derivations of the models of Calmidi
and Mahajan (1999) and Boomsma and Poulikakos (2001), the effective thermal
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conductivity is estimated by analytically modelling the foams as regular periodic
structures and adjusting a geometrical parameter, for example, fiber-to-bulb-radius ratio
in the work of Calmidi and Mahajan (1999), to fit the experimental data. In the
derivations of the models of Bhattacharya et al. (2001) and Jagjiwanram and Singh
(2004), it was assumed that the effective thermal conductivity can be expressed as a
suitable combination of the parallel and series contributions, and the related coefficients

were determined empirically. All of the aforementioned models respect the limit

keﬁ- ﬂ_)kw It should be noted that the model of Boomsma and Poulikakos (2001)

cannot be used for open (non-porous) media, since it does not respect the requirement

keﬁ” g1 kw :

An analysis of the results presented in Fig. 2.4 shows that for aluminums foams saturated
with water, the best predictions of effective thermal conductivity are obtained with the
model proposed by Calmidi and Mahajan (1999), with a quadratic (rms) error of 5.3%
and a maximum error of 11.0%. Therefore, their model was adopted for the work
reported in this thesis. This model is also the most consistent of the aforementioned
models when transposed to the two-temperature model (additional discussions presented

later in this section).

For predicting the effective thermal conductivity of water-saturated aluminum foams, the

model proposed by Calmidi and Mahajan (1999) can be cast in the following form:

(1)
’/‘ N
L

5)
(‘B kw+(1+bjk“'_kw k+§i(k ~k,) kw+ié k,—k,)

2.54

In this equation, % is the bulb-radius-to-fiber-length ratio. It can be expressed as a

function of porosity [Calmidi and Mahajan (1999)]:
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. _F+Jr2 +4(1—8)f[2"’(1+j§n

CEd)

The fiber-radius-to-bulb-radius ratio, »=¢/b , was determined experimentally by

2.55

Calmidi and Mahajan (1999) and validated for aluminum foams with porosity values
between 0.9 and 0.98, saturated with air or water. The best fit was obtained with the value

r=0.09. In this thesis, when the aluminum foam is filled with liquid water, k, =k, , and

the effective thermal conductivity is denoted as k. ; and when it is filled with ice,

off, >

k,=k and k, =k, .

In the two-temperature model of the volume-averaged energy equations (equations 2.44
and 2.45), five thermal conductivities are required: the effective thermal conductivities of

the solid (aluminum foam), liquid water, ice, and two coupling thermal conductivities.

The effective thermal conductivities of the solid (aluminum foam), liquid water, and ice

(k,,k,and k;) needed in the two-temperature model of the energy equations are

calculated using the following substitutions in equation 2.54, which was originally
derived for use in the single-temperature model of the energy equation [Calmidi and

Mahajan (1999)]: for obtaining &, from the expression for &, , set k, =k, and k,=0;

eff 2

for obtaining &, from the expression for £,

> Set k. =0 and k, =k, ; and for obtaining

k, from the expression for £,

> set k, =0 and k =k, . It should also be noted that this

approach cannot be used with the purely empirical correlations of Bhattacharya et al.
(2002) and Jagjiwanram and Singh (2004), because k,, would tend to infinity when the

porosity approaches 1. Their correlations were designed only for use with one-

temperature models, and they cannot be transposed to two-temperature models.

In most publications on the two-temperature model of convective heat transfer in porous

metal foams, the coupling thermal conductivities, &k, and k;, are ignored or assumed to

si o
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be negligible. Without the coupling thermal conductivities, the consistency conditions

expressed in equations 2.47 reduce to the following forms: k, =k, +k  and

k. =k; +k . These reduced conditions are met only by the parallel-conduction model,

and not by any of the other above-mentioned models. When the consistency conditions

are not met, the rates of heat transfer obtained with the single-temperature and two-
temperature models are not the same even in the limit where (7, )" —(7,)" — 0 (this limit

is approximated at small values of the Rayleigh number in natural convection problems,
for example, as will be shown in Chapter 4). Therefore, the coupling thermal
conductivities are not ignored in this work. In addition, a simple, but effective,

formulation is proposed to ensure that the aforementioned consistency is respected.

In this work, the following equations are used to represent the coupling thermal

conductivities:

ky -k, -k ky -k, -k,
fey =—L———~ > © and k=L 2 o 2.56

This proposed formulation for representing the coupling thermal conductivities ensures

that the conditions given in equation 2.47 are satisfied. The contributions of k,, k, and

58

k, to the effective thermal conductivity

for foams saturated with liquid water and
porosity values in the range 0.9 to 0.98 are shown graphically in Fig. 2.5. For the results

shown in this figure, the Calmidi an Mahajan (1999) model was used for calculations of

k,, k_, and k

0 Ko ., » and the first of equations 2.53 was used for calculating k; . These
results show that the coupled thermal conductivity contributes to the effective thermal
conductivity by only 1.8% (average value over the considered porosity range); but on the
average, it is 17.3% of the effective thermal conductivity of the liquid water. Thus, the
coupled thermal conductivity has a significant influence on the volume-averaged energy

equation for the liquid water in the two-temperature model.
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Figure 2.5: Contributions of the solid, liquid water, and coupled effective thermal conductivities to
the overall effective thermal conductivity of porous aluminum foam saturated with liquid water at
10°C: predictions obtained with the model of Calmidi and Mahajan (1999).

2.2.5 Interfacial heat transfer coefficients for pore-scale heat exchange in the

metal-foam-liquid-water and metal-foam-ice regions

In the metal-foam-liquid-water region, the interfacial heat transfer at the surface of the
foam ligaments can be due to local natural convection, forced convection, or mixed
convection. An adaptation of correlations for mixed convection from cylinders was used
to determine the corresponding interfacial heat transfer coefficient, 4, . In the metal-
foam-ice region, the heat transfer at the surface of the foam ligaments is due to pure
conduction at the pore level, and proper correlations for the corresponding interfacial heat
transfer coefficient /4, are not provided (or ignored) in the literature. In this section,

novel expressions for both the interfacial heat transfer coefficient in the metal-foam-

liquid-water region and the metal-foam-ice region are proposed and discussed.
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Interfacial convection heat transfer in the metal-foam-liquid-water region

The relative importance of forced, natural, and mixed convection to the interfacial heat

transfer in the metal-foam-liquid-water region was assessed using the following criterion

[Incropera and DeWitt (2002)]: if Grdf /(Re g, )* <<1, natural convection is negligible and
forced-convection dominates; if Gr, /(Re, )> >>1, the local heat transfer is natural-

convection; and if 0.1< Grdf /(Re 4 )* <10, mixed convection prevails. Here, Grd/i is the

local Grashof number based on the ligament diameter. In the problems of interest, the
temperature difference responsible for pore-scale natural convection in the metal-foam-

liquid-water region is (7,)" —(7.)", and it involves temperatures that span the density

inversion point for water. Thus, the following adapted definition of a modified Grashof

number [Elkouh (1996)] was used for Gr,

gppdafT) (L)

T pr 2.57
Re, is the local Reynolds number based on the ligament diameter:
Py |(u,)|d u|d,
Redf — S — '010 ” ” S 2.58
H, e

The interfacial Nusselt number is based on the fiber diameter and a suitable average

thermal conductivity: Nu = Reonvectiond . / k, . In this work, the criterion for assessing

convection
the importance of forced, natural, and mixed convection to the interfacial heat transfer in

the metal-foam-liquid-water region was recast as follows:
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Gr
. ds _
lf 2 < 01 H N uconvection - N uforced convection
(Re a )
Gr
. d,
lf 2 > 10 ’ Nuconvection - Nunatural convection 259
(Re q )
Gr
. d,
lf 0 1 < 2 = 10 2 Nuconvection - Numixed convection
(Re q )

A summary of many of the empirical correlations for forced convection around cylinders

can be found in Incropera and DeWitt (2002). They have the following general form:

mzh—ch&eg Pr" 2.60
k

s
D id the cylinder diameter C,n and m are determined using experimental data, and
depend on the range of Reynolds number. For water-saturated metal foams, Calmidi and
Mahajan (2000) developed a correlation similar to one proposed by Zukauskas (1971):
they assumed m =0.5 and »=0.37 and correlated experimental data obtained with

seven different metal foams to equation 2.60. Their final result is the following:
N Z’tforced convection = 05 2 Reg/s Pr10 037 261

This result is not purely experimental, since the local (pore-level) heat transfer coefficient
cannot be directly measured. Thus, Calmidi and Mahajan (2000) used a two-temperature
model to predict the total heat transfer from a metal foam subjected to forced convection,
and determined the values of the interfacial heat transfer coefficient which gave the best
agreement with their experimental data. Their results and correlations must therefore be
adopted with some caution, since they are influenced by the uncertainties in various other
parameters of the two-temperature model, such as effective thermal conductivities and

thermal dispersion conductivity, for example.
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For the pore-scale natural convection, an equation proposed by Zhao et al. (2005) was
adopted (it was inspired by a correlation proposed by Churchill and Chu (1975) for

natural convection around cylinders):

1/4
Ra,
=0.36+0.518 I 2.62
1+(0.559/Pr, )

Nu

natural convection

In this equation, Rad/ is the fiber-diameter-based local Rayleigh number,

Ra, =Gr, [Pr, .

When pore-scale mixed-convection prevails in the metal-foam-liquid-water region, the
following relation based on a combination of heat transfer coefficients for transverse

forced and natural convection around cylinders [Incropera and DeWitt (2002)] was used:

+ Nu?

natural convection

Nu )% 2.63

4
mixed convection ~ (N uforced convection

Interfacial conduction heat transfer in the metal-foam-ice region

In the metal-foam-ice region, there is no fluid flow, and the interfacial heat transfer is due
to pure conduction. The corresponding interfacial conduction heat transfer coefficient in
this region has not been studied with care in the published literature, to the best
knowledge of the author. It is convenient to estimate the conduction-limit Nusselt number
in this region by simply setting the Reynolds and Rayleigh numbers to zero, as has been
done in several recent publications, but this approach in inaccurate and inapplicable.
Furthermore, the forced-convection Nusselt number goes to zero when the value of zero
is substituted for the Reynolds number in the corresponding correlations (see expression
in the previous section, for example). Thus, a novel approach is needed for prescribing a

suitable interfacial conduction heat transfer coefficient.

A full three-dimensional model of conduction heat transfer in a representative module of
the porous-metal-foam-ice region, akin to that used by Boomsma and Poulikakos (2001),

could be used to obtain insights and data for prescribing a correlation for the conduction
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heat transfer coefficient. However, as was discussed in the previous section, Nusselt
number correlations for steady, two-dimensional, forced and natural convection from
cylinders have been adapted with considerable success to estimate the interfacial
convection heat transfer coefficient. Drawing inspiration from that success, in this work,
relatively simple models of steady-state, two-dimensional, heat conduction in a constant-
property substance occupying the interstices of regular arrays of in-line and staggered

rods were solved numerically, and the results were used to formulate a correlation for an

interfacial conduction Nusselt number ( Nu ) as a function of porosity in the

conduction

porous-metal-foam-ice region.

Experimental observations of the fibers (or ligaments) of porous metal foams show that
their cross-section is not perfectly circular, but has a shape somewhere between a triangle
and a circle, especially at high values of porosity [Calmidi (1998)]. Therefore, rods of
circular, square, and triangular cross-sections were considered in this study. The in-line
and staggered arrays of such rods that were used in the above-mentioned models of
steady-state, two-dimensional, heat conduction are illustrated in Figures 2.6 to 2.9. For
each of these arrays, the distance between the centers of the rods is denoted by L. Other

geometrical features of the arrays and related notation are indicated in the figures.

Symmetry line ——a ' ‘ ‘
i . . . I Imposed temperature
Rod & Fiber (Ilanktor d 30°

' . .,J- Unit Cell
. . .

Figure 2.6: Regular array of staggered rods of circular cross-section used in computations of an
interfacial conduction Nusselt number: Case 1.



Rod Imposed temperature

Symmetry line
Unit Cell

=S
a
® O &

O Fiber Diameter df

Figure 2.7: Regular array of in-line rods of circular cross-section used in computations of an
interfacial conduction Nusselt number: Case 2.

Rod

A d
45°
E EE .
43

Symmetry line

Figure 2.8: Regular array of in-line rods of square cross-section used in computations of an
interfacial conduction Nusselt number: Case 3.

Triangle Rod ' '
i 2' ' . Imposed temperature
30°

v v B Unit Cell

4

Figure 2.9: Regular array of in-line rods of triangle cross-section used in computations of an
interfacial conduction Nusselt number: Case 4.

52
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Each of the rod arrays illustrated in Figures 2.6 to 2.9 has numerous symmetry surfaces
(shown by dotted lines in these figures) that allow delineation of representative periodic
modules or unit cells. Examples of these unit cells for the four cases considered (Cases 1
— 4) are shown shaded in Figures 2.6 to 2.9. Detailed illustrations of individual unit cells
for each of these four cases are provided in Fig. 2.10. The thermal boundary conditions

for each cell are the following (also illustrated for Case 1 in Fig. 2.10): T =T, at the
right (vertical) boundary; 7' =T,, at the left boundary (rod surface); and the no-normal-

flux condition is imposed on the symmetry surfaces. The rods were considered to have a

uniform temperature ( 7, ), since the thermal conductivity of aluminum (solid material of

the foam) is much greater than that of ice and also liquid water: (k,/k, )= > and
(k,/ kl0 )= >
5 <L /2—»
4)/ L/2 /':— Symmetry lines P
/1 No Flux L
Yep| =~~~ j/‘/,_ .
// 2 } - 4
Imposed temperature T, 7 — Imposed
_/ temperature T,
0 T 3 T
g/ 20! 30° X g/ 20 — 45
Case 1: Staggered circular rods Case 2: In-line circular rods
/
Z
- L./ 2—»
<« L/2—» /
vd //
(B / 2w 7 4
s /!
F g ‘
l B./'2
~T a5 e
Case 3: In-line square rods Case 4: Staggered triangular rods

Figure 2.10: Unit cells in the four configurations, Cases 1 — 4.
Steady-state heat conduction in a constant-property substance (ice in this case) occupying
the space between the rod surface and the other boundary surfaces of each unit cell

shown in Fig. 2.10 is governed by the following equation: V.(k, VT)=0. This equation,



54

subjected to the thermal boundary conditions discussed in the previous paragraph, were
solved using an in-house computer code based on a control-volume finite element method
(CVFEM) described fully in Baliga and Atabaki (2006). In each case of interest, the
CVFEM code was used to compute the temperature distribution and also the rate of heat
transfer per unit depth (¢’) from the rod surface to the ice in the unit cell. Then, the
average interfacial conduction heat transfer coefficient and the corresponding average

interfacial Nusselt number at the surface of the rod were calculated using the following
equations: & =gq'/ [/ x(T, -T,)] and Nu, =hl_/ k, , where [ is the rod surface per unit
depth in the unit cell, and / is a suitable characteristic length. This characteristic length

1s defined as follows:

[, = (Area of longitudinal surface of fiber per unit length)/ 7z 2.64

A summary of the geometrical properties of the unit cell for all four cases illustrated in

Fig. 2.10 is provided in Table 2.3.

Case 1: Case 2: Case 3 : Case 4 :
staggered in-line circular in-line square Staggered
circular rods rods rods triangular rods
Unit cell base angle 30° 45° 45° 60°
rd’ d? 2 2
Porosity e=1- f2 g:l—” S 8=1—B—2 8=1—B—2
231 417 L 3L
Characteristic length
4B 3B
in the Nusselt number [.=d, [,=d, [ =— [, =—
. /4 T
definition
Unit cell rod surface _md, /< 7d, /- B /o B
area per unit depth 12 -8 2 2
Unit cell right L L L L
= = — = — = — 3
boundary height Yiop 2 \/g Yiop 9 Yiop ) Yiop > J_

Table 2.3: Geometrical properties of the unit cells for the four cases considered in the study for
determining the interfacial conduction Nusselt number.

In Cases 1 — 4 for which the unit cells are depicted in Fig. 2.10, the heat flux cannot be

determined analytically, so numerical solutions were obtained using a CVFEM [Baliga
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and Atabaki (2006)]. However, in Case 1, the unit cells can be combined to yield a
domain that is quite similar to the annular region in between two concentric cylinders
(see Fig. 2.11) with specified temperatures of the inside and outside surfaces, and in

which the heat conduction is one-dimensional radial.

iber diameter

O Fi ;
- ‘ @

Figure 2.11: Domain created by combining 12 unit cells for Case 1 and the annular region in between
two concentric cylinders.

The thermal resistance per unit depth for steady-state one-dimensional radial heat
conduction through the annular region in between two concentric cylinders (with constant

thermal conductivity, k, , and the domain shown in Fig. 2.11) can be obtained

analytically [Incropera and DeWitt (2002)]:

L
Rth, hollow cylinder = ln (dj/zﬂklo 265
f

Using this equation, the corresponding conduction heat transfer coefficient and Nusselt

number are given by:
= 1/(R‘th, hollow cylinderﬂ-df) = (2ki0 /d/)/h'l (L / d/) and Nuhollow cylinder = 2/1n(L / d/) 266

For the annular region between two concentric cylinders, the porosity can be defined as
the ratio of the fluid surface to total surface: € =1—(d; /L*). In terms on this porosity,

the Nusselt number given in the previous equation can be expressed as follows:
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Nty ion eytinger = ﬁ 2.67
As was stated earlier, predictions of steady-state two-dimensional heat conduction in the
unit cells for Cases 1 — 4 illustrated in Fig. 2.10 were obtained using a CVFEM [Baliga
and Atabaki (2006)]. In each case, grids of 81 x 81 nodes were used, as grid-
independence checks showed that the corresponding results differed by less than + 1%
from the essentially grid-independent values obtained using a modified Richardson
extrapolation technique [Baliga and Atabaki (2006)]. These predictions were used to
compute values of the conduction Nusselt number for porosity values in the range 0.9 —

0.98. The variation in porosity for each of the cases was achieved by keeping the distance

L between the centers of adjacent rods constant and adjusting the fiber diameter, d , , or

the base length, B. As was expected, the conduction Nusselt number did not depend on

the thermal conductivity (k, ), the imposed temperatures (7, and T;.), or L. Examples of

the resulting temperature fields for € =0.9 for Cases 1 — 4 are shown in Fig. 2.12.

Case 1 Case 2 Case 3 Case 4 T
5
0.8 0.8 0.8 0.8 08 &
g
£
06 06 06 06 2
06 5
< =
=04 0.4 0.4 04 %
04 8
0.2 0.2 0.2 0.2 IS5
02 £
0 0 0 0 £
0 05 0 05 0 05 0 05 5

x/L x/L x/L x/L 0

Figure 2.12: Pictorial representation of the dimensionless temperature field, T* = (T—T.)/(Ty—T¢)

in the unit cells for Cases 1 —4 and &£ = 0.90.

The difference between the highest and lowest predicted values of the conduction Nusselt
number ranged from 28% at €¢=0.9 to 18% at £€=0.98. Case 4 (the one with rods of
triangular cross-section) always yielded the highest value of the conduction Nusselt

number, while Case 1 (the one with staggered rods of circular cross-section) always
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yielded the lowest value of this Nusselt number. At was pointed out earlier, the inputs to
the computer simulations were taken from experimental data for rods of essential circular
cross-section. Therefore, more trust was put in predictions obtained for Cases 1 and 2,
and the following correlation was obtained using the corresponding results:

—4.1

Nu o m— 2.68
Z/lconductlon ln (1 _ 8)

The values of the conduction Nusselt number calculated using the CVFEM predictions,
the analytical solution for the annular region in between concentric cylinders, and the
correlation given in equation 2.68 are presented graphically in Fig. 2.13. These results
show that the proposed correlation yields results that are in very good agreement with
those yielded by the CVFEM predictions for Cases 1 and 2, and reasonably good

agreement with the predictions for Case 3.

2.4 1 1 1 L] I I
+ Case 1

C 22A O Case 2
2 Aan * Case 3
£ of SN A Case 4
S AN | ,
S ¥y A n Hollow cylinder
5 180X 24, , |—Proposed correlation|
Q S Ap roposed correlation
5
> 16
3
c 14
-
=)
012

2).9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98
Porosity

Figure 2.13: Conduction Nusselt number calculated using the CVFEM predictions, the analytical solution for
the annular region in between concentric cylinders, and the proposed correlation.
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It is acknowledged here that using Cases 1 — 4 to approximate the conduction heat
transfer in the metal-foam-ice region, and also situations in which the fluid flow in the
metal-foam-liquid-water region is very low, is somewhat ad hoc. Therefore, the
predictions yielded by the proposed correlation in equation 2.68 must be treated as only

somewhat rough estimates of the actual values of N, in conduction-dominated

situations. In addition, it would be useful to conduct studies to assess the sensitivity (to
the values of the conduction Nusselt number) of the simulations of conduction and
natural convection in ice-liquid-water-porous-metal-foam systems. Such sensitivity
checks were undertaken in this work, by first using equation 2.68 for calculating the
values of the conduction Nusselt number and then doing the same calculations with these

values multiplied first by 0.5 and then by 2. The results are presented in Chapter 4.

Transition between the conduction and convection regimes in the interfacial heat

transfer

In the metal-foam-ice region, the conduction Nusselt number was calculated using the

correlation given in equation 2.68:

Nusf- = hidf 1
ok ln(l - 8)

Ty

2.69

In the metal-foam-liquid-water region, it must be ensured that the interfacial values of

Nu_, is not be less than the corresponding value of Nu and this requirement was

conduction °

sfi

ensured by using the following equation:

Nusfl - . = max [m ’ Nuconvection] 2.70
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2.3 Dimensionless parameters

For natural convection in open rectangular enclosures (no foam) akin to that shown in
Fig. 1.2, with only liquid water (no ice; 7. = 0°C) and temperatures spanning the density

inversion point, the following five independent dimensionless parameters apply:

Hall, -T."c . T —T c H
a:gpmplﬂ x |H C| Ply , Tm=m—c, PI‘ZM, AR=—"2 and O 2.71
.k, Ty, —T. k, H,

The modified Rayleigh number, Ra, is an adaptation of the classical Rayleigh number
[Elkouh (1996)], and accounts for the particular nonlinear variation of the density of
water with temperature. The parameter € (in radians) quantifies the inclination of the
enclosure from the vertical. 7 is the density inversion parameter, which quantifies the
relative position of the density inversion temperature with respect to the wall

temperatures. If 7, > 1, then 7, > T,, and the water behaves as a fluid with a negative
value of the classical thermal volumetric expansion coefficient, = N, /v if

T <0, then 7, <T. and the water behaves as a fluid with a positive value of . The
value of the density inversion parameter has a strong influence on the fluid flow pattern
inside the cavity and the heat transfer rates, as will be shown by the results presented in
Chapter 4. For ice-water systems in open (no foam) rectangular enclosures, 7, is
replaced by 0°C in the definitions of the Rayleigh number, Ra , and the density

inversion parameter, 7.

When porous metal foam is included in the rectangular enclosure, and ice-liquid-water-
metal-foam systems are considered, four additional independent dimensionless
parameters are involved: the porosity of the metal foam; the water-to-foam thermal

conductivity ratio, which is &, /k_ in the ice-metal-foam region and &, /4, in the liquid-

water-metal-foam region, and the Darcy number. The Darcy number is the normalized

permeability [Nield and Bejan (2006)]:
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Da=—— 2.72

All the other commonly used dimensionless parameters involved in ice-liquid-water-
metal-foam systems can be expressed as functions of the above-mentioned independent

dimensionless parameters: the dimensionless pore diameter, D, =d, /H,  can be

calculated from the porosity and Darcy number, thanks to equations 2.36, 2.51, 2.52, and
2.72; the dimensionless fiber diameter can be calculated using the porosity, the
dimensionless pore diameter and equations 2.51 and 2.52; and the Forchheimer

coefficient can be calculated using equation 2.37. The specific area, a,, and the

sf 2

interfacial Nusselt number, Nug , needed in the two-temperature models, can be

calculated using equations 2.53 and 2.70, respectively.

The predicted values of the average rates of heat transfer on the left or right wall will be

presented (in Chapter 4) in dimensionless forms as wall-average Nusselt number:
leall = ]lealle /klo 273

In this equation, Aan is the average heat transfer coefficient on the left or right wall,

defined as follows:

}_lwall = % 274
H, (T, -T.)

In open domains (no foam), the total rate of heat transfer per unit depth, ¢, into the

enclosure at the heated wall and out of the enclosure at the cooled wall, is calculated as

follows:

oT

, H,
4 \vaii (no foam) — k, .[ (S )ar v 2.75
0Jo " ox
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In this equation, k, is the suitably averaged thermal conductivity along the wall, equal to

melt

k), if the wall temperature is greater than 7, , and equal to k, if the wall temperature is

less than T

melt *

When the metal foam is included in the domain, the wall Nusselt number can be written,
for both the cold and hot walls, as the sum of a fluid (ice or liquid water) Nusselt number

and foam Nusselt number:

Nutwar = Ntgoy 10 + Nt ien = Ngoam right T Nutgiq right 2.76

N = AAR) [ e, +k LAY
foam left klo ( TH _ TC) 0 s§ sw ax ‘x:()

N”ﬂ‘dlﬁ:MIHy (k. +k )ﬁi y
uid le klo (TH —TC) 0 ww sW ax ‘x:O

Nt = AR k)P Ly
foam right klo ( T[-] _ TC) 0 5 v Ox |x=H,

(1/ 4AR) ¢, o1,
Nu. =00 k., +k,,
uﬂuld right klo (TH _ TC ) .[0 ( ww sw) ax ‘X=HX y

2.77

The equality of equation 2.76 always holds under steady-state conditions, but the

repartition of the rates of heat transfer between the metal foam and the fluid (ice or liquid

water) can be different on the two walls: thus, for example Nu,, .. can be significantly

different from N, right
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Chapter 3: Numerical Method

This chapter is organized as follows: first, a synopsis of a finite volume method (FVM)
described by Baliga and Atabaki (2006) for the solution of steady, two-dimensional
(Cartesian), Newtonian fluid flow and heat transfer problems in open domains (without
porous media) is provided; then, modifications needed to adapt this FVM for solving the
mathematical models of the water-ice-metal-foam systems of interest (described in
Chapter 2) are summarized. A control-volume finite element method (CVFEM) was used
for the determination of a correlation for the interfacial conduction Nusselt number, using
a formulation and procedures described in Section 2.2.5. For full details and discussions
of this CVFEM, the interested reader is referred to the work of Baliga and Atabaki
(2006). The CVFEM described in their work was used here without any modifications.

3.1 Synopsis of a Finite Volume Method for steady, two-dimensional, fluid

flow and heat transfer in open domains

A detailed description of this finite volume method (FVM) is available in Baliga and
Atabaki (2006). Thus, only a synopsis is provided here.

3.1.1 Governing equations

As was mentioned above, this FVM is designed for solving steady, two-dimensional
(Cartesian), Newtonian fluid flow and heat transfer problems in open domains. In the
Cartesian coordinate system, and the equations that govern these problems can be cast in

the following forms:

Continuity equation:

92 (pw)=0 3.1

0
—(p,u) + o

ox
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x-momentum equation :

0 0 oP 0 ou) 0 ou
— +— =——+— | y— |+—| 1,— |+ 3.2
ox (piu) oy (pu) ox Ox (,u, ﬁxj oy [,u, @J !
y-momentum equation :
g(p,uv)+£(p,vv):—a—P+£[u,@j+g u,@ +S, 3.3
ox oy gy ox\' ox) oyl oy
Energy equation:
ﬁ(pluTw)jLﬁ(plva):ﬁ k OT, | O Kk OT, +S, 3.4
ox oy ox\c, ox | oylc, Oy

In equations 3.1-3.4, S,, S,, and S, =S, /¢, are volumetric source terms, which can

be used to model actual physical sources of x-momentum, y-momentum, and thermal
energy, respectively, and also include all terms that are not explicitly shown in these
equations [Patankar (1980); Baliga and Atabaki (2006)]. Following Patankar (1980), it is
noted that equations 3.1-3.4 are all specialized versions of a general form of these

governing equations. This general equation is given below:

O (s Loy (1 08), 2 (1 28
a(plu¢)+5(plv¢)_8x(r¢8xj+5‘y(r¢6yj+s¢ 3.5

In this equation, ¢ denotes a general specific (per unit mass) scalar dependent variable,
F¢ a diffusion coefficient associated with ¢, and S¢ the corresponding volumetric (per

unit volume) source term. If needed, all of the source terms are linearized and cast in the

following form [Patankar (1980)]:

S, =St+Sip 3.6
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3.1.2 Domain discretization

The domains of interest are first discretized into contiguous rectangular control volumes
that fill the domain exactly. Then, the nodes or grid points are located at the geometric
centers of the control volumes, the centers of the control volume faces that coincide with
the boundaries of the domain, and the corners of rectangular domain. The grid points or
nodes lie on lines that are parallel to the grid axes, and these grid lines could be non-
uniformly spaced. This domain discretization scheme is illustrated in Fig. 3.1. All

dependent variables are located (stored) at the same set of nodes (co-located

S

formulation). The same set of nodes also serve as storag locations for p;, 1y, k,, Cos S,

S, S, F¢,and S¢.

0 i )l e i o

r++-+-F—-+—F+—d4—4—4—F++4
B R G S R AR SR
Frrr|4—+r—r—rc—1T—"1—"1—"*1T—rT+t71T1
1] | I I I Lo
T 1 — T
| | | | | | | I
rtr1-r—r—r—T-Vva2a [ v
L] | I 7 ] P
—o——e———o— u } —t—ip—t

N | I | 1 7
LL L L L L1 bvzapyza_ | 4
NN | I I I Pl
Tttt 1T
T SV N B S FOROS N Y I O
1] | I I I B
T T 1T T
b b e e bl o

|

B
|
4
Ll
4
Ll
il
El_i

L

L™
t
H

Figure 3.1: Discretization of a rectangular calculation domain: dashed lines indicate control volume
faces; solid dots indicate nodes or grid points; and solid lines denote grid lines.

The notations that are used to denote grid details for interior and boundary nodes are

provided in Figures 3.2 (a) and (b), respectively.
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Figure 3.2: Notations associated with (a) interior nodes and (b) boundary nodes.

3.1.3 Discretized equations

The governing differential equations are first integrated over the control volumes shown
in Figures 3.1 and 3.2, and algebraic approximations to the integral conservation
equations are then derived. These algebraic approximations are called the discretized
equations. In the derivation of these discretized equations, the advection and diffusion (or
viscous and conduction) terms are discretized using the hybrid scheme [Patankar (1980);
Baliga and Atabaki (2006)], which is second-order accurate at low velocities (strictly, at
grid Peclet number values less than 2) and uniform grids. Quadratic interpolation is used
at the boundaries, appropriately adjusted to incorporate the specified boundary conditions
and designed to ensure second-order accuracy [Baliga and Atabaki (2006)]. The reduced
pressure is interpolated using piecewise-linear functions between the nodes. In the mass
flow rate terms, the velocity components are interpolated using the so-called momentum
interpolation scheme [Rhie and Chow (1983); Baliga and Atabaki (2006)], to avoid
undesirable checkerboard pressure and velocity distributions that would otherwise afflict
this equal-order co-located FVM [Patankar (1980)]. The values of thermophysical
properties stored at the nodes are interpolated to locations where the grid lines intersect
the control-volume faces using a resistance analogy (which reduces to the harmonic mean

on uniform grids), as described in Patankar (1980) and Baliga and Atabaki (2006). The
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resulting discretized equations for u, v, P, T, and ¢ can be cast in the following forms
[Baliga and Atabaki (2006)].

Discretized u equations:

asu. = z a,u, +b.— (6P/6x)VolC 3.7
nb=E,N WS
Discretized v equations:
ave= Y. ayv,+b.—(6P/oy)Vol. 3.8
nb=E,NW.S
Discretized P equations:
alb.= Y. anP,+bl 3.9
nb=E,NW .S
Discretized T equations:
ail.= > ayT,+b. 3.10
nb=E,NW,S
Discretized ¢ equations:
ag¢c = Z afb nb+bg 3.11
nb=E,NW .S

In equations 3.7 and 3.8, (8P /Gx) and (GP/ ay) are the reduced pressure gradients in

the x and y directions, respectively, averaged over the control volume, Vol ., associated

with the node C.
3.1.4 Solution of the discretized equations
The sets of discretized equations, represented by equations 3.7 to 3.11, were solved using

a sequential iterative variable adjustment (SIVA) procedure. In each overall (or outer)

iteration of this procedure, linearized (if required) and decoupled sets of the discretized
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equations for u, v, P, and other dependent variables, as needed, are solved sequentially;
and in this sequence, each linearized and decoupled set of discretized equations for each
dependent variable is solved using an iterative line-Gauss-Seidel scheme (inner
iterations), which involves a line-by-line application of the tri-diagonal-matrix-algorithm
(TDMA). The overall iterations of the SIVA procedure are repeated until a suitable
convergence criterion is met. Full details of the SIVA procedure are available in Baliga

and Atabaki (2006), so they are not repeated here.

To ensure convergence of the SIVA procedure, it is essential to under-relax the
discretized equations. The implicit under-relaxation procedure of Patankar (1980) was
used in this work. Thus, for example, the set of discretized equations for the general

variable, ¢, is first under-relaxed and rewritten as follows, and then solved:

4 l-a .
(a_c] G = Z afb T {b¢ + [—¢] a?%} 3.12
a, nb=E.NW.S a,

In this equation, ay is the under-relaxation parameter associated with the dependent

variable ¢, and ¢, is the latest available value (or guess value at the start of the overall
iterations) of ¢ at the node under consideration. The following values of the under-
relaxation parameters are recommended by Baliga and Atabaki (2006) and were found to

work well in this work: @, = «, = 0.5; a, = 1.0. The temperature under-relaxation

parameter was set to a, =0.9.

The iterations of the SIVA procedure were assumed to have converged when the
maximum values of suitably normalized absolute residues of the sets of discretized

equations of all dependent variables had all fallen below 10 °.
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3.2 Finite Volume Method for simulation of steady, two-dimensional, fluid

flow and heat transfer in Water-Ice-Metal-Foam systems

The modifications that were necessary to adapt the FVM (described in Section 3.2) for
solving the mathematical models of fluid flow and heat transfer in the water-ice-metal-

foam systems of interest are summarized in this section.

3.2.1 Recasting of the governing equations

First, equations 2.29 and 2.40 were recast in the following forms:

V.(p,u)=0 3.13

V~|:(p10u)u:| =—¢'V <P>W + E4,, (Vzu) _{82 % 4 plo ||u||j|
+& {,Om (l—aKTw)W—Tm qj_pl(l}g

The energy equations for the intrinsic-phase-average temperatures of the solid (metal

foam) and water (ice or liquid), equations 2.44 and 2.45, were also recast as follows:

In the liquid-water-metal-foam region:

V(p,u<TW>W)— [k ”Z”Hk v(T,) J—ajh/ ((Tw>w—<Ts>s)
plo Pl 3.15
o-v[teey |2y o

P 3.16
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Under steady-state conditions, the values of the ice and foam specific heat at constant

pressure, ¢, and ¢, , do not influence the solution of the governing equations, but they
iy DS

were included for consistency and also potential extensions to unsteady simulations.
3.2.2 Modifications implemented for computing fluid flow and pressure

In the liquid-water-metal-foam region, the steady-state FVM described in Section 3.1 was

adapted for solving the set of equations that govern the superficial (or Darcy) velocity, u,

and the intrinsic-phase-average reduced pressure, <P>w (equations 3.13 and 3.14) using the
following minor modifications: 1) the term Vol. in equations 3.7 and 3.8 is replaced by

£’Vol,.; and 2) the dynamic viscosity, 4, » 1s replaced by &y, . In addition, the source

terms in the x and y momentum equations were set equal to the following values:

q
j_plo gx
q
]—p,o g, 3.17

gz'ulo + ngpf ”u”:l

S’Z:S’v’:{ K JK

Here, g, and g, are components of the gravitational acceleration vector in the positive x
and y directions, respectively.
At the nodes associated with control volumes in the ice-metal-foam region, the velocity

was set to zero. This was done by modifying the coefficients in the discretized

momentum equations as follows:
ay’ =1 5 a;=0 ; b""=0 3.18

The treatment of the coefficients in the discretized pressure equation was similar, but
done in the context of additional modifications. The reduced pressure values at nodes

inside the ice-metal-foam region were totally decoupled from the rest of the fluid domain,
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by imposing zero values of the interpolated pseudo-velocities u and ~, and also zero

values of d, and d , using the definitions and procedures proposed by Baliga and

Atabaki (2006). After that, the reduced pressure in the ice-porous-metal region was fixed
to the convenient value of zero, using the following modifications of the coefficients in

the corresponding discretized equation:
ap=1 ; ab=0 ; b"=0 3.19

At any solid boundary, the mass flow rates that are used to approximate advection at the

control-volume faces were also set equal to zero. Furthermore, the volume-averaged

gradients of the reduced pressure, (GP/ ax) and (GP/ 8y) , were calculated in a modified
manner for control volumes in the liquid-water-porous-foam region, but immediately

adjacent to (one or more faces on) the ice-porous-foam region: the terms (GP/ 8x) and

(aP / 8y) were computed using only the values of reduced pressure at nodes in the liquid-

water-porous-foam region, since the zero values of the reduced pressure imposed at the
nodes inside the ice-porous-foam region have no physical relevance in the context of this

FVM.

3.2.3 Modifications implemented for computing intrinsic-phase-average

temperatures

Modifications of the FVM (described in Section 3.1) to enable solutions of equations

3.15 and 3.16 that govern the intrinsic-phase-average temperatures of the solid (metal
foam) and water (ice or liquid water), <Ts>Y and <T W>w, respectively, in the liquid-water-
porous-metal-foam and ice-porous-metal-foam regions are summarized in this

subsection. First, the relevant diffusion coefficients and source terms were set as follows:

In the liquid-water-metal-foam region:
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Cplo cplo cPlo 3 ) 2 0
_ kss + ksl hlasf w hlas}‘
F(T) B €, ’ (Sc)<r> _{ Cp ]<Tw> > (SP)<T> B ( -
In the ice-metal-foam region:
k., + k . h,-as s hias
e O [c_f}m b (S )y = _[c_f]
Py Piy Piy
3.21
— kss + ksi . — hian w . _ hian'
Loy = o (Se)y = (a}(ﬂ) s (Sp)y = _{?J

An additional binary integer variable called the solid-liquid indicator ISL was used in the
computations to indicate and determine whether a node was located in the ice-metal-foam
region or the liquid-water-metal-foam region. Its value was set equal to one (1) at nodes
(grid points) in the liquid-water-metal-foam region, and to zero (0) at the grid points in
the ice-metal-foam region. In addition, to avoid uncontrollable oscillations of the water-
ice interface and potential divergence of the FVM solution, prescription of a melting

temperature tolerance, AT

melt >

was found to be necessary. If the conditions at a node

corresponded to the ice-metal-foam region in a particular overall iteration of the FVM,

then in the next iteration, these conditions were change to those corresponding to the
liquid-water-metal-foam region only if the computed value of <Tw>w was greater than

T

melt

+AT

melt *

Similarly, in successive overall iterations of the FVM, the conditions of
liquid-water-metal-foam at a node were changed to those of ice-metal-foam only if the

AT

melt *

computed temperature of value of (7,)" was smaller than 7, In the final

melt

simulations, each case of interest was started with a relatively large value of AT, (of

the order of 1 or 2 °C, or as need to get convergence), and then the value of AT, , was

melt

gradually reduced until its influence on the final results for this case became negligible.
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3.3 Continuation method

A so-called continuation method was used to facilitate convergence of the FVM in the

final simulations. In a series of runs, after a converged solution (values of the dependent

variables u, <P>W, <T >s , and <TW>W, and also ISL), was obtained for a case of interest

s

(with a given set of input parameters H , H , 0, T,, T;., &, d, and AT,

Lon ), this
solution was used as the initial guess for the next case of interest. This method saved a
considerable amount of computational time in the final simulations. It also provided
another very important advantage: converged solutions could be obtained for difficult
cases (for example, cases in which the density inversion parameter was close to 0.5, or
the value of Rayleigh number was quite high), by starting with a fully converged solution
to a less difficult case, and then slowly changing the set of inputs towards those of the
difficult case, using the continuation method to obtain fully-converged intermediate and

final solutions. Examples of results yielded by continuation method are presented in

Chapter 4.
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Chapter 4: Results and Discussions

Applications of the mathematical models and the finite volume method (FVM) proposed
in Chapters 2 and 3 to test and demonstration problems, and the results obtained, are
presented and discussed in this chapter. As was mentioned and discussed in Chapters 1
and 2, attention was limited in this work to steady-state, two-dimensional planar,
conduction and laminar natural convection heat transfer in ice-liquid-water systems

contained in rectangular enclosures, with and without porous metal (aluminum) foams.

In this chapter, first, results for laminar natural convection in liquid water in open square
enclosures (no ice; no porous metal foam), with temperatures spanning the density
inversion point, are presented and compared to the experimental and numerical results of
Elkouh (1996). This problem was first solved using a variable-property model (VPM)
and then a constant-property model (CPM), with the constant fluid properties evaluated at
several different reference (or average) temperatures, and the reference (or average)
temperature that yields the lowest differences between the results computed with the

VPM and CPM was determined. These results are also presented and discussed.

Next, results for conduction and laminar natural convection in ice-liquid-water systems in
open square enclosures (no porous metal foam) are presented and compared to some
experimental and numerical results presented by Elkouh (1996). Particular attention is
given to the influence of the Rayleigh number on the streamlines and ice-liquid-water

interface position.

Following that, results obtained for conduction and laminar natural convection in liquid-
water-porous-metal-foam systems contained in square enclosures are presented and
discussed. The effects of adding five different porous metal foams to the liquid water
problems considered by Elkouh (1996) are discussed first, and then simulations and
results that were used to assess the influence of Rayleigh number, thermal dispersion, and

Forchheimer drag on the streamlines and values of average Nusselt number are presented.

Finally, simulations of a demonstration problem involving conduction and laminar

natural convection heat transfer in ice-liquid-water-metal-foam systems contained in
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rectangular enclosures are presented, for enclosure dimensions and wall temperatures that
are relevant to cold-storage situations. Results obtained with and without the foam are

compared and the effect of aspect ratio is quantified.

4.1 Natural convection in liquid water contained in open square enclosures

(no foam), with temperatures spanning the density inversion point

This problem was used to validate the proposed mathematical models and FVM. The
calculation domain is the rectangular enclosure illustrated schematically in Fig. 1.2, but
with no ice and no foam (in this test problem). First, the results obtained for 12 different
cases simulated using the variable-property model (VPM) described in Chapter 2 are
presented and compared to the experimental and numerical results of Elkouh (1996).
These cases were also simulated using the constant-property model (CPM) discussed in
Chapter 2, with the constant fluid properties evaluated at several reference (or average)
temperatures. Then, the reference (or average) temperature that yields the lowest
differences between the results computed with the VPM and CPM was determined. These

results are also presented and discussed in this section.

In the experiments of Elkouh (1996) for this problem, the dimensions of the square

enclosure were kept constant at /, =H = H =6.012cm, its left-wall temperature was

maintained as close as possible to 0°C, and its right-wall temperature was maintained at
different values between the density inversion temperature of water and 20°C . The
inclination angle, €, was 0° in the first six runs, and 45° in the next six runs. The
conditions for the 12 cases (Runs # 1 — 12) of this problem investigated experimentally
by Elkouh (1996) are summarized in Table 4.1. Also provided in this table are values of
the Rayleigh and Prandtl numbers calculated using the definitions given in Chapter 2, and
with water properties based on a zonal temperature that is defined later in this section.
Elkouh (1996) used a dye-injection technique to obtain photographs of the streamline
patterns for the aforementioned 12 runs, but he did not present any quantitative data
related to the natural convection heat transfer. Thus, only qualitative comparisons were
possible between his experimental results and the numerical predictions obtained in this

work.
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Run Cavity o o Density inversion | Rayleigh | Prandtl

number | angle 6 I CO 1 T4 O parameter 7, number number
1 0° 0.00 4.01 1.006 1.22x10° 12.4
2 0° 0.01 6.02 0.669 2.63x10° 12.4
3 0° 0.00 8.04 0.501 4.56x10° 12.4
4 0° 0.03 10.00 0.401 7.91x10° 10.4
5 0° 0.04 14.98 0.267 1.82x10’ 9.56
6 0° 0.00 20.00 0.202 3.37x10’ 8.84
7 45° 0.00 4.04 1.001 1.24x10° 12.4
8 45° 0.00 6.01 0.670 2.63x10° 12.4
9 45° 0.01 8.02 0.502 4.53x10° 12.4
10 45° 0.01 10.00 0.402 7.95%10° 10.4
11 45° 0.03 15.00 0.267 1.83x10° 9.56
12 45° 0.03 19.99 0.201 3.36x10° 8.84

Table 4.1: Laminar natural convection in liquid water contained in an open square enclosure:
summary of parameters for the 12 cases investigated experimentally by Elkouh (1996).

As was mentioned in Chapter 2, in the published literature [Whitaker (1999); Nield and
Bejan (2006)], the derivations of volume-averaged governing equations for fluid flow and
heat transfer in fluid-saturated porous media are done assuming that the properties of the
fluid are essentially constant (no terms that arise due to variable density, viscosity,
specific heat at constant pressure, and thermal conductivity of the fluid are considered in
these derivations). Thus, the models of conduction and laminar natural convection in ice-
liquid-water-porous-metal-foam systems discussed in Chapter 2 must be used with the
assumption that the properties of the water (ice and liquid) calculated at a suitable
reference (or average) temperature remain essentially constant for each case considered.
This requirement brings up the question of the best reference (or average) temperature for
basing the constant fluid properties in each of the cases of interest. This question was
answered by simulating each of the 12 cases of this test problem (see related parameters
in Table 4.1) using the variable-property model (VPM) and the constant-property model
(CPM), with the constant fluid properties in the CPM evaluated at several different
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reference (or average) temperatures. Then, the reference (or average) temperature that
yields the lowest differences between the results computed using the VPM and CPM was
determined. This reference (or average) temperature was used for calculating the constant
fluid properties used in the constant-property models (CPMs) of conduction and laminar
natural convection in the liquid-water-porous-metal-foam and ice-liquid-water-porous-

metal-foam systems investigated in this work.

For the problems considered in this work, the most intuitive choice of the reference (or
average) temperature on which to base the values of the constant fluid properties is the

arithmetic-average of the cold- and hot-wall temperatures: 7, =(7.+7,)/2 . Some

authors have used the cold-wall temperature as the reference (or average) temperature,

1, =1T.; and others have used the density inversion temperature of water, at which the

density achieves its maximum value, as the reference (or average) temperature,

T, =T, = 4.029325°C . Elkouh suggested that a zonal temperature be used as the

reference (or average) temperature: 7, =7

zonal *

This zonal temperature is defined as
follows, with reference to values of the density inversion parameter, 7, , defined in

Section 2.3: if 0.5<7,<1 , then T

zonal

=(I.+T,)/2 ; if 0<T <0.5 , then

T,.=T +T,)/2; if T,=0.5, then 7,,,=T,; and if T, <0 or 7, >1, then

zonal — Tm

T ..=T.+T,)/2. The logic underlying the choice of the zonal temperature is that if

0<T, <1, then fluid flow and heat transfer phenomena are dominated by the larger of
the two main counter-rotating recirculation cells within the enclosure for any given value

of T, except at T, = 0.5 for & = 0°, where both these cells exert almost the same

influence [Elkouh (1996)]. It should also be noted that in cases involving ice and liquid

water within the enclosure, with or without the porous metal foam, 7, = 0°C is used

in place of 7, in the definition of T,

zonal

since the cold-boundary of the liquid-water

region inside calculation domain is the ice-liquid-water interface and its temperature is

the melting temperature of water (ice).
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The values of the average Nusselt number on the hot wall of the square enclosure (note
that Nethorwarr = Nttcorawar = Nitwar in this problem, for fully converged solutions) obtained

using the VPM and the CPM were compared to assess the suitability of the
aforementioned four candidates for the reference (or average) temperature. To ensure
consistency in this particular series of comparisons, the value of thermal conductivity
used in the definition of this Nusselt number, in all cases, was based on the zonal

temperature. Thus,

MW‘Z” = (Zwa”Hx) / klo = {(q;o water at hot wall / Hy) / (TH - TC)}HY / klo 41

4.2

zonal zonal

k, =0.5654+(1.700x107)T,,,, —(5.944x10°) T,

Here, T, is in °C, and the thermal conductivity of the liquid water at this temperature,

k, » is expressed in W/m.°C.

The results of grid-independence checks for Run # 6, for which the Rayleigh number
value was the highest, so the normal gradients of the temperature and velocity fields at
the hot and cold walls were also the highest, are presented in Table 4.2. Seven different
uniform grids (Grids # 1 — 7) were used, and the simulations were carried out using the
CPM, with the constant fluid properties based on the zonal temperature. The results in
Table 4.2 show that the difference in the value of the average Nusselt number on the hot
wall (see equations 4.1 and 4.2) yielded by any particular grid and the extrapolated grid-
independent value, obtained using Richardson extrapolation [Baliga and Atabaki (2006)]
of values yielded by Grids # 6 and 7 (the finest two grids), decreases monotonically as
the grid is refined. With a grid of 105 x 105 nodes, this difference was 1.49%, which was
considered acceptable for the purposes of this study. It should be noted here that in
similar grid checks done for Runs # 1 — 5 and 7 — 12, this level of precision was achieved
with grids of 75 x 75 nodes. Thus, all final simulations undertaken in this test problem

were carried out with uniform grids of 105 x 105 nodes.
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Difference with
Grid # Number of nodes e<]:1\1[1 L;ZZ n(zsff) reslg)ficzit_itg(fgzizzited
value (%)

1 55%55 22.8778 11.40

2 T5%75 21.4759 4.57

3 95x95 20.9643 2.08

4 105x105 20.8434 1.49

5 115x115 20.7643 1.11

6 155%x155 20.6307 0.46

7 205x%205 20.5906 0.26
Extrapolated grid-independent value (obtained
using Richardson extrapolation of results from 20.5371 -

Grids # 6 and 7)

Table 4.2: Results of grid-independence checks performed for Run # 6.

For Runs # 1 — 6 (specifications given in Table 4.1), Fig. 4.1 shows dye-injection
photographs and computed streamline patterns obtained by Elkouh (1996), along with the
computed streamline patterns obtained in this work with the variable-property model
(VPM) and uniform grids of 105 x 105 nodes (in the last column of this figure). These

results show very good agreement for all runs, except Run # 3, which corresponds to
T, =0.5. At or in the vicinity of this value of the density inversion parameter, Elkouh
(1996) has established (experimentally and numerically) that the results, especially
streamline patterns, are extremely sensitive to even minute variations in the values of 7,
and 7}, : so the experimental results (with the associated uncertainties) are difficult to

duplicate numerically; and the numerical results are very sensitive to the computational
grids employed and the criteria used to check convergence of the overall iterative

solution.
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Run#1

Run # 2

Run # 3

Run # 4

Run#5

Run # 6

Figure 4.1: Comparison of dye-injection photographs and computed streamlines obtained by Elkouh
(1996) to streamlines computed using the variable-property model (VPM), for Runs # 1 — 6.
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Nuwall
Results obtained using CPM, with four different 7
Run # Results . . .
obtained (Percentage error with respect to results obtained using VPM)
wing VM | 7 _Jule | =T, | T,=T, | T,=T.,
1 9.742 9.766 9.543 9.989 9.767
: (+0.24%) (-2.04%) (+2.54%) (+0.26%)
) 2651 8.756 8.461 8.855 8.658
) (+1.21%) (-2.21%) (+2.35%) (+0.08%)
3 6.250 6.444 6.162 6.445 6.304
: (+3.1%) (-1.41%) (+3.11%) (+0.86%)
4 1027 10.05 9.506 9.947 10.27
' (-2.13%) (-7.46%) (-3.17%) (-0.04%)
5 16.30 16.06 14.79 15.47 16.38
) (-1.51%) (-9.29%) (-5.10%) (+0.50%)
6 20.82 20.56 18.45 19.31 20.84
' (-1.26%) (-11.38%) (-7.24%) (+0.11%)
Average absolute error for
Runs#1-6(0= 0°) 1.57% 5.63% 3.92% 0.31%
7 5977 2.980 2.936 3.024 2.980
' (+0.10%) (-1.39%) (+1.56%) (+0.10%)
2 3132 2.970 2.862 3.013 2.932
' (-5.17%) (-8.61%) (-3.78%) (-6.38%)
9 6.895 6.688 6.426 6.689 6.559
) (-3.00%) (-6.80%) (-2.99%) (-4.88%)
10 10.54 10.27 9.771 10.17 10.46
' (-2.64%) (-7.33%) (-3.54%) (-0.80%)
1 16.16 15.95 14.80 15.42 16.24
) (-1.33%) (-8.45%) (-4.60%) (+0.50%)
19.87 18.00 18.77 20.22
12 20.09 (-1.08%) | (-1037%) | (-6.58%) | (+0.68%)
Average absolute error for
Runs #7 12 (0= 45°) 2.22% 7.16% 3.84% 2.22%
Average absolute error for 1.90% 6.39% 3.89% 1.27%

Runs#1—-12

Table 4.3: Hot-wall Nusselt number values computed using the variable-property model (VPM) and
constant-property model (CPM), the latter with four different reference (or average) temperatures.

Table 4.3 presents values of the average Nusselt number on the hot wall computed using

the VPM and the CPM, the latter with values of the constant fluid properties based on the

four above-mentioned reference (or average) temperatures, for Runs # 1 — 12
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(specifications given in Table 4.1). The Nutwar values obtained with the VPM were
regarded as benchmark results, so the differences between the various CPM results and
the corresponding VPM results are referred to as errors. The zonal temperature gives the
best results, with an average absolute error over Runs # 1 — 12 of only 1.27%. The
comparative advantage of the zonal temperature is particularly evident for cases with
60 =0° (Runs # 1 — 6), for which all the errors are below 1%. When the cavity is inclined
at @ =45°, the dominant recirculation flow cell is determined by not just the value of the

density inversion parameter, 7, but also by the inclination of the enclosure with respect

to the gravitational acceleration vector: thus, for Runs # 7 — 12, the individual CPM
errors associated with the zonal temperature are comparable to those associated to the
classical arithmetic-average temperature. On the basis of these results, for all
computations undertaken in this work with the CPM, the zonal temperature was chosen
for calculating the properties of the fluid. It should also be noted that in all CPM

simulations of ice-liquid-water-porous-metal-foam systems considered in this work, the

thermal conductivity of ice, k;, was based on 7, =7, . =0°C, as the cold-wall
temperature in these systems was maintained in the range —20°C <7, <0°C, and the
changes of £, in this temperature range are negligibly small compared to its value at 0°C

; and the properties of the metal (aluminum) were based on 7, =(7..+7,,)/2. For this

test problem, additional computations, complementary to those discussed in the previous
paragraph and with results summarized in Table 4.3, were undertaken with the VPM, but

with only one of the liquid-water properties ( x4, , ¢, , or k, ) maintained constant,

pl >
individually, at the zonal temperature. It should be noted that the density of water was
always assumed constant in all terms except those related to buoyancy term, in the
context of the Boussinesq assumption, as was discussed in Chapter 2. These additional

computations showed that the assumption of constant dynamic viscosity ( g, =g =
constant) caused the biggest errors, relative to those caused by assuming ¢, =c, =
constant and k, =k, = constant, individually. Since a volume-averaged approach to

porous media is used in the thesis, it is assumed that the justification of the use of CPM
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and the determination of the best averaging method presented in this section can be
reasonably extrapolated to simulations of fluid flow and heat transfer in metal foams

filled with water.

4.2 Conduction and natural convection in ice-liquid-water systems

contained in open square enclosures (no foam)

4.2.1 Validation of the proposed mathematical model, verification of the FVM, and

illustration of the proposed continuation method

Validation of the proposed mathematical model (VPM) and verification of the FVM were
done by undertaking simulations of two cases of this problem investigated experimentally
and numerically by Elkouh (1996), and labelled Runs A and C by him, and using his
results to check the numerical predictions. The dimensions of the square enclosure in

these two runs were maintained constant at H = H = H =6.012 cm, as was done in the

experiments of Elkouh (1999). The other pertinent conditions in the experiments of
Elkouh (1996) and the corresponding values of the Rayleigh and Prandtl number in the
liquid-water region (with the properties used to compute these parameters based on the

above-mentioned zonal temperature) for these two runs are summarized in Table 4.4. The

properties of the ice were maintained constant at values corresponding to 7, , =0°C.
Cavi Density
t . . i
Run avity T, (°C) T. (°C) inversion Rayleigh Prandtl
angle 0 . number number
parameter 77,
A 0° 10.00 -8.71 0.4029 7.94%10° 10.4
C 0° 5.98 -4.69 0.6738 2.59%10° 12.4

Table 4.4: Summary of conditions for two liquid-water-ice problems studied experimentally by
Elkouh (1996), and used for validating the mathematical model and FVM proposed in this work.

Based on findings of grid-independence checks akin to those describe in Section 4.1,
fixed uniform grids with 101x101 nodes were found to yield satisfactory results, and
used to obtain the results reported in this section. It should also be noted that for both of

the cases considered (Runs A and C), converged solutions could only be obtained using
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the continuation method described in Chapter 3. For Run A, a 17-step continuation
method (with the conditions for each step summarized in Table 4.5) was necessary to
obtain a converged solution (criteria given earlier in Chapter 3): in the first six of these

steps, the value of the cold-wall temperature, 7., was started at 0°C and then

progressively decreased to the desired value of -8.71°C; and in Steps 7 — 17, AT, was

melt
started at a value of 1°C and then progressively decreased to a value of 0.02°C, which
ensured essentially no influence of this parameter on the computed results. A similar
continuation method was used to obtain a converged solution for Run C, but only five
steps were necessary, as the value of Rayleigh number in Run C is not as high as that in
Run A, and the left recirculating flow cell is in contact with the full water-ice interface,
which is consequently smoother (as can be seen in the ice-liquid-water interface position
and streamline patterns presented in Fig. 4.2). In the continuation method used for Run C,

the value of AT , was started at 1°C and then progressively decreased to 0.025°C,

melt

which ensured essentially no influence of this parameter on the computed results.

Step number T, (°C) 1. (°C) AT, . (°O)

1 10.00 0.00 -

2 10.00 -3.00 1.000
3 10.00 -5.00 1.000
4 10.00 -5.00 0.500
5 10.00 -7.00 1.000
6 10.00 -8.71 1.000
7 10.00 -8.71 0.700
8 10.00 -8.71 0.600
9 10.00 -8.71 0.400
10 10.00 -8.71 0.300
11 10.00 -8.71 0.200
12 10.00 -8.71 0.150
13 10.00 -8.71 0.100
14 10.00 -8.71 0.050
15 10.00 -8.71 0.030
16 10.00 -8.71 0.025
17 10.00 -8.71 0.020

Table 4.5: Summary of the conditions used in a 17-step continuation method that was necessary to
obtain a fully-converged solution for Run A.
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The fully-converged values of Nusowar obtained with the VPM for Runs A and C were
5.5190 and 5.2155, respectively.

In Fig. 4.2, the ice-liquid-water interface and streamlines in the liquid-water region for
Runs A and C obtained experimentally and numerically by Elkouh (1996) are compared
to the corresponding results obtained computationally in this work. The experimental
results of Elkouh (1996) were obtained using laser shadowgraphy and dye injection. He
computed the streamlines in the liquid-water region using a control-volume finite element
method, with the left-boundary shape and conditions of this region specified using the

ice-liquid-water interface profile (and 7,,,,.

=0°C ) determined in his experimental
investigation. The agreement between these results of Elkouh (1996) and those obtained

in this work is qualitatively excellent, with no noticeable differences.

The vertical dotted lines associated with the results of this investigation presented in Fig.
4.2 represent the ice-liquid-water interface in the pure-conduction limit (no natural
convection in the liquid water region). In this pure-conduction limit, the problem
becomes one-dimensional (the temperatures in the ice and the liquid-water regions vary
only in the x direction); and at the ice-liquid-water interface, the temperature is

T

meing = 0°C and the heat flux normal to the interface on the liquid-water side is equal to
that away from the interface on the ice side. A CPM model of this one-dimensional
problem was solved analytically. The values of the hot-wall Nusselt number (which is
equal to the cold-wall Nusselt number under steady-state conditions) in this one-
dimensional pure-conduction problem were determined to be 2.3946 and 2.3096 for
boundary conditions corresponding to those in Runs A and C, respectively. Comparing
these values of wall Nusselt number to those obtained for the actual Runs A and C
(5.5190 and 5.2155, respectively), it can be deduced that natural convection in the liquid-

water enhances the overall rates of heat transfer in these runs by about 130% and 126%,

respectively.

In these runs, the shape and position of the interface are influenced by both the density

inversion parameter and the Rayleigh number. As can be seen from the results presented
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in Fig. 4.2, when the density inversion parameter is smaller than 0.5 (Run A), the right
counter-clockwise flow recirculation cell dominates, and since it brings relatively hot
water to the top of the enclosure, the upper portion of ice-water interface bends to the
left; and when this parameter is greater than 0.5 (Run C), the left clockwise flow
recirculation cell dominates and the interface is bent to the right. Run A is particularly
interesting since the right flow recirculation cell is strong enough and large enough to
reach the ice-liquid-water interface, causing its particular shape: the two flow
recirculation cells meet at the rightmost point of this interface, and a strong jet of
relatively cold water leaves the interface at this point and flows towards the right wall;

above this point, the interface is bent to the left, while it is bent to the right below it.

DYE INJECTION COMPUTED
PHOTOGRAPH STREAMLINES 0.06y : :
S i __0.04
| E
[~ 0.02
00 0.02 0.04 0.06
DYE INJECTION COMPUTED ' X (m)' |
PHOTOGRAPH STREAMLINES 0.06
__0.04
0.02: =
Od -

Figure 4.2: Ice-liquid-water interface and streamlines in the liquid-water region for Runs A (above)
and C (below): comparison of the experimental and numerical results of Elkouh (1996) with the
numerical results obtained in this work (rightmost figures).

Elkouh (1996) also investigated another case of this problem (he called it Run B), with
the following conditions: 7. =—4.58°C, T,, =8.01°C, and T, =0.503. In this work, an
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attempt was made to apply the proposed mathematical model (VPM) and FVM to this

case, but without success. The closeness of the density inversion parameter (7, ) in this

case to 0.5 and with @ = 0°, a converged solution was essentially impossible to obtain.
Attempts were made to apply the continuation method to this case, starting with a
solution for an inclined enclosure with @ = 10°, and then progressively reducing the
value of @ to the desired value of 0°. However, satisfactory convergence of the solutions

could be achieved only for 8>4°.

4.2.2 Flow patterns and ice-liquid-water interface shapes for high values of the

Rayleigh number

After the completion of the simulations described in the previous subsection, the
proposed VPM and FVM were used to investigate the influence of higher values of
Rayleigh number on the natural convection flow patterns and ice-liquid-water interface
shapes, in problems involving ice-liquid-water systems in open (no foam) square
enclosures. In these simulations, the walls temperatures of Run C (see Table 4.4) were
used throughout, and the values of Rayleigh number were increased by changing the

dimensions of the square enclosure: H =H,=H, with 6.012cm < H <35cm, which

produce Rayleigh number values in the range 2.59x10°<Ra<5.12x10° . The
continuation method was used to progressively advance the values of H from 6.012 cm to

35 cm in eight runs. For each of these runs, 4 — 6 additional steps of the continuation

method were used, starting with AT

melt

=1°C and then progressively pushing this value

down to AT

melt

=0.05°C, at which its influence on the results was negligibly small. The
values of the Rayleigh number explored experimentally by Elkouh (1996) were all less

than or equal to 3.37x10". The computed streamline patterns and ice-liquid-water
interface positions obtained in this work are shown in Fig. 4.3 for four different values of
Rayleigh number, Ra = 2.59 x 10°, 6.11 x 10°, 2.06 x 10”, and 9.55 x 10, obtained with
H=6.012 cm, 0.08 m, 12 cm, and 20 cm, respective. With H = 6.012 cm, this problem is

identical to Run C discussed in the previous section.
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Figure 4.3: Effect of increasing values of Rayleigh number on the streamlines and ice-liquid-water
interface position.

The results in Fig. 4.3 show that with increasing values of Rayleigh number, the ice-

liquid-water interface shifts to the left, the dominant recirculation flow cell adjacent to

this interface becomes larger, and the smaller recirculation flow cell (in the bottom right-

hand corner of the enclosure) cell shrinks, mainly from the left side and eventually

reaches approximately one-fifth of its original size. Two additional cells within the

dominant cell start to appear around Ra =5x10°, and multiple cells form for values of

Rayleigh numbers greater than 5x10”. At Ra = 5.12 x 10, the ice-liquid-water interface



88

was nearly vertical and very close to the left (cold) wall, with multiple flow recirculation
cells and the first signs of turbulence. Converged solutions for this problem could not be

obtained for Ra > 5.12 x 10°,

4.3 Natural convection in liquid-water-porous-metal-foam systems

contained in square enclosures

The results of simulations that were undertaken to determine the influence of the addition
of porous metal foams on the conduction and natural convection in square enclosures
filled with liquid water are presented and discussed in this section. The schematic
illustration in Fig. 2.1 also applies to this problem, but with no ice and =0°. In all
cases considered in this portion of the present investigation, the temperature of the left
(cold) wall of the square enclosure was kept constant at 0°C, to ensure relevance and
similarity to the left (cold) boundary temperature of the liquid-water region in ice-liquid-
water-porous-metal systems contained in similar enclosures. Using grid-independence
checks akin to those discussed in Section 4.1, it was determined that for the highest value
of the Rayleigh number (details presented in Section 4.3.2), the value of the hot-wall
Nusselt number obtained with a uniform grid of 101 x 101 nodes was only about 0.576%
different from an essentially grid-independent value obtained with Richardson
extrapolation of results yielded by uniform grids of 151 x 151 and 201 x 201 nodes. Thus,
all final simulations discussed in this section were done with uniform grids of 101 x 101

nodes.
4.3.1 Comparison of natural convection with and without porous metal foam

These simulations were done for the conditions for the first six runs (Runs # 1 — 6) listed
in Table 4.1, with an open domain (cases already presented earlier in Section 4.1) and
with a porous aluminum foam of PPI = 10 and & = 0.95. This particular foam is referred
to as the ‘reference’ foam in the rest of this section and also in the next section. As was
mentioned above, all simulations were done with uniform grids of 101 x 101 nods. In the
pure-conduction limit (no natural convection), the intrinsic-phase-average temperature

fields of the foam and the liquid are both one-dimensional, varying only in the x
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direction. For this pure-conduction limit, the governing equations were solved
analytically and the following expressions were derived for the Nusselt numbers at the

left (cold) and right walls:

k_+k k,+k
_ _ ss Is . _ _ Is
Nt e = Ntk right ~ T p 5 Ntgyigren = Nty gt ~
o A 43
N Uwall = e_ff[
k

ly

These pure-conduction-limit Nusselt numbers on the left and right walls depend only on

the thermal conductivity of the metal (aluminum; based on 7, =(7.+7,,)/2), foam

porosity, and liquid-water thermal conductivity based on the zonal temperature
(discussed in Section 4.1). With the reference foam, the computed value of the pure-

conduction-limit wall Nusselt number was 8.6.

The Prandtl and Rayleigh numbers for the runs considered in this study were calculated
using liquid-water properties based on the zonal temperature. Values of the wall Nusselt
number computed for Runs # 1 — 6 (conditions given in Table 4.1) without and with the
reference foam are presented in Table 4.6, along with the foam contributions to these
values on both the left (cold) and right (hot) walls (related definitions were presented in
Chapter 2). These results show that inclusion of the foam increases the values of the wall
Nusselt number in Runs # 2, 3, and 6, compared to the values obtained for these runs
without the reference foam; and lowers the values of the wall Nusselt number for Runs #

1,4, and 5.

The results obtained for Runs # 1 — 6 also showed that the natural convection flow pattern
for each case with the reference foam was similar to that obtained at a lower value of
Rayleigh number for the same case without the foam. To illustrate this observation,
sample streamline patterns for Run # 4 without and with the reference foam are shown in

Fig. 4.4.
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With Reference Foam
Pure-Conduction
Nu,, Limit Results of FVM Simulations
Open-Domain (analytical results)
FVM — Foam Foam
Run # Simulations Nitvan contribution | contribution
(with CPM Foam (difference on the left on the right
T =T ) mwﬂ contributi | With respect wall wall
av zonal on (% ) to pure'- Nufoam left Nu foam right
conduction Nu
limit) Ul Nttva
(%) (%)
9.113
1 9.767 8.5871 87.80 (+2.9%) 87.74 87.78
9.024
2 8.658 8.5871 87.80 (+1.9%) 87.73 87.79
8.930
3 6.304 8.5871 87.80 (+0.8%) 87.74 87.74
9.389
4 10.27 8.7480 87.65 (+7.3%) 87.60 87.40
15.69
5 16.38 8.6963 87.57 (+80.4%) 87.47 86.31
25.56
6 20.84 8.6458 87.50 (+195.6%) 86.18 84.35

Table 4.6: Values of wall Nusselt number for Runs # 1 — 6, without and with the reference foam
(porous aluminum foam with 10 PPI and & = 0.95)

Open media

Reference foam

Figure 4.4: Streamline patterns for Run # 4, without and with the reference foam.
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The results in Table 4.6 show that for Runs # 1 — 3, the values of the wall Nusselt number
are very close to those for the pure-conduction limit, with all differences less than 3%,
and the foam carries about 88% of the rates of heat transfer at both the left (cold) and
right (hot) walls in these runs. For Runs # 4 — 6, the influence of natural convection is
significant (values of wall Nusselt number considerably greater than the corresponding
values for the pure-conduction limit), but the foam still roughly carries 88% of the rates
of heat transfer at both the left (cold) and right (hot) walls, as the no-slip condition
applies at the walls with the Darcy-Brinkman-Forchheimer momentum equation, and the

superficial velocity of the fluid in the immediate vicinity of the walls is quite low.
4.3.2 Influence of Rayleigh number and five different foams

Results of simulations that were used to assess the influence of the Rayleigh number and
five different porous aluminum foams are presented in this section. The temperature of
the left (cold) and right (hot) walls were kept constant at 0°C and 20°C, respectively,
conditions that correspond to Run # 6, investigated here without and with the five foams.
These wall temperatures yield a value of the density inversion parameter of 0.202; this
value is sufficiently far from 0.5, so this parameter did not cause any special convergence
issues in the simulations (see related discussions in Section 4.1). A summary of the

characteristics of the five foams considered in this study are provided in Table 4.7.

Foam Number Porosity Foam PPI
Foam 1
(the reference foam) 0.95 10
Foam 2 0.90 10
Foam 3 0.98 10
Foam 4 0.95 20
Foam 5 0.95 40

Table 4.7: Characteristics of the five porous aluminum foams considered in this work.

The continuation method was used to progressively change the enclosure dimensions
from 0.005 m x 0.005 m to 0.30 m x 0.30 m, which produced Rayleigh number values in
the range 1.93 x 10* to 4.18 x 10°. The corresponding values of Darcy number for the

reference foam (see Table 4.7) ranged from 1.3 x 107 to 7.9 x 10™. The enclosure with
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the smallest dimensions (0.005 m x 0.005 m) corresponds to approximately twice the
pore diameter for the porous aluminum foams with 10 PPI: thus, the requirements of the
volume-averaging procedure are not strictly met for this enclosure; so the results for the
corresponding low values of the Rayleigh number should be accepted cautiously (with
this limitation in mind). To ensure consistency in the comparison exercises, the CPM
with fluid properties based on the zonal temperature was adopted for simulations, with

and without the foams.

2

10 : : : :
—+—Foam number 1: Porosity = 0.95 i
Foam number 2: Porosity = 0.90 /z/
Foam number 3: Porosity = 0.98 #
—¥—Open media: no foam g
----- Pure conduction limits @

10'f /./ 1

Wall Nusselt Number

10 L

10* 10°
Rayleigh number

10 10

Figure 4.5: Influence of the Rayleigh number on wall Nusselt number for Foams # 1 — 3 and open
domain (no foam); wall temperatures correspond to those for Run # 6 in all cases.

The influence of the Rayleigh number on the wall Nusselt number with Foams # 1, 2, and
3 (same PPI or pore diameter, but different porosities) and also with no foam (open
domain) is illustrated by the results presented in Fig. 4.5 (here, and also in all other
similar figures in this chapter, curves drawn through the symbols represent trend lines).
In all cases, for low values of the Rayleigh number, the values of the wall Nusselt number
are essentially equal to those of the pure-conduction limit (analytical solution given in

equation 4.3 for the cases with foam; equal to one (10% for the case with no foam or
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open-domain). For high enough values of the Rayleigh number, for all cases (with and
without foam), the log-log plots of wall Nusselt number versus Rayleigh number in Fig.

4.5 are essentially straight lines, indicating the suitability of the following power-law fit:

mwall =CxRa" 4.4

The best fit values of the exponent n in this equation was determined to be n=0.22,
n=0.22, and n=0.23 for Foams # 1, 2, and 3, respectively. The start of the power-law

regime Ra is defined in each case as the Rayleigh number of the first experiment

power law
presenting less than a 5% difference to the power-law regime (first defined on the five

highest Rayleigh number experiments).

Porosity of the foam influences the value of the Rayleigh number at which natural
convection becomes significant: lower the value of porosity, higher the value of the
Rayleigh number necessary for the onset of significant natural convection. However, in
the pure-conduction limit, Foam # 2 (the least porous) leads to 1.71 and 3.16 times higher

rates of overall heat transfer than Foams # 1 and 3, respectively. When the power-law

regime is reached for the three foams (for Ra >10%), these ratios of the enhancement of
the rates of heat transfer are only about 1.3 and 1.7, respectively, and remain
approximately constant. Of the three foams considered in the study, Foam # 2 always

yields the highest overall rate of heat transfer.

For Run # 6 with open domain (no foam), the influence of natural convection is

significant (values of wall Nusselt number at least 5% higher than the value for the pure-

conduction limit, Nty = 1) for values of Rayleigh number as low as 10°. A power-law
regime was also observed for this case (no foam), with an exponent of n = 0.29, which is
higher than the exponent value of n = 0.22 obtained for the cases with foams. At the
highest Rayleigh number for which converged solutions could be obtained, the no-foam

value of wall Nusselt number falls in between those for Foams # 1 and 3.

The influence of the pore diameter was evaluated by comparing the results for foams of

the same porosity but different pore diameters: Foams # 1, 4, and 5. The temperatures of
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the left (cold) and right (hot) walls were fixed at 7, = 0°C and 7,, = 20°C (conditions

corresponding to Run # 6). Again, the enclosure dimensions were adjusted to obtain
values of Rayleigh number in the range 1.93 x 10* to 4.18 x 10°. The variations of wall
Nusselt number with the Rayleigh number for these cases are presented in Fig. 4.6. Since
the effective thermal conductivity does not depend on the pore diameter (see definitions
given in Chapter 2), the Foams # 1, 4, and 5 yield the same values of wall Nusselt
number in the pure-conduction limit. With a foam of smaller pore diameter, the drag
force is greater and the natural convection becomes significant at a higher value of the
Rayleigh number. A power-law regime is exhibited by the plots for all three foams in Fig.
4.6, with the value of the exponent essentially independent of the PPI value. The values
of wall Nusselt number for Foams # 4 and 5 (20 PPI and 40 PPI) are 1.2 and 1.9 times

lower, respectively, than the values for Foam # 1 (10 PPI) in the power-law regime.

A quantitative presentation of some of the key results for the five foams (Foams # 1 — 5)
and also the open domain (no foam), for wall temperatures corresponding to Run # 6, are

presented in Table 4.8.

10 T T
—+Foam number 1: 10 PPI
Foam number 4: 20 PPI
_ Foam number 5: 40 PPI
L |- Pure conduction limit
E
©
7
>
Z
T
<
10"}
10°* 166 168 10"

Rayleigh number

Figure 4.6: Influence of the Rayleigh number on the wall Nusselt number for Foams 1, 4, and 5,
which have the same porosity but different pore diameters: wall temperatures correspond to those
for Run # 6 in all cases.



95

Nu,,, Start of the | Exponent
Wall Foam number and Pure- power-law in the
temperatures characteristics conduction regume por\;v;ir;:w
limit LT — .
1: £=0.95, 10 PPI 8.65 2x10° 0.22
2: £=0.90, 10 PPI 14.75 2x10’ 0.22
Te=0.00°C |7 £=0.98, 10 PPI 4.67 2x10° 0.23
Ly = 20007 C e —0.95 , 20 PPI 8.65 5%10° 0.22
5: £=0.95, 40 PPI 8.65 4x10’ 0.21
Open domain 1 10° 0.29

Table 4.8: Summary of some key results for natural convection with liquid water and Foams # 1 — 5,
and also in open domains (no foam); and wall temperatures corresponding to Run # 6.

As was pointed out in Chapter 2, the correlation for the interstitial interfacial heat transfer
coefficient used in the two-temperature model of heat transfer in ice-porous-metal-foam
and liquid-water-porous-metal-foam regions in the pure-conduction limit was obtained
using numerical solutions of heat conduction in relatively simple two-dimensional unit-
cell models of the porous metal foam. To assess the sensitivity of the results to this
correlation, simulations with the reference foam (Foam # 1 in Table 4.7) and wall
temperatures corresponding to Run # 6 were redone with the correlation for the
interstitial interfacial conduction Nusselt number calculated using the following
=2(-4.1/In(1-¢)) ; Nu =0.5(—4.1/In(1-¢)) . The

expressions: Nu

conduction conduction

maximum differences between the results obtained with the proposed correlation and

those with twice and one-half this correlation were 0.6% and 2.4%, respectively.



96

4.3.3 Influence of thermal dispersion and Forchheimer drag term

An examination of the Darcy-Brinkman-Forchheimer momentum equation and the fluid
energy equation in the two-temperature model (discussed in Chapter 2) reveals that the

relative importance of the thermal dispersion and Forchheimer drag terms is proportional

locally to the permeability Reynolds number defined by Re, = p, JK ||u|| /iy

|ek,|

k.,

¢, ko Pr, |Re, and Forchheimer drag term - /Re, 45
kg Darcy drag term

The variations of the maximum and spatial-average values of Re, as a function of Ra,

with the wall temperatures of Run 6, the reference foam, and 1.93x10* < Ra <4.18x10°
are presented in Fig. 4.7. As the Rayleigh number increases, natural convection is

stronger and the maximum value of Re, keeps increasing until it reaches its highest
value, Re, =0.47, at the maximum Rayleigh number, Ra = 4.18x 10°. This maximum
value of Re, always occurs in the dominant recirculation flow cell, in the boundary-
layer-like flows in the vicinity of the walls. On the other hand, the spatial-average Re,

peaks at around 0.091 at Ra =10°, which corresponds to the following spatial-average

Forchheimer drag term

ek
values of the ratios of equation 4.5: | d| =0.56% and =0.90%,

eff

Darcy drag term

and then decreases. This seems to indicate that as the Rayleigh number increases, the area
of the high-velocity boundary-layer region does not increase as fast as (proportionally to)
the size of the cavity. To illustrate this phenomenon, the dimensionless area of a “high-

velocity-zone™ is also plotted in Fig. 4.7:

4 Area of the high-velocity zone

high-velocity
igh-velocity Hx XHy

4.6

For each value of the Rayleigh number, the high-velocity zone is defined as the region in

which the magnitude of the velocity is at least 30% of the magnitude of the maximum
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velocity in the calculation domain. As is shown by the corresponding results plotted in

Fig. 4.7, 4, decreases monotonically with increasing Rayleigh number, from 73%

igh-velocity
to 4.9%.
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Figure 4.7: Variations of the maximum and spatial-average values of the permeability Reynolds with
Rayleigh number, for the wall temperatures of Run # 6 and the reference foam. The evolution of the
dimensionless area of the high-velocity zone is also presented.

Based on the results presented in Fig. 4.7, it can be concluded that the maximum relative
effects of the thermal dispersion and the Forchheimer drag term increase as the Rayleigh
number increases (as their influence gets stronger at points inside the high-velocity

boundary-layer region), but their average effects may increase or decrease marginally.
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4.4 Conduction and natural convection in ice-liquid-water-porous-metal-

foam systems contained in rectangular enclosures
4.4.1 Comparison of results obtained with and without porous metal foam

Results obtained from simulations of conduction and natural convection in ice-liquid-
water and ice-liquid-water-porous-metal foam systems in two square enclosures with
dimensions, cold- and hot-wall temperatures, and parameters akin to Runs A and C (see
Table 4.4) are presented in this section. The reference porous metal foam, Foam # 1
(aluminum; 10 PPI; and ¢ = 0.95), was used in this study. In the pure-conduction limit
(no natural convection), this problem becomes one-dimensional, and it is possible to
solve the governing equations of the two-temperature model analytically and determine
the following solutions to the ice-liquid-water interface position (xiy), wall Nusselt

number, and flux repartition between water and foam at each wall:

H — ko T,—T,. |k
X, = x r , Nitwans = eff; 14+ 24 melt effi -1 4.7
1+ T, H Y melt el kzo T, H ‘c ke_ﬁ;
T, melt T C keﬁ”,
N ufoam left __ kss + k is Nufc'am right — kss + k Is 4 8
—_— = N .
NZ/l wall kejf, Nu wall kem

Since ice is more thermally conductive than liquid water, the foam contribution is always
smaller at the left (cold) wall than at the right (hot) wall in the pure-conduction limit:

Ntgmrens < Mo rign - A uniform grid with 101 x 101 nodes was used in this study. The

continuation method was also necessary to achieve converged solutions. In particular, for

each case, the value of AT , was progressively decreased from about 1°C to the

melt

following levels, where its effect on the results was negligible (error in Nutwan less than

0.1%): for condition corresponding to Run A, AT

melt

=0.01°C ; and for conditions

corresponding to Run C, AT

melt

=0.002°C. The computed values of total Nusselt number

and the heat flux repartitions for these cases on the two walls are reported in Table 4.9.

The streamlines and water-ice interface positions are compared to the open-domain (no
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foam) results in Fig. 4.8. Both the ice-liquid-water interface positions and the heat

transfer results for the two cases with the foam show that effect of natural convection is

mostly negligible: the heat transfer rates are within 1% of those in the pure-conduction

limit; and the ice-liquid-water interfaces are almost superimposed on the corresponding

vertical dotted lines that represent the pure-conduction-limit solutions.

Run A C
Mot 5.5190 | 52155
Open-media results (CPM, T, =T, )

Pure- Nitvan 10.3359 | 10.3857

Conlcil;(;:lon Foam contribution, left wall (%) 66.1 66.1

With (analytical) Foam contribution, right wall (%) 87.6 87.8
Reference Nitsan 10.4006 | 10.4150
Foam Results . (difference with respect to the pure- (+0.63%) | (+0.28%)

obtained with conduction limit)
FVM Foam contribution, left wall (%) 66.1 66.1
Foam contribution, right wall (%) 87.4 87.8

Table 4.9: Values of Nu,,; with and without the reference foam (aluminum, 10 PPIL, 95%
porosity) with the parameters corresponding to Runs A and C.
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Figure 4.8: Comparison of streamlines and water-ice interface positions with and without the
reference foam (aluminum, 10 PPI, 95% porosity) with the parameters corresponding to
Runs A and C.

4.4.2 Demonstration problem

In this demonstration problem, ice-liquid-water-porous-metal-foam systems contained in

rectangular enclosures were considered, with the following parameters typical of those
encountered in cold-storage applications: & = 0°, H, =10 cm, and 10 cm< A, <50 cm
(the aspect ratio, AR=H ,/H,, ranged from 1 to 5). The imposed cold- and hot-wall
temperatures were also similar to those typically encountered in cold-storage applications
during freezing and melting operations: 7. =-20°C and 7, =20°C. The reference

foam (aluminum, 10 PPI, 95% porosity) was used. The results for this demonstration

problem were obtained with and without this foam, and then compared. The open-domain
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(no foam) simulations were limited to values of aspect ratio that were lower than the

maximum value used in case with the foam, due to convergence problems.

All the simulations were performed using uniform grids: 101 x 101 grid points were used
for square domains (AR = 1), while uniform grids with 101 x {(100x AR)+1} points

were used to discretized rectangular domains, with an upper limit of 301 grid points in
the y direction (invoked to keep computational costs and times manageable on readily

available personal computers (PCs) fitted with quad-core CPU).

The continuation method was also used in this problem to facilitate the solutions on finer
grids: a simple code was written for bi-linear interpolation of the dependent-variable
fields obtained from simulations with a given grid, to any finer grid, so that they could be

used as starting guess values in the finer-grid simulation. The independence of the results

from the values of AT, , (within 0.1%) was reached in all cases considered for

AT, <0.05°C.

melt

The Rayleigh number was again based on the horizontal dimension, /_ , and was,

X

therefore, the same in all the simulations: Ra =1.55x10°. This choice was justified by
the observation that in natural convection experiments in rectangular enclosures akin to
those used in this demonstration problem, the dependence of the heat transfer rate on the
vertical dimension, H,, is, in general, much weaker than its dependence on the horizontal
dimension, H, [Incropera and DeWitt (2002)]. However, increases in the vertical
dimension can lead to turbulence, since the liquid water flows along vertical surfaces
(right wall or the ice-liquid-water interface) have more space to develop. Thus, converged

solutions in the open-media simulations could not be achieved for H, >15cm.
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Figure4.9: Comparison of streamlines and ice-liquid-water interface position with and without foam

for AR=1 and AR=1.5 in the demonstration problem.

Comparisons of the computed streamlines and ice-liquid-water interface position with
and without the foam for AR=1 and AR=1.5 in the demonstration problem are presented
in Fig. 4.9. The sharp changes in the shape of the ice-liquid-water interface in the open-

media cases do not appear in the cases with the foam. Ice always occupies a bigger
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portion of the calculation domain in cases with the foam, even though the position of the
ice-liquid-water interface in the pure-conduction-limit is closer to the left wall with the

foam (because k,;, / kg >k, / k, ). The two open-media flow fields exhibit multiple flow

recirculation cells, with more such cells in the case with AR=1.5 than that in the case with

AR=1.

The wall Nusselt number is plotted as a function of the aspect ratio, with and without the
foam, in Fig. 4.10. It decreases as the aspect ratio gets higher, because of boundary layer
thickening along the upper portions of the right wall, and the following power-law

function provides a good fit to the results for the cases with the foam:

- H,Y : : :
Nutwair = Nt vail square (?}j . Despite the small number of points for the open-media cases,
a power-law function was also fitted to their results. A quantitative representation of
these results is given in Table 4.10. In both cases (with and without the foam) the
exponent is roughly —1/4 , a value that is also found in the classical experimental
correlations for open-media laminar natural convection in rectangular enclosures

[Incropera and DeWitt (2002)].

22F + With foam
% Open media

16

Wall Nusselt number

12 L 1 L L 1 1
1 1.2 15 2 3 4 5

Aspect Ratio

Figure 4.10: Variation of wall Nusselt number with aspect ratio and power-law fit with and without
the foam for the demonstration problem
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Nty n , exponent of
AR range Square th,e power-law Average rms error (%)
enclosure
Reference foam 1-5 20.84 -0.252 1.26%
Open media 1-1.5 19.68 ~-0.3 (not enough points)

Table 4.10: Power-law correlations for variation of wall Nusselt number with aspect ratio, with and
without the foam, for the demonstration,

Streamlines and ice-liquid-water interface position for the biggest aspect ratio (4R=5,
with foam) are presented in Fig. 4.11. In the central part of the vertical enclosure, the ice-
liquid-water interface almost corresponds to that in the pure-conduction limit. In the
upper portion of this vertical enclosure, the ice-liquid-water interface bends to the left,
due to the impingement of the relative hot water coming off the right wall in this region;

and the opposite phenomena take place in the lower reaches of the vertical enclosure.
050
045F
0.4
0.35
0.3
Eo2sF
>
0.2
0.15
0.1

0.05

Figure 4.11: Streamlines and the ice-liquid-water interface in the demonstration problem for AR = 5.
Axes are not drawn to scale.
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4.5 Interstitial heat transfer

In this study, in all of the cases with porous metal foams, as the Rayleigh number was
increased, both the flow velocity and temperature difference between foam and water
increased, but there was uncertainty about whether the interstitial heat transfer is natural-

convection or forced-convection domination. An observation of the computed local

2
values of Grdf / (Redf) from the liquid-water simulations with foam (see Section 4.3),

showed that for small Rayleigh numbers, the three interstitial convection regimes coexist:
natural convection adjacent to the top and bottom walls; forced convection along the right
and left walls; and mixed convection in between. As the Rayleigh number increases, the
interstitial natural- and mixed-convection regions shrink and the interstitial convective
heat transfer is mostly forced-convection-dominated. In all of the ice-liquid-water-metal-
foam simulations discussed in Section 4.3, the interstitial convective heat transfer was
found to be forced-convection-dominated, except in the top-left and bottom-right corners

of the liquid-water region where the mixed convection correlation prevailed.

However, in all the simulations with the porous metal foams, the correlations for the
interstitial convection Nusselt number did not influence the results because their
predictions were always lower than those of the correlation for the pure-conduction-limit

—4.1

Nusselt number: at all points, N, ion <
In(1-¢)

. The highest observed local value of

Nu in the liquid-water-foam cases was 0.86, found with wall temperatures of Run

convection
# 6, the biggest cavity size, and the most porous foam (&=0.98). This value is smaller

than the minimum value of the interstitial conduction Nusselt number: Nu =1.05

conduction

for £=0.98. In the ice-liquid-water-metal-foam cases, Nu locally peaked around

convection

0.75, independently of the aspect ratio.

These rather counter-intuitive observations show the necessity of further detailed

investigation of the interstitial heat transfer processes in metal foams.



106

Chapter 5: Conclusion

In this final chapter, first, a brief review of the work reported in this thesis and its main
contributions are presented. After that, a few suggestions regarding possible extensions of

this work are proposed.
5.1 Review of the work and its main contributions

In this section, a review of the work reported in this thesis and its main contributions are

presented in four main parts, which correspond to the first four chapters.

1. In the first chapter, first, the motivation, overall goals, and background of this
work were presented. A review of the published literature relevant to this work
was presented next, along with a summary of some key results and comments.

Finally, the specific objectives of this work were presented.

2. In the second chapter, the mathematical models adopted for steady-state
conduction and laminar natural convection in ice-liquid-water-metal-foam
systems were presented. The Darcy-Brinkman-Forchheimer momentum equations
were adapted to the particular nonlinear variation of the density of water for
temperatures that span its inversion point. Empirical correlations for the
permeability and the Forchheimer coefficient were taken from the work of
Calmidi (1998). For the volume-averaged energy equations, a two-temperature

model with isotropic thermal dispersion in the liquid water was adopted.

A semi-empirical model for effective thermal conductivity proposed by Calmidi
and Mahajan (1999) was adapted for the two-temperature model, with a special
modification that ensures consistency of the predictions obtained with the one-

temperature and two-temperature models in the limit of local thermal equilibrium.

Novel expressions for the interstitial interfacial (foam-metal-water) heat transfer
coefficients in both the conduction and convection regimes were developed. The
correlation for the conduction-regime interstitial Nusselt number was determined

using CVFEM simulations of steady-state heat conduction in four different
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representative two-dimensional unit cells, and a critical analysis of the results.
The correlation for the interstitial interfacial (foam-metal-water) Nusselt number
in the convection regime was developed by adapting existing mixed convection

correlations for fluid flow around solid cylinders.

In the third chapter, a well-established, fixed-grid, co-located finite volume
method (FVM) for predicting fluid flow and heat transfer phenomena in open
domains (no ice; no porous metal foam) was adapted for solving the mathematical
models of conduction and laminar natural convection in ice-liquid-water systems
in open domains (no foam) and in ice-liquid-water-metal-foam systems. A special
approach involving a melting-temperature tolerance was proposed to resolve
interface-oscillation and convergence issues encountered during solutions of ice-
liquid-water problems, with and without the porous metal foams. Finally, a
continuation method that facilitates solutions of the liquid-water, ice-liquid-water,

and ice-liquid-water-metal-foam problems of interest was described.

The results obtained in this work were presented and discussed in the fourth

chapter. The main points of note and the related findings are summarized below:

. The proposed FVM was first validated by the comparing the predicted
results to those obtained experimentally and numerically by Elkouh (1996)
for steady-state conduction and laminar natural convection in square
enclosures containing pure liquid water and ice-liquid-water systems (no

foam), with temperatures spanning the density inversion point of water.

For laminar natural convection in pure liquid water (no ice), the agreement
between the results obtained in this work and those of Elkouh (1996) was
excellent for all cases tested, except the one in which the density inversion
parameter was close to 0.5, for which satisfactory convergence could not
be achieved. These simulations were conducted using a variable-property
model (VPM) and also a constant-property model (CPM), with the
constant fluid properties evaluated at several reference (or average)

temperatures. It was found that a special zonal reference (or average)
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temperature yields the lowest differences between the results yielded by

the VPM and CPM.

For conduction and laminar natural convection in ice-liquid-water systems
in open domains (no foam), two cases were investigated. The predicted
streamlines and ice-liquid-water interface positions showed excellent
agreement with the experimental and numerical results of Elkouh (1996).
The continuation method was found to be critically important for

achieving converged solutions to these problems.

The proposed mathematical models and FVM were used to predict laminar
natural convection flow fields and average heat transfer rates at the walls
in square horizontal enclosures containing liquid water and aluminum

foam. The left-wall temperature was fixed at 0°C while the right wall

temperature was assigned two different values above the density inversion
temperature of water. The effect of changes in the dimension of the
enclosure (yielding a wide range of Rayleigh number) was investigated
with no foam and the results were compared to those of simulations with

five different aluminum foams.

The results showed that the addition of porous foams resulted in weaker
natural convection (heat transfer due to gradients of the intrinsic-phase-
average temperature of the fluid and the associated thermal conductivities)
but higher conduction (heat transfer due to gradients of the intrinsic-phase-
average temperature of the aluminum foam and the associated thermal
conductivities). Foams with higher porosity had smaller weakening effect
on the natural convection, but also a lower enhancing effect on the
conduction. Foams with lower porosity had more of a weakening effect on
the natural convection, but a higher enhancing effect on the conduction. In
general, the resulting average total (conduction + convection) Nusselt
numbers at the walls obtained with the foams were found to be comparable

to those obtained in corresponding cases for open domains (no foam).
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In all these simulations, the variation of the average total Nusselt number
with Rayleigh number, when natural convection was well established (at

high enough values of Ra), was found to follow a power-law:

mwazz =CxRa". The value of n was found to be common to all foams

tested, around 0.22. With no foam, the best fit was found for »=0.29.

The influences of the Forchheimer drag term in the momentum equations
and the thermal dispersion in the energy equation were investigated. Their
local contributions to the volumetric-drag and heat-conduction terms in the
governing momentum and energy equations, respectively, were shown to

be proportional to the local permeability Reynolds number.

Finally, the proposed mathematical models and FVM were applied to
problems involving conduction and laminar natural convection in ice-
liquid-water-porous-metal-foam systems contained in vertical rectangular

enclosures.

First, two cases studied earlier by Elkouh (1996) and also in this work for
ice-liquid-water systems in an open enclosure (no foam) were investigated
with the inclusion of a porous metal foam. In both cases, with the
inclusion of the porous metal foam, the results were very close to the pure-
conduction limit, in terms of ice-liquid-water interface position and values

of the average total Nusselt number on the walls.

Then, a demonstration problem with a representative porous foam made of
aluminum, and other parameters in ranges relevant to seasonal cold-
storage applications, was investigated. The rectangular enclosure was
maintained in a vertical position with respect to the gravitational
acceleration vector. Its width in the horizontal direction was 10 cm, its
height was varied between 10 to 50 cm, and the imposed cold and hot wall

temperatures were -20°C and 20°C, respectively. The Rayleigh number

was maintained constant at Ra=1.55x10". The computed streamlines,

water-ice interface positions, and wall heat transfer rates were compared to
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the corresponding results obtained with open domains (no foam), to the
extent possible (without the foam, convergence could not be achieved for
AR > 1.5, and the appearance of multiple recirculating flow cells and
chaotic flow fields during the iterative solution process indicated possible
transition to turbulence). In cases for which converged solution could be
obtained with and without the foam, comparable values of the average
total wall Nusselt number were obtained. This Nusselt number was found
to decrease as the aspect ratio (4R) increased, and a power-law function

with an exponent of -0.252 gave a good fit to the results.

. Finally, the values of the computed interfacial (foam-metal-water) Nusselt
number were checked a posteriori. In all of the liquid-water-metal-foam
and ice-liquid-water-metal-foam simulations undertaken in this work, the
interstitial interfacial (foam-metal-water) heat transfer was found to be

conduction-dominated throughout the calculation domain.
5.2 Suggestions for extensions of this work
A few suggestions for extensions of this work are listed in this section.

As was mentioned in Chapter 2, cost-effective volume-averaged mathematical models of
fluid flow and heat transfer in porous metal foams are quite complex to formulate
rigorously, and some improvements in the semi-empirical inputs to these models would
be useful. Correlations that bring in the influence of the structure of the porous metal
foam could be improved to better account for non-uniformities of pore-diameter and
variations in the shape of the ligament cross-section. Approaches akin to those proposed
by Wang and Pan (2008) and Bodla et al. (2010) would provide a good starting point in
this regard. The treatment of interfacial (foam-metal-water) heat transfer coefficients
could be improved by undertaking simulations with three-dimensional unit-cell models of
the foam. Furthermore, the transition between conduction and mixed-convection regimes

in the interstitial interfacial heat transfer should be fundamentally investigated.
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For designing and optimizing cold-storage systems, the implementation of an unsteady
numerical model for simulating thermal-energy charging and discharging periods is
necessary. Unsteady phase-change problems need to be treated with adapted techniques
such as interface-tracking or the enthalpy method [Crank (1988)]. These techniques
should be adapted to ice-liquid-water-metal-foam systems. Such models could then be
applied to practical cold-storage units, and the best unit size and foam type (porosity and

pore diameter) could be determined using suitable optimization techniques.

Finally, complementary experimental investigations of fluid flow and heat transfer in ice-
liquid-water-metal-foams systems contained within rectangular enclosures would be very
useful for checking and refining the proposed mathematical models and numerical

solution methods.
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