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Abstract

Background: Decoding visual perceptual content from Functional Magnetic Resonance

Imaging (fMRI) is an important research topic in the field of brain-computer interaction.

However, due to the small sample size, large noise, high data-dimension, and expensive

acquisition cost of fMRI data, the performance of brain signal-based visual decoding is low.

Therefore, the underlying visual neural encoding and decoding mechanism needs to be further

explored. At present, there are many kinds of research on the visual perception decoding of

static images, but there are few types of research on visual decoding of dynamic video, which

is due to the time variation and content complexity of dynamic video. Dynamic perception and

information integration are the basic forms of human understanding of the world. Studying the

neural encoding and decoding mechanism of dynamic visual information enables us to better

understand the working mode of the brain.

Methods: We designed three fMRI experiments, namely, retinal topography experiment,

high-level visual cortex localization experiment, and dynamic video decoding experiment. In

the retinal topography experiment, a mapping relationship between visual stimuli and fMRI

signals from low-level visual cortex was established by viewing checkerboard stripe stimuli

to the subjects. Through this mapping relationship, low-level visual regions can be delineated.

In the high-level visual area localization experiment, the mapping relationship between

complex visual stimuli and high-level visual cortex fMRI signals was established through a

series of natural pictures. In the dynamic video decoding experiment, subjects watched
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dynamic videos consisting of five categories for two hours and their fMRI signals were

collected.

Results: Based on the visual information integration mechanism, a dynamic brain information

classification and decoding model based on dilated convolutional long and short-term memory

(DC-LSTM) is proposed, in which multi-scale temporal information is extracted from brain

signals and fused by dilated convolution with different coefficients. By comparing the

decoding accuracy corresponding to different dilation coefficients, we found that the decoding

performance of short temporal sequence brain signals was best when the temporal integration

scale was 4. Meanwhile, by comparing the classification and decoding performance of single

time-point brain signals, averaged brain signals, and disturbed temporal sequence brain signals,

it was found that brain information extracted by temporal information integration was more

relevant to stimulus categories, which led to better decoding performance. We further

compared the decoding accuracy of high and low visual cortex and found that high visual

cortex has better information integration ability. Finally, we analyzed the brain's

representational features for different types of videos by means of a representational

dissimilarity matrix, providing evidence for the consistency of brain activity patterns with

visual stimulus features.

Conclusions: Our results show that using dilated convolution can better integrate temporal

information and improve decoding accuracy. For high-level visual regions, more information

is accumulated. Therefore using information integration can significantly improve decoding

performance. The less information accumulated in low-level visual regions, the better the

decoding of brain information at a single time point.
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Résumé:

Contexte: Le décodage du contenu visuel perceptif à partir de l'imagerie par résonance

magnétique fonctionnelle (IRMf) est un sujet de recherche important dans le domaine de

l'interaction cerveau-ordinateur. Cependant, en raison de la petite taille de l'échantillon, du bruit

important, de la dimension élevée des données et du coût d'acquisition élevé des données IRMf,

les performances du décodage visuel basé sur les signaux cérébraux sont faibles. Par conséquent,

le mécanisme sous-jacent d'encodage et de décodage neuronal visuel doit être exploré plus avant.

À l'heure actuelle, de nombreuses recherches ont été menées sur le décodage de la perception

visuelle d'images statiques, mais peu sur le décodage visuel de vidéos dynamiques, en raison de la

variation temporelle et de la complexité du contenu des vidéos dynamiques. La perception

dynamique et l'intégration des informations sont les formes fondamentales de la compréhension

du monde par l'homme. L'étude du mécanisme d'encodage et de décodage neuronal des

informations visuelles dynamiques nous permet de mieux comprendre le mode de fonctionnement

du cerveau.

Méthodes: Nous avons conçu trois expériences d'IRMf, à savoir l'expérience de topographie

rétinienne, l'expérience de localisation du cortex visuel de haut niveau et l'expérience de décodage

vidéo dynamique. Dans l'expérience de topographie rétinienne, une relation de correspondance

entre les stimuli visuels et les signaux IRMf du cortex visuel de bas niveau a été établie en

montrant aux sujets des stimuli en forme de damier. Cette relation de correspondance permet de

délimiter les régions visuelles de bas niveau. Dans l'expérience de localisation des zones visuelles

de haut niveau, la relation de correspondance entre les stimuli visuels complexes et les signaux

IRMf du cortex visuel de haut niveau a été établie à l'aide d'une série d'images naturelles. Dans



7

l'expérience de décodage vidéo dynamique, les sujets ont regardé des vidéos dynamiques

composées de cinq catégories pendant deux heures et leurs signaux IRMf ont été enregistrés.

Résultats: Basé sur le mécanisme d'intégration des informations visuelles, un modèle

dynamique de classification et de décodage des informations cérébrales basé sur la mémoire

longue et courte convolutionnelle dilatée (DC-LSTM) est proposé, dans lequel les informations

temporelles multi-échelles sont extraites des signaux cérébraux et fusionnées par convolution

dilatée avec différents coefficients. En comparant la précision de décodage correspondant à

différents coefficients de dilatation, nous avons constaté que les performances de décodage des

signaux cérébraux à séquence temporelle courte étaient meilleures lorsque l'échelle d'intégration

temporelle était de 4. Parallèlement, en comparant les performances de classification et de

décodage des signaux cérébraux à point temporel unique, des signaux cérébraux moyennés et

des signaux cérébraux à séquence temporelle perturbée, nous avons constaté que les

informations cérébrales extraites par l'intégration des informations temporelles étaient plus

pertinentes pour les catégories de stimulus, ce qui a permis d'améliorer les performances de

décodage. Nous avons également comparé la précision de décodage du cortex visuel haut et bas

et constaté que le cortex visuel haut avait une meilleure capacité d'intégration de l'information.

Enfin, nous avons analysé les caractéristiques représentationnelles du cerveau pour différents

types de vidéos au moyen d'une matrice de dissimilarité représentationnelle, ce qui prouve la

cohérence des schémas d'activité cérébrale avec les caractéristiques du stimulus visuel.

Conclusions: Nos résultats montrent que l’information temporelle peut être mieux intégrée et la

précision de décodage peut être améliorée en utilisant la convolution dilatée. Pour les zones

visuelles avancées, plus d’informations sont accumulées, et l’utilisation de l’intégration de l’

information peut améliorer considérablement les performances de décodage. Moins l ’
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information s’accumule dans les zones visuelles de bas niveau, mieux il est possible de décoder

l’information cérébrale à un moment donné.
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1. Introduction

In neuroscience, visual decoding plays a crucial role in understanding how the brain

processes visual information. By decoding brain activity and translating it into images or

videos(Kay, Naselaris et al. 2008, Miyawaki, Uchida et al. 2008, Nishimoto, Vu et al.

2011), researchers can understand the activity patterns of different neurons in response to

various visual stimuli. This enables them to infer the underlying mechanisms of visual

information processing in the brain. In essence, by analyzing patterns of human brain

activity, researchers can determine the type of visual information being perceived, identify

the multi-level semantic content encoded in the brain, and even reconstruct visual images

based on the brain activity.

With the advancement of brain imaging techniques in medical applications and the

rapid development of artificial intelligence algorithms, scientists have begun to explore

brain decoding. However, the inherent complexity of this task imposes certain limitations

on current research. For example, the performance of visual classification decoding

deteriorates when confronted with scenes containing complex backgrounds or multiple

objects(Haufe, Meinecke et al. 2014, Naseer and Hong 2015). Another significant

limitation lies in the inability of established mapping models to effectively handle intricate

temporal information(Wen, Shi et al. 2018, Wen, Shi et al. 2018).

Visual decoding provides insights into how visual information is processed in the brain.

By investigating visual classification decoding, we can enhance our understanding of the

response patterns of distinct brain regions to various information types(Nishimoto, Vu et al.

2011), as well as the interactions among different neurons. This knowledge is pivotal for

exploring deeper into the mechanisms underlying visual processing in the brain. Moreover,

visual decoding research plays a crucial role in the development of advanced

brain-computer interface (BCI) technologies, which enable individuals to control
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computers using their neural activity. By incorporating temporal information into real-time

decoding algorithms, the advancement of BCI technologies is further enhanced (Wang,

Collinger et al., 2013). This has significant implications for individuals with specific needs,

particularly those with disabilities, as it offers substantial benefits in terms of improved

communication and control capabilities.

The classification of fMRI brain activity patterns induced by visual stimuli is an

effective approach for decoding the current cognitive state of the human brain and

analyzing its working mechanisms(Gerstner, Kreiter et al. 1997). While numerous studies

have been conducted on the visual perception decoding of static images such as static

pictures and stripe orientation, limited research have been conducted on the visual

perception decoding of dynamic videos. This is due to the challenges posed by the

temporal variability and content complexity of dynamic videos, as well as the low

signal-to-noise ratio of fMRI, which makes brain decoding research on dynamic video

perception difficult due to the delay characteristics of the BOLD signal.

Despite these challenges, dynamic video stimuli have unparalleled advantages over

static pictures as visual stimuli. Firstly, the complex daily life scenes processed by human

eyes cannot be replicated by static pictures. Secondly, to model the visual function of the

brain, it is necessary to rely on the processing of real-time complex visual stimuli, which

requires more accurate extraction of temporal information. The temporal information

provided by static pictures is overly simplistic, whereas dynamic videos provide more

complex temporal information. Therefore, using dynamic videos as visual stimuli is highly

significant.

Further exploration of the visual processing mechanism of dynamic visual information

and the interpretation of the brain's information integration process may provide

experimental evidence and methodological support for complete brain decoding in the

future.
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1.1 The transition from static visual stimuli to dynamic visual stimuli

In the early stages of visual decoding research, static visual stimuli, such as

orientation(Haynes and Rees 2005), natural images(Kay, Naselaris et al. 2008), and

pictures from dreams(Horikawa, Tamaki et al. 2013) and imagination(Hassabis, Spreng et

al. 2014, Horikawa and Kamitani 2017), were predominantly used. Among them, Haynes

and Rees(Haynes and Rees 2005) conducted a pioneering study in decoding the direction

of invisible stimuli from the human visual cortex by monitoring subjects' brain activity,

thus demonstrating the feasibility of extracting information from brain activity. However,

the use of simple orientation information in their study fails to capture the complexity of

visual scenes processed by the human eye. As a result, researchers have tried to replace

simple orientation information with natural images. Kay et al. (Haynes and Rees 2005)

successfully decoded natural images from human brain activities, albeit with a relatively

small sample size, which may limit the generalizability and reliability of the decoding

model. This indicates that both basic orientation information and more complex nature

images can be decoded from brain activity.

Building upon this foundation, researchers have progressively increased the

complexity of visual stimuli and ventured into the domain of decoding dreams and

imaginary pictures. Horikawa et al. (Horikawa, Tamaki et al. 2013) achieved successful

decoding of dreams using support vector machines (SVM), suggesting that specific visual

experiences during sleep are represented by patterns of brain activity shared with stimulus

perception. This approach offers a means of objectively deciphering the subjective content

of dreams using neuroscientific measures. However, due to the inherent challenges

associated with collecting dream data and the limited amount of available data, the overall

decoding performance remains unstable. Subsequently, in 2017, Horikawa and

Kamitani(Horikawa and Kamitani 2017) proposed a universal decoding method that

leverages hierarchical visual features to identify objects observed and imagined by subjects,
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significantly expanding the dataset used for decoding.

In light of these advancements, it is evident that researchers have progressively

elevated the complexity of visual stimuli and developed decoding models to explore the

visual mechanisms of the human eye. In recent years, there has been a gradual shift toward

employing dynamic videos(Wen, Shi et al. 2018) as visual stimuli. They successfully

applied deep learning models to neural encode and decode tasks for dynamic natural vision.

The primary challenge in this approach lies in the complexity of content and temporal

variations associated with dynamic visual stimulation. This is because real-world events

are rarely presented in a sequential and isolated manner(Spiers and Maguire 2007), making

it difficult to distinguish neural activity specific to a particular event from the continuous

flow of complex stimuli. Due to the complexity and diversity of the real world, the

decoding process faces many challenges, including the complexity of data analysis and

modeling, the existence of s differences, and the complex relationship between brain

activity and behavior. Therefore, there are fewer studies on dynamic video-induced brain

activity decoding and fewer related datasets. But decoding the activity of the human brain

in real-world experiences can improve understanding of cognition, emotions,

decision-making, and behavior. Therefore, it is necessary to establish a dataset of brain

activity induced by dynamic video and establish a decoding model.

1.2 Information integration can improve decoding performance

At present, most decoding models use static models to extract visual features and

establish a mapping relationship between brain activity and visual stimuli. For example,

Carlson et al. (Carlson, Schrater et al. 2003) used linear discriminant to analyze fMRI data

induced by chairs, faces, houses, etc. The results showed that the patterns of brain activity

in one class of objects and others were largely independent of each other. Kamitani et al.

used a linear support vector machine to decode orientation (Kamitani and Tong 2005),

which reliably predicted which of the eight stimulus directions observed in individual
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experiments. In subsequent research and exploration, the team proposed a method based on

Bayesian statistical analysis to reconstruct natural images from FMRI brain activity

(Naselaris, Prenger et al. 2009). The team could even use linear support vector machines

to decode the brain's activity when it is visually stimulated and speculate what type of

dream these activities correspond to (Horikawa, Tamaki et al. 2013). This means that it is

possible to understand what people are dreaming about by looking at brain activity.

However, the decoder built with a simple static model cannot model the visual system of

the human eye well, resulting in low decoding performance. This is because static models

cannot capture dynamic changes in time and the evolution of the system. On the other hand,

the human eye processes a variety of events daily, each of which encompasses a substantial

amount of temporal information. Therefore, it is necessary to use dynamic models to build

decoders to make full use of temporal information.

Due to the complexity and temporal variability of dynamic video content, there are

currently fewer classification decoding of fMRI brain signals induced by dynamic video.

In 2017, the team(Wen, Shi et al. 2018) proposed an fMRI dataset containing 15 categories

of dynamic video-induced. Subsequently, the team used convolutional neural networks to

extract spatial features, while also using multiple recurrent neural networks (RNNs) to

fully learn temporal information, simulate hierarchical and distributed models of process

memory, and further process spatiotemporal features. The model also reveals the cortical

hierarchy of the temporal receptive window, which they believe has a shorter

time-receptive window(Hasson, Yang et al. 2008) in the primary visual cortex and vice

versa in the higher visual cortex. This indicates that the accumulation of information in the

visual cortex increases gradually over time.

The vision system fuses and integrates visual information from different perceptual

channels to produce a consistent, comprehensive visual perception. Real-world events
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occur not only in the extended area of space but also in the extended time. Therefore, the

temporal response characteristics of different brain regions should also exist in a hierarchy

similar to the size of the spatial receptive field(Hasson, Yang et al. 2008). Human

perception of the world unfolds over time, so it must rely on long-term information

accumulation, including causal reasoning, processing linguistic information at various

scales, understanding narratives, event segmentation, and human-social interaction. In

most real-life processes, past information is often used to process incoming information

across multiple time scales(Hasson, Chen et al. 2015), and sensation and perception use

information integration to perceive the external world(Beauchamp 2005). In 2001,

Rotshtein et al.(Rotshtein, Malach et al. 2001) found that the early visual area has less

information accumulation, while the higher visual area has more information accumulation,

so the use of information integration of the advanced visual region can better decode visual

information. In most real life, information from the past is often used to process

information from multiple scales. Therefore, the use of information integration can

improve the decoding performance.

2. Methods and results

2.1. Rational

Due to the complex content and temporal variability of human life scenes, static

images are insufficient in simulating naturalistic visual experiences, making it imperative

to use dynamic video stimuli in fMRI research. However, the high cost of fMRI data

acquisition coupled with a relatively low signal-to-noise ratio necessitates the need for

subjects to view stimuli multiple times to obtain high-quality datasets. Therefore, it is

essential to establish fMRI models for decoding visual perception evoked by dynamic

video stimuli to better understand the processing mechanisms of the visual system.

However, current visual perception decoding models mostly focus on static images, and
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there is a lack of dynamic video-evoked fMRI datasets, posing a significant challenge in

this area. A critical difficulty in dynamic visual decoding is the separation of neural

activity associated with a specific event from a continuous stream of complex stimuli. To

address this, we conducted behavioral experiments using five categories of dynamic videos

and established a new fMRI dataset evoked by dynamic videos.

In recent years, researchers have released several datasets on brain activity patterns

evoked by dynamic videos, which have advanced the development of visual perception

decoding. In 2012, Hu(Hu, Li et al. 2011) randomly selected 51 photos from the sports,

weather, and business categories in the TRECVID 2005(Amir, Argillander et al. 2003)

dataset (20 sports, 19 weather, and 12 business) and divided them into eight sub-videos,

each about 11 minutes long. These sub-videos were presented to four subjects and fMRI

brain imaging data were collected. This dataset contained only three categories and was

relatively small in size. Barch et al.(Barch, Burgess et al. 2013) collected the HCP-YA

(Human Connectome Project) fMRI dataset in 2013, which included a large sample of

young healthy adults and seven functional tasks (emotion, gambling, language, motor,

relational, social, and working memory), each under different conditions. These seven

tasks provided good coverage of brain activation as a whole, so classifiers trained on this

dataset would help decode brain states across a wide range of functional tasks. This dataset

is very large and has gradually expanded over time. However, the visual stimuli in this

dataset are various functional tasks, which are somewhat different from the complex life

scenes we envisage. Subsequently, Wen et al.(Wen, Shi et al. 2018) proposed a dynamic

video-evoked fMRI dataset consisting of 15 categories (indoor, outdoor, people, faces,

birds, insects, aquatic animals, land animals, flowers, fruits, natural scenes, cars, planes,

boats, and sports), which is one of the largest datasets to date evoked by dynamic videos in

fMRI. They collected data from three healthy volunteers who watched natural color video

clips. The training video, which was 2.4 hours in length, contained 276 video clips and was
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divided into 18 8-minute sub-videos. The testing video was an 8-minute movie containing

38 different video clips. Each subject watched the training movie twice and the testing

movie ten times. The order of each category sub-clip in the movie was random. However,

this dataset lacks specific sub-video category labels and is unbalanced in terms of the

number of sub-categories, with only one sub-video for insects.

Analysis of existing datasets reveals that the number of datasets related to fMRI

evoked by dynamic video is very small compared to those evoked by other static stimuli,

and some of the dataset categories are severely imbalanced. Given the limitations of

existing datasets, we designed relevant visual stimulus experiments and established a

dynamic video-evoked fMRI dataset with five subjects, enriching the dataset for decoding

brain visual perception and advancing the development of dynamic visual perception

decoding.

2.2. Experimental approach

2.2.1 Participants

Five healthy participants took part in the experiment. All participants had a normal or

corrected-to-normal vision. Before the experiment, each participant provided written

informed consent. The experimental protocol was approved by the Institutional Review

Board of the Institute of Biophysics, Chinese Academy of Sciences. The experiment was

programmed using E-prime software. Visual stimuli were presented using a liquid crystal

projector on a screen placed inside the scanner bore. During the experiment, participants

were instructed to focus on the center of the screen and to refrain from moving their

bodies.

2.2.2 Visual stimuli experimental design

The experiment consisted of three stages: (1) a retinotopic mapping experiment using

bar stimuli, as shown in Figure 1-1 (A); (2) a functional localizer experiment of the

high-level visual cortex, as shown in Figure 1-1 (B); and (3) a dynamic video experiment,
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as shown in Figure 1-1 (C). The video stimuli included five categories: animals, humans,

flowers, transportation, and buildings. Transportation included three subcategories: cars,

boats, and planes. Animals included four subcategories: dogs, tigers, lions, and pandas.

The image stimuli were dynamically presented at a resolution of 240*240. The dynamic

visual stimuli used in this study can be found on Youku and iQiyi websites.

The boundaries of the brain's visual areas can be effectively localized using the

stripe-based retinotopic mapping experiment to describe the low-level visual cortex.

Subjects viewed black and white checkerboard stimuli with 100% contrast with a spatial

length of 20° and a spatial width of 20°, and a temporal frequency of 10 Hz. The stripe

stimuli had four types and moved in two different directions, resulting in a total of 8

patterns. Each stimulus stripe flickered at a position for 2 seconds and then flickered and

moved in one direction for a total of 22 positions. The experiment included 12 seconds of

rest time before and after, totaling 376 seconds. To improve performance, the experiment

was repeated four times.

In the high-level visual cortex functional localization experiment, natural images taken

from videos were used to locate the areas, consisting of two sessions. Each session had five

parts, and each part contained eight images of a category, with each image flickering for

0.2 seconds followed by 1.3 seconds of rest time. There was a 12-second rest time before

and after each part and at the beginning and end of the experiment. Each part lasted 10.7

seconds, and the total time was 239 seconds.

In the dynamic visual decoding process, a total of 2 hours of natural dynamic videos

were shown to the subjects. To ensure sufficient rest time and concentration, the long

videos were divided into 12 sub-videos of 10 minutes each. Each sub-video contained 60

10-second videos of 5 categories. There was a 12-second rest time before and after each

sub-video. The experiment lasted for a total of 624 seconds. The above experiments were

conducted over the course of two weeks.
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Figure 1 Experimental flow of visual stimulation. A. Bar retinal topology mapping visual stimulation; B.

advanced visual cortex function positioning visual stimulation; C. visual stimulation of dynamic video

2.3. Methods

2.3.1. The population receptive field(pRF) model locates the primary visual region

In the strip retinal topological mapping experiment, the population receptive field

model(Dumoulin and Wandell 2008) was used to locate the lower visual cortex. The model

fits neurons in each cortex, represents the receptive field of each neuron by a

two-dimensional Gaussian function, and estimates pRF parameters from time series data

and fMRI responses using a linear spatiotemporal model of fMRI responses. Assuming

that there is a linear relationship between blood oxygen levels and MR Signals, it can be

described as:

(2-1)

Where p(t) is the predicted BOLD signal, beta is the scale factor that interprets the fMRI

signal, and e is the measurement noise. In neuroimaging, GLM is used and the predicted

BOLD signal is entered into a design matrix. The predicted response p(t) is obtained by

using a Gaussian model of the neuron population. A two-dimensional Gaussian population

receptive field model is defined as follows：
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(2-2)

Where ( )is the center and σ is the Gaussian distribution (standard deviation). In the

bar retinal topological mapping experiment, the visual stimulus is defined as . For

a given pRF model and effective stimulus, the predicted response can be calculated. Since

the pRF and the effective stimulus formula are defined in common units of visual space,

the first step in predicting the fMRI time series is to calculate the overlap between the

effective stimulus and the model pRF on the voxels. The pRF response ( ) of a single

voxel is defined as follows:

(2-3)

Then, by convolving ( ) with a hemodynamic response function model (HRF, h(t)), time

series predictions are obtained.

(2-4)

The goodness of fit is estimated by calculating the residual sum of squares (RSS) between

the predicted value p(t) and the data y(t).

(2-5)

The optimal pRF parameter minimizes RSS by searching from coarse to fine.

2.3.2. Face selectivity and scene selectivity

Back in 1997, Kanwisher et al. (Kahn, Pace-Schott et al. 1997)found that the brain's

fusiform gyrus region was significantly more active when subjects saw visual stimuli such

as faces than when they saw various common objects. This facial activation was used to

define a specific area of interest for each subject individually. In 1998, the team further
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identified three scene-selection regions in the human cortex: PPA(Epstein and Kanwisher

1998), RSC(Maguire 2010), and OPA(Dilks, Julian et al. 2013). In face processing, OFA

responds strongly to the face parts (i.e. eyes, nose, mouth) regardless of their spatial

arrangement, while FFA represents the face parts and the typical spatial arrangement of

these parts (e.g., two eyes above the nose)(Yovel and Kanwisher 2004). The visual areas

associated with scenes and the brain areas associated with faces have similar functional

divisions. For example, OPA deals with scenes at the local element level, while the

preceding PPA and RSC represent the overall properties of the scene. Therefore, by using

the selective features of the brain regions related to "scene" and the brain regions related to

"face", we can determine which brain regions have activity related to scene perception

through statistical significance analysis of comparative experimental conditions or

comparative stimulus conditions. Based on GLM, the contrast activation map in each scene

was obtained, and the advanced visual cortex function was located for each subject.

2.3.3. Classification and decoding model of brain information based on dilated long

and short term memory neural network

2.3.3.1. Dilated convolution

Dilated convolution was first proposed for time series data in 2016 by the Google

team(Oord, Dieleman et al. 2016) in the WaveNet paper. The main component of WaveNet

is causal convolution(Oord, Kalchbrenner et al. 2016), which ensures that the model

cannot violate the order of the data being modeled: predictions made by the model at a

given time step cannot depend on any future time steps. During training, because the input

time steps are known, conditional predictions for all time steps can be parallelized. In

models that use causal convolution, predictions are made sequentially, with each sample

being predicted and then fed back into the network to predict the next sample. Because

these models have no recurrent connections, they are typically easier to train than recurrent
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neural networks, especially when applied to very long sequences. However, one issue with

causal convolution is that it requires many layers or larger filters to increase the receptive

field, which can lead to a high computational burden. Therefore, the team used dilated

convolution to increase the receptive field without increasing the computational cost.

Dilated convolution applies a filter to a larger area than its length by skipping input

values. It is equivalent to convolving an unfolded larger filter with the original filter

replaced by zeros but with significantly higher efficiency. Dilated convolution can operate

on a coarser scale than normal convolution. This is similar to pooling or hierarchical

convolution, but the output size is the same as the input size. When the dilation rate is 1, it

is equivalent to standard convolution. Figure 2 shows the process of dilated causal

convolution with a dilation rate of 2 or 4 and 3 convolutional kernels. When the dilation

rate is 2, the calculation of the convolution skips the middle value, which is determined by

the previous time step and the current time step. This means that information is first

integrated over a small time scale, and then over a larger time scale as the dilation rate

increases. By selecting an appropriate time scale and using dilated convolution, relevant

temporal information can be extracted and integrated.
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Figure 2 Visualizes the causal convolution layers with expansion coefficients of 1,2 and 4. Where the number

of the convolution kernels is 3

2.3.3.2. The architecture of the dilated long and short term memory neural

network

Based on the integration mechanism of visual cortex information, we have developed

a new model structure for decoding dynamic video brain information, which is different

from traditional decoding models that decode static stimuli. By using dilated convolution

and information integration, we have established a dynamic video brain information

classification decoding model, as shown in Figure 3. On the one hand, we collected the

brain signals of the temporal lobe of subjects watching dynamic videos through

corresponding experimental designs. After data preprocessing and feature selection, we

obtained the brain responses for each visual stimulus. On the other hand, we used dilated

convolution with different coefficients to extract multiscale temporal information,

integrated it, and then used a long short-term memory (LSTM)(Sundermeyer, Schlüter et al.

2012) network to learn the temporal relationships between time series. LSTM can handle

dynamic changes between time series well, and using LSTM can fully learn the time

relationship between fMRI brain signals. Therefore, applying a dilated LSTM neural

network can effectively integrate multiscale temporal information, thereby capturing the

features of subjects watching dynamic videos by processing the time information between

brain responses. Finally, the decoding performance of the categories is obtained.
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Figure 3 Model model of dynamic video brain information based on dilated long and short-term memory

neural network. Different colors represent brain signals extracted from different dilated coefficients. "d=1"

represents the brain signal extracted when the dilated coefficient is 1.

In the fMRI feature extraction process, the brain activity patterns of subjects watching

dynamic videos are first collected, and then the response of the temporal lobe is extracted

using a general linear model (GLM)(Goebel, Esposito et al. 2006). Preprocessing with time

and motion correction is performed before feature selection. Since each subject's temporal

lobe response contains more than 20,000 voxels, feature selection is necessary to reduce

computational costs. The top 2,000 voxels are selected as visual representations.

Considering the delay of the bold response and the length of the dynamic sub-videos (10

seconds), an additional 6 seconds are added to obtain a 16*2000 dimensional

representation of the categories. Considering that the BOLD's peak response was around 6

seconds, we extended the time series appropriately. Secondly, because the decoding

accuracy began to decline at about 14 seconds, it was not extended.

The Softmax function(Sundermeyer, Schlüter et al. 2012) is commonly used as an

activation function for multi-classification problems. It compresses the data in the range

[0,1], so it allows answering classification questions with probability. The formula is
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defined below. Where �� is the output value of the i-th node and C is the number of

output nodes, that is, the number of categories of classification.

Softmax(��)=
���

�=1
� ����

(2-6)

In the dilated LSTM neural network, since the time series we obtained is 16 seconds,

which belongs to the medium and short type, excessively large dilation coefficients cannot

extract appropriate temporal information and may introduce unrelated information.

Therefore, dilation coefficients of 1, 2, 4, and 8 are set to extract multiscale temporal

information. Human memory is not limited to local storage but spans the entire brain on

multiple time scales. Therefore, information integration in the visual cortex is more

suitable for brain decoding. After fusing the multiscale information, it is inputted into the

LSTM network to learn the temporal relationships between time series. Finally, the

decoding accuracy of each category is obtained through softmax.
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2.4. Results

2.4.1. Primary visual cortex

After preprocessing fMRI data from the retinal experiments, retinotopic analysis was

performed using SamSrf (Schwarzkopf, de Haas et al. 2018). The occipital lobe was

defined as the entire visual cortex by SamSrf. As shown in Figure 4, the visual cortical

boundaries were depicted on a sphere to visualize and label the visual areas of interest,

with eccentricity and polar maps projected onto the sphere. V1 was found to lie quite

precisely within the calcarine sulcus, extending from the green stripe of the wedge (dorsal

talus) through the blue stripe deep in the talus to the red stripe of the lingual gyrus (ventral).

V2 and V3 were separated into two quadrant field plots, one in the ventral cortex and one

in the dorsal cortex (Burkhalter, Felleman et al. 1986). V2d extended from the green stripe

at the V1 boundary to the middle of the blue stripe, while V3d followed from the blue

stripe to the next green stripe. On the other hand, V2v extended from the red stripe at the

V1 border to the blue stripe, and V3v extended from the blue stripe to the next red stripe.

Figure 4 Primary visual cortex of subject 1.

2.4.2. High visual cortex

Functional picture mapping experiments identified FFA, OFA(Tsantani, Kriegeskorte et al.

2021), OPA, and PPA(Epstein and Kanwisher 1998) for each subject. Experimental data

from the localizer were analyzed using SPM 12. Voxels with clearly significant responses

to faces and scenes (two-sided t-test, uncorrected P <0.05 or 0.01) were identified by
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screening for voxel clusters with high significance and defined as OFA, FFA, OPA, and

PPA, respectively. There are approximately 30,000 voxels throughout the occipital cortex,

but not all of them encode visual stimuli. Therefore, a rough voxel selection within the VC

was performed first. An F-score feature selection algorithm was used to calculate the F

value of each voxel (Chen & Lin, 2006; Huang et al., 201). The higher the F-value of the

voxel, the better the ability to discriminate visual perceptual category. For high-level visual

areas, the number of voxels acquired was different for each subject. To ensure the

consistency of the data dimensions, the same latitude was obtained using the F-score as

well. Figure 5 below delineates the inflated cerebral cortex's OFA, FFA, OPA, and PPA

regions.

Figure 5 Subject 1's high visual cortex: OPA(occipital place area), PPA(parahippocampal place area),
FFA(fusiform face area), OFA(occipital face area)

The following table shows the number of voxels in each subject's visual cortex. The

"total_selected" is the number of voxels after combining the results of the five subjects and

undergoing feature extraction in Table 1. Given the few voxels in higher visual areas,

combine advanced brain areas: OPA and PPA into scene-related brain regions, and FFA

and OFA into face-related brain regions.



19

Table 1 Number of voxels in each visual area per subject.

Visual
cortex sub01 sub02 sub03 sub04 sub05 total_selected

OCC 26350 26573 24406 29713 25232 2000
V1 1217 1167 1138 1452 1102 1000
V2 1118 1018 947 1291 1031 900
V3 1061 973 891 1049 773 700
FFA 700 380 608 253 255 800
OFA 402 427 486 759 666
PPA 162 319 289 340 250 400
OPA 314 236 199 345 152

2.4.3. The fMRI-dataset evoked by five classes of dynamic videos

We collected the brain activity patterns of five subjects while they watched dynamic

videos of five categories for a total of 2 hours. The 2-hour videos were divided into 12

sub-videos of 10 minutes each. We performed 6-fold cross-validation based on the number

of videos. The data details of each subject for each fold are shown in Table 2. For example,

the training set for the first fold was from the 1st to the 8th dynamic videos, the validation

set was from the 9th to the 10th dynamic videos, and the test set was from the 11th to the

12th videos. Here, we merged the data of the five subjects, so there were a total of 8 videos

in the training set, 2 videos in the validation set, and 2 videos in the test set. Each video

had 60 different visual stimuli. Therefore, there were a total of 5860=2400 samples in the

training set.

Table 2 6-fold cross-validation data details

Fold
Training

set
Dimensionality

Validation

set
Dimensionality

Testing

set
Dimensionality

k=1 1-8 5*8*60= 2400 9-10 5*2*60=600 11-12 5*2*60=600

k=2 3-10 11-12 1-2

k=3 5-12 1-2 3-4

k=4 7-12,1-2 3-4 5-6

k=5 9-12,1-4 5-6 7-8
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k=6 11-12,1-6 7-8 9-10

2.4.4. Effect of the temporal integration scale on the decoding performance

Humans perceive the world through vision, which unfolds over time and requires the

accumulation of information over a long period to support causal reasoning, processing of

linguistic information across different scales, understanding narrative development, and

various forms of social interaction. Therefore, selecting appropriate time scales is crucial

for learning and integrating relevant information, as most events we encounter in our lives

involve the processing of information arriving at multiple time scales. In this study, we

established a decoding model using dilated convolution and extracted brain signals at

different time scales by varying the dilation factors. To demonstrate the differential

decoding performance of different time scales, we compared the decoding accuracy of

dilated convolutions with different coefficients in extracting multi-scale temporal

information and integrating them. Figure 6 shows the decoding accuracy in the OCC using

different time scales. As the length of the brain signals we obtained was 16 seconds, which

is considered a medium-short sequence, the decoding performance was best when the time

integration scale was set to 4, as shown by the green curve in the figure. Visual information

perceived by the retina is transmitted to the primary visual cortex and gradually to the

higher visual cortex, which accumulates corresponding information. We observed that

decoding performance gradually improved with increasing time intervals, reaching its peak

at approximately 12 seconds. This is consistent with the hemodynamic response function

of the BOLD signal, which has a delay of about 6 seconds. Separating neural activity

related to specific events from continuous, complex stimulus streams is a major challenge

in video decoding and can lead to a decrease in performance due to the introduction of

responses from other categories.

In conclusion, the fusion of information at different time scales has different effects
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on decoding performance, and selecting appropriate time integration scales can

significantly improve decoding accuracy. Furthermore, visual information accumulates in

the brain over time, and selecting the appropriate time interval can also improve decoding

accuracy. Due to the complexity of dynamic video content, extracting multi-scale temporal

information and integrating it can learn useful information from noisy brain signals, further

improving decoding performance.

Figure 6 Decoding accuracy of different temporal integration scales in the occipital lobe. Different d

represent different scales of temporal integration, and the temporal information of d=1,2, and four integrate

when d=4. The horizontal axis is for different periods, and the vertical axis(20) is the decoding accuracy in%.

2.4.5. Comparison of decoding performance between DCLSTM and traditional

methods

To demonstrate the decoding performance of the proposed multi-scale information

integration decoding model, we compared it with five traditional machine learning models

(AdaBoost, Bayes, KN, RF, and SVM). These models take the entire 16-second brain

activity pattern as input, and they were implemented directly using the
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scikit-learn(Pedregosa, Varoquaux et al. 2011) package.

Figure 7 shows the performance comparison of various decoding models with our

proposed decoding model (DCLSTM). All results were obtained through 6-fold

cross-validation. The accuracy of the DCLSTM decoding model in the entire visual area

(OCC) was 56.4% (chance level = 0.2). For the other five models (AdaBoost, Bayes, KN,

RF, and SVM), the decoding accuracies in the entire visual cortex were 29.45%, 32.08%,

29.57%, 36.93%, and 35.43%, respectively. The results demonstrate that our proposed

DCLSTM has higher decoding performance.

Figure 7 Compare the decoding accuracy of the six methods in the visual cortex (VC). LSTM using five

traditional machine learning models (AdaBoost, Bayes, KN, RF and SVM)

In addition to comparing with commonly used machine learning algorithms, we also

conducted comparisons on a publicly available dataset. The dataset is a 15-category

dynamic video-induced fMRI dataset proposed by Wen et al. (Wen, Shi et al. 2018). The

categories included indoor, outdoor, people, faces, birds, insects, aquatic animals,

terrestrial animals, flowers, fruits, natural landscapes, cars, planes, ships, and sports. The

training videos consisted of 18 stimuli, which were repeated twice by three subjects. Brain

responses with correlation coefficients greater than a threshold were selected from the

repeated responses and averaged. The test videos consisted of five stimuli, and the subjects
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were required to watch them ten times. The final response was the average of the ten

responses. Table 3 shows the results of using DCLSTM and LSTM to decode the

15-category dataset. It can be seen that the accuracy of using LSTM for 15-class

classification is 25.5%, while using multiscale information fusion with time scales of 1, 2,

4, 8, or 16, can achieve an accuracy of around 30%. Therefore, using dilated convolutions

with different coefficients to integrate cortical temporal information can improve decoding

accuracy.

As shown above, we have demonstrated the advantages of the dynamic video

decoding model based on dilated long short-term memory neural networks from two

perspectives. First, compared with traditional decoding methods, using dilated

convolutions to integrate temporal information can better decode category information.

Second, we validated the universality of the model on a publicly available dataset. We

calculated the decoding performance of 15 categories using LSTM and DCLSTM and

found that our proposed DCLSTM can achieve a decoding performance about 5% higher

than directly using LSTM on this dataset. Therefore, from these two perspectives, it can be

seen that dilated long short-term memory neural networks can significantly improve

classification decoding performance and have universality.

Table 3 Comparison of the decoding performance between DCLSTM and LSTM

Models d=1 d=2 d=4 d=8 d=16

DCLSTM 30.1% 29.4% 29.3% 30.5% 31.3%

LSTM 25.5%

2.4.6. Comparison of the decoding performance of DCLSTM-based temporal

integrated brain information with single-time point brain information
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Most previous studies(Haxby, Gobbini et al. 2001, Carlson, Schrater et al. 2003,

Kamitani and Tong 2005) used peak responses of the BOLD signal as input, but Huang

(Huang, Yan et al. 2020) showed that using brain signals within the period containing the

peak responses could improve decoding performance. Therefore, to demonstrate that

integrating brain information across different time scales can better decode category

information, we compared the decoding performance of integrating occipital brain

information with that of using single time points. The results are shown in Figure 8. First,

for the entire visual cortex, the decoding performance of early integration is worse than

that of single time points, but after 10 seconds, information integration can extract relevant

information from the redundant brain signals, thereby improving decoding performance.

Second, the best decoding result obtained by information integration was about 61%,

while the best decoding result of single time point brain signals was about 56%, indicating

that appropriate time scales should be selected to integrate brain signals across the entire

visual cortex, which can significantly improve decoding performance.

In summary, the information accumulated in the early visual cortex in response to

visual stimuli is limited, and more information is accumulated as time passes. Choosing an

appropriate processing method to extract relevant information from the redundant brain

signals is crucial. Our results demonstrate that the multi-scale fusion method can fully

utilize the correlation between time series and extract relevant information. Thus, using

the information integration method can significantly improve decoding performance.
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Figure 8 Decoding performance of information integration and single time point brain information in the

occipital lobe. Information integration is the decoding performance of selecting the best time scale

(integrating the time information of d=1,2 and 4). LSTM represents single time point brain information, and

DCLSTM is the result of temporal information integration

2.4.7. Comparison of decoding performance of time-integrated brain information,

average brain information, and time-scrambled brain information based on

DCLSTM

In complex human environments, memory is not limited to local storage. People

have long been accustomed to and skilled at extracting stored information from multiple

scales, learning the correlation between information, and thus better understanding the

world. To demonstrate that our proposed use of multi-scale integrated information is fully

extracting relevant signals from accumulated brain signals, rather than randomly selecting,

we also compared the decoding performance of time-integrated brain information with

averaged brain information. Figure 9 shows the decoding differences between brain

information integration and averaging on various visual cortices. Here, the information

integration is selected with a time scale of 4 (integrating brain signals from 1, 2, and 4),

while averaged brain information refers to the input of averaged brain information from 0

to 16 seconds. We found that on various visual cortices, information integration performed

better than simple information averaging, with an overall decoding level above the 20%
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random level. This suggests that our proposed method of using dilated convolution to

extract multi-scale time information can extract relevant brain information from complex

dynamic videos and brain signals. After fusing multi-scale brain information, it is more in

line with the mechanism of processing complex events by the human eye, and can

significantly improve decoding performance. Simple averaged brain information cannot

fully learn relevant information in complex events. This suggests that the multi-scale time

information extracted after dilated convolution is not simply averaged, but rather learns the

correlation between before and after complex time series. Therefore, human memory is not

simply local storage or averaging but rather spans the entire brain on multiple time scales.

Proper information integration can better decode brain signals. We can clearly see that the

entire occipital lobe has the highest decoding accuracy. This is mainly because the

occipital lobe contains the vast majority of the visual area. Other visual regions such as

V1/V2/FFA/OFA, they have fewer voxels. However, we can see that the decoding

performance of the visual regions related to the face(FFA/OFA) is higher than the lower

visual regions. This suggests that the voxels in high-level visual regions contain more

category information, which is less related to the number of voxels.
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Figure 9 Compares the decoding performance of information integration, scrambled_time and average

brain information across individual visual regions. Information integration is the decoding performance of

selecting the best time scale (integrating the time information of d=1,2 and 4). Mean brain information was

the mean brain signal value of 0-16s

2.4.8. Comparison of the decoding performance of brain signals in different brain

regions

As is well known, the high-level visual cortex tends to process higher-level visual

information, such as advanced semantics and categories, while the low-level visual cortex

is more sensitive to simple contour information such as orientation. Therefore, we

hypothesize that the high-level visual cortex has better object recognition abilities. To test

this hypothesis, we compared the decoding performance of various visual cortex regions at

the optimal integration scale, as shown in Figure 10. We can see that the overall decoding

performance of the entire visual cortex is the best, followed by the brain regions associated

with faces, with a decoding performance of approximately 44.2%. V3 comes next, with a

decoding performance of about 39.6%. However, the decoding performance of the

low-level visual cortex regions V1 and V2 is relatively low. It is worth noting that the

decoding performance of brain regions related to scenes is also low, with an overall

performance comparable to that of V2. There are several reasons for this. Firstly, the

number of voxels related to scenes obtained from the functional image localization

experiment we designed is relatively small, resulting in less available information and less

accurate decoding of category information. Secondly, this localization method fully

considers individual differences among subjects, resulting in significant differences in the

number of voxels localized across subjects. Finally, compared with the brain regions

related to faces, it is more difficult to localize brain regions related to scenes, mainly

because scene information is more complex and varied than face information, with the vast

majority of visual stimuli containing complex scene backgrounds, and dynamic video

content being even more complex and varied. This results in less precise localization of
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brain regions related to scenes. In summary, we can see that the high-level visual cortex

can better decode category information compared to the low-level visual cortex.

Figure 10 Decoding performance over time at a temporal integration scale of 4 (integrated brain information

of d=1,2,4). The horizontal axis shows different periods, and 0-6 represents the input period of 0-6 seconds of

brain information. The vertical axis is the decoding accuracy rate. Different colors represent different brain

regions

2.4.9. Differences in the ability to integrate information in different brain regions

Hasson et al. (Hasson, Yang et al. 2008) used a large amount of functional magnetic

resonance imaging data to discover time windows for visual processing in the visual cortex.

They found that the early visual cortex had a shorter temporal reception window (TRW)

while higher-order visual areas had longer TRWs. Since the TRWs of neurons in different

brain regions determine the length of time for processing information, early sensory areas

should have shorter TRWs to rapidly process changing sensory inputs. In contrast,

higher-order visual areas should have longer TRWs to process information from perceptual

and cognitive events unfolding over time. Therefore, the low-level visual cortex

accumulates less information and tends to perceive and transmit visual information, while

the higher-level visual cortex accumulates more information and tends to integrate
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information. To prove this point, we compared the decoding accuracy of single time points

and information integration over time for different visual cortical areas. As shown in

Figure 11, for the low-level visual cortex (V1, V2, V3), using information from a single

time point yielded better decoding performance in earlier periods. V1 had a better decoding

performance with single time point information up to 14 seconds before, V2 up to 12

seconds before, and V3 up to about 11 seconds before. This indicates that information

integration is not suitable for low-level visual cortex, and single time point information is

better for decoding category information. In particular, in the low-level visual cortex,

especially V1, information integration may introduce too much information unrelated to

the stimulus, leading to decreased decoding performance. Furthermore, V1 accumulates

the least amount of information among primary visual cortex regions, indicating that as

cortical depth increases, information accumulation also gradually increases. Interestingly,

in later periods, using information integration in the occipital cortex (OCC) and V3

significantly improved decoding performance, indicating that these two visual areas

accumulate more information later and can better interpret brain activity patterns after

integration. This phenomenon is particularly evident in higher-level visual areas. Brain

regions related to "faces" (FFA&OFA) and "scenes" (OPA&PPA) can obtain good

decoding performance with information integration in earlier periods, indicating that

higher-level visual areas accumulate more information and can use information integration

to extract relevant brain information earlier.
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Figure 11 The figure shows the decoding performance over time for single time-point brain information and

information integration (integration with d=1, 2, 4) in various brain regions. "LSTM" represents single

time-point brain information and "DCLSTM" represents information integration. The horizontal axis

represents different periods and time points, and the vertical axis represents decoding accuracy. A-F

respectively represent V1, V2, V3, FFA&OFA, PPA&OPA, and OCC.

To further illustrate the differences in the integration capacity of visual cortical areas,

we calculated the best decoding performance using single-time point brain information and

integrated information for each visual cortical area, as shown in Figure 12. For lower

visual cortical areas, particularly V1, the decoding accuracy of integrated information was

lower than that of single-timepoint information. This suggests that there is little

accumulation of information in lower-level visual cortical areas, and the integration of

information introduces new neural activity from visual stimuli, leading to a decrease in

decoding performance. In contrast, higher-level visual areas contain a large amount of

accumulated information, particularly in face-related brain areas. After using integrated

information, the decoding accuracy was found to be higher than that of single-information

decoding. Therefore, the integration of temporal information in higher-level visual areas

can significantly improve decoding performance.

In summary, the two figures above show that single-timepoint information can better

decode category information for lower-level visual cortical areas, while integrated
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information can better decode category information for higher-level visual cortical areas.

This is consistent with previous cognitive findings: higher-level visual cortical areas

accumulate more information over time and integrate information, but the function of

lower-level visual cortical areas is mainly to perceive and transmit visual information,

resulting in less accumulated content. Therefore, higher-level visual areas have a longer

time window for sensory processing and require more time to process information.

Figure 12 Compare the best decoding performance of information integration and single time-point in various

visual areas. Information integration represents the decoding performance with the optimal time scale (i.e.,

integrating brain information with d=1,2,4), while the dashed line represents the chance level.

2.4.10. Correlation analysis between decoding accuracy and brain activity pattern

The basic assumption of brain decoding is that when subjects view the same visual

stimuli, the brain responses are consistent or similar. This is a consensus and the basis of

visual decoding, i.e., the brain produces similar responses to the same category of visual

stimuli. However, our study found that the brain's ability to distinguish certain categories is

poor. To analyze the brain representations of different categories, we first visualized the

confusion matrix obtained by decoding using DCLSTM, as shown in Figure 13. We found

some confusion between the five categories. For "animals", it is easily confused with

"people" and "vehicles"; for "vehicles", it has the highest confusion with "animals" and

"buildings". This confusion is contrary to the assumption, so we will analyze it further
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from the perspective of brain activity.

Figure 13 A confusion matrix using DCLSTM decoding (integrated d=1,2,4). The horizontal axis is the prediction

result, and the vertical axis is the actual label

The neural encoding measure describes the brain's representation of different

categories by mining correlations between image features and brain responses, while

RSA(Kriegeskorte, Mur et al. 2008) describes the spatial similarity of different

representations of stimulus images to analyze the brain's representation of different

categories. We first visualized the correlation of occipital lobe (OCC) brain activity

patterns using RDM, as shown in Figure 14 (A) below. It can be seen that for "people", the

greater the dissimilarity with "flowers" and "houses"; As for "traffic", it is more similar to

"houses" and "animals". This similarity is consistent with the confusion matrix, indicating

that the confusion generated by our proposed model is due to the high similarity of brain

activity patterns.

In addition, Figure 14 (B) shows the semantic distance of brain activity patterns

between the five categories. We use cosine similarity to measure the semantic distance

between categories. For cosine similarity, the larger the value, the smaller the

corresponding distance, and the closer the semantic distance in space. Therefore, it can be

clearly seen from the figure that "traffic" and "animal" and "house" have very similar

semantic distance. In other words, for the fMRI responses obtained from the brain, the
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semantic distance between "traffic" itself and "animal" and "house" is small, so these three

categories have a high degree of similarity and confusion. From the perspective of

semantic distance, it is also consistent with the confusion matrix. Therefore, we believe

that the confusion of this model (DCLSTM) may be mainly due to the fact that the

collected brain signals are too similar to distinguish very similar signals well.

Figure 14 (A) Characterational dissimilarity matrix of occipital activity patterns. The horizontal and vertical axes

are the visual stimuli. The color column indicates that the bluer the color, the more similar the corresponding brain

activity pattern is, whereely, the redder the color indicates that the corresponding brain activity pattern is less

similar, the greater the difference. (B) Cosine similarity matrix of occipital activity patterns induced by five

categories of videos, with more blue color representing smaller semantic distance and more similarity. Redder

indicates greater semantic distance and greater dissimilarity

2.4.11. Hierarchical feature similarity analysis of video categories

In 2001, Haxby et al.(Haxby, Gobbini et al. 2001) found that when subjects were

presented with pictures of faces, cats, five kinds of objects and other chaotic images, the

fMRI response patterns corresponding to different types of stimuli were different, but the

response patterns of the same type of stimuli were similar. Therefore, according to the

differences and similarities in brain activity patterns, the types of visual stimuli perceived

by the brain can in turn be identified and decoded, which is the fMRI brain signal

classification decoding principle. However, as shown in the 2.4.10 analysis, the brain

activity we obtained was very similar in the "house" and "traffic" categories. So we went

further to analyze how visual stimuli induce patterns of brain activity. We use
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VGG16(Simonyan, Zisserman et al. 2014) to extract different levels of visual features and

draw the representation dissimilarity matrix of each level of visual features. Figure 15

shows the representational dissimilarity matrix of image-level visual features, and

image-level RDM can reflect the distance between images of any stimulus. We can see that

the advanced visual features can clearly see the "block" structure, which means that the

five categories can be clearly distinguished, indicating that different stimuli of the same

category are still highly similar even if they are different. The intermediate visual feature is

very fuzzy when distinguishing "traffic". Low-level visual features fail to distinguish

categories. This is because low-level visual features, such as contour direction, have no

categorical information and are not sufficient for classification, but high-level visual

features contain more and richer semantic information and can be well classified.

Figure 15 The representational dissimilarity matrix of image-level video features extracted from five categories of

video based on VGG16, where the image-level represents each visual stimulus compared. (A) Representation

dissimilarity matrix of high visual features; (B) Representation dissimilarity matrix of intermediate visual features;

(C) Representation dissimilarity matrix of low-level visual features. The bluer the color column, the more similar

the brain activity pattern, and the redder the color, the less similar the corresponding brain activity pattern, and the

greater the difference

Class-level RDM represents the distance between the average representations of

different classes of stimuli. For low, medium and high visual features, "vehicle" is easily

confused with "house". Figure 16 shows the red box. This shows that "house" and

"vehicle" have great similarities in terms of visual characteristics. This similarity is

consistent with patterns of brain activity. As shown in Figure 16. To further quantify this

similarity, we calculated the similarity between different levels of class-level visual
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features and brain activity patterns, as shown in Figure 16 (E). It can be seen that there are

high similarities between the obtained brain activity patterns and low, intermediate and

high visual features, which also indicates that the brain activity patterns are driven by

visual stimuli. Secondly, the pattern of brain activity is more similar to the intermediate

visual features. It can also be clearly seen from the figure that different levels of visual

features are very different.

Figure 16 The representation dissimilarity matrix of five categories of video features extracted based on VGG16.

(A) A representation dissimilarity matrix of brain activity patterns; (B) Representation dissimilarity matrix of

low-level visual features; (C) Representation dissimilarity matrix of intermediate visual features; (D)

Representation dissimilarity matrix of higher visual features; (E) Second-order representation dissimilarity matrix

between brain activity patterns and visual features at different rank class levels. The color column showed that the

bluer the color, the more similar the brain activity pattern, and the redder the color, the less similar the brain

activity pattern, and the greater the difference

Reviewing the video stimuli, we found that the backgrounds of some of the vehicles

and the backgrounds of the houses were very similar. As shown in Figure 17, (A) and (B)

are different types of houses with blue sky as the background; (C) and (D) are different

vehicles with blue sky and sea water in the background. The background of both subvideos
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is the sky and the surrounding landscape, which also leads to the similarity of visual

features extracted from the two categories. When comparing the image-level video features

and class-level video features horizontally, it can be found that after the visual features of

any video of each category are averaged. Many detailed features are blurred, which may

lead to the confusion of class-level visual features to some extent. For example, when we

distinguish Figures 17 (A) and (B) separately, it is obvious that they are two different types

of buildings, but when the two "house" are averaged, some visual features may be blurred.

At the same time, the background of "house" is highly similar to the background of

"traffic", which is likely to further lead to the confusion between categories from the visual

feature level analysis at the class level.

(A) (B) (C) (D)

Figure 17 Schematic of visual stimulation for "building" and "vehicle".(A) and (B) are the buildings. (C) and (D)

are the means of vehicles

3. Conclusions and discussion

It is well known that neurons in visual cortical pathways have increasingly large spatial

receptive fields(Einevoll and Heggelund 2001). This is the basic organizing principle of the visual

system. Neurons in higher visual areas receive input from smaller neurons in early vision,

accumulating information from most of the space occupied by the objects and scenes they

process(Hubel and Wiesel 1968). Events in the real world occur not only in an extended region of

space, but also in an extended time. Therefore, the temporal response characteristics of different

brain regions should also have a hierarchical structure similar to the size of spatial receptive fields

(Hasson, Yang et al. 2008). Humans experience the world through visual perception as it unfolds
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over time, and therefore must rely on the accumulation of information over a long period of time,

including causal reasoning, processing linguistic information on various scales, understanding

narratives, event segmentation, and human social interaction. In most real-life processes, past

information is often used to process incoming information across multiple time scales(Hasson,

Chen et al. 2015), and sense and perception use information integration to experience the external

world. From a large amount of functional imaging data, scientists believe that visual cortex

circuits can accumulate information gradually over time and have different time

levels(Beauchamp 2005). In 2001, Rotshtein et al.(Rotshtein, Malach et al. 2001) found that there

was less information accumulation in the early visual area, while there was more information

accumulation in the advanced visual area. Therefore, the advanced visual area with information

integration could better decode visual information. In 2008, Hasson et al.(Hasson, Yang et al.

2008) found from a large number of FMRI data that almost all cortical circuits can accumulate

information over time and have different hierarchies on time scales. By having subjects watch

both forward and backward silent movies and calculating the correlation coefficients, they found

that the early visual cortex had a shorter time window and higher order visual areas had a longer

time window. Specifically, a neuron's Temporal Receptive Windows (TRWs)(Hasson, Yang et al.

2008) is defined as the length of time before sensory information influences the response. Since

the TRWs of neurons in brain regions determine the length of time in which information can be

processed in the past, it is assumed that the range of TRWs in each region must correspond to its

functional role. The TRWs in the early sensory areas should be short and able to quickly process

changing sensory input. In contrast, TRWs in some higher-level regions should be longer,

allowing them to process information in perceptual and cognitive events that unfold over time.

Thus, memory is not limited to some local storage, but rather an intrinsic feature of information



38

processing that runs throughout the brain on multiple timescales. As a result, information

integration can better decode brain signals.

Based on the data set proposed in this thesis, the advantages of DCLSTM in information

integration are analyzed from multiple perspectives. We first compare the decoding performance

of the model under different time integration scales, and find that choosing the appropriate time

integration scale according to the length of the time series is helpful to improve the decoding

performance. Next, we compare the decoding performance of traditional machine learning

algorithms and DCLSTM, and verify the universality of the model on public data sets. Then, we

analyzed the accuracy of time information integration and decoding of brain information of single

time point, average brain information and disturbed time series, and found that multi-scale fusion

can make full use of the correlation between time series and extract the relevant information to

improve the decoding accuracy. We also compared the differences in decoding between different

brain regions, and found that higher visual regions contain more category information and can be

better decoded. Then, we further compare the differences of information integration in different

visual areas, and find that the low-level visual areas have less information accumulation and less

integration. More information is accumulated in higher visual areas, and more information is

integrated accordingly. Since there is a high degree of confusion in the results of "building" and

"traffic", we analyzed the brain activity pattern and visual features, and found that it is likely that

the highly similar background of these two types of visual stimuli caused the confusion.
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