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Abstract 
 

Obesity and associated metabolic complications continue to be a serious health concern around the 

globe. Among the different organ systems involved in the development of obesity, adipose tissue 

across distinct locations of the human body is known to play a key role in energy homeostasis. 

Despite the common function of fat storage, adipose tissue in different anatomical locations known 

as depots is associated with varied disease status. In addition, adipose tissue (AT) is also made up 

of several cell types including progenitors, immune cells, endothelial cells and smooth muscle 

cells. We used single-cell sequencing technologies to characterize the complex cell populations in 

AT and their role in metabolic disease risk. First, we investigated the association of cell 

populations in subcutaneous (SAT) and intra-abdominal visceral adipose tissue (VAT) from 

extreme obese adults with or without type 2 diabetes (T2D) using single-cell RNA sequencing 

(scRNASeq). We were able to profile different progenitors, immune cells and endothelial cells 

present in the two depots as well as contrasting their association with T2D with the help of gene 

expression patterns. We then further expanded these efforts to pediatric tissue characterization 

across lean and obese children as well as by including single nuclei open chromatin ATAC-Seq 

data (snATAC-Seq) combined with scRNA-Seq. We were able to confirm and validate our 

findings from adult study and explored dynamics of these cell population in response to obesity. 

Adipose resident immune cells showed age, tissue and disease dependency with a low proportion 

of adipose-infiltrating immune cells in young individuals compared to adults. In conclusion, we 

have shown that high-throughput single-cell approaches applied to deep phenotyped cohorts and 

carefully prepared tissue samples allow the identification of dysfunctional cellular and molecular 

machinery underpinning complex diseases such as obesity and type 2 diabetes. 

  



 6 

Résumé 

 

L'obésité et les complications métaboliques qui y sont associées continuent d'être un grave 

problème de santé à travers le monde. Parmi les différents systèmes organiques impliqués dans le 

développement de l'obésité, le tissu adipeux (TA) distribué à différents endroits du corps humain 

est connu pour jouer un rôle clé dans l'homéostasie énergétique. En plus de sa fonction commune 

de stockage des graisses, ce tissu, aussi connus sous le nom de dépôt dans différents emplacements 

anatomiques, est associé à des états pathologiques variés. Le TA est composé de plusieurs types 

de cellules, notamment des progéniteurs, des cellules immunitaires, des cellules endothéliales et 

des cellules musculaires lisses. Nous avons utilisé des technologies de séquençage unicellulaire 

pour caractériser les populations cellulaires complexes dans le TA et leur rôle dans le risque de 

maladie métabolique. Tout d'abord, nous avons étudié l'association des populations cellulaires 

dans le tissu adipeux viscéral, sous-cutané et intra-abdominal d'adultes obèses extrêmes avec ou 

sans diabète de type 2 (DT2) en utilisant le séquençage d'ARN unicellulaire (scRNASeq). Nous 

avons pu profiler différents progéniteurs, cellules immunitaires et cellules endothéliales présentent 

dans les deux dépôts ainsi que contraster leur association avec le DT2 à l'aide de modèles 

d'expression génique. Nous avons ensuite étendu ces efforts à la caractérisation des tissus 

pédiatriques chez les enfants maigres et obèses, et avons ajouté des données de profilage 

unicellulaire de la chromatine ouverte (snATAC-Seq) combinées avec scRNA-Seq. Nous avons 

pu confirmer et valider nos résultats antérieurs chez l'adulte et exploré la dynamique de ces 

populations de cellules en réponse à l'obésité. L’analyse des cellules immunitaires a démontré une 

association à l'âge, aux tissus et à la maladie avec une faible proportion de cellules immunitaires 

infiltrant les tissus adipeux chez les jeunes par rapport aux adultes. En conclusion, nous avons 
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montré que les approches unicellulaires à haut débit appliquées à des cohortes phénotypées 

profondes et à des échantillons de tissus soigneusement préparés permettent l'identification de la 

machinerie cellulaire et moléculaire dysfonctionnelle à la base de maladies complexes telles que 

l'obésité et le diabète de type 2. 

 

 



 8 

List of Abbreviations 

 

AT Adipose Tissue 

ATAC-Seq Assay for Transposase Accessible Chromatin sequencing 

ATM Adipose Tissue Macrophages 

BAT Brown Adipose Tissue 

BMI Body Mass Index 

C/EBPs CCAT-Enhancer Binding Proteins 

CCA Canonical Correlation Analysis 

ChIP-Seq Chromatin Immunoprecipitation assay with Sequencing 

CIHR Canadian Institutes of Health Research 

CNS Central Nervous System 

CVD Cardiovascular Diseases 

DAVID Database for Annotation, Visualization and Integrated Discovery 

DNA Deoxyribonucleic Acid 

ENCODE Encyclopedia of DNA Elements 

eQTL Expression Quantitative Trait Locus 

FACS Fluorescent Activated Cell Sorting 

FRCBS Finnish Red Cross Blood Service 

GEM Gel in Emulsion 

GEO Gene Expression Omnibus 

GIANT Genetic Investigation of ANthropometric Traits consortium 

GTEx Genotype-Tissue Expression Consortium 



 9 

GWAS Genome Wide Association Study 

HCA Human Cell Atlas 

HSC Hematopoietic Stem Cells 

HuBMAP Human Biomolecular Atlas Program 

IUCPQ Institut universitaire de cardiologie et de pneumologie de Québec 

KRH Krebs-Ringer-Henseleit 

LPL Lipoprotein Lipase 

LYVE-1 Lymphatic Vessel Endothelial Hyaluronan Receptor 1 

MARS-Seq Massively Parallel RNA Single Cell Sequencing  

MCC-Seq MethylC-Capture Sequencing 

METSIM Metabolic Syndrome in Men 

mQTL Methylation Quantitative Trait Locus 

MSC Mesenchymal Stem Cells 

MuTHER Multiple Tissue Human Expression Resource 

NIHR National Institute for Health Research 

NK cells Natural Killer Cells 

PBMC Peripheral Blood Mononuclear Cell  

PCA Principal Component Analysis 

PCR Polymerase Chain Reaction 

PGM Pre-Adipocyte Growth Medium 

PPARG Peroxisome proliferator activated receptor gamma 

QC Quality Control 

RIN RNA Integrity Number 



 10 

RNA Ribonucleic Acid 

SAT Subcutaneous Adipose Tissue 

scRNA-Seq Single Cell RNA sequencing 

SMART-Seq Switch Mechanism at the 5′ End of RNA Templates 

snATAC-Seq Single Nuclei ATAC sequencing 

SNPs Single Nucleotide Polymorphisms 

SVF Stromal Vascular Fraction 

t-SNE t-Distributed Stochastic Neighbor Embedding 

T2D Type 2 Diabetes 

TFBM Transcription Factor Binding Motif 

TF-IDF Term Frequency-Inverse Document Frequency 

TNF-a Tumor Necrosis Factor Alpha 

Treg Regulatory T cells 

TSS Transcriptional Start Site 

TZD Thiazolidinediones 

UMAP Uniform Manifold Approximation and Projection 

UMI Unique Molecular Identifier 

VAT Visceral Adipose Tissue 

WAT White Adipose Tissue 

WHO World Health Organization 

WHR Waist to Hip circumference Ratio 

WT1 Wilms tumor gene  



 11 

List of Figures 

 

CHAPTER2: Cataloguing Human Adipose Tissue Across Depot and Disease at Single Cell 

Resolution 

Main Figures 

Figure 1: Identified cell populations in the non-adipocyte fraction of adipose tissue .................. 76  
Figure 2: SVF-derived immune cells  .......................................................................................... 77 
Figure 3: SVF-derived progenitor clusters ................................................................................... 78 
Figure 4: Main cell clusters in SVF based on depot ..................................................................... 79 
Figure 5: Progenitor clusters specific to SAT .............................................................................. 80 
Figure 6: Progenitor clusters specific to VAT derived from individuals with obesity ................ 82 
Figure 7: Progenitor clusters specific to VAT derived from a healthy individual ....................... 83 

Extended Data 1: Multiple macrophage clusters were identified in SVF from both SAT and VAT 
depots  ........................................................................................................................................... 84 
Extended Data 2: Gene expression of marker genes in 6 visceral specific progenitor clusters ... 85 

 

Supplementary Figures  

Supplementary Figure 1: UMI, nGene, mitochondrial and sample distribution of SVF clusters 
from all 25 samples  ............................................................................................................ 150 
Supplementary Figure 2: Metallothionein gene shows expression in SAT and VAT depots from 
adipose tissue, adipocyte, SVF and GTEx  ......................................................................... 151 
Supplementary Figure 3: T2D associated genes in MuTHER study from SP1 cluster shows 
strong correlation of effect sizes with METSIM Study  ...................................................... 151 
Supplementary Figure 4: Clustering results of CD34+ cell population from SVF of SAT and 
VAT of 2 individuals. .......................................................................................................... 152 
Supplementary Figure 5: Distribution of mitochondrial gene expression in relation to UMI and 
Gene distribution ................................................................................................................. 153 
Supplementary Figure 6: Pearson correlation of UCP1 with MSLN (a), WT1(b), IRX3 (c) and 
SOD2 (d) using bulk RNA-Seq from visceral adipose tissue of 10 individuals ................. 154 
Supplementary Figure 7: FACS Sorting strategies used for the representative sample included in 
the study ............................................................................................................................... 155 
 



 12 

CHAPTER3: Adipose Tissue Transcriptome and Epigenome Characterization During 

Development and in Health and Disease 

Main Figures 

Figure 1: Classification of cell population in SVF .............................................................. 111 
Figure 2: Cluster specific markers of vascular endothelium ............................................... 112 
Figure 3: Adipose resident immune cells ............................................................................ 113 
Figure 4: Clustering using snATAC-Seq ............................................................................ 114 
Figure 5: Subpopulation among progenitors using scRNA-Seq ......................................... 115 

 

 

  



 13 

List of Tables 

 

CHAPTER2: Single-cell analysis of human adipose tissue identifies depot- and disease-

specific cell types 

Main Tables 

Table 1: Characteristics of the study subjects. ........................................................................ 75 

 

Supplementary Tables  ............................................................................................................ 156  

Supplementary Table 1: Single cell sequencing statistics of SVF samples 
Supplementary Table 2: Top genes expressed in clusters of SVF-derived cells from 25 samples.  
Supplementary Table 3: Marker genes used for manual annotation 
Supplementary Table 4: Annotation results from manual and unsupervised cell type recognition - 
Complete Set 
Supplementary Table 5: Differential Gene Expression Analysis result between male and female 
individuals (n=245) on marker genes using GTEx data.  
Supplementary Table 6: Differential gene expression analysis result between cluster E3 and 
combined endothelial clusters E1 and E2 identified from 25 samples.  
Supplementary Table 7: Annotation results from manual and unsupervised cell type recognition - 
Immune clusters 
Supplementary Table 8: Top genes expressed in clusters of Immune cells from 25 samples.  
Supplementary Table 9: Top genes highly expressed in clusters of Immune cells in CD34- sorted 
SVF (n=3 samples).  
Supplementary Table 10: Association of metallothionein genes to obesity traits in large cohorts - 
MuTHER (n=776) and METSIM (n=770).  
Supplementary Table 11: Percentage of cells in each cluster correlating with reference set in 
unsupervised cell type recognition 
Supplementary Table 12: Genes specific to MSLN rich VAT progenitors that are significantly 
upregulated in VAT (n=1) in comparison with SAT (n=11) using bulk RNA-Seq. 
Supplementary Table 13: Percentage of cells in each cluster correlating with reference set in 
unsupervised cell type recognition 
Supplementary Table 14: Pearson correlation between fasting glucose levels and cell proportions 
in each SAT progenitor clusters (n=25 samples). 
Supplementary Table 15: Top genes highly expressed in SAT Progenitor clusters identified from 
25 samples.  



 14 

Supplementary Table 16: Disease association with top genes of SAT progenitor clusters using 
DAVID Bioinformatics Resources 6.8 
Supplementary Table 17: Top expressed genes in SP1 and their association with T2D traits in 
MuTHER (n=776) and METSIM (n=700). 
Supplementary Table 18: Association of SP1 cluster with T2D traits in MuTHER and METSIM.  
Supplementary Table 19: Expression of SP1 genes that are associated with T2D status.  
Supplementary Table 20: Top genes highly expressed in VAT Progenitor clusters identified from 
25 samples.  
Supplementary Table 21: Top genes highly expressed in CD34+ sorted SVF samples (n=4).  
Supplementary Table 22: Differential gene expression analysis results using DESeq2 for the 
brown adipose specific marker genes from SAT vs VAT in mature adipocyte (n=24 samples) 
Supplementary Table 23: Differential gene expression analysis between UCP1 expressing 
clusters (0 & 3) and remaining MSLN expressing clusters (1 & 2) from a healthy young donor. 
 

CHAPTER3: Adipose Tissue Transcriptome and Epigenome Characterization During 

Development and in Health and Disease 

Main Tables 

Table 1:  Marker genes identified in differential expression analysis between vascular endothelial 
cells (EK1, EK2) and smooth muscle cells (SK1, SK2). The genes were identified using 
Wilcoxon rank sum test implemented in Seurat. ................................................................. 108 
Table 2: Marker genes identified in differential expression analysis between smooth muscle cell 
clusters S1 and S2. The genes were identified using Wilcoxon rank sum test implemented in 
Seurat. .................................................................................................................................. 109 
Table 3: Marker genes identified in differential expression analysis between cells from healthy 
weight and obese in EK1. The genes were identified using Wilcoxon rank sum test implemented 
in Seurat. .............................................................................................................................. 110 
 

Supplementary Tables  

Supplementary Table 1: Top 20 motifs identified in CFD expressing clusters in comparison with 
MSLN expressing clusters ........................................................................................................ 156 
Supplementary Table 2: Top 20 motifs identified in MSLN expressing clusters in comparison 
with CFD expressing clusters .................................................................................................. 157 
  



 15 

Acknowledgments: 

 

I would like to thank and acknowledge everyone who has helped me throughout my research work 

to bring this thesis to a complete picture. I thank my supervisor Dr. Elin Grundberg for guiding 

and supporting me the last 6 years. I thank you for believing in me and giving me the opportunity 

to work on an amazing project. I am grateful for the freedom and support she has provided and 

being patient with me in providing time and support. I thank you for mentoring me to understand 

how to approach a research problem, for the career guidance and all your support which helped 

me to bring my PhD to a finishing point. Next, I would like to thank my co-supervisor Dr. 

Guillaume Bourque for accepting me as his student and taking time to guide me in time of 

necessity. I also thank you for all your help with my thesis and my career explorations. I thank my 

supervisory committee members Drs. Hamed S. Najafabadi and Claudia Kleinman for always 

providing constructive feedbacks on my projects. I would also like to extend my thanks to Dr. 

Tomi Pastinen for taking time to reviewing my manuscripts and helping me to structure them more 

effectively. I extend my special appreciation to all my team members Albena Pramatarova, Warren 

Cheung, Xiaojian Shao, Marie-Michelle Simon, Elodie Boulier, Tony Kwan, Bing Ge and Fiona 

Allum for all the support and creating a friendly work environment. I also thank all our 

collaborators, a special note to Dr. André Tchernof who played a pivotal role in bringing my 

projects to completion by sharing their resources and expertise. I am also thankful to the 

Department of Human Genetics for the differential fee waiver, the travel awards, and the 

Excellence award. Finally, I would like to thank my parents, Anchu, Vijay, Isha and Megha for 

their continuous support and understanding throughout my PhD journey. 

  



 16 

Preface 

 

Contribution to Original Knowledge 

This doctoral thesis is aimed at characterizing adipose tissue cell population at single cell level and 

to ascertain their significance in development of metabolic disorders. To attain this goal, we 

studied adipose tissue from adults and children and the detailed description of our attempts are 

included as two research chapters in this thesis. We leveraged transcriptome and open chromatin 

regions of different cell population to study them in detail. 

 

In the first project described in Chapter2, we characterized the adipose tissue from two different 

depots of human body- SAT and intra-abdominal VAT. Here we focused only on extremely obese 

adults discordant for T2D phenotype. We were able to identify two different population of 

progenitors in VAT which showed difference in gene expression signatures related to the disease 

status. We hypothesized that accumulation of one of the progenitor types marked by the expression 

of mesothelin (MSLN) is protective against metabolic disorders. This idea is further strengthened 

by presence of signals like fibrosis and expression of disease associated gene expression in the 

progenitor subset expressing adipsin (CFD). We were also able to profile many immune cell 

subtypes residing in adipose tissue in a depot and T2D-specific manner. For instance, we 

confirmed the notion that macrophages are residing to a larger extent in VAT compared to SAT 

including cells at distinct stages of polarization – a pattern that was further enhanced when the 

analysis was restricted to cells derived from T2D subjects. We also identified a subset of T cells 

enriched with metallothionein genes showing T cell exhaustion in obesity. Finally, we identified 
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the presence of multiple endothelial cell types including adipose tissue specific microvascular 

endothelial cells expressing FABP4 and CD36. 

 

In the second project, we included VAT samples from lean and obese children expanding our 

interrogating by including snATAC-Seq along with scRNA-Seq. These data confirmed the distinct 

relationships of dysfunctional and protective adipocyte progenitors with obesity identified in adults 

also in young individuals: CFD-expressing progenitor cells were enriched in children with obesity 

(34%) compared to healthy individuals (15%). MSLN-expressing cells were found to be present in 

healthy tissue from lean children (41%) compared to obese children (9%) and possess the signature 

of a brown-like progenitor population. Further analysis also showed snATAC-Seq peaks defining 

MSLN clusters being enriched for binding sites for TEAD-family of transcription factors in 

comparison with CFD expressing clusters. In addition, VAT resident immune cells showed age, 

tissue and disease dependency with a low proportion of adipose-infiltrating immune cells in young 

individuals compared to adults. 
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Format of the Thesis 

 

This thesis follows manuscript-based thesis style with five chapters. The first chapter covers a brief 

background of adipose tissue biology and single cell technologies that are relevant to the research 

interest of this thesis. Followed by the background information, chapter 1 also includes the 

rationale, hypothesis, and specific aims of my research. Chapter 2 and 3 covers the original 

research projects of this doctoral thesis. Chapter 2 is published in Nature Metabolism and draft 

manuscript is included in chapter 3. General discussions on the results of the research chapters are 

incorporated in chapter 4. Chapter 5 comprise of conclusions and future directions which we 

ascertained from the research projects in chapter 2 and 3. Lastly, the appendix includes the list of 

other publications which I contributed during my PhD and additional supplementary tables and 

figures from chapter 2 and 3. 
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Chapter 1: Introduction 

 

Obesity and associated metabolic disorders continue to be a serious health concern around the 

globe. Obesity can be broadly explained as an imbalance between calorie intake and expenditure 

by the body. As per the estimates of World Health Organization (WHO) in 2016, 1.9 billion adults 

were found to be overweight, and 650 million adults were found to be obese worldwide1. Recent 

WHO reports also show that 5.6% of children under the age of 5 were identified to be overweight 

worldwide. Comparing the estimates from the year 2000 (4.9%), child obesity has a positive trend 

in line with global obesity trends seen in previous studies2,3. Obesity in turns leads to cardiac stress, 

alteration in pulmonary function, degeneration of cartilages, impairment of immune function and 

insulin resistance4. It is often measured using the ratio of weight-for-height of a person, termed as 

body mass index (BMI) and an adult with a BMI above 30 kg/m2 is considered as obese1.  

 

Metabolic syndrome is a collective term given to the disorders that arise because of obesity. As 

per WHO, glucose intolerance is considered as the key component of metabolic syndrome. 

However, glucose intolerance is categorized as metabolic syndrome only if it is paired with two 

other comorbidities which include obesity, dyslipidemia, hypertension and microalbuminuria5.  

Though metabolic syndrome is prevalent among adults, considerable proportion of obese children 

also develops the disorder. It also increases the risk of development of cardiovascular diseases in 

later stages3. Framingham risk score is a widely used method to assess the 10-year risk for 

development of cardiovascular disease in the presence of metabolic disorders6. Though BMI gives 

an overall measure of obesity, fat accumulation at different regions of human body termed as 

depots plays a critical role in contributing risks to the development of metabolic syndromes. 
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1.1 Adipose Tissue Biology 

1.1.1 Heterogenous Distribution of Fat in Human Body 

In 1947, Vague7 reported body fat accumulation shows two different patterns which he described 

as android and gynoid obesity. Android obesity is characterized by upper abdominal fat 

accumulation, prevalent in males and often associated with metabolic disorders, whereas gynoid 

obesity is marked by fat in peripheral regions and common in females. Further, Waist to Hip 

circumference Ratio (WHR) was found to be associated with development of cardio metabolic 

risks in many following studies8. The central obesity or android obesity is contributed by two main 

depots of fat tissue - subcutaneous adipose tissue (SAT) and intraabdominal visceral adipose tissue 

(VAT). Visceral adipose tissue also shows anatomical, cellular and molecular difference from 

subcutaneous adipose tissue. For instance, VAT is marked by small adipocytes, increased 

concentrations of glucocorticoid and androgen receptors, more vascularity and varied adipokine 

profile9. VAT is also drained by portal veins providing direct link to liver which is a vital organ 

associated with development of obesity. Added to the fact that the increase in WHR was driven by 

an increase in VAT volume, it was identified as the fat depot that is associated with development 

of cardio metabolic diseases10. Based on the occurrence of metabolic syndromes in different BMI 

range, patients are usually classified into two groups. Patients in normal weight range but with 

metabolic syndrome were usually referred as metabolically obese and obese individuals with 

normal metabolic status were referred as metabolically healthy obese. The VAT volume was 

identified to be factor regulating the disease status. The etiology of VAT disproportion can be 

pointed to a variety of factors including age, sex, genetics, ethnicity and hormones11. 
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Methodological difficulties to access the tissue deep in the body cavity makes studying VAT 

challenging.  

 

1.1.2 Sex Bias in Fat Accumulation 

Adiposity in men is mostly contributed by VAT characterized by fat accumulation in the upper 

body. On the contrary, subcutaneous adipose tissue accumulated in lower body tend to contribute 

to obesity in women. After menopause, a shift in affinity towards adipose accumulation was seen 

in women resulting in more visceral adipose volume.  Further, sex hormones were known to play 

a critical role in obesity pathology. Lipoprotein lipase (LPL) secreted by adipocytes plays a 

significant role in hydrolyzing triglycerides in lipoproteins and releasing free fatty acids. LPL was 

found to be expressed in a sex specific pattern. It is primarily expressed in subcutaneous adipose 

tissue in women and visceral adipose tissue in men12. In addition, circulating testosterone levels 

were found to be inversely correlated with LPL activity13. On the other hand, estrogen was found 

be protective against accumulating visceral adipose volume14. Development of insulin resistance 

also shows more prevalence in males than females. Studies show estrogen play a key role in 

glucose homeostasis in women and thereby preventing diabetes15. 

 

1.1.3 Adipose Tissue Expansion 

Expansion of adipose tissue, as seen in obesity, can be due to increase in size of adipocytes known 

as hypertrophy or due to differentiation of new adipocytes known as hyperplasia16,17. Adipocytes 

in adults were found to be static and main mechanism of adipose expansion was hypertrophy16. 

Hypertrophy alters normal functioning of adipose tissue by several ways. It includes increased 
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inflammation, altered adipokine secretion and promoting hypoxia which in turn leads to the 

development of metabolic syndromes18. 

 

In hyperplasia, adipocytes were known to be differentiated from mesenchymal stem cells (MSC), 

but the complete mechanism is unknown. MSCs are present in different regions of the human 

body, including adipose tissue. Multipotent MSCs can differentiate into adipocytes, osteocytes, 

myocytes, and chondrocytes. Adipogenesis starts with commitment of MSCs to proliferative 

fibroblasts like pre adipocytes. Pre adipocytes remains in a state of growth arrested for extended 

periods due to contact inhibition from the neighboring cells. In the presence of a stimulus, they 

undergo mitotic clonal expansion and terminal differentiation to mature lipid laden adipocytes19. 

A cascade of transcription factors is known to mediate adipogenesis. Among them, Peroxisome 

proliferator- activated receptor g (PPARg) and CCAT-enhancer binding proteins (C/EBPs) are 

studied extensively20. However, new transcription factors, genes and regulatory mechanisms 

involved in adipogenesis are still actively being discovered.21,22  

 

Adding another layer of complexity, the embryonic origins of different adipose depots are yet to 

be understood. Chau et. al. identified subcutaneous and visceral adipose tissue have different 

origins23. Transcriptome study of subcutaneous and visceral adipose tissue showed the expression 

of Wilms tumor gene, WT1 exclusively in visceral adipose tissue. Further, lineage tracing studies 

showed visceral adipose tissue has a group of progenitors that may have a development origin 

from mesothelium. Mesothelium forms a lining of internal organs such as heart, lungs, and 

intestines. Interestingly, a layer of mesothelium was also found covering the visceral adipose 

depot. The authors hypothesized that a some of the visceral adipocyte progenitors were contributed 
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by the mesothelial layer. This was further confirmed in several ways, including the observation of 

mesothelial marker UPK3B in visceral adipose tissue24.   

 

1.1.4 Thermogenic Adipose Tissue 

Energy storing adipose tissue found in different depots of human body are termed as white adipose 

tissue (WAT). Thermogenic adipose tissue referred to as brown adipose tissue (BAT) have gained 

attention of researchers for decades due its capacity to breakdown available substrates including 

glucose and free fatty acids into heat25. BAT was observed in hibernating animals as a protective 

mechanism against cold temperatures through non-shivering thermogenesis26. This is facilitated 

by oxidative phosphorylation using Uncoupling protein 1 (UCP1)27. As a result, BAT is rich in 

mitochondria compared to WAT. BAT was believed to be absent in adult humans. However, recent 

studies show presence of BAT in adults and their abundance is inversely correlated with BMI28 

and insulin resistance25. 

 

Thermogenic adipose tissue can also be developed from WAT when there is a stimulus like cold 

or b3- adrenergic agonists. These cell types are termed beige or brite adipocytes. There have also 

been evidence suggesting development of beige fat from precursor cells. Beige fat has the capacity 

to transform back to WAT or induced again based on the presence of stimulus29. Brown adipocytes 

are known to develop from precursor cells that show equivalent properties as skeletal muscle 

precursors. On the other hand, beige adipocyte precursors show similarity with white adipocyte 

precursors. Irrespective of the precursors, PRDM16 is the transcription factor that is known to play 

major role in development of both brown and beige adipocytes30.   
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1.1.5 Infiltration of Immune Cells  

Adipose tissue is made up of adipocytes, progenitor cells, endothelial cells, smooth muscle cells 

and immune cells. The non-adipocyte cell groups in the adipose tissue are known as stromal 

vascular fraction (SVF). Immune population in adipose tissue include macrophages, T cells, B 

cells, neutrophils, eosinophils, and mast cells. Adipose tissue also secretes several pro-

inflammatory and anti-inflammatory cytokines and chemokines. Increase in macrophage 

population has been associated with increase in BMI and obesity31.  Immune cells are known to 

form crown like structures called milky spots around dying adipocytes weeks after high fat diet.32  

 

Development of insulin resistance is directly associated with the level of inflammation of adipose 

tissue and is marked by Tumor Necrosis Factor (TNF-a). Macrophages are identified as the main 

source of TNF-a and an increase in macrophage population is observed with development of 

insulin resistance31. Further, macrophages are also found to polarize to proinflammatory M1 

phenotype from anti-inflammatory M2 cells33.  Apart from macrophages, Regulatory T cells (Treg) 

and B cells are known to play a leading role in adipose inflammation. For instance, Treg population 

was significantly reduced with onset of obesity as well as linked to  insulin sensitivity through the 

secretion of peroxisome proliferator activated receptor g (PPARG)34. B cells promotes 

inflammation and insulin resistance. However, the exact mechanism is not known. 

 

1.2 Genome-wide Studies 

1.2.1 Genetic, Epigenetic and Transcriptomic Studies  

Obesity is a complex trait meaning the disease is caused by both genetic and environmental factors. 

A recent study showed that the heritability of BMI is around 30 – 40%35. Genome wide association 
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studies (GWAS) have identified numerous genetic regions (i.e., loci) associated with phenotypes 

linked to obesity and metabolic disorders. For instance, Locke et al. identified 97 loci associated 

with BMI using 339,224 individuals from Genetic Investigation of ANthropometric Traits 

consortium (GIANT) meta-analysis. However, most of the loci were found to be involved in 

Central Nervous System (CNS) functions further suggesting involvement of the brain in the 

development of obesity36. On the other hand, loci that were found to be associated with fat 

distribution (e.g., waist to hip ratio) were more likely to be linked to adipose tissue function, 

confirming differential fat accumulation in depots were driven by adipose tissue37. The widely 

used system for annotating GWAS loci is to link them to nearby genes to predict function. 

However, comprehensive, integrative studies are often required to characterize the Single 

Nucleotide Polymorphisms (SNPs) as explained in the classical example of FTO gene association 

with obesity. Chromosome conformation studies showed different SNPs in vicinity of FTO 

disrupts the functions of distant genes including IRX3, IRX5, FTO and RPGR1P1L rather than 

associating the pathogenesis to FTO38. Another example is the GWAS loci associated with leptin-

melanocortin pathway. Results from studies on rare and severe early-onset obesity (so called 

monogenic from of obesity) have identified SNPs associated with multiple genes each with a 

moderate risk score but collectively affecting leptin – melanocortin pathway which is involved in 

energy intake39,40.  

 

Environmental factors underlying complex disease risk such as obesity can be associated with 

epigenetic changes. DNA methylation patterns have been studied extensively to identify epigenetic 

links to obesity and metabolic traits. Mendelson et. al. studied methylation patterns associated with 

BMI and cardiometabolic diseases using Framingham heart study cohort and Lothian birth control 



 27 

cohorts. 83 methylation sites associated with BMI was found to be replicated in other cohorts 

confirming that the loci are highly conserved for disease association. Using tissue specific 

expression, they also characterized a novel locus near SREBF1 to associated with BMI and 

coronary artery disease41. As DNA methylation pattern is known to be tissue specific and inform 

about regulatory regions such as promoters and enhancers throughout the genome, our team 

recently implemented a capture approach called MethylC-Capture Sequencing (MCC-Seq) to 

study the methylome in specific tissue and disease context using user defined regions. MCC-Seq 

is a versatile tool providing cost effective solution as well as defining target genome regions 

specific to particular tissue.42 Apart from methylation, identification of open chromatin regions 

using ATAC-Seq (assay of transposase-accessible chromatin with sequencing), regions of post 

translational histone marks using ChIP-Seq (chromatin immunoprecipitation assay with 

sequencing) and chromosome conformation using Hi-C also gained interest.  

 

1.2.2 Large Cohort Reference Studies 

Numerous population-based tissue resources have been established to improve our insight into the 

etiology of metabolic diseases. I would like to highlight three such studies – MuTHER, METSIM 

and GTEx which we used for validation of the results described in chapter 2 and chapter 3. 

  

Multiple Tissue Human Expression Resource (MuTHER) is an initiative to understand genetic and 

non-genetic factors associated with epigenetic and gene expression variation and subsequent links 

to metabolic disease risk using data collected from ~800 female twins. Tissue samples included 

lymphocytes, subcutaneous adipose tissue, muscle, and skin. Joint analysis of methylation, gene 

expression and genotype information from monozygotic and dizygotic twins helped to characterize 
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functional CpGs in the population. Methylation patterns were found to be invariable across healthy 

individuals in regulatory regions such as hypomethylated promoters while gene body and 

intergenic regions accounted for most of variability. Variations in cis-eQTL regions were also 

found to have ~40% heritability rate. The study using MuTHER data emphasize the importance of 

considering common and rare SNPs as well as both cis and trans regulatory regions to understand 

the global picture of disease susceptibility.43,44  

 

Metabolic Syndrome in Men (METSIM) is a population wide cohort of ~10,000 Finnish men. The 

study focused on identifying genomic factors associated with Type 2 Diabetes (T2D) and 

cardiovascular diseases (CVD). The METSIM dataset covers exome, whole genome, methylome, 

gut microbiome and transcriptome with a cross sectional 5 year follow up study (N = ~6,500) to 

assess the development of T2D and CVD. For the transcriptome profiling, subcutaneous adipose 

tissue from 1,410 participants was studied either using Affymetrix U219 microarray or bulk RNA-

Seq. METSIM initiative helped to gain many novel insights into disease etiology. Numerous 

GWAS and eQTL loci were discovered associated with T2D, CVD, insulin resistance and 

adiposity45.  

  

The Genotype Tissue Expression (GTEx) project is an attempt to catalog genetic variation and 

gene expression among 54 different tissues of human body, thereby providing a tissue specific 

reference dataset to the research community. Samples were obtained from postmortem and current 

version of GTEx (V8) include nearly 1,000 individuals. Adipose tissue from both subcutaneous 

and visceral depots were included in the study. Gene expression data was studied using RNA-Seq. 
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The GTEx analysis results and methods used were publicly available through its portal 

(https://www.gtexportal.org/home/) and the complete data is available through dbGaP.  

 

These population-based studies provide tremendous resource for researchers. However, most of 

the resources uses bulk sequencing or microarray profiling data which provides an average 

measurement of all cells in a biological sample. Single cell sequencing has proven to be robust in 

characterizing individual cells in complex cell population at multiple genomic levels accessing 

constituent genome, transcriptome, epigenome, metabolome, and proteome. It is often applied to 

identify heterogenous cells in complex tissues, tumor samples and to identify developmental 

trajectory of the cells. Single cell RNA sequencing and single nuclei ATAC sequencing strategies 

are reviewed in the following sections with focus on 10X Genomics protocols considering its 

relevance to the research chapters 3 and 4. 

 

1.3 Single cell Sequencing 

1.3.1 Single cell RNA Sequencing (scRNA-Seq) 

Researchers attempted to study single cells long before the development of current high throughput 

microfluidic systems46-48. Single cell technologies have achieved a tremendous growth in 

technological front as well as acceptance among scientific community with the expansion of 

droplet based high throughput systems. One of the earliest references of single cell transcriptome 

sequencing was from Tang et al. in 2009. The authors modified existing transcriptome 

amplification method to sequence a mouse blastomere. The technique involved manual selection 

of single cells using pipetting under microscope49. Irrespective of the technique used, once the 
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single cells were isolated, the nucleic acid (DNA or RNA) is subjected to amplification and further 

treatments depending on the sequencing requirements such as RNA-Seq or ATAC-Seq.   

 

Capturing of single cells from a biological sample is a challenging task and many methods were 

developed over time. Fluorescent activated cell sorting (FACS) is one of the widely accepted 

methods to isolate substantial number of cells based on cell surface markers50. FACS helps to sort 

similar cell types, but methods of choice from serial dilution to droplet based single cell capture 

techniques should be used to attain single cell resolution. The other traditional methods for single 

cell isolation include micromanipulation, immunomagnetic separation, laser capture 

microdissection, array-based methods, and microfluidic platforms. Micromanipulation involves 

manual intervention to separate single cells from tissue using microscopes and specialized micro 

dissectors48. The method is laborious and prone to high error rates. Immunomagnetic separation 

uses magnetic beads coated with antigens specific for the cell surface antibody to isolate cells of 

interest51. Laser pulses were used to disintegrate the tissue slices fixed on specialized membranes 

in laser capture microdissection52. Though this method provides spatial information of the cells, 

excessive cost and low accuracy are major drawbacks53. The first implementation of array-based 

technology is called as CytoSeq. In this method, cells in suspension are loaded to custom designed 

array with up to 100,000 microwells. The microwells are loaded with magnetic beads which are 

functionalized with oligonucleotides for PCR priming sequences, cell identity, molecular index 

for transcripts and oligo dT sequence. The cells are captured at a rate of one in ten wells. However, 

the limitations include excessive cost and restricted capture of pre-defined set of genes54.  The 

latest and one of the most widely used techniques is microfluidics through droplet based single 

cell capture. In this method, single cells are captured in immiscible liquid emulsion by passing the 
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cells through micro tubes. Ideally, each droplet provides isolated reaction environment for single 

cell for further manipulation. Though the droplet-based technologies are robust to identify rare cell 

populations, enriching cells of interest using FACS before single cell capture is often followed to 

study the minority cell population55. Two pioneering methods that are developed independently 

using microfluidics are InDrop and Drop-Seq. InDrop used hydrogel beads coated with 

oligonucleotides made up of photocleavable linker, T7 promoter, PCR primer, cell barcode, 

Unique Molecular Identifiers (UMIs) and poly dT tail. The hydrogels, cells, reaction mixture (lysis 

buffer and reverse transcription reagents) and oil are loaded separately to a microfluidic device. 

The single cells are captured in droplets along with hydrogels and reaction mixture for further 

processing56.  Drop-Seq used similar design with a few differences. The authors used hard resin 

beads functionalized with common PCR amplification sequence, cell barcode, UMI and a poly dT 

sequence. Also, photoactivation is not required in Drop-Seq as like in InDrop57. 

 

Droplet based technology is successfully implemented commercially by 10X Genomics and it is 

one of the widely used method for single cell RNA sequencing (scRNA-Seq). They use gel beads 

to capture mRNA from the cells and are termed as gel in emulsion (GEMs). The gel beads are 

functionalized with oligonucleotides comprising of sequencing adapter and primers, 10X barcode, 

Unique molecular identifier (UMI) and poly dT primer (Figure 1.3.1 A). The 10X barcode is 16 

bp (base pairs) in length, designed to identify each gel bead based on ~750,000 sequences designed 

by 10X Genomics. UMI is a 12bp random sequence to identify each transcript in the cell. The last 

poly dT primer is for capturing each transcript by binding poly A tails. The poly dT primer can 

also be replaced with capture sequences to sequence particular region in the transcript. The gel 

beads and the cells are then passed through chromium next GEM chip to generate GEMs by 
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capturing single cells (Figure 1.3.1 B). Inside GEMs, the cells are lysed, and poly A tailed mRNA 

are captured by the oligos released from the Gel beads. The mRNA is then reverse transcribed to 

full length cDNA (complementary DNA) and then sheared enzymatically. The cDNA molecule 

with the oligos is selected and sequenced as per standard sequencing protocol58,59.  

 

Figure 1.3.1 Experiment setup of 10X Genomics scRNA-Seq *. (A) The Gel bead is coated with 

oligonucleotides which has sequencing adapters, 10X barcode, UMI and the capture sequence. (B) 

The gel beads and cells are brought together in an oil medium to form GEMs. 

* Created using Biorender by adapting data from 10X Genomics 

 

In addition to 10X Genomics, there are a variety of methodologies available to interrogate the 

transcriptome at single cell resolution which includes MARS-Seq, SMART-Seq2 and Fluidigm 

C1 system. SMART–Seq2 provides the sequence of full-length transcriptome ensuring better 

sensitivity and in-depth analysis of transcripts of interest. However, choosing the methodology 



 33 

depends on the biological question. For a broad analysis such as to characterize the cell population 

in complex tissues, molecular tag-based methods such as 10X Genomics, MARS-Seq and 

Fluidigm C1 system have proven to be sufficient. MARS-Seq has gained acceptance with ease of 

use of FACS and illumina sequencing protocol. In the recent improvement MARS-Seq2.0, authors 

claim to attain extremely low levels of doublets (reviewed in section 1.3.2) in single cell capture. 

Single cells captured using MARS-seq can be stored for long term which is an added advantage 

against 10X Genomics protocol60. Fluidigm C1 system uses array-based technology, and it is 

restricted to uniform cell size and shape which makes it a less favorable choice. On the other hand, 

low turnaround time for large number of cells, relative low cost and UMI based transcript capture 

become an advantage for 10X genomics61. 

 

1.3.2 Data Analysis Methods for scRNA-Seq 

The primary processing of scRNA-Seq data from 10X Genomics is done by Cell Ranger pipeline58. 

It includes demultiplexing, quality check, alignment, visualization and aggregating the similar 

libraries. The expression matrix is generated through this step. It quantifies the expression of each 

gene for each cell, and it forms the input for further downstream analysis. Among the other result 

files, Cell Ranger also provides a html document summarizing the results of analysis which gives 

a general idea about the data.  

 

Several software are available for downstream processing depending on the analysis requirement 

starting with quality check and filtering. The single cell capture using microfluidics generates 

empty droplets. However, they may contain cell free RNA called as ambient RNA giving a false 

impression of presence of cell58. The filtering criteria for empty droplets assumes that empty 
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droplets have a small number of transcripts quantified as UMI count in comparison to regular cells. 

The cells with low UMI compared to the average quantification of the cells in the sample are 

removed to overcome this issue. Another factor of consideration is the identification of dying cells. 

The dying cells could be identified by the presence of low gene count and high count for 

mitochondrial genes62. The general practice is to remove cells with high mitochondrial content 

(greater than 5% of the total mRNA captured). However, the filtering should be done taking in to 

account the biology of the sample analyzed. For instance, liver and adipose tissue have high 

mitochondrial activity, and increase in mitochondrial gene expression relates to biological property 

of tissue rather than cell death. 

 

The single cell capture techniques have been improved tremendously from the day of inception. 

But one of the challenges that still require attention is the capture of two or more cells in a droplet 

termed as doublet or multiplets respectively. Rough estimate from 10X is ~8.0% doublets in an 

experiment to recover ~10,000 cells when ~16,500 cells are loaded as input. Different approaches 

are followed to remove the doublets computationally63. The cells with more than double the 

amount of average UMI count or gene count is expected to be doublets and they are removed from 

analysis. The R package, DoubletFinder tries to identify doublets by random simulation of the 

artificial doublets from the data analyzed. These artificial doublets are compared with the sample 

to identify doublets in the data64.  Another approach is using genetic deconvolution as implemented 

in demuxlet. Demuxlet allows multiplexing of samples and then deconvoluting the data using 

genotype information of each sample65. The approach is beneficial not only to identify multiplets, 

as multiplexing also help to overcome batch effects and helps in reducing costs. 

 



 35 

Once the superior quality cells are selected, the data can be corrected to overcome known technical 

bias introduced by varied sequencing depth and batch effects. Single cell data is inherent of specific 

challenges distinct from bulk RNA-Seq data. Input mRNA is low as it comes from single cell and 

depends on the abundance of cell population. Further, the quantification of the transcripts can be 

due to biological signals as well as technical limitations for capturing the mRNA. Added to that, 

the mRNA capture is also influenced by cell state i.e., stage of cell cycle and batch effects66. 

Normalization of the data can be achieved through log transformation as implemented in Seurat 

pipeline67 or using specialized methods like SCnorm68 or scran69. The cells tend to segregate based 

on the cell cycle. However, cell cycle effects often mask the true variation that the experiment is 

designed to unveil. Hence regressing the cell cycle effects is advised when necessary. Seurat has 

in built option to regress cell cycle effects. The removal batch effects require special methods due 

to rapidly changing scRNA-Seq sequencing and data analysis techniques. Canonical correlation 

analysis (CCA)70 by Seurat is one of the widely used methods. CCA tries to align two cell 

population based on common source of variation. CCA is used to find the similar cell clusters 

between two sample sets. On the other hand, Conos71 is designed to remove variation among 

samples in a data set.  

 

Dimensionality reduction and clustering are effective ways to visualize the cell population 

captured in scRNA-Seq data analysis. Top variable genes (~ 2,500) are used for this purpose67. 

The common dimensionality reduction method used is principal component analysis (PCA)72. 

Number of components to be used dependent on the complexity of the data. Often it is calculated 

based on variation in standard deviation of the components using an elbow plot. Visualization 

methods such as Uniform Manifold Approximation and Projection for Dimension Reduction 
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(UMAP) can help to view the clustering73. Clusters can then be annotated and processed further 

depending on the aim of the experiment. The data can be explored to identify novel cell clusters, 

similar clusters with differential gene expression pattern, trajectory of development, cell – cell 

communication, etc74-76. 

 

1.3.3 Single Nuclei ATAC Sequencing (snATAC-Seq) 

The chromatin organization starts with the nucleosomes77,78. A nucleosome is a stricture formed 

by 8 histone proteins (2 sets of H2A, H2B, H3 and H4) and 147 bp length double stranded DNA79. 

Each nucleosome is connected by variable length linker DNA and H1 histone protein. The 

nucleosomes are then compacted to 30-nm wide chromatin fibers. DNA replication and 

transcription is dependent on accessibility of DNA from this compact structure and the 

accessibility is regulated by numerous factors including tissue and disease specificity79,80. ATAC-

Seq is a robust technique to study open chromatin regions which in turn helps us to identify cis 

and trans regulatory regions. Briefly, the DNA from the study sample is treated with hyperactive 

Tn5 transposase which bind to the open chromatin regions and cleaves them. These extracted DNA 

fragments are then sequenced using standard sequencing protocol81. 

 

Due to the potential of understanding functional epigenetic regions in the genome, ATAC-Seq is 

implemented at single cell level which is termed as single nuclei ATAC-Seq (snATAC-Seq)82,83. 

snATAC-Seq profiling is found to be efficient in identifying different cell population in the sample 

as well as identifying the regulatory regions including promoters and enhancers. It also has the 

potential to characterize similar cells with distinct transcriptome signatures due to intrinsic changes 

such as cell cycle effects84. Commercially, snATAC-Seq can be implemented using sci-ATAC-
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Seq, Fluidigm C1 or 10X Genomics protocol depending on the choice of single nuclei capture 

techniques. 10X Genomics uses similar capture technique using GEMs as that of scRNA-Seq. The 

oligonucleotide in the gel bead is made up of 29 bp of sequencing adapters, 16 bp of 10X barcode 

and 14 bp of primer to the read 1N. GEMs are created from the gel beads and Tn5 transposase 

treated nuclei. Within the GEMs, the oligonucleotides attach to transposed DNA and activates 

linear amplification. Then, the DNA is released from the emulsion, PCR amplified and sequenced 

using established Illumina protocol85. 

 

1.3.4 Analysis Methods for snATAC-Seq 

The primary processing of the 10X snATAC-Seq data is done using Cell Ranger ATAC pipeline85. 

Briefly, the raw data is demultiplexed, filtered and aligned to the reference genome. PCR 

duplicates are removed and ATAC peaks are called based on the enrichment of sequencing 

fragments in a genomic region. Similar to scRNA-Seq data, cell by peak matrix is generated in 

this step which serves as the main peak quantification input for downstream processing. Signac86 

pipeline developed by the developers of Seurat can be used for further quality check and clustering. 

The quality check includes checking for nucleosome banding pattern in a data set. The ratio of 

fragments of mononucleosome (147 bp and 294 bp) to nucleosome-free (< 147 bp) fragments is 

calculated to check the distribution of nucleosome signal. Fragments representing transcriptional 

start site (TSS) can also help to determine the quality of data from the cell. Ideally, ATAC data is 

expected to show enrichment in regulatory regions which include TSS of genes81. Empty droplets, 

low sequencing depth and multiplets can be assessed by checking the number of fragments in each 

peak for a particular cell. Low fragment count may be due to empty droplets or low sequencing 

depth. On the other hand, higher number of fragments more than the double of the average 
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measurement is considered as a signal of multiplets. Similarly, cells with small number of total 

peaks should be removed as it could be a technical artefact. ENCODE project87 identified the 

blacklisted regions that are prone to technical biases in sequencing data. Cells that have 

concentration of peaks in blacklisted regions are also removed from analysis. Batch effects can be 

removed computationally using similar methods to scRNA-Seq such as Harmony88, Seurat or 

Conos. snATAC-Seq data is sparse capturing only 1-10% of open chromatin regions89 and requires 

special methods for normalization. Signac uses term frequency-inverse document frequency (TF-

IDF) normalization by transforming the data by giving increased weight to rare peaks. Once the 

data is normalized, variable peaks are selected, Latent Semantic indexing and singular value 

decomposition is performed. Clustering is usually done using k-means or Louvain algorithms 

followed by visualization using UMAP or t-SNE. Further analysis of the data includes 

identification of cluster specific peaks, differential peak analysis among clusters or biological 

conditions, identifying motifs that are enriched in the peaks, etc. It is a widespread practice to 

integrate scRNA-Seq data to annotate the clusters. Further, combined analysis of both data 

modalities will help to understand the epigenetic regions influencing changes in gene expression 

pattern84. The peaks could be annotated for functional significance such as promoters, enhancers 

or transcription factor binding sites using accepted methods of bulk ATAC-Seq data. Transcription 

factor binding sites are explored using existing databases like JASPER90 or HOMER91. Co-

accessible peaks can be calculated by using Cicero to understand the regulatory network of open 

chromatin regions92.  

 

1.3.5 Recent Efforts in Adipose Research Using Single Cell Methods 
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Numerous efforts to understand adipose tissue at single cell resolution have been published 

recently which are focused on adipocyte progenitors, tissue resident immune cells or both93-96. 

However, most of the studies relied on animal model systems such as mouse models owing to the 

difficulty in obtaining deep adipose tissue samples especially from healthy individuals for 

reference. One of the initial studies using scRNA-seq identified a CD142+ novel adipocyte 

progenitor population that regulates adipogenesis. These cell cluster termed as Aregs was found 

to be conserved in mouse and human samples94. Further, studies by Merrick et al. identified three 

different progenitor population – DDP4+ proliferative MSCs, CD54+ committed pre adipocytes 

and CD142+ Aregs97. DPP4+ MSCs has the potential to differentiate in to ICAM1+ preadipocytes 

as well as CD142+ Aregs. Studies on lineage tracing of cold induced brown adipocytes by Shamsi 

et al. identified alternative BAT origin from vascular smooth muscles98.  Hildreth et al. profiled 

SVF from abdominal SAT using ~ 110,000 cells. They used scRNA-Seq to identify the clusters 

and then they applied FACS to study and validate their observations in detail. The study was 

mainly focused on tissue resident immune cells identifying 15 distinct cell population with 

differential abundance in lean and obese subjects93.  

 

Taking into consideration the importance of understanding tissues at single cell level, largescale 

consortia namely the Human Biomolecular Atlas Program (HuBMAP) and the Human Cell Atlas 

(HCA) were launched. HuBMAP is an initiative from National Institute of Health (NIH) common 

fund predicted in 2019 to span for seven years. The organs studied in the initial launch included 

kidney, spleen, lymph nodes, small intestine, large intestine, thymus, and heart. In addition to 

single cell transcriptome and open chromatin assays, HuBMAP also targets to resolve spatial 

conformation using RNA, protein, metabolites, and lipids. The data generated through various 
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collaborations will be made accessible to the research community99. HCA is an international 

initiative aimed at providing a public reference set of gene expression profile for different tissue, 

organ and organ system in human body. The current version of HCA portal (DCP 2.0) has data 

from 13.8 million cells from different human tissues100. 
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1.4 Rationale, Hypothesis, and Objectives   

Adipose tissue contains diverse cellular populations at various depots of human body, which 

include adipocytes, progenitors, immune cells, endothelial cells, and smooth muscle cells. 

Abundance and function of these cells differ in individuals with or without obesity and metabolic 

disorders93. Despite the recent attempts, we lack comprehensive understanding of adipose tissue 

at single cell level. We hypothesized that investigating adipose tissue using a multidimensional 

approach, focusing on in depth analysis of its pure cellular subpopulations from carefully selected 

study population will help to understand molecular mechanisms involved in obesity and associated 

metabolic complications during the lifespan. We aim to provide novel insight into metabolic 

disease etiology by unraveling transcriptomic and epigenetic signatures and mechanisms 

underlying the risk of obesity and obesity induced T2D at single cell resolution. 

  

The focus of chapter 2 was to catalogue the different cellular population in adipose tissue derived 

from obese (adult) individuals discordant for metabolic complications and across depots. SVF 

from multiple adipose depots (i.e., SAT and VAT) of obese adults was interrogated at single cell 

resolution to identify gene expression patterns in cellular sub-clusters that were linked to adipose 

tissue depots and T2D. We then expanded our efforts in chapter 3 by studying SVF obtained from 

VAT of children to understand early developmental markers associated with obesity. We included 

an additional layer of interrogation using snATAC-Seq in addition to scRNA-Seq to identify 

regulatory elements specific to each cell population and disease status. With the in-depth reference 

of cell population from chapter 2101 we aimed to understand the changes in individual cell 

population among lean and obese individuals in chapter3.   
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CHAPTER 2: Cataloguing Human Adipose Tissue Across Depot and Disease at 

Single Cell Resolution  

 

2.1 Bridging Statement Between Chapter 1 and 2 

The current understanding of adipose biology in the etiology of obesity is based on 1) bulk 

sequencing approaches in tissue samples, 2) studies using model organisms or 3) matured 

adipocytes only. In this research chapter, we aimed to extend these efforts and characterize human 

adipose tissue at single-cell resolution and across depots and disease status using contemporary 

scRNA-Seq approaches. To accomplish this, we enrolled obese adults undergoing bariatric surgery 

who were carefully selected based on metabolic phenotypes to obtain a matching group of 

individuals based on their BMI with and without T2D. We obtained AT collected during the 

bariatric surgery procedure from the two different fat compartments of interest: greater omentum 

corresponding to VAT and abdominal subcutaneous fat compartment (SAT). The main goal of the 

project was to characterize the tissue composition in AT and contrast cellular and transcriptomic 

signatures across cell type, tissue depot and T2D status. We categorized these signatures based on 

the known AT cellular populations such as adipose progenitors and stem cells, immune cells, and 

the endothelium and captured significant variability within each group with evidence of novel, 

latent cell subpopulations in a depot-specific manner. We used T2D status to cellular and gene 

expression pattern that contribute to insulin resistance and to identify molecular signatures 

contributing to metabolic healthy as well as unhealthy obesity. Our findings were further validated 

using data from MuTHER, METSIM and GTEx study cohorts. To concise, we aimed to create a 

comprehensive catalogue of adipose tissue resident cell population and their gene expression 

identities based on the depot and T2D status.  
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2.3 Abstract 

The complex relationship between metabolic disease risk and body fat distribution in humans 

involves cellular characteristics which are specific to body fat compartments.  Here we show 

depot-specific differences in the stromal vascular fraction of visceral and subcutaneous adipose 

tissue by performing single-cell RNA sequencing of tissue specimen from obese individuals. We 

characterize multiple immune cells, endothelial cells, fibroblasts, adipose and hematopoietic stem 

cell progenitors. Subpopulations of adipose-resident immune cells are metabolically active and 

associated with metabolic disease status and those include a population of potential dysfunctional 

CD8+ T cells expressing metallothioneins. We identify multiple types of adipocyte progenitors 

that are common across depots, including a subtype enriched in individuals with type 2 diabetes.  

Depot-specific analysis reveals a class of adipocyte progenitors unique to visceral adipose tissue, 

which shares common features with beige preadipocytes. Our human single-cell transcriptome 

atlas across fat depots provides a resource to dissect functional genomics of metabolic disease. 

 

2.4 Introduction 

White adipose tissue (WAT) and its endocrine activities are known to be implicated in the 

development of obesity and associated metabolic disorders. Specifically, the risk increases with 

increase in abdominal obesity contributed by excessive visceral adipose tissue (VAT)11 – a linear 

relationship that is not seen with abdominal subcutaneous adipose tissue (SAT)102. Susceptibility 

to obesity-related cardiovascular and metabolic disorders has also been linked with the increase in 

adipose volume resulting from enlargement of tissue resident adipocytes (i.e. hypertrophy)18. On 

the other hand, adipocyte expansion by recruiting new progenitors (hyperplasia) is often 
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considered as a protective mechanism from the metabolic standpoint103. Studies have also shown 

that adipose tissue dysfunction leading to insulin resistant type 2 diabetes (T2D) is marked by 

inflammation, fibrosis and / or lipodystrophy104 which emphasizes the importance of adipose-

infiltrating immune cell populations in modulating and developing metabolic disorders. For 

instance, M1 macrophages, mast cells, B-2 cells, CD8+ T cells and IFN-g+ Th1 cells were seen to 

be increased in adipose tissue of individuals with obesity compared with those who were normal 

weight and the reverse pattern was observed in M2 macrophages, eosinophils, Treg, iNKT, B1 and 

gd T cells105. These adipose tissue resident immune cells have also been shown to create a 

microenvironment that can inhibit adipocyte progenitor differentiation to lipid-storing 

adipocytes106. However, despite extensive work on characterizing various cell subpopulation in 

adipose tissue, the complete human non-adipocyte fraction also known as the stromal vascular 

fraction (SVF) has not been profiled across depots in an unbiased manner. Given the multitude of 

factors affecting adipose tissue function, a thorough understanding of the cell types involved, and 

their specific gene expression pattern is essential. The advent of single-cell transcriptomic 

approaches in the past years have made it possible to use these technologies to determine cellular 

heterogeneity and functional states at the single-cell level with high reproducibility and 

sensitivity107. Current high-throughput microfluidics techniques are capturing thousands of cells 

from each sample simultaneously for gene expression profiling and together with new algorithms 

for clustering, visualization, and modeling this allows for high-powered analysis of disease-

targeted tissue samples for efficient cataloging of cellular composition and the role in disease risk. 

Recent studies utilizing single-cell RNA sequencing (scRNA-Seq) in adipose tissue from mouse 

models have identified a subset of adipocyte progenitors that regulates adipocyte differentiation94 
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as well as the presence of a novel type of inflammatory progenitors residing in the visceral fat 

depot of the mice108. Similar strategies in human adipose samples have not been applied to date.  

 

We present a high-throughput single-cell expression profiling study of human adipose tissue 

including 25 samples derived from multiple depots of individuals with obesity. We provide a rich 

catalog of cell types residing in adipose tissue including both latent and common cell populations. 

We characterize and validate distinct cell types that are metabolically active, specific to each depot 

or correlate with metabolic disease status. 

 

2.5 Results 

2.5.1 Characterization of SVF across multiple adipose depots 

We generated scRNA-Seq data from 25 adipose samples (12 VAT and 13 SAT) derived from 14 

individuals undergoing bariatric surgery (Supplementary Table 1, Supplementary Figure 1, 

Methods). All samples were matched for age and BMI but differed based on fasting glycemia as 

an indication of T2D (Table 1). We annotated the clusters using marker genes (Supplementary 

Table 2-3) which resulted in three groups of cells: adipocyte progenitors and stem cells (P1-P7), 

immune cells (I1-I7) and endothelial cells (E1-E3) (Figue 1). The proportion of the cell types based 

on individual average was 55%, 37% and 8% for progenitors, immune and endothelial cells, 

respectively. This distribution was similar for the merged sample average and corresponded to 

60%, 34% and 6% which are in line with classical fluorescence-activated cell sorting (FACS) 

experiments 109. To avoid subjectivity and to add strength to analyses, we also performed 

reference-based single-cell annotation (Methods) which confirmed our broad clusters of cell 

populations (Supplementary Table 4). Finally, as the distribution of female and male samples was 
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slightly skewed (Table 1) we performed in-depth sex-specific expression analysis of the marker 

genes in 245 (N=165 male and N=80 female) VAT and SAT samples, respectively, from the GTEx 

Consortium (Supplementary Table 5).  

  

2.5.2 Multiple types of endothelial cells reside in adipose tissue 

We identified three types of endothelial cells (E1-E3, Figure 1) all showing selective expression 

for GNG11 and SEPW1. E1 and E2, were found to be relatively similar sharing nearly half of the 

top expressed genes including SPARCL1, FABP4 and IFI27. However, comparative analysis 

between E1 and E2 cells showed the latter group expressing classical endothelial markers such as 

ACKR1, SELE, TM4SF1, VCAM1, TMEM173, PLVAP, ICAM1, PECAM1, VWF, ADAMTS9 and 

TFPI. On the other hand, E1 cells had pronounced expression of FABP4, LGALS1, RBP7, GPX3 

and CD36 which are known to be expressed in microvascular endothelial cells of adipose tissue 

involved in the fatty acid handling machinery110. To characterize E3, we performed differential 

gene expression analysis between E3 and the combined population of E1 and E2 cells, 

respectively, (Supplementary Table 6) and found LYVE1 among the top expressed genes. LYVE1 

is a marker of lymphatic endothelial cells 111 and thus these results indicate the presence of 

lymphatic vasculature in SVF with 78% of its cell population from VAT samples.  

 

2.5.3 Characterization of Immune cells and their link to adipose tissue inflammation 

We found that 34% of cells from our merged clusters (Figure 1, I1-I7; Supplementary Table 4) 

expressed markers of different immune cell populations. To facilitate the classification of the cell 

types we subset the immune cell clusters and identified 14 new clusters, labelled as IS1 - IS14, 

where all groups were present across depots (Figure 2a-b).  
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A large proportion (40%) of the immune cells (IS1, IS4, IS6, IS8) were clustered closely together 

and showed gene expression signatures of NK / T cells. IS1 exhibited selective expression of IL7R 

which is known to be expressed in naive T cells112. However, unsupervised cell type definition 

pointed towards a mix of naïve and memory CD4+ and CD8+ T cells (Supplementary Table 7).  

Manual annotation of IS4 cells identified specific expression of GNLY, NKG7, FGFBP2, GZMB, 

GZMH and CTSW which points toward these cells being NK cells (Supplementary Table 8). 

Indeed, this was supported by unsupervised annotation which showed 68% of IS4 cells being 

correlated with the NK cell reference. A recent report found that obesity is associated with 

reprogramming of blood-derived NK cells with upregulation of genes involved in lipid metabolism 

including CD36113.   However, the IS4 NK cells identified here did not express any genes involved 

in lipid metabolism pointing towards different obesity-related effect on NK cells dependent on 

resident tissue.  

 

IS6 showed increased expression of CCL5 and IL32, indicating that these cells may be activated 

T cells 114 which was confirmed by the unsupervised annotation revealing 68% of the cells being 

associated with memory CD8+ T cells. While large proportion (59%) of the IS8 cells were, similar 

to IS6 cells, mapped as memory CD8+ T cells in our unsupervised annotation we noted in the 

manual curation that they showed a unique pattern of high expression of metallothionein genes – 

MT1E, MT1F, MT1G, MT1X and MT2A (Supplementary Table 8, Figure 2c). We followed-up this 

finding by performing additional scRNA-Seq profiling on CD34- sorted SVF cells and found 

evidence of the presence of metallothionein-rich T cells also in the validation sample (Cluster 7; 

Supplementary Table 9; Figure 2d) where both discovery and validation samples specifically 
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showed MT1F and MT1G to be uniquely expressed by this T-cell subpopulation (Figure 2c-d). 

Similar to what was recently shown for circulating immune cells113, these potential adipose-

resident dysfunctional T cells may be induced by the obesity and thus enriched in our scRNA 

study. To test this, we used bulk gene expression data from two large SAT population-based 

collections including 1) 776 female samples from the MuTHER resource and 2) 770 male samples 

from the METSIM Study where both studies have in addition to tissue collection, study subjects 

deeply phenotyped for obesity-related traits 115,116. Here, we used BMI and DXA-derived % Trunk 

fat (PTF) in association with the expression of MT1E, MT1F, MT1G, MT1X and MT2A 

(Supplementary Table 10). Encouragingly, we found consistent strong positive associations 

between the obesity-traits and expression of MT1F, MT1G and MT2A whereas MT1E and MT1X 

showed weaker or absence of significant association in line with our observations of cell-specific 

expression of these two genes. Finally, we found that all metallothionein genes are expressed in 

adipose tissue irrespective of tissue depot with no sex-specific expression pattern (Supplementary 

Figure 2, Supplementary Table 5). 

  

Our manual and/or unsupervised annotation mapped clusters IS2, IS3, IS7, IS9 and IS12 to adipose 

tissue macrophages (ATM) with the proportion of cells expressing the classical macrophage 

marker CD68 ranging from 19 to 52% (Extended Data 1a) with IS2 having the highest (52%) and 

IS9 the lowest (19%). IS2 cells were also enriched with genes that are involved in lipid metabolism 

during obesity (Supplementary Table 8) including LIPA, LPL, CD36 and FABP4 – findings in line 

with the notion that obesity activates a non-classical inflammatory phenotype of ATM involving 

lipid accumulation and trafficking117. In addition, we find these metabolically active ATMs (i.e. 

IS2 cells) to express CD9 more pronounced than the other ATMs (Extended Data 1a). We 
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performed cellular phenotyping by immunohistochemistry and validated the co-expression of 

CD68 and CD9 in obese adipose tissue (Figure 2e-f) as well as confirmed 115,116 the linear 

relationship of CD9 expression and BMI in the MuTHER and METSIM SAT cohorts, respectively 

(MuTHER BMI: p-value=2.2E-13, beta=0.011; METSIM BMI: p-value=9.4E-28, beta=0.379). 

  

IS12 and IS3 clusters showed a similar signature as IS2 but where IS3 cells had increased 

expression for inflammatory genes CXCL3, CXCL2, IL1B, CCL3 and CXCL8 (Extended Data 1b). 

On the other hand, IS9 cells are marked by the expression of FOLR2 and KLF4 which are known 

signatures of M2 macrophages 118,119. Finally, although our unsupervised annotation indicated IS12 

cells as macrophages we could not distinguish them further.  

 

Our unsupervised annotation identified IS5 and IS10 as classical CD16- monocytes with high 

expression of S100A8, S100A9 and S100A12 in IS10. However, further literature mining showed 

that IS5 cells are rather dendritic cells due to their high expression of HLA genes including HLA-

DPB1, HLA-DQA1, HLA-DPA1, HLA-DRA and HLA-DQB1. IS13 cells possessed signatures of a 

newly identified subtype of dendritic cells 120 with high expression of LST1, SERPINA1, AIF1 and 

FCGR3A.  

 

Finally, we were able to link the IS11 cluster to B cells due to the expression of IGKC, JCHAIN, 

CD79A and CD37. Remaining cluster (IS14) showed mixed signatures in both annotation 

strategies and thus was not explored further.  
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2.5.4 Identification of adipocyte progenitors derived from different adipose tissue depots 

Next, we characterized our progenitor clusters (P1-P7) by studying the expression pattern of cell 

surface makers used in FACS experiment of SVF progenitors121 and noted that all clusters 

appeared CD45− CD34+ CD31− (Figure 3a) with a profound signature in P1-P6. We also noted 

that five of the clusters (P2, P4-P7) were identified to express CFD122 encoding the adipokine 

Adipsin which is known as a marker of adipocyte differentiation (Figure 3b) and thus the range of 

CFD expression observed across the clusters may be linked to different stages of adipogenesis. To 

validate this, we used in vitro differentiation studies of human mesenchymal stem cells (MSC) and 

identified a 5.6 log2 fold induction between undifferentiated MSCs and the first stage of 

adipogenic induction (ACI vs AI, Adjusted p-value=1.19E-26, Figure 3c).  We further noted that 

CFD expression is additionally increased at later stages of adipogenesis (AI vs AD1, log2fold=1.3, 

Adjusted p-value=0.012; AI vs AD2, log2fold=1.2, Adjusted p-value=0.036).   Incorporating this 

information with our progenitor signature indicated that P2 and P7 include more mature 

preadipocytes compared to cells within clusters P4-P6. We could further validate this by 

unsupervised annotation which linked on average 88% of the cells in P2 and P7 to Adipocytes 

compared to only on average 70% of cells in P4-P6 (Supplementary Table 11).  

 

We then compared the seven progenitor clusters based on tissue type and found a striking depot-

specific pattern (Figure 4a) where three of the clusters (P2, P6, P7) were mainly composed of cells 

from SAT whereas P1, P3, P5 included mostly cells from VAT and only one cluster of progenitors 

(P4) included a mixed population of SAT- and VAT-derived cells. For instance, the VAT-specific 

clusters P1 and P3 exhibited pronounced expression (average log fold change > 1.5) of omentin 

(ITLN1)123 and mesothelin (MSLN). Omentin is a VAT-specific adipocytokine serving as a 
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biomarker for metabolic diseases124 and together with MSLN also a marker of mesothelial cells125 

in line with findings that VAT develops from the mesothelium23. Additionally, we identified 16 

other genes characterizing P1 and P3 (average log fold change >1, Supplementary Table 2) which 

we followed-up with bulk RNA-Seq and found 11/16 (68%) genes being differentially expressed 

(log fold change>=1 and Adjusted p-value<0.05) (Supplementary Table 12, Figure 4b).  

 

To study these cell populations in more detail, we created two subsets for re-clustering including 

1) SAT- (N=5,458) and VAT-derived (N=9,847) progenitor cells, respectively.  

 

2.5.5 Subcutaneous adipocyte progenitors and their role in metabolic conditions 

The clustering of the adipocyte progenitors identified five groups (SP1-SP5, Figure 5a-5b) all 

expressing CFD. SP1 and SP3 cells expressed pre-adipocyte/adipose stem cell markers (e.g., 

MGP, APOD, CXCL14, WISP2) whereas SP2 showed signatures of a more mature adipocyte 

progenitor cell (e.g., APOE, FABP4, CEBPB and CD36). The SP4 group contained cells 

expressing genes involved in fibrosis and extra cellular matrix accumulation including COL3A1, 

COL6A3, COL1A1 and COL6A1. This fibroblast signature was validated by unsupervised 

annotation where 69% of the cells were mapped as fibroblasts compared to SP1-SP3 with over 

80% of the cells mapped as adipocytes (Supplementary Table 13). SP5 cells expressed high levels 

of inflammatory markers (e.g., CCL5, CD3E, IL7R and IL32) including CD45/ PTPRC (Figure 

5c) indicating that SP5 cells represent hematopoietic stem cell (HSC) progenitors.  

 

We then investigated whether the proportion of adipocyte progenitor clusters specific to SAT in 

each individual sample was associated with T2D status. We correlated fasting glucose levels with 
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all the SP cell proportions and found the abundance of SP1 to be significantly correlated with 

glucose levels (Pearson r=0.56, p-value=0.046, Figure 5d, Supplementary Table 14). We followed-

up this finding in multiple ways and provide further evidence of the link between SP1 cells and 

T2D. First, we used top differently expressed genes in this group (SP1, N=43, Adjusted p-value < 

0.01) compared to all other cell types (SP2-SP5; Supplementary Table 15) for disease annotation 

(Methods) and found T2D as the top annotated disease (Supplementary Tables S16, p-

value=3.21E-6). Secondly, we used the MuTHER resource 115 followed by the METSIM Study116 

for transcription-wide association analysis of multiple T2D-related traits. We found the SP1 gene 

set (N=43) to be significantly enriched for association to the T2D traits in both studies 

(Supplementary Table 17) corresponding to fold changes between 2.5 and 9.4 dependent on the 

trait and study (Fisher’s p-value = 0.06 – 7.96E-08, Supplementary Table 18). Specifically, the 

female MuTHER Study included enriched association for 44% of the SP1 genes using strict 

Bonferroni corrected study-wise p-value threshold of p<2.53E-6.  Replication of these genes in 

the male METSIM Study showed strong correlation of effect sizes across T2D traits (r=0.92, 

Supplementary Figure 3). 

 

Finally, we went back to our single-cell data set and performed differential expression analysis 

between SP cells from T2D vs non-T2D samples as defined by their fasting glycemia restricting 

to the 19 validated SP1-specific genes (Supplementary Table 17-18). Here, we found 53% of the 

genes (10/19) being also differently expressed (Bonferroni p-value < 0.05/19, Figure 5e) in cells 

based on T2D status with the same direction of effect as seen in MuTHER (Supplementary Table 

19). These genes include GPX3, WISP2, ATF3, EIF1, MGP, TMEM176B, CXCL12, CFH, C1S 

and ADH1B126. The top differentially expressed gene was GPX3 with significantly higher 
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proportion of cells expressing the gene in non-T2D samples (73%) versus in T2D samples (66%) 

(Seurat DGE, p-value=1.5.9E-14). In line with these findings, we found GPX3 to be negatively 

correlated with Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) in both the 

MuTHER (beta=-0.084, p-value=1.03E-11) and METSIM cohort (beta=-0.147, p-value=4.46E-5), 

respectively.  

  

We also noted WISP2 among those top 10 genes with differential expression between T2D and 

non-T2D cells (p-value=3.1E-5) but as opposed to GPX3, WISP2 seems to have a negative effect 

on T2D status. We found 72% of T2D cells expressing the genes versus only 52% of the non-T2D 

cells. Again, we validated this pattern in the two large MuTHER and METSIM adipose tissue 

cohorts with a positive correlation with HOMA-IR (beta=0.115, p-value=2.2E-20 and beta=0.132, 

p-value=2.3E-4). Similar to WISP2, we found that T2D cells expressed ATF3 to a larger extent 

(51%) compared to non-T2D cells (29%) and ATF3 was positively correlated to HOMA-IR in 

MuTHER (beta=0.079, p-value=2.9E-21) and METSIM (beta=0.102, p-value=4.4E-3), 

respectively. 

  

2.5.6 Validation of depot independent adipocyte progenitors in CD34+ sorted cells 

Clustering of the VAT-derived progenitor cells resulted in six clusters (Figure 6a, Supplementary 

Table 20) with cells expressing CFD (referred to as VPC and correspond to VP4-6) versus MSLN 

(referred to as VPM and correspond to VP1-3) were clustered separately (Figure 6b). The VPCs 

(VP4-6) resembled the progenitor types identified in SAT and thus may represent adipocyte 

progenitors that are present across depots. Specifically, VP4 included cells enriched for genes such 

as APOD, CXCL14, DPT, GPX3, MGP, EIF1, C1S and ADH1B and thus with a similar expression 
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pattern as the T2D-linked SP1 cells. VP5 cells show an enrichment for MFAP5 which in turn is 

involved in adipose tissue remodeling in individuals with obesity127. Another notable gene 

expressed in cluster VP5 was S100A4, a biomarker for inhibition of adipogenesis, associated with 

reduced obesity and inflammation in rodents 128. In all, the expression signature of VP5 was similar 

to the fibrotic signatures of the cells grouped as SP4. Finally, VP6 is marked by the expression of 

TYROBP, HLA-DRA and CD74 and in general have the inflammatory signature identified for the 

HSC progenitors in SP5. Taken together, the combined results from our SAT and VAT single-cell 

data indicate presence of three depot-independent cell types: T2D-associated adipocyte 

progenitors, fibroblasts and HSC, respectively. To provide further support to these observations, 

we generated scRNA-Seq profiles of CD34+ sorted SVF cells (Methods). The clustering of these 

cells resulted in thirteen groups (0-12, Supplementary Figure 4, Supplementary Table 21) with 

clear evidence for overlapping fibrotic and HSC properties of two of the clusters. Specifically, we 

linked cluster 10 (134 cells) to HSC progenitors which corresponded to 2% of the complete cell 

population concurring with the proportion of cells in the SP5 cluster (3%) from the deep sequenced 

sample when restricting to progenitors only. The expression signature of this cluster also resembles 

that of SP5 with PTPRC, CCL5 and IL32 among the top genes distinguishing these CD34+ 

progenitors from the other. Similarly, we found clusters 5 and 7 in the validation sample to have 

similar properties as the fibrotic SP4 cluster including expression of FBN1, PI16 and IGFBP6.  

 

2.5.7 Visceral specific progenitor cells have different origin and mitochondrial activity 

In contrast to VPC, VPM appeared to have unique properties specific to the visceral depot with 

signature of a mesothelial origin as discussed above. Apart from specific expression of MSLN, the 

VPM progenitor cells also expressed the mesothelial adipocyte markers UPK3B and WT1 
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(Extended Data 2). Comparing VPC and VPM cells, we also noted clear differences in 

mitochondrial gene expression. Specifically, we found that the VPM had comparatively high 

mitochondrial expression (i.e., 6-20%) whereas VPC showed a consistent pattern of cells with low 

(i.e., <=5%) expression of mitochondrial genes (Figure 6c). As it is well known that brown 

adipocytes contain higher number of mitochondria than white adipocytes, this intriguing finding 

prompted us to test whether the VPM cells constitute progenitors with differentiation potential 

towards beige adipocytes and thus potentially have a more protective function against obesity and 

insulin resistance. To test this, we first correlated VPM proportion with fasting glucose levels and 

found a significant negative correlation (Pearson r=-0.64, p-value=0.025, Figure 6d). We also 

noted that VPM expressed PLA2G2A (VP1; Adjusted p-value= 5.84E-109) which was recently 

shown to activate mitochondrial uncoupling in brown adipose, and in line with our observations 

here, provided protection from the deleterious effects of high fat diets in mice129. In addition, the 

mitochondrial marker gene SOD2 (VP3; Adjusted p-value=2.72E-245) known to be upregulated 

in beige and brown AT130 compared to white AT was found to be specific to the VPM131 cells.  

 

Next, we investigated whether this beige adipose signature found among a subset of the VAT 

progenitor cells (i.e., VPM) could be validated in independent datasets of purified VAT and SAT 

- derived mature adipocytes from the same clinical study population (Supplementary Table 22). 

Indeed, we noted striking overrepresentation of not only the mesothelial markers MSLN 

(log2fold=1.48, Adjusted p-value=1.7E-3), WT1 (log2fold=2.73, Adjusted p-value=8.1E-10) and 

UPK3B (log2fold=2.54, Adjusted p-value=8.3E-9) but also the classical markers for beige and 

brown adipocytes EBF2 (log2fold=2.39, Adjusted p-value=2.1E-20), PRDM16 (log2fold=1.44, 

Adjusted p-value=9.9E-5) and UCP1 (log2fold=2.20, Adjusted p-value=2.3E-7). However, 
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progenitor or mature brown adipocyte markers MYF5 (log2fold=0.04, Adjusted p-value=0.96) or 

ZIC1 (log2fold=-0.01, Adjusted p-value=0.98) were not differentially expressed, suggesting that 

the VPM cells are not of the brown adipocyte lineage. We then used bulk SVF and whole tissue 

from VAT and SAT to validate the induction of UCP1 during differentiation to mature adipocytes 

whereas the expression of MSLN and WT1 peaks in progenitors (Figure 6e). In addition, we noted 

a strong negative correlation in VAT between UCP1 and both mesothelial markers (MSLN vs 

UCP1, r=-0.72, p-value=0.018 and WT1 vs UCP1, r=-0.72, p-value=0.019; Supplementary Figure 

6). We also noted a significant positive correlation between UCP1 and IRX3 in VAT (r=0.85, p-

value=1.71E-3) in line with recent reports showing the induction of IRX3 in the browning process 

of adipocytes132 (Supplementary Figure 6). Lastly, in line with our observations of marker genes 

characterizing VPM, we observed a trend of SOD2 expression to be positively correlated with the 

expression of UCP1 (r=0.56, p=0.09) further indicating browning signatures of a subset of VPM-

derived adipocytes residing in the visceral depot only.  

 

These several lines of evidence indicate that there are UCP1+ cells originating from MSLN / WT1 

expressing progenitors in VAT only where the expression of UCP1 is peaking in mature 

adipocytes that underwent browning. This may explain why we failed to detect any UCP1 

expressing cells in our large single-cell data of VPM progenitors from individuals with obesity. 

However, as we observed a negative correlation between proportions of VPM cells and metabolic 

disease status (Figure 6d) we hypothesized that UCP1-expressing preadipocytes derived from 

VPM progenitors may be more pronounced in healthy tissue early in development. To address this, 

we accessed VAT from a healthy young donor. We subset CD34+ cells for clustering (Figure 7) 

and confirmed the high abundance of MSLN / WT1 progenitors in SVF derived from VAT. 
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Encouragingly, we also identified a distinct cluster of cells among the VPM that not only expressed 

UCP1 (Figure 7c) but also had the highest mitochondrial content (Figure 7d). Finally, we also 

noted SOD2 among the top genes with differential expression between UCP1-expressing versus 

non-UCP1 VPMs (Adjusted p-value=7.02E-93) with 95% of UCP1+ cells expressing the gene 

versus only 75% of the UCP1- VPMs. On the contrary, as shown above, UCP1+ cells had 

significantly lower expression of WT1 (Adjusted p-value= 4.24E-08) with only 22% of UCP1+ 

cells expressing the gene versus 56% of the UCP1- VPMs (Supplementary Table 23). 

 

2.6 Discussion 

We have performed a large, unbiased assessment of the cellular landscape in the non-adipocyte 

fraction of human adipose tissue (known as the SVF). The corresponding mature adipocyte 

fraction per depot was studied in parallel by bulk sequencing approaches due to current technical 

limitations in profiling large and lipid-rich cells at single-cell resolution. Study subjects were 

selected based on obesity-related metabolic phenotypes including presence or absence of type 2 

diabetes (T2D), which allowed us to incorporate differences in cell populations not only dependent 

on depot but also based on disease status.  

 

Our initial classification resulted in three broad categories of cell types including progenitors or 

stem cells, immune cells and endothelial cells. The latter cell type represented ~8% of all cells but 

with distinctive signatures dividing the group further into subpopulations. Although in minority, it 

is well established that endothelial cells play an important role in adipose tissue inflammation 

where obesity induced T2D has been associated with profound dysfunction of endothelial cells133. 

Our largest population of endothelial cells were characterized as fatty acid handling microvascular 
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endothelial cells due to pronounced expression of genes encoding fatty acid transport and binding 

proteins, respectively. These results are in line with recent work showing the importance of 

endothelial fatty acid uptake in adipose tissue especially during obesity-induced tissue 

inflammation110. Another subpopulation was identified as lymphatic-derived due to expression of 

the lymphatic vessel endothelial hyaluronan receptor (LYVE1) gene. This is of interest as recent 

efforts have shown the importance of a crosstalk between lymphatic vessels and adipose tissue, 

and that lymphatic dysfunction are linked to metabolic diseases 134. We extend these efforts and 

show that the lymphatic vasculature is depot specific as the majority of these cells were derived 

from visceral samples.  

 

Our characterization of adipose-resident immune cells, representing ~30% of the cells, confirmed 

the complex nature of obesity-induced adipose tissue inflammation. We identified 14 different 

immune cell types including T cells, B cells, NK cells, dendritic cells, monocytes and 

macrophages. T cells, and particular the CD8+ subset, are known to play an important role in 

adipose inflammation where the obese adipose tissue activates these cells which then recruit and 

activate adipose-resident macrophages135. We identified activated memory CD8+ T cells 

expressing CCL5 which is known to be positively correlated with obesity136 where increased 

expression associate with increased BMI. Interestingly, we found a subpopulation of these CD8+ 

T cells expressing metallothionein with unique clustering pattern compared to the activated 

memory CD8+ cells and with indication of an association to obesity-related traits. Specifically, 

using two large population-based adipose tissue resources we found a strong association of the 

expression of the cell-specific metallothionein genes MT2A, MT1F and MT1G and obesity 

phenotypes indicating a role of these cells in adipose dysfunction. This T cell expression profile 
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of metallothionein genes was recently linked to a novel type of dysfunctional CD8+ T cell 

population identified in single-cell studies of tumor-infiltrating lymphocytes137 where targeted 

deletion of the metallothionein resulted in loss of T cell dysfunction. Similar to Singer et al, we 

also found that these metallothionein genes are expressed only in the potential dysfunctional 

adipose-resident T cells but not in the activated memory CD8+ T cells, and as such break new 

grounds in possibly defining the role of T cells in adipose inflammation and potentially insulin 

resistance.  

 

As mentioned above, macrophages are activated by T cells and infiltrate the adipose tissue 

contributing to the obesity-related tissue inflammation and subsequently insulin resistance. 

Adipose resident macrophages play different key role in energy metabolism, clearance of dead 

adipocytes and removing extracellular lipids138 which are found to be altered during the 

development of obesity and insulin resistance. We observed that with high expression of genes 

involved in lipid metabolism during obesity, our largest macrophage population likely represent 

the so called metabolically active ATMs which have been associated with a beneficial role in 

obesity including promoting dead adipocyte clearance139. We further showed that they have 

selective expression of CD9 which points towards them representing a distinct type of obesity-

related ATMs. 

 

We identified multiple clusters of progenitor cells with clear expression signatures dependent on 

cell source (i.e., subcutaneous or visceral). They were further characterized to be at different stages 

of adipogenesis which was marked with varying degree of CFD expression. CFD has been 

identified as a key player in adipogenesis where knockdown of the gene inhibits lipid accumulation 
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and expression of adipocyte markers during adipocyte differentiation140. On the other hand, 

overexpression of CFD promotes adipocyte differentiation. We confirmed the association of CFD 

expression and adipocyte differentiation with validation experiments using mesenchymal stem 

cells that were monitored during adipogenesis. These stem cells were derived from bone-marrow 

and cultured in vitro and thus may possess different properties than adipose-derived stem cells, 

however it was recently shown that they do have similar adipogenic differential potential141. We 

also show clear distinction of the subpopulations beyond what has been shown before142. We 

identified a subtype of premature adipocytes that associated with T2D where individuals with high 

glucose levels had higher abundance of this cell type than those with normal glucose levels. We 

noted that this T2D-linked cell type was characterized by genes within the PPARγ pathway, some 

with protective role against insulin resistance. One of those key protective genes was GPX3 where 

significantly higher expression was identified in cells derived from nondiabetics. It is known that 

T2D-associated oxidative stress can be reversed by PPARγ-mediated antioxidant regulation 

mediated through the expression of GPX3143.  Furthermore, PPARγ agonists such as 

Thiazolidinediones (TZDs), commonly used to treat T2D, although not used in our samples, induce 

these antioxidant effect with increased expression of GPX3 as a result. On the contrary, we also 

found genes expressed by these T2D-associated cells with seemingly negative effect on T2D status 

including WISP2 and ATF3. The expression of these genes was significantly higher in T2D cells 

as well as a larger proportion of T2D cells expressing the genes compared to non-T2D cells. WISP2 

is an adipokine and while one of its key functions is to regulate adipogenic commitment and 

PPARγ activation, our results confirm previous efforts showing it can also induce insulin 

resistance likely through the inhibition of adipocyte recruitment and promotion of hypertrophic 

obesity144. ATF3 inhibits PPARγ-mediated transactivation145 and hepatic ATF3 expression is 
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associated with T2D146 and as such ATF3, similar to GPX3, may serve as a potential therapeutic 

target for the reduction of insulin resistance.  

 

Finally, while our depot-specific analysis confirmed earlier efforts showing that visceral-derived 

adipocyte progenitors originate from the mesothelium 23, we provide additional support to the 

notion that a subset of these are also likely inducible by responding to environmental stimuli and 

may be differentiating into beige preadipocytes. We noted that for instance the visceral-specific 

VPM cells, while being CD34+/WT1+ they did not express MYF5, suggesting that rather than 

being classical brown preadipocytes, they are more likely induced and could be consistent with so 

called beige adipocyte progenitors147. Although the physiological significance of such beige 

adipocyte progenitors in visceral adipose of individuals with morbid obesity is uncertain, they may 

possibly represent a compensatory mechanism to reduce the adverse effects of obesity. This 

hypothesis is supported by our finding of overrepresentation of this particular cell population in 

non-insulin resistant as well as healthy subjects.  

 

We acknowledge that a limitation of our study is the focus of individuals with obesity where further 

studies are needed to contrast cellular architecture in adipose tissue derived from healthy 

individuals. However, as there are clear depot and region-specific differences in cellular 

distributions, single-cell profiling spanning healthy and obese individuals would require a surgical 

procedure common in the general population where tissue resection can be obtained for research 

purpose.  
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In conclusion, we show the richness of the cellular contribution in human adipose tissue with 

multiple types of subpopulations of immune cells, endothelial cells, fibroblasts and progenitors. 

Interrogation of the non-adipocyte fraction of adipose tissue at single cell level suggests that 

development of obesity and T2D could be a joint action of subpopulation of different cell types 

residing in adipose tissue with altered function.  

 

2.7 Methods 

Study Subjects 

Participants were selected through an institutionally approved biobank infrastructure with ongoing 

recruitment at the Quebec Heart and Lung Institute (IUCPQ; Université Laval, Quebec City, 

Canada). Inclusion and exclusion criteria were those related to bariatric surgery. Specifically, men 

and women who had a BMI≥40kg/m2 or ≥35kg/m2 with major comorbidities, who required surgery 

and who met the NIH Guidelines for bariatric surgery were invited to participate. Exclusion criteria 

were general contra-indications for bariatric surgery, a BMI<35 kg/m2, age under 18 or over 60 

years, respectively, abnormal bowel habits including irritable bowel syndrome, pregnancy, 

cirrhosis, inflammatory bowel disease and previous bariatric surgery. Participants were further 

selected based on i) the presence of a signed consent form and ii) availability of type 2 diabetes 

(T2D) status where subgroups (i.e., with or without T2D) were matched for BMI, age as well as 

males:females ratio as much as possible.  

 

For the discovery cohort used for single-cell RNA sequencing, we identified 14 individuals (4 

males and 10 females) using the above described inclusion criteria where five individuals were 

diagnosed with type 2 diabetes and nine individuals without type 2 diabetes. Detailed clinical 
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information is provided in Table 1. For single- cell expression validation, two additional 

individuals were identified using the same selection criteria including one 35-year-old male 

without type 2 diabetes and with BMI of 59 kg/m2 and one 42-year-old female with type 2 diabetes 

with BMI 44.8 kg/m2 

 

For validation studies using bulk SVF and adipocyte samples, we identified 13 independent 

individuals from the same study population. This sample set included 12 females and one male 

with a BMI range from 39.7 to 59.2 kg/m2 and age values ranging from 29 to 60 years. Six of these 

individuals were diagnosed with type 2 diabetes and six were not. Similarly, for validation studies 

using bulk adipose tissue samples, we identified another set of 10 independent individuals with 

BMI 35.5 to 71.8 kg/m2, age between 42 and 49 years and the male-to-female ratio as 1:1.  

 

For all sample sets, adipose tissue was collected during the bariatric surgery from two different fat 

compartments: greater omentum corresponding to VAT and abdominal subcutaneous fat 

compartment (SAT). Informed consent was obtained from each participant through the 

management of the framework of the Quebec Heart and Lung Institute Obesity Biobank. The 

protocol was approved by the Research Ethics Committee of the IUCPQ (Protocol # 21320).  

 

Sample Preparation  

SVF and mature adipocytes were obtained as follows: adipose tissue was digested within 30 min 

of collection with collagenase according to a modification of the Robdell method148. Briefly, 

adipose tissue samples were digested with collagenase type 1 in Krebs-Ringer-Henseleit (KRH) 

buffer for 45 minutes at 37°C. Cell suspensions containing mature adipocytes and SVF were then 



 65 

filtered with a nylon mesh and washed 3 times with KRH buffer. The nature of the buoyancy 

adipocytes allows them to float to the surface. Mature adipocytes were aliquoted and the remaining 

solution containing the SVF was centrifuged 1500 rpm for 5 minutes. The pellet was washed with 

pre-adipocyte growth medium (PGM) (DMEM-F12 supplemented with 10% calf serum, 1% 

penicillin-streptomycin, 17µM pantothenic acid, 33µM biotin, 100µM ascorbic acid and 2,5 

µm/ml amphoB) followed by a second centrifugation. SVF cells were then cryopreserved using 

freezing medium (PGM supplemented with 40% FBS and 10% DMSO). The medium was added 

to the pellet and was frozen with a temperature gradient (-1 °C/ minutes) and stored in liquid 

nitrogen until analysis. Whole adipose tissue samples were following collection quickly frozen in 

liquid nitrogen and stored until analysis.  

 

Isolation of CD34+/CD34- SVF cells by fluorescence activated cell sorting  

Cells from the SVF were thawed and suspended in PBS-0.1% BSA. They were centrifuged at 1500 

rpm for 5 minutes. Erythrocyte lysis buffer was added for 5 minutes to the suspension to get rid of 

red blood cells. The suspension was centrifuged again at 1500 rpm for 5 minutes. Primary antibody 

(CD34, PE, eBioscience) was added to the samples and incubated for 60 minutes at 4°C in the 

dark. PBS-0.1% BSA was added to wash the suspension followed by 80 µm filtration with nylon 

mesh to remove debris. The suspension was then transfer to a 10ml polypropylene tube, 

centrifuged at 1500 rpm for 5 minutes and the pellet was suspended with PBS-0.1% BSA. Viability 

staining solution has been added 15 minutes before the sorting process. Viability control was 

performed with live/dead cells to ascertain that the staining solution worked well and for gate 

adjustment. OneComp Ebeads control was also used to provide positive/negative control for the 

antibody. The samples were sorted with the BD FACSAria II (BD, San Diego, California, USA) 
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with the following parameters: Cell size, graininess, viability, singlet cell and CD34+/CD34-. 

Dead and non-singlet cells were automatically discarded. Cells that were positive for CD34 and 

negative for CD34 were collected in two distinct tubes (Supplementary Figure 7). After sorting, 

cells were centrifuged at 1500 rpm for 5 minutes and were conserved in freezing medium as 

described above and stored at -80 °C until further analysis.  

 

MSC culture and differentiation 

Bone-marrow derived mesenchymal stromal cells (LY-MSCs) from eight healthy 19-27 years old 

female donors were provided by the GMP facility of the Advanced Cell Therapy Centre, Finnish 

Red Cross Blood Service (FRCBS), Helsinki, Finland. The cells were thawed, expanded and 

differentiated into adipocytes following the FRCBS protocol previously published149. Briefly, in 

preparation for adipogenic differentiation cells at passage #3 were plated in 10 cm cell culture 

plates and grown in expansion media containing low glucose DMEM (Thermo Fisher Scientific), 

100 U/ml penicillin /100 µg/ml streptomycin (Thermo Fisher Scientific) and 10% Stemulate 

(Pooled Human Platelet Lysate culture media supplement, Cook Regentec) until they reached 

70%-90% confluence (Timepoint 1), at which point the media was changed to adipogenic basal 

medium containing alpha-MEM Glutamax, 10 % FBS, 20 mM HEPES, 100 U/ml penicillin and 

100 µg/ml streptomycin (Thermo Fisher Scientific). Half of the culture plates were used as controls 

and maintained in the adipogenic basal medium until harvesting (AC samples). The other half was 

subjected to adipogenic differentiation (AD samples). More specifically the cells were first 

incubated for 3-4 days in adipogenic basal media supplemented with the induction cocktail of 0.1 

mM indomethacin (Sigma), 0.5 µg/ml insulin, 0.2 mM 3-isobutyl-1-methylxanthine (IBMX), and 

0.4 µg/ml dexamethasone (Preadipocyte Differentiation Medium Supplement Pack, PromoCell) 
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(Timepoint 2), then the media was changed to the terminal differentiation cocktail containing 0.1 

mM indomethacin (Sigma), 0.5 µg/ml insulin and 3 µg/ml Ciglitazone (PromoCell). The media of 

all plates was changed twice a week and the differentiation was allowed to proceed for 3 weeks 

for Timepoint 3 or 4 weeks for Timepoint 4. For each donor samples were harvested at Timepoint 

1 (ND – non-differentiated cells), Timepoint 2 (AIC and AID: Adipocyte induced control without 

drugs in the media or differentiated with induction drugs), Timepoint 3 (AC1, AD1: Adipocyte 

control without drugs in the media or differentiated with drugs) and Timepoint 4 (AC2, AD2: 

Adipocyte control without drugs in the media or differentiated with drugs).  

 

Single cell RNA sequencing 

Cells from the SVF were thawed and serially diluted in DMEM/F12 supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin in 15ml conical tube to a volume of 14ml. They 

were centrifuged at 300 rcf for 10 minutes and the supernatant was removed and discarded. The 

pelleted cells were suspended in an adequate amount of DMEM/F12 supplemented with 10% fetal 

bovine serum and 1% penicillin-streptomycin and transferred to a 1.5ml microfuge tube for 

counting. 10 µl of the suspension was used for a cell count and viability assay on a Countess II 

Automated Cell Counter (Invitrogen) to determine the volume of suspension to be used in the 10x 

Chromium Single Cell Library protocol. The desired number of viable cells to be loaded onto the 

Chromium Single Cell A Chip (10x Genomics) was 12,000 cells. After cell capture, the remaining 

cells were centrifuged at 300 rcf for 10 minutes and cryopreserved using freezing medium 

(Recovery Cell Culture Freezing Medium, Thermo Fisher Scientific). The cells were suspended in 

freezing medium and frozen with a temperature gradient of -1⁰C per minute. Cell capture, cDNA 

amplification, and library preparation were performed using the Chromium Single Cell 3' Library 
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& Gel Bead Kit v2 (10x Genomics), according to the manufacturer’s protocol. The final libraries 

were analyzed using a TapeStation to determine library size and a Qubit Broad Range dsDNA 

assay to determine library concentration and sequenced using Illumina HiSeq at high depth (mean 

171,560 reads/cell) capturing on average 1,527 cells/sample. 

 

Bulk RNA Sequencing  

In total of 0.5 to 3 million cells were re-suspended in 500 uL TRIzol Reagent and total RNA was 

extracted using the miRNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. RNA 

library preparations were carried out on 500 ng of RNA with RNA integrity number (RIN)>7 using 

the Illumina TruSeq Stranded Total RNA Sample preparation kit, according to manufacturer's 

protocol. Final libraries were analyzed on a Bioanalyzer and sequenced on the Illumina HiSeq 

2500 (pair-ended 100 - 150 bp sequences). On average 61,222,621, 49,175,966, 66,301,281 and 

84,454,561 paired-end reads were sequenced in adipocytes, SVF, adipose tissue and MSCs 

respectively. 

 

QC and clustering of single cell data from SVF 

Initial analysis of the single cell libraries was done using cellranger v.2.1.0 from 10X Genomics. 

GRCh38 was used as the genome reference. The analysis was started with 26 samples. All 

sequenced samples were aggregated using cellranger aggr pipeline where read depth difference 

between libraries was normalized by subsampling higher depth libraries. Seurat70 was used for 

further analysis of clustering, dimensionality reduction and differential gene expression analysis. 

For filtering, we used only cells with a minimum gene count of 200 and a maximum of 2500 

genes/cell based on their distribution in the sample. We also removed cells with unique molecular 
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identifiers (UMIs) less than 200 and greater than 13,750 per cell. Cells with percentage of 

mitochondrial gene expression greater than 20 was also removed. However, clustering showed that 

the majority of the cells (90%) from one sample were clustered together apart from the clusters of 

all the other samples. The sample was removed the sample and analysis was repeated. 

 

The final input data to Seurat comprised of 38,170 cells and after filtering we obtained 26,350 

cells. 11,111 cells were removed because of low gene / UMI count. We regressed out the variability 

due to UMI distribution, mitochondrial gene expression and the difference between G2M and S 

phase scores based on the gene expression of cell cycle genes 150. Top 23 dimensions were used to 

generate final clusters using principal component analysis (PCA) and graph based clustering. Top 

100 genes in each cluster were identified in comparison with all other cells using the function – 

‘FindAllMarkers’ in Seurat while keeping a cutoff of padj <= 0.01. Genes that are expressed to a 

minimum of 25% of cells in either of the test population is considered for analysis. Clusters were 

annotated using overlapping known marker genes among the cluster specific genes. Differential 

gene expression analysis between cell population was done using Wilcoxon rank sum test in 

‘FindMarkers’ function. The raw expression data of the filtered cells used in clustering of Seurat 

was used for generating annotation using SingleR with default parameters151. The annotation for 

each cell is then overlapped with Seurat cluster identities to identify the cell type of each cluster. 

The subset for the VAT progenitors and immune clusters were created from the clustering results 

using ‘SubsetData’ function of Seurat. Top 10 and 15 dimensions were used for clustering VAT 

progenitors and Immune cells respectively using highly variable genes in the corresponding data.  
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The sample with highest number of cells captured (n=6,672) is randomly subsampled to 1,500 

cells to match the cell counts of remaining samples. The clustering is repeated using the same 

settings as that of initial analysis. A subset of SAT progenitors (P2, P4, P6, P7) was created. Cells 

from VAT that were included in the subset was removed and we obtained 2,705 that are from SAT 

progenitors. Top variable genes were identified and clustering was done using top 10 dimensions. 

The cluster specific genes were used for functional annotation using DAVID Bioinformatics 

Resources 6.8 152,153. 

 

Differential gene expression analysis using bulk RNA 

Raw reads were trimmed for quality (phred33 ≥30) and length (n≥32), and Illumina adapters were 

clipped off using Trimmomatic v.0.35154. Filtered reads were then aligned to the GRCh38 human 

reference using STAR v.2.5.3a155. Raw read counts of genes were obtained using htseq-count 

v.0.6.0156. Differential gene expression analysis was done using DeSeq2 v.1.18.1157.  

The gene raw count table (V6p) of RNA-Seq data was downloaded from the GTEx web portal. 

The subset of data is then created selecting only tissues of interest based on the sample attribute 

file provided in the GTEx portal. Differential expression gene analysis is done using DeSeq2 

v.1.18.1. 

 

Detection of CD9+/CD68+ macrophages by histological immunofluorescence 

Visceral and subcutaneous adipose tissue samples from four patients undergoing bariatric surgery 

were identified of which two were diagnosed with type 2 diabetes. The mean age and BMI were 

47.3±11.7 years and 49.9±5.2 kg/m2 respectively. Adipose tissue slides were disembodied by 

xylene (2 x 10 min) followed by rehydration step using ethanol (2 x 5 min 100% and 2 x 5min 
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95%). Antigen retrieval was performed using citrate buffer 0.01M (0.1M citric acid with 0.1 

sodium citrate mixed with water) for 5 min at 65°C and 10 min at 95°C. The final rehydration step 

was performed by immersion of the slides for 5 minutes in water and for 5 minutes in PBS. Non-

specific sites were blocked for at least 45 minutes using PBS 1X, 0.1% BSA, 0.4% Triton-X100 

and 10% goat serum. Primary antibodies, rabbit anti-human CD9 (PA5-11556, Invitrogen, 

California, USA) and mouse anti-human CD68 (ab955, Abcam, Cambridge, United Kingdom) 

were incubated overnight at 4°C in a humidified chamber. The slides were washed 3 times in PBS 

1X for 5 minutes. Secondary antibodies, goat anti-rabbit Alexa488 (A11008, Invitrogen, 

California, USA) and goat anti-mouse Alexa594 (A11005, Invitrogen, California, USA) were 

incubated for 2 hours at room temperature in the dark. The slides were then washed 3 times with 

PBS 1X for 5 minutes. Vectashield mounting medium with DAPI (H-1200, Vectors Laboratories, 

California, USA) was used with coverslip and sealed with nail polish. Digital images were taken 

using Zeiss LSM800 confocal system (Zeiss, Oberkochen, Germany). Image were taken at 20x 

and 63x magnification. The slides were stored at 4°C in the dark and imaged less than 4 days after 

staining. 

 

Validation of beige adipocyte signatures by single cell sequencing 

Adipose tissue was collected from a 15-month-old boy undergoing inguinal hernia repair at 

Children’s Mercy Kansas City. Consent was obtained through the management of the study 

protocol approved by the Institutional Review Board at Children’s Mercy Kansas City (Protocol # 

17110653).  An easily accessible portion of the greater omentum at the lower end of the omental 

drape was identified and a portion was pulled out and a 2cm segment was amputed to allow for 

areas of cautery changes to be discarded. Specimen was passed off the field in a jar containing 
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saline. Adipose tissue was then prepared as described above to obtain SVF. The SVF pellet was 

treated with ACK lysis buffer at RT for 5 minutes, followed by another centrifugation step. The 

ACK lysis buffer was removed from the pellet and the cells were washed once more with 

HBSS+200uM adenosine+2%FBS and centrifuged one final time. Cells were counted to determine 

the total number of cells in suspension and viability. Cells were then cryopreserved using freezing 

medium (Gibco™ Recovery™ Cell Culture Freezing Medium, 10% DMSO). The medium was 

added to the pellet and was frozen with a temperature gradient (-1 °C/ minutes) and stored in liquid 

nitrogen until analysis. At the time of single-cell analysis, cells from the SVF were thawed and 

prepared as described above including cell count and viability assay on a Countess II Automated 

Cell Counter (Invitrogen) to determine the volume of suspension to be used in the 10x Chromium 

Single Cell Library protocol. The desired number of viable cells to be loaded onto two wells of a 

Chromium Single Cell A Chip (10x Genomics) was 8000 cells for a total of two captures with 

4000 cells/capture. Cell capture, cDNA amplification, and library preparation were performed 

using the Chromium Single Cell 3' Library & Gel Bead Kit v2 (10x Genomics), according to the 

manufacturer’s protocol. The final two libraries were analyzed using a TapeStation to determine 

library size and a Qubit Broad Range dsDNA assay to determine library concentration and 

sequenced on an Illumina NovaSeq6000 instrument. For QC and clustering, we followed same 

procedure used for the discovery samples to analyze the validation sample. However, for filtering, 

we used only cells with a minimum gene count of 200 and a maximum of 6000 genes/cell based 

on their distribution in the sample. We also removed cells with unique molecular identifiers 

(UMIs) greater than 50,000 per cell. Cells with percentage of mitochondrial gene expression 

greater than 40 was also removed. After filtering we used 2,779 cells for further clustering and 

analysis. Top 55 dimensions were used to generate final clusters using principal component 
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analysis (PCA) and graph-based clustering. The subset for the progenitors were created from the 

clustering results using ‘SubsetData’ function of Seurat. Top 50 dimensions were used for 

clustering VAT progenitors using highly variable genes in the corresponding data.  

 

Gene expression analysis in population based cohorts  

Associations between gene expression levels (IlluminaHT12) and phenotypes within the MuTHER 

cohort were modeled using a linear mixed effects model as described previously115. Briefly, the 

lmer function in the lme4 package, was fitted by maximum-likelihood. The linear mixed effects 

model was adjusted for age and experimental batch (fixed effects) and family relationship (twin-

pairing) and zygosity (random effects). A likelihood ratio test was used to assess the significance 

of the phenotype effect. The p-value of the phenotype effect in each model was calculated from 

the Chi-square distribution with 1 degree of freedom using -2log (likelihood ratio) as the test 

statistic. Summary statistics from associations between gene expression levels and phenotypes 

within the METSIM cohort were obtained from METSIM Study116. 
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2.10 Main Tables and Figures 

2.10.1 Tables 

Table 1: Characteristics of the study subjects. P values are calculated used two-sided t-test. 

 T2D non-T2D  

N 5 9  

Male:Female (N) 2:03 2:07  

 mean ± SD mean ± SD P-value 

Age (years) 52.8±12.5 43.3±11.4 0.2 

BMI (kg/m2) 41.0±6.0 43.5±7.2 0.49 

Fasting glycemia 

(mmol/L) 
10.7±1.3 5.57±0.5 4.97E-04 

Percentage of 

glycated hemoglobin 
0.08±0.005 0.05±0.002 1.61E-04 
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Figure 1: Identified cell populations in the non-adipocyte fraction of adipose tissue. Clustering 

results of 26,350 cells from the stromal vascular fraction (SVF) derived from 25 adipose samples 

that underwent single-cell RNA sequencing identifying 17 clusters. Cell populations were 

classified as Progenitors (P), Immune cells (I) and Endothelial cells (E) and labelled accordingly. 
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Figure 2: SVF-derived immune cells. Re-clustering of 9,025 CD34- cells representing immune 

cells in the stromal vascular fraction (SVF) of adipose tissue identified 14 cell types including 

T/NK cells (IS1, IS4, IS6, IS8), macrophages (IS2, IS3, IS7, IS9, IS12), dendritic cells (IS5, IS13), 

monocyte (IS10) and B-cells (IS11) in SAT (a) and VAT (b). Violin plots of expression density of 

Metallothionein genes across T / NK cell clusters in discovery (c) and CD34- validation samples 

(d) comprising 25 and 3 samples, respectively. The y axis indicate log transformed expression 

values and the width indicate number of cells expressing the particular gene. 

Immunohistochemistry in subcutaneous adipose derived from a 60 year-old woman with a BMI of 
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52.2 kg/m2 showing co-expression of CD9 (e) and CD68 (f) cells. The scale bar indicates 5 µm. 

The staining was done on 4 independent individuals to confirm. 

 

 

 Figure 3: SVF-derived progenitor clusters. (a) Violin plots of log transformed expression density 

of CD34 (upper panel), CD31/PECAM1 (middle panel) and CD45/PTPRC (bottom panel) across 

all SVF clusters from 25 samples. The width of the violin plot indicates number of cells expressing 

the particular gene. (b) Dot plot of the expression of CFD across progenitor (P) clusters. The size 

of the dot corresponds to the percentage of cells expressing CFD in each cluster and the color 

represents the average CFD expression level (c) Box plot of CFD expression at 4 different time 

points of adipocyte differentiation from mesenchymal stem cells (MSCs, n= 8 individuals). AI 

corresponds to the first time point three days after culturing MSCs in the induction media. AD1 

and AD2 are 1 and 2 weeks of differentiation in adipogenic media after the AI time point. ACI, 

AC1 and AC2 are corresponding control sets for AI, AD1 and AD2 without any adipocyte 

differentiation treatments. Each time point with corresponding control includes three independent 

MSC cultures and shown by average log 2 read count. The black line inside the boxplot represents 
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and median value and the size of the box is determined by the 25th and 75th percentile of the data. 

The wiskers of box plot represents the maximum and minimum values of the data shown.    

 

 

 Figure 4: Main cell clusters in SVF based on depot. (a) Clustering results of all SVF samples that 

underwent single-cell RNA sequencing which identified 17 clusters from 26,350 cells. Clusters 

were classified as Progenitors (P), Immune cells (I) and Endothelial cells (E) and labelled 

accordingly. Cells are labelled as VAT (red)- or SAT (blue)-derived, respectively. (b)Violin plots 

of expression density of 11 genes that are specific to VAT progenitor clusters. The y axis indicate 

log transformed expression values and the width indicate number of cells expressing the particular 

gene. 
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Figure 5: Progenitor clusters specific to SAT. (a) Re-clustering of SAT-specific progenitors from 

the complete sample set of 26,350 cells (b) Re-clustering of SAT-specific progenitors (2,705 cells) 
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by subsampling the high coverage library to 1500 cells (c) Dot plot of the expression of PTPRC 

(CD45) and CFD across SAT progenitors (SP1-SP5). (d) Pearson correlation of fasting glucose 

levels (mmol/L) and SP1 proportion across all samples obtained from 13 individuals (e) Dot plot 

of differentially expressed SP1 genes in cells derived from T2D (DX) versus non-T2D (NDX) 

samples previously validated in the MuTHER study (f) Box plot of T2D-associated SP1 gene 

expression at different time points of adipocyte differentiation from mesenchymal stem cells 

(MSCs, n= 8 individuals). AI corresponds to the first time point three days after culturing MSCs 

in the induction media. AD1 and AD2 are 1 and 2 weeks of differentiation in adipogenic media 

after the AI timepoint. ACI, AC1 and AC2 are corresponding control sets for AI, AD1 and AD2 

without any adipocyte differentiation treatments. Each timepoint with corresponding control 

includes three independent MSC cultures and shown by average log 2 read count and error bars 

corresponding to standard deviation. The black line inside the boxplot represents and median value 

and the size of the box is determined by the 25th and 75th percentile of the data. The wiskers of box 

plot represents the maximum and minimum values of the data shown.   The size of the dot in (c) 

and (e) corresponds to the percentage of cells expressing the genes in each cluster and the color 

represents the average expression level. 
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Figure 6: Progenitor clusters specific to VAT derived from individuals with obesity.  (a) Re-

clustering of VAT-specific progenitors (9,847 cells) from the complete sample set (b) Violin plots 

showing expression density of MSLN and CFD in 6 VP clusters. The y axis indicate log 

transformed expression values and the width indicate number of cells expressing the particular 

gene (c) VAT progenitor cells labelled based on mitochondrial gene distribution: group 0 (grey, 

5,018 cells) shows cells with mitochondrial gene expression <=5%, group 1 (blue, 4,100 cells) 

represents 6% to 14% and group 2 (red, 729 cells) represents 15% to 24% expression. See also 

supplementary figure 5 (d) Pearson correlation of fasting glucose levels (mmol/L) and VPM cell 

proportion across all samples from 12 individuals (e) Expression pattern of UCP1, MSLN and WT1 

using bulk RNA-Seq showing change in expression in mature adipocytes. 
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Figure 7: Progenitor clusters specific to VAT derived from a healthy individual. (a) Re-clustering 

of progenitors identified 6 clusters comprising 1,781 cells (b) Umap highlighting expression of 

MSLN in all progenitor clusters (c) UCP1 expression was detected in cluster 0 which had high 

mitochondrial gene expression (d) 
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Extended Data  

 

Extended Data 1: Multiple macrophage clusters were identified in SVF from both SAT and VAT 

depots (a) 4 distinct macrophage clusters showing varying expression of CD68 (19 - 52% of cells), 

CD9 (10 – 51% of cells) and CD36 (25 – 72% of cells). The y axis of the violin plot indicate log 

transformed expression values and the width indicate number of cells expressing the particular 

gene. (b) Genes involves in lipid metabolism is found expressed in macrophage cluster – IS2, 

whereas IS3 is rich in inflammatory markers. 
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Extended Data 2: Gene expression of marker genes in 6 visceral specific progenitor clusters. The 

y axis of the violin plot indicate log transformed expression values and the width indicate number 

of cells expressing the particular gene. 
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CHAPTER3: Adipose Tissue Transcriptome and Epigenome Characterization 

During Development and in Health and Disease 

 

3.1 Bridging Statement between Chapter 2 and 3 

As described in Chapter 2, we were able to successfully catalogue the cellular landscape in human 

AT providing the first of its kind single-cell atlas across two metabolic disease-relevant AT depots 

(SAT and VAT). We also provided significant insight into obesity-induced metabolic 

complications by contrasting cellular and transcriptomic profiles in obese individuals with or 

without T2D. However, the limitations of this study were the inclusion of only obese individuals 

which restricted the comparative analysis between healthy (lean) and obese phenotypes. In 

addition, the study also only included adult individuals leaving the pediatric population unstudied. 

To this end, in Chapter 3, we extended these efforts by characterizing adipose tissue derived from 

both healthy (lean) and extremely obese children. In addition to single-cell RNA sequencing we 

also studied the epigenome by open chromatin profiling using snATAC-Seq to identify epigenetic 

regions that regulates gene expression pattern identified across disease relevant cell population.  
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3.3 Abstract 

Adipose tissue found in various locations of the human body is known to be implicated in 

development of obesity and associated metabolic disorders. We recently profiled adipose tissue 

derived from adults with obesity using single cell RNA sequencing (scRNA-Seq) and identified 

novel dysfunctional T cells and adipocyte progenitors associated with metabolic complications in 

a depot-specific manner. Here, we expand these efforts to the pediatric population as well as 

characterization across healthy and obese tissue including paired single nuclei open chromatin 

analysis (snATAC-Seq) combined with scRNA-Seq. We provide higher resolution 

characterization of endothelial and smooth muscle cells and show striking tissue and disease 

association of adipose resident immune cells. We observed a Natural Killer (NK) cell subset with 

anticancer gene expression signatures enriched in lean individuals, suggesting role of similar 

protective mechanism against obesity.  We confirm the distinct relationships of dysfunctional and 

protective adipocyte progenitors with obesity: dysfunctional CFD-expressing progenitors are 

enriched in children with obesity (36%) compared to lean children (15.8%). On the other hand, 

MSLN-expressing cells are found more abundantly in adipose tissue from lean children (43%) 

compared to obese children (9.4%) and possess the signature of a brown-like ‘protective’ 

progenitor population. Further analysis using snATAC-Seq showed open chromatin in MSLN 

clusters being enriched for binding sites for TEAD-family of transcription factors – TEAD2, 

TEAD4, TEAD3 and TEAD1. On the other hand, open chromatin defining CFD progenitors were 

enriched for key regulators of adipogenesis:  CEBPA and CEBPD. Our expanded adipose cell atlas 

provides insight into cellular patterns and biological pathways linked to obesity across the lifespan. 
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3.4 Introduction 

Adipose tissue (AT) is a specific connective tissue that are embryonically derived from the 

mesoderm and consist of extracellular matrix and several cell types of the adipocyte and non-

adipocyte cellular fraction. The latter, known as the stromal vascular fraction (SVF), include 

mesenchymal stem cells, adipocyte progenitor cells, fibroblasts, endothelial cells and immune 

cells, each cell type with multiple sub-populations and distinct role in disease risk and progression. 

In mammals, two specific types of AT exist - white (WAT) and brown (BAT) based on 

microscopic characteristics of adipocytes where white adipocytes consist of a single large lipid 

droplet and possess only a few mitochondria, whereas brown adipocytes contain multiple lipid 

droplets per cell and are packed with mitochondria and have thermogenic properties130. It was 

initially believed that classical BAT was only relevant during infancy and restricted to 

interscapular depot but recent studies have suggested that brown adipocytes, and/or adipocytes 

possessing characteristics of both brown and white adipocytes (known as ‘beige’ or ‘brite’ 

adipocytes), may be more common in adults than had been previously appreciated158,159. We 

recently applied single-cell RNA sequencing (scRNA-Seq) in a cohort of AT derived from adult 

individuals with extreme obesity and identified a novel depot-specific preadipocyte population 

within adult SVF marked by WT1 and MSLN (indicative of a mesothelial origin) with high 

mitochondria content and possessing browning features as well as with a protective function 

against obesity-induced metabolic complications such as Type 2 Diabetes (T2D)101. This 

progenitor subpopulation was shown to be exclusive to visceral depots and distinct from the most 

common progenitor in subcutaneous AT which was marked by high CFD expression. This 

unbiased and high-resolution analysis of SVF at single-cell level also allowed us to map the 

immune cellular landscape in adult AT identifying a multitude of common and latent immune cell 
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types including but not limited to CD9+ macrophages and CD8+ T cells associating with metabolic 

disease status. In all, this study contributed novel insight into AT architecture underlying obesity 

in the adulthood providing a resource at higher resolution than previous population-based genome-

wide catalogues of adult AT established by us43 or other large consortia45,160. However, there 

continue to be a sparse representation of AT derived from children leaving a large gap of 

developmental aspect of tissue architecture and childhood disease association unexplored. Indeed, 

childhood obesity continues to be a growing health problem globally with an estimation of almost 

400 million children being obese worldwide161. Childhood obesity is also found to be strongly 

associated with prolonged obesity and metabolic complications in adulthood162,163 and believed to 

be the cause of the increased incidence seen for T2D in children and adolescence164. In fact, 

obesity-induced T2D in children and adolescents has a worse prognosis and progresses more 

rapidly than adult-onset T2D or early-onset type 1 diabetes including greater mortality165. 

Although there have been an increasing number of genome-wide association studies focusing on 

childhood obesity166 and T2D167 to disentangle age-specific genetic factors underlying these 

conditions, the cellular landscape of human AT during development and across disease groups (i.e. 

lean vs obese children) has not been characterized at high-resolution to date.   

 

To this end, we apply single-cell and single-nuclei approaches to assess the complex cellular 

landscape of intra-abdominal visceral adipose tissue (VAT) in both lean and extremely obese 

children during development contrasting to our recently released single-cell atlas of adult AT. 

We show that differential signatures of gene expression and open chromatin regions in response 

to obesity is distributed among distinct cell population of VAT. 
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3.5 Results  

3.5.1 Cellular Characterizing of Adipose Tissue in Children 

We collected 24 VAT samples in our discovery cohort derived from children (0 - 19 years) 

undergoing elective surgery including six with a healthy weight and 11 with extreme childhood 

obesity (average BMI of 49.4kg/m2). A subset (N=8) of the childhood obesity sample group had 

biospecimens collected from two different visceral depots (see Methods) referred to as “up” and 

“down”.  

 

Focusing on the SVF, we applied a donor-multiplexed capture approach (see Methods) and 

performed scRNA-Seq on the 24 VAT samples obtaining 28,529 high-quality cells (average 1,141 

cells/sample) after initial QC and filtering including only genetically unique singlets removing 

doublets and ambiguous calls. We identified 24 cell clusters across the main cell categories: stem 

cells/progenitors/preadipocytes (N=9), immune cells (N=10), endothelial cells (N=3) and smooth 

muscle cells (N=2) based on the expression of the marker genes – CD34, PECAM1 and PTPRC 

(Figure 1A,1C). The overall distribution of these broad cell groups varied significantly based on 

disease state (i.e., healthy weight vs. extreme obese) and also based on specific VAT depot (Figure 

1B). We noted increased resolution of the vascular endothelium (i.e., endothelial cells and smooth 

muscle cells) compared to our earlier scRNA-Seq efforts in AT derived from adults101 as described 

in detail below.    

 

3.5.2 Vascular Endothelium Dysfunction in Childhood Obesity 

We identified four different clusters from the vascular endothelium which included two endothelial 

cell clusters (EK1 and EK2) and two smooth muscle cell clusters (SK1 and SK2). We also 



 92 

identified a cluster of lymphatic endothelial cells (EK3), validating our observation of different 

endothelial cells in AT from adult samples. In children, endothelial clusters EK1 and EK2 were 

identified to be adipose resident microvascular endothelial cells and vascular endothelial cells 

respectively. Differential expression analysis between vascular endothelial clusters and smooth 

muscle cell clusters showed EK1 and EK2 have high expression of markers of angiogenesis 

including TIE1168, ADGRL4169, KDR170, ENG171 and EGFL7172 (Adjusted P < 5.48E-302, Table 

1). Smooth muscle cells were found to be marked by the expression of  NEXN173, CNN1174, and 

TAGLN175 . Interestingly, the SK1 and SK2 clusters also expressed ADCY3, a gene which loss of 

function is known to increase the risk of obesity and T2D176. Comparing the gene expression of 

SK1 and SK2 showed SK1 had high expression of collagen genes and insulin like growth factor 

binding proteins 2-7 (Table 2) which plays a key role in smooth muscle differentiation, migration, 

and DNA synthesis177,178. SK1 also showed an upregulation for genes involved in fatty acid 

handling such as LPL, CD36 and FABP4179. Top genes also showed characteristic beneficial 

signatures which included STEAP4 that acts against adipogenesis and insulin resistance in 

response to pro inflammatory stimuli180, MARCKS involved in smooth muscle and endothelial cell 

proliferation181, TIMP3 regulates of homeostasis of endothelium182. Interestingly, SK2 showed 

expression of MYH11 and TRPV1 (Figure 2A) which are recently identified to be markers of 

smooth muscle cells potent to develop into beige adipocytes96. Further, pathway analysis using 

Metascape183 identified enrichment for oxidative phosphorylation (q-value = 5.09E-14) and 

mitochondrial electron transport, ubiquinol to cytochrome c (q-value = 1.88E-12) among the down 

regulated genes (Adjusted P. <= 1E-4) in SK1 in comparison with SK2. 
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Among the vascular endothelial clusters, EK1 cells were found to be more prevalent in obese 

individuals compared to the lean counterparts which corresponds to 12.8% and 5.9% of their total 

population. Differential gene expression analysis between obese and lean of EK1 markers 

identified 394 significant genes (Adjusted P <= 1E-4). To validate the obesity-association of these 

EK1 marker genes we used the population-based MuTHER and METSIM AT resource each with 

~700 AT samples profiled with corresponding individual-based phenotyping: 323 (82%) EK1 

genes were associated (P <= 0.05) with obesity traits in either MuTHER (BMI, Trunk fat%) or 

METSIM (BMI, WHR) of which 152 genes (47%) were validated in both studies.  Top differential 

expressed genes between obese and lean patients in EK1 showed higher expression of stress 

response genes - NNMT184, MT2A, MT1M, MT1X, MT1A and MT1E185 (Adjusted P <= 1.34E-23, 

Table 3) in obese individuals. Further, pathway analysis using Metascape on genes with positive 

fold change and adjusted P <= 1E-04 identified GO:0009636 – Response to toxic substances as 

the top enriched pathway with a q-value of 9.57E-08. Interestingly, genes involved in fatty acid 

handling FABP4, RBP7, LPL, CD36 and PPARG179 (Adjusted P <= 2.63E-5) were also 

upregulated in obese. Among the down regulated EK1 genes in obese individuals, we found an 

enrichment towards the key genes involved in notch signalling pathway (Adjusted P <= 8.61E-5, 

Figure 2B) including DLL4, SMAD1, SMAD5, ADAM10, KDR, MAML2 and TM4SF18186. 

Pathway analysis on genes with negative fold change and adjusted P <= 1E-04 identified 

GO:0001568 - blood vessel development as the top pathway with q-value of 2.58E-18.  

 

Comparing the proportion of cells from each cluster across the samples, we found that both EK1 

and EK2 were positively correlated with smooth muscle cell clusters SK1 and SK2 (Pearson p <= 

2.5E-05) in obese individuals. However, the pattern was not observed in individuals with a healthy 
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weight. Further, EK1 showed strong negative correlation with CD4+ T cell clusters IKS1 and 

monocytes IKS4 (Pearson p <= 1.76E-04, Cluster details provided in the following section) in 

obese patients but the data from healthy weight individuals showed opposite trend with IKS4 and 

no correlation with IKS1. EK2 also showed a similar pattern of correlation in obese individuals 

with a weaker association. We also found significant correlation between EK1 with CD8+ T cell 

cluster (IKS5) following a similar pattern as that of monocytes (Pearson p <= 0.014).  In addition, 

cell to cell communication analysis using ligand receptor interaction showed link between EK1 

and EK2 as well as between EK1 and CD8+ T cell cluster (IKS5). 

 

3.5.3 Differential Accumulation of Immune Cells Based on Obesity Status 

We assessed the distribution of AT-resident immune cells across our study cohorts and noted that 

adults have proportionally more immune cells (T2D -33%, nonT2D – 35%) compared to children 

(Obese – 27%, Lean – 13%) although the largest differences are attributed by metabolic health 

status as shown by low immune cell infiltration in lean individuals.  

 

To increase the resolution of cell type assignment, we created a subset of 6,772 cells from clusters 

IK1 – IK10 which were identified as immune cells by unsupervised, reference-based clustering 

algorithm implemented in SingleR. We identified 17 new immune clusters (IKS1 – IKS17, Figure 

3A) using variable genes from the subset. As expected, we found two main groups of clusters 

forming T/NK cells (IKS1, IKS2, IKS3, IKS5, IKS9, IKS10, IKS11, IKS12) and Monocytes/ 

Macrophages (IKS4, IKS7, IKS13, IKS16). We noted that obese samples showed an enrichment 

of T/NK cells comprising 69% of its total immune cell population compared to the healthy weight 

(lean) samples which only had 52% of the immune cells being T/NK cells. The reverse pattern was 
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observed for Monocyte / Macrophage clusters – 31% of immune cells in health weight and 18% 

in obese samples, respectively, with IKS4 and IKS7 being the main contributor of the variation. 

We identified IKS4 as monocytes and IKS7 as lipid metabolizing M2 macrophages confirming 

our findings in adults (Figure 3B). 

 

Among the immune subclusters, the variation between lean and obese were more pronounced in T 

and NK cell clusters. Cells from obese individuals formed the majority population in clusters IKS1, 

IKS2, IKS9 and IKS11. On the other hand, IKS5 and IKS12 were from lean samples.  IKS1 

showed high expression for genes coding ribosomal proteins.  IKS1 and IKS2 were annotated to 

be CD4+ T cells with the expression of MAL in IKS1 - a marker of activated T cell187. IKS10 was 

found to be rich in metallothionein genes – MT1X, MT1G, MT1F, MT1E and MT2A (Figure 3C) 

and it constituted of only cells from obese samples. This further validates our observation of the 

development of metallothionein rich T cell clusters during obesity in our adult study. IKS9 and 

IKS11 were identified to be NK cells with expression of cytotoxic NK cell markers on IKS9188. 

Among the lean specific clusters, IKS5 showed expression of CCL5 and CD8B, the markers of 

CD8+ T cells. IKS12 expressed NK cell markers KLRC1 KLRD1, NKG7 and chemokines XCL1, 

XCL2 (Figure 3D) which are shown to have beneficial effects in cancer immunotherapy189.  

  

3.5.4 Characterization of Diverse Adipose Progenitors 

We identified nine distinct clusters of progenitors expressing either CFD (CK1-CK5) or MSLN 

(MK1- MK4). In line with our previous study using adult participants, we found that MK clusters 

are found in healthy individuals (43%) compared to obese (9.4%) and possess the signature of a 

brown-like progenitor population. On the other hand, CK clusters were found to be comprise of 
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15.8% and 36% of total cell population in healthy and obese children, respectively. Interestingly, 

we also noted depot specific variation of VAT in cell proportion of MK clusters. MK cells were 

sparse in “up” samples (greater omentum but proximal to stomach) with a total cell proportion of 

only 3%, whereas in “down” samples (greater omentum but distal to stomach) it was around 18%. 

We expanded these analyses by including snATAC-Seq which confirmed the cell distribution. 

Specifically, snATAC-Seq identified the MK cluster to be corresponding to 43% of cells from 

healthy children, 4% from ‘up” and 17% from “down". To further disentangle the regulatory 

machinery underlying the specific CK and MK cell lineages we identified the open chromatin 

regions specific to the snATAC-Seq clusters (Figure 4A). First, we performed differential peak 

calling between corresponding chromatin regions in CK vs. MK clusters and identified 1,369 

regions (log2FC >= 0.05 and Adjusted P <= 0.05) that were specific to CK clusters. Transcription 

factor binding motif (TFBM) enrichment analysis on these CK specific open chromatin regions 

showed enrichment for transcription factors ZNF384, TWIST1, ZBTB18, CEBPA, EBF3, 

CEBPD, ATF2, MEF2A, TAL1::TCF3, ZBTB26, EBF1. On the other hand, 786 regions/peaks 

were identified to be specific to the MSLN expressing clusters, the MK cells.  Using GREAT190 

resource, we identified 129 proximal genes that are situated +/- 5kb from these peaks. We found 

KRT18, KRT19, KRT8, MSLN and TM4SF1 among the genes identified by GREAT which further 

validates our observation of specificity of these genes in adult MSLN specific clusters. We also 

observed the presence of the mesothelial markers1 LRRN4 and UPK3B among them. TFBM 

analysis on the MK-specific peaks identified transcription factors that are enriched in MSLN 

clusters which include MAZ, ZNF148, TEAD2, ZNF263, KLF5, TEAD4, GATA3, TEAD1, 

TEAD3, NFIB. Interestingly, TEAD1 and TEAD2 are negatively associated with BMI (FDR <= 

1.41E-03) in METSIM. We also observed a significant peak region upstream of WT1 gene specific 
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to the MK cluster (chr11-32466080-32466828, Adjusted P = 2.57E-201) compared to CK clusters 

(Figure 4B). Further analysis showed that the peak region indeed has the binding site for TEAD1 

suggesting key role of the TEAD transcription factors in regulating the VAT-specific MK cells in 

children and adults.  

 

We then subclustered the 13,889 progenitor cells from scRNA-Seq to obtain higher resolution and 

to overcome inter sample variations, we refined the clusters using Conos71, which resulted in seven 

new clusters (Figure 5A)- 2 MSLN expressing clusters (MKS1, MKS2) and 5 CFD rich clusters 

(CKS1 – CKS5; Figure 5B). The distribution of MKS1 cells were similar as the main clustering 

with higher proportion in lean, followed by obese “down” sample and almost absent in obese “up” 

samples. However, this correlation of cell proportion with metabolic health status was not observed 

for the other MSLN sub-cluster, MKS2, but only for depot-specificity.  Specifically, MKS2 cells 

were comprised of 15% and 16% of total progenitor population from lean, and obese “down” 

samples but only 4% of total progenitor population from obese “up” samples indicating a depot-

specific cellular subpopulation. Differential gene expression analysis between MKS1 and MKS2 

showed increased expression of COL6A3 and its transcriptional regulator PRRX1 (Adjusted. P <= 

9.92E-173) which are known to be overexpressed during obesity191.In addition, MKS2 is also 

marked by genes involved in adipogenesis such as COL14A1192, DCN193, DPT194 and 

SERPINF1195 (Adjusted. P <= 1.19E-250). 

  

Focusing on the sub-clusters for the CFD cells, we noted that CKS1 was marked by genes involved 

in adipogenesis including RASD1196, PLIN2, CEBPB, CEBPD and MYC197. CKS1 also showed 

cluster specific expression for AKRIC1 and AKR1C2, which were identified to be a marker of 
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abdominal obesity198,199. CKS2 showed expression of FOS, JUNB and FOSB indicating they are 

induced pre-adipocytes200. Further, selective expression of PPARG in CKS1, CKS2 and CKS4 

confirm they are committed preadipocytes at different stages of differentiation. CKS3 is identified 

to be multipotent progenitors expressing DPP4, WNT2, CD34 and CD2497,201 (Figure 5C). CKS5 

showed expression of secreted frizzled related proteins (SFRP) – SFRP4, SFRP2 and SFRP1 

(Adjusted P <= 3.71E-133). Expression of SFRPs and MFAP5 suggests CKS5 might have a 

regulatory role in adipogenesis and inflammation127,202,203. Interestingly, CKS5 is enriched in obese 

patients, particularly in “Up” samples with a proportion of 13.4% of its total progenitor population. 

Whereas it comprised of 6.6% and 2.7% in “Down” and “lean” progenitors. We then did 

differential gene expression analysis between CSK5 and rest of the CSK clusters (CSK1 – CSK4). 

The analysis identified 144 genes with an adjusted P <= 1E-4 and positive log2FC. These 144 

genes were compared with differential gene expression analysis results between obese and lean 

from bulk RNA-Seq of isolated adipocytes. Interestingly, we could not find similar pattern of 

disease specificity matured adipocytes suggesting the pattern is observed during early adipocyte 

differentiation stages. Our theory was further confirmed using bulk RNA-Seq data from adult 

patients from Chapter 2. Among the 144 genes, 69 genes were upregulated in SVF in comparison 

with matured adipocytes (Adjusted P <= 1E-4, positive log2FC) and 16 were found to have 

increased expression in adipocytes.  

 

3.6 Discussion 

We have performed a comparative study between cellular composition of VAT derived from 

individuals with healthy weight and obesity, leveraging gene expression and open chromatin 

profiling (as an indication of active regulatory regions) at single-cell resolution. We observed 
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interesting dynamics in vascular endothelium of VAT. Healthy adipose tissue expansion is 

accompanied by the expansion of endothelial cells to facilitate microcirculation and thereby 

maintaining tissue homeostasis204. Endothelial cells also contribute to the metabolism of excess 

free fatty acids during adipose tissue expansion 205. Studies have shown that fatty acid handling by 

endothelial cells is facilitated by the cross talk with preadipocytes through PPARG activation110,179. 

However, obesity induced hypoxia can lead to endothelial dysfunction and tissue 

inflammation206,207. Our analysis using lean and obese individuals show that the obesity related 

endothelial variation is pronounced in adipose specific vascular endothelium - EK1 with increased 

expression of oxidative stress response genes in obese patients. On the other hand, genes involved 

in notch signalling pathway that negatively regulates endothelial differentiation are down regulated 

signalling active endothelial expansion in response to adipose tissue expansion. DLL4 is one of 

the notable down regulated genes among them which is shown to negatively inhibit angiogenesis 

by modulating the expression of vascular endothelial growth factor208. Inhibition of DLL4 in 

mouse models resulted in improved fat accumulation, insulin resistance and atherosclerosis with 

detectable attenuation of inflammation through polarization of macrophages to proinflammatory 

M1 phenotype209. Endothelial cells are known to remain quiescent until they are mediated by 

angiogenic signatures from adipocytes. Down regulation of Notch signalling and upregulation of 

fatty acid handling genes including FABP4 (Adjusted. P = 2.54E-55) suggests active proliferation 

of EK1 in obese compared to lean individuals in response to obesity210,211. The increase in 

expression of fatty acid handling genes is also seen in a cluster of smooth muscle cells (SK1) 

further indicates the expansion of endothelium212. Endothelial signals for expansion together with 

low abundance of macrophage population213 in children suggests healthy endothelium and immune 

function in obese individuals.  
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The role of endothelial cells in adipose tissue inflammation is studied extensively206. We were able 

to identify the cross talk between sub clusters of endothelial cells and CD8+ T cells. Recent single 

cell studies on mice model shows CD8+ T cells can modulate vascular regeneration214 . On the 

other hand, CD4+ T cells can induce apoptosis of endothelial cells215 and they are found to 

negatively correlated in obese patients. In all, we observe the pattern favoring expansion of 

endothelium. Among the other immune cells, we observed XCL1 and XCL2 expressing NK cells 

which are studied in cancer immunotherapy leveraging its anticancer role by recruiting dendritic 

cells189. Presence of such NK cells (IKS12), predominantly in lean samples suggests the chances 

of similar immune response in obesity. Though, the dendritic cell population in our data set 

(IKS16) also shows concentration of cells from lean samples, the cluster does not have enough 

power (N=65) to explore further.  

 

We confirmed the presence of two different progenitor population and the association with obesity. 

By characterising open chromatin regions specific to each cell cluster, we expanded our adipose 

tissue catalogue with potent regulatory regions. MSLN expressing cells are found to be enriched 

for TEAD family of transcription factors. TEAD transcription factors are shown to be involved in 

adipogenesis of murine preadipocytes through hippo signalling pathway216. Further, TEAD4 is 

found to play critical role in development of adipocytes from multipotent muscle derived stem 

cells217. Taken together, TEAD transcription factors could be the key regulators of alternate 

adipogenic pathway of development of MSLN expressing adipocytes from mesothelium.  
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In conclusion, we have performed a comprehensive comparative study of adipose resident cell 

population between lean and obese children identifying dynamics in gene expression and open 

chromatin regions specific to multiple cell population.  

 

3.7 Methods 

 
Study Subjects: 

Participants were selected through an institutionally approved study with ongoing recruitment at 

Children’s Mercy Kansas City for pediatric patients undergoing hernia repair or bariatric sleeve 

surgery.  Consent was obtained through the management of the study protocol approved by the 

Institutional Review Board at Children’s Mercy Kansas City (Protocol # 17110653) 

 

For consented patients undergoing bariatric surgery, adipose tissue was collected from two 

different fat compartments of the greater omentum with one proximal and one distal to the stomach 

referred as “up” and “down” in this article. For consented patients undergoing hernia repair, an 

easily accessible portion of the greater omentum at the lower end of the omental drape was 

identified and a portion was pulled out and a 2cm segment was amputed to allow for areas of 

cautery changes to be discarded. All specimens were passed off the field in a jar containing saline. 

 

Adipose Tissue Preparation 

The adipose tissue samples were weighed before being transferred to a petri dish and rinsed with 

PBS. Each sample was then minced with a scalpel into small pieces, cutting until there was no 

discernible fragments and transferred to a 50 mL conical tube and digestion buffer was added at 

1mL/0.25g of tissue. The digestion buffer consisted of Krebs-Ringers-HEPES+ 2.5mM glucose+ 
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2% FBS +200uM adenosine+ 1mg/mL collagenase type 1A. Krebs-Ringers-HEPES contained 

120mM NaCl, 4.7mM KCl, 2.2mM CaCl2, 10mM HEPES, 1.2mM KH2PO4, and 1.2mM MgSO4. 

The tissue in digestion buffer was then incubated at 37⁰C for one hour at 100 rpm on a heated 

orbital shaker. After digestion, the samples were filtered through a 150um mesh Celltrics filter 

(Fisher, Cat. No. NC9021438) into a 15mL tube, followed by an equal volume of HBSS+ 2% FBS 

+200uM adenosine. The suspensions were then centrifuged at 200g for 8 minutes. The adipocytes 

were transferred into a new 15 mL conical tube using a 1mL pipette tip with 1-2mm snipped off 

the end of the tip to allow gentler transfer of the adipocytes. The cell pellet was resuspended in 

1mL of Hank’s Balanced Salt Solution (Fisher, Cat. No. MT21022CV) + 2% FBS +200uM 

adenosine. Both the adipocytes and the SVF were washed in HBSS+ 2% FBS +200uM adenosine 

and centrifuged at 200g for 8 minutes. The adipocytes were then transferred to another tube and 

saved for further processing. The media was removed from the SVF pellet, and the pellet was 

resuspended in ACK Lysis Buffer (Fisher, Cat. No. A1049201). The SVF suspension was 

incubated for 5 minutes at room temperature and then centrifuged at 300g for 8 minutes. After 

centrifugation, the buffer was removed from the pellet, the SVF was washed again in HBSS+ 2% 

FBS +200uM adenosine and centrifuged again at 300g for 8 minutes. The media was then removed 

and the SVF pellet was resuspended in 0.5mL of HBSS+ 2% FBS +200uM adenosine and counted 

on a Countess II automated cell counter to determine the total cell count, viability, and live/dead 

size. After counting, the SVF was centrifuged at 300g for 8 minutes, resuspended in Recovery Cell 

Culture Freezing Media (Fisher, Cat. No. 12-648-010) and transferred into a 2mL cryovial. The 

cryovial was placed in a cell cooler and placed at -80⁰C overnight. 
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Cell pooling 

Two pools totaling 25 SVF samples were made. Thawing Medium for the SVF samples consisted 

of DMEM/F-12 (Thermo Fisher Cat No. 11320033) supplemented with 10% heat-inactivated FBS 

(GE Healthcare Cat No. SH30088.03HI), 100 units/mL of penicillin, and 100 µg/mL of 

streptomycin (Thermo Fisher Cat No. 15140122). For each sample to be thawed, 10 mL of 

Thawing Medium was prewarmed in a 37°C bead bath. Cells were thawed in groups of up to five 

samples at a time. The cryovials were placed in a 37°C bead bath. Once thawed, the cryovials and 

prewarmed 15-mL conical tubes of Thawing Medium were aseptically transferred into a biosafety 

cabinet. For each sample, 1 mL of Thawing Medium was added, dropwise, to the cell suspension. 

The cell suspension was mixed by gently pipetting and then diluted in the remaining 9 mL of 

Thawing Medium. After thawing and dilution, the cells were left at room temperature while the 

remaining cells required for pooling were thawed in a similar fashion. Once all samples were 

thawed, the samples were centrifuged at 300 x g for 6 min for SVF and 300 x g for 8 min for 

PBMCs. The supernatant was carefully aspirated, and the cell pellets were resuspended in 0.5 mL 

of room-temperature Thawing Medium. All samples were then placed on ice to be pooled. Up to 

7.5 × 105 cells from each sample were pooled together. The pool was then passed through a 40-

µm nylon mesh cell strainer to remove cell aggregates. The pool was centrifuged at 300 x g for 6 

min for SVF and 300 x g for 8 min for PBMCs at 4°C, and the supernatant was carefully aspirated. 

The cell pellet was resuspended in 1 mL of cold Thawing Medium and the cell count and viability 

were assessed using a Countess II automated cell counter. No fewer than three aliquots per pool 

were cryopreserved by centrifuging at 300 x g for 6 min for SVF and 300 x g for 8 min for PBMCs 

at 4°C and resuspending the cell pellets in Recovery Cell Culture Freezing Medium. The cell 
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suspensions were transferred to cryogenic storage vials and were slow-frozen overnight to a 

temperature of -80°C in a Corning CoolCell FTS30. 

 

Single-cell sequencing 

Aliquots of the two SVF pools were thawed and serially diluted in DMEM/F12 supplemented with 

10% fetal bovine serum and 1% penicillin-streptomycin in 15ml conical tube to a volume of 14ml. 

They were centrifuged at 300 rcf for 10 minutes and the supernatant was removed and discarded. 

The pelleted cells were suspended in an adequate amount of DMEM/F12 supplemented with 10% 

fetal bovine serum and 1% penicillin-streptomycin and transferred to a 1.5ml microfuge tube for 

counting. 10 µl of the suspension was used for a cell count and viability assay on a Countess II 

Automated Cell Counter (Invitrogen) to determine the volume of suspension to be used in the 10x 

Chromium Single Cell Library protocol. For scRNA-Seq, 10x Genomics Gene Expression v3 was 

used according to the manufacturer’s protocol to target approximately 12,500 SVF cells per 

capture with a total of two captures per pool. For scATAC-Seq, 10x Genomics Single Cell ATAC 

Solution v1.0 was used according to the manufacturer’s protocol to target approximately 10,000 

nuclei per capture with a total of four captures per pool. Nuclei isolation was carried out according 

to the 10x Genomics Demonstrated Protocol: Nuclei Isolation for Single Cell ATAC Sequencing, 

using the optional DNase Treatment in the appendix for the SVF pools. The final libraries were 

analyzed using a TapeStation to determine library size and a Qubit Broad Range dsDNA assay to 

determine library concentration. Libraries were sequenced using an Illumina NovaSeq6000 

sequencer using 28x8x94 and 52x8x16x52 cycle paired-end for scRNA-Seq and snATAC-Seq 

libraries, respectively. 
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QC and clustering of single-cell data of scRNA-Seq data 

The primary processing of single cell libraries from scRNA-Seq were done using Cell Ranger58 

from 10X Genomics using GRCh38 as reference genome. The sequenced samples were aggregated 

using cellranger aggr pipeline where read depth difference between libraries was normalized by 

subsampling higher depth libraries. The samples were then separated using Demuxlet65 using 

genetic deconvolution. Seurat218 was used for further analysis of clustering, dimensionality 

reduction and differential gene expression analysis. For filtering, we used only cells with a 

minimum gene count of 200 and a maximum of 8,000 genes/cell based on their distribution in the 

sample. We also removed cells with unique molecular identifiers (UMIs) greater than 75,000 per 

cell. Cells with percentage of mitochondrial gene expression greater than 50 was also removed. 

After filtering we obtained 28,529 cells. We regressed out the variability due to UMI distribution, 

mitochondrial gene expression and the difference between G2M and S phase scores based on the 

gene expression of cell cycle gene. Top 75 dimensions were used to generate final clusters using 

principal component analysis (PCA) and graph-based clustering. Top 100 genes in each cluster 

were identified in comparison with all other cells using the function – ‘FindAllMarkers’ in Seurat. 

Clusters were annotated using SingleR98 and literature mining. Differential gene expression 

analysis between cell population was done using Wilcoxon rank sum test in ‘FindMarkers’ 

function. The subset for the specific cell types were created from the clustering results using 

‘SubsetData’ function of Seurat. Conos71 was used to remove inter sample variations among 

progenitor subclusters.  

 

QC and clustering of snATAC-Seq 
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The primary analysis of snATC-Seq was done using Cell Ranger ATAC85 and then deconvoluted 

using Demuxlet. The secondary analysis was done using Signac86. For filtering low quality cells, 

we used the following criteria: Total number of fragments in peak region greater than 2,000 and 

less than 20,000, percentage of reads in peaks greater than 15, ratio of reads in blacklisted regions 

identified by ENCODE less than 0.05, nucleosome signal less than 4 and TSS enrichment greater 

than 2. After QC and filtering 15,601 cells remained. MACS2219 was then used to call peaks from 

snATAC-Seq data.  The peaks are then normalised using frequency-inverse document frequency 

(TF-IDF) normalization. The top variable features were then selected using FindTopFeatures 

function of Signac and using them dimension reduction was achieved through singular value 

decomposition. UMAP was then used for nonlinear dimension reduction and followed by graph-

based clustering. The peaks within clusters were then assigned to coding genes using GeneActivity 

function in Signac which in turn was used for annotating the clusters using scRNA-Seq cluster 

identities through Canonical Correlation Analysis (CCA) implemented in Seurat220. The 

overrepresented peaks in cluster of interest were identified using FindMarkers function. Motif 

representation among the peaks were then calculated using chromVAR221. 

 

Bulk RNA-Seq of adipocytes: 

In total of 0.5 to 3 million cells were re-suspended in 500 uL TRIzol Reagent and total RNA was 

extracted using the miRNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol. RNA 

library preparations were carried out on 500 ng of RNA with RNA integrity number (RIN)>7 

using the Illumina TruSeq Stranded Total RNA Sample preparation kit, according to 

manufacturer's protocol. Final libraries were analyzed on a Bioanalyzer and sequenced on the 

NovaSeq6000  
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RNA-Seq Data Analysis: 

Raw reads were trimmed for quality (phred33 ≥30) and length (n≥32), and Illumina adapters were 

clipped off using Trimmomatic v.0.35154. Filtered reads were then aligned to the GRCh38 human 

reference using STAR v.2.5.3a155. Raw read counts of genes were obtained using htseq-count 

v.0.6.0156. Differential gene expression analysis was done using DeSeq2 v.1.18.1157.  
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3.10 Main Tables and Figures 
 

Tables 

 

Table 1: Marker genes identified in differential expression analysis between vascular endothelial 

cells (EK1, EK2) and smooth muscle cells (SK1, SK2). The genes were identified using 

Wilcoxon rank sum test implemented in Seurat. 

      

Gene Name P value avg_log2FC Percentage 
of cells in 
cluster 
expressing 
the gene 

Percentage 
of cells in all 
other 
clusters 
expressing 
the gene 

Adj. P value 

TIE1 0 1.5165445 0.555 0.008 0 
PIK3R3 0 1.40791587 0.474 0.035 0 
NEXN 0 -1.2966169 0.035 0.455 0 
ADGRL4 0 2.62373681 0.783 0.025 0 
ADCY3 0 -1.3233146 0.053 0.495 0 
KDR 0 1.40585025 0.459 0.008 0 
ENG 0 1.81255118 0.669 0.136 0 
EGFL7 0 2.70219042 0.759 0.033 0 
TAGLN 0 -4.9109743 0.251 0.941 0 
CNN1 0 -1.2867982 0.006 0.363 0 
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Table 2: Marker genes identified in differential expression analysis between smooth muscle cell 

clusters SK1 and SK2. The genes were identified using Wilcoxon rank sum test implemented in 

Seurat. 

Gene Name P value avg_log2FC Percentage of 
cells in cluster 
expressing the 
gene 

Percentage of 
cells in all 
other clusters 
expressing the 
gene 

Adj. P 
value 

COL6A3 5.141E-204 1.92582687 0.64 0.086 1.291E-199 
STEAP4 8.606E-204 1.97812276 0.824 0.275 2.161E-199 
MARCKS 1.053E-180 1.66176045 0.74 0.256 2.644E-176 
CD36 1.941E-164 2.16740349 0.73 0.25 4.875E-160 
IGFBP2 2.458E-131 1.96970589 0.561 0.141 6.173E-127 
COL3A1 3.676E-103 1.89029266 0.729 0.481 9.231E-99 
IGFBP3 6.9324E-95 1.42641775 0.399 0.073 1.7408E-90 
COL1A2 1.1267E-88 1.33921631 0.783 0.623 2.8293E-84 
IGFBP7 4.7156E-72 0.53312316 0.988 0.996 1.1841E-67 
IGFBP4 2.3538E-70 0.86892075 0.798 0.648 5.9106E-66 
COL25A1 1.0199E-58 0.88824006 0.364 0.115 2.5611E-54 
IGFBP5 4.7251E-56 0.96289185 0.895 0.97 1.1865E-51 
IGFBP6 9.805E-52 1.03674476 0.539 0.334 2.4621E-47 
COL4A1 6.698E-48 1.06703237 0.621 0.457 1.6819E-43 
FABP4 1.877E-44 1.56698366 0.878 0.838 4.7133E-40 
COL5A3 4.6845E-44 0.87194862 0.377 0.165 1.1763E-39 
COL1A1 6.8833E-43 1.72635132 0.648 0.573 1.7285E-38 
COL6A2 9.7033E-42 0.70397306 0.847 0.857 2.4366E-37 
COL6A1 1.044E-37 0.76713222 0.735 0.712 2.6216E-33 
COLEC11 2.7555E-35 0.73688326 0.194 0.043 6.9193E-31 
LPL 9.4169E-24 0.60281939 0.15 0.039 2.3647E-19 
COL5A1 1.7158E-21 0.56700767 0.264 0.134 4.3085E-17 
COL4A2 2.2603E-19 0.64410821 0.597 0.552 5.6758E-15 
COL12A1 1.1254E-13 0.55828489 0.283 0.187 2.8259E-09 
COL21A1 2.7442E-13 0.41867115 0.193 0.103 6.891E-09 
COL14A1 2.1839E-08 0.4867296 0.594 0.651 0.0005484 
COL5A2 3.3963E-06 0.42483834 0.321 0.276 0.08528499 
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Table 3: Marker genes identified in differential expression analysis between cells from healthy 

weight and obese in EK1. The genes were identified using Wilcoxon rank sum test implemented 

in Seurat. 

Gene 
Name 

p_val avg_log2FC Percentage of 
cells in cluster 
expressing 
the gene 

Percentage of 
cells in all other 
clusters 
expressing the 
gene 

Adj. P value 

FABP4 1.0097E-59 1.18480781 0.96 0.805 2.5354E-55 
NNMT 1.2719E-51 1.62173999 0.65 0.288 3.1938E-47 
MT2A 2.1711E-48 1.81472053 0.915 0.863 5.4518E-44 
MT1M 6.4812E-45 2.56694069 0.603 0.298 1.6275E-40 
MT1X 8.2603E-42 2.4899569 0.683 0.469 2.0743E-37 
MT1A 3.4485E-35 2.86753148 0.512 0.245 8.6594E-31 
RBP7 5.0403E-28 0.7685901 0.83 0.695 1.2657E-23 
MT1E 5.3207E-28 1.845696 0.606 0.404 1.3361E-23 
LPL 3.3849E-27 1.61420539 0.419 0.156 8.4999E-23 
SMAD1 6.4518E-22 -0.5904665 0.202 0.404 1.6201E-17 
CD36 7.1059E-20 0.5379689 0.898 0.784 1.7844E-15 
KDR 6.6562E-18 -0.6605249 0.418 0.606 1.6714E-13 
TM4SF18 2.5935E-15 -0.5462767 0.395 0.565 6.5126E-11 
MAML2 1.7136E-14 -0.3460279 0.134 0.279 4.3029E-10 
DLL4 2.5548E-13 -0.4616037 0.237 0.406 6.4154E-09 
ADAM10 2.4519E-10 -0.3019825 0.24 0.385 6.1569E-06 
PPARG 1.0465E-09 0.65391322 0.423 0.3 2.6279E-05 
SMAD5 3.4303E-09 -0.3252063 0.271 0.411 8.6139E-05 

 

  



 111 

Figures 
 
 
            

 
Figure 1: Classification of cell population in SVF. Clustering of scRNA-Seq resulted in 24 

clusters (A) which are broadly classified as MSLN (MK) and CFD (CK) expressing progenitors, 

Immune cells (IK), Smooth muscle cells (SK) and Endothelial cells (EK) based on the marker 

genes (C and D).  The cell population differed in tissue concentration depending on disease 

status (B) 
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Figure 2: Cluster specific markers of vascular endothelium. (A)Smooth muscle cell cluster SK2 

shows expression of markers of brown adipogenesis. (B) Endothelial Cell cluster EK1 shows 

down regulation of genes involved in notch signaling pathway in obese. 
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Figure 3: Adipose resident immune cells. The sub-clustering of immune cells identified 17 

distinct clusters (A) which included lipid handling macrophages -IKS7 (B), Metallothionein rich 

T cells – IKS10 (C) and NK cells with anticancer properties (D).   

 



 114 

 

 

Figure 4: Clustering using snATAC-Seq. (A) Cell clustering using data from snATAC-Seq 

identified 17 clusters with cluster 1 annotated as MSLN expressing progenitors and clusters 0,4,6 

and 7 as CFD expressing progenitors. Differential peak calling between MSLN and CFD 

expressing clusters identified a regulatory region specific to cluster 1 which is found to be in the 

upstream of promoter of WT1 gene (B). 
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Figure 5: Subpopulation among progenitors using scRNA-Seq. 5 distinct clusters of progenitors 

were identified (A) with 2 MSLN expressing clusters and 5 CFD expressing clusters. The CK 

clusters were found to be in different stages of differentiation. 
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CHAPTER 4: General Discussion  

 

Development of single cell technologies revolutionized genomic understanding of biological 

samples. It helped to rediscover significant transcriptomic and epigenetic signatures which are 

otherwise diluted by the signals from the whole tissue. Through the two research chapters included 

in this thesis we attempted to catalogue and characterize different cell populations in adipose tissue 

across two different adipose tissue depots of the human body with a specific focus on the metabolic 

disease relevant intra-abdominal visceral compartment, VAT. We also attempted to understand 

variation among these cell population in response to disease phenotypes such as obesity and T2D. 

Our observations in these chapters that are linked to obesity can be broadly classified as alteration 

in three processes – adipocyte expansion, fatty acid handling and immune cell dysfunction. Our 

results suggest coordinated functional changes of multiple cell types that are involved in the 

development of obesity and associated metabolic disorders. 

 

4.1. Adipocyte Expansion in Obesity 

Adipocyte expansion is known to be play a significant role in obesity and hence numerous studies 

have focused on profiling adipocytes. Expansion of adipocyte volume is achieved either by 

increasing the adipocyte size by lipid accumulation or by recruiting new adipocytes16,222. In either 

case, excess adipocyte expansion leads to hypoxia and adipocyte dysfunction223. Efforts to identify 

genetic, epigenetic, transcriptomic and metabolomic signatures contributing to adipocyte 

dysfunction using bulk sequencing approaches found numerous markers associated with the 

disease status. However, imputing them to the cell type or stages of the cell differentiation is crucial 

to understand the biological relevance and to assess the therapeutic potential. Conventional 
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functional studies require considerable time and resources to attain this goal. Alternatively, single 

cell sequencing approach helped to solve this issue to a certain extent. For instance, studies have 

shown the presence of two distinct kinds of adipocytes in VAT224 and a subset of VAT adipocyte 

is developed from mesothelium – a different origin than the remaining SAT adipocytes. However 

apart from a few well studied genes such as WT1, MSLN and UPK3B, the progenitor subsets were 

not characterized in detail23. In addition, focus on VAT association in development of metabolic 

disorders also make characterization of these subsets crucial.  

 

Using scRNA-Seq we characterized the two subpopulations of VAT adipocytes in adults and 

children. The progenitor subsets are marked by either CFD or MSLN corresponding to their 

embryonic origin. snATAC-Seq identified distinct open chromatin regions and transcription factor 

motifs for corresponding CFD and MSLN expressing clusters further confirming the two subsets 

have distinct regulatory machineries. Our data suggests MSLN expressing adipocyte progenitors 

show protective function and the population of these progenitors tend to decrease with 

development of obesity early in development as shown by the trend across children and adults. We 

also found that SAT contains only CFD expressing progenitors and their population expands in 

VAT during obesity. Further, one of the CFD expressing cluster showed strong association to T2D 

status in adults, supporting our hypothesis that these progenitors contribute to pathogenic 

abdominal obesity. Accumulation of fat in SAT is considered as a metabolically healthy obesity225. 

However, further studies would be required to understand how the similar progenitors in two 

different depots have opposite pathological fate.  
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Acquiring intra-abdominal VAT samples requires invasive surgical procedures which makes it 

often not feasible to obtain across health and disease as well as across the lifespan. One of the main 

advantages of this study is the inclusion of human adipose tissue samples from multiple depots, 

SAT and VAT. We were able to acquire intra-abdominal VAT from both adults and children 

through collaboration with bariatric surgical teams performing procedures where tissue can be 

accessed without any harm to the patients and delivered to the laboratory in timely manner. In 

addition, we were also able to successfully access and profile tissue from healthy individuals 

through the collaborations with general surgeons. However, the availability of biospecimen 

depends on the specific surgical procedure. For instance, samples from lean and obese children for 

our study was obtained from patients undergoing hernia repair or bariatric surgery. Differences in 

technical procedure for sample procurement led to challenges in joint data analysis showing clear 

batch effects. Recent developments in computational methods to mitigate those variations are 

carefully considered and applied successfully to our dataset71,88,226. However, we were unable to 

identify regulatory adipocyte signatures identified by Schwalie et. al94. We suspect it might be due 

to difference in adipose tissue biology between human and rodents. Adipose tissue in rodents is 

distributed to distinct anatomical regions different from that of human adipose tissue depots which 

makes knowledge translation challenging227. Additionally, in Chapter 3, we tried to study VAT 

from two different regions of intra-abdominal area from obese patients. We found differences in 

concentration of cell population, gene expression and open chromatin regions of progenitor cell 

clusters between the two regions of same fat depot. Our results emphasize the importance of 

appropriate disease related tissue for fine resolution analysis using single cells.  
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4.2. Coordinated fatty acid handling  

Adipose tissue is well known for fatty acid storage and handling. VAT in particular gained interest 

because of high lipid turn over, direct access to liver through the portal vein and its association 

with metabolic syndromes228-231. Our data identified population of a macrophage and endothelial 

cells are involved in fatty acid handling. These cell types also exhibited preferential accumulation 

and function depending on the obesity phenotype with increased concentration in healthy samples. 

Involvement of cell types other than adipocytes indicated a coordinated network in maintaining 

energy homeostasis in the tissue. In-depth sequencing enabled us to characterize three different 

endothelial population in adipose tissue. Endothelial dysfunction in adipose tissue is known to 

cause metabolic disorders and are investigated for its therapeutic potential204. We show that the 

adipose resident microvascular endothelial cells are the subset implicated by obesity and metabolic 

disorders. Fatty acid handling by endothelial cells is managed by the cross talk with adipocytes 

and impairing angiogenesis by obesity induced hypoxia leads to dysfunction of endothelial cells232. 

We and others233 also identified presence of a group of lipid-associated macrophage which has a 

M2 phenotype. Inclusion of samples from healthy children helped us to successfully identify gene 

expression and open chromatin regions that differs in these cell clusters in response to obesity. We 

expect this rich catalogue of genomic signatures will help to understand the mechanisms leading 

to development of dysfunctional cell types. 

 

4.3. Dysfunctional Immune cells 

Immune cells showed an interesting pattern in our study. One of the CD8+ T cell cluster was 

identified to be dysfunctional with notable cell concentration in obese patients than healthy 

individuals. The cells are marked by expression of metallothionein genes MT1F, MT1X, MT2A, 
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MT1E and MT1G.  T cell exhaustion or loss of function is seen during chronic infection or invasive 

cancer234. Singer et. al. profiled the gene expression markers in these dysfunctional T cells and 

identified metallothionein gene137. Factors affecting T cell dysfunction during obesity is reviewed 

in detail by Aguilar et. al.235 According to them, T cell exhaustion is promoted by a variety of 

factors which include increased levels of adipokines, altered levels of metabolites, continuous T 

cell activation and macrophage polarization signals. As a result, T cells show decreased 

proliferation, cytokine expression and reduced proportion of naïve and regulatory T cells235. In 

addition, T cell mediated autoimmune activity linked to T2D have been documented previously236. 

In all dysfunctional T cells appears to be worth exploring to ascertain the therapeutic potential 

against systemic inflammation in obesity. Further, the importance of metallothionein genes in 

obesity go beyond the scope of T cell function. Metallothionein genes are involved in stress 

response and studies have shown that they are expressed on adipocytes during obesity237. Our 

results from chapter 3 also show that metallothionein gene expression is elevated in adipose 

resident micro vascular endothelial cells from obese patients. It is clear metallothionein genes are 

induced in multiple cell types during obesity. However, further studies are required to understand 

their adipose specific function in obesity and direction of effect in pathogenesis. 

 

4.4. Knowledge and Data Sharing 

In Chapter 2 we created the first of its kind adipose tissue cell atlas with comprehensive 

characterization of different cell population in SAT and VAT of adult obese individuals. We aimed 

to provide a single cell reference data set for the broader research community. These results were 

published in Nature Metabolism in December of 2019 and has already been cited by 28 other 

articles with more than 10,000 article access. In addition, we have submitted all the raw and 
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processed data in Gene Expression Omnibus (GEO) for unrestricted access. Visualization is a 

crucial step to understand underlying patterns in the data. UCSC (University of California, Santa 

Cruz) recently launched a web browser for single cell data visualization similar to the well adapted 

UCSC genome browser238. The data from Chapter 2 is in the process of integration to UCSC single 

cell browser (https://cells.ucsc.edu/). The dataset is also used as a reference resource for other in-

house and collaborative projects. One of such projects was aimed to characterize AKR1C2 which 

is involved in androgen metabolism.  Expression of AKR1C2 is found to be associated with body 

fat distribution. Using single cell data reference, we identified that the AKR1C2 expression was 

contributed by CFD expressing progenitors.198 

 

4.5. Challenges in single cell sequencing of adipocytes 

Though single cell technologies offer an abode of genomic information about the samples studied, 

it has its inherent challenges. One of the main issues we encounter when we study the adipose 

tissue is the cell size limitation from 10X genomics. Current compatibility of 10x droplet based 

system is less than 30 μm (https://kb.10xgenomics.com/hc/en-us/articles/218170543-What-is-the-

range-of-compatible-cell-sizes-). Reports indicate adipocytes may range from 20 to 300 μm in 

diameter239 which makes profiling of adipocytes challenging. Consequently, we focused on SVF 

at single cell resolution and adipocytes are characterized using bulk sequencing approaches. 

Further, recent developments in high throughput single nuclei RNA-Seq offers an alternative 

method for adipocyte profiling but limiting the RNA profile to nuclear transcripts240,241.  
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CHAPTER 5: Conclusions and Future Directions 

 

We have performed a comprehensive epigenetic and transcriptomic analysis of adipose tissue - 

dissecting its features to different cellular levels and tissue localizations. Our single cell dataset 

forms the first attempt to catalog depot-and obesity-specific adipose cellular population in the first-

of-its kind “adipose tissue cell atlas across development and disease”. Integrating transcriptomic 

and epigenetic data have allowed us to uncover gene expression signatures and molecular 

mechanisms regulating adipose tissue and obesity development.  

 

Our results show involvement of multiple cell types that are either induced or repressed 

functionally during obesity. Correlation in cell proportions and cell to cell communications show 

presence of cross talk between different cells. A comprehensive network analysis would be 

required to understand further about the interactions between cell types. Our current data comprise 

of snATAC-Seq and scRNA-Seq captured independently from each other. snATAC-Seq offers 

high granularity in cluster specification and provides insight into regulatory regions in the genome 

at single cell level. Even so, annotating snATAC-Seq data using predicted gene expression pattern 

is challenging especially when it comes to subpopulation of cell types. The future direction for this 

issue would be applying a “multiome” approach with joint analysis of RNA and open chromatin 

region from the same cells. Access to the regulatory regions will help to ascertain gene regulatory 

network that coordinates development of different obesity associated cell types. However, 

functional validation would be necessary to fully elucidate the role of key genomic signatures. 
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The research projects described in two chapters were focused on different stages of life either adult 

samples or from children using a cross-sectional study design. Longitudinal assessment over 

different time periods would be required to understand the impact of inherited or acquired cellular 

populations and transcriptomic signatures’ role in the development of obesity later in life. The 

continuation of enrollment of lean patients undergoing hernia repair early in life as described in 

Chapter 3 would allow for such assessment and to identify genomic signatures that are present in 

early childhood which facilitate obesity in later stages and to identify acquired obesity related 

changes during development.   
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Appendix A  

Published abstracts of projects in which the thesis author contributed significantly are included 

below. 

1. Ostinelli G, Vijay J, Vohl MC, Grundberg E, Tchernof A. AKR1C2 and AKR1C3 

expression in adipose tissue: Association with body fat distribution and regulatory variants. 

Mol Cell Endocrinol. 2021 May 1;527:111220. doi: 10.1016/j.mce.2021.111220.  

Abstract 

Background: Changes in androgen dynamics within adipose tissue have been proposed as 

modulators of body fat accumulation. In this context, AKR1C2 likely plays a significant 

role by inactivating 5α-dihydrotestosterone. 

Aim: To characterize AKR1C2 expression patterns across adipose depots and cell 

populations and to provide insight into the link with body fat distribution and genetic 

regulation. 

Methods: We used RNA sequencing data from severely obese patients to assess patterns 

of AKR1C2 and AKR1C3 expression in abdominal adipose tissue depots and cell fractions. 

We additionally used data from 856 women to assess AKR1C2 heritability and to link its 

expression in adipose tissue with body fat distribution. Further, we used public resources 

to study AKR1C2 genetic regulation as well as reference epigenome data for regulatory 

element profiling and functional interpretation of genetic data. 

Results: We found that mature adipocytes and adipocyte-committed adipocyte progenitor 

cells (APCs) had enriched expression of AKR1C2. We found adipose tissue AKR1C2 and 
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AKR1C3 expression to be significantly and positively associated with percentage trunk fat 

mass in women. We identified strong genetic regulation of AKR1C2 by rs28571848 and 

rs34477787 located on the binding sites of two nuclear transcription factors, namely 

retinoid acid-related orphan receptor alpha and the glucocorticoid receptor. 

Conclusion: We confirm the link between AKR1C2, adipogenic differentiation and adipose 

tissue distribution. We provide insight into genetic regulation of AKR1C2 by identifying 

regulatory variants mapping to binding sites for the glucocorticoid receptor and retinoid 

acid-related orphan receptor alpha which may in part mediate the effect of AKR1C2 

expression on body fat distribution. 

 

2. Chechi K, Vijay J, Voisine P, Mathieu P, Bossé Y, Tchernof A, Grundberg E, Richard D. 

UCP1 expression-associated gene signatures of human epicardial adipose tissue. JCI 

Insight. 2019 Apr 18;4(8):e123618. doi: 10.1172/jci.insight.123618.  

Abstract: 

Multiple reports of uncoupling protein 1 (UCP1) expression have established its presence 

in human epicardial adipose tissue (eAT). Its functional relevance to eAT, however, 

remains largely unknown. In a recent study, we reported that adrenergic stimulation of eAT 

was associated with downregulation of secreted proteins involved in oxidative stress-

related and immune-related pathways. Here, we explored the UCP1-associated features of 

human eAT using next-generation deep sequencing. Paired biopsies of eAT, mediastinal 

adipose tissue (mAT), and subcutaneous adipose tissue (sAT) obtained from cardiac 

surgery patients, with specific criteria of high and low expression of UCP1 in eAT, were 

subjected to RNA sequencing. Although eAT exhibited a depot-specific upregulation in 
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the immune-related pathways relative to mAT and sAT, high UCP1 expression in eAT was 

specifically associated with differential gene expression that functionally corresponded 

with downregulation in the production of reactive oxygen species and immune responses, 

including T cell homeostasis. Our data indicate that UCP1 and adaptive immunity share a 

reciprocal relationship at the whole-transcriptome level, thereby supporting a plausible role 

for UCP1 in maintaining tissue homeostasis in human eAT. 

 

3. Allum F, Hedman ÅK, Shao X, Cheung WA, Vijay J, Guénard F, Kwan T, Simon MM, 

Ge B, Moura C, Boulier E, Rönnblom L, Bernatsky S, Lathrop M, McCarthy MI, Deloukas 

P, Tchernof A, Pastinen T, Vohl MC, Grundberg E. Dissecting features of epigenetic 

variants underlying cardiometabolic risk using full-resolution epigenome profiling in 

regulatory elements. Nat Commun. 2019 Mar 14;10(1):1209. doi: 10.1038/s41467-019-

09184-z.  

Abstract: 

Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links 

to common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical 

population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing 

high-resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link 

methylation to cardiometabolic risk through associations to circulating plasma lipid levels 

and identify lipid-associated CpGs with unique localization patterns in regulatory elements. 

We show distinct features of tissue-specific versus tissue-independent lipid-linked 

regulatory regions by contrasting with parallel assessments in ~800 independent adipose 

tissue and blood samples from the general population. We follow-up on adipose-specific 
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regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via 

integrational studies. Overall, the comprehensive sequencing of regulatory element 

methylomes reveals a rich landscape of functional variants linked genetically as well as 

epigenetically to plasma lipid traits. 

 

4. Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu NA, Forgetta 

V, Kleinman A, Mohanty ST, Sergio CM, Quinn J, Nguyen-Yamamoto L, Luco AL, Vijay 

J, Simon MM, Pramatarova A, Medina-Gomez C, Trajanoska K, Ghirardello EJ, 

Butterfield NC, Curry KF, Leitch VD, Sparkes PC, Adoum AT, Mannan NS, Komla-Ebri 

DSK, Pollard AS, Dewhurst HF, Hassall TAD, Beltejar MG; 23andMe Research Team, 

Adams DJ, Vaillancourt SM, Kaptoge S, Baldock P, Cooper C, Reeve J, Ntzani EE, 

Evangelou E, Ohlsson C, Karasik D, Rivadeneira F, Kiel DP, Tobias JH, Gregson CL, 

Harvey NC, Grundberg E, Goltzman D, Adams DJ, Lelliott CJ, Hinds DA, Ackert-Bicknell 

CL, Hsu YH, Maurano MT, Croucher PI, Williams GR, Bassett JHD, Evans DM, Richards 

JB. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019 

Feb;51(2):258-266. doi: 10.1038/s41588-018-0302-x.  

Abstract: 

Osteoporosis is a common aging-related disease diagnosed primarily using bone mineral 

density (BMD). We assessed genetic determinants of BMD as estimated by heel 

quantitative ultrasound in 426,824 individuals, identifying 518 genome-wide significant 

loci (301 novel), explaining 20% of its variance. We identified 13 bone fracture loci, all 

associated with estimated BMD (eBMD), in ~1.2 million individuals. We then identified 

target genes enriched for genes known to influence bone density and strength (maximum 
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odds ratio (OR) = 58, P = 1 × 10-75) from cell-specific features, including chromatin 

conformation and accessible chromatin sites. We next performed rapid-throughput skeletal 

phenotyping of 126 knockout mice with disruptions in predicted target genes and found an 

increased abnormal skeletal phenotype frequency compared to 526 unselected lines (P < 

0.0001). In-depth analysis of one gene, DAAM2, showed a disproportionate decrease in 

bone strength relative to mineralization. This genetic atlas provides evidence linking 

associated SNPs to causal genes, offers new insight into osteoporosis pathophysiology, and 

highlights opportunities for drug development. 
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Appendix B:  

Supplementary Materials from Chapter 2 are included below 

 

Supplementary Figures 

 

Supplementary Figure 1: UMI, nGene, mitochondrial and sample distribution of SVF clusters 

from all 25 samples (a) Each cell is colored based on the result obtained by dividing total number 

of genes expressed by 1000 and then rounding to 0 decimals. (b) Cells are colored based on the 

result obtained by dividing total number of UMIs expressed by 1000 and then rounding to 0 
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decimals. (c) cell color shows percentage of mitochondrial gene expression. Group 0 shows cells 

with mitochondrial gene expression <=5%, group 1 represents 6% to 14% and group 2 

represents15% to 24% expression (d) Cells are colored based on the scRNAseq library 

 

 

Supplementary Figures 2: Metallothionein gene shows expression in SAT and VAT depots from 

adipose tissue, adipocyte, SVF and GTEx  

 

 

Supplementary Figures 3: T2D associated genes in MuTHER study from SP1 cluster shows 

strong correlation of effect sizes with METSIM Study  
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Supplementary Figures 4: Clustering results of CD34+ cell population from SVF of SAT and 

VAT of 2 individuals. 
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Supplementary Figures 5: Distribution of mitochondrial gene expression in relation to UMI and 

Gene distribution in (a) unfiltered initial data (b) All clusters (c) VPM clusters (d) VPC clusters 
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Supplementary Figure 6: Pearson correlation of UCP1 with MSLN (a), WT1(b), IRX3 (c) and 

SOD2 (d) using bulk RNA-Seq from visceral adipose tissue of 10 individuals. 
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Supplementary Figure 7: FACS Sorting strategies used for the representative sample included in 

the study. The cells are filtered for dead cells (b) , the single cells are identified (c) and sorted for 

CD34+ and CD34- (d) 
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Supplementary Tables 

Supplementary tables of chapter 2 are available for public access from the published article. The 

link to the article is https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025882/ 

 

Appendix C: Supplementary Materials from Chapter 3 

Supplementary Tables 

Supplementary Table 1: Top 20 motifs identified in CFD expressing clusters in comparison with 

MSLN expressing clusters 

motif obser
ved 

backgro
und 

percent.obs
erved 

percent.back
ground 

fold.enrich
ment 

pvalue motif.nam
e 

MA11
25.1 

569 10972 41.5631848 21.944 1.8940569
1 

2.54E-
61 

ZNF384 

MA11
23.2 

349 5229 25.4930606 10.458 2.4376611
8 

8.05E-
58 

TWIST1 

MA06
98.1 

389 6295 28.4149014 12.59 2.2569421
3 

1.37E-
56 

ZBTB18 

MA01
02.4 

308 4562 22.4981738 9.124 2.4658235
3 

2.52E-
51 

CEBPA 

MA16
37.1 

329 5174 24.0321402 10.348 2.3223946
9 

2.03E-
49 

EBF3 

MA08
36.2 

277 3942 20.2337473 7.884 2.5664316
7 

5.15E-
49 

CEBPD 

MA16
32.1 

306 4710 22.3520818 9.42 2.3728324
6 

1.72E-
47 

ATF2 

MA00
52.4 

430 8203 31.4097882 16.406 1.9145305
5 

4.08E-
44 

MEF2A 

MA00
91.1 

266 3925 19.4302411 7.85 2.4751899
4 

4.86E-
44 

TAL1::TCF3 

MA15
79.1 

383 6966 27.9766253 13.932 2.0080839
3 

3.52E-
43 

ZBTB26 

MA01
54.4 

329 5568 24.0321402 11.136 2.1580585
7 

1.30E-
42 

EBF1 

MA04
97.1 

418 8032 30.5332359 16.064 1.9007243
5 

7.33E-
42 

MEF2C 

MA11
09.1 

308 5166 22.4981738 10.332 2.1775236 2.39E-
40 

NEUROD1 
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MA01
52.1 

436 8681 31.8480643 17.362 1.8343545
8 

4.03E-
40 

NFATC2 

MA16
42.1 

303 5090 22.1329438 10.18 2.1741595 1.69E-
39 

NEUROG2(
var.2) 

MA01
44.2 

419 8252 30.606282 16.504 1.8544766
1 

2.26E-
39 

STAT3 

MA06
81.2 

320 5538 23.3747261 11.076 2.1103941
9 

2.27E-
39 

PHOX2B 

MA00
50.2 

657 15628 47.9912345 31.256 1.5354247 2.78E-
39 

IRF1 

MA16
36.1 

287 4760 20.9642075 9.52 2.2021226
3 

3.21E-
38 

CEBPG(var.
2) 

MA04
88.1 

296 5009 21.6216216 10.018 2.1582772
6 

6.62E-
38 

JUN 

 

 

Supplementary Table 2: Top 20 motifs identified in MSLN expressing clusters in comparison 

with CFD expressing clusters 

motif observ
ed 

backgro
und 

percent.obse
rved 

percent.backgr
ound 

fold.enrich
ment 

pval
ue 

motif.na
me 

MA152
2.1 

284 8583 36.1323155 17.166 2.10487682 7.41
E-38 

MAZ 

MA165
3.1 

299 9388 38.0407125 18.776 2.02602857 3.79
E-37 

ZNF148 

MA112
1.1 

205 5115 26.0814249 10.23 2.5495039 4.26
E-37 

TEAD2 

MA052
8.2 

308 9926 39.1857506 19.852 1.97389435 2.39
E-36 

ZNF263 

MA059
9.1 

309 10110 39.3129771 20.22 1.94426197 3.18
E-35 

KLF5 

MA080
9.2 

216 5961 27.480916 11.922 2.30505922 6.92
E-33 

TEAD4 

MA003
7.3 

144 3103 18.3206107 6.206 2.95208036 7.71
E-32 

GATA3 

MA009
0.3 

207 5795 26.3358779 11.59 2.27229317 1.66
E-30 

TEAD1 

MA080
8.1 

185 4898 23.5368957 9.796 2.40270474 6.83
E-30 

TEAD3 

MA164
3.1 

217 6309 27.6081425 12.618 2.18799671 7.34
E-30 

NFIB 
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MA048
2.2 

164 4075 20.8651399 8.15 2.56013987 2.66
E-29 

GATA4 

MA074
7.1 

207 5968 26.3358779 11.936 2.20642408 8.47
E-29 

SP8 

MA051
6.2 

211 6163 26.8447837 12.326 2.17789905 1.16
E-28 

SP2 

MA110
4.2 

165 4308 20.9923664 8.616 2.43643993 4.29
E-27 

GATA6 

MA014
9.1 

348 13353 44.2748092 26.706 1.65786 1.04
E-26 

EWSR1
-FLI1 

MA110
7.2 

275 9540 34.9872774 19.08 1.83371475 2.71
E-26 

KLF9 

MA156
4.1 

184 5219 23.4096692 10.438 2.24273512 4.01
E-26 

SP9 

MA003
6.3 

140 3556 17.8117048 7.112 2.50445794 6.28
E-24 

GATA2 

MA074
1.1 

214 6865 27.2264631 13.73 1.98299076 9.08
E-24 

KLF16 

MA003
9.4 

281 10228 35.7506361 20.456 1.7476846 1.11
E-23 

KLF4 

 

 

 

 

 

 

 

  



 159 

Appendix D: Copyright Permissions 

Chapter 2 is published in Nature Metabolism doi: 10.1038/s42255-019-0152-6. Copyright of the 

materials described in this chapter adheres to the policies of the journal. Chapter 3 is not published 

and hence the reuse of its content is restricted. 

 

 


