
1+1 National Library
of Canada

Bibliothèquû nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Welling;cn Street 395, rue Wellington
Ottawa.Ontano Qllawa (Ontario)
K1A ON4 K1A ON4

NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university whiGh granted the
degree.

Sorne pages may have indistinct
print especia!!y if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfHmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à .
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette mlcroforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



•
Analysis of the Use of

Semantic Trees in Automated Theorem
Proving

by

Mohammed A. Almulla

School of Computer Science
McGill University
February 10, 1995

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Computer Science

Copyright © 1994 by Mohammed Almulla



1+1 Nationallibrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellinglon Street
Ottawa. Ontario
K1AON4

395. rue Wellington
Ottawa (Onlario)
K1AQN4

Our /,/6 No/le r61~r(l(lC"

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LffiRARY OF CANADA TO
REPRODUCE, LOAN, DISTRmUTE O't
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BffiLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-05663-5

Canad~



•
Abstract

Semantic trees have served as a theoretica! tool for confirming the ùnsatisfia­

bility of clauses in first-order predicate logic, but it has seemed impractica! to

use them in practice. In this thesis we experimenta!ly investigated the practi­

cality of generating semantic trees for proofs of unsatisfiability. We considered

two ways of generating semantic trees. First, we looked at semantic trees gen­

erated using the canonica! enumeration of atoms from the Herbrand base of

the given clauses. Then, we considered semantic trees generated by selectively

choosing the atoms from the Herbrand base using an improved semantic tree

generator, AISTG. A comparison was made between the two approaches using

the theorems from the "Stickel Test Set". In underlying the practica!ity of

using semantic tree generators as mechanica! theorem proyers, another com­

parison W88 made between the AISTG and a resolution-refutation theorem

proyer "The Great Theorem Prover" .

i



•
\

Résumé

Les arbres sémantiques ont servi d'outils théoriques pour confirmer l'insatisfiabilité

des propositions logiques à prédicat du premier ordre. Cependant, il est con­

nue que leur utilisation n'est pas très pratique. Dans cette thèse, nous étudions

expérimentallement la question de la possibilité d'utiiiser la génération d'arbres

sémantiques afin de prouver l'insatisfiabilité des propositions logiques.

Nous avons ainsi considéré deux facons de générer des arbres sémantiques.

Dans un premier temps, nous nous sommes concentrés sur les arbres seman­

tiques qui ont été généres en utilisant l'énumeration canonique des atomes à

partir de la base de Herbrand de la proposition donnée.

Puis, dans un deuxi~me temps, nous avons considéré les arbres sémantiques

qui sont génerés en choisissant de manière sélective les atomes de la base

Herbrand. Une comparaison à été faite entre les deux approches en utilisant

les théorèmes de " l'ensemble de tests Stickel".

Enfin, pour souligner l'importance de la praticabilité de l'utilisation des

génerateurs d'arbres sémantiques en tant que théorèmes prouveurs, nous avons

comparé GAASl, avec la procédure de résolution-réfutation du" Grand Théorème

Prouveur" .

1Un Générateur Amelioré d'Arbres Sémantiques

ii



•
Statement of Originality

Although all work herein that is not otherwise cited represents an original and

distinct contribution to the study of semantic trees and their role in automated

theorem proving, Professor Monroe M. Newbom nonetheless deserve special

recognition. It is he who opened my eyes to the power of semantic trees when

he asked me the following question: "Can semantic trees efficiently prove

unsatisfiability?"

Another motive behind this recognition is due to the AISTG2 program,

which we implemented for the development of this research. Parts of this

program are based on The Great Theorem Proyer of Newborn [NewbornlJ.

Other parts of the program including the control strategies, the construction

of the semantic trees, and the extraction of resolution-refutation proofs from

the close<! semantic trees are the sole responsibility of the author.

2An Improved Semantic Tree Generator

iii



•
Acknowledgements

The pursuit of research requires the continued support of many people ann

establishments over a number of years. 1 gratefully acknowledge this ever­

lasting support and extend my deep appreciation to:

• My supervisor, Profes..."Or Monroe M. Newborn, to whom 1owe a sincere

thanks for continuous guidance and concern. His efforts certainiy have

gone far beyond the normal duties of a research supervisor.

• The government of Kuwait represented by his highness the Emir of

Kuwait, his Crown Prince, and Kuwait University, which granted me

the financial means to undertake graduate studies.

• My advisor at the Embassy of the State of Kuwait, Cultural Division,

Kuwait University office, Dr. Abdel-Rahim S. Abdussalam, for ail the

he!p and support he embraced me with in times of need.

• Azzedine Boukerche and John Kozlowski for their assistance with this

dissertation. Their technical expertise helped me to refine many of my

intuitions into concrete results.

Finally, any success that 1enjoy has always been a testament to my won­

derful family, in particular my parents. It is to my wife Fatima H. Bu-Shahri

and my two children, Jassem and Farah Almulla, that 1 dedicate this work

with all my love.

iv



•
Thesis Outline

This dissertation attempts a comprehensive treatment of semantic trees in au­

tomated theorem proving. Of course, semantic trees can be investigated from

a number of distinct perspectives, such as artificial intelligence, mathematics,

lin~uistics and cognitive science. This thesis adopts the first perspective, fa­

cusing on the role of semantic trees in the automation of theorem proving.

Since it is infeasible to incorporate everything, the thesis tries to provide a

careful balance between the depth and breadth of the presented material. An

important technical goal of our study is to provide sufficient information so

that the reader can comprehend and possibly implement most (if not all) of

the included algorithms. References are provided at the end of the disserta.tion

in case of a need for further exploration of relevant matters. The structure of

this thesis is divided into five chapters as described below.

Chapter 1: devoted to theory, methods, and applications of semantic

trees in automated theorem proving. The chapter begins by specifying the

objectives of this research. Next, it presents a survey of previous attempts at

using semantic trees to confirm the unsatisfiability of sets of clauses. Then, it

explores sorne linear Herbrand's proofprocedures. This is followed by a formal

definition of the terminology necessary for the reader to be familiar with the

subject on hand. Lastly, the chapter describes the set of theorems used for

measuring the performance of the semantic tree generators under investigation

in this study. Our goal in Chapter 1 is to provide both the background and

the motivation for our research.

v



• Chapter 2: presents semantic trees generated using the canonical enu­

meration of atoms from the Herbrand base. We will cali such trees canonical

semantic trees. The chapter begins with an extended inspection of the Her­

brand universe and of the Herbrand base of a set of clauses, accompanied by

examples. Next, the chapter introduces a system of using semantic trees to

praye the unsatisfiability of sets of clauses. The system includes building closed

semantic trees from given resolution-refutation proofs, buildiug canonical se­

mantic trees using Herbrand's procedure, and extracting resolution-refutation

proofs from closed semantie trees. Then, th" chapter compares the perfor­

mance of a canonieal semantic tree generator and The Great Theorem Proyer

on the Stickel Test Set. Our goal in Chapter 2 is to investigate the practicality

of generating semantic trees for proving the unsatisfiability of sets of clauses.

Chapter 3: suggests methods for improving the performance of semantic

tree generators as mechanical theorem proyers. The influence of these meth­

ods on a semantic tree generator is examined using the Stickel Test Set, and

the semantic tree generator is, thus, described as improved. The tables and

graphs appearing in this chapter illustrate this influence. Our goal in Chap­

ter 3 is to improve the practicality of generating semantic trees for proofs of

unsatisfiability.

Chapter 4: discusses the development and implementation of AI8TG: An

Improved 8emantic 7ree Genemtor, developed particularly for the purpose

of this study. The chapter is concerned with programming aspects of the

AISTG. It describes the structure, flow of control, modules and layouts of the

programj it also specifies the capabilities and limitations of the program. In

addition, a guided tour by the title "Using the AI8TG Progmm" is included in

Chapter 4. The chapter ends with a comparison made between the AISTG and

a resolution-refutation theorem proyer. Our goal in Chapter 4 is to appreciate

the complexity of the AISTG as a pragmatic semantic tree generator which is

capable of proving reasonably hard theorems.

vi



Chapter 5: discusses semantic tree generation as an alternative method

for proving the unsatisfiability of sets of clauses as opposed to resolution­

refutation. The chapter presents theorems for which more efficient proofs were

obtained by using semantic tree generatorsj this is in contrast to those provfs

obtained by resolution-refutation theorem proyers. Conve~ely, t.he chapter

demonstrates examples of theorems for which resolution-refutation proofs are

much more desirable. Our goal in Chapter .) is to flldlitaie and encourage both

the use of our AISTG program and the reliance on semantic tree generation

to assist in automated theorem proving.

Chapter 6: devoted to the conclusion of ihis investigation. First, this

chapter summarizes the findings of the previous chapters. Second, it makes

links between our research and (i) other related research areas, and (ii) open

research problems in automated theorem proving related to our work. These

links both occur in the form of offered suggestions for further improvements.

vii



Contents

Abstract

Résumé

Statement of Originality

Acknowledgements

Thesis Outline

Contents

List of Figures

List of Tables

Introduction

1.1 Problem Definition

1.2 History and Background

1.3 Terminology..........

1.3.1 Terms, Literais, and Clauses .

1.3.2 Substitution, Unification, and Resolution .

1.3.3 Resolvellts.... ..

1.3.4 Herbrand Semantics

1.3.5 Semantic Trees

1.4 The Stickel Test Set .

viii

i

ii

iii

iv

v

viii

xi

xiii

1

3

4

5

6

8

9

10

15

18



• Canonical Semantic Trees in Automated Theorem Proving 19

2.1 Growth Rate Analysis of the Herbrand Universe 20

2.2 Growth Rate Analysis of the Herbrand Base 21

2.3 Building Canonical Semantic Trees .. . . . 22

2.4 Proving Theorems Using Canonical Semantic Trees 26

2.5 The Stickel Test Set Experiment. . . . . . . . . . . 31

2.6 Obtaining Other Resolution-Refutation Proofs From a Given

Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35

Improving Semantic Tree Generators 37

3.1 Methods for Improving Semantic Tree Generators 37

3.2 Method 1: Filtering the Herbrand Base . . . . . . 38

3.3 Method Il: Control Strategies for Semantic Tree Generators 43

3.3.1 The Fewest-Literals Strategy . 45

3.3.2 The Set-of-Support Strategy . 48

3.3.3 The Unit-Preference Strategy 50

3.3.4 The Vine-Form Strategy . 52

3.3.5 The Linear-Form Strategy 53

3.3.6 Other Strategies. 54

3.4 Comparative Study . . . 55

3.5 Method III: Advice-taking and Knowledge Programming within

Semantic Tree Generators .. . . . . . . . . . . . . . . . . .. 57

The AISTG: An Improved Semantic Tree Generator 59

4.1 General Description of the AISTG Program . 60

4.2 Flow of Control in the AISTG Program . 63

4.3 Using the AISTG Program . . . . . . . 65

4.4 Interactiveness of the AISTG Program 67

4.5 Capabilities and Limitations of the AISTG Program . 69

4.5.1 Capabilities 69

4.5.2 Limitations 70

ix



• 4.6 AISTG vs The Great Theorem Prover . 70

Semantic Tree Generation vs Resolution·Refutation 74

5.1 Generating Semantic Trees as a Proving Method. . . . . . .. 75

5.2 When to Avoid Generating Semantic Trees for Proving Unsat-

isfiability. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 81

Conclusion 84

6.1 Concluding Remarks 84

6.2 Open Problems 86

Bibliography 88

Appendix A: Proving the Stickel Test Set using AISTG 98

Appendix B: Two Sample Runs of a Canonical Semantic Tree

Generator 103

Appendix C: Sample Runs of An Improved Semantic Tree Gen-

erator 114

x



•
List of Figures

2.1 A canonical semantic tree for SI' . 24

2.2 A canonical semantic tree for S2' . 25

2.3 Closed semantic trees for S3' 28

2.4 Closed semantic trees for S4' 29

2.5 A modified semantic tree for S4 after adding clauses R4

and R5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30

3.1 A closed semantic tree l' for S with two closed subtrees

TI & 1'2' . . . . . . . . . . . . . . . . . . . . . 39

3.2 Two closed semantic trees for the set SI' . 42

3.3 Testing Method 1 on the Stickel Test Set. 43

3.4 A closed semantic tree for Wos12 generated using the

fewest-literals strategy. . . . . . . . . . . . . . . . . . . .. 47

3.5 A closed semantic tree for S2 generated using the set­

of-support strategy. . . . . . . . . . . . . . . . . . . . . .. 49

3.6 A closed semantic tree for Wos3 generated using the

unit-preference strategy. . . . . . . . . . . . . . . . . . .. 50

3.7 A closed semantic tree for S4 generated using the linear-

form strategy. . . . . . . . . . . . . . . . . . . . . . . . . .. 54

3.8 A closed semantic tree for S4 generated using the fil­

tered linear-form strategy. . . . . . . . . . . . . . . . . .. 55

3.9 Comparing the effect of control strategies on semantic

tree generators. . . . . . . . . . . . . . . . . 57

4.1 Flow of control in the AISTG program. 64

xi



4.2 The control strategy menu. . .

4.3 The Herbrand base manipulation menu.

5.1 Semi-connected 4-vertices Graph Theorem.

5.2 Totally-connected 4-vertices Graph Theorem..

xii

66

68

77

78



List of Tables

2.1 The Great Theorem Prover vs Canonical Semantic Tree

Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 33

2.1 The Great Theorem Prover vs Canonical Semantic Tree

Generator. . . . . . . . . . . . . . . . . . . . 34

4.1 The Great Theorem Prover vs AISTG. . 71

4.1 The Great Theorem Proyer vs AISTG. . 72

5.1 Hard Research Theorems Proved Using Semantic Tree

Generators. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix A: Proving the Stickel Test Set using AISTG. . 98

xiii



The fundamental theorem of Herbrand has great significance in symbolic logic.

It is a base for most modem proof procedures [Nossuml, Loveland5~ including

the resolution principle of Robinson, the connection graph procedure of Kowal­

ski, the matrix reduction method of Prawitz, the model elimination procedure

of Loveland, and the compactness procedure of Nossum. It has aiso qualified

semantic tree generators as mechanical theorem proyers. According to this

theorem, in order to test whether a set S of clauses is unsatisfiable, one must

consider all interpretations over all possible domaîns. However, for most theo­

rems of any difficulty, it is hard to evaiuate all interpretations over ail possible

domaîns in order to establish unsatisfiability. It would be simpler to fix on

a special domaîn, such that the set S is unsatisfiable if and only if S is false

under all interpretations over this domaîn. Fortunately, there does exist such

a domaîn, and it is called the Herbmnd universe of S. Nonetheless, as the

Herbrand universe can possibly be infinite, interpretations over this domaîn

should be organized in some systematic way. This can easily be achieved by

using semantic trees [MannaI).

Aside from being a base for other proof procedures, Herbrand's theorem

1



• suggested a pragmatic refutation procedure best known as Herbrand's proce­

dure. That is, for a given unsatisfiable set S of clauses, if there is a mechanical

procedure that can successively generate sets S~, S;, ... of ground instances of

clauses in S and can successively test S~, S;, ... for unsatisfiability, then (as

guaranteed by Herbrand's theorem) this procedure can eventually reach an N

such that SN is unsatisfiable [Changl).

In spite of its simplicity, Herbrand's procedure has one major drawback;

it requires the generation of sets S~, S;, ... of ground instances of clauses.

For most cases, this sequence grows exponentially [Changl]. Consequently,

many researchers have agreed that semantic trees can be used to confirm the

unsatisliability of sets of clauses, but they have felt that they are impractical

for actually determining the unsatisfiability of those sets [Changl, Loveland2,

Mannal, Nilsson3).

In this thesis, we investigate semantic tree generators as mechanical theo­

rem proyers in both theory and practice. Not only do we identify the problems

causing their poor performance, but we also propose solutions to those prob­

lems. In addition, we develop the general theory of semantic trees, concen­

trating on those cases of semantic tree construction in which we hav~ found

improvements in performance of the semantic tree generators. In addition,

we present An Improved Semantic Tree Generator (AISTG) as a practical

theorem proyer for first-order predicate theorems.

In the remainder of this chapter, we bring to bear the potential role of

semantic trees in automated theorem proving. First, we define the problem

of generating semantic trees to prove the unsatisfiability of sets of clauses,

and state the objectives of this research. Next, we shed light on the basic

knowledge underlying this problem. Then, we identify and formally define the

terminology necessary. Finally, we close the chapter by a description of the set

of theorems used for testing the semantic tree generators under investigation

in this study.

2



1.1 Problem Definition

Traditionally, semantic trees have been used as a theoretical tool for confirming

the unsatisfiability of sets of clauses in propositional and first-order predicate

logic [Chang2, Hsiangl, Kowalski4, Slagle3) although it has seemed impractical

to use them for detecting the unsatisfiability of those sets [Changl, Loveland2,

Mannal, Nilsson3]. Our objectives in this thesis are not only to mellBure but

to improve their practicality. To do this, we implemented a semantic tree

generator and ran some tests with it. The first test generated semlUltic trees

using the canonical enumeration of atoms from the Herbrand base. Other tests

are due to methods proposed for improving the performance of the semantic

tree generator. The methods are:

1. Filtering the Herbrand base,

2. Selectively choosing atoms from the Herbrand base,

3. Incorporating advice-taking into generating semantic tree3.

It will be seen in the sequel that the first method occasionally speeds up

the construction of the semantic tree. The second method customizes the

semantic tree, by controlling the manner by which the Herbrand base atoms

participate in building the semantic tree. The last method is best justified by

the following remark [LiMinl):

The immediate benefit of machine learning would be to enable AI pro­
grams to improve their performance automatically over time. For e.o::­
ample, a chess program can improve its game plan againat its opponent
through playing. A robot can recognize a particular kind of object
more accurately through repeated presentation of the object image. At
a more fundamentallevel, a machine with a clearly demonatrated ability
to lelllu would anawer the question whether machines can exhibit true
intelligence. Without this capability, a computer system can not reason
beyond the limit of ita programmed intelligence. In fact, an entity can
hardly be called intelligent unIess it can learn.

Fu LiMin

3



In principle, these three methods a.ccommodate desirable properties which,

in tum, improved the performance of the semantic tree generator. That is, the

semantic tree generator proved larger and more difficult theorems in contrast

to the canonical semantic tree generator. Additionally, a comparison was made

between the performance of the improved semantic tree generator (AISTG)

and the performance of a resolution-refutation theorem proyer, The Great

Theorem ProIJer [Newboml]. It is by improving the pra.cticality of generating

semantic trees for proving theorems that we wish to introduce sema.:ltic tree

generators as pra.ctical theorem proyers.

1.2 History and Background

In June llth, 1930, J. Herbrand was granted his doctorate in mathematics

with highest honors at the École Normale Supérieure in Paris. In his thesis,

Herbrand presented a famous theorem later known as Herbrand'a fundGmental

theorem [Herbrandl]. This theorem had grown to become one of the bases in

symbolic logic nowadays. The use of Herbrand's fundamental theorem allowed

a reduction of first-order predicate logic tasks to truth table checkable proposi­

tionallogic tasks (in a perhaps infinite-ary logic). This theorem was originally

concerned with valid rather than unsatisfiable theorems, and was argued purely

synta.ctically. Later on a more semantic (i.e. model-theoretic) approa.ch was

employed, which greatly eased the complexity of argument [Mannal).

Based on Herbrand's fundamental theorem an apparently natural process

for checking tautologyhood by the name of Herbrand'a procedure had appeared.

Gilmore was one of the first researchers to implement Herbrand's procedure

on a computer in 1960 [Gilmorel]. Gilmore's program managed to prove a

few simple theorems, but it encountered difficulties with most other first-order

logic theorems. Careful studies of his program revealed that Gilmore's method

of testing for the unsatisfiability was inefficient [Changl). To overcome this in­

efficiency, Davis and Putnam [Putnaml) introduced a more efficient method for

testing the unsatisfiability of a set ofground clauses. Their method consisted of

4



• four mies, the principal one of which was to break a difficult and long theorem

into small and simple cases and then to prove the theorem by considering each

case separately. However, their effect was still not enough. Many theorems in

first-order predicate logic still could not be proved by computers in reasonable

arnounts of time. Other recognized attempts to use Herbrand's procedure in

automated theorem proving are due to [Kowalski4, Chang1, Hsiangl, Slagle3).

The difference in objectives or the incomplete success of these attempts is the

motivation for our research.

A major breakthrough was made by Robinson in 1965 when he introduced

the f'esolution principle [Robinson5). Proofprocedures based on the resolution

principle are much more efficient than are any of the earlier Herbrand proof

procedures. Since the introduction of the resolution principle, several refine­

ments have been suggested in attempts to further increase efficiency. Sorne

of these refinments are Semantic Resolution [Slagle3, Robinson6, Kowalski4],

Lock Resolution [Boyerl), Linear Resolution [Loveland3, Loveland4, Loveland5,

Luckharn1, Anderson1, Reiterl, Kowalski3), Unit Resolution [Wos5, Chang3],

and the Set-of-Support Strategy [Wos4].

From the discovery of Robinson's resolution principle up until now, a wide

gap has existed between the performs.nce of Herbrand-dependent proof pro­

cedures and resolution-dependent proof procedures. In this work, we bring

these two far ends to a closer range. Our aim behind this is to enlarge the

underestimated role of semantic trees in automated theorem proving.

1.3 Terminology

A clear exposition of the necessary preliminaries can be found in [Changl,

Fermuller1, Robinson3]. Nonetheless, in this section we provide formai defini­

tions for the basic notions of predicate logic, fundamental concepts in theorem

proving (such as substitution, unification, and resolution), Herbrand seman­

tics, and semantic trees. Additional terminology is introduced in later chapters

whenever this aida in the understanding of our definitions and proofs.

5



1.3.1 Terms, LiteraIs, and Clauses

Concerning the language of predicate calculus [Fermullerl], we assume that

there is an infinite supply of variable symbols, constant symbols, function

symbols and predicate symbols. Moreover, we assume that each function and

predicate symbol is associated with some fixed arity. We cali a function or a

predicate symbolunary if it is of arity 1, binary if it is of arity 2, and in general

n-ary if it is of arity n. A constant symbol is a function symbol of arity O.

In first-order predicate calculus, a statement is called a well-formed formula

(wff). A wff is interpreted as making a statement about some domain of

discourse [Newbornl]. The syntax of wffs usually requires:

Definition 1.3.1 Logical operators are: & [conjunction], 1 [disjunction], ~

[negation], => [implication], and <==> [if and only if].

Definition 1.3.2 Quantifiers are: 'V [universal quantifier] and 3 [existential

quantifier].

Definition 1.3.3: A tenn is defined recursively as follows:

1. Each variable and each constant is a term.

2. If t" ... , tn are terms and fis an n-ary function symbol, then f(tl, ... ,

tn ) is also a term.

If a term t is of the form f(t
"

, tn ) we cali it functional; the set of arguments

of t, args(t), is the set {tl, , tn }; fis called the leading function symbolof t.

Definition 1.3.4: If tl, , tn are terms and P denotes an n-ary predicate

symbol, then A = P(h, , tn ) is an atom; the set of arguments of A, args(A),

is the set {tl' ... , tn }; P is called the leading predicate symbol of t.

Definition 1.3.5: A literai is either an atom or an atom preceded by the

negation sign ll~".

Definition 1.3.6: A expression is either a term or a literal.

6



Definition 1.3.7 A well-formed formula (ri) is defined recursively as follows:

1. A literal is a ri.

2. If w is a ri, then so is the negation of w, -w.

3. If w and v are ris, then 50 are wlv, w & v, w => v, and w {==> V.

4. If w is a ri, then, for any variable x, 50 are 'r/x:w and 3x:w.

A statement in predicate calculus is a wjJ. A theorem is a set of wlfs some of

which are ax:.oms and the rest are the conclusion. Often, deciding what axioms

to use and deciding the exact wording of the axioms and the conclusion is the

most difficult part of the theorem-proving procedure INewbornl). Therefore,

some theorems proyers (including The Great Theorem Proyer) do not attempt

to find a proof of a theorem expressed as a set of ris. Instead, they first

compile the ris to a simpler form called clauses. Then, using these clauses as

input, they attempt to find a proof. An algorithm for converting wlfs to clause

form is given in [Newbornl, Nilsson2). In our work, we are going to consider

only formulas given in clause form. For those formulas which are given as

ris, we use the COMPILE procedure of The Great Theorem Proyer for

their conversion.

Definition 1.3.8: A clause is a finite disjunction of zero or more literaIs.

Definition 1.3.9: An expression or a clause is called ground if no variables

occur in it. We calI it constant free if no constants occur in it, and function

free if it does not contain function symbols.

The null clause, denoted by "l J", is a clause of zero literals. Throughout

this work when we speak of sets of clauses, we always mean finite sets of

clauses.

Definition 1.3.10: The term depth of a term t denoted as term.depth(t) is

defined by :

7



(a) If t is a variable or a constant, then term-depth(t) =O.

(b) If t = f(til ... , t n ), where f is an n-ary function symbol, then

term-depth(t) =1 + max { term-depth(tj) 1 1 :s; i :s; n }.

(c) The term depth of a literal L(til t2' ... , tn ), where L is an n-ary

predicate symbol, is defined as: term-deptL(L) =max { term-depth(tj)

Il :s; i :s; n }.

(d) The term depth of a clause C = LI 1 L2 1 ... 1 Ln is defined as:

term-depth(C) = max { term_depth(L;) 11 :s; i :s; n }.

(e) The term depth of a set S = { CI, C2, ... , Cn } is defined as:

term_depth(S) =max { term-depth(Ci) Il :s; i :s; n }.

Example 1: If LI = P(x,f(f(y))), L2 = Q(f(x)) and C := LI 1 -L2, then

term-depth(LI) =2, term-depth(L2) =1, term-depth(C) =max { 1,2 } =2.

1.3.2 Substitution, Unification, and Resolution

A short-term goal of this research is to prove theorems in propositional and

first-order predicate calculus by using semantic tree generators. A basic notion

in theorem proving which is required for achieving this goal is the concept of

substitution, for which we use the definitions given in [Chang1].

Definition 1.3.11: A substitutionis a finite set of the form {tl/vil t2/V2" .. ,tn/Vn},

where every Vi is a variable, every ti is a term different from Vi, and no two

elements in the Saille set have the Saille variable after the stroke symbol.

Definition 1.3.12: When til t2" .. ,tn are ground terms, the substitution is

called a ground substitution. The substitution that consists of no elements is

called the empty substitution.

Definition 1.3.13: Let 8 ={tl/Vil' .. ,tn/vn} be a substitution and E be an

expression. Then E8 is an expression obtained from E by replacing simulta­

neouslyeach occurrence of the variable Vi, for i = 1, ... , n, in E by the term

t;. E8 is called an instance of E.

8



• lt E be an expression and 0' a substitution. The application of 0' to E is

defined as fol1ows:

(a) If E is a variable, then Eu is u(E).

(b) If E is a constant, then Eu =E.

(c) Otherwise, E is of the fonn X(tl, ... , t n ), where X is an n-ary

function symbol or predicate symbol. In either case, Eu = X( tjU,

... , tnu).

(d) If L is a literai, then Lu is defined to be the application of 0' to the

atom ofL.

(e) If C is a clause, then Cu = {Eu IV' E E C }.

Definition 1.3.14: Let El and E2 be expressions, then El :S:. E2 - read: El

is more geneml than E2 - if and only if there exists a substitution 0' such that

ElU =E2 • Similarly, if C and D are clauses, C :S:. D if and only if there exists

a substitution 0' suc1l that Cu ç D. In this case we may say, in accordance

with the usual resolution terminology, that C subsumes D.

Definition 1.3.15: A set of expressions M is unifiable by a substitution 0'

if and only if Eju = Eju for ail E; and Ej E M. 0' is called the most geneml

unifier (mgu) of M if and only if for every other unifier {J of M: 0' :S:. {J.

1.3.3 Resolvents

For resolvents, we retain the original definition in [Robinson5], which combines

factorization and binary resolution.

Definition 1.3.16: A factor of a clause C is a clause Cu, where 0' is a mgu

of sorne C' ç C. In case the number of literais in Cu is less than the number

of literais in C, we cali the factor non·trivial.

Definition 1.3.17: If C and D are two clauses and M and N are literais of C

and D respectively, such that M U ....N is unifiable by the mgu 0', then clause

9



E = (C - M)u U (D - N)u is a binary resolventof C and D. The atom A of (M

U '"N)u is called the resolved atom.

1.3.4 Herbrand Semantics

For Herbrand semantics, we refer to the original terminology in [Herbrand2].

Definition 1.3.18: Let HUa be the set of all constants appearing in S. If no

constant appears in S, then HUa ={a}, where a is an arbitrary constant. For

i =1, 2, ... , let HUi be the union of HUi-l and the set of all terms of the form

f(tl,"" tn ) for all functions occurring in S, where each tj, for j =1,2, ... , n,

is a member of the set HUi_l . Each HUi is called the i-level constant set of S,

and HU"" is called the Herbmnd universe of S [Chang1).

Definition 1.3.19: Let HBa be the set of all ground literais of the form P(tl,

t2, ..., tn ) for all predicates in S, where each tj, for j = 1,2, ... ,n, is a member

of HUa. For i =1, 2, ... , define HBi to be the union of HBi_l and the set of

all ground literals of the form P(tll t2"" ,tn ) for all predicates occurring in

S, where each tit for j = 1,2, ... , n, is a member of the set HUi (the i-level

constant set). Each HB; is called the i-level predicate set, and HBoo is called

the Herbmnd base of S. Elements of the Herbrand base are called atoms.

Both the Herbrand universe and the Herbrand base of S are either finite

or countably infinite sets, and thus we can refer to the i-th element in either

set by an enumeration algorithm.

Definition 1.3.20: Arbitrarily, we order all functions appearing in the given

set of clauses with respect to their arity. The canonical enumemtion of ele­

ments from the Herbmnd universe, denoted by HU, is, then, a recursive enu­

meration [Stolll) of the terms from the Herbrand universe.

Definition 1.3.21: The canonical enumemtion of atoms from the Herbmnd

base, denoted by HB, is a recursive enumeration of all ground literais for all

predicates in S obtained by using the canonical enumeration of elements from

10



• the Herbrand universe.

Example 2: Consider the theorem Wos12 (from the Stickel Test Set [Sticke12J).

The symbols e and a are constants.

11



Axioms:

01. p(e,x,x)
03. "'p(x,y,z) l "'p(y,u,v) l "'p(z,u,w) 1 p(x,v,w)
05. "'p(x,y,z) l "'p(y,u,v) l ",p(x,v,w) 1 p(z,u,w)
07. "'r(x,y) 1 r(y,x)
09. "'p(x,y,z) l "'p(x,y,u) 1r(z,u)
11. "'p(z,x,u) 1 p(z,y,u) l "'r(x,y)
13. "'r(x,y) 1 r(f(z,x),f(z,y»
15. "'r(x,y) 1 r(g(x),g(y»
17. "'p(x,g(y),z) l ",o(x) l '" oey) 1o(z)
19. "'r(x,y) l ",o(x) 1oey)

02. p(g(x),x,e)
04. p(x,y,f(x,y»
06. r(x,x)
08. "'r(x,y) l "'r(y,z) 1r(x,z)
10. "'p(z,u,x) 1p(z,u,y) l "'r(x,y)
12. "'p(x,z,u) 1 p(y,z,u) l ",r(x,y)
14. "'r(x,y) 1 r(f(x,z),f(y,z»
16. p(x,e,x)
18. p(x,g(x),e)
20. o(a)

Negated Theorem:

21. ",o(e)

HU(Wos12) = { a, e, g(a), g(e), f(a,a,), f(a,e), f(e,a), f(e,e), g(g(a», g(g(e»,

g(f(a,a», g(f(a,e», g(f(e,a», g(f(e,e», f(a,g(a», f(a,g(e», f(a,f(a,a», f(a,f(a,e»,

f(a,f(e,a», f(a,f(e,e», f(e,g(a», f(e,g(e», f(e,f(a,a», f(e,f(a,e», f(e,f(e,a», f(e,f(e,e»,

f(g(a),a), ... }.

HB(Wos12) = { o(a), r(a,a), p(a,a,a), o(e), r(a,e), r(e,a), r(e,e), p(a,a,e),

p(a,e,a), p(a,e,e), p(e,a,a), p(e,a,e), p(e,e,a), p(e,e,e), o(g(a», r(a,g(a», r(e,g(a»,

r(g(a),a), r(g(a),e), r(g(a),g(a», p(a,a,g(a», p(a,e,g(a», p(a,g(a),a), p(a,g(a),e),

p(a,g(a),g(a», p(e,a,g(a», p(e,e,g(a», p(e,g(a),a), p(e,g(a),e), p(e,g(a),g(a»,

p(g(a),a,a), ... }.

Example 3: As a second example, consider Starkeyl03 (also from the Stickel

Test Set [StickeI2]). The symbols A and B are constants.

Axioms:

01. "'S(x,y) l ",M(z,x) 1 M(z,y)
02. S(x,y) 1 M(F(x,y),x)
03. S(x,y) l ",M(F(x,y),y)
04. S(x,y) l ",E(x,y)
05. S(y,x) l "'E(x,y)
06. "'S(x,y) l "'S(y,x) 1E(x,y)
07. "'M(u,z) 1 M(u,x) 1 M(u,y) l ",UN(x,y,z)
08. "'M(u,x) 1 M(u,z) l "'UN(x,y,z)
09. "'M(u,y) 1M(u,z) l ",UN(x,y,z)
10. M(G(x,y,z),z) 1 M(G(x,y,z),x) 1 M(G(x,y,z),y) 1 UN(x,y,z)

12



• 11. -M(G(x,y,z),x) 1-M(G(x,y,z),z) 1UN(x,y,z)
12. -M(G(x,y,z),y) 1-M(G(x,y,z),z) 1UN(x,y,z)
13. UN(A,A,B)

Negated Theorem:

14. -E(B,A)

HU(Starkey103) ={A, B, F(A,A), F(A,B), F(B,A), F(B,B), G(A,A,A), G(A,A,B),

G(A,B,A), G(A,B,B), G(B,A,A), G(B,A,B), G(B,B,A), G(B,B,B), F(A,F(A,A)),

F(A,F(A,B)), ... }.

HB(Starkey103) = { E(A,A), M(A,A), S(A,A), UN(A,A,A), E(A,B), E(B,A),

E(B,B), M(A,B), M(B,A), M(B,B), S(A,B), S(B,A), S(B,B), UN(A,A,B), UN(A,B,A),

UN(A,B,B), UN(B,A,A), UN(B,A,B), UN(B,B,A), UN(B,B,B), E(A,F(A,A)),

E(B,F(A,A)), E(F(A,A),A), E(F(A,A),B), E(F(A,A),F(A,A)), ... }.

From the construction of a Herbrand universe (and thus a Herbrand base)

of a set of clauses it can be seen that injiniteness of the universe (and thus

the base) is inevitable whenever a function symbol is introduced in one of the

clauses [Wang1).

Definition 1.3.22: An interpretation of S consists of a nonempty domain D

and of an assignment of "values" to each constant symbol, function symbol,

and predicate symbol occurring in S 88 follows:

1. To each constant, we assign an element in D.

2. To each n-ary function symbol, we assign a mapping from D" to D.

3. To each n-ary predicate symbol, we assign a mapping from D" to { TRUE,

FALSE }.

Baaed on an interpretation for S, a value of TRUE or FALSE can be

assigned to each atom of S, and in tum to each clause of S. A value of TRUE

is assigned to clause C if the disjunction of values of the atoms of C is TRUE.

Otherwise, a value of FALSE is assigned. He is assigned a value of TRUE,

we say the interpretation satisjies C.

13



The set S is said to be satisfiable if and only if there exists an interpretation

over the Herbrand universe for which ail clauses of S are assigned the value

TRUE. Such an interpretation is called a mode! for S.

Definition 1.3.23: The set S is said to be unsatisfiable if and only iffor every

pOBBible interpretation over the Herbrand universe there is at least one clause

that has the value FALSE.

To prove a theorem using the technique of proof by contradiction, it is

suflicient to show that S, the set consisting of the set ofaxioms and the negated

conclusion, is unsatisfiable.

Definition 1.3.24: A Herbrnnd interpretation for S, denoted by HI(S), is

a subset of the Herbrand base HB(S) for which the truth value TltUE is

assigned to ail atoms of HI(S) and the truth value FALSE is assigned to ail

atoms not in HI(S).

Herbrand's Theorem: A set S of clauses is unsatisfiable if and only if there

is a finite unsatisfiable set S'of ground instances of clauses of S.

ProoC: Suppose there is a finite unsatisfiable set S'of ground instances of

clauses in Si suppose further that l' is an interpretation of S'. The lifting

lemmas [Newboml) justifies extending the transformation of the set S' to the

more general set S. Thus, it is sare to assume that every interpretation 1of S

contains an interpretation l'of S'. Since every interpretation 1 of S contains

an interpretation l'of S', if l' falsifies S', then 1 must alBO falsify S'. However,

S' is falsified by every interpretation l'. Consequently, S' is falsified by every

interpretation 1 of S. Therefore, S is falsified by every interpretation of S.

Hence, S is unsatisfiable. To show the "only ir' statement, we establish the

equivalent contrap08itive statement: if every finite subset of S' is satisfiable,

then S is satisfiable. If every finite subset of S' is satisfiable, then S' itself

is satisfiable. Therefore S' has a ground model found by taking the TRUE

literais of any model of S'. A direct translation of this ground model to a

14



model for 5 shows that 5 is also satisfiable [Almullal). Q.E.D.

Definition 1.3.25: Herbrand's theorem suggested a procedure, known as

Herbrand's procedure, for proving the unsatisfiability of sets of clauses. For

a given set 5 of clauses, we can generate successively ground instances of the

clauses of 5 and test successively whether their conjunction is unsatisfiable.

By Herbrand's theorem, if 5 is unsatisfiable, the procedure will detect it after

a finite number of steps. Otherwise, the procedure might never terminate.

Definition 1.3.26: Atoms in the Herbrand base that neither they nor their

complements resolve with any clause in 5 are called use/ess atoms. Whereas,

atoms in the Herbrand base that either they or their complemeûts, but not

both, resolve with some clauses in 5 are called unnecessary atoms.

Both useless and unnecessary atoms are of no help in detecting the unsat­

isfiability of 5, and are unnecessary to use when growing semantic trees. A

Herbrand base of the set 5 with all useless and unnecessary atoms eliminated

is called a fi/tered Herbrand base. Moreover, a semantic tree generated from a

filtered Herbrand base is called a fi/tered semantic tree.

Examp!e 4: Consider the following theorem. H 5 = {P(x), ",P(a) 1 Q(f(a)),

"'Q(f(x))}, then HU(5) = {a, f(a), f(f(a)), ... }, and HB(5) = {P(a), Q(a),

P(f(a», Q(f(a)), P(f(f(a))), Q(f(f(a))), ... }. The atoms P(a) and ",P(a) can

be seen to resolve with the clauses of 5. Therefore, P(a) is neither useless nor

unnecessary. The atom Q(a) does not resolve with any clause in 5 nor does

its complement. Therefore, Q(a) is useless. Except for Q(f(a», the remaining

atoms in the Herbrand base are all unnecessary. Thua, the Fi/tered Herbrand

Base: FHB(5) = {P(a), Q(f(a))}.

1.3.5 Semantic Trees

The definition of a semantic tree for clauses in first-order predicate logic can

be found in [Robinson!, Kowalski3, Hayes!). In our presentation, we assign

15



clauses to the non-terminal nodes of the semantic tree (in addition to th eter­

minal node as others have done) in order to assist in obtaining a semantic tree

proof.

Definition 1.3.27: A semantic tree of a set of clauses is a downward grow­

ing binary tree. The branches of the tree are labelled with atoms from the

Herbrand base and their negation. Let the atoms from the Herbrand base be

ordered as hblt h~, ... , hbj , .... Anode N in a semantic tree is said to be at

depth j if and only if it is j nodes away from the root of the tree along some

path. Left branches leading to nodes at depth j are labelled with hbj ; right

branches are labelled with -hbj. Each node N is assigned a set of clauses as

follows:

1. If N is the root of the tree, assign all base clauses to it.

2. If N is not the root of the tree, then it has some parent M. The clauses

assigned to N depend both on the set A of clauses assigned to the nodes

on the path from the root node to M and on the Herbrand atom or

its negation - in either case denoted by literal L - labelling the branch

leading from M to N and is determine..-t as follows. For each clause C

in A, place in node N all resolvents of C and L and all resolvents of the

resolvents with L until no more resolvents are generated.

The mechanism of semantic trees permits insight into the process of es­

tablishing completeness for the first-order predicate proof procedures. It also

provides a direct link with the notion of resolution itself. Whether the Her­

brand base of an unsatisfiable set S of clauses is finite or countably infinite,

only a finite subset of it is necessary for constructing a closed semantic tree

(see Definition 1.3.30) for that set. Moreover, the order in which the atoms

appear in the enumeration of this subset dictates the size and shape of the

closed semantic trees.

Deftnitioa 1.3.28: A canonical .emantic tree is a semantic tree in which

16



the branches at level i are labelled with the i-th atom from the canonical

enumeration of atoms from the Herbrand base or its negation.

Different enumerations of atoms from the Herbrand base yield difFerent se­

mantic trees. One of these enumerations corresponds to the canonical semantic

tree.

Definition 1.3.29: Anode N in a semantic tree is called a fai/ure node if the

null clause is assigned to it.

A fallure node in a semantic tree is indicated by a solid node (.) when it

appears in the tree and is labelled with the number of the base clause C and

the indices of the literai La or literais La, Lb, ... of C that were resolved away

to yield a fallure. Other nodes on the path to N record where other literais of

C, if there were other literais, were resolved away.

Definition 1.3.30: li every path in a semantic tree beginning at the root

terminates at a fallure node, the tree is called a c/osed semantic tree and

contalns a finite number of nodes above the fallure nodes.

We now have a way of confirming the unsatisfiability of a set S of clauses;

the confirmation involves building a closed semantic tree for S. li S is unsatis­

fiable, then, by Herbrand's theorem, there is a finite subset K of the Herbrand

base such that every semantic tree T for K ie closed for S. However, deter­

mining the unsatisfiability of S by constantly generating semantic trees and

efficiently testing them for cl06ure has been considered awkward and imprac­

tical [Changl, Lovelandl, Mannal, Nilsson2).

Definition 1.3.31: A \/ine is a finite binary tree in which each node is either

a leaf or is immediately above some leaf. Anode N of a vine is a bottom-/eaf

if N is below every node of the vine which is not a leaf.

It should be noted that a vine which has more than one node has exactly

two bottom-leaves.

17



1.4 The Stickel Test Set

It is never an easy task to find a large number of theorems with suitable sc­

cessibility, variety, and difficulty. For the testing of semantic tree generators

investigated in this thesis we followed [StiekeI2] in using the set of theorems

appeared in the Wilson and Minlœr study (Wilson1). This set was later known

as the Stickel Test Set. Two other sets of theorems satisfying the abave con­

ditions are the seventy-five problems for testing automatic theorem proyers

[Pelletierl) and the theorems which appeared in the automated development

of Tarski's geometry [Quaife1], although for our purposes, the Stickel Test Set

seemed more suitable for its f1exibility, domain variety, and proof availability.

The original source of the Stickel Test Set is the Wilson and Minker study

in 1976 (Wilson1). They took theorems 1-9 from Reboh et al. [Rebah1),

theorems 10-19 from Michie et al. [Michie1), theorems 20-24 from Fleisig et al.

[Fleisig1), theorems 25-57 from Wos (W0s3], and theorems 58-84 from Starkey

and Lawrence [Starkey1]. This last set of theorems has been used to test

the Markgraf Karl Refutation Procedure connection-graph resolution theorem­

proving program [Karll). In 1988, Stiekel enlarged this set of theorems by

adding 9 theorems to it from [Chang1), and used the enlarged set to test his

Prolog Theorem Proyer [StickeI2). Letz et al. have also used the Stickel Test

Set to test their SETHEO theorem-proving program [Letz1).

In our study of semantic trees, we used the first 84 theorems of the Stickel

Test Set because they coyer a wide range of theorems of varying difliculty.

More importantly, they illustrate the need to dramatically prune the search

spsce (that is, the set of all possible ways of applying resolution to the base

clauses and all resolvents deduced), which make them suflicient for testing the

semantic tree generators.

18



Herbrand's fundamental theorem has many profound contributions in symbolic

logic. It was shown in Chapter 1 how Herbrand's theorem implied a refuta­

tion procedure ~ôr prôving theoretna in prop06itional and !lœt-order predicate

logie. hi thià diàpter, another cOlitrlbutlon made by lIerbrand'lI theoreln ià

iIlustrated. Thil theorem reveBled eotrê8pondetlèe between eemantic treee and

resolution-refutation proof trees, and between semantic tree generators and

resolution-refutation theorem proyers (Wang1]. In the Bequel, we demonstrate

this correspondence by showing that semantic tree generators are indeed equiv­

alent to their counterpart.

Resolution with merging is a complete deductive system for the first·

order predicate calculus and ià compatible with the set-of-support strategy

[Andrews1). The s-linear deductive system of Loveland (which is a restriction

on resolution) is complete and, as with merging, is compatible with the 8€t-of­

support strategy [Loveland4). The Ancestry Filtered Form (also called Linear

Form) is also a complete deductive system and is eompatible with the set-of­

support strategy [Luckham1). The compatibility of these deductive systems

refers to the correspondence between closed semantic trees and resolution-

19



• refutation proofs trees. The same closed semantic tree may be generated using

atoms obtained from two or more resolution-refutation proofs which, in tum,

are constructed by different, yet compatible, deductive systems.

Concentrating on semantic trees and their role in automated theorem prov­

ing, this chapter investigates the practicality of generating semantic trees for

proofs of unsatisfiability. The chapter begins with a close look at the Her­

brand universe and at the Herbrand base of a set of clauses. It underlines

the reason behind avoiding the use of semantic tree generators as mechanical

theorem proyers. Focusing on the growth rate of the Herbrand universe and of

the Herbrand base, the chapter presents mathematical formulas which refiect

this extremely rapid growth. In addition, the chapter presents a system for

using semantic trees in proving unsatisfiability of sets of clauses. The system

includes building canonical semantic trees by Herbrand's procedure, extract­

ing resolution-refutation proofs from closed semantic trees, and building closed

semantic trees from given resolution-refutation proofs. To achieve its primary

objective, the chapter ends with displaying the result of measuring and com­

paring the performance of a canonical semantic tree generator with The Great

Theorem Proyer on the Stickel Test Set.

2.1 Growth Rate Analysis of the Herbrand
Universe

The major combinatorial obstacle to efficiency for Herbrand-dependent se­

mantic tree generators is the enormous growth rates of the constant sets

and of the predicate sets (see definitions 1.3.18 and 1.3.19), and hence the

growth rates of the Herbrand universe and of the Herbrand base of a set of

clauses [RobinsonS]. They can be - and m08t often are - bath exponential

[Chang1, Hsiang1, Robinson1]. These growth rates were analyzed in some

detail in [Robinson7). Nonetheless, in estimating the efficiency of canonical

semantic tree generators as mechanical theorem proyers, we developed the

following formulas:

20



Let 1 HUi 1 denote the number of terms in HU j • Then,

1 HUo 1=nurnber of constants in the set S

k

1HUI 1=1HUo 1+ E nm *1HUo lm
m=l

and for i > 1,

k

1HUi 1= 1HUi-II + E nm * (1 HUi-1 lm -1 HUi_2 lm)
m=l

where nm is the number of rn-ary functions, and k is the maximum number of

arguments in any function.

Let us apply the above formulas to the two theorems given in Lxample 2

and Example 3 of Chapter 1.

Example 1: The number of constant symbols in the theorem Wos12 = 2, the

number of unary function symbols in Wos12 = 1 and the number of binary

function symbols in Wos12 =1. Therefore, 1HUo 1= 2, 1HUll =8, 1 HU2 1

=74, 1 HU3 1 =5552, ... etc.

Example 2: The number of constant symbols in Starkey103 =2, the number

of unary function symbols in Starkey103 = 0, the number of binary func­

tion symbols in Starkey103 = 1 and the number of 3-ary function symbols in

Starkey103 =1. Therefore, 1 HUo 1=2, 1HUll =14, 1HU2 1=2942, ... etc.

These values are used subsequent1y for estimating the growth rate of the

Herbrand base of these two theorems, as it will be seen in the next section.

2.2 Growth Rate Analysis of the Herbrand
Base

Let 1 HB j 1 denote the number of atoms in HB j • Then,

K

1HBo 1= E Nm *1HUo lm
m=1

K

1HBI 1= 1HBo 1+ E Nm *(\ HUI lm -1 HUo lm)
msl

21



• and for i> 1,

K

1HB; 1=1HBi- 1 1+~ Nm .. (1 HUi lm -1 HUi-1 lm)
m=l

where Nm is the number of rn-ary predicates, and K is the maximU!ll number

of arguments in any predicate.

For completeness purposes, we apply the above formulas to Wos12 and

Starkey103.

Examp1e 1:

The number of unary predicate symbols in Wos12 = 1, the number of binary

predicate symbols in Wos12 =1 and the number of 3-ary predicate symbols in

Wos12 = 1. Therefore, 1 HBu 1 = 14, 1 HB l 1 = 584, 1 HB2 1 = 410774, 1 HBa 1

= 1.71 xl011 , ••• etc.

Example 2:

There are no unary predicate symbols in Starkey103. The number of binary

predicate symbols in Starkey103 = 3 and the number of 3-ary predicate sym­

bols in Starkey103 = 1. Therefore, 1 HBu 1 = 20, 1 HB l 1 = 3332, 1 HB2 1 =

2.54 X lOlO, ••• etc.

2.3 Building Canonical Semantic Trees

Given some axioms and a negated conclusion, a base clause is either a member

of the axioms or a member of the clauses in the negated conclusion. Occasion­

ally, a given set of base clauses can be simplified prior to building its canonical

semantic tree. By simplifying, we mean to eliminate certain clauses from the

set and or to eliminate certain literais from the clauses. These simplifications

are suc1l that the simplified set of base clauses is unsatisfiable if and only if

the original set is unsatisfiable [Nilsson2]. Performing such simplifications may

optimize the canonical semantic tree by trimming redundant parts of the tree.

Simplifying the clauses is carried out by the following three procedures:

22



• Procedure 1 (Uncomplemented literals removal): If a base clause

C has a literai L that can not be resolved with any other literai in the

set of base clauses, then L can be eliminated from C. The justification

of this step is that L can not contribute to finding of a proof (provided

that one exists).

• Procedure II (Subsumed clauses removal): A clause in an unsatis­

fiable set of clauses which is subsumed (see Definition 1.3.14) by another

clause in the set can be eliminated without affecting the unsatisfiability

of the set [NewbornIJ. In case ofresolution-refutation, the elimination of

clauses subsumed by others frequently leads to substantial reduetions in

the number of resolutions that need to be performed for finding a refu­

tation [Nilsson2). This statement can be extended to justify performing

Procedure II prior to building a closed semantic tree for an unsatisfiable

set of clauses.

• Procedure III (Tautology clauses removal): A clause is a tautol­

ogy precisely when it contains a pair of oppositely signed but otherwise

identicalliterals. Such clauses can obviously be eliminated without los­

ing refutation completeness. The justification of this step is due to the

fact that any unsatisfiable set of clauses containing a tautology is still

unsatisfiable aCter removing the tautology, and conversely. Thus, clauses

such as P(f(a» 1 ......P(f(a» and P(x) 1 Q(y) 1 ......Q(y) may be eliminated.

Consider the following two examples for constructing canonical semantic

trees.

Example 3: Let SI be the following theorem:

Cl: P(x) 1 Q(y)

C2: P(a)

C3: Q(b)

In t,his case, the canonical enumeration of elements from the Herbrand universe

23



• is finite. HU(SI) ={a, b }. Accordingly, the canonical enumeration of atoms

from the Herbrand base is finite ane is ordered as follows: HB(SI) ={P(a),

Q(a), P(b), Q(b) }.

ca Cl ca Cl

Figure 2.1: A canonical semantic tree for SI'

The canonical semantic tree for the set SI is closed, finite and is shown in

Figure 2.1. Tracing down a path from the root node to a tip node (Le. anode

at the bottom of the tree), provides one Herbrand interpretation of the set 51

(see Definition 1.3.24). Thus, the Herbrand interpretation obtained by tracing

from the root node to the tip node marked 1 in Figure 2.1 is given by the set:

Ml = { P(a), NQ(a), NP(b), Q(b) }

Sucb a set is a model for SI. A model fails to satisfy a clause if there exists a

ground instance of the clause (using terms from Herbrand universe) having the

value FALSE, using the valuation specified by the model. Hence, the model

Ml fails to satisfy the clauses NP(a) and NQ(b). Similarly, the model M2

= {",P(a), ",Q(a), N~(:'). NQ(b) } fails to satisfy the clause P(x) 1 Q(y),

24



• since the ground instance P(a) 1 Q(b) has the value FALSE. We can eliminate

each of the 16 possible interpretations, in turn, to conclude that the set SI is

unsatisfiable.

Example 4: Let S2 be the fol1owing theorem:

~P(x) i Q(x)

P(f(y))

~Q(f(y))

Figure 2.2: A canonical semantic tree for 52'

The canonical enumeration of elements from the Herbrand universe of S2 is:

HU(S2) = {a, f(a), f(f(a)), f(f(f(a))), ... }. Accordingly, the canonical enu­

meration of atoms from the Herbrand base of S2 is: HB(S2) ={P(a), Q(a),

P(f(a), Q(f(a)), P(f(f(a))), . " }.

25



• If the Herbrand base of a set 8 of clauses is countably infinite, as it for the

above set 82 , then each complete Herbrand interpretation corresponds to an

infinite path in the semantic tree. Nevertheless, all semantic trees of 8 must

be closed by failure nodes, including the canonical semantic tree, if and only

if the set 8 is unsatisfiable. The part of the canonical semantic tree above and

including all failure nodes for the set 82 is shown in Figure 2.2.

2.4 Proving Theorems Using Canonical Semantic
Trees

Proof procedures can be efficient when they are used with knowledge and intel­

ligence. However, when they are used purely mechanically (Le. used without

any programmed intelligence to reduce the search overhead), they can be and

most often are inefiicient. Certain proofs, however, are well-adapted to me­

chanical use. Resolution-refutation is the best known sucb proof procedure;

semantic tree generation is another, though it has not had the intensive devel­

opment that resolution-refutation has. Our aim here is to present the latter

system in considerable detail, and to discuss its implementation. In this sec­

tion, an algorithm for extracting resolution-refutation proofs from closed se­

mantic trees is demonstrated. This algorithm will, then, be used to prove the

completeness of generating semantic trees as a method for proving theorems.

A resolution-refutation proof tree is a special case of a resolution-refutation

prao! graph. In a resolution-refutation proof tree, a node in the tree serves as

an input to only one other node, while in a resolution-refutation proof graph a

node may serve as an input to more than one node [Newbornl]. Constructing

a resolution-refutation proof graph of a theorem from the corresponding closed

semantic tree is done according to the following algorithm:

1. Consider two failure nodes NI and N2 that are siblings of node N and that

fail because of clauses Cl and C2, respectively. Let LIa, LIb, ... , LIn

denote the literais resolved &way in Cl and L2a, L2b, ... , L2m denote

26



• the literais resolved away in C2. If only one literai is resolved away in

each clause, say LIa and L2a respectively, fonn the binary resolvent R

= (CILla,C2L2a). Otherwise, if there is more than one literai resolved

away in Cl, say LIa, LIb, ... , LIn, first fonn a factor of Cl, say Cl',

using a substitution /JI that is a mgu of the literais LIa, LIb, ... , LIn;

similarly if there is more than one literai resolved away in C2, say L2a,

L2b, ... , L2m, fonn a factor of C2, say C2', using a substitution /J2 that

is a mgu of the literais L2a, L2b, ... , L2m. Let LIa' = { LIa 1 LIb 1

.•• 1 LIn }/J1 and L2a' = {L2a 1 L2b 1 ••• 1 L2m }/J2. Then form the

resolvent R = (C1'Lla',C2'L2a'). Each time this step is performed, one

new resolvent is added to the proof and possibly one or more factors are

added as weil.

2. Fonn a new semantic tree for the enlarged set of clauses including the

base clauses and ail resolvents created thusfar. This new semantic tree

will have at least one less node than did the previous semantic tree, failing

at ail the nodes that its predecessor did and failing at node N as weil due

to the new resolvent R added in 5tep (1). Often, the new resolvents will

cause nodes on the path to the failure nodes of the previous semantic

tree to fail in this new semantic tree. Eventually, a semantic tree will be

created with only a root node and that will he a failure node. The proof

will then be complete.

Example 5: Let 53 be the following set of base clauses:

Axioms:

1. P(x)

2. "'P(a) 1 Q(x)

Negated Theorem:

3. "'Q(f(x))

There are two tip nodes in the closed semantic tree of 53 appearing in

Figure 2.3 (a). Resolving them together gives R4 = (3a,2b) = ",P(a). The

27



FIrat _ ....., of prooI:
R4 • (38,211) • -P(a)

:10 2b

(a) Cloaad aamantlc trM for 53

Sacond ..aot_ of prooI:
R5. (48,1a)-[)

1.

(b) IIodlfled aamantlc trM for 53

Figure 2.3: Closed semantic trees for 83 0

semantic tree for the enlarged set of clauses is shown in Figure 2.3 ( b). The

null clause falls out: R5 = (4a,la) = [J. The resolution-refutation proof is

presented next.

4. (3a,2b) -P(a)

5. (4a,la) [1

Example 6: Let 5. be the following set of base clauses:

Axioms:

1. P(h(x,y),x) 1 Q(x,y)

2. -P(x,y) 1 Q(y,x)

Negated Theorem:

3. -Q(x,y)

There are two choices for the first step. Arbitrarily, form clause R4 =

(2a,la) = Q(x,y) 1 Q(x,h(x,y)) as shown in Figure 2.4 (a). Then, construct

the semantic tree for the modified set of clauses containing the three base

28



clauses and clause R4. Again, there are two choices for the second resolvent.

Arbitrarily, fonn clause R5 = (3a,4b) = Q(XS) as shown in Figure 2.4 (b).

Then, once again construct the semantic tree for the set of clauses containing

the first three base clauses and clauses R4 and RS. Lastly, form clause R6

= (3a,5a) = Il as shown in Figure 2.5. The resolution-refutation proof is

presented below.

, .... _afprool:
•• (20,101· Q(I,V) 1Q(I,h(I,V))

Il ta Il 1.

Sub-lIl1ur. la): CIONd ..mentie Ir.. for &4

__nafprool:

•• (......).Q(I,y)

Sub-lIl1ure (b): lIocIIlIacI _lie trM for ... aflar adcIlng clau.. 4

Figure 2.4: Closed semantic treea for 5•.

4. (2a,la) Q(x,y) 1 Q(x,h(x,y»

5. (3a,4b) Q(x,y)

29



6. (5a,3a) [ 1

_ ao

Figure 2.5: A modi1led semantic tree for 54 after adding clauses R4
and R5.

The above algorithm can be use<! in proving the completeness of generating

semantic trees for proving the unsatisfiability of sets of clauses.

Theorem 2.1: A fini te set S of clauses is unsatisfiable if and on/y if there is

a semantic tree deduction of the null clause [ J.

Proof: (==?) Suppose S is unsatisfiable. Then, by Herbrand's theorem there

exists a finite close<! semantic tree for S. H the close<! semantic tree is built

in such a way that (1) ail useless and unnecessary atoms are filtered, and (2)

every failure node in the tree is labeUed with th" ·:umber of the clause and

index of the literai resolved away, which the Herbrand interpretation failed to

satisfy, then a deduction of the nuU clause [ J can be obtained from the closed

semantic tree of S. Simply by repeatedly traversing the tree in a bottom-up

and left-right fashion, the base clauses whose numbers label the two failure

nodes sharing the same parent are resolvad, thereby enlarging S b~' adding the

resolvent to it. Eventually, a new semantic tree is built for the enlarged set S

with only one node (and that is the root node) which will be a failure node.

The deduction of [J is then obtained.

(<=) Conversely, suppose there is a semantic tree deduction of [ 1from S.

Let RI, R2, ... , RIt, for some positive integer k, he the resolvents obtained

30



• by resolving the base clauses whose numbers label the failure nodes in the

close<! semantic tree. Assume S is satisfiable. Then, there is a model M for S.

However, if a model satisfies two clauses Cl and C2, it must also satisfy any

resolv'!!nt of Cl and C2. Since M satisfies S, it must also satisfy Rl, R2, ... ,

Rk. But this a contradiction, because one of these resolvents is [). Therefore,

S must be unsatisfiable. Q.E.D.

2.5 The Stickel Test Set Experiment

The canonical semantic tree generator is a naive (i.e. purely mechanical) theo­

rem proyer. In this section we discUBB an experiment that is meant to analyze

the effectiveneBB of proving theorems using semantic trees. We investigate the

amount of search required from the canonica1 semantic tree generator to prove

a theorem, given an exact amount of search sufficient for the proof. The latter

is obtained from a resolution-refutation proof of that theorem.

The Great Theorem Proyer is a resolution-based theorem prover.It can

serve as the instructional material for a course in automated theorem proving

[Newboml). It uses two inference rules, binary resolution and binary fac­

toring, when attempting ta prove theorems. This proyer was used ior proving

research theorems such as those in the Stickel Test Set and Tarski's geome­

try. In addition, it was used as a resolution-based tool for testing the abstract

theories of COCOLOG [Cainesl).

Before attempting to construct closed semantic trees for the theorems in the

Stickel Test Set, we will examine resolution-refutation proofs of each theorem

in the set as found by The Great Theorem Proyer [Newborn2]. From the proof

of each theorem, we extract the set A of resolved atoms Ab A2, ••• , An. That

set is sufficient for constructing a closed semantic tree. The term depth of

A was determined from the smallest i such that ail resolved atoms that are

in A are in HBi, placing an upper bound on the depth of a closed canonical

semantic tree. The value of HBi-1 places a lower bound on this depth for the

set A. It should he pointed out that the proof to m06t theorems is not unique

31



and that the set of resolved atoms, in tum, is not unique, and thus while a

closed canonical semantic tree must exist with depth at m06t HB;, one may in

fact exist with depth less than HB;_l'

Example 7: Wos12 serves as a good example to show how the set of resolved

atoms are extracted from a proof, and how the minimal value of i can be

determined.

The proof of Wos12 is:

22: (2Ia,18d) ",",p(x,g(y),e) l ",",o(x) l ",",o(y)

23: (22a,17a) ",",o(x)

24: (23a,20a) [1
where [ 1denotes the null clause.

When resolving Clause 23 and Clause 20 to generate Clause 24, the resolved

atom is o(a). The constant a is substituted for x in Clause 23 to form 23':

"'"'o(a). When resolving Clause 22 and Clause 17 to give 23': ",",o(a), the

resolved atom is p(a,g(a),e). The constant a is substituted for x and y in

Clause 22 to form clause 22': "'"'p(a,g(a),e) l ",",o(a) l ",",o(a). When resolving

Clause 21 and Clause 18 to give Clause 22', the resolved atom is o(e). The three

resolved atoms o(a), o(e) and p(a,g(a),e) all have a term depth of l, and thus

a closed semantic tree of depth at most 1HB1 1=584 can be found. Further, 1

HBo 1=14 tells us that a depth of at least 14 levels of the canonical semantic

tree must be investigated before a closed semantic tree which corresponds to

this particular proof is generated.

Table 2.1 measures the performance of a canonical semantic tree generator

on the thecrems in the Stickel Test Set. This table presents the name of

each theorem (Column 1), the number of resolved atoms for each theorem

(Column 2), the smallest value of i sucb that i-level predicate set contains all

the resolved atoms (Column 3), the value of HB;_l (Column 4), and the value

of HB; (Column 5). It cau be sean that the depth of the semantic trees of

'The uterÎlk charader iD thil colulDD iDdicatee that the Bumber of geBerate<! resolveBts
ia greater than the oiae of the clauae databue.

32



Uslng The Great Theorem ProYer UsinK Canon. Sem. Troo Generator
Theorem Reso1ved ProoC Tlme Atoma'

Name Atoma i 1HB'-1 1 1HSII Found ln aecond. checked
SOlburst 16 2 1.06 le 10" 7.49 le 10" No 3900 66
S02short 8 2 8.29 le 10" 6.93 le 10" No 14560 97
S03prime 8 2 78 406 Yes 19800 187

S04hasparti 4 1 810 2.06 le 10" No 61 275
S05haspart2 7 2 2.06 le 10" 3.78 le 10" No 178 275

SOOances 6 0 0 6 Yes 1 6
S07NUMI 4 1 39 258 Yes 16810 174
SOSgroupl 3 2 125 5.31 le 10" No 11963 63
S09group2 10 0 0 64 Yes 21631 54

SIOewl 5 0 0 5 Yes 0 5
S11ew2 3 0 0 3 Yes 0 3
S12ew3 5 0 0 5 Yes 0 5
S13robl 8 2 8 SO Yes 56 41
S14rob2 10 0 0 64 Yes 9360 54

S15michie 3 2 64 5.06 le 10" Yes 26835 182
SI6qw 3 1 1 4 Yes 0 3

S17mqw 3 1 1 4 Yes 0 3
S18DBABHP 6 3 1.20 le 10" 7.28 le 10" No 18000 62
S19APABHP 18 4 5.50 le 100" 3.03 le 10" No 290 275

S20fieisigi 11 3 SO 1352 No 3405 275
S2Uleisig2 11 3 SO 1352 No 3501 275
S2211eisig3 13 2 738 9282 No 3720 70
S2311eisig4 8 2 1024 8.10 le 10" No 3060 42
S2411eisig5 8 2 1024 8.10 le 10" No 3420 42
S25W081 6 2 80 1.62 le 10" No 3948 95
S26Wos2 6 2 576 4.10 le 10" No 7200 70
S27W0s3 3 0 0 12 Yes 0 8
S28W0s4 5 2 155 7.06 le 10" Yes 1571 72
S29WosS 7 2 576 4.10 le 10" No 4500 101
S3OW086 8 1 80 1.44 le 10' No 7560 56
S31Wos7 6 1 36 3600 Yes 11528 74
S32WosS 6 2 576 4.10 le 10" No 7742 135
S33Wos9 7 1 ISO 4.41 le 10- No 7200 130
S34W0810 10 0 0 80 Yes 7140 70
S35W0811 8 1 ISO 4.41 le 10- No 12600 105
S36W0812 3 1 14 584 Yes 12 24
S37W0813 5 1 14 mo No 3600 103
S38W0814 5 1 14 584 Yes 13 30
S39W0815 10 2 1.44 le 10- 2.20 le 10" No 3600 lOS
S40W0816 6 1 14 mo Yes 6 24
S41W0817 6 1 39 6174 No 10265 134·
S42W0818 5 1 84 1.44 )( 10- No 7560 lOS

Table 2.1: The Great Theorem Proyer VI CanoWca1 Semantic Tree
GeDerator.

33



• U.lnlt The Great Theorem Proyer U.lng Canon. Sem. Tree Generator
Theorem RelOlved ProoC Tlme AtomaO

Name Atoma i 1HB;_l 1 1 HB; Found ln aecond. checked

S43W0819 7 1 155 2.19)( 1 ,. No 48408 168
S44W0820 16 1 155 2.19)( 1 ,. No 3060 100
S45W0821 9 2 3600 5.51 )( 10 No 3060 102
S46W0822 14 3 7.66)( 10" 2.35)( lU" No 2500 47"
S47Wo.23 5 1 275 4.35 )( 10· No 5659 71"
S48Wo.24 6 1 275 4.35 )( lU" No 5663 71"
S49Wo.25 6 1 1088 5.99)( 10· No 5659 71"
E50W0826 24 2 1.72)( ID" 2.22)( 10" No 18260 128
S51W0827 6 1 63 7.29 )( lU'" No 3780 48
S52W0828 9 1 275 3.35 )( ID" No 3652 58"
S53W0829 8 0 0 1088 No 1001 77
S54Woa3O 6 0 0 144 No 14400 90
S55W0a31 28 1 18 162 No 7560 69
S56W0a32 4 0 0 32 Yes 756 31
S57W0a33 16 1 32 288 Yes 43200 70
Starkey5 2 0 0 2 Yes 0 2

Starkey17 11 2 21 105 Yes 28800 69
Starkey23 6 2 512 4.05)( ID" No 28496 100
Starkey26 5 1 10 520 Ye. 0 21
Starkey28 7 4 2.45)( 10" 2.40 )( lU"· No 16786 275
Starkey29 7 2 441 7.83 )( 1D" No 16704 275
starkey35 6 1 16 256 No 1840 41"
Starkey36 12 1 150 4.41 )( 10' No 13911 171"
Starkey37 10 2 3600 5.51 )( 10' No 19633 78"
Starkey41 3 0 0 9 Yes 0 8
Starkey55 4 2 576 1.39)( lU" No 7200 245
Starkey65 7 2 9408 2.68)( 1D" No 2480 275
Starkey68 2 2 512 1.23 )( 1D" No 2754 275
Stvkey75 10 3 1.23 )( 1D" 6.87)( 10" No 1978 275
Starkey76 3 0 0 32 Yes 7 17
Starkey87 8 1 32 6272 No 4240 250

Starkey100 3 0 0 27 Yes 741 24
Starkey103 8 1 20 3332 No 26280 37
Starkey105 4 1 20 3332 Yes 43200 66
Starkey106 4 1 54 6.38 X lU'" No 7920 66
Starkey108 10 1 324 1.73)( 10' l'iD 12645 275
Starkey111 4 1 20 3332 Yes 27000 66
Starkey112 12 1 833 8.18)( 1D" No 1517 275
Starkey115 5 1 176 6.54)( lU" No 8640 120
Starkey116 8 1 200 3.79)( 1D" No 8640 130
Starkey118 12 1 1176 3.83 )( lU" No 1220 250
Starkey121 7 1 176 6.54 )( 10" No 7537 191

Table 2.1: The Great Theorem Prover vs Canonical Semantic Tree
GeDerator.

34



• these 46 theorems has an upper bound of at least 10000, and these are likely

to be the hard theorems.

A modified version of The Great Theorem Prover was programmed to

generate canonical semantic trees and it was given the Stickel Test Set for an

exercise. The program found closed canonical semantic trees for 29 of the 84

theorems. The test was carried out during May of 1994 at McGill University's

School of Computer Science using an IBM RS/6000· model350. The program

is approximately 8000 lines of C code, and is divided into two parts. The first

part generates the canonical enumeration of atoms from the Herbrand base.

The second part uses this enumeration of atoms to construct a semantic tree.

Columns 6-8 of Table 2.1 show the program's result on the Stickel Test Set.

They specify whether a closed semantic tree was obtained for each theorem

(Column 6), the execution time in seconds for the program to find a proof

or to stop a search (Column 7), and the number of atoms checked before a

proofwas found or before the program terminated its search (Column 8). The

program ceased searching if the number of resolvents on the path from the

root to some node in the semantic tree became greater than the size of the

clause database (in our case, the size of the database is 5000 clauses) or if

275 atoms have been used in building a semantic tree. These values may be

increased depending on the size of the memory of the computer.

2.6 Obtainillg Other Resolution-Refutation ­
Proofs From a Given Proof

Semantic trees can be used to obtain other proofs of unsatisfiability for a set

of clauses from a given resolution-refutation proof for that set. This may be

significant to artificial intelligence researchers, especially those who seek proofs

of various categories. For instance, short proofs versus long proofs or cheap

proofs versus expensive proofs (in terms of execution time and or computer's

memory requirements).

4A trademark or International Busin_ Machines Inc.

35



• In order to obtain other resolution-refutation proofs from a given one, it

is neceBllary to construct a closed semantic tree from the given proof. Once

a closed semantic tree has been constructed, a simple manipulation of atoms

labelling the branches of this semantic tree would provide a different closed

semantic tree. By 'manipulation of atoms' we mean adding, deleting andor

modifying some of these atoms. Other resolution-refutation proofs can be

obtained from the newly constructed closed semantic trees. In what fol1ows,

Pa.sca.l-like pseudocode for this procedure iB given.

Procedure ObtairLProofs(P : Resolution.Proof);

YBl
X,Y : Herbrand..Base.Bubset;

T : Semantic_Tree;

Q : Resolution.Proof;

Begin

X = Resolved..Atom_Set(P);

Fw: every valid manipulation of atoms in the set X D2

Begin

y = Set.Manipulation(X);

T = Construct-Semantic_7ree(Y);

Q= ExtracU'rooJ(T);

PrinU'rooJ(Q);

36



•

In the Stickel Test Set experiment of Chapter 2, we established that canonical

semantic trees are poor devices for proving theorems in first-order predicate

calculus. One of the primary objectives of this research is to improve the

practicality of generating semantic trees for proofs of unsatisfiability. The hope

is to improve the performance of semaotic tree generators, in the sense that

they can prove larger and more diflicult theorems than cao canonical semantic

tree generators. The Bequel suggests methods for achieving this objective.

3.1 Methods for Improving Semantic Tree ­
Generators

The performance of semantic tree generators can be improved in dilferent

ways, from which we have chosen to investigate three. In the first method, the

Herbrand base is jiltered by identification and elimination of useless and unnec­

essary atoms. In the second, atoms are selectively chosen from the Herbrand

base by following certain control strategies in order to construct semantic trees.

The elfect of these strategies on the performance of a semantic tree generator

37



• in producing proofs is examined using the Stiekel Test Set. A discussion of

their effectiveness on the outcome is presented in Section 5 of this chapter. The

third and last method ineorporates the use of an extemal human supervisor,

as might be desirable, to assist the generator building the semantie trees.

Only theoretical aspects of the three proposed methods are addressed in

this chapter. The actual implementation of these methods within a semantie

tree generator is discussed in the next chapter. Heneeforth, in this thesis a

semantic trec generator will be ealled improlJed if it uses one of these three

methods for generating its semantic trees. We close this ehapter with a eom­

parison made between a eanonieal semantic tree generator and an improved

semantic tree generator from the viewpoint of the number of theorems which

are proved from the Stiekel Test Set by each method.

3.2 Method 1: Filtering the Herbrand Base

It was noted earlier in Chapter 2 that the atoms of the Herbrand base deter­

mine the size and shape of the closed semantic trees of an unsatisfiable set of

clauses. A difliculty that often arises when generating a semantic tree is that

of using useless and unnecessary atoms from the Herbrand base. The use of

such atoms usually forces duplicate subtrees to appear in the semantic tree.

Consequently, one method for improving the performance of semantic tree gen­

erators is to fi/ter the Herbrand base, keeping in mind that using useless and

unnecessary atoms can be avoided at only a modest additional computational

expense. The fol1owing two theorems justify allowing the elimination of useless

and unneeessary atoms from the Herbrand base.

Theorem 3.1: If cp is an unnecessary atom in the Herbrand base of an un­

satisfiable set S of clauses such that a closed semantic tree for S is generated

from a finite subset A of the Herbrand base with cp E A , then another closed

semantic tree con be generated from the Bubset A' =AI{cp}.

Proof: Let cp be an unnecessary atom in the Herbrand base of an unsatisfiable

38



• set S of clauses. Suppose a closed semantic tree T is generated from a finite

subset A of the Herbrand base, with the atom cp labelling at least one of the

branches of T at a certain depth. Since the order of atoms in A does not affect

the fact that a closed semantic tree can be generated from the atoms of A, re­

order the atoms in A such that cp and '" cp label the two branches descending

from the root node of T as shown in Figure 3.1. Accordingly, re-construct the

closed semantic tree T from the atoms of the modified A.

Figure 3.1: A closed semantic tree T for S with two closed subtrees
TI & T2.

Since T is a closed semantic tree, the two subtrees TI and T2 of T must

be closed. Moreover, since cp is an unnecessary atom, by definition either it

or its complement but not both resolves with clauses in S. Without loss of

generality, assume that cp does not resolve with any clause in S. Then, the

closure of the left subtree TI does not depend on the atom CPi thus the branch

labelled by cp can be eliminated. Moreover, the presence of the atom '" cp

among those labelling the branches of the right subtree T 2 means that '" cp

is an uncomplemented literai, which subsequently can be eliminated without

alfecting the completeness of this proving method. Therefore, another closed

semantic tree for S can be generated from a finite subset A' of the Herbrand

base which is equal to the subset A / {cp}. Q.E.D.

39



• Theorem 3.2: If <p is a useless atom in the Herbrand base of an unsatisfiable

set S of clauses such that a closed semantic tree for S is generated from a finite

subset A of the Herbrand base with <p E A , then another closed semantic tree

can he generated from the subset A' =11./{<p}.

ProoC: Let <p be a useless atom in the Herbrand base of an unsatisfiable set

S of clauses. Assume that there exists a closed semantic tree for S with the

atom <p labelling at least one of its branches at a certain depth. Let A be a

finite subset of the Herbrand base oC S sucb that <p E A and that a closed

semantic tree can be generated using the members of A. As in Theorem 3.1,

re-order the atoms of A in sucb a way that <p and '" <p label the two branches

descending from the root node of the closed semantic tree. But recall that <p

is a useless atom, whicb means that neither it nor its complement resolve with

any of the clauses of S. Therefore, the closure of the semantic tree does not

depend on the atom <p or on its complement; thus the branches label1ed by <p

and "'<P can be eliminated. In other words, another closed semantic tree can

be generated from a finite subset A' of the Herbrand base whicb is equal to

the subset A / {<pl. Q.E.D.

The Filtering Procedure:

Given a Herbrand base (HB) oC a set oC clauses, the fol1owing is a Pascal­

like pseudocode Cor a function Filter that accepts HB as input and retums a

filtered version of it (FHB) as output:

Functjon Filter(HB : set-<>f..atoms) : set-<>f..atomsj

Ylu:
FHB : set-<>f..atoms;

X: atomj

EXIT : boolean;

Begin

FHB:= U;

40



• EXIT := false;

While ( Not Empty(HB) And Not EXIT ) D2

Begin

X := NexLEnumerated.Atom(HB);

if not Useless_Or_Unnecessary(X)~

FHB := FHB + [Xli

if Generate_Closed.Semantic_7ree(FHB)~

EXIT := truej

Emij

Filter := FHBj

The affect of filtering the canonical enumeration of atoms from the Her­

brand base of a set of clauses on the performance of a semantic tree generator

is best illustrated in the following example:

Example: Consider SI to be the following set of base clauses:

Axioms:

1. P(x)

2......P(a) 1 Q(f(a))

Negated Theorem:

3......Q(f(x))

The canonical enumeration of elements from the Herbrand universe of SI is:

HU(SI) = { a, f(a), f(f(a)), f(f(f(a))), ... }.

The canonical enumeration of atoms from the Herbrand base of SI is: HB(SI)

={P(a), Q(a), P(f(a)), Q(f(a)), P(f(f(a))), Q(f(f(a))), P(f(f(f(a)))), ... }.

A closed semantic tree for SI is shown in Figure 3.2 (a). Both P(a) and

.....p(à) resolve with some clauses in S. Therefore, the atom P(a) from the Her­

brand base is neither useless nor unnecessa.ry, whereas bath Q(a) and -Q(a)

do not resolve with any clause in S. Thus, Q(a) is useless and can be elim-

41



(a) AcloNd ..manue tr8Ia for 51

(b) A fillerld cloNd ..manUe tr8I for 51

Figure 3.2: Two closed semantic trees for the set Slo

inated from the Herbrand base. It can be seen in Figure 3.2 (a) how Q(a)

caused redundant parts to appear in the closed semantic tree. Except for the

atom Q(f(a)), all of the remaining atoms in the Herbrand base turned out to

be unnecessary. Consequently, in this example, the Filtered Herbrand Base

becomes FHB(Sl) ={P(a), Q(f(a)) }, and a filtered closed semantic tree for

the set Sl is shown in Figure 3.2 (b).

Unfortunately, it is not often the case that filtering the Herbrand base

reduces the number of atoms to he checked (by the generator) hefore a closed

semantic tree is generated, as was true in the previous example. In order to

investigate the effect of filtering the Herbrand base of a set of clauses on a

semantic tree generator, we performed another experiment using the theorems

42



• -.ofllllorlng .... , ...111'..... _ _ ......__

Figure 3.3: Testing Method 1 on the Sticlœl Test Set.

in the Stickel Test Set. This experiment compared the number of atoms filtered

from the Herbrand base of each theorem with the number of atoms sufticient for

proving that theorem. The graph in Figure 3.3 shows that these two quantities

are approximately equal to each other and are relatively small compared to the

number of Herbrand base atoms canonically enumerated up to and including

all atoms sufticient for generating a closed semantic tree for each theorem in

the Stickel Test Set.

3.3 Method II: Control Strategies for Semantic
Tree Generators

A control strategy for a proof procedure searches for a refutation by attempting

to grow a deduction tree by applying the inference rules selectively in a manner

that sharply increases the effectiveness orthe procedure [Lugerl). In general, a

control strategy for a refutation system is said to he complete if its use results

in a procedure that will eventually find a contradiction whenever one exists.

However, for artificial intelligence applications such 88 mechanical theorem

43



• proving, complete strategies are not as important as ones that find refutations

efficiently.

Efficient control strategies for theorem-proving programs fall naturally into

two classes: choice strategies and edit strategies. Choice strategies decide

the order in which the deduction tree is to be generated. More importantly,

they determine which part of the tree may be ignored (cut off) altogether.

Edit strategies, on the other hand, eliminate trivial and superfluous deductions

[Wos2). If history is a good teacher, powerful edit strategies are of far greater

value than are powerful choice strategies. The reason being that the former

offer a greater reward by directly addressing the potential of combinatoric

explosion and the latter address this obstacle only indirectly [Wosl].

Many efficient strategies for resolution-based procedures have been pro­

posed and implemented, such as the fewest literais, the set-of-support, the unit

preference, the vine form (also known as the linear-input form) and the linear

form strategies [Nilsson2]. In what follows, we propose control strategies for

semantic tree generators that are equivalent to those for resolution-dependent

proof procedures.

A control strategy for a semantic tree generator searches for a refutation

by attempting to grow a closed semantic tree from the atoms of the Herbrand

base; the decision about the order of atoms that are to be used in generating

the semantic tree is made irrevocably by the control strategy.

It is disconcerting that none of the research in tree searching techniques has

yielded improved search strategies for theorem proving. Searching for paths

in trees is not general enough to represent the searches needed in automatic

theorem proving [Kowalski3]. Control strategies for semantic tree generators

CM he developed in analogy to existing strategies for the resolution-refutation

methods which are well known. Our objective here is not to attempt to present

an exhaustive set of strategies or even the most sophisticated techniques for

proving theorems using semantic tree generators. Rathe\', we aim to bring to

the attention of the research community the existence of such control strate-

44



• gies, and to describe how they might be used in generating closed semantic

trees for unsatisfiable sets of clauses.

3.3.1 The Fewest-Literals Strategy

Our basic motivation for proposing this strategy is to decrease the number

of possible re5Olutions in play and hence to increase the efficiency of semantic

tree generators which depend exponentially upon the size of the corresponding

base clause set.

The fewest-literals strategy for resolution-refutation methods is one in

which one-literal clauses are chosen first for resolution, fol1owed by two-litera1s

clauses, then three-literals clauses and 50 on. In short, preference is given

to clauses with the fewest literais for resolution. The fewest-literals strategy

for semantic tree generators is - more or less - similar to that for re5Olution

methods. In this strategy, preference is given to those Herbrand base atoms

which fail to satisfy one-literai clauses, fo11owed by atoms that failed to satisfy

two-literals clauses, then by atoms that fail to satisfy three-literals clauses,

and 50 on.

The completeness of the fewest-literals strategy for semantic tree generators

is guaranteed as it is for re5Olution methods. The reason for this is that ail of

the given clauses will eventually be used if enough re50urces are given to the

semantic tree generators. By re5Ources, we mean execution time and computer

memory.

An algorithm for selectively choosing atoms from the Herbrand base using

the fewest-literal strategy for semantic tree generators is given below:

1. Initialize the Herbrand base list (HB) to Nil.

2. If the atoms in the HB falsify every clause in S, then exit. Otherwise go

to Step 3.

3. Select a ground literai L in S that is not already a member of HB. If no

such ground literai is found, go to Step 4. Resolve L with the clauses in

45



• S and add the resolvents rI, r2, ... to S. Cali this set of resolvents R.

lf one of the resolvents in R also resolves with L, add these resolvents

as weil, enlarging R until no clause in R resolves with L. [For example

for clause C =P(a,x) 1 P(a,y) 1 Q(x,y) in S and L =-P(a,b), add rl =
(Ca,L) =P(a,x) 1Q(b,x), r2 =(Cb,L) =P(a,x) 1Q(b,x), r3 =(Cab,L)

=Q(b,b).J Ifone of the resolvents in R is the null clause, then repeat the

just-above described procedure using -L in place of L. If no resolvent is

added for -L, then L is unnecessary. Otherwise, add L to HB. In either

case go to Step 2.

4. Select a literai L in S that has arguments with only one variable. If no

such literai is found, go to Step 5. Generate ground instances of L, with

the variable replaced in each instance by a constant from amongst the

constants appearing in S. Resolve each ground instance with the clauses

in S and add these resolvents to S. Cali this set of resolvents R2. If

one of the resolvents in R2 also resolves with the ground instance, add

these resolvents as weil, enlarging R2 until no clause in R2 resolves with

the ground instance. If one of the resolvents in R2 is the null clause,

then repeat the just-above described procedure using the negation of

the ground instance instead of the ground instance. If no resolvent is

added for the negation of the ground instance, then the ground instance

is unnecessary. OtÎlerwise, add the ground instance to HB. In either case

go to Step 2.

5. Select a literai L in S that has arguments with only two variables. If no

such ground literai is found, go to Step 6. Generate ground instances

of L, with the variables replaced in each instance by constants among

those appearing in S. Resolve each ground instance with the clauses in

S and add the resolvents to S. Cali this set of resolvents Ra. If one of

the resolvents in Ra also resolves with the ground instance, add these

resolvents as weil, enlarging Ra until no clause in Ra resolves with the

46



ground instance. If one of the resolvents in R3 is the null clause, then re­

peat the just-above described procedure using the negation of the ground

instance instead of the ground instance. If no resolvent is added for the

negation of the ground instance, then the ground instance is unnecessary.

Otherwise, add the ground instance to HB. In either case go to Step 2.

Figure 3.4: A closed semantic tree for W0812 generated using the
fewest-Uterals strategy.

6. Using the canonical enumeration of the Herbrand base, select an atom

47



• that is not a member of HB. Resolve it with the clauses in S. CalI this

set of resolvents R4. If one of the resolvents in R4 al80 resolves with the

atom, add these resolvents as wel1, enlarging R4 until no clause in R4

resolves with the atom. If one of the resolvents in R4 is the nul1 clause,

then repeat the just-above described procedure using the negation of the

atom instead of the atom. If no resolvent is added for the negation of

the atom, then the atom is unnecessary. Otherwise, add the atom to

HB. In either case go to Step 2.

Example 1: Continuing to work with Wos12, o(a) is the first ground literai

added to HB from clause 20 by Step 3. No closed semantic tree is generated

using only o(a). o(e) is the second ground literai added to HB from clause 21

by Step 3. No closed semantic tree is generated using the two elements of HB

and no more ground literais are available. Step 4 added p(e,e,e) and p(e,a,a)

by substituting e for x and then a for x in clause 1. AI80 added are p(g(e),e,e)

and p(g(a),a,e) by substituting e for x and then a for x in clause 2, likewise

r(e,e) and r(a,a) by substituting e for x and then a for x in clause 6, and finally

p(a,e,a) by substituting a for x in clause 16, and p(e,g(e),e) and p(a,g(a),e) by

substituting e for x and then a for x in clause 18. A closed semantic tree is

generated for Wos12 using the atoms in HB, and is shown in Figure 3.4.

3.3.2 The Set-of-Support Strategy

The set-of-support strategy is used to avoid generation of general lemmas,

when a more focused search often produces a proof far more quickly (Wos4).

The set-of-support strategy for re80lution-refutation methods is one in which

at least one parent of each re80lvent is selected from among the clauses of the

negated conclusion (these are base clauses other than the given axioms) or

from their descendants (i.e. the set-of-support). The set-of-support Herbmnd

base is one which includes atoms from the Herbrand base that re80lve with, or

have their complements resolve with, the clauses of the negated conclusion or

the clauses of their descendants. The set-of-support Herbrand base wil1 yield

48



• a closed semantic tree for a set of clauses if the set is unsatisliable. In this way,

the set-of-support strategy for semantic tree generators is complete. A closed

semantic tree for the set of clauses shown in Example 2 is generated from the

atoms of the set-of-support Herbrand base (denoted by SOSHB(S2)), and is

shown in Figure 3.5.

1. 2

Figure 3.5: A closed semantic tree for S2 generated using the set-of­
support strategy.

Example 2: Let S2 be the following set of clauses:

AxiomSi

1. -R(f(x))

2. P(x) 1 R(f(y))

3. -P(a) 1 Q(x)

Negated Theoremi

4. -Q(f(x))

HU(S2) ={a, f(a), f(f(a)), ... }.

HB(S2) ={P(a), Q(a), R(a), P(f(a)), Q(f(a)), R(f(a)), P(f(f(a))), Q(f(f(a))),

R(f(f(a))), P(f(f(f(a)))), Q(f(f(f(a)))), R(f(f(f(a)))), ... }.

49



• SOSHB(S2) ={Q(f(a)), P(a), R(f(a)), Q(f(f(a))), P(f(a)), R(f(f(a))), ... }.

3.3.3 The Unit-Preference Strategy

The unit-preference strategy for semantic tree generators is a modification of

the previously presented strategy. Here, instead of selecting atoms from the

Herbrand base that resolve with the clauses of the negated conclusion or their

descendents, we select, by preference, those atoms from the Herbrand base

that resolve with, or have their complement resolve with, single-literai clauses

alone (i.e. unit clauses). Obviously, if the selection of atoms is restricted

to those which resolve with unit clauses exclusively, then this strategy is not

complete. If, for example, the clauses of the set S do not contain unit clauses,

then this method stands defective.

Figure 3.6: A closed semantic tree for Wos3 generated using the unit­
preference strategy.

Example 3: Consider the theorem S27Wos3.thm (from the Stickel Test

Set). The symbols e and a are constants.

AxiowtH

50



• 01. P(e,x,x)
03. ~P(x,y,z) 1 ~P(y,u,v) 1 ~P(z,u,w) 1 P(x,v,w)
05. ~P(x,y,z) 1 ~P(y,u,v) 1 ~P(x,v,w) 1 P(z,u,w)
07. ~R(x,y) 1R(y,x)
09. ~P(x,y,z) 1~P(x,y,u) 1R(z,u)
11. ~P(z,x,u) 1 P(z,y,u) 1 ~R(x,y)

13. ~R(x,y) 1 R(f(z,x),f(z,y))
15. ~R(x,y) 1 R(g(x),g(y))
17. P(x,g(x),e)
19. P(x,a,x)

51

02. P(g(x),x,e)
04. P(x,y,f(x,y))
06. R(x,x)
08. ~R(y,x) 1~R(y,z) 1R(x,z)
10. ~P(z,u,x) 1 P(z,u,y) 1 ~R(x,y)

12. ~P(x,z,u) 1 P(y,z,u) 1 ~R(x,y)

14. ~R(x,y) 1R(f(x,z),f(y,z))
16. P(x,e,x)
18. P(a,x,x)



Negated Theorem:

20. -R(e,a)

HU(Wos3) = {a, e, g(a), g(e), f(a,a), f(a,e), f(e,a), f(e,e), g(g(a)), g(g(e)),

g(f(a,a)), ... }.

HB(Wos3) = { R(a,a), P(a,a,a), R(a,e), R(e,a), R(e,e), P(a,a,e), P(a,e,a),

P(a,e,e), P(e,a,a), P(e,a,e), P(e,e,a), P(e,e,e), R(a,g(a)), R(a,g(e)), ... }.

UPHB(Wos3) = { R(e,a), R(a,e), P(e,a,e), P(a,a,a), P(e,a,a), ... }.

The closed semantic tree generated for Wos3 using this strategy is shown

in Figure 3.6.

3.3.4 The Vine-Form Strategy

In the vine-form strategy (see Definition 1.3.31) for resolution-refutation meth­

ods, each resolvent has at least one of its parents belonging to the given axioms

(these are base clauses other than the negated conclusion). The lIine Herbrnnd

base is, thus, defined to be those atoms from the Herbrand base that resolve

with, or have their complement resolve with, the clauses of the given axioms.

Like the resolution-refutation vine-form strategy, the vine-form strategy for

semantic tree generators is not complete. In other words, the vine Herbrand

base may not contain a sufficient number of atoms from the Herbrand base to

generate a closed semantic tree. Example 4 demonstrates this facto

Example 4: Let Sa be th ~ following set of clauses:

Axiome;

1. ""R(f(x))

2. P(x) 1 R(f(y))

3. ""P(a) 1 Q(x)

Negated Theorem:

4. ""Q(f(x)) 1 D(x)

5. ""D(x)

HU(Sa) ={a, f(a), f(f(a)), f(f(f(a))), ... }.

52



• HB(S3) = {D(a), P(a), Q(a), R(a), D(f(a)), P(f(a)), Q(f(a)), R(f(a)), D(f(f(a))),

P(f(f(a))), Q(f(f(a))), R(f(f(a))), D(f(f(f(a)))) P(f(f(f(a)))), Q(f(f(f(a)))), ... }.

VHB(S3) = { P(a), Q(a), P(f(a)), Q(f(a)), R(f(a)), P(f(f(a))), Q(f(f(a))),

R(f(f(a))), ... }.

It can be seen in the above example that the vine Herbrand base of the

set S3 does not contain any atom that resolves with the literai "Dx" in Clause

4 which, in turn, does not appear in the given axioms. Therefore, no closed

semantic tree can be generated for S3 using this strategy.

3.3.5 The Linear-Form Strategy

The linear-form strategy for resolution-refutation methods is one in which

each resolvent has a parent that is either a member of the given axioms or

is an ancestor of its other parent. Similarly, the linear Herbmnd base ls one

which contains atoms from the Herbrand base that resolve with, or have their

complements resolve with, the given axioms or their descendents. The vine­

form strategy f Jr semantic tree generators is a special case of the linear-form

strategy presented here. One may note that the difference between the vine

and the linear Herbrand base consists of those atoms in the linear Herbrand

base that resolve with, or have their complements resolve with, clauses which

descend from the given axioms. However, unlike the vine-form strategy, the

linear·form strategy for oemantic tree generators is complete as is true for

resolution-refutation methods, and the atoms in the linear Herbrand base may

yield a closed semantic tree for an unsatisfiable set of clauses. Example 5

illustrates the mechanization of this strategy.

Example 5: Let S. be the fol1owing set of clauses:

Axiome;

1. "'R(f(x))

2. P(x) 1 R(f(y))

3. "'P(a) 1 Q(x)

53



•

Figure 3.7: A c10sed semantic tree for 84 generated using the linear­
form strategy.

Negated Theorem:

4 Q(f(x)) 1 D(x)

5 D(x)

HU(S4) = { a, f(a), f(f(a)), f(f(f(a))), ... }.

HB(S4) = {D(a), P(a), Q(a), R(a), D(f(a)), P(f(a)), Q(f(a)), R(f(a)), D(f(f(a))),

P(f(f(a))), Q(f(f(a))), R(f(f(a))), D(f(f(f(a)))), P(f(f(f(a)))), Q(f(f(f(a)))), ... }.

LFHB(S4) ={D(a), P(a), Q(a), D(f(a)), P(f(a)), Q(f(a)), R(f(a)), D(f(f(a))),

P(f(f(a))), Q(f(f(a))), R(f(f(a))), ... }.

A clœed semantic tree for S4 is generated from the linear Herbrand base,

and is shown if Figure 3.7. The clœed semantic tree given in Figure 3.8

is generated using the same linear Herbrand base set with both useless and

unnecessary atoms filtered.

3.3.6 Other Strategies

We have propœed to this point several control strategies for semantic tree

generators. We believe that these strategies can he quite effective in controlling

the generation of clœed semantic trees of unsatisfiable sets of clauses. But,

these strategies are not the only ones known to us. Other control strategies

54



•

Figure 3.8: A closed semantic tree for 84 generated using the flltered
linear-form strategy.

can be obtained from various combinations of the control strategies presented

earlier. For instance, a hybrid of the set·of-support strategy and the unit­

preference strategy was recommended by Wos for resolution proof procedures

[Wos2). A similar combination can he used for semantic tree generators. It is

also possible to combine the set-of-support strategy with the vine-form strategy

as suggested in [Nilsson2).

Search heuristics may also be included into the design of semantic tree

generators. This can be done by employing a left-right ordering of atoms in

the Herbrand base. Many techniques are available in the literature to govern

the ordering of atoms in the Herbrand base, such as the best latent semantic

clash preference strategll [Robinson3], the merit-ordering heuristic [Robinson3]

and the diagonal:earch strategll [Kowalski2].

3.4 Comparative Study

An improved semantic tree generator was implemented to measure and ana,.

lyze the effect of the control strategies on the generation of closed semantic

55



trees. The fewest-literals strategy (FLS), the set-of-support strategy (SOS),

the linear-form strategy (LF), a hybrid of FLS and SOS and a hybrid of FLS

and LF are all supported within this generator. We tested this semantic tree

generator on the Stickel Test Set and compared the result with it for the canon­

icai semantic tree generator which was obtained in Chapter 2. The result of

this experiment is sho'Vll in the table presented in Appendix A at the end of

this thesis.

The first column of the table shown in the appendix indicates the name of

the theorem. The remaining columns in the table are divided into six groups

of three columns each with an extra column at the end of the table. The first

group corresponds to the canonical semantic trees, and the next five groups

correspond to the five just-above mentioned control strategies. Each group

is titled with the name of the strategy by which theorems were attempted.

The first column in every group reveals whether a closed semantic tree was

obtained for each theorem. The second column shows the number of atoms

checked before a proof was found or before the program stopped searching,

which would occur when the number of resolvents along the path to BOme

node in the semantic tree became greater than the size of the clause database

(in our case, the size of the database is 5000 clauses) or if 275 atoms have been

used in building a semantic tree. These values may be increased depending

on the size of the memory of the computer. The third column in each group

shows the execution time for the program to find a proof or to stop searching.

The last column in the table indicates the best among the six strategies for

proving the Stickel theorem in question.

Figure 3.9 summarizes the outcome of this experiment, showing the ratio

of number of theorems proved by each of the six control strategies.

56



•

Figure 3.9: Comparing the effect of control strategies on semantic
tree generators.

3.5 Method III: Advict!-taking and Knowl­
edge Programming within Semantic Tree
Generators

Early artificial intelligence work studied adaptive learning schemes that could

adjust control pllumeters to correlate the machine's output with a desired

standard. Over time, artificil'l intelligence researchers moved increasingly ta­

ward a belief that acceptance of human advice and knowledge about the task

should be integrated to intelligent behavior. This was seen necessary to reduce

the amount of unexpected results produced by the intelligent system. Iterative

refinements generally cause programs to become progressively more obtuse in

their control structures. This analysis suggests an alternative paradigm for the

programming and iterative refinement of intelligent systems. This paradigm

views the programming problem primarily as one of translating expert ad­

vice into an operational program, and the iterative improvement problem as

one of diagnosing program behavior to modify those elements that produce

57



• undesirable behaviors [Klahr!].

This proposed scheme emphasizes the problems of understanding high­

level advice, converting it into effective behavior, and, inevitably, changing

the knowledge and reiterating the cycle. These problems are referred to as

knowledge acquisition, knowledge programming, and knowledge refinement, re­

spectively 6

ln the remainder of this section, we explain the integration of these prob­

lems into the task of generating semantic trees from the atoms of the Herbrand

base. While generating the semantic trees, we allow for an extemal human

supervisor and/in an interactive session to control the order of atoms in the

Herbrand base. In other words, we allow the supervisor to alter the Herbrand

base in such a way as to revive the generation process.

Four operations are required in order for a human supervisor to fully control

the construction of semantic trees. These operations are used to manipulate

the order of atoms in the Herbrand base, and are listed below:

1. Add an element to the Herbrand base.

2. Delete an element from the Herbrand base.

3. Exchange the position of two elements in the Herbrand base.

4. lnsert an element at a random position in the Herbrand base.

With knowledge of the domain, the supervisor can control the direction(s)

in whicb the semantic tree grows in sucb a way that closed semantic trees are

generated as fast as possible. This feature cau he most effective when other

proofs of unsatisfiability from a given one are heing sought (refer to Section

2.6).

5Knowledge acquiaition, in our paradigm, refen to the transfer of expertise from & hu­
man expert to & machine. The machine aquiru & penon'1 knowledge through interactive
seSlionl. When & machine extenc1l itl initial knowledge by variOUI learniDg methoc1l, we
refer to thil u 1:M..1etIge ",fille_AL DilI'erent reaearchen might apply the term Imo..ledge
IJcquitilioll to varying Upedl of theae proceuea.

58



e

In Chapter 3, we suggested theoretical methods for improving the performance

of semantic tree generators &8 mechanical theorem proyers. In this chapter,

we put these methods into practice by implementing a semantic tree generator

embodying these methods and by testing it on the Stickel Test Set. The

AISTG is an improved semantic tree generator, developed specifically for the

purpose of improving the practicality of generating semantic trees for proofs of

unsatisfiability. It al80 plays the role of a first-order predicate theorem proyer.

What we will describe here is eBBentially a project towards the goal of de­

veloping a flexible yet practical theorem proyer. Noting that many powerful

and versatile theorem-proving programs exist, one naturally wonders about

the ease of using such a program and which program is recommended. The

program we recommend is the one which plays a vital role in our research: its

name is AISTG. This program nses binary resolution for its inference mech·

anism and includes factoring &8 one of its abilities. Factoring is used in the

AISTG only for extracting resolution-refutation proofs from generated closed

semantic trc!ell (refer to the algorithm presented earlier in Section 2.4). The

59



AISTG is written in C, and runs on any computer h06ting Uni:J!l as its oper­

ating system. Restricting the running environment to Unix does not impose a

limit on the usage of the AISTG program. Minor modifications to the configu­

ration file of the program make it portable to other computers h06ting different

operating systems.

The AISTG program can prove any theorem expressed in prop06itional or

first-order predicate calculus. Yet, it may take a long time to prove some of

the first-order predicate theorems. This is due to the vast number of atoms in

the Herbrand base that nood to be checked before proofs are found for these

theorems (i.e. before closed semantic trees are generated).

From the standpoint of control stl:ategies, the AISTG is distinguished from

other theorem-proving prograrns. FOl" the purpose of generating semantic trees

the AISTG uses two simultaneons control strategies. The first one is for select­

ing atoms from the Herbrand base of the given clauses. The second control

strategy is for generating a semantic tree from those atoms. The AISTG

permanently uses depth-first iteratively-deepening [Almulla2, Letzl] for gen­

erating a semantic tree from the atoms of the Herbrand base. On the other

hand, the control strategy for selecting atoms from the Herbrand base has to

be chosen by the user prior te generating the semantic tree.

4.1 General Description of the AISTG
Program

The AISl'G program attempts to prove the unsatisfiability of some clauses

by generating a semantic tree for them. If the clauses are unsatisfiable, the

program will eventually generate a finite closed semantic tree. Otherwise, the

semantic tree is infinite, which means that the program continues attempting

to generate a closed semantic tree until it runs out of resources. On<:e a closed

semantic tree has been generated, upon requ28t by the user an algorithm for

extracting a resolution-refutation praoffrom the closed semantic tree is invoked

•A trlldemark of ATkT Ben Iaboratoriea

60



and a proof is eventually printed. The algorithm for extracting resolution­

refutation proofs from closed semantic trees was presented in Chapter 2.

The AISTG can prove theorems within MOUS mathematical domains,

such as plane geometry, set theory, numoor th.eory, and algebmic structures

including rings, fields, and groups. The theorem-proving ability of the AISTG

accommodates not only mathematical domains, but also puzzles which are

usually found in artificial intelligence, SllllogismB, and cognitive science. For

exa.mple, the lion and the unicom problem, the knights and knaves problem,

and the monkey and the banana problem [Newbom2, Loveland2].

Our improved semantic tree generator is designed to be of interest to math­

ematicians, logicians as weil as artificial intelligence researchers (specially those

in automated theorem proving). The structure of the progra.m is divided into

eight modules and can be extended. The following is a description of these

modules.

L Stg.c: Among all modules of the AISTG, the Stg.c is the m08t important

one. It contains the main progra.m which activates the procedures and

functions constituting the engine of this theorem proyer. First, the mod­

ule reads (in text format) and converts (into binary format) the base

clauses; asks the user to choose a control stra'iegy for selecting atoms

from the Herbrand base. Second, the progra.m sta.rts selecting atoms

according to the control strategy chosen by the user. If the base clauses

are unsatisfiable, the AITSG will eventually generate a closed semantic

tree. Otherwise, the progra.m keeps executing until one of the following

thresholds is reached: the maximum allowed execution time, the memory

available for the progra.m or the maximum number of iterations allowed.

2_ Compile.c: This module receives as input the binary format of the base

clauses that was generated by Stg.c, and it constructs the intemal mem·

ory representation of these clauses according to the data structures of

the AISTG progra.m. Once the base clauses have been represented in

61



memory, the program stans se!ecting atoms from the Herbrand base

according ta the chosen control strategy.

3_ Search.c: The arder by which the atoms are selected from the Herbrand

base for generating a semantic tree depends on the control strategy. The

program places a menu of five control strategies from which the user is

ta choose. This facility of the AISTG allows the users ta take advantage

of their personal experience in choosing an appropriate control strategy

based on the theorem in question. Procedures for implementing the five

control strategies of the AISTG can be found in this module.

4_ Infer.c: The AISTG program uses binary resolution as an inference

rule for generating closed semantic trees of unsatisfiable sets of clauses.

Therefore, the completeness of the AISTG theorem-proving method is

guaranteed, since the resolution principle of Robinson is complete. The

completeness of the resolution principle W88 proved in [Hsiangl, Robinson3,

Robinson5, Slagle3J. A proof for the completeness of the AISTG prov­

ing method W88 outlined in Chapter 3. Ali procedures and functions

concerning the inference rule of the AISTG can be found in this module.

5_ Gen.c: This module contains procedures and functions required for gen­

erating all binary resolvents of a given pair of clauses. Duplicating a

clause is another t88k performed by the procedures of this module, how­

ever such clauses are needed by the AISTG program ta caver cases where

factoring literais of newly generated resolvents is required.

6_ UniCy.c: Unification is a vital operation in the resolution process. Since

we are using binary resolution 88 the inference rule of the AISTG, the

resolved away literais in the parent clauses must be unified. Procedures

for unifying the resolved away literais can he found in this module.

T_ Dump.c: This module is responsible for the "output" of the AISTG pro­

gram. Upon the generation of a closed semantic tree for an unsatisfiable

62



• set of clauses, procedures in this model are activated to print the content

of the failure nodes in the closed semantic tree, as well as to print the

resolution-refutation proof extracted from the tree (if requested by the

user). It is usually necessary for a theorem-proving program to be able

to reconstruct detailed information from any proof it generates. Pro­

cedures in Dump.c are called if the user requests to dump the content

of the clause database during t.he generation of the semantic tree. This

provides for the possibility of using the AISTG to prove theorems in

non-mathematical domains such as information retrieval.

8_ Hash.c: Searching for duplicate resolvellts, and thus for duplicate proofs,

often wastes a great deal of execution time in theorem-proving programs.

Wos [Wos3] wonders what stmtegll can he emplolled to deter a reasoning

progmm /rom deducing a clause a1readll retained, or /rom deducing a

clause that is a proper instance of a clause a1readll retained? Spencer

addressed this problem in his paper avoiding duplicate proofs [Spencerl].

Newborn solved the same problem by assigning hash codes to the literais

and the clauses of The Great Theorem Proyer [Newbornl]. The latter

approach was adopted to solve this problem in the AISTG program. The

literai and the clause are assigned unique hash codes. These codes make

the search for duplicate resolvents significantly efficient. Procedures for

hashing and checking for duplicate literais and clauses can be found in

this module.

In addition to the eight modules described above, the AISTG program

includes two files. One contains the declaration of the data structures used by

the program. This file is called Clause.h. The other file identifies ail constants

of the program and initializes their values. This file is called Conat.h.

4.2 Flow of Control in the AISTG Program

63



•

Figure 4.1: Flow of control in the AISTG program.

In this section, we trace the fiow of control of the AISTG. The module Stg.c

receives as input a text file containing the base clauses and creates an output

file containing the base clauses in binary format. The binary file becomes input

ta the module Compile.c, which creates a representation of the base clauses

in internai memory. The fiow of control then goes back ta the module Stg.c,

where the user must choose a control strategy for selecting atoms from the

Herbrand base. These atoms are, in turn, to be used ta generate the semantic

tree.

Once a control Btrategy has bl.'ell chosen by the user, the fiow tranBfera

64



to Search.c where the procedures for implementing the control strategies are

found. Upon a selection of an atom from the Herbrand base, the inference

rule procedure in Infer.c is called to generate all resolvents of the atom with

the clauses in the clause database. In tum, the inference rule procedure calls

procedures in Gen.c and Dump.c both to generate and to print binary resol­

vents, as weil as to update the clause database. After updating the clause

database, the inference rule procedure checks to see if a closed semantic tree

has been generated, in which case a proof is found. Otherwise, another atom

is selected from the Herbrand base by the control strategy. A diagram for the

fundamental f10w of control in the AISTG program is shown in Figure 4.1,

along with the generallayouts of the program.

4.3 Using the AISTG Program

Important design considerations in the AISTG program are performance, porta­

bility, compactness and simplicity of code. The program runs on computers

hosting Unix as their operating systems. However, small modifications to the

file Stg.c make the program portable to other computers hosting DOS' or Mac­

intosh environments. For running the AISTG on Unix, one needs the ten files

specified in Section 4.1 as weil as the file "MAKEFILE" which compiles and

links these ten files. To create an executable version of the AISTG program,

at the computer prompt the user should type:

Unix: > lRake

An executable version of the AISTG (that is called hprove) is thus created.

The AISTG program is now ready for use. To prove a theorem, the user should

type the word:

Unix: > hprove

'Di.et Operating System

65



• the AISTG responds with the following question:

Enter the name of the theorem file (type '1' for help):

At this point the user should enter the name of a text file where the theorem

is saved. The AISTG reads the input file, creates the data structures for the

base clauses in memory, and displays the clauses on the screen. After setting

up the memory structures, the program prompts the user with a menu to

choose one of the five control strategies available in the AISTG. The control

strategy selection menu is shown in Figure 4.2.

'·FLS+LF

5· FLS +SOS

4· U_Form (LF)

2- Feweat-llttr8l1 IIrll8gy (FLS)

1 • Unit RllOIullon (UR)

Figure 4.2: The control strategy menu.

Once a choice has been made by the user, the program stans generating a

semantic tree from the atoms selectively picked from the Herbrand base by the

control strategy. One useful feature in the AISTG program is the feedbar.1: it



• gives to the user about the status of the proyer and the state of the proof. The

program shows the semantic trw on the scrwn as it is being created. Bence,

the user is not kept in suspense until a proof is found.

4.4 Interactiveness of the AISTG Program
Apart from the theoretical and practicallimitations of automated the­
orem-provin.g systema, what of the more pragmatic issues sucb as: will
the proofs derived by a machine provide "insight" tu a human user,
or are they essentially "plodding" and "tedious", ellllentially "trying ail
possible combinations" and providing nothing more than an answer of
"true"? These are, of course, subject issues, but even so they are of im­
portance to designers building systema for practical applications. With
regard to elegance, it may be said that there have been proofs performed
by computera of well-known theorema that have both generalized the
known results and been more "elegant" than the human proofs. In gen­
eral, however, the p,·!\Cticability of a system is perhaps more dependent
upon the "naturalness" of its modes of inference and its interactiveness
rather than the subtlety of its reasoning.

[Wos3)

As previously noted, the AISTG program uses depth-first iterative-deepening

as a permanent strategy for generating semantic trees of given sets of clauses.

Each iteration extends the depth of the semantic tree by one level. Upon com­

pletion of each iteration, the program asks the user to press any key on the

keyboard in order to continue building the semantic tree. If the user at that

point responds by pressing the character "+", the AISTG program asks the

user the following question:

Hodify The Herbrand Base? (YIN):

Pressing the character l'y" or "Y" on the keyboard invokes an interactive

menu. Through this menu, the user cao manipulste the order of atoms selected

to that point. Then, it asks the user through the menu if s(he) wants to add

a new atom to the end of the list, to delete a particular stom from the liot,

to exchange the position of t'iVO atoms, or to add a new atom at a specifie

position in the list to be chosen by the user. These four options give the

67



•

1 • Append. _ ._.

Figure 4.3: The Herbrand base manipulation menu.

user total control over the list of atoms to be used in generating a semantic

tre" for the base clauses. The AISTG program re-displays the Herbrand base

manipulation menu following the e~ecution of each choice made by the user

with the exception of the fifth and last choice in the menu, which instructs

the program to re-generate a semantic tree for the base clauses according to

the newly made changes in the enumeration of atoms from the Herbrand base.

The Herbrand base manipulation menu is shown in Figure 4.3.

Sample runs of the AISTG program on theorems arbitrarily chosen from the

Stickel Test Set are exhibited in Appendix C. Similar sample runs for a canoni­

cal semantic tree generator are exhibited in Appendix B. The actual code of the

AISTG, along with the executable version of the program can be obtained by

sending an electronic mail to the author's address: almulla@opus.cs.mcgill.ca

68



• or by contacting him via the School of Computer Science at McGill University.

4.5 Capabilities and Limitations of the AISTG
Program

The AISTG has the potentia! for proving some theorems from the Stickel Test

Set which seemed diflicult to prove by ~:;[ng canonica! semantic tree generators.

This is not a!ways true; in Chapter 5 we show theorems for which the proofs

obtained using the canonica! semantic tree generator were faster than those

obtained using the AISTG. Nonetheless, AISTG has difliculty in proving other

theorems from the Stickel Test Set. This section outlines the capabilities and

limitations of the AISTG program.

4.5.1 Capabilities

Although some parameters appeared in the Const.h file to have maxima! va!­

ues, these parameters are computer-memory dependent and cau easily be

changed to accommodate larger quantities (if desired). Hence, these parame­

ters can be considered as features of the AISTG program. Examples of these

parameters are:

1. Tota! number of base clauses in the theorem file.

2. Tota! number of literaIs (predicates) in a clause.

3. Tota! number of variables in a clause.

4. Tota! number of functions in a predicate.

5. Tota! number of constants in a predicate.

6. Tota! number of arguments in a function.

7. Tota! number of atoms in the Herbrand base.

8. Tota! number of iterations performed before the AISTG stops the search

for a proof.

69



9. Total number of clauses in the clause database (including the base clauses).

4.5.2 Limitations

The AISTG does not attempt to find a proof for a theorem expressed as a set

of wffs (see Definition 1.3.4). These wffs should, first, be converted to clause

form, then be fed to the AISTG as base clauses. An eight-step algorithm for

converting wffs to base clauses can be found in [Newborn1, NilBBOn2]. The base

clauses, in turn, must take the form of BOme axioms and a negated conclusion.

The user must negate the conclusion before adding it to the base clauses. Since

the AISTG is a descendent of The Great theorem proyer [Newborn1], one can

use the COMPILE package of The Great Theorem Proyer to convert wffs into

clause form for the AISTG.

4.6 AISTG vs The Great Theorem Prover

The performance of the AISTG on the Stickel Test Set was analyzed previ­

ously in Chapter 3, and a summary of the result was given in Figure 3.9.

In Table 4.1 the performance the AISTG program using the fewest-literals

strategyS is compared with that of The Great Theorem Proyer [Newborn2]

using the IBM RS/6000 machine.

Table 4.1 presents the name of each theorem in the Stickel Test Set (Column

1), Columns 2-4 of the Table show the result of proving the Stickel Test Set

using The Great Theorem Proyer. They specify whether a proof was obtained

for each theorem (Column 2), the execution time in seconds for the program to

find a proof (Column 3), and the length of the proof (Column 4). Columns 5-7

of Table 4.1 show the result of proving the Stickel Test Set using the AISTG.

They specify whether a closed semantic tree was obtained for each theorem

(Column 5), the execution time in seconds for the program to find a proof or

to stop searching (Column 6), and the number of atoms checked before a proof

8Refer to the a1gorithm given in Section 3.3.1
'The uteriek œaracter in thia coIumn signala an overllow in the number of resolvents

generated.

70



• 1

Theorem The Great Theorem Proyer AISTG
Name Proyen Time (in sec.) Length Proven Time (in sec.) Length •

SOlburst Yes 1 12 Yea l) 45
S02short Yes 0 6 Yes 0 11
S03prime Yes 1 15 Yes 217 ."Ji

So-1haspa1 Yes 0 8 No 81 361
S05haspa2 Yes 0 13 No 208 381
S06ances Yes 0 6 Yes 1 6
S07NUM1 Yes 0 6 .Yes 2 17
S08groupl Yes 0 ·1 No 2400 96
S09group2 Yes 1 10 Yes 40 26

SlOewl Yes 0 6 Yes 0 5
Sl1ew2 Yes 0 5 Yes 1 3
S12ew3 Yes 0 10 Yes 1 5
S13rob1 Yes 0 6 Yes 0 10
Sl4rob2 Yes 1 lU Yes 32 25

S15michie Yes 0 4 Yes 19440 182
S16qw Yes 0 8 Yes 0 3

S17mqw Yes 0 5 Yes 0 3
S18DBABHP Yes 0 11 No 18077 181 .-

S19APABHP Yes 69 15 No 567 389
S20fleisig1 Yes 3 11 Yes 94 30
S21f1eisig2 Yes 2 11 YeÎl 32 34
S22f1eisig3 Yes 1 20 No 4250 212
S23f1eisig4 Yes 7 18 Ne 7960 74
S24f1eisigli Yes 3 18 No 8760 74
S25W081 Yes 2 7 No 4513 226
S26Wos2 Yes 1 6 No 7414 132
S27W083 Yes 0 5 Yes 0 13
S28Wos4 Yes 3 15 Yes 1500 160
S29Wos5 Yes 1 7 No 5049 174
S30W086 Yes 0 9 No 9500 130
S31W087 Yes 1 8 Yes 118 46
S32W088 Yes 0 8 No 8265 213
S33W089 Yes 0 7 No 7206 149

S34W0810 Yes 2 10 Yes 266 34
S35Wos11 Yes 1 9 No 12631 141
S36W0812 Yes 0 4 Yes 0 11
S37Wos13 Yes 1 6 Yes 1 16
S38W0814 Yes 1 7 Yes 3 23
S39W0815 Yes 16 16 No 4080 212
S40W0816 Yes 1 7 Yes 397 100
S41W0817 Yes 1 9 Yes 18000 135
S42W0818 Yes 1 5 Yes 0 8

Table 4.1: The Great Theorem Proyer VB AISTG.

71



• Theorem The Great Theorem Proyer AISTG
Name Proven Time (in sec.) Length Proven Tiro." (in sec.) Length·

S43W0819 Yes 1 2 Yes 0 10
S44W0820 Yes 66 21 No 4728 ISO
S45W0821 Yes 247 12 No 2525 140
S46W0822 Yes 29642 16 No 21600 47
S47W0823 Yes 0 6 No 5251 86-
S48W0824 Yes 0 6 No 3560 85-
S49W0825 Yes 0 6 Yes 3 15
SSOW0826 Ye. 466 31 No 588 90
S51W0827 Ye. 1 6 No 3835 86
S52W0828 Yes 14 10 No 4000 258-
S53W0829 Yes 8 8 Yes 2 15
S54W0830 Yes 1 11 No 4550 74
S55W0831 Yes 15 69 No 9390 44
S56W0832 Yes 0 4 Yes 9 19
S57W0833 Yes 61 48 Yes 43560 115
Starkey5 Yes 0 4 Yes 0 2
Starkey17 Yes

..
Yea0 8 29340 109

Starkey23 Yes 1 7 No 93 65
Starkey26 Yea 0 7 Yea 0 16
Starkey28 Yes 1 7 No 3000 27
Starkey29 Yes 2 7 No 1614 323
Starkey35 Yes 1 7 No 3900 SO-
Starkey36 Yes 13 12 No 1800 194
Starkey37 Yes 1 3 No 1112 21
Starkey41 Yes 0 4 Yes 0 4
Starkey55 Yes 0 9 No 7271 308
Starkey65 Yes 0 2 Yes 0 17
Starkey68 Yes 1 8 Yes 0 13
Starkey75 Yes 1 8 No 544 124
Starkey76 Yea 0 3 Yes 0 5
Starkey87 Yes 0 9 Yes 67 55

Starkey100 Yes 0 4 Yes 0 4
Starkey103 Yes 0 9 Yes 160 22
Starkey105 Yes 0 5 Yes 0 8
Starkey106 Yea 0 5 Yes 3 13
Starkey10S Yes 10 28 No 1200 65
Starkey111 Yea 0 5 Yea 0 4
Starkey112 Yea 3 40 No 670 104
Starkey115 Yes 0 7 Yes 68 21
Starkey116 YlllI 1 12 Yea 0 14
Starkey118 Yes 3 42 No 9440 175
St.....key121 Yee 1 18 Yee 31317 38

Table 4.1: The Great Theorem Proyer vs AISTG.

72



e

was found or before the program stopped searching (Column 7). The program

stopped searching if the numbcr of resolvents on the path to some node in the

semantic tree became greater than the size ofthe clause database (in our case,

the size of the database is 5000 clauses).

Table 4.1 shows that The Great Theorem Proyer proved ail the theorems

in the Stickel Test Set, whereas the AISTG proved 47 theorems (i.e. more

than 50% of the theorems). Comparing Tables 4.1 and 2.1, it can be seen that

better results were obtained using the AISTG on the Stickel Ter,t Set than

the canonical semant:c tree generator of Chapter 2. Table 4.1 shows that by

using the improved ordering of atoms from the Herbrand base, the semantic

tree generator solved an additional 15 theoremsj it solved ail theorems that

were solved when using the canonical ordering of atoms from the Herbrand base

plus a number of theorems that secmed impossible to solve using the canonical

ordering, in particular, SOlburst, S02short, S'19wos25, and Starkey65.

This confirms the importance of re-ordering Md filtering the Herbrand base

in making semantic tree generators practical th~orem proyers. We strongly

believe that semantic tree generators can be driven not only to prove ail the

Stickel Set theorems, but also to be as strong and efficient as are resolution­

dependent theorem proyers such as The Great Theorem Proyer. In fact, there

are theorems which The Great Theorem Proyer could not praye in a long time,

but our semantic tree generators solved them in a short time. Examples of

such theorems will be discussed in the next chapter.

73



•

Semantic Tree Generation
vs

Resolution-Refutation

Research in artificial intelligence has pointed out that proving a theorem can

be intel1ectually dilficult and that a program that can prove sorne theorems

has "common sense", meaning that it has the ability to make elementary

deductions from given facts [Slagle3]. In Chapter l, Herbrand's fundamental

theorem was referred to as a base for many modern proof procedures including

those based on the resolution principle of Robinson. Procedures using semantic

tree generation for proving theorems are also based on the same theorem. It has

been argued in this thesis that the semantic tree generation method can grow

to become no less than the other practical methods for detecting unsatisfiable

sets of clauses in first-order predicate calculus.

In this chapter, we compare semantic tree generation with resolution­

refutation. We identify cases (i.e. theorems) where the former method gave

far better results than did the latter one. Conversely, in Section 5.2 we name

theorems from the Stickel Test Set for which the proofs obtained by the latter

method are more desirable.

One might now wish sorne insight into the dilficulty of the theorems prov­

able with the assistance of semantic tree generators. The fol1owing section is

74



• devoted to fulfilling such a wish.

5.1 Generating Semantic Trees as a Proving
Method

An obvious question that cornes to one's mind with respect to generating se­

mantic trees is "why should 1 use this proving method over other existing meth­

ods?". Generating closed semantic trees for theorems in the Stickel Test Set

seemed to give interesting results when compared with the proofs obtained by

resolution-based procedures such as The Great Theorem Proyer. As a matter

of fact, the resolution-refutation method is not always superior to the method

of generating semantic trees for proving theorems. Certain theorems found

in the literature were fabricated by researchers for the purpose of providing a

graduated selection of problems for use in testing automated theorem proyers

[Pelletierl, Spencerl, Urquhartl).

The difficulty in constructing problems for studying the complexity of
the proof syste:n of an ATplO is to describe a set of problems whose
complexity can independently be characterized in terms of sorne metric
which can be varied and which does not introduce any side effects into
the resulting proofs. Various attempts to state BUch a set have usually
focussed on (a) number of clauses, (b) number of symbols, (c) number
of distinct symbols.

FJ Pelletier

The following are examples of such problems:

Example 1: Pigeonhole Theorem - cf. [Pelletierl] (page 212)

Problem: Suppose there are n holes and (n + 1) objects to put in the holes.

Every object is in a hole and no hole contains more than one object.

Let us now state the problem for n = 3: "Each object is in a hole" becomes:

1. Pli P21 P3

2. P41 PSI P6

10Automate<! Tbeorem Prover.

75



• 3. P71 P81 P9

4. PlO 1P11 1P12
"No hale has more than one object in it" becomes

5. ~P11 ~P4

6. ~P11 ~P7

7. ~P11 ~PlO

8. ~P41 ~P7

9. ~P41-PlO

~O. -P7 1-PlO

11. -P21-P5

12. -P21-P8

13. -P2 1-P11

14. -P51-P8

15. -P5 1-P11

16. ~P8 1-P11

17. -P3 1-P6

18. -P31-P9

19. ~P3 1-P12

20. ~P61-P9

21. -P6 1-P12

22. -P9 1-P12

The set of clauses (1) • (22) is inconsistent.

Example 2: Arbitrary Graph Theorems

Problem: Consider a graph (a finite set of vertices, together with a finite set

of edges joining pairs of these vertices) with the edges labelled.

Assign a charge of 0 or 1 arbitrarily to each vertex in the graph. For each

vertex of the graph associate a set of clauses as follows:

1. every label of an edge em<lollating from that node will occur in each clause

of the set of clauses generated from that node.

76



• 2. if the node is assigned 0, then the number of negated literais in each of

the generated clauses is ta be odd. Generate ail such clauses for that

node.

3. if the node is assigned l, then the number of negated literais in each of

the generated clauses in ta be even. Generate ail such clauses for that

node.

Example 2a: - cf. [pelletier1] (page 214)

Figure 5.1: Semi-connected 4-vertices Graph Theorem.

The set of clauses generated for this example is:

1. AI B

2. ~A 1~B

3. Ale 1 ~D

4.AI~cID

5. ~A 1 CiD

6. ~A 1~C 1~D

7. Ble 1~E

8. B 1~c 1 E

9. ~B 1CIE

10. ~B 1~c 1 .....E

77



• 11. D I-E
12. -D 1E

The set of clauses (1) - (12) is inconsistent.

Example 2b: - cf. [Urquhartl) (page 213)

ec

{~b:.abc} ...1r--__8__.....,,,0 {id!,eaa}
abc,aDC eda,eda

{
ëdf' caf} {lbe IBe}
cdT, car "OIoo..._-,-_.....l"'O fbë: lbe

Figure 5.2: Totally-connected 4-vertices Graph Theorem.

The set of clauses generated for this example is:

1. alblc
2. -a I-b 1 c
3. -a 1 b I-c
4. a I-b I-c
5. -a 1die

6. ai-die

7. al d I-e
8. -a I-d I-e
9. -c 1 d 1 f

W.cl-dlf

11. cid I-f

78



• 12. ~c 1~d 1~f

13. ~e 1 b 1 r

14. e 1 ~b 1 f

15. el b 1~f
16. ~e 1~b 1~f

The set of clauses (1) - (16) is inconsistent.

Examp1e 3: Foothold Theorems - cf. [Spencer1] (page 580)

Problem: Consider the fol1owing set of theorems:

• P 1~P1 1 ... 1~PIl

• Pi 1~Ai

• Pi 1 ~Bi

• Ai 1 Bi

• ~P

The base clauses of each theorem in this set are inconsistent.

Vi = 1, , n

Vi = 1, , Il

Vi = l, , Il

Example 4: Shoe-Boxes Theorems - cf. Unpublished

Problem: The author would like to thank T. Mackling at the Faculty of

Engineering in McGill University for providing him with this set of theorems.

The symbole Al, ... , An, BI, ... , Bn are constants.

• Equal(x,x)

• ~Equal(x,y) 1Equai(y,x)

• ~Equal(x,y) 1 ~Equal(y,z) 1 Equal(x,z)

• Equal(x,A1) 1 •.• 1 Equal(x,An)

• ~Equal(B1,B2)

• ~Equal(B1,B3)

• ~Equal(B1,Bn)

• ~Equal(B2,B3)

70



• Cano Sem. Tree Gen. AISTG TGTP
Theorem Atoms Tlme Atoms Tlm.. Tlme

Name checked ln sec. checked ln sec. ln sec.

Pigeonhole 12 1 12 0 >100
Arbitrary Graph (a) 5 0 5 0 >100
Arbitrary Graph (b) 6 0 6 0 4

Foothold n = 1 4 1 4 0 1
Foothol". n = 2 7 1 7 0 3
Foothold n = 3 10 0 10 0 5
Foot.hold n = 4 13 0 13 1 3
Foothold n = 5 16 1 16 2 9
Foothold n = 6 19 7 19 12 ISO
Foothold n = 7 22 21 22 51 7860
Foothold n = 8 25 175 25 243 289SO
Foothold n = 9 28 547 28 1062 >144000
Foothold n = 10 31 2250 31 4232 >144000

Shoe Boxes n = 2 23 3 25 2 137
Shoe Boxes n = 3 47 20 46 850 19873
Shoe Boxes n = 4 78 349 77 18531 >144000

Table 5.1: Hard Research Theorems Proved Using Semant:ic Tree
Generators.

• ......Equal(B2,B4)

• Equal(B2,Bn)

• Equal(B3,B4)

• ......Equal(Bn-l,Bn)

The base clauses of each theorem in this set are inconsistent.

We tried sorne of these theorems on our semantic tree generators. It turned

out that the semantic tree generators gave a far greater performance than did

The Great Theorem Proyer. Table 5.1 displays the result of proving such

theorems. For most theorems of this type, The Great Theorem Proyer kept

searching for the proofs for a 10!:"g time (in sorne cases for more than a day) that

we decided to discontinue the search. The reason for this is either too many

useless resolvents generated or the generated resolvents have to many literais

in them. The table displays the result of proving these theorems using the

canonicai semantic tree generator and the AISTG. Column 1 shows the name

of the theorem. Column 2 shows the number of atoms canonicaily enumerated

80



• from the Herbrand base that are sufficient to prove the theorem. Column

3 shows the execution .. time in second~ that it took the canonical semantic

tree generator to prove the theorem. Column 4 shows the number of atoms

selectively chosen from the Herbrand base by the AISTG using the fewest­

literaIs strategy for proving the theorem. Column 5 shows the execution time

in seconds that it took the AISTG to prove the theorem. Column 6 shows the

execution time in seconds that it took TGTP to prove the theorem. For this

experiment, we used the same computer that we had used for the previous

experiments.

Although the above-illustrated examples present considerable difficulties

for resolution-based theorem proyers, thls f&ct does not ref!ect any real inherent

difficulty in the prob!ems, but rather the inefficiellt way in which the resolution

procedure deals with theorems of this kind. This f&ct is demonstrated by

the existence of short refutations for these examples in axiomatic systems for

propositional calculus such as semantic tree generators.

5.2 When to Avoid Generating Semantic Trees
for Proving Unsatisfiability

Researchers who have tried to compile lists of problems for automated theorem

proyers in the past have discovered that the production of such lists is difficult.

One of the reasons for this difficulty is that what seems to be "easy" for one

system might not be for another. Indeed, this is exactly the case between

semantic tree generators and resolution-refutation theorem proyers.

In the previous section, several theorems were presented for which the

proofs obtained by semantic tree generators were vastly more efficient than

were those obtained by resolution-refutation theorem proyers. To complete the

picture, in this section we discuss the converse situation. We identify theorems

which are considered trivial lor resolution-refutation theorem provers, but they

seem to be impossible to solve using semantic tree generators. Table 2.1 ap­

peared earlier in Chapter 2 includes theorems of this type. Examples of such

81



• theorems are: SOlburst, S05haspart2, S18DBABHP, S19APABHP,

S39Wos15, S46Wos22, S50Wos26, Starkey:;;8, and Starkey75. Yet, in

order to express this fact more clearly, let us consider the following set of bsse

clauses:

Axioms:

1. P(f(g(a,b,e),d)) 1 Q(f(a,b))

2. ~P(x)

Negated Theorem:

3. ~Q(f(x,y))

A resolution-refutation proof for this theorem was obtained by The Great

Theorem Proyer in less than a second. However, proving this theorem by using

the eanonira! semantie tree generator appeared to be mueh harder. In fact,

the eanoniea! semantie tree generator eould not prove this theorem for the

following obvious reason:

The eanonieal enumeration of elements from the Herbrand universe is:

HU = { a, b, e, d, f(a,a), f(a,b), f(a,e), f(a,d), f(b,a), f(b,b), f(b,e), f(b,d),

f(c,a), f(e,b), f(e,e), f(e,d), f(d,a), f(d,b), f(d,e), f(d,d), g(a,a,a), ... }.

The canonica! enumeration of atoms from the Herbrand base is:

HB = { P(a), Q(a), P(b), Q(b), P(c), Q(e), P(d), Q(d), P(f(a,a)), Q(f(a,a)),

P(f(a,b)), Q(f(a,b)), P(f(a,e)), Q(f(a,e)), P(f(a,d)), Q(f(a,d)), P(f(b,a)), Q(f(b,a)),

P(f(b,b)), Q(f(b,b)), P(f(b,c)), Q(f(b,c)), P(f(b,d)), Q(f(b,d)), P(f(e,a)), Q(f(.:,a)),

P(f(e,b)), Q(f(e,b)), P(f(e,c)), Q(f(c,c)), P(f(e,d)), Q(f(e,d)), P(f(d,a)), Q(f(d,a)),

P(f(d,b)), Q(f(d,b)), P(f(d,e)), Q(f(d,e)), P(f(d,d)), Q(f(d,d)), P(g(a,a,a)),

Q(g(a,a,a)), ... }.

1HUo 1=4,1 HUll =84, 1 HU2 1=599764, ... etc.

1 HBo 1 = 8,1 HBl 1 = 168, 1 HB2 1 = 1.19 X 106, ... ete.

In order to prove this theorem using a canoniea! semantic tree generator,

at least 168 atoms must be ehecked before a closed semantie tree is generated.

To be exact, the term f(g(a,b,c),d) appears after 2255 terms in the canonical

82



• enumeration of the Herbrand universe. Consequently, 4511 Herbrand base

atoms must be checked before a closed semantic tree can be generated; this

is beyond the capability of the canonical semantic tree generator. However,

these figures are not meant to discredit the semantic tree generation as a

theorem-proving method. For example, filtering the Herbrand base of the

above theorem, as proposed in Method l for improving the practicality of

generating semantic trees, leaves only two elements in the Herbrand base to be

checked by the generator, namely, P(f(g(a,b,c),d) and Q(f(a,b)). This theorem

can be used as another example for encouraging the use of improved semantic

tree generators as practical theorem proyers.

In summary, our experimental study confirms that the semantic trees

method can be as good as (in some cases even better than) other methods for

proving unsatisfiability of sets of clauses, including the resolution-refutation

method. This chapter has shown that this method can sometimes be a better

choice for solving certain hard theorems than what is considered the best and

most powerful of ail theorem-proving methods, which is resolution-refutation.

83



•

Conclusion

This dissertation has investigated the use of oomantic trees in automated the­

orem proving. In it, we studied the effectiveness of Herbrand's procedure on

theorems such as those in the Stickel Test Set. Additionally, we looked at more

effective ways of ordering the atoms of the Herbrand base that are used for

generating semantic trees, and we showed that a larger set of theorems cDuld

be proved. In what fol1ows, we summariz" the findings of the previous chap­

ters and suggest various techniques for further advancements in generating

semantic trees for proofs of unsatisfiability.

6.1 Concluding Remarks

Focusing on semantic trees and on their raie in automated theorem prov­

ing, this thesis has demonstrated both the equivalence of semantic trees and

resolution-refutation proof trees and thus the equivalence of semantic tree

generators and resolution-refutation theorem proyers. A system for using se­

mantic trees in proving unsatisfiability was illustrated in Chapter 2. The

system included generatiag a clœed semantic tree from a given resolution-

84



refutation proof of an unsatisfiable set of clauses, as well as the extraction of a

resolution-refutation pl'oof from a close<! semantic tree of that set. Chapter 2

also described canonical semantic trees and provided examples of constructing

canonical semantic trees of unsatisfiable clauses. We closed Chapter 2 with an

experiment measuring the performance of a canonical semantic tree generator

in proving theorems from the Stiekel Test Set.

Theorem-proving on the computer, using procedures based on semantic

trees was examined in Chapter 3 with a view towards improving the effi­

ciency and widening the range of practical applicability of automated theorem

proving. Three methods for improving the practicality of generating semantic

trees for proofs of unsatisfiability were considered: filtering the Herbrand base;

proposing control strategies for selecti';'ely choosing atoms from the Herbrand

base; and interactively manipulating the order by which the atoms appear in

the enumeration of the Herbrand base. These methods we implemented in a

semantic tree generator and tested on theorems from the Stickel Test Set.

Chapter 4 presented AISTG: An Improved Semantic 'Tree Generator em­

bodying the three methods suggested in Chapter 3 for improving the practi­

cality of generating semantic trees for proofs of unsatisfiability. The chapter

described modules and layouts of the AISTG program as weil as the f10w of

control in the program. In addition, it outlined principal features of the pro­

gram and sorne of its limitations. We close<! Chapter 4 with an experiment

comparing the performance of the AISTG with The Great Theorem Proyer on

the Stickel Test Set.

Chapter 5 addressed the consideration of generating semantic trees as an

alternative method for proving unsatisfiability of sets of clauses. On the one

hand, the chapter presented classes of theorems for which the semantic tree

generators are expected to perform at least as good as, if not better than,

resolution-refutation theorem proyers. On the other hand, it provided exam­

pies of theorems for which the semantic tree proofs are less desirable than the

resolution-refutation proofs.

85



• 6.2 Open Problems

The following are suggestions for further improvements in generating semantic

trees for proofs of unsatisfiability:

• In Chapter 3 we have introduced control strategies for selectively ch006­

ing atoms from the Herbrand base of a given set of clauses. Any ad­

ditional study on the effect of control strategies on the practicality of

generating semantic trees would surely cO!ltribute ta the improvement

of generating semantic trees for proofs of unsatisfiability.

• Despite the importance of search strategies, most research in automatic

theorem proving has concentrated on developing new inference systems

which are either more powerful or more restrictive than those already

existing [Kowalski3]. Other control strategies and heuristics for elimi­

nating or re-ordering atoms in the Herbrand base should be cOlisidered

[Bledsoel, Kowalskil, Kowalski3, Nortonl, Siklossyl, Slaglel].

• Selectively choosing atoms from the Herbrand base has improved the

practicality of generating semantic trees for proofs of unsatisfiability.

Since domain knowledge has shawn its importance in many AI applica­

tions, having a user interactively select atoms from the Herbrand base

for building semantic trees should be further explored.

• Two decades ago, efficient general-purpose theorem-proving systems based

on resolution without equality were developed and used for proving the­

orems in first-order predicate logic. Unfortunately, they were not able ta

prove anything very complicated, and additions were sought which would

make them more powerful [Changl]. One way to increase their power

was to incorporate equality into these logical systems. For instance,

the explicit use of equality axioms, the application of paramodulation

and E-resolution, and resolution by unification and equality [Plotkinl,

Robinson2, Slaglel]. The AISTG has no identity in its system other than

86



• as an ordinary predicate (i.e. the equality axioms). The introduction of

equality into the AISTG would undoubtedly increase its efficiency by al­

lowing it to prove more complicated theorems. How? When the axioms

of refiexivity, symmetry, and transitivity for the equality are "built-in",

any clause containing a substitution instance of (i.e. subsumed by) one

of these clauses is a tautology which can be ignored [Caines!].

• There are further search methods of the same general sort as semantic

tree generation, which are less simple than those discussed in this disser­

tation. An extension of our research is planned in which the theoretical

framework developed here will be used as a basis for more extensive

treatments of search methods based on semantic trees and of the design

of semantic tree generators.

• A parallel semantic tree generator should be explored. There seem to

be many design alternatives when parallelizing the generation of these

trees. The second proposed method for improving the performance of

semantic tree generators is particularly appropriate for implementation

on multiprocessor computers.

• Lastly, a theorem proyer that combines a semantic tree generator with

a resolution-refutation proof searcher seems to offer interesting possibil­

ities.

It is our belief that semantic trees have been unjustly overlooked by re­

searchers in proving unsatisfiability of clauses. With this presentation, we hope

that we have helped to magnify the underestimated role of semantic trees in

automated theorem proving, and thereby have undertaken a first step toward

explC'iting the real potential of semantic tree generators as more practical than

theoretical tools for proving first-order logic theorems.

87



•
Bibliography

[Almullal] M. Almulla and M. Newborn, The pra.cticality of generating se­

mantic trees for proofs of unsatisfiability, submitted to The Tenth Bien­

niai Conference on AI and Cognitive Science, Hybrid Problems, Hybrid

Solutions, Sheffield, England, April 1995.

[Almulla2] M. Almulla, M. Newborn and B. Patrick, An upper bound on the

time complexity of iterative-deepening-A*, Annals of Mathematics and

Artificial Intelligence, Switzerland, V. 5, N. 1-2, pp. 265-78, May 1992.

[Andersonl] R. Anderson and W. Bledsoe, A !inear format for resolution with

merging and a new technique for estab!ishing completeneSG, Journal of

the Association for Computing Machinery, V. 17, N. 3, pp. 525-534, July

1970.

[Andrewsl] P. B. Andrews, Theorem proving via general matings, Journal of

the Association for Computing Machinery, V. 28, pp. 193-214, 1981.

[Bagail] R. Bagai, V. Shanbhogue, J. M. Zytkow and S. C. Chou, Automatic

theorem generation in plane geometry, Methodologies for Intelligent Sys­

tems, 7th International Symposium, ISMIS '93, Norway, Proceedings,

pp. 415-424, June 1993.

[Bledsoel] W. W. Bledsoe, Splitting and reduction heuristics in automatic

theorem proving, Artificial Intelligence, V. 2, pp. 57-78, 1971.

[Boyerl] R. S. Boyer, Locking: A Restriction of Resolution, Ph.D. Thesis,

University of Texas at Austin, Texas, 1971.

88



• [Boyer2] R. S. Boyer and J. S. Moore, A Computafional Logi~ Hanà?ook, Aca­

demie Press, 1988.

iBroy1) M. Broy, On the Herbrand-kleene universe for nondeterministic com­

putations, Theoretical Computer Science, Netherlands, V. 36, N. 1, pp.

1-19, March 1985.

[Caines1] P. E. Caines, T. MlU:kling and Y. J. Wei, Logieal control via auto­

matie theorem proving: COCOLOG fragments implemented in Blitzen­

sturm 5.0, Proceedings of the American Control Conference, San Fran­

cisco, pp. 1209-13, 1993.

[Chang1] C. L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical The­

orem Proving, Academie Press, 1973.

[Chang2] C. L. Chang, Theorem proving by generation of pseudo-semantic

trees, Div. of Comput. Res. and Technol., Nat. Inst. of Bealth, Bethesda,

Maryland, 1971.

[Chang3] C.L. Chang, The unit proof and the input proof in theorem proving,

Jotlrnal of the Association for Computing Machinery, V. 17, pp. 698-701',

1970.

[Chu1] H. Chu and D. A. Plaisted, Model finding strategies in semantically

guided insta'lce-based theorem proving, Methodologies for Intelligent

Systems, 7th International Symposium, ISMIS '93, Norway, Proceed­

ings, pp. 19-28, June 1993.

[Emden1) M. H. V. Emden and R. A. Kowalski, The semantics of predicate

logic as a programming language. Journal of the Association for Com­

puting Machinery, V. 2'3, N. 4, pp. 733-42, October 1976.

[Fermuller1) C. Fermuller, A. Leitsch, T. Tammet and N. Zamov, Resolution

Methods for the Dedsion Problem, Lecture Notes in Artificial Intelli­

gence, V. 679, Berlin, Germany, Springer-Verlag, 1993.

89



• [Fleisig1] S. Fleisig, D. Loveland, A. Smiley III and D. Yarmush, An impIe­

mentation of the model elimination praof procedure, Journal of the As­

sociation for Computing Machinery, V. 28, N. 12, pp. 124-139, 1974.

n

[Gelernter1] H. Gelernter, Realization of a geometry theorem proving machine,

Proc. IFIP Congress, pp. 273-282, 1959.

[Gilmore1] P. C. Gilmore, A proof method for quantification theory; its justi­

fication and realization, IBM J. Res. Develop., pp. 28-35, 1960.

[Hayes1] J. P. Hayes, Semantic Trees: New Foundations for Automatic The­

orem Proving, Ph.D. Dissertation, Department of Artificial Intelligence,

University of Edinburgh, Edinburgh, 1973.

[Herbrand1] J. Herbrand, On the Consistency of Arithmetic, "From Frege ta

Godel: a Source Book in Mathematical Logic", Edited by Jean Van Hei­

jenoort, Harvard University Press, Cambridge, Massachusetts, 1931.

[Herbraùd2] J. Herbrand, Logical Writings, A Thmslation of the "Ecrits

Logiques", Edited by Jean Van Heijenoort, Harvard University Press,

Cambridge, Massachusetts, 1930.

[Hsiang1) J. Hsiang and M. Rusinowitch, Proving refutational completeness of

theorem-proving strategies: the transfinite semantic tree method, Jour­

nal of the Association for Computing Machinery, V. 38, N. 3, pp. 559­

587, July 1991.

[Karll) M. Karl, The Markgraf Karl Refutation Procedure. Memo SEKI­

MK-84-01, Fachbereich Informatik, Univeritat Kaiserslautern, Kaiser­

slautern, West Germany, January 1984.

[KlahrI] Ph. Klahr and D. Waterman, Expert Systems Techniques, Tools and

Applications, Addison-Wesley Publishing Company, 1986.

90



• [Kowalski1] R. A. Kowalski, LogIC for Problem Solving, Elsevier North Hol­

land, New York, 1979.

[Kowalski2] R. A. Kowalski, Search strategies for theorem proving, Machine

Intelligence 5, pp. 87-101, 1970.

[Kowalski3] R. A. Kowalski, Linear resolution with selection function, Meta­

mathematics unit, Edinburgh University, Scotland, 1970.

[Kowalski4] R. A. Kowalski and J. P. Hayes, Semantic trees in automatic

theorem proving, Machine Intelligence 4, pp. 87-101, 1969.

[Letzl] R. Letz, S. Bayerl and W. Bibel, SETHEO, a high performance theo­

rem proyer, Journal oj Automated Reasoning, V. 8, pp. 183-213, 1992.

[LiMinl] F. LiMin, Neural Networks in Computer Intelligence, McGraw-Hill

Series in Computer Science, McGraw-Hill Inc., 1994.

[Lovelandl] D. W. Loveland, Theorem proyers combining model elimination

and resolution, Machine Intelligence 4, pp. 73-86, 1984.

[Loveland2] D. W. Loveland, Automated Theorem Proving: A Logical Basis,

North-Holland Publishing Company, 1978.

[Loveland3] D. W. Loveland, A unifying view of sorne linear Herbrand proce­

dures, Journal of the Association for Computing Machinery, V. 19, N.

2, pp. 366-384, April 1972.

[Loveland4] D. W. Loveland, A linear format for resolution, Proc. IRIA Symp.

Automatic Demonstration, Versailles, France, Springer-Verlag, pp. 147­

162, 1970.

[Loveland5] D. W. Loveland, Sorne linear Herbrand proof procedures: an

analysis, Department of Computer Science, Carnegie-Mellon University,

1970.

91



• [Loveland6] D. W. LO'/eland, A simplified format for the model elimination

theorem-proving procednre, Journal of the Association for Coml,uting

Machinery, V. 16, N. 3, pp. 349-363, 1969.

[Loveland7] D. W. Loveland, Mechanical theorem proving by model elimina­

tion, Journal of the Association f 1r Computing Machinery, V. 15, pp.

236-251, 1968.

[Lugerl] G. Luger and W. Stubblefield, Artificial Intelligence: Structures

and Strategies for Complex Problem Solving, Second edition, The Ben­

jamin/Cummings Publishing Company, 1993.

[Luckhaml] D. Luckham, Refinements in resolution theory, Pme. IRIA Symp.

Automatic Demonstration, Versailles, France, Springer-Verlag, pp. 163­

190,1970.

[Luckham2] D. Luckham, Sorne tree-pairing strategies for theorem proving,

Machine Intelligence 3, pp. 95-112, 1968.

[Mannal] Z. Manna, Mathematical Theof"),' of Computation, McGraw-Hill Se­

ries in Computer Science, McGraw-Hill Inc., 1974.

[McCunel] W. McCune, Otter 2.0 Users Guide, ANL-90/9, Argonne National

Laboratory, Mathematics and Computer Science Division, 1990.

[McCharenl] J. D. McCharen, R. A. Overbeek ~d L. A. Wos, Problems and

experiments for and with automated theorem·proving programs, IEEE

7hmsactions on Computers, V. C-25, N. 8, pp. 773-782, 1976.

[Michiel] D. Michie, R. Ross and G. Shannan, G-deduction. Machine Intelli·

gence, V. 7, New York, pp. 141-165, 1972.

[Newboml] M. Newbom, The Great Theorem Prover Version 2, Newborn

Software, 1994.

92



• [Newborn2] M. Newborn, Y. Qingxun and H. Zhang, Test Results for the

Great Theorem Prover, Technical Report - SOCS91.9, September 1991.

[Nilsson1] N. J. Nilsson and M. R. Geneserth, Logical Foundation of Artificial

Intelligence, Morgan Kauffman Publishers, Inc., 1987.

[Nilsson2] N. J. Nilsson, Principles ofArtificial Intelligence, Morgan Kauffman

Publishers, Inc., 1980.

[Nilsson3] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence,

McGraw-Hill Series in Computer Science, McGraw-Hill Inc., 1971.

[Norton1] L. M. Norton, Experiments with a heuristic theorem proving for the

predicate calculus with equality, Artificial Intelligent V. 2, pp. 261-284,

1971.

[Norton2] L. M. Norton, Adept-A Heuristic Program for Proving Theorems of

Group Theory, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1966.

[Nossum1] R. Nossum, Automated theorem proving methods, Nordisk Tid­

skrijt for Informationsbehandling (BIT), V. 25, N. 1, pp. 51-64, 1985.

[Nossum2] R. Nossum, Decision Algorithms for Program Verification, Univer­

sity of Oslo, 1984.

[Passos1] E. P. Passos, R. L. De Carvalho and M. M. Pion, Interactive system

to construct minimal model on the Herbrand universe, Proceedings of a

Symposium Organized by the Austrian Society of Cybemetic Studies, pp.

337-342, 1982.

[Passos2) E. P. Passos, R. L. De Carvalho and S. R. Peixoto, Communication

pre<iicates: a complete strategy for resolution-based theorems provers

an Evaluation of an Implementation, Proceedings of the Fourth Inter­

national Congress of Cybemetics & Systems, Netherlands, pp. 60-62,

August 1978.

93



• [Pelletier1] F. J. Pelletier, Seventy-five problems for testing automatic theorem

proyers, Journal of Automated Reasoning, V. 2, pp. 191-216, 1986.

[Peterson1] G. Peterson, A technique for establishing completeness results in

theorem proving with equality, SIAM Journal on Computing, V. 12, N.

l, pp. 82-100, February 1983.

[Plotkin1] G.D. Plotkin, Building-inequational theories, Machine Intelligence,

V. 7, pp. 73-89, 1972.

[Putnam1] H. Putnam and M. Davis, A computing procedure for quantifica­

tion theory, Journal of the Association for Computing Machinery, V. 7,

pp. 201-215, 1960.

[Qian1] L. R. Qian, Semantic mappings on Herbrand base, Chinese Academy

of Sciences (Science Bulletin). Eng!ish Edition, V. 27, N. 10, pp. 1042­

1045, 1982.

[Quaife1] A. Quaife, Automated development of Tarski's geometry, Journal of

Automated Reasoning, V. 5, pp. 97-118, 1989.

[Reboh1] R. Reboh, B. Raphael, R. Yates, R. K!ing and C. Verlarde, Study

of automatic theorem-proving programs, Technical Note 75, Artificial

Intelligence Center, Stanford Research Institute, Ca. November 1972.

[Reiterl] R. Reiter, Two results on ordering for resolution with merging and

!inear format, Journal of the Association for Computing Machinery, V.

18, pp. 630-646, October, 1971.

[Robinson1] J. A. Robinson, Computationallogic: the unification computllr

tion, Machine Intelligence 6, pp. 63-72, 1971.

[Robinson2] J. A. Robinson and L. Wos, Paramodulation and theorem proving

in first order theories with equality, Machine Intelligence, V. 4, pp. 135­

150, 1969.

94



• [Robinson3] J. A. Robinson, The generalized resolution principle, Machine

Intelligence 3, pp. 77-94, 1968.

[Robinson4] J. A. Robinson, A review of automatic theorem proving, Proc.

Symp. Appl. Math. Amer. Math. Soc. 19, pp. 1-18, 1967.

[Robinson5] J. A. Robinson, A machine-oriented logic base<! on the resolution

principle, Journal of the Association for Computin9 Machinery, V. 12,

N. 1, pp. 23-41, 1965.

[Robinson6] J. A. Robinson, Automatic deduction with hyper-resolution, In­

ternational Journal of Computing Machinery, V. 1, pp. 227-234, 1965.

[RobiDson7] J. A. Robinson, Theorem-proving on the computer, Journal of the

Association for Computing Machinery, V. 10, pp. 163-174, April 1963.

[Siklossy1] L. Sikloosy and V. Marinov, Heuristic search and exhaustive

search, Proc. 2nd International Conference on Artificial Intelligence,

London, pp. 601-607, 1971.

[Slagle1] J. R. Slagle, Automatic theorem proving with built-in theories in­

cluding equality, partial ordering and sets, Journal of the Association

for Computing Machinery, V. 19, N. l, pp. 120-135, January 1972.

[Slagle2] J. R. Slagle and C. D. Farrell, Experiments in automatic learning for

a multipurpose heuristic program, Comm. Association for Computing

Machinery, V. 14, pp. 91-99, 1971.

[Slagle3] J. R. Slagle, Automatic theorem proving with renamable and seman­

tic resolution, Journal of the Association for Computing Machinery, V.

14, N. 4, pp. 687-697, October 1967.

[Spencer1] B. E. Spencer, Avoiding duplicate proofs, Logic Programming. Pro­

ceedings of the 1990 North American Conference, Austin, TX, pp. 569­

84, October 1990.

95



• [Starkey1] J. D. Starkey and J. D. Lawrence. Experimental tests ofresolution

based theorem-proving strategies. Technical Report, Computer Science

Department, Washington State University, W8,.!;hington, April 1974.

[Stickell] M. E. Stickel, Automated theorem proving research in the fifth gen­

eration computer systems project: model generation theorem proyers,

Future Generation Computer Systems, V. 9, N. 2, pp. 143-52, July 1993.

[StickeI2] M. E. Stickel, A Prolog technology theorem proyer: implementatioll

by an extended Prolog compiler, Journal of Automated Reasoning, V. 4,

pp. 353-380, 1988.

[StickeI3] M. E. Stickel, An analysis of consecutively bounded depth-first

search with applications in automated deduction, Pl'Oceedings of the

Ninth International Joint Conference on Artificial Intelligence, Los An­

geles, Cal., V. 2, pp. 1073-1075, August 1985.

[Stolll] R. Stoll. Set Theory And Logic, W. H. Freeman and Company, A series

of books in mathematics, 1963.

[Tanimoto1] S. L. Tanimoto, The Elements of Artificial Intelligence: An In­

troduction Using LISP, Computer Science Press, Rockville, Maryland,

1987.

[Wang1] S. Wang and P. E. Caines, Automated reasoning with function eval­

uation for COCOLOG with examples, The 31st IEEE Conference on

Decision and Control, 'l\isca, AZ, December 1992. Complete version:

Research Report N. 1713, INRIA-Sophia Antipolis, 1992.

[Wilson1] G. Wilson and J. Minker, Resolution, refinements, and search strate­

gies: a comparative study, IEEE 7hmsactions on Computers C-25, N.

8, pp. 782-801, August 1976.

[Wos1] L. Wos, Automated reasoning answers open questions, Notices of the

American Math. Society, pp. 15-26, January 1993.

96



• [Wos2] L. Wos, R. Overbeek, E. Lusk and J. Boyle, Automated Reasoning:

Introduction and Applications, 2nd Edition, McGre.w-Hill Series in Com­

puter Science, McGraw-Hill Ine., New York, 1992.

[Wos3] L. Wos, Automated Reasoning: 33 Basic Research Problems, Engle­

wood Cliffs, New Jersey, Prentice-Hall, 1988.

[Wos4] L. Wos, Efficieney and eompleteness of the p set-of-support strategy in

theorem proving, Journal of the Association for Computing Machinery,

V. 12, pp. 536-541, 1965.

[WosS] L. Wos, D. Carson and J. A. Robinson, The unit preference strategy

in theorem proving. Proc. AFIPS 196~ Fall Joint Computer Conference,

V. 26, pp. 616-621, 1964.

[Urquhartl] A. Urquhart, Hard examples for resolution, Journal of the Asso­

ciation for Computing Machinery, V. 34, N. 1, pp. 209-219, 1987.

97



•
Appendix A: Proving the
Stickel Test Set using the
AISTG

98



SlJategy 6: FL!I BastStrategy 5: FLS+SOSStrategy 4: LFStrategy 3: SOSStrategy 2: FLS( PP. 117 ) Av1: Harb. Proc -- _.
Theorem Proven 'E......... ,~ lime Proven • Element! Toma Proven • Element Tine Proven • Element Tins Proven • Element Tina Proven • Element! Tins

bursl No 66 65m Vas 45 9s No 70 65m Vas 17 ls No 96 65m Vas 45 22s 4

short No 90 500s Vas 11 0 No 105 500! No 87 315 No 43 1205 Vas 14 15 2

prima Vas 187 5.5h Vas 31 2175 Vas 28 1545 Vas 187 5.5h Vas 21 9s Vas 31 290S 5

haspal No 252 54s No 91 205 No 281 555 No 33 15m No 270 55s No 64 13s 0

haspe2 No 93 93s No 96 15m No 120 955 No 64 5s No 123 95s No 65 175 0

ancas Vas 6 15 Vas 6 15 Vas 6 15 Vas 6 15 Vas 6 ls Vas 6 15 Any

numl Vas ln 4h Vas 17 25 Vas 218 4h Vas 22 96s Vas 209 4h Vas 17 25 2,6

groupl No 96 40m No 96 4465 No 56 83s No 47 40s No 56 83s No 56 83s 0

group2 Vas 59 15Dm Vas 26 405 Vas 109 l50n Vas 58 3445 Vas 96 163m Vas 16 45 6

awl Vas 5 0 Vas 5 0 Vas 5 0 Vas 5 0 Vas 5 0 Vas 5 0 Any

aw2 Vas 3 15 Vas 3 15 Vas 3 15 Vas 3 ls Vas 3 la Vas 3 1s Any

aw3 Vas 5 ls Vas 5 15 Vas 5 ls Vas 5 ls Vas 5 lB Vas 5 15 Any

robl Vas 13 105 Vas 10 0 Vas 9 0 Vas 8 0 Vas 9 0 Vas 10 0 4

rob2 Vas 54 156rr Vas 25 325 Vas 108 4.3h Vas 62 156n Vas 90 166m Vas 16 25 8

mlchle Vas 162 5.4h Vas 262 5.4h Vas 187 5.4h Vas 196 5.4h Vas 187 5.4h Vas 187 5.4h 1

qw Vas 3 ls Vas 3 0 Vas 3 15 Vas 3 0 Vas 3 0 Vas 3 ls Any

mqw Vas 3 15 Vas 3 0 Vas 3 0 Vas 3 0 Vas 3 0 Vas 3 15 lAny
DBABH No 62 >4h No 114 945 No 102 4h No 83 175 No 102 4h No 98 66s 0

APABH No 271 60s No 95 1905 No 73 355 No 300 635 No 93 445 No 94 4355 0

llelslg 1 No 100 1565 Vas 30 945 Vas 26 82s Vas 38 74s Vas 26 16s Vas 30 195 3,5

llelslg 2 No 150 2485 Vas 34 325 Vas 42 4645 Vas 26 85 Vas 42 408s Vas 34 30s 4

Iisisig 3 No 70 62m No 91 104s No 64 747s No 112 1445 No 95 122s No 83 90s 0

Ilaisig 4 No 42 51m No 42 270s No 42 51m No 76 115s No 42 51m No 22 453s 0

IIalslg 5 No 42 57m No 25 253s No 42 57m No 76 1585 No 42 57m No 22 457s 0

h = hours m = minute; s=second.



Strategy 6: FLsI' BestSlrBtegy 5: FlS+SOSStrategy 4: LFStrategy 3: SOSSirategy 2: FLS(PP. 98)~ 1: Herb. Pree - -~ --

Theoram Proven 'Element, TIme Proven , Element, Time Proven 'Element TIme Proven 'Element TIme Provan 'Element TIma Proven 'Eleman TIm

wos 1 No 95 21m No 64 50s No 70 52s No 99 156 No 70 70s No 77 67s 0

wos2 No 70 120m No 60 50s No 63 30s No 70 91s No 81 75s No 47 346s 0

wos3 Yes 8 0 Yes 13 ls Yas 62 14s Yas 14 4s Yas 93 64s Yes : 19 4s 1

wos4 Yes 72 571s Yes 160 25m Yes 38 78s Yes 119 675s Yas 119 809m Yas 121 733s 3

wos5 No 101 1.251 No 74 1795 No 63 40s No 70 56s No 126 207s No 126 174s 0

wos6 No 56 2.10h No 45 571s No 57 2h No 64 2h No 85 2h No 92 2h 0

wos7 Yes 74 30m Yas 46 118s Yas 136 35m Yas 116 32m Yas 112 30m Yas 111 30m 2

wos8 No 94 15m No 78 261s No 60 41s No '50 79s No 54 33s No 26 7s 0

wos9 No 130 2h No 158 2h No 40 935 No 130 2h No 56 31s No 150 2h 0

wos 10 Yas 70 119m Yes 34 266s Ye~ 131 134r Yas 78 119m Yas 117 119m Yas 108 119m 2

wos 11 No 105 3.5h No 140 3.5h No 149 3.5h No 112 3.5h No 116 3.5h No 133 3.5h 0

wos12 Yas 24 12s Yas 11 0 Yes 10 0 Yas 11 ls Yas 6 0 Yes 11 ls 5

wos 13 No 103 som Yas 16 ls No 82 42m No 51 69s Yas 10 0 Yas 22 6s 5

wos 14 Yes 30 93s Yes 23 35 Yas li' 2s Yas 80 166s Yas 16 35 Yas 93 3135 5

wos 15 No 108 som No 92 166 No ~~
No 108 som No 52 94s No 46 408 0

wos 16 Yas 24 36s Yas 100 397s Yas 1 106 08s Yes 22 208 Yas 75 71. Yes 21 11s 6

wos17 Yas 69 5h Yas 135 5h Yas 93 5h Yes 107 5h Yas 106 5h Yas 105 5h 1

wos16 No 108 2.1 Oh Yes 8 0 No 65 89s No 116 2.1h No 75 84s Yas 8 0 2,6

wos19 No 83 42m Yas 10 0 No 96 43m No 90 42m No 72 234s Yas 13 ls 2

wos2O No 102 51m No 94 55Bs No 117 51m No 109 51m No 85 261s No 59 148s 0

wos21 No 79 58m No 95 5395 No 91 55s No 31 25s No 53 19Bs No 26 128 0

wos22 No 35 50s No 54 266s No 62 54s No 54 166s No 53 22s No 41 32s 0

wos23 No 43 sm No 53 527s No 34 15m No 5 0 No 50 1928 No 73 sm 0

wos24 No 43 Sm No 53 249s No 34 15m No 5 0 No 25 668s No 20 15s 0

wos25 No 43 5m Yes 15 3s No 83 1135 No 3 0 No 116 428 Yas 13 35 6

h = hours m = minute~ s=second.



•Strategy 6: FlS+lF BestStrat~ 5: FlS+SOSStral~4:LFSlralegy 3: SOSStralegy 2: FlS(PP. Il) tIt~1: Herb. PlOC -- _. -.
TIIeorem Proven 'Element.! TmE Proven , Element Tune Proven , Elemant! TmE Proven 'Elemenl TmE ~roven , Elements Tine Proven , Element! Tine

wos26 No 72 36m No 66 340! No 65 31&. No 106 54s No 69 lQ';s No 62 1095 0

wos27 No 48 63m No 40 20s No 33 26S No 55 63m No 57 223s No 33 195 0

wos28 No 41 2625 No 20 205 No 46 95 No 47 2625 No 44 285 No 48 125 0

wos29 No 73 5915 Yes 15 25 No 55 46s No 76 5915 No 28 185 No 66 62 2

wos30 No 90 4h No 41 835 No 34 295 No 6 15 No 66 1625 No 64 1895 0

wos31 No 69 2.1h No 60 2905 No 38 15m No 20 15m No 42 8715 No 37 15m 0

wos32 Yes 31 7565 Yes 19 95 Yas 38 2005 Yes 88 903s Yes 68 23m Yes 17 165 6

wos33 Yes 70 12h Yes 115 12.1h Yas 125 12.11 Yes 120 12h Yes 128 14h Yes 107 12.1t 1

slrk 5 Yes 2 0 Yas 2 0 Yes 2 0 Yes 2 0 Yes 2 0 Yes 2 0 Any

strk17 Yes 69 8h Yes 109 8.15h Yes 18 ls Yes 27 99s Yes 17 2s Yes 134 8.1h 5

strk23 No 65 55m No 65 935 No 0 0 No 65 2075 No 64 317s No 68 3495 0

strk26 Yes 21 0 Yes 16 0 Yas 10 0 Yes 78 1625 Yes 70 1285 Yes 70 1285 3

slrk28 No 225 22m No 27 15m No 90 425 No 11 ls No 49 835 No 83 som 0

slrk29 No 250 33m No 60 265 No 89 36s No 11 15 No 59 425 No 59 445 0

slrk 35 No 30 2025 No 27 2575 No 48 1585 No 32 4055 No 29 3425 No 25 165 0

strk 36 No 131 29m No 74 1125 No 59 3625 No 135 29m No 93 525 No 94 765 0

strk 37 No 52 4655 No 30 1115 No 22 25 No 55 1925 No 29 25s No 29 25s 0

strk 41 Yes 8 0 Yes 4 0 Yes 6 0 Yes 57 281 Yes 28 65 Yes 28 65 2

slrk 55 No 245 2h No 64 195 No 96 645 No 269 2h No 28 65 No 39 lOS 0

slrk 65 No 250 25m Yas 17 0 No 82 195 No 45 165 No 114 43s Yes 16 ls 6

slrk68 No 257 20m Yes . 13 0 Yes 3 0 No 106 86s Yes 3 0 No 65 115s 3,5

slrk 75 No 258 6685 No 94 615 No 59 155 No 120 186s No 89 1255 No 65 1125 0

strk 76 Yas 17 205 Yes 5 0 Yas 10 ls No 78 52s Yes 16 21s Yes 68 114s 2

slrk87 No 250 32m Yes 55 675 No 22 35 No 45 12s No 102 57s Yes 58 577s 2

strll 100 Yes 24 7415 Yes 4 0 Yas 16 75 Yes 8 0 Yes 18 40S Yas 6 0 2

h=hours m= minuta; s=sacond.
'--"



Slrelegy 6: FlS+' BeslStrategy 5: FlS+SOSSlralegy 4: LFStre~egy 3: SOSStrate9Y 2: FLS
e

(PP. 100) Strategy 1: Herb. PlOC -- -- --
Theorem Proven /1 Elemen~ T1me Proven /1 Element Time Proven /1 Element T1me Proven /1 Element T1me Proven /1 Element T1me Proven /1 Element! Tlma

strk 103 Vas 37 7.3h Vas 22 160! Vas 12 ls Vas 109 7.3h Vas 9 ls Vas 25 313 5

strl< 105 Vas 66 12h Vas 8 0 Vas 19 16s Vas 22 25m Vas 18 6s Vas 15 22s 2

strk 106 No 66 2.2h Vas 13 35 No 50 625s No 50 15rr No 88 15m No 33 15m 2

strl< 108 No 231 46m No 65 20m No 125 98s No 261 47rr No B5 79s No 92 182s 0

sIri< 111 Vas 66 7.5h Ves 4 0 Vas 27 19m Ves 23 72s Vas 19 9s Vas 15 2s 2

strk 112 No 230 35m No 93 120 No 252 35m No 247 36m No 82 131s No 120 312! 0

sIri< 115 No 120 2.4h Ves 21 68s No 102 65s No 106 122 No 74 llls No 63 15m 2

strl< 116 No 130 2.4h Vas 14 0 No 78 235 No 40 15m No 58 2535 No 112 90s 2

sIri< 118 No 240 377s No 54 64s No 262 3795 No 39 33s No 70 1305 No 65 48m 0

sIri< 121 No 190 41m Vas 38 8.5h No 94 51s No 79 59s No 61 1035 No 78 935 2

Total 31 47 34 33 35 41 47

h-hours; m = minute; s = second.



•
Appendix B: Two Sample Runs
of a Canonical Semantic Tree
Generator

103



E.,.r • .me of tlll.~r'm (type '1' for laelp): _t&l'ka28

2: PAAA
lSl PAEA
1: PEAE

11: SOA
a: PAOAA
11: PEAGA

20: PEOAE
nI POAAE

• Predlcatall S P FlaIlC&iOIlI: A E G F
1: [UM-l P.)'Fx)'
2: (uM- P.OxE
., ~M-J PKElt
41 -M-I ~P.)'I ·PYIl" -Pxvw P..r.
ôl -M- -P.,. -Pyuv -PI.W P.lI:VW

e, [UM-I PEu
Tl (UM- PGnE
Ih Hd-] ·S. ·S)' SI -PxO)'.
Ih [UM-] SA

IDS (UM-) ·SOA
11 SA
..~ PAAE
Tl PEAA

ID: PEEE
U: PAEGA
li: PAGAGA
li: PEGAA
221 PGAAA
25; POAEA

Pr_ f1a'e, to coadall"
P .......

Deplia 1

NodedaTte. _ 2:
1

Dep'il 2:

Nod..IaTr" • 5
1

Dep"" S

Nod.laTne _ G
1

DepU.. "

Nod..IaTr.. ,.. 14
1

Dep'il li

NocI..laTr.. D 21
1

Dep'••

Nod.laTr.... 28
1

Dep'" T

Hodul.Tt... n
1

Dep"" 1

Nod.J.Tr.. _ aD
1

Deplia ,

Nod..laTt... es
1

0.,&1.10

Nod.JaTtee _ TT
1

Dep'" 11

Node.IaTt... &:1
1

Dep'" 12

Nod.laTt... lOi
1

Dep'" 13

Nod.laTr... U.

•o.p." .4

Nod.J.n- • 14T

•Dep." 18

Nod.laTt... 2SJ

•DeP'" 1.

N"-laTr... 342

3: SE
el PAEE
il PBEA

UI PAAOA
111: PAOAE
111 PEEOA

:ni PEOAOA
'HI POAAOA

•o.pt. Il

Nod..IaTne _ 40U,
o.ptll 11

Nod..IaTr.. _ lS8lS
T

o.plll 11

Nod..IaTr.. _ 880

•o.ptll 2(1

Nod..IaTr.. _ liT,.
Deptll 21

PROOF FOUNDIIIII
Nod..laTr.. _ 1185...
01••••~dom.1

11 Pa,Fa)'
21 PlOIE
J: PIEI
41 -PI" -P)'•• ·PI•• Pu.
51 -PI" -P,•• ·P••• Pa••
IIPE..
TI POliE
Il ·5. ·5)' S. -P.O,.
Il SA

N'I_tad eo.el.l1oa:
lOS -SOA

H.,braad b....to., Il,1p.d provl•• IItCl tll.or...u
Il SA
21 ·PAAA
SI SE
41 -PAAE
Il PAEA
1: -PAEE
T: PEAA
'1 -PEAE'1 -PEEA

101 PEEE
111 -SOA
121 PAAOA
!SI -PAEOA
141 -PAOAA
111 PAOAE
111 ·PAGAOA
IT: ·PEAOA
1': -PEEGA
1'1 -PEGAA
201 ·PEGAE
UI PEGAGA

ELYI 0 MC, PHS 11 11 MC, PHB 2: -NA- TolU S••rcll Tlmll 111 ..c
NODI 1111 RES: 111114 FAC: 0 MXCI T MXLI S
HTEI 0 HTHI 0 HTFI 0 HSZI 282144
LTB: 0 LTHI 0 LTFI 0 LSZ: I5l1S'
BASI 10 LENI 0 + 0 OPTI -SOS +MEROE

HBEIe.. _ 21

NOli..I.Tr__ 1115

104



• T", foOo.11l1 'XLmplll ....0111'••Ile caa.oll.lc&1 Mmullc
tr_ •••• ,.\or plllltlila &iae Hmq,k: '"e 011 acl.'.... belli'
........ecl for Il'1_1::1:

Nod.I.Tr... 17

•o..,.. 6

2: ra..
6: rae
1: paa.e
111 pe....
U: peee
171 u,a
20: " •••
231 pa.a.
:le: P'.'.

:18: peau

Predle..... l 0 r p F.RCtiO.':" III 1 f
11 UM-l pI.X
'h UM- Plz.,
31 UM- p.,.I.,-
"1 oM-I"pII:1. ·pyay ·pI•• p.vw
6: .M- ·px)'. 'PYIlV ·pxv. p...
e: UM-J rxx
Tl oM-l-,a,. ry.
1: -M- ·u:)" ·'Y' r:u
Ih -Jd- , •• ·PJ:Y' ·plI".

ID: .M- -u" ·P". pu,
111 -M- ·'.Y ·P". ply.
nI -M- ·'.Y ·pu. pyn
UI -M- -'.7 du:'.,.
141 -M- -rll" ri..')'.
1111 .M- ·'ll)' "xU
.el UM-I px..:
171 UM- px...
111 oN-I-ox '0)' 01 ·PJ:111

1111 .M- ·01: oy "'.Y
~Ol UM-) o.
~lS [UM-J -oe

11 oaC, _

Tl ,.
10: p_
U: pella

Il: ' ....
Hh "M
22: p .
2111 P .
nl~,_

Pr_ '.&"'f '0 c:o••I•••.
P......

Dep." 1

E rAILBnl
El
E
E :lFAIL - MAX DEPTH
Nod..I.Tr.. _ :1

•o.plil :1

E FAILSIII
El
E
E :lFAILSIII
E2I
E2
E 2:1FAIL ~ MAX OEPTH
Nod.i.n.. _ •

•o.pl" 3

E FAILSIII
El
E
E ,FAILSIII
E2I
E2
E 22
E :l3IFAIL ~ MAX DEPTH
Nod.J.n.. _ 11

•Deplil 4

E FAILSIII
El
E
E :lFAILSIll
E2I
E2
E 22
EnI
E 23I1FAIL • MAX DEPTH

3: paaa
e: na
,,: paea
12: peN
151 0la
18: r,aa
211 paala

24: paiN
2TI p"la

301 pela,a

E FAILSIII
El
E
E 2FAILSIII
E 21
E2
E 22
E :I:I1FAILSIII
E2:111
E 221
E :1:11:1
E :I:I1:11FAIL • MAX DEPTH
Nod.I.Tr.. _ :Ill

•O.plil •

E FAILSIII
El
E
E :lFAILSIII
E2I
E2
E 22
E :l3IFAILSIII
E :1:111
E:l3I
E :l3I:lFAILSIII
E :131:11
E ':11:1
E :13122
E :I:l1:I:lIFAIL • MAX DEPTH
Nod.I.Tr.. _ 35

•Deplil T

E FAILSIII
El
E
E :lFAILSIII
En
E2
E 22
E 231FAILSlII
E 2211
E 221
E 2212FAILSIIl
E :12121
E 2212
E 2:11:12FAILSIII
E '21:121
E 2:11'2
E "1222FAILSIII
E 2212:121
E "1:1'2
E 2212:122FAIL • MAX DEPTH
Nod.I.Tr. _ ..

•
o.,lil •

E FAILSIII
El
E
E 2FAILSIII
E 21
E2
E 22
E 221FAILSlll
E 2211
E 221
E 2,12FAILSIII
E 2'121
Enu
E '2122PAILSIII
E 221221
E '2122
E '2U22PAILSIII
E 2:11'231
Z 2212"
B 221222'
E 321222'lFAIL • MAX DEPTH
N......TrM _.,

•0..$11 ,

105



• E FAILSm
El
E
E 2FAILSIII
E21
E2
E 22
E :z:nFAILSlII
E 2211
E 221
E 2:lUFAILSIII
E 22121
E 2:112
E :I:l122FAILSliI
E 2:U221
E 22122
E 221222FAILSlII
E 2:11:il:Z:ll
E 221222
E 2:1112222
E 22122221FAILSIli
E :nI122211
E 2:11:32221
E '212222l:JFAIL _ MAX DEPTH
NodulaTree =78

•Deplia 10

E FAtLSIII
El
E
E :IFAILSIII
E 21
E2
E 22
E 2:11FAILSIIl
E 2211
E 231
E 2212FAILSlII
E 2212:1
E :Ina
E 2:J122FAILSIII
E221:i1U
E 2:1122
E 221:122FAILSIII
E 2212321
E 2212n
E 2312222
E :il21222:nFAILSIII
E 2:11232211
E 2212:12:n
E 2:1U22Ua
E 231222:11:11 FAIL. MAX DEPTH
Nodal.Tr" .. 85•Dep'"11

E FAILSIII
El
E
E 2FAILSllI
E 21
E2
E 22
E 2:11FAILSlII
E 2211
E 221
E 2212FAILSIII
E 22121
E 2212
E 2:i1U2FAILSIII
E 2:i11221
E 22122
E 22unFAILSIII
E 2212221
E 221222
E 2212222
E 22122221FAILSlll
E 221222211
E 22122221
E 221222212FAILSIII
E 2212222121
E 221n2212
E 2212222122 FAILSIlI
E 2212222122 1
E 2212222122
E 2212:122122 2FAIL - MAX DEPTH
NOlhII.Tn. • lla
•

E FAtLSIII
El
E
E 2FAILSlll
E 21
E2
E 22
E "UFAILSlII
E 2211
E2:n
E 2:U2FAILSIII
E 22121
E 22l:J
E 22U2FAtLSIII
E 221:J21
E 221:12:
E :nU22FAILSIII
E 2U1221
E 2:11'1:12
E 221222:i1
E 23122'.. IFAILSIIt
E 2212:12211
E :1212:1:121
E :l21:122212FAILSllt
C 221:12:12UI
E 2:i11222:i1U
E 2:11:1222122 FAILSIII
E 2:112:12'132 1
E 2312222122
E 22U:J:l3122 :1
E 22132221:32 :lIFAIL • MAX DEPTH
Nod..I.Th.. _ ue
•O.p," 11

E FAILSIII
El
E
E 2FAILSlII
E 21
E2
E23
E 2:nFAILSIII
E 2211
8221
8 2212FAILSIII
822121
82212
8 22122FAILSIII
82212U
822122
8 221222FAILslII
E 2212221
E 221222
E 2212222
E 22122221FAILSIlI
E 221222211
E :il21222:11
E 221222212FAILSIII
E 221222:i1121
E 221222:i112
E 2212222122 FAILSIII
E 2212222122 1
E 2212222122
E 221:i122:1122 2FAILsm
E 2212222122 :n
E 22122n122 2
E 22122n122:i12
E 2212222122 221FAIL _ MAX DEPTH
Nod.I.Ttet _ ln

•o.,," 1"

E FAILBIII
El
E
E 2FAIL8m
E 21
E2
En
E 221FAIL8111
E 2nl
E 221
E 2212FAILSIII
E 22121
E 2212
E 22122'AILSIIl

106



• E ~21221

E 22122
E 2,1222FAILSlII
E '213231
E 221222
E 2212:122
E 2'U:n31FAILSIU
E 2213"211
E 22132221
E 22U222nFAILSIII
E :nU'22121
E 221322212
E 2212222132 FAILSIII
E "n222U2 1
E 2'132231:12
E 221UJ2U2 UAILSIII
E 22n223122 21
E 221222'122 :1
E 221322212' :il2
E 2212223122 2:nFAtLSllI
E 2212232122 2211
E :1312232122 2:nFAJLSlII
E 221:3223122 2212
E 22U2:J:n'2 2:11
E 22122231:12 :1I2:
E 22122231:i1:1 222FAILSIII
E 22122:;121:1:;1 :n21
E 2211222122 :122
E 22122221:12 2222FAIL _ MAX DEPTH
Nod..laTr... liT
1

IHpd.. 16

E FAIL9111
El
E
E 2FAIL911l
E 21
E2
E 22
E 221FAIL9111
E 2211
E2n
E 2212FAILSIII
E 22121
E 2212
E 22122FAIL911l
E 221231
E 22122
E 22U22FAILSIII
E 22122n
E 221222
E 2212212
E 22122221FAILSIII
E 221222211
E 22122221
E 22122'212FAILSIII
E 2212222121
E 221222212
E 2212212122 FAILSIII
E 2212222122 1
E 2212212122
E 2212222122 2FAILSlII
E 2n22221'U 21
E 2212222122 2
E 1212222122 22FAILSIII
E 221222':11 22 2':11
E 2212222122 22
E 2212222122 222FAILSIlI
E 2212222122 2221
E 2212222122 222
E 2211212122 2222
E 2113222122 22221FAIL • MAX DEPTH
Ne.-4.laTne • 214
1

o..... Il

E FAILSIII
El
E
E 2FAILSllI
E 21
E2
E22
E 221FAIL9111
E 2111
E 221
E 21nFAtUII1
E 22121
B 2212

E 2'U2FAILSIII
E221:3:11
E 22122
E nl:l22FAILSlll
E 2312221
E 221222
E 2212222
E 22122221FAILSllI
E 231222211
E 23122231
E 22122'Z312FAILSlII
E 22122221:11
E :;1212:12212
E 221222:n:.12 FAILSIII
E '212:122132 1
E 2212:122132
E 221:3:132122 2FAILSIII
E 2212222132 21
E "122'2132 :1
E "132:12122 2'
E 221322212:1 221FAILSIIl
E 22122:12132 2'11
E 221::2'212:1 2'lFAILSIII
E 22U222122 2212
E 2212222122 221
E 2212233122 n
E 2212323122 222FAILSIII
E 2212322122 2221
E 2212232122 222
E 2~1222n12 2222
E 22122221:12 22221
E 2312232122 222211FAIL _ MAX DEPTH
Nod.laTte. • 244
1

0.,'11 IT

E FAILSIII
El
E
E UAILSIII
E 21
E2
E 22
E 221FAILSIII
E 2211
E 221
E 2212FAILSIII
E 22121
E 2212
E 22U2FAILSIII
E 2':112:n
E 2':1122
E 22122UAILSIII
E 22122n
E 221222
E 2212222
E 221U221FAILSIII
E 221222211
E 221222':11
E 2~1222212FAILSIII

E 2212222121
E 221222212
E 1212222122 FAJLSIII
E 2:112:1:1:112:1 1
E :12122:1:1122
E 221222:112:1 2FAILSlII
E :1:1122:1:1122 21
E 2':112222122 2
E 2212222122 22FAILsm
E 2212222122 221
E 2213122122 22
E 2212222122 222FAILSIlI
E 2212222122 2221
E 2212212122 222
E 2212222122 2222
E 2212222122 22221FAI'~SIII

E 2212222122 222211
E 2212222122 23221
E 2212222122 22221:1
E 221322213:1 232213IFAIL • MAX DEPTH
Ho4eel.Tr. • 1T"
1

0.••• 1.

E FAIL9111
El
E
E 2FAILBIII
E 21
1:2

107



• E22
E :J:nFAILSlII
E 2211
E :J:ll
E 22UFAILSllI
E :121:11
E 2213
E 22U2FAILSIII
E 221221
E 2n22
E 2:zl:il22FAILSIII
E 221'2'1
E 221:122
E 2212222
E 22122221FAILS\1I
E 2212::12:311
E 22U22:zl
E 221:122:U2FAILSlll
E 22122:;12121
E :il21222:n2
E 2212222122 FAILSlII
E 2212222122 1
E 2212222122
E 331:1222122 2FAILSIII
E :an2222.2:J :n
E 231222:1122 :1
E :1;'1:3222122 22
E :;121'2'2122 221FAILSIlI
E 22.2222123 2211
E 2212222122 2:nFAILSlIl
E 22122221:12 :ln2
E 2:n2232U2 2:31
E 22132:121:12 22
E 22132221:3:1 222FAILSIII
E 221:1222122 :n:11
E :lIU2222122 2:1:1
E 2:n222212:a 2222
E 2:112222122 2222.
E 2:112:3221:12 222211
E :J21222Uil2 2222111FAILSIII
E 23122'21:;12 22221111
E 2212222122 2222111FAILSIII
E 2212122122 22::331112
E 2212233132 :1222111
E 2212222122 2:J'Ull
E 2312222123 2222112FAILSIII
E 221:1223122 22221121
E 2:n2:J2:nn 2222112
E 2:n:J2:nUa 2:l221122FAIL • MAX DEPTH
Nod_la1'JM • Slo
1

Dep," l'

E FAIL9111
El
E
E 2FAILSII1
Eu
E'
E ..
E 221FAILSI1I
E 2211
& 221
E 2212FAILSIII
E 22121
& 2212
& 22122FAILSIII
& 221221
& 22122
& 221222FAILSIII
& 2212221
E 221222
&2212222
& 22122221FAILSIII
E 221222211
E 22122221
E 221222212FAILSIII
& 2212222121
E 221222212
& 2212222122 FAILSIII
E 2212222122 1
E 2212222122
E 221222212~ ~FAILSlll

E 2212222122 21
E 221222212~ 2
& 2212222122 22FAILSIII
& 2212222122 221
E 2212222122 22
E 2212222122 222FAILSIII
& 2212222122 2221
E 2:.J1222212~ 222

& 2212222121 ..2
& 2212222121 .,u21
E 2212:12:i12:a: 22:1211
E 221222212:1 2:12:1111
E 2212222122 2:12:1ll11FAILSIII
& 2212222122 222211111
I:: 221122212222:121111
& 2212222112 222211112FAIL - MAX nEPTR
Nod_l.,..... _ sn,
o.p," 20

& FAILSIlI
El
E
E 2FAILSIII
Eu
E,
E ..
E 221FAILSIII
& 2211
&221
& 2212FAILSIII
E 2:3121
&2212
E 22122FAILSIII
E 221221
E 22122
& 22122:1FAILSlII
& 22122:31
E 2:31n2
E 2212222
& 22122221FAILSIII
E 221222:111
& 22122221
E 221222212FAILSIII
E 22122:1:1121
& 221222212
E 2212222122 FAILSIII
E 2212222122 1
E 22122:1:1122
& 2212222122 :lFAILSIII
E 221222:1122 21
E 221:12:1:1122 2
& 2212222122 22
E 2212222122 :t21FAILSllI
E 2212222122 2211
& 2212222122 :I:IIFAILSIlI
E 221222:1122 2212
E 2212:1:12122 221
E :1212222122 :1:1
& 2212222122 222FAILSIII
E 221222:1122 2221
E 2212222122 222
& 2212222122 2222
& 2212:1:121:12 22221
E 2212222122 222211
E 221'322212222:1:1111
E 2212222122 22221111
E 2212222122 2222111l1FAILSIII
& 2212222122 2222111111
E 2212222122 222211111
E 2211222122 2222111112 FAIL. MAX nEPTH
Nod_I.Tne _ STT,
o..,.. 21

E FAIL!llI
El
E
& 2FAIL9111
EU
E,
E"
& 221FAIL9111
&2211
& 221
E 2212FAIL9111
E 22121
E 2212
E 22122FAIL9111
E 221221
E 23122
E 221322FAIL!1I1
E 2:11222.
E 221222
E 2212223
B 2212232.FAIL!1II
B ~2122221l

& 22122221

lOS



• E 221223212FAIL511l
E 12n2221U
E 2214132212
E 22122221:12 FAIL!JIII
E 2:n:n221:12 1
E 22122'2122
E :121:1:322122 2FAILSIII
E 231222:3122 21
E 2212222122 :1
E 2212222122 2:ilFAILSIII
E 23122:12112 2n
E 22141223122 2'
E 2:112222122 222FAILSlll
E 22122221222221
E 22n222J22 222
E 2212222122 :1222
E 2212222122 22221
E 2212222122 222211
E 2<Jl2222122 2222111
E 2:11232212:i1 22221111
E :3:312222122 22221UllFAILSlll
E 2212222122 222:i1111111
E 2213222132 232311111
E 2212223122 2222111112 FAILSlIl
E 2212:122122 2222111112 t
E 2:112222112 2222111112
E 23122221:12 22:i121U112 ,FAIL. MAX DEPTH
Nod.I.Tr. _ 4113
2

DeP'1a 22

E FAILSIlI
El
E
E UAILSIII
E 21
E2
E 22
E 22.FAILSIII
E 2:111
E2:1l
E 2:1l2FAILSIII
E 22121
E :1212
E 2:1122FAILSIII
E 2:112:11
E 22122
E 2:11222FAILSIII
E :n12321
E2:11222
E 2212222
E 221222:11FAILSIII
E 2UJ22211
E 22U2221
E 2212:1a212FAILSlll
E 221'U23Ul
E 22.222212
E 221':1232122 FAILSIIl
E 221'3222122 1
E 221222Un
E 2212222122 2FAILSIII
E 221222:n22 21
E 221222:n22 2
E 2212222122 22
E 2212222122 2:nFAILSIII
E 2212222122 2211
E 221222'122 221FAILSlIl
E 2212222122 2212
E 2212222122 221
E 2212222122 22

2212222122 222FAILSIII
2212222122 2221
2212222122 222
2212222122 2222
2212222122 22221
2212222122 222211
22122221222222111
2212222122 22221111
2212222122222211111FAILSIII
221222:1122 2222111UI
2212222122 222211111
2J1222J122 2222111112 FAILSIII
2112222122 2222111112 1
2212222122 2222111112
2212222122 2222111112 2FAILSIII
2212222122 2222111112 21
2212222122 2222111112 2
22122221222222111112 22FAIL. MAX OEPTH

N.......Trw •••1

•
o.~~ 21

E PAILSIII
El
E
E 2FAILSIII
E 21
E2
E 22
E 2:nFAILSIII
E 2211
E 221
E 2212FAILSIII
E 2:1121
E 2:112
E 2:112:1FAILSIII
E 2:112:11
E 2:112:1
E 2:11222FAILSIII
E 2212221
E 2:1122:11
E 2:112:11:1:1
E 2:1I:12:1:nFAILSIII
E 2212:112211
E 22122221
E 2:112:12212FAILSIIl
E 2:112:1221:11
E 2212:1:1212
E 2:l12:1:121U FAIL5111
E 2:112:1:1212:1 1
E 2212:1:1:11:12
E :I:I12:n21:12 2FAILSIII
E 2:11:12:1:11:1:1 21
E 2:112:1:1:112:1 2
E 22122:1:1122 2:11FAIL5111
E 22122:112122 221
E 221:122:1112:1 22
E 2:11:12:1:11122 2:112FAILSIII
E 2:112222122 2:121
E 2312222122 222
E 2212222122 2222
E 2212222122 22221
E 221:1:12:1122 222211
E 221222:n::12 ~222IU

E 2212222122 22221111
E 22122::12122 222211111FAILSIII
E 221222212:11 22:12111111
E 221:1:1221:12 :12:1211111
E 2:111:1222122 222:1111112 FAILSIIl
E 2212:122122 ::1222111112 1
E 2212222122 ::122:1111112
E 2:112:122122 22:1:1111112 2
E 2:11222:1122 2222111112 21FAILSIll
E 2:1122221222:112:1111112 :Ill
E 221:12:12122 22:1:111111:1 21
E 2:1112U:n22 2:11:11:11111112 212FAIL - MAX OEPTH
Nod.Id·,......

•D.plla 34

E FAILSIIl
El
E
E 2FAILSIII
E 21
E2
E 22
E 221FAIL9111
E 2211
E 221
E 2212FAIL911t
E 22121

2212
22122FAIL8111
221221
221:12
22l222FAIL8m
2212221
2212:12
2212:122
2212:12:11FAILSIII
221222211
22122221
221222312FAIL9111
2212222121
311222212
2212222122 FAIUIlt
221:1222122 1
221222:1122
22122::12122 aFAILSIII
3113221122 21

109



E 331333:Zl33 3
E 321:33321:32 32
E :3:31:33331:33 3:31FAILSIIl
E 331:33331:33 3311
E 331:33331:33 331FAILSIII
E 321:32221:33 2212
E 221:3222122 221
E 221:3222122 22
E 221:32221:32 222FAILSlII
E 221:3322122 2221
E 2212222122 222
E 2212322122 2222
E %212223122 22221
E 2212222123 232211
E 2212232122 222:3111
E 2:31222212323331111
E 2:312222122 222211111FAILSlIl
E 2212222122 2222111111
E 2:312222122 223211111
E 2212222122 2222111112 FAILSIII
E 2212222122 2222111112 1
E 221222:3122 222:3111112
E 2312222122 2222111112 2
E 2212222122 2222111113 21FAILSIII
E 2212222122 2:22111112 211
E 2:312232122 2222111112 21
E 2212222122 2:3:32111112 212FAILSIII
E 221:3222122 2222111112 2121
E 3212222122 2222111112 312FAILSIII
E 2212:3221:32 2222111112 2122
E 2212222123 2222111112 212
E 2212332122 222:3111112 21
E 2212222122 222:3111112 2FAILSm
E 2212222122 222:3111112 22
E 2212322122 2222111112 2
E 221:3222122 2222111112
E 221:3222122 222211111
E 2212222122 22221111FAILSlII
E 2212222122 222211112
E 2212222122 22221111
E 2212222122 2222111FAILSlII
E 22122221:32 22221112
E 2212222122 2:322111
E 2212222122 222211
E 2212222122 22321I2FAILSIII
E 2212222122 222:11121
E 2212:322122 :l222112FAILSIII
E 221:1:12212:1 :1:1:1:11122
E 221:1:12212:1 :1:1:1:1112
E 2212:1:12122 :12:3211
E 221222:1122 22221
E 2212222122 222212
E 2212222122 2222121FAILSIII
E 2212:3:12122 22221211
E 2:31:32:32122 2222121
E 2212222122 22221212
E 2212:1:12122 222212121FAILSIII
E 221222212:1 :1222121211
E 2212:1:32122 222212121
E 221222:11:1:1 :12221:1121:1
E 221222:112:3 222:1121212 IFAILSIIl
E 22122231:32 222212121:1 11
E :32122:3212:1 :122212121:1 1
E :1212:1:1:1122 222:112121:1 12
E 2212222122 2:1:12121212 121FAILSIlI
E 22122:32122 2:12212121:1 1211
E 221:1222122 2222121212 121FAILSIII
E 2212222122 22:121212U 1212
E :1:112222122 22:3212121:1 Ul
E 221:1222122 2:3:3212121:1 12
E :1:11:12:12122 2:3221:11212 122FAILSIII
E 2:312222122 222212U12 12:31
E 2212222122 222:1121:112 122FAILSIII
E 22122:32122 222212121:1 1222
E 2212222122 :3:3:12121212 122
E 2212222122 2222121212 12
E 2212222122 2222121212 1
E 22122221:12 2222121212 FAILSIII
E 2212222122 2222121212 2
E 22122221:12 2:123121212
E 2212:3221:12 2222121:11
E 221222:3122 22:321212FAILSIll
E 2212:1:121:12 222212132
E 2212222122 22231212
E 221222212:1 :1:122121
E 221222312:1 2:12313
E 22121221:1:1 3J2213tFAILIIII
E nl2222122 22211221
E 2212222122 2222122
E :1:112222122 22221:122FAIL8f11
E 2212222122 222212121
E 2212222122 2222U2tFAJLSIII

E 2212222122 223212222
E 221222212:1 22221222
E 2212222122 2222122
E 2212222122 222212
E 2:12222122 22221
E 2212222122 2222
E 2212222122 22222FAILSIIl
E 2212222122 222221
E 2212222U2 22222
E 2212222122 222222
E 2212222122 2222221FAILSIII
E 2212222122 22222211
E 2212222122 2222221
E 2212222122 22222212
E 2212222122 222222121FAILSIII
E 2212222122 22:2221211
E 2212222122 222222121
E 2212222122 2222221212
E 2212222122 2222221212 IFAILSIII
E 2212222122 2222221212 11
E 22122221:32 2222221212 1
E 2212222122 2222221212 12
E 2212222122 2222221212 121FAILSIII
E 2212222122 2222221212 U11
E 22J2222122 2222221212 121FAIL:!:l1ll
E 2212222122 2222221212 U12
E :1212222122 2222221212 121
E 22U222122 2222321212 12
E 221'U22122 2222121212 U2FAIL3111
E 2212122122 2312221212 12:J1
E 2212111122 2222221212 u2FAILSIII
E 2:J12212121 1223221212 1222
E 2212222122 1222221212 122
E 2112222122 2112321212 12
E 2212222122 2122221212 1
E 22U222122 2222121211 FAILStII
E 2212222122 2222221212 2
E 2212122122 2222221212
E 2212121122 222122121
E 2212222121 22332212FAILSIII
E 2212222U2 222222123
E 2312223122 2222U12
E 121222U22 2222121
E 2212223121 122222
E 2212222122 2122222FAILSIIl
E 2212222122 212222U
E 2212221122 2222222
E 2212U3122 12223222FAIL8111
E 22U12'U2:3 22122n31
E 2212222U2 23122222
E 2212231122 22211U2:JFAILSIII

221222:J122 22233222U
111222:J122 222223232
2212122U2 21222:J2221
22122:J2121 2132111222 IFAILSIII
211222:J122 212:J312222 11
2U2323122 2133212121 1
2312313122 2132222221 13FAILSIIl
2212322122 2133221232 121
22U312121 3122222232 12
2212323122 212a2:J212:J 122FAILSIII
2:112311122 2223222122 12:31

E 2212221122 2212222:132 122FAILSIII
E 22122:J2122 22222:J2213 12:12
E 2112222122 :1:322222212 122
E 2112222122 1"2:Jn2:J2 12
E 22122:J2122 2222223212 1
E 2:11213212:1 :1:322222212 FAILSIII
E 2212112122 12:J2322221 2
E 2212223122 2222222122
E 3212122122 222223332
E 221222n22 212221:1:1
E 2212112122 232:JU2
E 2212212122 212212

221U12121 232U
2212222121 2122
221UUIU 222
2212U2122 21
U12212121 2
U12312122
U1221212
2212U21
2212222FAILIlii
2:1:12UlJ
2212322
331:122
211'12

&2113
zn.
zn
E n2FAILIm
E 2231

110



• E 222
E 222,FAILSIII
E '31221
E 2222
E 2222,FAILSIII
E 2222U
E 22222
E 222222FAILSIII
E 2222221
E 222222
E 2232222
E 22222221FAILSlll
E 222222211
E 222222:i11
E 2:n:n:nnFAILSIII
E 2:122222Ul
E :n2222211
E 2222222122 FAILSIII
E 2232312.'2 1
E 2223322122
E 2223322123 2FAILSIII
E 2223222122 21
E 2222:i122122 :1
E :1223223122 22FAIL5111
E 22232231 23 231
E 2222222122 22
E 2223213122 222FAILSIII
E 2222222122 :aUI
E 2222233122 223
E 22222221 22 2232
E 2232223122 23221
E 222:nU122 :123:111
E 2222:122122 2:n:Ul1
E :aU2232U2 22331111
E 22321321:12 U2211111FAILSIII
E 2222222122 2322111111
E 2312222122 222211111
E U22222122 3322111113
E 2222'22122 2222I1U12 1
E 2222222122 2232111112 11
E 222:1232122 2222111112 111FAILSIII
E :1332322122 U22UJ112 1111
E 2322222122 2323111112 ll1FAILSIII
E 3222232122 2222111113 nu
E 3322223122 2'2'111112 111
E :1322312122 2222111112 nFAILslII
E 2222322122 2222111112 112
E 2222222122 2222111112 Il
E 2222222122 2222111112 IFAILSllI
E 2222222122 2222111112 12
E 2222222122 2222111112 1
E 2222222122 2222111112 FAILSlIl
E 2221222122 2222111112 2
E 2222222122 1222111112
E 22222:11Z122 222:1111111
E 2222222122 212211I1FAILSIII
E 1222222122 222111112
E 2222112122 22121111
E 1222212122 22221IlFAILSlll
E 2221221122 212211 U
Ji: 22U222122 2222111
E 2223212122 221211
E 22n212122 1U2112FAILSIII
E 2222222121 n221121
E 2212212122 2222lnFAILSIII
E 2122222121 22221121
E 222Un121 2112112
E 211121:11122 122111
E 2112112122 13121
E 2312222122112212
E 2nn12122 "1212IFAILSlII
E 31"212122 212:111211
E 2221222122 2122UI
E 3121222122 222212n
E 2122212122 222212UIFAILSIII
E 2222222113 2222121211
E 2222122122 122212121
II: 2212212122 1221111212
Ji: 2222222112 2211121212 IFAILSIII
II: 2222222112 2111121212 Il
E 2222222122 221212n12 1
E 1222222122 2122UI212 12
E 1222212122 2122111211 121FAILSIII
1: 2222221122 2222Ul212 1211
E 2222222122 2221121112 121FAILSIII
E 1222211121 2222121212 1212
1: 1222212121 2222121212 121
B 2222221122 222212n12 12
J: 2222221112 "221212n 122FAILSIll
E 2222222122 2222121212 U2I
Z 2122222122 1222121111 112FAILSIII
1: 1222222112 2221121212 1231

E 2222222122 2222121212 122
E 2222222122 2222121212 12
E 2222222122 2222121212 1
E 222222:1122 2222121212
E 2222222122 2222121212 2FAILSIII
E 2222222122 2222121212 21
E 2222222122 2222121212 2
E 2222222122 2222121212 22
E 2222222122 2222121212 221FAILSIII
E 2222222122 222:11121212 2211

222:11:112212:11 222:11I:11I:11U :II:IIIFAILSIII
222:11:1122122 2222121212 2:1112
22222221:112 22:11:11121:111:11 :11:111
222:112221:112 22:11:11121212 :11:11
222:11:1122122 222:11121:lI:ll :11:II2FAILSIII
222:11222U2 2222121212 2221
222:1122212:11 2222121212 222FAILSIlI
22:11:11222122 22221:111212 2222
2222222122 22221:111212 222
2222222122 222212121:11 :112
2222222122 22:1121:111212 2
222:1122212:11 22:11:11121:111:11
2222122122 222:1112121

E 22222221:112 222:1112I:11FAILSIIl
E 222221212:11 22:11:11121:11:11
E 22:11:11:1112122 2222121:11
E 2222222122 :1122:U:III
E 2222222122 222212
E 2222222122 2222122FAILsm
E 2222222122 222:111221
E 222:1:1122122 '322:11122
E 2222222122 22221222FAILSIII
E 2222222122 222:1112:11:11
E 2222:11:112122 222:111222FAILSIII
E 22222:112122 222212222
E 2222222122 22221222
E 2222:1122122 2222122
E 22222:112122 222212
E 2212122122 22221
E 222222:1122 2212
E 2212222122 22222FAILSIII
E 2222222122 222221
E 2222222122 22222
E 2222222122 222222
E 2222222122 2222221FAILSIII
Il: 2222222122 22222211
E 2222222122 2222221
E 2222222122 22221212
E 2222222122 12222212IFAILSIII
E 2222222122 3112221211
E 2222222122 122222121
Ji: 2222222121 2222221212
E 2222222122 2222221212 IFAILSIII
E 22222~2122 2222221212 Il
E 2222222122 22212:111212 1
E 2222222112 2222221212 12
E 2222222122 2222221212 121FAILSIII
Ji: 2222222122 2223121212 nu
E 2222222122 2222221212 12IFAILSIII
E 2222222122 2222221212 1212
E 222:1222122 2222121212 121
E 2222222122 22222212U 12
E 2222212U2 22222212U U2FAILSIlI
E 2222222U2 222222UU 1221
E 2222222U2 22222212U 122FAILSIII
E 2222222121 2U2221212 1222
E 2222222122 2222221212 122
E 2222222122 2222221212 12
E 2122222122 2222221212 1
E 222222:11122 1222221212
E 2222222122 2222221212 2FAILsIIl
E 2222222122 2212221212 21
1: 2222222122 2222221212 2
E 2222222122 22222212U 22
E 2222222122 22222212U 221FAILSIII
E 2222222122 2222221212 21U
E 2222212122 2222221212 221FAILsm
1: 2222222121 2122221212 2212
1: 2222U2I21 2212221212 221
1: 2222222122 2212221212 22
J: 2222222122 2222221212 222FAILSlII
E 2221222122 2222221212 2221
Il: 2222222122 2222221212 222FAILSlII
1: 2222222122 2222221212 2222
E 222U12122 2222221212 222
J: 2222222112 2222221212 22
1: 1222222122 2222221212 2
1: 2222222122 2222221112
1: 2222222121 222222121
& 2122222122 22222212FAILSII1
1: 2222222122 2222221U
1: 2222222122 222:12211

111



• E 2222222122 2222221
E 222222:n22 222222
E 2222222122 2222222FAILSIIl
E 22:12222122 2:12222~1
E 2222222122 2222222
E n32222U2 22222222FAILSIII
E 22222221:32 222:1222:11
E 2222222122 22:12:1222
E 2222222122 222222222FAILSIII
E 2222222122 2222222221
E 2222222122 222222222
E 222222:1122 2222222222
E 2222:i122122 222:12232:12 IFAILSIII
E 2222222122 22222:12222 11
E 2:1222:121:12 2222222222 1
E 222222:;1122 22222:12222 12FAILSIII
E 2:12:122:1122 2222222222 121
E 2222222122 2222222222 l'
E 222'2221:12 22222'2'2:;1 122FAILSIII
E 2222222122 22222222:n 1231
E 2222222122 :;122222:122:1 12,FAILSIII
E 2222222122 222222:1222 1222
E 2223:122122 2222222222 122
E 22222221:12 22222"222 13
E 22222:12122 22222:12:12' 1
E 2222222122 2222322222 FAILSIII
E 2222222122 '22232:3a:ll2 2:
E 2332223122 2222222:n2
E 2222222122 222222222
E 2222222122 22222222
E 2222222122 2222222
E 2222222122 222222
E 2222222122 22222
E 2222222122 2222
E 2222222122 222
E 2222222122 22
E 2222222122 2
E 2222222122
E 222222212
E 22222221
E 2222222
E 22222222FAJLSIIt
E 222222221
E 22222222
E 222222222FAJLSIII
E 2222222221
E 222222222
E 2222222222 FAJLSIIl
E 2222222222 1
E 2222222222
E 2222222222 2FAIL9111
E 2222222222 21
E 2222222222 2
E 2222222222 22FAJLSIII
E 2222222222 221
E 2222222222 22
E 2222222222 222FAJL91ll
E 2222222222 2221
E 2222122222 222
E 2222222222 2222
E 2222222222 22221
E 1222222222 222211
E 2222122222 22:12111
E 2222222222 22221111
E 2222222222 22221UllFAJL9111
E 2222222222 22221Ull1
E 2222222222 222211111
E 2222222222 2222111112
E 2222222222 2222111112 1
E 2222222222 :1222111112 11
E 2222222222 2222UI112 UIFAIL9111
E 2222222222 2222111112 1111
E 22222222222222111112 I11FAILSIII
E 2222222222 2222111112 lU2
E 222:1222222 2222111112 lU
E 22a2222222 2222111112 11FAILSlII
E 2222222222 2222111112 112
E 2222222222 2222111112 11
E 2222222222 2222111112 IFAILSlII
E 2222222222 22221U112 12
E 2222222222 2222111112 1
E 2222222222 2222111112 FAILSIIl
E 2222222222 2222111112 2
E 2222222222 2222111112
E 2222122222 2222unl
E 2222222222 22221111FAIL8111
E 2222222222 222211112
E 22a2222222 22221111
E n222222n 22221nPAILSIII
Il 2222222222 222al n2
E 2222222222 2221111
E 2222221222 22IU 1

E 2222222222 2222112FAILSIII
E 2222222222 22221121
E 2222222222 2222112FAILSIII
E 2222222222 22221122
E 222:1222222 2222112
E 2222222222 222211
E 2222222222 22221
E 2222222222 222212
E 2222222222 2222121FAILSIIl
E 2222222222 22221211
E 222222:1222 2222121
E 2222222222 22221212
E 222:1222222 222212121FAILSIII
E 2222222:122 2222121211
E 22222222222222121'1
E 22222222:12 2222121212
E 2222222222 2222121212 IFAILSlII
E 22:12222222 2222121212 11
E 2222222222 2222121212 1
E 2:122222222 2222121212 1:1
E 2222222222 2222121212 1:11FAILSllI
E 222222:122:1 2222121212 1211
E 2222:1:12:1:1:1 2222121212 121FAILSIII
E :1:122:1:12222 :1:12:1121:11:1 121:1
E 222:1222222 22:12121:112 121
E 2222222:12:1 2:122121:112 12
E :1222222222 222212n12 122FAILSIlI
E 22222:12222 2222121212 n21
E 22:12:12:122:1 2222121212 122FAILSIII
E 222222:1222 2222121212 1222
E 2222222222 2222121212 122
E 22:12222222 2222121212 n
E 222:122222: 2222121212 1
E 222222222:1 2222121:1n FAILSIII
E 22222:12222 2222121:112 2
E 2222222222 2222n1:l12
E 22:12222222 2:12212121
E 2222222222 22221212FAILSIII
E 2222222'U2 222212122
E 2222222222 2222121:1
E 2222222222 2222121
E 2222222222 222212
E 2222222222 2222122FAILSIII
E 2:122222:122 22221221
E 2222222222 2222122
E 2222222222 22221222FAILSIII
E 2222222222 2222122:11
E 2222222222 22221222FAILSIII
E 2222222222 222212222
E 222~222222 22221222
E 2222222222 2222122
E :1222:1222:12 222212
E 2222222222 222:11
E 2222222222 ~222

E 2222222222 22222FAILSIII
E 2222222222 :122:121
E 2222222222 22222
E 2222222222 222222
E 2222222222 2222221FAILSIII
E 1222222222 21222211
E 2222222222 2222221
E 2222222222 22222212
E 2222222222 222222121FAILSIII
E 2222222222 2222221211
E 2222222222 212222121
E 2222222222 2222221212
E 22:12222222 2222321:112 IFAILSIII
E 2222222222 2222221312 11
E 2222222222 2222221212 1
J: 2222222232 2232221212 12
E 2222222222 2222221212 121FAILSIII
B 2222222222 2222221212 1211
J: 2122222222 2222221212 121FAILSIII
J: 2222222222 2222221212 1212
J: 2222222222 2222221212 121
B 2222222222 2222221212 12
J: 2222222222 2222221212 I22PAILSIII
J: 2222222222 2222221212 1221
J: 222:1222222 2222221212 I22PAILSIII
B 2222222222 2222221212 1222
Je 2222222222 2222221312 122
1: 2222222222 2222221212 12
E 2222222222 a222221312 1
E 2222222222 2222221212 PAILSIII
Il 2222222222 2222221212 2
JI; 2222222222 2222221212
1: 2222222222 222232121
J: 2222222222 222122I2PAILSllI
J: 22222"222 222222122
J: 2222222222 21323212
1: "13222212 m2221
E 2221212nt 2"311

112



• E 2222222222 2222:U2FAILSIlI
E 22:J2~22232 222220121
E 2222222222 2222222
E 2222:122222 22222222FAtLSIII
E 2222:i1222:J:J 22:1222231
E 2222222222 2222:n22
E 2222222222 22::l222222FAILSIII
E 3222222223 22222222:n
E 22222222'2 2222:J2222
E 2:1:13222222 2222222222 FAILSIlI
E 2222222222 2222222222 1
E 22222:12222 2:12222:1222
E :3:322222222 2:1222:22222 2FAILSIII
E 2222222222 2222222222 21
E 2222222222 :1:122222222 :1
E 2222222222 2222222222 22FAILSIII
E 23:12222322 22:12222222 2:;11
E 2222222322 22:01:1222222 22
E 2222222222 2222:1:012222 222FAILSIII
E 2222222222 2222222:122 2221
E 2222222222 22222:22222 222FAILSIII
E 22222222:i12 2222222222 ~222

E 222222222:1 2322222222 222
E 2222222222 2:12:2233222 22
E 2:1222222:1:1 '2'22'222:;1 :1
E "'2222222 '2'2222222
E :12'2222222 222222222
E 2222222222 22222222
E 2223222222 2222222
E 2222222222 222222
E 2222222222 32322
E 2222222222 2222
E 2222223222 222
E 2222222222 22
E 2222222222 2
E 2222222223
E 222222222
E 22222222
E 2222222
E 222222
E 22222
E 2222
E 222
E,.
E'
E
E PROOF FOUNDllll1
Nod_l.Tt.. lU 101,.
01... ulo.'l
JI pela
21 Na••
31 p.)'fl,..1 ...,. .op)'." .op••• p'Y.
Il ·pI" ."." ·pa". p".
'1'"Tl ·,a,. r)'a
Il ·ra,. .". ra.'1 ,•• ·pI)" ·pa)'.

101 ·ra)' "p••a P""
111 .,.)' .,... ,.)'.
nI ·,a)' .,.•• ".,
131 "ra)' rf..f.)'
141 "ra, rlalf)'.
lai ·u)' r.al1
1'1 ,.••
lTl .., ••
III "_ "0)' 01 ·'1""
1'1 "01 0)' ·r.)'
201'"

N•••~... cOlcl'••1
:aJS "_

H.rb,... baN "oa.a ....,H ,ro"I•• , ... '.eor'.l
" ..:lIl ,_.1·.,.....1·_
Il·'"
Il ·n.
T, ..,,-,,-
J.l·....
Jh peM
121·....
Ill· .
)f' ....
111 .

Ul"'''.

IT; UC.
III ·r._
U: r ..
20: r .
211 '&III
221 ·pu••
231 , _

2.1' ..

ELMI 0 MC, PHS J: 1 MC, PHS 2: .NA. Tolal Seud. TIme: aRC

NOD: .03 RES: SSOI FAC: 0 MXC:' MXL: 3
HTEI 0 HTH: 0 HTF: 0 HSZ: 282144
LTE: 0 LTH: 0 LTF; 0 LSZ: 85531
BAS; 21 LEN: 0 + 0 OPTI .SOS +MERGE

HBE..... 2.

Nod.t.Tr.... '03

113



•
Appendix C: Sample Runs of
An Improved Semantic Tree
Generator

114



o..... 1

(U-J "Eh<

(U-] Eh<

(U-J .....

" (T..)

1. (T••)

E :ac~eck1"1 21 (1..)
'Alum
EU
S ICMcklaII 21 ('.•) [U-) "ab

Il U'A!L - MAX DEPTH
NEW BAIE (I)n

E C"eclLIal: 11 (T..) [U-] -Ebc
FAILBIII
El
E C"eck1a'l 11 (T..) [U-] Ebc

E tFAIL - WAX DEPTH
NEW BASE (I)TT
11 (T.. ) EIH:
,,(1.. ) ....
J, ('.. ) -Wac

NeHI..IaTr.a • t
o
o.".. 2

H.rbr_d bu. aloml Ilelped proYi•• tla. tlaeorem:
11 -LOSA 2: EPSFOSAOSA 3: EPSAOSA
41 EPSOOSA

Ne,atecl coacJulol:
US -LOSA

Eat" .... of tJallOr•• (typ. '1' for Jae1p): atuUOO

Preclk:at.l S M E Fuctlo.a: F b c a

~: ~_~: ;::'.;~~•• MI)'
31 -M- Sa, -MFa)')"
41 _M_ Sa, -Ea)'
Il -M- Sa,. -E)'a'1 -M- -Sa, -8,.a E.,
TI M-I Eh<'1 M- Mab
IS [UW-] -Wac
P"_l

5earcll •••,:

TI EJd.OO'1 EMd,P".,.
'1 EJUC

101 -E., Ey.
111 -Ea, -E,. E••
121 EPSF.y., -La,
131 -EPS')'I L,.I
J.f.1 L.S.

ELMI 0 MC, PHS 11 0 Me, PHS 21-NA- Total SeU'cJa Th.e: 0-=
NODI 11 RES: 30 FAC: 0 MXCI 13 MXL: s
HTEI 0 HTH: 0 RTF: 0 HaZ: :il8:i1l44
LTEI 0 LTHI 0 LTF: 0 LSZI 15538
BASI 15 LEN: 0 + 0 aPT: -SOS +MERGE

Tla. foUowl••••c.mple llaO.1 tlle AISTG proye Stulce)'lOO ...
lai tla.
Set-OI-S.ppor••tra"'"

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• ••••••••••••••0 •••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

...............................
C~ooaI•• a Strate"

•••••••••••••••••••••••••••••Q.
1 - Ualt a..o&atJoa (UR) .
2 - F._t LIt.rab! Strate" (FLS).
1 - sn Of S.ppor' (SOS).
4 - L1ae1l' For. (LF).
5 -'LI + SOS.
.- PLS + LF.
T - Ed. PfOIr...

E FAILSIII
El
E
E'
E :nFAILSIII
E211
E 2lFAILSIII
E2U
E"
E 2FAILSIIl
En
E'
E
E PROOF rOUNDlII1I
Nod.laTt... 11
o·

_ •••2aU••••••••••• •••••••••

CllooeJ., .. S"."'7-••---.-----•••••••__•••_=•••••
1 - U.la R.ol.'loa (UR).
, • F._t Litera!. Sb.'eu (FLS).
3 • !Mt Of S.pport (SOS).
" • LI..&I' For. (LV).
a. FLS + SOS.
e. FLS + LF.
T • Eab Procr...

P....Un....' E L F..c,loul S 0 P M F A
11 -M-) ·E~h:SJ EK)'
31 UM-) -&5.0
31 oM-I-Ell,. -En E1'.
41 .)0(- -Ex)' ESxSy

al UM-j EPlIO.
8, UM- EPdySPl("
11 UM- EMJlOO
l, UM- EMa:SyPMa:YlI:
Ih UM- En

h), ....-I·E.' E)'.111 -M- -Ex,. -E,._ Eu
121 -M- EPSF.,x)' -L.,
13, ·M- -EPSllYI L)'I
141 UM-) L1l5.
15S (UM-] -LOSA
PIl... I

01......10••1
1. -aas, Ea,
'I-a..
JI -Ea, -Ea. E,.
4. -E., ad,
l, EP.'.
l, EP.S,sP.,

o.p," 1

..ucJa",..·SOS()

E FAILSIII
El
E
E :3FAIL • MAX DEPTH
NEW BASE (2)T7 11 (18••) -LOSA
21 (11.. ) EPSFOSAOSA

NO<III..laTr... 2
o
o.,... 2

..udl'.r.'SOS()

E FAlLS'"
El
E
E'
E nFAIL • MAX DEPTH
NEW BASE (4)TT Il (1& .•) -LOSA
21 (1'..) -EPSFoSAOSA
SI (1'..) EPSAoSA
fi (II.. ) EPSOOSA

Nod.laTr... 5
o
o.p'~ 3

Huc~·'r..·SOS()

115



01••• ado"l
11 ....
31 " •••
Il ..,f.,
41 -"'1 ..,•• -,.•• px••
Il -"'1 .., .'1 ...
Tl -,., ,,..'1 .,., -,,.. ,••'1 -"'1 ,. ra.

101 a, ·u,
111- ,. -,.,

o.p~1a 1

o
Dep~1a :z

o
Dep'ia 1

•Deplia i

•o.pU, 1

J
o.....
J

Deplll T

,.

J
0.,.11 1

J
0..111 •

,
0..~11 10

Til. foUo..-I•• eaampl••lao•• III. IlIlproved Hm_dc ue. , •••ralor
prla'la, • proor uI,acied fro. dIe c10Md Hill_tic Ir_ of SU.,a.llh

Ea'er _am. 01 d,eor.al. (type 'T' for "'slpl: SUwn.ll1.Illm

Pr.dlca'H: pro Flr..ctio••:. 1 ri. b c d
Il lUM-l pu.

~: r.:-:I·=~~:~PYU ·plU.W pu.
5, ~M- -p.,••p,•• ·p"W p"w

l :.~fl)~~~}.~,:~·.~~
111 .M- ·p..a P')'. -,.)'
1:11 .M- -p.,. P)". -r.)'
131 .M:- -'.)' rln'.)'
al .M- -,.,. rb")'•
1111 .M- -'.)' r,.1)'
111 M-l p.'.
111 UM- p••••
111 .M-l ·pK)" ·0. ·0)' O.
1')1 ·M- ·rx)'·01: 0)'

:101 .M- ·ox o••
:Ill UM-] CM

:1:11 .M- 'Orx)' ,lui.)'
:lSI ·M- ·'x)' ,1..1)'.
:Ii, .M- o. 0)' olx)'
:I/St .M- ..Ix)')' o. 0)'

:Ill ·M- -px)" -p." r)'.
:lTI .M- -..,.. -p.)'1 , ••

:Ill UM-l 'IIX.
:1'1 M- Ga

SOI M- ob
SlI M- pbl~

ni M-,.cd

". (u"-)."

...•...............................................................

...........................................................~ .. .

[U-]Sbc

(U-) ·M...

[U-]-Sbe

(U-]Mab

(u-lM...

(U-) Eb,

[U-] ·M.b

{U-] Ebc:

(U-) ·Mab

J, (0..)

" (10..)

., (... )

J, (0.. )

" (T••)

., ('0')

1: (T••)

HBEM•• _ 4

ELMI Olle, PHS 11 0 MC, PHS :I,_HA_Tolal S.arc:1I Tha.' Oaee
l'tao: 2G RES, SI FACI 0 MXC:' MXL:'
HTEI 0 UTH: 0 UTF, 0 HSZI 2.2a4
LTElo LTH: 0 LTFI 0 LSZI lUit
BASI • LENI 0 + 0 OPTI .S08 +MERGE

E :I:Z:lClatlCld.,1
FAIL5111
E :Z:ZU
E :Z:Z:ZChekla.: il (10••)
FAIL5111
E:Z:Z:Z:l
E:z:z:z
E ••
E'
E
E PROOF FOUNOlIlll
Nod.I.Tt... 20
O·

E ClafICklll':
FAILSm
El
E ClatlCkl.,:

E :lChfICkl.,:
FAILSm
E .1
E :lClaeckl.,:

E :I:IClaeckl••:
FAILSIII
E :1:11
E :I:ZCIaIcld••:

E :I:I:IFAIL • MAX DEPTH
NEW BASE (5)17
1: (7••) Ebc•,la..) Mab
s: Il••) -Mac
i: (10••) 5bc
/lI (11 ••) Scb

Nod..I.Tr.. _ 1:1
o

DepU, i

H.,b,ud b.... a~o.' Ia.lp.d p'ovla. llae llIeo,.au
1: Ebc :Zl Mab s: -Mac
4: 5bc al Seb

E Checkla.: 1: (T••)
FAILSIII
El
E Claeckil!.l: 1: (T••)

E 2ClaoclLla'l 2: (8••)
FAILSm
E2I
E 2ChcckJail 2: (a••)

E 22Claedda'l 3: (li ••)
FAILSIII
E2:J1
E 22Claecld••: 3: (II••)

01... ulo....:
1: -S.)' ·M•• MI,.
:1: S.)' MF.,..
SI 5.,. ·MF.)',.
il 5.y -E.)'
al S.)' ·E)'.
Il -S.)' 'OS,.. E.,.
Tl Ebc
Il M.b

N".IId coacl.aloa:
'5 ·"ac

1: (T•. ) Ebc
2: (1..) M.b
3: (t..) ·Mac

Nodesla-rr.. _.
o

Depl1l3•

116



• 11: ·P"x p)'l. ·'11:1
13: -lX)' rllallY
loi: -UI Iful)'.
III: -n:1 'Ill&)'
le: p.III:
17: px,xe
11: ·pX)'1 ·ox ·0)' 01

18: -n:1 ·011: 0)'
20: ·Oll 01.
21: oe
22: ·u:)' rlull,.
23: -n)' rlnl)'.
24: OX Dy Dix)'
:;15: pxlxy)' ox Dy
:Uh ·px)'••p••, ':rx
:n: ·pXYI ·pX)'1 rx.
21: rl,••
:1111 oa
301 ob
31: pb.&c
32: pacd

Ne..."d co.da.loa:
335 -od
Il 21.. 01

2: '8.. 0&

3: 30.. ob
4: 3... pblac
Il: 32.. pacd
el 33.. ·od
TI :17.. o.-
1: .:z.. D'.
t: U.. Dib

10: .... oc
SI: Ik,lId ·p:ll)'1 ·pxv)' ·ox 01 ·0. ·ov

Dtp'" a

1: ~1.. oe
~: ~... oa
31: JO.. ob
01: JI.. pb.ac:
5: S~.. pacd
e: 33.. ·od
T: SI.. 01_
1: 50.. 0la
a: T'.. Olb

ST: Ur,~Ob ·pa)'1 ·pulvy ·01 01 ·0" ·Oy

D.p'" 1

Il ~I.. 0_
~: 31.. oa
SI JO.. ob
01: 31.. pblac:
III 31.. pacd
1133.. ·od
TI JI.. 01_
1: al.. 0la

JI: J&d,Ss. ·plyd ·P'IIY ·01 ·01 ·01

1: ~l.. oe
~: 3... oa
31: 310.. ob
01: SI.. pblac
aln.. p-.cd
Il n.. ·od
7: O.. 01-

SIl sta,na ·pIOC ·oa ·oa ·oy

Dep," 1

1131•• oe
~I 3••• _

3130.. ob
011 31.. pblac:
5: 31.. pacd
Il n.. ·od

tOI na,SI. ·oa ·ob

DepU. 5

Il 21.. oe
312... _

SIlO.. olt
01: SI.. pblac
al 31.. pacd

41: 311.,30••_

1: 21.. 01
2: :Ii.. 010

3: 30.. ob
t: n.. pbllK

4': 3h,2h 0
1: J>eIUl
2: Plx",
3: pz)'by
Cl ·pll)'1 .p,.." ·PI1&" Il:':''''
li: ·plI)'1 .p,.• ., ·pa.,., p.x"
1: l'X.
7: -n)' ry.
1: ·'.Y -')'. rx.
Sh ·pX)'1 ·pxY. flU

10: ·P". p..,. -'x)'
11: ·pn. PlY. en:,.
UI ·px.. p)'•• -'.)'
13: -,a,. rI..rl)'

loi, -'x,. rf• .,)'.
lIh • '.Y ")[1)'

18: pxu:
111 pXlu
111 ·px)'. ·0. ·01' 01
Ilh ·rxy ·0. Dy
20: ·011: 0'11:
211 De
~~: ·rJ:Y ,Ini,y
~JI ·,ay ,la,ly,
~t: oa oy olay
~&: pall(yy oa oy
~lll ·plYI ·PJi:I' IYU
~T: ·plY' ·pI)" 'al
~I: 'Ala
~a: oa
SOI ob
SI: pblac
S~: pacd
SJS ·od
St: lk,lld. ·PJi:)'1 ·p"vy ·oa 0' ·ou ·ov
31&: Jtr,~Ob ·pay, ·pulvy ·oa 0' ·ou ·ov
JI: J5d,SJa ·pI)'d ·Pllly ·01 ·01 ·01
ST: J'a,S~a ·plpC ·oa ·oa ·oy
31: STa,Sla ·oa ·ob
3': Slb,JOa ·oa
010: S8a,~aa 0

ELIN: 0 MC, PHS 1: 01 MC, PHS~: .NA. To'al S••rcla Tlme: 01 MC

NOD: 1" RES: 3100 FAC: 0 MXC:. MXL: 1
HTE: 0 HTH: 0 HTF: 0 HSZ: ~8~1""

LTE: 0 LTH: 0 LTF: 0 LSZ: 15538
BASI JI LEN: 0 + 0 OPTI .SOS +MEROE

HBEM.,.t

Nod.I.Tr".l"

117




