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ABSTRACT >

i

* Intuitionistic loéical categories are defined as a modification
- -~ o ¢

of the logical categories of Volger {2] and [3], tnféﬁaed to represent

intuitionistic first-order theories. _An Lintuitionistic prélogical

N category contains certain morphisms to be thought of as formulas gf a.

theory, and operations analogous to propositional connectives and exiésten-

tial quantification are defined on these morphisms., An intuitionistic

L

, logical category has, in addition, an opetration analogous to universal

quantification, It is shown that the category § of sets is intuitionistic
*
Lagical, that § can be made prelogical i a number of wavs, and that

any ‘category of form SP where P {s part{ally ordered, is intuitionistic

logica17 A premoa{l\ of a prelogical category is a structure-preserving

s

gun&gor to § ; a Kripke model of an intuicionistic logical category is
a logic-preaerving funccor to ,gp for a certain partially ogdered class P.

A complel:enesa‘theorem is proved for prelogical categories, wtii.ch states

P

that any ''nontheorem" of the category can be eep;rated frﬁL "truth" By

an appropriate premodel, f ..
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SOME RESULTS CONCERNING INTUITIONISTIC LOGICAL CATEGORIES
X sy

Karen Tennenhouse

RESUME

On définit les catégories "logiques intuitionistes". comme
des modificatio}:s des catfgories logiques de Volger
( voir [2) et [ 3] ), au but de généraliser la notion de "théorie

intuitioniste du premier ordre". Une catégorie prélogique~intuit-

fa\\\ ioniste contient certains morphismes qu'on peut considérer comme
%ﬁﬁ AN , N ]
NS ~ "des formules bien-formées d'une théorie, et on définit pour ces

morphismes des analogues aux connectives propositionn_els, et 3 la
quantification existentiélle. Une catégorie logique-intuitioniste
a', de plus, une opéra;tion pareille a la quantification universelle.
On démontre que la catégorie Ens des ensemhles est logique-intuit-
! ioniste, que Ens peut &tre prélogique de plusieurs fagons, et puis
~ que toute catégorie 'de 14 forme En_sz, o‘u' g_ est partiellement
- ordonné, est 1ogique-intuitiorxis§e. Un prémodele d'upé catégorie

ﬁ ' .- prélogique C est un foncteur A valeurs dans Ens qui préseﬁe la

] . *tructure de C; un mfxiéle de Kripke d'une ‘catégorie lnaique-intuit-~
‘ ) {»e s ioniste est un tel foﬁteu A vlaléurs dans gﬁ , avec un certain ' .
engerble R partiellement ordonn€. On démontre un théorame de
' complétitude pour les ccai:égc:n:'ies p;élogiques: ce théordme dit que'
’ pour toute formule, qui n'est pas un-théordme de C, il existe un

‘o i .

prémoddle qui la distinque de la "verité".
o L
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The following notation is for category-theoretic items:

f
N
g List of Symbols o
:
{
¥
¢

|€| - apd Ob(C) will be used interchangeably to denote the
class of objects of c ) ‘
_‘92 category of functors from D to C Y|
. EIX “category of objects over X in C category ' ; -

S category of sets

» W finite cardinals

. Xx Y productefX-amd Y !

.

< f’8 > £ ' g
————> X % Y product map of Z ——>X and 12 > Y ‘
p X+ Y coproduct of X and Y .
. (fz ’ / 1 S e T
: X+Y Z coproduct map of X ———g——é Z and Y—8-> 2
J Ag? X=X x X diagonal map.of X -
o .
- -~ 7 VY.t X+ X - X codiagonal map of X )
X W N .
2 AN : . —
f idx and X will be used interchangeably to denote the fdetxt;ity
- 2 N
. morphism of X ¢ |C| . SN .
‘,‘,'“H'L . '\‘ P
-1 terminal ob ject SR Y
—4/ . T oo «m,v;“?‘ ~
v g~ 1 unique map ' .

Pb(f,g)‘ \pull;lback of f and g

X=Y X 1is isomorphic to Y

f-l.

inverse of the isomorphism f
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The symbols which follow are with respect to sets X and Y,
a function X —g——> Y which is not necessarily an isomorphism,

and elements x e X, y € Y.

N set of natural numbers
sup X supremum of X

inf X infimum of X '

Bo(f) *and do;n f wil]: be uge& it;terchangeab,ly,to denote the doméin of £
al(f) codomain of f —

¥ge(f) range of £ - \

f'l(y) . set of x € X such that £(x) =y .
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v BACKGROUND AND INTRODUCTION

It has been known for ;ome time that the set of formulas of a .
first-érder theory T (more precisely, this set modulo the_;elation of
"provable bi-implication') can be viewed as a lattice by 1nterpretiﬁg
the logical connectives '"and" and "or" as the lattice meet and join
respectively, When this is done, the_axioms of the classical predicate
calculus dictate that the lattice will be a Boolean algebra; the equi-
valence class of tautologies is the unit ar greatest element and the
equivalence class of contradictory statements is the ;ero. The logical
connectives 7 +«(''not'") and = ("imﬁlies") coincide with the Boolean
complement and relative complement respectively. The existential and "
universal quantification correspond to infinite joins and meets of the,F

7 7’_#’_’___,_/_4,_’,
form |Jp(g) and N B(E) respectively, where the notation p(¢g) means

that ¢ is a variab%e' occurring freely in the formula B. This Boolean

- algebra is denoted (7). The theorems or deducible propositions of the theory T

foru a filter of U(TI)., For any formulas a,8, a < B iff a =P 1s a
theoren,

Rasiowa and Sikorski in [1] show that many logical concépts and
kheorems ctarn be expressed and prcoved in this algebraic formula* e In
particular, the completeness theorem for first-order theoriésecan be

stated and proveéd in this way.

The R-S definition of a realirzation R of a theory T (what logicians
usually call a structurefor 7) is as follows: ‘
(1) R aﬁecifies a set J (th; universe) to which variables may be

ﬁnpped and a compiete'Boolean algebra A (the truth-value algebra) ,

>

9
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(11) R assdciates to each n-ary function symbol f in .E&fT) (the ’

language 61’ T) a function fR: RS, B

(111) R associates to each m-ary predicate symbol p in £(7) a

function pR: J° - A,

‘

Inﬁparticular, it 18 clear that if A is .the algebra 2, then this de-
’ X
finjition 'gives precisely the usual logical notion of a structure .

.
R-S call this special case a .semantic realization.

1 4

Notions of satisfiability, validity and model are defined, by

interpreting logical connectives as the operations of A, in such a way

that an R-S semantic model is precisely a classical model, (i.e. all
1

axioms of T are "true") and a formula is-R-S valid iff it {s valid in

the usual sense of "true in all models", where the variable symbols-are
&>
considered as variables ranging over J,

% .
An important special case is the canonical realization R® deter-

mined by a homomorphism h: J(7T)-» A, where A is any co;nplete Boolean-
algebra. This is the realization whose universe is just the set T of
terms of {7) itself, and the operation on formulas 1is "substitution",

i
i.e. composition with h, The exact definition is as followa:

(1) The universe of R® 1& T = (all terms of (T)).

- The truth value algebra is A, .

A

(11) A function symbol £ i~ fRo defined by

fRO(Tl"..'.‘:n) - f(?l,-o-.:fn) Q‘T. !

(411) A predicate symbol p — p given by
° Ro

‘pRO (Tpeieaty) = h(llp('fl.--—.rm)ll ) € A, where [p|| denotes the .
equivalence class in [(]) of a formula B

-

.
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. prov'évthat a rich theory can "inherit" models from its quotient algebras

,
[

R-S note that such a realization will be & model for ’T if h also pre-

serves infinite:joins and meets,
: ’

The completeness theorem, that a formula which is valid in-all

. « ‘
models must be a theorem, ig then proved in R-S [1] by constructing,

. vt .
for every non-theorem ¢, & canonical semantic model in which g is°’

r

’ /
false. A sketch of their argument follows: .

v

A theory T is said to be rich iff for every formula ¥ x Q(X){in
U(T) there is a term 1t in [/(T) such that " T x B(x) = B(1)" is ;a'
o

theorem of 7. Using quite a simple and equational argument, R-§ |,

¥

in a8 logically faithful way, {.e, that: : -

- -

If 7 18 rich and F a maxima\i filter of J(T) (in part‘i,cular the maximal

' N
-

filter con”t:aining a certain irrefutable ), then the naturél homomor;;,ﬁism

h: U(T)W U(TV/F = 2 preserves infinite operations and therefore

determines & canonical semantic model for T (in which ¢ is satisfiable). "
But it i{s shown in turn that every consistent theory can be extended

conservatively to a rich theory by adding constants, and hence that every.
. ’ )
consistent theory has models of the required kind,

ey

The notfion of a first-order theory has been translated into eate- P
gorical language in the following definition, suggested by F.W, LaV\;ere and

modified by H, Volger in [2] and [3].

A category 7 1is calléd an elementary theory L£ff :

(1) T has two distinguished objects V and Q such fhat, for every X

X e Ob (T) > X# Q, X can be specified as a product V" for some finite n,

and unless n = 0, T (,X) = 6.

T has all ob jects v and hence in particular a terminal object, denoted I,

i
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i8 a Boolean algebra and for every X Yin T, T(£,9) is a

Boolean homomorphism., The rgreate::'-t a

east elements of T(X,1) are

denoted Ix, Ox respectively,

‘

(3) For every f:X — Y in T there exists a functor gf[

: I(X, Q) —’Z'(Y,Q)
»0) ¢ T(Y,Q) - T(X,Q).

s

e
37

which is left adjoint to _the "substitution" functor I

'3ft ] 18 called existential quantification along f.

Pl

2 2 AT

>

(4) Two technical conditions (see [3], }.&.2 gnd 1,4.3) are given

- .
e A
IRy

regarding a sort of cqmnutativ'ity of af[ ] with certain pullbacks

&
l.'
X

.

¥
A
¥
.

(5) Define the equality predicate on each X ¢ |T| as e - EIAX[IX]-
e ' )

where Ax as usual X X x X
o N

’ ¥ -
denotes the diagonal.
i

1
x
Y N \n -
. ) (fl'fZ)
(a) - For any fx'fz such that X >Y x ¥
e < £,,£,> =1, then £, = £,:X - Y. %
, ( ) )
- (b) eq i8 & (Boolean bi-implication.) “
' f A i

The motivation for condition (3) Will be discussed below, but it should
be clear that (1) and (2) are natural conditions if V is thought of as
T
J
. representing the set of variable symbols of the theory and { as

v

"representing' the aléebra of truth values in the following sense: '
) Amodel F for T will specify (or.consist of ):
A gset |V to which V ie mapped ; . ) "

the set 2 to which Q 1s mapped;

.
' L
~ .
- *
.
‘
.
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for every morphism f:Vn -V i.,n -’J_’, a function fF: Vn -, whicl:

might be called a term;

for every morphism g: vt —>(i in Z’,' a function 8y Vﬂ »2 1.e,

precisely an n-ary relation or predicate on V, giving rise to "formulas';

these form a Boolean algebra in the usual way.

In particular, morphisms p:I Q0 in T are sent to maps: {1 =2, {i.,e,

these are the sentences of the theory, which contain no free variables

and are therefore simply either "true" or "false". .
Now in‘ the cate,ory_.g of sets, logical quantification takes the

following form:

(We shall use Volger's notation of "4" for the 1-1 correspc;nding between

maps x—2 5 2 and subsets X'——E—f—> X, which exists since 2 is a

apbobjeét: classifier 1n §. @ is called the characteristic map of cp# ).

Consider a formula B(vl,...,vn,v) in the theory, i.e. corresponding to ®

a map aF: Vn+1 - 2, which has free variables v ,...,vn,v ranging over V.

1
Let p denote the projé&ction Vn X V—-P-f—é vn and let

2 [ 17507, - 507, 0
be given by (EP[CPI)‘ - p(qf")' [call this equation I]

4.e, :_I.p[ } corresponds to the "'dtrect 1mag'e" m?p of thq representing
subsets. One can see that s{p[BF] is the formula '"there exists

vely>d B(vl,...,vn,\r) holds". I.e. ?:L;t—enti;if quantification of variables
is performed by taking .dtrecc image under a projection., (For more general
maps Vn—-—i——-) [}n . :Ef[q:] is true for y € l}u 1ff there exists a pre-image

—~k

of y under £ such that @ holds, so that there is still an "existential”

meaning.)

— e —— o g L w ——— e R
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‘Furthermore, let Vp[ I: _.S':'(I/I‘H'1 ,»2) —>§(Vn,2) be defined by

(vppl)‘ = {y ¢ V"lp'l(y) ;q»"' ) [equation I1] [M/
Again one can see that VP[BF] is the formula “for all v ¢ V, ‘
B(v_l,...,vm,v) holds", 1{.e. II describes universal quantification.
And in general vflcpl holds for y i{ff @ holds for all pre-images &f y
under £, Now for every map X———f——> Y in §, we hed® the usual sub-
stitution map S(£,2): §.(V,2) - §{x,2) given by S(f,2) (9) =9 £.
One can see that this is also expressed by taking the inverse image,
under f, of the carresponding subset, since (@ f)& = f-l(cp#) .

It is well known that direct image {s left adjoint in § to inverse

image, i.e. that

f(X') ¢ Y iff X' ¢ f-l(é’) for all X' c X, Y ¢c¥Y.

~.

It is also clear that the functor defined by II is right adjoint to

inverse image in §, since
p P ' ' -1 -
£ (¥Y)cX 1ff YYecl{yey |[f(y) cX' }

Condition (3) of the definition of an elementary ;;heory thus !
generalizes the known fact that in S, existential quantificatién (given
by direct image) is left adjoint to substitution (given by inverse {mage).
The corresponding definition and property of uni,versal quantification
can, in this classical (i.e. non-intuitionistic) situation be obtained . .
by Boolean dualization of 4, Conditicrs (4) generalize similar properties

in 9 of direct image and inverse image,

-

Following definition I of ¥ in §, consider 3%:“"].

——yy—
s ‘.
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We have '(3Ax[1x])* = Ax(lx‘“) = A, (all of X) :

= {((x,x)|x e X} = {((xy)] x =y € X} .

oW

This motivates the definition of "equality" in an object given in
conditibn (5) of the elementary- the;’ry definfition., Condition 5(a)
stipulates that this generalized equality must be strict, i.e. does
not "identify" distinct morphisms; 5(b) indicates that 'equal" truth

values are exactly those which imply each other.

Thus it i3 seen that the definition of an elementary theory

embodigs the relevant properties  of a classical first-order theory. ®

S i

Volger later generalizes cond>tion (1) to admit all ob;j/ecurof’t’he

form V" 'Y Qm, and finally dispenses with such representations altogether,

in favour of the concept of a logical category, It may be noted that a

logical category bears more resemblance to a multi-sortdd theé?ry whereas
{
an elementary theory corresponds to a theory with a single type.

A categof}z C 18 called logical in [2] .and [3] iff
(1) ¢ has finite products. The terminal object (which must exist by (1)) ,
R \

is denoted ‘I and the unique morphism X — I is denoted 'x for each X e |Q}.

[

- (2) (-has a specified Boolean algebra object @ . The greatest and least \
elements of ((X,0), X ¥ Q and of ¢ (Q,Q) are denoted 1x’ox and 1,0

respectively. The Boolean complement is denoted ~ : 2 = 02 .

(3)(4)(5) For each X—E=—> Y in 0, conditions (3),(4),(5) for an

elementary theory .are satisfled. »

5
{

/ A model of a logical category ' is a functor F: _(_,'—0'5 (sets)‘yhich

AT e -

if,e. X le] is precisely the predicate of equality on a set. o




-.:"I"’x"!‘

.preserves finite pr se‘nids 9 to the set 2 "y sends 0,1, ~, A
to t:,he 1og‘;cai "false", "true", "not’ {md "and“' respectively, and
sends‘ &'f[ ] to "direct {mage". More generally if (C,9,d,...) and
(g',Q'%'...) are any two logical categories;, and F:J — (" a functor,

F is called a logical functor iff F preserves finite products, sends -

Q tc’)’ Q', preserves the Boolean-algebra structure of each ((X,Q), and

sends T to ' .

It should be noted that S is of course & logical category: S
has (cartesian) products, 1 (singleton) is terminal, 2 is the Boolean-
algebra object in the well-known way, and the discussion on pages 5-6

ahowli that the direct image map defines an appropriate quantification.
|
|

So

model for ¢ is really just a logical functor: ¢ — § . .

2

A logical functor ( —(' 1is sometimes called a ('-model for (

*

The functor ¢ (I, ): Q‘*\Q may or may not be logical, When

it is, it is called in [3] the can%al .(slemantic) model for (.

, —
To see the motivation for this terminology, consider first that .

the objects of ( contain, in a sense, all that remains of the tntuitive
i
vnriables of the theory. Remembering that, in the case where (J is an

elmntary theory, an object X 1s a product v v, the class-~of-variables

»
object, we continue to think of X, even in the general\cases, cs a class

of terms. . & . -

- . R LS - o v T g~ Ao




Volger notes that the canonitsl functor (I, ) will be a model for (¥

iff ¢ is maximally consistent, i.e. ¢ (I,Q) = (0,1}, 'and (¢ is rich,

i.e., for every X—t’i——? Qin g with 4, [®] =1, there 1is a 'I——k———> X

X : -

in ¢ such that @k = 1.

This definition of maximally consistent translates as: "every
closed formula of (' is either provable or refutable" which is just the
usual logical definition, Likewiée, since maps I - X, 1.e.‘1 = X
din S aré just specified elements of X, we call a mai) —k s x in:Q

a constant in 2, and richness has the usual logical meaning,

Thus the canonical model Q(I, ) has as its "universe" the set of

maps I —» X, i.e.intuitively the terms of a certain type, and each
"formula" X——f—> Q 1s sent tof ( ), i.e. is mapped by substitution.

A comparison with the discussion on pages 1-2 shows that thiec gives
Lo ' '
-" the canonica‘l s%mantic model (in the sense of R-$) determined by the a

identity Boolean homomorphism : ((I,0) - 2. The condition of richness
18 also natural in the cét:egorical case since I in § is real logical

\

existence, ‘ . .

FY

The categorical statement of 'the completeness theorem is thét givén;

two distinct morphisms in (f, there exists a model fcr J which sepnrﬂtes”‘
them, This implies the classical completeness theorem, since in
particular for x—i—a Q with £ # lx, i.,e. f not a theorem, the image
of f 'will: be false in the mo;ie‘l for some k. It is proved in [2,3]

by first extending to a rich category by adding constants, then reducing
by an ultrafilter to a maximally consiaten.c catego;'y,and iterating these

¥

two constructions, alternately,countably many times to produce a rich ar;d maxi-

mally consistent extension., This extension is faithful,and so composing with

= the canonical model gives the required result for(classical)logical categories.
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A

Following the lines of Volger's treatment, the present work will
develop a semantics for iptuitionistic logical categories, and will

prove & partial completenezs theorem. .

Since work on this the‘sii was begun, several alternative formula;:ions
of this topic have been done. A, Joyal has proved a completeness theorem
for certain categories which generalize intuitionistic first-order logic
in a way different from ours. His definition of a model is also more
géneral and the method of proof is different from ours. Joyal outlined
the proof of his theorem at a meeting in 1972, More recently, two other
proofs of such a theorem were given at th; Seminaire d'Ete de l'Universite
de Montreal in July, 1974: one by G. ‘Reyes a:;d M, Makkai (unpublished)

4

and one by P. Freyd (there are mimeographed notes available),

s
gy e P S S
o O S T ) S -
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CHAPTER 1: BASIC PROPERTIES

" .

[
1.1 Definition, A category (' 1s called an intuitionistic prelogical

category (or simply prelogical) iff:
2(a) (¢ has finite products,

3

The terminal object is denoted I; for each X € |7]
1

'x .
The unique map is denoted X———>1,

(b) ( has a specified Heyting algebra object ,:'i.e.‘ for each
X € |¢| and each morphism —tl s Y inQ, Q(X,Q) is a

Heyting algebra and ¢(f,0) 18 a Heyting homomorphism,

A

We use the notation Ox’ lx, Vs A, => a‘nd 7 for the least element,
1 .
greatest element, join, meet, relative pseudo-complement and

pseudo-cQzlement, respectively, of 0(X,0). The special symbols

0 and | denote 0 ‘and 1_: I Q.
I I,

.{g) For every X;Ff-!:~9 ¥ in C, the functor

BN

g(£,9): C0(Y,Q) —»Q()&jﬂ) ‘(bf‘\tﬁn denoted ( ) f) has a left adjoint

a Ny

denoted gf[ I; .

i.e. gflcpl <V iff ¢ < V¥f for all \X-q)——>‘ Q, Y—-Y-—->'Q ind .

ﬂf[ ] e cfalled existent{al quantification along f.

(é_)’ Beck conditions for existential quantification:

(1) Given X—t—> Y x—XD oy v
‘and" the pullback shown, .
P 3 I . fxY
then .
' Y AX YxY
a(x’f)[“_yfl ¢ ' 4

-( ®, [ILI(EXx Y) .
o'

e

-



s\
~ f' \\ :
¥ 5 : X, x £,
(it) Given any XI—-—-——> Yl' Xlx X~2 > x1 x ¥,
P f2 .
X3 > Yy ?
: 4 £ X% 1* ¥,
Y, X XT"L_> Q, and -
. v Y, x £ Y
the dfagram shown (the le Xz 1 2 > YI x Y,
5 square is automatically N ‘
: a pullback), then
® . cf (9]
le f2

X 2 1 %52 Q

(e) For every Y € || define equality on Y as the morphism

. ey -
YX Y———> 0 given by ey EAY“Y]' This e, must satisfy:
(1) 1I1f fl’_fZ: X —-Y are such that ey < fl’fZ > - lx,
then fl -f, .

§§)) eq = <=> L.e. for all f,g: Q- 0,
| . e < £,8> = (f = 3 A (g = 6).

1.2 Def;nitioﬁ. A category ( is called an intuitionistic logical

o

clteg(orz iff: 7
(a) ’- (e) ( is prelogical, |

(£) For every x—f——> Y ia ¢, the functor ({f,0) has a
right adjoiut, denoted V 1. >

L.e. Vo] > v ifE @ > Vf for a1l x—2—x g, Y—-!—>ﬂ ia Q.

Vf[ ] 1is called universal qugntificatton along f.




1.3 Proposition. The definition 1l.1(c) of existential quantification:

-

is equ!.\;alent.to conditions (a) amd (Db):

(@ 9A( Sf[‘P])f= P )
® YA gl = g VE A0l

for all X——t—> Y, X—2—>0 and ¥—Y—>0 fin (.

We remark moreover that

(¢) Since E{f[ 1, Vf[ ] are defined as adjoints, each is unique.
(d) Since :af[ 1, Vf[ ] are both functors between ordered

categories, .‘'., each is order-preserving.

Proof: Assume the ad jointness condition 1.1(c) . Certainly
i

*

Belol < g lo] . call ¥ =g.lol; .7, dlol <V .

.*. By adjointness, P < ¥V = ( éf[¢])f’. i.e. 9 A ( af[cpj)f =p :
f.e. (a) holds. Now recall that ®he functor ( ) A ®: (X,q)— X(X,0)
iz left adjoint .to  =(); 1i.e. (A xl) < Xz iff X1 < (9 => Xz)'

Since each (Q(f,2), i.e. ( )f, is a Heyting homomorphism, we have

(*1 => *z)f = ‘Iflffa'> ’3’2f . 1.e. if we fix any Y—L-> 2, then

e >0 (Or) = (« )f)(w-g(.)) :

Take left ad joints of this expresasion, remembering that a composite

of ad joints, in reverse orider, give the adjoini: of a composition,

(zf[ l) (va( ).) ~-.(*A( ))(( ql .1) . .
—1.e. for any X ¥ >4, g [vf A 9] -V A gelol ‘ :

1¢‘. (_b_’ hold'o . N <

t ’ A
NI ——SEE O i S SIS P e e PUU  S,
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Conversely, assume that (-3) .and (b) hold.

Suppose (Ef[tp] < ¥. Since ( )f 1is a Heyting homomorphism,

Co(gehE < vE. . e (EDE £ VE by (a).

On the other hand suppose @ < VE, 1.e. QAVE =0,

by (b) ; t.€é. af[qﬂ < ¥ . The adjointness is therefore proved.

1.4 Proposition. Let g\be a prelogical category. Then the following

<

conditions follow from 1.1(a) (b),(c) and (e);
requiré the Beck conditions. (Unless otherwise stated in the

individual conditiops,.the symbol £,p,¥ refer to morphi sms

—2s , X—=—>7Y, and Y—1—> Q 1n _.

f ¥

)

(® (O < ¢gIoDE bnd (4D ¥ > F Vel

®.

and

© @ Ty o) =0 and m)(zgftwneg‘rg[af[epﬂ

@
(o)
©®
3 ®

(b

)

E I | aflgpl)f] = gle]

o}

(L) CZlveDE = ¥e .

vhere Y—E2-37 s any .morphism,

(L g lo) =0, iff ¢ =0 and (i1) (sf[lx])f - 1.

Y

If £ is an {somorphisd, then Hf[cp] - of -

If £ 18 epi, then Ef[*f] - ¥,
e, AY - lY and hence‘ &y < £,f >'-‘ }’x .

£ 1s epi 'Lff Ef{lx} “m lY .

7 is order-reversing, i.e. 1if Epl S‘cpz ‘then 7((31 > 7<p2 .
. -

\

1

P e L D R

oo G loavil = glel . Bur .oglel =g (e A VE] =R l0] AV

they do not

v

4
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) fzfﬂ(cpl <=> 9,)] < g lo] <=> a.lo,l .

4
(k) Let x:g;Y and Y—2> 2z,

Then eY<f,g> < ez<hf,hg>. '

@) :'IAX [p] = ey A 9P where Py are thg Projections of X x X.

(m) e, APq;" < ®¥q, , wheregq, are the projections of Y x Y

"&{qa 1s ¥—2—370 .

Proof: (a) The first stéteneqt is just 1,3 (a) and has been proved,
As for the second, we have V¥f _é_“lrf . Call 9 =V¥f ; .'. @ < VE .
.". By adjointness, T lp} < ¥, i.e. FlVE] <V .

(_t_:_) " Take s 'gf[ ] of (a)(1).

This giyes af[cp] < Effawal f‘],' since Hf is order preserving.

Call ¥ = Sf[(p]‘ and call x = V¥f ., Certainly x < V¥f ;
R ‘ by adjointness qe [x] <V¥. fi.e. C{f[ﬂf[CP].f] < !!f[CP]; ‘proving SbNiz,

Take ((£,0) of (a)(i1).

This gives (Sf[*f])f < ¥f since @s order preserving. Call y= Vf.

Then by first result-of (1), & I >x as required for (b)(ii).

\ —— «
(&) &[] SO simce  <oX. But g lo] = T [0lX >0 by L.4(a)(d).
e oglel =0 % =

. -

Moreover' (Xgf,Q) :_Q(f,n) _Q(g,h")h.m&adjoint to this compos:ltlon

R [
( ssff[ ]) 1is the composition of the adjoints in reverse order,

i.e. ﬂs[ af[ I]
. .

P

St
P



e

’(_d_) 0x < ‘#:f for every V.# Hence gfjox] < ¥ for every w’

f.e. ﬂf{OX] = OY. Conversely let gf[cp] = 0,. By (a)(1), . o
P _S ( Sf'ltpl)f = 0yf =05 1l.e. @ = Oy . Thus (d)(1) is proved. '

*

Moreover ( if{lx])fz 1x by (a)(1), and so (d)(ii) holds. v

1

(e) Since f is an isomorphism we have essily that of < Vv iff 9 < Vf,

f.e. that ( )£} 1s left adjoint to ( )f. Thus since.adjoints aie '
unique, .cpf-l - gf[cp]' .

(f) We quote Volger, [3], result 1.8.7: Since f is epi, ( )f is

full and faithful and therefore the back ad junction is an isomorphism.
f

(8) ey 8, =( '_o'{Ay[lY])AY =1, by’ (d)(i1). Hence e < f,f>=e A f =1,

because ( )f 1s a Heyting homomorphism,

(h) If f is epi, then by (£) zf[IX] = ﬂf‘[lyf] = IY . Suppose conversely,

h

Ifllx] =1, and let Y‘:__hﬁz be such that h f =h,f. By (g),
: £ 2

e <, hE>=1 ; {.e, ey <hj,hy >f = call ¥£ =1. . Since 1. < V£, by

) l?jolntneu Hf[lx] < V. d.e. ]Y -'gfllx] < e,'[ <l*11,h2 >_. Hence by k
‘li.lieni) h, = h, and so f is epi.
(¢§) $ince % S P U 79, A9 S7 9, Ag, = 0. Bydefinition
-7 P is the largest element ¥ such that VA Py - 0. Hence 7q>2 _<_,7q>1.
W (Z[ @ = e]) A Floyd = [0 06 = eI) LA %)
(by 1.3(b) with y &7 ﬁ‘f‘[7 (q;1 > q>2)])

&
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= S{f[7(3f[7 (cp1 => Q)Z)]f) ,A rpl] (because ( )f is a
Heyting homomorphism)

. < S'If[(cpl => 9,) A wl} By 1.4(1)
(since Hf[7(<p1 => @z)lf 2 9, £> @, by 1.3(a))
<

IS

gf[q)zl . 4

i.e. By adjointness of => and A,

7 Ef[7((p1 => cpz)] < Sf[q)l] => Hf[(pzl . Call this inequality () (i)

tow @ <=>g9, < ¢ =>9,. . 7@ <> @) 2 7(p =>9,) by 1.4(1) ;

P

C~If[7l(cp1 <=> q;%) 1 2 80700, => 9,)] . .
78 [7 (@) <=> 9] < 7@ =)l < e 0y = ﬁffmw>

Call that inequality (§)({i) .

‘ $imilarly we obtain 7 Ef[7(cp2 => cpl)] < Ef[cpzl => Ef[q)ll which we

denote iii), and hence

. -
7 Ef[7(q>1 <=> @2)] 5\ 7 1'if[7(q>2 -=>‘q)1)] < Ef[cpzl = Sf[cpll ,

‘ N denoted (1) ({dv).
Inequalities (§)(ii) .and () {Hv) give
(

7/3f[7(cp'1 <=> q)z)] < (ﬂf[pll - :Ef[qazl)_ A (8 ,] = :-f.flcpll) )

- Ef[q;]‘.] <=> f[(pz]‘ as required.

N
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-

& 1, =1h-= e%(Yh by (g)

. %
= e, th x h)% . Call v = ez(h X h) . Thus 1Y < WAY;
.'. By adjointness HAYIIY] £ ¥ = ez(h X h). i.e. ey < ez(h %X h).

Compose both sides with < f,g > to get inequality (k).

(1) Note that P& ™ 1dy .

Ef;‘x[(pln E [1, AQ) = [ A opay ] ,

& X "y

= ¥ [1.] A Pp, by 1.3(b))

(m) Since qZAY = id,, e P Om qucy = call WAY .

.'+ By adjointness, & [p] <v¥v = gq, . Substitute by (1)
AY = 2

. . ey A P, < M,
¥

The following properties of universal quantification can now be proved.

1.5 Proposition . Let ¢ be an intuitionistic logical category -and let
f -4 ) v
xT__—;Y, Y—> 2, X——> Q and Y——> Q in C .
@ @ ¢ 2 (Vf[‘cp])f and (1) Vv < V.[¥f]
® @ Y [(VelolE] = Ylo] and (@) (V,IvEDE = ¥¢

© @ Y lol=o ad @) Y lol = V,[¥lel]
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4

@ @ Vilgl =.1Y iff ¢ =1, and (44) (VIO DEf =0, .

(e) V, [e, < f,h >] =1 iff f=h.
% Y

This last is often .called 4n extensionality condition; in &

o -

it says intuitively that morphisms are equal iff they are equal

at every point of the domain.

Proof: (a) - (d) These are categorical-dual to the conditions 1.4 (a)-(d) ,

which were proved-using the properties of left adjoints. Since V is
defined as a right adjoint, one need only dualize the arguments used to

prove 1.4(a)-(d). For example, the verification of (d)(i) is as follows:

let @ =1, . .. For every V¥: Y—) Q, ¢> ¥f . .°. By right
adjointness Vf[cp] > ¥, every y. i.e. Vf[(p] = 1X .

Conversely let V¢ [g] = ly- e 9 2 (Vf[(p])f =1 f =1,

by —txb(a) (1).

() 1Let f =h, . By 1.4(), e, < £,h> =1 .

RS A [eY <f,h> =1 by L1,5(d)().
.x )

Conversely let VY, [eY <f,h>] =1. .°. e, < f,h > = lx Gy 1.5 ) );

» .x
. £f=h (by 1.1(e)(1)), and so the extensionality is proved. "
The Beck corditions 1,1@12 give rise to several similar ptopez;ties:

"'

R I NI O L £ 0 R L e e L 75 . S

-,
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;i ‘ . 1.6 Proposition. Let [ be an intuitionistic prelogical category.
: ( Then the following conditions on quantification hold:
f
. (a) Given any two pullback X 1 Y J y Z
;: diagrams as shown, with the
‘ f hZ
properties that for any 2
C v—Y 50 anda v—¥ 50, v h 7w
' 1
,;. W 3 lof, - @ g (918,
. and >
; (D Flvg)) = (y, Dby
g then
g £.] = leDh
jfl[q> 2] (ﬂhlgllcp]) 2
. £ XX Z2——> X
~ () Given X—>Y and projections
X X Z-——a—% X, Y¥YX Z——;——B' Y j £
and any z.—=P 5
Yxz2—%50q, zxy—¥s q,-
. ’ [cp]
then -
(1) & [e)E x 2)] = @ [oD)f PN
q P ZX X X
and ‘ .
[«}
1 g dnExnl- @, wx. 1) £
‘ . Z XYY
c) XX2Z > I X Z
« £X2Z
RN | v /a0
q .
-0
. i £ O ,
N . Given the diagram .
s \ ) sf{q}] at th. l‘.ef:t,-
. o .
- ' {
¥ ) ‘
' : “ !

T AT PRIETT™. I N oae R TS -
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S

. :
Given x———> Y and projections as in (b) and any x—2—> n,

then

@

le

1

' Y
-1

P
and any map Y, X X;—=> { Q’ X X= -

T l0al = (E.lol)p.

Given

X———>Y,, projections

P
X, X Xy—I—> X, . 2

2

2
2

f

X Yo=Y

h .

! <|51,f<h X X,)> -

Xe——> Y., X,

1 1 X X5

2

o
X
>

12 1°0 72

>X

1

XYZ

then E<p1,f(l;)0(2)> ot x X,)]

- (§E<q1’f>[(p]) Gt xY,). P

(e) The condition 1.1§d!-§112 on

quantification is equivalent to
f

X X7
d
1 2 '{Xxf Y, X §
b4

the condition :

Given xl—f———-> xl, 3(2——-——-——> Y
and XZ X Yf——-‘p—% Q, <

ther afzxxllq:(xzxfl)] = f, X Y,

(5, . (1) (EXY,). | R
fzﬂl 1 "2

Proof: (a) &, [of,]

213 1 A
3£, j[ flfqptzlj Gy 1l.4(c) {i

AEMOLYRCEG)

( ﬂhl[ ﬁgl[W]]) h, @y (i1) >where V¥ here

)
is !gi 9]

!‘P])h2 -(by l.4(c)(11).)

- (I
h,8,
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- ~ 1 )
(b) It may be seen that diagram (1) X X ZT> XX1I=X
-z f e

is just a special case of the diagram

in 1.1(d) (1), with ' £z £XT £
X, =X, X, =2, Y =Y,Y =1 <! v ~
1 2 1 2 ¥ x 2—2> Yx1=Y
= = !
£, =f and £, =! . P
1
Similarly, 1.6(b)Y({{) is just e C‘ 9 Y
: ‘ ZXX= XX 2—>X
1,.6(Q)(i) with the product 1
4 y4
isomorphisms added, as shown. Zxf >z | - £
Thus by 1.6(a) one has the N e |
]
required result. P
(c) The centre square of ( £xz w
~ 2XE N
this diagram is a XX2=2ZXxX ZXYZ yxz
cial case of 1.1(d) (i), . , *
.ZXX ZXY
with X, = 2, X, = X, q P
1 2
- = 0 = . = '
T =LY, =Y, £, . ¢ v
and £ £ X = I XX ———————3I XY= Y
n - 1 ] '
\ 2 _ £ b
Adding the product isomorphisms gives the outer square 1.6(c).
A
ot (d) We quote Volger, [3], result '1.4.6, which says that the present

1.6{(d) 1s a consequence of 1.1§d2§12~and (11). It may be remarked

that the diagram of 1.6(d) can be obtained by the composition
y o

ghown below: ’ ' ' .

/‘
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» / *
R <p1,f(hxX2)> L
- < XIXXZ’hXXZ > ‘ i X X (frz)
Xl Xz rXIXXZXY]_XXz XXY
hXX2 hXXZXYIXXZ hXY2 )
v qb , g/
Y XX ->» ¥, X X, XY, XX > XY
1 2 & 1 2 1 2 Y. X (fr 1 2

— <apf>

where h, f, Py 9 have been defined,

and T, refers to the projection Xz X Y1 X X2 > Y. X X2 .

The left-hand square is of the form of diagram 1.1(d) (i),

Y=Y, XX

with X = X._ L X% Y=Y, XX, and f=hxX

2 ¢
The right-hand square is of the form of the diagram 1.1(d) (ii),

with X = X, X, =X, XY XX, ¥; =¥y, ¥y =Y, o

1 1
fl =h and f2 -‘fr2 . ; : f2 X xl
; , / X, X, ' I, .

(e¢) Assume 1.1(d) (1), . ~ ~

‘ “ Xy X %) = Xy X Xy———> > X X Y, = Y, xX
L : and compose with the
product isomorphisms to give XZXfl fixxz fIXYz szfl
the first diagram shown.
by 1.6( tated v \ v ~
» Then by 1.6(a)the state xz . Yl Sy, X%, v, %y, = x ¥,

Y
P 2
condition holds. \L IxEy ) :T
(F) £, XY,

4

—— K AT T E e B




2=
| Xl X f2
. Conversely, assume the Xl x x2 = XZ X Xl ok > Yz X Xl = xl X Y2
v 2 ’
condition (e), and compose 1
with the same isomorphisms f1)'0[2 xfol szfl fIXYZ
to give the second diagram.
Then by 1.6(a), the condition ~ ' ~
lex2=X2XY1 YZXY1=Y1XY2
1.1(d)(ii) must hold. f2XY1
. Y1 X f2 .
% A number of useful properties follow from the various "Beck conditions",

L

3 1.7 Proposition. Let C be prelogical. Then the following conditions
hold: . ‘

(8) Given X £ >'Y and

’ projections X X Y P>x,

xxy ¢ >v and any

. 3_[o]
x % >0, then Y £
- , )
. Bglol - n
=g <fp,q ] - n, )
J@) ey <t )} o
. - Y £
, (b) Let the following be morphisms in .0 :. &l . > Yl'
‘ | £ "By qg -,
: 2 : i _ : S
X, >Y,,%; XX, > X, YPX Y, 5\11 and
. ; - t
> . Rt
Xg g 0 0 PR e [logpy) A ey i\‘»
™2
- (ﬁflhpllql) A (xlecvzlqz) . 4 ,
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»
f f A
(e) Let x———..____,gl~?Y ) X‘_z'—‘**.._.g__...Yz.
1 2 . -
Then eYIXYZ < fl,fz,gl,g2 > = (‘?Y1< fl,gl >) A (eY2< f2g2

i.e. 1f we call

t =< PI,P3,P2,P4>=Y1 X Y2 X le Y2 - Yl X Yl X Y2 Y Y2

9y

and call Y XY, XY, X ¥,————> ¥ XY

1 1 2 2 i1°

then e -(quéq)t.
Y1><Y2 Yll Y22

A4
(d) Let ZXYXY——> 10 and call the projections of

7Y
1

IXYXYXY, ZXYXYXY

Then ey < tz,t3 >Ay <L tl,tz > < ¥ < t:l,t3> .

’ v f:'1 — £

) let ZXYXY——>0, X ———>ZXY and X

Then eY<f2,f3>A\|r<f f2> g‘v<f1,f3>.

1’
£
, ¢ .
) Let X——%9—3Y . Then er f2,f3 > AeY < f1’f2 >
f '
3

S e <f,f>.

£

>)

2 Y
L f3._..._~q -

(1) let X ____*_’ Y and call the projections X X Y-‘_.E___> X

g .4

Then ey < fp,gp-> £ ey < pr,q > <=> ;‘Z < gp,q > .

.

T
e -

N e et ——,
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' £ P
) Let X___;___;Y , f(i__ly__zﬂ , and projections X X Y—F
q
Then 7 Eq[7((eY < fp,gp >) A (pp <=> \yp))] P

< Byl <> ] .

Proof:
(a) Note that &(X,f) = f and
POGLE) =X, .. gp(X,f) =9 = @ ALy

and (fp,q) = £ X Y.

gl - Eq(x,f)[lx A gp(X,£)]

- :aq[ Sc(’f)llx AoppX,£)]] by 1l.4()

ﬂq[z(x,f)(l)(] Agpl by 1.3(0)

T I8 M]) (£ X D) Agpl by L1@Q)

Eq(eY(fp,q) A gp] (by definition of ey and above note),

vhich proves (a). .
‘ ‘ ’
) let T, denote the projeciidns of Y1 x X2 .
Then (:Ef [Qllql) A (3f [q)z]qz)
1 2
- (!fllqallql) A (ﬁylezfqzzrzl) by L.6(c), with X =X,, ¥ = Y2"
- | Z,-Yl,f-fz,’q>-<pz).
= %1’“2'[( xflfqﬁ]q; @XEP) A )] »

by 1, ,3}92 with £ =¥, X £,, ¢ = @,r, and ¥ = ﬂfl[tpl]ql)

£
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Y=Yl,Z=X2, f=f1,

P = ¢1, and note r, = ql(Y1 Ve fz),

- SYIX fz{ﬂflx le(cplpl) A (@,1,) (flxxz)l}

(by 1.3(b) with f = £5%,.
: ? = 9,p) and ¥= 9,ry)

- aflezl(lel) A (CPZrZ)(f1 x X,)]  (by L.4(c))

- ﬁflezl(q’lpl) A (9,p,)] as required.

r
(¢) Call the projections Y, % Yz————i——> Yi’ and note that

1 =1 r =‘1 r, . Note also that % =t ( )
R0 A A A %y X4y, %y xv,

-1
and hence (since t is an isomorphism) that =t (4, X% )
A”1"“2 %1 %,

-1 .
where t = 81,83,82,84 n

]

L. ey -

q (1
¥, x¥, Ayl‘ Y, Yyx¥,

= g
Y 2
mentioned )

-1
t (A, XA, )
AY1 A.YZ

- a1 _ ¢ tltﬂrljcby_l_._&gg)
R NI

_—

> and 8, are the projections of Yl X Yl % Yz X YZ‘

1 T, A lf r, ] (by the two notes just

t
sy
it

-8 . f(m i, ) a) A (g I, 1a,)] (by L.7(b))
t-1[ by 1 ay 1Y z], L.7(b)

§




= a3 .[Ce, q,) A (e, q,)]
R R A Y, 2 R

((equl) A (eYzqz)) t (by 1.4(e)). .

" Thus 1.7(c) is proved. ——— .

(d) Note that we shall retain the notatfon pt,qi,t,r from (c), -

i

and also denote by u;suy the projections

ZXYXYX ZX YXYZTT-——3ZXYxY, and by s, the projections of

i
IXYXZXYXYXY to ZXY,ZXY,Yand Y respectitely.

Now (v<c1,t2>)/\eY<t2,t3>-(v<t t, > A )/\(e <t2,t >)

1’ ZxYXYXY

= (y < tl,tz >) A (erY < tl,t1> ) (eY <t:2,t3 >) (by 1.4(g))

= call that expression (d)({i).

By the usual properties of products,

(ez Y < tl,t >) A (e < tz,t >) ((erqu) A (quz))t < c sEystysty >

-

= (('e2xY< '1"2>,) A ey < 84,8, >)) < PpsP3sPysP, > < by, L8 >,
hence ' = ©s Y <t tz,tl,t > by 1l.7(e).

Thus dgi)( = ¥< t1»ty > A (‘(ez":,{q1 A quz)t < tl’tZ’tl’tZ! >)

- t:< 1°t3 e v < trtartyaty >) (by 1.7¢e)) T
\

—

$ \\

NV ]
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-‘ (W’ul A ) < tlatzttlatB > ’ “

©25¢YocY

< (¥ uz) < tl’.t2't1’t3 > (by 1.4(m))
= ¥ < tl’t3 > as required,
~ ‘thus completing the proof of 4.

(¢) Compose inequality 1,7(d) with the product map

‘ <E,E,f. > ' .
’ X > IZx¥YX Yx Y to obtain (e).

3

(£) This is a special case of (e), withZ = I- and ¥ = e - .

(g) For convenience call A = ey < fp, gp > ,B = ey < fp,q >,
ad C = e < gp;q > . Then by (f) we obtain AAB<SC and A ACKB.
By adjointness of => and A , the former inequality

gives A< B =>C and the latter, A< C => B,

Hence A< (B =>C) A (C => B) = B <=> C, which is the required result,

(h) Recall firdt that if ,B,y,5 are elements of any Heyting *
algebra, then a ) -
MWW (@<>By A (Y<>8)) < (@AN<>EAD) . '
Call A = (e, < fp,gp>) A (Pp<=>¥p)

. “ -
Then A< (e<fpg><=> e <gp,a>)A(Pp<=>V¥p) (by L.7(R)

5{“\?( fp,q >) MN:) <'>‘iey< 8P,4 > ) AVI;) (bym )

\
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s

call ¢y = (ey < fp,q >) A Qp and 9, = (e, < gP,q >) A VP .

.". We have the inequality A < 9 <=> 9, - Now since 7 is order

reversing and ¥ order pr}:sei'viqg, e 7 zq[7( )] is order preserving. ‘

7aq[7A] < 7gq[7 (9, <=>9,)] - oo

S ggloy) <= g lo,] (by 1.4())

Y

5.

= ol <> g W] (byl.2(a).
'ﬁ
This completes the proof of 1.7 .. .

N

1

1.8 Definition . A prelogical category ( i's called fair 1iff every

°X
map X——> I s epl in .

Remarks : 2_) We note that by 1.4(h) this implies %, [lx] =1
‘X

for every X, but it does not imply that there are any points

’ _I;a--lqu 1n_d unless C is also rich. .
() Moreover 1f C is fair, then all projection maps in C are epi.

For,let X X Y—Bﬁ X and X X Y—3-> ¥ be proje::ti.ons— in C. Beém;se ()q

'i.s @ Heyting homomorphism, 1XxY - qu‘ . Applying 1.4(h) twice

and 1.6(c) once we have , . . "

aanxY] ‘= gp[lyq] = (4, “YD:X =1 !x - l.x ,» and so p is epi.
- ‘Y - -

-~
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% .
* ' CHAPTER 2: TWO IMPORTANT EXAMPLES
) ‘2.1 Proposition. The category S of sets is an intuitionistic logical
category with 2 taken as the Heyting algebra object.
Proof and Description: (a) S has cartesian products; the terminal
ob ject is the singleton set, /usually denoted 1,
5@ (b) The set 2 is a Boolean algebra object, 2 fortiorig Heyting algebra
object, in the following well-known way:
(Let X ¢ [§[ and let (;)Jlr denote the subset of X whose eharacteristic
map is X—2 52 ).
: 0
; The map X—2 s f{0,1} =2 1is the characteristic map of the
i
X
1 empty subset P c X ; i.e. Ox(x)= 0 for all xe X .

&t

1x 1s the characteristic map of XcC X ; f.e. lx(x) =1 for all x € X. 5
)

Given @,¥ ¢ §(X,2), ¢ v ¥ 1is defined by:

@ v ¥ix) = 1 1f o(x) =1 or y(x) =1 P
0 otherwise .

¥

i.e. = o(x)v ¥(x) using v 1in the Boolean algebra 2. .

Equivalently, (9 v \k)# = CPa U W‘ .

® AV 1is defined by ( @ A ¥W(x) =1 L{ff P(x) = 17and V(x) =1,

N e = - e - e

foe. (@ A V(X =0(x) AV(X), f.e. (@ A V)P NV .

¥

" 7(@) 1is given by (7p)(x) = 7(p(x)) = 1 Lff (x) = O @ => ¥

i

is similatly (9 => ¥)(x) = ¥(x) => ¥(x) .

PP TI 5 8s
£
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It follows easily that each S(f,2) will preserve the above

Heyting structure: Let Vl,Wz: Y—>2 and X———f—> Y. Then,

v

for example,
(O V E)HX) = (4 v I)EG) = ¥ (£() v ¥,(£(x))

= (Vlf)(x) v (‘L’Zf)(x) for every x € X .

The other operations are checked similarly.

(¢) Recall from the introduction that an appropriate quantification

4+
is given by the)direct image map on corresponding subsets,

tee. @ lo* ] £o% .

Equivalently, Ef[qﬂ)(y) = 1 in & 1ff there exists a pre-image

X € f-l(y) such that o(x) = 1. ) N
’ | )
(d) The Beck conditions hold for every pullback in g ;

[y

f.e. 1if D————-h—--—-> A is any pullback in S and B—2 > 2
‘ any map, then
k £ :
(& oD = g [pk]
"B c

This is verified by ordinary diagram chasing: Recall that the

rd -

—_—
8

pullback of £ and g 18 the equalizer of

AxB C. In S this {8 given by
k 8p J )
B
/
A D= {(x,y) € Ax B | £(x) = g(yi],/ e the inclusion D&——t__5 Ax B,
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h = pAe gnd k = Pge- Thus in particular h(x,y) = x and k(x,y) =y

for all (x,y) € D.

Now suppose for some a ¢ A that (( Eg[CD])f)(a) =1,

e ( Eg[qJ]) (£(a)) = 1. .°, Py the description of T in §, there
exists & pre-image b ¢ g-l(f(a)) such that ¢(b) =1, Then g(b) = f(a)
and therefore (a,b) ¢ D and b = k(a,b)., .. 1 = o(b) = o9k(a,b)

and h(a,b) = a.
€

1 -
Thos there exists a pre-imagé (a,b) ¢ h 1(a) such that (pk)(a,b) =1;

. i.e. precisely ( ah[cpk])(a) =1,
Me have thus shown that (( ig[cp])f)#g ( ah[cpk])* . The reverse

inclusion can be verified similarly.

(e) 'Properties (e)/(i)..gp, (1) are' satisfied trivially since ey in §
is just the predicate of equality.

(f) For each X——-—g—-) Y oS, Vf[ ] 18 given by

[(Vf[q)] )* = {ye Y[y = £ (x) implies x ¢ cp!]; equivalently ,

) ( Vf[qp])(y) = 1 1ff for all pre-image’s X € f'l(y), px) = 1.

As noted in the introduction, this map 1is #Pight adjoint to ( )f as

ha requireéd,
)
Thus g is intuitionistic 1logical,

We remark that the extensionality condition takes a particularly

simple form in J: It states that any two maps are equal if they

coincide pointwise for all points, To be explicit, let f,é: X ¥Y1in §

(-) be such that v, [e < £,85] = 171 = 2, By (f) above this says that
. '

'y




()

for every pre-image x ¢ (!x')“1 (1) (that is, simply every x € X),

eY< fF(x),g(x) >=1, i,e, that f(x) = g(x() for all x € X .

2.2 Proposition, The category S of sets can be made into a prelogical
category with any complete Heyting algebra taken as the Heyting

algebra ob ject,

Proof and Description: (&) Take cartesian products as before,

(b) Any Heyting algebra can be made into a Heyting algebra object

in S by inheritance, as follows: Let @ be the Heyting algebra and let

0,1,v,A, ==, 7 denote its operations. Let X € |S| and o,V : X»Q .
8]

Define X-———}-(—-a- Q by Ox(x) =0 for all x ¢ X;

1
¥—2=-30 by 1,(x) = 1 for all x €X ;

® AV _
X > Q by (@ AWV(X) =9(x) v ¥(x) for all x € X ;

PAV by (@ AVI(X) =(x) A ¥(x)3
T e S by (9B =00 > ¥(x)
and 79 by (TD(x) = 7(p(x)) .

As they did in the case where Q = 2, these operafiona make S(X,0)

into a Heyting algebra.

Likewise, given x—-—f—-> Y, we will have exactly as before that

GvVE=of vV, (AV)E =Qf A ¥, and so on; that is, S(f,0)

preserves the Heyting structure, ¥
@] .
(9 Let X—2—>7v, %250, and define y—t g

by ( ElP])(y) = eup (A(x)|x ¢ X and £(x) =y) for eachy'e Y . o
3 T




=35

We shall now verify that if[ ] 1s adjoint to ( )f, i.e. that for
every Y-———L>Q in §,

( ﬂf[CP])(Y) < ‘V‘(Y) for all y e Y {iff o(x) < (Vf)(x) for all x ¢ X.

Suppose that for all y € Y, (3f[¢])(y) < Wy). By definition of a

supremum, this says that for all y & Y,

1

P(x) < V¥(y) for each x ¢ f-l(y).

N

But X = dom £f; .°, every x € X 1lies in fﬁl(y) for some y = f(x).
Thus for each x € X, @(x) < V(f(x)).

Conversely suppose that for all x e X, ¢(x) < (V£)(x); L.e. for all
x € X, P(x) < V(£(x)). 1l.e. for each y e rge(f),p(x) < V¥(y)

for all x ¢ f-l(y). Therefore, for each y € rge(f), psup o(x) < W¥(y);
¢ -1
1.e. for eachy e rge(£),(T [P (y) < ¥(y) . x e £75(y)

Now for each y € Y-rge(f;(af[cp])(y) = sup ®(x) = sup P =0
' x ¢ £1(y)

Hence certainly for each y ¢ Y-rée(f),(af[m])(y) < ¥(y).

Thus for all y e Y, (Ef(cP])(y) < ¥(y).

' .
Therefore Ef[ ] 1s a left'adjoint as required,

/

We note in particular that ( af[tp])(y) = 1 1ff there exists some
b
x € X such that ¢(x) =1 and f(;:) = y, Thus in the case where Q = 2,

2,2(c) defires the s.;me operation as the direct image map in 2.1(c).

(d) The Beck conditions hold for every pullback.
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) ‘ e
i.e. Let (h,k) =Pb(f,g) be any \

AXB '
pullback and B 2 5 1 any map; A
: P
= B
Then g lpkl = ( cHUIDES ¢
LY
For, recall ‘that D = {(x,y) € A x BJE(x) = g(y)) B — 5 C
g

and that for given a, € A,

h (a) ((a ,b) € D) = {(a ,b)|b ¢ B and f(ao) = gb)) .

:E Fix a € A. Then ( E{h[@k])(a)‘ = sup {(9k)(a,b)|(a,b) ¢ h-l(a)]
} = sup {(P(b)|b ¢ B and £(a) = g(b)}. [Call that equation (d)(i).]
Moreover (( T [p])) (a) = ( T [p))(£(a)) = sup(p(b)Ib € g '(£(a)) ]
!
= sup(p(b)lb ¢ B and f(a) = g(b){} = R.H.S. (d)(1).
Thue (3, [9k1)(2) = ( G [p1£)(a) , a8 required.
i ‘ (e) For any Y ¢ |S| and any pair (x,z) € Y x Y,
. ey(x,2) = (&, [L1)(x,2) = sup (1,1 y € 5;'(x,9) ).

Y

If x¢# z this gives syp p = 0 ; 1f x ¢ z 1t gives sup f1} = 1.

Thus the equality predicate resulting from the quanl;‘ification defined
o Y 2.2(c) 1is simple equality. As has been noted in 2, 1gez, this

predicate satisfies conditions 1l.1(e)(i) and (1i).

2.3 Remark, Given any .partially ordered set P, the topos S_P is an
intuitionistic logical category with ﬂp, the subobject classifier,

taken as the Heyt:ing algebra object.




The full proof will not be given here, as it makes extensive use of
the theory of toposes which 1s nowhere used in the present work.
However, the interested reader may find the details in Kock gand

Wraith [6], using the following description of E:
It is known that P ig embedded 1}.:1 g ')y

p—>RB(p, ), p——> q—> P(1, ) ; ;
,
this {s usually called the contravariant Yoneda representation of P .

Alsco, given any X € §P and p € |P|, one has the Yoneda correspondence
(which we shall denote ™ ) bei:weim elements x € X(p) and natural trans-

formations P(p, )_____‘Z"___> X, defined as follows:

5
For x ¢ X(p) and *q ¢ ]_Ij‘, g(p,q)———xq—é X(q) 1is given by

’

x (P——q) = XM .

This correspondence is a set ?iuomorphiasm ; 1ts inverse (denoted _,) {is:

v
Let "R(p, ) ——> X  ; then = vP(idp) € X(p) .

=5 N .
A topos structure, in the sense of (6], page 5, can be put on SP

as follows:

‘As 18 well known, _.S_’P has finite limits and expanentation .

T

The object 0, of § 1s defined by .

¢
»

QP(p) = {subob jects R>—> B(p, ) ingp]

and 0,(p—1— q) = 0" given by 1 (R>—> B(p,.)) = pullback (§,2(n, )).
: P
in & .

0 ‘ )

[ X

— e TR ERRT ¥
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Define the map I—Bﬂg——) QP 111.5'P by

(TRUE)p: | = QP(p) sends 1 € { to the identity transformation

P(p, ))—>> P(p, ).
3
For any subob ject R)—j—-> X 1in _SP, define X—X—> QP’ the

characteristic map of j, as:
Xj ‘ xj(x) *
X(p) —ZP > QP(p) is given by S>—P S p(p, ) =@ ()

for every x € X(p), 1.e. by the pullback

3 v
Xp () , 3
L
P(p)- X X
'
It can be verified (cf. [10], or [8] and [9]) R I
NI B
that for every Ry——> X 1in é‘P and ¥ i TRUE
thus defined, the diagram shown is a pullback x————j~——9np
X

in §P, i.e. that (] is a subobject classifier

P

offg"P » 4nd hence SP is a topos.

Taking gp, QP as the E,1 of [6], it can now be congl/xded
that SP,QP is an intuitionistic logical category. The Heg'rting
algebra structure of gp(x,np) is defined in [6], pages 28-30, (Notice

that the notion of Heyting algebra object 88 discussed in [6] pages 34-35

_1s stronger then ours.) The adjoints xf and V‘f are developed in [6]

1.11, 1.12 and pages 30-32, The Beck conditions on 5£ follow from

(6] 1.36.
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CHAPTER 3: LOGICAL FUNCTORS AND PREMODELS

i

3.1 Definition, Let ¢ and ' be intuitiontstic prelogical categories

* ¢
with Heyting-algebra object¥ 0,0' respectively. We say that a

functor F: 0 —— (' 18 prelogical iff:
(a) F preserves fint)te products (and hence in particular F(I) = I');
(k) F(Q) =’ ;
(¢) For every X € Ob((), F together with the isomorphism in (b)
X

preserve O_, lx’ v and A of . C(X,Q);

(d) F preserves existential quantification.

)

3.2 Definition. A prelogical functor Q_-—F——->Q' 18 called an extension of

{ff F is bijective on objects, In such a case we will often abuse

the terminology slightly and say that ' 1s an extension of (.

Q..__F_)Q' is called an enriching extension of ¢ 1ff, for every

X—2 350 in C such that ¥, [p] = 1, there is some I-——x—> FX
‘ ’x

in ' such that (Fp)x = 1 .

- An extension gi—-)g' is said to be congervative iff F(x) =1

- in Q' implies g =1 in( . ¢ -

Remarks to Definition 3.2 : (a) In what follows we shall often think of

an extension as having Ob(\Q') = 0b(Q) and F the identity functor on objects.

This involves no loss of generality since, because F must be logic-preserving
and bijective on objects, the class of such extensions will contain 1soniorphig
copies of all other extensions. Accordingly,given Q—E—> IQ' and I—-E—-D Q

in ¢, ve will often refer to F(B).u B. Analogously in non-categorical logic,

e



f
!
. one usually defines an extension T of"a theory 7 to be a theory T
“whose language L(T') 1includes L(7). It would add nothing fundamentally
new to modify this definition to include thedries T*' such that there is
a logic-preserving functor: L(T)—s L(7") which is bijective on types,

‘and the usual definition is more convenient because it enables one to

speak of the "same" sentence‘r formula in both theories,

(b) The definition here given of a conservative extension is also
motivated by the usage in ordinary logic: T' > T 1is a conservative

extension 1ff no nontheorems of T.become theorems in T' .

3.3 Remark: Any composite of prelogical functors is prelogical; A
composite of extensions is an extension, and a composite of conservative
extensions is conservative. This is clear because all the required pro-_

perties are equational, and hence preserved by composition,

4

‘3.4 Definition. Let (' be an intuitionistic prelogical category and Q'

A

any Heyting algebra. A functor F:(—S 18 called a premodel
- - for Q1ff F is prelogical, where § is made prelogical with '
according to 2.2, -

In particular, {f Q' = 2 we call F a semantic pfemodel,

following the usage of [1].

Y . 3.5 Definition. Let 0:(' be 1ntuitionist_ic logical categories.
“ A functor F: 0— Q' 1is said to be 1ntu1tion‘tut1c logical
- (abbreviated int.log.) Liff : | ‘
(a) F is prelogical ; ‘
B () For every X € OI;(Q. F together with the 1>§omorphism
O | in w presérves, => and 7 of Q(X,O);.

(¢) F preserves’ universal quantification.
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3.6 Definition. Let (¥ be a prelogical category and let I-£ sq

be any sentence in (.
(8) (¢ 1is said to be consistent if O # 1: 1 Q.

(k) (¢ is ag-consistent if it is consistent and ‘o # 1 ,

(¢) C is maximslly consistent if it is consistent and ((I,Q) = (0,1).

-

(_c‘l_) L 1is prime iff, for any Ié} .,
v

if vV =1 then either ¢ =1 or V¥ =1,

(e) (Q is strongly prime i1ff for any X € Ob ¢ and

)

any X%ﬁﬂ, if (PV‘V'IX then ® =1, or ‘y"lx.

=]

(£) Q is called rich iff the
»
14entity functor; (¢ - ( is an enriching extension of (,

f.e, 1{1ff, for every X—2—> @ {n £ such that - -

‘g, [p] =1, there is I—f—é X in ( such that ox = 1 .
ax )

(8) C1is called saturated if it {s consistent, prime and rich.

(h) (C is called -saturated iff it is' g-consistent, ;;?ime and rich.

. "
B.Z (a) Proposition. If a prelogical category (¢ is maximally consistent,
then ¢ is prime.

Proof: Let ¢,V : I -0 be such that ¢ v ¥ = 1. Since ( is consistent

(CPpVvV¥)=>0) =0¢1, “Using the theorem for Heyting algebras (cf[1])

that (B =>a) A (y =q) "< (B VY)=qa, wehave

@ (g=>" 0OA(¥=>0) < (PAV¥) =>0=0. This forces either
(@ >0 ¢1 or (Vv =>0)#¢1,




. gince otherwise (i) contradicts consistency. Equivalently, since ¢

is maximally consistent, either
r (9=>0)=0 or (¥ =>0) =0.

By definition of => this says that either ¢ =1 or v =1,

.

3.7.(b) Corollary. Maximally consistent and rich categories

are saturated.

\

3.8 Theorem: Let (7 be a prelogical’category. Then ( 1s maximally

consistent and rich iff (I, ): - § 1is a semantic

4

premodel,

Proof: ( => ) As 4s well known, (I, ) is a functor and preserves

finite products, since

C(1LX XD = (1,X) x ((L,Y)  for all XY € 0b(Q) ,

and < f,g > () = < f£(), g()> for all Z——f——->X, Z--—g-->Y,

by definition of products.

. N . o ‘.
In particular, X(I,I) =1 qn'd\ (1, .x) " XI,X) for all X

"~

Since ( 1s maximally consistent, _Qil.ﬂ) = 2; 1.e, ((I,.) pregerves a., "

+

For every I——>X ad X——>0 in(,

Lo (x) = 2(x,0) (P) = Px

’ " and (Xx,9) 1s & Heyting homoworphism by 1.1(b).

T

f.e. (9, VO)x = P, XV 9,

r (@, > P)x = @y x =>P%s , :
L (1)x = 1, and s0 on; _
m / f.e. (XI, ) preserves all the Heyting operations of each J(X,R).
-
B » '
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. ) We. shall &uake use of the reduction formula l.7ga2 to show that

(I, ) preserves existential quantification.

Lx ,
First ®et X € Ob(Q) and Iﬁx:;}}( in ¢ . By 1.1(e) ({)

2
and 1.4(8):
X, ex<:.:1,x2>-1 1ff x1=x2.

, ‘ ¢
i.e exactly, ex( ) is the equality predicate (in S) on ‘

X1,X) x (1,X).
Thus (I, ) preserves equality.
Let X y Y—2—>Y and X x Y—2—>0 in (. We wish to show that

( ap(qJ]) () = T, ( )[CP ()1 asmaps: O(I,Y) » 2.

Let I —L—> vy in ¢ and suppose that (3P[q>])y -~1. By 1.6(b) (1),

X

1 =(q [‘P])yag, [‘P(id'xy)]; X > I
P ‘X X

' 1d,. x ¥y y

Since (7 is rich, the latter ' dx
o~
implies that there is I—=>x ‘ XxY v > Y
in ¢ such that
P - o
. 9 (1d xy) x=1ing. .
]

. - | .
l.e. ¢ <x,y>=1, :

1i.e. there is a preimage (x,y) for y under p( ) which satisfies @( ) .

f.e. precisely that ( 5y OD @ =1 tags. o

Conversely suppose ( T )[cp (YD) (y) =1, i.e. there is wct:,an X,

p (
Note that ?<( EP[Q])p by 1.3(a). Then

O o

o

A v e
“a
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1 =0 <xy> s(aplcp]) P <x.y>=(%[q>l)y

and ,°. (apiwl) y =1, -

!

Thus ((I, ) preserves quantification along projectiohs and therefore
# ' .

by 1.7(a) preserves all existential quantification.

This shows that ((I, ) is & gemantic premodel for (.

(<=) Conversely assume that ((I, ) 1is a semantic premodel.

Since ((I,0) = 2, \.}'. { is maximally consistent.

-

Let &, [p] =1 in

X
Since (@ (I, ) preserves quantification, .'. % =11
’ "_Q{I,X) (o )] ngS.
i.e. there is'an x € Q(I,X) such that ¢x = 1;
'
i.e. precisely, (¢ 1is rich. ’ %

This completes the proof of 3.8,

3.9 Remark: For categories w&ich are not maximally consistent we hgve
—— ——— (17‘ ¢
‘the following weaker property for the canonical functor: If ¢ fl's any

, .
rich prelogical category, then' (I, )preserves products and Heyting

operations, and furthermore

oI, ) Caglol) =1 4ff Hyp KT = 1,

g 3
This fact fo@lws directly from the proof of 3.8 . "The preservation
. .
of products and Heyting operations was .proved with no reference to X

maximality. Likewise ((I, ) preserves equa‘l‘ity: it has been noted
in 2,2 that the.equality predicate in S {s always the usual, t:wo-vgl:xed
equality, even when § is made prelogical with an Q' larger than 2.

The proof that ( ap(qnl) ()=1 iff T () o ( )] =1 goes through

for any rich category; the only ua‘e' of maxima]l consistency was to

conclude from this that ( ﬂile) {[) = ; ( ){¢ ( )] for all vqlues.

—~

)
¢ . .
‘ s o \'\
,
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CHAPTER 4: COMPLETENESS THEOREM FOR PRELOGICAL

i CATEGORIES

/
The main work of this chapter is to extend appropriate Q-consistent

prglogiéal categories to maximally consistent Q-saturated categories.
In order to do this we must first develop three general kinds of opera-
tions which can be performed on prelogical categories: extension by

'l
constants, reduction modulo an equivalence relation, and limit of a

chain of extensions. «//J/d’

/,
As the terminology suggests, one may think of the construction

in 4.0 - 4.4 as représenting the addition of new constants (in the
logical sense) to the language of a theory. We emphasize herd that
no new axiom schemata ar;\added tolthe theory;however one does acquire
some new axioms, for example by substitution of the new constants into
axiom schemata already present. In'the present categorical setting,
the procedure is more comﬁliéated but the effect similar. The
definition 4.1 (following (2], is designed to en3ure that the
new ""constants" will ;ndeed behave like constants of a theory. For
example, the above note rggarding substitﬁtioq\into existing axiom
schemata becomes the following condition: For goy new constant
I———E——> X added, 1kk =1, )

4.0 Definition. Let (7 be a prelogical category, and K any category.

K 1s called a category of constants for {0 Lff
@ ob(f) = ov(O . \

3\

() For each X # 1 and every Y, X X,Y) = 9 . !
4 -

[ NUPU S - =

- ENSedan eini Yher T
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. 4,1 Definition. Let C be a small prelogical category and X

a category of constants for (¢ . We construct the extension
»

of ( by the constants in X as follows:

Let K be the set K= J K(1,%)
Xel £l

A

14

Let S, denote the category of finite cardinals, whose

e

morphisms are all set mappings.

4.1(a) Define _1{‘ =

So'i( y L.e. L(“ is the category of finite

sequences in K.

So an object of Lﬁ is a pair (n,c) with n ¢ Ob @o) and ¢

» a map: m —~Kin §, and a morphism (n,c) > (m,d) in x¥

is a set mapping 'n -2 > such that ds = c.

4.,1(b) Define the (contravariant) functor A: EA“"_Q' by

A = K) = 3le(0)) x Y (e()) x'... x 3lle(n-1)),
where as usual 31 denotes the co-domain (in Q) ;

A(c =—> d) 1is given by (pk) A(s)) = 9g (k) for each k € n,

where Py denotes the k'th projection of A(c) and qj denotes

-

- the j'th projection of A(d).

i1.e. A(s) is the product map < qsIO)’qs (1)”""‘qs(n-1) >,

4.1(c) We now define Q[L{]' the extension of [ by the constants in X, by
1) Oob(clxl) = ob(Q) K
N
(1) For given fixed X,Y ¢ Obm, call .
Mx " {all pairs & f,c ¥ , where ¢ € _ff‘and f is a map
A xXx—E—>7Y tng) . )
¥ , -
' Define the equivalence relation R on Mx by
} 'Y
' ot f,g#, ¥ g,d ) e R 1iff there exist maps c———> e and
} t x* s orf"the* e;xt age t
; d ——> e in £ such that thé diagram n page commutes.

I~

i " ' L ]

.

. . % .
W TS kAT s ‘s
Lo @m'_&,_yw ™ . S ,



-47-

( | V e x\
A(e) % X
A(C) /
xA(d) "%

Now define ([X] (X,Y) = My Y/R , and denote the equivalence
H .

class of ﬁ' f,c } under R by § flc .

4,2 Proposition. (a) A as defined above is a contravariant functor,

(b) A is faithfyl and takes finite coproducts to products.
(¢) (CIX] as defined above is-a category

Moreover E‘,A and [X] satisfy the following properties:

(d) If c in _lfﬂ is monic and ¢ # P (i.e. n # @), then for

s

8
every pair of maps ¢ =———=3d. {in K# there exists d——0>
t 4

in _!_(‘“ y 8uch that wus = ut = 1dc

(&) If ¥ flch = 4 g|/c# with c monic, then f = g.
(f) If §f|ch = 4 £|/d # with f monic, thenc =d ,
(‘g_) Given any - A(d) x Xf—f--> Y in O and any d—23 ¢

£ (£)(A(8) x X)|c bo- & £ld } .

Proof: (a) Note first that A is wellddefined and contravariant,

Il

— Per any object (n,c) of If# and any 1 € n, c(1) is an element of K,
\ ‘ i.e. a worphism I-—Eg'-)——-—-é X for some ob ject X in . Sincen

is finite, the product A(c) = xo X eoe X xn-l

) For any c—2—5>4d in _I_f‘and any k € n, a(k) is € m and qs(k) is 4

pro’jection s(k

O ‘ : 'A(d)-——-—-—)——> 3 da(s(®))) in g .

+

O U P,

c

in[\’#,

will be an object of ¢ .




A
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But ds =

q
map AGd) —K 5 31 (e(k)) tn g

A(s) =<

%(0),%(1),..., a(n-1) =

A(s) 1 1
A(d) ————— 5 A(c) =9 (c(0)) X ... x O (c(n-1))

It {8 clear that for every ¢ in _K"'

ACid) =

> = cesp. >
<p1dc(0),...,pidc(n-1) SPyresesP

To veriTy that A preserves composition, let t:he

8
diagram at the right be any diagram in _lf*

and let T, denote the i'th projection of A(e). t

) This gives rise to the diagram below in C:

A(t) =<r

— t(O)""’rt(m-1)> A(s) =
A(e)

c(by definition of morphisms in _K_‘ s thus qs(k)

Therefore the product map

i,
|

will be & map

in ¢ , as required,

= id

A(c)
/"

< q3(0)’ . "’qs(n-1)>

> A(d)
L - A(ts) =< r

ts(0),..., ts(n-1) ~

For each k ¢ n,. (pk)(A(a))(A (t)) = qs(k)A(t)

Te(a(k)) (by definition of A(t)) .
Thus A(s) A(t) =< 'c(s(Q)),..., r't(s(n-l)) >
LT STy (0)"""c.(n 1> " Aes),

as réquired, and so A is a functor.

R 1 0 v el B T IR T T

> A(c)

b)

(by definition qf A(s)) ;




O

: /

f
[ .
; -

(b) Suppose th/ét one has maps ¢ ——=2d in _If“ such that
' t
denote the projections of A(d), then for

A(s8) A-(t). 1f q

b
each k € n, pkA(s) = pkA(t) ; 1.e. (k) = qt(k)' This forces

s(k) t(k) for all k e n, i.e. 8 = t, Therefore A is faithful,

We note that coproducts in _I_f# take the following' form: Let
{n,c),(m,d) be arbitrary objects of _lf# Since §° has finite

coproducts, there is the coproduct n + m in Eo’ and the

c
" " () . u u
fattoring map" ntm—-—-d'—> K n 0 m € m m
in §_‘o given by A (;:)

c c(i) 1f { =0,1,...,n-1
(O =
d{i-n) 1if 1 = n,n+l,...,nim-1.
< [(“' .
coproduct ctd in X is precisely this map (d) , which we shall
sually denote b)"’.:~ . The injection maps c—> & and d—> &

: u u
in E’ are just the injections’ n—> > ntm and m——> ntm  in Ly

J

Now  AGH) = A = (D) xw x 3D (wm-1))

= 3l(e() x ... x (etn-1)) x (&) x ... x 3 (d(m-1))
- A(c) x A(d). Thus A takes coproducts to products.

(c) For any X € Ob(Q), the identity morphism of X in ([X] is
# idx [D # , where for convenience we let f stand for both the empty

set P e Ob(go) and the empty map ﬂ-——-o-—-; K € Ob([d')‘

Composition fn ([X] is defined as follows:

Let X-—#E——}—)Y and Y tflch > Z be maps in.Q(_I_ﬂ,

~

i.e. A(d) x X—8—5> Y and A(c) x Y——E——) Z are maps in (.

£

am e eme———— e e = w2 R e e Am e g e vy 4 aw P T 2y
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4,2(c)(i). Define ¢ f[c‘#ﬁ gld # in C[K] to be “H(f)(A(c) w g)|<d .

One sees from the diagram

O3 A A(c) x 8 £
- A(cd) x X = A(c) x A(d) x X —> Ac) x Y——> 2

-~ “" ~—
that the definition does give a morphism : X —Z in (4]

To verify that the composition is well-defined,
Suppose # fllcl # = # fz’éz # and # gl'dl # = # 82!6‘2 #

via the commutative diagrams

/' A(c ) x Y\
MA(C ) % Y

B(tl)ﬂ A(dl) 8 \
A(d ) x X Y in Q0 .
‘\\\\?N\\\\Fi?\\ﬁi-A(d . x.’/,/4§’w1/1/27

Then the following diagram must commute in ( .

A(c3) x Y

and

+ \

y o8
Aﬁ‘x’”m‘) \
A(ey) X (d3) x X
4( R
’2)*4(,_. )’Q /

A(c,) x A(dz) X X——-—-—-a—->=A(c2) x Y
) . - A(e,) x 8,

c)xs
A(c)xAm)xx-———-—LA(c)xv

2
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Thus § (f,)(A(e;) X gl)ICfdl b= 4 (£)(AC,) x 8,0 (099, } 5

P

teo dele % feld $ = § e, b §5yld, 4
and so composition 18 well-defined.

It is clear that this composition is assocﬁative, and that the

morphisms ¢ idxlﬂ ) 3 act as identity maps. Thus (Q[X] is a category.

(d) Let q denote the coequalizer of (s,t) in . Recall that
= o}

m

such a coequalizer 1is constructed

gy q
P #n N >
L———.- t —_—
in §b using the following equivalence j;\\ ’/éy
K

relation ~ :

(3yk) e ~ 1iff there exist 11,..., iM € m such that

k = s(iM), j = s(il) = t(iz), and forveach h = 1,...,M—1>s(1h) = t(ih+1).

Since ds = dt = ¢ and ¢ i8 monic, it follows that s and t are monic
A

and furthermore that s8(i) = t(Jj) implies I = j (because then

ds(1) =de(3), L.e. c(i) = c(J)).

Hence ~ must consist exactly of pairs (s(i),t(1)) with { € n, pairs

(t(1),8(1)) with 1 € n, and pairs (j,]) with j € m.

Defiﬁe ut:m-n by : u(s(i)) = u(t(i)) =1, and u(j) =0en 1if J 1is

not in the range of s nor of t, From the above discussion one sees that

u is well-defined andis the required map.

’ ,__JL__‘
(e) By definition of the equivalence R, there exist maps c 9
. t

in K‘ such that

(1) (£)(A(s) x X) = (g) (A(t) x X).

7

,
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-

But since ¢ is monic, by 4.2(d) there exists d=———> ¢ such

that us = ut .= idc . L', A(us) = A(ut) = A(idc). i.e. since’ A

i8 a contravariant functor,

A(B)A(u) = A(t)A(u) = idA(c) . Therefore
(1) (H)(A(s) x XP (A x X) = ()({d,o yy) = £, and b
(111)  (8)(A(t) x X) (A(u) x X) = (g)(tdA(c)) =g .

But by (1) , L.H.S. (11) = L.H.S. (41i). Hence f = g as required,

A(e)xX

13 std‘ \
Y
M /
A(c)xX

8 ‘ ‘
(£) By definition of R there .exist ¢c————> e and 4d E >e in _[f#

A(u)xX
A(c) % X —————> A(d)xX

such that (£)(A(8). % X) = (£)(A(t) % X). Since f is monic this implies
A(s) = A(t); Hence (since A is faithful) s = t, But since s,t are

morphisms of _Ij‘ , .. es =c and et ~d, Thus c¢ = d.

1d s
(g) The morphism s> ¢ and d———> ¢ in_]_f“ give the

following commutative diagram in g, whiqh proves the required equivalence.

A(8)xX

Alc) x X . Y
3 :
\{sm‘
A(cs)xX = A(d)xX £

This completes the proof of 4.2 . \

L4

Ll e e e R N e R T

P
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4,3 Lemma. ( and K are embedded in ([X] by the functors
() gy C - CI[K] - where Jl(f) =% £f|@ B for all maps f in O ;

) 30 Ko U] where J,(I—E—>x) = ¢ 1d [k},

3

A
using the notation % for the map { ——>»K given by R(0) = k .,

' £
Proof: Given X—f——-> Y in g, JI(f) = I g X—> Y, since A(@) = I.
Because P9 = ¢ ; composition will be just composition in ( and 5 is a

functor.
Suppose that # £(@ § = & g|¢ # . Then precisely

IxX—>Y = IxX—=E8 5y fn ol

i.e. £ =g in ¢ and so J1 is faithful,
id

Note that in particular for f = idx , Jl(f) =T % x———-—x—ax ,

f.e. that J1 is the identity functor on objécts.

Since k 1s 8 map I—>X nk, .-. A® =3 WN0)) =3 (k =x.
id

A .
Thus #idx'kﬂ’ - Xxl—2>X 5%, /
. /
Suppose Jz(kl) = Jz(kz) for some I =————3 X ., '
k

. 2 /

A A A

i.e. # iﬂxlkl ) 3 ‘- ¢ idxlkz $ . Since 1dx ia monic, by 4,2(f) this
A

A
implies |s:1 - k2 . ‘

.o A "
« . kl(O) = kz(p) s 1L.e. k1 - kz, proving that J2 is faithful.

4y
B

Lt it cov BT
1, e S et ¢
it e g T
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4.4 Theorem. Let ( be a prelogical category and X a category of

constants for /. Then
(a) (CIX] 1s a prelogical category and Jl is a prelogical functor.
(b) 1f ¢ and X are small, then ([X] is small.

-

* (c) If ¢ is fair, then QO[] 1s fair.

#£| ct fel af
Proof: (a) }.e}/g(ﬁ,x,z_e‘ob@'m et X >»9Y, X ——> 2

by morphisms in Q[X] .Let 9,4, denote the projections of A(c) x A(d) in (.

’

4.4(a)(1). Then the product map in ([X] ,

< Heleh.kelat>, 1o Ko, @ @x0> & S,

making use of the product map in (' .

fAY

A(c) x A(d) x X >Y % 2

7
\ZQ\A(d) o \Z

The project:ioﬁs of Yx Z in ([K] are 4 pl,m # and & pzlﬁ # ’

where p,sP, are the projections of Y x 2 in c.

Clearly the map defined by (i) will inherit from ( the universal

property required to make 8* a product in Q[X] .

Y2
i, |
: -~

4 |
In particular{ consider I x X —> Y and I ¥ X—2=8 3 2 H

' ™ 1 il s LN
ey 7 o d gt

£y -ﬁ' . PN

[ ~ . .w?-., R

<l T S B 5 B ¥

P
. .

{ oo o T
RIS
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f.e. consider the case where # flc. #§ = § £|¢ ¥ = J,(6)

ne

fl

and 4 gld # = Jl(g). By the usual isomorphisms I x I x X = I x X

we obtain immediately
“*

IS £,8>) = K <fg> | Bh = §<(Oax X)) axx) > | oY

= < ffloh feloh>- <D, >

That {is, Jl preserves products,

a
)

With respect to the Heyting algebra structure, the following properties

of _Q[](] should be noted:

4.4 (a)(i1). First, given any maps fp|c ¥, #¥|d #: X » Y in CIAI,
then fplc % = #@)(p; x V| & B
and - f¥|d % = §N(p, x )|},
where now p, denote the projections of A(c) x A(d) in (.

’ ]
Letting Jl denote the injection map c~———l—;éh =c¢c+d 1in K" and

remarking that A(jl) = py» Ve verify (ii) by the commutative diagram

shown below for @,and by a similar diagram for V¥ .

A1 ®
dda»q A(M) X X —————>A(c) x x—"

P

v
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‘

Let §o|lch, §V¥|dh: X—>0 in 0[X]. Making use of the

Heyting algebra operations of (7 (A(N) % X,0) » we define

Al (ULD kele Baf vlah = § (@) A ((Npyx X[ B

foled = vidH = § ((@)pxK)) => (N (ppX))|a # ;
™ foleh < hvlahier folchakvia-folch.

Clearly this last will be the case {ff

(®)Cp; x X) < (N(p, x X) 1in [ (AC&D) x X,0)

fig0e b

- Q

4.4(a) (1v). Secondly, note that the map X

in QlX] (i.e..t:be equivalence class of g lx,ﬂ #) consists of
all maps A(c) x X —T >0 in 2 such that there exists

¢ ——> e in _lg’ making the first diagram below ¢ te in ¢ .

N ACc) x X
.’jifizgf;fl""”f”’a’ ,“‘~\--~T-,\~:~‘~ﬁi
A(e) x X A : o)
46)) xx IxX = A(B) x X %

. Y
In particular, § 1,10 § y \
’ Q

includes all maps
AMcS)xX —F—> 0 tn ¢ | o) /
CITE S o

such that o
(D, x) = AC, K)

1 A R e e AU, et ey St M pp——p . e = e 4 Smgw s M. b ampger. <03 0 TR
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That is (since composition preserves the jHey‘ting structure

in ¢ ), all waps v = 1, for any 6Bjeéts if;la) x X in';Q".

This class § 1x|¢ } will be seen to be the greatest element of

-

QlK (X,9). porer

#
Similarly, ¢ Ox[¢ b= £ OA(c)xxlc # for every c € Ob(X jwill be
sho,n to be the least element, -

In order to prove that 4.,4(a)(1i1) and (iv) make clKl (x,0)

into a Heyting algebra, we must show that:

e

(v) It is an infimum-semilattice (i.e, that A is commutative,

associ atlQe and idempotent).

(‘Lj;) =>' defines a relative pseudo-complément (i.e that

dxlet cCHolch=> fviap) 1ff

-

txled nfole b fviad).

r

RN €705 B OXM # s a least element (i.e. that for all § o|c ¥,

fo,l0 < folch).

R dolch, £ vdh and fylel be any' maps: X - Q in g, and
o - .

for convenience denote the Heyting ‘algebra

C(A(H%™e) x X ) by 4 .

The properties (v) of A are inherited di ectly from 4. For example,
to verify couunusativi.ty:

bvle A K vd b= k@ Gx,X) A ) @x )|k
= K ) GXX) A @)y X )M § @y ‘commtativity tn 4).
- kvlaf A kole .

The other two condtions for (v) follow similarly.
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4

Next let p,,p,,p, denote the projections of
17273 .

A(HL) = A(c) X A(d) X A(c) in €, and consider the diagram shown.

- . ;* k A(c)xx\ ‘

A'RY
A(de) x X > A(d) X X Q
\A(e) . x/

I

r
We have. by 4.4(a)({ii) that

kxle b < C(Koleb=>"tvldh) ta clg] x.2)
A X
1ff W@y x Y < (@) (< X) => (), X X) in 4,

which, by the adjointness of => and A on A,‘\occurs 1ff
4o ‘

T 4

(0 @y xx) A @), x 1)

A

IN

Wy XX)-in 4,

cd.e. LFf (f xle t#*'}\” ko B < kvldb 1aCiKl ®,0) .

[l
7

Thus 4,4(a)(vi) Has been proved ., N '
Since O < @ in C(A(c) X, ﬂ) )

Ale) X X -

2 vy
T v

e koo = o ogle b < kole b m Cim .

Thus § Oxlﬂ b 1s a least element, making 'C [_Ig](X,Q) ! a Heyting algebra.

. q,'
Moreover given any -—‘V—'_’ 0 1in C, )% definitions 4.4(a) (11i)

and (iv) dictate precisely that

3@ AYD) =3, AT 0; 31(“"\,'> ¥ =3 ) I )

J | .

R S S, S > =P . Aoy =y s v symaa NG )




o
5
I

Jl(lx) =1, of C FJ_(]O(,Q); and JI(OX) =0

X X'
T i
That is, J, preserves the Heyting algebra structure of every C (X,0 ). j
!
& »
In order to conclude that Q@ is a Heyting algebra object of CI[X], ‘
it remains to be shown that C[X] (¥ fle § ,2) 1is a Heyting
homomorphism for every map K fle § 1in ClX]
» Note that one consequence of 4.4 (a) (111) 1s that for any ¢' € |_{_(#]
and any A(c') .XX—WiY , .
4.6() (viil) Hole" $# A Kvle' B = foavje' B .
{
The equivalernce is verified by the following diagram:
** A(C"\C') x X
{ " @) (pX) A (W) (pX)
ol ’
A(c') XX fl r
4((' ')
*x o N
Alc"™ X X
Now let A(c) XY ~2—>0, A@) XY —'->a, and 7 ]
A) x x»—L—>v ;  let Py denote the projections -7
A(c) x A(d), and r, the projection A(dd}) r A(de). &
1
Then (folc b A kvld ) (ktled) |

-

= D ex DA N6, x DI K tle b by 4.8G) A1)

- K (@, XD A Mk, x 1) @D x I}
' ‘ by 4.2(c) (1)

g - ' 3 L

s C Mkl BE .




A

= 4§ @)(pyx V)(ACed) x £) A (¥)(p, x Y)(A(cd) x £)|cde

because composition in C preserves all Heyting operati

A £
= # @)(p; x V)(A(cd) x flcde B A F)(px Y)(A(ed)xf)|cde B

by 4.4(a)(viii)
= call (ix) , '

But  §(p) (pyx YI(A() x £)| &t § = §(v)(Alc) x £)|ct

by thé following diagram:

A(c"d"e) % X~ (p I*Y)(A(
C
y/ \
A(CAdAe) x X /
4
*
\A(ce) « X (c)

and  f(y)(p, x Y)(A(cd) x £)|cde # = §(¥)(A(d) x £)[de }

4
by similar diagram.

Therefore (ix) = f(p)(A(c) x £)|ce B A H(V)(AW) x f)|de ¥
h

2

=(foplchifled) x (f vidh g fle )

precisely by 4.2(c)(1).

Thus composition with § f|e } preserves A .

¥



It is clear that the same arguement can be used for each of the
W

Heyting operations, and so (! is a Heyting algebra object in E[_[_{] .

Existential quantification is defined in C[X] by :

.

4,4(a)(x) Let A(d) xx—-——f-—> Y. and A(c) w X—Léﬂ in C

v

be given and let P19 denote the projection maps

P ) q
A(d) % X————l——> A(d) and A(cﬁ)—-——L—é A(c) 1in C.

Then define
- Heaptele® = Kay <y 0> (DG NED

A(c)x<p1,f> o
—>A(&Y) %« Y

We remark that this does define A(M)xeX

a morphism of C[K],since the

(©)(a;x %) -
quantification on the right-hand

side 18 performed in C on the @

i
diagram shown. .
We show next that ( defines a left adjoint to substitution.

By 143, it is sufficleit to ppove that (xi) and (xii) hold for all

A(c) ¥ —2 > Q, A(d) x x———i—-a— Y and A(e) % X——LQ S in C

) ¥oled < (aypgap WoledD Felat.

(M0 Sy gy Woleh A CEvIed §£lafh))

= z#fld#[#t@lcm A #Vle# .

| - R
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To prove (xii) we shall make use of the sublemma (xiii) -

L
(xii1) Given any A(d) x X——f—-> Y, A(d) x X—2 5 0 and
! 1

p q
projections A(d) ¥ X———-l-——> A(gi,?) and A(c’ﬁ‘d)——La A(cAd),

then the definition (x)reduces to

By ¢pa yl Ho' Il h = {KHA(C)X <Pl CRIED |

e

p
Proof: 3# £]d #\[# o' |4 B ] ‘ !

¥ 9,8 o < pLe > (o x 01 | $ by (0

"

= ‘K(C"A(c‘d) x < plyE > [@') (e x XD(A(C) X 8 agd)* 9'&1}

by 4.2.(g) , where s = c + vd: é‘dAd—)c?‘i in K‘ ,

» -
! = call (xiv).

X L 4
Now the diagram below is of the form of 1.6(d), with

X, = A(c)-x A(d) = A(dY), X, = X, ¥ = A, Y, =¥, h = A(c) x & = A(8)

A(d)
. 2

r
and f = fr) where ré denotes the- projﬁtion\A(c‘dﬁ) ¥ X — > A(d) % X*

2

: Ac) x < pi,é >
A(c)xA(d)xX - > A(c)xA(d)xY

ACC)xA(d) 3eA(d ) K > ACS)xA(d)xA(d)x ¥
A(c)xA(d)x <p;,f>
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Thus by 1.6(d) one has

r

,\.

(xiv) =% Tyo)x <l E> [ (a) x X)(ACe) x B, 4)x X)) |8 }
which = " [9'] |cd §, thus proving (xiil).

# EA(c)x <pi,f>

Now the proof of (xi) proceeds as follows: For any

AM) » X L—B' Y andLA(c) x X—l—> 0 and projections
P1 4
A(d) ¢ X ——> A(d), A(d) > A(c), one has

-
Coy glay Woled D Gtler = 4n, ), <p1,f>[®$iﬂ]1cd} ¥e|dh

by (x)

G gy W0l Cleleh
RIENE <p1:f> @ (a;x 1)) (Aérx £) |4t} by 4.2(c)

= Ko <ppr> POp0D (&0 Ak £y qx Dk

\

-~ A
bﬁ.ZSeQ, using & = c + Y, ! M- cdd,

'K( EA(c)x <p1’f> [‘P(qlx X)D (A(c) % <p1,f >) [&ij

LN
/ 52 Hoetax X[ % by 1.3(a) and},’ls.l; a) (i1

< £

= §olch by 4.6(a)(i1).

~N
Thus 4.4(a)(xi) *!l%s_’been proved.ﬁ

i

P L eag o+ gty .
R T i Ty TN T

&
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" To prove (xii) let f, o, P29y be as above; let

>  be any map, and we adopt the following notation for

A(e) ¥ Y

projections:
~

9
> A(l)x Y,

> A(dd)y Y, A(éga)x Y

A(d%ﬁ) x Y

nl ’ s,
A(M)x X —L 5 ac) X (Thus r = ax X), Aéx Y—2s ACe)x ¥,

e t t
Ay x —L1 5 A(M)y X, and A(CH)y X —2—> A(ef)y X .

Then
E#f](;# [#‘D}C BACHye #ﬁﬂ-d #)] = Tela #[#mlcﬁ» A BV (ACe)xE) | & ﬁ]
by 4.2(c)(1)

—

— - % £la [ foleha (ﬁw 8, (Ae)x < p, £ >)|dd #]
|

= E#fld# Eﬁi@rltl A (¥ ez(A(e)x < pl,f>) tz)léﬁa;ﬂ]

by 4.4(a)(iii)

= K:‘*A(c“e)x <p £ > [@ r,t; A (¥ 8,(A(e)x <p ,f >) c2)1|c'&aj
by &4.4(0)(x111)

B {EA(cAé)xq;l,f> Pr e A <‘V32<1v2 (A(-C%)x < Pl’f>)>] Ic'&lj* ~

’u

5 ] .
161] A Ve, fa} by 1.3b) tnc .

" Wacersp, el OF N

o~ ~ - .
T - ; - h ¢ FeOAET TERTR—_t———

R
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i KqA(&)x <p > [o r e 1| A4 s, @))% by s.6¢a) (111

B KaA(c‘e)x <p,.f> [cpr1t1,”°%} AfVied by s.4(a)(tn)

~

~.
~

KEA(C)X <p1,§ >[cpr1]) ‘f;,‘m} /\W} by 1.6(c) with
# AN .

~

X = A(H) x X, Z = ACe), ¥ = A(d) x Y, etc.

- KEA(c)x<pl,f> [@rllléd:ﬁ' A K vlel by 4.2(g) , using

s =injection: & - &% .

o~

= ( :qt‘ﬂlid;[ﬁmlc 1) A & vieh by 5.4(a)(x)

Y
~

Thus 4.4!&2(){1‘:&[‘}\ has been proved, and therefore t quantificatiem

A}

in C (K] 1is an adjoi\m: as required.

O ‘

~

In particular, since adjointa are unique, this tells us that the
quantification is well~defined , i.e. does not depend on the choice

of rebresentative morphisms,

We note also that by 4.3(a) and 4.4(a)(x), for any X ———> Y

- "
<
and 2> 2 1 ¢, .

-4

L@ = Gepyl oo = Hgi0(0 4 =55 oDh .

That is, .J1 preserves the existe’ntial quantif{®ation, and therefore

T

is an intuitionistic prelogical functor.
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The Beck conditions on C[X] take the following form:

4.4(a)(xv) Given any A(d) x X >Y C, then
4

Khxlo b £la 9[# 1,10 4% £la ]

- (o os B ylp ) (K elabockvios)

£ :
(xvi) Given any A(d,) x xl———l——> Y, Ady) x xz————z—a Y,

and  any A(c) x le yz——gl—%> Q in C, then

8wk ey [(FE RIS Al R R 0]

-

!

L,
“(hylobxk ele b Bole #1) (Hla bxbvloh) .

4

By ‘1.6(e) it is equivalent to (xvi) that given any fl,f2 as above and

any A(c) w Xz X YI.——_Q—_—> Q, then

% )10, §x kx84 [ Hole H)(H X108k £ld, #))

-~

" (B e, b g ey Wole W) (Sl bxnio ) .o
3

]
-

(




We figst prove (Xv):

Sk x|0 4 4 £la 3> [F og<elet] | |

[~
:

" acgupy peiay (Frrer) >

T FY<p,eld b friela ) by ss@@

“H gy Iyl E b Gt
By x> Dyf)lad = $ (5 04]) ExDieh by LUOW
- (k3 110 8) (ﬁfold@' by 4.2e)(1)
-(kz, a0 8) ($elex Friok)

\ [}
'("#AYIMWH'“# D (keled x fyiod
as required for (xv) .

We next verify 4.4(a)(xvi) as follows: ' -
r %
Adopt the projection notations A(dl) X A(dz) x Xz % Xl-———-—)———> A(dl) > A(dz)

q! (g .
A'(C)/x A(d,) x X, X A(dl) x X — ACc) x Xy x A(dl) x X»

q .
A(d,) x X,—F—> A(d,), A(e) x Mdy) x X,y X yl___2_> ACc) x X, x ¥;, and” /K\L
A

u v
Ad,) x X, x ¥, Ad)).
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Yoryla, b xfoy [CHOleICRRIEx e 3]

= fzxxl1d2ﬁ[#q’l°# ¥X, x £ H]" .
% £ X |d, # [#@('A(c)x X,X fl)lcf‘d1 ﬁ] by 4.2(c) (1)

el

[ A, A
= “:HA(c)x <r,fzx xl > EP (ACe)x sz fl)q2 JICdZdl

o §

by 4.4(a) (%)

. » .

ol SR <p, £,> x-AWd)) x X [Pa,(ACINA,)xE V]| e,

= all 4,4(a)(xvii). g : ,

Mor ox:e;/; (E{& ledz B & Y1|¢ 4 4| c $#] )( £ Yzlﬂ B x( ﬁflldl #)

"
- ( Tt v 14, § [#\@lg,#]) (# Y, x £ 14 #)

. { A
-(# NG, <u,fx ’Yl > lpaylled, #’)(# Y, x £1d; #) by 4.4(a)(x)

U
) ‘r@A(c)x <p,f, >x Y, [q?qz]) (AFC)X' Azdz) X Yo% fl)lédgdl,#

by 4.2 (c)(4
/

; call (xviii)

4 ' A
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Now the diagram shown

A(e)x <p,f, >x A(dl)x X

A(c)xA(dz)x X, X A(dl)x X; > A(c)xA(d,))x Yox A(d)) x X,
- @ *
Al c e Ald. e v
Lo )eAl % X, FI A c)x A(dz)x Y2 % f1
R /. .
A(c)xA(d, )X X, X Y —= A(c)xA(d,)x Y, x Y,
A(c) w'< ﬁ,f2> % Yl
2, @
< ’ “‘{\
S
24

is of form 1.6(e) with X = A(dl) % X

1 xz =A(C) b 4 A(dz) X Xz:

1’ .

™
Yl = Yl, Y2 = A(c) % A(dz) % Yz, fl = fl’ f2 = A(c) x < p,f2 >,

and @ = 9@ q, o

Thus by _1.6(e) we have (xvii) = (xviii), and so 4.4(a)(xvi) has been
proved . That is, the Beck conditions hold in C[X]

The remaining properties neceifary o mace C[X] an intuitionistic

prelogical category are the conditioms 1.1(e) regarding equality.
\

- f : 3
¢ Suppose o\q.e has A(d].) % X—-l—-> Y, A(dz) % X————z—& Y

rectne (g, g 4l ¥ 1,19 ) (IR FATIE L SN T
That is, by 4.4(a)(x) and 4.4(a)(4 S

b arr

SR . s R A T TR ST MRSC e g e e e M
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LENURILER CR GRS R Ty SR ENE

J

s

where one has the projections 99, of A(dl) % A(dZ)

Ky(fﬂ(qlx X)y(£,) (4% S)ZLh EES

as shown below.

A
A(dl)xA(dz)xde1d2 *

by 4.4(a)(1) and the note 4.4(a)(dv) .
A(d X
) L% (4,) x
94

\
m“d)xx/

o
Since C satisfies l.lgezgi},

A(d)) x A(d,) x 8

this implies that

(zix) £,(q; x X) = £,0(9, x X) .
Since q = A(nl), q, = A(Ez) for the coproduct injectiens - . -
n n o
1 A 2 A
§—>a4,, 4, —> dj4, g,

.’ {xix) says precisely that 4 flld1 $
that C[X] ' satisfies 1.1(e) (1) .

To verify 1,1(e)(ii), Let

¥ f2|d2 ¥, and hence

LJ

A(d),x o—>= 5 g Ae) x 0—B 5 g

be any maps and lét 9, denote A(d) x A(e)—~a—;~> Ad), -7
e
A(d) % A(e)——> A(e). T s ;
. q2 o o
_ e £
!’
* »




/
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¥ :
b !

Then ﬁ eﬂlﬁ ﬂ' <‘ht f|d ﬁ’. ﬂ 8|e §>

AW )

&

# e, <flapx M, 8(a,x D) >[db # by 4.2(c)(i) and

4.4(a)(1) » =
T § (e M) => (8(q, x M Allglax 1) => (£(qyx M) 1lde

because C satisfies l.lgeuii!

(kelap >keleh)nlfeled =Fldp) by 4MULD
so that C[X] satisfies L1.1(e)(41) and therefore is prelogical .
This completes the proof of 4.4(a).

4,4(b) 1is obvious from the definition of C(X](X,Y): Each M, , can be

at most card( L(#) times as large as C(%,Y).

4,4(c) Suppose that C is fair, and note that for each Y x Z ———p——> Y in C,
' 1

1
‘ Jep =kpleh - yxz —> Y,

which must certainly be epis iff Py is.

But let Y x Z.be any product in C [} and let P;sPy denote the
nrolections in £ ; the projections I Y X Z 1in ClXJ. are precisely

IR RRCAMIERAR SALE IR SALE

’

For: Let X-ﬁ—ﬂik——)r, Xﬁ—g—d—#—»Z in C{X] . Then one has
/- .

pl <f(q1X ’ g(‘lzx x)b = f(qlx X)

2

where q,,9, /are the projections of A(c) x A(d) in c.
7
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oot keleh, dald D=4 eauoldh=teet

Thus all projections in Q[_l_(] are epi, 1.e. E[_}_(] is fair,

L. 2

A(c) x X £ > Y

qx * !

< f X X) >
A(F)XA(d)X X (qlx )ig(q7x ) > ¥ % z 1
4" " pz
R % xx n : )

‘ A(d) x X : z > Z

K
Theorem 4.b’the main theogem on extension by constants, has therefore

been proved, ) \

The next ofew res‘:‘f{ts develop the idea of & prelogical quotient
category with respect to g‘&given filter ort____g(},ﬂ). Intuitively, one
may think of such a procedure,és tracing all t:h—e logical consequences
of a new set of axioms added to a theory. Reducing C(I,Q) modulo a

A Y
new (Sentence) theqrems. This in turn causes.the reddctiol® of the C(X,Q),

filtelqults in some sentences ¢ bDeing made equivalent to 1, i.e. in
f1.e. creates new (open-formula) theorems of type X. In particular one
acquires moredtheorems’of form ey < f,g >, thus identifying certain

terms of the theory. - N
- . ' \

4,5 Definition. Let C be a prelogical ‘catelgory). ’

By a prelogical congruence reta:tion Ron C we shall

mean(a)ésfatem (Rx Y}X Y e ob(C)" of equivalence'relatlons
’ » )

. b
Rx y o° the classes C(X,Y) s&tisfying the follow}ng properties:
’ ' Lo Y
3
’ * » - Y N
0
J (
L , ) b _
& . o L et T

<
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/

4.5(b) If (fl’fz) € RY,Z and (gl,gz) € RX,Y’ then (flgl’fZgZ) € RX,Z

e Jsometimes describe this property by saying that F i{s compatible

with (or, closed under ) composition. -

?
’

4.5(c) 1If (fl’gl) € RX,YI and (fZ’gZ) € RX v

\
then (< fbfZ >, < gl,gz >‘) € RX,Y % Yz .

where as usual <,> denotes the product map.

.

This property 1s also referred to as "R 18 compatible with

for, closed under) -products’,

4.5(d) If (fl'fz) € RX,Y and (cpl,tpz) € %(,n then

>

( Hf[®1] , 3f2[®21 ) € RY’Q

Equivalently we say that R {s compatible with (or, closed under)

IS -

existential quantification. §

4.5(Ce) If (ml,(?z) € RX,Q and (\vl,wz) € RX,Q then

-

4 @v ¥1s 9,v Wz%\‘\"}(,n and (9, A ¥, By A V,) € Rl(’“,2
That 1{s, R 1{s a lattice-congruence relation. /
= Note: As a consequence of (e) we have that [l II\VHR
1ff o <V, whekd | “R dengtes the riequiva nce cl’ass.

under R. - (

[
4¥5(F) 1f (@:9,) € Ry o and (¥;.¥;) € Ry o the

i2e R 1s a Heyting-algebra congruence,

- * L
4.5 If Fe?,‘< f,g >, 1}() € ES_(,Q ’ thenm(’f_,g’) e,RX,Y ,
! " We sometimes refer to this property as "R is strict".”
1

(@1 => w]:) (pz => WZ) € RX,Q

—_—— -

ca mmaes -
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4.6 Definition Let C be a consistent prelogical category and

let V be a filter on C(I1,02). Define a system FV of fllters
N b
Fy on C(X,0) (i.e, F' {5 the system F = (Fx(X € Ob(Cl)by: °

Let ¥—2—>Q tncgC .

/ot -—

o+ Then ¢ € FX iff 7 4, [T} ev . -
A 'x v
. '%
: v '
4.7. Proposition (a) If V is proper and C is fair, then each FX is proper,
- _(b) For eachQDeFY and X———f——>Yin_C_1,cpf isinFX,
- -
(c) For each ¢ ¢ FX and X——f——-> Y In C, 7 gf[7q>] is in FY .
A
. Proof: (a) We shall show that OX ¢ Fy . “In any Heyting algebra )
70 = 1.; e 70X = 1X . Sinceg is fair, ( 3")([70)(]) 1, = 70x = 1X by 1.4(f)
A ¢ g,'X[70X] !x) =7 lx = OX ; d1.e. (since () :X is Heyting homomog#
phism) (7 3")([70}(]) x = Op = 0!y . But ., is epi (by fairness). -
. 7%, [(70,] = 0, and 0 ¢ V since V is proper. i.es O, ¢ F -
.x x , X x -
"
as required, ’
. (b) Since o e FY’ 73, [Tl ev .
'Y
g D] =7, £17(ef)] = g, (@ [7(D)]] (by L.4(e)(11))
.XJ 'Y .Y

~ .

4, [zf[(m)f)]] (because ( ) £ is a Heyting homomorphism)

Y
- ’ & ' .
< %, [7p] (by 1.4(a)(1i), since F, 1is order~preserving).
'IY 'Y -
) ) Since 7 1s order-reversing (1.4(a)(i)).". 7 ¥, [H(ef)] >7 3, [79] e V.
( \ X ) Y
! . 18, [T(e)) ev L.e. of ¢ Fy » as required,
~ °X ' -
-4 -
o ‘} N ‘
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N

: |
©) Siice P e FX’ we have 7 3: [7@;, € V. Again using (L.4(¢)(ii)) we have

X

T, [79) = %, . [70) = 7, (3.[79)] 3, (17 _ (70]]

X Yf ‘Y Y

.. Since 7 is order-reversing,

\ -
~,

7 8, [77 Ef[7@]] 78 [79) e v ;
"y | X .

S.o78, (17 Ef[7¢]] e V. i.e. 7 S£[7CP] € FY’ as required.q
.Y .

4.8, Definfrion. Let C be a prelogical category and V a filter

. 14
z on C (I,8). Define a system Rv of relations IS( y on cX,Y)

v

¢
i.e. RV=U(PRY [X,Y e 0b(C)]) by :
Let X=—L=3Y inC. Then
L

(f,g) € RX,Y iff ey < f,g> € F;(,

t.e. iff 78, [7\%< £,8>1 ¢ V.
X

E)

R is called the relation on C generated by V .

=

h

4.9 Theorem Rv is a prelogical congruence relation on C.
Moreover if V is proper and C is consistent and 'fair,
then R 1is proper.

Proof: We verify first that each EX Y is an equivalence relat®qp

?
on C(X,Y). -

The reflexive property follows from 1.4(g) since leme Fx -

With respect to the symmetric property, notice that the

isomorphism ¥ x Y > Y X Y has the properties that
L4

~y >

\&k,\

»

Cumomy -

« B Fe—— .
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-~
K‘—-—-’\
£,
<g,f >=<« PPy > < f,8 > for any X. . %Y and that
"
< szpl > % = /& . s
/ L €Y<P2: P1>= (IﬁY[IY]><p2’pl>
3 .
| sk
= ( 3<p2,p1> AY[IY]) < PysPy > (by above note). .
e X ) .
- . (% 1 )< . .
( < Pz,pl > AYE X] Py Pl > by 1.4(c)({1))
2 3%(13{] Gy l.6(a) (1) ‘ /
» . )

—

Thus if we suppose (f,g) € RX v then we have
’
ey <g,f> = ey <p2,p1> <f,g> > ey <f,g >eV,
since ( ) <f,g> 1s a Heyting homomorphism. i.e. we have

ey <g,f > ¢ V; 1.e. (g,f) € RX,Y .

To verify the transitive property, Let (f,g) ¢ Ry y and (g,h) € Ry y -
R ’ . ?

]

i.e. ey <f,g > ¢ Fx' and ey <g,h> € FX' By 1.7 (f),
ey <E,h> > ey <fig> A e‘§ <g,h> € Fy

Ce ey <f,h> e F i.e. (£,h) ¢ Rx v

X

L4

[
Thus Rx v is transitive and therefore is an equivalence relation.
. .

l,‘
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7, . - To show that R is compatible with composition,
i - «
2 let  (g)-8)) € By yqand (f).8,) e Ry,
- Therefo < f é F and < > F R
. ' I re €Z 1';/15 € Y n eY gl’SZK € .

By 4.7 () (eZi) <f1,f2> (gz) € FX ; i.e. eziflgz,fzg2 > ¢ FX .

. Moreover we ;have ey < 8,8, > € FX giving

-

- Ky
e, < flgl’f1g2 > > ‘%'Y <g1,gz> € FX by 1.4(k)

Now < flgl,f232> 2 e, <f1g1,$gz > A e, <flgz,fzgz>
»
T ) A * by 1.7(f
Hence e, <f;g),f,8,> € Fy i 1.e. (£,81,,8)) € &y 45 required.
] We next.verify tt}ﬁ R is compatitle with products.
1
; : .
% Suppose (fl’gl) € IS(,Y and (f2’82) = P5(2Y2 .". By hypothesis
¥
] ey 1,g1> € F and e 2 <f2,g2> € F .
ﬁ But by 1.7 (c), ' ‘ .
= A
% ) eY1XY2 <<f1,f2> y <g1,g2>> eY1<f1,g1> eY2<f2,g2> € Fx

; i.e. (<f1,f2>, <g1,gz> ) A F&=Y1XY2 as required.

e 1
Now let (fl’f?.) € RX.Y and (Q)l,(pz) € RX,Q

eY 1,f2> Wand that eq < (pl,q>2> € Fx‘ ‘

l.e. CPl*'<-> 9, € FX , by l-_l_&L(,H).) . Let p,q denote the projections.

We have by hypothesis that

-

Xx Y—E > X and Xy Y —31— v,

L e SRS TRAT Y,y

( Then by l;_.ﬁ?gb) ey < frfz >pe FXxY and (q>1 <=> cpz) P € FX XY "

v



e
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“ Aﬂut 7 3q[7x] is precisely L.H.S. 1.7C);. iby 1.70_12,
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'

il.e. ey <f1p,f2p > € FXXY and (cplp) <=> (q>2P) € FXXY

!
/

(since ( )p preserves Heyting operations ) .

Thus (ey <f;p.f,p >) A (@yp <=> (qazp)) = call X, is € Fy o -

3
L3

By 4.7(c) 781X e By

Bq[tpl] <=> &, [QJZ] > 7 3q[7x] e F

2 X

i.e eq <Ef (@], % [@2]> € F, by L.i(e)(i) ;
1 2
®
1.e. (Efl[fvll7 Efz[ 2]) € Ry g

Thus we have shown that R is compatible with quantification .

’

In verifying that R is a Heyting algebra congruence, we shall make
. 1) .

use of the fact tha: for PPy € cx,m, (cpl,cpz) < Fﬁ( Q iff

en<cp1,q)2>eFx iff 9 <=>09, € F by 1.1(e) (11).

X

Let (q)l,.tpz) € RX,O and (cpi,cpé) € RX,Q 39, <=> @, ¢ Fy and 9 <=> Py € Fy

= (5 ' <= M
Call v (cp1 <m> cpdj/\ (cp1 <=> q;z)
- - - LI L] |- [}
\/ @ =>0,)) A @) => 9) A (o) => @) A (9 => ) € Fy
and notice that for compatibility with V it is sufficient to show that

&

(\ 4.9(a) ¥ < (Q)l Vv (pl') => (cp2 Y cpé ) and °©

®Q ¥ < @ Ve)=> (@ Vo). k .
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By adjéintness of => and A, (a) is equivalent to
1

VA Co VoD < 0, Vo),

i.e to (VA q>1) V(v A <pi) < % v cpé by distributivity .

&

But ¥ A £ (@ > 0)) Ao S 9 and
VAgl S @ =>9,) Aoy <9,  and thus we do have

W A @1) vV (yA ¢i) < ?, v oé i.e. we have (a).

1

() 1s verified similarly, and therefore R is compatible with V.

For compatibility with A, it is sufficient to show that

‘ AQl) <= A Q! :
v < (q’l ¢1)<>((P2 cPz) i.e. that

~
0
~
<
IA

‘and

o~
ja.
~
<
A

< (9, Ny = @ Ao

Now v A 9 AG S @ @) Aoy A > 9) A S0 A0
f.e. by adjointness (c) holds.

(g) follows similarly, to give R compatible with A .

To show that R is compatiple with => it 1s sufficient
to show that \
' - _' 1
(Y] V< (cplkkqal) > (p, => ¢, ) and

© v < (@0 = @ =0

Now ¥ A (o =0 Ao, < @y > A @] =) Ao =>0p) A9y
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< = = [ [ - N
s (@, => 9 Ao A (¢ =>01) A (9] =)
< o N = 9)) A (9] =>05)

s

o A @ =>9,) < @

i.e. by adjointness VA (q)1 => cpi) < (cp2 => q)é) ;

i.e. by adjointness (e) holds.
Similarly (f) can be verified, and thus R ig a Heyting congruence.

It remains only to show that R is strict.

Suppose (eY <f,pg>, lx) € Rj(,ﬂ ; 1.e. (eY <f,§> <=> lX .

. e lx > (eY <f,2> € FX ;7 Ll.e. ey <f,g> € Fx‘. since ir any

Heyting algebra 1 => Q@ = Q . But this says precisely that (f,g) € RX Y
’

as required; therefore R is a prelogical congruence relation. N
Moreover, if V is proper and C is fair, then O ¢ Fy by 4.7(a).

But eq

Seg < O01>¢ o fe (0,1) #Rp .

<0,1 >= (0 =>1»A (1 =>0) =0, 1f C is consistent.

This completes the proof of Theorem 4,9.

4.10 Definitjon, Let C be any small prelogical category and R any

prelogical congruence relation on C

(a) Define the category C/R by

Ob{(C/R) = 0b(C) and C/R(X,Y) = CX,Y)/R .
A (®) Define the functor Q:C — C/R by :

Q is the identity functor a'n objects, and

QX —f—— v) = llfll,,’("Y

-
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L)

C/R 1is called the quotient category of C with respect

to R and Q is called the canonical projectio\n functor.

4.11 Theorem: (a) C/R 1is a small prelogical category and Q is

a prelogical extension. )

() If is fair then C/R is fair

(¢c) 1f C is consistent and R is proper then C/R is consistent.

Proof: (a) Given X e’Ob@) = 0b(C/R), define id

IL£]

x in C/R as Hidx”

@@ civen x5y vlels g in o r, dertne gl 18] as el

+

Property 4.,5(b) and the definition of Q guarantee that this composition
will be well-defined and associative, that Hidx” does act as an identity

morphism (since [[£]] [lid [l = [[£1d,]l = i £] ),

and that Q will preserve identities and composition.

%

: ' A,
Since each C(X,Y) is a set, clearly C/RX,Y) is'a set, ie..C/R

1s small. Thus C/R 1is a small category and Q is a functor. It shouvld

-

also be(goted that by definition of C/R, Q is full.

L] W
Mg
Given X —”—f—u—‘» Y, x——”—gﬂ% Z 1in C/R, Define the product "o
map in C/R by:
s11@ A1) < [dl.llell > = fl<t,8 >

By 4.5(c) we have that this is well-defined, has the universal
property required for a product map and 18 preserved by Q.  If we

denote by p;,p, the projections of Y X 2 in g, then clearly “p],“’“PZH
are the projections of Y x 2 1in C/R .

ol

Given X _______,‘) Q in C/R, we define the lattice operations by:

vl

S

Cw W meee g e A

-

W Wt R Ty WY e RS
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@aii) ol Vvl =llov vl and gl Al o A'Wg/-

By &@),l V,A are well-defined, are preserved by Q, and make
Q/E{(X',Q) into-a distributive lattice. This in turn gives us that _
@) lo I < Ivl iff ¢ < ¥, since then [lofl AllVl = llo Aull = .
Thus in particular IIOXII < ol < lxll for every ¢, giving the

least and greatest elements. We further define

re

3 ol => vl = llo => vl v

Then 4.5(f) and 1.1 (b) ensure that this will be well-defined, and

»

make C/R(X,Q) 1into a Heyting algebra.

A
All this, plus 4,11(a)(i) and 1.1(b), give that every C/R(||f],0)

- --will be a Heyting homomorphism.

Thus C/R_ has a Heyting algebra object, whose structure is

preserved by Q.

v
> (1 and X-—"—f‘—lﬁ;&' in C/R,

Y

4.11 (a)(v) Giwven X

define the quantification by
EI 1 1 l = l a .
e tlelll =1l 2, o |

By 4.5(d), this is well-defined and preserved by Q.

Now suppose [lgl < [Vl €] = [[v€] for some Y > a .

o9 <V fby _4.11(a) (1v);

. ﬂf[q;}‘\f_ ¥ by adjointness of € in C .
——

i.e, Hﬁf[cplll < vl by 4.11 (a)(@v).

Similarly we obtain the reverse implication.

Thus o [ ] fs adjoint to () el .

/T
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The Beck conditions a%e for%%d to hold because they are

LN

equational conditions involving only compositions, products,and ¥ .

For example, l.lgdZEi) results fom: -

“fsall,lel> gl helty = squ > (L€ 1 by 4.11¢) ()= (v)

= | (EAYHY]) (£x1d.) || vy L1@) @) ing

- (H”AY” 1 ) Cllel x iyl ) by 4.11@) @)= (v)

Thus C/R has an appropriate quantification, and Q is a prelogical

~

functor.
N\

It remains to show that C/R satisfies conditions 1.1 (e).
£ T
suppose [le [l < [[£ll.]lgll > = [l for some x ——_AT‘ Y .
A ]

i.e. ”eY <f,g > = ”1X” ; l.e. (e(Y <f,g >, lx) € Ri,ﬂ .

Therefore  (f,8) € R, y since R is strict. {i.e. Nell = llell,

and so 1.1(e) (1) holds in C/R.

Moreover leg]l < o, Ivll > = lleg <p,v > || = llo <=>v| by 1) (11)
ing = flol <= f¥ll bya,l (@AD-1v) .

Thus C/R satisfies 1.1'(e)(ii) and therefore is a prelogical
category.

Since Q is prelogical and is the identity on objects, it is

clearly an extension . . .
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(b) Now suppose that C is fair, i.e. by 1.8(b) all projection

in ¢ are epi. *
. el .
Let XX Y-———>Y be any projection map in C/R ; . .} p 1s epi
in C .
. : ',
Thus by 1.46! lpll is epi, and so C/R is fair.

(E) If C is consistent and R proper, we have 0 £14in C, .". (0,1) £ R.
.« Jloll #f1]] ; t.e. C€/R 1is consistent. This completes the proof

of 4.11.

We next define, and give several properties of, the category
Y
which arises as the intuitive limit of an infinite sequence of

extensions.

- 4.12 Definition. Llet C.=—F > C > ... C =T ——>»

0,1 1 "1,1i+41

Ly —F -

be a countable chain of prelogical extensions Fi i+1’ w;here
. ' b}

each C, 1s a small prelogical category, with Ob @i') = 0b (go),

-~

and each F is the identity functor on objects.

i,1+41°

Define F and generally

0,2 F1,2 %1

F We adopt the notation

1,3 = F5-1,5F5-2,5-1 © - Fiem

Fi { for the identity functor £ —»gi . Define the category
’

A
(also denoted R lim _(_I_i) as follows: Ob (C) = OKC )

{ = o

‘¢

go,vy = U g ooy
ieN
~

where = is the relation defined

by fi = fi 1ff there exists j ¢ N
1 2

that F £, ) =
el

F (f. )
1,374,

i

Define the functor Fi: _ci—)ﬁ for each i by: F~ is the identity

functor on objects and Fl(x —f3v ) = el _
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Remarks to Definition 4.12: (a) The F are all prelogical

i, et

extensions by 3.3 . i

(b) ‘The equivalence = says roughly that two morphism are equivalent
in C iff they are eventually identified. A special case of this is

the situation where 11 > 12 and fi = Fi { (fi ). Note also that

1 2’71 2,
if two morphisms are equivaleht with respect to =, then their images

throughout the chain are also eguivalent. Explicitly, if fi = f
A

1 ta,
and j,k are any indices, then/ F (f,)=F (f, ).
il.j i k
4.13 ,Theorem, C so defined ifl; a small prelogical category:and
{ - each Fi is a prelogical extension.
Proof: The relation = 18 clearly an eduivalence .
Motéover = 1s compatible with composition:
| f1 ¢ f2
Let Y——> 7 inC, , Y———> 2 inC D f = f ,
"'11 _12 1 2 J
! 7
and let X—"—Y {nC, , X ——>Y inC, > g, =g, .
—11 "12 1 2
. f
Hence there exi®t j,k e NDF (ft,) = F (f,) = call Y——-1—> Z
- il’j (J- iz’j 2
. N ‘ gk
in%)'and Fil,k(gl) Fiz,k(gZ? = ca{lxl Xe————> Y in ,Qk'
Call £ = max(j,k) and call f = l-‘j ’(fj)’ g =F, l(gk) . Now certainly fg = fg
b s
- i.e. ‘
i.e. Fj’t(fj)Fk l(gk) Fy £EPF L) tee

L. (F, (£,F (Fil,ku;l)), (F,  ((E0F, fF, (g))

e. Fj,t l’j 3,2 12,j 12‘,k

/ ’ =
L.e by definition of the F, Fil.t(fl)Fil,t(gl) ; Fiz,z(fz)Fiz,t(gZ)

But l"i 1’ Fi 4 are prelogical and tirerefore, preserwe composition.
- 1’ 2’ ;

]

e Fil.‘(flgl) - Fiz,ﬂ(fZSZ) i.e precisely f, g, fzg‘2 , as required.

.
/
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. b
[ s !

\ ' )
; A .
We use this fact to deffine composition in C as follows:

Let X Tl > Y Tl 2, where g is in Qiz f 1s in Qil. Cal} 1
3 = max (il,iz) and call fj = Fil,j(f)’ gj = Fiz,j(g)' (ihus ” "

f;'jE f and gj = g)

pefine [fll [lgl = ”fjng. The compatibility with compasition ensures that this’
¢

operation 1s well-defined, und that for composable morphisms f',g' in any Ei'

4.13 (a) el = e Il le'll. 1In particular

ic follows that [[£] [[1dyl = £ ta )l =ll£] and [[1a ]l llgll = llgll -

To verify that the composition is aspﬁciative, let W -JﬂﬂL——> X

J

in ﬁ, where h is in gi:a . c§11 j' = .nax(}1,12,13) .and call be
fj' = Fil,j'(f)’ etc. Then we have fj'E»f’ gj, = g, hj' = h ;
moreover (fj')(gj' hj;) = (fj,gj,)hj} because composition in gj,
is associative.
' by = 1841 .
IlfJ (8, /b )l ll(fj gy, fl
. . L) = DN
By 4.13(a) ufj.n Qe ll Iny il Aty le, i L 7
i.e that {£]| digl Inll ) = €l llgll > Inll .
K - o
Thus 3 is a category and each Fi is a functor. -

r

*»

By the same method as was just used for composi t/lon, it can be
verified that = is gtrict and is compatible with oducts, Heyting

operations, and quantification.

For éxample, compatibility wich\(isproved?l ags follows: Let @i = ¢i
1 2

W, )=F v, ).
i Tkt Ty .

»,

and ¥, = *1 by Fil’J(Wil) - Fiz,J(mi

), F
1y 2 -k

2
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+

Call m = max(},£) and call o = 3 (@i ) =F ‘(mi ) and wm = etc,

1 12,m 2
Thus @m v Wm = Filym(wil) \Y; Fil’m(wil) = Fil’m(mil Y wil) because
(@, VvV, )
2™,

i,m

F are prelogical. Similarly O \ wm = F

£, i

o (e, V¥, Y= (p, V¥, ). The other compatibility properties,
A ORI 1 i
1 1 2 2

i.e. 4.5¢)-(g) are verified similarly. Thus = 'satisfies 4.5(b)- (g)-

We then define product maps, Heyting operations and quancffication
in ﬁ by means of representative elements as was done for composition,
and it can be shown that these operations are well-defined, are pre-
served by Q, and make § into a prelogical category. In each case the
required property follows from the compatibility of = and the

corresponding property of the Qi, by a ptdtess of tracing to a C, which

]

contains all the morphisms involved.

To illustrate the procedure we shall carry out the definition

and proof for ¥ :

Let X el oy, x Aol s q  ae v g in C,

where £ is in C,, @ is in 'gj and ¥ is in €, . Call £ = max (1,,k)

L

and call f'Z - Fi,l(f)’ Py = Fj,ll' Note that thus

el = el s Dol = o wna vyl = vl . Destne gt I3y | el
To see that this is well-defined, let f£' = f and ¢' = ¢ where f'

is in El' » (P' in .(_:.jl » Fi',k'(f') - F.‘[,k(f)' and FJI’ v(@') = Fj, |(¢) .

Call m = max(k',2'), call £' = F,, (f) and so on.
. m i’ ,m

s flgg) = £l = el = el and ol = lo') = fof = lg,l-

~ -
v
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~Since = is compatible with %; \‘.Haf, [%J”= Haf!t[.(pz]”; i.e’
m

. : ! ST
) _ Euf””(P” = ”f-””qJ I .

h

his fact gives us a fortiori: that for any morphism X———> Y,

X

! in the same category _Qn,
‘ 4,13 () Euh”[”xﬂl = Hﬂh[x]” i.e precisely that each a preserves
: = r ' :

existential quantification.

N

To show that Bl 1 te adjoine to () £, 1et 1,5,k,£ be

as before, call "z - Fk z(\y) and note the followL‘ng two facts:

14 £ = Iv,legl = vl gl by 4.13(a) sand < is defined by

ol vl 1fe, < v, .

__MN;1@-H%J%WSMJELe%JWI$n

A

Suppose 3” £| [*”W”]

- &

D
.

-"+ By adjointness of Tin G, , 9, < V,f, ; i.e. o)l < |N£f£” .
el llell < vl el

Conversely suppose |[oll < ||¥]| J|£]l, and retracing the argument gives

_3"f"U|<P”] < vl

f

3
B o LRt e
.
L
.
) .
.

]

L

. .
.. - A1l of the properties 1.1 of a prelogical category can be verified’

inﬁ by the same method. Likewise one obtains the preservation of

i
‘ the prelogical operatipns by each g—F—-——rﬁ .
Moreover, € is small because U

i .
hence 1is a set. : '

gi(’x,Y) is a’union of sets,

e e e ¢ s gt i s o2
e B s f2 L BB
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4.14 Proposition (a) If each gi is consistent, thenlg is consistent

®) If each _C_I_i i1s maximally consistent then so is fg\ .
(c) If eao:hﬁi is rich, then _é_\ is rich
4
A
?  (d) If each _Qi is fair, then C is fair.

(e) If each is copservative, then each Fi is

Fy, 141

conservative. - -

" @

‘Proof: Note first that in a chain of the kind described, given any

i,1+1 .
£ ] 410 Fran

~F N . -
C must be the identity functor on

certain universal morphisms. Namely, for all objects, X,Y of

3 . '
91’ Fi,i-i-l must preserve the -morphisms idx,Ox,lx, %(’ . ant

the projections X X Y———> X, X X Yo———3> Y, s8imply byivirtue

p 1-7. p-z )

of being prelogical (recall remark 3.2(a)). This fact will be used

implicitly 1in the proof of the proposition.

¢

(a) This 1is obvious since, given any i,jJ € N, since Fi 5 is
prelog - Fi,j (0) = 0 and Fi,j(l) = 1. If each gi is consistent,
L. 041, L0, Fi,j(o) never Fi,j(l)'

[ 3

[

Fi,ﬂ (O)‘i never = Fk,j‘(l) (for an@k)‘. ie. 0#F1 .,

¢

(b) By hypothesis each _gi,(x,n) = {0,1}). . . li)'g'la’n). - [9,1] .

#loss of generality we may say !_ .and 1 are morphisms. 6f C

-

-

L

dun

© tet  F, y Usll = Ul 1€, vhere o 1s 1a
‘X

. by consistency, .. C(I,0) = (0,1} .

gi . Without
. T ¢
‘X

-'t -
r

\
et e ————————— e § | T oty iy o g
. N O AR g, RER R
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v
+

3”. I loll} = Jt) 5 .°. the;'e 1s 3>t *such that
'y :

i.e. since Fi,j is prelogical , Z!x [Fi,j(q))] =1 in -C-'j

But _(_‘,_j is rich; .°. there is I—X-— X 1in _Qj’ such that

€, J@x =1l @l = 1l e lolllsl = Il

A
and so C is rich.

) ;kss_ume that each €, is, fair; i.e. all projectiohsare epi in 9-_1'

]

A
Let X X Y—lgﬂ—é X be any projection map in C, where p will then

be a projection X X Y—LF 5 X 1in some _gi .

Now ﬂ”p" [Hlm”] = ” Hp[lm] | = "111” by l.ll&jh) sin;:e p is

epl in gi

' 4 LA
Thus by 1.4Ch) |lpl is epi in C, and go C is fair.

., (¢) Suppose that each F, is conservative. Let i e N and

i,i+1

v

/ A
c

let I—>0 o ¢ such that F @) =1 G .. fofl =1} 5

@ =1 in ¢

i.e. there is j > 1 such that F .
_ 1,1 { ‘
"Since Fi. 3 ie conservative by 3.3(c), - Q= 1 in %, and so F"
. s :

44

is conservative.
. P -
Remark: The definition of R 11;:,91 could be generalized to any

countable chain of small prelogical categories where the functors

, “A
Fi 41 are prelogical and 1-1 on objects. The definition of Ob(C)
o1, .

would then be modified as follows: |

o

.50

T b RN TRl BEY v g oo
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ObC) = (J ob (-:l)/ = » wvhere =' is defined by X ‘=t x,  Lff
i
1eN . 1 2
there exists J such that . "
¢ l)j(x ) zij(x ) ; -
_e_G(,Y) unchanged. N 2

. It.can be verified, a’lhhough tediously, that 4.13, 4.14
A
and 4.15 would hold for this more general C . However, for the
present purposes we require only the definition 4.12. Indeed, .
it may be remarked by 3.2(a) that in the case where the F‘i j B
extensions (i.e. are bijective on objects). then every prelogical chain

18 naturally isomorphic to some chain of the kind in 4.12.

o

: i i+1
H . . RPN Ik BB 9 cee
4;15. Proposition. Let ¢, CH_1 be -4 chain of

prelogical extensions as in 4.12, and consider the tategories

Dyv= Ly and E, =Gy
‘ The prelogical extensions Gj j+1 2_1 2j+2 and

) HJ;J"'I - F2j+1,2j+3 clearly form chains

» G ’ B v
' - IS k. TS 3.3+
) "'-Qj' % > Qj_ﬂ..._and _E_J ﬁgj_‘_l
" ' of the/”icind/A 4,12 also.

and £ = R 1im E, = R lim C

f S A/ , ‘
Call’ D« RI1lim D, = R 1lim ¢,
. ‘ J o 3 {1 -

]9 =] {f oo 24

-°‘

=2i+1°

>
~
L]
>
>

.g.

A A A A
: Clefrly 1% is sufficient to show that D = C. WNow Ob(D) = 0b(C)

‘ bf defin tion and for each X,Y, U g X,Y = U __210{ Y) . So
y i

/
requiré only to show that the equivalence relations are the same. Lo

’/
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'Suppos X-»-—f——-;vY in D;, X-l—L>Y in.D, are such *
& 3 K

that £  h ., Thus there exists £ > j,k such that G; ,(f) = G,_ ,(h);
. D . - J,l R k,ﬂ

. i i .
i.e. ?gj’zz(f) - FZk,ZI(h) gixfing £= h. . -
Conversely let x—i-,-a Y ingC, , X-——h-—> Y in C
—11 Y ~ "12

such that f£ '='ch . «'. There exists § > 11,12 such that

(£) = F (h) = call g in C .’ Let k be any even rnumber > j.
F ]

F
il’j '12’3 J
Then Fil,k»(f), Fiz,k(h) are maps in Dk/Z and Gk,k(f) = Gk,k(h)
(= Fj k(g)). Thus £ EDh , and so’ thé relations are equivalent.
’ . . .

S ¥ ‘
In the following three thedrems we make specific application

©

J - .
of the general constructions developed so far, in order to construct

-

}onservative saturated extensions for all appropriate prelogical

' categories.

4.16 Theorem. Let C be a small prelogi¢al category which is

consistent and fair. ~Thep there exists a small, fair; S

consistent category C' with 6b(C') = 0b(C), and a congervative
enriching extension C—0—> C' which is the identity

functor on objects.

: P , , ,
Proof: Défine the category X* by: o
ob®) = 0b(C) . - ‘

'

For each X ¢ Ob(C), X(I,X) and C(X,0) are isomorphic sets;

denote the element of X (I,X) corresponding to a given —25 0

o gby I—m2 px . - , ’ ‘ R
For each X,Y € 0b(C) *with X ¢ I, K&, ¥) =9 . R Y
’ .

. S e " -
o SR 2 5ot RS Tawagioy 2t W

B Edly BT
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) e
’ Clearly X is a cat:egoi'y of constants for £ and so we have,
7 .
by 4.8, the faithful extension G ———> C[K] with CIK] small,
3 .
fair and consistent and the embedding _I{————-g-—-> cixl
. ™
L Congider the set W < C[9] (I,9) defined by

W -wJ @ all ¢ € C(X,0) such that &, [p] = 1 4o C
a! 2 E i I :

Note that O £ W because:
For each X——2—> Q , recall that 3, @) = koloh Ge. IXX—2>20)

amd 3, @ =k idlo b (e. @ X I=xX 1—-ﬁx——>x ).

- _ {
Thus J(0) J, @) = < olo> (.e. ITXXX I'— > I'X X —2—sq

te. X—2g>0). . ' .

Suppose that I, @3, (® =0 inCl 1; f.e. H: olob =kolp b .

By definition 4.1 there must then exist some A(c) = Y e Ob(C) -

e such that the. diaggam

/ \w\

A(c) x X N comutes.
4
< P 3
‘ ‘:I..e. Q'pz '.,OY S R gpz[qa Pl = °x by 1.4(d)(1).

( - @ - . ‘ . \ -

.~ But since p, is epi (by fairness), . .. !Ep fo p2] =q by l.4(f)
f ’ - F2 c

N I.. 'q’ -'o H o.o 3‘. [w] = 0 ﬁ 1 0-\

. 'x-
. Thus Hy definition of W, J, () J,(@) £ ¥ ; and s0 0 4 W.

.
d -
. ,
. .
.




b

let V be the filter on CIK](I,n) generated by W, .and let R

be thg congruence relation on _C_[K] generated by V as in}4.8.

Call C'=_CIXI/R . .

.

Define g—ll-—-a €' by H=QJ, wvhere Q: CIX] - C' denotes the

R
cag\onical ‘projection.

We have C' smdll, fair, .prelogical with Ob(C') = Ob(C) and Q an

.extension, by 4.11.

Moreover by the 'conptruction we have, for each x—-9——,> Q

with 3, [p] =1 4in C, the constant k = QQ, @)) in C'. such that
LA

Hip)k = QU (@) QU,@) = QU @), @)

= 15, @3,@l; =1l siace 3, @)3,@) e W V.

i.e. “preciselir that g'——ﬂ-—> C' ‘enriches C .

I
It remains only to prove that H is conshrva.t:ive.

lLet _I-—-q-—->0 in C " such that H@) = 1; i.e. J1 @) e V.

- .

Since V 1s generated by W, tHere must exist a finite number of maps
! L ! i

~
il

1

i

- QP N . . . . ‘
(.4 —_—t Q) - * in C such that %, [p,] =1 for each i and"
. 1 R ° *-1,-:, n , cx i ' [} .
* . * - . ’/ N 4_- , &
™~ n - - - . ,/ T
A\ 3, @)3,() I @), 1in CLKI(1,0).
1=1 o ‘
i.e a = A ' =y
| 4} 3 o, (o) AT @) = 4} 1, @), <q>1)\ .

f.e. by definttion of JjuJy 8and A in clx,
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‘%:/\ oy A iy

{=1
& n
f=1

2000 %

_with projections pi'.

where X =X, X ... XX
1 ’ .n

f
But constants are monic (ttivially, since Z..._.._..._,""I

f

n B n
. by 4.2(), P,p, N A, = Q,p, 4in C.
| {_} 1P1 X AR Nt
‘ n \ ] 3 ‘! ‘
i.e. o,p, < @i, InGC . ° ’
4} 1Py X :
cn

by adjointness of A, =>, we" have

» ' ' ~ 531-2

1
. e vx

1Py £ 9P ¢

« (op=>a!l)p,- .
o o x’P1 o
et Again by adjoinrnees, { 3 cpipi q>2p2'-> o => ’alx)p .

It:erating this process n timea would give

't
§a16§a) lx /\‘b - //\cpipi S‘Pﬂp = ,,, => cplpl = a.x .

'To make the procedure' explicit, we introduce the following notation:

h

| . -  Dbefine Yo,.:-..,!n € Ob(C) by =T, YJ - xJ b Y}'l' That 1is ,
' ? . - .
Y")g-I,Y - X xr-xl, 2'x2xx1’”’Y ~ X, x...xx
| , ’ . ¥
b “' ) Denote the projections of the Y by 5—-'-—-> I s Yj=-1 .
K 5 ‘ ) Y ’ :
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~

«

a ‘
Define jzj-——i——\>n by @ =@ ad @y = gury >a q)).

= = - = - ' = =
that is a =a, al (erl) > (aql) P =a 'y o oz2 ((pzrz)‘ >

. ) N .
(alqz) - (‘1)2!‘2) = ((pl => Q ‘!x)qz, and s0 on.

Then 4.16(a) says that 1x = Oln . -
t -
- . We shall now use this fact to conclude by 1nduction that 0 = 1

The descending induction step is ag follows:

Suppose Ctj -'1? for some j.Z 13" 1.e. q)jt - aj 1qj - 1Y ;

k| -
. i.e. <a . ’ ’ )
tree Oy <3 g, : .
¢ Ve remark that since C is fair, each 9y is epi, . .
q )
and also that each diagram Yj - xj *Yj-l A —> Yj:l
as shown 18 a pullback of - A
- . N . ‘1'
the form of 1._6@2;112 rj , .Yj-l
with o ' :
Y | "’ " $
X=X y, Y='I Zayx . .
- 3-1 R B : X, > 1
1 -
* n 'x o
f=! and Z X £ = {d_ X ! -r ]
Y, ,» oo B = idy x
371 TS
. R N 11), (4 ! . {
». . y L"—&, )(11) , ¢ ' [tpjl) Y, 1, [cpjtJ
. h | . -
' < 3 [a ] (since B 1s order-preservin ,

k)

- - aj-l by 1,4 (f), because' C is fair.

;

! 4

1] \
+ .
Al (
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But by hypothesis each I, [p,] = 1. Thus @ >1 ! = 1 R
X b i1 = Y., Y 1
* X SR £ R B
ilence by induction downward ;m i we obtain ao =1, 1f,e. =],

and so H {8 conservative. ' This completes the proof of 4.16.

4,17 ‘Theorem. Let § be a small prelogical category which is
consistent and fair. Then .there exists a sm{sll, fair,
consistent and rich C* with Ob(C*) = Ob(C), and a
conservative extension _C_—E‘—>\_g* , which is the‘\

~ identity functor on objects. ) :
“ | . = 0 ’ H ' : ‘ i

Proof: Call _Qo C and apply 4.16 to obtain _Qo--——-e c

- small, fair, consistent, enriching and conservative. " call

C' = (11 and call H = F . Apply the same procedure to C to

—~— -— F 0,1 -

produce _ql-—u—'-é €, and fterate countgbly many tires.

We thus have a chain of extensions ’ .

e G G -

i,1+1 e - .
of the kind described in 4.12, and with the following properties.

Back £, 1s small, fair, and consiscent! and

e

each Fi, 1+1 is consegvative and enriching.
»

% .
Call ¢ =€ = Rlim g, and call g— > C*, F = F° as defined in 4.12.

[3

By 4.13 and 4.14, ¢* is small, fair and consistent, Ob’@*)ﬁ-- Ob (C), ’

and F ig a conservative extension which is the identity on objects. ,

~

e e et e A AT A . v
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.
-

Moreover _(_3_* 1s rich: - let x'—M—a 1 in _c_* such that

-

. . .
3" !x“ Ueollt = |1 ‘in € . 1ising fgr‘some i; and since Fi,i*lo

-

. k ] " -
enriches gi, there is a constant I-———> X in §i+1 such that ‘

FyiH @k'=1 torg ;.

[}

/ "\F'i,ul(lq’)k” =l v "F1,1+1(°P)“ I =1 o 9*_'

and so k is the required constant.

* .
) Thus g——F—+g is the desired rich extension.

-

4.18 Thecrem. Let C be a small prelogical category which is consistent

a
and fair, and let I——> O in C be such that 7Q # 0.
v )
then there ekxists a rich and maximally consistent prelogical

-

category E and an extension _Q-'——G-—"} _a: such that G@) = 0 in E .

Proof: By hypottfeisis 70 # 0 . (Notice that in particular this implies
a #‘1,‘ since 71 = 0.) . . |
'Let Vo be an ultra filter on C(I,Q) containing 70 (by the prime ideal
theorem there always exists such a proper ultrafilter.)

Call é‘o =R ° , the -prelogical congruence generated by Vo , Call

€ =G, call G, = CD/R and call GO,I = Q.

‘Then _C_1 is small, fair and consistent, and GO 1 is an extension, by 4.11.
hd . > n
-

Since Vo is an ultrafilter, .°. _(_:_1(1,0) - é(I‘P )/Vo = (0,1 i.e
,gl is maximally consistent. Also note that Q ¢ Vo,' since 1f It were, we
would have 0 = 7Q A & ¢ Vo’ contradicting the fact that Vo is proper.

Hence G, ,@). = [l # 1 in C,, and of course Ob(C,) = Ob(C) and G
0,1 1 . 1/ 0,1

Y

is the identity on objects.

’




©

. | * . ‘ .
: Apply 4.17 to g, call C, = _ql and call G1 , =8 .7« We-obtain

.

LS 5 '
-2 %0,1 763>, vith g, rich. Note that .

is conservative.

G]:,2 - GO,l(a.) # 1 because G

1,2

a

We now alternate these two s}e;)s countably many times, thus

‘constructing a chain

: e _1’_:_i = o \g_i“—.-—-:'» ... of the kind a’ssumed in 4.12.
? .

" with the properties that:

{a_) All’ the are small and consistent;

&
(M) For every 1,6, 1(0) £1;
1]

»

é) For every j >1, C i1s maximally consistent, agd

<2§-1
(d) For every 3§ 2>1, _c_zj is rich.
By 4.15 RlimC, = RUmC, = RUmC, . =callG "
{owd Lo w2 (w2 . ‘
- Because of (c) above and '4.14, C= ;{1.’12 _gzj is maximally consistent.
Because of (d) above and 4.14 . C =R lim C iz rich . . .o
I T R :

. _ .
Define g_—-—c——> C as G = Go; by 4.13 G is-a prelogical extension.

I ]

Moreover G{), = flol # 1 by (&) above. .°. Since C ie maximally -

Lot »
consistent, .'. G@) =0 . )
s ? : )
' Therefore ° g—-f—-> L 1is the required exteﬁaion\\. ‘
) The cou?pleteﬁeas ‘theorem now follows from the fit\ial results of ‘
. h
this chapter and the previous one. ' e ‘ ' :
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4,19 Theorem (Completenessof Prelogical Categottes)

- let C be a small prelogical category which is consistent

Qa
and fair, and let I——> Q in C be such that 7a # 0.

Then there is a semantic premodel Q—F—->_S_' such that

‘

" ‘F@) =0 .
k3 . -_— -—
\ Proof: By 4.18 there is an exteasion C i > C such that C 1is
" rich and maximally consistent and G(&@) = 0
\ _
\ By 3.8 the canonical functor C e, ) —> S 1is a semantic
. ‘-\ premodel for § . /
g ) g
? Call F = @ (I, ))G. By 3.3 F is a premodel for C, and clearly

F 18 semantic. ¢

Moreover' FQ@) = —_(_J-(I,G(CX) = E(I,O) =0,

Thus F is the required premodel, and the completeness is proved.

¥
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