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Abstract 

This thesis presents a new parallel algorithm for solving the linear programming problem 

1ll Rd for the reconfigurable mesh architecture and for the CREW PRAM model. The 

algorithrn IS based on the sequf.:l1tial technique discovered independently by Megiddo [Meg83, 

Meg84] and by Dyer [Dye84, Dye86], which gives a linear hme û.lgorithm, in n, the number 

of wnstramts, to solve the linear programmmg problem in d variables, when d is fixed, The 

parallel algorithm runs in O(log3 n ) time in R2
, O(n1

/
3 log3 n) time in R3 and in O(n1

/ 2 ) 

tlme IJI Rd on the rewnfigurable mesh of size n A simplified verSIOn of the same algorithm 

ruIlS III O(logd n) bme on the CREW PRAM The o(n1
/

2
) running times achieved by the 

paraUcl linear programming algorithm in R2 and R3 are due to a novel selection algorithm, 

which 15 also presented III thls thesis The selection algorithm runs in O(log3 n) time on the 

reconfigurable mesh, As is the case with the sequential technique, it will be shown that the 

parallel technique can be applIed to\lI,'ards solving other problems such as linear separabilit.y, 

circul.lI' separability, digital disk and the Euclidean one-center probleùl., and can be extended 

to solve quadratic programming problems, in particular findmg the smallest circle separating 

two sets of points, 
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Résumé 

Cette thèse présente un nouvel algorithme permettant d" resoudre le probll'Il)(' dt' l'~" 

grammation linéaire en Rd sur une architecture à maille re<.ollfigurdbl(' et. IH1tli le {l\Il.H(· 

CREW PRAM, L'algorIthme est basé sur la t.ech!llque séquelltlelle dé(()lIv('rtt' pM 1\1(·~~J(ld,. 

[Meg83, Meg84] et Dyer [Dye84, Dye86J. Cette tech!llque permet. (k' résollclrt, Il' plohl('111f' dc' 

programmation linéaire à d variables. où d est fixe, et ,e en 1I11 t.emps 11I1l'cllff' pM I<lPP'" t 

au nombre n de contraintes, L'algorithme parallèle s'exécute en 11n L"m!,'" 0t I"f!, 1 71 ) ('1) /(2, 

O( n 1/3 log3 n) en R3 et O( n 1/2) en Rd sur unemaillereconngurclbledl.\..1I1I(.7I1.1I(. Vt'J''iloll 

simplifiée du même algorithme s'exécute en temps O(logd n) sur \lEt' CHEW PHJ\f\1 LI'" 

temps d'exécution de compléxlté o(n l /
2

) de l'algorithme de progrclIl1I1ltttloll 111\(\111(' prlldll,'I,' 

sont réalisés grâce à un nouvel algorithme de sélectIOn présenté dans (eHf' t.Ilf'!>(, (:('1 ,t! 

gorithme s'exécute en temps O(log3 n ) sur une maille re(onfigurable ToUL (O"IIIIt' pour Ici 

technic;ue séquentIelle, il sera montré que la ted-mique parallèle r}C'UL drt' appllquPP;l d'illlt.n':-, 

problèmes, tels que la séparabilité lméalre, le cercle englobctnt minimal. le dl!)(IU(' IIlllllériqllt" 

la prog ... ·arr.mation quadratique et Je problème euclidien à un centre. 
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Chapter 1 

Introductio_~l 

The linear programrTllng problem IS that of mmlmlzmg (or rnaximlzmg) a linear function 

subw< L Ln a fimLe number of Imear constramts, where the Imear constramts are eit.her 110-

ear equatlOns O[ llONr mequahtles IChv83] Many problems in production management, 

eCOIlPrnKS, neLwork analysis and computatlOnal geometry can be formulated as lin~ar pro­

gr<lIl1l1llllg problerns The classlcal sequentIal approach for solving a Imear programmmg 

problem 15 the Snnplex metllOd [Oan63i, whlch unfortunately has been shown tü have an 

expOllcIItlal worst caM' runnlIIg tane [Kk72], but nonetheless provides an excellent approach 

for must prad 1( al casf'~ Rect'ntly, a new sequentlal lmear programmmg algorI thm was de­

v('loped wlth rurllllI1g tmw ilTlear III the Humber of constramts when the dimension is fixed 

[MegS:l, Oy('8·) l\Ieg8·j, Dy('86] 

The desire to lurther rt'duce the runnmg time for solvmg problems, su ch as the linear 

progralTlIl1lIlg prnblf>ITl, bevond what can be achleved by sequentlal algonthrns running on 

sll1glf' proceSSllr arcllltectures, has generated great mU'rest in parallel algorithms WhlCh can 

pxplllit the advant ages of multl-processor architectures The difficulty in developmg parallel 

alg<mthms IS to f'fficlt'lltly perform computation m parallel while successfully aVOIdmg the 

prnblelll of r{'sourcc contentIOn 'l'wu general rnodels of parallel computation are usually 

(ollsidercd w hen design mg parallel algo:'lthms, one in whlch the processors share a common 

Il lt'llWf\' clnd I1r1(" 1fl wlllch the mt'morv is dlstnbuted among thf' processors [Pr(79) 

TIlt' CllIlCllfrt'lIt n'cICi e;..dll~l\'t' \\Tlte parallel rand"l1l cH{e~b fIléH.IIlIIt' (C'RE\\' PRAl'vl) 

IS ail t'xclTllpk (If (he ~h<lred lllclIHlry mode! .\11 pr()cessurs can sllTIultaneollsly cllcess the 

lllt'Ill\lrv as long clS Illl two attempt to wnte tü the same mernory location slInultaneously 

1 



1 

This provides for an essentlally unconstramed t'xchdIlge lA d,lld Let \Veell prt)lt'SS\lr~ ln 

contrast, the feconfigurable me5h 15 an example nf the dl~tnlJllted Il'I'lIlilr\' Ill\l(kl Th!' 

processors are lllterconnecte(l III a network. wlth each pr\lce~~(lr hc\\ Ing ,1 :t'j,dm,l" '>Ill,dl 

(constant slze) local memory Not al! prOlessors C.<tIl tnl11tllllllltclkelIrctll\' 11l\1~ «(lmlf,III'IIII', 

the flow of data and IncreaSIng the rUl1l1lng tmJ{' of lllclIl\' ,dg(lllthlll~ II ~Il\l\tld h, li ':. ,; 

that the reconfigurable mesh is a practic.tl exampk that I~ \\t'll Slllted t\l (\II n'lit I('tll: ,,-

whereas the CRE\V PRAM lS an Ideallzed eXélIn pie wh I( h rt'm,lIns t {'( Il !le Il, 'gH <i Il \' 1111 p' '1 :, 

to implement [Pre79] 

ThiS thesls proposes a new parallel algonthm whl( h wtll clll"w ,li 1 11 t nll"'\ rdlili II II! dl 

programming problem III 2, 3 and d (hmensJOfls tn he snl\'t'd III ()( lug III J, ()( Il i II. ,),1 Il i 

and O(n l/2 ) tnne respectively on a reconngurablc nwsh nf .,I)W 11, ,Vith Ill!' (<1,,:-.1.1111 ,,1 

proportJOnahty growmg exponentlally wlth dImenSIOn The dlgont Il III Illdk('s Il..,(' l,j d II' 1\'1,1 

selection algonthm, also presented Ifl th18 thesls, v,:hlch !('ctlIZ('!> dll ()(I"glll) IllllIIIllg 1 Ill!!' 

It is assuITled that data put on the reconfigurable bus 18 blUdc!(c\S\'ll1 111111 \.II1!1' i\ ~llllpl!l\l'rI 

version of the parallel hnear programmlllg algon\.hrn wlll alslJ hl' showll lI) rtllJ III O( Ifly,rl lI ) 

time on the CRE\V PRAM 

Recent.ly, a number of algonthms have been p:-0F>o&ed for M"vlfIg the II/WiLl prllgl,IIlJlllllIg 

problem in pat'aUel, ail for a concurrent read collcurrent wnt(' PHAM (CH(~W PI<!\f'vl) 

[Den90, Va190, A1090] In additIOn, there has been a lot of work ()Il pet! ,t1 IC'I ~'lll1t 11111', III 

problems related to Imear programmIng 51H.n as the cunvex hllll pflJbl"lll, t.lld t (,UI l''dd t 1\ d 

parallel solution to the Imear programmmg problem iAgg88, J)'idil7, At'18fi, J\!lJlHH<, 1),'hHHI 

If the linear prograrummg problem IS trallsformed 111 to the cl \lai, P,l( l', .t Pclf,tllr·j ~/)111 t l'.JI Illd Y 

be found using parallel algonthms for comput111g Ulnvex hull!])o!t8(), 1':<1('8'11 CI\"'II ri 111\1'<11 

programIPing problem \'\'ith n constralllts 111 d dl111eIlSIOns, ea( Il (Cll1str,t/llt «()rn'"p()!Id~ \, .. d 

d-dimensional p0111t In the dual space ft stlffi.ce5 \'u (')rnpl,te the Wll\/f'.1. 111111,,[ t!H' rr'~lllt llig 

points and test each convex hull pnJnl fur ()ptllI1,d JI \' 1; Il forlllll,il,p 1 v, t IWf(' d Il' <1'> ';, t nI. 

parallel solutJons for the convex hull prnhlem lfJ dlll)(,Il~I"lI" Illglwr t ftdll t 1111'1 '/:1\1'11'01'. 11,1 

parallel hnear programmmg algor'thm )lrlJp,,~,'d III 1111'> 1111''>1., 1\"lk., III ,1 dllll' 11',11111', ! -'f 

selection problem has recel\'ed conslderably !Tl' ,re cl t tell t 1"1I <ln d <l li Illlllwr (Jf l'cU ,tilt l ,1 d 1. 1 : f 'II _ 

are avaIlable for the rnesh and the CREW PRAM ITh',77, St()H:~, PriiR7, PldHfJ, (',,jHH l L, 

2 
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'-
paredlel s,·IC>CtllH) algonthrn, proposed ln thls thesls, is bebeved to be the first su ch algorithm 

1.') adll('ve po]yl')gaflthrmc running tJme on Llny mesh architecture 

The tJ,('SIS If> urgamzed mto six chapters followmg thls mtroductory chapter. Chapter 2 

lH'glTls wlth a dls( USSlûll of rnesh ardllt~ctures berore present,mg the reconf1gurable mesh. 

The etlg()r1thrn~ for computing the maXImum and the parallel prefix operations are described 

rle.d, rlfld ! he chaptf'r ends wlth d rl'vlew of the CREW PRAM model Chapter 3 presents 

the pilrftllf'1 f>ele( tion algonthm on th<=: reconf1gurable mesh Chapter 4 glves a review of the 

Sf>!j\lf'II! Iftl 11llpar progrc1rnrnlIlg algonthm'3 ln 2 and d dImensIons IIlcludlng a dIscussion of 

the IIItlltl-c1Jrnenf>lonal search techniquf' Chapter 5 presents the' parallellinear programming 

ftlgont.hrn!> on the [P( nnfigurable mesh In 2 anrl d dimensions with a special case wherr d = 3, 

fille! cl slfIlphfied verS)IJf] 011 t.he CREVV PRAM Chapter 6 discusses applIcations of the par­

fd le 1 alg()rJ th rn 1 Il sol Vlflg other problems Incl udl Tlg Ilnear separability, clrcular separabili t.y, 

diglt.al (lJsk, Euc!Jdean one-ce'nter problem and quadratic programming. Chapter 7 conclu des 

tll1s th('sIS 

3 
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Chapter 2 

The reconfigurable mesh architect 11rt~ 
and the CREW PRAM model 

This chapter gIves an introdudion Lü the basic <-haradensl.tcs IIf mesh itrdl1t(·( I.tllt':, dlld 

presents a detalled description of the reconfigurable rnesh c1rdlllcduf(> Aigonthllls ffll Iw'. 

abstract data movement operations, maxImum and parallel prefix elfe dcsurlll'd, III "ld"r 

to provide an int ;:oductlon to design mg algorI thms far t.hl s arch 1 ted ure Ldst 1 y, ,1 hrw ( 

presentation of the CREW P RAM model 18 r;iven 

2.1 Basic characteristics of mesh architectures 

A mesh [Th077], a me&h with raw and calumn buses [Pra87) and thr reconfigurabk lIH'hll 

[Mil88a] are ail interconnection networks with pracessmg elements (P l~'s) cHI angl'd 011 il 

two-dimensional gnd Thelr PE's have slmilar computationc.1 (élpabtlltlPS ,wei tire a.bdlty 1.0 

exchange data wIth their nelghbours through local communJc,ÜI()T! Il!1ks Tht' N pro( essol f, 

of a mesh of size N are placed at the IntersectIOns of a two-dnnenslUlI,tl hqu,tr(' glld 1)[ :mw 

N I / 2 X N I/2, Each processor lS connected tü its four nClghboufs (If t.lrey eXJst.) t.hr(lugh Illlr! 

time communication links, The commumcatwn dW7nf'tcf' [MiI88cj, ddirwd clS LIli' 1l1<l/IIll'lJJl 

of the minimum dIstance (number of communication links) lJetwt>ell ally tW(' pro( ('''''1)1:, III 

the Iletwork, lS of O(N 1
/

2
) ThIS can be ~C:'('n hy computJng the dl~t.III(· lH't W('('II PP,( l'','>''l~ 

in opposIte corners of the mesh, wlllch 1~ '2(N 1/ 2 - 1) Thll~, for <Illy pr(lhll'rll ((Jr VihJ(h d 

processor in one corner of the mesh rC:'qUIrf'S data fmm cl. pr()«'ssor III 1.1)(' I)PP()~lt (' ( /JI Ti' 1 J d 

lower bound on the running tIme is n( N 1/2) 

4 



The above observatIOn can be used ta show that many problems require 11( N 1
/

2
) time 

tü be solved r)n the mesh. In particular consider finding the maximum of a set S = {a,}, 

z = l,. ,n, (n s; N) Let the n values be distributed in no particular order, one value per 

processor, and suppose that the answer (the rnaxiIT:..um of the n values) is to arrive at the top 

l('ft-most proccssor of the mesh. If the distribution of the data were such that the maximum 

value amax = max{ a" z = 1, ... , n} was originally at the bottom right-most processor, then 

It must have traveled for O(N 1 / 2 ) time in arder ta arrIve at Its destination processor. Since 

this argument applies for any choice of destination processor, in the worst case fin ding the 

maximum will take rl(N 1
/

2
) time. 

The above reasoning caunot be applied wh en additional communication channels, in the 

form of buses, are added to the mesh. They allow a piece of data ta be sent over a long 

distance much faster than using local neighbour-to-neighbour connections. Such channels 

may be JO the form of row and column buses [Pra87], that is aIl processors in each row, and 

similarly in each column, are connected to a bus. One piece of data can be put on the bus 

and read by any of the processors connected to that bus. If it is assumed that this takes 

unit tIme, then d value can be exchanged between any two processors in at most two time 

units, by using one row and one eolumn broadcast The time required to find the maximum 

is reduced to 0(n1
/
6

) as shown III [Pra87J 

Even though the communication diameter, when row and column buses are present, 

may no longer be the hmitlllg factor for problems such as finding the maximum, another 

difficulty arises. ~ < any algorithms designed for parallel models of computation are based on 

the dlvlde-and-conquer techmque [Ah083] where the original problem is subdivided into a 

Ilumber of subproblems of smaller size, each of which is solved recursively and their solutions 

are combined to give solution of the original problem. Examples of this technique applied in 

parallel wrnp11t.ation Illclude the algonthm to find the maximum by Miller et al [Mil88a] or 

t.he algorithm 1,0 compute the convex hull of an ordered set of points on the reconfigurable 

Illt'sh due to EIGind~' [EIG90] For sueh algorithms it IS deslrable that the avatlable resources 

l'an be subdI vlded so t hat recurSIOn can be applied eonsistently However ITI the case of row 

and COlUlllIl buses, there IS always the same Humber of them available (2N 1
/

2
) to be shared 

inr-lependf'nt ly l,f the Illlmber of subproblems created. 

5 
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2.2 The reconfigurable mesh architecture 

The reconfigurable rnesh architecture [Mtl88a] combines the ddvant.ages of t.he lII('sh WI\.1t t II(' 

power and flexibility of a dynamically reconfigurable bus st.ructure A recClnfigur,lbk IIInh 

of size N consists of a two-dimensional array of N processors nrranged Oll .l N 1/2 , VI} 

rectilinear grid, overlaid by a reconfigurable broadcast bus 01 the saIlle shdjJe (FlgUIl' ,) , ' 

Each processor has a fixed number of registers with O(log N) bits each, nn wllIch It (illl pel 

form stahdard arithrnetic and logic operatIons, where it is assumed t.hal. eadl SII( Il ('1)('1 ,d,IOII 

takes O(l)time Each processor PI,J has stored in its registers Its row cllHI (O]IIIlITl Il\\k.o('~ 

1. and j, with 1,,) E lO, .,. ,N1
/

2 -1], where for simplicity It IS assuTllcd tha\' N 

sorne positivf! integer k. Each processor is connected by local links tü its IWlghbolir s [",J Ih 

connected ta Pd1,j±l, if they exist, with 1.,) E [0, .. , N 1
/

2 -1], and can send d1lt! r('«'lve 

data through these links. 

Processor 

• Switch 

Reconfigurable Bus 

Figure 2.1: The reconfigurable mesh archit.ecture 

In addition to being indexed by row and column nurnbers, pfOcessors cal! ctlSIJ be IIH!t-X('d 

bya chosen ordering scheme whlch represents a one-ta-one mapping frorn {O, 1, . 

l} x {O,l, ... , N 1
/
2 -I} onto {O,l, ,N -- 1} [Tho77, t-dd88c; SnTllf' ("1111111111 (,rrl('ring 

schemes are illustrated III Figure 22 The mw-major ordènng I~ o!Jtrl!T)f'd Il)' lJUlII!WIIlIg 

processors in each row left to right beginnmg wilh row () and ending wIl,h row N I 12 

1. This is equivalent to the mappmg k = ) + 1.NI/2, wherp. 1. is the r(Jw lluIIlIH'r ,LIId ] 

6 



0 1 2 3 0 1 4 5 

4 5 6 7 2 3 6 7 

8 9 10 11 8 9 12 13 

12 13 14 15 10 11 14 15 

Row-major Shuffled 

0 1 2 3 0 1 14 15 

7 6 5 4 3 2 13 12 

8 9 10 11 4 7 8 11 

15 14 13 12 5 6 9 10 

Snake-like Proximity 

Figure 2.2: Indexmg schemes for the processors of a mesh [Mi188cJ. 

IS the colman number of a given processor. The shuffled row-ma)or ordering is obtained 

by shuffiing the binary representation of the row-major index, that is "abcdefgh" becomes 

"aebfcgdh" . This ordermg has the property that the first N /4 processors form the first 

quadrant, the second N/4 processors form the second quadrant and so on, with this property 

holding recursively in each quadrant. The snake-lzke ordering is a variation of the row major 

ordering obtained by reversing the ordering in the odd rows. This gives the property that 

proC("ssors with consecutive indices are adjacent on the mesh, as in Figure 2.2. The proxzmity 

ordering combines the properties of the shuffied row-major and the snake-like orderings. The 

proximlty index of a processor ca.n be computed in O(1og n) time by that processor based on 

lis row and column indices. 

The snake-hke ordenng will be used throughout this thesis. Each processor can easily 

compute lis snake-like ordenng index from lts row and column indices and vice versa, but it 

is convenlent to have both stored and available. Therefore, each processor of the mesh will 

conLalIl a regisier initialized to represent its index in the the snake-like ordering. 

I~ach processor is also connected to the broadcast bus thro1.'~h four locally controllable 

7 
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Processor 

~ ~ ~ ~ 
SWltches 

Figure 2.3: Connection of a processor to the reconfigurflble bus t.hrollgh swll,chn 

switches (three for boundary and two for corner processors), as showll in Figure 2,:1 Each 

processor can dynamically set its switches. Any of the switches may be on or ulf, rC,th7.llIP; 

four-, three-, two-, one-way or no connections 1.0 the reconfigurable bus II. is flO!. p()s~lhl(·, 

however, to simultaneously realize two connectIOns between t,wo pairs of swil.ch('s Bv (011 

trolling the switches, the bus can be subdl vided mto IIldepeudent, (01111('( !.('d (Olll!>, lTl<'lIt.S 

called subbuses. AlI processors connected to a subbllS, or the whoh' bus, UL!I Silf\ld!.rlll(·')ll~ly 

read a data value from it, but only one processor can wnte to a subbus at. a 1.1111(' 11\1 tlR8c11 

This is more restrictive than the model in [MiI88c] but IS consIstent wlth [Md88r11 whef(' 11. 

is also shown that this model of the reconfigurable mesh with exclusive write c(tIl sllllulal.c, 

without loss in time, a bus system where multIple identical values fTlay be broctd( riS!. Slllllllt.a­

neously on the bus or subbus. This is accomplished through a bus-splttting le('hnlqtlf', whl< Il 

will be described in the next section 

The processors of the reconfigurable mesh operate synchronously III slIIg!e l'lstnH 1.1011 

multiple data (SIMD) mode That is, at each time unit ail protessors perforrll the s,ml!' 

instruction, but each takes as operands the particular data storcd in ItS r('glsters I~il{ Il J> E 

can perform a number of different primitive operations in Unit tUTIe 

• carry-out arithmetic and logic operations on the contents of 1 ts r('glstPfs, 

• send or recelve data from its neIghbours through local communlcatifJII links, 

• set any of its four switches, 

• send or receive data from the bus. 

It if> assumed, as in [MiI88a], that under the unit time delay mode! the dat.a plJt. on UII' 

reconfigurable bus reaches aU processors in constant time 

8 
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Figure 2.4. A variety of bus configurations. 

The dlstmguishmg characteristIc of the reconfigurable mesh lS the ability to dynamically 

obtam substruciures conslsting of groups of processors connected to an mdependent subbus. 

Each such substructure can function independently and has the same characteristics as the 

reconfigurable mesh (except possibly for its SIze and shape). For example, aIl the switches 

can Ge wnnected so that one global bus exists with aIl processors connected to it. Then 

any processor can broadcast a value t.o aIl others in one step By connecting aIl column 

switches and disconnectmg aIl row switches another configuration may be obtained with 

O(N 1 /
2

) column buses Such buses can be used similarly to statIc column buses, but have 

the advantage in that they can be subdivided (also recursively) to give for example N 1
/

2
, 

N 1/ 4 'x. N 1
/ 4 L,.ze meshes wlth column buses This, of course, cannot be done with the 

mesh with row and column buses architecture as only a fixed Nl/ 2 buses exist there. Other 

dynamic configuratIOns can be obtained, a few of which are illustrated in Figure 2.4. 

By subdlviding the bus, a large number of subbuses of sorne intermediate length or 

diameter can be created. For example, in creating N 1
/

2 groups of N 1
/

4 x N 1
/

4 processors 

with column buses, as in Figure 2.4, N 3
/

4 = Nl/2 X Nl/4 column buses were created, each 

of length N 1
/4 Slnce each bus can broadcast one plece of data in unit time, as many as 

N 3
/

4 valtws can move simultaneously over a distance of N 1
/

4 each. In general, as much data 

can be moved as there exist distmct subbuses, but the more subbuses that exist, the shorter 

t.hey ar:~. 

'l'llc above observatIOn \HIS essentlal to developing the selectIOn algonthm of section 3.2 

cllld l he parallel llnear programming algonthm described ln chapter 5. It also leads to a.n 

understandlng of the lImItations of the reconfigurable mesh archItecture III solving problems 
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which require extensive data movement, such as sOl-ting SUpptH'e Ibert' art' 7! wdtlt's di:.­

tributed one per processor on the reconfigurable rnesh of slze 11, w!l1('iJ I11USt. hl' arrallgl'd III 

ascending order in the processors. Imagine cutting the mesh aerus:, (Ill cl dlilgnll.d, whl( ft 

gives a cut the length of the diameter of the mesh. In the WOlS!. -::as(' Ihe 11/2 hllMllesl \.dlll·' 

will be located in processors below the cut, but in orner il) solve 1 hl' pr. ,!Jlc1ll 1 he\' 1I111~t 

be moved to the processors above the cul. (a.nalogously for dcs«("ndlllg ortler) If 1 Ill' 1>.1111:> 

crossing the cut through which the n/2 values must pass in order 1.0 n'rl( il "lIell d"st: Il.tI 11111 

processors are counted, it can be seen that there are 2( n 1/2 - 1) rnesh 1111 b pills t.IH' -,,\l1H' 

number of bus links crossing the cut for a total of O( n 1/2) This is beCèlllSl' !l() 111,11, te 1 b .. w tl\!' 

bus is subdivided, the number of crosslllgs at any glVen cut reTIHlIllb «()Ilst.ant. SIll«(' dS Illd .\' 

as O(n) values may have to cross and sinee one value may trdvel at. it time t.hr()lIgh .Illy lillk, 

it must tak~ n(n 1
/

2
) time for the O(n) values to cross. 1t wIll thereforc t.ak(· 0(111/2) LIIIW, 

in the worst case, to sort n values on a reconfigurable mesh of 817,(' n ThiS \.1111(' IS III 1.1< t. 

optimal sinee the Odd-Even Merge Sort for the rnesh architecture l'I'h()77 1 (,111 1)(· 11'H'd 1 (1 

sort on the reconfigurable mesh in 8(n 1
/

2
) bme Thus, for sorne prohlelllb, l'SIH'( Idlly 1 hll:-w 

which requin~ extensive data movement, the same asymptotlc rUllnIIlg I.IIlW IS r('(jllIred 011 

the reconfigurable mesh as on a mesh with no buses It will be shown t.hat. !Wt!.f'1 worsl.-( fIS(' 

running times may be achieved for "easler" problems on the rFumfi gurél Ille rrI(':,l! 

2.3 Data movement operations on the reconfigurable 
mesh 

Abstract data movement operations are commonly used by many pantllt"1 ,dgofl1.hms alld will 

be used extensively in the parallel ~inear programming algonthrn Two SU( h 01H'rcÜlfllls, 11)(' 

max and the parallel prefix, are presented in detail as they appt"rtr III 1 M d8Hrl., M J!8Hbl, w})('rt' 

it is shown that they can be computèd In O(Iog log, n) and O(log n) tllllf' r('~p('( Llvl·ly, (lir cIlly 

set of data with at most n elements on a recollfigurablt" rn('sh ,)f :'1:;;(> 71 III(' ,t1P;flrJt.lllllh Iflr 

these operatIons are adapted from snnilar, less ulrnpl(';.: ,tlgfJflthrll<' f"r tlw l'/{,\J\! III"dl·1 

The random access read and write operatlUns, dIslJ u:,ed III tllf' Ilctrrlll,·1 Illlf',ll plflgr.tlliIIIIJI~~ 

algorithm, wIll not be presented here, but art" descnbed ln [MiI8~al 
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2.3.1 The rnax operation 

In jMil88aJ, an algonthm for the max operation is presented, which computes t.he maximum 

of il set of n or fewcr values on a reconfigurable mesh of size n. The algorithm is based 

on a t('chlllque calJc.d bus-sphttmg, which can be used to compute the maximum of n l / 2 or 

f(!wer v,d ues, usÎng a reconfigurable mesh of size n in O( 1 )time. This section will descnbe 

the algon th /II for the wax operation including the bus-splitting technique and revie\l the 

allalysls of ILs runrllng bme 

Th(, pro<-edure for computing the maximum of n 1/ 2 or fewer values on a reconfigurable 

f!lt'sh of f>Îze n Îs as follows Let the n 1
/

2 or fewer data values be distributed in the ~th row of 

the reconfigurable mesh, wlth the value in processor p.,] called X]' The values are distributed 

one per processor If there are fewer than n 1/2 values, sorne Pt,] will store - 00 The first step 

is t,o obtaw i111 pairs of data values, wlth the pair x. and X J stored in p"]' Ta do this, first 

f()rnJ colurnn buses and broadcast X] to all proœssors m column J, for aIl columns in paral1el. 

Tht'll forrn row buses and broadcust x, from P"t tü aIl processors in the ~th row, for aIl rows 

in parallel Now, ail processors can simultaneously perform the companson x, ~ X J and 

store its result (0 if true and 10therwise). The column index (or indIces if multiple maxima) 

of the column in whlch aU ("ompansons resulted in a 0 corresponds to the maximum value 

of th" data Smce onl)' one processor can broadcast to the bus at a time, the bus is divided 

into column buses and then each column bus is splIt mto segments by having any processor 

containing a 1 dlsconnect ItS sWltch to the processor below Then each processor containing 

a 1 will broadcast l on its subbus and the r "ocessor in the top row will read the top-most 1 in 

ItS column, if lt eXlsts. Next a row bus IS formed in the top row, and thls bus is subsequently 

spill. IJlto segments by havmg each processor contaming a 0 disconnect the sWltch to its right. 

Tlwse proct'ssors no\\' broadcast thelr mdex and Po,o can read the index k of the left-most 

OC('1II"[('I1('(' of the rnùximum Nowa global bus can be formed, and the maximum value can 

be bf()ddcast frolll PO•k tü all processors 

Sillet' <111 nf (he ilbove sLeps take constant bme and since any subbus has onlv one value 

brllcl(kdSt. <-1Il d cÜ d Llllle, as requlred by the model, the abovt' procedure can find the 

maximum of 71
1

/
2 values dlstnbuted m one row of the reconfigurable mesh in 0(1) time. 

Incorporatmg the above procedure mto an algorithm for the max operation leads to the 
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following O(loglogn) time algorithm on the reconfigurable mesh Il\ltl8Rctl, ASSUlIlt, t.ht'ft, ,UC' 

n or fewer values dlstributed one per processor on ct recnnfigurable l1It'sh of SIZl' Il SUl( t' 

maximum is an associative operation, the n values can be gnlllp('d Il1to sl1lallt'l' s('l<.. the 

max operation can be apphed to these sets and then the ll1ax 1 llltl Il 1 of the group IlI.Ulllhl 

can be computed to give the final result Applying this Ide.! recursively glV<':' t Il(' fulll l \\ \ng 

algorithm. 

• Divide the mesh together witb the bus into n,1/2 groups of n l/4
)< n 1/ 4 sizC' E.Hh gloup 

contains at most n,1/2 values. 

• Compute the max of each group recursively. 

• Arrange the resulting n,1/2 numbers ir. the top row of t.he mesh USlllg subbust's .llld 

apply the algorithm to compute the max of (at most) n 1/2 vetlues Wltl! 11 prOl ('SSIlI ~ 

The running time t( n) of this algorithm can be expressed by the followmg rc( llrn'll(f' 

relation 

{ 
t(n) = t(n 1

/
2

) + 0(1) 
t(l) = 0(1) 

which, when expanded, gives t(n) = O(log log n). 

The algorithm takes advantage of the abtlity to subdivide t.he bus, wlllrh r('sults III il V,LS!. 

improvement in running time over what is possible on other typf'S of nJeshes ln fa( t, Il. IS ('VPIl 

better than the algorithm for CREW PRAM and attams the lower bouml of n( log log 7/), 

when the number of processor8 18 equal to the slze of the ù lta st'!. for ally rnull.l-pro( ('ss(,r 

computer with binary comparisons as the primitive operatIOn [VaI7.1] 

The analysis makes it clear, that efficiency is lost when the Tlurnllf'r (If c1vat1<1blr' prt)( ('SSo!!> 

is strictly greater than the size of the set on whlch the rndxlmurn lfi 1H'1IIg; (tlllIplltt-d Of (flllnW 

it is a.lways desirable to have these equal, but ihls may not he p()~slbl(· wllf'lI «()lIlptll,lllg !.III' 

maximum is part of an algorithm whlch dt each stag~ t>liminct1.f'!> SOIlW itrblt.r,mly dl~1.rdJll1.,.r1 

subset of the data ln thIS case, bnth the size uf tlw rPIIIdlfllllg JlI"bl('!lI .1I,rl 11lf' dl~1 1 d)llll'.11 

among the processors of the remaInlI1g data arc ITIlt \<Illy unknlJwlJ 
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2.3.2 The parallel prefix operation 

Another Important and useful operatIOn which will be ernployed in the linear programming 

algorithm IS parallel prefix lt can be used to sum values, broadcast data or count and number 

a( tJ vc proC( ssors, Miller et al [Mil88a] describe in detail how to compute this operation on 

the rec onfigurdble mesh wlth pncessors in row-ma]or ordermg in optimal O(log n) time, 

'l'hclI algofllhrn will now be presented with a slight modification in order that it comply 

wlth the snakc-lIke II1dexmg scheme adopted in this thesis 

Assume the n values of a set S = {al} are distributed one per processor on a reconfigurable 

IIlesh of size TI, wlth processor PI containing a, (0 :::; t :::; n - 1) and a unit time binary 

assocIative operatIOn At the end, each processor Pl will contain ao ' al " ' 'al' The 

ic!ed of the algoflthrn IS to compute a parbal parallel prefix m each row of the mesh, then 

compute the mw-wise prefix solutIOns from the partial values available in the last processor 

(lf each row, 1fI the sndke-like ordenng, and lastly updating the row entnes with the row-wÎse 

prefix uf the previous row The algonthrn is as follows: 

• For t = 1 to log2 n 1
/

2 

- For all rows m parallel, form dlsjomt row subbuses of length 2', thus grouping 

consecutIve processors with each group starting at Z· 2', (Z = 0, .. , IOg\~1/2 - 1). 

Let the processors III each group of size k = 2' be Po, ... , Pk - l . Let Pk/2 (in 

each group) broadcast its value on its subbus and ail processors p,) k/2 < J :::; k 

Now, each processor wIll store the prefix restricted to its row, in particular, the last processor 

in each row will hold the "total" prefix of Its row 

• Perform the above procedure on the values in the last processor in each row. Because of 

the snake-hke ordering, the last processor of a row is not adjacent to the last processor 

of the followmg row Usmg raVI' buse~', copy, for all odd columns, the value from the 

Ia.~t proCt'ssor tu the first processur III that row NoVI' ail row prefixes are locatl'd in 

the last (nlumn of the mesh and by performing the samf procedure as in the first step, 

but only on thls one column (Ilot 0,11 rows), the row-wise prefixes are computed. 
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• It remains to update aU entries III each row wlth the row-wise prefix of the pre\'wus \0\\' 

Again, using row buses, the right-most processor in {,élch fOW will bW,ldldSt \.he rll\\'­

wise prefix of the previous row, obtallled from the prOC{'SSOf abp\'c Il AIl pro(CH~(lI" \11 

each row will then update thelr value, with the one bemg broadcclHt, \.(1 gl\'t' tht' hll.d 

prefix. 

The first and second steps of this procedure take O(log n) tim~ erldl and 1 Ill' l,u;! "tt'I' 

takes O( 1) time for a total of O(log n) running time for the par:tllel prefix opt'rcll Ion nI) t1j(' 

reconfigurable mesh, 

2.4 The CREW PRAM model 

Ualike the reconfigurable mesh interconnection network, the CREW PRAM ( Oll( \lm'nl 

read, exclusive write parallel random access ma.chine) IS an idea.l!zed model 01 «IIIIPI!l.t!.\()1l 

It consist of a large number of processors connected to a common Inelllory 1\ Il V Illlllllwr 

of processors can read or write to any of the mer.lory locatIOns lTl UI\lt. tiTlH' b\l\. 1)0 t wo 

processors may write to the same locatIOn slmultrl,neously BeCcluse prou'sslJrs (.UI efle< {,lvl'lv 

communicate through storing and accesslllg mformatlOn \Tl mernorv lo(..ülo!lS alld SIII< (' IIldJ\V 

such ex changes can occur simultaneously, the prublem of limlted éLVdrldhrllty of pdtlt::. hdwI'l'J\ 

processors cornmon to most interconnection networks dnes not anse ln the' CH EW PH 1\ M 

mode!. 

The MAX and parallel prefix data movement operations are of int.f'ft'st. as tl!ey wllliw lIs"d 

in the linear programrning algorithm. Given n data values, they Célll be ({)rnpllted \11 O(log 1/) 

time using n processors [VaI75, Lad80] It IS surpnslTlp; to s{'(' that .t fii~;\('r, ()(Iog log 71) 

algorithm exists for computmg the maximum on the reconfigurablt' lfw!>h, d\1I' 1.0 tlJI' bu!> 

splitting techmque whlch allows the max of n l / 2 vaJue~ to Ot' ((H1lpllted III (1IIl',I.<IIt!, tlillf' 

This is similar to the arguments given m [Coo82], naITlely, that pro«'~~')rs (ail (1)IlIIlJlIlll<dll' 

information not only by writmg values, but alsCl bv nf,!. wrrtlllg F1lft Iwml' ,n', t fil' ~pllt t II\Y; ,,[ 

the bus allows large groups of processors t,,, (OfIllrltlllJ( .dt' III titi!> 1.t::']ll"l\ Irl t 1:\'-. l''~l)f'( t 1 t Ill' 

capabilities of the reconfigurable mesh are sllnrlclr t" tl!o!>(' (Jf tlw (I)lIll>dll'>"lI 11\"d,·\ ,,1 V,tllrllJ1 

[VaI75], except of course for the llITlIted number of ITlter<..{)nnectl(JtJ~ l)('tW('('11 pr',( I·!>!>"r~ 
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Chapter 3 

The selection algorithm 

Many existlOg parallel algonthmf: are based on the divide-and-conquer approach where a 

problem IS subdivided lOto smaller size subproblems, each of which 1S then solved separately. 

In order tü subdivide the prüblem, it is often required to subdivide the data set S = {al} 

in sllch a way that one subproblem will have aIl the data values less than ak and the other 

ont' values gre<ü('r than ak, where ak IS itself a chas en data value, the kth smallest one in the 

set S Although the linear programming algorithm is not based on the dlvide-and-conquer 

paradlgm, but rather on a prune-and-search approach, tt relIes on a subdivisIOn of data 

similar to the one descnbed above, whlch requires finding ak for a chosen value of k 

In thls chapter an algonthm is presented, with 0(1og3 n) runn.ing time, for solving the 

sel('clion problem on the reconfigurable mesh archJtecture. It IS also shown that a splitter can 

he obta1l1t'd on the reconfigurable mesh after only one iteratlOn of the selection algorithm, 

that IS ln 0(1og2 n) lIme FtnaIly, selectIOn on the CREW PRAM IS discussed. 

3.1 The selection problem 

FUlding the kth smallest dement of an ordered set S of n elements, where the arder is not 

known, is called the selectwn problem Wh en k = l ~ J, the kth element is called the rnedian. 

One way of finding the kth smallest element is to compute the ranks of aIl elements and pick 

the kth element. ThIS ran be aLcomphslwd tn 0( n 1/2) time on a mesh with no broadrasting 

bUSt's \\'Ith a sorting algürithm such dS tht' Odd-En'n !\[prge Sort descnbed in [Thuï7]. When 

only one processor IS d\'ailable, sortlllg reqUlres 0(n log n) tIme, but the selection problem 

can bt' solvcd 111 8(n) tlme wlth an algoflthm by Blum et al [Blu72J. An algorithm, based 
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on [Blu72], exists for the selection problem whlch rullS in (-)(tll!pgn)I/I) 11111<' on ,\ llH'sh 

with a single broadcast bus [Sto83]. Th1s is reduced even furtlwr PIl cl mt>sh wlth 1ll1l111pl!· 

broadcasting, where an algorithm 1,5 avadable" whlch fUllS III 0 (ni b(lt)r;n)2 1) IPrclHïl F." 

the reconfigurable mesh, an algonthm can be" implenwnted, bcl!->t'd O!l 1 he Illt-.IS III 1 H!ll (')i. 

which runs III O(n!) tlme, where (. 18 a choS(,1l constant, s\lch t!J,1I (). ( t Tl\(' (1l1111I11g 

time of this algorithm is bounded below by the number of fl'(UrSi\'(' (',tilt, [(\,\(1(' Ihl"lIght\111 

its executlOn Slnce two consecutive r('curslve calls are feqlufed al, t,1(·!J l''ve! .l[ (t'CHISI<lII, 

this algorithm would not result in a polylogantllJ;llc runIllIlg tlIlle 

Another sequential method due ta rvlunro and Pdterson ll\lul180j \\'.11 Il!' S!JoWll !II t hl' 

next section to lead to a paraUel algonthm wlth running tlIlle O( log.lll) TI\('lr met h"d, 

designed to select from a file stored on a read-only tape ,<Tlth Iml1(,ec! d!l101l111. Ilf Illt('rll,J! 

storage Q avaJlable for computatlOn, runs ln () (n (II,'::~ -1 1)) Imlt' 'l'W() V,dlH'h Il,, <l11C1 Il,, 

are chosen from S = {a.} to form aftltcr -- an ll1t('f\'cll vvl1l(h 18 kn"wlI III (\lI!l,IIl! III<' klil 

element. Imtia.lly au and avare the mimmum and rnaXIrTlUrn e\t>rtIe!Jth of S n'~J)('( 1 Iv«'1 V Oll 

each pass, elements withm thib mterval are usee! tn fOrIn cl <;07llplt' frolll Wltlc Il [J('W V,IIIW" 

for a "narrower" filter, cont'l.Ining fewe"r elements, wrll be (hl!fif'!I A ~<I:llpl(' IH ("IIS f,! Il( l ,·rI 

recursively from a populatwn-the remammg active v,llues (thllse 'vvlthlll t Il<' (il!.!'I") Ffi!" 

fixed s, an s-sample at level Z IS a sorted set cf .9 elemcnts chost'Il f rt .!I1 <l P"Plt!,tI.11I1I o[ 82' 

elements. At level a (the bottom) lt IS Just the whole populatlo!l (,~2:' ('I('!llt'!lb) III !>tllt"d 

order An s-sample at levelz + 1 is formed by taklI1g two sclmpk~ at Ievr'll, ('cHI! [rom h,II( 

of the populatlOn S2'+1 The level ~ samples are thmned by rernovllll1; ('very SC( olld ('1('1111'111 

of each sample with the remammg elernents merged tf) farn! the z t 1 !('v('1 S,UII]>!!' Â 1 dlly 

iteration of the algorithm, a sam pie at level r IS taken wlth the re'latlt Illslllp n" ~2r!,t) 1 h,L1 

aIl remaining n' e\ements are ln the populatlOn From tIlIS !->arnple il !]t'VI filt!'f IS (!J()!->f'lI wll,1l 

au being the r 2kr l - r smallest element ln the sample élnd a" IWl!Jl!; t1lC' l-t 1 ~lrlcdll'~L t .111' Il 

is shown in [Mun80] that at mast (2r J )2 r (a!ldldaLe~ n'Jllcllll lH'l\';("'!I tlw IlI'W (dl('1 '. 

Fredenckson rFre8~{] ddapted tlllS bequentl,d ,dgtlIlIllI1I 1(, )!;I\'P I>CH-dip! (d~~,.rJlll1ll~ ('.r tll' 

ring, the mesh and the complete bllldr)' tree, wlth ,l !I1"ddi(·d ~(lIJ\p!lll).', 1."( Illllqll" III "rrl,,! 

to reduce the Humber of messages pa8[,ed cctween pr()«('!,!,IJrb (JIl I"w/'r Ir'V('b /J( Il'( IJr<')l111 

These run in O(n), O(n1,12)and O(log3 n ) tunes respe<.tlvely 
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3.2 The selection algorithm on the reconfigurable 

mesh 

ft will now be shoWI1 that the original, sequential technique by Munro and Paterson [Mun80] 

carl lead ln il selectIOn algonthm for the reconfigurable mesh architecture wIth O(log3 n) 

rUIlninj!, tllne G1Vf'I1 it set S' of n or fewer clements, the objectIve lS to find the kth smallest 

(lllt' 'l'he elernt'l1ls are distn buted ln no particular order, one per processor of a reconfig­

urabk rncsh of S12(' Tl Cali the processors holdmg an eleme' ,t "active" and the empty ones 

"met( t1VP" As clements ilre elllnmated as possible candidates f::>r the kth element, more 

pro( eSSlJrs be( l,me lI1att Ive H y connectmg the bus SWI tches to p:evlOus and next processors 

ln the snake-llke ordenng, the inact.ive processors can serve as constant time communication 

br Idges bet wecn (OI1Seclltlve but not. adjacent active processors. Thls ehminates the need to 

(ompress the ddla after each llera Llon It also allows the reconfigurable mesh to be viewed 

as cl linear arrety of processor wl1f're any actlve prlJcessor can communicate with the plevi­

(lUS clT1d the next acti ve processors ln constant tlme, as lf the actJve elements were always 

n>Illpn'ssed 

The algonthm wdl proceed, executing the followmg steps, until only a constant number 

of (.tndldat,es remalIl and the problem can be solved directly. 

Pro("edllr<~ Select ( n, k, S) 

Step 1 NUTlIber the active processors by performmg parallel prefix operation as addition 

Wltl! act.lve processors holdmg a 1 and mactive ones a O. Form communication bridges 

betwt'eu Ilun-adjdcent. act.1ve pro::essors 

St<,p 2 Complltt' tht' sam pIe by callillg the procedure Sample( 4log n, n, S). 

St.<'p :i Choost' tht' new filter values and broadcast them to aIl processors. Perform parallel 

prefix clgall1 w1th valu('s less than au holding alto computt' l, the number of elements 

slllél!lt'r thiUl au wlllch wIll no longer be ad1ve Mark as inactive all elements outside 

the lW·N hlters Pt'rforlll pclrdllel prefix again to compute the number of rernaining 

actl\'t' eleIllent S 71 ' compnslfIg S' 

Sh'p·1 If ~)IlI\' d const.ant number of candidates remain, sort them and plck the kth one, 

~)t.ht'rwlse cdl! Select(n', À' - l, S'). 

17 



-" 

Let A, the data in the active processors, be indexed al, .. ,lin, <lS lomput.ed by the 

parallel prefix in stel' l Let s be the number of elements 111 the sample and t the nUlIIll('r l,r 
elements in the population l'~er. step 2 IS performed by the following procedure 

Procedure Sample(s, t, A) 

Step l If 8 = t sort the active elements with all other p10cessors acting as blls lmdgl" .11111 

exit. 

Step 2 Divide the data set A into two groups Al = {al:.' at/2} 'tne! ..12 :-= {at/2IJ' ,Il,} 

Compute the sample of each group recurslvely, for both group, in parallpl, by (.\111IIg 

Sample( s, t/2, Al) and Sample( s, t/2, A2 ). 

Step 3 Using only every second element. in each recurslvely cornputpd 5"mp!e, Ill l 'rge t.1H' 

two sam}Jles by sorting, while a11 other processors ad as bridges 

At the bot tom of the recurslon III procedure Sample (step 1), II. 15 reCjl'lfec! t,1l surt. 

oS = 41o~ n values. Since these values can be viewpd as being hdc! 1T1 cl ]ult'ur array (JI " 

processors (thanks to the bus bridges), they can be sorted ID O( 8) - O(log 11) t 11lI(' rlb III 

[AkI85, Knu73J. The same sortmg algonthm can be used to merge tlH' two t.hIIlII{,d HcllllPItoS 

into one also in O( 8) bme Note t.hat the sample slze s was chosen as to sor!. grlJlq>s ()f d.1I fi 

that are as small as possible, yet be able to show that the slze of the pr(lblem lb r1llnilllslllllg 

after each iteration The total time to compute the sample al level r, r --' log nj.'l, {ail Iw 

expressed as 

{ 
t( r) = t( r - 1) + O( s ) 
t(O) = 0(8) 

which gives t( r) = O( s2) = 0(1og2 n). 

Going back to thp algorithm Select, step 1 requires O(1og n) lime For b1.ep :!, cl)llHid"r 

the )th largest element in a sample at level z Let L'J and fIl'J f('SrW{ tlvely IH' t/I!' I('cl~t 

number and most number of elements, from the corresponding populatl!ilJ, whl( fi (,lll Iw 

greater than the ]th largest elem~nt in the sdrnple. Lemmd 2 ITI r M ulIH(j 1 bl,J!,(':-' llld 1 

In choosing the new filter, it must be ensured that the kth element 18 one ()f 1.IJ(' filtr'r valtlf's 
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, . 
or lies bctween them, that is 

k - 1 > Mru = (r + u - 1 )2r 

and 

k - 1 ::; Lrv = v2r - 1 

The choÎce for the new filter will therefore be u = r 2~ 1 - r and v = r; 1. Broadcasting 

these two values over the whole mesh and comparing with the data in the active processors, 

wJiJ allow the elimination of aIl values lying outside the new filters as candidates for the kth 

clement, thus completing step 3 in constant time. 

The rcmaining number of elements is at most 

(2r-1)2r 

(21og ~ - 1) ~ 
n 

[2 (1og n -log(4Iogn)) -1]-41-
ogn 

n n log log n 5n 
- + --=---=--
2 2 log n 4log n 

n -+ ----( 
1 log log n 5) 
2 2 log n 4log n 

and sinee i 2: 2Io:~::-5, or equivalently log n ~ 210g log n - 5 for aU n, at most in elements 

remam. 

The running time of algorithm Select is 

which gives t(n) = (Olog3 n ). 

{ 
t(n) = tGn) + 0(1og2n) 
t(4Iogn) = O(logn) 

Not,(' that no stack is required. To keep track of the recursion only two registers per 

proCt'ssor are needed One register stores the current level of recursion, which is t.he same 

for ail processors and one which stores the level at which the processor may become active 

aga1l1 
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3.3 Finding a splitter on the reconfigurable mesh 

In many instances it is not required that the data set 8 be di vided 1I1 ail t'xact IIltlll\l('r 1 t 

suffices ta find an element p of 8, not of exact rank, but. ralher olle for wlllch il IR kllOWIl 

that at least a constant proportion a, 0 < a < 1/2, of the clements of S arr gl eakr t h.\1l 

p and at least an are smaller than p. Such an element will be called an n-sl'ltt/c1' Il will 

be shown that a splitter can be found among the elements of the 7' level s-scllllpk (( q .1Il)' 

chosen a < ~ and hence can be obtaincd in 0(1og2 n) bme. 

The objective is to find an integer ) (1 ~ ) ::; Isl) sueh t.hat. 

and Ml} < (1 - a)n 

for any given a, (0 < 0 < ~). Taking a sample al. level T and rccalling t.hat T' = log~, gIVl'H 

L 
r n 

r] =)2 - 1 =)- - 1 
CI 

and r (n ) 11 AIr] = (r +) -1)2 = log - -1-) - 1 -. 
,'1 .q 

Combining the two gives 

8 
J > (an + 1)-

n 
and 

n 
) < (1 - 0)5 + 1 - log -. 

.s 

In order to guarantee that an integer value for jean be found, il. is required thaf. 

8 
(an + 1)- < J - 1 

n 
and 

11 ) + 1 < (1 - a)8 + l - log -
s 

or 

8 n 
(an + 1)- < (1 - o)s -log-

n 8 

(an + 1)8 + n 
n 

< (1 - o)ns - nlog -
,<j 

: an + 1)4 log n +- n 
n 

< (1 - o)n 4 log n - n log 4 l 
ogn 

4an log n + 4logn + n < 4n log n - 40n log n - n(log n - log 4 log log n) 

80nlog n < 3n log n + n log log n - 4 log n + n 

Sa for 
3n log n + Tl log log 11 - --1 log 71 • fi 

a < --~~----~~~----~-----
8n logn 

which is at least ~, il. can be guaranteed that the )th clement of éL samp],', v/lth ) !'rlk"TI lo 

be r(on + 1)41~gn + Il, is an a-splitter of S. 
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3.4 Selection on the CREW PRAM 

A recent resu)t due to Plaxton [Pla89] glves a lower bound on the selection problem of 

D.((n/p) log log p + log p), where n is the number of elements to select from and p the number 

of processors in the network The result applies to a nurnber of common network models 

and the CREW PRAM. Plaxton also presents an algorithm which runs in O(n/p) log logpt 

('1'1 1- T2 logp) log(n/p) time, where Tl is the time to sort n = p values with p processors 

and '1'2 is the time to perform broadcasting and summing. If the time T3 required for a given 

ndwork of p processors to perform selection on n = p values is less than Tt! log p, the running 

tim(> is reduced to O((T2 + 73) log plog(n/p)). An algorithm due to Cole [CoI88], designed 

for an exclusive-read exclusive-write PRAM model, which rullS in O(n/p+ logplog· p) time, 

provides optimal efficiency [AkI85] for n = fl(plogplog· p). Since the CREW PRAM is a 

stronger model, the same result applies. However, for the algorithms presented in this thesis, 

the number of processors is taken to he equal to Tl, therefore, the fastest way of solving the 

selection prohlem on the CREW PRAM is in O(1og n) time through sorting [CoI86]. 
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Chapter 4 

The sequential linear 
algorithms 

• programmlng 

The Simplex method [Dan63] has long been known as an excellt'nt, practic,d ,t1gont.hlll 

for solving linear programming problems. Typically, a problem wit.h n (unst.r.tllll.s and fi 

variables can he solved with the number of iterations proportiotlrtl t.o n ellHl incn'<Islllp; V('I V 

slowly (logarithmically) with d [Chv83]. However, ID the worst cast', cH, was dt'lIlullstrated by 

the Klee-Minty examples [Kle72], the algorithm visits edch vertex of the f(,dslble rt'P;IOIl. !.II!' 

number of which grows exponentlally with dimension and ~o the nurnbf.'f of lt.eret.!.IO!lS IH ,ds" 

exponential in d. Even in 2 dimensions, the worst. case rUIlIllflg tirrlt' (If the SlIllplex JIlet!tod 

is O(n2
) sinee at most n iterations may be requin'd and each It.eratlon takt's O(n) tm\(' as 

each constraint must he inspected The time for solving a 2-dimenslonal hnear progrctrnflling 

problem can he reduced to O(nlog n), by finding the intersection of t.h<> n half-plalles c!efillf'd 

by the n constraints with an algorithm due to Shamos [Sha78] 

A novel and ingenious technique discovered independently by Megiddo 1 Mf'gRaj dUr! by 

Dyer [Dye84] demonstrated that linear programming can be solved in tirrw proplJl'tl()nal 1.(, 

the number of constraints n, in two and three dimensions (wursi «tse tllTle rLllaJYHlfl) 'l'hll> 

technique was extendeû by Megiddo [Meg84] to an arbitrdry Ilumber of dlJJlf'llsi()TlS rifle! 

shown to give a.n algorithm Imear in n when the dimension IS fix('d Megiddo':; ilpprr,,1( fI 

[Meg84] presented a novel multi-dimensional sf'arcb techlllquC' ilppilcrI bl!' t.r, t11f' IItJl'tll prr 1 

gramming prohlem, which was Improved by ClarksrJfJ [Clrl8(jj aud brJth lrr,prlJvr'd d/lrl flIrt 1Jf') 

generalized by Dyer [Dye86J, resulting in reduction of t.he constant r)f pro!>r,rl.lrJJl,di1,y !rI/ill 

doubly exponential to singly exponentialm d. 
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ThIS chapter will present a revlew of Megiddo's and Dyer's algorithms for solving the 

linear programmmg problem in 2 and d dimensions. While not everything in their papers 

c1irectly relates tü linear programming, the concentration will be on the material relevant to 

the problem bemg addressed in this thesis. However, a number of the applications from the 

tthove papers will be dlscussed in Chapter 6. 

4.1 Linear prograrnming in two dimensions 

This section follows the development of the linear programming algorithm in two dimen­

sIOns as prescnted in [Meg83, Dye84]. A two-dimensional (two-variable) linear programming 

problem wi th n constraints can be stated as 

mmlm1ze 
subject to 

aXl + bX2 
a,xl + b,X2 + Ct ~ 0, i = l, ... ,n. 

The funct.ion aXl + bX2 lS called the obJectwe functwn and the polygonal region formed by 

the intersection of ail the constraints is called the feaszble regzon [Chv83]. The solution, if it 

cxists, to a linear programming problem, is a vertex of the feasible region which minimizes 

the value of t.he objective function. The objective of the algorithm lS to remove constraints 

which are guaranteed not to contain a vertex of the feasible region minimizing the objective 

fuudion, ie an optimal solution, as well as any redundant constraints, until only a small 

number of constramts remain and the problem can be solved dlrectly. This approach has 

lwen callcd prunc-and-search [Lee84], sinee at each stage a part of the problem is eliminated 

and the search continues within the remaining part. 

Applying a linear transformation y = aXl + bX2 and x = Xl the linear programming 

problem can be stated in an equivalent form with the objective function equal to the y 

coordi na te 
illlfllm1ze y 

subject to a,x + /3,y + c, ::; 0, z = 1, ... ,n, 

where al =-- al - ~bl and (3, -= ~ Finding an optimal solution is now reduced to finding 

a l1l111imUIll value of a plecewlse llllear convex fundion of x. This function is irnplicitly 

def1ned by the set. of linear constraillts Depending on (3, being negative, positive or zero, 

the constrdIllt set is partitioued into Il, 12 and h respectively. From 13 , which contains 

constralllts defined by a liue parallel ta the y-coordinate, Ul = max { - ~,z E 13} and Uz = 
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y 

g(x) 

h(x) 

x 
,,; . 
optimum vertex 

Figure 4.1: The feasible region P defined by a set, of lmear lOnstr1l111t.s 

min {-;;,-,i E 13} are defined. The intersection of the two inequalities x ;: UI and .C' 11.2 

delimits a region in which the optimal solution must he. Obviously, if Ut 1: U2 then the 

problem is infeasible. 

The transformed problem IS illustrated in FIgure 4.1, where g(x) =- max (bl:l: -1- 'YI) èllld 
lE: 11 

h(x) = min (o,x + Il) are convex piecewise lmear functions which dehmit the feasihle r('glol1, 
IEI2 

with 0, = -~ and /1 = -7t;. A given value of x i" feasible if h(x) ~ g(:1:), 1LI . :r. -: 1L2, and 

the problem can be stated as 

mmnmze 
subject to 

g(x) 
g(x) ~ h(x) 
Ut ~ x ~ U2 

The algorithm iterates by testing values of x, in a way sirnilar to binafy search, tl, 

determine if x gives the optimal solution and if not to which sicle ()f x the optimal solution 

may lie. At each iteration either the solution is found or al. !east il ('Hlf>1.anl. prIJ!>IJrl.l(,fl 

of constraints are eliminated as candidates for containing the optlDlrti f>olul.l'J!l, unttl t!w 

number of constraints is small and the pmblern can tw sn!ved rlm'( tly 

To begin, constramts in Il are palred together by taking the üh ctllt! l ! h,\' (, I/If,t.r cllllb, 

with 1. = 1,3,5, ,1111 The same is donc with constraints in /2 If hl ( O'l l, tflf'1I 1.1)(' 

intersection of the two lines corresponding ta the two constramts in {,dch rHilr If, (JJflJput(·d 
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( 

y y 

x 
eliminate U2 

y y 

X x 
eliminate eliminate U2 eliminate 

Figure 4.2: Eliminate one constraint in each of the above cases. 

to give at rnost ~ intersectIon points, which are candidates x for the optimal solution. One 

constrainl. can immediately be eliminated from aIl pairs when either the Intersection of the 

('onstrainl.s lies outside the interval [UI, U2] or the constraints are defined by parallellines, as 

iIlustrated in Figure 4 2 for pairs of constraints in Il' For the remaining pairs of constraints, 

find the median X m of the x-coordinates of their intersection points. This value can now be 

test.ed and one of the following conclusions can he drawn: the prohlem is infeaslble, X rn is 

the optimal solutIon, or the interval [Ul, U2] can be reduced to [UI, Xml or [x m , U2]' Such a 

ronduslon can be reached based on the values of g(xrn) and h(xm) and their slopes to the 

left and to the right of Xm , which can be evaluated In time proportional to 111 1. For example, 

if g( .rm ) ~ h( xm ) and the slope of 9 to the left of X m is non-positive and to the right is 

1l0n-l1egative, then X m is itself the minimum of g. 

If tlJ(' prohll"1Il is round to be infeasible, or the optimal solution is found, then the al­

gorit.hlll t.ermlllates OthenVlse, at leasl half of the intersectIons, as defined by the pairs of 

l'Onst.réllnt,s, wtll be outslde the ne\\' inter\'al [U1' Xml or [x m , u2l and one constraint per each 

sueh péllr can he dropped (see Figure 4.2), for a total of at least a quarter of the constraints. 
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The original problem is in this way reduced in O( n) time tü a lillear pfllgmmmillg pwblt'lll 

with at most ~n constraints. Thus, the overall running time T(71) with n ~ is linl'dr in 11 

sInce 

T(n) = T (~n) + kn 
1=1 

k 
< -n = O(n). 

a 

This worst case time analysis relies on the ability ta find the median of 71 values III (J(71) 

time [Blu72]. 

4.2 Linear programming in d dimensions 

The following algorithm was developed by Megiddo [Meg84] tü sol ve lint>ar pl'ogl éUllllllllg 

problems in d dimensions (d variables) when dis fixed A d-dlmensional linea.r prop;r,lllllTllllg 

problem can be stated as 

d 

mllllmlze LC1 X 1 
)=1 

d 

subject to La"x) 2 b" i = l, ... ,n. 
]=1 

Similarly ta 2 dimensions, the algorithm repeatedly removes a constant proportlOll of 

constraints until the problem can be solvcd directly by solving a sd of ri. t"qua.lit](·s, 1.0 obt,lifl 

the intersection of the remaining tight constraints. 

The problem is first transformed to a subspace orthogonal to the directiOn of the obJ('(.l.lv(, 

function. 
ffillllmize Xd 

d-1 

subject to Xd 2 L),)x, + bl , le II 
1=1 
d-1 

Xd:::: I>I)X] -t b., zr- 1'). 
1=1 
d-I 

L:: al)'E J + b. ~ Il, /, r Il 
]=1 

Considering a pair of inequalities l, k in the same set, say III two pos5ibIlltH'5 ('Xlht 
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( 
• If (ad," . a"d-d = (akl," ,ak,d-1), then one of the constraints is redundant and can 

be dropped 

d-1 d-1 

• If (a'l!' . a"d-d =1 (akl,' .. ,ak,d-d, then L a,]x] + b, = L ak]X] + bk is an equation 
]=1 }=1 

of a (d - 1 )-dirnensJOnal hyperplane which divides the space so that on one side of this 
d-l d-l 

hypcrplane constraint z dominates constraint k, that is La,]x] + bl < Lak}X] + bk , 
]=1 ]=1 

and constraint k dominates constraint '/, on the other side. 

As shawn by Megiddo, one can test such a (d - 1 )-dimensional hyperplane to deterrnine 

on which side of it lies the optimal solution (if one exists) and then eliminate the constraint 

dorninating on that side 

4.2.1 Testing a hyperplane 
d 

The testing of a hyperplane h = I:a]x} + b can he accompli shed recursively by solving at 
]=1 

most. three (d - l)-dimensional linear programming problems with at most n constraints 

cach. Glven the original linear prograrnming problem and the hyperplane h consider the 

same problem with the equation of the hyperplane as an additional constraint. This gives 

a d-dimensional problem with n + 1 constraints, but through an elimination of one variable 

will gi ve a (d - 1 )-dirnensional problem with 11, constraints. If this problem lS unbounded, 

then the original problem is unbounded and the algorithm is finished. Otherwise, a solution 

is obtained for which it remains to he deterrnined if it is the final solution and, if not, on 

which side of the hyperplane 1,0 continue. This can he determined by solving at most two 

additionallinear programming problems. The details are presented in [Meg84]. 

4.2.2 The multi-dimensional search technique 

Testing a hyperplane h, as descrihed ahove, will le ad ta elimination of one constraint. Since 

UliS procedure is costly in time, one needs ta maximize the information obtained from each 

t.est. A scheme WhlCh, by testing ff'w hyperplanes, allows relati\"ely many constraints ta be 

rt'll1o\'cd, was first proposed hy l\leglddo [l\h'g841 and subsequently expanded on by Dyer 

[nye86] and Clarkson [Cla86] ThIs section begins with an exposition of the problem and 
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.' 
the required set-up as presented in [Dye86], followed by a review of thl' dltrt'fenL 'lppr\l(\dtt,s 

to applying the multi-dimensional search technIque taken by Megiddo, Dyer and CI,Hks\l11 

Given a set of n hyperplanes h.(x) = {x E Rd ar J' -:.= b,}, 1 l, ,11 ,\lld d l'PIn! .r·, I! 

is required to determme the position of x· relative to il fixed prnportlt'lI l'of t ht' 11\'pcI pl.I 1\1'''' 

The point x· is not known, however the procedure descn bed in sect IOIl ·1 2 1 (.Ill dt'! ('1111111' 

the position of x· relative to any hyperplane h m Rd, that IS detf.'rIIlllH' whet hl'I () 1 l'. b, 

aTx· = b or aTx· > b. This is equivalent to deterrntTllng t.lte sign of h(.IO), dCIlIl1t'd Ilv 

sign(h(x·)) or simply s'tgn(h), where t.he sign can be negat.ivp, u'ro or pOSI! IVt- 1\11 lTiqU/l',II 

is an evaluation of sign for a given function in Rd When hl III a constel11L Îu II( ! lOI! (/l. Il), 

stgn(hl ) can be determined without any inquiries, that is without hél\'llll!; tu ('V,tIll<ltp Il, 

When d = 1, the hyperplanes are of the form h.(x) = Xl -! h. lf (i c!('llotes !.Il(' lllt'dl<lll uf 

the bl and since in one inquiry the slgn of h( x) = XI + (3 can be deU'rrni 11('d, t IWIl 

• if s'tgn(h(x·)) is positive, then the sign of hl(x·) is also posltiw for ciL lt'asl. 11/2 vcllul's 

of 't, for which bl > (3, 

• if s'tgn(h(x·)) is negative, then the sign of hl(x*) is also negattve for at least. n/2 values 

of 't, for which bl ~ (3, 

• if szgn(h(x·)) is zero, then the sign of hl(x*) is positIve for ail values of 1" f(,r wlli( h 

bl > (3, negative for ail values for which b. < J3 and zero for ail values for Wlll( Il b. l' 

Therefore, the sign of at least half of the hl IS known after one inqulry clnel of a.1I !JI(' h. "fter 

at most log n inquiries. 

When d;::: 2 , the hyperplanes are paired so that one hyperplane in eaell pal! belS a slope 

greater than the median and the other one has a slope smaller thon th(' !TIedl,lll 'l'he slr,p(' 

is defined to be the slope of the line a,IXl + a.2x2 =- hl, which If; tll(, 111](' alonl!; wlll< lt !.lI!' 

hyperplane hl intersects the (Xl, X2) subspace For each pair ()f byperpl'H1c& h" li 1> dll...:ill'lry 

hyperplanes h~;) and h~:) are formed sa that eath has a dmwllsion v:lll( It 1& f/!J(' 1(,&& 1 h.lll t !'(' 

dimension of ht and hJ' but in dlfferent variables, thal 1& h~:) h~:)(IJ"J';' Il, ) l,Il dlld 

h~:) = h~:)( Xl, 0, X3, ., ,Xd)' Because the auxiliary hypcrplane:-. <ifP (ri 1 )-cI 1 rJJ('!l&I( 'Il ,l!, 1 flf' 

search can be applied recursively to the two collections h(l) and M2) The hyp(!rplrllln l,ILl! 
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( 
ad =- 0 or a.2 --= 0 are ex cl uded from the pairing sinee they are already (d - 1) dimensional. 

The original hyperplanes can be expressed in terms of the auxiliary hyperplanes 

with a,2 > 0, 

with aJ 2 < 0, 

to dcmonstratc that If S'Lgn (h~;)) and S'Lgn (h~:)) are both known, then the sign of at least 

one of h. or h] can be determined, in partieular 

• if S'Lgn (h~;)) 15 zero, then s'Lgn(h,) _-:: s'Lgn(h2 ) = S1,gn (h~:)), 

• if S1,gn (h~:))) lS positive, then 

if h~:)(x·) ~ 0, then s'Lgn(h,) is positive, 

if h~:)(x·) :s: 0, then s'Lgn(hJ ) is negative, 

• if slgn (h~:))) is negative, then 

if h~:)(x·) :s; 0, then szgn(h,) is negative, 

if h~:)(x·) ~ 0, then s'Lgn(hJ ) is positive, 

Then, for each pair h~;), h~~) for which the search deterrnines the location of the optimum 

x·, relative to both auxiliary hyperplanes, the location is known relative to h. or h] and so 

one constraint can be ehmmated 

MegIddo proposed two dlfferent recursive schemes. The first scheme showed that there 

exist constants A(d) and B(d), 0 < B(d) < ~, which are independent of n, sueh that with 

A(d) inquiries, the posItion of x· can be determined relative ta at least a proportion B(d) of 

hyperplanes In Rd J as follows 

• Inquire A( d -- 1) times to obtain the position of x· relative B( d - l)~ of h(1), where 

~ is the total number of hyperplanes h(1), which is equal to the number of M2). (To 

t'nsure that ~ paIrs eXIst, MegIddo applies a transformation so that at least one of the 

codiicients at! and a t 2 in aIl constraints is non-zero.) 

• For those pairs for whlch the positIOn of x" was determined relative to h(1), inquire 

A(d 1) tlmes again to obtain position of x· relative to B(d - l)B(d - 1)~ of h(2) 
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In effect, inquiring A(d) = 2A(d - 1) timt:'s, which gl\"{'s :lld) --- 2"-1, rl'slllt!> 11\ il 

proportion B(d) = ~(B(d _1))2, with B(d) = 21
-

2d
, of pai~s hl) hl' sudl that t.he PPSltlPl1 

of x· is known with respect to at least ont:' (both If equal slL)pt's) 01 h, llr Il 1 

This scheme gives the followlllg recurrence for the tllllC' Il takes to s(llv(' tl hlH'<I1' prllgltllll 

ming problem 

For a constant C(d)::; 3 22d+d- 2C(d_1), it can be verified that LPl(n,d) ()lll) wlth tIlt' 

constant of proportionality C(d) < 22M2
, 

Megiddo's second scheme recurslvely finds the position of x· relative t.o ail the fl\L,tlldl V 

hyperplanes Ml) and M2), This lS done by solving two (d - l)-dlmensloll,d ~("anh prlll>l('I1I', 

with ~ hyperplanes each, one subproblem for ail Ml) and the ot.her for cil! h(2) This gll/l'S 

an out come relative to half of the original n hyperplanes, It rem,Llns t.u find ,lIl 0\11,(11111(' fOI 

the other half. Let Q(n, d) denote the number of queries requin'cl dnd 1'(71., cl) the dddlt,IOll,d 

effort required for pairing the hyperplanes and finding the medmTl, theJl 

{ 

Q(n,d) =mlll{n,2Q(%,d-1)+Q(~:,d)} 
Q(n,l) = 1 + llog2 nJ 
Q(l, d) = 1 

which can he solved bya technique in [Mon80] and gives Q(n, d) = () (logd n) with 11 umsl.ilflt. 

C( d) = (d~d2)!' 
The addi tional effort is 

{ 

T(n,d) = 2T (~,d - 1) + T (%,d) + 0(nd) 
T(n,l) = n 
T(l, d) = 1 

which gives T(n, d) < d2d n. 

With this approach, an n constraint prohlem in d dimensions is recluCf'd 1.0 ~ cfJlJ&lr,lIIlt. 

problem in d dimensions hy so!ving 0 ((21ogn)dj(d -- 2)!) problems with ri, UlTlstrülTltf. III 

(d -- 1) dimensions, with additiona1 effort. of 0 (d2 dn) Thl& !eads I,f) j }\f' fil 1 If JWI fig 1('( 11 r ft'IIP' 

for the linear programming problern 
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For a fixcd d, LP2( n, d) = 0 (n(log n )d
2

), with a constant C( d) < fI~:~ le!' 

Meglddo's first approach applies one query at each level of recursion, resulting in a 

vc-ry srnall proportIOn of hyperplan es being eliminat,.::l and a doubly exponential constant 

of pmporllC.mallty for the linear programming problem. In addition, part of the information 

obtclllled [rom the search is lost, since the slgns of sorne of the h(1) are known, but not of 

their wrrespondmg h(2) The OpposIte problern arises in Megiddo's second approach, in which 

querJes dlC app!J('d repeatedly until the signs of ail h(1) and h'2) are known. These queries 

arc <tflSWCfCd by solvmg n constraint lincar programmipg problems when sorne constraints 

call be clirnlTldted 

Dy"r [Oye86), showed that a constant proportion of que ries can be answered (not a func­

tlon of d as in Megiddo's first approach), by continuing to apply the recursion at a given 

recursivt' level and removing hyperplanes until the required proportion is elirninated. This 

leads to an algonthm for linear programrnin6 linear in n and with a constant of proportion­

ald.y singly exponentia.1m d. Dyer's rnethod is a general multi-dimenslOnal search techmque, 

wlllch covers the spectrum between Megiddo's first and second approach. 

Let A( d, q, p) be a procedure for the search problem, which takes a d-dimensional set of 

n hyperplanes and rdurns the signs of at least pn of the given hyperplanes after making 

at most q caIls to the procedure for testing hyperplanes. Suppose r procedures A Ie ( d, qk, Pie) 

l'xi. t, k -= 1,. " r. By applying Ah removing a fraction Pk of the hl, then applying A2 to 

the remaini ng fraction J -- pk, and 50 on, a procedure A( d, q, p) is obtained with 

r r 

p = 1 - II (1 - Pk) and q = L qk· 
k=l k=l 

Dye!' chose the following particular approach to applying ihis idea. Given a procedure 

A(d --l,q<l-l,P<l-d in Rd-l, a procedure A'(d -l,kqd-l,l- (l-Pd_d le ) can be obtained 

by applying k times procedure A. Then, by combming two procedures A' and Ali get a 

procedurt' At(d,q,p) with 

and q=(k+l)qd-I' 

Tllls procedure IS called a [k, II procedure in Rd. 

A schcme results from applying a list of r [kl) l.] procedures, t 
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1 
1 

guarantees a proportion 

(1 2) 

with 
r 

qd = L)k, + la)qd-l' 

inquiries. When a fixed scheme is applied recursively, ba<;ed on a .4(1,1, t) procedurt· Il wIll 

mqulre 

qd = (~(k, + 1,))"-' 
times. Dyer then shows that for sorne fixed values of 2::~= 1 (kl + ll) the srnalles L uf will ( Il lS 9, ,\ 

non-zero root can be found for Pd = f(Pd-d, (equatlOn 4.2) ln fact, d 12, 2], 12,31 s( hellle WI th 

2::~=l(kl+lJ = 9 guarantees Pd 2: ~ for al! d, with Pl = ~ IfPd-l ? ~,il can be vl'rdit'cI !J/}!Il 

equation4 2 thatpd > 1-(1 - ~ (~2)) (1- ~~~) = 1059/2048 > t Tills schelllt', ""('(<'10ft', 

gives a sequence of procedures A(d, gd-\ t) and allows the conGtanL of prop()ri.J~lIlilllt.y for 

the linear programming algorithm to be reduced From 20 (2
d

) to 0 (;l(d-l IF) Tite t.1!lH' 'l'(n, ri) 

to solve a procedure A( d, qd, Pd) generated by a scheme [k" il], t -= l, , T 18 

T(n,d) :S cT(n,d -1) + Knd, 

where c= E~=l(kl + la) Then, ifT(n, 1):::; Kn, T(n,d) = O(cd
-

1dn), with ('.: 9 

The time to solve a linear programming problem using the above scheme is pxpresf,{'d hy 

the following recurrence relation 

It can be verified by induction, that LP2(n,d) = 0 (3{d+l)2n) and SOIS lmear for <Lny fix('d 

d, and in addition for d = OC VIQgn) is polynomial. 

Dyer also observed, that Megiddo's first approach corresponds if) il f('peat,f'd Il, il HC flf'trJ(' 

with T::-: flognl He then showed that it is suff]clt>nt ta take T - (i to guar,lTl1.p(" T) ~ ,tIId 

thus give a better running tirne than both of MegHldo'f> dppro,l( h('!> 

A similar result to Dyer's was alsc' obtaJrl('d hr Clarkson IClaHtij, wIJ{J!>(' ".11!,(,rrt.lllll (' l! 

responds to applying a [4,5J seheme and results in a slmilar lmproverneni for 1.111' IIII( ar 

programming plOblem. 
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Cllapter 5 

The parallel linear programllling 
algorithms 

This chapter presents the parallellinear programming algorithm for the reconfigurable mesh 

and t.he CREW PRAM. The a1gorithm for 2 dimensions is presented first, followed by the 

general d-dimensional one. When d = 2, the general d-dimensional algorithm achieve'3 the 

sam(' running time as the 2-dimensiona1 one, however both will be presented as it allows a 

more graduaI introductJon of the concepts. In the case of d = 3, a modification is introduced 

to tht" d-dlmenslonaJ a1gorithm which significantly reduces its running time. 

5.1 Existing parallel solutions 

A. lIumber of algonthms have recently been proposed, for solving the linear programming 

probll~m in parallel for the more powerful CRCW PRAM mode!. Deng [Den90], developed 

an optimal algonthm based on the ideas III [Meg83, Dye84] to solve the linear program­

ming problem in the plane which runs in O(logn) tIme with nflog n processors. Vaidya 

lVai90! de\'eloped an a1gorithm based on the interior point methods [Chv83] which runs in 

() (L(7Id)1/4Iog3 n) time using O(Af(d)n/d + d3 ) processors, where Af(d) lS the number of 

operations for mu1tJplying two d, d matnces and L is bounded below by the logarithm of the 

largest. absoluLe \'a1u(' of the determinant of any square submatrix of the coefficient matrix 

of t.he Imear programmmg problem Alon and Megiddo [A1090] de\'eloped a probabi1istic 

algorithm WhlCh soh'es é1 1inear programming problem in fixed dimension almost sure1y in 

const.ant. time 
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.' 
Alternately, if the linear programming problem is transformt'd Illtoo t.ht' dual span" il 

parallel solution may he found using parallel algorithrns for computmg the (OI\Vt'X hllll (l{ 

a set of points [Dob80, Ede87J. Each constraint corresponds 1.0 cl d-di1l1('IlSitlnal Ih)11!t III 

the dual space, therefore it suffices to compute the convex hull of the It'Sldtlllg poillts .11\C1 

test each convex hull point for optimality Given that cornputing tlw (OII\'CX hull o{ ,1 st'! 

of points is reducible to sorting [Sha78] and that sorting reqUlrt's n(n 1/ ..!) t,lllle 011 ail\' 1I1('"h 

architecture (see [St083] and Section 2.1 of this thesls), this approach r('qllir('~ O(n IO ) tllllt' 

on the reconfigurable mesh. Unfortunately, no algorithms art' yet krwwll (or SIIIVlIIg tilt' 

convex hull problem in dimensions higher than 3 on the mesh l~liI88c, \)ehRH 1 

On the CREW PRAM model, algorithms due to Aggarwal ct al IAgg881 alld At"dl,\!l ,Ult! 

Goodrich [Ata86] exist which compute the convex hull of a set of point!> 111 ~ dillll'IJhIt)Il~ 

in O(log n) time using n processors Given that the wnvex hull pomb CciII !H' t,('~t.('d jor 

optimality in O( d) time, and the optimal pomt can be chasen in O(lug n) lime hv ({)llIplltlll~ 

the maximum or the mmimum [Val75], the linear prograrnming problem UIIl he ~()lv('d III 

O(1og n) time in 2 dimensi0ns In 3 dimensions, there exists an algonthrn due tn Dadutlll ,wei 

l~irkpatrick [Dad87] which finds the convex hull in time O(log2 Tt log- n) uS1I1g Il processflrs, 

where log- n is defined to he the least ~ such that 10g(1) n -::.. l, wlth log(l) dellotlllg tlll' 

zth iteration of the log function. The lmear programming problem can then 1)(' sol veel 111 

0(1og2 n log· n) time. Nonetheless, ther(' are as yet no paral1el solutions for the (OllV('X hllil 

problem in higher dimensions on the CREW PRAM, 

5.2 The algorithm for the reconfigurable mesh in two 
dimensions 

In this section, a parallel linear programm1l1g algoflthm for 2 dllllenslOns, b,lsec! (Hl li)!' 

sequential algorithm outlined in sectIOn 4 1, IS presented and shown tn run in O(log 1 ri) tllJ\I' 

on the reconfigurahle mesh of size n The algorithm wIll rnak(' u~(' (If t!H' (Ill\( '·pt.h ;llld 

algorithms already presented in detall in earlier chapters, 
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Given a linear programming problem in 2 dimensions and n or fewer constraints, stated 

as 
mllllmize aXI + bX2 

subject to a,Xl + b,X2 + c, ::; 0, 2 = 1, ... ,n. 

it is desired to solve it on a reconfigurable mesh of size n. The processors of the mesh are 

labeled in the snake-like ordering. 

InitJally, the problem is transformed so that the objective function is equal to the y co or­

dinate, by broadcasting the coefficients a and b to aIl processors and having each processor 

Pl apply the linear transformation y = aXl + bX2 and x = Xl ta the constraint 2 assigned 

to that processor. The broadcasting can be accompli shed by connecting aIl switches of the 

reconfigurable bus in order to form a global bus which allows data to be sent to dIl processors. 

The problem is then stated as 

mmlmlze y 
subject to a,x + {3,y + Cl ::; 0, 1, = 1, ... n, 

where a, = a, - ~b, and {3, = ~. The set of constraints is partitioned into three subsets lt, 

12 and 13 depending on {3, being negative, positive or zero. No assumption is made about 

how the constraints are dlstributed among the processors of the rnesh, with constraints from 

11.11 three subsets bemg intermixed. It will be assumed that each processor has available the 

values UI and U2, ddimiting the interval containing the optImum value of x, and the splitter 

.1:u , which is the current value of X being tested. The values Ut = max { -:",2 E I3} and 

112 = min { -:;,1 E I3}' can each be computed by applymg the max operation taking into 

account only constraints in 13 

Having transformed the linear programmmg problem, the parallel algorithm must find 

a mmimum value of a plecewise hnear convex function of x, implicitly defined by the con­

straints As done sequentiaIly, the algonthm iterates by testmg values of x, in a way similar 

1.0 binary search, to determine if x givec; the optimal solution and if not to which side of 

.r: the optllnal solution may he. At each iteratlOn either the solution IS found or at least a 

constant proport.lOn of constrc1.lllt.s are elllnmated as candidates for contaming the optimal 

solut.lon. untIl the number of constramts is small and the problem can be solved directly. 

I~adl Iteration involves a llumber of consecutive steps whlch operate on aIl the constramts 

in parallel 
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Candidates for the optimal solution are obtained by pairing constl dl11ts III order to ((llll­

pute the int.ersection points of the two lines defining the constraints. The pclirll\g stt'p IS 

performed first on the constraints of Il, then, in an identical malllH'r, I)n t.he {UI\!>tl,ll11t:. 

of 12 • Pairing of constraints in Il can be accomplished by numbcring t.he l'l\llstr,unts (lI Il 

and pairing each odd constraint with the followlllg even constral11t. The llUlllb<'llng l clll iH' 

accomplished by assigning alto each processor holding a constralIlt. in II ,lIld cl Il 1.\\ .lil 

others and then performing the parallel prefix operation_ 

In order that the computation of the intersectIon points he perforllled ('flil Il'Ilt Iy, Il. IS 

required that the constraints in each paIr can communicate lI1 0(1) t.lllW WheTi t.he ,dgol Il linl 

works on Il, aU processors P]l 1 < J ::; n, holding constraims in h, 13 or empt.y, wIll rOrIll bu:. 

bridges betweennon-adjacent processors holding consec.utivecollstrdints ln 11 , hy (()IIIj('t1.lll)!, 

their switches to PJ - l and PJ+1 in the snake-like ordering. Thes(' bus bndgt's wIll ,dlow lOI 

0(1) time communication between any two processors holdIllg a pair or lOllstriUIlt.s 

Once the pairs are determined, one constraint can be eiImmal.ed from eél.c!J \><Ilr of COIl-

straints defined by parallellines and one constramt from pairs whose lIItersecLlOlI Ilt's OH tSlde 

the interval lUI, 1L2], see FIgure 4.2. For the remaining pairs, of which therp are al. flIos1. 1//'2, 

find an a-splitter Xa: of the x-coordinates of their intersection pOlnt.s, wIl.h a ~,by élPply 

ing one iteration of the parallel selection algorithm To test where, wlth resp{'( t t.u t.Il1' III\(' 

X = Xa:, lies the final solution, compute g(x(~) = max (h,xc< + TI) and h(:Lc<) ;:. TJlIlI (b,.l; .. l ,.), 
,EII Ir: I? 

where 6, = - F. and T' = -71;. Also compute the slopes of 9 and h to t.he !dt. ctlld 1.0 t.\H' 

right of Xa:, which are defined as 

Lg = max {Ot : ~ E III D,x>. + Tt =:: g( xa:)} , 
Rg = m~n {Ot . 1, E Il, O,X>. + Tt =:: g(xa:)}, 
Lh = max {o, : ~ E 12 , D,x>. + Tl = h(xc .. )} , 

Rg = m~n{0 •. 2 E 12 , O,X>. + ,. = h(xu )} 

Each of the above functions can be computed, III turn, using the max 0f)('rcÜ10I\ ÂH r!es{ rdH'd 

in section 4.1, on the basis of this Information it can be deterrnined whdlJ('r ,/;" I~ r(·cl~d)"· 

and whether it is optimal and if Ilot ta whlch slde of ..co: the ()ptilllulll I/I,LV !If' 

If the problern is found Lo be Iflfeasible. ()r the optImal ~()!lltlf)1l I~ If/lllld, t.f\f'1J t llf' .111'.'1 

rithm terminates. Otherwise, the Iflterval [u"u21 can f)(' redu(ed t,c) f'ltlH'r 11I.),.1,,! (II: J'", 'l, 

At least an of the intersections, as defined by the pairs of wnstralTlt:-., .,./111 II!' (lIltwlf' t j\f' 
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... 

ncw inierval. Since for each such pair one constraint can now be dropped, which, including 

one of parallel lines dropped before, is at least ~n constraints, there are at most (1 - a/2)n 

constraints remaining. 

It remams to mark processors holding constraints which are no longer to be considered as 

"lnadive" Since the algorithm makes no assumptions about the distribution of constraints 

arnong processors, no other dean-up or compression of data is required in preparation for 

the next iieration of the ê.1gorithm. 

The time reqUlred to complete an iteration of this algorithm is limited by the 0(1og2 n) 

inne il, takes tü find the splitter. AlI other operations (transformation of coordinates, pairing, 

wmpansons) take O( 1) bme, except for the parallel prefix operation which takes O(1og n) 

iime and finding the max which takes O(1og log n) time. SiTlce at each iteration, the size 

of the problem is reduced by a constant proportion, the algorithm must terminate after at 

rnost log n steps Therefore, the total running time is 0(1og3 n). 

5.3 The algorithm for the reconfigurable mesh in d 
dimensions 

In this section, a parallel linear programmmg aIgorithm for d dimensions, based on the 

sequent.ial algorithm outlined in section 4.2, is presented and shown to run in 0(n1/ 2 ) time on 

the reconfigurablr:> mesh of size n, with the constant of proportionality growing exponentially 

with dnnension 

A d-dimr:>I1sJOnal linear programming problem with n constraints can be stated as 

d 

mlnlmlze ~CJXJ 
]=1 

d 

subject to ~alJX1 2:: b" t = 1, ... ,n. 

1=1 

In Mder to solve ihis problr:>m on the reconfigurable mesh of size n, constraints are 

élssigncd on(' per processor, wlth each processor storing the d coefficients of its constraint The 

proceSS()J~ of the mesh dH' labeled in snake-like ordering and the constraints are distributed 

éll1long the Pf(l('('ssors in no particular order. 

1 nitially, the problem is transformed into a subspace orthogonal to the objec~ive function . 
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The constraints can be partitioned into It, 12 and 13 depending on ald being negatIve, posit i\'(' 

or zero, and the pro blem ean be stated as 

mmlmlze xd 
d-t 

subject to Xd 2:: Lal]x} + b" ~ t: Il 
}=t 
d-l 

Xd S; Lal}x} + b" ~ E 12 

}=1 
d-l 

La,}x} + bt ~ 0, ~ E h 
}=l 

with IItl + 1121 + 1131 = n. Since eaeh processor can apply this transformatlOll, in O(d) i\ll\l', 

to the constraint which it has stored and sinee aIl processors can do thls in pareil 1('1, t.h\' 

transformation can be aeeomplished in O( d) time. 

The algorithm is similar to that of two dimensions In that at each iieratlOll 11, n'IIlIlV('S cl 

constant proportion of eonstraints unttl only the d essential constramts relTliLlI1, t.he lllierSt'(­

tion of which determines the optimum. Eaeh set Il, 12 and /3 is wnsldC'red in tU11I 11,urs (JI 

inequalities are formed, as before, beginning with the sei Il 1'h(' constralllts are lIullIfwred 

by applying the parallel prefix operation to the mesh and each odd (OIlSirdint is patr('d Wlt.1t 

the following even one As before, the remaining processors form bus brtdges to allow f(J1 

constant time communication of the constraints in each pair. 

Considering a pair of constraints ~, ~ + 1 in the same s('t' 

• If (att, ... at,d-t) = (a,tl,t, ... , a'+l,d-t), then one of the constraints is redulldallt. and 

can be dropped. 

d-l d-l 

• If (ail, ... a"d-t) =1= (aHl,l'"'' a'+l,d-d, then La'1x) + b, -=- Lat-II,)x) t btll IS <Ill 
1=t }~I 

equation of a (d - l)-dimenslonal hyperplane WhlCh divides ih(' space so tltat 011 OJJ(' 

rl 1 

side of this hyperplane constraint ~ dominaté:5 constraint ~ 1 ]) that is L fLlJ'/' 1 1 h, . 
} 1 

d-1 

La'+l,}x} + b,-tt, and constraint ~ + 1 dQmmates cOl1strcLint 1 1111 t 1)(' (,tl){'1 '>Id! 

J=l 

If the location of the optimum IS known relative a glven hYfwrplarl!', lIl1'lI ('11(' f,f 1 1 JI' j 'l,l' 

constraints can be eliminated. As shown by MegIddo fMeg84], testing of cL hypnpl'lflf' l ,[fi 

be accomplished by solving at most three (d - 1 )-dimenslonallinear prograTlllTllflJ!, prfJ]llt'!fI" 
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wlth at most n constramts each. It may easily be verified tnat these problems can be 

formulated from the original constraint.s on the hasis of the information already available t.o 

t'ach praccssor Repeatedly forming and testmg the dividing hyperplanes in order to remove 

(mc constraÎnt per test woulrl result in a very slow algorithm Instead, Megiddo's and Dyer's 

multJ-dlInt'llsional search t.echnique described in chapter 4 can lead to an efficient paraUel 

algori t hm. 

5.3.1 Applying the multi-dimensional search technique 

Glvcn a set of n divlding hyperplanes h1 (x) = a:x + b., ?, = 1, .. ,n, distributed no more 

than one per processor of the reconfigurable mesh, the multi.dimensional search described 

in section 4.22 IS applied as follows. When d = 1, the hyperplanes are of the form h.(x) = 
XI + b •. The median value (3 of the b" ~ = 1, ... ,n can he found hy applying the procedure 

Selt·ct of st~dion 3 2 In O(logJ n) LIme. Then the sign of h (x) = Xl + f3 can he determined in 

O( 1) time, thus making known t.he sign of at least half of the n hyperplanes. When d ~ 2, 

the mecban slope ao: of the lines a.lxl + a12x2 + b. = 0, defined as a.d at!, is computed leaving 

aSlde hyperplanes with a.l = 0 A transformation taking Xl to Xl + ao:X2 is applied, so that 

any hyperplane with the median slope has now a zero slope. Then, the hyperplanes are 

paired, sa that each pair has one hyperplane with a positive slope and one with a negative 

slope, leavmg aSlde any hyperplanes with zero slope. 

This particular method of painng hyperplanes which reqUlres that the hyperplanes in 

t'ach pair satisfy certain properties is different from the method, used earlier, for pairing 

cOllstraints Since the hyperplanes with positive and negative slopes are distrihuted randomly 

among th~ processors, in the worst case, it rnay be required t.hat half of the hyperplanes 

art' moved across the mesh. The pairing can be accompli shed by sepdrately numbering all 

hyperplanes with positive slopes and aIl hyperplanes wit.h negative slopes, using the parallel 

prefix operatIOn, then moving the zth hyperplane with negative slope to the proccs<;or P2.-1 

and t.he 1 t.h hyperplane with positive slope tü processor P2., with the prücessors in the snake­

hke ordenng. lt has b('en shown by !\Idlt"r ri. al [l\IiI88a j how mO\'lllg O( n) values can bt" 

a(romplJ~hed ill O(n I/2
) tmw on the reconfigurahle mesh. 

For t'ach pair of hypt"rplanes h •. hJ , as formed above, auxiliary hyperplanes h~~), h~:) are 
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formed, where 

h~~)(x) = (h,(x) - hJ(x))j(a'2 -- aJ2) 
h~:)(x) = (-a]2h,(x) + a.2h](x))j(a'2 -- a]2) 

are hyperplanes in (d - 1) dimensions. For each pair h~:), h~~) for whlch th(' !uud IUIl (lf th" 

optimum x· is determined relative to both auxiliary hyperplancs, the !<)("t\lIt)!\ \~ kll"wlI 

relative to at least one of h, or hJ and allows one constraint per pair t.o lH' t'lllllllltlt.cd. 

Three different approaches to the multI-dimensional seardl were descfl lH'd III di,l ptel 

Megiddo's first approach is inherently sequentJal in that it first perforllls cl f<'t UlSlve S('cHI Il \l1l 

aIl the auxiliary hyperplanes Ml) and then applies the rt'cursive st'arch to thnsl" IIvl>('( p!,\(J(':' 

h(2) whose sign was discovered in the first search. A paralld version 01 thi!> apPln,\( h wdl 

not be developed, since Megiddo's first approach is a particular case of Oyer 's I\](lf(' ~('(H'r,t1 

and efficient approach. 

Megiddo's second scheme recursively finds the signs of aH the auxiliary hY!>Nplilll('S hy 

solving two (d-l )-dimensionai search problems, each with at mûst 71,/2 hypt'rplallcs ThiS (,1/1 

be implemented on the reconfigurable mesh by separatmg the hyperplrult's lIlto two group:, of 

consecutive processors III snake-like ordering, one with hyperpl,J,llcs which elre ilOt. il fUlldl/ill 

of Xl, which includes all h(1)'s and the original hyperplanes wit.h ad C 0, and the o!.lWI wlt.h 

aU the hyperplanes which are not a function of X2, ihe h(2),S dm1 hypf'rpliuws Wlt.h (1,,2 () 

It is important that the mesh be subdlvided sa that its dlameier IS al ways proportloll,li \" 1 

the square root of the size of the problem. This can be accomplJslwd by subdlVldll1~ Ulf' 

mesh horizontally at one recursive level and vertlcally at the ncxt ]evel Agalll, a~ HhoWII by 

Miller et al [Mi188a], moving O(n) values can be accomplished!Tl O(n l
/
2

) tllll(' Now, tlH' 

search can be applied recursively and in parallel to both seth of hy pcrpl,ult'f, A It.h, IlIgh t/H' 

total number of queries Q(n, d) will remain the same, dS in t.he ~('q\l{,I\tlill ,tpplJ< at.loll /Jf t.I\I' 

technique, that is Q(n, d) = O(1ogd n) wlth C(d) -.::: (d::)" ther<' will nrdy \)(' '1(71, d) kv('ls "f 

recursion, where 

{ 

q(n,d) =q(~,rl-l) 1 q(~,d) 
q(n,l) == l + llog2 ni 
q(l,d) =1 

which can be solved by a technIque developed III [Mon80] ta giv(' q( n, d) () (lflg'17l) ',','11 li 
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a constant of proportionality C(d) = ;ho 

The time required for pairing of hyperplanes and finding the median is 

{ 

t(n,d) = t (i,d -1) + t (~,d) + 0(n1/2d) 
t(n,1) = n 1/2 

t(1,d) = 1 

whlch solved slmdarly gives t(n, d) < (d~2)' n logd-2 n. 

This leads to the following recurrence for the linear programming problem 

logd!! (n) (d 1/2 d 2 ) lp(n,d) ::; c Ti lp(n,d -- 1) + lp 2,d + 0 (d _ 2)! n log - n 

For a fixed d, lp(n,d) = 0 (nl/210gd2+d-2n), wIth a constant C(d) < (d-2)ln:=l kl ' as ca.n he 

verified by induction. 

Dy('r's general multi-dimensional search technique can lead to an algorithm on the re­

confi.gur(Lb~e Hl('sh with O( n 1/2) running time with the constant of proportionality singly 

exponential in d. By choosing a [2,2], [2,3] scheme and applying each procedure in the 

scheme one after another, after compressing the current subprohlem of size m into pro­

œssors Pt], ~,J E [0, .. , m 1/2], a proportion Pd 2: } of hyperplanes is guaranteed to be 

discovered after qd = gd-l inquiries. The time t( n, d) to solve the multi-dimensional search, 

using a procedure A( d, qd, Pd) generated by a scheme [k" l,], ~ = 1, ... , r, is 

r 

t(n, d) ::; ~]k, + l,) t(n,d - 1) + K dn 1
/
2, 

,=1 

which gives t(n, d) = qddn 1/2 = O(d32d-lnI/2) for a [2,2] [2,3J scheme, as may he verified 

by induction. Then the time to solve the linear programming problem is expressed by the 

following recurrence relatIOn 

lp(n,d) S 3 32(d-l) (lp(n,d - 1) + Kdn1/2) + lp (~n,d) . 

Assurning mductively that lp(n',d') < K3(d'+1)2(n')1/2 for aU (d',n') < (d,n), it can be 

verified that 

lp(n,d) <..: 

< 
< 
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This verifies that lp(n,d) = O(3{d+l)2n1/ 2 ) for aIl pairs (n,d). 

It is possible to apply the recursive procedures tü the two (d -- l)-dilllt'llsiLlllal sets uf 

hyperplanes in parallel after separating the two, so long as the proport\llll Pd 1 pf SI[!;I1S cl IH 

covered is strictly greater than t. This \lTould guarantee th,ü al. lea5( Pd 1 
1 ï ploplll t 1(l11 

of pairs would have the signs of both auxllia.ry hyperpldlles knowll This \\,otdd IIH 1 (',,!-oc 

L~=l(k, + l,) in order to guarantee the same proportion could he lllaintall1l'd ,d ('c\(h :-.Llgc 

It would not however result in an asymptotic improvement for the tol1st,lIlt of pr(lportll 111 

ality for the parallel linear programming algorithm, since that could only Iw cl( hlt'\('c! t! 

L~=l max{k" l,} = 1, which could only be true if r = 1. However, tllIS ('ould ilOt. gllclfclltlt't' 

a proportion Pd > ~, Although the theoretical benefits of thi" approach are 1111< ('rt.,tll1, III 

practice the signs of more pairs of hyperplanes than Pd-I - tare lik(:'ly to he (bswv('['('d, thlls 

resuIting in a greater proportion of constraints being removed 

Given that the reconfigurable mesh model assumes a constant nurnber of reglsters i1vatl­

able to each processor, It is necessary to verify that the number of reglst.ers f('qlllrec\ bv 

the algorithm does not exceed this constant. Originally constramts are dlstri bll t.ed Ollt' pt'r 

processor of the reconfigurable mesh, with each processor storing the d cm,ffi( J('rJt.s (Jf Il.s 

constraint plus sorne additional constant amount of information. The "nly tlllle dUllllg t.Iw 

algorithm at which constraints are moved from one processor tu another O( CtlfS dUfing t.ll!' 

pairing of hyperplanes as part of the multi-dimenslOna.l search The zth hyperpl'IIH' wJt h 

negative slope is moved to the processor P2t-l and the ~th hyperplane vJlth p()sll.lv(' slope 

to the processor P2,. This causes the hyperplanes to accumulate ln BlJllIe pro( essor:, uf t.Il!' 

mesh. Given that at most one additlOnal hyperplane arrIves al. any pro«('ssor dUflllg cl glVt'1I 

pairing and that the multi-dimensional search procedure has dept.h nf al T!lus!. ri H'( llfS1VI' 

caBs, at most d constraints can arrive at any processor of the mesh As tflf' dl!TJ('1IS1IJlI il 11, 

considered constant, this verifies the reqUlrement for a constant 1Illll1l)('r (If fI'gIs1.(·r:, cil, (',1( h 

processor. 

As the pairing of hyperplanes requires n(n1/ 2 ) tane, ernplunng datci 1I111VI'l!lt'T1t .I11c1 :,t· 

lection algorithms wh1ch l'un In o{T/li l
) time has no eflec 1. "TI th" rI:'ylllptl,f le nltllllll~', t.IIIJf' 

of the linear programming algorithm. However, smce such alg<Jrithrm (mIL;':, !liLl cdl,·j pl l' 

fix, sorting) are known to run In O(n 1
/

2
) time on a mesh computer wlth IlO brfJdr!( cL:,tlll1'" 
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the d-dunensional linear prograrnming algorithm can be implemented to run on any mesh 

architecture in the same 0(n 1
/

2
) time as on the reconfigurable mesh. 

5.3.2 The special case when d = 3 

ln 3 dimensions, glven n constramts distributed no more than one per processor of the 

reconfigurable mesh, the constraints are paired to obtain n/2 two-dimensional hyperplanes 

(Iines), to which then the multi-dimensional search is applied. During the multi-dimensional 

search, the hyperplanes are palred to give two sets of I-dimensional auxiliary hyperplanes 

(points) at which time the recurSlOn bottoms-out (see section 4.2.2). 

It is apparent that the hrniting step of the algorithm is pairing of hyperplanes, which 

ln the worst case takes O( n 1/2) time. It is possible to improve the time it takes to pair 

hyperplanes to 0(nl/3 ), by considering the following modification in the way that procedure 

A(2, Q2, P2) is applied in 2 dimensions to solve the multi-dimensional search. Let the mesh be 

subdivided into nl/3 blocks of n 1 / 3 x n 1/ 3 size. Each block will have at most n 2 / 3 lines. For 

ail blocks III parallel, apply the procedure A to the hyperplanes in that block. Procedure A 

will be applied to a block in the same fashion that it was applied to the entire mesh in the 

d-dimensional algonthm, but completes in 0(n1
/
3

) time since the diameter of the blocks is 

of 0(n l /3
). Each li ne returned by procedure A can be tested (see section 4 2.1) by solving at 

most three 2-dimenslonallinear programming problems. The tests, which take 0(1og3 n) time 

(>ach, carl be applied one at a time using the whole mesh and will complete in 0(n1/ 3 10g3 n) 

Lime. For the proportion P2 of hyperplanes for which the procedure A determined the sign, 

one constraint can be eliminated (see sectIon 4.2). Since groups were assigned disjoint subsets 

of constraints, the total number of constraints which can be elimmated is simply multiplied 

by the number of groups, to give the required proportion P2 The time t( n, 2) to solve 

the multl-dimensional search in 2 dimensions, using a procedure .4(2, P2, Q2) generated by a 

selle me [k"l.], z = l, ... ,r, is 

r 

t(n, 2) S L:(k. + I,) t(n, 1) + J\n 1
/
3

, 

1=1 

which gi\'es t(ll, 2) = 0(n1/3) Then the time to solve the linl"'ar programming problem is 
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expressed by the following relation 

lp{n,3) ~ q2n1/3t(n,2) + Kn 1
/

3 + t (~n,;l), 

where q2 = L~=l{kl + 11)' which gives lp(n, 3) = O(nl
/
3 Iog3 71,). 

Since the number of tests required becomes n 1/3, this scheme does Ilot t>xtend illit) 11IgI\l'r 

dimensions, in fad, it results in a worse running time than the d-dimensioual algoflthm (lf 

section 5.2. 

5.4 The algorithm for the CREW PRAM 

The d-dimensional parallellinear programming algonthm can be ctdapted 1.0 run III ()(lop,<I 11 ) 

time on the CREW PRAM model, with the constant of proportlOnality (>XpOIlt'1I 1.1<l 1 III d. 

Initially, each processor is assigned one of the n constraints, witl! the (OJlstrmnt.s dist.llbllt.cd 

in no particular order Once the subsets Il, 12 and h are detennl1led, the (()IlSt.ldllll.b (<III Iw 

rearranged, in constant time, so that processors Pl,' ., PlItl are respollslble [lIr (Oflstl'clillt.S 

in Il, processors Plftl+1!"" Plltl+lhl are responsible for consirctinis III ' 2 ,U1d Pl()«'ssor~ 

Plhl+1121+1"'" Plltl+II21+1131 are responslble for constraints III 13 ln this wav, the algorit.11I1l 

can work in parallel on aU pairs of constraints When the multl-dlmensiOIléll st'ctrch 15 c1pplJ('d 

to the hyperplanes h( x) obtained from painng constramts, the hyperplcwes (,III 1)(' paIl ('c! 

and auxiliary hyperplanes h~;) and h~~) can be formed The procedure can t.hell 1)(' applif'd 

recursively to the two sets of (d - l)-dimensional aux!lJary hyperplanes SIl}«' [><llrIlIg of 

hyperplanes can be accomplished III 0(1) time, after they have lw{'n e!lul1\eritl.('d wIl.h t./H' 

parallel prefix operation which takes O(logn), and sinee median can be found III O(logn) 

time, the time t(n,d) to solve the multi-dimens10nal search using a I)f(JCedurr' ,l(d,f/r/,l'd) 

generated by a scheme [kt, l,], t = 1,. ., r is 

T 

t(n,d) ~ ~]kt + 11) t(n,d - 1) + I< d logn, 
,=1 

which gives t(n, d) = qddlogd n = O(d3 2d- 1 Iogd n), for a [2,21 [2,:J] s( !J('T1lf', riS 1I1dV 1)1' \'f'rtfj('rj 

by induction Then the time to solw thE' linear prfJgrarrllTllng prflblf'1l1 1.., ('Yl'rf'''''wd Il)' Il'f 

following recurrence relation 

lp(n,d) ~ 3· 32(d-1) (lp(n,d - 1) + Kdlogn) + ip (in, ri). 
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< Assummg inductively that lp(n', d') < K 3{d
l

)2Iogd
l 

n' for aIl (d', n') < (d, n), it can be verified 

that 
t(n, d) ::; 32d- 1 (K 3d2 logd- 1 n + K d logn) + K 3{d+l)21ogd (~n) 

= K 3{d+lj2 (logd
-

1 
n + dl~gn + logd !!n) 

32 3d +2 4 

Let c = --log~, then it remains to show that 

1 d-I dl ( d > og n + ~ + log n - e) 
3 2 3d +2 

> Jog;~l n + ~~2~~ + logd n - de logd-l n + (;)c2 Iogd- 1 n - (;) e3 logd- 3 n + ... 

Which is true sinee 

for ail d> 1. This verifies that lp(n,d) = O(3(d+l)2Iogd n) for aIl pairs (n,d). 
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Chapter 6 

Applications 

The eontinuing popularity of linear programming, both in applications and as il rCSI'Mt Il 

topie, can be attributed to the fact that a great many practIcal proolerns ('elll \)(' expn'sI-H'd 

as Iinear programming problems and effiClently solved using an establislwd t.e( hlllljuc RII{ h 

as the Simplex method [Dan63] or Megiddo's and Dyer's algorithrn 1 Mt'gR I1, \)yeRGI 

Although it is not clear whether Megiddo's anJ Dyer's algonUllTl UlII (ornpctr {' III ('1-

ficiency to the Simplex method, their algorithm appears to be vt>ry pritct.H al lor il Sliletll 

number of dimensions. For d = 3, Megiddo [Meg84] states that the currell 1. «(lJ)) pllLcl 1. 1011 ct! 

experienee is very successful. In higher dimensions, even though the algoflthlll 18 (,xpollelltlill 

in d, Dyer [Dye86] showed that it is ahle to take advantage of spar8lty, that. 18 for 8pcll SI' 

problems the proportion of hyperplanes discovered dunng the multl-dlfll('I1SIOTIélI 8eclf< il III 

creases. In addition, Megiddo pomted out that although, whel1 tcst,ing cl hyperplcL!H', thll'(' 

(d - 1 )-dimensional problem:; with possibly n constrawts each need 1.0 he 8ol 1wd, the I1ll1nl)!'! 

of constraints is usually much smaller in two of the problems Thal. IS, cUlSllllllll1!; cl !lOI! 

degenerate case, two of the three problems have no more than d constrcLints ('cL( il Megiddo 

also observed that another pracbcal speedup can be reallzed by dlOOSlllf~ cl rallr!lIll1 :~-scllJ\(lI(' 

or 5-sample instead of finding the median (or splitter), sinœ the sele( 1.1011 il-. rq)('ct!,('d 11IclflY 

times and each repetition is independent The samt> fadors apply Irl t!w (dM' of t!IP PM,\., ,1 

algorithm and should result III better praetical performilpce thall that. J1;IV('1I by t!1f' 'N"l~t 

case time analysis. 

Any problem whieh cal! be formulat!:'d as a llIlear prrJgramrning prfJbl(·rtI lllcly I)f' ~(,I'v'1 ri 

using the algorithm developed III this thesls, nonethelc&s the fart that tlw rUIIIllllg lllllf' 
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IH exponcntial in dImension limits the applicability of the algorithm to problems with small 

dimension The sequentJallinear programming algorithms by Megiddo and Dyer are similarly 

Ilrnitcd 

'l'h(' most obvious are a of applications is that of operations research, in which there anse 

probl(,,/Tls Huch as allocatIOn of resourees, planning and scheduling of production and inven­

tory Thcs{" however, can often be very large in both number of constraints and dimension 

MId therdore It may not be practIeal to solve them using the paraUel algorithm. 

Sorne other problems, which can be solved using the proposed parallel algorithm are those 

wlllch rcm be shown to be reducible to linear programming [Dob80]. For these problems, 

Il. 15 sufticlent to show that they are reducible in polynomial time to linear programming 

and it follows that they can be solved by the paraUel algorithm proposed in this thesis. Of 

<ourse, it is desirable, that the time eomplexity of the reduction process is in the same order 

of cornplexity as solving the linear programming problem. 

6.1 The linear separability problem 

'/'wo point sets are lmearly separahle if and only if ther~ exists a hyperplane sueh that aIl 

pOInts of one set lie on one s]de of the hyperplane and aU pomts of the other set lie on the 

oUlcr side of the hyperplane [Sha 78]. Recognizing whether two sets are linearly separable 

éllld nnding a separating hyperplane has apphcations in statist]cs and in pattern recognition 

f(lr the purpose of classifymg data points using linear functIons [Sha78]. Dobkin and Reiss 

[Dob80] have shown that this problem ln d dimensions is eouivalent to linear programming in 

ci variables, that ;s !incar separab:lity is reducible to linear programming and linear program-

1Il1l1g IS rt'dUCIble to IInear separability It can therefore be solved sequentially in linear time, 

III fixed dImenSIon, wlth f\Iegiddo's algonthm [Meg84] Preparata and Shamos [Pre8S] have 

slwwn how to find the (d - 1 )-dimensional separating hyperplane. Given two sets of points 

SI·- {(a~l) ... ,a~')):1-=t.. ,IS11} and 82 = {(a~'), ... ,a~')):7,=ISll+1, ... ,IS21}, 

\\'Ith I~\I -j IS21· 71, the separating hyperplane PIXI + .. + PdXd + Pd+I = Il, if one ex­

IstS. must satisfy the condItIons 

(,) . 
PI al -t- l :::; 2 :::; ISll 
PI a~') + IS] 1 + 1 :::; t :::; n. 
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Many separating hyperplanes ma)' exist. Sinee solving tilt' above luwar pwgralll Wlt.h 11 

constraints on the reeonfigurable mesh ean be accomplished in O(n 1/2 ) (.1'1\(.' and III O(lngd 
71) 

time on the CREVJ PRAM, one separating hyperplane can alsl) IH' found, if Il (,XI~t s, III 

O(n 1 /
2

) and O(logd n) time respectlvely, 

When one of the sets contams only one point, tha.t is SI -~ {l~,}, the prùblc111 (lI findlllg .\ 

separatmg hyperplane is known as powt-set separabddy and was dlso shown \'0 he t'qlll\'alcllt 

to the problem of linear programming [Dob80] IVlegiddo [Meg8:3] stllted t.h,ü t 11Is probl(,Ill III 

Rd ean be solved by linear programming in d - l variables as It reqllires fi.ndllig a hYPf'l pl<lIH' 

passing through Po which has ail the points of 52 lying to one s)(le oi" Il. Therf'llllt" t 111' 

point-set separability problem, whlch also det.ermines If Po 15 extrf'llle wll.h l"t'bIH'( t l,) t hl' 

points of 52 [Dob80, Meg83] can be solved ln O(n 1/ 2 ) 011 the rewufigurctblc Il\I':,h dlld III 

O(1ogd n) time on the CREW PRAl\I. 

6.2 Circular separability and the digital disk 

Another problem which can be solved by the linear prograrnrrllng ,dgontinn is t.he circu lM 

separability problem, O'Rourke and Rao Kosaraju rO'R85] have slwwn thal. t.he (il"< ,t1ell 

separability problem In 2 dimensions reduces to linear sf'parabtlity ln :3 diTlWIISlllllh Hlid 

stated that in general spherical separability in d dimensiuns rpdlHf'h III lillPctr !WPM,lbrllty 

in d + l dimensions Since linear separab1hty 1S eqUlvalent to 11f1c>ar prllp;rarnllllllg, t.Ilf'V 

concluded that by Megiddo's algorithm [Meg83] the C!feUldr sep<lfrLbl!tty problc'!J1 l"l1 1)(' 

solved in O(n) time with the constant of proportJOnality doubly exponentlal !Tl dlfJl('J1SHlIl 

The constant of proportIOnality can immediately be reduced tu singly ('xrJl!OplIlI,t! dut' I.fI 

Dyer's improved multJ-dirnensional search techntqut" [Dye86] 

As defined in [0' R85], two sets of pOints SI ::::- {(XI' YI) 1 (- Id ,111(1 8 2 {( J: l , y.) l,Il} 

in R2, with 1511 + IS21 = n, are czrcularly separabl" If th(,I'e eXI!>ts cl CJI'cl(> (:, ~l1dl th,Ll, (',L( Il 

point of SI is intenor to or on the boundarv uf (.', whdp eillh pfJIllt of ,','2 1., (';.1 l'flt,I' III "r ('li 

the boundary of C Transforming pOlnt~ (,Z'. y) in 1(1 1ntll P"IIlt'> "I t 1)(' f"llll ( 1 • .'1 l' • I/! 

ln RJ creates a one-to-onl:' corrl:'spnnd{'ncp betweell Urd('h 
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in the original space and planes 

in the transformed space, as long as c 2: -(a2 + b2)/4, with A = -a/2, B = -bJ2 and 

}l2 _-= c-j (a 2+b2 )/4. Therefore, finding a separating plane in R3 gives a separating circle in R2 • 

If the pomts from the two sets 51 and S2 are assigned one per processor of the reconfigurable 

rnesh or th(' CREW PRAM, the mapping (x,y) -+ (x,y, a. 2 + y.!) takes constant time and 

the linear separability problem can be solved in O(n1
/

3 10g3 n) time on the reconfigurable 

mesh .wd in O(log3 n) time on the CREW PRAM, by reduction to linear programming. 

The separaLmg cirtle, If one exists, can therefore be found in O(n1
/

3 10g3 n) tlme on the 

rewnfigurable mesh and in O(logJ n) time on the CREy\' PRAIvL 

The cIrcular separabilJty problem generalizes into spherical separabzlzty III d dimensions, 

where a transformation From d 111to d + 1 dimensions creates a correspondence between 

sC'paratmg hyperspheres in d dimensions and separating hyperplanes in d + 1 dimensions, 

WItl! O( d) tane requlred to perform the transformation in parallel on the reconfigurable mesh 

Ther('fon·, applying the procedure for solving linear separabllity problems (see section 6.1) 

t.o th(' t.ransforrned points: the spherical separability problem lU d dimenslOns can be solved 

in O( TI t /2) tirne on the reconfigura ble mesh with the constant of proportionality exponential 

in d and 1Il O(logd+l n) time OIl the CREy\' PRAM. It should be noted, t.hat the spherical 

s(,pclrability problem being dlscussed, as defined in [O'R85], 1S different from the problem 

(If finding splwflcal separation, as defined in [Dob80]. The later problem is a verSlOn of the 

lillear sepcHabtlity problems, which requires finding a separating hyperplane between two 

sets of points, wlth the pOints restncted to lying on the unit hypersphere. 

O'l{ourke and Rao Kosara.lu [O'R85] have shown that the circular separability problem, 

'N~\lch has apphcallOns in pattern recognition and image p, :-rpssing, can be applied to solving 

the dlgltcll disk recogl11tion problem 1l11inear tlme A dzgzial dzsk lS defined as a set of lattJce 

points (polIIts with integ('r courdinates) which are contamed inslde or on sorne clrcle. Given 

él se! .'1' pf pOInt s \\'Ith lfltegt'r coordmates, the dlgJtal dlSk recogl11t!oll problern rt'quires 

ch'lC'rrl11l1lllg if S fOrIlls a dIgital d1Sk [Kim84] Let 51 be the set of n points on the boundary 

t,f S' Let ''''2 be the set of points representmg aIl pixels exterior to S, but adjacent honzontally, 
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vertically or diagonally to a pomt in Sl' of which there are aL most. 871 The[(' t'xisls a (i:'r1t' 

which encloses Sl and excludes S2 if and only if S is a dlgit.al disk IO'HR51 Thu1', t.ht' 

digital disk problem can be solved in O(n 1
/

J log3 n) Lime on the l'enllifigurable 1I1('sh dllt! III 

O(log3 n) time on the CREW PRA~I. 

In parallel applications, the input to the digital disk recogn i t ion p]'(Ibl('1I\ Il!tly Il< l\ 1)(' 

represented as a set of points, but rather may consis!. of an nl/2 '" n
1

/
2 (hgtl.I/(·d 111\<lgC' 

distributed one per processor on a reconfigurable mesh of size 71, where pm( ('Sh111 1''1 « lJlLIlII~ 

the value of the pixel (~, J) The figure represented by the (ltgitt7.ed Image \t,IS <lt 11Itlst 11/ 1: 2 

boundary points, at most two in any row or column. Since the r('( onfigurable IIH'sh IR ni ~IZ(' 

n, a modified version of the !inear programming algorithm can solve thls probh>rtl (If SIZ(' 1/ I/! 

in O(10g3 n ) time. That a modified algorithm can be deslgneo, (éUJ (,dsily be v('ldit'd, !-.II\«(' 

the linear programming algorithm for the CREW PRAM, whlch l'UliS 111 O(log'7l) t.11I1(' 111 

3 dimensions, can be utilized here. Supposing that the memory I)f t.ht' PH,AM IS III<tpp(·d 

onto the processors in the first column of the reconfigurable Illesh, the r(,{(JIlfigllr,tbl(' blls 

and the remaining processors of the mesh provide for constant t.1flH' COlllllll1lll<dt.I()1l bdW('('1l 

the processors in the first column. For example, If PIn i~ requlred to ht'Ild a V,t!IH' LI) /')11, It. 

can send it to Pn in a row broadcast, then to PJ' in ct colurnn broadcclst. ,tlId fillililv t.(, /'JII III 

another row broadcast. Subdividing the commUlllcatlOn III tllls Wcty into thrt'(' st.!'ps t'IISUI('S 

that a large number of processors can communicate sllTlultaIlt'ol1s1y lIslng dlf>t.IIH t. SlI hbIIS!-.I·S 

on the mesh. Miller et al [Mil88bj state wlthout proof, that the smill!est (,ll( IoSllIg (Ir< II' of 

the points can be found in 0(1) time If ail the pIxels lnslde t.ht' srn,lllef>t t'IHloSIIIIl, (11(11' 

correspond to data points, then the smallest enclosing circle provldes il :;('para!.lflp; (Ir< 1(· alld 

the figure is a.n image of a digital dISk. 

6.3 The Euclidean one-center problem 

Megiddo [Meg83] presented a linear ttme algorithm for finding the TT/W/l1l/ur/ ~f1UTlTlIT/(1 1'11'11,·, 

which is the smallest clrclt' t'lldOf>lII,!!, n gl\'('fI pf/llIb III H2 ï III'> pl()hl('111 1" rlht. kll'tV.'11 ri". 

the Euclidean one-center prublt'IIJ ,l\It'gSal, wh('re tilt' td) p'( 1 1\'(' 1:' t'l filld <L P"IIJI /10, (1 III' 

center of the smallest encloslIlg clrcle), whl)~e gr('at('~t dlSt,UH (' tn ,my !,/Jilit {,f t Iii' ',('1 

50 



· 
"-

S _C: {PI, . ,Pn}, wlth Pl = (Xl'Yl)' is minimized. The point po can be characterized as 

however, by introducing a variable z, the following problem can be formulated 

mlnImlZe 
subject to 

z 
z 2 (x, - X)2 + (y, _ y)2 t = 1, ... ,no 

Because the constraints are quadratic, this is not a linear programming problem but the 

COllstraints can aIso be expressed as 

where Cl = x; + y;. Preparata and Shamos [Pre85] stated that since the surface repre­

sented by a set of constraints of this form lS a convex function, the method of eliminating 

<onstraint.s in the 3-dimensJOnallinear programmmg algorithm [Meg83] remains applicable. 

Indeed, while the speclfics of the two algorithms differ, the structure of Megiddo's algorithm 

for the minImum enclosmg circle problem is almost identical to hls 3-dimensional linear 

programming algonthm Assuming that the n pomts of the set Sare distributed one per 

pfoceSSOf of the reconfigurable mesh or the CREW PRAM, the minimum encloslllg circle 

('an be round III O(n 1 / 3 10g3 n) and O(log3 n ) time respectively. 

The method extends tü hlgher dImensions using the techniques of Megiddo [Meg84] with 

l>yer's lllultl-dimensJOnal search [Dye86] 1,0 find the smallest hypersphere enclosing n points 

III Ud 
III linear time sequentially, when dis fixed Therefore. the Euclidean one-center problem 

111 Ud (an be solved in O(n 1 / 2 )time on the reconfigurable mesh and in O(1ogd+l n) time on 

the CRE\V PRAl\1 

6.4 Finding the smallest separating circle 

~1cglddn 1 l'vleg83j showed that his methüd for solving linear programming problems can 

be ext.l'ilded ln apply lowards solnllg quadratl(, prograrnmlllg probIems III R3 , whlch re-

<juIn' llllllltl11ZIIIg d Cu!l\'t'X quadratlc fUllctlOll subJect to lmear constralllt&, lTl llllPar tJme 

O'ROUlkl' anol{(\n K,)saraJu [O'R85] haw shown that findmg the smallest Clrcle separatmg 

\wo seb of ~Hlillts 1I1 tht' plane, SI = {(xl,Y,) ~ E Id and S2 = {(x"y,) : t E I 2}, can 
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be expresses as a quadratic programming problem and hence, can bl' Sllh'('d \\'11 il ~kgl(hl\l':, 

technique. After mapping the points into R3 (see Section 5.2), the problelll tan bl' t'xprl'Hsl'd 

mllllmize 
subject to 
subject to 

The 3-dimenslOnallinear programming algorithm can be t'xiendt'd, dS dt'SCllbl'd b\, 1\1t-~l<ldo 

[Meg83] for the sequential algorithm, to solve problems of ihls L)rlll Hl O( 1/ llllilg 1 11 ) t Ill\(' \ >lI 

the reconfigurable mesh and in O(log3 n ) time on the CREW PRAf\\ [1' ,",'l. IS l'Illpt\', tlw; (d~<l 

gives an alternative procedure for finding the milllmum spallnmg <..m:lC' !O,\tS[l] (M'!' ht'I t loll 

5.2). 

Megiddo [Meg84] stated that the Imear programming algonthm III d dllllt'llSIOIIS (<lll 1)(' 

extended to give a linear time algorithm for the quadratlc progrMillIllng problt'lll TIll'n'f, If(" 

the smallest separating sphere can be found in O(n1 / 2 )tnn(' U!l Lhe l't'configurel!>I(· 1 lin;] 1 .Ille! 

in O(logd+1 n) time on the CREW PRAM as any of the f{'<jUII'C'd (hclllg('S t,,,k(' IIl1ly ()( ri) 

time in parallel. 

It has been shown that finding the larges!' separating circle l'equll es (-)( TL log n) t.1IJ}(, 

sequentially [O'R85J. 

6.5 Other applications 

Dyer [Dye86] developed a generalizt·d sequential algorithm 1.0 solve tht:' wezghed 1';tlrlldpcllI 

one-center problem whlch runs in linear time, with the constant. of pruportl()nfLlll.y :~(d 1 2f 

The algorithm is based on the techniques presented in [Dye84) and [MegH:3), and tll!' Illult 1-

dimensional search technique presented in [Dye86] 

It should be noted, that linear programming can be applied 1.0 sol vlrIg ot Iwr pr(Jhkrll~, 

many of which are discussed in [Dob80] 'l'el anoiher Illleresting applHclllnll, whl<h Tf'qlll('f'~ 

solving rnany linear programming problems wlth ff'lfLtlvely few (nTl!>trcllnt.~, (Ml !lP f"lllld III 

computing the dual of the d-dimensional VOWTlIJI diagrillll, il!> d('~{ rIlwrJ III [i\ \'lH:~1 
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Chapter 7 

Conclusions 

ThIS tbesls has demonstrated that the linear programming problem in Rd can be solved in 

parallel on the reconfigurable mesh architecture and on the CREW PRAM. The parallel 

algorithm presented for solving the linear programming problem was based on a sequential 

lechlllque due to MegIddo and Dyer [Meg83, Meg84, Dye84, Dye86] which demonstrated 

lltat IlIlear programming can be solved in lineal' tIme in the number of constraints when the 

<!JmensJOn is fixed. The parallel algorithm runs in O(log3 n ) time in R2 , in O(n1/
3 Iog3 n) 

time in /(J and in O(nl / 2 ) time III Rd on the reconfigurable mesh architecture. The simplified 

versIOn of the algofithm runs III O(1ogd n) time on the CREW PRAM. The constant of 

proportlOIlallty IS exponential in d. 

Thts thesis has also dcmonstrated that the selection problem can be solved on the re­

contigllrélble mesh 10 poly-loganthmlc time The parallel selection algorithm presented was 

ucl.sed on a seqllentlal algonthm due tü Munro and Paterson [Mun80J designed to select from 

a file when onl)' a limIted amount of internaI storage is available for computation. The 

parallel algorithm funs in O(log3 n) bme, however a splItter can be obtained after only one 

it.'I',tl.IO!1 of tht' algorithm, that is after 0(1og2n) steps 

Whetht'r 1 he rUIlnmg limes achieved by any of the parallel algorithms presented are 

oplllIlctl rt'/I'ains clll open questIOn It IS clear, however, that the speedup achieved by the 

parallt'I cllgunt hm, which IS defined as the rdtio of the worst-case running tmle of the best 

s('(j'Jt'nl lel! (d~nfl thlll knnv\:n tll the wnrst-case runnmg t.inw l,f the parallel algurithl1l [AkI85], 

I~ IlOIl-Opt.lllhd \\'11rn soh'ing cl problrm usmg n processorf> III paraUeI, as WdS done, the 

llpti\ll,tl Spt't'dup 18 of O( n). Howe\'er, eyen in the case of the selectIOn algonthm, which 
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forms a part of the linear programming algorithm, a non-optimal spcedllp of 0lll / h)g 11/) 

was achieved. Although it is rarely possible to achieve optllllai spl'eclllp, t'RIl('Clctlly wlH'1l 

designing algorithms for architectures based on the distributed lllt'lllnr:. ll1\ldel, ill wllldlll\(' 

structure of the paralld architecture limits the fiow of data, it Il'llhllllS 10 1)(' .... l't'Il wlll'lll<'1 

faster algorithms can be obtained for the two problems addr('s~('d 11\ 1 111~ 1 l)(,sl~ 

A number of possibilities eXIst for attemptlllg to impnH't' the l'flicH'll( \' "f t.hl' ,"~. 'nt 11111:' 

presented. Since the selection algorithm VH"WS the recontigurclble nlt'sh d~ ,\ IllIl'cll ,III cl\, 

of processors with a reconfigurahle bus (a one-dImensional t'qlll\'cllent ni 1 Il( J('wldiglll "hll' 

mesh), it is possible that a faster algorithm can he obtalOed by bet.t.l'r l'xpl, 1\ t IIIg 1 he I\\('sh 

connections. This would have an ImmedIate efft'ct of reducllIg the IIIIIIlIllg 11111l' IIf tll!' 

linear programming algorithm in 2 and ~~ dImenSIOns, but not the gCIlt'r,t! rl-dIIIIl'l11>llIll.d <1111' 

The running time of the d-dimenslOnal algorithm is limited bv the 0(71 1/2
) t Ill\(' Il, L\b's ICI 

pair hyperplanes and so only a radically chfferent approc\.ch LI) the 1IlIlItl·dll1WI\:-.IClllct! SI',l1( h 

technique employed in the d-dimensional algonthm could rt'sult 1fl an IlTlproVt'lI\l'1I1, 

Akl [AkI85] defines efficiency as the ratio of the wor~t (dS(' rUIlIllllg tlllll' of tht' f.l:-'!.t'S1 

known sequential algorithm for the problem to the cost of the parallel .t!gflrtt.hIrl, will< II 1:-' 

the product of the runnmg time of the parallel algonthlll and t.he lIumber ,,1 PIl'«'S1>CJ':-- 111>f'c1 

The efficiency achieved by the Imear programrnmg algonthrn rUlIlllllg 4111 the' CH EW J> 1< A M 

model is O(nj(n logd n)) It can be Improved by a factor of O(log 11) If [('weI t.hcUi 1/ PII)( (,1>S(:I~ 

are used. For example, m 2 dimensions, if each processor is ImLlall\' asslgllt'd lug TI (1II1St.'(lllll~, 

the linear programmmg problem can be solved in the same Ollog2 n) tllllf', bill. wlth l'fhl 1f'f1()' 

of O(nj(nlog n)), since it 15 known that the max, the parallel prt'fix éLIId ft C,pItU('1 (ail l'cI( h 

he computed m O(logn) time usmg ni log n processors on the CREW Pl{J\M IV,"?:), \'.tclHII, 

Bre74]. 

The assumption that the nurnber of avatlable protessors (ail 1)(' ('qual 1,1) 1/, t!w "'I~(' flf 

the problem, is not a realistic one It IS possihle, that il dlffprpnt ,dg'lfIthfll (fllllcl 1)1' iIIlIV/'r! 

at by reducing the number of proce&f,I)rs requlrt'd, v,hpfl' t.11f' ~'''1JI1''1l 1111]1' f"r Ihl pr"I,I"111 

would depend on the numbt'ruf prl)ces~(.r~ c\\cldélbk SII(l! .l!! cllv",rltlllll<.,II"ldd ,1111 'llJlI 1., 

improve the efficiency wlthout increasmg the rUIlIllng 1.1111(' 'l'lm, hllvo,('v('r, V.fllllri '1 !jll"" ,lfl 

enhanced model of the reconflgurable mesh archItecture, when' (,iH .. h pr')(f·~~"r (1.llld ~1"II' 
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large arnounts of data. It should be noted, that in order to obtain an optirnally efficient 

parallcl algorithm, an alternate selection algorithm would be required, as the sequential 

version of the current algonthm does not run in 0( n) time 

The parall",1 li near programming algorithm presented in this thesis has achieved a sub­

stantial IlTlprOVf>lTlent m runnmg time over what can be accompli shed sequentially. The 

paralld algorithm rnakes use of a selection algorithm, also presented in this thesis, which 

achicvcs a poly-Iogarithmic running time on the reconfigurable mesh. It has been shown that 

éL number of problems can be solved by employing the parallellinear programming algorithm, 

mcl udmg lmear separability, circular separability and digital disk and that the technique can 

be extended to solve quadratic programming problems. 
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