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A novel implementation of a Perfectly Matched Layer (PML) is presented for the truncation of Finite-Element Time-Domain
(FETD) meshes containing electrically complex materials, exhibiting any combination of linear dispersion, instantaneous nonlinearity,
and dispersive nonlinearity. Based on the complex coordinate stretching formulation of the PML, the presented technique yields an
artificial absorbing layer whose matching condition is independent of material parameters. Moreover, by virtue of only modifying
spatial derivatives, the incorporation of the PML into existing solvers for complex media is simple and straightforward. The resulting
Material Independent PML (MIPML) is incorporated into a nonlinear dispersive method for the vector wave equation, which leverages
the z-transform and Newton-Raphson techniques to yield an implementation free from recursive convolutions, auxiliary differential
equations, and linearizations. This permits the unprecedented truncation and attenuation of nonlinear phenomena, such as spatial
and temporal solitons, within the FETD method.

Index Terms—Dispersive Media, Finite-Element Methods, Nonlinear Media, Perfectly Matched Layers.

I. INTRODUCTION

DUE to limited computational resources, any problem
treated numerically must be solved over a finite domain.

However, when studying electromagnetic wave phenomena,
the required domain may be infinite in extent, or the fields of
interest may occur only within some small subset of a larger
domain. In either case, the ideal result is a numerical truncation
which mimics an infinite or much larger medium, suppressing
any reflections at the boundary, and leaving the solution on
the interior unchanged.

While many techniques have been devised to truncate
computational domains, arguably one of the most successful
has been that of Perfectly Matched Layers (PML). First
derived by Berenger [1], the PML is a region of artificial
attenuation which, as the name implies, is perfectly matched
to the incident medium, thereby suppressing reflections and
mimicking an infinite, or much larger, domain.

Berenger’s initial PML introduced artificial electric and
magnetic conductivities in such a way as to be reflectionless
to the incident medium, while attenuating propagating waves.
More specifically, in order to have the PML be reflectionless,
it was necessary for the electric and magnetic conductivities
to be related via a matching condition:

σE
ε

=
σH
µ

(1)

where σE and σH are the artificial electric and magnetic con-
ductivities, and ε and µ are the permittivity and permeability.
While simple in the case of linear media, the above matching
condition substantially complicates the implementation when

Manuscript received October 28th, 2018. Revised, accepted, published. Cor-
responding author: D. S. Abraham (email: david.abraham@mail.mcgill.ca).

Color version of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier (inserted by IEEE).

applied to electrically complex materials, in which the permit-
tivity is a function of time, field strength, or both.

Further investigation later revealed additional matching con-
ditions that can yield perfect transmission, and which do not
depend on ε and µ. Indeed, this became particularly evident
when Berenger’s original PML was reformulated in terms of
an anisotropic (uniaxial) medium [2], or as a complex coor-
dinate stretching [3], [4]. The resulting family of methods are
sometimes known as Material Independent PMLs (MIPML)
and are ideal for truncating nonlinear, dispersive, and even
anisotropic media.

Some of these MIPML formulations have already seen
application to nonlinear and dispersive Finite-Difference Time-
Domain (FDTD) simulations [5], [6]. However, they have
not been used for the Finite-Element Time-Domain (FETD)
method yet.

In this paper, a coordinate stretching-based MIPML formu-
lation for the FETD method will be derived and implemented
for the truncation of computational domains containing general
nonlinear dispersive media. The coordinate stretching ap-
proach is shown to yield a simpler more effective formulation
than a split-field or uniaxial PML implementation. Further-
more, by leveraging the nonlinear Newton-Raphson FETD
method, as well as the z-transform technique, the resulting
FETD MIPML scheme is accurate, stable, scalable, and free
of recursive convolutions, auxiliary differential equations, or
linearizations. Lastly, the method’s effectiveness is demon-
strated via the absorption of a temporal soliton propagating
in a dielectric slab waveguide.

II. ELECTRICALLY COMPLEX MEDIA

Electrically complex materials play a vital role in many
areas of science and technology, particularly in the field of
nonlinear optics. Here, the complex nonlinear and dispersive
properties of materials are often leveraged to facilitate or
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improve telecommunications infrastructure. As a result, the
ability to accurately simulate and characterize these materials
is paramount.

In the case of a dispersive medium, the permittivity is fre-
quency dependent, which translates to a convolution between
the permittivity and electric field in the time-domain. In the
nonlinear case, the permittivity is a function of the electric
field strength. These interactions are generally characterized
via the material’s polarization density vector, ~P , for which an
adequate model is often given by the following [7]:

~P = ε0χ
(1)(t) ∗ ~E + ε0χ

(3)(αE2 + (1− α)g(t) ∗ E2) ~E (2)

in which the susceptibility χ(1) models linear dispersion, χ(3)

an instantaneous Kerr and/or stimulated Raman nonlinearity
(with the α term controlling their relative strengths), and ∗
denoting convolution.

III. DERIVATION

The coordinate stretching formulation of the PML begins
by expressing Faraday’s and Ampère’s laws in time-harmonic
form within the PML medium as follows [3]:

∇B × ~E = −jω ~B (3)

∇D ×
1

µ
~B = jω ~D (4)

in which the curl operators have had their spatial derivatives
modified, or stretched, such that:

∂

∂ξ
7→ 1

sξ

∂

∂ξ
(5)

with:
sξ = 1 +

σξ
jω
. (6)

Note that the subscripts B and D in (3) and (4) allow
for different stretching factors to be applied to each field.
Combining (3) and (4) and converting to the time-domain
results in the following vector wave equation:

∇D ×
1

µ
∇B × ~E +

∂2

∂t2
(ε0 ~E + ~P ) = −∂

~J

∂t
(7)

where it must be noted that the curl operators are now time-
dependent and implicitly require convolution with ~E.

Following the procedure outlined for nonlinear dispersive
FETD in [8] and [9], a variational method can then be applied
to yield a semi-discrete system:

∂2

∂t2

(
εL ∗ [T̃ ]{e}+ [T̂ ]{e}

)
+ {Ŝ}+ {f} = 0 (8)

where εL is the linear part of (2), and the elemental matrices
and vectors are given by:

[T̃ ]ij =

∫
Ω

~W
(1)
i · ~W (1)

j dΩ (9)

[T̂ ]ij =

∫
Ω

ε0χ
(3)(αE2 + (1− α)g(t) ∗ E2) ~W

(1)
i · ~W (1)

j dΩ

(10)

{S̃}i =
∑
j

∫
Ω

1

µ
(∇D × ~W

(1)
i ) · (∇B × ~W

(1)
j ) ∗ {e}jdΩ

(11)

{f}i =

∫
Ω

∂ ~J

∂t
· ~W (1)

i dΩ (12)

In order to further simplify the {S̃} term it is assumed
that the PML conductivity σ in (6) is constant within each
element. Furthermore, given specific implementation details,
additional simplifications are possible by explicitly computing
the basis function curls. For example, in the results to follow,
linear Whitney 1-forms (edge elements) were used in two
dimensions, for which the {S̃} term simplifies considerably:

{S̃}i =
∑
j

p(t) ∗
(
lilj
4A

)
{e}j , p(t) ∗ [S]{e} (13)

in which li is the edge length associated with ~W
(1)
i , A is the

element area, and p(t) is defined as:

p(t) = F−1

{(
1

sDy
+

1

sDx

)(
1

sBy
+

1

sBx

)}
. (14)

where F−1(·) denotes the inverse Fourier transform. Note that
in a non-PML region, σ = 0, and equations (13) and (14)
reduce to the usual linear matrix-vector product.

While higher order or 3D basis functions will have more
complex expressions, it is in general possible to express them
as terms like (14) convolved with a matrix-vector product.
Combining equations (13) and (8), the main advantage of the
coordinate stretching formulation now becomes clear. Since
the PML has only affected the spatial derivatives (correspond-
ing to the [S] matrix), the temporal term which contains all
of the material complexity is untouched. As a result, the
PML can easily be incorporated into any existing method
for complex media, without altering the core structure or
functionality. This is in contrast to the traditional uniaxial
approach, in which a time-dependent tensor is introduced
within the temporal derivative [2]. The result is thus minimal
overhead as compared to the non-PML algorithm.

At this stage, a temporal discretization must be applied
to (8) in order to proceed. Here, the Newmark-β scheme
is adopted due to its linear unconditional stability. However,
equations (8), (10), and (13) contain three different con-
volutions, for which update equations must be derived. As
mentioned earlier, here the z-transform technique [10]–[12] is
adopted for its scalability and simplicity.

Given a convolution, such as that in equation (13):

{L}(t) , p(t) ∗ [S]{e} (15)

one can take the Laplace transform, which has two key
advantages. The first is that the convolution is converted
to a multiplication, and the second is that εL and p(t) are
generally expressible as the quotient of two polynomials in
the frequency-domain. The key step is to then apply a bilinear
transform, mapping from the s-domain to the discrete z-
domain:

s 7→ 2

∆t

1− z−1

1 + z−1
. (16)
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By isolating the {L} term, and leveraging the time shifting
property of the z-transform, the expression can be transformed
back to the time-domain, yielding an update equation for the
convolution:

{L}n = h0[S]{e}n + · · ·+ hp[S]{e}n−p−
q1{L}n−1 − · · · − qp{L}n−p. (17)

Rather than explicitly storing past field and convolution
values, a more efficient approach can be adopted in which
quantities are instead accumulated into a set of auxiliary
variables {Gα}n as the computation progresses:

{Gα}n = hα[S]{e}n − qα{L}n + {Gα+1}n−1 α < p (18)
{Gα}n = hα[S]{e}n − qα{L}n α = p (19)

{L}n = h0[S]{e}n + {G1}n−1 (20)

Hence, any convolution present in (8) can be replaced with an
expression of the form (20).

Combining this procedure with the aforementioned
Newmark-β method yields the following update equation for
the electric field:(

[K]n+1 +
∆t2

4
h0[S]

)
{e}n+1 =

2

(
[K]n − ∆t2

4
h0[S]

)
{e}n−

(
[K]n−1 +

∆t2

4
h0[S]

)
{e}n−1

− ({W1}n + 2{W1}n−1 + {W1}n−2)

− ∆t2

4
({G1}n + 2{G1}n−1 + {G1}n−2)

− ∆t2

4
({f}n+1 + 2{f}n + {f}n−1). (21)

where the {W} auxiliary variables are associated with the
linear dispersion, {G} with the PML convolution, and [K] =
a0[T̃ ] + [T̂ ]. Note that the convolution associated with the
dispersive Raman nonlinearity occurs within the matrix [K],
and that a0 is associated with the linear dispersion convolution.

The update equation in (21) is nonlinear due to the implicit
dependence of the [K] matrix on ~E. This problem can be
written of the form {F}({x}) = 0, and thus can make use of
a nonlinear solver such as Newton-Raphson:

{x}(k+1) = {x}(k) − [J ]−1{F}(k) (22)

where k is the iteration number and [J ] is the Jacobian matrix,
defined as:

[J ]ij =
∂{F}i
∂{x}j

. (23)

The Jacobian for the update equation in (21) was previously
derived for nonlinear dispersive problems in [8] and [9]. Luck-
ily, thanks to the use of coordinate stretching, the introduction
of a PML has not altered the update equation significantly,
and so [J ] remains largely unchanged:

[J ]ij = [K]ij +
∆t2

4
h0[S]ij+∫

Ω

1

En+1

∂εn+1

∂En+1
( ~W

(1)
i · ~En+1)( ~W

(1)
j · ~En+1)dΩ (24)

where in the present case:

∂εn+1

∂En+1
= 2ε0χ

(3)En+1(α+ (1− α)p0). (25)

where the p0 term is that associated with the auxiliary variables
arising from the nonlinear Raman convolution within the
integral in (10).

IV. RESULTS

In order to test the FETD MIPML implementation described
above, a test problem was devised in which a temporal soliton
propagates within a 2D dielectric slab waveguide. Here, the
presence of nonlinearity counteracts anomalous linear dis-
persion, yielding a pulse which propagates without changing
shape or being significantly distorted. Given the presence of
linear dispersion, instantaneous nonlinearity, and dispersive
nonlinearity, this represents a very general test case.

The waveguide’s rectangular domain measured 10 µm wide
and was composed of three dielectric layers. The center
dielectric measured 2 µm wide, with the remaining areas being
free space. The pulse was excited on the leftmost boundary
in the fundamental TM mode, with a modulated hyperbolic
secant envelope in time. The pulse envelope had a Full Width
at Half Maximum (FWHM) of approximately 52.7 fs and a
fundamental frequency of 50 THz. Approximately 6 periods
of the carrier wave were contained within the pulse.

As in [8], the linear dispersion was modeled as being
second-order Lorentz, with a resonant frequency of 30 THz,
damping factor of 2× 1011, and static/infinite susceptibilities
of 6.1 & 4.7, respectively. The nonlinear parameters were also
modeled, in part, by a Lorentz-type dispersion, with an optical
phonon period of 3.36×10−14 s, phonon lifetime of 1×10−13

s, nonlinear susceptibility of χ(3) = 1.1×10−18, and α = 0.7.
Within the PML region, the conductivity, or stretching, is

gradually turned on with the following profile, to help mini-
mize numerical reflections resulting from the discretization:

σD = σB = σmax

(
d

L

)4

(26)

where d is the distance into the PML region, L is the length of
the PML region, and σmax was set to 3×1014. However, since
the conductivity is assumed constant within each element,
the PML region was divided into 20 rectangular sub-regions,
yielding a piecewise-constant approximation to the profile in
(26). The PML solution was compared to a reference solution
obtained from an extended domain with PEC boundaries.

Fig. 1 shows a comparison of the y-component of both
signals as measured 10 grid points from the PML interface, in
the middle of the guide, with an average element side length of
≈ 0.1µm. The two signals are visually indistinguishable, with
very little variation or reflection demonstrated by the PML.

To better quantify the reflection error, the reflection coeffi-
cient was also computed as follows:

Γ(ω) = 20 log10

∣∣∣∣∣F(Eexy )−F(Epmly )

F(Eexy )

∣∣∣∣∣ (27)

in which Eexy is the extended solution, Epmly is the PML
solution, and F(·) denotes the Fourier transform.
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Fig. 1. Comparison of extended domain and MIPML electric fields as a
function of time, for a 20 µm thick PML.

The reflection coefficient so defined is plotted in Fig. 2
as a function of frequency and PML length. Moreover, the
normalized frequency spectrum of the incident pulse is also
plotted for comparison. For a 20 µm thick PML, reflection is
only -60 dB at the pulse’s fundamental frequency, representing
a reflection of only 0.1% of the incident wave, or 0.0001%
of the incident power. Over the remaining bandwidth of the
signal, the PML also performs well, with an average reflection
of -58.5 dB, and a peak reflection of -43.1 dB. While very little
spectral energy of the pulse is contained in the 30 - 35 THz
region (≈ 0.5%), it is worth noting that reflections in this area
increase substantially at all thicknesses due to the proximity of
the resonance frequency of the linear dispersive medium. This
is consistent with prior findings in FDTD implementations [6].

Lastly, it was found that using fewer piecewise-constant
slices to approximate (26) yielded higher reflections. For better
performance, the number of layers can be further increased to
yield a better adiabatic approximation [13].

V. CONCLUSION

In conclusion, an FETD implementation of a MIPML
has been presented for the truncation of numerical domains
containing electrically complex materials, including general
combinations of linear dispersion, instantaneous nonlinearity,
and dispersive nonlinearity.

By making use of the Newmark-β method, as well as
the z-transform, and a full nonlinear solver, the resulting
scheme is stable, scalable, accurate, and is free from recursive-
convolutions, auxiliary differential equations, and lineariza-
tions. Moreover, by leveraging the coordinate-stretching for-
mulation of the PML, the resulting algorithm requires minimal
overhead or modification to the underlying method.

The performance of the MIPML was demonstrated by
truncating a dielectric slab waveguide in two dimensions, in
which a temporal soliton was created. Good absorption was
found over the bandwidth of the incident pulse.

Given the large computational burden posed by nonlinear
FETD simulations, this represents an important tool not only
for emulating infinite domains, but also for reducing compu-
tation size, resources, and time.
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Fig. 2. Reflection coefficient vs frequency for the MIPML.
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