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Abstract

This thesis presents a new parallel algorithm for solving the linear programming problem
in ¢ for the reconfigurable mesh architecture and for the CREW PRAM model. The
algorithm 1s based on the sequential technique discovered independently by Megiddo [Meg83,
Meg84| and by Dyer [Dye84, Dye86], which gives a linear time algorithm, in n, the number
of constraints, to solve the linear programmang problem in d variables, when d is fixed. The
parallel algorithm runs in O(log®n) time in R?, O(n'/?log®n) time in R® and in O(n'/?)
time mn R? on the reconfigurable mesh of size n A simplified version of the same algorithm
runs in O(log?n) time on the CREW PRAM The o(n'/?) running times achieved by the
parallel linear programming algorithm in R? and R? are due to a novel selection algorithm,
which 1s also presented 1n this thesis The selection algorithm runs in O(log®n) time on the
reconfigurable mesh. As is the case with the sequential technique, it will be shown that the
parallel technique can be applied towards solving other problems such as linear separability,
circular separability, digital disk and the Euclidean one-center proble.a, and can be extended

to solve quadratic programming problems, in particular finding the smallest circle separating

two sets of points.




Résumé

Cette these présente un nouvel algorithme permettant de resoudre le probleme de e
grammation linéaire en R? sur une architecture & maille reconfigurable et pour le tmwd-le
CREW PRAM. L’algorithme est basé sur la technique séquentielle découverte par Memddo
[Meg83, Meg84] et Dyer [Dye84, Dye86]. Cette technique permet de résondre e probleme de
programmation linéaire & d variables, ou d est fixe, et ce en un temps hineaire par rapport
au nombre n de contrzintes. L’algorithme paralléle s’exécute en un temps Oglog'n) en 12,
O(n'log®n) en R® et O(n'/?) en R* sur une maille reconfigurable te taille n Une version
simplifiée du méme algorithme s’exécute en temps O(log? n) sur une CREW PRAM Les
temps d’exécution de compléxité o(n!/?) de P’algorithme de programmation hinéane parallele
sont réalisés grace a un nouvel algorithme de sélection présenté dans cette these  Cel al
gorithme s’exécute en temps O(log®n) sur une maille reconfigurable Tout comme pour la
technique séquentielle, il sera montré que la technique parallele peut etre apphquée a d'autres
problémes, tels que la séparabilité linéaire, le cercle englobant minimal, le disque numérique,

la programmation quadratique et e probleme euclidien & un centre.
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Chapter 1

Introduction

The linear programming problem 1s that of mimimizing (or maximizing) a linear function
subject to a finite number of linear constraints, where the linear constraints are either lin-
car equations or linear inequalities [Chv83] Many problems in production management,
economics, network analysis and computational geometry can be formulated as linear pro-
granmmng problems The classical sequential approach for solving a linear programming
problem 1s the Simplex method [Dan63], which unfortunately has been shown to have an
exponential worst case running time [Kle72], but nonetheless provides an excellent approach
for most praclical cases Recently, a new sequential hnear programming algorithm was de-
veloped with running time Linear i the number of constraints when the dimension is fixed
[Meg83, Dve8l, Meg8l, Dye8t)

The desire to further reduce the running time for solving problems, such as the linear
programming problem, bevond what can be achieved by sequential algorithrms running on
single processor architectures, has generated great interest in parallel algorithms which can
exploit the advantages of multi-processor architectures The difficulty in developing parallel
algorithims 1s to efliciently perform computation in parallel while successfully avoiding the
problem of resource contention Two general models of parallel computation are usually
considered when designing parallel algonthms, one in which the processors share a common
memory and one in which the memory is distributed among the processors [Pre79]

The concurrent read exclusive write parallel random access machime (CREW PRAM)
1s an example of the shared memory model  All processors can simultaneously access the

memory as long as no two attempt to write to the same memory location simultaneously




This provides for an essentially unconstrained exchange of data Letween processors  n
contrast, the reconfigurable mesh 1s an example of the distributed memory model  The
processors are interconnected i a network. with each processor having a retatively simall
(constant size) local memory Not all processors can communicate directhv thus constraien,
the flow of data and increasing the running tmme of many algouthms It should be oo
that the reconfigurable mesh is a practical example that 1s well suited to current techy o,
whereas the CREW PRAM 15 an 1dealized example which remiams technologicatly imp <10 4
to implement |Pre79]

This thesis proposes a new parallel algorithm which will allow an 2 constramt Linear
programming problem 1n 2, 3 and d dimensions to be solved m O(log'ny, O(n® "oyt
and ()(nl/z) time respectively on a reconfigurable mesh of size n, with the constant of
proportionality growing exponentially with dimension The algonthm makes use of a novel
selection algorithm, also presented 1n this thesis, which realizes an Olog!n) runnmg e
It is assumed that data put on the reconfigurable bus 1s bioadcast in unit time A sunplhihied
version of the parallel inear programming algorithm will also be shown to run 1w O(log® n)
time on the CREW PRAM

Recently, a number of algorithms have been proposed for solving the hnear programrmug
problem in parallel, all for a concurrent read concurrent write PRAM (CRCW PRAM)
[Den90, Vai90, Alo90] In addition, there has been a lot of work on parallel solutions to
problems related to linear programming such as the convex hull problem, that can lead toq
parallel solution to the linear programming problem |Agg88, Dad87, Ata86, M1I&8¢, Deh88]
If the linear programming problem 1s transforimed into the dual <pace, a parallel solution may
be found using parallel algorithms for computing convex hull {Dob80, Iide871 Chiven a hinear
programming problem with n constraints in d dinensions, each constramt corresponds 1o«
d-dimensional point 1n the dual space It suffices to compute the conves hull of the resulting
points and test each convex hull ponnt for optimabty  Unfortunately, there are as vet no
parallel solutions for the convex hull problem in dimensions Ingher than thiee  whereas the
parallel linear programming algor-thm proposed i this thesis works ind dine naons o

selection problem has received considerably more attention and a nnber of paratlelsoin o,

are available for the mesh and the CREW PRAM [Tho77, Sto83, Pra&7, Plag89y, (188 {l

[RV)
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parallel selection algorithm, proposed in this thesis, is believed to be the first such algorithm
o achieve polylogarithmic running time on any mesh architecture

The thesis 1s organized 1nto six chapters following this introductory chapter. Chapter 2
begins with a discussion of mesh architectures before presenting the reconfigurable mesh.
The algonthms for computing the maximum and the parallel prefix operations are described
nest, and the chapter ends with a review of the CREW PRAM model Chapter 3 presents
the parallel selection algorithm on the reconfigurable mesh Chapter 4 gives a review of the
sequential hinear programming algorithms 1n 2 and d dimensions including a discussion of
the multi-dimensional search technique Chapter 5 presents the parallel linear programming
algorithms on the reconfigurable mesh 1n 2 and d dimensions with a special case when d = 3,
and a simphfied version on the CREW PRAM Chapter 6 discusses applications of the par-
allel algorithm in solving other problems including inear separability, circular separability,
digital disk, ISuchdean one-center problem and quadratic programming. Chapter 7 conciudes

this thesis




Chapter 2

The reconfigurable mesh architecture

and the CREW PRAM model

This chapter gives an introduciion io the basic characteristics of mesh architectures and
presents a detailed description of the reconfigurable mesh architecture Aigonthms for two
abstract data movement operations, maximum and parallel prefix are described, n order

to provide an introduction to designing algorithms for this architecture  Lastly, a brief

presentation of the CREW PRAM model 1s given

2.1 Basic characteristics of mesh architectures

A mesh [Tho77], a mesh with row and column buses [Pra87] and the reconfigurable mesh
[Mil88a] are all interconnection networks with processing elements (P15’s) artanged on a
two-dimensional grid Their PE’s have similar computational capabilities and the ability to
exchange data with their neighbours through local communication links The N processors
of a mesh of size N are placed at the intersections of a two-dimensional square grid of size
NY2 x N'/2, Each processor is connected to its four neighbours (1f they exist) through unit
time communication links. The cominunication diameter [Mil88c], defined as the mazimum
of the minimum distance (number of communication links) between any two processors in
the network, 1s of O(N'/2) This can be seen by computing the distance between processors
in opposite corners of the mesh, which 15 2(N'/2 - 1) Thus, for any problem lor windh a
processor in one corner of the mesh requires data from a processor in the opposite corner,

lower bound on the running time is Q( N1/?)

d N
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The above observation can be used to show that many problems require 2( N*/?) time
to be solved on the mesh. In particular consider finding the maximum of a set S = {a,},
v=1,. ,n, (n < N) Let the n values be distributed in no particular order, one value per
processor, and suppose that the answer (the maximum of the n values) is to arrive at the top
left-most processor of the mesh. If the distribution of the data were such that the maximum
value amee = max{a,, ¢+ = 1,...,n} was originally at the bottom right-mest processor, then
it must have traveled for ( N1/2) time in order to arrive at its destination processor. Since
this argument applies for any choice of destination processor, in the worst case finding the
maximum will take Q(N'/2) time.

The above reasoning cannot be applied when additional communication channels, in the
form of buses, are added to the mesh. They allow a piece of data to be sent over a long
distance much faster than using local neighbour-to-neighbour connections. Such channels
may be in the form of row and column buses [Pra87|, that is all processors in each row, and
similarly in each column, are connected to a bus. One piece of data can be put on the bus
and read by any of the processors connected to that bus. If it is assumed that this takes
unit time, then a value can be exchanged between any two processors in at most two time
units, by using one row and one column broadcast The time required to find the maximum
is reduced to ©(n'/®) as shown 1n [Pra87]

Even though the communication diameter, when row and column buses are present,
may no longer be the limiting factor for problems such as finding the maximum, another
difficulty arises. M any algorithms designed for parallel models of computation are based on
the divide-and-conquer technique [Aho83] where the original problem is subdivided into a
number of subproblems of smaller size, each of which is solved recursively and their solutions
are combined to give solution of the original problem. Examples of this technique applied in
parallel compntation include the algorithm to find the maximum by Miller et al [Mil88a] or
the algorithm to compute the convex hull of an ordered set of points on the reconfigurable
mesh due to ElGindy [EIG90] For such algorithms it 1s desirable that the available resources
can be subdivided so that recursion can be applied consistently However in the case of row
and column buses, there 15 always the same number of them available (2N'/?) to be shared

independently of the number of subproblems created.




2.2 The reconfigurable mesh architecture

The reconfigurable mesh architecture [M1l88a] combines the advantages of the mesh with the
power and flexibility of a dynamically reconfigurable bus structure A reconfigurable mesh
of size N consists of a two-dimensional array of N processors arranged on a N'/2 .« V!
rectilinear grid, overlaid by a reconfigurable broadcast bus of the same shape (Figuie

Each processor has a fixed number of registers with O(log N) bits each, on which 1t can per

form standard arithmetic and logic operations, where it is assumed that each such Gperation
takes O(1)time Each processor P,, has stored in its registers 1ts row and column mdeges
1 and 7, with 2,y € [0,...,N1/2 — 1{, where for simplicity 1t 1s assumed that N 4% for
some positive integer k. Each processor is connected by local links to its neighbours 1, 1s
connected to P41, if they exist, with ¢,7 € [0,.. , N¥/2 — 1|, and can send and receive

data through these links.

Processor

o Switch

— Reconfigurable Bus

Figure 2.1: The reconfigurable mesh architecture

In addition to being indexed by row and column numbers, processors can also be indexed
by a chosen ordering scheme which represents a one-to-one mapping from {0,1, . ,N'/?
1} x {0,1,...,N"? — 1} onto {0,1, ,N — 1} [Tho?77, Mil88¢' Some common ordering
schemes are illustrated in Figure 22 The row-major ordering 15 obtained by mumbenng
processors in each row left to right beginning with row 0 and ending with row N!/?

1. This is equivalent to the mapping k = ;) + 1NV?, where ¢ is the row number and ;
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0 1 2 3 0 1 4 5
4 5 6 7 2 3 6 7
8 9 |10 |11 8 9 |12 ]13
12 |13 {14 | 15 10 {11 | 14 | 15
Row-major Shuffled
0 1 2 3 0 1 14 | 15
7 6 5 4 3 2 |13 112
8 9 |10 | 11 4 7 8 |11
15 |14 {13 | 12 5 6 9 110
Snake-like Proximity

Figure 2.2: Indexing schemes for the processors of a mesh [Mil88c].

is the coluinn number of a given processor. The shuffled row-major ordering is obtained
by shuffling the binary representation of the row-major index, that is “abcdefgh” becomes
“aebfcgdh”. This ordering has the property that the first N/4 processors form the first
quadrant, the second N/4 processors form the second quadrant and so on, with this property
holding recursively in each quadrant. The snake-like ordering is a variation of the row major
ordering obtained by reversing the ordering in the odd rows. This gives the property that
processors with consecutive indices are adjacent on the mesh, as in Figure 2.2. The prozimity
ordering combines the properties of the shuffled row-major and the snake-like orderings. The
proximuty index of a processor can be computed in O(log n) time by that processor based on
its row and column indices.

The snake-hike ordering will be used throughout this thesis. Each processor can easily
compute 1ts snake-like ordering index from 1ts row and column indices and vice versa, but it
1s convenient to have both stored and available. Therefore, each processor of the mesh will
contain a register initialized to represent its index in the the snake-like ordering.

Sach processor is also connected to the broadcast bus throveh four locally controllable




Processor

T
|[RRR .

Figure 2.3: Connection of a processor to the reconfigurable bus through switches

switches (three for boundary and two for corner processors), as shown in Figure 2.3 EFach
processor can dynamically set its switches. Any of the switches may be on or off, reahzing
four-, three-, two-, one-way or no connections to the reconfigurable bus It is not possible,
however, to simultaneously realize two connections between two pairs of switches By con
trolling the switches, the bus can be subdivided into independent connected components

called subbuses. All processors connected to a subbus, or the whole bus, can siinultaneously

Mil88a]

read a data value from it, but only one processor can write to a subbus at a time

where 1l

This is more restrictive than the model in [Mil88¢c| but 15 consistent with [M1188a
is also shown that this model of the reconfigurable mesh with exclusive write can simulate,
without loss in time, a bus system where multiple identical values may be broadcast simulta-
neously on the bus or subbus. This is accomplished through a bus-splitting techmque, which
will be described in the next section

The processors of the reconfigurable mesh operate synchronously in single mstruction
multiple data (SIMD) mode That is, at each time unit all processors perform the same
instruction, but each takes as operands the particular data stored in its registers Bach PE

can perform a number of different primitive operations in umt time
e carry-out arithmetic and logic operations on the contents of its registers,
e send or receive data from its neighbours through local communication links,
e set any of its four switches,
e send or receive data from the bus.

It is assumed, as in [Mil88a], that under the unit time delay model the data put on the

reconfigurable bus reaches all processors in constant time

8
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Figure 2.4. A variety of bus configurations.

'The distinguishing characteristic of the reconfigurable mesh 1s the ability to dynamically
obtain substructures consisting of groups of processors connected to an independent subbus.
Fach such substructure can function independently and has the same characteristics as the
reconfigurable mesh (except possibly for its size and shape). For example, all the switches
can be connected so that one global bus exists with all processors connected to it. Then
any processor can broadcast a value to all others in one step By connecting all column
switches and disconnecting all row switches another configuration may be obtained with
O(N?*/?) colurnn buses Such buses can be used similarly to static column buses, but have
the advantage in that they can be subdivided (also recursively) to give for example N'/2,
N'Y4 ~ NY% ,.ze meshes with column buses This, of course, cannot be done with the
mesh with row and column buses architecture as only a fixed N'/2 buses exist there. Other

dynamic configurations can be obtained, a few of which are illustrated in Figure 2.4.

By subdividing the bus, a large number of subbuses of some intermediate length or
diameter can be created. For example, in creating N'/2 groups of N'/4 x N'/* processors
with column buses, as in Figure 2.4, N3/% = N1/2 x N1/4 column buses were created, each
of length N'/* Since each bus can broadcast one piece of data in unit time, as many as
N3% values can move simultaneously over a distance of N/4 each. In general, as much data
can be moved as there exist distinct subbuses, but the more subbuses that exist, the shorter
they ar=.

Tue above observation was essential to developing the selection algorithm of section 3.2
and the parallel linear programming algorithm described in chapter 5. It also leads to an

understanding of the imitations of the reconfigurable mesh architecture in solving problems




which require extensive data movement, such as sorting Suppose there are n values dis-
tributed one per processor on the reconfigurable mesh of size n, which must be arranged
ascending order in the processors. Imagine cutting the mesh across on a diagonal, which
gives a cut the length of the diameter of the mesh. In the woist case the 12/2 smallest valies
will be located in processors below the cut, but in order to solve the problem they must
be moved to the processors above the cut {analogously for descending order) If the paths
crossing the cut through which the n/2 values must pass in order to reach thenr destination
processors are counted, it can be seen that there are 2(n!/2 - 1) mesh links plus the same
number of bus links crossing the cut for a total of O(n!/?) This is because no matter how the
bus is subdivided, the number of crossings at any given cut remains constant Smce as ma v
as O(n) values may have to cross and since one value may travel at a time through any hnk,
it must take Q(n'/?) time for the O(n) values to cross. It will therefore take Q(n'/%) tune,
in the worst case, to sort n values on a reconfigurable mesh of size n This tune 15 1n fact
optimal since the Odd-Even Merge Sort for the mesh architecture |Tho77| can be used to
sort on the reconfigurable mesh in ©(n!/?) time Thus, for some problems, especially those
which require extensive data movement, the same asymptotic running time 1s required on
the reconfigurable mesh as on a mesh with no buses It will be shown that better worst-case

running times may be achieved for “easier” problems on the reconfigurable mesh

2.3 Data movement operations on the reconfigurable
mesh

Abstract data movement operations are commonly used by many parallel algorithms and will
be used extensively in the parallel linear programming algorithm Twao such operations, the
max and the parallel prefix, are presented in detail as they appear in [M1l88a, Mil88h], where
it is shown that they can be computaed in O(loglog n) and O(log n) time respectively, for any
set of data with at most n elements on a reconfigurable mesh of size n T he algorithms for
these operations are adapted from similar, less complex algorithms for the PRAN model
The random access read and write operations, also used 1n the parallel hincar programnung

algorithm, will not be presented here, but are described 1n [Mil88a]

10
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2.3.1 The max operation

In {Mil88a|, an algorithm for the max operation is presented, which computes the maximum
of a set of n or fewer values on a reconfigurable mesh of size n. The algorithm is based
on a technique called bus-sphtting, which can be used to compute the maximum of n1/2 or
fewer values, using a reconfigurable mesh of size n in O(1)time. This section will describe
the algorithm for the max operation including the bus-splitting technique and reviews the
analysis of its running time

The procedure for computing the maximum of n'/2 or fewer values on a reconfigurable
mesh of size n is as follows Let the n!/? or fewer data values be distributed in the tth row of
the reconfigurable mesh, with the value in processor P, , called z,. The values are distributed
one per processor I there are fewer than n'/2 values, some P, , will store —~oo The first step
is to obtain all pairs of data values, with the pair z, and z, stored in P,,. To do this, first
form column buses and broadcast z, to all processors 1n column 3, for all columns in parallel.
Then form row buses and broadcast z, from P,, to all processors in the i1th row, for all rows
in parallel Now, all processors can simultaneously perform the companson z, > z, and
store its result (0 if true and 1 otherwise). The column index (or indices if multiple maxima)
of the column in which all comparisons resulted in a 0 corresponds to the maximum value
of the data Since only one processor can broadcast to the bus at a time, the bus is divided
into column buses and then each column bus is split into segments by having any processor
containing a | disconnect its switch to the processor below Then each processor containing
a 1 will broadcast 1 on its subbus and the 1 "ocessor in the top row will read the top-most 1 in
its column, if it exists. Next a row bus is formed in the top row, and this bus is subsequently
split into segments by having each processor containing a 0 disconnect the switch to its right.
These processors now broadcast their index and Py can read the index k of the left-most
occurrence of the maximum Now a global bus can be formed, and the maximum value can
be broadeast from Py, to all processors

Since all of the above steps take constant time and since any subbus has only one value
broadcast on it at a time, as required by the model, the above procedure can find the
maximum of n'/? values distributed 1n one row of the reconfigurable mesh in O(1) time.

lncorporating the above procedure into an algorithm for the max operation leads to the

11




following O(loglogn) time algorithm on the reconfigurable mesh [MNil&8a]. Assume there ate
n or fewer values distributed one per processor on a reconfigurable mesh of size n Since
maximum is an assoclative operation, the n values can be grouped into smaller sets, the
max operation can be applied to these sets and then the maximun of the group maxima
can be computed to give the final result Applying this idea recursively gives the following

algorithm.

e Divide the mesh together with the bus into n!/2 groups of n!'/* x n!/* size Each yroup

contains at most n!/2? values.

e Compute the max of each group recursively.

2

e Arrange the resulting n'/?> numbers ir. the top row of the mesh using subbuses and

apply the algorithm to compute the max of (at most) n!/? values with n processors

The running time t(n) of this algorithm can be expressed by the following recurrence

relation

{ t(n) = t(n'/?) + O(1)
1(1) = O(1)

which, when expanded, gives t(n) = O(log log n).

The algorithm takes advantage of the ability to subdivide the bus, which results in a vast
improvement in running time over what is possible on other types of meshes In fact, itis even
better than the algorithm for CREW PRAM and attains the lower bound of Q(loglogn),
when the number of processors 1s equal to the size of the uata set for any multi-processor
computer with binary comparisons as the primitive operation [Val75]

The analysis makes it clear, that efficiency is lost when the number of available processors
is strictly greater than the size of the set on which the maximum s being computed  Of course
it is always desirable to have these equal, but this may not be possible when computing the
maximum is part of an algorithm which at each stage eliminates some arbitranly distribited
subset of the data In this case, both the size of the remaining problem and the distnibution

among the processors of the remaining data are imtially unknown

12
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2.3.2 The parallel prefix operation

Another important and useful operation which will be employed in the linear programming
algorithm is parallel prefix 1t can be used to sum values, broadcast data or count and number
active processors. Miller et al [Mil88a] describe in detail how to compute this operation on
the reconfigurable mesh with processors in row-major ordering in optimal O(logn) time.
Then algorithmm will now be presented with a slight modification in order that it comply
with the snake-like indexing scheme adopted in this thesis

Assume the n values of aset S = {a,} are distributed one per processor on a reconfigurable
mesh of size n, with processor P, containing a, (0 < 2 < n — 1) and a unit time binary
associative operation At the end, each processor P, will contain ay - @; . - - a,. The
idea of the algorithm is to compute a partial parallel prefix in each row of the mesh, then
compute the row-wise prefix solutions from the partial values available in the last processor
of each row, 1n the snake-like ordering, and lastly updating the row entries with the row-wise

prefix of the previous row The algorithm is as follows:
o Fori=1 to log,n!/?

- For all rows in parallel, form disjoint row subbuses of length 2*, thus grouping
consecutive processors with each group starting at [-2*, <l =0, .., 13-‘135“;-1-/—2 - 1).
Let the processors in each group of size k = 2' be FPy,...,Pr_y. Let Py, (in
each group) broadcast its value on its subbus and all processors P, k/2 < 3 <k

perform a; «- a, ay,.

Now, each processor will store the prefix restricted to its row, in particular, the last processor

in each row will hold the “total” prefix of its row

o Perform the above procedure on the values in the last processor in each row. Because of
the snake-like ordering, the last processor of a row is not adjacent to the last processor
of the following row Using row buser, copy, for all odd columns, the value from the
last processor to the first processor in that row Now all row prefixes are located in
the last column of the mesh and by performing the same procedure as in the first step,

but only on this one column (not all rows), the row-wise prefixes are computed.

13




e It remains to update all entries in each row with the row-wise prefix of the previous 1ow
Again, using row buses, the right-most processor in each row will broadcast the row-
wise prefix of the previous row, obtained from the processor above 1t All processors in
each row will then update their value, with the one being broadcast, to give the hnal

prefix.

The first and second steps of this procedure take O(logn) time each and the last step
takes O(1) time for a total of O(logn) running time for the parallel prefix operation on the

reconfigurable mesh.

2.4 The CREW PRAM model

Ualike the reconfigurable mesh interconnection network, the CREW PRAM (concurrent
read, exclusive write parallel random access machine) 1s an ideal:ized model of computation
It consist of a large number of processors connected to a common memory Any number
of processors can read or write to any of the memory locations in umt time but no two
processors may write to the same location simultaneously Because processors can effectively
communicate through storing and accessing information 1n memory locations and sice many
such exchanges can occur simultaneously, the problem of limited availability of paths between
processors common to most interconnection networks does not arise in the CREW PRAM
model.

The MAX and parallel prefix data movement operations are of interest as they will be used
in the linear programming algorithm. Given n data values, they can be computed 1 Olog )
time using n processors [Val75, Lad80] It is surprising to see that a faster, O(loglogn)
algorithm exists for computing the maximum on the reconfigurable mesh, due to the bus
splitting technique which allows the max of n'/? values to he computed m constant tune
This is similar to the arguments given in [Coo082], namely, that processors can communicate
information not only by writing values, but also by not writing  Furthermare, the sphitting of
the bus allows large groups of processors to comimunicate i this fashion In ths respedt | the

capabilities of the reconfigurable mesh are sumilar to those of the companson model of Valiant

[Val75], except of course for the hmited number of interconnections between processors
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Chapter 3

The selection algorithm

Many existing parallel algorithme are based on the divide-and-conquer approach where a
problem 1s subdivided 1nto smaller size subproblems, each of which 1s then solved separately.
In order to subdivide the problem, it is often required to subdivide the data set S = {a,}
in such a way that one subproblem will have all the data values less than ax and the other
one values greater than ag, where ay 1s itself a chosen data value, the kth smallest one in the
set S Although the linear programming algorithm is not based on the divide-and-conquer
paradigm, but rather on a prune-and-search approach, 1t relies on a subdivision of data
similar to the one described above, which requires finding ax for a chosen value of &

In this chapter an algorithm is presented, with O(log®n) running time, for solving the
selection problem on the reconfigurable mesh architecture. It 1s also shown that a splitter can
be obtained on the reconfigurable mesh after only one iteration of the selection algorithm,

that 15 1n O(log? n) time Finally, selection on the CREW PRAM 1s discussed.

3.1 The selection problem

I'inding the kth smallest element of an ordered set S of n elements, where the order is not
known, is called the selection problem When k = | Z|, the kth element is called the median.
One way of finding the kth smallest element is to compute the ranks of all elements and pick
the kth element This can be accomplished 1n ©(n!/?) time on a mesh with no broadcasting
buses with a sorting algorithm such as the Odd-Even Merge Sort described in [Tho77]. When
only one processor 1s available, sorting requires @(nlogn) time, but the selection problem

can be solved in @(n) time with an algorithm by Blum et al [Blu72]. An algorithm, based
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on [Blu72], exists for the selection problem which runs in © ((n log n)l’/‘) tune on a mesh
with a single broadcast bus [Sto83]. This is reduced even further on a mesh with multiple
broadcasting, where an algorithm 15 available which runs 1n O (n‘ “logn)? ‘) [Pra87] I
the reconfigurable mesh, an algorithm can be implemented, based on the ideas i [Bluy,

which runs 1n O(n®) time, where ¢ 1s a chosen constant, such that (. The tunning

1
2
time of this algorithm is bounded below by the number of recursive calls made throughou
its execution Since two consecutive recursive calls are required at cach level of recursion,

this algorithm would not result in a polyloganthianic running time
Another sequential method due to Munro and Paterson [Mun80] w.ll be shown in the
next section to lead to a parallel algonithm with running time O(log’n) Their method,
designed to select from a file stored on a read-only tape with hunmted amount of internal
storage @) available for computation, runs 1n O (n (ﬁ% + l)) time  T'wo values a,, and a,
are chosen from S = {a,} to form a fiter —- an interval which 1s known to contain the Ath
element. Imtially a, and a, are the mimmmum and maximum elements of 5 respectively On
each pass, elements within this interval are used to form a sample from which new values
for a “narrower” filter, containing fewer elements, will be chosen A sample 1s constoucted
recursively from a population—the remaining active values (those within the filters)  Fora
fixed s, an s-sample at level 2 1s a sorted set of s elements chosen from a population of 2!
elements. At level 0 (the bottom) 1t 1s just the whole population (52" elements) i sorted
order An s-sample at level 2 + 1 is formed by taking two samples at level 7, each from half
of the population s2'*! The level 2 samples are thinned by removing every second element
of each sample with the remaiming elements merged to form the 2 § | level sample At any
iteration of the algorithm, a sample at level r 1s taken with the relationship n’ -+ $27 so that
all remaining n' elements are in the population From this sample a new filter 15 chosen with
k

a, being the [7=] — r smallest element 1n the sample and a, beng the

5r stnellest one It

T

is shown in [Mun80| that at most (2r 1)27 candidates remaim between the new filters,
Frederickson [Fre83) adapted this sequential algonithm to give parallel algorithims for the

ring, the mesh and the complete binary tree, with a modified samphng techinque i orde

to reduce the number of messages passed between processors on lower levels of recursion

These run in O(n), O(n'/?)and O(log® n) times respectively
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3.2 The selection algorithm on the reconfigurable
mesh

It will now be shown that the original, sequential technique by Munro and Paterson [Mun80]
can lead to a selection algorithm for the reconfigurable mesh architecture with O(log®n)
running time Given a set S of n or fewer clements, the objective 1s to find the kth smallest
one The elements are distributed 1n no particular order, one per processor of a reconfig-
urable mesh of size n Call the processors holding an elemert “active” and the empty ones

“lnactive”  As elements are eliminated as possible candidates for the kth element, more

processors beceme 1nactive By connecting the bus switches to previous and next processors

in the snake-like ordering, the inactive processors can serve as constant time communication
hridges between consecutive but not. adjacent active processors. This eliminates the need to
compress the data after each i1teravion It also allows the reconfigurable mesh to be viewed
as a linear array of processor where any active processor can communicate with the previ-
ous and the next active processors in constant time, as if the active elements were always
compressed

The algonithm will proceed, executing the following steps, until only a constant number
of candidates remain and the problem can be solved directly.

Procedure Select(n, k, 5)

Step I Number the active processors by performing parallel prefix operation as addition
with active processors holding a 1 and 1nactive ones a 0. Form communication bridges
between non-adjacent active processors

Step 2 Compute the sample by calling the procedure Sample(4logn, n, S).

Step 3 Choose the new filter values and broadcast them to all processors. Perform parallel
prefix again with values less than a, holding a | to compute [, the number of elements
smaller than a,, which will no longer be active Mark as inactive all elements outside
the new tilters  Perform parallel prefix again to compute the number of remaining
active elements n' comprising S’

Step -1 If only a constant number of candidates remain, sort them and pick the kth one,

otherwise call Select(n’, & - I, §').
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Let A, the data in the active processors, be indexed ay,.. ,a,, as computed by the
parallel prefix in step | Let s be the number of elements 1n the sample and ¢ the number of

elements in the population Ther step 2 1s performed by the following procedure

Procedure Sample(s, t, A)

Step 1 If s = ¢ sort the active elements with all other piocessors acting as bus bridges and
exit.

Step 2 Divide the data set A into two groups A; = {a1,.. ay2} and Az = {agy1, i}
Compute the sample of each group recursively, for both groups in parallel, by calling
Sample(s, /2, A1) and Sample(s, t/2, Az).

Step 3 Using only every second element in each recursively computed sample, merge the

two samples by sorting, while all other processors act as bridges

At the bottom of the recursion in procedure Sample (step 1), 1t 1s required to sort
s = 4logn values. Since these values can be viewed as being held in a lincar array of s
processors (thanks to the bus bridges), they can be sorted 1n O(s) = O(logn) time as 1n
[AkI85, Knu73]. The same sorting algorithm can be used to merge the two thinned samples
into one also in O(s) time Note that the sample size s was chosen as to sort groups of data
that are as small as possible, yet be able to show that the size of the problem 1s diminishing
after each iteration The total time to compute the sample at level r, r .~ logn/s, can be

expressed as

{ t(r) =t(r - 1)+ O(s)
t(0) = O(s)

which gives t(r) = O(s?) = O(log®n).

Going back to the algorithin Select, step 1 requires O(logn) time IFor siep 3, consider
the yth largest element in a sample at level 1 Let L,, and AL, respectively be the least
number and most number of elements, from the corresponding population, which can be

greater than the jth largest element in the sample. Lemma 2 1n [Mun80| states that
Ly =32"—-1 and AL, :={(1+4 ;- 1)2
In choosing the new filter, it must be ensured that the kth element 1s one of the filter values
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or lies between them, that is

k—1 > My=(r+u—-1)2"

and

k—1 < Lpy=0v2" —1

The choice for the new filter will therefore be u = [£] — r and v = [£]. Broadcasting
these two values over the whole mesh and comparing with the data in the active processors,
will allow the elimination of all values lying outside the new filters as candidates for the kth
element, thus completing step 3 in constant time.

The remaining number of elements is at most

My —Lyy—1 = (2r —1)2"
n n
= (21 __)_
(21085 -1) 3

= [2(logn —log(4logn)) — 1] e

4logn
nloglogn  5n
2logn dlogn

= 2y
)

_ _1_+loglogn 5
= "2 2logn 4logn

and since 1 > Zle&logn=b . oqyivalently logn > 2log logn — 5 for all n, at most 2n elements
L > HeBloERS or oq y log g log , 2

remain.
The running time of algorithm Gelect is
t(n) = t(3n) + O(log®n)
t(4logn) = O(log n)
which gives t(n) = (Olog’ n).
Nete that no stack is required. To keep track of the recursion only two registers per
processor are needed One register stores the current level of recursion, which is the same
for all processors and one which stores the level at which the processor may become active

again
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3.3 Finding a splitter on the reconfigurable mesh

In many instances it is not required that the data set S be divided 1n an exact manner It
suffices to find an element p of S, not of exact rank, but rather one for which it 15 known
that at least a constant proportion o, 0 < a < 1/2, of the elements of § are gieater than
p and at least an are smaller than p. Such an element will be called an a-splitter 1 will
be shown that a splitter can be found among the elements of the r level s-sample tor any
chosen & < £ and hence can be obtained in O(log’n) time.

The objective is to find an integer 3 (1 < 7 <|s|) such that
L, >an and M, <(1-a)n
for any given «, (0 <a< %) Taking a sample al level r and recalling that r = log ®, gives
Lyy,=7 —1=3=-1 and AI,J:(T-{—]—I)Q':(logE-L]~l>7}-.
g 3 Ri
Combining the two gives
s n
7> (an +1)- and 7<(l —a)s+ 1 —log —.
n s

In order to guarantee that an integer value for j can be found, it is required that

(cm+1)%<]—1 and ]+1<(l—a:).s+l—logz
3
or
s n
1)- 1- — log —
(an + )n < (1-a)s 0 ~
(an +1)s+n < (l—a)ns—nlogz
s
‘an +1)4logn +n < (1—a)n4logn——nlog4logn
4anlogn + 4logn +n < 4nlogn — 4anlogn —n(logn - log4d loglogn)
8anlogn < 3nlogn + nloglogn —4logn +n
So for

_ Inlogn +nloglogn — dlogn « n

8nlogn

which is at least %, it can be guaranteed that the yth element of a sample, vith j taken to

be [(an + l)ﬂ’f—'—l + 1], is an a-splitter of S.

20




3.4 Selection on the CREW PRAM

A recent result due to Plaxton [Pla89] gives a lower bound on the selection problem of
Q(n/p)loglog p+log p), where n is the number of elements to select from and p the number
of processors in the network The result applies to a number of common network models
and the CREW PRAM. Plaxton also presents an algorithm which runs in O((n/p)log log p+
(T) + T2 logp)log(n/p)) time, where T} is the time to sort n = p values with p processors
and T, is the time to perform broadcasting and summing. If the time T; required for a given
network of p processors to perform selection on n = p values is less than T}/ log p, the running
time is reduced to O((7T2 + T3)log plog(n/p)). An algorithm due to Cole {Col88|, designed
for an exclusive-read exclusive-write PRAM model, which runs in O(n/p+log plog* p) time,
provides optimal efficiency [Akl85] for n = Q(plog plog* p). Since the CREW PRAM is a
stronger model, the same result applies. However, for the algorithms presented in this thesis,
the number of processors is taken to be equal to n, therefore, the {astest way of solving the

selection problem on the CREW PRAM is in O(log n) time through sorting [Col86].
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Chapter 4

The sequential linear programming
algorithms

The Simplex method [Dan63] has long been known as an excellent, practical algorithm
for solving linear programming problems. Typically, a problem with n constramts and d
variables can be solved with the number of iterations proportional to 7 and increasing very
slowly (logarithmically) with d [Chv83|. However, in the worst case, as was demonstrated by
the Klee-Minty examples [Kle72|, the algorithm visits each vertex of the feasible region, the
number of which grows exponentially with dimension and so the number of iterations 1s also
exponential in d. Evenin 2 dimensions, the worst case running time of the Sinplex method
is O(n?) since at most n iterations may be required and each iteration takes O(n) time as
each constraint must be inspected The time for solving a 2-dimensional hnear prograrnining
problem can be reduced to O(nlog n), by finding the intersection of the n half-planes defined
by the n constraints with an algorithm due to Shamos [Sha78]

A novel and ingenious technique discovered independently by Megiddo [Meg83] and by
Dyer [Dye84] demonstrated that linear programming can be solved in time proportional to
the number of constraints 2, in two and three dimensions (worst case time analysis)  This
technique was extendea by Megiddo [Meg84| to an arbitrary number of dimensions and
shown to give an algorithm linear in n when the dimension 1s fixed Megiddo’s approach
[Meg84] presented a novel multi-dimensional search techmque applicable to the hnear pro
gramming problem, which was improved by Clarkson [Cla86] and both improved and furthe
generalized by Dyer [Dye86], resulting in reduction of the constant of proportionahty {rom

doubly exponential to singly exponential in d.
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This chapter will present a review of Megiddo’s and Dyer’s algorithms for solving the
linear programming problem in 2 and d dimensions. While not everything in their papers
directly relates to linear programming, the concentration will be on the material relevant to

the problem being addressed in this thesis. However, a number of the applications from the

above papers will be discussed in Chapter 6.

4.1 Linear programming in two dimensions

This section follows the development of the linear programming algorithm in two dimen-
sions as presented in [Meg83, Dye84]. A two-dimensional (two-variable) linear programming
problem with n constraints can be stated as

minimize  az; + bz,
subject to  az; + by +¢, <0, 1=1,...,n

‘The function az; + bz, 1s called the objective function and the polygonal region formed by
the intersection of all the constraints is called the feasible region [Chv83]. The solution, if it
cxists, to a linear programming problem, is a vertex of the feasible region which minimizes
the value of the objective function. The objective of the algorithm 1s to remove constraints
which are guaranteed not to contain a vertex of the feasible region minimizing the objective
function, ie an optimal solution, as well as any redundant constraints, until only a small
number of constraints remain and the problem can be solved directly. This approach has
been called prune-and-search [Lee84], since at each stage a part of the problem is eliminated
and the search continues within the remaining part.

Applying a linear transformation y = az; + bz, and ¢ = z; the linear programming
problem can be stated in an equivalent form with the objective function equal to the y

coordinate

minimze  y

subject to oz +By+c, <0, 2=1,...,n,
where o, = a, — b, and G, = %‘ Finding an optimal solution is now reduced to finding
a mimimum value of a piecewise linear convex function of z. This function is implicitly
defined by the set of linear constraints Depending on 8, being negative, positive or zero,

the constraint set is partitioned into /3, I, and I3 respectively. From I3, which contains

constraints defined by a line parallel to the y-coordinate, u; = max {—ﬁ‘:, 1 € 13} and uy; =
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g(x)

h(x)

ey - -

5=

e .
u, optlmum vertex u,
Figure 4.1: The feasible region P defined by a set, of linear constraints

min{—ﬁ‘;,i € Ig} are defined. The intersection of the two inequalities © > u; and ¢ < uy
delimits a region in which the optimal solution must lie. Obviously, if u; £ ug then the
problem is infeasible.

The transformed problem 1s illustrated in Figure 4.1, where g(z) = rlrée}lx(é,:x: + ) and
h(z) = {21121 (8,z + v,) are convex piecewise linear functions which delimit the feasible region,
with 6, = —%* and v, = — 2. A given value of z is feasible if h(z) > g(z), uy © T < uy, and

the problem can be stated as

minimize  g(z)
subject to  g(z)

—

z
<u

[ 8

The algorithm iterates by testing values of z, in a way similar to binary search, to
determine if = gives the optimal solution and if not to which side of z the optimal solution
may lie. At each iteration either the solution is found or at least a constant proportion
of constraints are eliminated as candidates for containing the optimal solution, until the
number of constraints is small and the problem can be solved directly

To begin, constraints in I; are paired together by taking the ath and 2 + lst constramnts,
with = = 1,3,5, ,|I;] The same is done with constraints in /, If 4, ¥ é,,y, then the

intersection of the two lines corresponding to the two constraints in each pair s computed
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Figure 4.2: Eliminate one constraint in each of the above cases.

to give at most 2 intersection points, which are candidates = for the optimal solution. One
constrainl can immediately be eliminated from all pairs when either the intersection of the
constraints lies outside the interval [uq,u,] or the constraints are defined by parallel lines, as
illustrated in Figure 4 2 for pairs of constraints in I;. For the remaining pairs of constraints,
find the median z,, of the r-coordinates of their intersection points. This value can now be
tested and one of the following conclusions can be drawn: the problem is infeasible, &, is
the optimal solution, or the interval [u;,u;] can be reduced to [uy,zm] or €, us]. Such a
conclusion can be reached based on the values of g(x,,) and A(z,) and their slopes to the
left and to the right of z,,, which can be evaluated in time proportional to |I;|. For exaniple,
if g(wm) < h(znm) and the slope of ¢ to the left of z,, is non-positive and to the right is
non-negative, then &y, is itself the minimum of g.

If the problemn is found to be infeasibie, or the optimal solution is found, then the al-
gorithm termunates Otherwise, at Jeast half of the intersections, as defined by the pairs of
constramts, will be outside the new interval [uy, 2] or [2m,uz2] and one constraint per each

such par can be dropped (see Figure 4.2), for a total of at least a quarter of the constraints.
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The original problem is in this way reduced in O(n) time to a linear programining problem

with at most 2n constraints. Thus, the overall running time 7'(n) with a  § is linear inn
since
log L-la n
T(n)=T(3n)+kn < 3 k(1 —a)'n
=1
k
< En:O(n). (i

This worst case time analysis relies on the ability to find the median of n values in On)

time [Blu72].

4.2 Linear programming in d dimensions

The following algorithm was developed by Megiddo [Meg84]| to solve linear progiamuming
problems in d dimensions (d variables) when dis fixed A d-dimensional linear progranimmg

problem can be stated as
d
minimize ) _c,z,
=1
d
subject to Za,,m, >b, i=1,...,n
1=1
Similarly to 2 dimensions, the algorithm repeatedly removes a constant proportion of
constraints until the problem can be solved directly by solving a set of d equalities, to obtain

the intersection of the remaining tight constraints.

The problem is first transformed to a subspace orthogonal to the direction of the objective

function. o
minimize Zq
d—1
subjectto x4 2> Za,,xJ + b, 1 C 4
7=1
d-1
Ld S Zaqw] + bn 3 ]2
7=1

d—1
ey, b0 0, a0y
1=1

with [I] + || + | T3] = n.

Considering a pair of inequalities 1, k in the same set, say I}, two possibilities exist
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o If (ay,...a,4-1) = (@k1,-. ,@kd-1), then one of the constraints is redundant and can

be dropped

d--1 d-—1
o If (ay,. -aya-1) # (ag1,--.,Qkd-1), then Z a,&, + b, = Z @k, T, + bx is an equation
1=1 1=1
of a (d — 1)-dimensional hyperplane which divides the space so that on one side of this
d-1 d-1
hyperplane constraint » dominates constraint k, that is Za,,mJ +b, < Zak,a,'] + by,
7=1 =1

and constraint k& dominates constraint : on the other side.

As shown by Megiddo, one can test such a (d — 1)-dimensional hyperplane to determine

on which side of it lies the optimal solution (if one exists) and then eliminate the constraint

dominating on that side

4.2.1 Testing a hyperplane

d
The testing of a hyperplane h = Za,m, + b can be accomplished recursively by solving at

most three (d — 1)-dimensional liJ;(I:ar programming problems with at most n constraints
each. Given the original linear programming problem and the hyperplane h consider the
same problem with the equation of the hyperplane as an additional constraint. This gives
a d-dimensional problem with n + 1 constraints, but through an elimination of one variable
will give a (d — 1)-dimensional problem with n constraints. If this problem 1s unbounded,
then the original problem is unbounded and the algorithm is finished. Otherwise, a solution
is obtained for which it remains to be determined if it is the final solutien and, if not, on

which side of the hyperplane to continue. This can be determined by solving at most two

additional linear programming problems. The details are presented in [Meg84].

4.2.2 The multi-dimensional search technique

Testing a hyperplane h, as described above, will lead to elimination of one constraint. Since
this procedure is costly in time, one needs to maximize the information obtained from each
test A scheme which, by testing few hyperplanes, allows relatively many constraints to be
removed, was first proposed by Megiddo [Meg84] and subsequently expanded on by Dyer
[Dye86] and Clarkson {Cla86] This section begins with an exposition of the problem and
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the required set-up as presented in [Dye86], followed by a review of the ditferent approaches
to applying the multi-dimensional search technique taken by Megiddo, Dyer and Clarkson
Given a set of n hyperplanes h,(z) = {.1: ceR alr= b.}, 1, nand apomt 2ttt
1s required to determine the position of z* relative to a fixed proportion p of the hyperplanes
The point z* is not known, however the procedure described in section 4 2 1 can deternune
the position of x* relative to any hyperplane & 1n R? that is deternune whether af #* b,
aTz* = bor aTz* > b. This is equivalent to determining the sign of k(2*), denoted by
sign(h(z*)) or simply sign(h), where the sign can be negative, zero or positive An tnquiry
is an evaluation of sign for a given function in R* When A, 15 a constant function (a, 0),
sign(h,) can be determined without any inquiries, that is without having to evalnate it
When d = 1, the hyperplanes are of the form A,(z) = z; 4 b, If 3 denotes the median of

the b, and since in one inquiry the sign of h(z) = z, + 8 can be determined, then

o if sign(h(z*)) is positive, then the sign of h,(z*) is also positive for at least n/2 values

of 2, for which b, > £,

o if sugn(h(z*)) is negative, then the sign of h,(z*) is also negative for at least n/2 values

of 2, for which b, < §,

o if sagn(h(z*)) is zero, then the sign of h,(x*) is positive for all values of 2, for which

b, > (3, negative for all values for which b, < 3 and zero for all values for which b, (3

Therefore, the sign of at least half of the A, 1s known after one inquiry and of all the h, after
at most logn inquiries.

When d > 2, the hyperplanes are paired so that one hyperplane in each patr has a slope
greater than the median and the other one has a slope smaller than the median The slope
is defined to be the slope of the line a,;z; + a,2x2 = b, which 1s the hne along which the
hyperplane h, intersects the (z1, z;) subspace For each pair of hyperplanes h,, h,, auzihary
hyperplanes hf;) and hsz) are formed so that each has a dimension which 1s one less than the

dimension of h, and k,;, but in different variables, that 1s hf:) hg:)((l,.r,, Iy, 1) and

i

hff) = hff)(zl,(), T3,.. ,q). Because the auxiliary hyperplanes are (d |)-chimensional, the

search can be applied recursively to the two collections A1) and A/®) The hyperplanes zith
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a,; = 0 or a,; = 0 are excluded from the pairing since they are already (d ~ 1) dimensional.

The original hyperplanes can be expressed in terms of the auxiliary hyperplanes

hi(z) = aph{(z) + B with a,p > 0,
hy(z) = aﬂhfj)(m) + hfj’) with a,; < 0,
to demonstrate that if segn (hf;)) and sign (hff)) are both known, then the sign of at least

one of h, or h, can be determined, in particular

o il sagn (hf;)) 1s zero, then sign(h,) = sign(ha) = sign (hg)),

o if sign (hf;))) 15 positive, then

if hff)(m’) > 0, then sign(h,) is positive,

- if hg)(m‘) <0, then sign(h,) is negative,
o if s2gn (hfj))) is negative, then

- if hg)(m‘) < 0, then sign(h,) is negative,

- if hff)(az‘) > 0, then sign(h,) is positive,

Then, for each pair hf;), hff) for which the search determines the location of the optimum
x*, relative to both auxiliary hyperplanes, the location is known relative to A, or &, and so
one constraint can be eliminated

Megiddo proposed two different recursive schemes. The first scheme showed that there
exist constants A(d) and B(d), 0 < B(d) < %, which are independent of n, such that with

A(d) inquiries, the position of z* can be determined relative to at least a proportion B(d) of

hyperplanes in R4, as follows

e Inquire A(d - 1) times to obtain the position of z* relative B(d — 1)% of A1), where
% is the total number of hyperplanes A{!), which is equal to the number of h(2). (To
ensure that 2 pairs exist, Megiddo applies a transformation so that al least one of the

coeflicients a,; and a,; in all constraints is non-zero.)

® For those pairs for which the position of r* was determined relative to A(!), inquire

A(d - 1) times again to obtain position of z* relative to B(d — 1)B(d — 1)2 of ()
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In effect, inquiring A(d) = 2A(d — 1) times, which gives A(d) - 297!, results m a
proportion B(d) = 1 (B(d — 1)), with B(d) = 2'2, of pairs h,, h,, such that the position
of z* is known with respect to at least one (both 1if equal slopes) ot A, or h,

This scheme gives the following recurrence for the time 1t takes to solve a hinear program

ming problem
LPI(TL, d) S 3. 2d—1LP1(n,d _ 1) + LP] ((1 _ 21—2d> n,d) + ()(Hd)

For a constant C(d) <3 22t%-2C(d ~ 1), it can be verified that LP,(n,d)  O(n) with the
constant of proportionality C(d) < 22***,

Megiddo’s second scheme recursively finds the position of z* relative to all the ausiliary
hyperplanes h(!) and h{?). This 1s done by solving two (d - 1)-dimensional search problens
with 3 hyperplanes each, one subproblem for all A1) and the other for all A(?) This gives
an outcome relative to half of the original » hyperplanes. It remains to find an outcome o
the other half. Let @(n,d) denote the number of queries required and 7'(n, d) the additional
effort required for pairing the hyperplanes and finding the median, then

Q(n,d) = min {n, 20Q (%,d — 1) +Q (%,d)}
Q(n,1) =1+ |log, n|
R(1l,d =1
which can be solved by a technique in [Mon80] and gives Q(n, d) = O (]ogd n) with a constant
C(d) = 5
The additional effort is

T(n,d) = 2T (%,d 1)+ T (%,d) + 6(nd)
T(n,1) =n
T(1,d) =1

i

which gives T(n,d) < d29n.

With this approach, an n constraint problem in d dimensions is reduced to % constraint
problem in d dimensions by solving O ((2log n)d/(d - 2)!) problems with n constraints
(d--1) dimensions, with additional effort of O (dzdn) This leads to the following recurrence
for the linear programming problem

(210g "5) n 4
< P S _ —_ ‘
LPZ(n,d) <c (d 2)! LPy(n,d-1)+ LP, (Z’d) + O(d2 n)
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For a fixed d, LPy(n,d) = O (n(log n)dz), with a constant C(d) < —%i—k—'

Megiddo’s first approach applies one query at each level of rekc=111rsion, resulting in a
very small proportion of hyperplanes being eliminatrd and a doubly exponential constant
of proportionality for the linear programming problem. In addition, part of the information
obtaimed from the search is lost, since the signs of some of the h(!) are known, but not of
their corresponding A The opposite problem arises in Megiddo’s second approach, in which
queries arc appled repeatedly until the signs of all A(*) and A(?) are known. These queries
are answered by solving n constraint linear programming problems when some constraints
can be eliminated

Dyer |Dye86|, showed that a constant proportion of queries can be answered (not a func-
tion of d as in Megiddo’s first approach), by continuing to apply the recursion at a given
recursive level and removing hyperplanes until the required proportion 1is eliminated. This
leads to an algonthm for linear programming linear in n and with a constant of proportion-
ality singly exponential in d. Dyer’s method is a general multi-dimensional search technique,
which covers the spectrum between Megiddo’s first and second approach.

Let A(d, q,p) be a procedure for the search problem, which takes a d-dimensional set of
n hyperplanes and returns the signs of at least pn of the given hyperplanes after making
al most ¢ calls to the procedure for testing hyperplanes. Suppose r procedures Ax(d, gk, pr)
ext.t, k = 1,. .,r. By applying A;, removing a fraction p; of the h,, then applying A; to

the remaining fraction 1 - pk, and so on, a procedure A(d,q,p) is obtained with

p=1-JJ(1-p) and qg=) qi.
k=1 k=1

Dyer chose the following particular approach to applying this idea. Given a procedure
A(d -~ 1,q4-1,p4-1) in R, a procedure A’ (d —1,kqa—1,1 - (1 —pd_l)k) can be obtained
by applying k times procedure A. Then, by combining two procedures A’ and A" get a

procedure 4,(d,q,p) with
""l(l—lﬁp k I-(1-p ! d =(k+1
P~ 5 ( d-1) ) ( ( d_1)> and q = (k+ 1)qa-1.

This procedure 1s called a |k, {] procedure in R?.

A scheme results from applying a list of = [k, /] procedures, + = 1,...,r in R%. It
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guarantees a proportion

pa=1-]] (1 -%(1 —(1-pa-1)®) (1~ (1- pa 1)’-)) (12)

with

r

qd = Z(kz + lt)‘]d-—l-

=1

inquiries. When a fixed schemne is applied recursively, based on a A(l, 1, 1) procedure it will
inquire

a = (Z(’C + l,)) "

\e=1
times. Dyer then shows that for some fixed values of 3-7_ | (k, +{,) the smallest of which s 9, a
non-zero root can be found for py = f(pa-1), (equation 4.2) Infact, a2, 2], (2,3 scheme with
1

T1(k+1,) = 9 guarantees pg > %for all d, with p, = é— Hpy_y > 3, it can be verified from

equation 4 2 that pg > 1—(1 — %(%2)) (l - ;—%g—) = 1059/2048 > % This scheme, theretore,

gives a sequence of procedures A(d, 9771, %) and allows the constant of proporuionality for
the linear programming algorithm to be reduced from 202" {5 O (3(‘” 1)2) The time 1'(n, d)

to solve a procedure A(d,qq4, pa) generated by a scheme [k,,0],2 =1, ,ris
T(n,d) < cT(n,d - 1)+ Knd,

where ¢ = 37_,(k + [,) Then, if T(n,1) < Kn, T(n,d) = O(c?'dn), with ¢ = 9
The time to solve a linear programming problem using the above scheme is expressed by

the following recurrence relation

LP(n,d) <3 -3 Y(LP(n,d — 1)+ Knd) + LP, (-;3 d)

It can be verified by induction, that LPy(n,d) = O (3(’{“)2n) and so 1s linear for any fixed
d, and in addition for d = O(+/logn) is polynomial.

Dyer also observed, that Megiddo’s first approach corresponds to a repeated |1, 1] scheme
with 7 = [log n]. He then showed that it is sufficient to take v - 6 to guaraniee p 1 and
thus give a better running time than both of Megiddo’s approaches

A similar result to Dyer’s was alsc obtained by Clarkson [Cla86], whose algorithi «or

responds to applying a [4,5] scheme and results in a similar improvement for the hinear

programming pioblem.
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Chapter 5

The parallel linear programming
algorithms

This chapter presents the parallel linear programming algorithm for the reconfigurable mesh
and the CREW PRAM. The algorithm for 2 dimensions is presented first, followed by the
general d-dimensional one. When d = 2, the general d-dimensional algorithm achieves the
same running time as the 2-dimensional one, however both will be presented as it allows a
more gradual introduction of the concepts. In the case of d = 3, a modification is introduced

to the d-dimensional algorithm which significantly reduces its running time.

5.1 Existing parallel solutions

A number of algorithms have recently been proposed, for solving the linear programming
problem in parallel for the more powerful CRCW PRAM model. Deng [Den90], developed
an optimal algonthm based on the ideas 1n [Meg83, Dye84] to solve the linear program-
ming problem in the plane which runs in O(logn) time with n/logn processors. Vaidya
[ Vai90] developed an algorithm based on the interior point methods [Chv83] which runs in
O (L (nd)'/1 ]og3n> time using O(A(d)n/d + d®) processors, where M(d) 1s the number of
operations for multiplying two d x d matrices and L is bounded below by the logarithm of the
largest absolute value of the determinant of any square submatrix of the coefficient matrix
of the hnear programming problem Alon and Megiddo [Alo90] developed a probabilistic
algorithm which solves a linear programming problem in fixed dimension almost surely in

constant time

33




Alternately, if the linear programming problem is transformed into the dual space, a
parallel solution may be found using parallel algorithms for computing the convex hull of
a set of points [Dob80, Ede87]. Each constraint corresponds to a d-dimensional point
the dual space, therefore it suffices to compute the convex hull of the 1esulting points and
test each convex hull point for optimality Given that computing the convex hull of a set
of points is reducible to sorting [Sha78] and that sorting requires Q(n'/?) tnne on any mesh
architecture (see [Sto83] and Section 2.1 of this thesis), this approach requires {n'/?) tune
on the reconfigurable mesh. Unfortunately, no algorithms are yet known lor solving the
convex hull problem in dimensions higher than 3 on the mesh [Mil88c¢, Deh&8)

On the CREW PRAM model, aigorithms due to Aggarwal et al [Agg88] and Atallah and
Goodrich [Ata86] exist which compute the convex hull of a set of points 1 2 dimensions
in O(log n) time using n processors Given that the convex hull points can be tested for
optimality in O(d) time, and the optimal point can be chosen in O(log n) time by computing
the maximum or the minimum [Val75], the linear programming problem can be solved n
O(logn) time in 2 dimensions In 3 dimensions, there exists an algorithm due to Dadoun and
Kirkpatrick [Dad87] which finds the convex hull in time O(log®nlog® n) using n processors,
where log® n is defined to be the least : such that log®n < 1, with log®* denoting the
1th iteration of the log function. The hnear programming problem can then be solved
O(log? nlog* n) time. Nonetheless, there are as yet no parallel solutions for the convex hull

problem in higher dimensions on the CREW PRAM.

5.2 The algorithm for the reconfigurable mesh in two
dimensions

In this section, a parallel linear programming algorithm for 2 dimensions, based on the
sequential algorithm outlined in section 4 1, 1s presented and shown to run in O(log’n ) tune
on the reconfigurable mesh of size n  The algorithm will make use of the concepts and

algorithms already presented in detai! in earlier chapters.
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Given a linear programming problem in 2 dimensions and n or fewer constraints, stated

as
minimize az; + bz,
subject to a,zy + bz +¢, <0, 1=1,...,n.

it is desired to solve il on a reconfigurable mesh of size n. The processors of the mesh are
labeled in the snake-like ordering.

Initially, the problem is transformed so that the objective function is equal to the y coor-
dinate, by broadcasting the coeflicients a and b to all processors and having each processor
I, apply the linear transformation y = az; + bz; and ¢ = x; to the constraint : assigned
to that processor. The broadcasting can be accomplished by connecting all switches of the
reconfigurable bus in order to form a global bus which allows data to be sent to all processors.
The problem is then stated as

minimize y

subject to az+ By +c¢ <0, 2=1,...n,
where o, = a, — %b, and 3, = %‘. The set of constraints is partitioned into three subsets I,
I, and I; depending on 3, being negative, positive or zero. No assumption is made about
how the constraints are distributed among the processors of the mesh, with constraints from
all three subsets being intermixed. It will be assumed that each processor has available the
values u; and u,, delimiting the interval containing the optimum value of z, and the splitter
Ly, which is the current value of  being tested. The values u; = rnax{—it,z € 13} and
Uy = min {—f‘*l-,v € 13}, can each be computed by applying the max operation taking into
account only constraints in I3

Having transformed the linear programming problem, the parallel algorithm must find
a minimum value of a piecewise hnear convex function of z, implicitly defined by the con-
straints As done sequentially, the algorithm iterates by testing values of z, in a way similar
to binary search, to determine if z gives the optimal solution and if not to which side of
& the optimal solution may lie. At each iteration either the solution 1s found or at least a
constant proportion of constraints are elimmated as candidates for containing the optimal
solution, until the number of constraints is small and the problem can be solved directly.
Jach 1teration involves a number of consecutive steps which operate on all the constraints

in parallel
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Candidates for the optimal solution are obtained by pairing constraints in order to com-
pute the intersection points of the two lines defining the constraints. The pairing step s
performed first on the constraints of I;, then, in an identical manner, on the constramts
of I,. Pairing of constraints in /; can be accomplished by numbering the constrants of [,
and pairing each odd constraint with the following even constraint. The numbenug can he
accomplished by assigning a 1 to each processor holding a constraint in I, and a 0 to all
others and then performing the parallel prefix operation.

In order that the computation of the intersection points be performed efliciently, it 1s
required that the constraints in each pair can communicate in O(1) time Whern the algonthm
works on I, all processors P,, 1 < 7 < n, holding constraints in I, /3 or empty, will form bus
bridges between non-adjacent processors holding consecutive constraints in /;, by connecting,
their switches to P,_; and P,y in the snake-like ordering. These bus bridges will allow for
O(1) time communication between any two processors holding a pair of constraints

Once the pairs are determined, one constraint can be elimmated from cach pair of con-
straints defined by parallel lines and one constraint from pairs whose intersection hes outside
the interval [u1,u,), see Figure 4.2. For the remaining pairs, of which there arc at most n/2,
find an a-splitter z, of the z-coordinates of their intersection points, with a %, by apply
ing one iteration of the parallel selection algorithm To test where, with respect to the hne
T = Ty, lies the final solution, compute g(z,) = rtxée}lx (zo + 7 ) and h{iq) = rll(nlI?) (6oL 1 M),
where 6, = —%‘: and v, = —%. Also compute the slopes of g and A to the left and to the

B:
right of z,, which are defined as

Ly=maz {6 :v€ I}, bz) +7 =
Ry =man{b -2 € L, bz +
Lio=maz {6 :1 € I, bzy + 7 = h{za)},
R,=man{b .2 € I, bzy + 7 = h(ra)}

o
L
EQ ~
5 5
S Nt
inadeod

Each of the above functions can be computed, in turn, using the max operation  As described
in section 4.1, on the basis of this information it can be determined whether z,, 15 feasible
and whether it is optimal and if not to which side of £, the optimum may he

If the problem is found to be infeasible. or the optimal solution 1s lound, then the aipn
rithm terminates. Otherwise, the interval [u;,up] can be reduced to either fay, a0, 01 vr,,n,

At least an of the intersections, as defined by the pairs of constraints, will lie outside the
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new interval. Since for each such pair one constraint can now be dropped, which, including

one of parallel lines dropped before, is at least $n constraints, there are at most (1 — a/2)n

constraints remaining,.

It remains to mark processors holding constraints which are no longer to be considered as
“Inactive” Since the algorithm makes no assumptions about the distribution of constraints
among processors, no other clean-up or compression of data is required in preparation for

the next iteration of the algorithm.

'The time required to complete an iteration of this algorithm is limited by the O(log®n)
time it takes to find the splitter. All other operations (transformation of coordinates, pairing,
comparisons) take O(1) time, except for the parallel prefix operation which takes O(log n)
time and finding the max which takes O(loglogn) time. Since at each iteration, the size
of the problem is reduced by a constant proportion, the algorithm must terminate after at

most logn steps Therefore, the total running time is O(log®n).

5.3 The algorithm for the reconfigurable mesh in d
dimensions

In this section, a parallel linear programming algorithm for d dimensions, based on the
sequential algorithm outlined in section 4.2, is presented and shown to run in O(n!/?) time on
the reconfigurable mesh of size n, with the constant of proportionality growing exponentially

with dimension

A d-dimensional linear programming problem with n constraints can be stated as
d
minimize Y _c,z,
J=1
d
subject to ZauccJ >b, 21=1,...,n.
=1
In order to solve this problem on the reconfigurable mesh of size n, constraints are
assigned one per processor, with each processor storing the d coefficients of its constraint The
processors of the mesh are labeled in snake-like ordering and the constraints are distributed

anong the processors in no particular order.

Initially, the problem is transformed into a subspace orthogonal to the objective function.
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The constraints can be partitioned into I1, I; and I3 depending on a,4 being negative, positive

or zero, and the problem can be stated as

minimize g4
d-1

subject to 4 > Zaum] + b, 1€ )
1=1
d-1

T4 S Zaljm] -+ bu (S 12
1=1
d-1

Za,,mJ +b <0, 1€ 14

=1
with |I1| 4+ |I3| + |I3] = n. Since each processor can apply this transformation, in ((d) time,
to the constraint which it has stored and since all processors can do this in parallel, the
transformation can be accomplished in O(d) time.

The algorithm is similar to that of two dimensions 1n that at each iteration it removes a
constant proportion of constraints until only the d essential constraints remain, the intersec-
tion of which determines the optimum. Each set I, I, and /3 is considered in turn  Pairs of
inequalities are formed, as before, beginning with the set I; The constramnts are numbered
by applying the parallel prefix operation to the mesh and each odd constraint is pared with
the following even one As before, the remaining processors form bus bridges to allow for
constant time communication of the constraints in each pair.

Considering a pair of constraints z, 2 + 1 in the same set-

e If (a,.. . @4-1) = (@41,1,- -, +1,4d-1), then one of the constraints is redundant and

can be dropped.

d-1 d-1
o If (a1,...034-1) # (@u41,1y- -+ Qut1,d-1), then Za,]m] + b, = Zal_u,lw] { by 1s an
1=1 7=l

equation of a (d ~ 1)-dimensional hyperplane which divides the space so that on one
d 1

side of this hyperplane constraint : dominates constraint = 1 1, that is }_:u,,.r, { b, -

11
d-1

Za,H_Ja:J + b,41, and constraint = + | dominates constraint 7 on the other side
=1

If the location of the optimum 1s known relative a given hyperplane, then one of the 14
-~ constraints can be eliminated. As shown by Megiddo [Meg84], testing of a hyperplane «an

be accomplished by solving at most three (d — 1)-dimensional linear progranuming probicis
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with at most n constraints each. It may easily be verified that these problems can be
formulated from the original constraints on the basis of the information already available to
each processor Repeatedly forming and testing the dividing hyperplanes in order to remove
one constraint per test would result in a very slow algorithm Instead, Megiddo’s and Dyer’s

multi-dimensional search technique described in chapter 4 can lead to an efficient parallel

algorithm.

5.3.1 Applying the multi-dimensional search technique

Given a set of n dividing hyperplanes h,(z) = afz +b,, 2 = 1,.. ,n, distributed no more
than one per processor of the reconfigurable mesh, the multi-dimensional search described
in section 4.2 2 1s applied as follows. When d = 1, the hyperplanes are of the form h,(z) =
x; + b,. The median value 3 of the b,, 2 = 1,...,n can be found by applying the procedure
Select of section 3 2 1n O(log® n) vime. Then the sign of k(z) = z; + B can be determined in
O(1) time, thus making known the sign of at least half of the n hyperplanes. When d > 2,
the median slope a, of the lines a,12; + a,2z2+ b, = 0, defined as a,2/a,;, is computed leaving
aside hyperplanes with a,; = 0 A transformation taking x, to z; + e,z, is applied, so that
any hyperplane with the median slope has now a zero slope. Then, the hyperplanes are
paired, so that each pair has one hyperplane with a positive slope and one with a negative
slope, leaving aside any hyperplanes with zero slope.

This particular method of pairing hyperplanes which requires that the hyperplanes in
cach pair satisfy certain properties is different from the method, used earlier, for pairing
constraints Since the hyperplanes with positive and negative slopes are distributed randomly
among the processors, in the worst case, it may be required that half of the hyperplanes
are moved across the mesh. The pairing can be accomplished by separately numbering all
hyperplanes with positive slopes and all hyperplanes with negative slopes, using the parallel
prefix operation, then moving the :th hyperplane with negative slope to the processor Py,_;
and the 2th hyperplane with positive slope to processor P,,, with the processors in the snake-
like ordering. It has been shown by AMiller et al {Mil88a] how moving O(n) values can be
accomphished in O(n'/?) time on the reconfigurable mesh.

For each pair of hyperplanes h,, h,, as formed above, auxiliary hyperplanes hf;), hff) are

39




formed, where
R(2) = (hi(z) — hy(2))/ (@2 ~ ay0)
hD(2) = (~a,0ha(@) + ahy(2))/ (a2 — as2)

Since a,3 > 0 > a,3, a2 —a;2 # 0. Now, hS) = hf;)(O, T2, ,&q)and hff) = hff)(.r[,(), )
(1

s hff) for which the location of the

are hyperplanes in (d — 1) dimensions. For each pair h
optimum z* is determined relative to both auxiliary hyperplanes, the location s known
relative to at least one of h, or h, and allows one constraint per pair to be elimmated,

Three different approaches to the multi-dimensional search were described in chapter 1
Megiddo’s first approach is inherently sequential in that it first performs a recuisive search on
all the auxiliary hyperplanes A1) and then applies the recursive search to those hyperplanes
h(?) whose sign was discovered in the first search. A parallel version of this approach will
not be developed, since Megiddo’s first approach is a particular case of Dyer’s more general
and efficient approach.

Megiddo’s second scheme recursively finds the signs of all the auxiliary hyperplanes by
solving two (d—1)-dimensional search problems, each with at most /2 hyperplanes 'T'his can
be implemented on the reconfigurable mesh by separating the hyperplanes into two groups of
consecutive processors 1n snake-like ordering, one with hyperplanes which are not a function
of 2, which includes all A{")’s and the original hyperplanes with a,, - 0, and the other with
all the hyperplanes which are not a function of zj, the A(?)’s and hyperplanes with a,, 0
It is important that the mesh be subdivided so that its diameter 1s always proportional to
the square root of the size of the problem. This can be accomplished by subdividing the
mesh horizontally at one recursive level and vertically at the next level Again, as shown by
Miller et al [Mil88a], moving O(n) values can be accomplished in O(n'/?) tuine Now, the
search can be applied recursively and in parallel to both sets of hyperplanes  Althongh the
total number of queries Q(n,d) will remain the same, as in the sequential apphcation of the
technique, that is Q(n, d) = O(log®n) with C(d) = (—d—%z-),, there will only be g(n, d) levels of

recursion, where

q(nvd) =q (%1"3_ l) 1 q(%ad)
g(n,l) =1+ {log,n|
q(l,d) =1

which can be solved by a technique developed in [Mon80)] to give q(n,d) O (lug" n) with
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a constant of proportionality C(d) = 3.

The time required for pairing of hyperplanes and finding the median is

tn,d) =t(2,d-1)+1t(2,d)+0(n"/2)
t(n,1) =n'/?
t((1,d) =1

which solved similarly gives t(n,d) < (21-1’1—2)-,n10g"'"2 n.

This leads to the following recurrence for the linear programming problem

log? 2 n d
< 2 - (_ ) 1/21,. d-2
Ip(n,d) <c i lp(n,d—-1)+1p 2,d +0((d_2)!n log?*n
For a fixed d, lp(n,d) = O (77,1/210gd2+d"2 n), with a constant C(d) < ———%=——, as can be
d-2)'[5, *'

verified by induction.

Dyer’s general multi-dimensional search technique can lead to an algorithm on the re-
configurabie mesh with O(n!/?) running time with the constant of proportionality singly
exponential in d. By choosing a {2,2], [2,3] scheme and applying each procedure in the
scheme one after another, after compressing the current subproblem of size m into pro-
cessors Py, 1,7 € [0, ..,m'/?], a proportion ps > 1 of hyperplanes is guaranteed to be
discovered after g4 = 997! inquiries. The time #(n,d) to solve the multi-dimensional search,

using a procedure A(d, g4, pa) generated by a scheme [k, l],2 =1,...,r, is

t(n,d) <Y (k + L) t(n,d— 1) + K dn'/?,

=1
which gives t(n,d) = gadn'/? = 0(d3%'n'/?) for a [2,2] [2,3] scheme, as may be verified
by induction. Then the time to solve the linear programming problem is expressed by the

following recurrence relation
Ip(n,d) <3 3241 (p(n,d — 1) + Kdn'/?) + Ip Gn,d) .

Assuming nductively that Ip(n',d') < K 3@+ (r)1/2 for all (d',n') < (d,n), it can be
verified that

3291 (K 3% ni/? 4 Kdnl/2) 4 K 3@+ (3n)'/?

lp(n, d) <
. 1/2
= K 3@y (ai + =+ (}) )nl/z
< K3 (L4 Loy 3)n1/2
< K3(d+1)27'll/2.
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This verifies that Ip(n,d) = O(3@+1 /2 for all pairs (n,d).
It is possible to apply the recursive procedures to the two (d -- 1)-dimensional sets of
hyperplanes in parallel after separating the two, so long as the proportion py | of signs dis

covered is strictly greater than ;. This would guarantee that at least pg ; 3 propottion

2
of pairs would have the signs of both auxiliary hyperplanes known This would marease
r-1(k, + L) in order to guarantee the same proportion could be maintamed at cach stage
It would not however result in an asymptotic improvement for the constant of proportion
ality for the parallel linear programming algorithm, since that could only be actieved il
Ty max{k,, .} = 1, which could only be true if » = 1. However, this could not guarantee
1

a proportion py > 3. Although the theoretical benefits of this approach are uncertam, n

practice the signs of more pairs of hyperplanes than py_; - 312- are likely to be discovered, thus
resulting in a greater proportion of constraints being removed

Given that the reconfigurable mesh model assumes a constant number of registers avanl-
able to each processor, 1t is necessary to verify that the number of registers required by
the algorithm does not exceed this constant. Originally constraints are distributed one per
processor of the reconfigurable mesh, with each processor storing the d coefficients of its
constraint plus some additional constant amount of information. The only tine dunng the
algorithm at which constraints are moved from one processor to another occurs during the
pairing of hyperplanes as part of the multi-dimensional search The 1th hyperplanc with
negative slope is moved to the processor P,,_; and the 1th hyperplane with positive slope
to the processor P;,. This causes the hyperplanes to accumulate 1n some processors of the
mesh. Given that at most one additional hyperplane arrives at any processor during a given
pairing and that the multi-dimensional search procedure has depth of at most d recursive
calls, at most d constraints can arrive at any processor of the mesh As the dimension d 1s
considered constant, this verifies the requirement for a constant number of registers at cach
processor.

As the pairing of hyperplanes requires Q(n'/?) time, employing data movement and se
lection algorithms which run 1n o(n'/?) time has no effect on the asymptotic runmng tine
of the linear programming algorithm. However, since such algorithms (max, parallel pre

fix, sorting) are known to run 1in Q(n'/?) time on a mesh computer with no broadcasting,
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the d-dimensional linear programming algorithm can be implemented to run on any mesh

architecture in the same O(n!/?) time as on the reconfigurable mesh.

5.3.2 The special case when d =3

In 3 dimensions, given n constraints distributed no more than one per processor of the
reconfigurable mesh, the constraints are paired to obtain n/2 two-dimensional hyperplanes
(lines), to which then the multi-dimensional search is applied. During the multi-dimensional
search, the hyperplanes are paired to give two sets of 1-dimensional auxiliary hyperplanes
(points) at which time the recursion bottoms-out (see section 4.2.2).

It is apparent that the limiting step of the algorithm is pairing of hyperplanes, which
in the worst case takes O(n!/2) time. It is possible to improve the time it takes to pair
hyperplanes to O(n!/?), by considering the following modification in the way that procedure
A(2, g2, p2) 1s applied in 2 dimensions to solve the multi-dimensional search. Let the mesh be
subdivided into n!/? blocks of n!/3 x n!/3 size. Each block will have at most n?/? lines. For
all blocks 1n parallel, apply the procedure A to the hyperplanes in that block. Procedure A
will be applied to a block in the same fashion that it was applied to the entire mesh in the
d-dimensional algorithm, but completes in O(n!/3) time since the diameter of the blocks is
of O(n'/?). Each line returned by procedure A can be tested (see section 4 2.1) by solving at
most three 2-dimensional linear programming problems. The tests, which take O(log® n) time
each, can be applied one at a time using the whole mesh and will complete in O(n'/?log® n)
time. For the proportion p, of hyperplanes for which the procedure A determined the sign,
one constraint can be eliminated (see section 4.2). Since groups were assigned disjoint subsets
of constraints, the total number of constraints which can be eliminated is simply multiplied
by the number of groups, to give the required proportion p, The time #(n,2) to solve
the multi-dimensional search in 2 dimensions, using a procedure A4(2,p;, g2) generated by a

scheme |k, L], 2 =1,...,7,is
t(n,2) <Y (k + 1) t(n,1)+ Kn'/3,
1=1

which gives t(n,2) = O(n'/3) Then the time to solve the lincar programming problem is
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expressed by the following relation
Ip(n,3) < gn'Pt(n,2) + Kn'/® 4 t (%n, 3) ,

where g = 37_, (k, + L), which gives ip(n,3) = O(n'/?log® n).
Since the number of tests required becomes n!/3, this scheme does not extend into igher
dimensions, in fact, it results in a worse running time than the d-dimensional algorithm of

section 5.2.

5.4 The algorithm for the CREW PRAM

The d-dimensional parallel linear programming algorithm can be adapted to run m ((log” »)
time on the CREW PRAM model, with the constant of proportionality exponential in d.
Initially, each processor is assigned one of the n constraints, with the constraints distributed
in no particular order Once the subsets I, I, and I3 are determined, the constramts can he
rearranged, in constant time, so that processors Py,. ., P are responsible for constraints
in Iy, processors Py |i1,..., Pi|+p| are responsible for constraints mn /5 and processors
Piriti521411+ - - » Pi1y|+111+115) are responsible for constraints in I3 In this wav, the algorithm
can work in parallel on all pairs of constraints When the multi-dimensional search i1s apphed
to the hyperplanes h(z) obtained from pairing constraints, the hyperplanes can be paired
and auxiliary hyperplanes hf;) and hff) can be formed The procedure can then be applied
recursively to the two sets of (d — 1)-dimensional auxiliary hyperplanes Smce pairing of
hyperplanes can be accomplished 1n O(1) time, after they have been enumerated with the
parallel prefix operation which takes O(logn), and since median can be found 1n O(logn)
time, the time ¢(n,d) to solve the multi-dimensional search using a procedure A(d, 44, pa)

generated by a scheme [k,, ], =1,. .,ris
t(n,d) <D (ki + L) tn,d — 1)+ Kdlogn,
1=1
which gives t(n, d) = gadlog?n = 0(d3%¥ 1 log?n), for a [2,2] [2,3] scheme, as may be verified

by induction Then the time to solve the linear programming problem is cxrpressed by the

following recurrence relation

Ip(n,d) < 3354V (Ip(n,d — 1) + Kdlogn) + Ip (4in, d).
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Assuimng inductively that Ip(n’, d') < K 31" log? n/ for all (d',n') < (d, n), it can be verified

< 3241 (K 3¢ Jog ' n + K d log n) + K 3(d+1)? |ogd (%n)

that
t(n,d)
. d-1 n
K 37 (legtn | dioan 4 jogd 3)
let ¢ = — log %, then it remains to show that
logn > losg? o+ Zi(;ﬁ;l + (logn — c)*
> ‘”“32 =+ ‘;},’;ﬁ;‘ + log®n — dclog®'n + (‘2i)c2 log?'n - (;) Alog?3n + ...

Which is true since

log'n  dlogn - d _
T + 72 < delog®'n + 9 log ' n

for all d > 1. This verifies that Ip(n, d) = O(3(#*1’ log® n) for all pairs (n, d).

- (:)cslogd"3n+...,
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Chapter 6

Applications

The continuing popularity of linear programming, both in applications and as a researd
topic, can be attributed to the fact that a great many practical problems can be expressed
as linear programming problems and efliciently solved using an established techmque such
as the Simplex method [Dan63] or Megiddo’s and Dyer’s algorithm [Meg84, Dve86)

Although it is not clear whether Megiddo’s and Dyer’s algorithm can compate 1 el
ficiency to the Simplex method, their algorithm appears to be very practical {or a small
number of dimensions. For d = 3, Megiddo [Meg84] states that the current computational
experience is very successful. In higher dimensions, even though the algornthm s exponential
in d, Dyer [Dye86] showed that it is ahle to take advantage of sparsity, that 1s for sparse
problems the proportion of hyperplanes discovered during the multi-dimensional search
creases. In addition, Megiddo pointed out that although, when testing a hyperplane, thiee
(d —1)-dimensional problems with possibly nn constraints each need to be solved, the number
of constraints is usually much smaller in two of the problems That 1s, assumming a non
degenerate case, two of the three problems have no more than d constraints cach Megiddo
also observed that another practical speedup can be realized by choosing a random 3-sample
or 5-sample instead of finding the median (or splitter), since the selection is repeated many
times and each repetition is independent The same factors apply in the case of the para..
algorithm and should result in better practical performance than that given by the worst
case time analysis.

Any problem which can be formulated as a linear programming problem may be solved

using the algorithm developed in this thesis, nonetheless the fact that the runmmg tine
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18 exponential in dimension limits the applicability of the algorithm to problems with small
dimension The sequential linear programming algorithms by Megiddo and Dyer are similarly
limited

The most obvious area of applications is that of operations research, in which there arise
problems such as allocation of resources, planning and scheduling of production and inven-
tory These, however, can often be very large in both number of constraints and dimension
and therefore 1t may not be practical to solve them using the parallel algorithm.

Some other problems, which can be solved using the proposed parallel algorithm are those
which can be shown to be reducible to linear programming [Dob80]. For these problems,
it 1s sufficient to show that they are reducible in polynomial time to linear programming
and it follows that they can be solved by the parallel algorithm proposed in this thesis. Of
course, it is desirable, that the time complexity of the reduction process is in the same order

of complexity as solving the linear programming problem.

6.1 The linear separability problem

Two point sels are hnearly separable if and only if therz exists a hyperplane such that all
points of one set lie on one side of the hyperplane and all points of the other set lie on the
other side of the hyperplane [Sha78]. Recognizing whether two sets are linearly separable
and finding a separating hyperplane has applications in statistics and in pattern recognition
for the purpose of classifying data points using linear functions [Sha78]. Dobkin and Reiss
[Dob80| have shown that this problem in d dimensions is eouivalent to linear programming in
d variables, that is linear separability is reducible to linear programming and linear program-
ming 1s reducible to linear separability It can therefore be solved sequentially in linear time,
i fixed dimension, with Megiddo’s algorithm [Meg84] Preparata and Shamos [Pre85] have
shown how to find the (d — 1)-dimensional separating hyperplane. Given two sets of points
Sy - {(a(l’). ..,aﬁ,’)) =1, ., 51!} and S, = {(a(l’),...,af;)) cr= |51 + ],...,|52|},

with [Si] 4 |82 - n, the separating hyperplane pyxy + .. + pgrq + payy = 0, if one ex-

1sts, must satisfy the conditions

Pxﬂ(li) + -+ Pda,(;) + pa+1 <0, 1 <2< (8]
pla£')+ . +pda((;)+pd+1 >0, [Si]+1<1<n.
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Many separating hyperplanes may exist. Since solving the above hncar program with n
constraints on the reconfigurable mesh can be accomplished in O(n!/?) t1-ne and in O(log® n)
time on the CREW PRAM, one separating hyperplane can also be found, if 1t exists, m
0(n'/?) and O(log? n) time respectively.

When one of the sets contains only one point, that is S, -= {I%}, the problem of finding a
separating hyperplane is known as pount-set separability and was also shown to be equvalent
to the problem of linear programming [Dob80] Megiddo [Meg83] stated that this problem
R? can be solved by linear programming in d — 1 variables as 1t requires findiug a hyperplane
passing through Po which has all the points of S; lying to one side of 1t Therefore, the
point-set separability problem, which also determines 1f P, 1s extremne with respect to the
points of S, [Dob80, Meg83] can be solved 1in O(n'/2) on the reconfigurable mesh and n
O(log?n) time on the CREW PRAM.

6.2 Circular separability and the digital disk

Another problem which can be solved by the linear programming algorithm is the circular
separability problemn. O'Rourke and Rao Kosaraju [O’R85! have shown that the drcular
separability preblem in 2 dimensions reduces to linear separability 1in 3 dimensions and
stated that in general spherical separability in d dimensions reduces to linear separability
in d + | dimensions Since linear separability 1s equivalent to linear programnung, they
concluded that by Megiddo’s algorithm [Meg83] the circular separabihty problem can be
solved in O(n) time with the constant of proportionality doubly exponential in dimension
The constant of proportionality can immediately be reduced to singly exponential due to
Dyer’s improved multi-dimensional search technique {Dye86]

As defined in [O’R85), two setsof points Sy = {(z,,%,) 1 L1} and S2 {(e, ) 1¢ 1,}
in R?, with | 51|+ |S,| = n, are circularly separable if there exists a arcle € such that each
point of S; is interior to or on the boundary of €', while each point of 5, 15 cxterior to or on
the boundary of ¢ Transforming points (r.y) in 12 into points of the form (roy 02y

in R3 creates a one-to-one correspondence between circles

(2~ AP +(y ~— B = K
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in the original space and planes
az + by + (2 + %) = ¢

in the transformed space, as long as ¢ > —(a® + 4?)/4, with A = —a/2, B = —b/2 and
R? = ¢4 (a’+b?)/4. Therefore, finding a separating plane in R3 gives a separating circle in R?.
If the points from the two sets S; and S, are assigned one per processor of the reconfigurable
mesh or the CREW PRAM, the mapping (z,y) — (z,y,2% + y*) takes constant time and
the linear separability problem can be solved in O(n!/®log®n) time on the reconfigurable
mesh and in O(log’n) time on the CREW PRAM, by reduction to linear programming.
The separating circle, if one exists, can therefore be found in O(n'/?log®n) time on the
reconfigurable mesh and in O(log®n) time on the CREW PRAM.

The circular separability problem generalizes into spherical separability in d dimensions,
where a transformation from d into d + 1 dimensions creates a correspondence between
scparating hyperspheres in d dimensions and separating hyperplanes in d + 1 dimensions,
with O(d) time required to perform the transformation in parallel on the reconfigurable mesh
Therefore, applying the procedure for solving linear separability problems (see section 6.1)
to the transformed points, the spherical separability problem in d dimensions can be solved
in O(n'/?) time on the reconfigurable mesh with the constant of proportionality exponential
in d and 1 O(log?"' n) time on the CREW PRAM. It should be noted, that the spherical
separability problem being discussed, as defined in [0’R85], 1s different from the problem
of finding spherical separation, as defined in [Dob80]. The later problem is a version of the
lincar separability problems, which requires finding a separating hyperplane between two
sets of points, with the points restricted to lying on the unit hypersphere.

O'Rourke and Rao Kosaraju [O'R85] have shown that the circular separability problem,
which has applications in pattern recognition and image . c~essing, can be applied to solving
the digital disk recognition problem in linear time A digiial disk1s defined as a set of lattice
points (pomts with integer coordinates) which are contained inside or on some circle. Given
a set 5 of points with integer coordinates, the digital disk recognition problem requires
deterniming if § forms a digital disk [Kim84] Let S be the set of n points on the boundary

of & Let 83 be the set of points representing all pixels exterior to S, but adjacent horizontally,
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vertically or diagonally to a point in S;, of which there are at most 8n There exists a circle

which encloses S; and excludes S if and only if S is a digital disk [O'R85

Thus, the
digital disk problem can be solved in O(n'/?log®n) time on the reconfigurable mesh and m
O(log®n) time on the CREW PRAM.

In parallel applications, the input to the digital disk recognition problem may not he
represented as a set of points, but rather may consist of an n'/2 x n'/? digitized wnage
distributed one per processor on a reconfigurable mesh of size n, where processor I, contams
the value of the pixel (z,7) The figure represented by the digitized image has at most 1n'?
boundary points, at most two in any row or column. Since the reconfigurable mesh 1s of size
n, a modified version of the linear programming algorithm can solve this probleni of size n'/?
in O(log®n) time. That a modified algorithm can be designed, can easily be venfied, snce
the linear programming algorithm for the CREW PRAM, which runs in O(log’n) time
3 dimensions, can be utilized here. Supposing that the memory of the PRAM 1s mapped
onto the processors in the first column of the reconfigurable mesh, the reconfigurable bus
and the remaining processors of the mesh provide for constant time communication between
the processors in the first column. For example, if Py is required to send a value to P, 1t
can send it to P22 in a row broadcast, then to P,, in a colurnn broadcast and finally to Py m
another row broadcast. Subdividing the communication in this way into three steps ensures
that a large number of processors can communicate simultaneously using distinct subbusses
on the mesh. Miller et al [Mil88b| state without proof, that the smallest enclosing cirdle of
the points can be found in ©(1) time If all the pixels inside the smallest endosing arde

correspond to data points, then the smallest enclosing circle provides a separating aircle and

the figure is an image of a digital disk.

6.3 The Euclidean one-center problem

Megiddo [Meg83] presented a linear time algorithm for finding the mwnunum spanning endle,
which is the smallest circle enclosing n given points m [£% “This problem s alse knoven as
the Euclidean one-center problem (Meg83}, where the objective s to find a pont gy (the

center of the smallest enclosing circle), whose greatest distance to any pomnt of the set
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S = {p1, . ,pn}, with p, = (z,,3), is minimized. The point po can be characterized as

rr;in max (z, — .’170)2 + (% — yo)z,
0 T

however, by introducing a variable z, the following problem can be formulated
minimize 2
subject to 2> (z,-z)? +(w~y)? 1=1,...,n.
Because the constraints are quadratic, this is not a linear programming problem but the

constraints can also be expressed as
z 2 _2:3133 - 2yty +c+ (IL'2 + y2),

where ¢, = z? + y?. Preparata and Shamos [Pre85| stated that since the surface repre-
sented by a set of constraints of this form 1s a convex function, the method of eliminating
constraints in the 3-dimensional linear programming algorithm [Meg83] remains applicable.
Indeed, while the specifics of the two algorithms differ, the structure of Megiddo’s algorithm
for the minimum enclesing circle problem is almost identical to his 3-dimensional linear
programming algorithm Assuming that the n points of the set S are distributed one per
processor of the reconfigurable mesh or the CREW PRAM, the minimum enclosing circle
can be found i O(n'/3log®n) and O(log®n) time respectively.

The method extends to higher dimensions using the techniques of Megiddo [Meg84| with
Dyer’s multi-dimensional search [Dye86] to find the smallest hypersphere enclosing n points

i % 1n linear time sequentially, when d is fixed Therefore, the Euclidean one-center problem

d+1 n

i R4 can be solved in O(n!/?)time on the reconfigurable mesh and in O(log ) time on

the CREW PRAM

6.4 Finding the smallest separating circle

Megiddo [Meg83] showed that his method for solving linear programming problems can
be extended to apply towards solving quadratic programming problems in R3, which re-
quire nummizing a convex quadratic function subject to linear constraints, 1in linear time
O’Rourke and Rao Kosaraju [O’R85] have shown that finding the smallest circle separating

two sets of points 1n the plane, §; = {(¢,,3.) € L} and S2 = {(x,,%) : ¢+ € L}, can
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be expresses as a quadratic programming problem and hence, can be solved with Megiddo's
technique. After mapping the points into R® (see Section 5.2), the problem can be expressed

as
.. a? b?
minimize -+ S+ ¢
subject to ax, + by, + (27 + y?)
subject to az, + by, + (2} + y?)

c, e Iy,

=
>, (R

The 3-dimensional linear programming algorithin can be extended, as desctibed by Megiddo
[Meg83] for the sequential algorithm, to solve problems of this form in O(n! " log ' n) time on
the reconfigurable mesh and in O(log®n) time on the CREW PRANM If 5, 15 emipty, this also
gives an alternative procedure for finding the minimum spanning arcle [O'R85] (see section
5.2).

Megiddo [Meg84| stated that the linear programming algorithm in d dimensions can be
extended to give a linear time algorithm for the quadratic programming problem  Therefore,
the smallest separating sphere can be found in O(n!/?)time on the reconfigurable mesh and
in O(log?** n) time on the CREW PRAM as any of the required changes take only ()(d)
time in parallel.

It has been shown that finding the largest separating circle requires O(nlogn) time

sequentially [O’R85].

6.5 Other applications

Dyer [Dye86] developed a generalized sequential algorithm to solve the weighed Fuchdean
one-center problem which runs in linear time, with the constant of proportionality 3(¢'2)
The algorithm is based on the techniques presented in |Dye84] and [Meg83], and the mult-
dimensional search technique presented in [Dye86]

It should be noted, that linear programming can be applied to solving other problems,
many of which are discussed in [Dob80] Yet another interesting application, which requires

solving many linear programming problems with relatively few constraints, can be found 1

computing the dual of the d-dimensional Voronor diagram, as described i [Avi83]




Chapter 7

Conclusions

This thesis has demonstrated that the linear programming problem in R? can be solved in
parallel on the reconfigurable mesh architecture and on the CREW PRAM. The parallel
algorithm presented for solving the linear programming problem was based on a sequential
technique due to Megiddo and Dyer [Meg83, Meg84, Dye84, Dye86| which demonstrated
that hnear programming can be solved in linear time in the number of constraints when the
dimension is fixed. The parallel algorithm runs in O(log®n) time in R?, in O(n!/3log*n)
timein R*and in O(n!/?) timein RY on the reconfigurable mesh architecture. The simplified
version of the algorithm runs in O(log?n) time on the CREW PRAM. The constant of
proportionality 1s exponential in d.

This thesis has also demonstrated that the selection problem can be solved on the re-
configurable mesh in poly-logarithmic time The parallel selection algorithm presented was
based on a sequential algorithm due to Munro and Paterson [Mun80] designed to select from
a file when only a limited amount of internal storage is available for computation. The
parallel algorithm runs in O(log® n) time, however a splitter can be obtained after only one
iteration of the algorithm, that is after O(log®n) steps

Whether the runming times achieved by any of the parallel algorithms presented are
optimal remains an open question It 1s clear, however, that the speedup achieved by the
parallel algorithm, which 1s defined as the ratio of the worst-case running time of the best
sequential algorithm known to the worst-case running time of the parallel algorithm |AKkI85),

15 non-optunal  When solving a problem using n processors m parallel, as was done, the

optimal speedup 1s of (O(n). However, even in the case of the selection algonthm, which
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forms a part of the linear programming algorithm, a non-optimal speedup of O(n/ log’n)
was achieved. Although it is rarely possible to achieve optimal speedup, especally when
designing algorithms for architectures based on the distributed memory model, in which the
structure of the parallel architecture limits the flow of data, it 1emains to be seen whether
faster algorithms can be obtained for the two problems addressed 1 this thesis

A number of possibilities exist for attempting to improve the efliciency of the algorithing
presented. Since the selection algorithm views the reconfigurable mesh ¢< a hinear atay
of processors with a reconfigurable bus (a one-dimensional equivalent of the recontigaable
mesh), it is possible that a faster algorithm can be obtained by better explottmg the mesh
connections. This would have an immediate effect of reducing the running tune of the
linear programming algorithmin 2 and 3 dimensions, but not the general d-dimensional one
The running time of the d-dimensional algorithm is limited by the O(n'/?) time it takes to
pair hyperplanes and so only a radically different approach to the multi-dimensional seaich
technique employed in the d-dimensional algorithm could result 1n an unprovement

Akl [AkI85] defines efficiency as the ratio of the worst case runming time of the fastest
known sequential algorithm for the problem to the cost of the parallel algorithm, which s
the product of the running time of the parallel algorithm and the number of processors used
The efficiency achieved by the linear programming algonithm running on the CREW PRAM
model is O(n/(nlog?n)) It can be improved by a factor of O(logn) 1f fewer than n processos
are used. For example, 1n 2 dimensions, if each processor is initially assigned log n constraimnts,
the linear programming problem can be solved in the same O(log®n) time, but with efhciency
of O(n/(nlogn)), since it 1s known that the max, the parallel prefix and a sphtter can each
be computed 1n O(logn) time using n/ log n processors on the CREW PRAM [Val75, Lad8l),
Bre74].

The assumption that the nurnber of available processors can be equal Lo n, the sie of
the problem, is not a realisticone It i1s possible, that a different algornithm could be armnved
at by reducing the number of processors required, where the solution tine for the problem
would depend on the number of processors availlable Such an algorsthin shiould attenpr t,
improve the efficiency without increasing the running time  This, however, voonld require an

enhanced model of the reconfigurable mesh architecture, where cach processor couled stare
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large amounts of data. It should be noted, that in order to obtain an optimally efficient
parallel algorithm, an alternate selection algorithm would be required, as the sequential
version of the current algorithm does not run in @(n) time

The parallel linear programming algorithm presented in this thesis has achieved a sub-
stantial improvement 1n running time over what can be accomplished sequentially. The
paralle| algorithm makes use of a selection algorithm, also presented in this thesis, which
achieves a poly-logarithmic running time on the reconfigurable mesh. It has been shown that
a number of problems can be solved by employing the parallel linear programming algorithm,
including linear separability, circular separability and digital disk and that the technique can

be extended to solve quadratic programming problems.
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