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ABSTRACT 

1 

Ph.D.· Thesis 
: ... 
febr-uâry 1983 

In thls thesis a microdynamics theory of structured solids is 

formulated on the basis- of probabilistic functional analy.sis. The 

t;:ory Wh~ is developed on the pùnciples of probabllistic mlCSfO-
f • ' 

"mechanIC~ introduc~s from the ànset spatIal and temporal scales 
,,/ 

relevant ln the dynamic analysis. A general formulation of the micro-

dynamlr of a three-dimensional solid ~, given ln ~,terms Of, an abst,ract 

~a~~\al system,; the analys,is is then speclalized ta" the k:i.nematlc 

s~~~ce of the general state space, whereby the former is found to 

\ . , 
). 

( J 
PO~9~SS ~he topological structure ~f a Hilbertian-SObolev space. L" 

• The abst~act dynamlcal system in the microdynamlcs theo~y 19 

developed expllcitly for the'w~e propagation in a semi-infinite bar 
.. I~~'l 1 

of ~ polycrystalline sol~drwith an arbitrary cross-section. The micr-

structure of the solid is taken to cOl")sist of cubic grains with r~dom 

physiéal propertils .. The existence of an i~ternal and a mac~scopic 

1 tlme IS post.ulated, which permits the formul~~ion of the evolut~on of 

the ~ave motion first in a one-dimensl~nal solid by means of a four 

parametrlc Markovian operator having a seml-group property. This model 

of the cubic sol~d structure rs shown to be asymptotically equ~valent 

to a "generalized wave equation" of the continuum theory. A more 

general model of the wavefront evolution for a three-dimensional solid 

lS then given in terms of a sùper-martingale (parametrized by the macro-

-1-

1 
- ! 

1 

__ J 



\ 
'~""_.'t~_ .... ~ _ .,.._ __ _ 

( 

. 1 
- -~ _._--"'!'-~ --~- _._~._- - .... 

.. , 

time) on a generalized random field. 
\! 

It is shown that numerical resul ts for the wave propagation in 
"~ 

a discrete solid in accordance wi th, the new 'microdynamics theory can 

be obtained by the applicatidh of the Monte-Car la simulation nÎethod. 

A comparison of these results with known classical and random continuum 
-::-.{ 

• theories is glven. 
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SOMMAIRE ) 
Dans cette thèse~ la.théorie de microdynamique des. solides 

'à structure organisée est formulée d'après les fondements de l'analyse 

~onct{onelle probabilÙe .~ie, developpée su~ les principes \ 

~ de la ml.cromécanique probabilite, établit dès le début les échelles 
. 
spatiales et temporelles qui sont p€rtinentes à l'analyse dynami~ue. 

La, fO~U1atiOn génér,,'le de 1: mlcrodynamlque par un solide trl-dimen

sionel est presentée par un système dynamique abstrait. Enfin, 

l'analyse est introduite au sous-espace cinématique de l'espace 
~ ~ 

générale d'état, dont la premièr,I se révèle ù'être d'une structure~ 
o 

topologique d'un espace Hi! bert-Sobolev. .. 

t , , 
Le systeme dynamIque abstrait d~a theorie de la microdynamique 

est developpé sans forme expll.cite pour la propagatl.on des ondes dans 

un solide polycrystallin avec une section arbitraire. On attribue à 

la microstructure du solide' des grains cubiques avec des propriétés 

physlques aléatoires. L'existence d'un temps lnterne et d'un temps 

macroscopique est postuléé, ce qui permet la formulatlon de l'é~olution 

d'ondes, tout d'~bord dan~ un solide uni-dimensionel grâce à un opérateur 

Markovien possédant la propriété d'un semi-groupe. Ce modèle d'un 

solide à structure cubique se révèle d'être équivalent à l'asymptote 
.1> 

de l'équation généralisée" d'onde de la théorie,d'un continu. Un modèle 

plus gén~rale de l'évolution du front d'onde, dans un solide tri-, 

dimensionel, est exprimée grâce à une sur~artlngale (avec le macro-

temps comme paramètre) d~ns un champs aléatoire généralisé. 
P 1 

On a démontré que les résultats numériques pour la propagation 
, 

des ondes dans ,un solide dl.scret en accord avec la nouvelle théorie 
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de miCrOdynamiqUe,' peu~ent ~tre obtenus en appliquant 'la méthode 
l fi' ; G 

de simulation de Monte-Carlo. Une comparaison entre les réqultats 
," '1 

Il 
connus de la théorie classique et de çeux de la théorle aléatoire 

• . 
du continu, est fournie . 
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CHAPTER l 

REVIEwor THE ANALYSIS or WAVE PROPAGATION IN SOLIDS 

\, 

IntroductJ.n 

Wlth the ad vance of SCIence and technology ln the 19th 

century It became lncreaslngly ObVIOUS, that the rlgld body concept 

was not a sufflclent basls for the mechamcal models of matter. It 

was recognlzed, that dynamlc effects become important, If the 

characterlstlc tlme of loadlng at any glven pOlnt of a flnlte dlmen
.fi 

slonal body, lS of the same order of magnItude as the ratIo of the 

largest dIstance From thls pOInt to the propagatlon veloclty of the 

dlsturbance (load). The latter quantlty remalned rather undeflned 

untll lt'was formally e~tabllshed on the assumptlon, tpat an elastlc 

Bolid can be treated as an elastlc "aether". lndeed it was the notIon 

of a solld belng an' "elastic continuum", that not only Inibated the 

.ave~apag:tlan anslysls, but alsa led to Its developme~t ln the 

/rorm of a r 19orous mathematical the ory known as "elastodynamlcs". 

Great discoveries ln phySlcS at the end of the 19th century 

clearly Indicated that aIl matter (SOlld, llqUld, gaseous) lS 

composed of particies. The very large number of partlcies of WhlCh 
o 

a sol Id medIum lS composed Justlfled an Ideallzatlon, that led ta 

mechanlcal models on the basls of a "contInuum". 5Ince mechanlcs 

lS a rlgorous SCIence, lt had to be bUllt on mathematicai prlncIples 

and concepts. The ca1culus of contlAuouS functlons wes then the maIn 

body of mathematlcs whilst the discrete functlons analysls has been 

developed only ln recent tlme. The Idea of a physical quantlty 

-1-
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as a contlnuous functlon of the space Crordlnates accorded man y 

advantages ln the pest and contInues t~be Important ta the present 

tlme. ThIS lS reflected ln the more recent advances ln dlfferen- ' 

tlable manlfold theory. 

Although contlnuum mechanlcs generally provldes a very 

2 

success fuI tool ln the study of the mechan~cal behav lOu'r of matenal s, 

lt has been recognlzed ln the last decade, that lt supplIes only a 

flrst arder approXlmatlon. This lS SO, because many phenomena 

encountered ln englneerlng and applled SClences deny the applicablilty 

of a contlnuum hypotheslslfor the Incluslon of the great varlet y of 

mlcrostructural effects. Although the physlcal propertles of materlals 

have ~een studied ~xtensively From an experlmental and theoretlcal 
Y--

pOInt of VIew, a rigorous 'formulatlon of the mechanlcs and especlally 

of dynamlc problems, that would lnclude the eXlstlng mlcrostructure 
f 

evades us stIll. Slnce the dynamlc case IS the most general part of 

methanlcs, the avallablllty ~,'such a formulatlOn 18 cruc-l,gl ln the 

study of a multItude of technologlcal and applied sClence problems. 

Hence, such a formulatlon ha~ been the goal of most approaches ln 

the past two decades. Although many of these attempts go beyond the 

claSSlcal contlnuum approach, they stlll rel y essentlally on the 

contInuum hypotheSIS. Several other theorles have been trled on the 

prlnclples of statlstical mechanlcs, but the ensuing analyses do 

not reflect the discreteness of real materials and more lmportantly 

fall ta establ1sh "evolution laws". A brIef account of these maIn 

trends ln the mechanlcal wave propagatIon theory WIll be glven ln 

the followlng sectIons of thlS chapter. ThIS wlll then suppl y the 

motIvatIon and the layout of the present thesls program. 

" 
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1.2 The Elastlc Isotro olld 

As already mentloned earller, the elastic-llght propagatIon, 

theory Initiated the mechanicai wave propagatIon theory,. which we 

now recognlze as the Isothermal Ilnearlzed elastodynamics of a 

homogeneous isotropic medium. The history of these developments as 

weIl as the formulatIon of the governing equations and the then

avallable methods are glven ln Love's well-known tltatlse (1926). 

Further research on small deformatlon dynamics of an elastlc SOlld 

3 

has malnly contlnued on the same assumption of a homogeneous isotropic 

medIum. Hence, the analyses were primarlly concerned wlth the mathe-. 
matlcal methods of solutIon already known from the classlcal formu-

latlon. 

Kolsky's book wrltten thlrty years ago became a classlcal 

eXposItIon of the theory and experlments on stress waves ln elastlc 

1 
and anelastlc SOllds. The state of the art was then the dlfferentlal 

and Integral calcul~s. The most advanced analytlcal tools were 

restrlcted to the use of the complex varIable te~hnlque and the 

integral transform method applIcable to the solutIon of two-dimensionai 

and three-dimenslonal probl~s, respectlvely (see also the Chapter 

on ','Dynamical Problems" by Sneddon and Berry in Encyclopedia of 

PhySICS ,_ 1958). A measure of the p;:ogress later 

ln the analysis of wave propagation, can glven by a number of 

reports, reVlews and conference proceed such~as Snedaon and 

HIll (1960) and Mlklowitz (1966). Lindholm (1968) 

that "the effort ln the sixtles was expended towards the generatlon 
(' 

of both experlmental data onc;he dynamic mechanlcal response of 

1 

" 
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materlal~ well as the formulatlon of realistic constitutlve 

theor ies" . Although much attenbon was devoteit at that tlme to 

dlslocation mechanism as a means of explaLnlng other than purely 

elastic dynamlc phenomena, the theoretlcal models lncluding mlcro-

scopic effects were crude, based on the continuum hypothesis and .. 

A comprehensive study of wave propagatlon relatlons from 
1 

a determlnlstlc contlnuum standpolnt exclusively, along wlth a great 

number of analytlcal technlques 18 glven by Achenbach (1973), whllst 

a more rlgorous m~thematlcal presentatlon of elastodyn~mlcs lS due 

to Erlngen and Suhubl (1974). 

The above remarks pOlnt to the developments ln the theory of 

wave tropagatl?n ln elastic lsotroplc homogeneous solld8. Hence, 
• 

4 

at thlS stage we glve the fundame~tal equations governing the motion ~ 

of such a body: 

- the stre~s equatlons of motlon 

- Hooke's law 

- the stra~n displacement relatlons 
~ 

~(j , j ... ~ f L 2 ~ li L (1. l ) 

f5ij :: Â Ekk J'Lj t lf! f~J (1. 2) 

f .' = ! (1.&.' . + LA.' • ) ( 1. 3 ) 
~j 2. lJJ j,L 

Substitutlon of relatlon (1.3) lnto (1.2) and (1.1) ylelds the wel~-

known displacement equatlons of motlon as follows: 

" (1. 4) 

w'hlCh can subsequently be decomposed lnto two wave equations 'governing 

the longltudlnal and transverse wave ,motion ln such é solld, 

respectlv,ely, 

t7Z..D;II 1 iJ 
V l Ci 1 

L 
(1. 5) 



c 

( 

.. 

5 

(1.6)-

where we have assumed that and 'JI represent 
N 

two wave potentials. 

These relations (1.5, 1.6) were usually $ubJect to advanced 

calcul us technlques mentioned before. However, only recently 

considerations have been glven to more rigorous methods of S9lutlon 

of three-dimensional problems, whereby the modern toofs of functlonal 

analysls and varlatlonal calcul us are more fu}ly employed (see for 

instapce, Stakgold, 1979). 

1.3 BehaVlour of Ani~troplc Non-Homogeneous Solids 

Although some medla can be modelled successfully ln terms of 

the llAearly elastlc Isotropie homogeneous solid, a growing range of 

medla encountered ln englneering" sciences require the development of 

less restrlctive mechanic~l theorles. fhe earliest studies of this 

type of media date back to the nineteenth century (see also Love 1926), 
c 

when the foundatlon for the wave propagation analysis ln anlsotroplc 

homogeneous bodies has been established. However, further developments 

ln the fleld took place only after the second World Warj these 

studies can be generally classified into two major groups, namely 

wave mechanics ln crystals and wave meehanics in macroscopic bodiJs. 

The fIrst group, l.e. the wave mechanlcs in crystals, encompasses 

two klnds of approaches, the determinlstic and the probabilist~c 

.- one. The determlnlstic approach is based on the ctassical work of 



6 

8rllloui~ (1953) and is dlrected malnly at the understandlng of the 

passage from the acoustic ta the optlcal lattlce vlbratlons (see for 

lnstance Smlth (1961») and the determlnatlon of the "effectlve elastic" 

coefficlents for crystals. pn the other hand, the probabillstlc 
'" 

approach lS Important in the analysls of crystals with im~erfeètlons 

(see Chow and Kellèr, 1972). We have ta note, that these wave 

mechanics mOdelsl are good at the crystal level, but do not apply ta 

polycrystaillne SOllds. 
,f 

An or19lnal outgrowth of lettlce dynamlcs 
" 

(1 
lS the non-local elasticlty theory (see Enngen, 1972, and Kumn, 1968) 

'. 

" WhlCh, however, omlts the Intermlttent scale ln the passage From the 
(, 

atomlsbc to the global leveh e.g. conslderatIons of d1s1ocatlons, 
., 

graln boundarles, etc. 1 

" 

The second group of stud1es on wave propa~atlon ln anlsotroplc 

non-hamogeneous so11ds deals; ln general, W1th macroscoplC medla that 

have, a random m1crostructure. - Interestlngly, from the mathemat1cal 
~ 

p01nt of Vlew, two major trends can also be dlstlngulshed: the 

o determinlstlc and the probabl11st1c one. The determln1stlc approach 

lS based on the assumpt1on, that one can safely take ensemble averages 

over the random mlcrostructure in arder ta establlsh the mean fîeld 

response (see for Instance'Datta, 1977). WhY th1s approach lS 

fun~ntally erroneous is dea1t Wlth ln Sectlon 2.1 of the present 
(rI 

theals. In the probabillstic approach one can dlstlngulsh twq kinds 

of theories dependlng on the type of the model chosen, 1.e. y eontinuous 
~ , 

random medla and discrete tandom medIa. TheorIes of wave propagatIon 

ln continuous rando~ medl~ have been lnltlated by the work of Cher nov 

(1960), and put on a firm mathematlca1 basls by Kampé de Fériet 

during the slxtles (1962 and 1966). A number of mathematlcal technlques , 

i 
i 

1 
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developed,in thlS area comprlse especially the wave formallsm and 

the ray formalism (Frisch, 1968). The latter approach lS based 

on geometrlcal OptlCS and applies ta the case of very short wave-

lengths only. It glves the statlstlcs of the rays and the wave 

fluctuatlons, but not their evolution ln tlme (see also Keller, 1962). 

The formulatlon of the wave motlon, that applles to the problem when 

the wavelength is larger than the correlatIon range of the random 

inhomageneltles, usually contalns a11 the random characteristics of 

the medlum ln the'lndex of refractlon which enters ln the classlcal 

Helmholtz equatlon. Wave propagatlon in contlnuous random medla is' 

a rapldly developlng fleld, Slnce it can be used for a number of 

problems and lS partlcularly successful ln the analysls of the , 

scatterlng of sound waves by turbulent gases, sClntlllatlon of stellar 

Images and scatterlng of waves by tropospherlc turbulence (see 

Usclnskl, 1977). However, It 18 essentlally a phenomenologlcal 

approach and hence not approprlate for the present study. 

On the other hand, the mlcroscoplC approach lS adopted ln 

the wave propagatlon theorles for discrete random medla. 51nce ln 

thlS case the physlcal properties and fleld quantltles are descrlbed 

by discontinuous random functlons, It is Decessarlly a much hardeT 

approach than ln the continuous random problem and thus presents 
Q 

formidable mathematlcal difficultles. Varlous eXlsting theorles are 

usually restrlcted-to the problem of scatterlng of a wave by the 
~; 

randomly distrlbuted inhomogenelties that are usually embedded ln 

a contInuum matrlx and therefore referred to as multlple scatterlng 

problem. Almost InvarIab1y these theQrle~ p,ely on the averaged 
1 

i 

j 

i 
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stati~tiéâl field quantltles and make a passage to the continuum 

ln order to use the classical wave equation (see lshimaru, 1978, 

Usclnski, 1977, and Sobczyk, 1976). The successfu1 applicatIons 

of these theories Include the molecular scatterlng of light, th~ 

'8 

t~eory of dlelectrlcs and prob1ems assoclated wlth radIatIve transfer. 

To the best of our knowledge there has not been developed a strlctly 

probabillstic theory concerning the wave propagatIon in a dlscrete 

random medium and in particular for the mechanlcal wave propagatIon 

ln such medIa. It lS the maIn alm of this thesls to develop such 

a probabillstlc~heory. 

\ ( 

~ 1.4 MotIvatIon of Research, Layout of the Thesls 

\ 

, 
. The brlef reVlew of the theorles of wave propagatIon ln SOllds 

glven above lndlcates that the eXls~ng theoretlcal models are of the 

phenomenologlcal type and take at best, only part of the true structure 

of the SOlld Into account. It becomes apparen~t~at ~here 15 a need 

for a more comprehenslv~ theory for the dynamlcal behavlour of solids 

which have a dlscrete random mIcrostructure. 

The proposed theory in thlS thesis, belng the first one of 

thlS nqture, WIll restrlct its scope to the lsothermal and small 

deformatlon motions with the prlmary goal of the inclusion ln'the 

theory of ~andom mlcro-scale effects. These micro-scaie effects ~hall 

comprIse the non-conserva1ive graIn boundary phenomena and the 

conservative ~elastic) Intra-graln phenomena. The baSIC conSIderatIons 

that are glven at the beglnnlng of Chapt~r II WIll be adapted to a 

microdynamlcs theory on a rlgorous mathematlcal basls. Thereafter, 

)-

1 
• j 

1 
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we glve a dlScusslon of the essential properties of the mlcro-

structure of a SOlid and the statement of the fundamental problem 

of this thesis. Subsequent to the three-dimensional formulation 

of the probabillstic micro-dynamics in terms of an abstract dynamical 

system we specialize the analysis to the kinematlc space as a 

probabllistlc functlon space. 

Chapter III is devoted to t~e determination of the transi~on 

operator of the abstract dynamical system. This is accompllshed after 

the eXIstence of an internaI and a macrosc6plC time "has been postu-

lated. The evolution of the wave,propagatlon process ln the one-

dlmenslonal model of the SOlld lS formulated on the baSlS of a four-

parameter transItIon operator on the Markov random fIeld. Subsequently, 

a genersl stochastlc model 18 developed for the wavefront propagatIon' 

ln the three-dimensional medIum, where the InteractIons between 

contiguous mlcroelements of the structure are represented ln terms 

of lnteratomlc potentials. Flnally, an asymptotic equivalence of 

the proposed probabilistic microdynamics theory ta the deterministic 

continuum theory lS established, whereby lt 18 shown that the average 

tlme of the random wave propagatIon process becomes Idential ta the 
) 

macroscoplC tlme. 

~ Chapter IV lS devoted to the comparison of the ciassicai 

theorIe8 to the microdynamlcs theory. The results of the latter are 

obtained through the Monte-Carlo sImulatIon ~ethod and reveal sorne 

Interestlng characterlstlcs. 

Concludlng remarks with sorne proposaIs for future research 

and comments on the contribution' ta tne theoretical mechanics by 

the author of thlS thesls are given ln Chapter V. 

• 

1 
1 

1 
i' 
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, CHAPTER JI C 

MICRODYNAMICS OF STRUCTURED SOLIDS 

2.1 Introduction: Determinism versus Probability 

It Kas been pointed out ln the flrst chapter that there is a 
1 

need for a general theory of the dynamlcal behaviour of solids 

possessi~g a discrete mIcrostructure. The maIn objective of thlS 

study i5 the formulation of the relations that govern the dynamic 

response of a discrete medium such as a polycrystalline solid, although 

It lS expected that the prop05ed theory might-readlly be modlfled to 

model other classes of structured sol1ds (e.g. flbrous, composIte'). , 
Furthermore\, 'the attention ln' thlS work ls focused on the translent' 

wave propagahon, which lS consldered to be, of fundamenta1 Importance 

ln the analys18 of the steady-state motions that occur leter. 

It is welf known that the micros~ucture of any solid exhlbits 

random configuratlonal and physical characterlstics, WhlCh manifest 
~ 

themselves through the arrangement and.propertl~s of individual 

~lcroelements (e.g. crystals). It is ther~fore a matte~ of logica1 

deduction to conclude that the field quantlties which describe the 

mechanlcal states of the medium, will be random functions. Hence, 
. . 

the evolution of the.physical processes Involved i9 to be treated 

ln a probabillsitc rather than determlnistic manne~. An approach of , 

this kind should naturally include the finlteness of the microelements 
~. 

wlth its relation t9 the overell size of the macroscopic body domain, 

as weIl as the interaction effects at the internaI surfaces in the 

medium. Tbus a probabllistic problem in mechanics can be stated in ~ 

-10-
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,. 
a very general way as follows~ 

, ,~ 

flnd a solution of the random equation 

~w) X(t) = y{t,w)) -

, . 

in which y is a known function, T(~) a random operator 

from .0.)( l ' into' ~ and where .Il is a probab.ility space 

and l and 'Y are generally Banach sR.sces. 

l:t 

1 

(2.1) 

11 

The preva~ling v~ew amongst most resesrchers in engineering, and applied 

SCIences in gen~ral, and those concerned with wave motion analyses, 
" l 

ln particular, is that one can work with the average values of 'the 

field quantlties. Th~s implies that the ranaom quantitles in 

equation (2.1) can be replaced by their expected, values and thus solving 

the' determlnlstic operator equation only, i.e.: . 
(T) (x(t) = y(t) (2.Z) 

"'"""" However, it 18 one of the fundamental facts in the theory of random' 
, , 

equations, tha~ the expected SQlu~~on of equatio~ (2.1) and the s91ution 

of equation (2.2) are not eqllal".exçept for simple forms of T{.w) or 

~ (t,w) , 'so that in ganeral: ) " 

,E{ x(t)}:f: (X(t)) (2.3) 

For a detailed discussio~ of thls and.relàted. aspects of random fixed 

point theorems see for instance Bharucha-Reid (1972). 

The above observation explains why the results obtained from 

the classical deterministic wave equation can not yield desired 

results, even if one is concerned with the average values only. 
1 

, Inter~stingly, the averagingoprocedure symbolized by equation, (?2) 
, 

r 
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invo.Ives usulilly the smearing:ou~ of" the iRternal effects bebveen 
;s, • ' \ ~.~ 

, ~ ,'f 

the mlcroelements uniformiy throughout the entire medium which further 
( 

reetricts the physical theory. 
, , 

It la important to point out at this stage, that the approach 
\ , 

,taken in the·random continuum theorles, discussed iR section 1.3 and 
_ • \ ù 

sub6e~ntly in 4 • .3 of this thesis, preserves the randomness of the ,-

medium to a certain extent by admlttlng the physical characteristics 

~nd stète variables as random functions, that are .continuo~s in space 

anq henee excluding an appropriate tre~tment of the effects at internaI 

surfaces. (J 

A theory which-was formulated from the outset to-rnclude the 
, . 

essential discreteness of a structured solid along with' 'lts r8ndom 

properties ~n the global governing 
1 

étions is the probabilistic 

micromechan,ics theory conce' 'él ~Y Axelrad, 1963. This rand~m theory 

of the mechanical behavio~r of discre~ media hps been successfully 

applled by Axelrad and his coworkers ta a number of p~oblems of complex 
\Ol' , ' \ 

and diverse nature, and espeoially ta quasi-static phenomena in p~-

crystalline and fibrous materials (see Axelrad, 1978 and references 
-

~~e). This theary has also been used in a somewhat modified fo~m 

to model fraèture and fatigue phenomena (Provan; 1977). However, a ~ 

rigorous generalization ta the dynamiçs of such solids ls attempt~~ 
J 

for the flrst time in th. present study. 

1 
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2.2 Fundamenta1 Concepts, PhySICS, Wave Characterlstlcs 
1 

,) 
2.2.1 Postu1ates of probabl1lstlc mlcromechanlcs 

It was pOlnted out ln the foregolng sectlon that the probabl-

llstlC mlcromechanlCs theory naturally al10ws for the lncluslon of 

the dlscreteness of a solld alang wlth lts random character ln the 

derlvatlon of the governlng equatlons. Thls theory IS based on four 

fundamenta1 postulates CAxe1rad, 1978 and 79), WhlCh we brlefly 

& re-state here and comment upon ln llght of theu re1evance ln the ffilcro

dynamlcs theory . 

Postulate 1: 

Three measurlng sca1es are used ln whlch the smal1est refers 

ta a "mlcroelement" of the structure, an Intermedlate one ca1led 

"mesodomaln" contalning a statlsbcal ensemble (Glbbslan) of mlcro-

elements, and flnally a flnlte number of non-ultersectlng mesodomalns 

that form the macroscoplC materlal body. 

Postulate 2 ~ 

AIl Fleld quantltles pertainlng to a mlcroelement are 

random varlables or functlons of such varIables. 

Postulate 3: 

Stresses, stralns, rates of straln, etc. are generahzed so 

that the response of a microelement includes InteractIon forces be)'een 

el~ments. Such forces are derlvable From a bond or Interact~ 
,. 

potentlal. \ 
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Postulate 4: 

A materlal functlo~or operator lS used that co~talns ln 

ItS argument characterlstlcs of the speclfle materlal under con~ldera-

tlon, glvlng a connectlon between stresses and deformatlons~ 

The above postulates pravlde a basls for the ensulng mathematlcal 

formulatlon and shall be referred ta at varlOUS steps ln thlS chapter. 

It lS however Important ta pOlnt out at thls stage that It becomes 

necessary to Introduce ~e more postulate for the dynamlc theory 

regardlng the "mul tldlmenslOnal tlme conce~t". We defer the formulatlon , 

of thlS postul~ untll a later, more approprlate stage. 

2.2.2 Baslc physlcal conslderatlons 

It IS weIl known from SOlld state phySlCS that aIL sound waves 

are composed of phonons, l.e. quanta of energy. However, consldera-

tlon of a mechanlcal wave from a quantum pOInt of Vlew lS only 
l 

necessary at a very hlgh frequency range, WhlCh means that a contlnuum , 
approXlmatlon for the perfect crystal lattlce lS valld far frequencl~S 

" 11 12 / 
below 10 + 10 Hz. ThlS roughly means for wavelengths largef than 

-8 ) 10 m (see Klttel, 1968. Slnce the acoustlc range covers wavelengths 

-8 from 10 m up, WhlCh may be less than the" typlcal crystal Slze 

ln a polycrystal11ne sa11d, we can, ln genera1, dlstlngulsh the 

followlng three cases: "----./ 

a) - very hlgh frequency 

b) - hlgh frequency 

c) -' low frequency 

p 



c 

( 

where À lS the wavelength. 

ot.d Conslderlng that the crystal Slze may ln general vary ln 

p'olycrysta'll1ne sollds between 0.1 mm and 5.0 mm, and for cr-W'ave 

propagatlOn velae l ty between 2 . 3 7.10 m/s, elementary caieuiations 

6 
show that case b) wIll correspond to frequencles of the arder of 10 

'~ . 
7 to 10 tHz. We note that this hlgh frequency range l13 charactenzed by 

a strong seatterlng. Thls phenomenon has been weLl(Bxplalned by the 

very fact, that the wavelength lS of the same order as the scatterer's 

slZe (see Masan (1958)). Thus by choosing to work ln the so-called 

15 

low frequeney range, I.-e. case cl, we stIll caver most of the frequenCles 

normally encountered In-mechanlca1 englneerlng appllcatlons. 

Followlng the above dlScusslon we now glve the followlng 

deflnltlOn: 

Deflnltlon 1: 

A SIngle mlcroelement ~ (graln or crystal) 18 taken as an 

elastlc contlnuum Whlch 18 characterlzed by: 

"E - two elastle constants, 8.g. (elastlc modulus) 

and Cf,G (shear madulus) o 

- lts mass denslty t:C.f 
- lts geometrlc shape and Slze in a 3-D space, 

constant 

throughout 

the body of cG 

aIl of whlch are random and descnbed by their respectIve 

dlstnbutlons, as for example P (A~). 

A two dimenslona! Vlew of typ~cal mlcroelements wlthln the mlcro-

structure of the solld lS schematlcally shown in Flg. 2.1. It 18 

seen that the mtenor body domaln of the crystal ,x, lS denated by 



( 

"l) , WhlCh IS a slmp1y connected, open subset of the 1R3 -Euclldean 

~«'1'\ space*. The gral16l boundary (J dJ lS a two-dlmenslonal sur face ln 
. 

and the entlre bod~ domain of ~ 1S We 

fonc ude that accQrdwg to DefInltlOn l the propertles of a structured 

d are descrlbed by random funetions wlth dl sere te reallzatlons 

contlnuous), WhlCh, wlth reference ta Postulate 1, are 

consldered to be space homogeneous wlthln a certaIn mesodomaln. 

FIG. 2.1 PLANE VIEW OF A MICROELEMENT IN A 
POLVCRVSTALLINE saLie. 

~, 

* ~~ IR) The choice of ~ as an open set ln the -topology is arb1trary 
S1nce no physicai reailty corresponds perfectly to the notIon of ,a 
pOInt belonging ta the boundary of the gralns. 

16 
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As was mentloned earlIer, the attentIQ~.10 thlS work 18 

facused on the tran~lent wave propagatIon, whereby a speclflc Inltlal 

form of the glven pulse does not have to be determlnlstlc, Slnce the 

-~. 
1 whole anal~81S 18 conducted ln the language of prabaOIllty theary. 

We recognlze, however, that due to the random physlcal propertles ~E, 

~G « and r and the random geometrlc shape of the mlcroelements, a 

multIple scat ter of Even the slmplest Inltlal pulses WIll take place 

throughout the whole mlcrostructure. It IS eVldent that the random 

geometry of the graIn boundarles WIll glve flse ta thË rather compll-

cated phenomena of waves spllttlng at the8e Interfaces and later 

overlapplng Inslde the microelements. However, It IS consldered that 

~~~ 
the random geometry of the 0 GU surfaces represents only a seconda.y 

effect wlth respect ta the role played by the randomness of the 

physlcal ~ropertles. Hence, ln order ta make an Inltlal formulatIon 

possIble, we slmpllfy the problem by'assuming aIl mlcraelements to 

have Identlcal shapes of a cube (dxdxd) and to be arranged ln a 

17 

.perfect,lattlce-Ilke structure. Furthermore, wlth reference ta FIg. 2.2 

we adopt an external reference frame (XI 'XZ 'X3) wlth Its axes paraI leI 

to the edges of the microelements and consider propagatlon of the 

plane waves whose propagation vector 18 paralle~ ta Xl' X2 or X3, 

respectlvely. Although It IS ev~ent, that a perfect plane wave 

generated at any boundary of the macroscoplC body domaln WIll , 
Immed2ately beg2n ta 100se Its perfect form due to the lnteractlons 

between the mlcroelements, lt wlll càntl~e to propagate as a macro

disturbance ln the same directlon for a conslderable tlme before 

dlffu91ng c?mpletely throughout the entire body. It 19 the evolutlon 

o( such a d19turbance, WhlCh 19 of maIn Interest ta Us ln thls theS1S. 
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FIG. 2.2 CUBIC STRUCTURAL ELEMENT. 
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As IS well known from elastodY(lamc$ (Achenbach, 1973), 

~n the case of a plane wave propagat~on (long~tudlnal or transverse) 

we have for the occurnng deformation the f'ollow.ing relation: 

(2.4) 

wh~ch is a general 3-D space-time descrIptIon, and.where 

p ~s the d~redtion -of propagation, 1. e. a Un! t vector, and 
'" 
e ~s the d~rectlon' of mobon, (also a un1t vector); 
'" 

the propagatIon veloclty 19: 

18 

, 
!. 
1 

, 
l, --_.' 



C lIE CL - longItudinal wave, when 

C = CT - transverse wave, when 

Obv lOusl y, the representatlOn ln (2.4) lS Inadequate for 

the mlcrodynamlcs theory and can at best be used at a mlcro-scale only. 

Indeed, we wIll now study the wavé propagation across the inter-

crystaillne Interfaces, where speclflC phenomena neeessitate the 

wtroductlOn of new fIeld quantI tles not employed ln the continuum 

mechanlcs theory. 

2.2.3 Wave propagatIon aeross the Intererystalilne boundarles 

It IS a well known faet ln metai phYSICS that the presence of 

many graln boundar les ln the pol ycrystalllne solld Inereases !ts 

overall stFength on the one hand and causes an energy dlsSlpation 

on the other. In general, graln boundar les are best eonsldered as 

reglons of "bad erystals" (MartIn and Doherty, 1976, and ChrIstian, 

1965). However, there lS stIll Ilttle known about them, and ln 

partleular about thelr behavlour under dynamlc loads. It appears 

therefore that a pOSSIble approach is ta generallze the klnematlc 

model for the quasl-statlc lnteractlons.developed earller by Axelrad 

and Provan (1972), whieh is based on Bollman's geometrlcal theory 

of cOlnCldenee lattiees (1970). 

Figure 2. 3a presents the klnematlcs of twa contlguous ,mlCro-

elements 0(. and f3 under the actIon of a general plane wave contalnlng 

bath longl tudlnal and transverse components, where the pr01t8gatlOn 

vector 18 pa~llel ta the Xl aXIS. As l~al ln mièramechamcs, a 

• 
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local coordinate frame (Carteslan) lS flxed at the centre of mass of 
) 

each crystal (see Axelrad 1978). The Internal and surface deforma-

tlons are descnbaole by the u.' and u.S vector flelds, respecbvel~. .... .... 
A ~AA ThlS dlstance between the gralns ri" and t' lS denoted by ,. Ll ln 

'" 
the 

undeformed conflguratlon and by "~J' ln the deformed one. It IS seen 
N 

~ that the' deformabon ln the graw boundary can be expressed by: 

(2.6) 

and whe re "., d IS al so ,., 
/' 

l 
1 (2.7) 

~ 
Thl~ dlstance has been taken as the relatlve dlsplacement between two 

"colncldence cell pOlnts" at the surfaces of the crystal latbces of 

both gralns cx.) ~ (Flg. 2.3b). On the assumptlOn that at certaln 

pOlnts wlthln surface area d2. perfect bondlng eXlsts, the imtlal 

thlckness of the gralr,l boundary wlll become Identlcal ta the wter-

atomlc dlstance at equll1bnum Fô , l.e.: 

(2.8) 

WhlCh corresponds ta a mlnlmUm potentlal energy between the atomlc 

layers. The relatlOnshlp between the potentlal energy q, and force 

F at a dlstance r IS glven from phyS1CS by: 

'd$ F. ==--e ôr rv 

(2.9) 

ln the case of a conservabve surface effect. The nonconservatlve 

contributlon can be assumed to be representable by a rate dependent 

"dlsSlpahve. potenhal", glving a dissipative surface force: 

21 1 
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(2.10) 

where r here lS a bme rate of change of the bond dlstance r ln the 

boundary zone between 2 cOlncldence lat tlce pOInts ln perf,ect 

bondlng. 

We see that the total surface Interactlon force between two 

cOIncldence cell pOInts can be expressed by: 

f = fe + f~ (2.11) 

ThIS force 18 a dlscrete quantl ty Slnce the both component forces 

as glven ln (2.9) ~nd (2.10) are also dlscrete quant.ltles. AssumIng 

that. there are N Interatomlc bonds per surface area d1 
of the 

boundary zone between two CUblC crysta1s 0(, and ~ , 1 t follows that 

on the average the surface Interactlon force ln thlS zone lS: 

(2.12) 
) 

Furthermore, on the assumptlOn that the bonds are unlformly dlstrlbuted 

ln space, we can obtaln the surface tractlOn at a point on the graln 

boundary surface by taking a llmlt in the Cauchy sense as follows: 

œ'-[ = lim t(~ = l!L 
.., ~s~O ôs dl 

(2.)3) 

Accordlng 'ta the Definl tIan l, the forward gOlng plane wave 
, 

ln the crystal ci, may be descnbed ln the contInuum sense (see relatIons 

(2.4) and (2.5)) as follows: 

ct.~ (X r \ t) :1 f (XI - a:, t) (2.14) 

where the propagatlon 1S as~umed ln the pOSl tlve Xl direction as ln 

r 19. 2. 3a and the directlon of motlon may ei ther be e - longl tud1nal 
~L 

( 

or ;T -transverse wave. We shall later flnd lt more convenient to 

22 
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develop the stochastlc theory ln terms of wave veloclty vector, l.e. 

the deformatlon rate, so that we can also descrlbe such a plane 

wave as follows: 

=f(x,-aC.ct)~ :: (2.15) 

0(,' ThlS wave wlll be Identlfled wlth the Incldent wave ~i' The wave 

wlll traverse the mlcroelement 0(, ln a certaln fimte tl-me, WhlCh 

18 embedded ln the real tlme. Ta clarlfy thlS, we use the followlng 

Clt. ~Cl.d 
The sOJourn or passage tlme 18 the mlcro-tlple 't' - «'c (2.16) 

of pas81ng of a wavefront through an element C<:. ,lNhere ~d lS 

the Slze of thlS element ln the dlrectlon of wave propagatIon 
1'\1, 

and ~c 18 the wave propagatlon veloclty. 

It lS assumed that the probablllty dlstrlbutlon'of the random varlable 

DIo! lS obtalnable From appropriate experiments an sIngle crystals. 

From the causallty prlnclple we know that a wavefront Incident 

upon an Inter face between two crystals ct and ~ wlll produce a 

reflected wavefront (into ~ ) and a transmltted wavefront (lnto p ). 
Both these wavefronts are directed away From the Inter face, sa that: 

ct~r :,9(X. + ~ct)~ 

~ tA ~r = h (X 1 - Pc t) ~ 
(a)} (2.17) 

(b) 

1t is apparent, that ln the above relatlons, the amplitude funcbons 

9 and h are unknown and undetermlned. It becomes necessary therefore 

'ln the analysls ta Introduce two conceptually new coefficlents, that 

( 



( 

( , 

will llnk the above relations with the actual incIdent velacity ln 

the crystal Thus, we give the following definltion: 

Definitlon 3: 

The refiection coefflclent 

The transmisslon coefficIent 

ct • .,. 0(.. 

where !d-~, ~r and ~ tr are the incident, reflected 

and transmitted wave vectors, respectively. 

It IS eVldent, that due to the random physicai properties of 

the mIcrostructure these coefficIents will be random functions of the , 

coefficlents and It becomes necessary ta determine their explicit 

forms for a glven medium. Whllst it is assumed that the probabiiity 

distr Ibutlons of Cr and Ct rare obtainable From appropr late expenments 

on bi-crysta15, we make here an attempt ta derive them analytically. 

Slnce a connection between the wave velocities ln contlguous 

crystals QG. , ~ and the effect of the presence ~f the graw baundary 

15 saught, It 15 important to note the ~relevant kinematlc conditIon, 

1. e.: J 

where the surface velocitles are respectively 

aI.' S «. .. . 
U. = LL' - U. 
,., ~ L "" r 

,. , A· 
LI. = r u,J. 
II> ,.. ,r 

(2.18 ) 

(a)} (2.19) 

(b) 

IntroduClJ;lg the above into (2.18) and making use of DefwItlon 3, we 

ob tain the followlng Important relatlpn: , 

24 
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~'d-(C +C-l)"ü.: ,., tr r IV L .. (2.20) 

" 

In arder ta eliminate Cr f;o~ the above we now invoke the "stre~s 

condItion" of surface forces in ,he boundary, i.e.: 

111. 6 $ ::: Pot ( 2.21 ) 
~ = 

where the surface s~ses are given Ln terms of the stresses involved 

ln the travell ing waves, i. e. : 

(a) } 
(2.22 ) 

(b) 

It 15 known From elastadynamics that for the plane waves travelling 

ln the Xl direction, the components of the stress tensor are related 

to the components of the veldclty vector in the followlng way: 

\... 
ln the longitudinal motlon (2.23)' 

1 

an~ 
611 = - ~ CT li. 2-

51~ = -~ c.T u.j 
,} w the transverse motion (2.24 ) 

Thus returning to (2.21) and employlng (2.22a,b) we can,,-write, in 

general, that: 

(-2.25 ) 

Making use of Definition 3 again, we obtain a relation between the 

transmiSSIon and reflection coeffic~ents as follows: 

, 
c = r XC -1 tr (2,26) 

where 
~! 'c 1= 
~~~c 

(2.27) 

.. 
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18 referred ta as the \mpedance ratio. We note that X is a new random 

variable whose mean is equal ta unity~ if it is assumed that the statistic8 

of the physical froperties a:e space 

(2.26) and (2.20) we arrive st a key 

h~megeneous. Eliminating C,. from .. 
relation between, the transmission 

coefficient, the incident wave ve10city and the grain boundary displace-

ment rate, i.e.: 

(2.28) 

It is important ta note that ot~a ln the above ferm is direct1y r~lated 
N 

t-o the t1me rate of the bond distance r through sorne kinematlc 

condition: 

'J .,~ ::-'f [ r] = f [:~ J 
( m 

(2.29) 

The above relation 1ndicates that r lS varylng in the "mlcrotime tm'~, 

WhlCh is a bme scal~' Invalved ln the interatomic phenomenon. ln 

general, al hhough this microtime t m is embedded in the real bme t, 

the phenomena taking place ln tm are characterized by' very high 

frequencies (1014 -+- 1015 
Hz) ,\\w~ich is in contrast ta the passage 

.~ , "1' Ume 1. of a mechanical wave thraugh a microelement which is of 
l 

.! .... 6 -8 ' _,.:.. 
the arder 01' 10 -+- 10 s. From equat~on (2.29) we see that u 

". 

is also taken with respect to tm ' SO thaf gE2~2B) impl1es that Ctr 

is a function 'Of the microtime tnp viz:-
'. 

"-
It follows tften, that in order to dete-rmine Ctrfrom 

(2.28), ,one Ms to determl.ne the long time benaviour 

(2.30 ) 

the relation 

of «'~a II a"'i 
',., 3t . m 

. Thus, one· has to establish the variation of the bond distance r on 

\ 
", 
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i 
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1 
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the real tlme scale t flrst, and only Iater Infer the functlonai 

fotm of Ctr . 

Thus From equatlon (2.2~) we have: 

WhlCh upon Substltutlng (2.28) becomes: 

(2.31) 

27 

In genera1, the component of the surface stress ~hlch 18 relevant 

ln the partlcular type of wave motlon lS related ta the ~urface 

tractlOn ci~T ln the (~~ ) bour1dary as follows (see also Flg. 2.5 ... 
on page 31) 

k-l,l,3. (2.32) 

Maklng u'ï ~f one of the relatlons (2.23) or 

wave' and recal11ng (2.13) we can wrlte: 

(2.24) for the transmltted 

Substltutlng Ctr From the above Into (2.31) we obtaln the general 

equatlon governlng the behavlour of the bond dlstance wlth respect 

ta the mlcrobme t m , l.e.: 

- NF· CD s t" l l c~ g ) (X + 1) - 21 } 
-û, . P, Pc d' 

kl dr 
It 19 seen that the force- F depends on r and- dt", 

(2.33) 

aècordlng 

~ ta (2.9) and (2.10). Further (2.33) represents an autonomaus nanllnear 

dlfferentlai equatlon of the flrst arder. Thus, ln arder ta determlne 

C> 
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the global behavlour of r on the real tlme scale t one has to conslder 

speciflc forms of the conservatlve and nonconservatlve parts of the 

potentlal H~Uer the speclfIc type of wave motIon. 

The elastlc contrIbutIon ln the graIn boundary zone can be 

taken generally (applles to face centered CUblC, body-centered CUblC 

and other crystal structures) as a Lennard-Jones potentlal, I.e.: 

.r:- = 1.09 , ro 

where F. IS the zero energy dIstance, 1. e. <p (r. ) = a 
(Z.34) 

(Klttel, 1976). 

Hence, lt follows from (2.9) that: 

F = 24 t [l roll - ~] 
r ll r 7 

(Z.35) 

The rate 'dependent dISSIpatIve potentlal lS assumed as 

negllglbly small ln the present model, so that accordlng t~ (Z.lO) 

the dIssIpatIve surface force 18 negllglble too. 

For the plane wave propagatIon ln a OUblC mIcrostructure, 

WhlCh IS assumed here for slmpllclty of the analysls, we can recognlze 

four cases of InteractIon of a wave with the boundary. Thus wlth 

reference' ta FIg. Z.4 we have: 

.. 
case (I) L-wave propagatIng normal ta boundary 

case (Z) L-wave propagatIng parallel to boundary 

case (3) T-wave propagatIng normal to boundary 

case (4) T-wave propagabng parallel ta boundary 

It IS seen that a slmllar kind of motIon IS Involved ln cases (1) and 

(4) (dIrectIon of motIon normal to the boundary), as weIL as ln cases 

(Z) a~d (3) (dIrectIon of motIon parallel to the boundary). However, 

anly cases (1) and (3) represent propagatIon of a glven wave acr08S 

-j 
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the gralh baundary, WhlCh 19 the subJect matter of thlS sectlon. 

Hence, we shall.now conslder these two cases separat~y, assumlng 

that.the results wlll be equally Indlcatlve for the wave propagatlon 

parallel to the graln boundary, l.e. case (2) and (4). 

(A) MotIon perpendlcular to the boundary (ct a ) : 

The relatlve dlsplacement between atomlC surface layers lS 
:!' 

ct'A only the dlfference between the Initlai thlckness ~ ln the 

undeformed conflguratlon and the thlckness ~~ ln the deformed one, 

l.e. followlng (2.6) and (2.8) we can wrlte (flg. 2.5a) 

It follows then that the rate of change of ~~ ln the mlcrotlme 
N 

slmply: /-
d ot~d dr IV _ 

(Hm .... --(:am 
Notlng that the stress condltlon (2.32) takes the form of.: 

P6 s a ~'T 
" 

and Substltutlng (2.35) and (2.37) Into (2.33) we obtaln: 

.9L = ct· . [-(X:+\) N 24 (~~rL _ 10') _ 2.] 
dtm u.~ ~ Û,l ,~ Pc dl. E. rl~ r7 

(2.36) 

18 

(2.37) 

(2.38) 

A global analysls of thlS nonllnear dlfferentlal equatlon can be 

avolded ln the flrst approXlmatlon, If we note that ln case of the 

external forces acting along the aX1S of the e1asbc Interatomlc bond, 

the response tlme wlll be very short on the tm -tlme scale. Thus, 

the bond dlstance r wlll vary extremely fast on the real tlme scale 
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rema~ ~round a certa,n constant value very close to the equ,l,

\ brlum*~~nd dIstance, sa that the expected val~~ glven by: 
. ) 

~ E{rttml} ;; r. 

U Henc~, we may conclude that ' 
+t'm 

E {;; } = Hm z+- j -if- (Hm = 0 
m t'It! ~ClT /2. m -t~ m' 

(2.39 ) 

(2.40) 

Ta verlfy the above convergence a numerlcal model has been lnvestlgated 

(see Appendlx A).· 

Now, conslderlng (2.40) and (2.31), It can be se en that: 

.l C &II 

r 
X-I 
X+\ 

\ 

(2.41) 

(2.42 ) 

Thls means that ln the, case of graln baundarles perpendlcular ta the 

'. dlrectlOn of wave m.on the boundanes may be consldered as ngld, 
, . 

l.e. the transmlsslon coéfflclent wlll be glven only ln terms of the 

random Impedance ratIo X . 

(B) MaYln parallel ta the boundary (<<'~ ) 

Wlth reference to FIg. 2.Sb, we ~ssume bath atoms of the 

bond to be movlng On the parallel stralght Ilnes separated by the 

equIllbnum dIstance ro of the bond.' Thus adopting a comple.x plane 

coordlnate system we can wrlte the positlo~ equatlon as follows: 

* It should be noted that ln a crystal lattlce the equillbrlum bond 
dIstance lS smaller th an the equllibrium bond dIstance ln an isolated 
bond due ta the presence of other nelghbours of the lattlce. 
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and by dlfferentlatlng we obtaln the velocltles condItion as 

(2.43) ) . 

Whlch 18 equlvalent to 

f CoS 9 - r &0) sin e = 0 (2.43' ) 

and 

t-sin 9 + r Go) cos 9 = ~"à (2.43") 

From (2.43') and (2.43") we arnve at the expliclt form of the 

kinematic condItIon (2.29) ln thlS type of motIon, I.e. 

~ cl = f( r) = r ( ~in 9 +- rJq 9 . Cos 8 r, (Z. 44) 

where with reference to FIg. 2.5c we have Introduced the angle 6 8uch 

that 

e = arc cos !!. r 
Now, the expllclt form of the ~urface stress condItIon (2.32) IS here: 

k =2,3 
so that the equatlOn governlng -;the behavlOur of' the bond thstance 

r on the microtlme scale t." becomes: 

(2.45) 

ThIS lS an ev en more complex nonlinear differentlal equatlon than 

that ln (2.38). It lS beyond the presently available experlmental 

technIques to assess the range of variatIon of 9. We therefore 

assume that this angle WIll vary about the mean zero value and note 

that the characferistic time response will still be very short 

, 
1 
\ -, 
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compared to the global tlme scale of mechanlcal waves. Thus lt 

becomes posslble to assume the same asymptotlc behavlour as ln the 

'--.-
perpendlc~r.type of motlon*, namely that: 

E { r(tm)} 

and hence 

It follows then From the above that ln the case 0: graIn bound~es 

paraI leI ta the dl rectIon of wave motlon, the boundarles m~y a~o be 

consldered as rlgld Interfaces. The equlvalent forms of the trans-

mISSIon coeffICIent resultlng from (2.31) wIll be as follow~ 

(2.48) 

-.J 
and that of the reflectlon coefflclent wIll be accordlng to (2.26) 

(2.49) 

It lS ta be noted that the case of the convergence lndlcated 

ln (2.47) has been aSsessed uSlng a computer madel and lS reported 

ln AppendlX 1. 

• 
The above analysls shqws that for !Nave propagatlon parallel 

. 
to the graIn boundary wlth the dIrectIon of motIon elther parallel ta 

lt (case (2» or normal (case (4),.the same flgld bond and hence the 

rlgld lnterface model may be assumed. HO!Nev~r, ln thlS case, the 

concept of the trans~sslon and reflectlon co~fflcient has ta be 

* As before, we note that the crystal lattlce spaclng IS smaller th an 
the equlllbrlum bond dIstance in an Isolated bond. 

34 



(. 

(~ 

'\ 

( 

\' 
1 1 

generallzed to an operator ln order ta account for the InteractIon 
'f .. 

of a given wave wlth the graw boundary in a fwite passage bme "1:. 

The analysls of thlS type of InteractIon WIll be extended ln sectIons 

3.4 and 4.4.· 

2.3 Concept of an Abstract Dynamlcal System [ . .!lJ,~ T] 'ln the 

~epresentatlon of the Wave MotIon 

Accardlng ta the mlcromechanlcs theory the state.of a mlcro-

element " lS descnbed by and r-dlmenslOnal. state vector 

(2.50 Y 

where r represents the numbeT of bqSlC mechanlcal parameters (see 

Axelrad, 1980). These parameters ma~ be speclfled ln general as 

fo11ows: 

«-)) (t) - ~ u.L, InternaI deformatlon -". '" 
ac \.L~ surface deformation ... 
~û.i. InternaI veloclty ,., 

(2.51) 
«. CL s surface veloclty ,.. 

«'Di. internaI stress ,.. .. 
«.(; ~ surface stress 
It 

~f body force 

Noting from (2.51) that the œ~~(t) parameters are of elther 

klnematlc, stress, or body force type, we Introduce a fo11ow1ng 

deflnltlon in the mlcrodynamlcs theory: 

35 



,,-
~! 
, ' 

~ ( 

) 

OefwltlOn 4: 

The seate of the mlc;oelemen~s des.crlbed at any Instant 

of tlme t by a "dynamlc state vector" eX. ~(t), whlch ln general ,... 

lS glven by: 

Q',)J (t) • Q: X (t) . klnematlc state' vector "" , 

"'!1 (t) stress state vector 

r Itf (t) "body force vector 

ThIS dynamIc state vector may be consldered at any flxed tIme 
• 

as the outcome of a trIal or a random experlment. Thus, ln the 

ianguage of probabd:lty theory (see RénYl (1970)), the entlre set of ' 

possIble outcomes deflnes the sample sp~ce Jl . 

We pOInt out the algebralc aspect her,e, namel y that Jl lS a 

'(2.52) 
, , . 

WhlCh lS a sy.stem conslstlng of an Abellan group {V,"+} and a fIeld 

1={i,t,x}lWlth an Identlty element e. Further (.) ~lS a binary 

operation of the elements "~1 '~~ ... E V~ by the elements ,Cl,b, ... t-/R 

such that CI&o'J'Q ~Jl (scalar mult~plicatlOn) . ... 
In the vector space 11 the r-dimensionai open sets 

"-

E = {" \Il: ~l < cs \l ~ < 'h + Ll 'JL ; L:: 1 ) 2. } ' ... ) r}) E , 11 , 
may be Identlfled, as belonging ta a certain topology of 11 ~ In 

general, thlS topology Is,generated by an Infinitely countable topo-

logical basls r of the followlng se,ts: 

\ 

'\ 
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Thus f fl, r} becomes a topologlcal vector space, and ln case ~y. 
L 

ln equatlon (2.50) are real valued, 14 
If J lS a 6 -alg~bra generated by the 

has the famillar /Rr-topology. 

baslS r we have a mea8urable 

topologlcal 8pace {J1)J]WhlCh lS called an experlment E ln probabllity 

theory. The mInImal" 5 -algebra J whlch contaInS aIl open sets E lS 

called the Borel ë -algebra of I1., and the elements of 1 are called 

Borel sets. 

However, due to experlmental accuraCles that can be achleved r 

the outcome ~V at a speclflc tlme of the C(. -th trIal annot be deter-
,y 

mlned exactly, but only wlthw a certaIn flnite range t:J.S'J, SE flnlte 

subset of 21'. It 18 seen that such "wlndow sets": 

S - flnlte 

glve rlse to topology 1s WhlCh lS weaker than r topology. The 

6' -algebra Js generated by the bas18 J.s lS Identifled as a sub-

5 -algebra of 1' . 
Whlle the analysls ln probablllstlC mechanic8 18 usually 

... 
conducted in the {.a) J} space it lS supposed tha t the results (e. g. 

probablllty dlstnbutions) are congruent to the physlcally measdrable 

Informatlon ln {ll,Js}. 

In accordance with the defin,ltlon of the event 'E we can 

now Introduce the probabllity measure on J deflned ~s follows: 

(2.54 ) 

f~ lS readlly recognlzed to be a 5 -addItive Borel measure. 
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The experiment t together wlth e~ forms a tnple t 12 , 1, O'~} 
or so-ca11ed space of elementary events. 

We now introduce a random varIable ~ defined as an 
N 

{fl,1} .. measurable function: 

(2.55) 

where Ils the state 5pace and d3 15 the Borel (5 -algebra ln X . 
In accordance wlth the mlcromechanlcs theory (see Axelrad, 1983) we 

conslder an elementary outcome "~~ 11 to be descr Ibed by the cor res

pondlng pOint X of the state space I. ThIS means that, If 12.=1, 

r = e , and the functlon 5:= 5 (x) has the form ~ (x) = X) x El ) then 
_ N N 

the random varIable 5 (~) 15 called a directly glven random varIable ,.. 

(see Prohorov and Rozanov (1969». Hence, It lS seen why in the 

probabillstlc mlcromechanlcs theory the state space 1 15 Identifled 

wlth the probabilistic,function spaCB. 

We shall always suppose that our probablilty space may be 

extended to be complete whanever thls lS needed. 

Varlou5 topologles may be deflned ln r , and we defer the 

conslderation of thls feature until th~ next sectIon, where the -
analyslS is restrlcted ta the kinematlc subspace of J(. It can be 

seen, however, that the speciflc topology in l allows an ana1ysis 

ln terms of continuous functlons over l , which is ln contrast ta 

the notion of continulty.in the physlcal domain of the materlal body, 

as assumed ln the classlcal mechanics of sol Ids (see the dIScussion 

in Sections 1. 2 and 2.1). It is of interest to point out that in 

arder to conduct a rigorous analysls in determlnistic contInuum 

mechanics, the topology of the state space has also to be considered 
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(see Knops and Wilkes (1973)). In faet, the inalysi~ of a meehanieal 

system and ItS 'evolution ~~he state space, has been introdueed for 
, 

the flrst tlme by Poinear~ (1881), ln analytical dynamlcs, WhlCh lS 

39 

strietly a determlnlstlc t\ratment. Let us then recall the formulatIon 

of an abstract dynamical system ln a determinlstic setting: 

Defim tion 5: 

A dynamlcal system correspond,lng to a triple' (T t T, l ) lS 

a set ](T,l)of functlons defined on T taking values ln 1 
such that 

(1) ft' ~ ] (T, 1) whenever f E JHr) 1) 1 t ~ J, 
(11) llm fr(t)= f(t), ~ ~ J3(T) 1) 1 t ~ r. 

t ... o 

In the above notatIon T lS a locally compact seml-group wlth Identlty 

0, ~'\jhlCh lS usually taken as m+ u f 0 }) 1 is a subset of T, and l 
an arbitrary set ~~ntalning aIl the relevant dependent varIables. 

Furthermor'e, if f is a m9t1on in the functlon space - '»(Tl 1') and ft' 
its translate, thlS formulatIon enab1es one ta trace the motIon ln 

~me along a path or traJectory ln the phase s~ace. These traJectorles 

are fIxed in the phase space, which distingulshes thus a de ter-

minIstlc system From a probabillstic one. Hence, ln the mierodynamics 

theory w~shall work only wlth the probability of an outcome to be in 

a given set at a flxed tlme ta, and thus, the evolution of this set 

at a Iater time to t 6. t has ta be investigated in terms of a certain 

transitIon operator. Whilst ln the deterministic theory one defines 

invari@nt sets, here the consideration of an invariant measure,of a set 

is of a fundamental Importance (see Oxtoby and Ulam '09ty1) and Ba!escu 
) 

(974)). 
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Let us introduée a mapping T::r T [ ,,] of the set il onto .., 

itself, and denote for each Ec 11 by r-'[E] the set or-those 

» E. n for WhlCh Tt~]~E. Thence, following RênYi' Ci970), ~e 
come ta the following defini~: 

" 
DefImtion 6: 

'-

The mapping T = T[l:' 1 of il onto ltsel f such that for each 

E c fi o~e has 1"-1 [E] E 1 and further: 

(2.56) 

lS called a measure-preservlng tranafor~ation of the 

probabllity space fJl)l,~~}; the probabillty measure a>!. 
is called invariant under the transformatïon T; the 

c __ --

system {Jl
I
1, f't) T} is called an abstract dynamical 

. 
system. 

The ,princIpal advantage of identifying a measure perserving 

transformation T ln the prpbabilistic analysis is that it allows 

a fo~mulation of the physlcal process as a stationary random process. 

However, "the measure presérvj.ng property is not absolutely. neces::}ary-
~ • ô 

for a more general definitlon of an abstract dynamical system in the 
----. = 

• > 

case of a Marko~ process formulation., In arder ta establish such . 
a formulation (see Chapter ILl)' we shaH now special12!e our genera~ 

dynamical system ta model the evolution in the kinematic subspace 

of the general state space • 

. , 
. , 
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2.4 Klnematlc Space as a Probablllstlc Functlon Space 

Let us recall from defwltlon 4, that th'è dynamic statè' vector 

can be decomposed ln the followlng fashlon: 

").1 = lt: X - ,.. 

"6 
(2.57) 

,.. 

œ;t 
.... 

IIIIhere we have omltted the energy denslty and where the tlme dependence 

lS assumed Impllcltly The three components of the state vector 

may be consldered to belong ta thelr respectIve spaces or subspaces 

of Y as fo11ows: 
. .': 

~ X. E X klnematlc space 
N 

~6 -~ stress space 
AI 

~f ~ F body force space, 

~'" 
WhlCh are dlsJolnt subspaces of the general state space Jl:! and 

where: 

F.rom now on, we assume that the body forces can be neglected, l.e. 

that: 

f=O 
... N . 

, 
f,or ,slmpllclty: 

(2.58 ) 

.. 
The general form of expressIon (2.51) permlts wlthout 10ss of 

generallty the two remalnlng vector components, of~)I to be wntten 
N • 

as fo11ow$: 

41 
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"x. =: "u.. lnternai deformatlon «lA,L ~ ut ,., ... ... 
Gi!lLS surfa~e deformatlon "\,l.S € US 

N ... 
"'Ct. i lnternai veloclty "ü,Lf.Vl (2.59 ) ,.., 

~U.s surface veIoclty "'ù.'E.yS 
.... 

"El internaI straln ·f~~E~ 
N ... ... .. 

"Es E ES 4I(~S surface straln 
Z' 

1:: 

acceleratlons 

• 
= InternaI stress 

surface stress 
} (2.60) 

where ln the above forms, li 1 YI ... etc. are the correspondlng subspaces 

of the ~omponents of these vectors. 

In the above we have lntroduced the partlcular scbspaces ta 

WhlCh the components of «'x and 010(; belong, and aIl of WhlCh are real 
N 'V 

vectar spaces contalned ln the 11 space (vIde (2.52)). 

It IS seen from relations (2.59) and (2.60) that two dIstInct 

types of fleld varlables are invoived ln the descrlption of thé 

mechanicai state of a ~lcroelement, namely those conéerning lnternal 

behavlour and other related ta the lnteractlon phenomena. We recall that 

ln mlcromechanics (Axelradf 1978) two types of operator~ are lntroduced: 

(2.61 ) 

which relate ta the internaI and lnteraction effects, respectively .. 

In mlcrodynamlcs of discrete medla such as polycrysta111ne solids 

these operators ln the Ilnear case are tensors of the thlrd arder 

sa that we have: 

) 



1 J 

,,' 

( 

œU., = "~B œ.ë S 
'" ~ ~ 

( 2 • 62) 
., 

q 

In~genera1 a mlcroelement materlal operator (Axelrad, 1978) 

ean be deflned as: 

such that (tM ="M ("'A lipB) 
~' as 

( 2 .63 ) 

USlng the strong monotonlclty condltlon It wes found by Besu, (1975) 

that the operator M IS Invertlb1e, l.e. that there eXlsts a mapplng: 

(2.64 ) 

ThlS Implles that not on1y the deformatlon space 1l 15 ln a one-to-one 

re1atBon ta the space [ but also the straln space E = E ~v EJ
. 
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The above dlScusslon Indlcates that one can, ln general, restrlct 

the analysls ta one of the subspaces X or [ , SInce a blJectlOn eXlsts 

between the maln components of]{ and the stresses. Consldenng that 

the stress states are not experlmental1y verlflable ln contrast ta 

the klnematlc states WhlCh can be observed, we declde ta work ln the 

klnematlc spac~ From now on. 

It IS now Important ta estabilsh a topo1ogy of the Je space. 

We have ta conslder the contlnulty of the dlsp1acement and stress 

flelds involved in the translent wave motion. We recall from el asto-

dynamlcs that the wavefront IS a movlng surface aeross WhlCh some of 

~the fleld vanables and/or their derlvatlves are dlseontinuous. If 

the veloclty is allowed ta be dlscontlnuous, then the stress IS 

dlscontinuous too (see Bland, 1969), and we have a shoek wave. However, 

ln arder to descrlbe such waves fully, a discussion of the thermo-

dynamles Involved would be necessary and that 19 outslde the s~ope 

of this thesis. We consider therefore surfaces'anly aeross WhlCh , 



( 

the veloc1ty and hence the stress are continuous. For thIS purpose 

we take at the mesoscBle: 

(2.65) 

where we assume that mesodomaln M,n lS a simply connected, doma1n 

and subset of IR). We nh-e that (2.65) 1mplles the continuity of 

the lnternal and surface deform~t1ons, VIZ: 
"'-If' 

it~~,H~s~ Ce".l~) (2.66) 

Moreover, by vlrtue of the Hookean stress-stra1n relatlons for an 

lsotroplc elastlc sohd (vlde Def. 1) the stra1ns are glven as: 

ft ~ i 1 M ~ s ~ ,e C~ J) ) 
IW ... 

(2.67) 

although the acceleratlons may be dlscontlnuous. 

Indeed, lf 

(2.68) 

then we have an acceleratlon wave. 

We see that we need a means for expressIng the "degree of 

smoothness" of aIl these fleld quantltles. We can do thls best by 

employlng the notIon of Sobolev spaces (see Oden, 1979 and Rudln; 

1973). Thus, a Sobolev space of order m, p (m ~O) denoted by W; (X) 
lS deflned as the function space: 

w~ (X) = { f E 1)'(X) : f and a11 of its distributional 

partial denvatives of arder' m are ln Lp(X) 1 p) I} 

where - X 18 a simply connected, open ASubset 0 f mil 
<r1'/ 

l:)'(X) is the space of distributions 

Lp(X) is a Lebe,sque space 

(2.69 ) 

." 

44 
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The dlstnbutlonal parbal denvabves of f are defwed 

by: 

Jsl = 1 ~ SL J ~ m, (2.70) 

L + 
~ = (51 )52 )",) ~ Z_ 
~ = (XI) Xt } .. · >)C k)"') Xn) E ~n 

A norm ln a Sobolev space lS th en deflned by: 

(2.71) 

, 
Slnce we place no requlrements on the contlnulty of acceleratlons we 

shall henceforth assume (2.68) to hold ln general. Thus, wlth reference 
\ 

to Fig. 2.6 WhlCh represents a one-dlmensionai sltuatl0n, wé have 

11E.~ E HI (113)) 
N 

t1û.t E H'(J1l)) 

11 ü,t ~ HO (/'1.1)) 

ft ü: l é H-1 (f1.tJ) 

(2.72) 

where a Hllbertlan Sobolev space HmCX)has been Identl fied for the 

domain .t1c1), IR'. It is deflned as fo11oW8: 

Hm (X) -:1 ~ ~ (X) (2.73) 

Now it lS natural to choose a Hllbert space of boundary 

functlons for the surface components of the klnematlc state vector . 

We recall that 1 f f lS a boundary function such that 

(2.74) 

we can define the followlng norm: , 
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WAVEFRONT 

\1 
1 

l " 
DEFORMATION -------- -----+-------

1 

STRAIN ----

VElOCITY 

1 

ACCELERATION' ------- ---------1---------
1 

1 
1 

SHOCK ------- ----t-· ---'" 
r. : 

\ 

~Ü'EW~ (M~) = HO 

INTERIOR OOMAIN 

aMI'ùI 
;:v BOUNDARY 

;~ . 

r!/J ENTIRE MESODOMAIN 

FIG. 2.6 THE ACCELERATION WAVE IN A HILBERTIAN SOBOLEV SPACE 

REPRESENTATION FOR AN ENSEMBLE OF MICROELEMENTS (ex"'I, .•• ,.' 
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(2.75) 

where 'fl IS the trace operator deflned as: 

~ f :: 11 J 0 t.. . ~ -J o l q nJ ax l ... J ~ m 

It follows that the completlOn of the L2 (X) space ln the norm (2.75) 

lS a HIlbert space of boundary functlons 

Hm - j - 1/2 ( ~ X), 0 / 1 
CI .. ) ~ m- (2.76) 

t 

Hence, the surface compone'nts of M X ln the one-dlmensl0nal 
'\r 

case, are found to belong to the followlng spaces~ 

1'1 tA. S ~ H 3/Z (~l)) 
'" 

Nt. ~ 6 H 1/1 (Ô I1l)} .-
l'v ... 

11 . 5 , H 'IL (a1'1JJ) (2.77) u. 
'" 

M"S , H-YZ. (}111)) U. 
'" 

11'" s 6 H-~h(d1f;l)) U. 
'" 

In the two-dlmenslOnal and three-dlmenslonal cases, ttiat IS 

N- 2. l 
for 1) ,IR and IR respectl'Vely, the components of the HX vector must 

'" 
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be placed ln other spaces. For thls purpose we may employ the Imbeddlng 

theorem (see Sobolev, 1963) wh.lch Indwates the order of the W; ( X) 
space whose elements are contlnuaus functlons ln X, IR ft.' Thus for 

n = 2 or 3 and p = 2 the arder m must satlsfy the Inequallty 

\ 

\ 

m > ; = ~ or Î so t-hat m = 2 must be chosen for the space of deformat-1On 

rates ln c~se of acceleratlon waves, 1.e. 

l1u.i ~ H1 (if1)) 
IV 

Mü,t 6 H' (ifJ:)) 
'\0 
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50 that 

N~i€ Hl (M1)) , 

HEi. E: Ht(Ml)) ,., -
It follows·then that the spaces of boundary values WIll be: 

H~i E H 5/t. (dMJ)) 
HilS E H311 (àtt jJ) ... 
11 Ü. S , H '/z ca.A! j) ) 

. 
i 

It lS seen that the Imbeddlng theorem lS to be used to 

determlne the partJ.cular subspaces of the X -space for the waves 

whf'are weàker than the accelerat!on waves. 

We may note, ln pas~lng, that al! these fleld quant! bes bewg 
./ 

ln the HIlbert spaces ara e1ements of a more genera1 Banach space, 

WhlCh agrees wlth the flndlngs of Axelrad, 1979, that one work8 most 

frequently INlth thls type of a topologlcal vector space ln the 

probab~llstlC mlcromechanl.C8 of sollds. Returnlng to the chosen 

mlcrosca1e, we have .~ é Lz (-J») representlng the vector of measurab1e 

klnematlc quant! ties and' INhere te X are actuell y the equlvalence .... 
classes of funct!ons over the é. J) domal.n. If we recall that 

{Jl,ll~lhs a complete probablllty space, and let {1,1,,} be a 

mea8urable space where Tl(. 18 the 6 -algebra of a11 Borel subsets 

of Je , then followl.ng a formallsm of Bharucha-Reld, 1972 we can glve 

the followl.ng defInltlon: 

Deflnl.tlon 7: 

A mapping «'X: fi ~ J( 18 sald to be a random variable wlth 

values In']{, if the Inverse Image under the mapping t( X of 

every Borel set E belongs to t'X that is, 

oIZ-1 [E], 'X for al! E EIx 

.. 



ç 

ThlS 19 equlvalent to saywg that "X lS a Banach space-valued Borel 
"" 

measurable functlon; the J( -space lS separable. 

The ~X mapplng along wlth other assoc~ated transformations 15 .... 

presented ln Flg. 2.7. 

SPACE OF ELEMENTARY EVENTS 

(SAMPlE SPACE) 

é 

f{ El} 
IR 

o 

STATE SPACE { 1, ~ } 

MATERIAL OPERATOR GlM:.fi.)( [ ... lA. c: X 

FIG. 2.7 STRUCTURE OF THE PROBABllISTIC FUNCTION SPACE 
EMPLOYED IN MICRODYNAMfCS 
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CHAPTER III 

MARKOV FIELD FORMULATION OF THE WAVE PROPAGATION 

3.1 IntroductIon 

3.1.1 Random field of the wave mobon ln the '-0 space-time 

It has been po~nted out ln Postulate Z, that a11 the fIeld 

vanables ln the mechanlcs of sollds are of a random nature. ThIS 

faet can be stated ln a mathemabca1 language by saylng that the 

dynamlc state vector as a functlon Of space and t~me lS a random 

fIeld (R.F.), l.e.: 

(3.~,J 
., 

Th1s klnd of descnpt10n of the mechamcal behavlour of matter has 

been employed for the fust tJ.me by Kolmogorov (1941), ln h1S 

stabstJ.cal theory of turbulènce and later by Levy (1956), ~n hlS 

studles' of the Browman motlon. This g,ve an Impetu6 to new develop

ments, bath in flUld mechanics and random fIeld theory (see for Instance 

Yag1om, 1957). It 16 1mpartant ta note, that the random f leld theory 

of flUlds had ta be restr icted ta isotroplc homogeneous turbulence 

and was u~ually canflned ta correlation studles. Generally speak1ng, 

th1S approach suffered from a lack of an evolut~on theary. 

It wes pOInted out in SectIon 2.3 that an 1dentI flcatlOn 0 f a 

measure preservlng transformation, If it can be done, perm1ts the 

desctlpt10n of a stabonary random process 1n terms of Markov theory. 

More generally, however, a causalüy relation perta1mng ta the state 

space leads ta an arb1 trary nan-statlonary Markov process, WhlCh 1n 

-50-

j 

\ 
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turn, perm1ts a very neat evolutl0n relation by means of the Chapman-

Kolmogorov relatIon. 

At this pOInt we recall from sectIon 1.2, that the wave motIon 

ln an elastlc contInuum lS governed by a differentlal equation of the 

second order with respect to time or: 

where Â and tA. are the well-known Lam~ constants. 
/" 

(1.4 ) 

This relatIon 

51 

Indicates that ln order to ensure the Markovlan character ln a stochastic 

theory of wave propagatIon, we should conslder a random process 

ThIS means focuswg the attention on the f' ~(t)} 
process, whereby the deformatlon can always be obtalned*. Thus, From 

now on we choose the deformatlon rate to be our IntrinSIC random varl-

able, WhlCh we sh,all denote 

~ù. (t) == «'v (t)· ... N, 0.2) 

and calI the wave veloclty vector. 

Consldering the dynamic motIons ln a discrete SOlld, unfortun-

ately not much can be sald about the probabi1lstic 1aws governlng the 

evolutlon of a specific microelement in tlme. By thlS we mean, that 

for a random process: 

·x(t):Jxjl-,X
l 

rJ.-flxed 0.3 ) 

no meanIngful equation can be estabilshed and integrated (see also 

Chapter XIV ln Yoslda, 1978), because the boundary ~"l> of the mi~ro

e1ement ct lS not fixed in the (R3 space. 

* 

However, we can consider the wave motion From another point of 

In our physlcal wor1d the knowledge of positIons and ve10cities 
de termines the future, i.e. accelerations are not ~ecessary for the 
determination of the future. 

1 

l 
1 
1 
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vlew, l.e. one which 18 analogous to the transport theory approach. 

The transport theory itself (see Ishimaru, 1978, and Usclnski, 1977) 

has been developed heurlstlcally ln that, It deals wlth the transport 

of energy through a mediu~ Vla the averaged statistlcal quantlties 

such as the specific lntenslty and energy flux. With reference to 

our dlScussion ln SectIon 2.1 of the determinlstic versus probablllstl~ 

approach, we shall construct here a.rlgorous probabllistic theory 

of the wave propagation ln ~ random discrete sol~d. 

3.1.2 Problem formulation for the wavefront propagabon 

We recall from Sectl0n 2.2.2 that the problem under conslderatl0n 

lS one of plane waves propagating ln the macroscopic body domaln wlth 

a CUblC mlçrostructure, where the propagation vector lS paraI leI to 

one of the axes of thls lattlce (Fig. 2.2). In thlS chapter we shall 

study the dynamlC response of a macroscoplC body M taken as a bar of 

an arbltrary unlform cross-section wlth a mlcrostructure as deflned 

earlier. Furthermore, we assume the pulses are applled uniformly to 

the front face of the ,bar. Wlth reference to Fig. 3.1 we can now 

consider the bar to be composed of layers JL (XI) in the planes normal 

to the Xl axis, or alternatively of sequences Sk lying parallel to th" 

Xl aXIS. It follows that there will be an equal number of gralns ln 

every layer..u. ~I) as well as an equal number of grains in every sequence 

Sk. Hence, if we denote the entire bar by M we shall have: 
1< 

M :: U 5 (a) 
kal k 

0.4) 

.. 

\. 

1 

1 
l 
j 
~ 
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" ~----------------------------------------------~~X1 

L (STANDARD) SEMI-INFINITE BAR 

X
3 

E (X"X 2 ,X3 ) 

Il ,f3 , ... -DISTINGUISHABLE MlCROELEMENTS IN M 

M -DOMAIN OF THE BAR (MACRO-MATERIAl BODY) 

Sk-AN AR8ITRARY SEQUENCE IN M (k-1, .. .,K) 
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vf(,.-AN ARBITRARY DOMAIN OF THICKNESS d ç CRYSTAL SIZE )-;; M 

FIG. 3.1 MODEL FOR tONGITIDUNAL WAVE PROPAGATION IN A POLYCRYSTALLINE 
saUD (CUBIC STRUCTURE). 

\ 

The wave propagation is considered in this model of the semi-inf~nite 

bar uR ta a standard specified length L = lm. f 
We study now the wave propagation due ta a pulse et the front 

face, where: 

, 
: ~ 

1 

1 

. 
i 
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'5.nl ::P(t) 
~ .... X, =0 

Such an initial boundary value condition will give rise to a cambination-

of longi tudlnal and ~ransverse waves that will propagate, in the X~ 

direction independent of each other. We recognize however, that due 

to the multiple scattering, any single ~ave will saon evolve as a 
, 

corpplicated macrodisturbance propagating ln the Xl direction and ~ill. 

also la:r;gely de pend on the X
2 

anell X} position coordinates" However, 
o 9 
s~nce the medIum 15 assumed to consist of microelements governed by 

the 11near elastic law (reeall DeL 1) thus excluding memory effects 
. 

and long range forces, but admitting nonconservahve effects in the . . " 
graIn boundanes, the wa'va propagatlcm prdcess ccÎn be characterized 

by the evolution of any single wavefront as i t propagates through the 

microstructure. Thus, rather th!iln studylng response of the bar due 

to condition (3.5), we shall follow one wavefront due to a following 

inI tial boundary value condi tiQ,n: 

fS ·n • P (t ) "l ~ 1# XI:: 0 0 

to =0 

3.2 Longi tudina1 Wave Pllopagation in the 1-0 Madel of the SaUd 

For the purpose of an initial formulation we considèr a more 

simplified model here. Thus, we assume the micraelements of t'h~/ 
-J 

, structure ta interact with each other in the Xl direchon ~nly. It 
~' . ' 

follows, that the entire bar M may be eonsidered as an'ensemble of 

non-int.eracti~g sequences Sk" Hence, the only kind of wave, that 'can 

be reaUstically mode11ed here is a longitudinal wave. Thus the 



" 

(, 

( 

stress boundary condItIon (3.6) sImplIfIes to the following form: 

(3.6' ) 

, 
f, 

It"lS ObVIOUS now, that a longItudInal wave generated at the 

front face of M wIll propagate Independently through every sequence 

propertles 

underg~ a random evolution due to the random physicai 
\ 
\ 

of the m~croelements. Conslderlng that the statistics of 
1 

these physicai properties were assumed to be space homogeneous, It 

suffices to study the wavefront propagatIon ln a typIcal sequence 

It lS to be expected, that due to the varIatIon of mechanicai 

propertles From one graIn ta another, the InCIdent wave wIll result 

ln a t~ansmitted and a reflected part, However, Slnce these varIatIons 

are not large (VIde Def. 1), already the prlmary reflected waves are 

at least one order of magnItude smaller, and thus the wave refiections 

et the InternaI graIn boundaries can be taken as negllglbly 9mall. 

It IS liluminating ta draw a space-time graph for 'the wave

front propagatIon process in a typicai sequence SkEr1, s7e FIg. 3.2. 
" 

Su~h a pulse i5 represented by a 50-called sample path, which in the 

1-0 model lS a Il,ne camposed of minute propagation paths ln consecutlve 
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microelements (short stralght 1ines), We distlnguish two very important 

effects taking place in the model: 

Effect 1: the transmitted wave velocity 'V i8 different From 
'" 

the incident wave velocity "'V due to the presence ,.. 
of the boundary (Q(.~) (dam), 
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FIG. 3.2 TlME -SPACE GRÀPH AND SAMPlE PATH OF L- WAVE. 
IN 1-0 MODEl. 
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Effect II: the wave propagatlon veloclty·C lS random ln every 

mlcroelement"*. 

In arder ta preclsely descrlbe these two effects, we make use of the 

two random varlables deflned l~ Sectlon 2.2.3 of this theslS (see ' 

Defs. 2 and 3). It 18 assumed that the probablilty distrlbutlon8 of 

Ch and lit. t can be obtalned From appropnate expenments on slngle 

and/or bl-crystals, or derlved analytlcally. 

Returnlng ,to Flg. 3.2 we see, that the macroscoplC dlsturbance 

must be vlewed as the total of mlcrodlsturbances ln any partlcular 

sequence. ThlS lS lilustrated by the sample paths, contalned between 

the slowest and the fastest paths, versus ~n aver,age 'patfl'. ' These 
o .('1: .t; 

microdlsturbances evolve ln thelr own l~ternal tlmes ln contrast to 
~ 

the macrodlsturbance, WhlCh occurs at an average pace. This observatlon 

leads us ta glve the followlng postulate: 

Postulate 5: 

"* 

+ 

In dynamic phenomena pertainlng t6'discrete media a 

multldlmensional tlme lS intrinslc. It encompasses 

an lnternal or micro-time and a macroscopic (average) 

tlme, where the micro-time lS embedded in the internaI 

+ 
bme. 

, . 

From the assumption that the ne~hbouring s~quences are not lnteractiQg, 
it follpws that the propagation velocity would be that of the one
dimenslOn~1 stress model, Le. ·c =~flE/",~i. 

The expression "internaI time" follows the terminology of Prigoglne 
who uses the term "indivlduai time", at this scale (see 1. Prlgoglne, 

1.980, 1981). 

. , 
;' 

"'"'" 

1 

1 
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Hence we can dlstlngulsh: 

t : 1 

the Internal time fOf a sample path of an L-wave, 
1 

tE Tl.' / 

t the macroscoplC (average) t~e for the average path 

of an L-wave, 1 ET" 

If <·t) lS an average passage bme for an L-~ave, then we have for 

an ensemble of Dt '= 1, ... ,n mlcroelements: 

0,7) 

Indlcatlng that t lS related dlrectly ta the physlcan space Xl' 

We also observe that due ta the randomness of ~'L' the L-wave 

ln any sequence Sk afrives anywhere ln the tlme-space graph with an 

Indetermlnate tlme dlfference wlth respect to the macrodlsturbance 

(average path). Hence, followlng 

'random varIable can be Identlfled , 
DefinitIon 8: 

the above deflnltlons a sp~clal 
~ I~ 

as follows (see also FldtJJ.3): 

t .~ t-t 
L lS the dIspersIon tlme for the L-wave. 

While tl. IS a random varlable lntrlnSlC ln the ~ (f ,t) -random 

process, It is itself a random process wlth respect ta the average 

time t ; l.e. : . 
OrS) 

Thus, we can wrlte the followlng relation for the probablliti~s 

(3,9) 
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SLOWEST PATH 

AVERAGE PATH 
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FIG.3.3 THE DISPERSION TlME PROCESS IN L-WAVE PROPAuATION. 

It becomes apparent from the above relat~on that both effects 
r 

land II have been separated. This means the first term on the rIght 

hand side of (3.9) represents a modulation of the wave veloclty 

vector V(t) whilst the second term accounts for the dispersIon of 
AI 

the wavefront in accordance with the time-space graph. Moreover, 

relation (3.9) indicates that V will evolve independently wIth .., 
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regard to the 1nternal and the average t1mes. These evolut10ns can 

now be recogn1zed as 1ndependent of the1r past hlstor1es and hence 

~ 

formulated 1n terms of Markov processes. 

Let us f1rst cons1der the L-wave evolut10n 1n terms of the 

1nternal t1me. Thus, uS1ng the cond1t10nal probab111ty, we have: 

(3.10 ) 

expresslng the Markov property of the V (t) process and where the ... 
condlt1onal probablilty lS an exp11c1t functlon of the probabillty 

d1strlbut10ns of the transmlss10n coeff1c1ent and the passage tlme, 

V1Z: 

(3.11) 

Recogn1z1ng th1s Markov process as a temporally homogeneous one and 

recal11ng From SectIon 2.4 that \( IS a subspace of J{ that 18 separable, 
1 

we can, followlng Prohorov and Rozanov (1969), postulate the eXIstence 

of -a rransl t10n funct10n as follows: '" 

(3.12 ) 

wh1ch w111 sat1sfy the fo11ow1ng cond1t10ns: 

a) for f1xed t and XEV, P(t,x,E)lS a probabllüy measure on V, 
b) for flxed t and EEty , P(t)X,E)1S a V-measurab1e funcbon 

of X (: V \ 

c) 

d) 

e) 

P(tl~\E)'I, 
P(O)x) V-{x})=O 
P ( t t t 1) )( 1 E ) = i p (t 1 X 1 ci y) P ( t', y) E) 

y 
(3.13) 

The latter property (e) represents the well-known Chapman-Ko1mogorov. 

re1at1on, wh1ch "is a fundamental relation in the probabi11ty theory. 



Conslderlng thlS Markov process 

space of aIl bounded contlnuous 

fu.the. we \t C(V) be a Banach. 

fun2'tlon's f(v) on the state space"V, ,., 

endo)L~d wlth the norm Iffll = SUp l{(x}1 Then we can deflne an 
2.T y' U-r " 

operator on as follows: 

(3.14 ) 
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It follows From propertles c) and e) of the transItIon functlon that 

(3.14) de fInes an operator-valued functlon 1T(t): [0,00) ... l (C(V)) such 

that {2.T(t) ~ t ') o} lS a contractlon seml-group of operators on 

C (V) that lS, 

(1) IT{t.t') [f(y)] :: 1T{t) l.T(t') [f{t)] 
(11) ZT(O) = r , l - the ldentlty operator (3.15) 

(Ill) 111 T (t)ll ~ \. 

We now turn ta the analysls of the second stochastlc process 

Involved ln the L-wave propagatIon, namely the evolutlon ln terms of 

the "average tlme t. Hence, recalllng Def. 8 we obtal~: 

ïCf,t)= y(t} for a flxed (3.16 ) 

and by followlng (3.9): 

(3.17) 

The probablllty evolves analogously to a Ilnear blrth-death Markov 

process at regular <·t) lntervals, 1. e. the tlme dlspers~on process 

has no memory. Since the macroscoplC tlme parame ter t IS discrete, 

whllst the inter'nal time t i8 contlnuous, lt may be lnferred that 

TL lS contlnuous. Thus ln terms of a dlscrete-tlme Markov process 

, 

r 
r a 
l' 



( 

one can use the one-step transltlon functlon for such a process, 

WhlCh lS glven by: 

(3.18) 

WhlCh lS a functlon of the dlstnbutlon of the sOJourn tlme P ("t) : 

f{ IL (fi) € LD 1 TL (to): Z} :: P{IIC"C : ~t - ("1:) = TL (t l ) - tL(tO)} 

(3.19 ) 
ln WhlCh we have the followlng relatlons: 
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and t L lS an outcome ln the sample space llL of the dlspersion bmes, 

LD IS a Borel set ln d:)L ' belonglng to the Borel fleld 'IL 

.. 
It lS seen heurlstlcally that thlS process IS also temporally homo-

geneous, 50 that we can slmpllfy the analysls by wrltlng the transl-

tlon functlon ln the followlng manner: 

(3.20) 

WhlCh satlsfles the condltlons below: 

al) for flxed t and
l z ~ llL' P( t, Z 1 LD) H a probablllty measure on J)L 7 

b') t f lxed t and 'n E 'fL , P (t ,4{, 'D) ,. a .DL -measur able functlon 

'of Z , 

Cl) P ( t 1 2 ) Dd ~ 1, .. 
dl) P (0) z) DL - { z} ) = 0, 
el) P (t t t 1) Z 1 L 0) = l P ( t J Z 1 d I.J ). P ( t' 1 w) L D ) t 1 t' ~ O. (3.21) , 

1lL CChapman-Kolmogorov relatlon) 

~ l 
Recalling that the tL(t) process 19 tlme-homogeneous (see eq. (3.20)), 

we can Introduce a transitlon operator IT WhlCh IS parametrized by 



J 

J 

the average tlme t and deflned as follows: 

1 T ( t) [ f( z )] ~ f f( w) P (t 1 z 1 li w) ; f E C ( J) L), 
j)L 

(3.22) 

EquatIon (3.22) Indlcates that the transItIon functlon deflned through 
q 

(3.18) and (3.20) is a kernel of the Integral operator on th(space of 

a11 contlnuous bounded fucntlons HtL ) on .DL ; C (l)l)lS a Banach space 

wlth a norm \1 fil = i~P~~ Hz)l. It fo11ows From propertles Cl) and el) 

above, that {'T (i ),t ~ O} lS a contractlOn seml-group of operators on 

c (nL) , that lS 

(1) 'T(t +t') [t(td] .IT (rrT(f) [f(tL)] J 

(ll) 'T ( 0) = Il 
( l 'll) • 1\' T (t ) 1\ < 1 1 

(3.23 ) 

where l lS the Identlty operator, and f(tL) may be glven by (3.16) or 

(3.17). 

Havlng Identlfled bath random processes that govern an L-wave 

propagatIon ln ,the I-D model of a dlscrete random medIum we can 

generallze these results by proposing the following theorem: 

Theorem l 

one-parameter seml-groups of contraction operators on 

C~efin~d by (3.14) and (3.21), respectlvely, then 
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kere exists a two-parameter seml-group {T(t,t), (f,t)E1. JC J13 
such that: 

, 
l 

1 
! 
1 

1 
1 
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T(t,t) lS the duect product of two operators' T and %T 

(11 ) 

so that T(t,t) =IT(t) 1T(t) 

hm T (t 1 t ) = l 
(t,tt' ... 0 

Üll) T(t,t) l~ a contractlon: Il T ( t 1 t ) /1 " 1 . 

Proof 

(l) Conslder the Carteslan product, space V)C J)L where 

t V) 1., 1 ~~1 and {l\ 1 l L 1 ~tL} are two probablllty spaces. Let 

'W' = Y'x1\ denote the product of sets -Y and l)L ' and let 1 t.r denote 

the least 0 -algebra of subsets of l[ contalnlng a11 sets Ex LD, 

where E E 'J y and LD é 1 L Then lt follows From Theorem 3.4.1 

of Rényl (1970), that there eXlsts a unlque measure fW on lf such 

that 1 
(3.24) 

It fûllows from Sectlon 2.4 of Chapter II of thlS~~lS) 

V ~~ 
that must be a space of contlnuous functlons on dJ (domaln of ~ ). 

Hence, accordlng to the Imbedding Theorem of Sobolev (1963), the space 
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V as a Sobolev space may be 1mbedded ln the space C ("cD) of contlnuous 

functlons on the domaln ,-l) . Of course, the 9pace C(Cllct)) 19 separ

able and hence lt lS a countable union of sets Cl c. C (etl». Thus 'V 
'lS a 6' -fl.mte measure space. We note that J)L lS a 5 -fln1te 

measure,space tao. 

We recognize ~ (f )t) to be an element of the U space WhlCh 

lS a more general state space than y; ! (t) EV. 
We can now 1ntroduce a funchon f (TL) '!) on the Cartes1an 

product space '\..I:: V X l)\. such that: \ 

1 
l 

! 
j 
i 
" 
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- for each' fixed t L € J)L we assoclate a functlOn f (v) . ' t L ... 

defined on Y by hl (t):: 1 (TL ) ~) , 

for each flXed ! E Y we assoclate a function f!('t'J 

deflned on DL by tï(t L) =f(tL )'!,). 

It 18 seen that the functIon 

f(y) emp10yed ln (3.14), and 

ft (~) 18 Identlca1 wIth the functIon 
L 

fy(tL) 18 Idéntlcal wIth the functIon 
~ 
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f (!L) emp1oyed}n (3.22). EVIdently, f (TL l t) is a measurab1e functlOn 

on llLxi.[ . It follow8 byFublnl'sTheorem (RudIn, 1974) that: 

J ~(tL)~)dtP~=J J f,,('rL)d~t"dlPï =s S ft(~)d6>:t~&>t;. (3.25) 
~ L 

j,)1."V y b.. iJ)L Y 

where dfW=d(~tL)(f:!) wlth ~" given by (3.24). 

If we conslder the Integratlon wIth respect to P(f1z;D)and 

P(t,x)E) WhlCh are the mea~res for fIxed t,z and t,x, respectively 

(vIde condItIons a') and a»), then we get From (3.25): 

= J ) ft (~) P(t,x)dy) P(f,~)clw) 
J)L V L 

=,'TCn %T(t) [f(tL ) X)] 

(3.26 ) 



<Ir '" 

0-

(ll ) 
1 

It follows From the point (i) and further From (3.15) and 

(3.23) that 

hm T(t,t) = lim IT(t)lT(t) = r·I - I. 
(i,t)"tO (t,t}~O 

(111) Again From the pOlnt (1) and further From (3.15) and (3~23) 

lt follows that 

If T ( t 1 t ) Il = III T ( t) 1 T ( t) Il , III T ( t ) II· Il t T (t) \1" 1. 
11 0 

The importance of th~ two-parameter seml-graup operatar shown 

~ -.......'" 
above, lS Its ablilty ta descrlbe the ~utlan process of an L-wave 

pulse ln terms of an :~stract dynamlcal system {W, TlI J fW 1 T) 

Thus wlth reference ta Fig. 3.4 we see that given an Inltial 
" 

t 

• DISTRIBUTION CORRESPONDING TO 
INTERNAl TIME ---------------------.. ------ "".'""JIfI-.~ 

P( yCt,t~ =0 

1 . Rî{ l'Cf,t)} =0 
1 
1 
1 

/ 

1 • 
1 DI ...... IBUTION CORRESPONDING 
1 TO THE DIRECTION OF WAVE 
1 PROPAGATION 
1 

1 
1 
1 

1 
1 
1 

~--------~----~----------------~Xl 

FIG.3.4 1.- WAVE EVOLUTIONS IN THE SPACE-TIME GRAPH. 
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prob9Pill distr'bution: 

p{ V li 0) } ... 

the probability distrIbutIon of V at any later tlme (t,t) can be . ~ 

obta}ne~h an application of both~ the Chapman-Kolmogorov 

relè&ns(Y.13) and (3.2)1) ln the followlng manner: 

where 

p{ ~ (f) ~ El = P(t,x)E)· P{ y (0)], 
, 

and 

P{ tL(t') ~ Ln} = P{f,z:Jl' P{ t l (D}=z}. 
, ' 

We,note that non-zero solutIons will only be obtained wlthin 
"J 

the dispersiôn time cone (Fig. 3.3), that lS for: 

(3.27) 

.. 
Again with reference to Flg. 3.4 we see that aIl non-zero sol~tions 

mus,t be withln this co ne , lliustrated by, the lines of intersection 

with the plane corresponding to the fastest and shortest paths 

respectlvely. For' a distribution P{ ~(t)} there corresponds one 

obtained as a result of the evolution of aIl the mIcrodisturbances 

propagating in the particular sequence and arriving at the particular 

posItlon ln the bar in their own, internaI time, i.e.: 
'" 

l 
~icrodisturbance ~istribution 

= at t . '\(3.28)' 

·0 for P{ tdfl} =0 
(, 

-----=. 

( 
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Relation (3.28) represents an analytical analogue of a precIse 

experimental observation at a particul~r station X, ~ t for the 

response of the bar to a given dynamic excitation. 

On the ather hand taking a distribu~ion P{~(t)}, I.e. 

will correspond to considerlng a mesQdomain distribution in the in~ernal 

tlme. Hence, we se that this mesodomain represents a total of alÎ 

pulses ln the sequences Sk € M) k-I) ... )K", WhlCh onginated as a plane 

wave due to the initial impulse at the front face (see sectIon 3.~). 

It wIll be demonstratéd in Appe~dix B of thls thesis that 

the probability dIstributions ,Pl ~(t)J and P{ tL(f)J at a given, 

time t and t'respectlvely, are in faet approximately of the 'Gaussia~ ~ 

type. 

3.3 longitud~nal and Transverse Waves in the 1;D Model of the So1id' 

In this section we sha11 genera1ize the approach-developed on 

the preceeding pages, to the case of an arbitrary glane wave in the 
. 1 

one-dimensional model of the SOlld. Thus, the simpLified model of 

the discrete randam solid adopted'in Sectidn 3.2 and ,iilustrated by 

Fig. 3.1 is assumed ta hald here as we~l. As befar~, due ta tbe assumed 
, .. l t " " 1 

canfiguràtion ,discuâsadin Secti~n 3.2, the disturbances will propa~ 

j 

", 



" 

~ 

}j 
'. 
~ 

• 
" l, 

t ( 

it lS convenlent for ~he followlng analysls ta canslder the process 

ln a sIngle typlcal sequence. 

Assumlng an arbltrary stress pul~is applled unIformly ta 

the front face (see Sectl~n 3.1.2, equation (3.6)) sa that: 

g·~tXt=O aP(to) 
t,=O 

Two kInds of stress waves wIll be generated - a longItudInal and\8 

,transverse wave. It lS ObVIOUS, that these waves wIll propagate 
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Ind8peR~ntly of one another. The only qualItatIve dlfference between 

the longItudinal and transverse wave lS that another klnd of motIon 

lS Involved, i.e.: 

(~.30) 

,with the propagation vector p ~ XI ,and a unit propagation vector 

e 1 X and where C = CT *. The same type of time-space graph can be 
... 1 

drawn for the transverse wave as for the longitudInal wave (see 

FIg. 3.2) and exactly the same twa effects prevlously dlscussed mey 

be observed, I.e. the change of the wave veloclty vector ~V From 
N 

one microelement ta the next due to the grain boun~ary effe~ts, and 

the change of the propagation velacity ~CT' Thus, ln accordance 

with the definitions ~ and 2 from before we proceed ta introduce the 

tran$..,~lssi"on coeffic1ent+ CtrT~~~ and the sojourn (pass~ge) ti"'!.e 
~ ~"d.. . N 

t r - II(, C ' where the supscript "T" deslgnates quantl,ties pertainlng 
T \ _ 

o ~ . Tt ta the transverse weves. ' Following Postulate 5 we will now have 

aAd .Tf far the internaI_and average times, respectively sa that:, 

* ~C~:: Vit. ~ /"'~' 
. + CUT here i9 \ the 

. . 
·r -~ --- ........ ~*"'_ ... .;,"' ....... ' ................ .-4.. __ ..... 

c-

(3.31 ) 

in thiJ ~e-êlime'nSional model. ~ 
seme arl "Ctr der i ved in Section 2.2.3 • 

l, 

1 

1 

1 
1 
1 

i 
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j 

Î 

1 

showlng that Tf 18 again dlrectly related ta the pQyslcal space Xl' 

In aoalagy wlth D~flnltlon 8 we Introduce now a specIal 

random variable: 

DefInI tIan 8 ' 

represents the dlspe~on time for the 

T -wave, 

The abave defInitIon enables us ta wflte the relatIon expressing the 

Intrinslc character of the t'T (Tt) process ln the r(Tf/Tt) process ln 

terms of the probabilitles as follows: 

(3,32 ) 
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It lS lapparent that again two Markov proce8ses can be identlfied 
.... 

for the transverse wave propagatIon, whereby a two-parameter seml-group 

of transition operators (WIth contractIon) can be shawn to model this , 

k.ind of wave motlon. rr"erefore, in arder ;to present a general formula

tIon of the comblned cate of longitudinal and transverse waves (see 

FIg. 3.5) we use a modlfled notation first. Thus, let us denote by: 

5 = lot 
1 

SI = Lt 

S3 = Tt 

5; .Tt 

sa that 

average time of an L-wave, 

internaI time of an L-wave, 

- average time of a T-wave, 

internaI time of a T-wave, 

Lt E T, 
Lt E rI = (~) 
Tt f j~ 

rt E r lt:: [0,00) 

0.33 } 

S = (5., 51 ) $, , S,,) becomes a generalized time, S E r - 1; J( Tz. )( 1s " Tit 

According ta DefInition 7, V is a B-spaced-valued random 
"" 

variable '. We can extend this nohon by introducing the following 

; 

, 
1 

;0: 
1 

" 

- -,~-""_.-.. __ . __ ._-. _._._~ 
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FIG.3.5 l",WAVE AND T-WAVE EVOLUTIONS IN THE SPACE-TiME GRAPH • 

.. 

definitièn concerning a B-space_-valued random field, i. e. : 

Defini tian 9 
< 

A B~nach space-valued random field on r is a mapping: 

x (s.w): r" n .. V such that for every SE 17 , V is ,.., 

.. , 

1. ~- -~- - ~-----.....- .. _ ..... ~ ....... __ ,_' ... -Olloil' ...... 



( a Banach spqce-valued random vanable: Y lS the 

wave'front subspacf3 of the general state space l . 
fi 

It was pointed out, in Sectlon 3.1.1 that the formulatlon of a 
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random physlcal process by means of a random fleld 18 qUlte natural ln 

~ many phenomena al though lt does not br ing any results ln ltself. Thus, 

.. 

lS lS cruc~al for the further development of the theory ta flnd some 

strong property WhlCh allows the characterlzatlon of such a random 

fleld. In Vlew of the resul ts of the preceding secbon (Theorem 1) 

we expec.t ta arnve at a Markov random fleld ln the present study. 

To avold confuslon we hasten to pOlnt out, that the notlon of Markov 

random flelds is not standardlzed, ~lnce thlS area of res'earch is 

very new but expandlng vigorously ln several areas of SClence. We 

can generally distinguish two major trends of development of the -. 
Markov field theory: one in probabll~ty theory and one ln statistlcal 

phYSICS. ,Loosely speaklng, the Markov field of probabllity theory 

lS defined J as a random fIeld on an IR" parame\;r space in which past 

and future are independent g~ven the present and where the present 

lS Identlfied with any smooth, closed (n-l) surface separatlng the 

parameter space Intp a bounded part (past) and an unbounded part' 

(future) (see Lév~, 1956 and Wang, 1971). It is apparent, that this 

notIon does not fit the microdynamics theory and we sh~l~ soon see 

fat the wavefro~t ~andom'" field as stated in o'eflmtlon'- 9 is closely 
. . 

related ta the Markov random fields encountered in statlsflcal 
1 • 

Physics<·c \ 

* While the L~vy-type random field has connections with the multidimen-
siona! time domain of the microdynamics theory,.the Ising-type formu
lation gives a basic framework for the random field intèractions in 
the physical domain in the mechanics of solids. for the application 
of Markov random fields ta discrete media see also Axelrad, (1983). 
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( 

We observe that the random f leld X (S, w) can be charactenzed 

by the followlng four transltion probabliltes: 

P(Sr, Z l '"D) d~fined ln (3.18) and,,(3.20), 

P(S31 z )rD) 
, 

deflneâ analogousl y for the T -wave , 

P(S2,)X) E) deflned ln (3.12), 

P(S'tIXl E) deflned analogously for t~wave, 

aIl of WhlCh are temporally homogeneous, i.e. this fleld has a 

homogenelty condltlon ln the termln010gy of Spltzer (1971). Further-

more, 

~~)O for a11 V eV .., (3.34 ) 

hence a posltlvity condition. 

However, thlS random field does not possess the so~called 

nearest nelghbour condition, which physically expresses a coupllng 
. 

between the field paramet~rs as in 'the case of the Ising models for 

lnstance (see also Dobrushln, 1968). Thus, we do not have a ciasslcai 

Markov random field in the sense of Spitzer and Dobrushln, but rather 

a "mul tiparameter Markov process" as a product of' sever al one-para-

meter Markov processes. 

It is lmportant ta note that the coupl1ng between the space 

and tlme coordlnates in the wave propagatIon process has been taken 

care of by lntroducing the dlspersion tlme pracess parametrized qy 

the average ~acrosc,?pic Ume t and' embedding lt in the ~ (t) t) pracess 
(\ 

as expressed by relations (3.9) ~nd (:5.29). Hence this formulation 
, 

/ 

epables use ta introduce now a general evalutian aperator as a 
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product of cammuting suboperators, each parametrized by an.other Ume 

parameter. In this context, the noncommutativity of.such subaperatars ~ 

; 

J 
1 
J' 
î 

1 
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i 1 

on the classical Markov fIelds prevent5 one from developlng a general 

evolutlon operator. Thus, we are led to propose the followlng 

theorem : 

Theorem 2: 
l.. 

If {Y, J'YI !pt} 15 a Markov random fIeld on r, then 

the evolution lS glVen through an abstract dynamlcal, 

system {V)'J"'( 1 6>~ T}, where {T(s), SE T} lS a 4-parameter 

seml-group such that: 

(1) T(s) is the direct product of the four one-parameter 

seml-groups, I.e. 

'* T(5) !! T(S"S1)5) ,5,.) ::0 lTiT(St) 
. l= l ' 

where the l T operators commute. 

( 11 ) lim T( $} = l 't 

5 .. 0 

(ill) T(s) is a contractlon operator, l.e. IIT(s)/1 ~ 1 

Proof • 
Here V 15 a gene;al veloclty space of longitudInal a~d 

• 
transverse wavefronts, 1. e. Y = 'WL. x \fT :: ~)( $)1. X Yr X lJ T 

(1) If we introduce the general transltio~ probabllity on lr 
, . 

~(s, X) V) Il P(s,) Z Lf l.D) P;(Sl,XL )LE) P(s-, 1 ZT ,rD) .P(;it) Xr ~E). 
~e can define the tran51t~on operator on lf by 

T(!) [f(,,)j ~ ) f{y) P(S,) X)~y) l t Ë C(V) 
• 'V'. 
It ~olIQWS now by induction from point (i) of Theorem 

" ( 

. , 
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l' 

(11) F ollows duectl y by ~nduct1on from p0-knt (~~) of Theorem 1 : 

lim T(s) = lim 'T(s.)tT(s,) lT(sJ)4T(S4) = l -rI l = l 
s .. o (SIIS"SJ,S,,)-.o 

(lll) Follows from,point (~~~) of Theorem l, Le. 

Il T(s)ll = II'T(s,) 1.T($,) 3 T{sJ) 4T(slt)11 , 

~ Il'T(s,)II·II'T(sz)l!·113T(sl)II·IIItT(s4~\1 ~ 1 . 0 
It lS lmportant ta note that although the above property of 

~sem~-group operators i8 known ln classlcal functl~ analysls (se~ 

'" Hllie and Phllllps, 1957) it has never bee,n proposed and proved for 

th~s klnd of a Markov random fleld. -

Time domain 1 belng seml-lnfimte ünplies that thl.S 

formulation is good for the wave propagatlon up ta the point of 

reflection at the end face X=L 1 , see Fig. 3.2 (l belng a standard 

length or speclfled length ln a semi-infinite bar). However, thlS 

reflectlon can easlly be Introduced in the present formulation, as 

weIl as consecut~ve reflections. 

The eXlstence of a semi-group of transformations 15 the 
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strongest property we can expect ta f~nd for the non-conservative system 

under consideratlon. This system is non-conservative becauae of the 

energy dissipation that enters the model through the transmission 
1 .Letr ' coefficIents Ctr and WhlCh sit in the random processes 

ln the internaI time parameters, Lt and Tt , respecbvely, . 

Certainly a non-conservative system lS irreversible ~n time, and 

only Hs forward, temporal evolution can be givenj .$ ..... +, (see 
./ 

also (3,30)" It is lmportant to 7wever, tha~ t~e proc~ss IS 

Irreversible also due ta the exi~énce of internal and average times 

which have been introduced in the present analysis, Conslder for 

example an L-wave prop8ga~ion where effect 1 is made to vanlsh due 

t' ~ ___ M _ 

1 

1 
'1 

J 
l 
; 



( 

( ) 

1 , 
î1lthe aS9umptlon of per~~lastlc graln bounda~les. On the other 

hand, the effect II sti~ ex~ and l~ modelled through the dlsper

SIon time process ln the ave~age tlme t ,whlCh 19 naturally an . .. 
_r 

lrreverslble phenomenon. Thus it 15 seen that even such an Ideallzed ... 
flCtltl0US process would be ureverslble (compare FlgS. 3.2 and 3.5). 

We can best put thlS observatIon ln the words 0 f PrIgoglne: 

"lrreverSlblll ty 19 the manl festatl0n on a macroscoplC 

sc ale of 'randomness' on a mIcroscop~c. scale'~, 

3.4 Plane Wave9 ln the 3-D Solld 
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We now return ta the general problem of the wave motlon ln the 

three-dimeflslonal soll.d that we ha.ve already discussed at the beglnnlng 

of this chapter. We shall concentrate only on the waves, which were 
, ' 

Inltially ~lane W8ves and t~at are generated by a unlform pressure , 
pulse at the front face (condition 3.6). Since the Interactions 

between the elements of the microstructure are now allowed to occur 

generally in ~ll the directions, there will be a weak coupling between 

the contiguous sequences Sac' M. In particular, ü is seen that for 

the cu~ic mIcrostructure Bssumed here, a sequence not lying on the 
9 

external boundary of the body domaln M (see Flg. 3.1) will Interact 

wlth four neighbouring sequences, while a sequence lying on the 

boundary wlll interact wlth elther three, twa or only one neighbour, 

depending on the specifie co~flguration. 

, It ia well known, that for waves propagating in a bar the 
, 

effect: of fim te dimensions of the cross-section bli'comes important 

" 

• 0 
~~- ------~-_ .. _--

1 
1 , 

1 
i 
i 
1 
j , 
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4 

for certaIn wavelength5 and from a contlnuum point of v~ew 15 

usuall y modelled by the PoehhalT)mer-Chree theary. ~nee our lnterest 

~n thlS thesls Iles ln the theoretlcal formulatlon that accaunts . ' 

for the mlcrostructural randomness and conslders lt as a key factor 

~n the evolubon laws of the fIeld quanhtles, we shall presently 

conslder these dlameter-versus-wavelength effects ta be of a 

secondary nature only and hence dlsregard them. 

Assumlng that there lS no coupllng between the longitu~inal 

and transverse waves, we can then concl'ude that an analysis of wave 

propagatlOn ln a typlcal sequence Sic Ji th interactions w~ th four 

nelghbours should ·be representative of plane wave ln a 3-D eubic 

structural sohd. Chooslng ta work w!th a pulse lnduclng a longltudl-

nal wave, w(e can now employ the space-tlme graph of ~ig. 3.2 as a 

representatlon of the wave propagat~on process in a discrete random 

.medlum. We note that slmilarly ilS ln a 1-0 model of the solld, two 

effects become slgn~ficant, ~.e.: 

[ffect l transmltted wave veloclty 'V ~5 different From 
"" 

the 'inCIdent wave veloclty ·V due ta the grain 

boundary 0 '(1) . 

[ffeet II - wave propagatlon veloelty «.c 15 random in every 

mlcroelement c(,. 

In thi5 model the effect r- comprises aIl possible interactlDns of 
l'l, 

the mlcroelement «, with !ts nelghbours as appased ta the prevI0us 

1-0 madel. AlthQugh, it is seen on heuris~rou!1ds that 3-0 

interactIons on oC. will still be of a Markovian character, it becomes 

apparent that the effect l will, generally speaking, increase in 

, 

1" __ --..,, __ 0 4 • "·',_.,.,w • . 
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t~me as the sample paths cont~nue ta dIverge in the space-tlme graph. 

let us conslder thlS proces8 ~n deta~l. 

Ir. It 18 seen that .V goes Into 
III 

Pv 
II/ 

after a random passage tlme 

œ.,! such that the transmiSSlon process wlll depend on the nelghbours 

on four sldes of (t (see FIg. 3.1). Thus the wave veloclty vector 

also becomes a functlon of Y 2 and Y 3 coord~nates and we need here a 

transrnlsslon operator rather ,than the t,nsffilSSlon coefflcJ..ent used 

-earber to descrlbe thls process. For th~s purpose we consider the 

followlng deflnition: 

Definihon la 

The transmission operator lS a random mapping 
1 

C{w}; "'V (t) ,.. 

where "V 1 Pv 6 Y . 
." "" ,. 

Generally, .th~s operator depe,nds on the surface interactlons at 

"lit'" o dJ (see FIg. 3.6) and the veloe i bes in the four neighbourlng 

graIns, I.e.:' 

(3.35 ) 

Since the velocitles tLV'S are thems'elves time-dependent tandom 
"" 

processes, relabon (3.32) ind~cates that the ope rat or C will also 

be time-dependent. 

From our assumption of the wave motions in the elastic range 

(including aceelèratiort waves), it follows that transmission operator 

is linear, 1. e .. : 

(3.36 ) 

\ 

( 

~ 
--.-.-.----••• ----........... ) ,..., - 1 • t Il #/IJI 
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Hence, in Vlew of Def. 10 lt lS eVldent that C(w) is a random endo

morphlsm of V, ~nd Slnee lt lS aetually tlme-dependent WB eonelude 

that the transmisslOn' operator "lS an i (V)-valued function such that: 

C(5,W) : r x 11 ... t (y). . (3.37) 

In order to unlfy the present formulatlon and recalling Def. 9 of 

thls chapter we ean now lntroduce the definltlOn below followlng the 

Bharucha-Reld's formallsm: 

Definltlon 11 

A Banach space-valued random field on T = r. x 12 and R3 

15 a mapping «y (t 1 t 1 -' X, w) = "~( 5 J " X , w) : 
, ) /JI. r x IR le 11'" Y such that for every S E r and X E N, 

V lS a Banach space-valued random variable; ~ is 
IV 
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the wavefront subspace of 1 ("'X is the centre of mass of (l(. ). 

Now, for given distributions of the physical properties of a solid 

an expllcit form of the C( S lIN) operator may be derlved. Further 

a measure on LM may by lntroduced and a rigorous analysis of th~ 
evolution of the wavefront may be conducted in prineiple*. It becomes 

~ 
evident however, that worklng with this kind 'of random field is 

rather complicated considering the function space stru~ture on Tx ml 
and hence it is eonvenient to reduce the ana1ysis to a real-valued 

random field in terms of a power 

, 

1: V -.\R+ Thus fOi a 

microelement we can write t~e following expression: 

* See Section 4.4 for the explicit form of C(s,w) operator and the 
corresponding numerical analysis. 

~-~ ... _--_ .. _~_._----------~ . ~_ ...... --- - - -- - .... _.-, . """_1" •. ru ~t 
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fI.:p = s [( O:Otj ai !Li )lj + cf" f ~ü. i ] d "V' 

"v 
; d11'· dX,dX, aXJ 

(3.38 ) 

where the second term of the integrand vanlshes due to the assumed 

neglect of bodyt forces. We note that from continuum theory .~.p IS 

related to the time rate of change of the klnetic and potential 

energies of oC. through the energy Identity, i.e.: 

fi, 'd"K dC U 
Y=df+df -----+(-+-3.3-9) 

It follows 'that d.y may be taken as a linear functlonal on the 1( 

space so that we ob tain a genera1ized random variable in the sense 

of Ge11fand and Vilenkin, 1964, Le.: 

(3.40 ) 

Hence, in thlS sense the power -' P in a given sequ~nce i9 a function 

of the l (f,t) -process so that 'by TheÇlrem l we obtjain: ---

TCf)t) [oC1(z,x)] =a IT (r)lT(.t) [Gty(z,x)] = 
, (3.41 ) 

:Ir f~J(w)y) P(t,Z,~W) P(t,-xJdy) 
... Y 

Furthermore, s~nce ~ (t,t)lS Markovian we ca~1 wr:ite that: . 

â 

T(f,t) [o'.P(~IX)] ;:) "Y(w,y) P(tI2, dw) P(t~X)qy) Il 

il Y , 
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9 c E{-Y(rL)~) Qt (f,t)f'CL(t,)=z ) :t.(to)~x}-

= ~ { • .P ( r L J X ) Q~ (f) t) 11L)C r y over (O,'t.))( (~ l t 0 ) J 
It can ognizeo now that depending on the ~nteraction effects 

caused by e immediate neighbours of the sln91e grain oc." the 

exoected due of the power flu>.< may become smaUer', . eq'ual or larger 
1 / .. , .... 

after the passage t~:t;'.Qugh ë. . This 'can ~J expressed by: 

r' 

" 

J 

r 
1 
J 
<. 

1 ~ 
, 
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T( ("1), *t) [a P( % 1 x)] = 

=E{c(Y(tL)~)at«"t)') ~t)11Lx1Y' over(O,<~t»)x(OltCt)1 
~ &J(z~)() at (0,0)- (3.42) 

r However, if we consider the power J> of the total wavefront in aIl 

~equences S~~ t1 , then eVldently there is also sorne energy loss due 

to the refle~tions of the waves propagating backward (in the Xl-direc

tion). Thus taking the evolution of Y in terms of the passage time 

~t we can glve the followlng inequallty: 

, .P at (t=O, taO) (3.43) 

This clearly shows the super-harmonicity of the function J> under the 
, '. 

operator ~ Cf, t ). 2,9, arder ,to establish a 'valuable cI!nnection of this 

probabilistic formulation with the abst1'act potential theory we have 

ta simplify the analysis ta the one-dimensionsl time*. Thus the 

evolution operator T(t, t) will hencefotth be pararbetri~ed by t=t and hence it 

will be denoted simply by T(t). This implies, that the time dispe~sion 

process LL,(t) will be disregarded in the sequel, Le.:--

(3.44) 

Extendl.ng now the result known for Markov chaîns (Lemma 5.3 in 

Syski, 1973) té the discrete parameter Markov procesa we propose 
", , 

the fo1lowing lemma: '>1", 

* 

, , '. ~ """ , , ,. l ' ,1 
• l'" e \ 

( 

The abstract potential theory, which has i ta or igin the studies 
of Brownian motion (Kac~ 1951), ,is still suited only to the proqlems 
parametrized by the ane-dimensional times • 

J, . . 

~------_ .. - . 
" , 

1 
~ .' 
1 

• 1 
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Lemma 1:-

If ~ (t) is a discrete parame ter Markov process reprgsenting 
< r 

the wavefront evolution ln .the macrbscopic Ume t, with the 

transition operator ZoT(t)· a~d the initi'al dist~ibution ! (0), .,( 
J> is a bounded Zr -super~aJ;:momc function on y; then 

Proof 

the random process J( ~), on t,he 6 -field l'y over JO, t) 
is a super-màrtingale. 

It ~ollows from the Markov property of v(f) ,. that 

El Y(x:1 at t 1 l'y over (QI t) J = 
= E \ , ( ~ (l)) 1 y ( ~ {t - (~t»))} , "' ~ 

and further from the superhamonicity of P expres~d by 

(3.43) that 
" . 

E{rf~(f})"'J>(;dt'- (-'t))} =, 

= 2T ("t}) [J>(y (f _(ét»))) :r ~ 

~ y (:!(t)) P{t\x,dy) ( Y (:t(of-{elt})) 0<. 
,1 t is important ta point out that ev en though t,he above 

result has ~een obtained for t~e case o~ a" cubic struct\Jred_ solid_ 

(Fig. 2.2), it also applies to a. polycrystalline solid with random 

internaI, geometry. Howe\ler, in -that case tt'le Defini Hon 10 of the, 

,transmission operator at "8 microsca;le would" have to' be modified. . 
F,ul'thermore, our formu~ation enables one to introduce saine internaI 

. al J;'arameters into the transition operstor which' could lead 

f • 

, , 
he stiJdy of metastability (ac:celeratiQn wave - shock . -

o' , 
' . 

:1 Cl 

{ 
.. ------::-----i-..,-~- --

1 4' 

.. --

.') 

" 

o 

.. 1 ,.' 
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wave transition) on random fields. In general lemma l opens up the 

microdynamics theory ta the various techniques of the abstract 

potential theory WhlCh IS currently experienclng a vigorous develop-

mènt (see for Instance, Blumenthal and Getoor, 1968 and Fukushlma, ~, 
1 

1980) • 

It 18 of Interest to pOlnt out that the averaging procedures 

employed ln this sectIon are wlth respect bD the set of solutlons of 

the random evolutlon equatlon and do not Involve av~glng this random 

equatlon itself. Thus ln the llght of the dlScusslon ln SectIon 2.1 

we should obtain the "proper" expected values of the power flux ln 

the wave propagatlon analysls. 

\ .. 
3.5 ~ergence of the Probabillstic Evolutlon RelatIon ta the 

Generallzed Wave EquatIon of Continuous MedIa 

It has been stated ln SectIon 2.l.that a probablllstlC problem 

ln mechanlcs may be stated through relatIon (2.1) ln a very gene~&l 
J 

way: In the case of the 1-0 wave motlon such a formulatlon has been 

given in accordance wlth Deflnltlon 9, Whilst the laws of evolutlon 

~~f the random velocity fIeld have been found ln Theorem 2. It lS 

# of lnterest to check whether an averaglng procedure as lndicated by 
,li 

eqUatl'" (2.2) wlll Indeed yleld a relatIon equivalent to the classlcal 

wave equatlon. We shall lnvestlgate thlS questIon ln the present 

section. 

In order to establish the convergence 

with the I-D case of an,L-wave (as discussed 

.;-'''' 

t, cDntlnuum "e work 

Ln Section 3.2) Since 

! 

'. 

1 

l 
l 
j 
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a more complex case wouldonly make the analysis more cumbe~som~ and 
~ 

compllcated wi t~out bringlng additional ·inâight". 

A pOlnt of fundamental Importance ln establ1shlng \ the equl valence 

of physlcal theorles conseructed for varlOUS Levels of approxlmation 

of raturaI phenomena, lS the Intermediate level where the agreement 
, 

has ta be found (see for Instance H. Grad, 19'2 and Yvon, '1969) . 

• Such an lntermedlate level between determlnlstlc contlnuum mechanlcs 

and probablilstic mlcrodynamlcs of structured 8011ds i8 the InflnIte-.. 
~ slmal element of contInuum theory WhlCh corresponds to the mlcroelement 

scale. Thus, we shall consider the.wave motion In~wo contlnguous 

mlCroelements of a typlcal sequence S~M: 

d. v ~ ~V ---. 
IV '" XI IX, ~ .. 

\ 
grain boundary (<<.~) 

~ 

It lS known from elastodynamics (see Achenbach, 1973), that 

for the pulse propagatlon th~ foiiowing relation holds: 

r5 = - ~ CL li. '\ 

and hence the strain ln the X(dlrectlon lS given by: 

dU. 1 aI.(.l . 
~=-=----=--u. 

x OX CL at c\., 
where we conslder waves weaker than the acceleration wave, l.e. , Hm 

IA.€ , 

m ~ 2. In accordance with Deflmtion l, the above relations are taken 

t'iJho,ld wlthin an element «, and ~. Hence, wé can wr He: 

. 

. 
" 

~X (X.+ d) t+ot:t) _a,~ (XI) ttot:t).= -~CL~f (X,+a) ttctt)t"ttCLI»€(XI,ttot:t). , . 

.-
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were cl = "'ci = constant. Taklng the expectahons of the above, we obtain: 

l [ y (XI ~ d) t ~ ctt ) - X (X.) t t'tr )] ~ @ ~ = , 

i tcL [f (XI) t+"t) - € (X1+ d, t+dr)] dtP~ (3.45) 
,.. ltf 

~here now ~he subscnpt 0(, conce~ random physlcal propertles. 

From the mlcrodynam.vc model we know the followlng relotlOn 

(3.46 ) 

WhlCh lS due ta the correspondence between the average tlme t and the 

physlcal space Xl dunng the wave passage. Furt~ermo:e, we know From 

the MarKhvlan formulatIon (see 3.19 nd 3.12) that: 

where 6 t = (" t> and ~t = CCt . 

EmploYlng 0.46 ) and 0.47) on the left hand slde (lHS) of 0.45) 

we oll}aln the fOllOW1;Jxpr;SS10n: 

LHS ;; l h (x, + d; t + "t) - Y (x" t +"t)] Mt =" 
.n. 

= IT«"t»)lT(ct:t)[ï(t,t)l~{y(f,t)} - (y(X
17

ti-{':t»)), 
where Ir lT ' and are ~e transItIon operators defined ln tl.22) and 

1 • 

(3.14), respectlvely. It follows now From the point (1.Il) of Theorem l 

that: • 

L H S = (I- b) < 't ~ , t)) - < ~ (X ,l, t + < *~»)) 
=(I-b)<'i(XI,t)-<'((XI~ t+<ltt»)), 

(3.48 ) 

\ 



( 

( 

where 0 < b «1 has been taken, and analogously to contirJ.,uum mechanics 

the refleéted wave has been omltted. 
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On the other hand, the rlght hand side (RHS) of (3.45) becomes 

I\HS!5 5 "CL [dX, , t+ar:t) - f (Xlt cl, t + ctt)J d@~ == 
n ' 

= ("Ct.) [Ü (X" t ,. (rit)) -(f (~It cl, t + <tI4 t»))] 

Equabng the above relabon wlth (3.48) we obtaln \theref~re: 

(l-b) < y. (X17 t) - < y, (XI) t + <~t»)== 

=<~Cl)[<E(XI,t+<Mt»)> -(f(X,+d, t +<~T»)) 
, ~ 

WhlCh upon multlplYlng by I/<o't) becomes: 

<:t(XI,t)1-<~{XI-t<ae!() _ b (v(x t)= 
. <~t) , ~ - 1o, 

_ (rt.CLt <f(XI,tt(":t)))-(E(Xltd,t+<~t») (3.49) 

d 
ln WhlCh the assumptlOn of ergoèhclty has been made, 1. e. : 

, 0 

1 _ <"CI.) (3.50) 
fi) - d 

~~e do not take a hmlt ln (3.49) wlth ("rI -+ 0 and d ..... O, 

but conslder thl8.; relatlon on the microelement scale' rather ta be 

equIvalent ta the partlal dlfferentlal equatian of continuum, Le.: 
, 

ô'1u. + L' aU. ,1. Ô'IL 
.at/1, 0 ôt l = CL ôX;' 

whlCh' lS a generallzed wave' equatiàn WI tb dlssip~tlOn. 

(3.51) 

JI 

The coeffl-' 

clents C~ and b in (3.51) can be'derived from the microstructur~l 

propertles, that is: , 

(3.52 ) 

1 b' 
b =r<.<t) 

. '" 

J 

1 
• 

! 
1 
j 

1 
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t, e"""'mp'l' 0 y e..l Moreover, we observe that the time scale \,;J ln (3.51), above 

19 equlvalent to the average tlme t of the probabilistlc mlcrodynamics 

model. Hence, it 19 seen that by taking the aver~ge aver the ~nternal 

~ times of mIcrodlsturbances in the particular sequences, only..ane bme, 
\ l, 

eme~ges, namely the a~age macroscaplc tIme. Su ch a formulatIon has 

ItS parallel ln statistlcal mechanlcs, where a time 

lntroduced ta accaunt for the randomne9s 

ta allaw a~nsltlon ta the macroscoplC scale via e 

see Prlgoglne (1980). 
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CHAPTER IV 

COMPARISON OF THE CLASSICAL TO THE MICRODYNAMICS FORMULATION 

SV THE USE OF THE MONTE-CARLO SIMULA T ION TECHNIQUE 

4.1 Introduction 

In the two pr,evlOus chapters the theory of probabüistlc micr,o-

dynamlcs has bee,",! presented. As pOlnted out in Sectllion 3.1 the, Markov 

f-leld formulatlon 'lS a porbabilistic analogue of the transport theory 
, 

~ approach' for the wave propagation, where the discrete microstructure 
'\ , 

IS Included in the formulahon. In contrast to the deterministIc elasto-

dynamIcs theory where one can dis~~ngulsh two qUlte separate stages, 
1 

1 
namely the formulation of the governing equat~ons and the method of 

• solution, in the present case these two stages are treated at the same 
~ 

\ 

bme. By thlS wè mean that fheorems l, 2 and Lemma l of Chapter III 
1" ' /. 

provide a basis for the formulation of the problem as weIl as the 

solution of the problem. Thus, ln order to determine the evolution 

of the system, which is the spatIal-temporal evolution of Q propagatlng 

wave, one has ta calculate the Chapman-Kolmogopov relahons in the 

internaI and average times; Alhtough the probabllity kemels of the 
e 

Integral transItion operators are derived explicitly as functions of 

the materIal broperties (see (3.11) and (3.1'9)) such a calculation 

up to any instant of th~ generalized time S (Fig. 3.4) is possible 

but rather cumbersome. We therefore, due ta the absence of actual 

laboratory tests, employ a simulation techmque known as the Monte-

Car 10 method. ~his, ln addItion permits a ,comparison of res~lts of 
• 

the preseht tbeory wlth the classical formulations. As'we shall see 

-88- .. 
o 
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ln Sé'ction 4.4, the Monte-Carlo simulation is based on the same 
•• < 

considerations and assumpt~.ons concernlng the wave propagatloon. through 

a struotured 'medium as the probabllisbc model ltsèlf. In p.r inciple, 1 . __ _____ 

lt~ 15 dèveloped from the same Mark6l71.an assumptîo~s and hence, ln 

Vlew of the vast eVldençe in scientlfic l1terature of the succesEI, of 

thlS method, ü IS" expected to furnish sorne indicatlon as to the 

applicabllity of the probabl11stic model. 

TIn the other hand, the Monte-Carlo technlque, tepresentlng 
, 

slmulatlon of the physical phenomenon 15 thought ta replace -in elaborate 

lahoratory expenment, which could not be carrled out wlthln the present 

research proqram. AlthQugh the Ilterature on e"xpenmental mechamcs 

is very exte\1s1ve no test proce9ùre could be found by the author of 

"thlS theslS that would recogmze the effects of the rather complex 

mater laI structure in the apPli~n of the stress waves. Hence for 

thlS reason the simulatlOn techn~que had to be employed. 

Thus the present chapter ~s devoted to the development of the 

Monte-Carlo slmulation for the appllc'atl0n to the wave propagation 

in discrete solids together wüh the comparison of known results of 

wave propagatlon in continuous media. It will be shown that the over-

rlding factors ln thlS comparison were the relabve strength of the 

.JJ. 
fluctuations in the physlcal properties in a spe~lflc so-hd, the 

correlatlons range wlth respect to the existing grain Slze and the 
~ 

, 
wavelength. Again, this wll1 be 1llustrated for the case of a cub.lc 

structured solld. We start by givlng a dlScussion of determin.lstlc 

continuum and random continuum theorles as applled td our problem. 

. 
" 
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Contihuum 'T ormul~tion for' IS'!tropie. Homogeneous Determim.stic 

(lasbe Solids 1 

, 

io' 
We ~ecall from th~ sectiqn ori the probtem formulation; tha't the 

wave motloh is generated by the applleation of a spatially uni form 

surface pressure at-the bar's front ~ace, Le.: ' 

2' n ,1 = P (t) 
IV IV X =0 ' 

1 

O.5l 

It 15 eVldent, that an Inltial boundary condItIon 9F 5uch a general 

form will g~ve rlse ta longitùdinal a~d Itr,ansverse waves l,n the bar. 

Assumlng nbw the matenal of the bar ta· behave as an Isotroplc homo

geneous ll~arly elastlc contInuum leads us to conclude that the two 

waves wlll travel Indep~ndentl~ at two constant propagatlon speeds 

CL and CT' 

We can thus conslder slnglè type wave propagabon and choose 

ta analyze a longitudInal wavefront due to the f~llowIng condltlon: 

. 
1 

(4.1) 

- li 

The motion of the medium IS then "go~er~ed ,by the "standard wave, 

equation: 
1 

w~ th the !ni tial co~on.s: 

... 
!t = 0 for t = 0, X, > 0 

IL =0 for t=O, X1>O 

(4.2) 

(a) '}t. 
(4.3) 

(b) 
" ... 

The general sol{Jbon of the wave equation (4.2) i's known to bel ;r. 

1.1. (X"t) cHt - ~) i- g(t i- il (4.4) 

( ) 

.Î 

6" 

i • ,~ 

11 
:1 

"It 
, 

r 



( 

r 
B . 

91 ... 

where f ,and gare forward and backward travelIng waves, respeetively. 
. j , 

It IS obvl.oUS that the pulse given l.n (4.1), w111 induee a forward 

traveling wave only, and hence (4.4) reduces ta: 

The bàundary condItIOn (4.1) yields then: 

- f CL Ü. = - P', Slnoe 01/ = '- r CL ü. , 
and herlce 

-~CL. f'(t - f) = -p 
where upon Integr~tlnç: we abtal.n: 

t _1-

f (t - 1.) - L J P ~t' + C, 
CL ~Cl. 0 

By emp10y l-ng condItIOn (4. 3a) we see that: 

• 

and hence C,=D and (4.5) becomes t~erefore: 
, t - Xc 

1 \ r CI. , 
lA. (X".!) = OC J P dt 

} ... 0 

=_1 -p(t-'&)=-L 
~CL CI. ~Cl. { 

P for 

o for 

t >.& CL 

r<~ 

(4.5) 

(4,,6 ) 

This solutIon shows that"a plane longitudinal wa.vefront propagates 
~ 

t~rough the bar IIlJlth the constant velocity CL' The pulse amplitude 

and shape remal.n una1 tered. • 

4.3 Random Continuum Theor of Wave Pro a atIon 

, 

Thl.s section a1ms ta descrlbe, in a comprehensive manner, the 

formulation and lts consequences of wave ana1ysls l.n random continuous .. . 

/ 

. . 

, 

\ 
:( 
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media. The general features of thlS macroscopic approach have already 

be.en outlined in Section 1. 3 of this thesis .. 

, In the classical theory (cf. Frisch, 1968) one replaces a 
~ 

slngle inhomogeneous medium M by an et:lsemble of media {M (w), WEil}, 

where W is an outcome in "the probability space 11. If for· each· w ~ il 

a certain random functlon u..( 5,t , (.où) is introdu~ed, Whlch 15 sald to 

describe the properbes of the inhomogeneous meditum, then M (w) is 

called a random medlum; the quanbty n(!;t,w) is a random variable 

and usuall y corresponds ta the ~ndex of refractlOn. 

For Inltlal value problems, or propagation ln tlme-dependent 

media, the random wave equatlon 18 of the form: 

il = (A T B(w)) ~ , 
• dt • 

(4.7) 

where' the unkn~wn functlon llJ (scalar or vector-valued) is the wave functlon 
J 

(or fleld), ~ lS a determimstic Ilnear partial di fferentlal operator 
'~ 

(usuaHy wlth constant coefflcients) and B(w) lS a llnear partIal 

dlfferent~al operator with random coefficients which' are centered 

random functlons. In accordance with the elastodynamlcs formulation 

(see (1.5) and (1.6)) a more precise formulatlon of the radiation 

of waves ln a lossles's., homogeneous, Isotropie, time-lndepéndent 

medium ls giver by the followlng wave equatlon: 

z 1 • "l 
'V ~(~,t.J)- C1(~,W)'W ~(~,~) = ,F(~o,~) 

where F(XD, t) is a' forc~ functibn applled at position 

cas~ of a harmonle point source excitation, we have the 

Helmholtz equatlon expressed by: 

Xi. 
1 

random 

(4.8) 

ln the 

! 
! 
1 . 

1 

( 
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-:\?1-;(1;W) +k: n'(~.w) j(~,w) = J(~), __ _ (4'.9) 

where Ko> 0 15 the 50-called free 5pace wave _ number, n i$ the inde>E , r 

of refraction- wlth unit mean square value and J(X) i5 the Di:rac-del ta .. 
function. Obviously equations (4.8) and (4.9) have to b~ supplied 

wlth pertinent ,initial boundary conditions ln arder" to render the 

problem weIl-set. 

Since we are specifically looking at the propagation of initially 

plane waves in a long bar (semi-infinite), it is thaught that the 

dellberate fecus on the one-dimensional case at this stage will now 

permlt a rather sImple account of the mathematical development of the 

random continuum theory and lts potential applIcatlon ta ou~ p~Qblem. 

Thus the first thing ta notice lS the non-exlstence of dissipative 

terms in the equation (4.8), which reflects the smear ing out of 
l 

the medlum ln this macroscoplC appraach: The diss~pation in structured 

medlâ is\tMought ta be, ta a great extent, due ta the presence of the 

lnternal boundaries and as eVIdenced by our analysls in ~ectipn 3.5. 

Hence the equatian of the t~pe (3.51) should be adopted as a more 

reallstic model. However, to the be5t of the author's knowledge this 

15 not the case, a~d thus accordlng to the'classica1 approach (e.g. ' 
- 1 

Howe, 1971) a' umdirectional 'wave motion obeys the following equation: 

J 
(4.10) -

C1(X~W) i 
\ 

where 
r, 

the exact deformation u.(X,.w) is synthesized from the average 

value U. of U. and its fluctuating part u.', i. e. : 

u.~{X,t,w) = Li(X,t) + u.'(X,t,w) (4.11 ) 

. 
" 

" \ 
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The wav~ pr?pagation V~locity !. is exprassible. in the follo~ing 

feshion: 

(4.12) 
: , 

where Co i,s the' average velocit)(. 

Given the inüial boundary condition it is possible, at least 

in principle, to solve the equation (4.10) ~or the mean and fluctuating 

parts of \4.(Xl~)' HOwever, sinee in our case ct, is given by: 

(4.13) • 

where it is assumed th~t E, ~ aré Gaussian random variables, thlS 

does not allo~ a' simple functlonaJ. form of ~(w), and an explici t 
.' \ 

'\ solution Involving a Fourioer synthesis fo~ a sequence of successive , 

. approxlmahons to il and u.'''',(see also Levine" 1978) appeared unwieldy. 

In this context attention was also given ta the simpler caeie of a 
t. 

harmonie excitation of (4.10). The govern~ng relation now takeS' the 

form of a rando,!, Helmholtz equation in one dimension 50 that: 
c[2.' 1 ' • 

. d. X' Lt(~) ~ k; (1+ P'JX)) u.(X) = 0 

which for nonrandorn initial conditions of u.(~ and 

a linear ranpom di fferentia~ equ~tion. , , 

a u:(O) 
ôt 

(4.14 ) 

becomes 

The classica{ approach is ta assume tliat po (xl' i5 the Ornstein-

Uhlenbeck process - represented by a centered, stationary, Gau!3s-

Markov ian random function wi th the correlation funçtion 

(4.15 ) 

where € is an arbi trary smaU non-dimensional parameter and or is é! 
1. """ 0 
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given corr'elation range. 

lfl this case th~ -solutions for the exact ff~ld a.(X,w,) fan- b~ 
, \ 0 . '..' , 

',obtaineo a$ _ ~hown by Papariicolau (1971) aric;l Morri§lor;l et al '(1971). 
, , 

In these pap~rs the refleétion and transmission coefficients for the' 
/, 10 

wave 'field în a fini te ' interval, af;a ,random medium were intraduced',. 
, , " ' , , 

as random furictio~è. Thei,r probabi.l,ity density functiont's ,wer~ then 

derived -in the functional forms and these' were subsequently used to 

calculate the me an of the square of the above coefficients. 
o 

In order ta.use these results, we mu.st however de termine two , 

"95 

key, parameters in the random contlnuum approach: the. correlation' range 

'6 and th~) dimen~ion'less ~ara~eter f . , The ,firs t 0 f these il? de fined 

to' be the minimum dIstance of two points 'at which l;lÎmul taneous fluctua
I 

J' , 

tions are independent. Thus wJ.th respect to the dIscrete random 

medium f~rm,ulation r appears to be' approximately ~a -. ---The"dimensionless 

parameter é 19 a small numbe~ that character izes the size qf the .. 
, ' 

fluctuations of the physical, propertie~ in the medium. Olie may take 
~ , 

" " 

it as the ratio of j:.he standard deviation, of tne most st'rongly 
<\ ,~ " 

, , 

"nuctua~ing parameler; and its Inean value (Frïsch, 1968)'. " Thus E' in' ' , 

(4.~5) ~s' actually th~ standard devü~tiQn ,of the Gf~s±arî distrib'uti'bn 
p ~ ~ 

,invo1ved ~n the 'Ornstein-Uhl.enbeck process fA' (X). . wever, w,e note' " 

that the assump~lon of 1'" (X) in.lhe form of such a proc~ss contradicts 
, , "g, ' 

\' 
\ 

, 
,\ 

relation (4.13). The latter relation indicates that the square of .,\ 

the ~r'opagation velocity IC%, in form of the ràtio of tiwo Gaussiart

random variables will not be Gaussian, but will rather result in-a 
. 

Ca~chy distribution. NaUng that the inean 
" ,. , 
and variance \ do not exist 

fol' such a dlstribulion, we follow Frisch' s argument sta~ing ',th,~t, 

. 

'\ 
,Ot. __ ..... _ .... __ .~~_~"-, _~ 

1 

, 

, ' 
1 

! 
1 

\ 
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v the ratIo of the standard devlatlon ta tne mean of the strongest 

fluctuatlng property should ~e consldered as f, , and hence choese 
, \ 

ln the present case the fluctuatIons ln ~ te determlne the parameter 

~/' Ë (see SectlOn 4.4 folr detalls of physlcal preperbes ~f the adopted 

o 

mode!) . 

Flnally, wlth reference to the work of Mornson et al (1971) -\ 

(see the equatlon (5.13) there) we have to choose the lnvolved wave 

96 

numbers. Thus ~e note that for wavelengths larger than the microelement 

et. 
Slze d the frequency effect lS small and becomes more Important for 

OIod . wavelengths that are comparable to We note hewever, that th~ 

latter case has been excluded from the present research program (se~ 

statements ln SectIon 2.2.2). 

For the pufpose of the comparlson of the cont~nuum and dlscrete 

modelll~ the above conSIderatIons wIll be employed ln SectIon 4.5 of 

th lS chapter. 
, - ( 

'\~-' 

4.4 Monte-Carlo SImulatIon a atlon ln Pol cr staillne 

Sohds 

We now return to the mlcrodynamlcs formulatIon of wave propaga-

tlon ln a dlscrBte random medIum. As already pOlnted out ln the 

introductIon to thlS chapter, we alm at developing a Monte-Carlo 

sImulatIon scheme WhlCh would replace a physlcal experiment on the 

one.hand, and o~ the other shed sorne llght on the characteristics 

of the results, that may be expected Markov fleld formula-

bon. 

\ 
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t 
Thê Monte-Carlo sImulatIon method wes developed ln the late 

, 
fort~es (see for Instance MetropollS and Ulam, 1949 and Donsker and Kac, 

1949) as a sampllng procedure. The latter conslsted of the pràductlon 

of models, of complex comblnatlonal sltuatlOns or o~lndlng varl,ous 

\dlstrlbutlons of partlcles ln dynamlcs or other physlcal quantltles. 
\ 

Su ch an experlment lS performed on computing machInes, whose hlgh 

speed and large memory ena~le one ta obtaln apprOXIma te solutIons of 

phYSlcal problems, where the exact mathematlcal solutIons are unwleldy 
ri 

or prohlbltlvely lengthy. A Monte-Carlo SImulatIon, lS thus naturally 

sUlted ta problems of statlstlcal phyS1CS where ln general, one needs 

ta speclfy the underlYlng mechanlsm of the phenomengn at the mlcrO-

SCOplC level ln order ta have the machIne arrIve at a global evolutlon 

of the entlre physlcal system. 

By analogy to statlstlcal phySlCS, for the Monte-Carlo SImulatIon 

of the wave propagatIon ln a dlscrete random medIum, we have to speclfy 
)'" 

the laws governlng the wave process at the mlcro-scale and cast them 
'b 

ln a computer language so that the rest~ I.e. the evolutlon of the wave, 

can be done by the computer. 

We conslder wave propagatIon ln a bar accordlng to the general 

formulatIon glven ln SectIon 3.1.3 with a mIcrostructure as dlscussed 

ln SectIon 2.2. Thus we shall slmulate the evolutlon of a wave as 

It propagates along the bar employlng ~he wave ielocity vector .~ flxed 

ta a glven wavefront. 
III 

Slnce the evolutlon of V fram graIn to graIn 
'>., ,., 

lS governed by the transmissIon operator, which lS a functlon of 

random physlcal propertles of the medIum (see relatIon (3.32)) we 

have ta dlSCUSS thlS aspect flrst. 

, 
\ , 1 
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r, 

Values of elastlc coefflclents of crystals of varlOUS chemlcal 

composltlons were obtalned experlmentally bY,Lazarus (1949) and 

Overton and Gaffney (1955). The absolute error of the measured 

Cij elast.1reoefflclents llsted there lS glven by ~ O. 25~ô for 

speclally prepared crystal specImens of length N 2 cm, WhlCh were 

, consldered t~e slngle crystals. It lS weil known, that graIns ln 

polycrystalline sol Ids may be assumed as slngle pure crystals (hence 
.... 

our Def. 1), howeve!, to the best of the author's knowledge the 

statlstlcal InformatIon about thelr elastlc constants lS not avallable. 

Therefore, we use the above mentloned InformatIon as a gUldellne for 

\., «-E ~G determlnatlon of two modulll and ln thlS micromechanlcal 
1 

model *. Thus we assume that the absolute var labon ln -'E and «'G IS 

~ 0.3% about thelr reSpectlVe average values. Furthermore, as ln 

most cases ln phySlCS, we ass~me that the probablllty dlstrlbutlons 

P("E) and P("G)are of the slmple Gausslan forms. We Fan thus establlsh 

the S;anda~d devlatlon 5 ln bath cases by requlrlng that: 

/- -16' = oj% f (4.16) 

whereby It 18 noted, that for a Gaussi~random varlate X we have: 

* 

, 

p { X < f'L- 38"} = 0,0013 

P f X > ~ t 3O-}= 0-'987 
} (4 0 171 

See also Hlrth and Lothe (1968) for the average values of the 
Lamé constants ln sollds. 
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No statlstlcal Information IS 

varIatIons ln the sIngle crystals or 
( 

avall~ble about mass denslty 

ln t~ graIns of the poly-

99 

crystalline SOllds. Therefore, by a slmllar argument as ln the 

case of elastlc constants, the mass denslty r 13 assumed ta heve a 

GausSlan dIstrIbutIon, where the mean mass denslty f, IS taken,equal 

ta the ~alues glven ln the tables of materlal propertles (Kolsky, 1963) 

and the standard devlatlOn 69 lS taken ta vary from 14-, /500 ta JL~ /200. 

Slnce we have assumed a mIcrostructure wlth the geometry of 

perfect CUblC graIns, we may choose coppe~ as a typlcal metal, whose 

crystals dlsp1ay thlS klnd of geometrlcal shape. Accordlng1y, the 

GaUSSlan statistics of the varIables E, G and ~ wIll be speclfled as 

fallOlNs: 

(E)=~E= 14.45~·(OI/ N(.,,1. 
f 

5E = ~E 11000 = 14 4~9 ID 8 !!!jrnl 
(4.18) 

(G>:: rt& = 546 '10" Nfm 2 
(4.19) 

OG =t-tc;!IOOO=5,4610sN/m2. 

< ~ ) == t"- ~ = 8. ~ . 10 ~ k 9 f m 3 

6~ = p.~ (foo -:- 2.'00) = 17.8 -:- 't4's k9 f ml 
(4.20) 

The cr~stal Slze 18 cha8en ta be 0.2 mm; thl8 arbltrary cholce IS 

made ln vlew of constralnlng computatlonal costs and for the purpose of 

lilustrating the applIcatIon af the Monte-Carla method to the problem 

af lNave propagation ln dl>screte sollds. ThIS graIn SlzeJis employed 

for the constructIon of aIl subsequent dlagrams. However, It corresponds 

ta an avetage Slze of a fIne gralned metal structure. 

Analogously to the development of the Markov fIeld theary ln 
1 

Chapter III, three SImulatIon models can be glven here. One model 
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that corresponds to the longltudlnal wave propagatlon ln a 1-0 SOlld, 

a se~ond pertalnlng ta a 2-D model of the SOlld and flnally a thlrd 

correspondlng to the L- and T-wave propagation ln a 3-D SOlld: We 

start by presentlng the flrst model, WhlCh IS consldered as an ensemble 

f of K non-interacting sequences; see FIg. 4.1. for the space-time graph 
1 , 

of the process and the pertInent notatIons. At time t=o and posItIon 

X1=O (front Face) a unlform pr~ssure pulse p lS applled. ByassumIng 

aIl Fust microelements of the se K sequences to be characterlzed by 

°E = fE and o~ = tLf an Inibal veloclty dIstrIbubon °v = Imls 
ln the Fust layer lS postulated (0 denotes the Fust mIcroelement) . 

From now on the program takes the foiiowing steps: 
1 

- evaluate propagabon velocÜy in the fust crystal: °C,-= rE/o~ \ . 
evaluate the f.l8ssage tlme: o'! = d../oC L 

evaluate the arrivaI tlme at (0,1) Interface: T-- lit 

evaluate the wave veloclty ln the flrst crystal: 

1 
- generate two ra~dom variables If, E accqrdIng ta theIr GaUSSlsn 

* 

• stabstlcs * 

evaluate the propagation veloclty: 'CL~V'E/'i 
evaluate the passage tlme: 1'[' = d./' C L 

evaluate the arrIvaI tlme at 0,2) Interface: T =Ot + It 
Ol'V _ '~ ICL 

evaluate the Impedance ratIO: ~ - 6 d 
~ CL 01 2. 

evaluate the transmlsslOn coeffIcIent: Ctr= ., 1 + dl X 

evaluate the wave velocity ln the second crystal: 

( 
The Gausslan variates are obtained uSlng the Box-Muller method 
(RubInsteIn, 1981). 

1 

~ 
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- generate two random vanables t~ ,2E 
the procedure. 

for the crystal 2 and repeat 
J 

, 
ThIS procedure lS contlnued up to any deSlred graIn so that 

we always know the following: 

- the graIn number N ln the sequences, WhlCh corresponds 

to a deflnlte positIon ln space Xl ~lIne O-Xl) 
N 

- the arrIvaI tIme T = [QI,! at the N/N+l Interface 
1 cr. -0 t1;1 

- the pulse ampl1 tude y = Il ~,ci.+1 Ctr 
~=O 

RepetItIon of thlS procedure corresponds to the same InItIal pulse· 

101 

belng propagated ln another sequence SkEM and glves another result. In 

the actual computer program the sImulatIon has been conducted for K=lOO 

sequences ln paral1~~l so that a read out of the arrIvaI tlmes {~,Tz., ... ,T,oo} N 

and of t~e pulse ampl1tudes[V"Vz., ... .,vIOO }N was possIble (see F.i.g. 4.1). ..... 

Slnce It IS known that any gIven random number generator glves 

rlse to a sequence of pseudo-random numbers Whlch.has a dIstrIbutIon 

sllghtly devlatlng from a perfect unlform dIstrIbutIon, lt was 

deCIded ta combIne two dlfferen&generators tn every sImulatIon ln 

order to èven out the cumulatIve dIstrIbutIon of pseudo-random 

numbers. Thus the physIcal prapertles of the mlcroelements ln aIl 

odd-numbered sequences were generated wIth the sÉed 
13 5 , whIle 

those of aIl even-numbered seque~ces were generated wlth the number ~ 

711 
.' Alth~ugh a small dlfference ln the obtalned results was notlced 

when uSlng these two generators separately it lS assumed. that the 

comblnatlon of these dlfferent generators leads ultlmately to the 

acceptable pseudo-random results. 

<1 

( 
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Lo MODEL '. FIG 41 SIMULATION OF WAVE PROPAGATI~N IN SEMI-INFINITE BAR 
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In the two-dlmensional model we conslder the bar ta consist 

of 100 sequencés arranged ln a plane XI X2 (see Fig. 4.2a) and adopt 

the. followlng model for the InteractIon of a mlcrôelement « wlth Its 

two neIghbours in the transverse dIrectIon. After the pulse 
«.-1 " V· ",L 

ha5 been transmIt ted lnto <t through the boundary (<<. -1) Q',.) perpendlcular 

ta the dIrection of propagatlon, thé veloclty rJ,Ytr undergoes a modula-
I N 

tIon at the two parallel graIn bourdanes (ex. ~ ) and (ft t ) . It IS 

ev Ident that due ta these InteractIons, the wave veloeIty vector «, V , 
,.; 

~hlle representing the wave propagatIon ln the Xl dIrectIon, 15 also 

a funetlon of the X
2 

coordlnate. ThIS faet has foréed us ta Introduce 

the transmIsSIon operator ln SeCtIon 3.4. However, BInee on a computer 

we ean only work wlth a number rather than a functlon, we chooBe to 

Introduce a quantlty whleh IS an average of ~V taken over the cross-
A. 

" sectlon Df the graIn fIC, such that: 

O'.v(X1,t) df ffrJ,~(X"XI,t)}. (4.21) 
t , 

We know from the 1-0 slmufatlon, that the varIatIons ln the arrIvaI 

tlmes as weIl as ln velocltles V are quite small for the specified 
- ---- - l'ttII 

GauSSlan statlstlcs ln (4.18), (4.19) and (4.20). Thus instead'of 
" 

solvlng a rather complicated inItIal b~undary value problem for the 

graIn ~ , we can assume that the lnteractlons at the b6undar les (fi, ~ ) 

and (0(, r ) are Independent of each other and wlll lnvolve the two 

halves of ~ separately (see FIg. 4.2b). ThIS IS an apprOXImatIon 

slnce boundary effects ~sually do not occur deeper th an 5~10 atomic 

" layers ln the Ideal lattlce (Lelbfrled, 1955). 
\ 



( 

, 
" 

" 

<-

,,--

K=,OO 

SEQUENCES 
. 

" 

1-v 

"v .--v 
IJav 

'v , 

" 

,/ 

~ 

"'If, y 
1 

a 

~ 

" .. 

1 B) INTERACTION NEIGHBOURS FOfl THE CRYSTAL Q.. 
t> 

! 

" Y, 
Y 

1-VI - -----
P2 

li, 
0-

«2 

.-VI -
'~ 

1=,------
"Vtr .. • . , 

f\ 
.. ~-

,-
VI - . 

"Vtr 
f-----

~2 
, , 

~ 

104 

L 

'-'. 

Q ~I 
lb) THREE STAGES OF CAlCULATlON OF cr.." DURING ITS PASSAGE THROUGH b.. 

,u 

FIG.4.2 INTERACTiON IN 2-D MODEl OF THE SOUD. 

, 

, 
1 

~ 

l 



1 

( 

\ 

105 

It 18 to be noted that up to now consIderable attentIon has 

been glven to the ~erivatlon of an expllclt form of the transmIssIon 

opeœator and Its dependence on the wavenumber.lnvolved. ThIS attempt 

has shawn ta be rather complex and hence a slmpllfled Interactl~ law 
l1li 

IS adopted that permlts the Monte-Carlo sImulatIon. Hence wlth 

reference to FIg. 4.2b we see that ln two nelghbourlng halves of the , 

crystals ~ and ~ we wIll have Inltlally a dlfference ln wave velocltles 

such that: 

Il' ~ y. = ott V - ~I V L , (4.22) 
.. 

where the bars Indlcate now quantltles averaged over half the cross-

sectIon of a glven graIn. It may be recalled From SectIon 2.2.3 

that the contlnulty of the wave veloclty vector ln the physlcal 

domaln has been based on the contlnulty assumptlon for'deformatlon 

and deformatlon rates at an Intercrystalilne boundary (~~). It lS 

more convenlent however to use thls contlnulty condItIon ln conJunctlon 

wlth the condition of cons~rvatlon of energy. M(:ce 'the followlng 

condItIon can he wrltten: 

(4.23) 

It 18 fur~her assumea that the resulting mean velocltles ln two half-

-- graIns are equal, 1. e. : 

(4.24) 

1 
Hence, we get for the transmltted velocltles the followlng expressIon: 

ott _ _ [" c4'V\ "P X PliJ2.] ~ 
Y = ~IV = t r t J 

r .. ~ X + 1 
(4.25) 
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The trans{llitted wave veloclties at th~ (0(, '() tterface of the 

graIns ~ and fçaf be slmllarly derived. Having,determlned the 

tl~ J' "·-V d resul ~g veloq,ties ln the tlNO halves of the graIns "",Le. , tr an 

CII.,-VblNe can now replace these quantItles by a sIngle average velocity 
'- 1 

~- 1 VI.' WhlCh ls InCIdent at the (cL , ~+ ) boundary. By uSl~g the \ 

conservatlon condItIon of the power flux, INe obtaln \ 

(4.26) 

We naIN see that the Monte-Carlo scheme for the wavefront 

propagatlon ln1a 2-D model of the sol id should proceed as follolNs: 

- postulate a unlform lnltlal veloclty dIstrIbutlon ln the flrst Iay~r: 

aV: Imls 

1 t th t ''T' = dl °eL. eva ua e e passage Ime: ~ 

tL T -_ ft evaluate the arrIvaI tIme at (0,1) ITIterface: 

- generateJtwo random variables If, lE for euery mlcroelement of the 

next layer 

evaluate the propagatIon veloclty: JCL~iIE/,~i 

evaluate the~passage time: Ir d/~~ 

f evaluate the arrIvaI bme at (1,2) Interface: T 't+1t 
"" 

-" 1 Ole' evaluate the transmitted ~av~ velaclty: V tr V 

evaluate the velacltles resultlng from the interactlon at aIl (~~ ) 

boundaries accordlng to (4.24) 

evaluate the flnal velocities ~Vt in aIl gralns ~ of the second 

~;;r accordlng to (4.26) 

! 

l 
J 
1 
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, 1 
- generate two random variables ~~, E for every mlcroelement of the 

next layer and repeat the procedure. 

l 

Similarly as in the one-dimensional model the simulation is 

" contlnued on the computer up to any desired number of gralns ln the 

sequence sa that we obtaln a set 0 f arr! val times {~, Th .. " T,IO J Nand 

wave ~mpl1 tudes { VI' V l' ... , VIGO} N at a gi ven number N. In order ta 

compromIse the non-unlform trends in the generation of the pseudo-

random numbers the physIcal properties of the opd-numbered sequences 

were generat~d wlth 513 whlle~hose of the even-numbered sequences 

were generated with 711 • Thus a simulatIon was run on the computer 
\ 

wlth these two seeds slmultaneously. 

In the three-dImensional model of the solid we have ta account , 
for the eXIstence of four grain boundarles'ln the case o~ a CUblC 

" 

microelement ~ rather than only for two. Adoptln9 the same model 

of IntéractIon at ~ny Interface parallel to the dIrection of propaga. -
",tIon we only have to modlfy the formulJ for the final veloclty V~ , 

Incident at the (ex., oc. t , boundary. Thus we have lnstead of (4.26) 

the following relation: 

(J(,V •• \1 1. 1 (, V z + "', \i .2_± œ! '4/' t(J(,4 -V 1. )' - - - -- ~- -- l 't- \- ~ tr -'-tr 1r -----~-- ~~ (4.27) 

The three-dimensional~solid is now modelled ès a rectangular (lOxlO) 

ensemble of 100 sequences of cubic mlcroelements. 'Hence trle develop-

ment of the Monte-Carlo sImulation scheme for the 3-D model of the 

cubic structured SOlld ca~e summarized as follows: 

- postulate a uniform initial velocity distributIon in the flfSt 

layer: 'v = 1 mis, 



l' , 
c' 

Jo 

( 
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~, 

/ - 1 

evaluate the passage Ume: .' 1::1 d / rJ~~ 

evE:lluate the arrivaI Ume at (0,1) interface: T· °t 

- generate two random variables '~,tE for every micra~lement of the 

. next layer . 
evaluate the PItopagati0ivelocity: 'CL = lE /l'f 
evaluate the passage Ume: Ir:l d / 'CL 

evaluate the arrivaI time at {1,2}. interface: T ;:~t t't 
evaluate the transmitted wave velocity: 'V = "Ctr'V 

evaluate the velocities re8ulting from the ,interattions at aIl 

(~,P) boundari~s in the layer according ta (4.2~) 

evaluate the final velocit1es ~VL in aIl the grains ~ according 

'ta (4.27) 

- generate two random 

the next layer and 

t 1; 

t ' 
vanables 1~1 E far every 

repeat tnè procedure~ 
m~craelement of 

Again this simulation 18 continued on the computer up ta any 

desired number af grains so that we ab tain a set of arrivaI times 
, 

{ ~ , T1 , ... ., T.oo 1.H' and a set of wave amplitudes {VI' Y~,,:. " VIOO } H 

108 

at any given number N. In arder to eveIT out thé ps~udo-random num~er 

. generation, the physical praperties of the add-numbered layers were. 

generated with -5~3 wbile those of the even-numbered layers were 

generated with 711 • 
f 

The generql Flow chart of the simulation progfam ia shown in 

Fig. 4.3 while the corresponding computer programs are attached in 

Appendix C of the thesis. 
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, . r . 

; 

1 

. . SPECIFY INITIAL BOUNDARY CONDITIONS . 
" 

If , 
v . 

CHOOSE-SEED AND GENERATOR. 1 

~ 

f FOR PSEUDO-RANDOM NUMBERS 
" , 

" 
, 

. 
_ .... J\ . 
~ 1) 1 -

GENERATE PHYSICAl PROPERTIES FOR THE NEXT . 
MICROELEMENT IN EVER~ SEQUENCE 

r--l-D MODHl t 2-D Dt 3-D MODEl , 
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Fig. 4.3 Flow Chart of the Monte-Carlo Simulation Program 
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4.5 The Monte-Carlo Slmulatlon Results and DlScuss10n 

in the previous sectIon we have descrlbed the Monte-Carla 

technIque developed here for the purpose of slmulat1ng the wave propaga-

tIan ln a random dlscrete SOlld. Three cases of the discrete solld 

were dealt wlth, l.e. the one-dlmenslonal, two-dlmenSlonal and three-

dimensional model. In aIl cases the longltudinai wave propagatlon was 
, 

simulated ln terms of an arbitrarlly chosen number of sequences and 

by IncluSIon of a proposed InteractIon mechanlsffiJ The partlcular 
. 

number of sequences (K=lOO) was chas en as a compro~lse between a 

mlnlmum number of pseudo-random res~lts requlred to glve meanlngful 

probablilty dlstrlbutlons and the available computlng tlme. Slmllarly, 

due ta these constraints, the process of wave propagatIon was 
, 

slmulated for a standard dlsta~ce L=lm only ln the seml-lnfInlte bar 

M. In accordance wlth the Ma~kov-theoretlc model developed ln Chapter 

III the random evolutlon of thlS wavefront was characterlzed by two 

quantitles, namely the wave veloclty vector V and the so-called 

arrIvaI tlme T· Identl~al ta the lnternal tlme of the Markov process 

V (t); these two quantltles were read out at every statIon ln 
N . 

,multIples of 10 cm. Recalling that the mIcrostructure of thé bar was 

assumed ta be composed of perfectly CUblC crystals of a constant Slze 

~d = 0.2 mm, this model ylelds results ten~t1mes during the SImulatIon 

process or at every 500-th graIn. The statistics ~f the physical 

parameters Involved ln the longitudinal wave propagatIon (one-d1menslonal 

stress approXimation) are speclf1ed through (4.18) and (4.20). It 

19 ta be noted that tw~cases of the mass denslty statlstlcs were 

used, Le. the case of 6~ = tA-~ nDO (a) and the case of 6, = P.,/SOO 

(b). We shall dlSCUSS case (a) tirst. 
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1
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1 1 
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ml croe 1 ements o 0 o 5 1 0 1 5 2 0 2 5 3 5 4.0 4 5 5 0 
per sequence 

1 ,1 1 1 1 1 1 1 1 1 1 
[x1000] 

dlstance [ml o 0 o 1 o 2 o 3 o 4 o 5 o 6 o 7 o 8 o 9 1 0 

P(v) 

1 0 

o 5 r-----t---~r---_ff----7.r--_r~--~f_--_4~--rf----~----~--~ 

o 0 
1 

mean ve 1 DCl ty 1 0 o 999Q o 9981. 0. 9972 o 9962 0.9961 o 9942- o 9941 o 9931 o 9928 o 992~ 
[ml s] 

1 1 1 1 1 1 1 1 1 
1 - 1 

s tanda rd dey o 0 1 22 1 23 1 25 1 25 1 30 1 26 1 23 1 29 1 25 1 22 
[0 001 mis] 

P(T) 

1 0r------t-----+--~~----~~----~?_--+_~~+_--~~--_=~--~~----~~----~---

o 5~-----4------~----~----~----~----~~--~~----~----~----~H_----~ 

o O~ ____ ~=z __ ~~~~~~ __ ~~ __ ~ ____ ~~~~ __ ~~~~~ ____ _+~--~-----------

mean arrival 0.0 

time [10. 45] 

standard dey O. a 
[10.85 ] 

0.2481 0.4962 0 7442 0.9924 1.2405 1.4886 1.7367 1.9848 2.2329 

0.26 0.39 a 50 0 63 0 71 0.73 a 73 0.82 087 

Fig. 4.4 Probablllty dIstrIbutlon of veloclty and arrIvaI tlme 

for a I-D model, case"(a) 

2 4810 

0.93 
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The results of a slmulatlon of an L-wave pulse propagatlng 

ln the one-dlmenslonal model of the SOlld are shown ln FIg. 4.4. The 

evolutlon of the pulse glven at t = 0 wlth the magmtude of V = 111'1/5 

IS shawn ln terms of the probabp.llty dlstrlbutlons .p (V) and P (T), 

where V = III and T IS the arrIvaI Ume. The cumulatlve dlStrI

butIons (frequency polygons) of these two quantltles obtalned by the 

slmulatlon are plotted separately at every statIon or ln mult~ples of 
( 

0.1 m, whereby the mean value and the standard devlatlon are lllustrated 

by the abscissa. It 18 ta be noted that whlle the scale of elther 

random varIable V 9r T 18 the same at every statlon the ongln has 

been shlfted approprlately sa that the mean values cOlnclde wlth the 

glven read-out posItIon on the X l aXIS of the bar. ThIS conventlon 

along wlth the flxe~ scales IS adopted for aIl the subsequent p+ots. 

Hence, an ImmedIate vlsual comparlson of varlOUS cases and models 

becomes poss~ble. The veloclty and the dlspersI0n tlme dIstrIbutIons 

are approxlmated here by the Gausslan dlstrlbutlons, WhlCh dlsplay a 

v.ery good fl t. Indeed, thlS re~lt confIrms the theorebcal for9)ula

tlon glven ln AppendlX B of thlS thesls. Although the blnomlal- and 

POlsson-type fltS have been trled, they proved less approprlate than 

the Gaussian fIt. A closer analysls of the" P (v) graphs shows that 

the pulse falls off on the average, but the spread ln magnltude âs 

reflected by the standard devlation, remalns falrly constant. On the 

other hand, the P(T) graphs reflect the tendency of the pulse ta 
\ 

spread wlthin the dlsperslon tlme cone ln the space-tlme graph (see 

Flg. 3.3). Thus we see that the entlte Flg. 4.4 corresponds to the 

f6rmul~tlon given by (3.28), that IS to the evolutlon of aIl the 

)' 
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mlcrodlsturbances (propagatlng ln partlcular sequences) ln terms of 

the postulated InternaI tlmes. It lS also lnterestlng ta note, that 

the dIspersIon tlme, or the devlatlon of the randoffi. arrIvaI bme from 

rÎ .... _.~ ts mean J.S much smaller than expected, 1. e. on the arder of œ. 1:' after 
) 

(

one meter travellIng dIstance. ThIS Indlcates\that the InternaI tlme 

fluctuatlons are very 8mall. However, they may become slgnlflcant 

ln the case of strongly non-statlonary (e.g. crltlcal) phenomena. We 

also note that the one-dlmenslonal m~del utillzed ln the computer 

sImulatIon was also run ~ a larger dIstance 

was revealed thereby that a slow (non-Ilnear) 

bme spread (O-T ) oc?urs. 
j 

L than one meter. It 

Increase ln the arrIvaI 

The results of the sImulatIon of the same pulse ln the two-

dlmenslonal and three-dlmenslonal models of the solJd are shawn. ln 

FlgS. 4.5 and 4.6, respectlvely. As before the slmulatlon results 

are, shawn by the frequency polygons which are plotted for the veloclty 

y and tlme T dlstnbtlbons at e"very statIon' along the Xl-aXIs. 
Il' ' 

It IS seen that the Gausslan dIstrIbutions are agaln glvIng a good 
1 

apprOXlmatlOn. ThIS lS rat~er an Interestlng result ln Vlew of the 

fact that there lS a COUpllhg between the contiguous sequences. 
1 

However, thlS can be readily explalned, If we no'te tha-t the sums of 
d 

weakly ~ependent random varIables stIll co~verge ta Gausslan dlstrl-

butlQns (due ta the Central Llml t Theorem). In general, we see, as 

before, the attenuatlon of the signal due ta the mInute reflectlons 

at the consecutIve interfaces wlth the spread ln the s1gnal".rema1nlng 

fanly constant ln both~hese models. 

A global comparlson of aIl three models for case (a) may 

best be conducted on the basLs of F 19-:" 4.7. Here ~e present t,tle 
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1 1 1 1 1 1 1 1 1 

~ 

mlcroelements o a o 5 1.0 1 5 2 0 2 5 3 0 3 5 4 0 4,5 5 0 
per sequence 

1 1 1 1 1 1 1 1 1 1 1 ( 
[xl000] 

dIS tance lm] o 0 o 1 o 2 o 3 o 4 o 5 0.6 o 7 o 8 o 9 1 0 

P{v) 

1 
1 0 

o 5r-----~r_----~----~----_+----_H------~----~----_+------~----~----~ 

o 0 

mean veloe1 ty 1 0 o 999Q O.998i o 9977.. o 9967 o 9961 o 994i o 994]. o 9933 o 992~ o 9922 
[mis) 

1 1 1 1 1 1 1 1 1 1 1 
5 tandard dey o 0 o 87 O.BO o 88 o 79 a 82 o 84 o 86 o 81 o 75 o B2 

[0 001 mis] 

~ 

P{T) 

0.5~ ____ ~~ ____ ~ ____ ~ ____ ~ ____ ~~ __ ~~ ____ ~ ____ -+ ____ ~~ ____ ~ ____ 4 

a 0 

mean arrIVaI 0.0 o 2481 0.4962 0.7442 0.9924 1 2405 1 4886 1 7367 1.9848 2.2329 2 4810 

tllne [10-\] " 
5 tandard dev. 0.0 0.26 0.39 o 50 o 53 a 71 o 73 073 o 82 o 87 o 93 

[10-8s] 

Flg. 4.5 Probabiiity distrIbutIons of ve~clty and arrIvaI time 

(_ for a 2-D model, case (a) 
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1 ~I 1 1 1 1 1 1 

~ 

mlcroelements o 0 o 5 1 0 1 5 2 0 2 5 3 0 J 5 4 0 4 5 5 0 

( per sequence 

1 
1 1 1 

l'~ 
1 1 1 1 1 1 [xl000] 

dlstance [ml o 0 o 1 o 2 o 3 0.4 o 5 o 6 o 7 o 8 o 9 1 0 

P( v) 

1 0 

o 5 

o 0 

mean ve 1 oc lty 1 0 0 9990 
[mis] 1 1 

standard dey 0 0 0 85 

o 9985 0 9977 0 9967 0 9961 

1 1 1 1 
o 82 0 83 0 76 0 79 

o 9949 0 9943 0 9933 0 9928 0 99(2 

1 1 1 1 
o 84 0 79 0 85 0 72 0 88 

[0 001m/s] 

P(T) 

1 0~-----+-----+--~-1----~~----~~--+-~~+---~~----~--~~----~~-----=~--

J 

r 
o 5r-____ -+ ____ -+ ____ ~----~~--_++_--~~--~~----~----~----~~--__M 

o 0 

mean arri va 1 0.0 0.2481 0.4962 0.7442 0.9924 1.2405 1 4886 1.7367 1 9848 2.2329 2.4810 

tllne [10-45 ] 

standard dey 0.0 0.26 o 39 0.50 o 63 0.71 o 73 o 73 o 82 a 87 0.93 

[10·asl 

( 
FIg. 4.6 Probablllty dlstr ibut1.ons of veloclty and arrIvaI bme 

for a 3-D model, case (a) 
t. 
~ 
.) 
>, 

1 

" 

.< 

j 
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mlcroelements o 5 2 5 
per sequence 1 1 , 

dl stance [m) o 1 0.5 
l, 

p( v) 

(~. [sim] 

480 

420 

360 

300 
1-0 

240 

180 

120 

60 

0 

1-0 mean velOClty o 9990 v 0.9961 
2-0 mean veloclty 0.9990 o 9951 
3-D mean veloclty o 9990 o 9951 

1-0 standard dey 1 22 1 30 
2-0 standard dey a 87 o 82 
3-0 standard dey a 85 o 79 

a) 

~ 
\ 
"- 1 _/ 

-
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( Fig. 4.7 
;"t.-

Comparlson of I-D, 2-D and 3-D Models, Ç.ase (a) 

\) Evolution of probability densities 
b) Evolution of the me an pulse 
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evolutlon of the velocl ty V ln terms of the Gausslan denslty fits 

at three statlOns along the bar, I.e. at 0.1 m, 0.5 m and 1.0 m, as 
• 

weIl as the mean pulse behavlOur along Xl' The maIn observation here 

lS that the mean velocl ty lS of the same magnItude for aIl three 

model8. It 18 seen that the standard devlatlon of the 1-D model IS 

conslderably larger th an the standard devlatlons of both the 2-D and 

3-D models. However, l t IS possIble to note from the P (v) dlstn-

butIons ln FlgS. 4.5 and 4.6 that,the spread ln veloclty lS Sllght1y 

~ smaller ln the three-dlmensional model than that ln the two-dlmenslonal 

model. ThIS further wdicates that even the sImple model of 3-D 

Interactions as adopted ln SectIon 4.4 leads to a somewhat smaller 

devlatlon ln the magnItudes of the veloclty. 

It 18 to be noted from FIg. 4. 7b) that the curves 0 f the mean 

veloclty ln aIl three models cOlnclde and show a certaIn amount of 

fluctuatIons between the chosen Increments of dIstance. These fluctua-

tIans are due to the smoothlng out of the actual numerlcal results ,- ," 

obtained for the ten chosen stàtlons. It lS ObVlOUS that for a very 

large number of statIons thlS smooth1ng procedure will lead ta a 

more contlnuous ap~earance as deplcted l,n FIg. 4.8. ThIS fIgure has 

been obtalned from a sImulatIon of a pulse propagatlng in a sIngle 

seml-Inflnite sequence USlng the I-D model. The computer results 

were read out at every 2 m up to 400 m distance along the X l aXlS 

and show small fluctuatIons about the mean exponential attenuatlon. 

ThIS observation is ln accordance with the averaged waVe equatlon 

" {eq. (3.51)) obtained ln Section 3.5, the solution of WhlCh IS of 

• b't 
the type e It lS Important to note, that the results of the 
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Qne-d~menSlonal determinlst~c contInuum model are rep~esented by a 

stralght full line ln FIg. 4.8, as weIl as ln FIg. 4.7b). ThIS IS 

ln accordance wlth 8ur dISCUSSIon ln SectIon 4.2 deallng wlth the 
, ., 

contInuum formulatIon. However, such an analysis can be extended ln 

a simllar manner to the two- and three-dlmenslonal case. 
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It IS further of Interest to note that no correlatIon between 

the pulse amplItudes and the arrIvaI tlmes ln the one-dlmenslonal 

sImulatIon model was detected. ThIS observatIon. can be readlly 

expiained by the fact that the coefficIent C tr has \ ln gene~al, a more 

complex form as a funcbon of q and E as opposed to that glven by 

the deflnltlon of the passage tlme Cll.t (compare relatIon (2.41) and 

Def. 2). However, whiist one mIght generally expect thlS sItuatIon 

to change ln the models Wlth InteractIons between the contlguous 

sequences, thlS was not the case. ln fact, the arrIvaI bme dlstri

butlOn P (T) proved to be exactl y the same ln all three cases -

compare FlgS. 4.4, 4.5 and 4.6. 

Flnally, It IS to be noted that the small varIatIon ln the 

arrIvaI tlmes as eVldenced by the se three fIgures JustIfIes the 

assumptlon of our simpiified InteractIon model of the pr-eVIOUS sectIon, 

where we dlsregarded the difference ln the arrIvaI Umes ln the "" 

and ~ graIns for the coupllng effect at thelr boundary. 

Exactly the same type of simulatIon was conducted for case (b) 

, Le. 6 ~ = P.f /500 and aIl the other data remalns the same. T~ 

" results for the 1-0, 2-D and 3-D models are shown ln FlgS. 4:9, 4.10 

and 4.11, respectively. They represent the same trends of attenuation 

of the pulse and ItS spread within the dispersIon time cane, but less 

'" 
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1 015 1 1 1 1 1 1 1 1 
mlcroelements o a 1.0 l 5 2.0 2 5 3.0 3 5 4 0 4.5 5 0 
pe4- sequence 

1 1 1 1 1 1 1 1 1 1 1 
[xl000] 

dIstance 0.0 o 1 0.2 0.3 o 4 0.5 0.6 0.7 0.8 o 9 1.0 

P(v) 

l 0 

o 5r------r----~----+-----+_----~----~----~--~~----~--~~--~ 

mean velocity 1.0 
[mis] 1 

standard dey 0 0 
[0 OOlm/s] 

PtT) 

0.9998 0.9997 
1 - 1 -

o 53 o 56 

o 9996 0.9994 
1 - 1 -

0.55 0.54 

\ 

o 9993 0.9989 0.9988 o 9987 a 9986 o 9985 
1 - 1 - 1 - 1 - 1 - 1 -

o 56 o 57 o 55 0.56 o 54 0.55 

0.5~-----+-----+--__ -+ ____ ~ __ --~~--~~ __ ~~ ____ ~ ____ f-____ ~ ____ ~ 

0.0 

mean arrivaI 0.0 o 2481 a 4962 0.7442 0.9924 1.2405 1.4886 1.7367 1. 9848 2.2329 

time [10-45) 

standard dev 0.0 o 11 0.17 0.22 0.28 o 31 0.32 0.32 0.36 o 38 

[l0·8s ] 

.. 
FIg. 4.9 Probabiiity dIstrIbutIons of velocity and arrIvaI time 

for a 1-0 model, case (b) 

2.4810 

0.41 

~ 
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1 
mi croe 1 ements 0.0 0.5 
per sequence 

1 1. [xIOOO] 

dl stance [ml a 0 0.1 

P(v) ~ 

1.0 

( 
o 5 

o 0 J 
mean veloc1ty 1.0 00.9998 

[mis] 1 1 -

standard dey. 0 0 0.37 
[O.OOlm/s] 

P(T) 

1 1 
1.0 1 5 2.0 

1 1 1 
0.2 0.3 0.4 

r ( ( 

) ) ) 

0.9997 0.9996 O.999i 
1 - 1-. 1 

a 35 0.38 0.33 
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1 
r 

1 1 1 
2.5 3.0 3.5 4.0 4.5 5.0 

1 II' 1 1 1 1 
0.5 0:6 0.7 o 8 0.9 1.0 

, 

r r ( r r ( 
. 

) J ) ) J ) 
0.9991 0.9989 

1 1-
0.9989 0.9987 0.998~ Q.9986 

1 - 1- 1 1 -
0.35 0.36 0.40 ,0.36 0.34 0.35 

0.5r------r----~----~----+_----#_----~----+_----~----~----~--~ 

? 

. 

O.O~ ____ -k __ ~~~~~~ __ ~~ __ ~~ __ ~~ __ ~ __ ~~ __ _=~ __ ~~ ____ ~ ______ ___ 

mean arrivaI 0.0 
t1me [10-45] 

standard dey. 0.0 
[10-8s] 

Fig. 4.10 

0.2481 0.4962 0.7442 0.9924 1.2405 1.4886 

0.11 0.17 0.22 0.28 0.:31 0.32 

, 
Probabili ty d~tr ibutions of velocity . 

for a 2-D model, case (b) 

1.7367 1.9848 2.2329 2.4810 

\, 
( 

0.32 0.36 0.38 0.41 

and arrIvaI tlme 
1 
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S 
1 1 1 

mlcroe1ements 0.0 0.5 1.0 1 5 2.0 2.5 3.0 3.5 4 a 4.5 5.0 
per sequence 1 
[xl 000] 1 1 1 1 1 1 1 1 Î 1 

distance [ml 0.0 0.1 0.2 0.3, 
,1 

0.4 0.5 0.6 0.7 o 8 a 9 1.0 

, • 
P(y) 1 , 

) fa , 

( ( ( r r f ( 7 ,( ( 
..-

,~. 

, 

. 

1.0 

, 
0.5 

~ 
~ 

. 

J ) ) j ) J J / ) ) 
l 1 

0.0 

mean velocfty 7'J, 0.999§. 0.9991 O. ~99~ 0.9991. 0.9993 0.998~ 0.9982, 0.9981 O.998~ 0.9985 
[mIs] 1 1 1 1 1 1 1 1 1 1 

-. 

standard dey. 0.0 0.37 o 35 0.35 0.33 0.34 0.37 0.37, 0.38 0.32 0.39 
[D.OOlm/s] 

ptT) 

0.5~-----r----~~--~~--+-----*-----4-----+-----r---~~--~~---4 

O.QL-----~--~~~'-~~--~~--~~--~~--~~~~----~--~~----~--------
mean af'rlVa1 0.0 
time (10.45] 

standard dey. 0.0 
[W-8s ] 

0.2481 0.4962 0.7442 0.9924 1. 2405 1. 4886 1. 7367 L 9848 

0.11 0.17 0.22, 0.28 0.31 0.32 0.32 0.36 

2.2329 2.4810 

0.38 0.41 

Fig. 4.11 Probabillty distributions of velocity and arrivaI t'ime 

for a 3-0 model, case (b) 
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pronounced than ln case (a). This qualitatd.ve resul/t has been 

expected, sinee smaller variations in the basic physical parameters 

(E and f ) should result in smaller variations in the coefficients 

Cf, and C.. as weIl as the variabie 4t. Hence, also smal1er amounts 

of the energy lasses at the internaI surfaces could be expected. .... 

Thus, in ei the1' 1-0, 2-D' or 3-D models the amplitudes of the micro-

dlsturbances ln partieular. sequences fluctuate about the me an but 

stay again IN ithin a certa-:1.n ba.,d. In aIl these three models the 

decrease in the mean pulse is considerably slower than in case (a), 

whlle the band of fluctuations of the velocity V ~J..S mueh smaller. 

On the other hand, the mean of the aru val bme is exactl y 'the 

same as in case (a) but the dlsperslon quite smaller. Again, the 

enhre aruval time process in aIl three models is the same - compare 

the P (T) graphs of Figs. 4.9,4.10 and 4.11. As expected, the 

Gausslan dlstnbutions glve a very good fIt for the P (v) and P(T) 

plots. 

For reason of a possible cOrtlparlson of the above resul ts 

lliustratlng the developed micradynamics theoi'y of ,wave propagation 

1t may be appropriate to attempt at this stage ta clar i fy the 
~ 

conceptual ~ d~ ffarence be'tween the classical random continuum theory 

and the present theory. In the former the wave..·motion is described ,,' 
ln terme of a stochashe -di fferential equahon the solution of which 

in che 1-0 case has been discussed cunongst others by Papanîcolru 0971) 

and Morrison et al Cl971) '. It has been shown in these papers that 

r 
the solution of the equation of mo~~an depends strongly on an abstract 

, 

parame ter which i8 relatedO ta the wave number of the pulse given ta 

the random~ medlUm and an unspecl fied c(),rrelation length • 

• 

1 
J 

j 

l 

! 
! 
1 
1 

i 
1 -
1 

{ 

\ 
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In contrast, the probab~llstic microdynamics theory specIfIes 

from the onset a correlat~on length depending on a spec~fIc Size of 

&d . the chosen structure, I.e. the grain d~ameter It has been 

ment~oned ~n the IntroductIon of Chapter II that the present study 

dlstlngulshes the wave mot~on accordlng to a chosen wavelength, elther 

smaller or equal or blgger than 4d. ThIS ln turn recognlzes a 

spec~flC corre1at~pn 1ength for the present study of wave propagatIon 

to be at a mInImum equal to ~d. The other dist~nct feature of the , 

works of Papanlcolau and Morrlson et aIls the establIshment of the 

mean power transmiSSIon coefflc~ent WhlCh ~n thelr work also depends 

on the adopted wavelength. In the present theory, ln accordance wlth 

the glven deflnltlon of the transmISSIon coeffICIent Ctrfor the one-

dlme~lonal model, the mean power transmISSIon coeffICIent results 

ln a form WhICh lS Independent of the wavelength but IS equal ~o 

the ~a~~ of the ratIO of the 

inCIdent waves pertainlng to a 
> 

amplItudes of the transmItted and 

SIngle mlcroelement of the dlscrete 

structure. It is eVldent therefore that the direct comparison between 

the random contInuum approach and the microdynamlcs approach for the 

dlscrete media lS not possible, unless the underlYlng parameters ln 

both these approaches are matched. Thl~ statement IS ln accordance 

with the earller diSCUSSIon ~n SectIon 4.3 pOlntIng out ln partlcular 

the dèpendence on 'these parameter~ such as the correlation length, 

strength of fluctuations and the wavelength. 

In order ta clarlfy further the difference in the approach 
~ 

by means of random contInuum theory and,the present one, we consider 

the random contInuum wave equat~on (FrIsch, 1968 and Morrlson et al, 

1971) written for the one-dimens~onal model as follaws: 
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(4.28) 

WhlCh lS another form of (4.10). It has to be recognlzed that ln 

the above mentloned work the expressIon (4.28) is understood as a 

local relatIon. Hence, a macroscoplC formulatIon lS obtalned by 

averaging (4.28) sa that 

Slnce (4.29) 

ThIS result clearly Indicates that on the average the local dlsturbance 

due ta the randomness of the medIum vanishes and no dIssIpatIon lS 

belng allowed for. In contradistinction to the above We observe 

that the microdynamics theory ylelds for the same case (1-0 model), 

by taklng averages, the fol1owlng telegraph equation (see Sec. 3.5): 

b' >0 , (3.51) 

WhlCh mêy be cast ln the followlng form: 

1 

~=D (4.30 ) 

The above relation clearly shows the dissIpatIon effects due to the 

presence of a parameter D. It ls seen therefore that a comparison 

of (4.29) with (4.30) dlstlngulshes the two approaches ev en If the 

same parameters concerning the wavelength and the correlation length 

are matched.' 

It may be useful for the purpose of a more comprehensIve 

comparison between these two analytical approaches ta return to the 

seml-group operational formulation and attempt a limlt analysis. Thus, 
, ~ 

we recall From Def. 2 the passage tlme through a single crystal 
'. 
,~ 
j,' 
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(mlcroelement) 01. of SlZe -d to be: 

, 
whereby the average pa~age tlme IS: 

(4.31) 

Slnce "'E , CIl. ~ and ~d have beert taken as Inde:pendent random varIables. 

Further, uSlng a macro-tlme t (n) ln accordance wlth n steps ln the 

propagatlon of the wavefront or 

't(n) ~ [(<<tt) - n<ctt> 
i.-/ 

(4.32) , 

glves the dlsperslOn tlme for these n st~ps as 

ln WhlCh t refers ta the Internal Ume as before. If we assume ln 

the sense of continuum theory that 

_ ("t)'n = const = ~ , 
X 

fi' 
belng an average dIstance travelled ln time t , then we can take 

a llmlt of the disperSIon Ume t L {n} ln (4.33) as follows 

-
Um tL(n) = Lim [t - t{n)] = t - <~) = O(~L.) (4.34) 

<-1')-+0 c ~ 
n ... GO )& 

Thus It 18 seen, that due to the loss ln dl i tion of scales, the 
" 

formal dlsperslon tlme of the random contInuum theory (4.34) may only 

be treated as a small perturbatIon about the average tlme F 
; 

result becomes more evident If we conslder the derivation of the 

'-~ This 

'\ IT - 2. 
)lnflnÜeslmal generators of both evolution operators Ct) and T(t) , 

)that IS 
r 

! 
1 

3 

1 
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(4.35a~ 

lA = Hm lT("L) - l (4.35b) 
t'I['..,O "t 

A strIct llmlt ana1ysIs shou1d yleld the lA and ZA generators as 

beIng equIvalent to the InfInItesImal generator of the random 

contInuum theory (eq. (4.7)): 

where 

(4.36) 

Thus lt becomes clear why C(I.I) ln that approach c~reated as a 

random perturbatIon only. 
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CHAPTER V 

( • 
CONCLUDING REMARKS 

5.1 General Remarks 

, 
As It was pOlnted out ln the IntroductIon ta thls thesls and 

further eVldenced l~ SectIons 3.5, 4.3 and 4.5 the avallable theorles 

of contInuum mechanlcs fall to brlng out the dlscreteness and randomness 
. 

of the structured medIa ln the relatIons governlng the evolutlon of 

the fIeld quantltles. Thus the maIn alm of thlS researeh program has 

been to develop a rlgorous mathematlcal basls for the dynamlcs and 

especlally for the wave propagatIon ln sueh medIa. In order to 

evaluate the success of thlS attempt lt lS approprlate to revlew ln 

thlS chapter the baSIC and Important features of the theory presented 

ln thlS thesls. Thus, It lS to be noted that: 

(1) the proposed theory Introduces for the flrst tlme the 
• 

real SOlld medIa ln the 

analYSlS, 

(11) the microdynam cs theory permlts the formulatIon of the 

dIsperSIon and dISSIpatIon effects ln a more reallstlc 

sense th an the phenomenologie al one, 

(Ill) the formulatIon of the dynamlc analysis ln terms of an 

abstract dynamlcal system shows on the basis of the 

discreteness assumptlon that the klnematic quantltles 

belong ta the kinematlc space with a HIlbertIen-Sobolev 

topology for the mesoscale, 

-128-
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, >(IV) a new parameter has been introduced, the passage tIme 

through a sIngle element of the mIcrostructure, Whlch 

permIts the scaling of the wave phenomena on thlS vel 

spatially and temporally, 

(v) by uSIng the rI garous prabablllstlC functIanal ana ySIS 

and on the baSIS of the Markov assumptIon, one can der Ive a 

seml-group Qperator parametrized by the InternaI (real) 

tlme and the macrascoplC (average) time, w~lch formally • 
descrlbes the evolutlon of the wave motIon (Theorems l 

and 2), 

for a~ree-dlmenSlonal medIum, one can formulate the 

wavefr~ propagatIon ln terms of the total power flux 

WhlCh becomes a super-martIngale on a random fIeld 

(Lemma 1), 

(VII) a very slmplifled model for the graIn boundary behavlour 

ln structured sol Ids has been Introduced as a flrst 

approximation ta the more complex Interaction effects 
t-

In the wave motIon at the intercrystaillne boundarles, 

(VIII; ln arder to verlfy, ta a certaIn extent, the analytlcal. 

approach, the computer experlments by the Monte-Carlo 

SImulatIon have been suggested for aIl three models of 

the SOlId dlscussed ln the tnesis, i.e. for one-, two-

and three-dlmenslonal models; the results have been 

shawn ln FlgS. 4.4 to 4.11, 

(IX) by taklng the averages ln the probabl1lsltc microdynamics 

theory the generalized wave equation wlth a dISSIpatIve 
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term may be obtained. Although such a dissipat~ve term 

is usually assumed ~n continuum theorles, the present 

approach pe~mlts an exact formulatIon and derlvation of 

thlS quantlty ln terms of the physical character~stlcs 

of the glven SOlld. On the other hand, it lS Indlcated 

that by taklng the averages of the Important parameters 

(such as average passage tlme and average graIn slze) 

tendlng ta zero, a convergence to the standard wave equatlon 

could be obtalned. 

X.2 Remarks on turther Research 

( 
On the basls of the work presented ln thlS theslS It IS 

suggested that the followlng Items should be consldered for future 

research. 

(1) The present,work cquld be,extended ta the formulatIon 

of the wave propagat~on ln SOllds Wlth a random geometrlc • 
structure. ThlS could be slgniflcant ln the extensIon 

\ ' 

of th.~esent theory to non-crystaillne sollda and/or 

it~"./IiCatiOn to rock mechanics. } 

(il) F~r~~er consideratIon could be given to the newly 
1 / ~. 

~~~~roduced notIon of temporal scales together wlth the 
\ 

1 

applicatIon of spatIal scales other than those dealt 

wlth ln the present theory. Such an extension would 

encompass the wave motion on elther an atomlst~c or 

molecular scale, or the analysls of large scale phenomena 

which are encountered ln geophYSlCS • 

.. 



131 

(iii) For the global representatlon of the wave motlon ln 

a discrete random medium in terms of the complete set 

"of governlng equatlons, the set of solutlons and their 

stablllty should be lnvestigated. This would ultlmately 

lead to a rigorous random fleld analysis. 

(iv) Finall~ the extension of the proposed theory to the 

descrIptlon of wave motlon lncluding crltlcal phenomena 

ln random medla should be pursued, e.g. waves ln multi-

phase medla, shock waves, etc. 

L 

r 

(, 

1 
~ 
j 
1 
( 
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( 
STATEMENT OF ORIGINALITY 

AND 

CONTRI8UTIO~ TO KNOWLEDGÉ 

The author of thlS t.hesls clalms to have made the following 

orIgInal contrIbutIons to the knowledge of theoretlcal mechanlcs: 

(1) On the basls of the probabilistic mlcromechanlcs theory 

of Axelrad, a rlgorous mathematlcal theory has been 

developed ln thlS theslS ta permIt a probabillstlC 

functlonal analysis of the dynamlcs of structured 

sollds. 

(11) The model for the wave propagatIon across the inter-

crystalllne bounqarles has been formulated on the basls 

of Interatomlc lnteractlon~. 

(111) The representatlon of th~ wave motlon has been glven ln 

terms of an abstract dynamlcal system where the under- , 

lylng probabillstlc functlon space has been Identlfled 
\ 

wlth the klnematic space wlth a Hilbertian-Sobolev 

topology. 

(IV) For the first time, the multidimensional time (comprising 

the macroscoplC and InternaI times of the physical 

process) has been lntroduced for the wave propagation 

analysls enabling the formulation of: 

a) evolution of the comblned longItudinal and trans-

verse waves in a one-dimensional model of th'e 

solid in terms of a f,our-parametrlc semi-group of 

Markov transitIon operators. 

-132-
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b) evolution of the comblned longItudinal and trans-

verse waves ln a three-dlmensional model of the , 

133 

SOlld in terms of a"supermartingale on a generallzed 

random field. 

(v) The equlvalence of the Markov-theoretlc formulatIon with 

the contInuum theory has been established by averaglng 

over the state space in terms of the seml-group evolutlon 

operators. 

(VI) A Monte-Carlo technIque has been developed for the 

sImulatIon of the wave propagatIon ln the dlscrete SOlld 

for the speclfled CUblC structure. 

, , ) 
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\ 
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APPENDIX A 

NUMERICAl MODEl OF THE BOND BEHAVIOUR 

A.l Funct~on of the Program 

The program calculates the evolution of the bond dIstance r ln 

tlme t ·m 
It is wrltten ln a general form, so that the response of 

the bond can be studled elther ln motion perpendlcular ar'parallel to 

the graln boundary (ct~ ). ThIS 18 done by exchanglng severai cards 

accordlng ta the equatlons (2.38) or (2.45) . 

• 
A.2 Prog~am Structure and ComputatIon Procedure 

The entlre pragram ~s wrltten ln Fortran IV \Watflv) language. 

The program has the followlng structure: 

MAIN PROGRAM 

SUBROÜTINE DVERK* 

. sUBRounNE FCNl 
" 

AlI c8lculat~ons are csrried out w~th double preCIsIon on BP Amdahl V7 

dIgItal computer. 

Given aIl the necessary data, the Main Program transfers the 

task of computlng the speclf~c values of the bond distance r at the 

consecutive time steps anta the subroutine DVERK. The subrautlne 
!il 

FeNl provldes the specifie funct'ioniii farm as the rlght hand slde of 
Q------ . 

equa~s (2.38) or (2~45) depending on the case studied. The sub-

routIne DVERK 19 based on the Run~e~Kutta methadj it iterates to ,-
* From the International Mathematical Subroutine Library 
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find the value of rand upon achieving the speclfied accuracy It 

proceed8 one time step forward and repeats th~ procedure. 

The program 18 shown ln Fig. fA-l. 

A.3 Input Data and Output Results 

The input data are fed Into the computer through the MaIn 

Program. 

The veloclty of the InCIdent wave 15 taken ta be equal lm/s. 

In Vlew of the fact that the Monte-Carlo sImulatIon of the wave 

propagatIon IS done for copper (see Chapter IV) the pertInent physlcal 

constants are chosen as follows: 

CL = 4030.641 mis 

Gr = 2476.859 mis 

3 
,~ = 8900 kg/m 

Furthermore, the relatIve Impedance X lS taken equal ta 1.0, Slnce 

only the general character of the bond motion IS sought. The initial 
t 

bond distance r (t=O) was taken equal to thet of the lattlce spaclng 

for copper (see Klttel, 1968). 

Semples of the output results that correspond ta the longitudinal 

wave Incident upon the perpendlcular graIn boundary, are shawn ln FIg. 

A-2. In general It was found that for the'motion perpendicular and 

. -13 parallel ta t;he boundary the bond dIstance r tended wlthln 10 s 
1 

asymptotically ta a certian equilibrium value, which did not exceed 

ro by more than lœé. This clearly justifies the assumptions (2.40) 
'. 

and (2.47) of Chapter II. 
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141 j 
*EATCH WATFtV CXDD (90.90), ~ * .................... *** ••• * ......... * ..................... . 

SWATFIV ,TIME=9Y.P~GES=90.NOWARN.NOEXT 
IMPLICIT REAL*8(A-Z' 

( 
35 
10 

20 

C 
C 
C 
C 

INTEGER N.1NC.IER.K.NW 
o Ï ME NSI ON ~ ( 1) • C ( 24) • W ( 1.9 ) 
EXTERNAL f-c..N 1 
Nwal 
N:IIl 
X=O.DO 
y C 1 1=2. 55ù- 1 ( 
TOL=O.OOO~!:> 
lNO=l 
XENO-O.OO 
Da 10 K= 1.100 
XENDa XE NO+ 1 0 -15 
C ALL 0 V E RK , N .FCN 1 • X • Y • X E NO. T OL • 1 ND. C • N W • W ,1ER' 
IF(IND.LT.O.CR.IER.GT.O'GO TO 20 
WRITE(6.3~JX.Y(1) 
FORNAT(/.~ùX.2D22.12} 
CONT INUE 
STOP 
CONTINUE 
STOP 
END 

SUBROUTINt FCNl(N.X.Y,YPR[ME) 
INPLICIT N~Al*8(A-Z) 
JNTEGER N,NI 
DIMENSION Y(f\) .. YPRH4E(N) 
S=(2.550-1u)~YilJ 
YP=4*( o. 6~19 7660-19 J.( 6"( 5**6).IY ( 1 J-12-l 5** 12 )/Y( 1) ) 
V=l.DO- J 

C-=4030.641DO 
RO=8900.00 
G= 1.00 
B=-(G.l)/V/RC/C~ 
Nl=1 
DN=0.1537b7D~O/Nl*.2 
YPRIME(1)=~*(O*DN.YP-2i 
RETURN ~ 
END 

Flg. A-1 
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~ 
j 

'i 



0.1 OODOOOOOO 000-14 0.2594253544780-09 

0.,0 COOO 0000000-14 0.2627010451750-09 

l o. ~ 0 COOO 0000000-14 O.2e52717799390-~9 

0.4000000000000-14 0.26736662231 70-09 

~( 
\ 

O.;, OCOOOOOOOOOO-14 0.2691191413300-09 

O.r.. OCOOOOOOOOOO-14 0.27 C614026181O-09 

"'1 

0.7000000000000-14 0.2719083325160-09 

O. b 0 COOO 0000000-14 0.27~04231252ÇO-09 

O.'io 0 (0000000000-14 0.2740454126350-09 

0.1 0 COOOOOOOOOO-13 0.27493çeI5020o-09 

0.11 (00OOOOOQOD-13 0.2757426388560~O9 

O. 1200000000000-13 0.2764613670480-09 

0.1300000000000-13 0.2771248039540-09 

~ 
0.14 (000 0000000-13 0.2777231376270-09 , , 

O. J. 5 COOOOOOOOOO-13 0.2782714095770-09 
f , , 

0.16 ÇOOO 0000000"'~3 0.2787738554480-09 

O. 1700000000000-1'3. 0.27923615693
1
80-09 

0.18(0000000000-13 0.2796f.t2631316o-09 

0.19(0000000000-13 0.2800569761600-09 

O. '" 0 COOOOOOOOOO-13 0.2804223815730-09 

0."'1 CDOOOOOOOOO-13 0.2807616118670-09 

0.2200000000000-13 0.2810771055690-09 

0.23010000000000-13 0.2813709109600-09 

0.~4COOOOOOOOOO-13 0.2 816450~ 14490-09 

0.25COOOOOOOOOO-13 0.2819011323010-09 

O. c::6 COOOOOOOOOO-13 0.2821405769350-09 

0.27QOOOOOOOOOO-13 0.2823641519970-09 

0.~8QOOOOOOOOOO-13 0.2825748482650-09 

, 0.~9COOOOOOOOOO-13 0.2827719381930-09 

0.~OCOOOOOOOOOO-13 O.282~56S907170-09 

" 
0.~lCOOOOOOOOOO-13 O.283130€B36220-09 

0.~2COOnOOOOOOO-13 0.2832944152660-09 

O.~JCOOOOOOOOOO-13 O.28~4483117650-")9 

0.J~GOOOOOOOOOO-13 O~2 835932369170-09 

O.J5COOOOOOOOOO-l3 0.2837297990410-09 

O.~6COOOOOOOOOO-13 0.2 8385P.55212 90-119 

.~ , , 
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APPENDIX B 

CONVERGENCE OF THE VELOCITY AND DISPERSION TIME DISTRIBUTIONS 

TO THE GAUSSIAN DISTRIBUTIONS 

Fust we prove that the d~strlbutlOn P{v(t)} at any g~ven t 

lS Gausslan. For s~mpllc~ty we consider V to be a real-valued 

random var~able. Conslder the transm~sslon of a wave From graln ~ 

to the nelghbourlng ~tl. We have: 

~tlv = «,"'''' C .. 
tr V, (B.l) 

-,«+tc where trfluctuates around the value 1.0 dependlng on the physlcal 

properbes 0 f both graIns. Thus, we can wr l te 

where we assume for a structured SOlld: 
(--

(B.3) 

If we cons~der wave propagat~on ln a one-d~menslonal model start~ng 

From an In~tlal value °v ln the flrst graln 0 we shall have: 

IV = Ole .'V = (1 + 01;) 0v 
tr 

• 

1 

) 

.. ...... .... c , ... , " 
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... ,,-1 
IV 1T &,"-+' C • = tr V = 

~:l0 

-t O(J")] (8.4) 

It fo11ows From the assumpt~on (B.3) that ~~ can wrlte: 

where <œ,4+'J"} ~s the average of cr.,œ.i"1 cr 
heurlstlc grounds (energy 1055) that 

, , 
.. cUI r Of course, ) a has a flnlte varlance. 

It ~s seen on the 

If we dlsregar~ hlgher arder terms ln (8.4) we can wrlte 

(8.5) 

(8.6 ) 

n-I "-1 
n V :1 °v + [ 'V ",CHiO = [ [~+ 'V·,CPld] (8.7) 

«-0 .c-D 

CansldeT now another random varlable 

(8. B) 

where 

and 0 l8 a standard devlat~on of Ji' It ~s lmportant ta note that 
, 

(8.9) 15 satlsfled in Vlew of (B.5). If we now conslder the sum 

œ,cUlr 
and recogn~ze that 0 and hence are lndependent and ldentlcally 

~ 

dlstrlbuted randam varlables we will obta~n: 

(B.ll) 

v 

1 



( 

/ 

J 

where ~ (X) IS a standard normal distrIbution. In the abave the 

Central L~mlt Theorem has been Involved. If we consider a new 

random varIable ~ defined as fal1ows: 

n-t 
V=oV -<"'41 + [ °V"IGLt1d'" 

«=\ 
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It wIll also converge ta the standard normal distr~butlon as Impl~ed 

Jowtly by (B.8) and C8.10). ThIS result leads us ta conclude that 

"Vas glven ln (B.7) wlIl converge ta the general normal d~str~butlon 

wIth a non-zero mean. lndeed It lS seen from (B.5) that the mean of 

"v IS depende~t on n, that 15 on the number of m~croelements the wave 

has passed. ThIS lS equ~valent to saylng that v converges weakly ta 

the non-standard no~· d~str Ibutlon for t ..,. 00 and thus ~ t ~s approXl-
1 

mately Gausslan for aIl large but flnlte t wlth the mean < V> 

decreaslng for t Increas~ng. 

Let us now conslder the dIsperslon tl.me process r L (f). It 

follows From the Defln~tlon 8 that 

(B .12) 

If we lntraduce an integral-valued parameter 

~then we can wrIte (B.12) as follows: 

Thus ln general we have 

" . t L (") = [ CC't - <~t)J 
~:, . 

(B.13) 

The passage tIme ~t has a finlte standard devlatl0n 0 WhlCh depends 

on the physIcal propertles of the glven solid. If we recogmze ~t ta 

,. 
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be lndependent identically dlstributed random varIables It wl11 follow 

From the Central Llmit Theorem (see Coro11ary to Theorem 4.7.1 of 

RénYI, 1970) that: 

Li.m p{ rd") -/1 <"r) < x J = ~()() 
n-.oo DVh 

(8.14) 

The above result Indicates that for a fIxed large n the d~lbutIon 

WIll be close to the standard normal dlstrlbutlon 

we can conclude that P {t l. (,,)J w1l1 be close to a 

(B.15) 

~(xD\{;;") . 
1 

Thus, 
,... , 

general normal 

dlstrlbutlon WhlCh wIll eVldently depend on t as ~ 

'" 

" 

/ 



" . 

147 

APPENDIX C 

MONTE-CARLO SIMULATION PROGRAMS 
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( 
) 

) 

) 

) 

r 
) 

) 

) 

:) 

1 
2 
3 
4 
5 
6 
7 
a 
9 

,1) 
11 
12 
13 
14-
15 
15 
17 
la 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
3) 
31 
32 
33 
34 
35 
36 
37 
38 
39 
4-0 
41 

4-2 
43 
44-
45 
405 
47 
48 
40~ 
50 
51 
52 
53 
54 
55 
56 
57 

S W A TF 1 V • l' 1 ,.. E =5 99 • P AGE S =99 • ~ a EX T 
1 M P _ 1 C 1 T REA L * sc ~ - z ) 
DIMENSION VUO"TllO) 
INT:GER ,1 ,J.IR.I<.Y 

5 
10 
1 
2 

7 

IR= 1 
1<=5"*13 
MURO =89 00. 00 
MU E= 14.459010 
SGRO=O. DO 
SG:=MUE/l CCO 
Da 2 J= 1. 10 
V (J) =1. DO 
T(J)=O.DO 
y=o 
ROO=MUR 0 
EO=M UE 

\CO=DSQRT (EO/ROO ) 
1'0=0.0001 DO/CO 
DO 11=1.10000 
CALL CODS (K, IR. NI. N2) 
ROI =MURO+ SG RD. NI 
E 1=~ UE+SGE *N 2 
Cl =OSQRT (El/ROI) 
T 1 = O. 0 0 0 10 0 .le 1 
KAPA=ROl$CI/ROO/CO 
CTR=2/ U +K.APA) 
V( J) =V( J) *CTR 
T(J)=T(J)+TO 
TO=TI 
Y=Y+ 1 
ROO= ROI 
CO=: 1 
IF«I/IOOO).lOOO.EO.I} GO TO 5 
Ga Ta 1 
~RITE(6.10) V,T{Jl.V(J) 
FORMAT'( / .. 5X. 17/,20 22. 12) 
ceNTI NUE 
CONTI NUE 
WRITE(6.7) K. IR 
FORMAT (/.5X.' K='. III .5x,' IR='. 1 Il) 
sn' 
END 

SUBROUTINE ODOS(K,IR.M ,N2) 
IMP,- IC 1 T REAL*8( A-z) 
INTEGER K~ IR 
PI =3. 1415926535897900 
IR= IR *K 
IF tIR.LT.O) IR=IR+2*C2**30-1 )+2 
R =0= LOA Tt 1 R) .12. 0 O*~ 31 
Rl=R 
(R=l R. K 
IF(IR.LT.O) ÎR=IR+Z*(2**30-1 )+2 
R=DFLOAT(IR)/2~DO**31 
R2=R 
." 1=0 SQ~ T{ - 2*DLO'G (RI) )*DCOS(2*PI*R2) 
N2=OSQRT (-2*OL:JG(Rl) )*OSIN( 2~ UR 2) 
RETURN 
END 

- ---- - ------

Flg. C-l Slmulat~on Progr~m for a l-D Madel 
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FORTRAN 1 V Gl RELti;ASE Z. 0 MAIN DAT E :: 83045 22/57/.4 

0001 
0002 
0003 

0004 
OOI}5 
0006 

1)01] 7 

0008 
0009 
0010 

0011 
0012 
0013 
0014 
0015 
0016 
0017 
0018 

O~ 19 
0020 
0021 
01)22 
0023 
OO?4-
O!)25 
0026 
0027 
0028 
0029 
0030 
0031 

... c •••• _ ......... * 
2 FILE NAME 15 'RUMA' FILE OPENED ON 14-1-83 '] 
C •••• * ........... * ••••••• ** •••• * •• * •• * ...... * ...... * ...... * •• * •• * ....... .. 
C •• ** ............ ,. .................................. ** ••••••••• 
c. ~ON1E-CARLO SIMULATION FOR 2-0 MODEL WITH CONSTANT LE~~rH .* 
C. P~M FOR 100 INTER ACTING SEQUENCES WITH MIXEO.R.N. OF ~~~D •• 
C. S •• 13 AND 7 •• 11 OIFFER5 FROM 'M20' FILE IN ENERGr EX:~'~GE 
C •. lN TRANSVERSE DIRECTION ' 
C ..................... ** •••••••••••• *** •• * ****** ••• * ........... . 
C 
C 

1 NFLIC IT REAL.S{ A-Z) 
~E A.. RANGE (4) .RANGET (4 •• RANGE 1 (4) lORAN GE2( 4) ..!L
OItlEN510N E(150),VeI50) ,T( 150).C( 150) .RD(150J ,FVe 15CH ,VI (150,10), 

• r 1 fi 50 • 1 0 ) • YF V ( 1 50.1 , • C R ( 150 , ,CR 1 ( 150 , • OS ( 150 ) • 
• ROt( 150 ) ,E l( 150 J • FT ( 150) 
~ , V G ( 15 0 • 1 0 ) • C 1 ( 1 50 ) • V 2 { 150). T 2 ( 1 50 ) • j:J T ( 1 50 , .v C ( 1 S 0 ) , r ~, 1 5 0 • 1 ) 
... 'le ( 150' • VU ( 150) , 'ISle R ( 150) • P ( 150) • Pl( 150) • 
i PI2C1SO,.P20S0) ,ve 16S),YT(16S' 

1 N TE GE RI. J • 1 R • K. X • N. 1 K , JK • L • M , N.I • NC. 1 C , N r • r RI. KI • L.I , _ ~, J CT 
DATA RANGE/O.9S1.1.001.0.0.1.0/ 
DATA RA~GE2/0.0.1.0.0.981.1.001/ 

C •• * INITI4LlSING MEAN ~O S~O. OEV. OF O~NSITY ~NO YOUN~'~ ~OOUL4S.* •• 
~U~~8900. DO 
MUE=14 .459010 
SGAO=MURO/500 ~ 
SG E=MUE/l 000 ~ 

C +++++LENGTH OF MICRO ELENENT ASSIGNED+++++ 
il = 0.000200 
L.I:zIO 
~= 100 
00 63 1 =1. L 
DO 63 .I=I.Ll 
V1CI.J)=O.DO 
T 1 U • J ) =0 .00 

63 C Ol\T INUE 
C ====z=:=============:=::.:;;============;===============:a;;==:: 
C **** MAIN PGM ST ARTS( IN FIRST CASE SIMULATION WITH SEE) 
C ~**13 WILL BE OONE .NEXT WITH 1**11 
C ===:========:====:===========:==-==-===========:~=============== 

2 ", 

IR=! 
1 R 1=1 
1(=~*.13 
KI =7 •• JI 
lK=O , 
DO 2 l=l.L 
vc CI ,= 1>.00 
AD cr )=MURO 
E C 1 )=MUE 
C ( IJ=DSQRTC MUE/MURO) 
T ( 1) =0/ C ( 1 ) 
COPIT INUE 
N.I=1 

~, 

..... 

.ç:-
\0 

'!-\ ...... '~ ........ ~~~;. 



• i 
} 
~ 

.J 

1 
j' 

~ 

"'Tl ..... 
lO . 
n 
1 
N 

n 
0 
:J 
tT .... 
=:1 
c: 
CD 
0. 

FORTRAN 

0069 
0070 

0071 
0072 
0073 
0074 
0015 
0076 
0077 
0078 
0079 
0080 
0081 
0082 

0083 
0084 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 
0093 
0094 
0095 
0095 
0097 
OiJ98 
009,9 
0100 
011)1 
0102 
0103 
0104 
0105 
0106 
0107 

0108 

0109 
0110 

.a 

~. 5W,e~?1 .. ~~~..a!&.~"·_~-~-

IV -Gl 

". 

~ 

RELEASE Z. 0 MAIN DATE = 83045 

.... 

.19 CO"TINUE 
17 :: b"T lNUE 
C * **. ** •• ***.* ••• * ** ••••• * ••• * ••• ** ••• **.* ••• ** ••• *.**** •••• .v • • * •• *.* • 
C MAIN PART OF MAIN PGM. FINISHEO . 
C .**~ •• ***.* •••• ** •••• *.* *.*** •••••••••••••• * •••••••••• * ................ . 
205 

203 

25 

IIIRITE(6.205) 
~O~MAT(lHI.20X.·VELOC[TY METRIX') 
.RITE(6.25)((Vl(I.J •• J=1.5).I=I,L, 
.. RITE' 6.203) 
FO AM4T ( 1 Hl .20X.· CONT INUAT ION' ) 
W R IlE« 6.25) ( ( VI ( 1 • J) • J=6. 10 , .1:: 1. L ) 
FO~MAT(/.5X.5D22.12} 
III RITE C 6 • 26 ) 
.. R JT E ( 6 • 25 , ( , T 1 ( 1 • J) • ..J= 1 • 5) • 1 = 1 • L ) 
'" R ne ( 6 .2'03 ) 
MI R JT E ( 6 • 2 5 ) ( ( Tl ( l , J) • J= 6 • 1 0 ) • Ill: 1 • L ) 

26 F 0 FlNAT ( IH 1.20 X. • T HE MA TR 1)(' » 

," 

, 
C ..... * •• ****.* •• **** ......... ***.*~ •••• * ••••••••• * ••••••••••• 
C CLCULAllON OF 'MEAN AND STO. DEv. O~EL. AND TIME AT EAC1 STN. 
C ** ... *.*****************************.*.********.******.* ••••• 

83 

81 

M=Q 
00 667 JKsI.LJ 
M= ,.,+1 -' 
S= 0.00 
S 1=0.00 
SI 2=0.00 
S2aO.Oa 
DO 83 J=I,L 
FV CJ'=V1 (J,M) 
FTU}=T1(J.M) 
00'81 I=I.L 
S=S+FV([) 
SI=-SI+FT(lJ 

~, 

SI i=SI2+(FVCI )).*2 
S 2aS2+CFT (1)' •• 2 
,co tlT INUE 
XR=L 
P ( JK)=S/)(R 
Pl (JK) =Sl/XR 
PI2(JK)=DSQRT(SI2/XR-P(JK) •• 2) 

\:cr 

1 PZ (.no =OSQRTCSZ/)(R-Pl (JK ' •• 2) 
667 , CO"'TINUE ~" 

. liRITE(6.456) • 
.. RoITE( 6.676)(P(1 ),P12( 1 ',P"l ([ t.P2( 1),I=t,LI) ..... 

... 

456 FO AMAT (1 Hl./1 / .24)(.' ~AN-VELOC 1 TV' .8X • '51 GMA-VELOCI Tt'. 3X.' MEAN
.rl~E·.8X.·SIGM.-TIME·.///) 
FO~MAT(//.2~X.4D22.12) 676 

C .* ...... * •• **** •••••• ** •• ** •••••••••••• * ••• *** ••• **.** ••••• - ••••••• * •• C 
C lNTODUCING DISTANCE ROW & AND PLO~OF VEL. AT DIFF. il~.' 
C •••••••• *.* ••• ** ••••••••• * ••• * •••••••• ** ••• * ••• * .................... ** ~ 
C ~ 

o SC=o.oo 
00 88 [= 1 .L 1 

- ..J ..... ~_~ ......... ~_ .... ~~ __ .... .a-_ r. __ .... _ 

....... _.- .. ~!, .... - ~~~, & "' ..... -...--
-'- _ ,< __ ,_ 1~_.-" 

t 

\ 



0143 
0144 
0145 

~ 0146 

~ () 

( 

RELE~SE 2..0 M~IN DAI E = 830.5 22/57/." 

88 
OS([)=SC+(1.00/Ll) 
sc-ose 1) 
1:)0 22 I=I.LI 
lO 22 J=l.L 

22 VG(J,I'=Vl(I.JI 
C *****. PLOT OF VELr AT EACH O.lMTR DIT OF BAR TILL IMTR ~.~.** ••• 

. ,-CALL GRP3(OS.VG,L) , 
C .* .. PLOT OF Y(T'.PCV),PCT, GRAPHS Ar EACH 1000 MICRO-~_i'~~TS ••••• 

N'CO 

813 

00 66 JK=l,LI 
M=M+I 
DO 813 J:l,L 
YF"(J,I'=Vl(J,N) 
FV(J)=YFV(J.l) 
I=T(J)=Tl(J.M) 

..... ,-. 

R E AD (5 • * ) ( R ~ NGE 1 ( l' • 1= 1 • " ) 
C ...... *. TIME VS. VELOCITY GRAPH 

CALL GRP2(FT,YFV.RANGE1.L) 
J=l 

AT EAC HO. 1 NTR. LENGJ i' U; BAR **.* 

CALL SORTe J.FV) 
CAl.L SORT ( .J. FT) 
-.RtTE (6.l0.', , 

104 FORMATCIH1./I/,40X,'VELOCITY',9X. ' P'V)·) 
C .......... PCV) GRAPH 41: EACH ST4T10N ••••••••••••••••••••• 
105 

CAU- GRP. (FV.RANGE.L) 
IIRITECO.10S) . 
F 0 AM 4 T ( l:H l ,/1/ • 4 ~ x. • TI ME' .9 X , 'P ( T ) , ) 
READ(S,*) (RANGEt(I',I=l,4) 

C ** •• .t......... peT) GRAPH AT EACH 5TH ••• * ....... * .......... . 
66 

CALL GRPl(FT.RANGET.L' 
CO"T INUE 
~0121=1.Ll 

12 y P CI • 1 ) =p ( 1) 1\ 

C =====.:=========================::===== ======::=~==::.===a == ----
C PLor OF DISTANCE VS ME4N VELOCITY . 

C~UL GRRP2(OS,YP,RANGE2.Ll' 
C ======:====:=======:==============~=Z~~=======:=====;:aa . . 

AEAO(5.*) (Y(I).1=1.61) $>-

c ------------~----------~-------------------------------------C PLOT OF PCV, GRAPH l .... ZET~ PLOTTER 
CALL GV(P.P'l2,Vl.Y.L.Ll) 

c-~-~--~---~---~--~~---~~----------~~-----~~-~---~~~~-~--~~ C Pf-OT OF P(T) GRAPH IN ZETA PLOTTER 
RE AD (5 •• ) ( YT ( 1 J • 1 = 1 .61 ) 

c ••••••••••••••••••••••••••••••••••••••••• • ., ••••••• ••••••••••••• 
C~LL GT(Pl.P2,Tl.YT.L.Ll) 

478 
~ R nE ( 6 ,4'7 e ) K , KI. J R. 1 R l , 
F 0 RM AT ( / • 5 X • • K =' • 1 1 1 • 5 X • • KI' • 1 1 1 • 5 X •• [R=' 0" [ 1 1 • 5 x. • 1 ~ 1 =' • [ 1 1 ) STCP .' . 
EN9 

.~ 

~ *a~TlaNS IN EFFECT* NOTERM.ID.EBCDIC.SOURC~.NOLIST.NOOEÛ(.LO~D.NaM~p.NOT~iT ~
j 9147 

. t *OPT 1 ON5 IN EFFECT* ". ..... E = M"'IN • LINECNT = 56 
'J *5TATI5T1CS* 50UR;~ STATEMENTS = 147.PROGRAM SIZE = 74650 

, 

1-' 
V1 
1-' 

l' 
i 
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,'-"'" 

"'Tj 
\00. 
\0 

n 
1 
~ 

Ul 
\00. 

3 
c: ..... 
II) 
("1" ..... 
0 
::J 

-0 ..., 
0 

\Q ..., 
II) 

3 

...... 
0 
'1 
II) 

~ , 
0 

j ~ 
0 
0.. 
en ..... 

-r 
f:1. 

'--

_ ~""J..".,,._'!"~"-,<--"'~"~ f'~..J 

"" 
",-.... 
, 1 

ORTRAN IV GI RELEAsE Z.G ~~IN 04T E 2: 83064 1~/35/41 

0001 
0002 

0003 

0004 
0005 
0006 
0007 
0008 

!0009 
l0010 
:0011 
:0012 

0013 
0014 
0015 
0016 

0017 

0018 
0019 
0020 
0021 
0022 
0023 
0024 
0025 

e MONI e.-CARLO S l'''ULATI ON FOR THREE DU4ENslO NAL ~400EL Wl TH 
C COJlb'. LENGTH 
C 
C 

l "'PLIe 1 T RE4L*8( A-Z' 
() (NENS ION V IN« 20.20 •• Ra l( 20,20).E 1 (20 ,20 t • el (20 .2Q J, 

• T (20.20) ,R02(ZO.ZO, .E2(20.20' .C2 (20. ZO) .VTR(ZO,20). 
i VE(ZO,ZO'.VW(20.20),VN«20,20),VS(20.201,VST«20,20.2J). 

... 

C 

s TST( 20.20 ,20, ,AVs(2 0). SVS( 20) ,ATse20 ».STS (20'. Y( oS), VJl65) 
lNTEGER (.J.~.L.M.N.Ll.IR,IRI.KI.tK,II.Jl.(N,MI.N2.Z.'J.IL.JK.le 

C (l) 
e 

e 
C (2) 
C 
c 
C 

c 
e (3) 
e 
C 
e 

lNITIALISING PHyslCAL PAOPERTIEs OF ~.E. 

ItURO=8900 .00 
NUE::l4.459010 
5 GAO::MURO.l'200. 00 
SGE=MUE/1000.OO 
0= 0.000200 

SIZE OF BAR 15 INTRooueEO. B4R IS MAlE OF SEVERA!.. B_J~<~ OF M.E. 
~=~ow DIMENSION & M=COLUMN DIMeNSION OF EACH BLOCK. ~.~a OF BLOCKS 
OF ~ICRO ELEMENTS. L1= PRINT OUT REQ). AFTER CERT41N ~_OCKS OF M.e 

~=10 
N=10 
N=fOOO 
~l=N/IO 

GENERATOR .& 5E~0 VALY~S ASSIGNEO. 2 GEN. USEO FOR ~;~~~ATING TWO 
DIFFERENT TYPES OF R.N\ sa THAT TRAINS OF R,N. G~N~i~r;o 
BY DIFF. seEO & GENERA TOR COMPENS4TE EACH OTHER 

1 ~=l 
1 Rial 
K=S •• 13 
K 1=7.*11 

(" 

C ~ 
C (4' IK IS USEO Ta FI~L UP VELOCITY & TINE STOR4GE MATR!X 4T DIFF. STN. 
e 

l K=O 
C ..' C CS) 4ssfGNING PHYSICAL PROPERTIE5 Ta 15T BLOCK OF M.E. 
C . -

1 
C 
C (6) 
C 

DO 1 1=I.L 
DO 1 J=l. M 
"1 M 1 •• "=1.00 
ROt ( 1 • J ,::: "'URO 
El CI. J ) = MUE 
Cl' J, J )=D SORT (MUE/MURO) 
T (ltJ.=D/Ct( I.J. 
::'pI'\T INUE 

SIMULATION STARTS FR'OM HERE I.E.FROM 2NO BLOCK OF "'.;;,. 

- ~-. ~.......,~ ~"'- -" ... _"" ............ ~ .... -

\;. 

..... 
lJ1 
N 

",.::::,.'~l ..... J.o....w.'!~!';:;~: ... -....:t--s_ ~:...:....~~ 



~', ,-

~ .-

... 

FOR-':RAN IV G'l RELEASE 2.0 MAIN DA' E :: 83064 131'351'41 

~ 
1-' 

\Cl . 
n 
1 
'vi 

n 
0 
::J 
~ .... 
:J 
c 
CD 
C-

• 

""-

-0026 

0027 
0028 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
003~ 
0037 . 
00,38 
0039. 
0040 

0041 
0042 
0043 
00"4-
00.5 
0046 
0047 
0048 

0049 
0050 
0051 
0052 
0053 
00S4 
0055 
0056 
0057 
0058 
0059 
0060 

, 0061 
0062 
0063 
0064 
0065 

~ 

'\ 

Ga .... ,,-- -.----- ~ ~ ----- ---

.~ 

DO 2 Il =2. N 
C • ••••• •••• LOOP _2 GIVES NO OF BLOCKS OF M.E.INVOLVEO 
C 
C --------
C ---,..---
C --------

THE. RANDOM PHYSIC4L PROPERTlaS (R02 & E2» 
ARE GENERATED FROM 5 •• 13 SEE~ FOR 000 NO. OF ~_aCKS 
AND FROM 7 •• 11 SEEO FOR EVEN NO. OF BLaCKS C 1 

.. 
5 

DO 3 1=I,L 
00 3 .J:cI.M 
IFCtI1'2.2.NE.11) GO Ta 4 
CALL RAND{KI.IRl.NI.N2} 
IFCIII'2*2.EQ.(1) GO TO 5 
CALL RAND CK,IR,Nl,N2' 
R02CI,J'=MURO+SGRO*NI 
E2(1.~)=MUE+SGE.N2 
C2CI.~)::OSQRT(E2(I.J)/R02CI.~») 
I( 1 • .J'-T(I • .J)+(O/C2(I,.J») 
KAP4=R02(I.J)*C2(I,J)I'R01(I,J)~Cl(I.J) 
CT FI=2/' 1 +KAPA , 
VTR(I • .J'=VIN(I.J}*CTR 
C;OtlTINUE 3 

C 
C 
C 
C 
C· 
C 

(7' ENERGY EXCHANGE AMONG MICRO ELEMENTS IN 4 BLDCK 

6 

7 
C 

9 

10 

tl 
12 

/ 
-13 

81 
8 
C 

~*.... .... ASSI GNING VELDC"ITI ES. TO aUTE R M. E. OR SAY T 1t;. 
... •••••• M.E. AT THE BOUNDARIES 

00 6 J=I. M 
V N Cl .~ )=VTR (1 • J) 
VS(L.J)=VTRCL.JJ . ~ 
CO"TINUE 
[)O 7 1=I.L 
VWCI,l'=VTRCI,l' 
VE C [ .N )=VTR( r .M} 
CO"'T INUE 

==ac=~= CALCULTION OF VELOCITIES FOR INNER M.E. AF'~~ lNrERACTION 
00 8 1=I.L 
DO 8 .1=1. N 
IF'(I.EQ.L).ANO.~J.EQ.M») GO Ta 14 
lFCJ.EQ.M) GO TO 9 
(APAE=R02 (1. J+l) *C2( 1. J+1) l'R02( [. J )l'C 2( 1. J) 
IFCI.EQ.Lt GO TC 10 
~APAS=R02(I+l.J).C2CI+l.J)'R02(I.J)'C2(I.J) 
IFCJ.EQ.M. Ge.TO II 
VECI.d)-DSORT««VTR(1.J).*2'+(KAPA;*(VTR(I.J+l))*.~'l/CKAPAE+l') 
IFC4.EO.L) GO TO 12 
VS'I.~)=DSQRT«("VTR([.J) •• 2'+(KAPAS*CVTR'I+l.J)j4~ljJ/CKAPAS+l) 
IFCJ.EQ.N) GO TO 13 
VWCI,J+l':VE(I.J) 

IFCI.EQ.LI GO TO 81 
:1. VMI+l.J'=VSCI.J) 

'\4 CCNTINUE 
CCNTINUE ....... 

VI 
VJ 

~- ~~ --..... _ .. ~.l:; /'( "t 
,,~. '~~'~L l; '> l, ~""c" -~ i,. ~ • .!'.,..J' 1..> .......... ' .... ,,_0;: 
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~ --
FORTRAN IV Gl RELEASE 2.0 MA-IN DAT E = 83064 13/-35/41 

c 
C 
14 

aaw.~a INCIDENT VELOCITY C4LCUL4TED FOR 2ND BLOCK CF M.~. 

DQ 15 l=l.L 

~ 

15 
C 

. 0 Cl 1!5 J= 1 • N 
VI~(I.J)=DSQRT«VECI.J).*2+VW(I.J)**2+VN'I.J)**2+VS".J ~*.2)/4.00) 
::Ol'T INUE 

C (8) 
C 

UPDATING OF PHYSICAL PROPERT.IES 

DO 16 l=l.L 
DO 16 J=I. M 
R01(I.J)=R02(I.J) 
Cl (1. J t=C2 ( 1. J t 
CO"T (NUE 16 

C 
C 
C 
C 

ST~RII'G OF VELOCITY AND TIME~"'ATR[X(20MATR[X) 
EA.H l'EOD. -NO. OF BLOCKS 

IF(II/L1*Ll.NE.II' GO TO 2 ' 
IKaIK+l.. 0 

00 17 1=I.L ~ 
00 17 J~l.~ 
VS1(I.J.IK'=VIN(I.J) 
TST(I.J.IK'=TCI.J) 

17 COl'T INUE 
C -------- LODP .2 ENOS HERE ALSD NAIN PG~ ENDS 
2 CO~TINUE 
C . 
~( 10» PR,INTI NG OF VST & TST M'.TR IX 

.J 1""'1"5 
- 1 H::O • 

!) 0 18 1 J= 1 • 1 K l' 
141=0 
142=0 
1 N=IN+ 1 
ZaiN 

AFTER 

19 
20 

FOltMAT( lHI ,.f.f/.50X,·VELOCITY MATRIX AT STI\TION:'.12,) 
FO~MAT(lHl.///.50X.'TIME MATRIX AT STATION:'.I2J 
t) 0 21 1 L= 1 • .J 1 

21 

23 
lB 

lIIRITE(6,19)IN 
NI =142+. 
M2=M2H5 
WRITE(6.22.«VST(I.J.Z).J=~1."'2J.[=I.L. 
CO~TINUE t 
141=0 ~ 
142=0 1 
() 0 23 1 L= 1 •• 11 
N 1= ... 2+ 1 
142""'2+5 
lIIRITE(6.20' IN 
III R l'JE ( 6.22) UT ST ( 1 • J • Z) • J=M 1 .142) • 1 =1 • L) 
CO~T INUE 
COlloT fNUE 

.... ~f!' 'Ette ...... ~...., .. ~--.... ...... _.-.~ ... , 

..... -'VoI''''-'"I.b !.J.._H .. _--,);,1; .... .,!;:~_~-,..t: 

~ 'H[" -..... ; ,~"';:'l 

i~ 

V'l 
-10-
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1-'-
\0 

II 
1 

""'" 
II 
0 
::l 
roT 
1-'-
::l 
c: 
CD 
a. 

: 1 

... 
FORTRAN Iv Gl RELEASE 2.0 ~AIN DAT E = 83064 l3/35/41 

0107 22 FO~MATC/.5X.5022.12) 
C 
C (IL) CALCULA~ION OF MEAN AND STD. DEV. OF VELOCITY 
C . AND TIME AT D'FF. 5TN. 
C 

0106 1 CaO 
0109 DO 24 JK== ... 1 K '\ 
0110 
0111 
0112 
Olt3 
0114 S 
0115 
0116 
0117 
0118 
Ol19~ 
0120 
0121 
0122 
0123 
0124-
0125 
0126 
Ol27 
Ol28 
0129 
0130 
0131 
0132 

0133 

0134 
0135 
0136 
0137 
0138 
0139 

~ 

1 C~IC+ 1 
AV-a .00 
SV-O.OO 
4TsO.OO 
ST:O.OO 
00 25 I=I.L 
00 25 .J=l.N 
,YcAV+VST[ I,.J.IC) , 
SY=SV+(VSTCI.J.IC,1 •• 2 
A T =A T + T S T ( 1. J • 1 C ) 
ST=ST+(TSTCI,J.IC» •• 2 

25 CO .. T INUE 
X 1 ~L 
X2:::1:N 
x== )l1*X2 
AVS(JK)=AV)X 
SVS(JK)=OSQRTCSV/X-AVSCJK).*2) 
~T!(JK)=4T/X .' 
STS(JK)=DSQRTCST/X-ATS(JK) •• 2) 

24 COh-T INUE 
IIIR ITE(6.26' 
III R ITE ( 6 ,27 , ( A Y 5 ( 1 , • S VS, 1 ). AT 5 ( 1 ) , S TS' 1). 1 = 1 • 1 K ) 

26 FO~MAT(IHl.I//.26X.·MEAN VELOCITY·.8X.·SIGMA VELOC,Ti·.~X.· 
, lit E AN T 1 ME • .8 X • • SIG MA T t'ME' e ., / / ) , 

27 FOFlMAT(II.20X.4022.12) ~ 
C ........ '.* ••••• & •••• &* ••• * •• & ...................... * •• **" ** .. .. 
C PUT CF PCV, & peT' GRAPH 1:> 

C· ••• ,1 •••••• *** ••••••••••••• ** •••••••••••••••••• ** ......... .. 
READ(5,.) (Y(I'.I=l,61) 
CALL Wlivs.SYS.VSTeV.L.M) 
RE.O(S •• (YTCI).I=I.61) 
CALL ,STS.TST,YT.L.M) 
STCP -
END 

.OPTIONS IN EFFECT. NOTERM.IO,EBCDIC,SOURCE.NOLIST.NOOEC<.LOAO.NOMAP.Nur;sr 

.OPTIONS IN EFFECT. NA~E = MAIN • LINECNT = 56 

.ST4TlS~ICS* SOUR.E ST4TEMENTS = 139,PROGR4~ SIZE = 175904 
*STATISTICS. NO OIA.NOSTICS GENERATEO 

( • 
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r1 

1-' 
V1 
V1 

00 .... 
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