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Abstract

The acrodynamic prablems, involving the solution of the Euler equations of
motion, are presently almost exclusively solved using an Euler formulation, This requires
the generation of a spatial grid aver which the problem is diseretized. The grid generation
process adds to the complexity to the problem being solved, especiadly in the case of com-
plex hody-shapes with flow discontinuities. such as shock waves and sliplines. Also. the
Luler Tormulatton is difficult to use for the aerodynamic problems of unspecified
Lrometry,

A Lagrangtan formulation permits to avoid the complexity of a grid generation
while making it possible to oblain very accurate results, This Lagrangian formulation uses
the stream Tunction and Lagrangian distance to represent the flow instead of the Cartesian
coordinates. Thus. the streamiines become coordinate lines in the Lagrangian formulation,
which can casily represent complex body-shapes and sliplines, and is also more suitable to
sulve complex problems involving bodies of unspecified geometry.

This method was tested and validated against several test problems of specified ge-
ometry. including the supersonic flows with shock waves in @ duct with a circular are
bump and past airfoits, as well as the tlow in a nozzle. The solutions obtained with this
Lagrangiin method were found to be very accurate, displaying a high computational
efficiency (actually providing second-order accuracy at a computational lowd of a first-
order sofution), Then, this Lagrangian method has been used to solve several aerodynimic
problems with gcomclriczﬂly-unspecii’iccl body-shapes, such as (i) the determination of the
geometry of a bump corresponding to a specitied pressure distribution in supersonic flow,
and (i) the design of the geometry of a supersonic nozzle, based on the retlection-

suppression condition, for a specified uniform flow at exit.



Résumé

La résolution des problemes acrodynanugues, impliquants les equations du
muouvement d'Ealer. est presque exclusivement etfectuge dans une Tormulation culerienne,
Cette tormulation exige Ta géndration d'un maillage spatial afin de diserétiser le problenw o
résoudre. La génération du maillage ajoute 4 la complexité du probleme Qo résoudie,
surtout dans le cas de modeles aux profiles compliqués, et des ceonlemems présentants
des discontinuités, el que des ondes de choes ou des surlaces de glissement,

1 ext & noter gque la formulation culerienne est difficile & appliquer aus problemes
acrodynamiques impliquants des parois & géométric non détermimnée o prior,

Une formulation lagrangienne permet d'éviter Ta géndration du maillage, toat en
produisant des résaltats d'une précision élevée, Cette formulation lagrangicnne déerit
'deoulement des fluides dans un systeme de coordonnds constitud des tonctions
d¥eoulements et de la "distance lagrangienne” au licu des coordonnds cartdsicnnes, De
welie sorte que dans la formudation lagrangienne les lignes d'éeoulement deviennent
références de coordonnés, ce qui facilite la description des modles aux profiles
complexes, et convient mieux aux problémes impliquants des fronticres géomdiriguement
non définies.

Cette formulation a été testée et validée en Tapliguant & des problemes types aux
profiles définis, comprenant I'dcoulement supersonique dans une souflerie présentint un
abstacle en wre de cercle sur une de ses parois, des profiles d'ailes et écoulement dans une
tuyere. Les résultats obtenus s'uvérerent étre d'une précision Clevée, tout en affichant un
rendement numérigue supérieur.

Ensuite, cette formulation lagrangicane fut appliquée i fa solution de diltérents
probiemes aérodynamiques impliguants des modeles aux profiles non délinis, tel que @ ()
la détermination du profile d'un obstacle devant produire une répartition de pression

définie sous leffet d'un écoulement supersonique, (b) la conception d'une tuyere



. supersonique, fonddée sur o condition de non-reflection & Ty puroi, afin de produire un

¢eoulement régulier i la sortice.
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LIST OF SYMBOLS

Time (in Lagrangian notation)

Lagrangian (material} coordinate

.J .0
Nabli operator. V = i+ JTr-- +k
ox Ty

Density

Pressure ratio

Oblique shock angle

Flow direction angle

Specific heat ratio of a gas (cpyc)
Delta (incrementation symbol)
Mach angle = sint!(1/M}
Acceleration

Speed of sound

Specific heat at constant pressure
Specitic heat at constant volume
Shock wave thickness

Energy

Unit vector in the x; y, 2 direction
The Jacobian

Length parameter along a streamline
Mach number

Mass fiow rate

Pressure

Gas constant

Position vector

10

J

0¥



T Temperature

{ Tim= (in Eulerian notation)
u Velocity in the x direction
\Y Velocity vector V=iuwtHju
Vv Velocity

v Velocity in the y direction
N Position vector

X Yz Eulerian (spatial) coordinate
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1. INTRODUCTION

In the last years the numerical methods for solving the tlows of compressible
fluids. both viscous and inviscid, have acquired a steadily increasing importanee in the
acronautic industry and refated fields. The fact is that these methods make it possible to
obtain very accurate results about the flow at a fraction of the cost and tiowe that would be
required tor experimenting in wind tunnels. A part of this effort has been direeted oward
the determination of inviscid supersonic flow field past bodies of various shapes for both
steady and unsteady flows. The pressure field on the body surface. for instance, is of
particular importance for the culculation of the forces and moments acting on it, which is
needed to determine the performances of supersonic vehicles in flight.

Several methods hive been developed for supersonic flows, most of which are
aiming at solving the Euler equations based on an Eulerian representation. and integrating
in time until the numerical convergence is reached. However, the Bulerian representation,
which requires the generation of a geometrical grid over which the considered problem is
solved, has a few limitations. The process of the grid generation itself is sensitive and has
serious consequences on the results obtained. 1t is, for instance, difficult 1o fit a grid to
some intricute body shapes. Some complex manipulations, such as conformal mapping, are
often needed to adapt a grid to some difficult body shapes. This maniputations has an
impuct on the accurucy of the resulis. Also, some flow conditions, like shock waves,
require complex manipulations and special treatments to capture the shape and position of
the shock discontinuity. An example of such complex manipulation can be seen in the
works of Ron-Ho Ni [ 18], Eidelman, Colella and Shreeve [6] and Mateescu and Lauzon
{13]. Also the solution over the grid requires the addition of a dummy time-variable over
which the problem would be solved iteratively. This process is rather computer-time

consuming and tends to diminish the numerical accuracy.
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The present work explores the possibilities offered by o new  Lagrangian
representation {irst introduced by Loh and Hui 11} to solve the same set of Euler
equittions in supersonic flows,

The Lagrangian representation method, which makes use of the streamlines and
the Lagrangian time to describe the tlow, eliminates the need for a complex grid and
dummy time. permitting thus to obtain very accurate results in a fraction of the time
usuitlly required for solving in an Eulerian representation method.

The Lagrangian-time used in the Lagrangian representation is the real time of
mation, as opposed to the dummy time used in the Eulerian representation. 1t is directly
related 1o the distance waveled by the speed of mation. Together with the streamlines, the
Luagrangian time provides for a complete description of the fluid flow.

The absence of a complex grid generation process offers many advantages over the
Eulerian system. First it allows to save the time generally required to generate the grid and
avoid the complex manipulations involved in fitting a grid to complex body shapes.
Second it mitkes it possible 1o consider problems in which the body shape is not known. In
this Tater case it becomes possible to compute the body shape provided we can supply a
condition to which the flow is restricted, This condition could be the required pressure
distribution on the unknown body shape. Thus we can compute the shape of a body that,
when subjected to a particular Hlow, would generate a given pressure distribution. Another
condition that can be applied to the tlow is the reflection suppression condition to design
the expansion section of a supersonic nozzle to produce a uniform flow at exit.

The Lagrangian representation has also the inherent property of correctly
representing {low discontinuities, like shock waves, without requiring any particular
treatments.

As we just deseribed it, the Lagrangian representation in terms of Lagrangian-time
and streamlines has a few limitations. The flux function is discontinuous across a slipline,

and the system of equations constructed according to this representation is not fully



hyperbolic, being characterized by only five lincarly independent cigenvectors, although
the system possesses six real eigenvalues.

To overcome these problems o variant of the Lagrangian representation method
that replaces the concept of Lagrangian-time deseribed above by the Lagrangian-distanee
wits first introduced by Hui and Zhao (9] and Yang and Hsu [27]. in which the
Lagrangian-distance is defined as the distance waveled by o particle a.ong its streamline.
These two entities are directly related. as the distunce traveled is equal to the particle
velocity multiplied by the elapsed time. The two procedures are equivalent but using the
Lagrangian distance enables us to climinate the potential deficiency in the Lagrangian
representation of flows involving sliplines when represented using Lagrangian-time. [t also
praved to lead to more accurate results and to be faster.

The present work starts by developing the Euler cquations in the Lagrangian
representation. Then o numerical scheme is developed based on this Lagrangian
formutation for the analysis of supersonic flows.

This numerical scheme is tested by solving o few classical two-dimenstonal
problems, whose solution is known. Namely the cases of a simple supersonic nozzle build
up from two parabolas smeothly connected and a tunnel flow with a circular are bump on
one of its sides. In both cases the Lagrangian method shows an excellent ability to produce
very aceurite results, Also, using the Lagrangian formulution it was possible to trace the
streamlines shape.

The scheme based on Lagrangian representation proved to be very accurate and
efficient. It also has shown a very good ability to solve for the flow discontinuitics
involved in the circular arc problem. The results obtained by the Lagrangian method were
compared with analytical solutions and results previously published, for instance Ron-Ho
Ni |18] and Eidelman, Colella and Shreeve [6]. Also, the program based on the
Lagrangian formulation displayed a very high computational etficiency when compared to

other work done in this department.



Next the Lagrangian scheme were applied to the slightly more difticult case of an
airfoil inasupersonic flow. The cases considered included both tlat and thick airfoils, with
and without incidence,

Then, the Lagrangian scheme was used to compute the shiape of a body for a
specitied pressure disuibution | 16]. For validation purpose. the specified pressure has been
taken as the known pressure distribution for o flow past a circular arc bump. The results
ubtained were very accurate, the computed new shape being very close to the original
circular one.

Finally, the Lagrangian scheme was applied to the problem of the expansion
section of a supersonic nozzle design, with the condition of reflection suppression. It

provided a very uniform flow at the nozzle exit.
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2. GENERAL CONSIDERATIONS

2.1 Lagrangian representation versus Kulerian representation.

Most problems of gas dynamics amount to the solution of the Luler equations of
motion. This set of equations is almost exclusively represented and solved using a Eunlerian
representation system, in which i fixed grid serves as a frame for the Muid motion.

In the Eulerian description of motion. the fluid properties such as velovity,
pressure and density are determined at fixed points of space at cach instant ol time 7, so
that:

V=V y. z th

p=pl y. z th

p=plxy, 2z t),
where the flow properties (p, V, p, ...) are expressed in term ol spatial coordinaes (&, 4.
z) and time {t). In this representation, the flow propertics (p. V, p. ...} belong to a fluid
particle located at time ¢, at the considered spatial position (x, y, #).

The same set of Euler equations can be represented and solved in the Lagrangian
representation system, in which the motion and properties of cach fluid particle in the flow
field is described us a function of initiul position parameters (ct, b, ¢) and the elapsed tine
reterred to an initial time (fg). At each instant £, the position (x, y. 2) and other propertices
of each particle are given relatively to the initial position und time. 1t follows that in the
Lagrangian representation the actual (physical) position (x, y, 2) of a fluid particle is a
viriable property of that particle, like pressure and density, ad is determined as a function
of the fixed initial position und time,

x = X(a,b,c.t),

y=9(a,b.c.t),

z=Z{a,b,c,t),

16



p=rlahet).

Pictorially we can figure the Enlerian representation to be the manner in which a
static observer, viewing the fTuid flow from a fixed location, would describe the fluid
mution, whereas in Lagrangian notation one can imagine the observer dentilying o {luid
particle tor molecule) and following it (virtwally riding upon it) along its trajectory,

The numerical simulation of inviscid compressible flow as modeled by the Euler
cquations of gas dynamics is an efficient method and is giving a satisfuctory accuraey for
flows without discontinuities, such as shock waves.

The approximative nature of this solution, and the fact that « The overall accuracy
of numerical simulation is very closely related to the accuracy with which flow
discontinuities are represented » [26], justifies the need for another type of solution,
namely that based on a Lagrangian representation of the tlow.

In the Lagrangian formulations based on stream function, the streamlines are
coordinates lines. Consequently the flow tangency condition on a solid boundury is sat-
isficd exactly on a steamline coordinate (E=E,). Also note that since sliplines are also
streamlines, they must be coordinate lines. This helps resolve sliplines better than Eulerian
formulation.

Furthermore the streamlines and time lines possess much of the physics of the flow

and are casily observable experimentally as they both are material lines.

2.2 The Kinematics of fluid motion.

Kinematics is the description of motion per se. It takes no account of how the
mation is generated or of the forces involved |21]. At some instant of time, we look at the
fuic and remark that a certain particle is at a position & and later the same particle is at
position X. We can take the first instant to be the time € = 0 und the later to be t; assuming

that X is a function of ¢ and the initial position &, we put:



x=x(E1).
or {20

2.1‘;:...1) N

JTE

x, = x, (g,

where the iniiial coordinates € of the particle will be reterred 1o ax the material or La-
srangian coordinates, which is itselt defined in termy of spatial or Fulerian coordinates (xy,
X, X)), € should be thought of as a particle fubel and as such can e defined inany other
wiy. for instunce it can be defined in term of the streamlines as will be demonsirated in
chapter 3.

The spazial or Ewlerian coordinate (X, y. 2) of the particle is its position or loca-
tion. We will assume that the motion is continuous and single valued and that equiation
(2.1) can be inverted to give the initial position or Lagrangian coordinates of the particle

corresponding to at any position X and time &

E=x.t).
ar ("J )
e P - F
b T E_,(-\,.-\-J.-\;,.f.) .
From this, we see that it is possible to define a coordintes transformation as

fallows:

(x.y,2) o (EnT), (2.3)
where € and ) are components of the vector potential and T is the Lagrangian time, In
two-dimensional flows, the above transformation reduces to:

(x.y) @ (&), (2.4)

where & is the stream function,
This means that a continuous string of particles does not break up during the mo-

tion or that the particles near a given particle remain in its neighborhood. By continuous



and single valued we mean that a particle cannot split up and occupy two locuations at the
same time nor can two distinet particles occupy the same location at the same time.
Equations (2.1) and (2.2) are refited and demonstrate that the system is consistent,
that is knowing the position (x) of a particle at a given time (f) we cun determine its
position at time £, or inversely that knowing its initial position € and time ¢ we can deduct
its position X.
The material (substantial) time derivative along a particle path of any of the tlow

paramcters, [ (such as p, w, v, p) is defined as:

Dro(df df af of df df .
=== _— —_ _— PcL R —" L Y 2.
DI [dt. ],, or TR eyt Wy = VI (23)
where
cdx dy dz dr

={— = | — = =t 2.6}
H (df' 1,‘“ (dt 1,‘ ® [dt ],,'V {dt ],, ’ (26}
r=iv+jy+kz, V=iu+juo+kw, 2.7

df . - _— . o
and where == is the local (partial) time derivative at a fixed point (for x, Y, Z constant),

ot
and
o Af o Af
V.- Vf —uax-i-vay+waz , (2.8)

is the convective derivative,

For steady flows, the locul time derivatives are zero (/0t=0), and hence the
material time derivative can be written as;
of Df  of df af

= o = ax oy T 0o =V I @9
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where we introduce the notation T to define the Lagrangian time for such steady ilows,
The acceleration, or the material time derivative of the velocity, along the

trajectory, is:

V. AV

=—+(V.V)V, (2.1

A=
dt at

In steady flow, this reduces to:

A=(V-V)V=ua—v+ua—v+wﬂ. (2.1
ox dy Jz

2.3 Streamlines

A streamiine is a line whose tangent at cach instant of time and at any point in
space gives the direction of the velocity of the ftuid at that point. For steady flows, in
which the velocity components are independent of time (dw/di=0, dufdi=0, dw/dt=0),
the streamlines are identical with the path lines and streaklines (lines issued from the same
point). The flow velocity being parallel to the streamline. there is no flow crossing the
streamlines and thus the mass flow rate between two streamlines is constant.

For steudy flows, the streamlines are defined as
dr dx dy dz

==V, —===—=dt,. 2.12
dt u v w dt ¢ )

Streamiine 3 Vi

o X
X

Figure 1. Streamline representation
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3. EULER EQUATIONS OF MOTION IN LAGRANGIAN

REPRESENTATION

3.1 FKulerian representation of the equations of motion.
The continuity, momentum and energy equations for the three-dimensional, steady
low ol a compressible inviscid Muid in differential form are expressed as (Anderson | 1],

Shapiro | 23])

V-(pV)=0, 3.1
)

(V-V)V+BV;J=O , (3.2)

v-v(n+-f;v‘-’)=0, (3.3)

where Terepresents the enthalpy, defined for an ideal fluid us
J 3 _
n=—"t E-p 2 (3.4)

For two-dimensional flows, they can be expressed in Cartesian coordinutes as

Hpu)  Hpv)

X * oy =0, (3.5

Ju Ju lap

——t ) — F — e = O 3.(

dx  dy pox (3.6
l!d_u+va_u+i%__o (3.7)

dx dy poy



ad (v+ ) ) (V- )
Sl A Y NP L R T (3.8
ax | 2 y—-1p dyl 2 y=1p

3.2 The stream function
For two-dimensional steady flows, which represent the object of this analysis, the
stream function, (v, 1), is a point Tunction detined in connection with the equation of

continuity (3.3). Seuing

Y, OF
w=te s ()
p oy
and
v, OF
L R N (LI
p ox

and replacing in the continuity equation we get:

af{ %) a az;)
of ) af Y |
Ax (D“ Yy }'. By( Po |50 TR

which leads to

J [ d J [ag\
D95 )| 9" (3.12)
ox\dy ) dy\dx,

For a point function &, the order of differentiation is irrelevant {(or Schwartz
theorem holds), and thus the equation of continuity is the only required condition to the

existence of the stream function € as a point function, which is defined as

_%E L5
dt = Ix dx + 2y dy
(3.13)

= L (pudy - pudx).

f

[0 ]
| B



Computing the mass low rate between two lines of constant € (see figure 2) we

oel:

y 4 ——

+—
pudy
velx
P X
Figure 2, Mass flow rate between tines of constant stream function

ehrit = pludy - vdx) . (3.14

Comparing equation (3.13) and (3.14) it becomes clear that:
dnt=p,dE, (3.15)

which means that the change (variation) of the stream function € is @ measure of the mass
How rate. 1t also means that a line of constant £ does not admit any flow across itself,
Hence, it follows that lines of constant & are also streamlines, since from equation (3.13)

one cin write

dx dy ‘
=0 = —=—. 3.16
as Ty (3.16)

Considering a steacty irrotational flow in a two-dimensional system:
I=1(n8). (3.17)

where f is any fluid property represented as a function of the elapsed time T and the

Lagrangian coordinate &, such as the velocity components w and v, the fluid density, p,

[§®)
)



and the pressure. p.o Henee the position vector, Toand the fluid velocuy, Voocan be

expressed as

r{t.g)=ix(t.8)+jyl.8). (3. I8)
S § dx dy

L8 =—=i D= i— o+ —— . R
V(t :;) Tt iu+ ju=1 . + . (3.1
where

X dy

L)=—, L= 3.20

(r9=5, og=2 220

t In
- Streamline

Figure 3. Streamline notation

For the two-dimensional flows, the material time-derivative can be expressed as

U D _yors o, Y :
at-Dt—(V-V)_;‘-uax+uay. (3.21)

Considering the streamline definition

E=E(x.y), (3.22)



1S puU

— =—-—, (3.23)
X i
WE _pu (3.24)
yoop
one obtains suceessively:
J d v u -
V-VE_,:1L£+u—§=u(—p—}+u[p—]=0 \ (3.25)
Jx dy Po Pu
and henee
l£=_19_§=£=£_ (3.26)

tay vdx p, [

where p, in equation (3.26) represents any reference value, which is primarily needed to
balance the dimensions, and is arbivarily chosen, so that one can replace it by K.
Replacing from equation (3,26) into equations (3.23) and (3.24) one can obtain
u g )
L - (3.27)
i
These derivatives can be also expressed in terms of the Jacabian of ilie coordinates

transtormation (see equations (A.15) and (A.16) trom Appendix A) as

0 u o, v
SH_=2 5__Z 2
ay J 7 dx J (3.28)

Comparing now the equations (3.27) and (3.28), in conjunction with equation

(A.0) from Appendix A, one obtains successively

P
I

h ]

1
g N (3.29)



ax dy  dy dx dy  dx .
- To sl b RN
dt o  dt dE o aS

a derivation for equation (3.29) can be obtained from the following equation, shown in

Batchelor | 30].

Ax.y.z) p, ax,y)  p,
—_— ar = .
da.b.c) p ) deT)  p

Introducing now the notations

dx Ay
_ox _ 3.3
5 3 ° (13D

where U and V can be considered as the Cartesian components of the vector W

W=—=i—+j-==1U+jVv., (3.3
ke % !
in the sume way in which x and y, or tand vare the components of the vectors 11 or V
r{t.8) =ix(t,E) + jy(t.E) , (3.33)
ox ax oy .
= = j—==1iu+jv, (3.34)
ot ot ot !

since 1 is a point function, according to Schwartz theorem one can write:

i[ﬂi)zi ar) (3.35)
SE\ 3t/ at\ 28

where

B[ar) E)u av (3.36)

AC I R



o for Lall o aVv -
—| = (=1t ] (3.37)
T E It Jt

one resukls

du _Ju
oF ot

3.38
o _av .
JE T Ot

These cquations are called the compatibility relations, defining the coordinutes
transformation between the Eulerian and Lagrangian formulations.

Referring to equation (3.29) we can also write:
K D(x.y) axdy oxady _

P "SrE wa oW 3.3
P v D(t.£) dt dE O dt uv ~Uv , (3.39)

considering the cquations (3.20), the equations (A.10) and (A.11) in appendix A can be

recast in the form:

= = e SV (3.40)

a1 1 Jx p Ix P

W TETTKE K (3.41)

By definition one can write

9 _dd %D
dx  dxdt dx df
9 o &

dy dyodt dy &k

und replacing from equations (3.20), (3.23), (3.24), (3.32), (A.10) and (A.11) into

equition (3.42) one obtaing



d p q 0
N ) | ¥
ax K[ ot ”ag] 1

3 3 5 RERY
N C
=Ygz =
oy K[ ot Y a&j
tfrom which one can write
af\ aj'l
Vir=oet oy
pl o of A, ]
=—|V - - RN
Kot P Yo T (3
ol

’ S A (U ou)l
=Kl_a (Vf UI) g( lélgz)“.f.\-(¥—£)+ /,(E—TE)

where f und f, are the components of ['in the x and y directions respectively.

Replacing trom equation (3.38) into equation (3.44) and simplitying one obtains

L2
vogo s, f,,_ pra(

J 1
ox o Y I{l_a‘t UI ) E_.( ull;)J (3.45)

and setting £ = pV = ipu+ jpv and simplitying one obtains

v (pV) = a(af.);t) a(plu) = %{_8_ (Vi - Uv) ] {3.40)

3.3 Lagrangian representation of Euler equations of motion using
Lagrangian time.

3.3.1 Continuity equation for steady tlow

The continuity equation (3.1) will hence become

V-(pV) = I’;[ (p(Vu-Uu))] 0, (3.47)

and replacing from equations (3.29) and (3.32) one obtuins
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V- (pV) =—"-['_”‘ }:u . (3.48)
Kl dt

aned henee

K

— =0 o K=K(). (3.4Y)
dt

Equation (3.49) means that K is a function of € only, hence one can write
K =p(uv -oU), (3.50)

cyuation (3.49). in conjunction with equation (3.50), defines the continuity equation in

Lagrangian formulation based on Lagrangian time,
3.3.2 Momentuin equation for steady flow in lagrangian representation,

The momentum equation (3.2) in the Eulerian tormulation in Cartesian coordinates
has the following component equations in the x and Yy directions

u r)u+0r3u+1%= , (3.51)

x Epax

Jo du 1ldp
H—+tv—+t——=
dx  Jdy poy

—
"-)J
tn
(L]

—

replacing from equations (3.20) and (3.42) the first equation (3.51) can be expressed

dx(adudt Juwdf) Jdyfdudt Judg) Ifdpadrt odpd§
L US| Y RGN LR P g, (353
ar[ar ax+a§ax)+ar[ar ay+3§ay)+p(atax+a§ax (3.5%)

simplilying one obtain

D(p.
gdu 1D(p.y) _ . (3.54)
dt  p D(t.E)

or



Similarly. the second equition (3.52) can be expressed in the torm:

y
K u Ju D(p.:u, -0
at  D(t.E)
Dix,
g, Dle.p)

a1

D(w.E)

,...
e
a
k= ]
et

{3.50)

Equations (3.55) and (3.56) together represent the momentum eeuation for steady

flow in Lagrangian formulation using Lagrangian time.

3.3.3 Energy equation for steady flow,

The energy equation (3.3) can be written in the following form

\'s V[L£+i(u"’ + v“)) =0, (3.57)
Y- 2
where
J d dx ¢ dy d .
V‘V= -+ ——=—-—-——-—-+——’ 3.5:\.
H ox Uay Jdt dx Jdt dy ( )
henve we can rewrite equation (3.57) as follows
9x 9 L.£+_1_(a_x)" L1 (au) .
gtox|y-1p 2\9drt dt
" - , (3.59)
dyad| vy p I(E)x)' 1(3;;)*1
= | — == +=|=]| |=0
dtdy|y=-1p 2\0dt 2\ dt |
rearranging we get
x| v ( ap ) ou du
—_— + +o— |+
dr|y-1p° pax “’ax Uax
- N , (3.60)
—aﬁ—y—-—i— pap_ +u aI'L+u-a—-li =0
dr|y-1Ip Jy dy  dy|
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siplifying and rearranging we get

i _I_(“B +UH)+-—Y-—-L)— =() (3()!)
el 2 y=1p

Eguation (3.01) defines the energy equation for steady flow in Lagrangian formulation
using Lagrangian tinwe.
3.4 Euler equations in Lagrangian formulation based on Lagrangian-
time

We now can write the Euler equations of motion using the Lagrangian represen-
tation (equations 3.49, 3.55, 3.56 and 3.01) developed in section 3.3 in the following

matrix torm

o R

=10, 3.02
AT (3.62)
where
K e, 0 1
H e, o |f.
Ku+ pV}j e, -pv| Lf.
IE=|. ! =" and F= ! = ,Il (3.63)
Kv-pl] |e, pul| [,
L] (:.’_.; - ‘,'5
4 Cu —u I‘u
andd
Ry ) I, .,
==, ve=<l, H=o(u+u?)+—=L£
X Jdy (3.64)
== == K = pluv -vU),

where: the equation related to @ represents the continuity equation, the equation related

o ¢xorepresents the energy equation, the equations related to e; and ey represent the



momentim eqguations and the equations related 0 e and ew e the companibility
cguations (see equition 3,38),

Equation (3.62) represeats Euler equations in Lagrangian formulation based on
Lagrangian-time, using (T, &) as independent variables,
3.5 Euler equations in Lagrangian formukbition based on Lagrangian-
distance

The Lagrangian representation based on Lagrangian-time developed in section 3.1
his two deficiencies as noted by Hui and Zao |9 and Yang and isu [27]. First the tlux
function (F} in equation (3,62) is discontinuous across i slipline, This is a consequence to
the fiact that the tangential component of fluid velocity is discontinuous across a slipline,
while the pressure pand the flow direction angle 8 are continuouns, Scecomd the sysieny of
equation represented by equation (3,62} is not fully hyperboiic. In the sense that although

.

this system has six real cigenvitlues, it only has five lincarly independent eigenvectors

[

associated with then,

In order 10 correet this problem the following transformation is intraduced:

(x = Vu_ dX + UdE (3.05)
v
dy = Fdl + VdE | (3.00)

where ¢ is an arbitrary constant, Vis the fuid velocity and & is the streamline,

V=vul +v?. (3.67)

Setting dE=0), and replacing in equations (3.65) and (3.606) we pet:

=== : 3.08
u v vt (:.08)

from which it follows that A is a variable along the streamline.



Setting ¢ = 0 and &= we get:

9 (3.69)
i

tlyy

——— U y 3.?“)
I\ (

fromm which it follows thit when o is equal 10 zero, A is equivalent to the Lagrangian time.

Setting oo= 1 and dE=() we get:

(e = el (3.71)
cdy = %dl . (3.72)
. . TR T :
Nt rdyt ==+ [ =), 3.73
(dx +ddy [V" + - )D\ dh (3.73)

from which it follows that when o is equal to one, X is equivalent 1o the distance traveled
by a particle along its stremmline, which we will call the Lagrangian distance.

Substituting equations (3.65) and (3.66) in equations (3.47), (3.51), (3.52) and
(3.57), going through the substitution process of section 3.3, and setting o equal to one,

we el

(3.74)

where

‘s
LS



K e, 0 1
H e, 0 1.
- K’u + pv _ e, od e —psin _ f:., (175)
Kv - pUl e, peosd) 1/,
U Gy -cosd| [
1% e, -sin®| |f,

where 8 is the flow direction angle, and

X Jy I, y Y P
= V=2, H==(u’+v?)+——"
AE o gl ) ey
I oy 1370
11:53'?. v=30. K= pluV o).

where: the equation related to @ represents the continuity equation, the equation
related 1o e represents the energy equation, the equations related to e and ¢ represent
the momentum equations and the cguations related to €. and e are the compatibility
equations (see equation 3.38). Equations (3.74) represents Euler equations in Lagringian
formulation based on Lagrangian-distance, using (A, &) as independent variables, it is
functionally equivalent to equations systeny (3.62). By considering these two equation
systems. (3.62) and (3.74) we note that:

o Although the streamlines und time lines are non-orthogonal in the physical plane the
resulting transformed equations reniiin very simple,

» The Lagrangiun method of computation is also self’ contained without need of re-
mapping to the Eulerian space.

e The Lagrangian time T in equation (3.62) is a true time variable o motion, as distin-
guished from any time-like variable (fictitious time) in the Euolerian formulaion.
Marching in T means following the fluid particles along their path. Thus the
computation method follows exactly the particle movements even when it crosses a
shock wave where flow direction changes abruptly. (A cell is exactly a fluid particle

and remains intact at all time).



4, NUMERICAL PROCEDURE

We will now develop @ numerical stittegy 10 solve the equations systems (3.62)
and (3.74). It should be noted that those two systems are equivalent and similar, so that
the sume strategy applies 1o both of them. The differences. which appear in the flux
function I are small and are solved effectively with the sume procedure. Also at the
programming level, the same program. with minor modifications, is used to solve both

systems.

4.1 Space discretization

Consider the inlet of the expansion section of a supersonic nozzle shown in
figoure 4. We set up an incoming supersonic uniform flow as shown, and we will discretize
this flow in the Lagrangian plane (t-€) or (A-E). This incoming flow is set parallel to the
walls, which are straight and parallel in the inlet section. So that we know the streamlines
at his section to be straight and parallel. We choose a line at the inlet section
perpendicular to the wall, and thus to the streamlines at this section, and identify it as the
time line ©=0 in the Lagrangian plane t-§ (or A=0 in the A-€ plane). We will identify a line
E=0 an the lower wall, as shown in figure 4, and parametrize the line t=(} (or A=0) in term
of streamlines & (€, = 0,E,.E,,,....E,). By definition we know that the mass flow rate
between two streamiines is constant (see section 2.3), hence each streamline can be
identified by the mass flow rute between it and the reference streamline (the line £=0). The
streamlines being equally spaced, it is possible to define an interval AE as the mass tlow

rate between any two streamiines as follows
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Flow direction

g
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Figure 4. Nozzle infet section (enlaryed)

Unhnown How region

1o e sohved nonericaly

Nuzzle

\L\

whtll

AL =pu-Ay-L,

where L is the system width, which is assumed unity.

The increments in the T (or A) direction are computed at every step in order 1o
satisty the stability (CFL) condition us follows

_ AECFL
T Zpuf tan@+ ),

AECFL
2pu, tan(®@+ ), cos8, '

where

i=sin™ !

’

and 0 is the flow direction angle (see Appendix F).
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4.2 Initialization
The start-up or initial values of all the variables used in the program are computed
from the inlet value of the {low and the geometry of the inlet section as described here:

we compule the compatibility relations

Ay 1 o dy -
—_ ==V ==, 4.5)
AE pul g (

the flow being uniform and parallel to the x axis there is no variation of £ relative to x.

then we can write
AN ST (4.6)

where the superseript O indicates the initial time step (1=0 or A=0),

We cun now compute all the e and I function at T=0 as follows:

C(lj = \-u — p(u”V” —-U“U”) .

1 2 2 y p’
¢y =H" ==() +") )+——=.
: () +")) el @7
‘_,;: - {“l(“ + I)”V” . ei: = {”U“ - p”U” ,

1) 1] t f
e =U", e, =V,

the e function computed in equation (4.7) are valid for both the Lagrangian formulations
based on Lagrangian-time and on Lagrangian-distance. We also compute the flux in the

Lagrangian formulation based on Lagrangian-time

ff=0.  fi=o0,
) ‘::l - —I)“U“ . ~I‘.:J - I)”LL” . (4'%)
) ‘I‘i'l = _[‘“ . ‘I‘l:} - _U" )

orin the Lagrangian formulation based on Lagrangiun-distance



‘.;'z()_ j;':().
[V ==p’sing” . fI'=p"cosd’ . (=L
fi =—cost’ . S ==-sing’

the flux functions of equation (-h8) ure used in the system based on the Lagrangtan-time
(t-&). while the flux functions of equation (LY) are used with the svstem based on the
Lagrangian-distance formulation (A-E). In this later case the angle 8 represents the fow

direction angle at inlet and usually set equal to zero.

4.3 The computational mesh

The computational mesh in the T-& (or A-8) plane ix shown in figure 5. The mesh is
naturally rectangular, e, no special manipulations wre needed 10 transform it o a
rectangular shape. Although the streamlines j, j+1.... are neither straight nor paraliel, their
Lagrangian representation is naturally rectangular, This is casy to figure if we consider
that the distance AE separating two streamlines represents o streamline incrementation,
and in this implementation equals the mass flow rate between any two  streamlines
(AZ=pulAy)t, which is constant regardless of the actual shape of the streamlines. So that
any two (or more) streamlines represented in Lagrangian coordinates (T-8), or (A-E), will
appear as straight and parallel lines. Also T represents the time celapsed since the moment
t=0), so thit lines of constant T will be parallel and will yield a rectangular (T, &) mesh. In
the formulation based on Lagrangiun-distance (A-E). the sume reasoning applics to the
distance-step lines. Incrementing in A, which represents the distance waveled along cach
streamline, taking an equal distance increment AX for all the streamlines, will produce the
same pattern of straight and paralied lines,

The superscript nrefers to the time step number and subscript_j refers 1o the cell

number.

VL is the width of the system (tunnel) and is set cqual o unity for i lwo-dimensional system,
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Fivure 5. The commitational mesh
&

The mesh divides the computational domain into cells which are centered in the &

direction at & and at T+1/2 (or M#1/2), and have a unitorm height has tollows

h=A8, =5,,n-5in- (4.10)
The ditference equation for the j® cell at time step n using Lagrangian-time is

derived by integrating equation (3.62) as follows:

el n L\t" w+1/2 n+l/2)
£ =L -_Aﬁ ('.M/z ~Han) @.10)
A

or tor the solution in using on Lagrangian-distunce based on equation (3.74), we get

hn n Axl 1 - n
By = By - (i - ). (4.12)
f

3y



4.4 Method of solution

The flow domain is discretized into a mesh in terms of streamibines § and timwe
lines T or A (see figure 5). We assume that we are at a given instant t=0AT (or A=nAR)
and that at this instant all the fow properties are known, (In fact we start at £=0 and pro-
gress numerically to t=1). From this point we want to compute all the propertics at
=T (or A=A 1), To do this we need to solve the equations set (411 or ¢(L12).

From this point on the discussion will mention only the Lagrangian-tinw
formulation. the same procedure being applicable also to the  Lagranginn-distainee
formulation.

We consider the cell labeled f (shown shaded in figure 5). The process is then
repeated for all the cells.

We start by computing the flux values at T=112 on the two bounding streamlines

J+'/2 and j-'/a (I,T;V_,"' undj_',"_*,;i,z). We will start by assuming that =00 the flow
properties are constant within euch cell (e.g. the pressure is constant between the points j -
U/aand j + /2 and is equal to the pressure value at j ). The solving process is similar to
Riemunn problem, i.e. we imagine that at the instant =" there ure two cells of gas at
ditterent states (j und j-1) separated by a membrane at j-'/2. This membrane separating the
two cells is removed at the instant T=t* (instantly), and we want to compute the inter-
action along the streamline j-1/2 (See figure 6).

Since the line j-1/2 is itself a streamline between j and j-1, the pressure and flow
direction at j-1/2 and n+'/2 must be the same on its both sides, The sitaation shown in
figure 6 assumes that the pressure pj' is greater than p)_,, then a shock wave propagates
into cell j-1 and an expansion fan into cell j.

To start the solution process we make a guess for the pressure p at j-1/2 and

n+1/s, let

Ty
o= J=Ys

- n ] (4. ] 3)
By
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for this value of ¢ we compute the tlow direction angle at j-!/o and 1e+'/2 using the

obligue shack relation developed in Appendix C as follows

,‘- o- ! ‘ 2y (M_’r'-t)z -‘

. -1}. 4.14)
[Y(M;I-J)J_U"*'J (y+ Du+y-1I J (

0" 5 =0y, - tan”

"Then for the sume guessed pressure value p atj-1/2 and n+' /s, let

e Yo
)i

b=t 4.15)
D,

solving for the expansion fan propagating into cell , we first compute the Mach number at

-1/ and nt /o using the isentropic relation

. (1+Y mr)
(“ﬁ.;fﬁ') = Yfll fiz-_E ) -1 | (4.16)
o 1

J

and then compute the tflow direction angle at j-!/2 and n+1/2 using the characteristic

relations detailed in Appendix E

B =+ oMy - i ), @.17)

where v is the Prandti-Meyer expinsion tunction

ﬁM):J}' ; tan ( Y-l T—m ) MZ_] . (4.18)

The values of the flow direction angle 8 at j-'/2 and n+'/2 computed with

cquations (<. 14) and (4.17) should be equal as they lie on the same streamline. If they are
not equal an iterative process is applied to get the value of p;'f}/ that will produce the

same flow direction 8 at j-1/2 and n+'/2 with equations (4.14) and (4.17).
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Figure 6. The Riemann problem

When the value of p and 8 are determined, we use these values to compute the
fluxes (equation 4.8 or 4.9) which we use in equation (4.11) to determine the values of IS

at the next time step t=t"+.

4.5 Computing the flux for the formulation based on Lagrangian-time

In order to compute the flux for the formulation based on Lagrangiun-time
(equation 4.8), we note that we need the flow velocity at the point considered ( j-!/ und
n+!/2). The interface at j-'/2 being a slipline the velocity on its both sides can vary and
hence must be computed separately through the oblique shock and the expansion fan. In
both cases we start by computing the Mach number and density at (j-'/2 and n+'/v).

Through the obligue shock wave we get using the Runkine-Hugoniot relation

(M) {r+ Dot y= 1} 2002 - 1)
of(y - Do+ y+1}

M = . (4.19)



and

I’Tfﬁ _(y+ Dury-1

" (y=Du+y+!]

]

(4.20)

where i the pressure ratio through the oblique shock computed with equation (4.13).
Through the expansion fan we use the Mach number value obtained trom the

isentropic relation (4.16) and compute the corresponding density

=0, 4.21)

where & is the pressure ratio through the expansion fan computed with equittion (4.15).

Then we can compute the velocity as follows

V=M 7—2) (4.22)
I

and the velocity components

=V coso, (4.23)

v=Vsing, (4.24)
where 0 is the flow direction angle.

4.6 Boundary considerations

We note at this point that in order to progress from t=nArt to t=(r+1)At we need

. ) -~ 4 . .
two 1ux values (_I_,':j’,.f," and j,"f,}i“), so that each streamline (or cell) j needs the

interaction of the two streamlines surrounding it to be solved. However this description
method fails at the system wall boundaries, where the streamlines bounding the system are

delimited by the system's walls. Thus we need a special method to take into account the



first and Tast streamlines at the bounding walls, This problem has two possible solutions,

which are described in the following sections:

4.6.1 Bounding streamlines recessed from the wall,

In order to maintain the logic we locate the first (and Last) stecamline of the system
at a distunce VE/2 away from the bounding wall, in such a way that this streamline be
located in the middle of a cell bounded by two streamlines. “The outer bounding stresmline
being focated on the boundary wall. This fact is a consequence of the tingeney condition
between the bounding wall and the last streamiine. Thus the direction (8 of this streamline
is identical to that of the wall and known. The iteration procedure described in the
preceding section is used to compute only the pressure at the wall, e, we iterate to nlch

the angle © obtained with equation (4.14) or (4.17) with the wall direction at_j=!/» und

n+!fo,
/ =2
/
1/
>/, .
2 A J

Lower wall & 1/2

now/r gy

Figure 7. Bownding streamiine recessed from the wall

4.6.2 Bounding flow represented by an image flow.

An alternate procedure is to position the first and last streamlines exactly on the
bounding walls, In this case we use an image flow outside the wall to provide for the
external cell with which the last streamline will interact. This case is represented in
figure 8§, where the limiting streamline (here streamline number 1) is positioned on the wall

itself. The image flow being the image of the second streumline (j=2).
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Fisure 8. Image bounding streamline

We need to compute the flux through the imaginary streamline, at_j=!/» and n+!/x,

as shown in figure 8. This is done using the procedure described in section 4.4,



5. SPECIFIC FLOW PROBLEMS SOLVED USING THE

LAGRANGIAN APPROACH.

5.1 Specified geometry problems

T this section the Lagrangian approach is applicd 1o some conventional problems
of aerodyniamics. By conventional problems, we mean problems where we compute the
eltect of the interaction of a gas flow with o body or variable shape doct, wwd that the

contour of the body or duct subjected to the flow is known,

5.1.1 Flow in a tunnel with a cireular are bump.,

This problem consists of o straight tunnel with a circular are bump on one ol its
surface. us shown in figure Y. The bump has a maximum thickness ot 4% s length located
at ity middle. This is a standard problem for which known solutions exist (see Ron-To Ni
[ 18] and Eidelman, Colella and Shreeve [6]), that will be used to validate the resulis
obtained with the Lageangian formulation. Figure 11 shows the Mach number distribution
along the wnnel for the lowest and highest streamlines (the two streamlines closest (o the
lower and upper wall respectively), and for three intermediate streamlines. The streamdines
are numbered from the lowest up, i.e. the streamline closest to the Tower wall s the
streamline number |, and the one closest to the upper wall bas the number of the last
streumline in the solution (in this case 61). This problem was solved in hoth (he
Lagrangian-time based and Lagrangian-distance based formulations using the boundaries
streamlines recessed from the wall as described in section 4.6.10 Figure 11 also shows
the results obtained using the Lagrangian formulation compared with those obtained by
Eidelman, Colella and Shreeve |61, which are superimposed on the fine [or the fowest and
highest streamlines. Figure 12 shows a comparison of the results obtained with the two
variants of the Lagrangian tformulation (based on Lagrangian-distnce and Lagrangian-

time).
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Figure 9. Civeular are biunp probiem

This problem involves sudden changes in flow direction at the wall, specifically at
the two sharp corners at the junction between the civeular are bump and the twnnel wall, In
supersonic flows this sitvation generates an ebliyue shock, or a Prandtl-Meyer expansion.
Special care is taken at this points to maintin the accuracy of the system across the shock
wive (or expansion wive). This is done by adjusting the distance AR (in the system using
the Lagrangian-time notation At), so that the tuming point lies exactly on a celi boundary
line, A or T line (see figure 10} This ensures that the shock (or expansion) will be issued at

AL corner,

47



/ Ohligue shock

-

AT(AN)

- oo
=il P

Streamlinge

Lower wall

Fignre 10, Sharp corner reanent

The problem was solved for an inlet mach number of 165, 61 equally spaced
streamlines, the total tunne! length was 3 divided i three equal sections and the wnnel

height was equal ta 1. The maximun thickness of the circular busp was % ol its length,
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5,02 Flow in a tunnel with a straight wedge

This problem consists of o supersonic flow past a straight wedge as shown in
tigure 15, The inlet Mach number is 2.0, the wedge angle is § Degree. the wedge length is
I und the wmned height is 1. The sharp comers invalved. where an oblique shock or
expansion fun is issued, are reated in the way described in section 5.1.1 to ensure that the

shock, and expansion fan, will be issued ata cell corner (see figure 10).
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Distance nlong wnnel {x)

Figure 15, Wall and stireamdines shape for the straight wedge problem
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5.1.3 low through a simple (parabolic) supersonic nozzle

The problem is the case of a simple supersonic nozzle made up of two parabolas
smoothly connected. The nozzle wall is build of two parabolas (y=ax?+bx+c). The two
parabolas starts each at one end of the nozzle and are connected at the middle (sce
figure 18). The exit of the nozzle is fitied with an extended straight pipe section to allow
for dampening the fluid oscillations at nozzle exit and reach a uniform flow. The nozzle
heing synmimetric about its axis only one half (the lower half) is considered. All the nozzle
problems were solved using the Lagrangian formulation based on Lagrangian-distance.
The boundaries streamlines are recessed from the wall as described in section 4.0.1, We
considered various nozzles with varying lengths and area ratios. We present here the
results for three nozzle cases, representing a long, intermediute length and short nozzle.
All the three nozzles have the same area ratio. Very short nozzles (or ones with a very
high area ratio) develop an inclined shock wave at exit (figures 25, 22 and 24), This is in
contrast with the properly designed nozzle of section (figure 35), which exits & uniform

[fows.,

Hall nozzle length Nozzle axis
1 ro-

it 4 e e —— e me @ e e — - w——

Flow dircction
——mmreeepe -

First purabala

unction poin
Junction point Sceond parabola

Figure 18. Parabolic nozzle construction

5.4 Case of a lung nozzle.
This is the application of the nozzle problem described in section 5.1.3 to a

relatively long nozzle. The Mach number at inlet to the nozzle is 1.05, the solution is for



- . ! . . . - ag4 .
15 streamlines, the area ratio s equal o 4 and the nletare equals 0.5, The nozzle lengthos
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Figure 20, Streamlines and wall shape in a long parabolic nozzle

r

5.1.5 The case of an intermediate-length nozzle.

This is the application of the nozzle problem described in section 5.1.3 to u
intermediate fength nozzle, The Mach number at inlet to the nozzle is 1.035, the solution is
for 15 streamlines, the areu ratio is equal to 4 and the inlet are equals 0.5. The nozzle
length is 10 with a straight extension of the exit of length 50, The longer extension to the

outlet of the nozzle is intended to observe the oscillations at nozzle exit.
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5.1.6 Case of 4 short nuzzle.

This is the application of the nozzle problem described in section 5.1.3 to a short
nozzle, The Mach number at inlet to the nozzle is 1.5, the solution is for 15 streamlines,
the area ratio is equal to 4 and the inlet are equals 0.5, The nozzle length is 3 with u
stradght extension of the exit of fength 60. The fonger extension to the outlet of the nozzle

is intended o observe the oscillations it nozzle exit,

Mach number

Figure 23. Mach number distribution for a short parabolic nozzle (enlarged inlet)
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5.1.7 Problem of airfoils at incidence

[n this problem the tlow around an airfoil made up of two circular ares (lenticular
airfoih at incidence is computed. The airfoil problems were solved using the Lagrangian
formulation based on Lagrangian-distance. The boundary streamlines are recessed from
the wall as deseribed in section 4.6, 1. The airfoil is placed in the middle of a duct,
5.1.8 Case of a lenticular airfoil at low supersonie Mach number

The airfoil problem described in section 5.1.7 is first applied to an airfoil submitted
1o a relatively low Mach number. Figure 28 shows the shape of the airfoil and the twao
closest streamlbines. The figure is enlarged o show the interesting region of the flow. The
Mach number is equal 10 2.0, the problem is solved for 120 streamlines (60 on each side of

the airfoil). The incidence angle is equal to 7 Degree.
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Figure 20, Mach mumnber distribution for the lenticular airfoil at Mach number=2 ()
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’ 5.1.9 Case of a lenticular airfoil at high Mach number
The wirtoil problem described in section 5.1.7 is then applied to an airfoil submitted
to o relatively high Mach number, Figure 31 shows the shape of the airfeil and the two
closest streamlines. The figure is enlarged 1o show the interesting region of the flow. The
Mach number is equal 1o 5.4), the problem is solved for 120 streamlines (60 on each side of

the airfoil), The incidence angle is cqgual to 7 Degree.
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Figure 29, Mach number distribuion for lenticular aivfoil at Mach nunther=35.0
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5.2 Unspecitied geometry problems (shape prediction)

In this probleny we consider the possibility o compute the Tlow around badies
whose shape is not specified, instead we know one condition thatt restricts the flow and
provides for the missing information of the budy-shape. We then compute the shipe of the
body subjected to the tlow in such a way that this condition be satislicd. This type of
problem were made possible by the fact that the Lagrangian formulation does not require @
erid generstion | 16]. This is opposed to an Buler based represemation where o grid s
needed and can only be generited iF the shape of the body implicd is known, "Thas it
appears that this type of inverse solution (shape computing} is only possible with this Kimd
of Lagrangian based solution. Two specitic problems were solved i this case: (1) The case
of computing the body shape 1o produce a required pressurve distribution, (i) and the

problem of nozzle design.

5.2.1 Computing the shape of a circular are to satisly o given pressuve disteibution

Here we want to compute the shape of a body that will produce a particular
pressure distribution. [n order to have a reference to verify the program's output, the
pressure distribution was computed on the wall for the cireular are bunp problem of
section 5.1, and fed to the program to compute the shape.

The difference in the procedure to compuie the shape appears only when solving
tor the boundury streamling, and the procedure is similar to that described in section <L, |,
At any moment T=nAT (or A=nAX) we want to compute the flux at the wall aj=!/2 and
n=n+! /2. We do not now the shape of the wall at but we do now the pressure at j=!/2

and =+t /o,
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where o is the pressure ratio of the known pressure at j=!/2 and n=n+'/a2to the pressure
at fand e 1E ais greater than one we compute the wall direction directly with the

Rankine-Hugoniot equation

[
(r);{fy" =0 + tan"[

o-1 . QY(M;')2 _1-‘
y(M;')z—OH-l (y+Do+y~1 J

[ e is smaller than one, in the case of un expansion, we first compute the Mach

number at_j=! /o and 1n=n+t /2 based on the isentropic equation

Y=l g
2 (1+ 3 (mr) ]
(My: ) = 'Y—I T;'_ -1 ) (3.3)
o Y
J
and we compute the wall direction using the characteristic relation
i = (M) M%) (5.4)

where v is the Prandtl-Meyer expansion function
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y+1 .
te
] 11

M) = (5.5)

[ -1 - -
f h\fﬂ'l'—l —tan~'VM* -1 .

This problem was solved using the Lagrangian formuliation based on Lagrangian-
distance. The bounduries streamlines are recessed from the wall as deseribed o section
d.6.1. The shape output was then compared to the original shape. The resalt of this
comparison is shown in figure 34, The inlet Mach number is equal to 1.65 and the problem

is solved for 60 streamiines.
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5.2.2 Supersonic nozzle design problem

The ability of the Lagrangian method to solve problems of undetermined initial
shape is used o compute the shape of the expansion section of u supersonic nozzle. This
idea is similar to the reflection suppression problem described by Anderson [1]. The
reguired condition is that the flow at outlet be uniform. This is achieved by setting the wall
shape in such a way that there be no wave reflection from the wall. Numerically this is
achicved by setting the wall direction at each step rnto be parallel to the direction of the
[owest streamline (the streamline that is the closest 1o the wall) at that step 1. Note that
this solution is satisfying the reflection suppression condition by forcing the wall 1o follow
the closest streamline's shape. This is effectively a reversed solution. as when the wall
shape is known, then the lowest streamline would be following its shape.

This problem was solved using the Lagrangian formulation based on Lagrangian-
time. The upper boundary streamline is recessed from the wall as described in section
4.6.1. while the fower streamline is positioned on the lower wall and confined using an
image flow as described in section 4.6.2.

A circular are is set up at inlet to provide for a smoath expansion. This is necessary
to avoid a sharp corner expansion at inlet that could cause separation of the flow,

Figure 35 shows the Mach number distribution at the exit of this type of nozzle to
be uniform as required.

The Miuch number w inlet is set to 1001, the problem was solved for 201

stresmlines, the inlet height was 1 and the computed outlet height was 42,4548,

L
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6. CONCLUSIONS

In the presenmt work we analyzed the Capabilities of a Lagrangian formulation of
Euler equations of motion introduced by Hui and Lob 11 Two variunts of this
formulation were examined: (i) The Lagrangian formulation based on Lagrangian-time.
and (i) the Lagrangian formulation bused on Lagrangian-clistance.

In the Lagrangian-time formulation fluid particles are Toliowed along their
streamlines at their own speed. while the formulation based on Lagrangiin-distance retains
the property of tracing a fluid particle, but in relation to the distance traveled along the
streamline. Numerically, this means that a computational cell using Lagrangian-distanee
marches in the flow direction of the fluid puarticle, but not with its real speed.

A numerical scheme was developed to solve the Euler cyuations of motion using
these two Lagrangian Formulations and was tested for standurd problems, in comparison
with results obtained using Eulerian formulation.

Then the ability of the Luagrangian-bused formulation to solve acrodynmic
problems of unspecitied body shape was investigated. Two situations of unknown body-
shape were considered:

. In the first case, we computed the shape of a body that would produce i known
(or required) pressure distribution when subjected 1o a specificd flow, The
pressure distribution being used as input to the program,

II.  The second case studied was the design of a supersonic nozzle. In this case, the
reflection suppression condition was used to define the problem, in order to
abtain a uniform supersonic flow at the exit.

The solutions obtained with this Lagrangian method were found to be very
accurate, displaying a high computational efficiency (actually providing second-order

accuracy at a computational load of a first-order solution).
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APPENDIX A

The Jacobian of the coordinates transformation

This appendix is intended as @ reminder to the relation governing the transfor-
mation between two coordinates systems.

Starting from the following relation linking the x - iy system to the T - € systen:

0T Jt
It= —~—d. +—d
dt = T X r)L(u )
d ’ '
(I = —gd.\ + —Edu
dy
dx = 9 dt + 9% ot
0t F)u, )
3 5 (A2)
i oy
dy =—=—dv+—=-d
=t o E..
which can be written in matrix representation as follows:
referring to equation A.d
It
el ox cx ‘A3
{1% - ﬁ dy ¥ ( '“)
ox
T

and referring to equation (A.2)

71



(lx

Al
dy WA

Selving for the determinant of the matrix T' we get

det 1! L _9tos drds (A.5)
N J oxody dyoax e

and for T we get

det T=d= D_\ﬂ - Qla_ll_ (A.0)

gt o oF dt

where J is the determinant of the transtormation and called the Jacobian,

From equation (A.2) we get:

_dx- (94 Ja

Jax

g

dg

(A7)

- (9
aud DJ dx - (%t)d ’ A8)
o axaé

dy =

simplifying we get

Yy ox
d dx -—d R
1= [d& % J) (A

and for y constunt {dy=0) we get:

dt _ ldy
= A0
T E (A.10)

while for x constant (cdx=0) we get:



From equition (A2) we get

- _{ dxy £
tlx [’ r)E')dc_,

X/
It

dt =

simplilytng we get

1 { o diy
B = —| —tly—-—=cix |,
“ (1[ ot U e )

and for iy constant {dy=0) we get:
9§ Ty
I:)..\' o ()T '

while tor x constant {dx=0} we get :

LR

ay J ot

From equation (A.1) we get:

dr"(?}sy)dy
ot ’
o

(dx =

(A1)

(A.12)

(A 13)

(A 14)

(A.15)

(A.16)

(A.17)



simplifying we gel

0t o
dy=d A __...;,k) .
Y (a.\' 5 ox

and for & constant (¢€=0) we get:

0
it ox

while for T constant (dt=0) we get

Jy 0T
——=J—.
dg ox

From equation (A. 1) we get:

de=(9% Jax
ot ’

dy

dy =

ot | dt~ (aT )dx

dg X
(e = 2= (lx + =2 2

)X 0T/

dx Iy rAU

simplifying we get

o[98 ot
d,\—J[ayd.t ayd&),

and for T constant ((/t=0}) we get:

CATE)

AT

(A2

(A2

{A23)

(A24)



f’,\" th (!\.25)

AR Bk

e dy

while for & constint (€=0) we get:

9x _ ;95 (A.26)
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APPENDIX B

The method of characteristics

The method outlined in this appendix is based on the assumption that the uid s a
pertect gas, that the flow s steady, two  dimensional, irrotational and isentropic, The
preceding condition (assumption) is expressed mathenatically by the ditferemial cquation

of the velocity potential:

((13 _d)i)cb_\w —2dh B b+ (az _ (pff)(b!m =0, (B.[)
where
ot o
h = — =1 ] y ==
dx ‘ dy
2 J2d
D, = a—‘ o, = (—— (B.2)
YooxT HoayT
Jd Jb
[4))

o Ox dy

wand vare respectively the xand i components ol the velocity vector,
(> is the velocity potential and s the local speed of sound.

Equation (B. 1) is in fact a differential equation of the general type:

Ad,  +2B (b.\'u +Cdh =D, {33

Hi

where the coefficient A, B, C und D are functions of x, y, teand v,

Equation (B.1) aceepts it solution of the general form:

L el +u?
+ -1

i B

(.@) =-a C_:‘ , (13.4)
dx /iy l—~u—
a
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and

(B.5)

Equation (B.4) defines two characteristic directions at each point in the physical
plane. These directions give the slopes of the physical characteristics at each point. It is
evident that this characteristic curves exist only for supersonic flow, when the term under
the root is posttive, i.e.:
nwtvt>af oor Vixa®, (B.6)

rearranging and simplifying the characteristic equation (B.4), and introducing the notation:

t=Veost, v=Vsing

et VT .7

sinp’ tanp
vtV 1
-—-'7,‘——=""T=A’I“—‘.—.,', (B.8)
(i a sin”

where 8 is the angle of the velocity vector Voand U is the Mach angle. we get:

y _ -

—= | =tan(6-p)=C

tx J,

(B.9)

[rl_u) =tan(d+p)=C*
dx /,

Equation set (B.Y) shows that each of the physical characteristics is inclined at the
Much angle (1) to the velocity vector, and that the streamline direction at a point in the

physical plane bisects the characteristic directions at that point.
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B.1 Two dimensional flow with expansion,

Applying the system ol continuity. monmentun and energy equntions between two
points of a two dimensional gas flow undergoing an iseniropic expansion, we get the
folfowing relation between the variation of the Mach number and the low detlection:

NM~© =1 dM

f =~ = (M) . (R. 1
-1,
I+;Y—,)“-PL’I" M

where v is the Prandil-Meyer expansion function

+ 1 -1 " =
M) = J%—_——l tan™' {:TIM" I l-tan'YM* - 1. (B.1 1)

Integrating we get the following form:

=

Q' =04+M)

(13.12)
0 =6-\M)

Equation set (B.12) represents the characteristic value of a low which is constant
along the lines defined by equation set (13.9). That is Q+ is constant along C, and Q- s
constant along C-, Using the two sets ol equations together, it is possible to solve for any
unknown point in the tlow, relating it to two other points where the flow is known. One ol
the two known points being related to the unknown point through the positive
characteristic (Q+), and the other through the negative characteristic (Q-). We pet the
following relations:

Along the + characteristics

8,=6-vM,)+vM,), (B.13)

and along the - characteristics

6, =06,+vM,)-v(M,) . (B.14)
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APPENDIX C

Oblique shock relations

Streamline

EEERE——

9 8 X

Figure 39. Obligue shock

We analyze the situation represented in figure 39 by writing the continuity, mo-
mentum and energy equations for the flow crossing the shock wave situation shown as

followns:

C.1 Continuity equation
. p]‘{’l‘!l = p'lvu'.’ (C ])

(.2 Momentum cquation

Tangent to the shock
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(pV WV, =(p,V .V,
'l rel 1 27 nd td

WLh
Vn = Vr: =V,
and normal 1o the shock
Di= Py =0V -V (L3
C.3 Energy equation
r (ol V’Jz _vl .
C:.(F|_12)=[_h7"]—)~ (w.h

were The subscript refer to the following situation (see figure HH)

! before the shock

2 after the shock

in normal to the shock

t tangential to the shock

The fuct that the ngential component of velocity does not change across the shock (see
equation C.2) and the trigonometry of the velocity triangles (figure HY) dead us 1o the

following result:

-

VE-VE=VhE -V, (.5

from the perfect gas relation we get:

' 3
AR ] !
“"T’“'(pR) (7-1][p,* -0

The energy equation then becomes:

Y (Lo _P|_ ViV (C.7)
y=I{p, p 2
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.4 The Rankine-Hugoniot relations
By climinating ail velocity terms from the basic equations we get a relation be-
tween the pressures and denstties ratios on both sides of the shock. Rearranging equation

(CL3) and using equation (C. 1) we get:

P, =1 = Pjvuzf[ - [P'J_LJ ’ (C.8)
reTanging we get;
\/':fl = ’):! - !JI l?-l . (C-t))

Po =0y Py

or equivalently solving for V, , we get:

[=

V,;'{, = 1y — P_r ) (C“))
TP PP

Multiplying (C.9) by (C. 10} and simplifying we get:

VoV, = 22200 (C.11)
Py — M

rearranging and substituting into equation (C.7), we get:

R.J__(y+'l)(x+y-'1_l -
P oy+i+(y-Doa A7 (C.12)

where

. IJ!.’

= -I—)- . (C.l3)
!
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Figwre 40. Velocity diagram across an obligue shock

Reterring to the geometry of figure 39 and 40 we can write the following relations:

V,, =V, coso

. =V,cos(c-8)

v,

V,, =V, sino
%

V, (',0:5(0’
Vv, cos

Reurranging equations (C.1), (C.3) and (C.15) we get:

P

replacing from equation (C.12) we get:

Y+ Do+y=-1

o=sin" \/(

2y M}

P o gy ym sin”o( -0
P

A

J-o.

(. 1-h

{(C.1S)

(1)

(C.17)

(CL1R)



and referring o the geometry of figure 39 we can write the following relations:

t:m(ﬁ~H)=:l—lsz . (C.19)
A

and

! = v+l = M' —-11tang . (C.20)
tan @ 2 M;sinfog-1

By combining the relitions (C.12), (C.17) and (C. I8} we getafter simplifying:
0 =tan" (3'_1 — - ?‘YM' ——11. (C.2D)
YM?—o+1 Y{y+1o+y-1

where 0 is the flow deflection angle after the shock.
The Mach number is defined as the ratio of the loctl speed to the local speed of

sound or:

M= \—/-‘ = v = v , (C.22)
a \/yR'I‘ \/Y_p_
p
. V)
M =—,. C.23
M:;;: _ Vip, Yfi =Lj__[3_,_ P2 (C.24)
M, W, Vipr V7D op
Combining equations (C.12), (C.15), (C.14) and (C.24) we get:
My +Do+y-1}~2{a -1)
M, = -, (C.25)
af(y-Do+y+1}
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equattion (C.25) expresses the Mach number after the shock as o function of the pressure

ratio O and the Mach number betore the shock.
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APPENDIX D

Solving for the properties of the fluid

At every point during the selution process a complete set of relations (e to &)
representing the fluid flow at the next time step is computed according to equation (4.11).

This relations have the following representation:

¢, =K =pluVv -ovlJ) (0.1

c,=H= 3 + — = (D.2)
e, =Ku+pVv (D.3}
¢, =Kv—-pU (D.4)
¢, =U (D.5)
e, =V (D.6)

Fromv these preceding relations we now want to compute the actual tlow proper-

We start by combining equations (D.5), (D.4) and (D.1), we get:

D= e, + pe;

K ©7)

And combining equations (D.6), (D.3) and (D.1) we get:
y = Ga P D&
K (D-5)
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Combining equations (D.7y and (D.8Yin (1.2 we get:

i (e "'P(’o;)- +((~’.; +p('.~i): + Y P

C=H=5"r KF Y-1p i
Combining equations (D.7) and (D.N) in (D, 1) we get
K* =pleye; — pe? - e,e; — pet) (D1
Combining D.9 and D. 10 and simplifying we get:
0=-p*(e? +e2) 1= !, p ! (e,e;-e,e) Jiﬂ- K*H (.11
20vy-1 " y-I 2

Equation (D.11) is a quadratic equation in termy of prand can be solved to compute
the pressure.

We start by setting:

2, 2y _Y+1 :
A=—(e+ed (.12
((h (‘.))2(_}'_1) s )
1
B= Y_1((3‘.,6,;—e_,e_,,) (12.13)
el+e? )
C= L'—-Q -K*H (D.14d)
2
-B+4JB%-4AC
p= (D.15)

2A

Having computed p we can compute the remaining properties by substituting

backward into equation (D.7) and (D.8) to get weand b, then in (D.1) to get p.
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APPENDIX E

Isentropic relations

This appendix s a simple review of the basic relations that exist between the
properties of a gas undergoing an isentropic process,
IFor & gas (compressible fluid) flowing at Mach number M, the ratio of the static

pressure 2 to the stagnation pressure can be written as follows:

T

Doy Y= Ty (E.1)
I 2

=

Assuming that the stagnation pressure is constant throughout an isentropic

shockless TTow., we can relate two states of the flow as follows:

o, ‘1+Y;1Mf
M= —— < -1 (E.2)
A le 'f;

o’

Where:

) (E.3)

—==au (E4)

Knowing the Mach number, pressure and density at any state it is possible 1o

compute the velocity as follows:
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¥
V=M U

u=Vvceost

(.6
v=Vsint

where the subscripts 1 and 2 refer to two states of the flow, and 8 is the flow direction

angle.
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APPENDIX F

The stability condition

The sotution developed in this work is based on o numerical discretization of the
Fuler equation of motion. This type of solution is bound to instabilities unless special care
is taken to prevent them, This is done through the introduction of a stability condition in
the solution which states that the domain of numerical dependence must not exceed the
domain of physical dependence for the system to be stable, which is expressed in terms of

the Courant-Friedrich-Levy number (in short CFL).

n n+l

K — i+1/2

h >< j
S

.. A Uk3 J" 1 / 9
-
T
| At
(A0) ™

Figure 41, Domain of dependence

F.1 Lagrangian formulation based on Lagrangian-time

in figure 41 the stability condition is set so that the distance Ax traveled by a tluid
particle at j during the time interval At does not go beyond the point where the
chavacteristic lines issued from Hoth limiting corners of the cell cross the j™ streamline.

(The 1wo characteristic lines will not necessarily . voss the j* streamline at the sume point)
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For the C+ line:

B =0+ . .10
where
8=tan"' 2 . (12
t
1
- N
L= 8inT —, (k.3
d M
and
(€ = puhz | (-n

where z is the system width and is equal to one in two-dimensional formulation.
From the geometry of figure 41 we write
h

tan@* = . (1°.5)
2Ax

front which

Ax = h = ds , (b.0)
2tan{0+ ), puZtan(d+p),

and

Ax hCFL dE CFL (F.7)

- 2u, tan(0+p), - 2puftan(6+p),

where CFL is the stubility condition and is ulways selected smaller than one in order to
satisty the condition that AT (or Ax) computed from equation (FF.6) ar (I5.7) lies inside the

domain influenced by the characteristic lines (C+ and C-).
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1.2 Lagrangian formulation based on Lagrangian-distance
The samwe  considerations apply 1o the  Lagrangian  tormulation based  on
Lagrangin-distance, exeept that we now campute a distance interval instead of a time

interval, This takes the Tollowing form:

— L ,
L= AtV = AtV +0* = At (I-.8)

cos®

Replacing fron equation (F.8) in (I2.7) we get:

=

A= (ECFL 9
= 2')“71 [:In{{')'{';'l)_J cos (‘)“ . (1. )
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