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Abstract 

Deformation will occur for the flexible structures undergoing large rigid-body 

motion such as the opening of an umbrella, which poses a problem falling into the 

category of dynamics of deformable bodies, an intersected area between structural 

dynamics and rigid-body dynamics. Based on the Euler-Bernoulli beam theory, an FE 

model is developed to simulate the process of deployment of an umbrella under a zero 

gravit y circumstance in which the structural FEA is adopted to define the displacement 

field of beam e1ements. The position of an arbitrary point on a body is located by a set of 

generalized coordinates of the system, inc1uding rigid and elastic sets characterizing rigid­

body motion and deformation for the components, respectively. After formulating the 

kinetic energy, potential energy and generalized forces of the system, the governing 

equations of motion with different holonomic constraint conditions corresponding to the 

stages of the deployment are then derived by invoking Lagrange's equations with 

multipliers. As for the validation of this model, a rigid FE model and a continuum rigid­

body model are also derived. The numeric process reveals that significant periodic 

vibration is induced on the leaf at full deployment if an initial velo city is applied on the 

sleeve of the modeled umbrella and the deformation of the members causes the retard of 

the deployment. Comparison of the results shows good agreement between 3-element and 

6-element models, and the deformable models are validated by the rigid-body ones. 

Although the formulation is based on the holonomic 2-body model, it is also applicable to 

a more complicated nonholonomic system. 



Résumé 

La déformation se produira pour les structures flexibles subissant le grand 

mouvement d'un corps rigide tel que l'ouverture d'un parapluie, qui pose un problème 

entrant dans la catégorie de la dynamique des corps déformables, un secteur intersecté 

entre la dynamique structurale et la dynamique des corps rigides. Basé sur la théorie de 

poutre d'Euler-Bernoulli, un modèle d'éléments finis est développé pour simuler le 

déploiement d'un parapluie dans un champ de gravité nulle dans laquelle l'analyse 

structurale en éléments finis est adopté pour définir le réseau de déformation des éléments 

poutres. La position d'un point arbitraire sur un corps est localisée par un ensemble de 

coordonnées généralisées du système, y compris les ensembles rigides et élastiques 

caractérisant le mouvement d'un corps rigide et la déformation pour les composants, 

respectivement. Après la formulation de l'énergie cinétique, de l'énergie potentielle et des 

forces généralisées du système, les équations du mouvement avec différents états 

holonomiques de contrainte correspondant aux étapes de déploiement sont alors dérivées 

en utilisant les équations de Lagrange avec des multiplicateurs. Quant à la validation de ce 

modèle, un modèle rigide d'éléments finis et un modèle de corps rigide continu sont 

également dérivés. Le processus numérique indique qu'une vibration périodique 

significative est induite sur la feuille au plein déploiement si une première vitesse est 

appliquée sur la douille du parapluie modélisé et la déformation des membres cause le 

retard du déploiement. La comparaison des résultats montre une bonne concordance entre 

le modèle de 3 éléments et le modèle de 6 éléments, et les modèles déformables sont 

validés par ceux les modèles de corps rigides. Bien que la formulation soit basée sur le 

modèle holonomique à deux corps, elle est également applicable à un système 

nonholonomique plus complexe. 
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Chapter 1 

Introduction 

1. 1 Background 

The deployment of packed defonnable structures such as a membrane antenna in a 

zero gravit y space environment can be characterized as a motion of high speed and light 

mass, in which the structures experience not only large rigid-body translation and rotation 

but also elastic defonnation at a certain level. In this case, the traditional rigid-body 

assumption is no longer applicable in light of the considerable defonnation that may 

threaten the intended functions of the structures. The reasonable way to simulate the 

process of deployment is an intersection between rigid-body dynamics and structural 

dynamics, in which Lagrange's equation is used to develop the goveming equations of 

motion. These equations always display highly nonlinear behavior because there exist the 

following inertial couplings: 

(a) couplings between elastic defonnation and rigid-body translation; 

(b) couplings between elastic defonnation and rigid-body rotation; 

(c) couplings between rigid-body translations and rotation. 

The fonnulations for the system with sm aIl defonnation can be categorized into a 

distributed parameter model and a discretized parameter model with corresponding 

strategies of solution. 

1. 1. 1 The distributed parameter model 

The distributed parameter fonnulation treats the pertinent components of the 

system as continuum bodies with distributed mass and flexibility. The independent 

generalized coordinates or constrained generalized coordinates can be adopted to describe 

the kinematic and dynamic aspects for each body and the whole system. Methods of 
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analytical mechanics such as Lagrange's equation and 10urdain's princip le are applied to 

derive the goveming equations of motion in the form of partial differentiation for the case 

of the independent generalized coordinates or algebraic-partial differentiation for the 

constrained generalized coordinates. 

This is often referred to as boundary-value problems with prescribed boundary 

conditions. For a complex system it is difficult or impossible to find the closed-form 

solutions because of the aforementioned couplings. So efforts have been concentrated on 

the discretization of the derived equations to transform them into ordinary differential 

ones by an approximate Galerkin method. Therefore, we can ob tain the discretized 

solutions to these closed-form equations. However, as we can see that fewer variables are 

involved in the equations of motion compared with the discretized formulations, they can 

provide a clear insight into the dynamic behavior of the system. 

1. 1. 2 The discretized parameter model 

The discretized parameter formulations include the assumed modes method and 

the finite element method. For the first method, the elastic displacement of an arbitrary 

point on a body is approximated by a series constituted from a linear combination of 

mode functions multiplied by time-dependent mode coordinates in a body-fixed frame. 

The mode functions can be found by solving the frequency equation of the body 

corresponding to specified boundary conditions or by experiment. Then we can express 

the position, velocity, and acceleration of that point with respect to the global coordinate 

system, and hence kinetic and potential energy of the body with these mode coordinates 

and other generalized coordinates related to the rigid-body motion. Once the totalities of 

the kinetic energy and the potential energy are computed, Lagrange's equation is invoked 

to derive the goveming equations of motion for the system in the form of ordinary 

differentiation, or algebraic ordinary differentiation if Lagrangian multipliers are 

introduced. 
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The formulation of the finite element method is to discretize each component of 

the system by a number of compatible elements and express the displacement field of 

deformation for an element with shape functions and nodal coordinates of the element 

according to FEA. Similarly, we can then describe the kinematic aspects of any point on 

the element, and calculate the kinetic and potential energy of the element with nodal 

coordinates of the element, and the generalized coordinates representing the rigid-body 

translation and rotation of the body, on which the element is attached. While the 

summations of the kinetic energy and the potential energy of all elements are derived with 

respect to generalized coordinates of the system, the mass matrix and stiffuess matrix for 

the bodies and the whole system can be assembled from those of the elements. By 

resorting to Lagrange's equation, we can finally arrive at the goveming equations of 

motion, also in the form of ordinary differentiation. 

The method of direct numerical integration can be used to solve these differential 

or differential-algebraic equations. 

1. 2 Description of the intended work 

The objective of this research work is to develop an FE model to simulate the 

opening of an umbrella with straight ribs and two hinges on each rib in a zero gravit y 

environment, which is deemed as the first step toward refined modeling of real space 

structures. The dynamic analysis will determine the induced stresses in the process of 

deployment and ensuing vibrations after the full deployment. 

There are seven chapters in this thesis. The second chapter is the literature review, 

which gives brief descriptions of the previous research related to this field. In Chapter 3, 

the physical model of an umbrella is first developed and the discussion is made on how to 

configure the coordinate systems necessary to describe the motion of a deformable body. 

Then the displacement field of a beam element defined by structural FEA is introduced to 

3 



locate an arbitrary point on an element of the body in the inertial frame using the vector of 

generalized coordinates of the body, which consists of rigid and elastic ones. 

Chapter 4 details the procedure to derive the differential-algebraic equations of 

motion by following the method of constrained Lagrangian dynamics. It is shown that the 

assembled mass matrix of the system is a function of the generalized coordinates of the 

system and the generalized forces are dependent on both the generalized coordinates and 

the generalized velocities of the system, aIl of which contribute to the nonlinearity of the 

equations of motion, while the stiffness matrix of the system remains constant. In this 

chapter, different constraint conditions and the corresponding Jacobian matrices are 

discussed in accordance with the process of deployment, the full deployment, and the 

rigid-body mode, respectively. As for the validation of the finite element models the 

formulation ofrigid-body dynamics is briefly dealt with in the last section ofthis chapter. 

ln Chapter 5, the strategy of solution is outlined and the conservation of energy is 

assumed to develop the initial velocities when the ensuing vibrations at the full 

deployment are analyzed. The numerical results and discussions are carried out in 

Chapter 6 and the thesis ends with conc1uding remarks on the main findings of the 

research and recommendation for further studies, in Chapter 7. 
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Chapter 2 

Literature Review 

As mentioned previously, the problem of the deployment of an umbrella falls into 

the dynamics of flexible structures experiencing large rigid-body motion, which is a 

hybridized area between rigid-body dynamics and structural dynamics. Many scientists 

and engineers have been putting efforts into this field and the achievements can be found 

in a large body of literature in which the methods can be categorized into the distributed 

parameter formulation and the discretized parameter formulation. 

2. 1 The distributed parameter formulation 

The distributed parameter formulation has been detailed by K. H. Low and his 

coworkers [9], Jorge Martins and the coworkers [11], B.V. Viscomi et al. [12], J. C. 

Simo and L. Vu-Quoc [16], and J. Kovecses [23]. K. H. Low and co-workers have 

derived dynamic equations for manipulators with both rigid and flexible links using 

Hamilton's principle, but without giving solutions. Jorge Martins and coworkers have 

developed a model of a planar manipulator with one flexible link in which the centrifugaI 

stiffening effect caused by the rotation of the link is considered and the solutions are 

given by discretization. B. V. Viscomi et al. have analyzed the bending response of a 

flexible link of a slider-crank mechanism by energy methods and have utilized the 

Galerkin technique to solve the governing equations of motion. J. C. Simo and L. Vu­

Quoc have proposed an approach, based on the finite strain rod theories, capable of 

dealing with the finite rotations to derive simpler dynamic equations than those 

formulated by the conventional floating frame of reference; and the Galerkin method of 

discretization is used similarly in the numerical examples. J. Kovecses has developed a 
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three-dimensional model for the kinematic and dynamic analysis of flexible robots by 

using Jourdain's princip le. 

2. 2 The discretized parameter formulation 

The discretized parameter fonnulation inc1udes the assumed modes method and 

the finite element method. By resorting to the assumed modes method, Alessandro De 

Luca [10] has derived the equations of motion for planar lightweight robot anns with 

multiple flexible links that are modeled as Euler-Bernoulli beams with proper c1amped­

mass boundary conditions. In the same way, R. A. Laskin et a1.[13] have developed the 

ordinary differential equations of motion for a free-free beam experiencing large overall 

motions by invoking Kane's equations, and special attention is given to the effects of 

rotation about the geometrical stiffening. M. Benati and A. Morro [22] have presented a 

dynamic model for a chain with flexible links using the Lagrangian fonnulation. 

As for the finite element method, Ji Oh Song and Edward J. Haug [15] have 

developed an FE model for the planar mechanisms with flexible members using the 

Lagrangian constrained generalized coordinates in which the origins of the body-fixed 

coordinate systems are fixed at the centroids of members and small elastic defonnation is 

assumed. I. Sharf [17] has discussed the problems caused by the linearization of 

displacement when dealing with the large-defonnation dynamics using the explicit 

nonincremental, nonlinear beam elements and suggests that the incremental approach is 

not suitable for a dynamic simulation. R. G. Langlois and R. J. Anderson [19] have 

proposed a fonnulation for the open and loop mechanisms with joint flexible bodies based 

on Kane's equation, taking into account the nonlinear defonnation and geometric 

stiffening effects. P. B. Usoro and co-workers [24] have developed an FE model for a 

two-link manipulator system based on the Lagrangian formulation. 

Rex J. Theodore and Ashitava Ghosal [8] have presented the results of a 

comparison between the assumed modes and the fini te element methods and recommend 
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that the assumed modes method be used for the uniform cross-section as well as for the 

single-link: flexible manipulators, while the finÏte element formulation should be used for 

the complex cross-section and for the multilink: flexible system. Madeleine Pascal [18] 

points out the ways to select the floating frame and how to introduce the geometric 

stiffening effect for the slender members. Ahmed A. Shabana [7, 20] has given detailed 

information about the formulations utilized in multibody dynamics and advocates that the 

floating frame of reference apply in the case of small deformation and the absolute nodal 

coordinate formulation for large defonnation. 

For the knowledge of structural FEA, structural dynamics, and rigid-body 

dynamics, we can refer to the pertinent books [1], [3, 14, 21] and [4, 5, 6], respectively. 

For analytical mechanics, H. Baruh [2] has presented a detailed explanation of how to 

select the body-fixed frame and the way to count the geometric stiffening effects. 

For the purposes of this thesis, the floating frame of reference and the more 

straightforward fonnulation of constrained Lagrangian dynamics are adopted to simulate 

the opening pro cess of an umbrella in which only the small defonnation is taken into 

account. 
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Chapter 3 

Physical Model and Location of Points of FE Model 

3. 1 Development of physical model 

An ordinary umbrella is usually composed of a folding frame on which a canopy 

is attached and one axle that ends in a handle. The folding frame consists of an even 

number of sets ofhinged leafs and links axisymmetrically distributed about the axle and a 

sliding sleeve joint by these links. The umbrella is opened and closed with the sleeve 

moving up and down along the axle. 

In order to analyze the dynamic behavior in the deployment of an umbrella we 

have to develop a simplified physical model expedient to simulate this process. 

Considering the characteristics ofaxisymmetry of geometry and elastic properties of an 

umbrella, the loads and the boundary conditions, we can change this spatial structure into 

a planar mechanism made up of one leaf and one link hinged at point a" without the 

fabric as shown in Figure 3.1. 

The sleeve symbolized as a slider joint at point H of the link can only move in the 

trajectory of the center line of the axle represented by the dash-dot line and stop at point S 

when full deployment is reached. The leaf can rotate about the point a' fixed on the 

center line. 

In this physical model the mass of the sleeve is neglected and the damping, 

frictional and temperature effects are also ignored. We further assume only small 

deformation is produced in the deployment of the umbrella and treat the leaf and link as 

uniform beams. So the Euler-Bernoulli beam theory is applicable here in which shear 

effect and inertia of rotation are neglected. The displacement field of an element 

considers both longitudinal and transverse deformations. The kinetic energy cornes from 

both rigid-body motion and elastic deformation while the potential energy originates only 
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from the elastic defonnation (so-called strain energy) because the gravit y is negligible in 

space. 

1 

1 

's 
1 

link 

1 leaf 

1 

1 

Figure 3.1 The physical model of an umbrella 

3. 2 Configuration of the coordinate systems 

This model takes into account both the in-plane rigid-body displacements and 

small elastic deformation of the bodies. To simulate the dynamic behavior of a 

defonnable beam by finite element method we need to use the three sets of coordinate 

systems shown in Figure 3.2. The inertial frame XOY is fixed and acts as a uniform 

reference base for rigid-body motion of each body and constraint relationships between 

bodies of the system. The moving frame X' 0 ' y' attached on a beam in undeformed status 

divides the motion of a body into rigid-body mode and elastic defonnation, which can be 

formulated by the finite element method. So it functions as a measurement base for the 

deformation of the body and compatibility of elements meshed on the body. The third 

frame is the element coordinate system xy that describes the displacements of the points 
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on the element i with node i and node j. The axes of the element coordinate systems are 

parallel to those ofthe moving frame and are fixed relative to it. 

The origin and orientation of the moving frame can be located by vector R and 

angle ct respectively. The origin of the element coordinate system of element i on the 

beam is measured by Xi in the moving frame. To define the position of an arbitrary point 

Q' on element i one has to find the undeformed position measured by x and the 

displacement u of that point with respect to the element coordinate system xy. 

o 

Figure 3.2 Coordinate systems for a moving deformable beam 

3. 3 Displacement field of a beam element 

Figure 3.3 shows the displacement components ofnode i and node j of a uniform 

beam element i mentioned in Figure 3.2, in which u, v and e represent the axial and 

transverse displacements, and the rotation or slope at corresponding node, respectively. 

We assume that the axial and transverse displacements between node i and node j 

are respectively approximated linearly and cubically as follows: 
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U= (l-7])ui+7]Uj (3.1) 

V = (1 - 37]2 + 27]3)Vi + l(7] - 27]2 + 7]3)8i + (37]2 - 27]3)Vj + l(7]3 - 7]2)8j 

in which 7] = T ' and l is the length of elernent i. 

In rnatrix format, we obtain 

{TI} = [N] {d} 

where {TI} = {~}, 

and [N] is the shape function, 

[N] = 

[

1-7] 0 0 7] 0 
o 1 - 37]2 + 27]3 l(7] - 27]2 + 7]3) 0 37]2 - 27]3 

{d} is the column vector of node coordinates of elernent i, 

{dl = (Ui Vi (Ji Uj Vj (Jj)T 

y 

Figure 3.3 Bearn elernent 
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3.4 Definition of the position of an arbitrary point on an element 

Now we can decide the position of an arbitrary point on element i of the beam in 

the inertial frame by a vector r., 

where 

r= R+ [A]({p} + {TI}) 

= R + [A]{u} 

Vector R locates the origin of the moving frame, and R = { ~: }, 

[ A] is the transformation matrix from the moving frame to the inertial frame, 

[ A] = [c?sa - sina 1 
sma cosa 

{p} is the position of the point in undeformed status and 

{p} = {Xi;X} 
in which 

Xi is the abscissa ofnode i of element i measured in the moving frame, 

(3.6) 

x is the abscissa of the concemed point measured in the local element coordinate 

systemxy. 

The ordinate of the point is zero because we assume that both the Xl -axis of the 

moving frame and x-axes of the element coordinate systems coincide with the center line 

of the uniform beam. 

{u} is the position of the point in deformed status with respect to the moving 

frame and 

{u} = {p} + {TI} (3.7) 

The geometrical expressIons of vectors {p}, {TI}, {TI} and r. are shown 

in Figure 3.2. 
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3. 5 Application to the model 

Figure 3.4 shows the slider at point H of the link can only move in the trajectory 

along the Y -axis of the inertial frame. The leaf can rotate about the point 0(0'), the 

origins of the inertial frame XOY, and the moving frame X' O'y' that is fixed on the leaf 

with the point 0" on its X' -axis. The other moving frame X" O"Y" is attached to the link 

with its origin at the joint 0" and with its X" -axis passing through the point H. 

Both the leaf and the link are deemed uniform beams with corresponding 

geommetric and material characteristics. To c1early describe the process of formulation, 

we place two beam elements on the leaf and one element on the link, which can be easily 

followed by more densely meshed finite element models. 

y 

X' 

X" 

G 

X 

Figure 3.4 Configuration of the model 
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The two elements on the leaf are divided by nodes 1, 2 and 3 at points 0(0'), 0" 

and G respectively, as shown in Figure 3.5. The displacement components ofthose nodes 

[onn the vector 

(3.8) 

which describes the elastic defonnation of the leaf. 

However, the moving frame X' O'Y' attached on the leaf passing through the 

origin 0' (node 1) and the joint 0" (node 2) means additional constraints are introduced: 

u=v=v=o 1 1 2 

which guarantees that no rigid-body mode exists in the moving frame. 

Considering equation 3.9, equation 3.8 reduces to 

{et} = ( (JI u2 (J2 u3 v3 (J3f 

y 

element 2 

undeformed 

y' 

element 1 

Figure 3.5 Configuration of the leaf 
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(3.10) 

X' 
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Then the vector of node coordinates of element 1 and 2 on the leaf can be 

expressed by vector {el} as 

{dI} = (0 0 ()I U2 0 ()2 ) T 

= [Bd{eI} (3.11) 

{d2} = (U2 0 ()2 U 3 V 3 ()3)T 

= [B2]{ eI} (3.12) 

in which [Bd and [B2] are transformation matrices: 

0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

[Bd = 
1 0 0 0 0 0 

and [B2] = 0 0 1 0 0 0 
0 1 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 1 0 0 0 0 0 0 0 0 1 

Similarly for the link in Figure 3.6, ifthere is only one element on it with nodes 4 

and 5 at points 0" and H respectively, the deformation vector can be found as 

(3.13) 

because of the constraints 

So the vector of node coordinates of the element on the link is 

{d3 } = (0 0 ()4 U5 0 e5 )T 

= [B3]{ e2} (3.14) 

in which 

0 0 0 
0 0 0 

[B3] = 1 0 0 
0 1 0 
0 0 0 
0 0 1 
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y 

X" 

~-------------------------------- X 

Figure 3.6 Configuration of the link 

In general form, the vector of node coordinates of the element j on body i can be 

expressed as 

where 

and 

. {1 1,= 
2 

for the leaf, and then j = 1,2. 
for the link, and then j = 3. 

Considering equation 3.15, equation 3.3 and equation 3.6 become 

{Uj} = [N]{ dj} 

= [N][Bj]{ ed 

ri = Ri + [Ad fUj} 

= Ri + [AiJ( {pj} + [N][Bj]{ ei}) 
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(3.16) 

(3.17) 



where 

- sinai land { .} = { Xj + X} 
cosa i PJ 0 

From this expression we may conclude that Ri' ai and {ei} are enough to locate 

an arbitrary point on element j of body i in the inertial frame. So we can form a vector of 

generalized coordinates by them for the body i as 

{q,} = {~n (3.18) 

with the size of 3( ni + 1) by 1, and ni is the number of elements on body i. In vector 

{ qi}, Ri and ai are called rigid coordinates that relate to rigid-body motion, while { ei} is 

named elastic coordinates conceming deformation of body i. These two sets of 

coordinates can be utilized to complete the formulation ofFEA conveniently. 

For the leaf, nI = 2, so there are 9 parameters in vector { ql}: 

{qt} = (Rf R~ al ()l U2 ()2 U3 V3 ()3f (3.19) 

Considering that the point 0', origin of the moving frame X' O'Y', is coincided 

with the origin of the inertial frame XOY, we arrive at, 

and equation 3.19 is reduced to 

{qt} = (al ()l U2 ()2 U3 V3 83? 
Corresponding to the leaf, equation 3.17 becomes 

rI = [Ad {Uj} 

= [Ad ({Pj} + [N] [Bj]{eI}) 

which locates an arbitrary point on element 1 or element 2. 

Similarly, 6 parameters exist in { q2} for the link: 

{q2}=(Rz R~ a2 ()4 U5 ()5)T 
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(3.20) 

(3.21) 

j = 1,2 (3.22) 

(3.23) 



and 

[2 = R2 + [A2]{u3} 

= R2 + [A2] ({P3} + [N][B3]{ e2}) (3.24) 

which locates an arbitrary point on element 3. 

Therefore, a vector with 13 components can describe the motion of the system, 

and can be expressed as 

{ q} = (al (J l U2 (J2 U3 V3 (J3 R~ R~ a2 (J4 U5 (J5) T (3.25) 
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Chapter 4 

Derivation of the Equations of Motion for the System 

4. 1 Kinetic energy of the system 

Once the position of a material point of the body is decided, one can find the 

velocity of that point by differentiation and thus formulate the kinetic energy of the 

system. 

Based on the Euler-Bernoulli beam theory, the shear effect and the rotary inertia of 

the cross section will be ignored. Therefore, the kinetic energy of element j on body i can 

be expressed as 

Tj = ~llpi ri' ridx j = 1,2,3; i = 1,2 (4.1) 

in which Pi is mass per unit length of body i and lis the length of the element. 

Detailed expression ofkinetic energy for each element is discussed as follows: 

where 

and 

Differentiating both si des of equation 3.22 with respect to time t leads to 

r) = [AI] {uI} + [AI] {1'Ld 
= [CI]{qd 

(j = 1) 

(4.2) 

(4.3) 

(4.4) 

which is the generalized velocity vector of the leaf. The dot means differentiation with 

respect to time t, while prime represents partial differentiation with respect to Dl, 

[A'] = [-sinD) -C?SDI] (4.5) 
) COSDI - SlllDI 

19 



Substituting equation 4.2 into the equation 4.1, we get the kinetic energy of 

(4.6) 

where [Ml] is the mass matrix of element 1, 

111 T 
[Md = 0 PI [cd [Cddx (4.7) 

and llis the length of element 1. 

By referring to equation 4.3 and considering XI = 0 for element 1, [Md can be 

partitioned as the following submatrices: 

Ml (1, 1) = 

(
1 2 2 1 2 2 1 2 1 2 1 2 2) 

Plll 3"ll + 3"ll U2 + 10511 el - 70 li el e2 + 3U2 + 105l1 e2 (4.8) 

with a size of 1 by 1. 

Ml (1,2) is the coupling term between rotation and deformation, 

Ml(I,2) = 
2( 1 1 1 

Pl II 30 (lI + U2) - -() +-() 
30 1 20 2 

1 
- -(lI + U2) 

20 
0 0 0) (4.9) 

with a size of 1 by 6. 
1 l2 

105 1 0 1 l2 
- 140 1 0 0 0 

0 1 0 0 0 0 :3 

M1(2,2) = Pl li 
1 [2 0 1 [2 0 0 0 - 140 1 105 1 

0 0 0 0 0 0 
(4.10) 

0 0 0 0 0 0 
0 0 0 0 0 0 

with size 6 by 6. 
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By symmetry, 
iD (lI + U2) 

- i081 + l082 

1 
Ml(2, 1) = Ml(l, 2f = Pll~ - 20 (lI + U2) 

o 
o 
o 

A full picture of [Md is shown in Appendix A. 

Similarly, the kinetic energy of element 2 can be formulated as: 

T2 = ~ {iI}}T(112pt[c2f[C2]dx ){iId 
1 

= 2{qd T[M2] {qd 

and l2isthe length of element 2. 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

By considering Xl = l} for element 2, the submatrices of [M2] can be derived as 

(4.15) 

1 1 
P}l2(0, - 60 (3l282 + 9V3 - 2l2( 3), 60 l2(2l2 + 5l} + 3U2 + 2U3), 

1 1 
- 60 (2l282 + 21v3 - 3l2( 3), 20 (7l2 + 10l} + 3U2 + 7U3), 

1 
- 60l2(3l2 + 5l} + 2U2 + 3U3)) (4.16) 

with size 1 by 6. 
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0 0 
0 1 

"3 
0 0 

M2(2,2) = P1 Z2 
0 1 

(5 

0 0 

0 0 

with size 6 by 6. 

By symmetry, 

0 0 0 0 

0 1 0 0 6 
1 Z2 

105 2 0 13 Z 
420 2 

1 Z2 
- 140 2 

0 1 0 0 "3 
13 Z 0 13 11 l 

420 2 35 - 210 2 
1 Z2 

- 140 2 0 11 Z 
- 210 2 

1 Z2 
105 2 

o 
- lo (3Z282 + 9V3 - 2i2( 3 ) 

loZ2(2l2 + 511 + 3U2 + 2U3) 
1 

- 60 (2Z282 + 21v3 - 3l2(3) 

210 (7l2 + 10i1 + 3U2 + 7U3) 
- lOi2(312 + 5i1 + 2U2 + 3U3 

[ M 2] is displayed in Appendix A. 

(4.17) 

(4.18) 

For element 3, differentiating both sides of equation 3.24 with respect to time t 

leads to 

where 

1'2 = R2 + [A2]{U3} + [A2]{173} 

= [C3]{ (h} 

in which [1] is the identity matrix of 2 by 2, and 

{ 
H2} 

{{h} = ~~ 

which is the generalized velocity vector of the link. 

and 

[A'] = [- SinCt2 
2 COSCt2 
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(4.19) 

(4.20) 

(4.21) 

(4.22) 



Substituting equation 4.19 into the equation 4.1, we get the kinetic energy of 

element 3: 

T3 = ~ {q2} T(113p2 [C3 f[C3 ]dx ) {qJ 

1 
= 2 {q2} T [ M3] {q2} (4.23) 

(4.24) 

and l3is the length of element 3. 

By considering X 3 = 0 for element 3, the submatrices of [M3] can be derived as 

[ 
l3 0 1 M3{1, 1) = P2 0 l3 (4.25) 

(4.26) 

with a size of 2 by 1. 

M3{1, 3) is the coupling terrn between translation and deforrnation, 

( ) _ 1 [ - t l3sinQ'2 COSQ'2 01 M3 1, 3 - - P2 l3 1 . 
2 6l3COSQ'2 SlllQ'2 0 

(4.27) 

with size 2 by 3. 

M3{2, 2) = 

2~ol3P2 (70l~ + 28~l~ - 3l~8485 + 140l3u5 + 70u; + 28gl~) (4.28) 

M3{2, 3) is the coupling terrn between rotation and deforrnation, 

M3(2,3) = :OP2l~(2(l3 + U5), - (284 - 3(5), 0 ) (4.29) 

with size 1 by 3. 

[ 

1~5l~ 0 O~] 
M3(3,3) = P2l3 ~ ! (4.30) 

with size 3 by 3. 

23 



By symmetry, the other components are 

AI3(2,1) = AI3(1,2)T 

AI3(3, 1) = AI3(1,3)T 

AI3(3,2) = AI3(2,3)T 

[AI3] in totality is shown in Appendix A. 

(4.31) 

(4.32) 

(4.33) 

From the expressions of the components of the mass matrices of these elements, 

we can recognize that the mass matrix is a function of rigid coordinate ai and elastic 

coordinates vector {ei}. There exist couplings between rigid-body translation and 

rotation, couplings between rigid-body translation and elastic deformation, and couplings 

between rigid-body rotation and elastic deformation, all of which will contribute to the 

nonlinearity of the dynamic behavior of the system. 

Recalling equations 4.6, 4.12, and 4.23, the kinetic energy of the system can be 

derived by summation as follows, 
3 

T= L:Tj 
j=l 

1 1 
= 2 {qd T([AItJ + [AI2]) {qd + 2 {q2} T [AI3] {q2} 

1 
= 2 {q} T [M] {q} (4.34) 

where [AI] is the mass matrix of the system with a size of l3 by l3, 

[AI] = [AIl +AI2 0 1 o M3 
(4.35) 

and {q } is the generalized velocity vector of the system, 

c11 
ë1 

{q} = R2 (4.36) 

c1z 
ez 
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4. 2 Potential energy of the system 

For the system to work under the condition of zero gravit y, the elastic strain 

energy of the components has to be the unique source of the potential energy of the 

system. According to Euler-Bernoulli beam theory with shear effect negligible, the 

potential energy for a uniform beam element j on body i can be expressed as 

III [ Il 2 1 2] Vj = "2 0 Ei Ii (v ) + A i( u) dx (4.37) 

where the prime means differentiation with respect to spatial element coordinate x, Ei is 

the modulus of elasticity, Ii is the area moment of inertia and Ai is the cross-sectional 

area ofbody i. 

From equation 3.16 we can arrive at 

u = (1 0) [NJ{ dj } 

v = (0 1) [NJ{ dj } 

Differentiating both sides of equation 4.38 with respect to x leads to 

(4.38) 

(4.39) 

(4.40) 

Double differentiation ofboth sides of equation 4.39 with respect to x leads to 

Substituting equation 4.40 and equation 4.41 into equation 4.37 leads to 

Vj = ~(dj)(lIEJi[N"r[~ ~l [N"]dx 

+ 1IEiAi[N'r[~ ~] [N']dX){dj } 

~(dj)[KJ]{dj} 
= ~ { ed T [KjJ{ ei} 

where [KJ] is the stiffness matrix of element j . 
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and 

[KJ] = [EJi[N'Y[~ ~ 1 [N "]dx + [EiA,[N y [~ ~ 1 [N'] dx 
Ai a a Ai a a --
Ii Ii 
a 12 6 12 6 

- a -
[2 l [2 l 

EJi 4 a 6 
2 - -

(4.43) - l l Ai 
symmetric 

Ii a a 
12 6 

- -
l2 l 

4 

and [Kj] is the stiffness matrix of element j expressed in the hody-fixed moving frame, 

[Kj] = [Bjf[Kj] [Bj] (4.44) 

[Kj] can he explicitly expressed as follows: 

For element 1, 

[KI] = [Blf[Ki] [Bd 
4 a 2 a a a 
a ~ a a a a Il 

El Il 2 a 4 a a a 
II a a a a a a (4.45) 

a a a a a a 
a a a a a a 

For element 2, 

a a a a a a 
a ~ a -~ a a Il h 
a a 4 a 6 2 

[K
2

] = ElIl -"1; 

a -~ a ~ a a l2 h Il 

(4.46) 

a a 6 a 12 6 
-"1; If -"1; 

a a 2 a 6 4 -G 

Similarly, for element 3 

[K,] = E,!, [ ~ a 

~] Al 
l3 a h 

a 
(4.47) 
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The potential energy for body i is the summation as 
3 

v= LV} 
j=1 

= ~{edT([Kd + [K2]){ed + ~{e2}T[K3]{e2} 
= ~{q}T[K] {q} 

where [K] is the stiffness matrix 0 f the system, 

0 0 0 0 0 0 
0 [Kd + [K2] 0 0 0 0 

[K] = 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 [K3] 

Considering equations 4.45 and 4.46, we can find 

412 0 212 0 

0 A I (lI+12) 0 _&lJ. 
Il h 

[KI] + [K2] = ~lll~1 
212 0 4(ll + l2) 0 

0 _&lJ. 0 &lJ. 
Il h 

0 0 -§. 0 12 

0 0 211 0 

4.3 Constraint equations and Jacobian matrix 

(4.48) 

(4.49) 

0 0 

0 0 

-§. 211 12 

0 0 

l?f -§. 
12 12 

-§. 411 12 

(4.50) 

The motion of the components of the system that are the leaf and link is 

constrained by joint points 0(0'), 0" and the prescribed trajectory (point H moving 

along Y-axis), as shown in Figure 3.4. So certain constraint conditions have to be 

satisfied and always hold from the start to the end of the motion if the system is to 

function properly. As shown in the foHowing subsections, aH the constraints are 
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holonomie and the formulation of eonstrained generalized eoordinates is adopted beeause 

it has an apparent advantage of calculating the constrained generalized forces in addition 

to the key motion parameters coneemed. That is also why the constraint J acobian is 

introduced. In the following subsections the eonstraint conditions in three cases are 

diseussed based on the 3-element mode!. 

4. 3. 1 Case 1: In the process of deployment 

In this subsection we will anaIyze the related constraints In the process of 

deployment from the start, but before full deployment is reaehed. 

In Chapter 3, the constraints at the joint 0(0') have aIready been taken into 

account when formulating the generalized eoordinates {q}, so it is not necessary to 

consider them again. 

At joint 0", node 2 on the Ieaf is coincided with node 4 on the Iink, i.e. 

where 11 is Iength of section 0' 0" on the Ieaf. 

Substituting equations 3.22 and 3.24 into the upper expression, we get 

- sina1] { 11 + U2 } = { R~ } 
cosa1 0 R2 

which forms the following two constraint equations 

<Pl = (11 + u2)cosa1 - Rf = 0 

<P2 = (1 1 + u2)sina1 - R~ = 0 

Recalling equation 3.17, the position of joint His 

T..H = T..231 
x=13 

RX l ) 
= { R~ } + [A2] ({ 3} + [N] IX=IJB3]{ e2} 

= { ~f } + [A 2 ] { 13 ~ U5 } 
2 

where the transformation matrix 
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(4.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 



- Sina2 ] 

COSa2 

In simplified component fonn 

rH = R2 + (l3 + U5)COSŒ2 

r'fI = R~ + (l3 + u5)sina2 

where l3 is the length of a" H on the link. 

(4.56) 

(4.57) 

(4.58) 

Because joint H is restricted to move on the Y -axis, the component rH on the X­

axis should always be zero, and this leads to the third constraint condition, 

<1>3 = R2 + (l3 + u5)cosa2 = 0 (4.59) 

The totality of the constraints is named 

{Cj({q}l} = GD = {a} (4.60) 

which is a function of generalized coordinates. 

In the case of the 3-element model, the vector of generalized coordinates is 

repeated here, 

{q} = (al ()l U2 ()2 U3 V3 ()3 R2 R~ a2 ()4 Us ()s)T 

Now we can derive the constraint conditions at velocity level by differentiation 

with respect to time t, 

a { Cl ( { q} )} {.} _ { } 
a{ q} q - 0 or 

[Jd {q} = {o} (4.61 ) 

where [Jd is the constraint Jacobian matrix, which is detailed in Appendix A. 

By differentiating both sides of equation 4.61 with respect to time t we can arrive 

at the constraint conditions at acceleration level 

[id {q} + [Jd {Ci} = {a} or 

[Jl]{ Ci} = - [j d { q } (4.62) 

where double dots mean the second-order differentiation with respect to time t, and the 

time derivative of the constraint Jacobian matrix is also shown in Appendix A. 
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Equation 4.62 will be combined with equations of motion of the system to fonu 

differential-algebraic equations for the system to analyze the dynamic response in the 

process of deployment. 

4.3.2 Case 2: an addition al constraint at full deployment 

When the system reaches the full deployment shown in Figure 4.1, the joint H 

moves to point S and is fixed at that point hence forward. The distance between point 0 

and Sis assigned as l4' So an extra constraint condition is added to those of Case 1. 

y 

X" 

~~~ ______ -L __________________________ ~ X 

Figure 4.1 The position of full deployment 

Considering equation 4.58, we get the fourth constraint 

<1>4 = R~ + (l3 + uS)sinŒ2 - l4 = 0 

The totality of the constraints then becomes 

{C2( {q})} = (<1>1 <1>2 <1>3 <1>4? = {o} 
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Similarly we can derive the constraint conditions at velocity level by 

differentiation with respect to time t, 

a{c2({q})} {o}_{ } 
a{ q} q - 0 or 

[12]{ q} = {O} (4.65) 

where [J2 ] is the constraint Jacobian matrix, which is detailed in Appendix A. 

By differentiating both sides of equation 4.65 with respect to time t we can arrive 

at the constraint conditions at acceleration level 

[j 2]{ q} + [12]{(j} = {O} or 

[12] {q} = - [j 2]{ q} (4.66) 

where double dots mean the second-order differentiation with respect to time t, and the 

time derivative of the constraint Jacobian matrix is also shown in Appendix A. 

Equation 4.66 will be combined with equations of motion of the system to form 

differential-algebraic equations for the system in analyzing the vibration at the full 

deployment. 

4.3.3 Case 3: Pure rigid-body mode with elastic deformation constrained 

As a totally different situation comparing to Case 1 and Case 2, we can take into 

account only the rigid-body motion with the deformation of the components neglected, 

from which we can conc1ude that aIl of the elastic generalized coordinates are constrained. 

For the leafthe additional constraints are 

(4.67) 

For the link 

(4.68) 

From equation 3.10 and equation 3.13 we know for the 3-element model the 

additional constraints are 

(4.69) 
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and 

(4.70) 

Because in this case only the rigid-body mode is considered, the generalized 

velocities {ci} should vanish once joint H moves to point Sand stays there when the 

system is assumed to be stationary. So we do not need to consider the constraint <I>4 

proposed in Case 2. 

Then the totality of the constraints becomes 

{ C3( {q})} = (<I>I <I>2 <I>3 <I>T <I>r? = {o} (4.71) 

In the same way we can derive the constraint conditions at velocity level by 

differentiation with respect to time t, 

a{c3({q})} {.}-{ } 
a{ q} q - 0 or 

(13]{ q} = {o} (4.72) 

where (13] is the constraint J acobian matrix, which is detailed in Appendix A. 

By differentiating both sides of equation 4.72 with respect to time t, we can derive 

the constraint conditions at acceleration level 

[j3]{q} + (13]{q} = {a} or 

(13]{q} = - [i3]{q} (4.73) 

The time derivative of the constraint Jacobian matrix IS also shown in 

Appendix A. 

Equation 4.73 will be used to fonn differential-algebraic equations in analyzing 

the rigid-body motion. 

4. 4 Generalized forces 

The generalized forces corresponding to the generalized coordinates can be 

derived by fonnulating the virtual work done by the external forces. 
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In this model we assume the force 

F={ 0 } - -FH 

acting at point H and FH ~ O. 

Recalling equation 4.57, we get the following variation of rH 

8r
H 

= {~~~ } + [A~] {{3 ~ U5 }8a2 + [A 2] {8~5 } 
2 

where the prime means differentiation with respect to spatial coordinate a2. 

The virtual work of the nonconservative force is 

8wappl.nc = F· 8 r 
- -H 

where 

{ ~~! } = [Bv] 8 { q} 
8U5 

in which [Bv] is the transfonnation matrix, 

[

0 0 0 0 0 0 0 0 
[ Bv] = 0 0 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 

1 0 0 0 000] o 100 
000 1 

Substituting equation 4.83 into equation 4.81 leads to 

8wappl.nc = ( Q ) [ Bv ] 8 { q } 
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(4.75) 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 



So the generalized forces are 

{ Qappl.nc} = (( Q ) [ Bv] ) T 

= [Bvr( Q? 

o 
o 
o 
o 
o 
o 
o 
o 

-FH 

- FH (l3 + uS)COSŒ2 

o 
- FHsinŒ2 

o 

4. 5 Governing equations of motion for the system 

(4.81) 

At tirst, we derive the equations of motion for the process of deployment of the 

system, which corresponds to Case 1, the constraint conditions described in Section 

4.3.1. 

Once the kinetic and potential energy, the generalized nonconservative forces and 

the constraint J acobian for the system have been found, the goveming equations of 

motion of the system are then developed by invoking Lagrangian equations with 

multipliers, 

a ( aL )T 
ai a{ li} 

(4.82) 

where Lagrangian 

L=T-V (4.83) 

and { À } is the vector of Lagrangian multipliers. 
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Considering equation 4.34 and equation 4.48 the Lagrangian becomes 

L = ~ {q} T [M] {q} _ ~ { q} T [K] {q} 

then 

(
aL )T a ( aL )T . a { q } = [ M] {q} ai a { q } = [ M] {fi} + [M] {q} 

(
aL )T ( aT )T 

a{q} = - [K] {q} + a{q} 

Substituting these tenns into equation 4.82 yields the following equations of 

motion for the system 

(4.84) 

where 

(4.85) 

and 

( 
aT )T 

a{q} = (4.86) 

As previously indicated, the constraint conditions always have to be met. 

Combining equation 4.84 with equation 4.62, we finally get the differential-algebraic 

equations for system 

[X -;rJ{ q = 

{ - [K]{ q} - [Ml{ q} ~ (a~~} r + {QnPl"no} } 

- [Jd {q} 

(4.87) 

which possess 16 unknowns. 
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The following is to find [U], the time derivative of mass matrix, and the spatial 

derivati ve of the kinetic energy 0 f the system (8 ~~) ) T 

Referring equation 4.35 leads to 

[U] = [ Ml + M 2 .0 1 
o M3 

with size 1 by 6. 

Ml (2,2) = [0] 

with size 6 by 6. 

By symmetry, 

Similarly, [JVh] can be partitioned as 

M2 (1,1) = 

( 
1 2 2 1 1 

Pllz ll'U2 + 3l2U2 + II U3 + 3l2U3 + 3U2U2 + 3U2U3 + 3U2U3 

2 2' 13. 13 1 2' 1 2 . 
+ 105128282 + 210 l2 82V3 + 210 l2 82V3 - 70 l2 8283 - 70 l28283 

2 26 Il Il. 2 2 .) 
+ 3U3U3 + 35 v3v3 - 105l2V383 - 105l2V383 + 105128383 
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(4.88) 

(4.89) 

(4.90) 

(4.91) 

(4.92) 

(4.93) 



M2 (1,2) = 

(
1. . 1 

P1 l2 0, - 60(3l282 + 9V3 - 2l2( 3), 60l2(3u2 + 2U3), 

1. . 1 1 ) 
- 60 (2l282 + 2lV3 - 3l2( 3), 20 (3U2 + 7U3), - 60 l2(2u2 + 3U3 

with size 1 by 6. 

with size 6 by 6. 

By symmetry, 

o 
l' . 

- 60 (3l282 + 9V3 - 2l2( 3) 

lol2(3u2 + 2U3) 
l' . 

- 60 (2l282 + 21v3 - 3l2(3) 

210 (3U2 + 7U3) 

- lol2(2u2 + 3U3 

For element 3, we have 

. [0 0] M3 (1, 1) = 0 0 

with size 2 by 3. 

1.13 (2, 2) = 2~Ol3P2 (4l~8ij4 - 3l~e485 - 3l~84e5 + 140l3u5 

2 .) + 140u5u5 + 4138585 

M3 (2, 3) = 610P2l~(2U5 - (284 - 3(5) o ) 

with size 1 by 3. 
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(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.99) 

(4.100) 

(4.101) 



M3 (3, 3) = [0] 

with size 3 by 3. 

By symmetry, the other components are 

A13{2,1) =A13 (1,2)T 

A13{3,1) = A13{1,3)T 

A13 (3,2) = A13 (2,3)T 

Then, the spatial derivatives of the kinetic energy can be expressed as 
âTI 

( aTI ) T { aal } 
â { q 1 } = (âTI) T 

a{eI} 

Because 

â [Md = [0] 
âal 

with a size of7 by 7. 

(4.102) 

(4.103) 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

(4.108) 

h c. Il . . b (âTI) Th· 1 d·· f k·· . h T e 10 owmg IS a out â{ el} t e spatla envatlves 0 metlc energy wlt 

respect to elastic coordinates { el} : 

( 
âTl)T (âTl 

â{ et} - âOl 

(4.109) 

where 

(4.110) 

(4.111) 

(4.112) 
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and 

8[M1] 
88 (2,2) = [0] 

1 

with size 6 by 6. 

By symmetry, 

a 
I 

( )

T 
a[M1] 8[M1] 2 

88
1 

(2,1) = 88
1 

(1,2) = Pl Il 

- 30 

a 
a 
a 
a 

Substituting equations 4.111 to 4.114 into equation 4.110 leads to 

8TI 1 '2( 2 2 1 2) 1 . 2. 
88 = 2PIIIŒI 105 1I81 - 70 1I82 - 30 PI ŒIl U2 

1 

By following the same way, the other 5 components of ( a~~:} ) T can be 

calculated, and further repetition of the process derives 

and 

8T2 

(a~:}r = {( :;:)T } 
8{et} 

(
8T3 )T 
8R2 
8T3 

8Œ2 

( 
8T,. )T 

8{ e~} 

(4.113) 

(4.114) 

(4.115) 

(4.116) 

(4.117) 

Now let us consider the equations of motion satisfying the constraint condition in 

Case 2 and Case 3. By referring to the aforementioned general process of derivation, we 

only need to exchange the constraint Jacobian of equation 4.87 for that of each case. 
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For Case 2 where the system arrives at full deployment we have 

[1 -;JlU}= 
{-[K]{q}-[M]{q} ~ (a~~}f + {Qappln<}} 

- [J2] {q} 

(4.118) 

by which we can analyze the induced vibration of deformation for the components. The 

equations involve 17 unknowns. 

Now we have developed the necessary two sets of goveming equations to 

simulate the opening process of the system from start to the full deployment. 

For Case 3, the pure rigid-body mode, we obtain 

[~ -;rHn= 
{- [K]{q}- [M]{q} ~ (a%}f + {Qappln,}} 

- [J3] {q} 

(4.119) 

from which we can calculate the related dynamic parameters of rigid-body motion. The 

equations inc1ude 25 unknown parameters. 

4. 6 Derivation of governing equations of motion by rigid-body dynamics 

Next we develop the c1ose-form goveming equations of motion for the rigid-body 

mode following the formulation of constrained Lagrangian dynamics. As will be seen 

later, these equations also display high nonlinearity and can only be solved numerically. 

Referring to Figure 4.2 we adopt QI and Q2 as the constrained generalized 

coordinates for the system in which only the inertial frame X GY is necessary. Then the 

(4.120) 
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where I~ is the mass moment of inertia of the leaf about joint 0, I; is the mass moment of 

inertia of the link about joint 0" and m2 is the mass of the link. 

Because we are considering the system without defonnation and gravit y, there 

exists no potential energy, so the Lagrangian 

L=T (4.121) 

Applying the same force condition as equation 4.70, we obtain the following 

virtual work done by generalized nonconservative force 

(4.122) 

y 

G 

x 

Figure 4.2 Configuration ofrigid-body system 

Considering the trajectory followed by the joint H, we have the following 

constraint equation 

(4.123) 
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The constraint J acobian is 

(4.124) 

Invoking the Lagrangian equation and considering the constraint condition, we 

obtain 

o 

(4.125) 

where l2 is the distance between joint a" and end point G on the leaf. 

Equation 4.125 can be solved in the same way as equation 4.87. 

42 



Chapter 5 

Solution of Equations of Motion of the System 

5. 1 Solution of the differential-algebraic equations 

As we can see from the previous section, the equations of motion for the system 

are a combination of differential and algebraic equations. The generalized coordinates 

inc1uded in vector {q} and Lagrangian multipliers of vector {À} must be solved 

simultaneously. For simplicity the aforementioned equations can be expressed as 

[Mel { ~} = {Q} (5.1) 

where [Mc] is mixed mass matrix of the system 

[Mc] = [M],. -oJT] ( ) . i = 1,2,3 (5.2) 

and { Q} is the mixed generalized forces 

{ 
_ [K] {q} _ [M] {q} + / aT )T + {QapPI.nC}} 

{Q} = \a{q} 
- [ji]{q} 

(5.3) 

Reca11ing the process of derivation of [Mc] and {Q} we find [Mc] is not a 

constant matrix but a function of generalized coordinates { q} and time t, while the mixed 

generalized force varies with the generalized coordinates {q}, the generalized velo city 

{ q} and time t, a11 of which contribute to the nonlinearity of equations of motion for the 

system. Equation 5.1 can be solved by numerical integration algorithms with associated 

initial position and velocity vectors. 

For a meaningful physical system where constraints are independently configured, 

the mixed mass matrix [Mc] possesses full rank so that it is not singular and therefore 

invertible. 
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Multiplying both si des of equation 5.1 by [Mc] -1 we have the solution 

{n ~ [Mcr1{Q} (5.4) 

further we can obtain { À } 

{Ci} = [Bq] [Mcr1{Q} 

{À} = [BÀ ] [Mcr1{Q} 

where [Bq] and [BÀ] are transformation matrices. 

(5.5) 

(5.6) 

Once the generalized acceleration vector {Ci} is computed, the position and 

velocity vectors at the next time step can be found by direct numerical integration. Here 

we resort to the Runge-Kutta algorithm, which demonstrates higher numerical stability in 

dealing with numerical integration. 

Assuming 

{Ci} = f(t, {q}, {q}) (5.7) 

where f(t, {q}, {q}) = [Bq] [M crI {Q}, then the recursive formula for {q} and 

{ q } can be expressed as 

. h 
{ q L+1 = {q L + h [ {q L + "6 (ali + aZi + a3i + a4i)] 

h 
{ q } i+ 1 = {q} i + "6 (al i + 2aZi + 2a3i + a4i) 

where h is the time step and 

The initial conditions necessary for the solution are 
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From the Lagrangian multipliers calculated ln equation 5.6, the generalized 

constraint forces can be computed as 

(5.11) 

As mentioned previously, the constraint conditions described by equation 4.60 and 

equation 4.64 have to be satisfied all the time. However, the method of direct numerical 

integration will inevitably cause accumulation of eITors because the parameters of motion 

are updated recursively, during which the data at the CUITent time step are based on those 

of last one. Sometimes the eITor may become so big that the constraint conditions will 

not hold. So at every time step we have to check if the following condition is met: 

Il Ci ( { q } ) Il :S te (i=1,2,3) (5.12) 

where Il Ci ( { q } ) Il is the norm of constraint vector Ci ( { q }) and te is the constraint eITor 

tolerance. 

In case of violation we have to adjust the time step h until the inequality in 5.12 

holds. 

5. 2 Determination of initial conditions 

As we discussed in the previous section, the deployment of the system is divided 

into two stages with different goveming equations of motion and constraint conditions. 

Now we shall figure out the initial conditions for each stage. 

5. 2. 1 Initial conditions for the first stage 

5. 2. 1. 1 Initial position vector 

The first step to solve the equations of motion is to find the initial position 

{ q } 1 t=O and velocity { q } 1 t=O of the system. Assuming al is known as ao and there is no 

deformation for both the leaf and the link at the start of deployment. 
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Then 

with a size of 6 by 1. 

{ e2 } 1 t=O = { o} 

with a size of 3 by 1. 

and 

From equations 4.53, 4.54 and 4.57 we can obtain 

Il cOSO:'o - R21 = 0 
t=o 

Il sinO:'o - R~ 1 = 0 
t=o 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

13COS0:'21t=0 + R~lt=o = 0 (5.17) 

Solving these three equations leads to the following initial positions of point 0" 

and angle 0:'2, 

and 

RX 1 = h cOSO:' 
2 t=o 

R~ 1 = Il sinO:'o 
t=o 

0:'21 t=O = acos ( - ~~ cosO:'o) 

So the initial position vector is 
o 
o 

0:'0 

{a} 
Il COSO:' 
Il sinO:'o 

acos ( - ~~ cosO:'o) 

{a} 
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(5.19) 
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(5.21) 



s. 2. 1. 2 Initial velocities 

In the same way as the initial position, the initial velocities {q} It=o must also 

meet the constraint conditions at velo city level described by equation 4.61 

[ JI] { q } 1 t=O = { o} (5.22) 

If the system is stationary at the beginning of deployment, which means there exist 

no initial velocity input for both rigid motion and deformation, then 

(5.23) 

If there exists an input velocity Vo in the negative Y direction at joint H, the 

generalized initial velocities can be decided as follows: 

First, at the initial moment no deformation and hence no velocities of deformation 

are induced. So for the leaf 

{ é l } 1 t=o = { o} 

with a size of 6 by 1, and for the link 

{ é2 } 1 t=O = { o} 
with a size of3 by 1. 

and 

From equations 5.15 to 5.17 we can arrive at 

- llâosinŒo - R~I = 0 
t=o 

. . yi II ŒOCOSŒO - R2 = 0 
t=O 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Differentiation of both sides of equation 4.58 with respect to time t while 

considering U22 and Ù22 as vanishing leads to 

r~1 = R~I + l3â21 COSŒ21 = Va 
t=O t=o t=O t=O 

(5.29) 
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Combining equation 5.26 with equation 5.29, we get the following initial 

velocities: 

sinŒ21 Va ao = t=O 

sinŒ21 COSŒO - COSŒ21 sinŒo II 
t=O t=o 

sinŒ21 Vr 
t=o 0 

sin( Œ21 - ŒO) Z; 
t=O 

(5.30) 

. xl R2 = 
t=O 

- sinŒosinŒ21 
t=O Va 

sin( Œ21 - ŒO) 
t=O 

(5.31) 

1 

cosŒosinŒ21 
R· y - t=O Vr 

2 - 0 
t=û sin( Œ2 1 - ŒO) 

t=O 

(5.32) 

and 

(5.33) 

5. 2. 2 Initial conditions for the second stage 

At the end of the first stage, the system reaches position {qF} with velocity {tiF}' 

which can not be used as initial conditions directly for the second stage because there 

exists a violation of constraint conditions at the velocity level. As we assumed from 

Figure 4.1, joint H moves to point S and stops there. 

Then we make the following assumptions: 

(a) There is no loss of energy during the impact. So the totality of the kinetic and potential 

energy of the system remains constant. 

(b) The velocities change instantaneously to fit the constraint conditions at velocity level. 
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Cc) The system is still positioned at {qF} after the impact. So the potential energy is 

unchanged. 

Based on these assumptions we ob tain the initial position for the second stage 

The kinetic energy is 

T = ~ {qH}T[M] {qH} 

= ~{qF}T[M] {qF} 

Similarly, the constraint conditions at velocity level can be derived as 

ü21H cosallH - (LI + u21)allH sinallH - R;IH = 0 

ü21H sinallH + (lt + u21)allH cosallH - R~IH = 0 

ÜSIH cosa21H - (l3 + usl)ci2lH sina21H + R;IH = 0 

and 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 

Then we assume only the rigid velocities R;IH' R~IH' allH and azlH and elastic 

velocity üsl H are variable. So the redistribution of velocities can be calculated by solving 

equations 5.36 to 5.39 numerically. 

5. 3 Stress analysis 

By solving the differential-algebraic equations of motion of the system we can 

obtain the generalized coordinates {q} and therefore the elastic coordinates {el} for the 

leaf and {ez} for the link. Then the displacement field and distribution of stress of an 

arbitrary element on either body of the system can be obtained. Taking into account the 

assumptions ofbasic beam theory, we neglect the shear stress here. 
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As already indicated, the moment at an arbitrary point on element j of body i can 

be expressed as 

Substituting equation 4.41 into it leads to 

(5.40) 

in which 

[ Nil] = 112 [00 0 0 0 0 0 1 
6 + 127] l( - 4 + 67]) 0 6 - 127] 1(67] - 2) 

where 
x 

7] = Z' 
The axial force at an arbitrary point on element j of body i is 

Substituting equation 4.40 into it leads to 

(5.41) 

The strain of a material point with a distance of y from the neutral axis of beam 

element j on body i can be derived as 
, Il 

E = U - yv 

Considering the expressions of u' and v", the strain becomes 

(5.42) 

The stress at the same point is 

(5.43) 

The maximum stress on the cross-section passing through the point is 

O"max = Ei(( 1 0 )[N'J - ~(O 1 )[N"J){dj } 
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or 

amax=Ei((l 0 )[N'] +~(O 1 )[N"]){dj } (5.44) 

where b is the height of the cross-section. 

5.4 Numerical process and programming 

S. 4. 1 Simulation of the opening of a deformable system 

As already mentioned, the deployment of an umbrella can be divided into two 

stages govemed by different dynamic equations because of the different constraint 

conditions attached. The first stage characterized by equation 4.87 describes the opening 

under given initial force or velocity conditions up to the moment of full deployment. 

Equation 4.118 deals with the vibration induced at the second stage when the umbrella is 

fully opened. 

The flow chart of programming for the first stage is presented in Figure 5.1. The 

procedure is detailed as follows: 

(a) Input of the necessary data and definition of initial conditions 

The data include those of geometry, material properties, initial configuration of the 

system and force or initial velocity at joint H. In this FE model, each component is 

treated as a uniform beam so that the lengths, cross-sectional information and the position 

of joints of each body are necessary. The modulus of elasticity and the mass density of the 

material are required for each component of the system. The force or initial velocity at 

joint His the source of power for the opening of the umbrella. 

Considering the initial configuration and initial velocity at joint H, we can then 

figure out the initial position qlt=o and initial velocities qlt=o by resorting to equation 5.21 

to equation 5.33. 
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(b) Constituting the governing equations of motion 

At this step we have to compute the mass and stiffness matrices at element level 

and assemble them into a system mass matrix [M] and a stiffness matrix [K], 

respectively. At the same time we need to ca1culate the time and spatial derivatives of the 

system mass matrix [M]. In order to form the governing equations of motion the 

constraint J acobian matrix is also evaluated according to the corresponding constraint 

conditions. From the formulation of the equations of motion we know that the system 

mass matrix varies with the generalized coordinates {q} and the generalized forces are a 

function of both { q} and the generalized velocities { q}, so that they have to be updated at 

every time step. The system stiffness matrix is constant and can be saved for recall 

whenever necessary. Once the mixed mass matrix [Mc] and the mixed generalized forces 

{ Q } are computed, we can th en assemble the nonlinear differential-algebraic 

equation 4.87. 

(c) Solving the differential-algebraic equations 

By utilizing equation 5.4 we can solve equation 4.87 for the generalized 

accelerations {li} and the vector of Lagrangian multipliers {À}. Further, the Runge­

Kutta algorithm of direct numerical integration is adopted to find the new {q} and {q}, 

which will be updated for next time increment if the constraint conditions hold. 

Otherwise, the time step hl has to be diminished to obtain a smaller error of accumulation 

until the requirements are met. The next step is to carry out stress analysis with the 

updated elastic coordinates. At every time step we can work out the generalized constraint 

forces by the product of the transposed Jacobian and the vector of Lagrangian multipliers 

Steps (b) and (c) continue iteratively until the moment of full deployment, which 

means the end of the first stage and the beginning of the second one. Then we output the 

values of { q} and { q} and go on to the second stage. 
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(d) Analysis of vibration induced at full deployment 

From the flow chart for the second stage shown in Figure 5.2 we can see the 

numerical procedure is fundamentally similar to that of the first stage except that we 

have to calI up the output data {q} and {q} of the first stage to calculate the initial 

conditions for solving equation 4.118 with a different constraint J acobian. The second 

stage finishes when the simulation time T is due. 

5.4.2 Simulation of the opening of a rigid-body system 

If the deformation of the components is neglected, the FE model tums into a 

rigid-body model with all elastic coordinates constrained. The flow chart and solving 

strategy for this case are basically the same as the first stage outlined in Section 5. 4. 1. 

Therefore we do not need to detail them here. 

Following the aforementioned procedure we can evaluate the variation of kinetic 

and dynamic parameters with respect to time. These results will be validated by the 

formulation of rigid-body dynamics that can function as references for the FE model of 

the deformable system. 
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Compute the mixed mass matrix 
and mixed generalized force to 
assembly equation 4.87 related to 
the process of deployment 

No 

Yes 

Stress analysis 

No 

Compute the 
constraint forces 
by [J ,1 {À} 

Figure 5.1 Flow ch art for the first stage 
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Compute the mixed mass matrix 
and mixed generalized force to 
assembly equation 4.118 related to 
full deployment 

No 

Solve equation 4.118 
for {q} & {À} 

Yes 

Stress analysis 

Yes 

Compute the 
constraint forces 
by [Jzf {À} 

Figure 5.2 Flow chart for the second stage 
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Chapter 6 

Results and Discussions 

In this chapter we first solve the derived goveming equations of motion for the 

3-element FE deformable model to simulate the whole opening process of an umbrella. 

Then we present sorne results of finely-meshed FE models and those of rigid-body models 

for the sake of comparison. 

The shared data conceming material and its properties and the dimensions of the 

configuration ofthe system are given as follows: 

Material: 

Al 7075 T6 

Properties: 

Pl = P2 = 2.77 X 103 kg/m3 

(J'y = 500 MPa 

El = E2 = 72.0 GPa 

Dimensions: 

il = 12 = 13 = 0.5 m 

Al = A2 = 0.01 x 0.01 m2 

Initial velo city at joint H : 

Vo = - 0.2 m/s; - 0.5 m/s; - 1.0 m/s; - 2.0 rn/s. 

Initial position: 
49 

al = ao = 100 'Tf 

Angle at full deployment: 

1 
al = - 'Tf 

12 
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6. 1 Simulation of the opening process with a 3-element FE model 

As discussed before, the 3-element model is composed of two elements placed on 

the leaf and one element on the link. The simulation starts from the beginning with the 

initial position al = 1~0 1[' and the initial velocity Va = - 0.2 mis applied at joint H to 

the full deployment. 

Figure 6.1 shows the time history of angle al, the rotation of the leaf, from which 

we can find at time t=0.2259s that joint H moves to point S when the system reaches full 
1 

deployment at al = - 1['. 
12 

1.6~----~------~----~------~----~ 

104 

1.2 

.... 1 
~ 

0.8 

0.6 

004 

t=0.2259 s 

0.2L-----~------~----~------~----~ 

o 0.1 0.2 0.3 004 0.5 
t 

Figure 6.1 Variation of al as a function oftime 

Figure 6.2 describes the variation of transverse displacement at the end point G on 

the leaf with respect to the moving frame X' 0 ' yi up to the moment of full deployment, as 

is the first stage of opening. The deformation fluctuates with the time, and the maximum 

value is 0.665 mm occurring at 0.08s. 
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o 

-2 

-4 t=0.2259 s 

-6 

o 0.05 0.1 0.15 0.2 0.25 
t 

Figure 6.2 Transverse displacement at G in the first stage of opening 

Figure 6.3 depicts the time history of maximum stresses on the leaf and link in the 

first stage. The maximum stresses occur at joint 0" on the leaf and at the center of the 

link. As can be seen, the stress on the link expressed by the solid hne is smaller than that 

on the leaf. 

As for the full process of opening, Figure 6.4 shows the significant vibration 

induced at full deployment in the second stage. The deformation changes periodically 

with an amplitude of as large as 60 mm and a cycle of about 0.05s. The system will 

vibrate perpetually with that constant amplitude because the external forces and damping 

effect are ignored. 
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Figure 6.3 Variation of maximum stresses on the leaf and link 
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Figure 6.4 Transverse displacement at G inc1uding the second stage 
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The stresses initiated from the deformation at point 0" on the leaf and the center 

of the link are shown in Figure 6.5 and Figure 6.6, respectively. The variation of stress 

with time also displays characteristics of periodicity and the magnitude is comparably 

high due to the larger deformation in the second stage on each component. In the same 

way as in the first stage, a much higher stress level is produced on the leaf. 

2
x 10

8 

1.5 

1 

0.5 

b 
0 

-0.5 

-1 

-1.5 
0 0.1 0.2 0.3 OA 0.5 

t 

Figure 6.5 Stress variation as a function of time at point 0" on the leaf 

Figure 6.7 and Figure 6.8 supply an insight into the dynamic response induced in 

the deployment of an umbrella by plotting the successive deformed shapes at several 

moments. In Figure 6.7 we can easily feel the deformation and vibration in the second 

stage after the time 0.2259s. However, !ittle information about deformation is displayed 

before that time because it is comparatively small. In order to scrutinize the responses in 

the first stage, we simply magnify the transverse deformation of each body by two 

hundred times to form the deformed shapes in Figure 6.8, which show the deformation of 

the system clearly. 
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Figure 6.6 Stress variation as a function of time at the center of the link 

At this point we can conclude that in the deployment of the system the leaf 

experiences larger deformation than the link, and that at full deployment the significant 

periodical oscillations are excited both on the leaf and the link, which pro duce relatively 

large deformation and stresses especially on the leaf. Then we can deduce that if the 

initial velocity Va or input energy is too high it will induce large deformation on the leaf 

at full deployment. In this case the goveming equations of motion previously derived and 

based on the assumption of small deformation are no longer applicable and many other 

factors such as inertia of rotation and shortening effect ofprojection of the beams or effect 

of geometrical stiffening should be taken into account in the formulation in order to 

simulate the reality. 
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Figure 6.7 Deformed 5hapes in the deployment of the system 
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Figure 6.8 Magnified shapes of de formation in the first stage 

62 



6. 2 Comparison of results between 3-element and 6-element models 

In order to present the figures c1early, we compare the results calculated in the first 

stage pertinent to 3-element and 6-element models. The 6-element FE model consists of 

four elements equally spaced on the leaf and two elements meshed in the same manner on 

the link. The system is excited for motion by applying initial velocity Va = - 1.0 rn/s. 

From Figure 6.9 we can recognize that the relations of al versus time coincide 

with each other and display characteristics of linearity. Both models take the same time 

(0.0452s) to reach full deployment. 

1.6,--,.---,---,.--,.--,.--,.---,.----r--..,.---, 

1.4 

1.2 

0.8 

0.6 

0.4 

- 3elements 
.... 6 slamants 

0.20 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

t 

Figure 6.9 Time histories of al for 3-element and 6-element models 

In Figure 6.10 the two curves depict the transverse deformation at end point G 

concordantly, except that a small diversion exists at the end of the stage. 

Figure 6.11 displays the stress variation at joint a" on the leaf, in which the stress 

for the 6-element model is a little higher than that for the 3-element model as a who le. 
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However, the 3-element or 6-element model can sufficiently describe the dynamic 

behavior of the system with an acceptable burden of computation. 
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Figure 6.10 Transverse deforrnation at G for 3-element and 6-element models 
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Figure 6.11 Stress variation at a" on the leaf for 3-element and 6-element models 
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6. 3 Comparison of the results between deformable and rigid FE models 

Comparison of the kinematic aspects between the defonnable and rigid-body FE 

models relative to the constraint condition in Case 3 uncovers how the defonnable FE 

model relates to the rigid FE model. 

Figure 6.12 displays the relations ofrotation aq versus time. From this we can see 

that the curve related to rigid FEA deviates a little downward from that of defonnable 

FEA, which further reminds us of the probable shorter time taken to reach full 

deployment for the rigid FE model. This inference can be verified by calculating the time 

of deployment at the three different initial velocities as shown in Table 6.1. We can th us 

conclude that the defonnation of the bodies will cause the delay of the deployment of the 

system, as becomes clearer at higher speeds at which more kinetic energy of the system is 

transfonned to potential energy to support the larger defonnation. 

Figures 6.13 and 6.14 depict the time history of angular velocity and angular 

acceleration, respectively, of the leaf. Obvious deviation and fluctuation in the vicinity of 

the curves related to rigid FEA can be found for the defonnable FE model at the velocity 

and acceleration levels. But they follow the same trend of variation with respect to time. 

Therefore, the results calculated by the rigid-body FEA model with numerical 

stability can function as references for the deformable FEA models as a whole to verify 

its feasibility. 

Table 6.1 Time of deployment for deformable and rigid model at different Vo 

Initial velocity Time needed (s) Time prolonged 

Vo(m1s) Deformable FEA Rigid FEA (s) 

-0.5 0.09040 0.09033 0.00007 

-1.0 0.04525 0.04517 0.00008 

-2.0 0.02343 0.02259 0.00084 
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Figure 6.12 Relations of rotation ctl versus time for deformable and rigid FEA 
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Figure 6.13 Relations ofvelocity â j versus time for deformable and rigid FEA 
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Figure 6.14 Relations of acceleration ŒI versus time for deformable and rigid FEA 

6. 4 Comparison of the results between rigid FEA and rigid dynamics 

Figure 6.15 to Figure 6.17 show the time histories of position, velocity and 

acceleration respectively for the rigid FE model and the rigid dynamics mode!. 

1.5 
+ rigid FEA 

rigid dynamics 

0.5 

o 0.01 0.02 0.03 0.04 
t 

Figure 6.15 Time histories of O:j for rigid FE model and rigid dynamics model 
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Figure 6.16 Time histories of a, for rigid FE model and rigid dynamics models. 
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Figure 6.17 Time histories of a, for rigid FE model and rigid dynamics model 

From these figures we can see that the results computed by the rigid FE model 

coincide with those of rigid dynamics. So the rigid-body FE model with the constraint 

conditions of Case 3 is an exact, rigid model. 
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Chapter 7 

Conclusions and Recommendations 

7. 1 Conclusions 

A defonnable FE model has been developed to simulate the opening pro cess of an 

umbrella, inc1uding the analysis of the vibration and stresses induced at full deployment 

without considering the gravit y of the components of the system. Necessary assumptions 

such as sm aIl defonnation, no damping and no friction were made to limit the scope of 

this work. The elastic deformation of each member was modeled by FEM, in which both 

longitudinal and transverse displacements were considered and the component along the 

axis was linear. Based on the Euler-Bernoulli beam theory, the governing equations of 

motion were derived using constrained Lagrangian generalized coordinates, which consist 

of rigid coordinates describing the rigid-body motions and elastic coordinates related to 

defonnation of the members. 

Recalling Chapter 3, we know that the body-fixed moving frames introduce 

additional constraints that delete the rigid-body mode of the assumed displacement field 

so that the position of an arbitrary point on a body can be located by the generalized 

coordinates of the system with respect to the inertial frame. Then in Chapter 4 the kinetic 

and potential energy of the elements, members and the system as a whole were formulated 

successively, and at the same time the variable mass matrices and constant stiffness at 

each level were derived. By virtue of the different constraint conditions, the process of 

deployment was divided into two stages representing motion before and after full 

opening. In order to validate the deformable FE mode l, a pure rigid-body mode was 

proposed with the deformation of aIl members ignored. Then by invoking Lagrange's 

equation with muItipliers we arrived at the governing equations of motion in differential­

algebraic fonn, each tenn of which was deduced and expressed in detail. We can find the 
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coupling effects of inertia in the mass matrix of the system, which is dependent on the 

generalized coordinates of the system, and recognize that the generalized forces vary with 

both the generalized coordinates and the generalized velocities. Therefore, the goveming 

equations of motion display highly nonlinearity, which can only be solved by method of 

direct numerical integration. As for the validation of finite element models, the c1osed­

form goveming equations of motion for the rigid-body model with two constrained 

generalized coordinates were formulated by the way of rigid-body dynamics, the results of 

which will act as references for the finite element method. 

Detailed strategies of solution and programming were presented in Chapter 5. The 

Runge-Kutta algorithm was used to perform the numerical integration while the 

corresponding constraint conditions were checked at every time step. The crucial step to 

simulate the dynamic behavior in the second stage is to figure out the related initial 

conditions. There we assumed that the occurrence of redistribution of velocities takes no 

time, so the initial position of the system is defined by the end of the first stage. The 

initial velocities were derived by a further assumption of energy conservation at full 

deployment. At each time step once the generalized coordinates are calculated we can 

implement the stress analysis with the elastic coordinates, a procedure similar to that of 

the structural FEA. 

Numeric process and illustrative examples were presented in Chapter 6. 

A 3-element deformable model was utilized to simulate the whole process of the opening 

of an umbrella with specified material and geometrical properties. This umbrella was set 

in motion by applying an initial velocity at the sleeve or joint H. The solution revealed the 

shapes of deformation and hence variation of stresses for both the leaf and the link. In the 

process of opening, the leaf experienced larger deformation and stresses than the link, and 

at the full deployment, significant periodical vibration was induced on the leaf. 

Comparison of the results for the 3-element model and the 6-element model 

showed that good agreement was achieved between them in kinematic and dynamic 
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aspects, and a more densely meshed model is not recommended because of the huge 

efforts of computation to be paid. 

The coincidence of the results in kinematics at position, velocity and acceleration 

levels for the rigid FEA model and the rigid-body dynamics model demonstrated that the 

rigid FEA is an exact rigid-body mode!. Usually the results of a deformable FE model in 

kinematic aspects fluctuate about those of a rigid-body mode, which can therefore play as 

references to validate the deformable FE mode!. 

From the elapsed time to reach full opening, it can be concluded that deformation 

of the components will delay the deployment, and that this becomes more significant at 

higher speeds. This phenomenon can be explained by the principle of energy 

conservation: less kinetic energy contributes to the motion as the deformation becomes 

larger. 

As we can see from this research, the formulating process is based on the 2-body 

holonomie constraint mode!. However, this method can also be applicable to a more 

complicated nonholonomic system. 

7.2 Recommendations for further study 

As mentioned before, this FE model was derived from the basic assumption of a 

small deformation in which the longitudinal deformation of the beams is linear and the 

rotation of inertia is negligible. However, if the initial input velocity Va at the sleeve is too 

high the ensuing vibration and deformation on the leaf at full deployment will become 

very large, which obviously invalidates the base of the mode!. In this case, a nonlinear 

strain-displacement relation should be introduced to consider the effect of transverse 

deformation to the longitudinal displacement of beams, which is also called geometric 

stiffening or the shortening effect of projection. The centrifugaI force at high speed will 

have a significant effect on the flexural stiffness of the beams, hence the stiffness matrix 

is no longer constant. In the meantime, the effect of inertial rotation of the beams has to 
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be taken into account because of the high speed of deformation that is induced at the 

instant of full deployment. 

Further studies are also recommended to concentrate on the experiment to validate 

the developed FE model, the measures to weaken the ensuing vibration and deformation 

at full deployment of the umbrella antenna, failure analysis, and a simulation in three­

dimensional configuration. 
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Appendix A 

Mass Matrices and Jacobian Matrices 

A.I Mass matrix for each element 

1 2 2 1 22 1 311 + 311 U2 + 105 l1 BI 3~ II (lI + U2) ( - io () 1 + 2
1
0 () 2 ) II - 20 (Zr + U2)Zl 0 0 0 

1 l2B B 1 2 1 l2(J2 - 70 1 1 2 + 3u2 + 105 1 2 

1 z2 
105 1 0 1 Z2 

- 140 1 0 0 0 

[Md = Pl II 1 
1 0 0 0 0 :3 

1 z2 
105 1 0 0 0 

Symmetric 0 0 0 
0 0 

0 
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Pd2 

[M2] 

2 1 2 1 2 
II + 1112 + 312 + Ilu2 + 312u2 + IIUl + 312ul 

1 2 1 1 2 2 13 1 2 
+ 3U2 + 3 U2Ul + 1051282 + 2101282Vl - 7012828l 

1 2 13 2 11 1 2 2 
+ 3u + 35 vl - 10512vl8l + 105 128l 

o 

o 

- k(31282 + 9Vl 

- 2128l ) 

o 
l 
3 

k12(212 + 511 

+ 3U2 + 2Ul) 

o 
o 

1 12 
105 2 

Symmetric 

~(ll + us)sin?0!2 1 1 . 1 0 1 0 - - 3sma2 12cosa2 - 1!41l (84 - 8s)-COS0!2 12 

1 . 0 ~ (/l + Us )COS0!2 
11213cosa2 12 sma2 1 

- tz/l(84 - 8s)sin0!2 

...L (7015 + 28~15 - 31i848s 
3
1
0 l3(l3 + U5) - ioll(284 - 38s) 0 [M3] = P2 131 

210 

+ 140/lUS + 70u~ + 28~li) 
1 12 

105 3 0 0 
1 

Symmetric 
3 

0 

0 
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1 
io(712 + 1011 

1 
- 60 (2/2 82 + 21vl - 6012(312 + 511 

- 3/28l ) + 3U2 + 7Ul) + 2U2 + 3Ul) 

0 0 0 
1 . 0 0 6 
0 13 [ 

420 2 
1 [2 

- 140 2 
1 0 0 :3 

13 11 [ 
35 - 210 2 

1 [2 
105 2 



A.2 Jacobian matrices and their time derivatives 

[Jd 

[jd 

[J2] 

[ 

- (lI + u2)sina1 
(h + U2)cosa1 

o 

o cosa1 
o sina1 
o 0 

o 000 
o 000 
o 000 

-1 
o 
1 

o 
-1 
o 

[ 

- (lj + U2)al cosaj - Û2sinaj 0 - ajsinaj 0 0 0 0 0 0 
- (lj + U2)al sinaj + Û2COSaj 0 al cosaj 0 0 0 0 0 0 

o 0 0 0 0 0 0 0 0 

[ 

- (lI + u2)sina1 
(lI + U2)COSŒ1 

o 
o 

o cosa1 
o sina1 
o 0 
o 0 

0 

000 0 
o 000 
000 0 
000 0 

- alsinaj 0 

-1 
o 
1 
o 

0 0 

o 
-1 
o 
1 

0 0 [ - (Id u,)&,co,o, - ."'na, 
li 2] = - (Id U')&'~inad .,00'0, 0 al cosal 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
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o 0 
o 0 

- (13 + uS)sina2 0 

o 
o 

COSQ2 n 
o 
o 000 

o 0 0] 
- (l3 + uS)a2cosa2 - ÛSsina2 0 - a2sina2 0 

o 
o 

- (l3 + uS)sinŒ2 
(13 + U5)COSŒ2 

0 
0 

o 0 
o 0 
o cosa2 
o sina2 

0 
0 

0 - (l3 + us)a2cosa2 - ûssina2 

0 - (l3 + uS)a2sina2 + ûScosa2 

~l 
0 0 
0 0 
0 - a2sina2 

0 - a2cosa 2 ~l 
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