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ABSTRACT

In this thesis a microdynamics theory of structured solids is
fggmulated on the basis of probabilistic functional analysis. The

theory which is developed on the principles of probabilistic micro-

{

nmechanlcéj introduces from the dnset spatial and temporal scales

relevantf;n éhe dynamic analysis. A general formulation of the micro-
dynami of a three-dimensional solid gﬁ glven n terms of an abstract
g{pam1q€l system, the analy31s is then spec1allzed to_the kinematic

s hsﬁ/be of the general state space, whereby the former ig found to
posgkss the topologlcal structure of a Hllbertlan-édbolev space.

¢
The absﬁraet dynamleal system in the mlcrodynamlcs theory 1s

X

" developed expllcltly for the ‘wé&ve propagatlon in a semi-infinite bar

of g polycrystalllne solld€w1th an arbitrary cross-section. The micr-

!

structure of the solid is taken to consist of cubic grains with rapdom
phy31cal propertléb The existence of an iﬁternal and a macfgscopic
time 1s postulated, whach permits the formulgtion of the evolution of
the wave motion first in a one-dimensional solid by means of a four
parametric Markovian operator having a seml—gfoup property. This model
of the cubic solid structure is sﬂown to be asymptotically équ1valent
to a "generalized wave equation" of the continuum theory. A more
éeneral model of the wavefront evolution for a three-dimensional solid

1s then given in terms of a sdper;martingale (parametrized by the macro-
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time) on a generalized random field. s
. r/

It is shown that }\umerical results for the wave bropaga’tion in ,

o
w

a discrete solid in accordance with the new microdynamics theory can
be obtained by the application of the Monte-Carlo simulation method. -
A comparison of these results withénown classical and random continuum

© 3
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theories is given.
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SOMMAIRE
S . Dans cette thesey la.théorie de microdynamiqrue des, solides
‘A structure organisée est formulde d'aprés les fondements de 1'analyse
?onctionelle pr‘obabili‘te. La théorie, developpée sur les principes '
-de la micromécanique probabilite, établit dés le début les échelles
. 'spatiales et temporelles qui sont pértin‘entes a l'analyse dynamigue.
La’ formulation génér‘a.le de la microdynamique par un solide; tri-dimen-
sionel fest presentée par un systéme dynamique abstréit. Enfin,

N

l'analyse est introduite au sous-espace cinématique de l'es;face

générale d'état, dont la premiérk se révéle d'étre d'une structure, .

]

topologique d'un espace Hilbert-Sobolev.
) Le‘ systéme dynamique abstrait degta théorie de la microdynamique
est developpé sans forme explicite pour la propagation des ondes dans

1

) \‘ un solide polycrystallin avec une section arbitraire. On attribue a

la microstructure du solide' des grains cubiques avec des propriétés

} phy51'ques aléatoires. L"existence d'un temps interne et d'un temps
macroscopique est postulée, ce qui permet la formuiatlon de 1'évolution
d'ondes, touf: d'qbor‘d'danq un solide uni-dimensionel grace a un opérateur
Markovien possédant la propriété d'un semi-gr‘oﬁpe. Ce modéle d'un
solide & structure cubique se révéle d'étre équivalent & 1'asymptote
de 1'équation ;énér‘alisée' d'onde de la théorie.d'un continu. Un modéle
plus géngrale de 1l'évolution du front d'onde, dans un solide tri-,
'dimensionel, est exprimée grice a ‘une sur-martingale (avec le macro-
temps comme parametre) dans un champs aléatoire généralisé.

s .

On a démontré que les résultats numériques pour la propagation

( des ondes dans un solide discret en accord avec la nouvelle théorie
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de micr'odynamique,'peuvent étre obtenus en appliquant ‘la méthode

. L v
de simulation de Monte-Carlo. Une comparaison entre les résult
d

|
connus de la théorie classique et de ceux de la théorie aléatoi

du continu, est fournie.
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CHAPTER 1

REVIEW OF THE ANALYSIS OF WAVE PROPAGATION IN SOLIDS

%
1.1 Introduct:&n

With the advance of science and technology in the 19th
century 1t became increasingly obvious, that the rigld body concept
was not a sufficient basis for the mechanical models of matter. It
was recognized, that dynamic effects become important, 1f the
cha;acterlstig time of loading at any given point of a finite dimen-
sional body, 1s of the same order of magnitude as the ratioc of the
largest distance from this point to the propagation velocity of the
disturbance (load). The latter quantity remained rather undefined
unt1l 1t was formally established on the assumption, that an elastic
solid can be treated as an elastic "aether". Indeed it was the notion
of a solid being an’ "elastic continuum”, that not only initiated the
wave propagation analysis, but also led to 1ts development 1n the

/form g} a rigbrous mathematical theory known as "elastodynamics".

Great discoveries in physics at the end of the 19th century
clearly indicated that all mafter (solid, liquid, gaseous) 1s
composed oﬁ)partlcles. The very large number of particles of whiach
a solid medium 1s compased justified an 1dealization, that led to
mechanical models on the basis of a "continuum". Since mechanics
1S a rigorous science, 1t had to be built on mathematical principles

and concepts. The calculus of contipuous functions was then the main

body of mathematics whilst the discrete functions analysis has been

developed only i1n recent time. The 1dea of a physical quantity

- _l_



2 <
as a continuous function of the space cpordinates accorded many
advantages 1in the past and continues tggbe important to the presént }
time. This 1s reflected in the more recent advances in differen- \
tiable manifold theory.
Although continuum mechanics generally provides a very ‘{;:"

successful tool in the study of the mechanical behaviour of materials,

1t has been recognized 1n the last decade, that 1t supplies only a

first order approximation. This 1s so, because many phenomena ,
encountered 1n engineering and applied sciences deny the applicability :
of a continuum hypothesis .for the inclusion of the great variety of

microstructural effects. Although the physical properties of materials -

have been studied extensively from an experimental and theoretical

point of view, a rigorous formulation of the mechanics and especially
of dynamic problems, that would include the existing microstructure
evades us ;llll. Slnce’the dynamic case 1s the most general part of
me?haﬁlcs, the availability %ffsuch a formulation 1s crucigl 1n the
study of a multitude of technological and applied science problems.
Hence, such a formulation hag been the goal of most approaches 1in

the past two decades. Although many of these attempts go Seyond the ?
classical continuum approach, they still rely essentially on the

continuum hypothesis. Several other theories have been tried on the

principles of statistical mechanics, but the ensuing analyses do

not reflect the discr;teness of real materials and more importantly

fail to establish "evolution laws". A braef account of these main

trénds 1n the mechanical wave propagation theory will be given 1in

the following sections of this chapter. This will then éupply the

motivation and the layout of the present thesis program.

A
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1.2 The Elastic, Isotropic and Homogeneous\ﬁolld
N

As already mentioned earlier, the elastic-light propagation -
theory 1initiated the mechanical wave propagation theory, which we
now recognize as the isothermal linearized elastodynamics of a
homogeneous isotropic medium. The history of these developments as
well as the formulation of the governing equations and the tHen-
avallasle methods are given in Love's well-known Eg%atlse (1926).
Further research on small deformation dynam;cs of an elastic solad
has mainly Fontlnued on the same assumption of a homogeneous isotropic
medium. Hence, the analyses were primarily concerned with the mathe-
matical methods of solution already known from the cla531cal‘formu—
lataion.

Kolsky's book written thirty years ago becamé a classical
exposition of the theory and experiments on stress waves 1in elastic
and anelastic sof&ds. The state of the art was then the differential
and integral calculus. The most advanced analytical tools were
restricted to the use of the complex vérlable teéhnlque and the
integral transform method applicable to the solution of two-dimensional
and three-dimensional problems, respectively (see also the Chapter

on "Dynamical Problems" by Sneddon and Berry in Encyclopedia of

Physics, 1958). A measure of the progress that h made later

in the analysis of wave propagation, can given by a number of

reports, reviews and conference proceedifhgs such-as Sneddon and

H1l1l (1960) and Miklowitz (1966). Thys we can cite Lindholm (1968)

that "the effort i1n the sixties was expended towards the generation

{

of both experimental data onkthe dynamic mechanical response of

~

H
i
i
3
1




\

materf;:;:;g well as the formulation of realistic constiéutlve
theories". Although much attention was devoted at that time to
dislocation mechanism as a means of explaining other than purely
elastic dynamic phenomena, the theoretical models including micro-
scapic effects were crude, based on Epe continuum hypothesis and
deterministic.

A co%prehensive study of wave propagation relations from
a deterministic cgntlnuum standpoint exclusively, along with a great
number of analytical techniques 1s given by Achenbach (1973), wvllst
a more rigorous mathematical presentation of elastodyngmlcs 15 due
to Eringen and Suhubi (1974).

The above remarks point to the developments in the theory of
wave Propagatlgn 1n elastic 1sotropic homogeneous SOlldS.’ Hence,
at this stage we give the fundamental egquations governing the motion
of such a body: ‘
- thg stregss equations of motion 5‘j,j.+ S’ft = gl.LL (1.1)
- Hooke's law _ ' Sij=A£kkd’q +Z}L E;j (11.2)

- ! R R T
- the strain displacement r%latlons EH =3 (u‘U + uJ“) (1.3)

Substitution of relation (1.3) into (1.2) and (1.1) yields the well-

known displacement equations of motion as follows:

pugi + (Arp)wji +ofe =g | - (1.4)

" which can subsequently be decomposed into two wave equations governing

the longitudinal and transverse wave motion 1in such & solid,

respectively,

2 |
V~f=5:l-]0, . (1.5)

S
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Vl‘!"’c’i{% \l;’ - (1.6)"
where we have assumed that Y",’ ’{0 and ‘f’ and \V represent
A .

two wave potentials. i .

‘These rel;tions (1.5, 1.6) were usually subject to adVanced‘
calculus techniques mentioned before. However, only recently
congiderations have been given to more rigorous methods of sglution
of three-dimensional problems, whereby the modern tools of functional
analysis and variational calculus are more Fu}ly employed (see for

)]

instapce, Stakgold, 1979).

1.3 Bebaviour of Ani;%troplc Non-Homogeneous Solids

Although some media can be modelled successfully in terms of
the limearly elastic isotropic homogeneous solid, a growing range of
media encountered in engineering sciences require the development of
less restrictive mechanical theories. The earliest studies df this
type of media date bagiito the nineteenth century (see also Love 1926),
when the foundation for the wave propagation analysis in anisotropic
homogeneous bodies has been established. However, further developments
in the field took place only after the second World War; these

studies can be generally classified into two major groups, namely

. . . . ./
wave mechanics 1n crystals and wave mechanics in macroscopic bodiés.

The first group, 1.e. the wave mechanics in crystals, encompasses

two kinds of approaches, the deterministic and the probabilistkc

~one. The deterministic approach is based on the classical work of |

A e Ambonan S st b o A e

P
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Brlllouiﬁ (1953) and is directed mainly at the Qnderstandlng of the
passage from the acoustic to the optical lattice vibrations (see for
instance Smith (1961)) and the détermlnatlon of the "effective elastic"
coefficients fﬁr crystals. Pn the other hand, the probabillstlgn
approach ;s important in the analysis of crystals with imperfections
(see Chow and Keller, 1972). We have to note, that these wave
mechanics models) are good at the Erystal leve}, but do not apply to
polycrystalline solids. An orlginal outgrowth of lattice dynamics

1s the non-local elasticity thg%ry (see Eringen, 1972, and Kunin, 1968)
which, however, omits Ehe intermittent scale in the passage from the

atomistic to the global level, e.g. considerations of dislocations,

7 '
grain boundaries, etc.

The second group of studies on wave propagation in anisotropic
non-homogeneous solids deals, 1n general, with macroscopic media that
have. a random mlcrostructure."Inﬁerestlngly, from the mathematical

point of view, two major trends can also be distinguished: the

> deterministic and the ptfobabilistic one. ﬁhq deterministic approach

1s based on the assumption, that one can safely take ensemble averages
over the random microstructure in order to establish the mean field
response (see for instance Datta, 1977). Why this approach 1s
fqugmpntally erroneous is dealt with in Section Z.i of the present
thesis. In the probabilistic approach one can dlséingu1sh two kinds

of thearies depending on the type of the model chgsen, loe.s eontinuous
random med:ia and discrete random media. Theories of wave propagation
1n continuous randomqﬂedlé have been 1nitiated by the work of Chernov

(1960), and put on a firm mathematical basis by Kempé de Fériet

during the sixties (1962 and 1966). A number of mathematical techniques

Wi BT
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developed_in this area comprise especially the wave formalism and

the ray formalism (Frisch, 1968). The latter approach 1s based ;
on geometrical optics and applies to the‘case of very short wave-
lengths only. It gives the ;tatlstlcs of the rays and the wave
fFluctuations, but not their evolution 1n time (see also Keller, 1962),
The formulation of the wave motion, that applies to the problem/when
the wavelength is larger than the correlation range of the random

inhomogeneities, usually contains all the random characteristics of

e M e e

the medium 1n the index of refraction which enters in the classical

Helmholtz equatloh. Wave propagation in continuous random media is-
a rapidly developing field, since it can be used for a number of
problems and }s particularly successful 1n the analysis of the
scattering of sound waves by turbulent gases, scintillation of stellar
images and scattering of waves by tropospheric turbulence (see
Uscinski, 1977). However, 1t 1s essentially a phenomenalagical :
approach and hence not appropriate for the present study. .,
On the other hand, the mlcroécoplc épproach 1s adopted 1n

the wave propagation theories for discrete random media. Since 1n

S a e AR b e e N Aew

this case the physical properties and field quantities are described
by discontinuous random functions, it is pecessarily a much harder
approach than in the continuous random problem and thus Presents
formidable mathematical difficulties. Various existing theories are

i o

usually restricted-to the problem of scattering of a wave by the
W

randomly distributed inhomogeneities that are usually embedded 1in

a continuum matrix and therefore referred to as multiple scattering

problem. Almost invariably these thegries rely on the averaged }
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stat@gbiééi field quantities and make a passage to the continuum
in order to use the classical wave equation (see Ishimaru, 1978,
Uscinski, 1977, and Sobczyk, 1976 ). The successful applications
of these theories include the molecular scattering of light, théﬂ:

theory of dielectrics and problems associated with radiative transfer.

. To the best of our knowledge there has not been developed a strictly

probabilistic theory concerning the wave propagation in a discrete
random medium and in particular for the mechanical wave propagation

1n such media. It 1s the main aim of this thesis to develop such
t 3

——

a probabillstléRzﬁEbry.

4

1.4 Motivation of Research, Layout of the Thesis

The brief review of the theories of wave propabatlon 1n solids

given above 1indicates that the ex1sf3ng theoretical models are of the

phenomenological type and take at best, only part of the true structure

of the solid into account. It becomes apparenﬂhkﬁpat Fhere 1s a need
for a more comprehensive theory for the dynamical behaviour of solids
which have a discrete random microstructure.

The proposed theory in this thesis, being the first one of
this nature, will restract its scopeéto the 1sothermal and.small
deformation motions with the primary goal of the inclusion in’ the
theory of random micro-scale effects. These micro-scale effects shall

o
comprise the non-conserva%ive grain boundary phenomena and the

conservative {elastic) intra-grain phenomena. The basic considerations

that are given at the beginning of Chaptér II will be adapted to a

microdynamics theory on a rigorous mathematical basis. Thereafter,

-



we give a discussion of the essential properties of the micro-
structure of a solid and the statement of the fundamental problem

of this thesis. Subsequent to the three-dimensional formulation

of the probabilistic micro-dynamics in terms of an abséract dynémical
system we specialize the analysis to the kinematic space as a
probabilistic function space.

Chapter III is devoted to the determination of the transition
operator of the abstract dynamical system. This is accomplished after
the existence of an internal and a macroscdpic time has been postu-
lated. The evolution of the wave .propagation process in the one-
dimensional model of the solid 1s formulated on the basis of a four-
parameter transition operator on the Markov random field. Subsequently,
a general stochastic model is developed for the wavefront propagation-
in the three-dimensional medium, where the interactions between
contiguous microelements of the structure are represented in terms
af interatomic potentials. Finally, an asymptotic eguivalence of
the proposed probabilistic microdynamics theory to the deterministic
continuum theory 1s established, whereby 1t 1s shown that the average
time of the random wave propaéatlon process becomes 1i1dential to the
maéroscoplc time.

o Chapter IV 1s devoted lo the comparison of the clasélcal
theories to the microdynam;cs theory. The results of therlattef are
obtained through the Monte-Carlo simulation hethod and reveal some
interesting characteristics.

Concluding remarks with some proposals for future research

and comments on the contribution' to tHe theoretical mechanics by
6

~

the author of this thesis are given in Chapter V.

.
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MICRODYNAMICS OF STRUCTURED SOLIDS

4

2.1 Introducgion: Determinism versus Probability

»

It Has been pointed out 1n the first chapter that there is a
need for a general theofy of thg.dynamlcal behaviour of solids
posseésipg a discrete microstructure. The main objective of thas
study is the formulation of the relations that govern the dynamic
response of a discrete medium such as a polycr;stalline solid, althoug;\

1t 1s expected that the proposed theory might readily be modified to

model other classes of structured solids (e.g. fibrous, composite).

\4
\

Furthermore, 'the attention 1n this work ls focused on the transient
wave propagation, which 1s considered to be of fundamental importance
in the analysi$ of the steady-state motions that océhr later.

It is wel}] known that the microstfucture of any solid exhibits
random configurational and physical characteristics, wh;ch manifest .
themszlves through the arrangement and .properties of individual
microelements (e.g. crystals). It is therefore a matter of logical
deduction to conclude that the field quantities which describe the
mechanical states of the medium, will be random functions. Hence,
the evolution of theaﬁhysical processes 1nvolved is to be treated
1n a probabilisite rather than deterministic manner. An approach of
this kind should naturally include the finiteness of the microelements
with its relatioq to thexagérall size of the macroscopic body domain,

as well as the interaction effects at the internal surfaces in the

medium. Thus a probabilistic problem in mechanics can be stated in L g
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a very general way as folf%Ws: T s

find a solution of the random equation

\/.\R(w) x(t) = y(t,w), : L (2.1)

3

in which y is a known function, T(w) a random operator
from L% ¥ into Y and where JL is a probability space

and X and 'S are generally Banach spaces. .

The prevailing view amongst most rééearchers in engineering; and applied
sclences in general, and those concerned witb wave gotion énalyses, .
in particular, is that one can work with the average values of the
field quantlties.. This implies that the random quantities in

equation (2.1) can be replaced by their expected values and thus solving

the deterministic operator equation only, i.e.:

(TX(x(t) = y(t) : ‘ @,

Sy, ,
However, it 18 ane of the fundamental facts in the theory of random

equations, that the expected solution of equation (2.1) and the solution

\

of equation (2.2) are not eqUal,h;xgept for simple forms of 1.00) or

y(t,w) » so that in general:

E{x@)] # (x(t) . | ~ 2.3)

-

For a detailed discussioq\of this and.related aspects of random fixed
point theorems see for instance Bharucha-Reid (1972). ,

The above observation explains why the results obtained from
the classical deterministic wave equation can not yield desired -

results, even if one is concerned with the average values only.

* Interestingly, the averaging procedure symbolized by equation. (2.2)

\
!
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1nvolves usually the smearing” out of . the 1ﬁternal eFFects between
the mlcroelements unlformiy throughout the entlre medlum whlch further
restrlcts the phf%lcal theory.

V2

It is important to p01nt out at this stage, that the\approach

‘taken in the-random continuum theories, discussed ia\sectioﬁ 1.3 and

subsegx\ntly in 4 v of thls thesis, preserves the randomness of the -
medlum to a certain extent by admlttlng the physical characterlstlcs
and state variables as random functions, that are,contlnuous in space
and hgnce excluding an appropriat; treatment of the effects at intetnal

surfaces. 4

A theory which'was formulated from the outset to~Include the

4

essential discreteness of a structured solid along with “1ts random

properties in the global governlng jations is the probabilistic
mlcromechaqlcs theory concej d by Axelrad 1963. This random theory

of the mechanical behaviour of discrete media has been successfully

4

gpplled by Axelrad and his coworkers to a number of problems of complex

and uiverse nature, and especially to quas@—séaﬁic phenomena in podty-
crystalline and Fibrous materials (see Axelrad, 1978 and references
tﬁg%e). This theory has also been used in a somewhat modified form
to model fratture and fatigue phenomeua (Provan, 1977). However, a @
rigorous generalization to the dynamics of such solids is attempted

-

for the first time in thé present study.
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2.2 Fundamental Concepts, Physics, Wave Characteristics

)

r

2.2.1 Postulates of probabilistic micromechanics

Postulate 1:

¢

It was pointed out i1n the foregoing section that the probabi-

listic micromechanics theory naturally allows for the inclusion of

the discreteness of a solid along with 1ts random character in the

derivation of the governing equations. This theory 1s based on four
fundamental postulates (Axelrad, 1978 and 79), which we briefly

re~state here and comment upon 1n light of their relevance in the micro-

dynamics theory.

Three measuring scales are used in which the smallest refers
to a "microelement" of the structure, an i1ntermediate one called
"mesodomain'' containing a statistical ensemble (Gibbsian) of micro-
elements, and finally a finite number of non-intersecting mesodomains

that form the macroscopic material body.

Postulate 2:

All field quantities pertaining to a microelement are

random variables or functions of such variables.

Postulate 3:

Stresses, strains, rates of strain, etc. are generallzed 80
that the response of a microelement includes interaction forces bigyeen
elementg. Such forces are derivable from a bond or 1nterac§)orr’/

poteﬁtlal. s \
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Postulate 4:

A material functloggg,or operator 1s used that caontains 1n
i1ts argument characteristics of the specific. material under considera-

s

tion, giving a connection between stresses and deformatlonsb

The above postulates provide a basis for the ensuing mathematical
formulation and shall be referred to at various steps 1n this chapter.
[t 1s however 1important to point out at this stage that 1t becomes
necessary to 1ntroduce ome more postulate for the dynamic theory
regarding the "multidimensional time concept". We defer the formulation

o

of this postulatg unti1l a later, more appropriate stage.

2.2.2 Basic physical considerations

It 1s well known from solid state physics that all sound waves
are composed of phonons, 1.e. quanta of energy. However, considera-
tion of a mechanical wave from a quantum point of view 1s only

H
necessary af a very high frequency range, which means that a continuum
-

approximation for the perfect crystal lattice 1s valid for frequencies

below 10ll + lO12 Hz. This roughly means for wavelengths largef/lhan

-

10—8 m (see Klftel, 1968). Slncé the acoustic range covers wavelengths

from 10_8 m up, which may be less than the- typical crystal size

in a polycrystalline solid, we can, 1n general, distinguish the

following three cases: ~
a) k < d - very high frequency
b) A= %d - - high frequency

c) A>*d . - low frequency

FOPUERPNIPIV R
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where A 1s the wavelength.

Considering that the crystal 31ze\ “d may 1n general vary 1in
polycrystalline solids between 0.1 mm and 5.0 mm, and for & wave
propagation velocity between 2 =+ 7.103m/s, elementary calculations
show that case b) will correépond to frequencies of the order of lD‘5
to 107le. We note that ‘thls high frequency range 1s characterized by
a strong scattering. This phenomenon has been well explained -By the
very fact, that the wavelength is of the same order as the scatterer's
si1ze (see Mason (1958)). Thus by choosing to work i1n the so-called
low frequency range, 1.t. case c), we still cover most of the frequencies

normally encountered in.mechanical engineering applications.

Following the above discussion we now give the following

definition:

Definition 1:

T

A single microelement & (grain or crystal) 1s taken as an

elastic continuum which 1s characterized by:

« ’ b
- two elastic constants, e.g. E (elastic modulus)
and 4G(shear modulus) o > constant
- 1ts mass density “g i throughout
/

the body of of
- 1ts geometric shape and size in a 3-D space, .

all of which are random and described by their respective

distributions, as for example P(‘g)

-

A two dimensionaf view of typical microelements within the micro-
structure of the solid 1s schematically shown in Fig. 2.1. It 1s

seen that the interior body domain of the crystal & 1s denoted by

o b e

R A P, S5 3T
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“'j) , which 1s a simply connected, open subset of the |R3 -Euclidean

space*. The graim boundary b“b 1s a two-dimensional surface 1n

]R3 and the entire bod;/ domain of & 1s JB :‘1) v D“D . We

f{onc ude that according to Definition 1 the properties of a structured
soJid are described by random functions with discrete realizations

(diecewise continuous), which, with reference to Postulate 1, are

considered to be space homogeneous within a certain mesodomain.
/

%

INTERIOR DOMAIN |

T

FIG. 2.1 PLANE VIEW OF A MICROELEMENT IN A
POLYCRYSTALLINE SOLID.

. - )
o, ‘

The choice of “D as an open set in the tRs -topology is arbitrary
since no physical reality corresponds perfectly to the notion of a
point belonging to the boundary of the grains. '

i
'
3
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As was mentioned earlier, the atteniqulln this work 1s
focused on the trangient wave propagation, whereby a speciflc initial
form of the given pulse does not have to be deterministic, since the
whole analysis 1s conducted 1in the languége of probégillty theory.

We recognize, however, that due to the random physical propertaes ¢E,

d(3 and “? and the random geometric shape of the microelements, a

" multiple scatter of even the simplest 1nitial pulses will take place

throughout the whole microstructure. It 1s evident that the random
geometry of the grain boundaries will give rise to the rather compli-
cated phenomena of waves splitting at these interfaces and later
overlapping 1nside the microelements. However, 1t 1s considered that
the random geometry aof the BﬁD surfaces represents only a SeconAaly
effect with respect to the role played by the randomness of the
physical properties. Hence, 1n order to make an 1nitial formulation
possible, ne simplify the problem by assuming all microelements to -

have 1identical shapes of a cube (dxdxd) and to be arranged in a

.perfect lattice-like structure. furthermore, with reference to fig. 2.

we adopt an external reference frame (xl,xz,xj) with its axes parallel
to the edges of the microelements and consider propagation of the
plane waves whase propagation vector 1s parallel to Xl, X2 ar X3,
respectively. Although 1t 1s evident, that a perfect plane wave
generated at any boundary of Ehe macroscopicC body domain will
1mmédlately begin to loose 1its perfect form due to the interactions
between the microelements, 1t will contlQ:e to propagate as a macro-
disturbance i1in the same direction for a considerable time before

diffusing completely throughout the entire body. It 1s the evolution

of such a disturbance, which 1s of main interest to us in this thesis.

17
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FIG. 2,2 CUBIC STRUCTURAL ELEMENT ,
A

\
As 1s well known from elastodypamics (Achenbach, 1973),

!

in the case of a plane wave propagation (longitudinal or transverse)

~

we have for the occurring deformation the following relation:
= on - : (2.4)
%(é)t) {(5 B Ct)g ) ?

which is a general 3-D space-time description, and where

A 1)

P 1s the direédtion-of propagation, 1i.e. a unmit vector, and

~

¢ 1s the direction of motion, (also a unit vector);
~

the propagation velocity 1is:

M mmen A ¢ e e — =




19

¢ =C, - longitudinal wave, when p]le
T (2.5)
C=0Cp- transverse wave, when B_Lg

Obviously, the representation in (2.4) 1s 1nadequate for
the microdynamics theory and can at best be used at a micro-scale only.
Indeed, we will now study the wavé propagation across the inter-
crystalline interfaces, where specific phenomena necessitate the
introduction of new field quantities not employed in the continuum

mechanics theory.

2.2.3 \Wave propagation across the intercrystalline boundaries

It 1s a well known fact 1n metal physics that the presence of
many grain boundaries in the polycrystalline solid increases 1its
overall strength on the one hand and causes an energy dissipation
on the other. In general, grain boundaries are best considered as
regions of "bad crystals" (Martin and Doherty, 1976, and Chr;stlan{

1965 ). However, thefe 1s still little known about them, and in
particular about their behaviour under dynamic loads. [t appears
therefore that a possible approach is to generalize the kinematic
model for the quasi-static interactions developed earlier by Axelrad

and Provan (1972), which is based on Bollman's geometrical theory

3

of coincidence lattices (1970).

Figure 2.3a presents the kinematics of two contiguous .micro-

elements o and P under the action of a general plane wavé containing

both longitudinal and transverse components, where the propagation

vector 1s paaellel to the Xl axis. As 1é’>kyal in miéromechanlcs, a

[
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local c)oordinate frame (Cartesian) 1s fixed at the centre of mass of

. each crystal (see Axelrad 1978). The internal and surface deforma-

tions are describable by the 9" and Ié.s vector fields, respectively.

This distance between the grains « and P 1s denoted by ‘pé in the
%

undeformed configuration and by pé’ in the deformed one. It 1s seen

that the-deformation 1n the grain boundary can be expressed by:

d'pd:ipJ'_dﬂA (2.6)
and where “Pé 1s also
2 .
“Pg = Pyt oy ) (2.7)

Thig distance has been taken as the relative displacement between two
"coincidence cell points" at the surfaces of the crystal lattices of
both grains a , B (F1g. 2.3b). On the assumption that at certain
points within surface area dz perfect bonding exists, the: initial
thickness of the grain boundary will become 1identical to the inter-

atomic distance at equilibrium F , 1.e.:

a ] =n : (2.8)

which corresponds to a minimum potential energy between the atomic
layers. The relationship between the potential energy ¢ and force

F at a distance r 1s given from physics by:
=TT (2.9)

1n the case of a conservative surface effect. The nonconservative

contribution can be assumed to be representable by a rate dependent

[3

""dissipative potential", qiving a dissipative surface force:

?

T b At e

e et b
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F, = —3—43- ’ ‘ (2.10)
JUIN ] 4

where T here 1s a time rate of change of the bond distance r 1in the
boundary zone between 2 coincidence lattice points in perfect
bonding.

We see that the total surface interaction force between two

coincidence cell points can be expressed by:
= +
.E ,Ee fd ‘ (2.11)
This force 1s a discrete quantity since the both component forces
as given in (2.9) and (2.10) are also discrete quantities. Assuming
that. there are N interatomic bonds per surface area dz of the

boundary zone between two cubic crystals « and p , 1t follows that

on the average the surface interaction force 1in this zone 1is:
o
Pf = N-f (2.12)
Furthermore, on the assumption that the bonds are uniformly distributed

1n space, we can obtain the surface traction at a point on the grain
boundary surface by taking a limit in the Ceuchy sense as follows:

= «p I
ﬁl’ = lim LN : (2.13)

Asa»p Bs d?

According to the Definition 1, the forward going plane wave

1n the crystal d. may be described in the continuum sense (see relations
)

(2.4) and (2.5)) as follows:

“u (X, t) = ${Xi-%t) (2.14)

where the propagation 1s assumed in the positive Xl direction as 1in

Fig. 2.3a and the direction of motion may either be e - longatudinal
. Fd

v
or e.r -transverse wave. We shall later find it more convenient to
~ .
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develop the stochastic theory in terms of wave velocity vector, 1.e.

B Db bk i S 6

the deformation rate, so that we can also describe such a plane

wave as follows:

o

“U = Ba_t -F(X,-“ct)g = -F(X,—“ct)g =%q, (2.15)

This wave will be 1dentified with the i1ncident wave “’g.i . The wave
will traverse the microelement & 1n a certain finite taime, which ’
1s embedded in the real time. To clarify this, we use the following

definition:

i
i
5
i
|

Definition 2:

ob
The sojourn or passage time 1s the micro-time “'L'cl-{rdg (2.16)
of passing of a wavefront through an element o ,where “d 1s

the size of this element 1n the direction of wave propagatmnm

and *c 1s the wave propagation velocity.

4.
It 1s assumed that the probability distribution -of the random variable
*T 1s obtainable from appropriate experiments on single crystals.
From the causality pr1nc1ple¢we know that a wavefront incident
upon an 1interface between two crystals & and P will produce a

reflected wavefront (into o ) and a transmitted wavefront (into p ).

Both these wavefronts are directed away from the interface, so that:

L3
%y =«9(X'+°‘ct)~e’ (a)
(2.17) v

Pa, =h(x,-Ftle - (b)
It is apparent, that in the above relations, the amplitude functions
g and h are unknown and undetermined. It becomes necessary therefore

'1n the analysis to introduce two conceptually new coefficients, that
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C will link the above relations with the actual incident velocity 1in,

the crystal . Thus, we give the following definition:

Definition J:

’ 1'
, i L,
The reflection coefficient C’r = ;‘f“ y
P%i
’ df U
The transmission coefficient C = ._""‘3.' ,
tr 4.
“i
a [ A o, . .
where %’i. ; U, and W,, are the incident, reflected

and transmitted wave vectors, respectively.

It 1s evident, that due to the random physical properties of
the microstructure these coefficients will be random functions of the
coefficients and it becomes necessary to determine their explicit
forms for a given medium. Whilst it is assumed that the probability
distributions of Cr and Ctrare obtainable from appropriate experiments
on bi-cryst\als, we make here ar; attempt to derive them analytically.

Since a connection between the wave velocities 1in contiguous
crystals «,p and the effect of the presence of the grain boundary

1s sought, 1t 1s important to note the .relevant kinematic condition,

o

- 1.8.:

Pis - “3f = “fd, (2.18)

”~ ~

" where the surface velocities are respectively

i ‘o (2.19)
P?&‘ = P,E"tr * r (b)

Introducing the above into (2.18) and making use of Definition 3, we

obtain the following important relatian:

ket a e,

4 ah

B wHrtarts %
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g = (0, +Co-1)=a; ) .(2.20)

t

In order to eliminate Cr from the above we now invoke the "stress

condition” of surface forces inZhe boundary, i.e.:
“5S = PGS (2.21)

where the surface st@ses are given in terms of the stresses involved

in the travelling waves, i.e.:

“E“-. dgi +5gr | (a)
Brs (2.22)
g = Pg';g’ . (b)

It 1s known from elastodynamics that for the plane waves travelling

in the Xl direction the components of the stress tensor are related
to the components of the veldcity vector in the following way:
. - \/ ’
II 5, =~ pe, %y in the longitudinal motion (2.23)
. .
anci )
i o ot - -
1in the transverse motion (2.24)

e
Thus returning to (2.21) and employing (2.22a,b) we can.write, in

a “ I

general, that:
"‘g “c":l; + “g ol “ar - PS: Be Pf*u . (2.25)

Making use of Definition 3 again, we obtain a relation between the

transmission and reflection coefficgents as follows:

(= XCtr‘l ' (2.26)
where o, 8 . ’
X = -;g?—;%- (2.27)

e U RIS £ o ma ¢ aimm
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18 referred to as thenlmpedance ratic. We note that X is a new random

i variable whose mean is equal to unity if it is assumed that the statistics

o

of the physical /:»roperties are space homogeneous. Eliminating C,. from

. g
(2.26) and (2.20) we arrive at a key relation between, the transmission
coefficient, the incident wave velocity and the grain boundary displace-

ment rate, i.e.: ' ‘ «

GF' - & . _ i ‘

@gl = [Ce, (X+1) =2] (2.28)

. . Fd

It is important to note that “’é in the above form is directly related
to the t1rr;e rate of the bond distance r through some kinematic
condition: b

' 4By [ or ] ‘

=. Pl = -4 SO, (2.29)
4= (1] = g1
¢

The above relation indicates that r 1s varying in the "microtime tm'!,
which is a time scale i1nvolved 1n the interatomic phenomenon. In

general, although this microtime tm is embedded in the real time t,

the phenomena taking place 1in tm are characterized by' very high

14 - 1015

frequencies (10 Hz),“which is in contrast to the passage

R 5 ¢

. «
time ~ T of a mechanical wave through a microelement which is of
L

the order of 10-% = 10%. From equation (2.&9) we see that ‘pé .
is also taken with respect to T, , so that:(2.28) implies that (g,

is a function of the microtime tm, vizrs

Cir = C,, (tm) S | (2.30)
It follows then, that in order to determine Ctrfmm the relation

» "
(2.28), ,one his to determine the long time behaviour of d'pd k- -ast—é .
"~
. m

faut

» Thus, one- has to egtablish the variation of the bond distance r on




27

the real time scale t first, and only later infer the functional

form of Ct, .

Thus from equation (2.29) we have:

AN

ar oo [upe
Tl (**d)

which upon substituting (2.28) becomes:

aaTr; = ?-'{‘&{ [Cfr (X”) "Z]} (2.31)

In general, the component of the surface stress PE’ which 1s relevant

r~

1n the particular type of wave motion 1s related to the sgurface

d
traction ’I in the (&PB ) boundary as follows (see also Fig. 2.5

on page 31) v

L
Ps‘: = PICOS ("I,‘P‘d) , k‘|,2‘3, @ (2.32)

Making u% of one of the relations (2.23) or (2.24) for the transmitted

wave and fe;alllng (2.13) we can wrate:
~(. %y, Pobf “PT-Co ("PT “Pd) = NF"-COS (“’T “Fd}
tl’ uki 9 C = s ~ ) ~ -d1- ~ b} ~

Substituting Ctr from the above into (2.31) we obtain the general

equation governing the behaviour of the bond distance with respect
4
to the microtime tm y l.e.3

dr ?P-'{“"u[ —NF'C“(“’I,”QL)(X”) _z]] (2\.3;)

dtm ‘dk' P? B dt ‘
‘ dr
It 1s seen that the force F depends on I and ?-f—,; according

to (2.9) and (2.10). Further (2.33) represents an autonomous nonlinear

o

differential equation of the first order. Thus, 1n order to determine

ik et s T

T
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the glcbal beﬁav1our of r on the real time scale t one has to consider
specific Forms'of the conservative and nonconservative parts of the
potential wnder the specific type—of wave motion.

The elastic contribution 1n the grain boundary zone can be
taken generally (applies to face centered cubic, body-centered cubic

q

and other crystal structures) as a Lennard-Jones potential, 1.e.:

_ I/ 12 FAé h .
=4 [(B)*- (BT, & =us, @ -
where F, 1s the zero energy distance, 1i.e. ¢ (r, ) = 0 (Kittel, 1976).

Hence, it follows from (2.9) that:

A A :
Fe24el2ly - B ] (2.35)

The rate ‘dependent dissipative potential 1s assumed as
negligibly small 1n the present model, so that according to (2.10)
the dissipative surface force 1s negligible too.

For the plane wave propagation in a cubic micraostructure,
which 1s assumed here for simplicity of the analysis, we can recognize

four cases of interaction of a wave with the boundary. Thus with

reference to Fig. 2.4 we have:

~
case (1) L-wave propagating normal to boundary

case (2) L-wave propagating parallel to boundary
case (3) T-wave propagating normal to boundary

case (4) T-wave propagating parallel to boundary

It 1s seen that a similar kind of motion is involved in cases (1) and .
(4) (direction of motion normal to the boundary), as well as 1n cases
(2) and (3) (direction of motion parallel to the boundary). However,

only cases (1) and (3) represent propagation of a given wave across
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the grain baundary, which 1s the subject matter of this section.
Hence, we shall .now consider these two cases separategly, assuming -
that .the results will be equally indicative for the wave propagation

parallel to the grain boundary, 1.e. case (2) and (4).

(A) Motion perpendicular to the boundary (B ):

The relative displacement between atomic surface layers 1s
o X
only the difference between the 1initial thickness ﬂé in the
o
undeformed configuratron and the thickness &{ in the deformed one,

1.e. following (2.6) and (2.8) we can write (f1g. 2.5a)
. -
pg - dﬂJ’_‘dpA e r_ro (2.36)

It follows then that the rate of change of ?@é.ln the microtime 1s

simply: ’//////d

d*H

- dr ' (2.37)
dtm dtm . ]

Noting that the stress condition (2.32) takes the form of:
b= T

and substatuting (2.35) and (2.37) into (2.33) we obtain: A

y
ar .« [_________-(7(-+l)N zl,g(ff’-m— -F;—) -Z] (2.38)
. dip, i uaipg Pcd‘ Pi3 r? .

A global analysis of this nonlinear differential equation can be
avoided in the first approximation, 1f we note that in case of the
external forces acting along the axis of the elastic interatomic bond,

the response time will be very short on the .tm -time scale. Thus,

the bond distance r will vary extremely fast on the real time scale
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( remaﬂéj;; around a certain constant value very close to the equili-

brlum;\hgnd distance, so that the expected valgi/}s given by:

’

J
/(-rLE{r{tm)}‘%' f — (2.39)

(\ijencg, we may conclude that .

+ t'm

Af_ = [ _l. =
~ E{ dtm} -tl’;T“r/z 2t _Jt, -ftr; dty =0 (2.40)
m

To verify the above convergence a numerical model has been 1investigated

(see Appendix A). »

Now, considering (2.40) and g2.31), 1t can be seen that:

J.C 2

b [+ X [/ (g.al)
;c N x__l v
G =37 (2.42)

This means that in the case of grain boundaries perpendicular to the
~direction of wave moggeon the boundaries may be considered as rigid,
1.e. the transmission coefficient will be ngen only in terms of the

random 1impedance ratio X .

(B) Motapn parallel to the boundary (&PB )
o

With reference to Fig. 2.5b, we :assume both atoms of the

bond to be moving on the parallel]l straight lines separated by the
equilibrium distance f, of the bond.’ Thus adopting a complex plane

coordinate system we can write the position equation as follows:

! * It should be noted that i1n a crystal lattice the equilibrium bond
( distance is smaller than the equalibrium bond distance in an isolated -
bond due to the presence of other neighbours of the lattice.

) 9 -
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i %*d+r, =red

and by differentiating we obtain the velocities condition as

(%P =re'? 4riwei? (2.43) ) :
which 1s equivalent to

&l" os§ ~rwsinb =0 ' . (2.43")
and

FSind +rwcos B =%Pg (2.43")

From (2.43') and (2.43") we arrive at the explicit form of the

kinematic condition (2.29) 1in this type of motion, 1.e.

“Fa = 9(¢) = ¢ (sin+ ctqf-cosB) (2.44)
where with reference to Fi1g. 2.5c we have introduced the angle 8 such
that

r

0 =arc cos

Now, the explicit form of the gurface stress condition (2.32) 1s here:
*

Poy = PTend, k=23

so that the equation governing-the behaviour of the bond distance

I on the microtime scale tm becomes: }'
dr .. .. [ —(X+1)Nsin0 [ 7.}
—_— = ui'SmO a. B, P 245 - n = J‘;)"Z]

This 1s an even more complex nonlinear differential equation than
that 1n (2.38). It 1s beyond the presently available experimental
techniques to assess the range of variation of 8 . we therefore
assume that this angle will vary about the mean zero value and note

that the characteristic time response will still be very short
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4
[}

compared to the global time scale of mechanical waves. Thus 1t
becomes possible to assume the same asymptotic behaviour as in the

perpendicypar. type of motion*, namely that:

E{r(tn)} %5 (2.4

and hence
dr . I
E{dtm} ltm d\j" =() (2.f47)
mﬁ
[t follows then from the above that in the case of grain boundagdes
\
parallel to the direction of wave motion, the boundaries may al\so be

considered as rigid interfaces. The equivalent forms of the trans-

mission coefficient resulting from (2.31) will be as follows? ™

i
C I+X

and that of the reflection coefficient will be according to (2.26)

(2.48)

e AL
r - x+j M (2.49)

It 1s to be noted that the case of the convergence indicated
in (2.47) has been assessed using a computer model and 1s reported
in Appendix I. -

The above analysis shows that for wave.propagatlon parallel
to the grain Sbundary with the direction of motion either parallel to
1t (case (2)) or normal (case (4)),-the same rigid bond and hence the
rigid interface model may be assumed. However, in this case, the

concept of the transmission and reflection coefficient has to be

¥*
As before, we note that the crystal lattice spacing 1s smaller than
the equilibrium bond distance in an isolated bond.

o
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generalized to an operator in order to account gor the i1nteraction
&
of a given wave with the grain boundary in a finite passage time “T.

The analysis of this type of 1interaction will be extended in sections

3.4 and 4.4.. .

2.3 Concept of an Abstract Dynamical System [.ﬂ.'f,d’,T]’ln the

hepresentatlon of the Wave Motion

According to the micromechanies theory the state.of a micro-

element & 1s described by and r-dimensional, state vector

“y(t) : Ly (t);

s i=lL,.r (2.50)

)

where r represents the number of basic mechanical parameters (see

Axelrad, 1980). These parameters may be specified in general as

follows:

«'V(ﬂ = |%*YY | internal deformation v

’v "~

%yl surface deformation
dpi
g internal velocity
(2.51)
¥ | surface velocity

internal stress

body force

@
(o d

ds L

%s$ | surface stress
-7

1

Noting from (2.51) that the “Vi(t) parameters are of either

kinematic, stress, or body force type, we introduce a following

LS

definition in the microdynamics theory: P

t gk
(‘&

o
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Definition 4:

°

, The state of the mlcroelementzls described at any instant

of time £ by a "dynamic state vector" d’z(t), which 1n general

1s given by: .
“)!(t) = r"‘x (‘t)T "kmematlc state” vector
o (t) stress state vector

.{\ “’f (t) ‘body force vector

This dynamic state vector may be considered at any fixed time

-

as the outcome of a trial or a random experlment; Thus, 1n the
lanqguage of probabilaty theory (see R&nyi (1970)), the entire et of °
possible outcomes defines the sample spéce.ﬂ .

We point out the algebraic aspect here, namely that fl 15a

real vector space, 1.e. -

© D={V,R, ¥+ x () (2.52)

which 1s a system consisting of an Abelian group {V,z }and a field
?"'{‘R)*‘,X}Lmth an identity element e. Ffurther () '1s a binary
operation of the elements “21 }2,.,.5 V: by the elements .d,b,...¢ R

such that ®*y.q €Sl (scalar multiplication).
" In the vector space .Q. the r-dimensional open sets
, = {%y . ®y. i e )
¢ E={*v: w<o v <v+dv i=lL,.. 1} Ecf,
' may be 1dentified, as belonging to a certain topology of.o.., In '
general, this topology 1s¢genera£ed by an infinitely countable topo-

- ( logical basis T of the following sets: ¢

'
'
{
L
3
3
4
k]
b
¥

\ Y




nE={"}g< “y("y+ A"y} ne 27 "Ecq,
Thus {ﬂ , T} becomes a topological vector space, and in case ‘\’i
1n equation (2.50) are real valued, .Q has the familiar IRr—topology.
If '} 1s a 5—alg¢;bra generated by the basis T we have a measurable
topological space {ﬂ,}} which 1s called an experiment E 1n probability
theory. The minimal § -algebra 3: which contains all open sets E 1s
called the Borel b -algebra of .Q, and the elements of ? are called
Borel sets.

However, due to experimental accuracies that can be achieved,
the outcome "B at a specific time of the & -th ‘trial annot be deter-

mined exactly, but only within a certain finite range AS\’, S€ finite

subset of Z* . It 1s seen that such "window sets":
Ee{syc®yyeAn) y s=1,2,...,5 ; §- fute

give rise to topology 'J; which 1s weaker than 7 topology. The

6 -algebra ?5 generated by the basis Ts 1s 1dentified as a sub=

6 -algebra of 3' .

N While the analysis 1n probabilistic mechanics 1s usually
conducted in the {.Q.,?} space it 1s supposed that the results (e.g.
probability distributions) are congruent to the physically measurable
information in {ﬂ‘,}‘s}

In accordance with the definition of the event SE we can

now 1ntroduce the probability measure on '} defined a;s follows:
0% = PUE(w)]) = P{sy <*v <y +asy}; P{n}=I. (2.54)

6)! 1s readily recognized to be a § -additive Borel measure.

37
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The experiment |3 together with 02 forms a triple E.Q ,?) 0!}
or so-called space of elementary events.

We now introduce a random variable § defined as an
~

{_Q"}'} - measurable function:

E;{_Q)}}-»{f)@}) (2.55)
where I 1s the state space and (B 1s the Borel b -algebra 1in X .
In accordance with the micromechanics theory (see Axelrad, 1983) we
consider an elementary outcome “Béﬂ to be described by the corres-
ponding point X of the state space X. This means that, 1f 2=X%,
?=B , and the function §=§(x) has the form §<X)=X,Xéx,then
the random varaiable §<2) 1s called a directly given random variable
(see Prohorov and Rozanov (1969)). Hence, 1t 1s seen why in the
probabilistic micromechanics theory the state space f 1s l1dentified
with the probabilistic. function space.

- We shall always suppose that our probability space may be
extended to be complete whenever this 1s needed.

Various topologies may be defined 1in I, and we defer the
consideration of this feature until the;anext section, where the
analysis is restricted to i:he kinematic subspace of x . It can be
seen, however, that the specific topology in x allows an analysis
1in terms of continuous functions over I , which is 1in contrast to
the notion of continuity in the physical domain of the material bedy,
as assumed 1n the classical mechanics of solids (see the discussion
in Sections 1.2 and 2.1). It is of interest to point out that in
order to conduct a rigorous analysis in deterministic continuum

mechanics, the topology of the state space has also to be considered
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(see Knops and‘Wilkes (1973)). In fact, the dhalysi§ of a mechanical
system and 1ts evolution in"the state spac;, has been introduced for
the first time by Poincaré (1881),:1n analytical dynamics, which 1s
strictly a deterministic tgfatment. Let us then recall the formulation

of an abstract dynamical system in a deterministic setting:

Definition 5: e

A dynamical system corresponding to a triple (T,T ¥ 1s
a set B(T,¥)of functions defined on T taking values in ¥
such that

(1) §p ¢ B(T,E)  whenever Pe B(T.X), Te T,
(11) tl'E’ng Ye(t)= (1), 9eB(T, %) 1eT.

In the above notatlon'T 1s a locally compact semi-group with identity
0, which 1s us;ually taken as m+u{0},7 is a subset of T, and I
an arbitrary set containing all the relevant dependent variables.
Furthermore, if ? &s a métlon in the function space . 3(1137 and Q&
its translate, this farmulation enabies one to trace the motion in
éﬁ@e along a path or trajectory in the phase space. These trajectories
are fixed in the phase space, which distinguishes thus a deter-
ministic system from a probabilistic one. Hence, 1n the microdynamics
theory we shall work only with the probability of an outcome to be in
a given set at a fixed time to, and thus, the evolution of this set
at a later time t,fAt has to be investigateduin terms of a certain -
transition operator. Whilst in the deterministic theory one defines
invarignt sets, here the consideration of an invariant measure of a set
is of a fundamental importance (see Oxtoby and Ulam 119Q{§ and Balescu
7

(1974)).
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Let us introﬁu(;e a mapping T =T[v] of the seE J1 onto
itself, and denote for each EC_Q by T [E] the set oFthose

Ve Q f‘or which T[V]éE Thence, following R&nyi (i970), we

come to the following definifdian:

Deflnlfﬁon 6:

The mappmg T—T[V] of.O. onto itself such that for each

ECQ one has | [E]é}' and further:
@!{T;"‘[E]} = p* [E} ) (2.56)

1s called a measure-preserving tranaformation of the

. v
probability space {ﬂ,T)Py}; the probability measure (P~
is called invariant gngei the transformation T; the

y
system {_Q,T, P“') T} ig called an abstract dynamical

1 -

_system.

The principal advantage of identifying a measure perserving

transformati’on T in the prpbabilistic analysis is that it allows

B

a formulation of the physical process as a stationary random process.

However, 'the measure presérvair)g property is not absolutely necessary

for a more general defini’ciog of an abstract dynamical system in the

!

case of‘ a Markov process formulation.. In order to establish such
a formulation (see Chapter II) we shall now specialize our general
dynamical system to model the evolution in the kinematic subspace

of the general state space.

Q
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2.4 Kinematic Space as a Probabilistic Function Space

Let us recall from definition 4, that the dynamic stat# vector

can be decomposed 1n the following fashion: .
L
d.l, = [%x
‘5 ° (2.57)
. [
1

where we have omitted the energy density and where the time dependence
1s assumed 1mplicitly . The three components of the state vector

may be considered to belong to their respective spaces or subspaces

!
£

OfI as follows:
“25- € K - kinematic space
' "g €2 - stress space
' “f € F - body force space,
. o v
which are disjoint subspaces of the general state space .O.=¥ and

where:

:KUZVF=X‘

From now on, we assume that the body forces can be neglected, 1.e. -

that:
f

for »simpl 1caty.

g ‘ (2.58)

: ¥

The general form of expression (2.51) permits without loss of

generality the two remaining vector t‘:omponents_ of “2 ‘to be written

as follows:

-

,
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X = -‘"Bﬂ internal deformation “}:.i € ul
’25 surface deformation “g‘é w
"l}i internal velocity ;o *lbe Vi > (2.59)
“L]f surface velocity ; “if eV
ag b internal strain ; “E‘E E*
;;s surface strain ; '“ésé Es

- accelerations H

L )

.

°‘§ = -“qlq internal stress ; “gié Zi
_Gés surface stress ; “gse Zs (2.60)

where 1n the above forms, u,v) ... etc. are the corresponding subspaces
of the components of these vectors.

In the above we have introduced the particular subspaces to
which the components of “'}\K‘. and “'g' belong, and all of which are real
vector spaces contained in the i1 space (vide (2.52)).

It 1s seen from relations (2.59) and (2.60) that two dastinct
types of field variables are involved i1n the description of the
mechanical state of a n]m;oelement, namely those concerning 1nt‘ernal

behaviour and other related to the interaction phenomena. We recall that

in micromechanics (Axelrad; 1978) two types of operator§ are introduced:

AoDia U M DU

(2'61).,

which relate to the internal and interaction effects, respectively.
In microdynamics of discrete media such as polycrystalline solids
these operators in the linear case are tensors of the third order

so that we have:

{
i
§
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<p

a

s = & 5 (2.62)
~ ~

oo

- 4
In general a microelement material operator (Axelrad, 1978)

can be defined as:
“M; T -W such that dM =‘M (“’A )de) “\ (2.63)
z &

Using the strong monotonicity condition i1t was found by Basu, (1975)

that the operatorrﬂ 1s 1nvertible, 1.e. that there exists a mapping:

"M U-T (2.64)

This i1mplies that not only the deformation space WU 1s 1n a one-to-one
relatﬁon to the space Z but also the strain space E"' EiU E’.

The above discussion indicates that one can, n general, restrict
the analysis to one of the subspacess]{ orz: , slnce a biljection exaists
between the main components of'}( and the stresses. Considering that
the stress states are not experimentally verifiable in contrast to
the kinematic states which can be observed, w; decide to work in the :
kinematic space from now on. ;

It 1s now 1mportant to establish a topology of the J{ sp;ce. ~ g
We have to consider the continuity of the displacement and stress
fields involved in the transient wave motion. We recall from elasto-
dynamics that the wavefront i1s a moving surface across which some of

®the field variables and/or their derivatives are discontinuous. If
the velocity is allowed to be dlscontlnuoué, then the stress 1is
discontinuous too (see Bland, 1969), and we have a‘shock wave. However,
in order to describe such waves fully, a discussion of the thermo-
( dynamics 1nvolved would be necessary and that 1s outside the scope

of this thesis. We consider therefore surfaces only across which
P

> A
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the velocity and hence the stress are continuous. For this purpose

we take at the mesoscale:

L . . Mz
M%L Mgg,ﬂgkﬂgi ¢ C( D)

) 1

"% =“\2°‘J3 (2.65)

M
where we assume that mesodomain 5 1s a simply connected, domain

)

and subset of IR3 . HWe n&;e that (2.65) implies the continuity of

the internal and surface deformbtions, viz:
b\\gy

. M-—
Myt Mys e ((7D) (2.66)
A Ar
Moreover, by virtue of the Hookean stress-strain relations for an

1sotropic elastic solid (vide Def. 1) the strains are given as:

”g‘,”g’ e (("D) (2.67)

~
-

although the accelerations may be discontinuous.

Indeed, 1f

it Qs e D(TD) (2.68)
-
then we have an acceleration wave.

We see that we need a means for expressing the 'degree of
smoothness' of all these field quantities. We canb do this best by
employing the notion of Sobolev spaces (see Oden, 1979 and Rudin,
1973). Thus, a Sobolev space of order m, p (m >0) denoted by N:‘(X)
1s defined as the function space:

Wy (X) = {$¢8(X) :{ and all of its distributionsl
partial derivatives of order € m are in LP(X), p2 l}

n (2.69)
where - X 1s a simply connected, open gsubset of R
ki)

- 3()() is the gpace of distributions

- LP(X) is a Lebesque space

44
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The daistributional partial derivatives of f are defined

DH = af’; e L), o= IZsJ<m (2.70)
]T3 x]. =(5|,52,~~) é Z

X = (X, K, Xpy oy Xn) € R

N

A norm 1n a Sobolev space 1s then defined by:

gy =1 (E, Ml < (LM 0F e

Since we place no requirements on the cont1nu1ty of accelerations we
shall henceforth assume (2.68) to hold in general. Thus, with reference

\
to Fi1g. 2.6 which represents a one-dimensional situation, we have

\

My )
gt e H' (") S 4(2.72)
e (")

Mai € HO (Nb) ! \
e J

where a Hilbertian Sobolev space H a)has been 1dentified for the

domain DCR It is deflned as follows:
m - "
H™ () = W] (X) g (2.73)
Now it 1s natural to choose a Hilbert space of boundary

functions for the surface components of the kinematic state vector

M'& . We recall that if ‘{’ 1s a boundary function such that
¥ el,(2X) (2.74)

we can define the following norm: .

[
s
'
.
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u‘ﬂlum—j-vz(ax) = ;:{H"’(X) { 'H”H"’{X) 3 \P = YJ{} (2.75) \\

where X'j 1s the trace operator defined as:
_ .
AR I RS RY

It follows that the completion of the Lz (X) space 1n the norm (2.75)

1s a Hilbert space of boundary functions

H™ 3= (ax) , 04§ ¢m-l (2.76)

;
Hence, the surface components of M§ in the one-dimensional

case, are found to belong to the following spaces:

tys ¢ B (37)
MEs‘ eH'/z (anm . ‘ .
”zt’ cH™ (3" ’ S (2.77)

s ¢ {7 (97)
M"L;L's ¢ H-alz(aﬂl)) J

In the two-dimensional and three-dimensional cases, that 1s
for Mﬁcmland |R3 respectively, the components of the’% vector must
be placed 1n other spaces. For this purpose we may employ the imbedding
theorem (see Sobolev, 1963) which indicates the order of the N;‘(X)
space whose elements are continuous functions 1n XC fR".' Thus for
n=2or 3and p = 2 the order m must satisfy the inequality

m> g -Z‘- or 2 so that m = 2 must be chosen for the Spacé of deformation

P 2 2

rates 1n case of acceleration waves, 1.e.

#iie H("D)

s

i
M'!ii e‘Hl(MD)
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C so that
, ”%i € H3(M1)) ’
Mgi. ¢ H?-<MD)
It foIlows:then that the spaces of boundary values will be:
Mys ¢ Y 5/2(9“1))
Hps ¢ B (37 D)
"t ¢ | (a") “

5 It 1s seen that the 1imbedding theorem 1s to be used to
determine the particular subspaces of the']{—space for the waves

whlﬂ< are weaker than the acceleration waves.

We may note, 1in passing, that all these field quantities being
9

in the Hilbert spaces a‘é elements of a more general Banach space,
which agrees with the findings of Axelrad, 1979, that one works most

frequently with this type of a topological vector space in the

probabilistic micromechanics of solids. Returning to the chaosen

microscale, we have "%é Lz(‘.D) representing the vector of measurable

kinematic quantities and where “z are actually the equivalence )

classes of functions aver the ‘3 domain. If we recall that

{ﬂ,?,@r}is a complete probability space, and let {J[,Tx} be a
measurable space where ;.K 1s the 6 -algebra of all Borel subsets

ofk , then following a formalism of Bharucha-Reid, 1972 we can give

the following definition:

: Definition 7:

A mapping %X: .0.4 :K 18 said to be a random variable with
values m:K, if the inverse image under the mapping“x of

' ' ever)} Borel setE belongs to ?3( ; that is,

“x”! [E]e ?X for a1l EeF,

:
i
3
:
{
4

.
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This 1s equavalent to saying that “5.13 a Banach space-valued Borel
measurable function; the }(—space 1s separable.

The ‘3 mapping along with other associated transformations is

presented in Fig. 2.7.

SPACE OF ELEMENTARY EVENTS state space  {X,0}
(SAMPLE SPACE )

KINEMATIC

R MATERIAL OPERATOR *M: QO xL -+ U cX

FiG. 2.7 STRUCTURE OF THE PROBABILISTIC FUNCTION SPACE
EMPLOYED IN MICRODYNAMICS
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CHAPTER III

MARKOV FIELD FORMULATION OF THE WAVE PROPAGATION

-

3.1 Introduction

3.1.1 Random field of the wave motion in the 3-D space-time

It has been pointed out in Postulate 2, that all the field
variables in the mechanics of solids are of a random nature. This
fact can be stated 1n a mathematical language by saying that the
dynamic state vector as a function of space and time 1s a random
field (R.F.), 1.e.:

() RATxQ—=0=%; xeMcR teT 7 (3.1@//

This kind of description of the mechanical behaviour of matter has

been employed for the first time by Kolmegorov (1941), in has
statistical theory of turbulence and later by Lévy (1956), 1in his
studies’ of the Brownian motion. This gﬁve an 1mpetus to new develop-
ments, both in fluid mechanics and random field theory (see for instance
Yaglom, 1957). It 1s 1important to note, that the random field theory
of fluids had to be restricted to isotropic homogeneous turbulence

and was usually confined to correlation studies. Generally speaking,

this approach suffered from a lack of an evolution theory.

It was pointed out in Section 2.3 that an identification of a
measure preserving transformation, 1f it can be done, permits the
desctiption of a stationary random process in terms of Markov theory.
More generally, however, a causality relation pertaining to the state

space leads to an arbitrary non-stationary Markov process, which in

~50-
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turn, permits a very neat evolution relation by means of the Chapman-

Kolmogorov relation.

At this point we recall from section 1.2, that the wave motion
1n an elastic continuum 1s governed by a differential equation of the

second order with respect to time or:

H'uh” +(A+u)umg+gfi=gui . (1.4)
where %\ and p are ﬁpe well-known Lamé constants. This relation
indicates that in order to ensure the Markovian character in a stochastic
theory of wave propagation, we should consider a random process
{‘E(t),“}(t)} . This means focusing the attention on the {“‘_u,(t)}
process, whereby the deformation can always be obtained*. Thus, from
now on we choose the deformation rate to be our intrinsic random vari-

able, which we shall denote
“&{t)==ylt), o

and call the wave velocity vector.

Considering the dynamic motions 1n a discrete solid, unfortun-
ately not much can be said about the probabilistic laws governing the
evolution of a specific microelement in time. By this we mean, that

for a random process:
“x(): T*0=+K. & - fixed (3.3)

na meaningful equation can be established and integrated (see also
o .
Chapter XIV 1in Yosida, 1978), because the boundary 3 13 of the micro-

3
element ® 1s not fixed in the IR space.
\

However, we can consider the wave motion from another point of

I3

* N .
In our physical world the knowledge of positions and velocities
determines the future, i.e. accelerations are not mecessary for the
determination of the future.
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view, l.e. one which 1s analogous to the transport theory appreach. ]
The transport theory itself (see Ishimaru, 1978, and Uscinski, 1977) . :
has been developed heuristically in that, 1t deals with the transport

of energy through a medium via the averaged statistical quantities

such as the specific intensity and energy flux. With reference to

our discussion 1n Section 2.1 of the deterministic versus probabilistic

/
o~

approach, we shall construct here a.rigorous probabilistic theory

of the wave propagation in a random discrete solid.

3.1.2 Problem formulation for the wavefront propagation

We recall from Section 2.2.2 that the problem under consideration

L o o, Sttt A Ve T 3

1s one of plane waves propagating in the pacroscopic body domain with
a cubic microstructure, where the propagation vector is parallel to
one of the axes of this lattice (Fig. 2.2). In this chapter we shall
study the dynamic response of a macroscopic body M taken as a bar of
an arbitrary uniform cross-section with a microstructure as defined
earlier. Furthermore, we assume the pulses are applied uniformly to
the front face of the bar. With reference to Fig. 3.1 we can now
congider the bar to be composed of layers Jl(Xijxthe planes normal
to the )(l axis, or alternatively of sequences Sk lying parallel to thg

Xl axis. It follows that there will be an equal number of grains in

every layer MO(,) as well as an equal number of grains in every sequence
Sk' Hence, if we denote the entire bar by M we shall have:
K
M= 'E' ‘Sk ) (a)
‘ - 2 (3.4)
- N ) -
M=UWU,. (b)
nzl

o A BFlen e a4k
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e/”,,-AN ARBITRARY DOMAIN OF THICKNESS d (CRYSTAL SIZE) IN M

FiG. 3.1 MODEL FOR LONGITIDUNAL WAVE PROPAGATION IN A PbLYC_RVSTALLINE
SOLID (CUBIC STRUCTURE) .

\

The wave propagation is considered in this model of the semi-infinite

bar up to a standard specified length L = 1m. /

.

We study now the wave propagation due to a pulse at the front

face, where:

\
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g'QJX.:O =P(t) ' < (3-3) J

Such an initial boundary value condition will give rise to a combination -

of longitudinal and t‘ransveDSe waves that will pr'opagége‘in the X]’ﬂ

direction independent'of each other. We recognize however, that due .
to the multiple scattering, any single wave will soon evolve as a

complicated macrodisturbance propagating in the Xl direction and will

also largely depend on the X2 and X} position coordinates. Howﬂevber, \
since the medium 1s assumed to consist of microelements governed t;y

the lméar ela-e;tic law (recall Def. 1) thus excluding memory effects

and long range forces, but agmitting nonconservative effects in tl";e

N g ‘ . - ’ .
grain boundaries, the wave propagation prdcess can be characterized

by the evolution of any single wavefront as it propagates through the

microstructure. Thus, rather than studying response of the bar due
to condition (3.5), we shall follow one wavefront due to a following

initial boundary value conditign:

-P&,) . .(Lﬁ{ "

3.2 Longitudinal Wave Propagation in the 1-D Model of the Solid

For the purpose of an initial formulation we cons}dér a more,
s'impli.fied model here. Thus, we hssume the microelements of the/
structure to interact with each other in the X1 direction pnly. It

follows, that the entire bar M may be considered as én~ensémbie of

non-interacting sequences Sk' Hence, the only kind of wave, that can

be realistically modelled here is éL longitudinal wave. Thus the

e -

_—
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Y

stress boundary condition (3.6) simplifies to the following form:

| 6(|(Xnt)lx\=0 ='P(t,) (3.6')

r’

It 1s 5bv1ous now, that a longitudinal wave generated at the
front face of M will propagate independently through every sequence
Sk¢P1 and undergq\a random evolution due to the random physical
properties of the g}croelements. Considering that the statistics of
these physical progertles were assumed to be space homogeneous, 1t
suffices to study the wavefront propagation i1n a typical sequence
SkeM .

It 1s to be expected, that due to the variation of mechanical
properties from one grain to another, the 1n01degt wave will result
1n a transmitted and a reflected part. However, since these variations
are not large (vide Def. 1), already the primary reflected waves are
at least one order of magnitude smaller, and thus the wave reflections
at the 1;ternal grain boundaries can be taken as negligibly small.

It 1s 1lluminating to draw a space-time graph for 'the wave-
front propagation process in a typical sequenge Skefﬂ, see Fig. 3.2.
Such a pulse is represented by a so-called sample path, which in the
1-D model 1s a line composed of minute propagation paths 1in consecutive
microelements (short straight lines). We distinguish two very important

effects taking plaée in the model:

Effect I: the transmitted wave velocity Fx is different frdm
the incident wave velocity “! due to the presence

of the boundary (of ) (dam),

- e e TR
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Effect II: the wave propagation velocity %C 1s random 1n every
]

microelement *,

5
B e A B LSai

In order to precisely describe these two effects, we make use of the
two random variables defined in Section 2.2.3 of this thesis (see
Defs. 2 and 3). It 1s assumed thaé the probability distributions of
Ctr and u”[ can be obtained from appropriate experiments on single
and/or Bl—crystals, or deraved analytically.

Returning .to Fig. 3.2 we see, that the macroscopic disturbance

must be viewed as the total of microdisturbances in any particular
sequence. This 1s 1llustrated by the sample paths, contained between
the slowest and the fastest paths, versus an avegagerbﬁthi. These
microdisturbances evolve 1in their own 1h€é£nal times 1in contrast to

the macrodisturbance, which occurs at an average pace. This observation

leads us to give the following postulate:

Pogtulate 5:
In dynamic phenomena pertaining td”discrete media a
multidimensional time 1s intp}n31c. It encompasses "
an 1nternal or micro-time and a mécroscopic (average)

time, where the micro-time 1s embedded in the internal

+
time.

i

*
From the assumption that the nexghbouring sequences are not interacting,
it follows that the propagation velocity would be that of the one-
dimensional stress model, i.e. *( =\FE/¢9', :
* The expression "internal time" follows the terminology of Prigogine
who uses the term "individual time". at this scale (see I. Prigogine,
1980, 1981).

N s e i b o T Kbt bl m A e < -



e -

wi

Vi v

Hence we can distinguigh:
t : the 1nternal time for a sample pa’{:h of an L-wave,
/,
ted,. )
T : the macroscopic (average) time for the average path

of an L-wave, {5']’, .

v

If <"t> 1s an average passage time for an L-wave, then we have for

an ensemble of ct==l,...)n microelements:

:E’ =4i=|<“'c)7 -féT' (3.7)

1ndicating that 1 1s related directly to the physical space Xl'
We also observe that due to the randomness of “'CL, the L-wave
" 1n any sequence Sk arrives anywhere in the time-space graph with an
1ndeterminate time difference with respect to the macrodisturbance

(average path). Hence, following the above definitions a sp%cml
i

"random variable can be 1dentified as follows {(see also Fld(ﬂ.3):
A

Definition 8:

¢ -
It,_= t-t 1s the dispersion time for the L-wave.

While tL 1s a random variable intrinsic in the !(f,‘t) ‘random
process, 1t is itself a random process with respect to the average
time :E , l.e.:

>
T.= IL(:E) L (348)

&

Thus, we can write the following relation for the probabilities

Py} = Py PR (3.9)

o
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SLOWEST PATH

AVERAGE PATH

JV
-o.l_x

FIG.3.3 THE DISPERSION TIME PROCESS IN L—=WAVE PROPAGATION,

it becomes apparent from the above relation that both effects
I and Il have been separated. This means tﬁe First term on the right
hand side of (3.9) represents a modulation of the wave velocity
vector !(t) whilst the second term accounts for the dispersion of
the wavefront in accordance with the time-space graph. Moreover,

relation (3.9) indicates that V¥ will evolve independently with

-~

~
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reqgard to the intermal and the average times. These evolutions can
now be recognized as independent of their past histories and hence

formulated 1n terms of Markov processes.

Let us first consider the L-wave evolution in terms of the

internal time. Thus, using the conditional probability, we have:
P{v(t)eE} = P{y(theE]y(ty)=x} P{ult))}, t,¢t (3.10)

expressing the Markov property of the !(t)process and where the
conditional probability 1s an explicit function of the probability
distributions of the transmission coefficient and the passage time,

Pyt eElylt)=x} = P{C,: v(t) = Cpox} (3.11)

Recognizing this Markov process as a temporally homogeneous one and

*

recalling from Section 2.4 that \[ 1s a subsbace of }{ that 1s separable,

i
we can, following Prohorov and Rozanov (1969), postulate the existence

of a transition function as follows: »

P(t,X,E)i—"0{x(t)éé|z(0)=x}, teT,=[0 ) (3.12)
which will satisfy the following conditions:

a) for fixed t and x€V, P(t x,E)1s a probability measure on V,
b) for fixed t and E€ Ty, P(t.%,E)1s a V-measurable function
of XxeV, J
o) P(t,xE)€l,
d) P(0,x, V-{x})=0
) P(tet! x E)=9P(tx,dy)P(t)y,E); t,t'>0 (3.13)
Y

The latter property (e) represents the well-known Chapman-Kolmogorov,

L4

relation, which 'is a fundamental relation in the probability theory.

s?
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foe \s
Considering this Markov process further we let C(V) be a Banach .
space of all bounded continuous functions f(x) on the state space V,
endqﬂed with the norm "”‘ = Suplf(x)l . Then we can define an

2 , X%V
operator T on V as follows:

T 4] 4 H(y) P(t,x,dy) s fel(V). | (3.14)

-

It follows from properties c) and }e) of the transition function that
(3.14) defines an operator-valued function zT(t) [O,W)*at(C(V)) such

2
that { T(t),t)O} 1s a contraction semi-group of operators on

C(V)that 1s,
@ (T(Et) L)) = T T(E) [y )]

(11) IT(O) =I ) I- the 1dentity operator (3.15)

(111) ulT(t)“$ ‘ .

We now turn to the analysis of the second stochastic process
involved 1n the L-wave propagation, namely the evolution in terms of

the average time t . Hence, recalling Def. 8 we obtaim:

!(T,t) = V(t) for a fixed (3.16)

»

and by following (3.9):

P{y_’(f,t)}= const-PE T (T)) (3.17)

' 4

The probability evolves analogousiy to a linear birth-death Markov

o
process at regular ( T) intervals, 1.e. the time dispersion process
has no memory. Since the macroscopic time parameter t 1s discrete,

whilst the internal time t is continuous, 1t may be inferred that

TL 1s continuous. Thus 1n terms of a discrete-time Markov process

e




-~z

- s -

62
one can use the one-step transition function for such a process,
which 1s given by:
T df - -
P(1,,2,t,0) = f{t.e'd| T, (t,).=2}, teT (3.18)
which 1s a function of the distribution of the sojourn time P(“’t);
PL{T (T)etD| T (T,) =2} = P{*1:*T-¢*1)=1 (1) - T (&}
(3.19)
in which we have the following relations:
t|= Eo + <°"t> , fo being the 1nitial time 1nstant
and IL 1s an outcome 1n the sample space DL of the dispersion times,

LD 1s a Borel set 1n I)L , belonging to the Borel field ?L .

L
It 1s seen heuristically that this process 1s also temporally homo-

geneous, so that we can simplify the analysis by writing the transi-

e

tion function in the following manner:
P(t,z,'D)= P(0,z,,'D) (3.20)
which satisfies the conditions below:

a') for fixed t :andb Zé& QL’ P(T,Z,LD) 1s a probability measure on .1\_ ,
b') f fixed -f and LDG? . P({,g,LD) 18 a DL—measurable function

of

N

fT02,00) = [ P(E 2 du)P(T W, D) 5 TE 20, G

(Chapman-Kolmogorov relation)

-

Recalling that the IL(f) process 1s time-homogeneous (see eq. (3.20)),

. ! .
we can introduce a transition operator T which 1s parametrized by

~—
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the average time T and defined as follows:

T(T)[{(Z)]ﬁg{(w) P(t,z,du) ; fe((D). (3.22)

L
Equation (3.22) indicates that the transition function defined through

g
(3.18) and (3.20) is a kernel of the integral operator on th€ space of
all continuous bounded fucntions HTL) on ‘DL H C(ﬁdls a Banach space
with a norm “H‘ 232%“(2)‘ It follows from properties c') and e')
L

above, that {\T(‘{)E)O}'ls a contraction semi-group of operators on

C(DL)’ that 1s
TR ) =TEVTED (0], .
(12) lT() I (3.23)
111) “T(_t) { '

where I 1s the identity operator, and {(TL) may be given by (3.16) or
(3.17).

Having 1dentified both random processes that govern an L-wave
propagation in fhe 1-D model of a discrete random medium we can -

generalize these results by proposing the following theorem:

Theorem 1

f {1T\(t),‘te'L=[O)oo)} and {‘T(’é) teT)  are

one-parameter semi-groups of contraction operators on

Wefinad by (3.14) and (3.21), respectively, then l
here exists a two-parameter semi-group {T(T,t), (f,t)e’,f,xT,_}

such that:
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- { 2
(1) T('t,‘t) 18 the direct product of two operators | and |

( so that T(.f7‘t) =IT(t) zT(t)

(11) lim T(f,t)=1; -
(Tt 0

(111) T(f,t) 1s a contraction: " T({'t)" < |,

Proof

(1) Consider the Cartesian product space VJ‘ I)L , where
{V, ,}v‘@!} and {DU,’}-La@h} are two probability spaces. Let
w:v—xb‘_denote the product of sets V and DL , and let T” denote /{3
the least & -algebra of subsets of W containing all sets Ex LD,
where Ee}"‘f and LDé TL . Then 1t follows from Theorem 3.4.1

W
of Rény1 (1970), that there exists a unique measure @ on W such

that /
P(E x'D) = ¥ (E) x £ (D) (3.24)

It follows from Section 2.4 of Chapter Il of this thgs/ls\
that V must be a space of continuous ftjnctlons on “5 (domain of & ).
Hence, according to the Imbedding Theorem of Sobolev (1963), the space
‘V as a Sobolev space may be imbedded in the space C(‘D) of continuous
functions on the domain ‘“5 . Of course, the space C(“I)) 1s separ-
able and hence 1t 1s a countable union of sets Ci C C(‘b) Thus V
1s a @ -finite measure spéce. We note that ‘DL 1s a §-finite
measure space too.

We recognize !(f)t) to be an element of the W space which
18 a more general state space than V; !(1) € V .

We can now introduce a function HT“!) on the Cartesian

product space Wf- VX DL such that: \,

'
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- for each fixed tLé ‘QL we associate a function f,[L(!)

defined on Y by ‘FTL(!)"' {(TL),V,),

- for each fixed x eV we assoclate a function {¥(T,_)
defined on I)L by {!(IL) ={(tL)Y.)-
It 1s seen that the function {:t (x) 15 1dentical with the function
L

{(!) employed 1in (3.14), and {V(IL) 1s 1dentical with the function

{(IL) employed “:Ln (3.22). Evidently, {(TL,Y.) is a measurable function

It follows by Fubini'sTheorem (Rudin, 1974) that:
i

on 1)LXV
(40, ) de" =1 [ £, (1)d0%d0* = [ {; (v) df*dP™ 5.25)
3V Voo A
where dﬁ)”zd(ﬁ)ﬁ,x@!) with G’w given by (3.2_4).
If we consider the 1ntegra;10n with respect to P(f,z,kD) and

P t X E which are the measures for fixed t,z and t,x, respectively
17

(vide conditions a') and a)), then we get from (3.25):

ZT(t)‘T(f)H(tL,V)];é_ [{V(TL) F(f,z,du) P(t,x,dY)
2] mL ~
= { § £,.(x) Plt,x,dy) P(F,2,du) |
o v

='T(%) ;T(t) [4(1., 0]

(3.26)

= T(E,0 [{(1, v)]

R T O SO
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C} (11) It follows from the point (i) and further from (3.15) and

(3.23) that

lm  T(E,t) = lim 'T(E)*T(t) = I-I=1.
(E,t) 20 (E,t)=0 :
(111) Again from the point (1) and further from (3.15) and (3.23)

1t follows that

ITCROE=1TE TN ITEN FTHIC L. . O

The importance of the two-parameter semi-group operator shown

/\ \3
above, 1s 1ts ability to describe the E\})’Iutlon process of an L-wave

L.

pulse 1n terms of an abstract dynamical system {w, Tw)@H)T} .

Thus with reference to Fig. 3.4 we see that given an 1initial

1

*| DISTRIBUTION CORRESPONDING TO
INTERNAL TIME

P{y(tt) =0 \
"Rfvitt) =0
DISPRIBUTION CORRESPONDING

TO THE DIRECTION OF WAVE
PROPAGATION

C ° — | e

FIG.3.4 L-WAVE EVOLUTIONS IN THE SPACE-TIME GRAPH.
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the probability| distribution of

and P{T,(t=0) = 2]

Y at any later time (?}t) can be

obta%ne gh an application of both the Chapman-Kolmogorov
: - 3

relations (3.13) and (3.21) 1in the following manner:

é{!(f,t)eF} = P{y(t)e E}-P{T (F)e D}, Fe¥,

where

Py () €E} = P(t,x,E)- Py (0),

and

PT.(T) "0} = P{T,2, D} P{ T (0)=z}.

.

We .note that non-zero §olutloﬁs will only be obtained wathin

the dispersion time cone (Fig. 3.3), that 1is for:

P{ !(f,t)}:ﬁo for | P{TL(T)PO, T,_i—f t-t. (3.27)

Again with reference to Fig. 3.4

*

we see that all non-zero solutions

must be within this cone, 1llustrated by the lines of intersection

with the plane corresponding to the fastest and shortest paths

respectively. For a distribution P{!(t}} there corresponds one

obtained as a result of the evolution of all the microdisturbances

propagating in the particular sequence and arriving at the particular

position in the bar in their own.

Ply (B} = PLe(t),tel} =

internal time, i.e.: ¢

microdisturbance distribution

at T

N(3.28)-

0 for P{IL(:E)} =

o bt e e R o ey e e o g e
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(%; Relation (3.28) represents an analytical analoghe of a precise

experimental observation at a particular station X,*’ t for the

o

response of the bar to a given dynamic excitation.
On the other hand taking a distribution P{!(t)}, 1.e.

) . microdisturbance distributlon at t
Plyt)} = Piy (F,1), LéTz}“ ) (3.29)
. . 0 for P{'[L(t)}=0

will correspond to considering a mespdomain distribution in the internal
time. Hence, we se that this mesodomain represents a total of all
f pulses 1n the sequences Skélﬂ, k=|yu,K; which originated as a plane

wave due to the initial impulse at the front face (see éectlon 3.5).

It will be demonstratéd in Appendix B of this thesis that

O

the probabi}ity distributions {V(t)} and P{ ( )} at a given

time t and T respectively, are in fact approximately of the ‘Gaussian y

Samn e gy ¥

type.

- ' \\\\\‘A

' 3.3 tongitudinal and Transverse Waves in the 1-D Model of the Solid'

L

In this section we shall generalize the approach -developed on

the preceeding pages, to the case of an arbitfary plane wave in the
. iy
one-dimensional model of the selid. Thus, the simplified model of

the discrete random solid adopted 'in Section 3.2 and iilusﬁrated by

Fig. 3.1 is assumed to hold here as well. As before, due to fgg assumed

configuration discusaad.in.SectiBn 3.2, the disturbances will propa- ‘

— - égée:lndependentlx_lnnevery aequeace_aﬂd_zamg;p&a plane wave: Hence,
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it 1s coﬁgenlent for the following analysis to consider the process
in a single typical sequence.

Assuming an arbitrary stress pulSu/is applied uniformly to
the front face (see Sectlén 3.1.2, equation (3.6)) so that:

g’D‘x.:o =P(t,)
t,=0 - {

Two kinds of stress waves will be generated - a longitudinal andaa
.transverse wave. It 1s obvious, that these waves will propagate
independently of one another. The onlx qualitative difference between
the longitudinal and transverse wave‘ls that another kind of motion

1s 1nvolved, i.e.:
kS

u(k,t) =f(X-ct)e (3.30)
with the propagation vector Pﬂx, , and a unit propagation vector
g_L X' and where cch*. Tt:e same type of time-space graph can be
drawn‘for the transverse wave as for the longitudinal wave (see
Fig. 3.2) and exactly ghe same two effects previously discussed may
be observed, 1.e. the change of the wave vei001ty vector “! from
one microelement to the next due to the grain bounﬂary effects, and
the change of the propagation velocity ‘CT. Thus, 1n accordénce

-

with the definitions 3 and 2 from before we pfoceed to introduce the

[
transmission coeff’iCJ.ent+ C =<~ and the sojourn (passage) time
S\‘ trT_ &y &) A
*d . . -
“TT" ;E‘ » where the subscript "T" designates quantities pertaining
T

ta the tr;nsverée waves. « Following Postulate 5 we will now have Tt

-

and _Pf for the internal_and average times, respectively so that:

| r.t-=:§“(f'c), Tte T, ' (3.31)

* ,'"c‘.rs \/“G/us. . in thial ?)%e-&ime’nsiona,l model. 2’\

* Cypy here is\the same af "(y derived in Section 2.2.3.

-~
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showing that T 1s again directly related to the physical space Xl.

In analogy with Definition 8 we introduce now a special

random variable:

Definition 8'

df —
T =Tt-Tt represents the dlspe?‘%wn time for the

T-wave.

The abave definition enables us to write the relation expressing the
intrinsic character of the TT (T'{) process 1n the !(ﬁ’ft) process 1n

terms of the probabilities as follows:

PLG(TE, m)] = Py (T} -P{To(TE)Y - (3.32)

It 1s'apparent that again two Markov processes can be identified
for the transverse wave propagation, wherebyha two-parameter semi-group
of transition operators (with contraction) can be shown to model this .
kind of wave motion. Z‘eref‘ore, in order ;to present a general formula-

tion of the combined cape of longitudinal and transverse waves (see

Fig. 3.5) we use a modified notation first. Thus, let us denote by:

5= L-f - average time of an L-wave, Lf € T, )
' S, = Lt - internal time of an L-wave, Lt € Tz= [0:':06) (3 "}3)
Sy =Tt ¢ - average time of a T-wave, e :T; .
54 =Tt - internal time of a T-wave, 't € T:,‘-'-’[o,oo)
sc; that |

5= (s,,sz)ss,s,.) becomes a generalized time, $é€ :T- IXTJ_*T,XI,
According to Definition 7, )‘/' is a B-spaced-valued random

variable. We can extend this notion by introducing the following’

e e

[P
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definition concerning a B-space-valued random field, i.e.:

Y
T -~ WAVE

L - WAVE

0

—> X,

FIG.3.5 L~WAVE AND T=WAVE EVOLUTIONS IN THE SPACE-TIME GRAPH.

Definition 9

)

A Banach space-valued random field on T is a mapping:

!(s,u): Tf‘ﬂ ~+ V such that for c;very S€ T , ¥ is’

B S SRR
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a Banach space-valued ranﬁom variable: \[ 1s the
wavefront subspace of the general state space i .

It was pointed out{in Section 3.l1.1 that the formulation of a
random physical process by means of a random field 1s gquite natural 1in
many phenomena although 1t does not bring any results in itself. Thus,
1s 1s crucial for the further development of the theory to find some
strong property which allows the characterization of such a random
fleld. In view of the results of the preceding section (Theorem 1)
we expect to arrive at a Markov random field in the present study.

To avoid confu31an we hasten to point out, that the notion of Markov
random fields is not standardized, since this area of research is
very new but expanding vigorously in several areas of science. We

can generally distinquish two major trends of development of the

e
Markov field theory: one in probability theory and one in statistical

physics. Loosely speaking, the Markov field of probability theory
1s defined}as a random field on an lR" paramegfr space in which past
and future are independent given the present and where the present

1s 1dentified with any smooth, closed (n-1) surface separating the
parameter space 1ntp a bounded part (past) and an unbounded part’
(future) (see Lévy, 1956 and Wong, 1971). It is apparent, that this
notion does not fit the microdynamics theory and wevshqlL so0n see

?ﬁat the wavefroﬁt random field as stated in Definition 9 is closely

related to the Markov random fields encountered in statistical

v 7

-

physics*. \

¥ While the LBvy-type random field has coﬁnections with the multidimen-

sional time domain of the microdynamics theory,.the Ising-type formu-
lation gives a basic framework for the random field intéractions in
the physical domain in the mechanics of solids. For the application
‘'of Markov random fields to discrete media see also Axelrad (1983).

L]
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We observe that the random field x(s,uu) can be characterized

by the following four transition probabilites:

P(s,, z, D) defined 1n (3.18) and,(3.20),
P(S3)Z ,TD) deflné% analogously for the T-wave,
P(sz)x, E) defined 1n (3.12),

P(S4)x, E} defined analogously for thé T-wave,

all of which are temporally homogenecus, i.e. this field has a

homogeneity condition in the terminology of Spitzer (1971). Further-

more,

P >0 for all yeV : (3.34)

hence a positivity condition.

However, this random field does not possess the so-called
nearest neighbour condition, which physically expresses a coupling
between the fisld parameters as in the case of the Ising models for
instance (see also Dobrushin, 1968). Thus, we do not have a classical
Markov random field in the sense of Spitzer and Dobrushin, but rather
a "multiparameter Markov process" as a product of several one-para-
meter Markov processes.

It is important to note that the coupling between the space
and time coordinates in the wave propagation process has been taken
care of by introducing the dispersion time process parametrized by
the average‘qacroscqpic time f and embedding 1t in the !(f’t) process

o
as expressed by relations (3.9) and (3.29). Hence this formulation

/

st /
enables use to introduce now a general evolution operator as a

product of commuting suboperators, each parametrized by another time

parémeter. In this context, the noncommutativity of such suboperators ..

73
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on the classical Markov fields prevents one from developing a general
evolution operator. Thus, we are led to propose the following

theorem :

Theorem 2:

N
4

If {V, TV: ﬂ)!} 1s a Markov random field on T, then
the evolution 1s given through an abstract dynamical.
system {V)J}V,P%T}, where {T(S).,SGT} 18 a 4-parameter
sem1-group such t':hat:
(1) T(S) is the direct product of the four one-parameter
sem1-groups, 1.e.

T(s) = T(s, 151,53 +54) ﬂ- T(St)

where the T operators commute*_

(21) lim T(S) I -

P A AT AP TRIY RN 1 RATHRI] | g o o snagys
>

-
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50
(i11) T(S) is a contraction operator, 1i.e. “T(S)” €

Proof ’ *
¢ »
Here V 15 a general velocity space of longitudinal and
1 3

transverse wave%ronts, 1.e. V= wLX WT £ V;.K ﬁLX V‘Hl‘ x DT

(1) If we infroduce the general transitiof probability on V

P(S X V) P(slyzlv LD) P(sz)XLN,LE) (53., Z‘r ,TD> P(SIH)‘TTE)

we can define the transition operator on V by . kY

f)[{ }“f P(sx&y) fe C(V)

It 'Follows now by 1nduct10n from point (i) of Theorem

1 that

4 ,
t ot
T(S) =H. T(sl), where § = (s,,sz,s,,»sl,)

et e St e
©
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?

(11) Follows directly by induction from point (11) of Theorem I

Emg T(s) (}tm (s )‘T(s;) T(s)*T(sy) = I TTI-=1
- 152,53,
(111) Ffollows from. ;O;nt“(lll) of Theorem 1, 1.e.

ITE = 1) *T06) * T(s) #T(s,)]) <
SUTEMTEIPTEN N T M <1 O

/ It 1s important to note that although the above property of
gsemi-group operators is known in classical functhagg analysis (seF
Hille and Phillips, 1957) it has never been proposed and proved for
this kind of a Markov random field.

Time domain J being semi-infinite 1mplies that this
formulation is good for the)wave propagation up to the point of
reflection at the end face X.=|_ , see Fig. 3.2 (L being a standard
length or specified length i1n a semi-infinite bar). However, this
reflection can easily be introduced in the present formulation, as"

well as consecutive reflections.

The existence of a semi-group of transformations 1s the
stréngest property we can expect to find for the non-conservative system
under consideration. This system is non-conservative because‘of the
energy dissipation that enters the model through the transmission

| L
coefficients Ctr and Ctr’ which sit in the random processes

in the internal time parameters, Lt and Tt , respectively.

Certainly a non-conservative system 1s irreversible in time, and
only its forward. temporal evolution can be given; § —» + , (see
also (3.30)). It is important to note d&éver, that the process 1s
irreversible élso due to the existence of internal ana avetage.fimes
which have been introduced in the present analysis., Consider for

example an L-wave propagation where effect I is made to vanish due

P e e e s - . — e - —— T N e e N ik
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’
6 the assumption of pe;fget~g}astlc grain boundaties. On the other

hand, the effect II still exists and 1s modelled through the disper-
sion time process in the aveggij time f , which 1s naturally‘an
irreversible phenomenon. Tﬁus iE 1s seen that even such an 1dealized
fictitious process would be irreversible (compare Figs. 3.2 and 3.5).
We can best put this observation in the words of Prigogine:

"irreversibility 1s the manifestation on a macroscopic

scale of 'randomness' on a microscopic scale'

¢

3.4 Plane Waves in the 3-D Solid

We now return to the general problem of the wave motion in the
three-dimensional solid that we have already discussed at the beginning
of this chapter. We shall concentrate only on the waves, which were

initially plane waves and that are generated by a uniform pressure
}

s

pulse at the front face (condition 3.63. Since the interactions
between the elements of the microstructure are now allowed to occur
generally in all the directions, there will be a weak coupling between
the contiguous sequences .Skﬁlﬁ . In particular, it is seen that for .
the cubdc microstructure assumed here, a sequence not lying on the

. external boundary of the body domain P)(see Fig. 3.1)9will interact
with four neighbouring sequences, while a sequen;e lying on the
boundary will interact with either three, two or only one neighbour,
depending on the specific conflgdration.

. It is well known, that for waves propagating in a bar the

effect of finite dimensions of the cross-section bebomes important

L3



~no #&T 0

et e e

————

for certain wavelengths and from a continuum point of view 1s
usually modelled by the Pochhammer-Chree theory. ®ince our interest
in this thesis lies 1n the theoretical formulation that accounts
for the microstructural randomness and considers 1t as a key factor
in the evolution laws of the field quantities, we shall presently
consider these diameter-versus-wavelength effects to be of a
secondary nature only and hence disregard them.

Assuming that there 1s no coupling between the longitudinal
and transverse waves, we can then conclude that an analysis of wave
propagation i1n a typical sequence Sk Jﬁth interactions with four

nelghbours should-be representative of plane wave 1in a 3-D cubic

77

structural solid. Choosing to work with a pulse inducing a longitudi-

nal wave, we can now employ the space-time graph of fFig. 3.2 as a

representation of the wave propagation process in a discrete random

.medium. We note that similarly as in a 1-D model of the solid, two

effects become significant, 1.e.:

Effect I - transmitted wave velocity F! 1s different from
the 1ncident wave velocity ‘v due to the grain

boundary 3“1).

Effect II1 - wave propagation velocity ®¢ 1s random in every

microelement o).

In thiixmodel the effect I comprises all possible interactions of
the microelement o with its neighbours as opposed to the previous

1-D model. Although, it is seen on heuristiegrounds that 3-D

interactions on & will still be of a Markovian character, it becomes

apparent that the effect I will, generally speaking, increase in

- Y
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time as the sample paths continue to diverge in the space-time graph.
Let us consider this prc;cess in detail.

It 1s seen that "',x goes 1nto Px after a random passage time
%T such that the transmission process will depend on the neighbours
on four sides of o (see Fig. 3.1). Thus'the wave velocity vector \\\
also becomes a function of Y, and Y, coordinates and we need here a

2 3

transmission operator rather .than the t%nsmlssmn coefficient used

earlier to describe this process. For this purpose we consider the

following definition:

Definition 10

The transmission operator is a random mapping

Clo) s “ylt) = (<) |

where “! 'PX € V
~

Generally, this operator depends on the surface interactions at
3“1) (see F1q. 3.6) and the velocities in the four neighbouring

grains, 1i.e.:’

C=C(C, on 3D, %y i=l .., 4) (3.35)
L

Since the velocitles’ y"s are themselves time-dependent random
processes, relation (3.32) indicates that the operator C wi‘ll also
be time-dependent.

From our assumption of the wave motions in the glastic range

(including acceleration waves), it follows that transmission operator

is linear, i.e.:
L2

Ca, N\t qz!z‘] =4, C[!t] $ GzC[!z] for all Y, ,v, € YV .36

f @
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P

Hence, in view of Def. 10 1t is evident that C(w\) is a random endo-

morphaism of V, and since 1t 1s actually time-dependent we conclude

that the transmission operator 1s an I(V)-valued function such that:

Clsw): Txf) ~L(V).. (3.37)

In order to unify the present formulation and recalling Def. 9 of

this chapter we can now introduce the definition below following the

Bharucr‘va-Rem‘s formalism:

Definition 11

A Banach space-valued random field on T': T'X Tz and R3
1s a mapping d!(f,t,‘x,w) = "3(5,‘X,w) :

Tx [Rs" J).-*V such that for every §é T and “Xe M ,
Vs a Banach space-valued random variable; V is

o
the wavefront subspace of I ( X is the centre of mass of ot ).

Now, for given distributions of the physical properties of a solid

an explicit form of the C(S,w) operator may be derived. Ffurther

a measure on ‘{'(V') may by introduced and a rigorous analysis of thé
evolution of the wavef'z;ont may be conducted in principle*. It becomes
evident however, that v;orkmg with this kind -of random field is
rather com;)licated considering the function space struéture on Tx IR’
and hence it is conv‘enient to reduce the analysis to a real-valued

random field in terms of a power ?: V- [R+ . Thus fo; a

microelement we can write the following expression: .

-

* See Section 4.4 for the explicit form of C(s,w) operator and the
corresponding numerical analysis. .

o e i 3,
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“P o= JLCsy i), % f “a ] dv ; dv =dXdK,dX,

&y (3.38)
where the second term of the integrand' vanishes due to the assumed
neglect of body forces. We note that from continuum theory_*.p 18
related to the time rate of change of the kinetic and potential
energies of o0 through the energy identity, i.e.:

“P - % d%u - 39)

at T dt _ 3

It follows that ‘:P may be taken as a linear functional on the V
space so that we obtain a generalized random variable in the sense

of Gel'fand and Vilenkin, 1964, i.e.:
+
“P:V-R (3.40)

. « . . . .
Hence, in this sense the power P in a given sequence is a function

of the V(f't) -process so that by Thegrem 1 we obtgin: ..

T(E O [Pz = TET) [*P(z)] = (5.0
- = f Plw,y) P(T,z,dw) P(t, x,dy)
Furthermore, sxnce V(‘t t) 1s Markovian we can- write that:

(1' t) [*P (5 x)] f "?(u,y) P(f,z,dw) P(T,?,dy) =

L E{(T, (I E)e, 1) x e
CTELPITL ) at (5] B Fy oer (0E)x(0,1)]

It can be regognized now that depending on the interaction effects

caused by the immediate neighbours of the single grain &, the

’exPected alue of the power flux may become smaller; equal or larger

after the passage through « . ‘This can brj expressed by:
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((“'[) "'E)[‘P(z x)] =
=E{*P(T,,v)at ({*1),%7)| F x T over (0,41)) x (0 “T)}

2 “P('x) at (0,0) 3-42)

- However, if we consider the pawer P of the total wavefront in all

sequences Ské ™M , then evidently there is also some energy loss due
to the reflections of the waves propagating backward (in the Xl—direc—
tion). Thus taking the evolution of P in terms of the passage time

‘
‘T we can give the following inequality:

T(¢D, T[] =E{ P(1, y)at (D), *T)| F x %y ]
€ P at(t=0, t=0) (3.43)

This clearly shows the super-harmonicity of the function :.P under the

operator T(f,'t) 13 order to establish a ‘'valuable connection of this

probabilistic formulation with the abstract potential theory we have

to simplify the'analysis to the one—dimensional time*. Thus the

evolution operator T(‘-t.,t) will hencef’ot"th be paran&etriied by t‘-&: and hence it
will be denoted simply by T(ﬂ Thié implies, that the time dispexjsionﬂ

process T,_(f) will be disregarded in 'the sequel, i.e.*

T(T) =*T(T) , (3.44)
Extending now the result known for Markov chains (Lemma 5.3 in
Syski, 1973) to the discrete parameter Markov process we propose

the following lemma:

¢ -+

/

¥ ¥
* The abstract potential theory, which has its origin éf‘the studies

of Brownian motion (Kae, 1951), is still suited only to the problems
parametrized by the one~dimensional tlmes.
VA N
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Lemr;la 1z~
If !('f) is a discrete parame;:er Markov process representing
the wavefront évolutinon in the macréScopic time t y with the
transition operator *T(t) and the initial distribution y(0),
P is a bounded z.F—super-hr:u:mcmlc function on V ; then .
the random process P(!)'on the §-field ?'V’ overa([),'i) ,

is a super-martingale.

Proof ‘ : \ ) \ N
It follows from the Markoy property of Y(t) that ‘\/)
EAP(x] ot T [ Fy over (0, 1)} =
= E{P(y ()1 (y (F- (TN, )
and further hf'rom the superhamonicity ofP expressed by

(3.43) that

E{My (D) P(y(F- o}~ -
=) O (B¢ = - . 3
p(g(ﬂ) Ptydy) « P(y(E-¢*D)) . oo

It is important to point out that even though the above

result has been obtained for the case of a cubic structured solid,

¢

(Fig. 2.2), it also applies to a polycrystalline solid with random

internal geometry. However, in-that case the Definition 10 of the

.transmission operator at -a microscale would have to be modified.

Furthermore, our formulation enables one to introduce some internal

ial parameters into the transition‘operator which could lead

K




¢ ¢
(\ ' wave transition) on random fields. In general Lemma 1 opens up the
mlcrodynawlcs theory to the various techniques of the abstract
potential theory which 1s currently experiencing a vigorous develop-
mént (see for instance, Blumenthal and Getoor, 1968 and Fuku;ﬁlma,
1980). ) . <+ .

It 1s of interest to point out that the averaging procedures
employed 1n this section are with respect to the set of solutions of‘
the random evolution equation and do not 1nvolve avéréblng tHlS random
equation itself. bThus in the light of the discussion 1in Section Z.1

we should obtain the "proper" expected values of the power flux 1n

the wave propagation analysis.

3.5 ngyergence of the Probabilistic Evolution Relation to the

Generalized Wave Equation of Continucus Medaia

It has been stated in Section 2.1.that a probabilistic prablem
in mechanics may be stated through relation (2.1) 1n a very genepa&/
way. In the case of the 1-D wave motion such a formulation has been
given in accordance with Definition 9, whilst the laws of evolution

<sof the random velocity field have been found in TheoremuZ. It 1s

+ -
” of interest to check whether an averaging procedure as indicated by

|
equatldl’(Z.Z) will 1ndeed yield a relation equivalent to the classical
wave equation. We shall investigate this question in the present
section.

In order to establish the convergence tgd continuum we work

( with the 1-D case of an. l-wave (as discussed 1n Section 3.2) since

e

- /
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( ! * a more complex case would only make the analysis more cumbersome and

, compllcated‘&itpout bringing additional -ingight.

; ) A point of fundamental importance in establléhlngtthe eqﬁlvglence

of physical theories constructed for v;rlous levels of approximation

of patural phenpmena, 1s the intermediate level where the agreement

has to be found (see for instance H. Grad, 1962 and Yvon,'l96§). !
Such an 1intermediate level between deterministic contlnuum mecha61cs |
and prOb?blllSth microdynamics of structured solids is the infinite-

simal element of co&tlnuum theory which corresponds to thé microelement

scale. Thus, we shall consider the.wave motion i1n %two continguous

microelements of a typical sequence SH$P1:

grain boundary («p) t
L

It 1s known from elastodynamics (see Achenbach, 1973), that i

for the pulse propagation the' following relation holds:

.7 _ -
" 6=—chu. Y
\ .
and hence the strain in the erlrectlon 1s given by:
E:ﬂ:—'—-_ai.g__l_a v %
- X 0x ¢, ot . : .
where we consider waves weaker than the acceleration wave, 1.e. Qeii,

m2 2. In accordance with Definition 1, the above relations are taken

ﬁﬁ,hold within an element & and B . Hence, we can write:

g [N

BX (X, + d t+27) -%y (X,, t+%1) = - chpe (X+d, ’C+°‘:C) +n"‘cL°‘g(X,;t+°"[) ,

4
f
i
]
!
\
:
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~ were d =*d = constant. Taking the expectatlo'ns of the above, we obtain:
Uy (Xora t+1)- y (X, t+7)] d B =
a9 .
!
_XQQLI:e(X,,t*‘{“t)—f(XlJf.d,f+°{'[')] dl?:f (3.45)

W

where now the subscript o éoncekns random physical properties.

From the microdynamyc model we know the following relation :
@{!(Xﬁd’t#"[:)}=(P{)‘/"(f+<d’f>)t+“'[')}, (3.46)

which 1s due to the correspondence between the average time t and the

physical space Xl during the wave passage. furthermore, we know from

the Markbvian formulation (see 3.19 nd 3.12) that: .
P{y (T + (1), t+4T)} = P(a,2'D) P(at,x,E) Oy (F 1)} (3.07)

where A-f = <"t,> and At =%T

Employing (3.46 ) and (3.47) on the left hand side ( LHS) of (3.45)

we olﬁ:taln the Followuyxpr;sswn:

s = { [ulis d 6o “0)- y (1t +o1)]dp? -
KX

= 5§ 0(T (D), ot BTz ) P, ) O (1)
" -y (X, te ) der Pt =
= T(0) T(T) [y (0 0 4 F.10) - (y(X,, Ee ),

| 1 \
where T and | are E‘}he transition operators defined in (%.22) and

(3.14), respectively. It follows now from the point (1x1) of Theorem 1l

that: d

LHS = (I- g )) - (yv(X:,h("F))) - (3.48)
E(-H HEN =LK+ (DY),
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- where 0<b & | has been taken, and analogously to continuum mechanics

*

the refledted wave has been omitted.

On the other hand, the right hand side (RH§) of (3.45) becomes
RHS = §<c, [e(X, ,t+4T)-e(X+d, t+%1)]df> =
A .

= (e Y [ (XLt + D) =€ (Xt d o t+ Y]

Equating the above relation with (_3.48) we obtain itherefore:

(1-6) Cy (%, 1)) =<y (X, t+ TN =
= Y [N B+ DD = e(X, 1d, 4 (4TD))

which upon multiplying by ‘/(d't) becomes: \
(Xt =y (X 4* 1)) b
, <¢T> 4 - <¢T> <! (xmt» = .
= <¢CL)7' <£ (Xnt"'(dt))) ;(f (X\*d)t +<‘t>)> (3.49)

in which the assumption of ergo_alclty has been made, 1.e.:

L (%) (3.50)
¢y d ‘ _

We do not take a limit 1in (3.49) with (“’f} —+0 and d—=0,

b}
but consider this,relation on the microelement scale rather to be

-

equivalent to the partial differential equation of continuum, 1.e.:

du N u 2
AN B S . .. 2 : (3.51)
atn., + atl L ax'z : v y

Wth‘R' 1s a generalized wave equation with dissipation. The coeffi--
‘ I , )
cients C,'_ and b in (3.51) can be ‘derived from the microstructural

i
Propertles,a that is: . )

I-
¢ = <eo) (3.52)
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Moreover, we observe that the time scale t eﬁﬁloyed in (3.51). above

1s equivalent to the average time T of the probabilistic microdynamics

" model. Henée, it 1s seen that by taking the average over the internal

. . . ¥
times of microdisturbances in the particular sequences, only-one time.

»

) ‘.
emerges, namely the av#tage macroscopic time. Such a formulation has

1ts parallel in statistical mechanics, where a time operator 1is

introduced to account for the randomness at the microscopdc scale and

to allow a‘ranmtlon to the macroscopic scale via endemble averages;

see Prigogine (1980).
[
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- - CHAPTER IV
COMPARISON OF THE CLASSICAL TO THE MICRODYNAMICS FORMULATION
BY THE USE OF THE MONTE-CARLO SIMULATION TECHNIQUE

" ' 3

4.1 Infroduction o

4

In the two prgvious chapters the theory of probabilistic micro-

dynamics has been presented. As pointed out in Section 3.1 the Markov

N

field formulation '1s a porbabilistic analogue of the transport theaory

approach for the waJe propagation, where the discrete microstructure
%

3

1s included in the formulation. In contrast to the dete}ministlc elasto-

dynamics theory where one can distinguish two quite separate stages,
i

namely the formulation of the governihg equations and the method of

solution, in the present case these two stages are treated at the same
>

time. By this wk mean that thearems 1, 2 and Lemma 1 Ef Chapter III
# ’ .

provide a basis for the formulation of the problem as well as the
solution of the problem. Thus, 1in order to determine the evolution

of the system, which is the spatial-temporal evolution of a propagating
wave, one has to calculate the Chapman—Kolmqgorov relations in the
internal and average times. Alﬁtough the probability kernels of the
integral tran81€;0n operators are derived explicitly as functions af
the material properties (see (3.11) and (3.19)) such a calculation

up to any instant of the generalized time 8 (Fig. 3.4) is possible

but rather cumbersome. We therefore, due to the absence of actual

laboratory tests, employ a simulation technique known as the Monte-

'

Carlo method. This 1n addition permits a comparison of resqlts of

the present theory with the classical formulations. As’we shall see

/
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(, 1n Section 4.4, the Monte-Carlo simulation is based on the same

considerations and assumptépns concerning the wave propagation through
a structured ‘medium as the probabilistic model 1tsélf. In pminciple;

. ™Roreg,
1t¥15 developed from the Samejz;;EBV1an assumbtions and hence, 1n

.
view of the vast evidence in scientific laterature of the success of
this method, 1t 1s expected to furnish some indication as'to the
applicability of the probabilistic model.

On the other hand, the Monte-Carlo technique, represéntlng

v

simulation aof the physical phenomenon is tho&ght to replace‘%m elaborate
laboratory experiment, which could not be carried out within the present
research program. Althgugh the literature on experimental mechanics
is very extensive no test proceqdre could be found by the authﬁr of
~this thesis that would recognize t?e effects of the rather complex

Sy
on of the stress waves. Hence for

material structure in the appligy
this reason the simulation technique had to be employed.

Thus the present chapter 1s devoted to the development of the
Monte-Carlo simulation for the application to the wave propagation
in discrete solids togetherow1th the comparison of known results of
wave propagation in continuous media. It will be shown that the over-
riding factors in this comparison were the relat1J§ strength of the
Flucguations in the physical properties in a specific sodid, the
correlatlogs range with respect to the existing grain size and thg
wavelength. Again, this will be illustrated for the case of a cubic

structured solid. We start by giving a discussion of deterministic

¥ '
continuum and random continuum theories as applied td’ our problem.
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4.2 Deterministic Continuum%’or'mulétion for Isotropic. Homogeneous

LS
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Flastic Solids® ] »

—_— .

)g‘ We fecall from the section ort the probfem formulation, that the .

wave motion is generated by the application of a spatially uniform .
surface pressure at -the bar's front ﬁaee, i.e.s > - ' - :\
B-nf  =P(t) g . (3.5)
K=o \ « ,

It 1s evident, that an initial boundary condition of such a general

form will give rise to longitudinal and gransverse waves 1in the bar.

’Assumlng rllbw the material of the b;ar to’ behave as an 1sotropic homao-
geneous llnearly elastic continuum leads us to conclude that the two
waves will travel 1ndependentlé/ at two constant propagatlonﬂ speeds

’ €, and ¢, . 7. ’

We can thus consider smglé tybe wave propagation and, choose

to analyze a longitudinal wavefront due to the following condition:

6, (X,,t) X =0 = =P ; . : . (4.1) -
' ]
t=0 R
The motion of the medium 1s then ‘governed by the "standard wave,
&5 ° . " !
equation: . . ” -
2 ! g .
Qw1 Fu Y (4.2)
IE T o,
. . !
with the initial corgMsions: N ’
w=0 for t=0,‘xl>0 o (@) |% . - - :
. - ‘ ' (4.3) i
b=0 for t=0, X >0 " (b) 3

§
« N =

The gen-eral solttion of the wave equation (4.2) "i:s known to be: =

Wt =flt- L) eglte &) e

C




9 ,

where f‘and q are forward and backward traveling waves, respectively.

It 1s obvious that the pulse given in (4.1), will induce a forward

™~

traveling wave only, and hence (4.4) reduces to: .

wlX, £ = f(t- 5

The boundary condition (4.1) yields then:

-?CLQ’ =-P', since 5'“= - yCLa

and hence 0" \
-9cl_{(t- ) = ~p

where upon 1ntegr‘ét1ng we obtain:
._J. L4

oL :
flt-%) - L f P dt'+ C, (4.5)
CL L 0
By employing condition (4.3a) we see that:

X\ _
ko0
and hence C =( and (4.5) becomes therefore:
. 0 X, ) }
3 CL ,
(x,,t) ?c X Pdt
"P( X.)=_|_ {Pf‘ort>
K “ 9. (0 for I< -5'-

This solution shows that’a plane longitudinal wavef‘ront propagates

(4.6)

through the bar with the constant velocity €, . The pulse amplitude

and shape remain unaltered. *

4.3 Random Continuum Theory of Wave Propaq{atlon

(

Thas section aims to describe, in a comprehensive manner, the

formulation and 1its consequences of wave analysis in random continuous
‘ .

N
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media. The general features of this macroscopic approach have already )

been outlined in Section 1.3 of this thesis. -

“ In the classical theory (cf. Frisch, 1968) one replaces a

single inhomogeneous medium M by an ensemble of‘bmedia {M(w) , WE ﬁ.},

<where w is an outcome in the probability space fl. If for each well .
a certain random function u_(!,t,w) is introﬁdu.ced, which 1s said to

describe the properties of the inhomogeneous medi’um, then M(w) is

called a random medium; the quantaty n(l,’t,w) is a random variable ; )
and usually corresponds to the index of refraction. . p

For initial value problems, or propagation in time-dependent '3

media, the random wave equation 1is of the form:

? = (A v Bl))E, | SR ;

a

where the unknown 1Functmn ‘P (scalar or vector-valued) is the wave function
(or field), Als a deterministic linear partial differential operator
(usually with constant coefficients) and B(w) 1s a linear partial
differential operator with random coefficients which are centered

random functions. In accordance with the elastodynamics formulation

o

(see (1.5) and (1.6)) a more precise formulation of the radiation

rd

of waves 1n a lossless, homogeneous, 1sotrppic, time-independent

medium is given by the following wave efuation:

»

V(X w)- ([‘) aa; B(X) - F(X,,t) (4.8)

where F(Xo’t) is a Forcl function applied at position Xi’ In the

case of a harmonic point source excitation, we have the random

Helmholtz equation expressed by:
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V20X, w)rki (X, w) \é(X,w)-zJ()S), o (&9)
where k°>0 1s.the so-called free space wave.number, N is the index
of refraction"wxth unit mean square value and J(pls the Dirac-~delta

-

function. Obviously equations (4.8) and (4.9) have to be supplied
Q ' ’
with pertinent initial boundary conditions in order” to render the

’
problem well-set. \

1

Since we are specifically louking‘at the propagation of initially
plane waves in a iong bar (semi-infinite), i£ is thought that the
deliberate focus on the one-dimensional case at this stage w;ll now
permit a rather simple account of the mathematical development of the
random continuum theory and 1its potential application to our problem.
Thus the figét thing to notice 1s the non-existence of dissipative
terms in the equation (4.8), which reflects the smearing out of .
éhe medium 1n this macroscopic approach: The dissipation in structured
media is'thought to be, to a great extent, due to the presence of the
internal bouqdariesjénd as ev1denceq by our énalysis in Sectipn 3.5.
Hence the equation of the type (3.51) should be adopted aé a more
Eeallstic model. However, to the best of the author's knowledge this

1s not the case, qu thus according to the'classiCFl approach (e.g.

Howe, 1971) a unidirectional wave motion obeys the following equation:

| Qe ’

PulXw) _ | Ful(f,w) g | (4.10) -
2 X* C'(X’,w‘) -t ‘\

where the exact deformation u(xyuﬂis synthesized from fhe average

TN - .
value W of W and its fluctuating part uw', i.e.:

yl

Cu (X tw) =a(Xt) +u (Xt w . | (4.11)

e et il
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The wave propagation velocity f is expressible. in the following -
fashion: I ' '
’ } 3 . N ‘-
' PN N ..

where G, is the-average velocity.

v

Given the initial boundary condition it is possible, at least
l() ' ’ v

in principle, to solve the equation (4.10) for the mean and fluctuating

parts of u.( ’w). However, since in our case € . is given by: .

N I ) .
c‘=_E..=£.E_2_T_E_. ‘ " C L (6a3).

) N
§ rre
where it is assumed that E,g are Gaussian random variables, thais

»

does not allow a simple functional form of rl(w), and an explicit
- . L

solution 1nvolving a Fourier synthesis for a sequence of duccessive
A

. approximations to W and '~ (see also Levine, 1978) appeared urwieldy.

o

In this context attention was alsoc given to the simpler case of a
I3 .
harmonic excitation of (4.10). The governing relation now takes' the
form of a randop Helmholtz equation in one dlmensmn so that:
ax**

@ -

which for nonrandom initial condltlons of !).(OJ and T becomes

a linear randorn dlfferentlalqequatlon. ’ !

s

The classical approach is to assume that H.(X) is the Ornstein-

3

Uhlenbeck process - represented by a centered, statiomary, Gauss-

Markovian random function with the correlation function ' . .

E{pM) )} = E‘exp{ le} o L (615)

where £ is an arbitrary small non-dimensional parameter and § is a

o

- - . . _
. / f o p SRR AR

£ ()+kz(l+p(X)) (X) = | ‘ En.IA)’
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given correlation range.

In this case the -solutions for the exact Field u.(X,m) can’ be

obtained as,s’hznwn by Papanicolau (1971) and Morrigon et al (1971).

t

In these papérs the reflettion and tranémissiﬁn coefficients for the:

- %

wave"field in a finite 'inter(/al\. of va .random medium were introduced ..

" as random fuictions. Their probability density functioms were then

derived "in the functional forms and these were subsequently used to

b

calculate the mean of the square of the above coefficients.

In order to.use these resul‘ts, we must however determine two

. key parameters in the Trandom continuum approach: the correlation range "

¥ and thesdudimension‘lerss parameter £ .. The \f‘irsf. of f:hesa’ is deF;:med'

to be the; minimt.;m dlstanée of two points'at which simultaneous fluctua-
tions are in;jependent. Thus w1tﬁ respect to the d'is'éfete rand;nm

medium qum};iation § appears to be’ approxifiately *d” ."M.The"‘dﬁifnehsionless

parameter € 1s a small number, that characterizes the size aof the

- LY .

+ fluctuations of the physical properties in the medium. One may “také‘,

it as the ratio of the standard deviation of the most strongly
Fluctuating parameter and its mean value (Frisch, 1968). Thus & in

(4.15) is actually the standard deviation of the Gaussian distribution
. . 4 B - .

I LA .
.involved in the Ornstein-Uhlenbeck process F.(X) wever, we note -

3

that the assumption of }L(X) in;the form of such a process contradicts
i , 8‘ + ‘
relation (4.13). The latter relation indicates that the square aof

the propagation velpcity ‘¢*, in form of the ratio of ‘ﬁwo Gaussiary

random '\(‘ariables will not be Gaussian, but will rather result in’ -a

% | ks

Cauchy 'distributibn. Noting that the mean and variance \dd not exist

for such a distribution, we follow Frisch's argument s'ta\ging that




s
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( » the ratio of the standard deviation to the mean of the strongest |
fluctuating propegfy shoulq @e considered as € , and hence choose
in the present case the fluctuations in ¢ to determine the parameter
T\\\w///“\ £ (see Section 4.4 f&r details of physical properties of the adopted
model ) . - -

{

Finally, with reference to the work of Morrison et al (1971) 0\
(see the equation (5.13) there) we have to choose the involved wave
numbers. Thus we note that for wavelengths larger Ehan the microelement
. s1ze dd the frequency effect 1s small and becomes more important for
wavelengths that are comparable to‘“d . We note however, that the

latter case has been excluded from the present research program (set

7

statements 1n Section 2,2.2). .
n For the purpose of the comparison of the continuum and discrete

modelling the above considerations will be employed 1n Section 4.5 of

1

this chapter.
N .

o~

4.4 Monte-Carlo Simulation of}@ave Propagation i1n Polycrystalline

1
Solids JL’// o

€

We now return to the microdynamics formulation of wave propaga-
tion 1n a discrete random medium. As already p01ntedkout in the
introduction to this chapter, we aim at ?eveloplng a Monte-Carlo

- " ]
simulation scheme which would replace a physical experiment on the
one .hand, and on the other shed some light on the characteristics
of the results, that may be expected iEiT/}Q? Markov field formula-

o

tion. A

t4
7
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Thé Monte-Carlo simulation method was developed i1n the late
forties (see gor instance Metropolis and Ulam, 1949 and Do;sker and Kac,
1949) as a sampling procedure. The latter consisted of the production
of models. of complex combinational situations or oﬁrflndlng various
PlStrlbuthﬂS of particles in dynamics or other physical gquantities.
Such an experiment 1s performed on computing machines, whose high
speed and large memory enable one to obtain approximate solutions of
physical problems, where the exact mathematical solutions are unwieldy
or prohibitively lengthy. A Monte-CZrlo simulation, 1s thus naturally
suited to problems of statistical physics where 1n general, one needs
to specify the underlying mechanism of the phenomenen at the micro-
scopic level 1n order to have the machine arrive at a global evalution

5
of the entire physical system.

By analogy to statistical physics, for the Monte-Carlo simulation
of the wave propagation 1n a discrete random medium, we have to specify
the laws governing the wave process at the micro-scale and gast them
in a computer language so that the restj 1.e. the evolution of the wave,
can be done by the computer.-

We consider wave propagation i1n a bar according to the general

p
formulation given 1n Section 3.1.3 with a microstructure as discussed
in Section 2.2. Thus we shall simulate the evolution of a wave as
1t propagates alomg the bar employing the wave qelocfty vector ‘X fixed
to a given wavefront. Since the evolution of dx from grain to grain

Ry

15 governed by the transmission operator, which 1s a function of

random physical properties of the medium (see relation (3.32)) we

\4 +
1

have to discuss this aspect first. H "

TR s T 1%



98

ry

&
Values of elastic coefficients of crystals of various chemical

compositions were obtained experimentally by Lazarus (1949) and

Overton and Gaffney (1955). The absolute error of the measured
Cq elast)e~epefficients listed there 1s given by + 0.25% for

specially prepared crystal specimens of length ~ 2 cm, which were

" considered to,be single crystals. It 1s well known, that grains in

polycrystalline solids may be assumed as single pure crystals (hence
a

our Def. 1), however, to the best of the author's knowledge the

statistical information about their elastic constants 1s not available.

Therefore, we use the above mentioned information as a guideline for

Y d-E o .
determination of two modulizi and G 1n this micromechanical

)
[
model*. Thus we assume that the absolute variation in E armquls

+ 0.3% about their respective average values. Furthermore, as 1n

"

most cases 1n physics, we assume that the probability distributions

P(‘E}and P(“Gjare of the simple Gaussian forms. We gcan thus establish

the %ﬁandard deviation & 1n both cases by requiring that:

S~ - 35 =0.3% / (4.16)

whereby 1t 1s noted, that for a Gaussiag.random variate X we have:

P{x(p—?b’} =0,0013 .

(4.17)

P{x>pt36}=09987 , \“

¥ See also Hirth and Lothe (1968) for the average values of the
Lamé constants 1n solids.

#
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No statistical information 1s availbble about mass density
variations 1n the single crystals or in the grains of the poly-
cryst;lllne solids. Therefore, by a similar argument a? in the
case of elastic constants, the mass density g 18 assumed to have a
Gaussian distribution, where the mean mass density FT 1s taken equal
to the values given 1n the tables of material properties (Kolsky, 1963)
and the standard deviation 59 1s taken to vary from ’L?/SOO to }19/200.
Since we have assumed a microstructure with the geometry of \
perfect cubic grains, we may Ehoose copper as a typical metal, whose .
crystals display this kind of\geometrlcal shape. Accordingly, the

Gaussian statistics of the variables E, G and 9 will be specified as

follows:
(E)=pg= 14.459-10" N/m?
f
B = pig /1000 = 14459 losymz

G)=pe=546 -10"N/m?
B = pg /1000 = 546 10° N/m*

(4.18)

(4.19)

gy =pg=83-10° kg/m? .
bg = 1g (§%6‘zlo-o)= 7.8 = 44.5 kg/m?

The crystal size 1s chosen to be 0.2 mm; this arbitrary choice 1s
made in view of constraining computational costs and for the purpose of
1llustrating the application of the Monte-Carlo method to the problem
of wave propagation 1; dyscrete solids. This grain 31zeJis employed
for the construction of all subsequent diagrams. However, 1t correspands
to an average size of a fine grained metal structure.
Analogously to the development of the Markov field theory in i

Chapter III, three simulation models can be given here. One model

°
Bt st ol 4a e o



\ N
100

that corresponds to the longitudinal wave propagation 1n a 1-D solaid,
a second pertaining to a 2-D model of the solid ant! finally a third
corresponding to the L- and T-wave propagation in a 3-D solid. We
start by presenting the first model, which 1s considered as an ensemble
of K non-interacting sequences; see fFi1g. 4.1. for the space-time graph
of "the process and the pertinent notations. At time t=0 and position
Xl:O (front face) a uniform pressure pulse p 1s applied. By assuming
all first microelements of these K sequences to be characterized by
Eap ° i =
€ and ?z F’? an 1nitial velocity distribution ‘v = m/s

in the first layer is postulated (0 denotes the first microelement).
From now on the program takes the following stgps: .
- evaluate propagation velocity in the first crystal: OCL= °E/°?

evaluate the passage time: o’t = d,/"cl_

[
evaluate the arrival time at (0,1) interface: T= T

evaluate the wave velocity 1in the first crystal: Oy = =

E
% °c. |

I'4

{
- generate two random variables '?7 E according to their Gaussian

. statistics*

‘/l '
evaluate the propagation velocity: lCL"" E/'S)

!
evaluate the passage time: T= d/'cL
evaluate the arrival time at (1,2) interface: T ='7 +7

oy _ 'o'q
evaluate the impedance ratio: X= 59_66—
L
o 2
evaluate the transmission coefficient: Cﬁ_: l+6|x
I
evaluate the wave velocity 1n the second crystal: ly = ’ C,“_' v

.
y)
i

The Gaussian variates are obtained using the Box-Muller method
(Rubinstein, 1981).




. <:j\::j 101

2
- generate two random variables 19, £ for the crystal 2 and repeat
7 \

the procedure.
This procedure 1s continued up to ény‘de31red éraln so that |

we always know the following: »

- the grain number N in the sequences, which corresponds

to a definite positloq‘ln space Xl (l1ne O—Xl) k
- the arrival tllme T=£ *1  at the N/N+l 1interface
a=l N-
- the pulse amplitude vy = 'ﬁ %yut) Ctr

«=0
Repetition of this procedure corresponds to the same 1nitial pulse-

being propagated in another seﬁuence Skér1and gives another result. In
the actual computer program the simulation has been conducted for K=100
sequences 1n parallel so that a read out of the arrival tlmes{TLTQ’..,;Two}

and of tgé pulse amplltudesf%,Vz,“.,Vwo} was possible (see Fig. 4.1).

N
Since 1t 1s known that any given random number generator gives
rise to a sequence of pseudo-random numbers which has a distribution
sllghtly deviating from a perfect uniform distribution, 1t was
decided to combine two dlfferentrgénerators in every simulation 1in
order to even out the cumulative distribution ofﬂpseudp-random
numbers. Thus the physical praoperties of the mlcroelements.ln all -

2

odd-numbered sequences were generated with the seed 5'3, while .
those of all even-numbered sequences were generated with the number \\
7“,. Although a small difference in the obtained results was noticed
when using these two generators separately it 1s assumed, that the

cambination of these different generators leads ultimately to the

acceptable pséudo-random'results. ,

N

——
Bl Tt
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In the two-dimensional model we consider the bar to consist
of 100 sequences arranged 1n a plane XlX2 (see Fig. 4.2a) and adopt

-

the. following model for the interaction of a microelement & with 1its

two neighbours in the transverse direction. After the pulse d'-lxi

has been transmitted into « through the boundary (@ -l &) perpéndlcular
ta -the direction o!f propagatiaon, the velocity “Xf,, undergoes a modula-
tion at the two parallel grain bou)ﬁdarles (p ) and (a(.X’). It 1s
evident that due to these 1nteract?110ns, the wave velocity vector w.\\,/’
while representing the wave propagation in the Xl direction, 1s also
a function of the X2 coordinate. This fact has forced us to aintroduce
the transmission operator in Section 3.4. However, since on a computer
we can only work with a number rather than a function, we choose to

introduce a quantity which 1s an average of dl/ taken over the cross-

M
section of the grain o such that:

“v (Xnt) E—"{ E{M!(anz 1”} (4.21)
Lo

We know from the 1-D simulation, that the variations in the arrival
times as well as 1in velocities Y are guite small for the specified
Gaussian statistics in (4.18), (4.19) and (4.20). Thus instead -of
solving a rather complicated initial beundary value protﬁem for the
grain & , we can assume that the interactions at the bdundaries (#p)
and (abx') are 1ndependent of each other and will involve the two
halves of & separ:':tely (see F;g. 4.2b). This 1s an approximation

since boundary effects ysually do not occur deeper than 5:10 atomic

layers 1n the 1ideal lattice (Lelbf\rled, 1955).

¢
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It 1s to be noted that up to now considerable attention has
been given to the derivation of an explicit form of the transmission
operator and its dependence on the wavenumber .involved. This attempt
has shown to be rather complex and hence a simplified 1nteract1m1 law
1s adopted that permits the Monte-Carlo simulation. Hence with
reference to Fi1g. 4.2b we see that 1n two neighbouring halves of the
crystals a and ph we wi1ll have 1nitially a difference i1n wave velocities

suchhthaf:

"PAVL =¢1'\7_P|'v" (4.22)

[ 3

-

where the bars indicate now quantities averaged ovef half the cross-
section of a given grain. It may be recalled from Section 2.2.3

that the continuity of the wave velocity vector 1in the physical

domain has been based on the continuity assumption for‘deformation

and deformation ratés at an intercrystalline boundary («p ). It 1s
more convenient however to use this continuity condition 1n conjunction

with the condition of cons%rvatlon of energy. égscelihe following

condition can be written:
u‘z‘})(t») + P':P(to) = dzP(to"' <dt>> + "'J’ (t,* <“T>)‘ (4.23)

It 1s further assumed that the resulting mean velocities in two half-

—=grains are equal, l1.e.:
“T, (4 (C0) = By (4,4 0T)) (4.24)

{
Hence, we get for the transmitted velocities the following expression:

\ -2 -2 ’
“y o =hy =[°"V+“P“‘V Jz (4.25)
tr tr dpx+|

o e AmEem e
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The transmitted wave velocities at the (wY") J<hterface of the
grains & and X'Q%E be similarly derived. Having determined the T
resulyg velocities 1n the two halves of the grains &, i.e. ",".V-" and
““V;\Ne can now replace these quéntltles by a single average XFIOfity
@

“Vt , which is incident at the (o ,d+|) boundary. By usxhg the\

conservation condition of the power flux, we aobtain '\

8

e (7 + )

Fl

w

We now see that the Monte-Carlo scheme for the wévefront

propagation ina 2-D model of the solid should proceed as follows:

- postulate a uniform 1initial velocity distribution in the first layer:
’y= fm/s
evaluate the passage time: 'T= d/”cL

evaluate the arrival time at (0,1) thterface: T'='I

-~ generate,two random variables ‘g, lE for every microelement of the
next layer

‘ evaluate the propagation veloc1§y: ’c;={qff;
evaluate the“passage time: lf d/TL

4 §valuate the arrival time at (1,2) interface: T 'T+'1
évafuaté’the transmitted wave velocity: v th'°V
evaluate the velocities resulting from the interaction at all (¢b )
boundaries according to (4.24)\

evaluate the final velocities ‘Vi in all grains ¢« of the second

~\
{gyer according to (4.26)

.
et s bt et R
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- generate two random variables 29, E for every microelement of the

next layer and repeat the procedure. -

~

Similarly as in the one-dimensional model the simulation is .
r

continued on the computer up to any desired number of grains in the
sequence so that we obtain a set of arrival times {T],T;,‘.W.E”}Nand
wave amplitudes {vq,vz,.”,vw,}u at a given number N. In order to
compromise the non-uniform trends in the generation of the pseudo-

random numbers the physical properties of the odd-numbered sequences

»

were generated with 513 while™those of the even-numbered sequences

were generated with 711. Thus a simulation was run on the computer

with these two seeds simultaneously.

*

In'the three-dimensional model of the solid we have to account

A

for the existence of four grain boundaries'in the case of a cubic

microelement & rathef than only for two. Adopting the same model

of i1ntéraction at ‘any interface p%Ea{lel to the direction of éropaga—
tion we only have to modify the formulfgfor the final velocity ‘;& ,
incident at the (&, «+] ) boundary. Thus we have 1instead of (4.26)

the following relation:

%] L /uic?l o2  wyem 2, asm2) .
- ~~-V£»';-V If—( th, LR PO 4 Vit 4Vﬁ ) e £4.,27)
The three-dimensional solid is now modelled &s a rectangular (10x10)
ensemble of 100 sequences of cubic microelements. -Hence the develop-

ment of the Monte-Carlo simulation scheme for the 3-D model of the

cubic structured solid cantie summarized as follows:

- postulate a uniform initial velocity distribution in the first

layer: ‘v = ]m/sﬁ

5

3
3
-

e
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(" | evaluate the passage time: M= d/’qL

P s s AR A

evaluate the arrival time at (0,1) interface: T="'1

v

e S A i
-

, ' ' )
' - generate two random variables ‘9, E for every microelement of the
'next layer
' ) . : o= |
evaluate the ppopagatlory’velocztty: C.= E/'? .

evaluate the passage time: !7 = d/'CL

evaluate the arrival time at (1,2) interface: | =T +'7

o

- {
evaluate the transmitited wave velocity: ly = 'Ctr v
evaluate the velocities resulting from the -interactions at all
(d’P) boundaries in the layer according to (4.24)

' ' evaluate the final velocities “V

{ in all the grains &« accarding ’

~

“to (4.27) #

e,

. . g
- generate two random variables ? E for every microelement of
i

the next layer and repeat the procedurej

. Again this simulation 1s continued on the computer up to any

desired number of grains so that we obtain a set of arrival times

= e e o et

{T“T“,,,,Tm}”' and a set of wave amplitudes {‘\l“v“,’_wvm}N ’ \

at any given number N. In order to even out t;hé pseudo-randor‘n number

! " generation, the physical properties of the odd-numbered layers were,

generated with 51_} while those of the even-numbered layers were

generated with 711. ‘

f < i

The general flow chart of the simulation program is shown in

Fig. 4.3 while the corresponding computer programs are attached in . . ‘

Appendix C of the thesis.
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Fig. 4.3 Flow Chart of the Monte-Carlo Simulation Program
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4.5 The Monte-Carlo Simulation Results and Discussion

In the previous section welhave described the Monte-Carlo
technique developed here for the purpose of simulating the wave propaga-
tion 1h a random discrete solid. Three cases of the discrete solid
were dealt with, 1.e. the one-dimensional, two-dimensional and three-
dimensional model. In all cases the longitudinal wave p;opagatlon was
simulated in terms of an arbltyarlly chosen number of sequences and
by 1nclusion of a proposed interaction mechanism: The particular
number of sequences (K=100) was chosen as a compromise between a
minimum number of pseudo-random reswilts required to give meaningful
probabilaity distributions and the available computing time. Similarly,
due to these constraints, the proéess of wave propagation was
simulated for a standard distance L=1lm only 1n the semi-infinite bar
M. In accordance with the Markov-theoretic model developed in Chapter
III the random evolution of this wavefront was characterized by two
quantities, namely the wave velocity vector v and the so-called
arrival time |- 1dentigal to the internal time of the Markov process

\'} (t ); these two quantities were read out at every statior in

.multiples of 10 em. Recalling that the microstructure of the bar was

assumed to be composed of perfectly cubic crystals of a constant size

“d = 0.2 mm, this model yields results ten times during the simulation

—
¥

process or at every 500-th grain. The statistics of the physical
parameters involved in the longitudinal wave propagation (one-dimensional
stress approximation) are specified through (4.18) and (4.20). It

*

18 to be noted that two cases of the mass density statistics were

used, 1.e. the casé of 59 = f‘? /700 (a) and the case of 59 = }L?/SOU

(b). We shall discuss case (a) first.

o

aé‘i‘é“a*’»-'.'&ia;k“‘mw—'-“ M



Ly

111

‘ N

f I I I il [ [ I T
microelements 0 0 05 10 15 20 25 30 358 4.0 45 50
per sequence
[x1000] . l ‘ l
distance [m] 00O 01 02 03 04 05 06 07 08 09 10

(

P(v) ,

\
\
\
\

‘° A AN S

05 y

o
—

.

A A A A o A A A A

mean velocity 1 O 0 9990 09984 0.9977 0 9967 0.996)] Q 9949 0 9943 09933 0 9928 0 9922
(m/s] | | | | 1 | | | | | l

standard dey 0 0 122 123 125 125 130 1 26 123 129 125 122
{0 001 m/s]

P(TIA

.
-
-

05

00 ;444{/ / 7 :

mean arrival 0.0  0.2481  0.4962 0 7482 0.9924  1.2405 1.4886 1.7367  1.9848 2.2329 2 4810
time [10'45] .
standard dev 0.0  0.26 0.3 05 063 o7 073 073 0.82 087 0.93
(10°8) ]

Fig. 4.4 Probability distribution of velocity and arrival time

for a 1-D model, case, (a)
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The results of a 81mulat{on of an L-wave pulse propagating
1n the one-dimensional model of the solid are shown in Fig. 4.4. The
eyolutlon of the pulse given at t = 0 with the magnitude of vy =|yn[5
1s shown 1n terms o; the probability distributions P (v) and P (T),
where y = \i] and | 1s the arrival time. The cumulative distri-
butions (frequency polygons) of these two quantities obtained by the
simulation are plotted separately at every station or in multiples of
0.1 m, whereby the mean value and the standard dev1ailon are 1llustrated
by the abscissa. It 1s to be noted that while the scale of either
random variable y or T 1s the same at every station the origin has
been shifted appropriately so that the mean values coincide with the
given read-out position an the Xl ax1s of the bar. This convention
along with the fixed scales 1s adopted for all the subsequent plots.
Hence, an immediate visual comparison of various cases and models
becomes possible. The velocity and the dispersion time distributions
are approximated Here by the Gaussian distributions, which display a
very good fit. Indeed, this reiult confirms the theoretical forgulé—
tion given 1nlAppend1x B of this thesis. Although the binomial- and
Poisson-type f1ts have been tried, they proved lesé appropriate than
the Gaussian fit. A closerlanaly81s of truenp(v) graphs shows that
the pulse falls off on the average, but the spread 1in magnitude &s
reflected by the standa;d deviation, remains fairly constant. On the
other hand, the P(T) graphs reflect the tendency of the pulse to
sbread within the dispersion time cone i1n the space-time graph (see

Fig. 3.3). Thus we see that the entire F1g. 4.4 corresponds to the

formulation given by (3.28), that 1s to the evolution of all the

,-;L,*ﬁ-gug‘w{u». il

T
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microdisturbances (propagating in particular sequences) in terms of
the postulated internal times. It 1s also interesting to note, that

the dispersion time, or the deviation of the random arrival time from

{/\‘"?ts mean 18 much smaller than expected, 1.e. on the order of ®* T after

p

\that the internal time

one meter travelling distance. This 1indicates
fluctuations afe very small. However, they may become significant

in the case of strongly non-stationary (e.g. critical) phenomena. We
also note that the one-dimensional méadel utilized in the computer
simulation was also run a larger distance L than one meter. It

was revealed thereby that a slow (non-linear) increase 1n the arrival

time spread (64 ) occurs.
! A

The results of the simulation of the same pulse 1n the two-
dimensional and three-dimensioral models of the solid are shown. 1n
Figs. 4.5 and 4.6, respectively. As before the simulation results
are shown by the frequency polygons which are plotted for the velocity
Y and time T distributions at ébery station along ghe Xl-ax1s.

It 1s seen that the Gaussian distributions are again giving a good
apprbxlmatlén. This 1s rat%er an interesting result in view of the
fact that there 1s a coupllkg between the contiguous sequences.
However, this can be readily explained, 1f we note that the sums of
weakly dependent random variables still converge ko Gauss;an distri-
butions (due to the Central Limit Theorem). In general, we see, as
before; the attenuation of the signal due to the minute reflections
at the consecutive interfaces with the spread in the signal Jemaining
fairly constant in both<khese 6odels. |

A global comparison of all three models for case (a) may

best be conducted on the basis of Fi1g? 4.7. Here we present the
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microelements 0 O 05
per sequence
[x1000] | I

distance [m] 00 01

P(v)

190

5

i =

00
mean velocity 10 09990 0.9985 09977 09967 0 9961 0 9949 09943 09933 09928 0 9922

(m/s) | | | | | l | | | | |

standard dev 0 0 0 87 0.80 0 88 079 0 82 0 84 0 86 0 8} 075 0 82
{0 001 m/s]

P(T) .

|

0.5 /i /]

.

00 = 4=2£ﬁ==?’,;4 _aéffi:::"dj//y —

mean arrival 0.0 0 2481 0.4962 0.7442 0.9924 1 2405 1 4886 1 7367 1.9848 2.2329 2 4810
tune [107%] <

standard dev. 0.0 0.26 0.39 0 50 083 0n 073 073 0 82 087 093
-8
[107"s] :

Fig. 4.5 Probability distributions of velpcity and arrival time

for a 2-D model, case (a)
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mcroelements 0 O 05 10 15 20
per sequence
[x1000] ’ l l

distance [m] 00 01 02 03 0.4 05 06

25 3aQ

(73

P{v)

10

35 4

07 08

N

05

00 = =

mean velocity 10 09990 09985 09977 0997 0 9961 0 9949
(m/s] | I | | | | |

standard dev 00 08 08 083 076 079
[0 001m/s]

P(T)r

09943 0 9933

079 085

9928

72

0 9922
|
0 88

05 /] / 4

v

00 4"4=Z

A

mean arrival 0.0 0.2481 0.4962 0.7442  0.9924 1.2405 1 4886
time [10_45]

standard dev 0.0 0.26 039 0.50 0 63 0.71
o4 . ’

Fig. 4.6 Probability distributions of velocity and arrival time

for a 3-D model, case (a)
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microelements 05 25 5.0 { x1000)] 3
per sequence | | R |
distance [m) 01 0.5 ’ 10 . X,
(- p(v) i i 2 ;
' [s/m] ‘
. 3-D 2-0 :
2 30 .
— h ;
480
420
360
300
1-D 1-0
240 .
180
120 ’
60 ' i
H
]
0 - —> 1
i
1-D mean velocity 0 9990 v 0.9961 v 0 9922 v [m/s] }
2-0 mean velocity 0.9990 0 9961 0 9922
3-D mean velocity 0 9990 0 9961 0 9922
1-D standard dev 122 130 122 4
2-D standard dev 0 87 0 82 0 82 ¥
3-D standard dev 0 8% D79 088 }
‘|
Lol
a) ;
: |
' \\ / !
— :
ix ) , : ‘
[m/s]
1000 1-D continuum N
’ ~
9 999 ~d4
—
) N~
0 998 T~
\\
~
0 997 ~ !
—~ \ H
0 996 \N\\\\ ;
. 1-D,{ 2-D, 3-D|models !
0.995 ~ e
~ S—
0 994 T |
~J
0 993 . ~
~
—
\\
0 992 ~ N
0.991
0 990 N o
0.0 0.1 0.2 0.3 04 05 06 0.7 0.8 0.9 10 X, .
Ay
b)
L 2

Fig. 4.7 Comparison of 1-D, 2-D and 3-D Models, Case (a)

Evolution of probability densities
b) Evolution of the mean pulse
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evolution of tﬁe velocity ¥V 1n terms of the Gaussian density fits

at three stations along the Qar, 1.e. at 0.1 m, 0.5 mand 1.0 m, as
well as the mean pulse behaviour along Xl' The main observation here
1s that the mean velocity 1suof the same maghltudé for all three
models. It 1s seen that the standard deviation of the 1-D model 1is
considerably lagger than the standard dév1at10ns of both the 2-D and
3-D models. However, 1t 1s possible to note from the P(v)‘dlstrl—
butions 1n figs. 4.5 and 4.6 that.the spread in velocity 1s slightly
smaller i1n the three-dimensional model than that in the two-dimensilonal
model. This further indicates that even the simple model of 3-D
interactions as adopted 1in Section 4.4 legds to a somewhat smaller
deviation 1in the magnitudes of the velocity.

It 1s to be noted from Fig. 4.7b) that the curves of the mean
velocity 1n all three models coincide and show a certain amount of
fluctuations between the chosen increments of distance. These fluctua-
tlonsﬁ?re due to the smoothing out of the actual numerical results
obtained for the ten chosen stations. It 1s obvious that for a very
large number of stations this smoothing procedure will lead to a
mofe continuous apBearance as depicted ip Fig. 4.8. This figure has
been obtained from a simulation of a pulse propagating in a single
semi-1nfinite sequence\u31ng the 1-D model. The computer results
were read out at every 2 m up to 400 m distance along the Xl axis
and show small fluctuations about the mean exponential‘attenuatlon.
This observation is 1n accordance with the averaged wave equation
(eg. (3.51)) obtained 1n Section 3.5, the solution of which 1s of

[

the type e'bt . It 1s 1important to note, that the results of the

b
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one-dimensional deterministic continuum model are represented by a
straight full line in Fig. 4.8, as well as in Fig. 4.7b). This 1s
1n accordance with Bur discussion 1n Section 4.2 dealing with the
continuum FormulatlbnT However, such an analysis can be extended in .
a similar manner to the two- and three-dimensional case. \

It 1s further of interest to note that no correlation between

o

the pulse amplitudes and the arrival times i1n the one-dimensional
simulation model was detected. This observation can be readily
explained by the fact that the coefficient Ctr hasi in gene;al, a more
complex form as a function of ? and £ as opposed to that given by
the defrnition of the passage time *T (compare relation (2.41) and
Def. 2). However, whilst one might generally expect this sxtuathn
to change 1n the models with interactions between the contiguous
sequences, this was not the case. In fact, the arrival time distri-
bution P (T') proved to be exactly the same 1n all three cases - !
compare figs. 4.4, 4.5 and 4.6.

Finally, 1t 1s to be noted that the small variation in the
arrival times as evidenced by these three figures justifies the
assumption of our samplified interaction model of the previous section,
where we disregarded the difference in the arrival times in the «
and P grarns for the coupling effect at their boundary.

Exactly the same type of simulatidn was conducted for case (b)
1.e. 63 = }l.’ /500 and all the other data remains the same. TH&
results for the 1—6, 2-D and 3-D models are shown 1n Figs. £i9, 4.10

and 4.11, respectively. They represent the same trends of attenuation

of the pulse and its spread withan the dispersion time cone, but less

Ery e TR N JE
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microelements 0 0 05 1.
pef sequence
[x1000] I
0

distance 0.0 01 .2 0.3 04 0.5 0.6 0.7 0.8 09 1.0

P(v)

10

05 :

00

sza? \]/elocity 1.0 0.9998  0.9997 0 9996 0.799_4_ o|999; 0.9989  0.9988 0 9987 0 9986 0 9985
n/s I I | | | |

standard dev 0 0 053 0 56 0.55 0.54 0 56 0 57 055 0.56 054 0.55
[0 001m/s]

PTYA

0.5 ]

0.0

nean arrivil 0.0 02481 0 4962 0.7842 0.9924 1.2405 1.4886 1.7367 1.9848  2.2329  2.4810
rime [107%)

standard dev 0.0 o1 017 0.2 0.28 03 0.32 032 0.3 038 0.4)
110°8 .
L
Fig. 4.9 Probability distributions of velocity and arrival time

for a 1-D model, case (b)
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per sequence j
[x1000] “ | | | | | | [ | J
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P(v) \ . ' :
1.0
05 )
j
i
|
00 i
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*
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( Fig. 4.10 Probability dfstributions of velocity and arrival time

for a 2-D model, case (b) .
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pronounced than in case (a). This qualitatdve result has been

expected, since smaller variations in the basic physical parameters
(E and § ) should result in smaller variations in the coef"f‘icients
Cﬂ, and C,. as well as the variabl.e“'t . Hence, also smaller aqlounts
of the energy losses at the internal surfaces could be expected. @
Thgs, in either 1-D, 2-D'or 3-D models the amplitudes of the micro-
disturbances 1in particular sequences fluctuate about the mean but
stay again within a certain band. In all these three models the
decrease in the mean pulse is considerably slower than in case (a),
while the band of fluctuations of the velocity V 1s much smaller.

On the other hand, the mean of the arrival time is exaétly the

same as in case (a) but tl:\e dispersion quite smaller. Again, the
entire arrival time process in all three models is the same - compare
the P(T) graphs of Figs. 4.9, 4.10 and 4.11. As expected, the
Gaussian distributions give a very good fit for the p (V) and P(T)
plots.

For reason of a possible comparisen of the above results
1llustrating the déveloped microdynamit;:s theory ;f wave propagation
1t may he appropriate to attempt at this stage ‘to clarify the
conceptuafl d:iffergnce between the classical random Qcontinuum theory
and the present theory. In the former the wavermotion is described

PN
1n terms of a stochastic differential equation the solution of which

in the 1-D case has been discussed amongst others by Papanicolau (1971)
and Morrison et al (1971). It has been shown in these papers that
the solution of the equation of motion depernds strongly on an abstract

parameter whicﬁ is related’ to the wave number of the pulse given to

the random’ medium and an unspecified correlation length.

PP VAR
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In contrast, the probabilistic microdynamics theory specifies
from the onset a correlation length depending on a speciflc size of
the chosen structure, 1.e. the grain diameter “d . It has been
mentioned 1n the introduction of Chapter II that the present study
distinguishes the wave motion according to a chosen wavelength, either
smaller or‘equal or bigger than % . This 1in turn recognizes a
specific correlation length for the present study of wave propggatlon
to be at a minimumh equal to %4 . The other distinct feature of the
works of Papanicolau and Morrison et al 1s the establishment of the
mean power transmission coefficaent which in their work also depends
on the adopted wavelength. In the present theory, in accordance with
the given definition of the transmission coefficient CtrFor the one-
dimeftsional model, the mean power transmission coefficient results ;
in a form which 1s 1ndependent of the wavelength but 1s equal to

/

the éjgare of the ratio of the amplitudes of the transmitted and

.

" incident w§ves pertaining to a single microelement of the discrete

structure. It is evident therefore that the direct comparison between
the random continuum approach and the microdynamics approach for the
dlscreteGMedia 1s not possible, unless the underlying parameters ln\
both these approaches are matched. This statement 1s 1n accordance
with the earlier discussion in Section 4.3 pointing out 1in particular
the dépendence on these parameters such as the qorrelation length,
strength of fluctuations and the wavelength.

| In order tB clarify further the difference in the approach ) ;
by means of random contlﬁhum theory and, the present one,uwe consider :

the random continuum wave equation (Frisch, 1968 and Morrison et al,

1971) written for the one-dimensional model as follows:

v
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%—L)%; —&%,[H;L(X)]-%% = () (4.28) ';

which 1s another form of (4.10). It has to be recognized that in
the above mentioned work the expression (4.28) is understood as a
local relation. Hence, a macroscopic formulation 1s obtained by

averaging (4.28) so that

_aig- -—‘-— ﬁ = since = .
B TR TY: 0. {pAX)) =0 (4.29)

This result clearly indicates that on the average the local disturbance %

due to the randomness of the medium vanishes and no dissipation 1s

being allowed for. In contradistinction to the above we observe

that the microdynamics theory yields for the same case (1-D model),

by taking averages, the following telegraph equation (see Sec. 3.5):‘
é"—:zl +H 4L - (CY%‘(‘: b >0, (3.51)

which may be cast i1n the following form:

1

o, 211 9a . = .
A e ThUN G

The above relation clearly shows the dissipation effects due to the
presence of a parameter D. It is seen therefore that a comparison
of (4.29) with (4.30) distinguishes the two approaches even 1f the
same parameters concerning the wavelength and the correlation length N
are matched.’ |

It may be useful for the purpose of a more comprehensive . ;
comparison between these two analytical approaches to return to the
seml-grouﬁ operational formulation and attempt a limit analysis. Thus, -

we recall from Def. 2 the passage time through a single crystal
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., (microelement) o of size *d to be:

“ 4 5d
TEE

whereby the average pag?%ge time 1s:

&1 = %“%% (4.31)

since ‘E,,“g and *d have been taken as independent random variables.
Further, using a macro-time t (n) in accordance with N steps 1n the

propagation of the wavefront or

t(n) gi.); (47) = n(“l’). (4.32)

gives the dispersion time for these n steps as

T.(n)=t-T(n), (4.33)

1

1n which 't refers to the i1nternal time as hefore. If we assume 1in

the sense of continuum theory that

¢ X
( T)n = const = af
X being an average distance travelled 1in. time t , then we can take

a limit of the dispersion time IL(n) in (4.33) as follows

gg’gdn) = lim [t-‘f(n)l =1 - (22-)- =0(t,) (6.34)

Thus 1t 1s seen, that due to the loss in distipction of scales, the

formal drspersion time of the }andom continuum theory (4.34) may only

be treated as a small perturbatloq about the average time t. This
_ result becomes more evident 1f we consider the derivation of the
,1nfinitesimal generators of both evolution operators lT.(:E) and bT(t),
that 1s

o Ty

e Gt e W

P

e A RO RS



127

"\ = lim T{(*)) -1 (4.35a9

A = lim (1) -1 (4.35b)
£T+0 1 '

t

. } 2
A strict limit analysis should yield the A and A generators as
being equivalent to the infinitesimal generator of the random

continuum theory (eq. (4.7)): ¥

-g-ti = (A+Bw)?, '
where

0 I

A+Blu) = [c,(wwz ’OJ | wel (0.36)

Thus 1t becomes clear why c(uﬁ in that approach cii/yé/Zreated as a

random perturbation only.
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CHAPTER V

( CONCLUDING REMARKS

5.1 General Remarks

As 1t was pointed out 1n the introduction to this thesis and
further evidenced 1n Sections 3.5, 4.3 and 4.5 the available theories
of continuum mechanics fail to bring out the discreteness and randomness
of the structured media 1n the relations governing the evolution of
the field quantities. Thus the main aim of this research program has ' ;
been to develop a rigorous mathemétlcal basis for the dynamics and
especially for the wave propagation in such media. In order to
evaluate tbhe success of this attempt 1t 1s appropriate to review 1in

this chapter the basic and important features of the theory presented

in this thesis. Thus, 1t 1s to be noted that: -

(1) the proposed theory introduces for the first time the

distinct discreteness of the real solid media 1n the

wave propdgation analysis,
(11) the microdynamics theory permits the formulation of the
dispersion and dissipation effects i1n a more realistic

sense than the phenomenclogical one,

(111) the formulation of the dynmamic analysis in terms of an
abstract dynamical sysfem shows on the basis of the
discreteness assumption that the klngmatic quantities
belong to the kinematic space with a Hilbertian-Sobolev

topology for the mesoscale,

o
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(1v) a new parameter has been introd;ced, the passage time
through a single element of the microstructure, which
permits the scaling of the wave phenomena on this level
spatially and temporally,

(v) by using the rigorous probabilistic functional analysis
and on the basis of the Markov assumption, one can derive a
semi-group operator parametrized by the internal (real)
time agg the macroscopic (average) time, which formally
describes the evolution of the wave motion (Theorems 1
and 2),

(vi) for ai::zee—dlmen51onal medium, one can formulate the
wavefr propagation i1n terms of the total power flux

which becomes a super-martingale on a random field
(Lemma 1),

(vii) a very 51mplified model for the grain boundary Behav1our
in structured solids has been introduced as a first
approximation to the more complex interaction effects
in the wave motion at the intercrystalline boundaries,

(vi11) 21n order to verify, to a certain extent, the a;alytlcal,

approach, the computer experiments by the Monte-Carlo
simulation have been suggested for all three models of
the solid discussed 1n tﬁe thesis, i.e. for one-, two-
and three-dimensional models; the results have been
shown 1n Figs. 4.4 to 4.11,

(1x) by taking the averages 1in the probabilisitc microdynamics

theory the generalized wave equation with a dissipative
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( . term may be obtained. Although such a dissipative term

is usually assumed 1n continuum theories, the present

approach permits an exact formulation and derivation of

this quantity in terms of the physical characteristics

of the given solid. On the other hand, it 1s indicated

that by taking the averages of the important parameters

(such as average passage time and average grain size)

tending to zero, a convergence to the standard wave equation

could be obtained.

R.2 Remarks on Further Research

C

On the basis of the work presented in this thesis it 1s

suggested that the following 1tems should be considered for future

research.

(1)

(i1)

The present .work cquld be.extended to the formulation

of the wave propagatjon 1n solids with a random geometric
structure. This could be significant 1n the extension

of thp“ﬁfesent theory to non-crystalfine'sollds.and/or
it§/épﬁ{ication to rock mechanics. }\

/
quxher consideration could be given to the newly
e - ‘

,///f’\’”“—'iﬂ$roduced notion of temporal scales together with the

;
H

- e
¥///"'

]

" application of spatial scales other than those dealt

with 1n the present theory. Such an extension would
encompass the wave motion on either an atomistic or
molecular scale, or the analysis of large scale phenomena

which are encountered 1n géuphy31cs.
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(iii) For the global representation of thé wave motion 1n

a discrete random medium in terms of the complete set
@of governing equations, the set of solutions and their
stability should be investigated. This would ultimately
lead to a rigorous random field analysis.
(iv) Finally, the extension of the proposed theory to the

description of wave motion including critical phenomena
in random medﬁa should be pursued, e.g. waves 1n multi-

phase media, shock waves, etc.

-
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STATEMENT OF ORIGINALITY
AND

CONTRIBUTION TO KNOWLEDGE

The author of this thesis claims to have made the following

original contributions to the knowledge of theoretical mechanics:

(1) On the basis of the probabilistic micromechanics theory
of Axelrad, a rigorous mathematical theory has been
developed in this thesis to permit a probabilistic
functional analysis of the dynamics of structured
solids.

(11) The model for the wave propagation across the inter-
crystalline boundaries has been formulated on the basis
of interatomic interactions.

(111) The representation of the wave motion has been given 1n
terms of an abstract dynamical system where the under- |,
lyang probabilistic function space has been 1dentified
with the kinematic space with a Hilbertian-Sobolev
topology.

(v) For the first time, the multidimensional time (comprising
the macroscopic and internal times of the physical
process) has been introduced for the wave propagation
analysis enabling the formulation of: .

a) evolution of the combined longitudinal and trans-
verse waves in a one-dimensional model of the
solid in terms of a four-parametric semi-group of .

Markov transition operators.

-132-




(vi)

e
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b) evolution of the combined longitudinal and trans-
verse waves 1n a three-dimensional model of the
solid in terms of a supermartingale on a generalized
random field. \

The equivalence of the Markov-theoretic formulation with
the continuum theory has been established by averaging
over the stéte space in terms of the semi-group evolution
operators. N

A Monte-Carlo technique has been developed for the

simulation of the wave propagation in the discrete solid

for the specified cubic structure.
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APPENDIX A

NUMERICAL MODEL OF THE BOND BEHAVIOUR

A.l Function of the Program

The program calculates the evoluticn of the bond distance r 1in
time Fm' It is written in a general form, so that the response of

the bond can be studied either in motion perpendicular or ‘parallel to

the grain boundary (@B ). This 1s done by exchanging several cards

PN —

“ according to the equations (2.38) or (2.45).

B vt % f e

A.2 Program Structure and Computation Procedure

The entire program is written in Fortran IV (Watfiv) langﬂage.
The program has the following struéture:
MAIN PROGRAM
SUBROUTINE DVERK*
'SUBRUUTINE FCN1
. All calculations are carri%d out with double precision on ap Amdahl V7 ,
digital computer.

Given all the necessary data, the Main Program transfers the
task of co%putlng the specific values of the bond disténce r at the
consecutive time steps onto the subroutine DVERK. The subroutine
FCN1 g{ngdes the specific functional form as the right hgnd side of

! equaﬁ%a%g (2.38) or (2)45) depending on the case studied. The sub-
routine DVERK 1s based on the Runfe-Kutta method; it iterates to
¢

I

}

|

S ;

¢ ‘ — |

* From the International Mathematical Subroutine Library
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find the value of r and upon achieving the specified accuracy it

L)
g L

proceeds one time step forward and repeats the procedure.

The program 1s shown in Fig. ‘A-1.

A.3 Input Data and Output Results

The input data are fed into the computer through the Main
Program.

The velocity of the incident wave is taken to be equal 1 m/s. ;
In view of the fact that the Monte-Carlo simulation of the wave
propagation 1s done for copper (see Chapter IV) the pertinent physical
constanﬁg are chosen as follows: '

C. = 4030.641 m/s

1

Cr = 2476.859 m/s '

S

Furthermore, the relative impedance % 1s taken equal to 1.0, since

8900 kg/m”

‘only the general character of the bond mption 1s sought. The initial
{

bond distance r (t=0) was taken equal to that of the lattice spacing :

¢

for copper (see Kittel, 1968).
Samples of the output results that correspond to the longitudinal
wave 1ncident upon the perpendicular grain boundary, are shown 1in fig.

A-2. In general 1t was found that for the'motion perpendicular and

parallel to the boundary the bond distance r tended within 10-133 N

asymptotically to a certian equilibrium valué, which did not exceed

Yo by more than 10%. This clearly justifies the assumptions (2.40)

-t

and (2.47) of Chapter II.
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tO#*#tt**##t##**##t#**‘**#**t‘*tt*###tt*tt#‘*tt#t#tt#l

SEATCH WATFIV CXDD (904+90) .

SWATF IV (+TIME=9U.PAGES=90, NOWARN +NOEXT

IMPLICIT REAL*8(A-Z)
INTEGER N INCs IERsK +NW
DIMENSION Y (1)4C(24)4W(1,9)
EXTERNAL FON1

Nw=]

N=1

X=0,D0

Y{1)=2.550~1¢(

TOL=0,00005

IND=1

XEND=0,D0

DO 10 K=1,100
XEND=XEND+1D~-1S

CALL DVERK{NFCN1 o Xe Yo XENDeTOL s INDsCsNWsW,IER)
IF(INDLLT.0+.CRJIER.GT.0)GO TO 20
WRITE(6930)X+Y(1)
FORMAT(/ 20X +2D22,12)

CONT INUE

sTOP

CONT INVE

STOP

END

SUBROUTINE FCN1(N+Xs Yy YPRIME)

IMPLICIT REAL*B{(A-2Z)

INTEGER NeN1I

DIMENSION Y{N) s YPRIME(N)

S=(2.550-1V)rY{1)

YP=4%(0 e 65197660-19)*(6*(5**6)/7(l)—lZ‘(S**lZ)/Y‘l)’
V=1.D0"

C=4030.64100 '

RO=8900,00

G=1.00
==(G+1)/Y/RC/C,
N1l=1

DN=0,153787020/N1*%2
YPRIME(1 )= v*(B*DN*YP—Z
RETURN

END

Fig. A-1

-

b
i
i
!

!
!



0. 100000000000D~14
0e 2 0C000000000D~14
0.30C0000000000~14
0.4 000000000000~-14
0e50€000000000D~14
o.o0coooooéoooo-14

0. 7000000000000~-14
0. 50€000000000D~14
0.%0(000000000D~14
0.1 0(0000000000~13
0.11¢0000000000~13
0. 1200000000000~13
0. 1300000000000~13
0. 14€0000000000~13
0. 15(000000000D~13
o.xecoooooooooo%ga
0. 1 700000000000~13
0.18¢0000000000~-13
0 19€000000000D-13
0. < 0£0000000000~13
0.21¢000000000D-13

0.2200000000000~-13

0.2300000000000~-13

0e 2 4€000000000D~13
0.25¢0000000000~13
0.26€000000000D~13
0. 2700000000000~-13
0e< 800000000000~13
0. 29¢0000000000-13
0.30060000000000~-13
0.31€0000000000-13
0.32C0000000000—-13
0e33€000000000D~-13
QrSQGOOOOODOOOD—IB
0.3500000000000~13
0.36€000000000D~-13

Fig, A-2

0.259425354478D-09
0.262701045175D~-09
0.2€5271779939D-99
0.26736662231 7D-09
0.2€91191413300-09
0.27C614026181D0-09

0.2719083.325160-09
0.2730423125250-09
0.2740454126350-09
0.274936€150200-09
0.275742638856D~09
0.27646736704 8D-09
0,2771248039540-09
0.277723737627D-09
0.278271409577D-09
0.27877285544 80-09
0.2792361569380-09
0027965263131 60-09
0.280056$761800-09
0.2804223815730-09
0.280761617887D-09
0.2810771055690-09
0.2813709709600~09
0.281645051449D-09
0.2819011323010-09
0.282140576935D-09
0.2823647519970-09
0.2825748482650-09
0,282771938193D-09
0.2 8255659071 70-09
0.283130£838220~09
0.2832944152660-09
0.2834483117650-99
0428359323691 70-09
0.28372979804 1D-09
0.283858552129D-09

frre o TR FENSPWRE S PR



e

{\ 143

APPENDIX B

CONVERGENCE OF THE VELOCITY AND DISPERSION TIME DISTRIBUTIONS

TO THE GAUSSIAN DISTRIBUTIONS
A

First we prove that the dastribution P{Vfﬂ} at aﬁy given t

1s Gaussian. Ffor simplicity we consider V to be a real-valued

random variable. Consider the transmission of a wave from grain g

to the nexghbouring otl. We have:

v

= X,a+
a-f‘v = ? Ctr [ ’ (B-l)

oot '
where Ctrfluctuates around the value 1.0 depending on the physical
properties of both grains. Thus, we can write

o, a o 0+l
] tr:: |+ ) d- (B-Z)

where we assume for a structu;qg solid:

!
|97 « | (8.3)
If we consider wave propagation in a one-dimensional model starting

from an 1nitial value °V 1n the first grain 0 we shall have:

Sy = (14 %) ov '

h, _ 0t
vy = Ctr

ty = G =, 0 = (14016 M0) 0 = (1600420 1 050)

Vo Bty =P, M M v = (1 P (1) (e 0 o
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la4

o= &lfn-' "‘”Ctr oy = (“_ n-l,nJ‘)(lf u-ut,m-l;)_“._(l + "J) oy

«z0

=[1+ I L O(Jz) ¢ 0(55) +, o+ O(J")] (B.4)
It follows from the assumption (B.3) that \/u.e can write:

Cy =+ n (18] (B.5)
where <¢‘¢“J> 1s the average of "“*‘J . It 1s seen on the

heuristic grounds (energy loss) that
«
( ,M-(d') <0 (B.6)

0f course, "“NJ has a finite variance.
If we disregard higher order terms in (B.4) we can wrate
0, T o K L a,a+
"valys L WO J=Z°[-;,-+'v’ d] (8.7)
<=

. asd

-

Consider now another random variable
§ DVm oy ®+ld" +E ' (B.8)
where
E= <§t> (8.9)

and D 1s a standard deviation of 3(’. . It 1s important to note that

(B.9) 1s satisfied in view of (B.5). If we now consider the sum

gn d={ —{'ﬂi gi (B.10)

i=

o, vl
and recognize that (r and hence g; are independent and 1dent1calﬁly

distributed random variables we will obtain:

"me{gn< x} =@ (x) : " (B.11)
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where Q(X)ls a standard normal distribution. In the above the
Central Limit Theorem has been 1nvolved. If we consider a new

a

randgm variable V defined as fallows:

n-{
V= =" + L oyortly
«=1

1t will also converge to the standard normal distribution as implied
Jointly by (B.8) and (B.10). This result leads us to conclude that
"y as given 1n (B.7) will converge to the general normal distribution
with a non-zero mean. Indeed 1t 1s seen from (B.5) that the mean of
"y 1s dependent on n, that 1s on the number of microelements the wave
has passed. This 1s equivalent to saying that v converges weakly to
the non-standard no;médelstrlbutlon for t »00 and thus 1t 1s approxi-
matély Gaussian fog/all large but finite t with the mean <'V> ,
decreasing for t increasing. .
Let us noQ consider the dispersion time process TL(f). It

follows from the Definition 8 that
T+ 1) =T (D) +21- (D) (B.12)
If we i1ntroduce an integral-valued parameter
net/ny L
“then we can write (B.12) as follows:
Te(nl) = Tln) + %2 - (1)

Thus 1n general we have

T, (w) =§‘ [‘“’C-(“‘t)] . (B8.13)

&
The passage time T has a finite standard deviation D which depends

on the physical properties of the given solid. If we recognize *T to
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be independent identically distributed random variables 1t will follow
from the Central Limit Theorem (see Corollary to Theorem 4.7.1 of

Rényi, 1970) that:

Li.m P{ TL("D)\;: (“'[’) < x } = Q(X) (8.14)
h-» o h o

The above result indicates that for a fixed large n the distribution

P{TL<n)—n<“t)<XDW} (B.15)

w1ll be close to the standard normal distribution @ (x D\F\') . Thus,
/
we can conclude that P{TL(“‘)} w1ll be close to a geng?al normal

distribution which will evidently depend on t as ﬂ

N T R R L C L n i e Fn st B Fe iR irmnbaty.
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MONTE-CARLO SIMULATION PROGRAMS
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7 : -

£
SWATFIV FIME=S99,PAGES=99 y NOEXT 148 |
1 IMP_ ICIT REAL%B(A=-2) E
2 DIMENSION V{10),T(10)
3 INTEGER I s UslRsK.Y
a IR=1
S K=5k%13
6 MURO=8900.D0 j
7 MU E=14,459D10
a SGRO=0. D0 J
9 SGE=MUE/1CCO 4
1 DO 2 J=1, 10 .
11 V(J) =1.00 !
12 T(J)=0.00 v §
13 Y=0 !
14 ROO=MURD
15 EOC=MUE
16 ~CO=DSQRT (EQ/ROD )
17 TO=0.0001 DO/CO
18 DO 1 I=1,.,10000
19 CALL CDDS (K, IR, N1,N2) i
20 RO1 =MUR 0+ SG RO¥ N1 -
21 E1=MUE+SGE *N2 .
22 Cl1 =DSQRT(E1/RO1)
23 T1=0.0001D0/C1 :
24 KAPA=RO1XC1/R0O0 /CO \
25 CTR=2/ (L +KAPA) i
28 V(J)=ViJ)*®CTR |
27 T(JII=T(J)+TO :
28 TO=T1 i
29 Y=Y+ 1 y 3
3 ROO = RO1 {
31 cCo=C1 ;
32 IF((I/IOOO)*IOOO.EQ.I) GO0 TO S ]
33 GO TO 1 B :
3a 5 WRITE(6,10) Y,T{J),V(J) i
35 10 FORMAT(/p SX+ 17,20 22.12) 3
36 1 CCNTINUE / ' ;
37 2 CONTI NUE ‘
38 WRITE(6.7) K, IR
39 7 FORMAT (/+S X' K=, I11+5Xs* IR=",111)
40 sSTI>
81 ENOD
42 SUBROUTINE ODDS (K, IRs Nl +N2) ,
43 IMP.. ICIT REALX8(A-Z) |
a4 INTEGER K, IR :
a5 PI=3.,141592653589790D0 i
46 > IR= IR *K I
a7 IF (IR TeD) IR=IR#+2%{2%%30-1)+2 |
48 R=DTLOAT{IR) /2.D0%¢ 31 -
49 N R1=R ;
50 IR=I R&K i
51 IF(IReLTs 0) TR=IR+2% (2x%30~1 ) +2
52 R=DFLOAT( IR)/2¢D0O %% 31
53 R2=R
54 N1=DSQAI T{=2%DLOG(R1 ) )I*DCOS(2%PI%xR2)
55 N2=DSQRT (=2 *DLIG(R1 ) IRDSIN( 2% [ #R 2)
56 RETURN
57 END

Fig. C-1 Simulation Program for a 1-D Model
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" sl sz 3

o
FORTRAN 1V G1 REWLEASE 2.0 MAIN DATE = 83045 22757744
'
CRESSRE XN SRR A XK
C ’ ~
C FILE NAME S 'RUMA® FILE OPENED ON 14-~-1-8B3

0001
00n2
Q003

0004
0025
0006

0097
0008
0009
0010

o011
0012
0013
0014
0015
0016
0017
0018

0319
0020
0021
ona2
0023
0024
0925
0026
0027
no28
0029
0030
0031

Cokhkhb &k SR KRRk AR KR RAKER AR R SRR AR K SRR Rk kR KR KRR R KRR R RSN R N
Mok Rk ko kR ARk kbR kA KA KR R R KRR KRR ARk Rk KRR KRR AR AR SR E K &

C * MONTE-CARLO SIMULATION FOR 2-D MODEL WITH CONSTANT LENwIH *%

C * PGM FOR 100 INTER ACTING SEQUENCES WITH MIXED ReNe UF 5ZZID *x*

C * 5%%13 AND 7%x11t DIFFERS FROM *M2D* FILE IN ENERGY EXI4ANGE

g %. [N TRANSVERSE DIRECTION

C

C

(g}

v

kg F Rk kR R Rk kR ok k kRokokkok ke koo kkk kR kKRR kR KR SRR E R R E kKX

-~

v

INPLICIT REAL*8(A-2Z) - f
REA. RANGE(4),RANGET(4),RANGE1(4) ,RANGE2(4)
D INMENSION E(XSO).V(ISO).T(lSO).C(lSO).RD(150).FV(150)-VI(lSO.IOf-
dT11150:10)4YFV(1504+41)+CR(1S0),CRL(150)¢DS(150)>
3 RO1(1S0O),EL(150),FT(150)
$3aVG(1504+10),C1{150).V2{150),T2(150)»”T{150)swC({150),07r3(150,1)
$2VEBI150),VU(L1S50),VBAR(1ISO)P(150).P1L150),
$ P12(150),P2{(180),Y(165),YT(165)
INTEGER IsJolReKeXyNe IKoJKLsMyNI¢NCy ICINIoIR1IsKLloblp . CeICT
DATA RANGE/0.981+1:001+0,0,1,0/
R DATA RANGE2/0.,0:1.0,0.981,1.,001/
C¥%*x [INITIALISING MEAN AND STD. DEVs OF DENSITY AND YOUNS? 5 MODULAS*%k%kxk

MURO=8900,D0 ]
MUE=14 .459D10 . :
SGRO=MURO/500
SGE=MUE/1000 b .

C #+H +LENGTH OF MICRO ELENENT ASSIGNED#++++ +
2=0.0002D0

00 63 J=1,L1
Vi(ls4)=0.00
T141,3)=0.,00

CONT INUE
Y T e T e ey Y S T
LE T 2] MAIN PGM STARTS(IN FIRSYT CASE SIMULATION WITH SEE)D
S%k13 WILL BE DONE ,NEXT WITH 7%X*1]

B e L L L T T T T e N 17 T F T F P T T oy Sy
IR=1 N
IRI1=1 ‘ Y
K=%%%x13
K1=7%%1}

3

sa_===

NOOOO
m

H
i

===

L}

CO~AmD
;
(=)
(7]
[«
o}
-
k 4
[
m
\
k4
C
ol
[=]
-
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FORTRAN IV Gt

0069
0070

0071
0072
0073
0074
0075
0076
Q07?7
0078
0079
0030
0081
0082

0083
onas
0085
0086
0087
0038
0039
0090
0091

0092 s

0093
0094
0095
0096
0097
0998
0099
0100
0111
0102
0103
0104
0108
0106
0107

o108

s mo
-0
[~ XY

RELEASE 2.0 . MAIN - DATE = 83045

<79 CONTINUE ‘
77 CONTINUE ;

C t**tt#t##******#*#*#t#***#t###*#***tt**tt##*tttt*#**&**tt*#;*t******#
C MAIN PART OF MAIN PGM, F INISHED

C FhRrr AR R R R R kRN SR A AR AR R R EERER SRR SRR KRR KRR KRR E R b RE RN AR X%

WRITE{6+205)
205 FORMAT(1H1,20X,*VELOCITY METRIX®) '

WRITE(6+:25)((VI1(TeJ)esUd=1e5)slI=1,L)
WRITE{6,203)
203 FORMAT {1H1 +20X,*CONY INUATJION?)
WRITE(6,25)((V1(1,J)+J56,10)sI=1,L) —_—
25 FORMAT(/,5X,5D22.12)
WRITE(6,26)
WRITE(692S){({T1{1eJ)eJd=1e5)el=14L) )
WRITE(6,203) '
WRITE(G6:25)((T1(1,J) sJ=6,10)eI=1,L) N
26 FORMAT(1H1 320X TIME MATRIX®) .

C X¥ X5 XX VXA KEE R R KRR R R XE R FR R ER KR KBRS KR KRR R AR KRS R RS R E kB &k &k &

C CLCULATION OF "MEAN AND STD. DEVe. O ELs AND TIME AT EAC4 S5TN,

C ***‘**1**********t****t**#**********t#**#*****t*#**tﬁ#‘#lt‘t*
M=0

DO 667 JK=1,L1} ,
M=N+1

S=0.D0 )6\*\‘\ N
S1=0.,D0

Q
NN 4L GO

WE L RE X

83

N TNk s o
- ¢ <<

Pl mem §
N
+
)

#qunlm#mud.mou

]
4
C
m

K)=51/XR
JK)=DSQART(S12/XR-P(JK)**2)
)‘DSORT(SZ/XR—PI(JK)#*Z) -

(6:456) :

(6,676 (P(1), 912(1).91(15. ) I=1,L1
TOLHL.//7124X " MEAN-VELOCIT .- IGM
28X *SIGMA-T IME*? ,///)
MAT (/7 +20X 34D2241 2)

DONmesm~JONNere (OO

xnzh-rnau-g

MEAd=ta~e X
->mm~x

S
S
D
F
B
o]
S
S
S
S
81 e
X
P
p
p
-]
Cc
] v
W ) -
; A-VELOCITV®,3X . *MEAN~
F

h

C i%*t**#***t**#***0*#******##***###**#!‘*‘#**#*t.***##‘*#ttt#*****t**** a‘
C INTODUCING DISTANCE ROW £ AND PLOT OF VEL. AT DIFF, 53§ N. "

C X2XEFE AR REEE PR RN RN E R SRRk AR S DR Rk R AR RS E SRR E K& &k F kR ok —
C P

04

SC=0,.,D0 '
00 88 I=1,L1 .

e S S

\J o
B e D e -

- 4. . .
g e e SR AR
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. : C
. FORTRAN 1V Gl RELEASE 2.0 MA IN DATE = 83045 22/57/44
o111 DS{I)=SC+(1.D0/L1) ‘
. 0112 8s SC=DS(1) .
0113 4 20 22 I=1,L1
m 0114~ . 20 22 J=1.L
'tk 0115 22 VGLlJoI)=VL(I,J])
o C **xk%* PLOT OF VEL« AT EACH O.IMTR DIT OF BAR TILL IMTR ¢F¥&sx*s¥x
o 0116 - _LALL GRP3(DS,VGsL)
(I C *%%k PLOT OF V(T),P(V)eP(T) GRAPHS AT EACH 1000 MICRO-E.ZNENTS ***#*
Y o117 M=0
, 0118 DO 66 JKSL.L1 ,
. o 0119 M= M+1 ~
=1 0120 DO 813 J=1,L ,
o D1 21 YEV(Je 1)=VI (D, M)
= 0122 EV(J)I=YFV{Jsl)
c . 0123 813 FTE)=T1(I,M)
. 2 0124 READ(5¢%) (RANGEL1(I)eI=194)
! C *%xxkxk2k TIME VS, VELOCITY GRAPH AT EACH Q¢1MTR. LENGTH U5 BAR *kkx*
, 0125 CALL GRP2(FT,YFV,RANGE! L)
n126 J=L .
0127 CALL SORT{J.FV)
012a CALL SORT(J,.FT)
0129 WRITE (6,104)
0130 104 FORMAT(IHY s /// /80X ' VELOCITY?,9X, 'P(V)")
C EXE KX $k% ) P(V) GRAP4 AY EACH STATION Rk k ki bbb bk kX kkkkk
' ) 0131 & CALL GRP1(FV,RANGE,L ) :
0132 WRITE(6,105) . :
' 01 105 FORMAT{LHL 3//7/7 42X TIME®* ,9X o *P(T)*) |
0134 - READ(S+%) (RANGET(1).1=1,4) . ‘ e
' C S X KL E2 12 % L] P{T) GRAPH AT EACH STN e bk Rk Ak S RF F kX Xk
04 35 CALL GRPI1(FT,RANGET,L)
0136 66 COMNINUVE
. 0137 20 12 I=1,L1
N 0138 12 YP(1,1)=P(})
' . c -5 3Tttt 2+ 5t -+ >3+ L+ ¥4+ 512+ =‘===3=====.=====8 -= —
- C PLOF OF DISTANCE VS MEAN VELOCITY . .
* 0139 CALL GRRP2(DSYPyRANGE2,L1) \
. C === =:3::::::::::z==.===.======c=======:g,==s===============:3;
0140 c READ(S.*) (Yci).I=1, 6!) >
C PLOF OF P(V) GRAPH IN ZETA PLOTTER
0141 cAaLL thp P12,V1sYelsll)
c---.—--— - S A -‘-‘_-“‘---—--“-—-~--‘“_------—
; ¢ PLOT OF P(T) GRAPH IN ZETA PLOTTER
o1az2 READ(S %) {(YT(1),I=1,61)
. C ® P OO G P S0 00 0 OO OP O PV P O OTT DOVOPIOO D OV SR B BOO B.00 O BSOS LIEPOIDOOLINIASDLSEE
; 0143 CALL GT{P1.P2,T1,YTol,L 1)
L F D144 WRITE(6,478) KyKl,IRsIR1 .
. 0145 478 . FORMATY(/, sx.'x=-.11|.sx.-Kn-.tnl.sx.'tR=-.tnx.5x.'1an--.xxn) -
U S 0146 sTCP
£ 0147 END
£ *OPTIONS IN EFFECT* NOTERM,ID,EBCDIC,SOURCE.NOLIST, NODEC(.LOAD.NOMAP.NUT‘SI
' *0OPTIONS IN EFFECT* NANE = MAIN s LINECNT = G
.§ *STATISTICS* SOURCE STATEMENTS = 147 +yPROGRAM s:ze = 74650 —

t
o r N S

T ARG 5 gt v Lo : - X S i e e e . S
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ORTRAN [V Gl

0001
oog2

0003

0004
0005
0006
0007
0008

10009
10010
10011 .
10012

. 0000
1 0000
gl ous pe

[ ¢ Z W]

0018
0019
0020
0021
0022
0023
0024
0025

~
éELEASE 2.0 MA IN DATE = 83064 13735741
C MONIE~CARLO SIMULATION FOR THREE DIMENSIONAL MOODEL Wl TH =
E CON>T » LENGTH ‘
C
IMPBPLICIT REAL*8{A-2Z)
DIMENSION VIN(20:20)RO1(20+,201+E2 (20 ¢20)+C1(20+201),
» T{20,20)4sR02(20,20) +€2(20,20),C2(20, 20).VIR(20,20),
$ VE(20:20)eVW(20:20) e VNCE20420) sVS(204 20) o VST(20:+20:2J))»
5 TST(20020420)eAVS(20)sSVS(20)+sATS(20)+STS{20)Y(065)s¥YTL65)
c INTEGER lthF-L'NthLlan'lRloKlo[KolloJlolNqu-NZQZolJolLOJKDIC
C (1) INITIALISING PHYSICAL PROPERTIES OF M .E»
C
MURO=8900.D0
MUE=14.,459D10
SGRO=MURQs200,00
SGE=MUE/1000.D0
D=0.,0002D00
. C .
C (2) SIZE OF BAR IS INTRODUCED. BAR IS MADE OF SEVERAL B.Ji<3 OF M.E,
C L=ROW DIMENSION &€ M=COLUMN DIMENSION OF EACH BLOCK, 4¥=\N0 OF BLOCKS§
g OF MICRO ELEMENTS. L1= PRINT OUT REQ) +« AFTER CERTAIN 3_0CKS OF M.E
’ L=10 =
N=10
N=5000 ' ) .
c L1=N/10
C (3) GENERATOR € SEED VALYES ASSIGNED, 2 GEN., USED FDR 5ZNZRATING TwO
C D IFFERENT TYPES OF R.NY} SO THAY TRAINS OF ReNs GENcHATEOD
C » BY DIFF« SEED & GENERATOR COMPENSATE EACH OTHER
C
° IR=1 ~
IRi=}
K=5%#¥13
Ki=7%k%11
C ~
E (4) IK IS USED TO FILL UP VELOCITY £ TINE STORAGE MATRIX AT DIFF. STNe.
IK=0 .
C - ’ .
g‘s)ﬁssum"m PHYSICAL PROPERTIES TO 1ST BLOCK OF M.E.
DO 1 I=1,L
DO 1 U=l .M
VINI.J)=1.00 B
RDO1{ 1+ J)=MURD
El1(I,J)=MUE
C1(1,J)=DSQART ( MUE /MURO}
T(L1eJ)=D/C1(1,J)
\ é . COMINUE
C (6) SIMILATYION STARYS FROM HERE I .E.FROM 2ND BLOCK UF M.z,
C

R g UV U

“t L - . [, -
N '

- S et £ S

61




a
| FORTRAN IV G1 RELEASE 2.0 MA IN DATE = 83064 13735741
‘0026 DO 2 11=2,N
C sevovssone LOOP #2 GIVES NO OF BLOCKS OF M,E. INVOLVED
T C - . -
- C ===—====—== THE. RANDOM PHYSICAL PROPERTIES (RO2 €& E2)
5 C -———=~~———- ARE GENERATED FROM S%*%13 SEED FOR ODD NO. OF 3_3CKS
o . C —=—«=~=——= AND FROM 7%*%1] SEED FOR EVEN NO. OF BLOCKS -
: C ) -
% 0027 DO 3 I=1+L
w 0028 00 3 J=1,M ;
0029 IFC(I1/2%2.NE.I1) GO TO &
o 0030 CALL RAND{K1,IR1.,N1,sN2)
3 0031 IF(I1/72%2.,EQ.I1) GO TQ 5
S 0032 4 CALL RAND (Ko IRyN1,N2)
5 0033 5 RO2{1, J)=NMURO+SGRO*N1
= 0034 E2(1+J)=MUE+SGE N2
a 003sS C2(1+J)=DSART(E2(1,J)/R0O2( [+J))
003 T(3yJ)=T([eJ)+(D/C2(L,J))
0037+ KAPA=RO2(1,J)%C2(1,J)/RO{T1,J)«CL1(T1eJ)
. 0038 CYR=2/ ({1 #KAPA)
0039. . VIR(T.J)=VIN{I.J)*CTR o
| 0040 2 CONTINVE | g
|
l C (7) ENERGY EXCHANGE AMONG MICRO ELEMENTS IN A BLOCK
C - .
C ‘skessaxkx ASSIGNING VELOCITIES, TO QUTER M.Ee. OR SAY THc
g‘ *xke*3k%%k M.E. AT THE BOUNDARIES
0041 DO 6 J=1l,M
0042 VNIl +J)=VTR(1,4)
0043 VS (L ¢J)=VTRI(L , J) N
00 44 6 COMTINUE
0045 00 7 1I=1,L
0046 VW I+l )=VTR(1I,1) : -
0047 VECT MI=VTRET o M) .
0048 7 COAT INUE
C ==sz=xz=a3== CALCULTION OF VELOCITIES FOR INNER M.E. AFTER INTERACTION
0049 00 8 I=1,L
005D DO 8 J=1,M
0051 IF{{1eEQeL ) eAND+{J+sEQ.M)) GO TO 14
, 0052 . IF{J.EQ.M) GO TO 9
' 0053 o KAPAESRO2(1,J+1)%C2(1,J+%1)/R0O2(X.J)7C2(1,J) .
, 0054 IF{l.EQ.L) GO TO 10
. 0055 { 9 KAPAS=RO2(I+1,J)%C2(I+14J)/RO2(14)/C20(KeJ)
00536 . IF{J.EQ.M) GO TO 11 -
, 0057 10 VELT e )=DSORT({((VTIR{I ,J))**2)+(KAPAZ % (VTR (I, J+1))%52))7 (KAPAE+1))
' 0058 iF@.EQ.L) GO TO 12
0059 11 VSTl +J)=DSARTIL{IVIR(L1eJ))I%%2)+(KAPAS®(VTIR(I#1,4))€82)0)7 (KAPAS+1))
~~ 0060 IF(J.EQ.N) GO TO 13
' 0061 12 VULTsJ4+1)=VE(I4J)
0062 J IF(I.EQ.L) GO TO 81
0043 -13 " VN(I#1,,J)=3VS(IJ) }
. . 0064 81 +w CCNTINUE
. 0065 8 - CCNT INUE

(a]
g6l
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FORTRAN IV G1

0066
0067
0058
0069

0070
0071
0072
0073
0074

007S
0076
0077
Q078
0079
0030
0081

0032

0083
0034
0085

0086
0087

00089
0090

0091

0092
0093
0094
009s
0096
0097
0098
0099
0100
o101

0192
0103
0104
0108
0106

-

RELEASE 2.0 MAIN DATE = 83064 L3/735/741

C @2wddi INCIDENT VELDCITY CALCULATED FOR 2ND BLOCK OF MeZ s - :
C .

T NANO

14

15
C
C (8)
C

o

mu

21

Epte Bttt il s Bt o

'ty
NHKQYOUmess I3 ONDOU

DG 15 [=1,L
DC 1S U=l .M
V6:§%§$é=DSORT((VE(l.J)**Z*V'(l.J)‘#Z*VN(!-J)*‘Z‘VS(I.J)*‘Z’/‘-DO)

UPDATING OF PHYSICAL PROPERTIES

0 16 I=1,L

16 J=1.M
(I« J)=RO2(1,
Ivd)=C2(1.+4)
T INUE

1
(
[N
:G OF VELOCITY AND TIME MATRIX(20OMATRIX) AFTER
(
=

J)

- O~=0Q0

EQD e+ NOs OF BLOCKS
I1/L1%L1.NEILl) GO TO E '

7 I=1.L ,

7 Jzt'u‘ K

l.JllK’=VIN(!.J)

IeJeIKI=T (1,4} =

INVE

~=~=—= L 00P #2 ENDS HERE ALSO MAIN PGM ENDS
ATINUE

RINTING OF VST & TSY MATRIX ﬂ

DVVROX™M

I
1
1
(
¢
T

o

Z
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FORMAT (1H1 4///S0Xs*VELOCITY MATRIX AT STATION='.12)
FORMAT(1HL ¢///+50X+* TIME MATRIX AT STATION=*,[2})
20 21 [L=1,J1

WRITE(6+19)IN

M1=M2+1

M2=M2+S

'RlTE(GQZZ,((VSY(I-JoZ].J:‘loﬂz"l=loL)

CONT INUE
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FORTRAN IV G1 RELEASE 2.0 MA IN DATE = 83064 13735741
o107 - gz FORMAT(/¢5X¢5022412)
€ (11) CALCULATION OF MEAN AND STDe DEVe OF VELOCITY
g . AND TIME AT DIFF. STNe i
- 0108 I C=0
oy 0109 00 26 JIK=peIK >
. 0110 IC=ICe1
- otL11 AV=0,D0 -
. 0112 Svz0.00
- o113 AT>0.00
o 0114 S5 ST=0.,D0O
° o115 DO 2% 1=1,L
=4 0116 DO 28 J=1 .M
B ot17 AV=AVHVSTII,J.1IC)
z o118 SVaSV+{VST{lesJ,IC)I*%x2
g 0119 AT=AT¢TST{IsJ,1C)
0120 ST=STH+H{TST(I+J.1C)IE%2
, 0121 25 - CONTINUE
, . 0122 X1=L '
0123 X2=M
0124 X=N1%X2
0125 AVS(JIK)=AV/X
0126 SVE(JK )=DSART (SV/X~AVS( JK)*%2)
| 0127 AT S{JIK)I=AT/X
| o128 STS({JK)=DSORT(ST/X~ATS{ IK)*%2)
! 0129 24 CONT INUE
. 0130 . WRITE(6.,26) -
01 31 WRITE(6+27 )(AVS{I)+SVSII)eATS(1)sSTS{ I)sI=1,IK)
0132 26 FORMAT (1H1 o/// 26X ,* MEAN VELOCITY?® ,8X »*S{GN ELDCITI‘.?X-"
BMEAN TIME® ,8X,*SIGMA rtus'.///)
0133 27 FORMAT{//.20Xs4D22.12)
22 F R IEIEEINAZ 2 #5*##** #ts#tt**t#*ttt“t kb kkkk bk ke xkEk i
C PLIUT CF P(V) & P(T) GRAPH
ctttttt*t*t**#*t*t*tt**t*t*#*t#t###*t**#**#t****#*t*t**t#t‘t
01 34 . READ(S+*) (Y(I)sI=1,61)
01 3s CALL Avs.svs.vsr.v.L.M)
0136 RE AD(S ., * YT(I).I=1,61)
0137 CALL L 05T SeTSTe ¥YTel M)
0138 STYCP
0139 END

*0PTIONS IN EFFECT® NANE = MAIN » LINECNT =
ASTATISTICS* SOQUR.E SYATEMENTS = 139 PROGRAM SIZE = 175904
ASTATISTICS* NO DIASNDSETICS GENERATED

*0PT lDNg IN EFFECT* NOTERM,;ID,EBCDIC,SOURCEsNOLIST«NODECK ¢LDADNOMAP, NUTZ5T
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