! * National Library
of Canada

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions el

Bibhographic Services Branch des services bibliographigues

395 Wellingicn Street
Otiawa, Ontano
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university whichk granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Yo e Volre idldiemee

Ouwr fike Notre 181dronce

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualit¢é dimpression de
certaines pages peut laisser a .
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si I'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Analysis of the Use of
Semantic Trees in Automated Theorem
Proving

Mohammed A. Almulla

School of Computer Science
McGill University
February 10, 1995

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the Degree of
Doctor of Philosophy in Computer Science

Copyright © 1994 by Mohammed Almulla

National Libra
!*. of Canada i

Bibliotheque naticnale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographic Services Branch des services hibliographiques
355 Waellington Street 395, rue Wellington

Ottawa, Ontario QOttawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE CR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN 0-612-05663-5

Canadi

Your hie Volre raldrence

Qur fle Noite réldrence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CINE DOIVENT ETRE IMPRIMES QU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Abstract

Semantic trees have served as a theoretical tool for confirming the unsatisfia-
bility of clauses in first-order predicate logic, but it has seemed impractical to
use them in practice. In this thesis we experimentally investigated the practi-
cality of generating semantic trees for proofs of unsatisfiability. We considered
two ways of generating semantic trees. First, we looked at semantic trees gen-
erated using the canonical enumeration of atoms from the Herbrand base of
the given clauses. Then, we considered semantic trees generated by selectively
choosing the atoms from the Herbrand base using an improved semantic tree
generator, AISTG. A comparison was made between the two approaches using
the theorems from the “Stickel Test Set”. In underlying the practicality of
using semantic tree generators as mechanical theorem provers, another com-
parison was made between the AISTG and a resolution-refutation theorem

prover “The Great Theorem Prover”.

Résumé

Les arbres sémantiques ont servi d’outils théoriques pour confirmer I'insatisfiabilité
des propositions logiques & prédicat du premier ordre. Cependant, il est con-
nue que leur utilisation n'est pas trés pratique. Dans cette thése, nous étudions
expérimentallement la question de la possibilité d'utiliser la génération d’arbres
sémantiques afin de prouver l'insatisfiabilité des propositions logiques.

Nous avons ainsi considéré deux facons de générer des arbres sémantiques.
Dans un premier temps, nous nous sommes concentrés sur les arbres seman-
tiques qui ont été généres en utilisant I'énumeration canonique des atomes a
partir de la base de Herbrand de la proposition donnée.

Puis, dans un deuxi¢me temps, nous avons considéré les arbres sémantiques
qui sont génerés en choisissant de maniére sélective les atomes de la base
Herbrand. Une comparaison & été faite entre les deux approches en utilisant
les théorémes de ” ’ensemble de tests Stickel”.

Enfin, pour souligner l'importance de la praticabilité de l'utilisation des
génerateurs d’arbres sémantiques en tant que théorémes prouveurs, nous avons

comparé GAAS!, avec la procédure de résolution-réfutation du " Grand Théoréme

Prouveur”,

. 1Un Générateur Amelioré d’Arbres Sémantiques

il

Statement of Originality

Although all work herein that is not otherwise cited represents an original and
distinct contribution to the study of semantic trees and their role in automated
theorem proving, Professor Monroe M. Newborn nonetheless deserve special
recognition. It is he who opened my eyes to the power of semantic trees when
he asked me the following question: “Can semantic trees efficiently prove
unsatisfiability?”

Another motive behind this recognition is due to the AISTG? program,
which we implemented for the development of this research. Parts of this
program are based on The Great Theorem Prover of Newborn [Newbornl].
Other parts of the program including the control strategies, the construction
of the semantic trees, and the extraction of resolution-refutation proofs from

the closed semantic trees are the sole respounsibility of the author.

2An Improved Semantic Tree Generator

iil

Acknowledgements

The pursuit of research requires the continued support of many people and
establishments over a number of years. I gratefully acknowledge this ever-

lasting support and extend my deep appreciation to:

¢ My supervisor, Professor Monroe M. Newborn, to whom I owe a sincere
thanks for continuous guidance and concern. His efforts certainly have

gone far beyond the normal duties of a research supervisor.

¢ The government of Kuwait represented by his highness the Emir of
Kuwait, his Crown Prince, and Kuwait University, which granted me

the financial means to undertake graduate studies.

¢ My advisor at the Embassy of the State of Kuwait, Cultural Division,
Kuwait University office, Dr. Abdel-Rahim S. Abdussalam, for all the

help and support he embraced me with in times of need.

o Azzedine Boukerche and John Kozlowski for their assistance with this
dissertation. Their technical expertise helped me to refine many of my

intuitions into concrete results.

Finally, any success that I enjoy has always been a testament to my won-
derful family, in particular my parents. It is to my wife Fatima H. Bu-Shahri
and my two children, Jassem and Farah Almulla, that I dedicate this work

with all my love,

iv

Thesis Outline

This dissertation attempts a comprehensive treatment of semantic trees in au-
tomated theorem proving. Of course, semantic trees can be investigated from
a number of distinct perspectives, such as artificial intelligence, mathematics,
linguistics and cognitive science. This thesis adopts the first perspective, fo-
cusing on the role of semantic trees in the automation of theorem proving.
Since it is infeasible to incorporate everything, the thesis tries to provide a
careful balance between the depth and breadth of the presented material. An
important technical goal of our study is to provide sufficient information so
that the reader can comprehend and possibly implement most (if not all) of
the included algorithms. References are provided at the end of the dissertation
in case of a need for further exploration of relevant matters. The structure of

this thesis is divided into five chapters as described below.

Chapter 1: devoted to theory, methods, and applications of semantic
trees in automated theorem proving. The chapter begins by specifying the
objectives of this research. Next, it presents a survey of previous attempts at
using semantic trees to confirm the unsatisfiability of sets of clauses. Then, it
explores some linear Herbrand’s proof procedures. This is followed by a formal
definition of the terminology necessary for the reader to be familiar with the
subject on hand. Lastly, the chapter describes the set of theorems used for
measuring the performance of the semantic tree generators under investigation
in this study. Our gcal in Chapter 1 is to provide both the background and

the motivation for our research.

Chapter 2: presents semantic trees generated using the canonical enu-
meration of atoms from the Herbrand base. We will call such trees canonical
semantic trees. The chapter begins with an extended inspection of the Her-
brand universe and of the Herbrand base of a set of clauses, accompanied by
examples. Next, the chapter introduces a system of using semantic trees to
prove the unsatisfiability of sets of clauses. The system includes building closed
semantic trees from given resolution-refutation proofs, buildiug canonical se-
mantic trees using Herbrand’s procedure, and extracting resolution-refutation
proofs from closed semantic trees. Then, the chapter compares the perfor-
mance of a canonical semantic tree generator and The Great Theorem Prover
on the Stickel Test Set. Our goal in Chapter 2 is to investigate the practicality

of generating semantic trees for proving the unsatisfiability of sets of clauses.

Chapter 3: suggests methods for improving the performance of semantic
tree generators as mechanical theorem provers. The influence of these meth-
ods on a semantic tree generator is examined using the Stickel Test Set, and
the semantic tree generator is, thus, described as improved. The tables and
graphs appearing in this chapter illustrate this influence. Our goal in Chap-

ter 3 is to improve the practicality of generating semantic trees for proofs of

unsatisfiability.

Chapter 4: discusses the development and implementation of AISTG: An
Improved Semantic Tree Generator, developed particularly for the purpose
of this study. The chapter is concerned with programming aspects of the
AISTG. It describes the structure, flow of control, modules and layouts of the
program,; it also specifies the capabilities and limitations of the program. In
addition, a guided tour by the title “Using the AISTG Program” is included in
Chapter 4. The chapter ends with a comparison made between the AISTG and
a resolution-refutation theorem prover. Our goal in Chapter 4 is to appreciate
the complexity of the AISTG as a pragmatic semantic tree generator which is

capable of proving reasonably hard theorems.

vi

Chapter 5: discusses semantic tree generation as an alternative method
for proving the unsatisfiability of sets of clauses as opposed to resolution-
refutation. The chapter presents theorems for which more efficient proofs were
obtained by using semantic tree generators; this is in contrast to those proofs
obtained by resolution-refutation theorem provers. Conve sely, the chapter
demonstrates examples of theorems for which resolution-refutation proofs are
much more desirable. Our goal in Chapter 5 is to facilitate and encourage both
the use of our AISTG program and the reliance on semantic tree generation

to assist in automated theorem proving.

Chapter 6: devoted to the conclusion of this investigation. First, this
chapter summarizes the findings of the previous chapters. Second, it makes
links between our research and (i) other related research areas, and (ii) open
research problems in automated theorem proving related to our work. These

links both occur in the form of offered suggestions for further improvements.

vii

Contents

Abstract

Résumé il

Statement of Originality iii

Acknowledgements iv
Thesis Qutline v
Contents viii
List of Figures xi
List of Tables xiii
Introduction 1
1.1 Problem Definition 3

1.2 History and Background 4
13 Terminology v v v v v v it e e e 5
1.3.1 Terms, Literals,and Clauses 6

1.3.2 Substitution, Unification, and Resolution 8

133 Resolvents, 9

1.3.4 Herbrand Semantics 10

135 SemanticTrees 15

1.4 The Stickel Test Set 18

vili

Canonical Semantic Trees in Automated Theorem Proving

2.1
2.2
2.3
24
2.5
2.6

Growth Rate Analysis of the Herbrand Universe
Growth Rate Analysis of the Herbrand Base
Building Canonical Semantic Trees
Proving Theorems Using Canonical Semantic Trees
The Stickel Test Set Experiment
Obtaining Other Resolution-Refutation Proofs From a Given

Improving Semantic Tree Generators

3.1
3.2
3.3

3.4
3.5

Methods for Improving Semantic Tree Generators
Method I: Filtering the Herbrand Base
Method II: Control Strategies for Semantic Tree Generators

3.3.1 The Fewest-Literals Strategy
3.3.2 The Set-of-Support Strategy
3.3.3 The Unit-Preference Strategy
3.34 The Vine-Form Strategy
3.3.5 The Linear-Form Strategy
3.3.6 Other Strategies.
ComparativeStudy
Method III: Advice-taking and Knowledge Programming within

Semantic Tree Generators v v v v v v v v v v v v u

The AISTG: An Improved Semantic Tree Generator

4.1
4.2
4.3
4.4
4.5

General Description of the AISTG Program.........
Flow of Control in the AISTG Program
Using the AISTG Program
Interactiveness of the AISTG Program
Capabilities and Limitations of the AISTG Program
451 Capabilities

452 Limitations i v v it i e e e e

19
20
21
22
26
31

35

37
37
38
43
45
48
50
52
53
54
99

87

4.6 AISTG vs The Great Theorem Prover

............. 70
Semantic Tree Generation vs Resolution-Refutation 74
5.1 Generating Semantic Trees as a Proving Method 75
5.2 When to Avoid Generating Semantic Trees for Proving Unsat-
isfiability e 81
Conclusion 84
6.1 ConcludingRemarks 84
6.2 OpenProblems 86
Bibliography 88
Appendix A: Proving the Stickel Test Set using AISTG 98

Appendix B: Two Sample Runs of a Canonical Semantic Tree

Generator 103

Appendix C: Sample Runs of An Improved Semantic Tree Gen-

erator 114

List of Figures

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

A canonical semantic treefor S;.
A canonical semantic treefor S,.
Closed semantic treesfor S;.
Closed semantic treesfor Sg.

A modified semantic tree for S, after adding clauses R4

A closed semantic tree T for S with two closed subtrees
L1 & Yoo v it i e e e e
Two closed semantic trees for theset $;.
Testing Method I on the Stickel Test Set.
A closed semantic tree for Wosl2 generated using the
fewest-literals strategy.
A closed semantic tree for S; generated using the set-
of-support strategy.,
A closed semantic tree for Wos3 generated using the
unit-preference strategy.
A closed semantic tree for S, generated using the linear-
formstrategy, 0.,
A closed semantic tree for S; generated using the fil-
tered linear-form strategy.
Comparing the effect of control strategies on semantic
treegenerators. e

Flow of control in the AISTG program.

30

39

42

43

47

49

90

54

4.2
4.3
3.1
9.2

The control strategy menu. 66
The Herbrand base manipulation menu., 68
Semi-connected 4-vertices Graph Theorem. 77
Totally-connected 4-vertices Graph Theorem. 78

xii

List of Tables

2.1

2.1

4.1

4.1
5.1

The Great Theorem Prover vs Canonical Semantic Tree
Generator. i i e e e e
The Great Theorem Prover vs Canonical Semantic Tree
Generator.ttt e e e
The Great Theorem Prover vs AISTG.
The Great Theorem Prover vs AISTG.
Hard Research Theorems Proved Using Semantic Tree

Generators.t i i e e e e e e e e e e

Appendix A: Proving the Stickel Test Set using AISTG. . .

xiii

33

34
71
72

80
98

Introduction

The fundamental theorem of Herbrand has great significance in symbolic logic.
It is a base for most modern proof procedures [Nossuml, Loveland5! including
the resolution principle of Robinson, the connection graph procedure of Kowal-
ski, the matrix reduction method of Prawitz, the model elimination procedure
of Loveland, and the compactness procedure of Nossum. It has also qualified
semantic tree generators as mechanical theorem provers. According to this
theorem, in order to test whether a set S of clauses is unsatisfiable, one must
consider all interpretations over all possible domains. However, for most theo-
rems of any difficulty, it is hard to evaluate all interpretations over all possible
domains in order to establish unsatisfiability. It would be simpler to fix on
a special domain, such that the set S is unsatisfiable if and only if S is false
under all interpretations over this domain. Fortunately, there does exist such
a domain, and it is called the Herbrand universe of S. Nonetheless, as the
Herbrand universe can possibly be infinite, interpretations over this domain
should be organized in some systematic way. This can easily be achieved by
using semantic trees [Mannal].

Aside from being a base for other proof procedures, Herbrand’s theorem

1

suggested a pragmatic refutation procedure best known as Herbrand’s proce-
dure. That is, for a given unsatisfiable set S of clauses, if there is a mechanical
procedure that can successively generate sets S, S5, ... of ground instances of
clauses in S and can successively test S}, S5, ... for unsatisfiability, then (as
guaranteed by Herbrand’s theorem) this procedure can eventually reach an N
such that S)y is unsatisfiable [Changl].

In spite of its simplicity, Herbrand’s procedure has one major drawback;
it requires the generation of sets S}, S5, ... of ground instances of clauses.
For most cases, this sequence grows exponeﬁtially [Changl]. Consequently,
many researchers have agreed that semantic trees can be used to confirm the
unsatisfiability of sets of clauses, but they have felt that they are impractical
for actually determining the unsatisfiability of those sets [Changl, Loveland2,
Mannal, Nilsson3].

In this thesis, we investigate semantic tree generators as mechanical theo-
rem provers in both theory and practice, Not only do we identify the problems
causing their poor performance, but we also propose solutions to those prob-
lems. In addition, we develop the general theory of semantic trees, concen-
trating on those cases of semantic tree construction in which we hava found
improvements in performance of the semantic tree generators. In addition,
we present An Improved Semantic Tree Generator (AISTG) as a practical
theorem prover for first-order predicate theorems.

In the remainder of this chapter, we bring to bear the potential role of
semantic trees in automated theorem proving. First, we define the problem
of generating semantic trees to prove the unsatisfiability of sets of clauses,
and state the objectives of this research. Next, we shed light on the basic
knowledge underlying this problem. Then, we identify and formally define the
terminology necessary. Finally, we close the chapter by a description of the set
of theorems used for testing the semantic tree generators under investigation

in this study.

1.1 Problem Definition

Traditionally, semantic trees have been used as a theoretical tool for confirming
the unsatisfiability of sets of clauses in propositional and first-order predicate
logic [Chang2, Hsiangl, Kowalskid, Slagle3] although it has seemed impractical
to use them for detecting the unsatisfiability of those sets [Changl, Loveland2,
Mannal, Nilsson3]. Our objectives in this thesis are not only to measure but
to improve their practicality. To do this, we implemented a semantic tree
generator and ran some tests with it. The first test generated semantic trees
using the canonical enumeration of atoms from the Herbrand base. Other tests
are due to methods proposed for improving the performance of the semantic

tree generator. The methods are:

1. Filtering the Herbrand base,
2. Selectively choosing atoms from the Herbrand base,

3. Incorporating advice-taking into generating semantic trees.

It will be seen in the sequel that the first method occasionally speeds up
the construction of the semantic tree. The second method customizes the
semantic tree, by controlling the manner by which the Herbrand base atoms
participate in building the semantic tree. The last method is best justified by
the following remark {LiMinl):

The immediate benefit of machine learning would be to enable Al pro-
grams to improve their performance automatically over time, For ei-
ample, a chess program can improve its game plan against its opponent
through playing. A robot can recognize a particular kind of object
more accurately through repeated presentation of the object image. At
a more fundamental level, a machine with a clearly demonstrated ability
to learn would answer the question whether machines can exhibit true
intelligence. Without this capability, a computer system can not reason
beyond the limit of its programmed intelligence. In fact, an entity can
hardly be called intelligent unless it can learn.

Fu LiMin

In principle, these three methods accommodate desirable properties which,
in turn, improved the performance of the semantic tree generator. That is, the
semantic trec generator proved larger and more difficult theorems in contrast
to the canonical semantic tree generator. Additionally, a comparison was made
between the performance of the improved semantic tree generator (AISTG)
and the performance of a resolution-refutation theorem prover, The Great
Theorem Prover [Newbornl]. It is by improving the practicality of generating
semantic trees for proving theorems that we wish to introduce semaatic tree

generators as practical theorem provers.

1.2 History and Background

In June 11th, 1930, J. Herbrand was granted his doctorate in mathematics
with highest honors at the Ecole Normale Supérieure in Paris. In his thesis,
Herbrand presented a famous theorem later known as Herbrand’s fundemental
theorem [Herbrandl). This theorem had grown to become one of the bases in
symbolic logic nowadays. The use of Herbrand’s fundamental theorem allowed
a reduction of first-order predicate logic tasks to truth table checkable proposi-
tional logic tasks (in a perhaps infinite-ary logic). This theorem was originally
concerned with valid rather than unsatisfiable theorems, and was argued purely
syntactically. Later on a more semantic (i.e. model-theoretic) approachk was
employed, which greatly eased the complexity of argument [Mannal].

Based on Herbrand’s fundamental theorem an apparently natural process
for checking tautologyhood by the name of Herbrand’s procedure had appeared.
Gilmore was one of the first researchers to implement Herbrand’s procedure
on a computer in 1960 [Gilmorel]. Gilmore's program managed to prove a
few simple theorems, but it encountered difficulties with most other first-order
logic theorems. Careful studies of his program revealed that Gilmore’s method
of testing for the unsatisfiability was inefficient [Changl]. To overcome this in-
efficiency, Davis and Putnam [Putnam1] introduced a more efficient method for

testing the unsatisfiability of a set of ground clauses. Their method consisted of

4

four rules, the principal one of which was to break a difficult and long theorem
into small and simple cases and then to prove the theorem by considering each
case separately. However, their effect was still not enough. Many theorems in
first-order predicate logic still could not be proved by computers in reasonable
amounts of time. Other recognized attempts to use Herbrand’s procedure in
automated theorem proving are due to [Kowalski4, Changl, Hsiangl, Slagled)].
The difference in objectives or the incomplete success of these attempts is the
motivation for our research.

A major breakthrough was made by Robinson in 1965 when he introduced
the resolution principle [Robinson5]. Proof procedures based on the resolution
principle are much more efficient than are any of the earlier Herbrand proof
procedures. Since the introduction of the resolution principle, several refine-
ments have been suggested in attempts to further increase efficiency. Some
of these refinments are Semantic Resolution [Slagle3, Robinson6, Kowalski4],
Lock Resolution [Boyerl), Linear Resolution [Loveland3, Loveland4, Lovelands,
Luckham]l, Andersonl, Reiterl, Kowalski3]), Unit Resolution [Woe5, Changd],
and the Set-of-Support Strategy [Wos4].

From the discovery of Robinson’s resolution principle up until now, a wide
gap has existed between the performance of Herbrand-dependent proof pro-
cedures and resolution-dependent proof procedures. In this work, we bring
these two far ends to a closer range. Our aim behind this is to enlarge the

underestimated role of semantic trees in automated theorem proving.

1.3 Terminology

A clear exposition of the necessary preliminaries can be found in [Changl,
Fermullerl, Robinson3]. Nonetheless, in this section we provide formal defini-
tions for the basic notions of predicate logic, fundamental concepts in theorem
proving (such as substitution, unification, and resolution), Herbrand seman-
tics, and semantic trees. Additional terminology is introduced in later chapters

whenever this aids in the understanding of our definitions and proofs.

5

1.3.1 Terms, Literals, and Clauses

Concerning the language of predicate calculus [Fermullerl], we assume that
there is an infinite supply of variable symbols, constant symbols, function
symbols and predicate symbols. Moreover, we assume that each function and
predicate symbol is associated with some fixed arity. We call a function or a
predicate symbol unaryif it is of arity 1, binaryif it is of arity 2, and in general
n-ary if it is of arity n. A constant symbol is a function symbol of arity 0.

In first-order predicate calculus, a statement is called a well-formed formula
(wff). A wif is interpreted as making a statement about some domain of

discourse [Newbornl]. The syntax of wifs usually requires:

Definition 1.3.1 Logical operators are: & [conjunction], | [disjunction], ~

[negation), = [implication], and <= [if and only if].

Definition 1.3.2 Quantifiers are: V [universal quantifier] and 3 [existential

quantifier].

Definition 1.3.3: A term is defined recursively as follows:

1. Each variable and each constant is a term.

2. If ty, ..., t, are terms and f is an n-ary function symbol, then f(ty, ...,

tn) is also a term.

If a term t is of the form {(t;, ..., t,) we call it functional; the set of arguments
of t, args(t), is the set {t;, ..., tn}; f is called the leading function symbol of t.

Definition 1.3.4: If t;, ..., t, are terms and P denotes an n-ary predicate
symbol, then A = P(t,, ..., t,) is an atom; the set of arguments of A, args(A),
is the set {t1, ..., ta}; P is called the leading predicate symbol of t.

Definition 1.3.5: A literal is either an atom or an atom preceded by the

negation sign “~",
Definition 1.3.6: A ezpression is either a term or a literal.

6

Definition 1.3.7 A well-formed formula (wff) is defined recursively as follows:

1. A literal is a wiff.

2. If w is a wif, then so is the negation of w, ~w.

3. If w and v are wifs, then so are w|v, w & v, w = v, and w <= v.
4. If w is a wif, then, for any variable x, so are Yz:w and Jz:w.

A statement in predicate calculusis a wff. A theoremis a set of wifs some of
which are axioms and the rest are the conclusion, Often, deciding what axioms
to use and deciding the exact wording of the axioms and the conclusion is the
most difficult part of the theorem-proving procedure [Newbornl]. Therefore,
some theorems provers (including The Great Theorem Prover) do not attempt
to find a proof of a theorem expressed as a set of wifs. Instead, they first
compile the wifs to a simpler form called clauses. Then, using these clauses as
input, they attempt to find a procf. An algorithm for converting wifs to clause
form is given in [Newbornl, Nilsson2]. In our work, we are going to consider
only formulas given in clause form. For those formulas which are given as

wifs, we use the COMPILE procedure of The Great Theorem Prover for

their conversion.
Definition 1.3.8: A clause is a finite disjunction of zero or more literals.

Definition 1.3.9: An expression or a clause is called ground if no variables
occur in it. We call it constant free if no constants occur in it, and function
free if it does not contain function symbols.

The null clause, denoted by “[]”, is a clause of zero literals. Throughout

this work when we speak of sets of clauses, we always mean finite sets of

clauses.

Definition 1.3.10: The term depth of a term t denoted as term.depth(t) is
defined by :

(a) If t is a variable or a constant, then term.depth(t) = 0.

(b) If t = f(ty, ..., t,), where f is an n-ary function symbol, then
term.depth(t) = 1 + max { termdepth(t;}) |1 <i<n }.

(c) The term depth of a literal L(ty, ts, ..., t,), where L is an n-ary
predicate symbol, is defined as: term_depth(L) = max { term_depth(t;)
|1<i<n}.

(d) The term depth of a clause C = L; | Ly | ...| L, is defined as:
term.depth(C) = max { term.depth(L;) | 1 <i<n }.

(¢) The term depth of a set S = { C;, Cy, ..., C, } is defined as:
term.depth(S) = max { term.depth(C;) | 1<i<n }.

Example 1: If L, = P(x,f(f(y))), L2 = Q(f(x)) and C = L, | ~Lg, then
term.depth(L;) = 2, term.depth(Lz) = 1, term_depth(C) =max { 1,2 } = 2.

1.3.2 Substitution, Unification, and Resolution

A short-term goal of this research is to prove theorems in propositional and
first-order predicate calculus by using semantic tree generators. A basic notion
in theorem proving which is required for achieving this goal is the concept of

substitution, for which we use the definitions given in [Changl).

Definition 1.3.11: A substitutionis a finite set of the form {¢, /vy, %2/v2, ... ,8a/vn},
where every v; is a variable, every t; is a term different from v;, and no two

elements in the same set have the same variable after the stroke symbol.

Definition 1.3.12: When #,,t2,...,1, are ground terms, the substitution is
called a ground substitution. The substitution that consists of no elements is

called the empty substitution.

Definition 1.3.13: Let 6 = {t1/v1,...,tn/vs} be a substitution and E be an
expression. Then E# is an expression obtained from E by replacing simulta-
neously each occurrence of the variable v;, for i = 1,...,n, in E by the term

t;. E@ is called an instance of E.

. 1t E be an expression and ¢ a substitution. The application of o to E is

defined as follows:

(a) If E is a variable, then Eo is o(E).
(b) If E is a constant, then Ec = E.

(c) Otherwise, E is of the form X(ty, ..., t,), where X is an n-ary
function symbol or predicate symbol. In either case, Eoc = X(t;o,

oy tO).

(d) IfL is a literal, then Lo is defined to be the application of ¢ to the

atom of L.

(e) If C is a clause, then Co = {Ec [VE € C }.

Definition 1.3.14: Let E; and E; be expressions, then E; <, E; - read: E,
is more general than E; - if and oaly if there exists a substitution ¢ such that
E 0 = E,. Similarly, if C and D are clauses, C <, D if and only if there exists
a substitution ¢ such that Ce C D. In this case we may say, in accordance

with the usual resolution terminology, that C subsumes D.

Definition 1.3.15: A set of expressions M is unifiable by a substitution o
if and only if E;¢ = E;o for all E; and E; € M. o is called the most general
unifier (mgu) of M if and only if for every other unifier ¥ of M: ¢ <, 9.

1.3.3 Resolvents

For resolvents, we retain the original definition in [Robinson5], which combines

factorization and binary resolution.

Definition 1.3.16: A factor of a clause C is a clause Co, where o is a mgu
of some C' C C. In case the number of literals in Co is less than the number

of literals in C, we call the factor non-trivial.

Definition 1.3.17: If C and D are two clauses and M and N are literals of C
. and D respectively, such that M U ~N is unifiable by the mgu o, then clause

9

E = (C-M)o U(D- N)o is a binary resolvent of C and D. The atom A of (M
U ~N)o is called the resolved atom.

1.3.4 Herbrand Semantics

For Herbrand semantics, we refer to the original terminology in {Herbrand2].

Definition 1.3.18: Let HUy be the set of all constants appearing in S. If no
constant appears in S, then HUg = { a }, where a is an arbitrary constant. For
i=1,2,...,let HU; be the union of HU;_; and the set of all terms of the form
f(t1,...,t,) for all functions occurring in S, where each ¢;, for j = 1,2,...,n,
is a member of the set HU;_;. Each HU, is called the i-level constant set of S,
and HU,, is called the Herbrand universe of S [Changl].

Definition 1.3.19: Let HB, be the set of all ground literals of the form P(%;,
ta, ..., ty) for all predicates in S, where each ¢;, for j = 1,2,...,n, is a member
of HUy. Fori =1, 2, ..., define HB; to be the union of HB;_; and the set of
all ground literals of the form P(t),t,,...,t,) for all predicates occurring in
S, where each t;, for j = 1,2,...,n, is a member of the set HU; (the i-level
constant set). Each HB; is called the i-level predicate set, and HB,, is called
the Herbrand base of S. Elements of the Herbrand base are called atoms.

Both the Herbrand universe and the Herbrand base of S are either finite
or countably infinite sets, and thus we can refer to the i-th element in either

set by an enumeration algorithm.

Definition 1.3.20: Arbitrarily, we order all functions appearing in the given
set of clauses with respect to their arity. The canonical enumeration of ele-
ments from the Herbrand universe, denoted by HU, is, then, a recursive enu-

meration [Stolll] of the terms from the Herbrand universe.

Definition 1.3.21: The canonical enumeration of atoms from the Herbrand
base, denoted by HB, is a recursive enumeration of all ground literals for all

predicates in S obtained by using the canonical enumeration of elements from

10

. the Herbrand universe,

Example 2: Consider the theorem Wos12 (from the Stickel Test Set [Stickel2]).

The symbols e and a are constants.

11

Axioms:

01. p(e,x,x) 2. p(g(x),x,e)
03. ~p(x,y,2) | ~p(yu,v) | ~p(zu,w) | p(x,v,w) 04 p(x,yf(x.y))
05. ~p(x,y,2) | ~p(v,u,v) | ~p(x,v,w) | p(z,u,w) 06. r(x,x)

07. ~r(x.y) | r(y.x) : 08. ~r(x,y) | ~1(v,2) | r(x,2)
09. NP("?Y@) I NP(X:Y:U) | I'(Z,ll) 10. NP(Z,U,X) I p(z,u,y) I Nr(x’y)
13. ~r(x,y) | 1(f(z,x),(z,y)) 14. ~r(xy) | r(f(x,2).8(y.2))
15. ~r(x.y) | r(g(x),g(y)} 16. p(xe;x)
17. ~p(x,g(y)z) | ~o(x) | ~ ofy) | o(z) 18. p(x,g(x)e)
19. ~r(x,y) | ~o(x) | ofy) 20. o(a)
Negated Theorem:
21, ~o(e)

HU(Wosl2) = { a, ¢, g(a), g(e), f(a,a,), f(ae), f(e,a), flese), g(g(a)), &(gle)),
g(f(a.a)), g(f(ase)), g(f(e,a)), g(f(ese)), f(a,8(a)), f(2,g(e)), f(a.f(a,a)), f(a,f(a.e)),
f(a,f(e,a)), f(a,f(e,e)), f(e,g(a)), f(e,g(e)), f(e,f(a,n)), f(e,f(a,e)), f(e,f(e,a)), f(e,f{e,e)),
f(g(a),a), ... }.

HB(Wos12) = { ofa), 1(a,a), p(a,a,a), ofe), r{ae), r(e,a), rle,e), p(a,a.e),
p(ae,a), p(aese), pe,a,a), pleae), ple,ea), pleese), o(g(a)), r(ag(a)), r(eg(a)),
r(g(a),a), r(g(a)e), 1(g{a).g(a)), P(a2,g(a)), P(a.e:&(a)), p(a.g(a),8), p(a.g(a).e),
p(a.g(a).g(a)), plea,g(a), pe.e,g(a)), pleg(a)a), plegla)e), pleg(a).g(a)),
- p(g(a)aa), ... }.

Example 3: As a second example, consider Starkey103 (also from the Stickel
Test Set [Stickel2]). The symbols A and B are constants.
Axioms:

01. NS(xvY) l NM(Z:X) | M(z!y)

02. S(x,y) | M(F(x,y),x)

03. S(x,y) | ~M(F(x,),y)

04. S(x,y) | ~E(x,y)

05. S(yx) | ~E(xy)

06. ~S(x,y} | ~S(yx) | E(x,y)

07. ~M(u,z) | M(u,x) | M(u,y) | ~UN(x,y,2)

08. ~M(u:x) | M(ulz) [~UN(x!Y!z)

09. ~M(u,y) | M(u,z) | ~UN(x,y,2)

10. M(G(x,y,2):z) | M(G(x,y,2)x) | M(G(x,5:2),y) | UN(x,y,2)

12

11. ~M(G(x,y,z),x) | ~M(G(x,y,2).z) | UN(x,y,2)
12, ~M(G(x,y,2),y) | ~M(G(x,y,2).z) | UN(x,y,2)
13. UN(A,A,B)

Negated Theorem:
14. ~E(B,A)

HU(Starkeyl103) = { A, B, F(A,A), F(A,B), F(B,A), F(B,B), G(A,A,A), G(A,A,B),
G(A,B,A), G(A,B,B), G(B,A,A), G(B,A,B), G(B,B,A), G(B,B,B), F(A,F(A,A)),
F(A,F(A,B)), ... }.
HB(Starkey103) = { E(A,A), M(A,A), S(A,A), UN(A,A,A), E(A,B), E(B,A),
E(B,B), M(A,B), M(B,A), M(B,B), 5(A,B), 5(B,A), S(B,B), UN(A,A,B), UN(A,B,A),
UN(A,B,B), UN(B,A,A), UN(B,A,B), UN(B,B,A), UN(B,B,B), E(A,F(A,A)),
E(B,F(A,A)), E(F(A,A),A), E(F(A,A),B), E(F(A,A),F(AA)), ... }.

From the construction of a Herbrand universe (and thus a Herbrand base)
of a set of clauses it can be seen that infiniteness of the universe (and thus

the base) is inevitable whenever a function symbol is introduced in one of the

clauses [Wangl).

Definition 1.3.22: An interpretation of S consists of a nonempty domain D
and of an assignment of “values” to each constant symbol, function symbol,

and predicate symbol occurring in S as follows:
1. To each constant, we assign an element in D.
2. To each n-ary function symbol, we assign a mapping from D" to D.

3. To each n-ary predicate symbol, we assign a mapping from D" to { TRUE,
FALSE }.

Based on an interpretation for S, a value of TRUE or FALSE can be
assigned to each atom of S, and in turn to each clause of S. A value of TRUE
is assigned to clause C if the disjunction of values of the atoms of C is TRUE.
Otherwise, a value of FALSE is assigned. If C is assigned a value of TRUE,

we say the interpretation satisfies C.

13

The set S is said to be satisfiable if and only if there exists an interpretation
over the Herbrand universe for which all clauses of S are assigned the value
TRUE. Such an interpretation is called a model for S.

Definition 1.3.23: The set S is said to be unsatisfiable if and only if for every
possible interpretation over the Herbrand universe there is at least one clause
that has the value FALSE.

To prove a theorem using the technique of proof by contradiction, it is
sufficient to show that S, the set consisting of the set of axioms and the negated

conclusion, is unsatisfiable.

Deflnition 1.3.24: A Herbrand interpretation for S, denoted by HI(S), is
a subset of the Herbrand base HB(S) for which the truth value TRUE is
assigned to all atoms of HI(S) and the truth value FALSE is assigned to all
atoms not in HI(S).

Herbrand’s Theorem: A set S of clauses is unsatisfiable if and only if there

is a finite unsatisfiable set S’ of ground instances of clauses of S.

Proof: Suppose there is a finite unsatisfiable set S’ of ground instances of
clauses in S; suppose further that I' is an interpretation of §'. The lifting
lemmas [Newbornl] justifies extending the transformation of the set §' to the
more general set S. Thus, it is safe to assume that every interpretation I of S
contains an interpretation I' of §'. Since every interpretation I of S contains
an interpretation I of &', if I falsifies §', then I must also falsify S'. However,
' is falsified by every interpretation I'. Consequently, S’ is falsified by every
interpretation I of S. Therefore, S is falsified by every interpretation of S.
Hence, S is unsatisfiable. To show the “only if” statement, we establish the
equivalent contrapositive statement: if every finite subset of S’ is satisfiable,
then S is satisfiable. If every finite subset of S’ is satisfiable, then §' itself
is satisfiable. Therefore S’ has a ground model found by taking the TRUE
literals of any model of §'. A direct translation of this ground model to a

14

model for S shows that S is also satisfiable [Almullal]. Q.E.D.

Definition 1.3.25: Herbrand's theorem suggested a procedure, known as
Herbrand’s procedure, for proving the unsatisfiability of sets of clauses. For
a given set S of clauses, we can generate successively ground instances of the
clauses of S and test successively whether their conjunction is unsatisfiable.
By Herbrand’s theorem, if S is unsatisfiable, the procedure will detect it after

a finite number of steps. Otherwise, the procedure might never terminate.

Definition 1.3.26: Atoms in the Herbrand base that neither they nor their
complements resolve with any clause in S are called useless atoms. Whereas,
atoms in the Herbrand base that either they or their complemeats, but not

both, resolve with some clauses in S are called unnecessary atoms.

Both useless and unnecessary atoms are of no help in detecting the unsat-
isfiability of S, and are unnecessary to use when growing semantic trees. A
Herbrand base of the set S with all useless and unnecessary atoms eliminated
is called a filtered Herbrand base. Moreover, a semantic tree generated from a

filtered Herbrand base is called a filtered semantic tree.

Example 4: Consider the following theorem. If § = {P(x), ~P(a) | Q(f(a)),
~Q(f(x))}, then HU(S) = {a, f(a), f(f(a)}, ...}, and HB(S) = {P(a), Q(a),
P(f(a)), Q(f(a)), P(i(i(a))), Q(f(f(a))), ...}. The atoms P(a) and ~P(a) can
be seen to resolve with the clauses of S. Therefore, P(a} is neither useless nor
unnecessary. The atom Q(a) does not resolve with any clause in S nor does
its complement. Therefore, Q(a) is useless. Except for Q(f(a)), the remaining
atoms in the Herbrand base are all unnecessary. Thus, the Filtered Herbrand
Base: FHB(S) = {P(a), Q(f(a))}.

1.3.5 Semantic Trees

The definition of a semantic tree for clauses in first-order predicate logic can

be found in [Robinsonl, Kowalski3, Hayesl]. In our presentation, we assign

15

clauses to the non-terminal nodes of the semauntic tree (in addition to th eter-
minal node as others have done) in order to assist in obtaining a semantic tree

proof.

Definition 1.3.27: A semantic tree of a set of clauses is a downward grow-
ing binary tree. The branches of the tree are labelled with atoms from the
Herbrand base and their negation. Let the atoms from the Herbrand base be
ordered as hby, hby, ..., hb;, A node N in a semantic tree is said to be at
depth 7 if and only if it is 7 nodes away from the root of the tree along some
path. Left branches leading to nodes at depth j are labelled with hb;; right
branches are labelled with ~hb;. Each node N is assigned a set of clauses as

follows:
1. If N is the root of the tree, assign all base clauses to it.

2. If N is not the root of the tree, then it has some parent M. The clauses
assigned to N depend both on the set A of clauses assigned to the nodes
on the path from the root node to M and on the Herbrand atom or
its negation — in either case denoted by literal L — labelling the branch
leading from M to N and is determined as follows. For each clause C
in A, place in node N all resolvents of C and L and all resolvents of the

resolvents with L until no more resolvents are generated.

The mechanism of semantic trees permits insight into the process of es-
tablishing completeness for the first-order predicate proof procedures. It also
provides a direct link with the notion of resolution itself. Whether the Her-
brand base of an unsatisfiable set S of clauses is finite or countably infinite,
only a finite subset of it is necessary for constructing a closed semantic tree
(see Definition 1.3.30) for that set. Moreover, the order in which the atoms
appear in the enumeration of this subset dictates the size and shape of the

closed semantic trees.

Definition 1.3.28: A canonical semantic tree is & semantic tree in which

16

the branches at level ¢ are labelled with the i-th atom from the canonical
enumeration of atoms from the Herbrand base or its negation.
Different enumerations of atoms from the Herbrand base yield different se-

mantic trees. One of these enumerations corresponds to the canonical semantic

tree.

Definition 1.3.29: A node N in a semantic tree is called a failure node if the
null clause is assigned to it.

A failure node in a semantic tree is indicated by a solid node (®) when it
appea.rslin the tree and is labelled with the number of the base clause C and
the indices of the literal La or literals La, Lb, ...of C that were resolved away
10 yield a failure. Other nodes on the path to N record where other literals of

C, if there were other literals, were resolved away.

Definition 1.3.30: If every path in a semantic tree beginning at the root
terminates at a failure node, the tree is called a closed semantic tree and
contains a finite number of nodes above the failure nodes.

We now have a way of confirming the unsatisfiability of a set S of clauses;
the confirmation involves building a closed semantic tree for S. If S is unsatis-
fiable, then, by Herbrand’s theorem, there is a finite subset K of the Herbrand
base such that every semantic tree T for K is closed for S. However, deter-
mining the unsatisfiability of S by constantly generating semantic trees and
efficiently testing them for closure has been considered awkward and imprac-

tical [Changl, Lovelandl, Mannal, Nilsson2].

Definition 1.3.31: A vineis a finite binary tree in which each node is either
a leaf or is immediately above some leaf. A node N of a vine i8 a bottom-leaf
if N is below every node of the vine which is not a leaf.

It should be noted that a vine which has more than one node has exactly

two bottom-leaves.

17

1.4 The Stickel Test Set

It is never an easy task to find a large number of theorems with suitable ac-
cessibility, variety, and difficulty. For the testing of semantic tree generators
investigated in this thesis we followed [Stickel?] in using the set of theorems
appeared in the Wilson and Minker study [Wilsonl]. This set was later known
as the Stickel Test Set. Two other sets of theorems satisfying the above con-
ditions are the seventy-five problems for testing automatic theorem provers
[Pelletierl] and the theorems which appeared in the automated development
of Tarski’s geometry [Quaifel], although for our purposes, the Stickel Test Set
seemed more suitable for its flexibility, domain variety, and proof availability.

The original source of the Stickel Test Set is the Wilson and Minker study
in 1976 [Wilsonl]. They took theorems 1-9 from Reboh et al. [Rebohl],
theorems 10-19 from Michie et al. [Michiel], theorems 20-24 from Fleisig et al.
[Fleisigl], theorems 25-57 from Wos [Wos3], and theorems 58-84 from Starkey
and Lawrence [Starkeyl]. This last set of theorems has been used to test
the Markgraf Karl Refutation Procedure connection-graph resolution theorem-
proving program [Karll]. In 1988, Stickel enlarged this set of theorems by
adding 9 theorems to it from [Changl], and used the enlarged set to test his
Prolog Theorem Prover [Stickel2]. Letz et al. have also used the Stickel Test
Set to test their SETHEO theorem-proving program [Letzl].

In our study of semantic trees, we used the first 84 theorems of the Stickel
Test Set because they cover a wide range of theorems of varying difficulty.
More importantly, they illustrate the need to dramatically prune the search
space (that is, the set of all possible ways of applying resolution to the base
clauses and all resolvents deduced), which make them sufficient for testing the

semantic tree generators,

18

Canonical Semantic Trees in
Automated Theorem Proving

Herbrand's fundamental theorem has many profound contributions in symbolic
logic. It was shown in Chapter 1 how Herbrand’s theorem implied a refuta-
tion procedure for proviig theoreins in propositional and first-order predicate
logie, Iti this chapter, another contribution made by Herbrand’s theorem is
illustrated. The theorem revealed correapotidence between semantic trees and
resolution-refutation proof trees, and between semantic tree generators and
resolution-refutation theorem provers [Wangl|. In the sequel, we demonstrate
this correspondence by showing that semantic tree generators are indeed equiv-
alent to their counterpart.

Resolution with merging is a complete deductive system for the first-
order predicate calculus and is compatible with the set-of-support strategy
[Andrewsl). The s-linear deductive system of Loveland (which is a restriction
on resolution) is complete and, as with merging, is compatible with the set-of-
support strategy [Loveland4]. The Ancestry Filtered Form (also called Linear
Form) is also a complete deductive system and is compatible with the set-of-
support strategy [Luckhaml]. The compatibility of these deductive systems

refers to the correspondence between closed semantic trees and resolution-

19

refutation proofs trees. The same closed semantic tree may be generated using
atoms obtained from two or more resolution-refutation proofs which, in turn,
are constructed by different, yet compatible, deductive systems.
Concentrating on semantic trees and their role in automated theorem prov-
ing, this chapter investigates the practicality of generating semantic trees for
proofs of unsatisfiability. The chapter begins with a close look at the Her-
brand universe and at the Herbrand base of a set of clauses. It underlines
the reason behind avoiding the use of semantic tree generators as mechanical
theorem provers. Focusing on the growth rate of the Herbrand universe and of
the Herbrand base, the chapter presents mathematical formulas which reflect
this extremely rapid growth. In addition, the chapter presents a system for
using semantic trees in proving unsatisfiability of sets of clauses. The system
includes building canonical semantic trees by Herbrand’s procedure, extract-
ing resolution-refutation proofs from closed semantic trees, and building closed
semantic trees from given resolution-refutation proofs. To achieve its primary
objective, the chapter ends with displaying the result of measuring and com-
paring the performance of a canonical semantic tree generator with The Great

Theorem Prover on the Stickel Test Set.

2.1 Growth Rate Analysis of the Herbrand
Universe

The major combinatorial obstacle to efficiency for Herbrand-dependent se-
mantic tree generators is the enormous growth rates of the constant sets
and of the predicate sets (see definitions 1.3.18 and 1.3.19), and hence the
growth rates of the Herbrand universe and of the Herbrand base of a set of
clauses [Robinson5]. They can be - and most often are — both exponential
[Changl, Hsiangl, Robinsonl]. These growth rates were analyzed in some
detail in [Robinson7]. Nonetheless, in estimating the efficiency of canonical
semantic tree generators as mechanical theorem provers, we developed the

following formulas:

20

Let | HU; | denote the number of terms in HU;. Then,

| HUy | = number of constants in the set S

k
IHU1‘=|HUQI+EHM*|HU0 |m
m=1

and for i > 1,

k
] HUI' | = | HU.'-] |+ 2 nm*(| HU.'_l |m —'IHU.'_Q lm)

m=]
where n,, is the number of m-ary functions, and k is the maximum number of

arguments in any function.

Let us apply the above formulas to the two theorems given in Lxample 2

and Example 3 of Chapter 1.

Example 1: The number of constant symbols in the theorem Wosl2 = 2, the
number of unary function symbols in Wosl2 = 1 and the number of binary
function symbols in Wosl2 = 1. Therefore, | HUy | = 2, | HU; | = 8, | HU; |
=74, | HU3 | = 5552, ...etc.

Example 2: The number of constant symbols in Starkey103 = 2, the number
of unary function symbols in Starkeyl03 = 0, the number of binary func-
tion symbols in Starkey103 = 1 and the number of 3-ary function symbols in
Starkey103 = 1. Therefore, | HUg | = 2, | HU; | = 14, | HU, | = 2942, ... etc.

These values are used subsequently for estimating the growth rate of the

Herbrand base of these two theorems, as it will be seen in the next section.

2.2 Growth Rate Analysis of the Herbrand
Base

Let | HB; | denote the number of atoms in HB;. Then,

X
|HBQI=ZNM*|HU0|M

m=1

K
|H31|=|HBo|+ZNm*(IHU1 |m—|HUo Im)

m=l

21

and for i > 1,
K
| HB; | =| HBi_1 | + 2:2:1 N (| HU: " = | HU;1 ™)
where N,, is the number of m-ary predicates, and K is the maximura number
of arguments in any predicate.
For completeness purposes, we apply the above formulas to Wosl2 and
Starkey103.

Example 1:

The number of unary predicate symbols in Wosl12 = 1, the number of binary
predicate symbols in Wosl2 = 1 and the number of 3-ary predicate symbols in
Wosl2 = 1. Therefore, | HBy | = 14, | HB, | = 584, | HB; | = 410774, | HB; |
= 1.71 x10', ... etec.

Example 2:

There are no unary predicate symbols in Starkeyl03. The number of binary
predicate symbols in Starkeyl03 = 3 and the number of 3-ary predicate sym-
bols in Starkeyl03 = 1. Therefore, | HBy | = 20, | HB, | = 3332, | HB; | =
2.54 x 1010, .., etc.

2.3 Building Canonical Semantic Trees

Given some axioms and a negated conclusion, a base clause is either a member
of the axioms or a member of the clauses in the negated conclusion. Occasion-
ally, a given set of base clauses can be simplified prior to building its canonical
semantic tree. By simplifying, we mean to eliminate certain clauses from the
set and or to eliminate certain literals from the clauses. These simplifications
are such that the simplified set of base clauses is unsatisfiable if and only if
the original set is unsatisfiable [Nilsson2]. Performing such simplifications may
optimize the canonical semantic tree by trimming redundant parts of the tree.

Simplifying the clauses is carried out by the following three procedures:

22

» Procedure I (Uncomplemented literals removal): If a base clause

C has a literal L that can not be resolved with any other literal in the
set of base clauses, then L can be eliminated from C. The justification
of this step is that L can not contribute to finding of a proof (provided

that one exists).

Procedure II (Subsumed clauses removal): A clause in an unsatis-
fiable set of clauses which is subsumed (see Definition 1.3.14) by another
clause in the set can be eliminated without affecting the unsatisfiability
of the set [Newbornl]. In case of resolution-refutation, the elimination of
clauses subsumed by others frequently leads to substantial reductions in
the number of resolutions that need to be performed for finding a refu-
tation [Nilsson2]. This statement can be extended to justify performing
Procedure II prior to building a closed semantic tree for an unsatisfiable

set of clauses.

Procedure III (Tautology clauses removal): A clause is a tautol-
ogy precisely when it contains a pair of oppositely signed but otherwise
identical literals. Such clauses can obviously be eliminated without los-
ing refutation completeness. The justification of this step is due to the
fact that any unsatisfiable set of clauses containing a tautology is still

unsatisfiable after removing the tautology, and conversely. Thus, clauses

such as P(f(a)) | ~P(f(a})) and P(x) | Q(y) | ~Q(y) may be eliminated.

Consider the following two examples for constructing canonical semantic

Example 3: Let S; be the following theorem:

Cl: P(x) | Q(y)
C2: ~P(a)
C3: ~Q(b)

In this case, the canonical enumeration of elements from the Herbrand universe

23

is finite. HU(S;) = { a, b }. Accordingly, the canonical enumeration of atoms

from the Herbrand base is finite anc is ordered as follows: HB(S;) = { P(a),
Q(a), P(b), Q(b) }.

Figure 2.1: A canonical semantic tree for S;.

The canonical semantic tree for the set S, is closed, finite and is shown in
Figure 2.1. Tracing down a path from the root node to a tip node (i.e. a node
at the bottom of the tree), provides one Herbrand interpretation of the set S;
(see Definition 1.3.24). Thus, the Herbrand interpretation obtained by tracing
from the root node to the tip node marked 1 in Figure 2.1 is given by the set:

M, = { P(a), ~Q(a), ~P(b), Q(b) }

Such a set is a mode] for 5;. A model fails to satisfy a clause if there exists a
ground instance of the clause (using terms from Herbrand universe) having the
value FALSE, using the valuation specified by the model. Hence, the model
M, fails to satisfy the clauses ~P(a) and ~Q(b). Similarly, the model M,
= { ~P(a), ~Q(a), ~T{}, ~Q(b) } fails to satisfy the clause P(x) | Q(y),

24

since the ground instance P(a) | Q(b) has the value FALSE. We can eliminate
. each of the 16 possible interpretations, in turn, to conclude that the set S, is

unsatisfiable.

Example 4: Let S; be the following theorem:
~P(x) | Q(x)
P(f(y))
~Q(f(y))

Figure 2.2: A canonical semantic tree for S,.

The canonical enumeration of elements from the Herbrand universe of S, is:

HU(S;) = {a, f(a), f(f(a)), f(f(f(a))), ... }. Accordingly, the canonical enu-

meration of atoms from the Herbrand base of Sy is: HB(S;) = { P(a), Q(a),
. P(f{a), Q(f(a)), P(f(f(a))), ... }-

25

If the Herbrand base of a set S of clauses is countably infinite, as it for the
above set S;, then each complete Herbrand interpretation corresponds to an
infinite path in the semantic tree. Nevertheless, all semantic trees of S must
be closed by failure nodes, including the canonical semantic tree, if and only
if the set S is unsatisfiable. The part of the canonical semantic tree above and

including all failure nodes for the set S, is shown in Figure 2.2.

2.4 Proving Theorems Using Canonical Semantic
Trees

Proof procedures can be efficient when they are used with knowledge and intel-
ligence. However, when they are used purely mechanically (i.e. used without
any programmed intelligence to reduce the search overhead), they can be and
most often are inefficient. Certain proofs, however, are well-adapted to me-
chanical use. Resolution-refutation is the best known such proof procedure;
semantic tree generation is another, though it has not had the intensive devel-
opment that resolution-refutation has, Our aim here is to present the latter
system in considerable detail, and to discuss its implementation. In this sec-
tion, an algorithm for extracting resolution-refutation proofs from closed se-
mantic trees is demonstrated. This algorithm will, then, be used to prove the
completeness of generating semantic trees as a method for proving theorems.

A resolution-refutation proof tree is a special case of a resolution-refutation
proof graph. In a resolution-refutation proof tree, a node in the tree serves as
an input to only one other node, while in a resolution-refutation proof graph a
node may serve as an input to more than one node [Newbornl]. Constructing
a resolution-refutation proof graph of a theorem from the corresponding closed

semantic tree is done according to the following algorithm:

1. Consider two failure nodes N1 and N2 that are siblings of node N and that
fail because of clauses C1 and C2, respectively. Let Lla, L1b, ..., Lin
denote the literals resolved away in Cl1 and L2a, L2b, ..., L2m denote

26

the literals resolved away in C2. If only one literal is resolved away in
each clause, say Lla and L2a respectively, form the binary resolvent R
= (C1L1a,C2L2a). Otherwise, if there is more than one literal resolved
away in Cl, say Lla, L1b, ..., Lln, first form a factor of C1, say Cl’,
using a substitution 81 that is a mgu of the literals L1a, L1b, ..., Lin;
similarly if there is more than one literal resolved away in C2, say L2a,
L2b, ..., L2m, form a factor of C2, say C2, using a substitution 62 that
is & mgu of the literals L2a, L2b, ..., L2m. Let L1a’ = { Lla | L1b |
...| Lln }41 and L2a' = { L2a | L2b | ...| L2m }62. Then form the
resolvent R = (C1’L1a’,C2'L2a’). Each time this step is performed, one

new resolvent is added to the proof and possibly one or more factors are
added as well.

2. Form a new semantic tree for the enlarged set of clauses including the
base clauses and all resolvents created thusfar. This new semantic tree
will have at least one less node than did the previous semantic tree, failing
at all the nodes that its predecessor did and failing at node N as well due
to the new resolvent R added in Step (1). Often, the new resolvents will
cause nodes on the path to the failure nodes of the previous semantic
tree to fail in this new semantic tree. Eventually, a semantic tree will be
created with only a root node and that will be a failure node. The proof

will then be complete.

Example 5: Let S; be the following set of base clauses:
Axioms:
1. P(x)
2. ~P(a) | Q(x)
Negated Theorem:
3. ~Q(f(x))
There are two tip nodes in the closed semantic tree of S; appearing in

Figure 2.3 {a). Resolving them together gives R4 = (3a,2b) = ~P(a). The

27

First resolvent of proof:
R4 = (38,20) = ~P(a) na/\n..;

(a) Closed semantic tree for S3

[Base Ciausen + (A4) |

Second resolvent of proof: o)
A5 = (4a,1a) =[] P

4]
(b} Modifled ssmantic tree for S3

~P(s)

Figure 2.3: Closed semantic trees for S;.

semantic tree for the enlarged set of clauses is shown in Figure 2.3 (b). The
null clause falls out: R5 = (4a,1a) = []. The resolution-refutation proof is
presented next.

4. (3a,2b) ~P(a)

5. (4a,1a) []

Example 6: Let Sy be the following set of base clauses:
Axioms:
1. P(h(x,y)x) | Q(x.y)
2. ~P(xy) | Q(yx)
Negated Theorem:
3. ~Q(x)y)
There are two choices for the first step. Arbitrarily, form clause R4 =
(2a,1a) = Q(x,y) | Q(x,h(x,y)) as shown in Figure 2.4 (a). Then, construct

the semantic tree for the modified set of clauses containing the three base

28

clauses and clause R4. Again, there are two choices for the second resolvent.
Arbitrarily, form clause R5 = (3a,4b) = Q(x,y) as shown in Figure 2.4 (b).
Then, once again construct the semantic tree for the set of clauses containing
the first three base clauses and clauses R4 and R5. Lastly, form clause R6

= (3a,5a) = [] as shown in Figure 2.5. The resolution-refutation proof is
presented below.

First resoivent of proot:
JHaa) 4 =(2a,10) w Q{xY) | QECNYY

- 1h HN&NAI)H Py 1 Pth(ah(na}a)
30 ~P(h{s,a)a)

0 2r 1

Sub-ﬂguro (m): cloud urnlnﬂc tree for Sy

Sscond rescivent of proot:
§ = (3a,4b) = QxY)

Sub-figure (b): Modifled semantic tree for 84 after adding clauss 4

Figure 2.4: Closed semantic trees for S,.

4. (2a,1a) Q(xy) | Q(x,h(x.y))
5. (3a,4b) Q(x.y)

6. (5a,3a) []

Rase Clauses + (A4) + (RF)

Third resolvent of proof:

Paa) ~P(nn) Ré=(3aba)m[]

Figure 2.5: A modified semantic tree for S, after adding clauses R4
and RS.

The above algorithm can be used in proving the completeness of generating

semantic trees for proving the unsatisfiability of sets of clauses.

Theorem 2.1: A finite set S of clauses is unsatisfiable if and only if there is

a semantic tree deduction of the null clause [).

Proof: (=) Suppoee S is unsatisfiable. Then, by Herbrand’s theorem there
exists a finite closed semantic tree for S. If the closed semantic tree is built
in such a way that (1) all useless and unnecessary atoms are filtered, and (2)
every failure node in the tree is labelled with the =umber of the clause and
index of the literal resolved away, which the Herbrand interpretation failed to
satisfy, then a deduction of the null clause [] can be obtained from the closed
semantic tree of S. Simply by repeatedly traversing the tree in a bottom-up
and left-right fashion, the base clauses whose numbers label the two failure
nodes sharing the same parent are resolvad, thereby enlarging S by adding the
resolvent to it. Eventually, a new semantic tree is built for the enlarged set S
with only one node (and that is the root node) which will be a failure node.
The deduction of [] is then obtained.

(¢<=) Conversely, suppose there is a semantic tree deduction of [] from S.

Let R1, R2, ..., Rk, for some positive integer k, be the resolvents obtained

30

by resolving the base clauses whose numbers label the failure nodes in the
closed semantic tree. Assume S is satisfiable. Then, there is a model M for S.
However, if a mode] satisfies two clauses C1 and C2, it must also satisfy any
resolvent of Cl and C2. Since M satisfies S, it must also satisfy R1, R2, ...,
Rk. But this a contradiction, because one of these resolvents is [|. Therefore,

S must be unsatisfiable. Q.E.D.

2.5 The Stickel Test Set Experiment

The canonical semantic tree generator is a naive (i.e. purely mechanical) theo-
rem prover. In this section we discuss an experiment that is meant to analyze
the effectiveness of proving theorems using semantic trees. We investigate the
amount of search required from the canonical semantic tree generator to prove
a theorem, given an exact amount of search sufficient for the proof. The latter
is obtained from a resolution-refutation proof of that theorem.

The Great Theorem Prover is a resolution-based theorem prover.It can
serve as the instructional material for a course in automated theorem proving
[Newborn1]. It uses two inference rules, binary resolution and binary fac-
toring, when attempting to prove theorems. This prover was used for proving
research theorems such as those in the Stickel Test Set and Tarski’s geome-
try. In addition, it was used as a resolution-based tool for testing the abstract
theories of COCOLOG [Cainesl].

Before attempting to construct closed semantic trees for the theorems in the
Stickel Test Set, we will examine resolution-refutation proofs of each theorem
in the set as found by The Great Theorem Prover [Newborn2]. From the proof
of each theorem, we extract the set A of resolved atoms A;, A, ..., A,. That
set is sufficient for constructing a closed semantic tree. The term depth of
A was determined from the smallest i such that all resolved atoms that are
in A are in HB;, placing an upper bound on the depth of a closed canonical
semantic tree. The value of HB;_; places a lower bound on this depth for the
set A. It should be pointed out that the proof to most theorems is not unique

31

and that the set of resolved atoms, in turn, is not unique, and thus while a
closed canonical semantic tree must exist with depth at most HB;, one may in

fact exist with depth less than HB;_;.

Example 7: Wos12 serves as a good example to show how the set of resolved
atoms are extracted from a proof, and how the minimal value of i can be
determined.

The proof of Wosl2 is:
22: (21a,18d) ~p(x,g(y)se) | ~o(x) | ~o(y)
23: (22a,17a) ~o(x)
24: (23a,20a) [

where | | denotes the null clause.

When resolving Clause 23 and Clause 20 to generate Clause 24, the resolved
atom is o{a). The constant a is substituted for x in Clause 23 to form 23"
~o(a). When resolving Clause 22 and Clause 17 to give 23': ~o(a), the
resolved atom is p{a,g(a),e). The constant a is substituted for x and y in
Clause 22 to form clause 22': ~p(a,g(a),e) | ~o(a) | ~o{a). When resolving
Clause 21 and Clause 18 to give Clause 22/, the resolved atom is o{e). The three
resolved atoms o(a), o(e) and p(a,g(a),e) all have a term depth of 1, and thus
a closed semantic tree of depth at most | HB; | = 584 can be found. Further, |
HBy | = 14 tells us that a depth of at least 14 levels of the canonical semantic
tree must be investigated before a closed semantic tree which corresponds to
this particular proof is generated.

Table 2.1 measures the performance of a canonical semantic tree generator
on the thecrems in the Stickel Test Set. This table presents the name of
each theorem (Column 1), the number of resolved atoms for each theorem
(Column 2), the smallest value of ¢ such that s-level predicate set contains all
the resolved atoms (Column 3), the value of HB;_; (Column 4), and the value
of HB; {Column 5). It can be seen that the depth of the semantic trees of

3The asterisk character in this column indicates that the number of generated resolvents
is greater than the nize of the clause database,

32

Using The Great Theorem Prover || Using Canon. Sem, Iree Generator
Theorem Raesolved Proof Time Atoms *
M_LLJMJM In seconds checked
SCiburst 16 2] 1.06x1 749x1 No 3900 66
S02short 8 2 8.29x 10° | 6.93 x 10° No 14560 97
S03prime 8 2 78 406 Yes 19300 187
S04haspartl 4 1 810 2.06 x 1017 No 61 275
S05haspart? 7 21206x1017 [3.78x 10"# No 178 275
SO6ances 6 0 0 6 Yea 1 6
SOTNUMI1 4 1 39 258 Yes 16810 174
S08groupl 3 2 125 5.31 x 10° No 11963 63 |
S09group?2 10 0 0 64 Yes 21631 54
S10ewl 5 0 0 0 5
Silew? 3 0 0 0 3
" S12ew3 5 0 0 0 5
S13robl 8 2 8 56 41
Sidrob2 10 0 0 9360 54
Si5michie || 3 2 64 26835 182
Si6qw 3 1 1 0 3
S17Tmqw] 1 0 3
SISDBABHP 6 3 18000 62]1
Si9APABHP 18 4 290 275
S20fleisigl 11 3 3405 275
S21fleisig2 11 3 3501 275
522fleisig3 13 2 3720 ~ 70
S23fleisigd 8 2 3060 42
S24fieisigh 8 2 3420 42
S25Wosl 6 2 3948 9%
S26Wos2) 2 7200 70 i
§27Wos3 3 0 0 8
S28Wosd 5 2 1571 72
S29Wos5 7 2 576 4.10 x 10° 4500 101
$30Wosb 8 1 80 1.44 x 107 No 7560 56
S31Wos? 6 1 36 3600 Yes 11528 T
[~ S32Wos8 6 2 576 4.10 x 10° No 7742 136
S33Wos9 i 1 150 441 x10° || No 7200 130
10 0 0 80 Yes 7140 — 70
8 1 150 4.41x 10° || No 12600 106
3 1 14 584 Yes 12 24
5 1 14 1110 No 3600 103
S38Wosl4d 5 1 14 584 || Yes 13 30
S39Wosl5 10 2] 1.4d4x1 220x 10 | No 3600 108
§40Woelb 6 1 14 1110 Yes 6 24
6 1 39 6174 No 10265 134%
§42Wosl8 5 1 84 1.44 x 10° o | 7560 108 1

Table 2.1: The Great Theorem Prover vs Canonical Semantic Tree

Generator.

33

Using The Great Theorem Prover || Using Canon. Sem. Tree Generator |
| Theorem | Resolved II Proof Time Atoms *
Name Atoms '] HB;. HB; Found | in seconds checked
[S43Wos19 7 1] 155] 219x10° | No | 48408 | 168
544Wos20 16 1 155 2.19 x 10° No 3060 100
S45Wos21 9 2 3600 5.51 x 107 No 3060 102 H
S46Wos22 14 3 [7.66 x 1077 | 2.35 x 10°% No 2500 47"
S47Wos23 5 1 275 4.35 x10° || No 5659 71 I
S48Wos24 6 1 275 4.35 x 10° No 5663 1% I
S40Wos25 6 1 1088 5.99 x 10° No 5659 1% Il
C50Wos26 | 24 [1.72x10° | 2.22x 107 || No 18260 128 “
S51Wos27 || 6 1 63 7.29 x 10° No 3780 48
S52Wos28 9 1 275 3.35 x 10° No 3652 58*
S53Wos29 " 8 0 0 1088 [No 1001 7T
S54Wos30 6 0 0 144 No 14400 90
S55Wos31 28 i 18 162 No 7560 69
S56Woe32 4 0 0 32 Yes 756 31 |
557Wosa3 16 1 32 258 Yes 43200 70 I
Starkey5 2 0 0 2 Yes 0 2 I
[Starkey17 11 2 21 105 Yes 28800 69 |
Starkey23 6 2 512 4,05 x 10° No 28496 100 “
Starkey26 5 1 10 520 Yes 0 21
Starkey28 7 4245 %107 | 240x 10 | No 16786 275
Starkey29 7 2 441 7.83 x 10° No 16704 275
tarkey35 6 i 16 256 No 1840 41¥
Starkey36 12 1 150 4.41x10° || No 13911 171%
Starkey37 10 2 3600 5.51 x 107 No 19633 78% [
Starkey4l 3 0 0 9 Yes 0 8 [f
Starkey55 4 2 5716 1.39x10° | No 7200 245 I
Starkey65 7 2 9408 2.68 x 10° No 2480 275
Starkey68 2 2 512 1.23x10° | No 2754 — 275
Starkey75 _ 10 3| 1.23x10° [687x10° | No 1978 275
Starkey76 3 0 0 32 Yes 1 17
Starkey87 8 1 32 5272 No 4240 250
Starkey100 3 0 0 27 Yes 741 24
Starkey103 8 1 20 3332 No 26280 37
Starkey105 4 1 20 3332 Yes 43200 66
Starkey106 4 1 54 6.38 x 107 No 7920 66 |
| Starkey108 10 1 324 1.73 x 107 No 12645 275 I
Starkeylll 4 1 20 3332 Yes 27000 66 |
Starkeyl12 12 1 833 8.18 x 10° No 1517 275
Starkeyll5 [1 176 6.54 x 10° No 8640 120
[Starkeyi16 8 1 200 3.79 x 10° No 8640 130
[Starkey118 12 1 1176 3.83x1 No 1220 250
[Starkey121 | 7 1 176 654x10° | No 7537 191

Table 2.1: The Great Theorem Prover vs Canonical Semantic Tree

Generator.

these 46 theorems has an upper bound of at least 10000, and these are likely
to be the hard theorems.

A modified version of The Great Theorem Prover was programmed to
generate canonical semantic trees and it was given the Stickel Test Set for an
exercise. The program found closed canounical semantic trees for 29 of the 84
theorems. The test was carried out during May of 1994 at McGill University's
School of Computer Science using an IBM RS/6000* model 350. The program
is approximately 8000 lines of C code, and is divided into two parts. The first
part generates the canonical enumeration of atoms from the Herbrand base.
The second part uses this enumeration of atoms to construct a semantic tree.

Columns 6-8 of Table 2.1 show the program's result on the Stickel Test Set.
They specify whether a closed semaatic tree was obtained for each theorem
(Column 6), the execution time in seconds for the program to find a proof
or to stop a search (Column 7), and the number of atoms checked before a
proof was found or before the program terminated its search (Column 8). The
program ceased searching if the number of resolvents on the path from the
root to some node in the semantic tree became greater than the size of the
clause database (in our case, the size of the database is 5000 clauses) or if
275 atoms have been used in building a semantic tree. These values may be

increased depending on the size of the memory of the computer.

2.6 Obtaining Other Resolution-Refutation -
Proofs From a Given Proof

Semantic trees can be used to obtain other proofs of unsatisfiability for a set
of clauses from a given resolution-refutation proof for that set. This may be
significant to artificial intelligence researchers, especially those who seek proofs
of various categories. For instance, short proofs versus long proofs or cheap
proofs versus expensive proofs (in terms of execution time and or computer’s

memory requirements).

4A trademark of International Business Machines Inc.

35

In order to obtain other resolution-refutation proofs from a given one, it
is necessary to construct a closed semaatic tree from the given proof. Once
a closed semantic tree has been constructed, a simple manipulation of atoms
labelling the branches of this semantic tree would provide a different closed
semantic tree. By ‘manipulation of atoms’ we mean adding, deleting andor
modifying some of these atoms. Other resolution-refutation proofs can be
obtained from the newly constructed closed semantic trees. In what follows,

Pascal-like pseudocode for this procedure is given.

Procedure Obtain_Proofs(P : Resolution Proof);
Yar

X,Y : Herbrand _Base Subset;

T : Semantic_Tree;

Q : Resolution.Proof;

Begin
X = Resolved_Atom_Set(P);
For every valid manipulation of atoms in the set X Do

Begin
Y = Set_Manipulation(X);
T = Construct_Semantic_Tree(Y);
Q = Eztract_Proof(T);
Print_ProofQ);

End

36

Improving Semantic

Tree Generators

In the Stickel Test Set experiment of Chapter 2, we established that canonical
semantic trees are poor devices for proving theorems in first-order predicate
calculus. One of the primary objectives of this research is to improve the
practicality of generating semantic trees for proofs of unsatisfiability. The hope
is to improve the performance of semantic tree generators, in the sense that
they can prove larger and more difficult theorems than can canonical semantic

tree generators. The sequel suggests methods for achieving this objective.

3.1 Methods for Improving Semantic Tree -
Generators

The performance of semantic tree generators can be improved in different
ways, from which we have chosen to investigate three. In the first method, the
Herbrand base is filtered by identification and elimination of useless and unnec-
essary atoms. In the second, atoms are selectively chosen from the Herbrand
base by following certain control strategies in order to construct semaatic trees.

The effect of these strategies on the performance of a semantic tree generator

37

in producing proofs is examined using the Stickel Test Set. A discussion of
their effectiveness on the outcome is presented in Section 5 of this chapter. The
third and last method incorporates the use of an external human supervisor,
as might be desirable, to assist the generator building the semantic trees.
Only theoretical aspects of the three proposed methods are addressed in
this chapter. The actual implementation of these methods within a semantic
tree generator is discussed in the next chapter. Henceforth, in this thesis a
semantic trec generator will be called improved if it uses one of these three
methods for generating its semantic trees. We close this chapter with a com-
parison made between a canonical semantic tree generator and an improved
semantic tree generator from the viewpoint of the number of theorems which

are proved from the Stickel Test Set by each method.

3.2 Method I: Filtering the Herbrand Base

It was noted earlier in Chapter 2 that the atoms of the Herbrand base deter-
mine the size and shape of the closed semantic trees of an unsatisfiable set of
clauses. A difficulty that often arises when generating a semantic tree is that
of using useless and unnecessary atoms from the Herbrand base. The use of
such atoms usually forces duplicate subtrees to appear in the semantic tree.
Consequently, one method for improving the performance of semantic tree gen-
erators is to filter the Herbrand base, keeping in mind that using useless and
unnecessary atoms can be avoided at only a modest additional computational
expense. The following two theorems justify allowing the elimination of useless

and unnecessary atoms from the Herbrand base.

Theorem 3.1: If ¢ is an unnecessary atom in the Herbrand base of an un-
satisfiable set S of clauses such that a closed semantic tree for S is generated
from a finite subset A of the Herbrand base with ¢ € A , then another closed
semantic tree can be generated from the subset A' = A/{p}.

Proof: Let ¢ be an unnecessary atom in the Herbrand base of an unsatisfiable

38

set S of clauses. Suppose a closed semantic tree Y is generated from a finite
subset A of the Herbrand base, with the atom (labelling at least one of the
branches of T at a certain depth. Since the order of atoms in A does not affect
the fact that a closed semantic tree can be generated from the atoms of A, re-
order the atoms in A such that ¢ and ~ ¢ label the two branches descending
from the root node of T as shown in Figure 3.1. Accordingly, re-construct the

closed semantic tree T from the atoms of the modified A.

Figure 3.1: A closed semantic tree T for S with two closed subtrees
T, & T,

Since T is a closed semantic tree, the two subtrees T; and T, of T must
be closed. Moreover, since ¢ is an unnecessary atom, by definition either it
or its complement but not both resolves with clauses in 5. Without loss of
generality, assume that ¢ does not resolve with any clause in S. Then, the
closure of the left subtree T does not depend on the atom ¢; thus the branch
labelled by ¢ can be eliminated. Moreover, the presence of the atom ~ ¢
among those labelling the branches of the right subtree T2 means that ~ ¢
is an uncomplemented literal, which subsequently can be eliminated without
affecting the completeness of this proving method. Therefore, another closed
semantic tree for S can be generated from a finite subset A’ of the Herbrand

base which is equal to the subset A / {¢}. Q.E.D.

39

Theorem 3.2: If v is a useless atom in the Herbrand base of an unsatisfiable
set S of clauses such that a closed semantic tree for S is generated from a finite
subset A of the Herbrand base with ¢ € A , then another closed semantic tree
can be generated from the subset A' = Af{p}.

Proof: Let ¢ be a useless atom in the Herbrand base of an unsatisfiable set
S of clauses. Assume that there exists a closed semantic tree for S with the
atom ¢ labelling at least one of its branches at a certain depth. Let A be a
finite subset of the Herbrand base of S such that ¢ € A and that a closed
semantic tree can be generated using the members of A. As in Theorem 3.1,
re-order the atoms of A in such a way that ¢ and ~ ¢ label the two branches
descending from the root node of the closed semantic tree. But recall that ¢
is a useless atom, which means that neither it nor its complement resolve with
any of the clauses of S. Therefore, the closure of the semantic tree does not
depend on the atom ¢ or on its complement; thus the branches labelled by ¢
and ~¢ can be eliminated. In other words, another closed semantic tree can
be generated from a finite subset A’ of the Herbrand base which is equal to
the subset A / {0} Q.E.D.

The Filtering Procedure:

Given a Herbrand base (HB) of a set of clauses, the following is a Pascal-
like pseudocode for a function Filter that accepts HB as input and returns a
filtered version of it (FHB) as output:

Function Filter(HB : set_of_atoms) : set_of_atoms;
Yar

FHB : set_of_atoms;

X : atom;
EXIT : boolean;
Begin
FHB := [];

40

EXIT := false;
While (Not Empty(HB) And Not EXIT) Do

Begin
X := Nezt_Enumerated_Atom{HB);
if not Useless_Or-Unnecessary(X) then
FHB := FHB + [X];
if Generate_Closed_Semantic_Tree(FHB) then
EXIT := true;
End;
Filter := FHB;

End;

The affect of filtering the canonical enumeration of atoms from the Her-
brand base of a set of clauses on the performance of a semantic tree generator

is best illustrated in the following example:

Example: Consider S; to be the following set of base clauses:
Axioms:

1. P(x)

2. ~P(a) | Q(f(a))
Negated Theorem:

3. ~Q(E(x))
The canonical enumeration of elements from the Herbrand universe of S, is;
HU(S;) = { a, f(a), f(f(a)), f(f(f(a))), ...}.
The canonical enumeration of atoms from the Herbrand base of S; is: HB(S,)
= { P(a), Q(a), P(f(a)), Q(f(a)), P(i(f(a))), Q(f(f(a))), P(f({(f(2)))) ... }-

A closed semantic tree for S; is shown in Figure 3.2 (a). Both P(a) and
~P(a) resolve with some clauses in S. Therefore, the atom P(a) from the Her-
brand base is neither useless nor unnecessary, whereas both Q(a) and ~Q(a)

do not resolve with any clause in S. Thus, Q(a) is useless and can be elim-

41

(b) A filtered closed semantic tree for Sy

Figure 3.2: Two closed semantic trees for the set S;.

inated from the Herbrand base. It can be seen in Figure 3.2 (a) how Q(a)
caused redundant parts to appear in the closed semantic tree. Except for the
atom Q(f(a)), all of the remaining atoms in the Herbrand base turned out to
be unnecessary. Consequently, in this example, the Filtered Herbrand Base
becomes FHB(S,) = { P(a), Q(f(a)) }, and a filtered closed semantic tree for
the set S; is shown in Figure 3.2 (b).

Unfortunately, it is not often the case that filtering the Herbrand base
reduces the number of atoms to be checked (by the generator) before a closed
semantic tree is generated, as was true in the previous example. In order to
investigate the effect of filtering the Herbrand base of a set of clauses on a

semantic tree generator, we performed another experiment using the theorems

42

Figure 3.3: Testing Method I on the Stickel Test Set.

in the Stickel Test Set. This experiment compared the number of atoms filtered
from the Herbrand base of each theorem with the number of atoms sufficient for
proving that theorem. The graph in Figure 3.3 shows that these two quantities
are approximately equal to each other and are relatively small compared to the
number of Herbrand base atoms canonically enumerated up to and including

all atoms sufficient for generating a closed semantic tree for each theorem in
the Stickel Test Set.

3.3 Method II: Control Strategies for Semantic
Tree Generators

A control strategy for a proof procedure searches for a refutation by attempting
to grow a deduction tree by applying the inference rules selectively in a manner
that sharply increases the effectiveness of the procedure [Lugerl). In general, a
control strategy for a refutation system is said to be complete if its use results
in a procedure that will eventually find a contradiction whenever one exists.

However, for artificial intelligence applications such as mechanical theorem

43

proving, complete strategies are not as important as ones that find refutations
efficiently.

Efficient control strategies for theorem-proving programs fall naturally into
two classes: choice strategies and edit strategies. Choice strategies decide
the order in which the deduction tree is to be generated. More importantly,
they determine which part of the tree may be ignored (cut off) altogether.
Edit strategies, on the other hand, eliminate trivial and superfluous deductions
[Wos2]. If history is a good teacher, powerful edit strategies are of far greater
value than are powerful choice strategies. The reason being that the former
offer a greater reward by directly addressing the potential of combinatoric
explosion and the latter address this obstacle only indirectly [Wosl].

Many efficient strategies for resolution-based procedures have been pro-
posed and implemented, such as the fewest literals, the set-of-support, the unit
preference, the vine form (also known as the linear-input form) and the linear
form strategies [Nilsson2). In what follows, we propose control strategies for
semantic tree generators that are equivalent to those for resolution-dependent
proof procedures.

A control strategy for a semantic tree generator searches for a refutation
by attempting to grow a closed semantic tree from the atoms of the Herbrand
base; the decision about the order of atoms that are to be used in generating
the semantic tree is made irrevocably by the control strategy.

It is disconcerting that none of the research in tree searching techniques has
yielded improved search strategies for theorem proving. Searching for paths
in trees is not general enough to represent the searches needed in automatic
theorem proving [Kowalski3]. Control strategies for semantic tree generators
can he developed in analogy to existing strategies for the resolution-refutation
methods which are well known. Qur objective here is not to attempt to present
an exhaustive set of strategies or even the most sophisticated techniques for
proving theorems using semantic tree generators. Rather, we aim to bring to

the attention of the research community the existence of such control strate-

44

. gies, and to describe how they might be used in generating closed semantic

trees for unsatisfiable sets of clauses.

3.3.1 The Fewest-Literals Strategy

Qur basic motivation for proposing this strategy is to decrease the number
of possible resolutions in play and hence to increase the efficiency of semantic
tree generators which depend expounentially upon the size of the corresponding
base clause set.

The fewest-literals strategy for resolution-refutation methods is one in
which one-literal clauses are chosen first for resolution, followed by two-literals
clauses, then three-literals clauses and so on. In short, preference is given
to clauses with the fewest literals for resolution. The fewest-literals strategy
for semantic tree generators is - more or less - similar to that for resolution
methods. In this strategy, preference is given to those Herbrand base atoms
which fail to satisfy one-literal clauses, followed by atoms that failed to satisfy
two-literals clauses, then by atoms that fail to satisfy three-literals clauses,
and so on.

The completeness of the fewest-literals strategy for semantic tree generators
is guaranteed as it is for resolution methods. The reason for this is that all of
the given clauses will eventually be used if enough resources are given to the
semantic tree generators. By resources, we mean execution time and computer
memory.

An algorithm for selectively choosing atoms from the Herbrand base using

the fewest-literal strategy for semaatic tree generators is given below:
1. Initialize the Herbrand base list (HB) to Nil.

2. If the atoms in the HB falsify every clause in S, then exit. Otherwise go
to Step 3.

3. Select a ground literal L in S that is not already a member of HB. If no
. such ground literal is found, go to Step 4. Resolve L with the clauses in

45

S and add the resolvents rl, r2, ... to S. Call this set of resolvents R.
If one of the resolvents in R also resolves with L, add these resolvents
as well, enlarging R until no clause in R resolves with L. [For example
for clause C = P(a,x) | P(a,y) | Q(x,y) in S and L = ~P(a,b), add rl =
(Ca,L) = P(a,x) | Q(b,x), 12 = (Cb,L) = P(a,x) | Q(b,x), r3 = (Cab,L)
= Q(b,b).} If one of the resolvents in R is the null clause, then repeat the
just-above described procedure using ~L in place of L. If no resolvent is
added for ~L, then L is unnecessary. Otherwise, add L to HB. In either
case go to Step 2.

. Select a literal L in S that has arguments with only one variable. If no
such literal is found, go to Step 5. Generate ground instances of L, with
the variable replaced in each instance by a constant from amongst the
constants appearing in S. Resolve each ground instance with the clauses
in S and add these resolvents to S. Call this set of resolvents R2. If
one of the resolvents in R2 also resolves with the ground instance, add
these resolvents as well, enlarging R2 until no clause in R2 resolves with
the ground instance. If one of the resolvents in R2 is the null clause,
then repeat the just-above described procedure using the negation of
the ground instance instead of the ground instance. If no resolvent is
added for the negation of the ground instance, then the ground instance
is unnecessary. Otherwise, add the ground instance to HB. In either case

go to Step 2.

. Select a literal L in S that has arguments with only two variables. If no
such ground literal is found, go to Step 6. Generate ground instances
of L, with the variables replaced in each instance by constants among
those appearing in S. Resolve each ground instance with the clauses in
S and add the resolvents to S. Call this set of resolvents R3. If one of
the resolvents in R3 also resolves with the ground instance, add these

resolvents as well, enlarging R3 until no clause in R3 resolves with the

46

ground instance. If one of the resolvents in R3 is the null clause, then re-
peat the just-above described procedure using the negation of the ground
instance instead of the ground instance. If no resolvent is added for the
negation of the ground instance, then the ground instance is unnecessary.

Otherwise, add the ground instance to HB. In either case go to Step 2.

l";..o...

_ ofa) ~aé)
= (1.1} -pagy - oy

Figure 3.4: A closed semantic tree for Wosl2 generated using the
fewest-literals sirategy.

6. Using the canonical enumeration of the Herbrand base, select an atom

47

that is not a member of HB. Resolve it with the clauses in S. Call this
set of resolvents R4. If one of the resolvents in R4 also resolves with the
atom, add these resolvents as well, enlarging R4 until no clause in R4
resolves with the atom. If one of the resolvents in R4 is the null clause,
then repeat the just-above described procedure using the negation of the
atom instead of the atom. If no resolvent is added for the negation of
the atom, then the atom is unnecessary. Otherwise, add the atom to

HB. In either case go to Step 2.

Example 1: Continuing to work with Wos12, o(a) is the first ground literal
added to HB from clause 20 by Step 3. No closed semantic tree is generated
using only o(a). o(e) is the second ground literal added to HB from clause 21
by Step 3. No closed semantic tree is generated using the two elements of HB
and no more ground literals are available. Step 4 added p(e,e,e) and p{e,a,a)
by substituting e for x and then a for x in clause 1. Also added are p(g(e),e,e)
and p(g(a),a,e) by substituting e for x and then a for x in clause 2, likewise
r{e,e) and r(a,a) by substituting e for x and then a for x in clause 6, and finally
p(a,e,a) by substituting a for x in clause 16, and p(e,g(e),e) and p(a,g(a),e) by
substituting e for x and then a for x in clause 18, A closed semantic tree is

generated for Wosl2 using the atoms in HB, and is shown in Figure 3.4.

3.3.2 The Set-of-Support Strategy

The set-of-support strategy is used to avoid generation of general lemmas,
when a more focused search often produces a proof far more quickly [Wos4].
The set-of-support strategy for resolution-refutation methods is one in which
at least one parent of each resolvent is selected from among the clauses of the
negated conclusion (these are base clauses other than the given axioms) or
from their descendants (i.e. the set-of-support). The set-of-support Herbrand
base is one which includes atoms from the Herbrand base that resolve with, or
have their complements resolve with, the clauses of the negated conclusion or

the clauses of their descendants. The set-of-support Herbrand base will yield

48

a closed semantic tree for a set of clauses if the set is unsatisfiable. In this way,
the set-of-support strategy for semantic tree generators is complete. A closed
semantic tree for the set of clauses shown in Example 2 is generated from the

atoms of the set-of-support Herbrand base {denoted by SOSHB(S;)), and is

shown in Figure 3.5.

Base clauses

Figure 3.5: A closed semantic tree for S; generated using the set-of-
support strategy.

Example 2: Let S; be the following set of clauses:
Axioms:
1. ~R(f(x))
2. P(x} | R(f(y))
3. ~P(a) | Q(x)
Negated Theorem:
4. ~Q(f(x))
HU(S,) = { a, f(a), f(f(a)), ... }.
HB(S2) = { P(a), Q(a), R(a), P(f(a)), Q(f(=2)), R(i(a)), P(f(f(a)}), Q(f(f(a})),
R(f(f(a))), P(f(f(f(a))}), Q(f(f(i(a)))), R(K(f(f(a)))), ... }.

49

SOSHB(Sz) = { Q(f()), P(a), R(f(a)), Q(f(f(a))), P(f()), R({(f(2))), ---}-

3.3.3 The Unit-Preference Strategy

The unit-preference strategy for semantic tree generators is a modification of
the previously presented strategy. Here, instead of selecting atoms from the
Herbrand base that resolve with the clauses of the negated conclusion or their
descendents, we select, by preference, those atoms from the Herbrand base
that resolve with, or have their complement resolve with, single-literal clauses
alone (i.e. unit clauses), Obviously, if the selection of atoms is restricted
to those which resolve with unit clauses exclusively, then this strategy is not
complete. If, for example, the clauses of the set S do not contain unit clauses,

then this method stands defective.

Figure 3.6: A closed semantic tree for Wos3 generated using the unit-
preference strategy.

Example 3: Consider the theorem S$S27Wos3.thm (from the Stickel Test

Set). The symbols e and a are constants.

Axioms:

50

01.
03.
05.
07.
09.
11.
13.
15.
17.
19.

P(e,x,x)

~P(x,7,2) | ~P{yu,v) | ~P(z,u,w) | P(x,v,w)
~P(x,y,2) | ~P(y,u,v) | ~P(x,v,w) | P(z,u,w)

NR(an) I R(y,x)

~P(x,y,2) | ~P(x,y,u) | R(z,u)
~P(z,x,u) | P(z,y,u) | ~R{x,y)

~R(x,y) | R{f(z,x),f(z,y))
~R(x,y) | R(g(x).g(y)}
P(x,g(x),e)

P(x,a,x)

51

02.
04.
06.
08.
10.
12.
14.
16.
18.

P(g(x).x.e)

P(x,y,f(x.y))

R(x,x)

~R(yx) | ~R(y.z) | R(x,2)
~P(z,ux) | P(z,u,y) | ~R{x,y)
~P(x,z,u) | P(y,z,u) | ~R(x,y)
NR(X,Y) I R(f(x,z),f(y,z))
P(x,ex)

P(a.x,x)

Negated Theorem:
20. ~R(e,a)

HU(Wos3) = { a, e, g(a), g(e), f(aa), (a,e), f(e,a)}, f(ee), g(g(a)), glgle)),
g(f(a,a)), ... }.

HB(Wos3) = { R(a,a), P(a,a,a), R(a,e), R{e,a), R{e,e), P(a,a,e), P(ae,a),
P(a,ee), P(e,a,a), P(e,a,e), P(e,e,a), P(ee,e), R(a,g(a)), R(a,gle)), ...}
UPHB(Wos3) = { R(e,a), R(a,e), P(e,ae), P(a,a,a), P(e,a,3), ...}

The closed semantic tree generated for Wos3 using this strategy is shown

in Figure 3.6.

3.3.4 The Vine-Form Strategy

In the vine-form strategy (see Definition 1.3.31) for resolution-refutation meth-
ods, each resolvent has at least one of its parents belonging to the given axioms
(these sre base clauses other than the negated conclusion). The vine Herbrand
base is, thus, defined to be those atoms from the Herbrand base that resolve
with, or have their complement resolve with, the clauses of the given axioms.
Like the resolution-refutation vine-form strategy, the vine-form strategy for
semantic tree generators is not complete. In other words, the vine Herbrand
base may not contain a sufficient number of atoms from the Herbrand base to

generate a closed semantic tree. Example 4 demonstrates this fact.

Example 4: Let S3 be th2 following set of clauses:
Axioms:
1. ~R(1(x))
2. P(x) | R{((y))
3. ~P(a) | Q(x)
Negated Theorem:
4. ~Q(f(x)) | D(x)
5. ~D(x)
HU(Ss) = { 8, f(a), f(f(a)), f(f(f(a))), ... }.

92

HB(S;) = { D(a), P(a), Q(a), R(a), D(i(a)), P(i(a))}, Q(f(a}), R(f(a)), D(f(f(a))),
P(f(f(a))), Q(f(i(a))), R(f(f(a)}), D(£(f(f(a}})) P(f(f(f(2)))}, QUE(E(E(a}))), ... }.
VHB(S;3) = { P(a), Q(a), P(i(a)), Q(i(a)), R(f(=)), P(f(f(a))), Q(i({(a))),
R(E(f(=))), ... }.

It can be seen in the above example that the vine Herbrand base of the
set S3 does not contain any atom that resolves with the literal “Dx” in Clause
4 which, in turn, does not appear in the given axioms. Therefore, no closed

semantic tree can be generated for Sz using this strategy.

3.3.5 The Linear-Form Strategy

The linear-form strategy for resolution-refutation methods is one in which
each resolvent has a parent that is either a member of the given axioms or
is an ancestor of its other parent. Similarly, the linear Herbrand base is one
which contains atoms from the Herbrand base that resolve with, or have their
complements resolve with, the given axioms or their descendents. The vine-
form strategy fir semantic tree generators is a special case of the linear-form
strategy presented here. One may note that the difference between the vine
and the linear Herbrand base consists of those atoms in the linear Herbrand
base that resolve with, or have their complements resolve with, clauses which
descend from the given axioms. However, unlike the vine-form strategy, the
linear-form strategy for semantic tree generators is complete as is true for
resolution-refutation methods, and the atoms in the linear Herbrand base may
yield a closed semantic tree for an unsatisfiable set of clauses. Example 5

illustrates the mechanization of this strategy.

Example 5: Let S4 be the following set of clauses:
Axioms:

1. ~R(f(x))

2. P(x) | R(f(y))

3. ~P(a) | Q(x)

53

Figure 3.7: A closed semantic tree for S; generated using the linear-
form strategy.

Negated Theorem:

4. ~Q(f(x)) | D(x)

5. ~D(x)
HU(S4) = { a, f(a), f(f(a)), f(f(f(a))), ... }.
HB(S,) = { D(a), P(a), Q(a), R(a), D(f(a)), P(f(2)), Q(£(a)), R(£(a)), D(f(£(a))),
P(f(f(a))), Q(f((a))), R(f(f(a))), D({(i(f(a))}), P(i((f(a)))), Q((f(f(a))}), .- }-
LFHB(S4) = { D(a), P(a), Q(a), D({(a)), P(f(a)), Q(f(a)), R(i(a)), D(f(f(a))),
P(f(f(a))), Q(f(f(a))), R(f(f(a))), ... }.

A cloeed semantic tree for S4 is generated from the linear Herbrand base,

and is shown if Figure 3.7. The closed semantic tree given in Figure 3.8
is generated using the same linear Herbrand base set with both useless and

unnecessary atoms filtered.

3.3.6 Other Strategies

We have proposed to this point several control strategies for semantic tree
generators. We believe that these strategies can be quite effective in controlling
the generation of closed semantic trees of unsatisfiable sets of clauses. But,

these strategies are not the only ones known to us. Other control strategies

54

Figure 3.8: A closed semantic tree for S; generated using the filtered
linear-form strategy.

can be obtained from various combinations of the control strategies presented
earlier. For instance, a hybrid of the set-of-support strategy and the unit-
preference strategy was recommended by Wos for resolution proof procedures
[Wos2]. A similar combination can be used for semantic tree generators. It is
also possible to combine the set-of-support strategy with the vine-form strategy
as suggested in [Nilsson2].

Search heuristics may also be included into the design of semantic tree
generators. This can be done by employing a left-right ordering of atoms in
the Herbrand base. Many techniques are available in the literature to govern
the ordering of atoms in the Herbrand base, such as the best latent semantic
clash preference strategy [Robinson3], the merit-ordering heuristic [Robinson3]
and the diagonal ::carch strategy [Kowalski2|.

3.4 Comparative Study

An improved semantic tree generator was implemented to measure and ana-

lyze the effect of the control strategies on the generation of closed semantic

59

trees. The fewest-literals strategy (FLS), the set-of-support strategy (SOS),
the linear-form strategy (LF), a hybrid of FLS and SOS and a hybrid of FLS
and LF are all supported within thie generator. We tested this semantic tree
generator on the Stickel Test Set and compared the result with it for the canon-
ical semantic tree generator which was obtained in Chapter 2. The result of
this experiment is shown in the table presented in Appendix A at the end of
this thesis.

The first column of the table shown in the appendix indicates the name of
the theorem. The remaining columuns in the table are divided into six groups
of three columns each with an extra column at the end of the table. The first
group corresponds to the canonical semantic trees, and the next five groups
correspond to the five just-above mentioned control strategies. Each group
is titled with the name of the strategy by which theorems were attempted.
The first column in every group reveals whether a closed semantic tree was
obtained for eack theorem. The second column shows the number of atoms
checked before a proof was found or before the program stopped searching,
which would occur when the number of resolvents along the path to some
node in the semantic tree became greater than the size of the clause database
(in our case, the size of the database is 5000 clauses) or if 275 atoms have been
used in building a semantic tree. These values may be increased depending
on the size of the memory of the computer. The third column in each group
shows the execution time for the program to find a proof or to stop searching.
The last column in the table indicates the best among the six strategies for
proving the Stickel theorem in question.

Figure 3.9 summarizes the outcome of this experiment, showing the ratio

of number of theorems proved by each of the six control strategies.

Comparing Strategles on tha Stickei Set Theorsms :

Control strategy

Figure 3.9: Comparing the effect of control strategies on semantic
tree generators.

3.5 Method III: Advice-taking and Knowl-

edge Programming within Semantic Tree
Generators

Early artificial intelligence work studied adaptive learning schemes that could
adjust control parameters to correlate the machine’s output with a desired
standard. Over time, artificizl intelligence researchers moved increasingly to-
ward a belief that acceptance of human advice and knowledge about the task
should be integrated to intelligent behavior. This was seen necessary to reduce
the amount of unexpected resuits produced by the intelligent system. Iterative
refinements generally cause programs to become progressively more obtuse in
their control structures. This analysis suggests an alternative paradigm for the
programming and iterative refinement of intelligent systems. This paradigm
views the programming problem primarily as one of translating expert ad-
vice into an operational program, and the iterative improvement problem as

one of diagnosing program behavior to modify those elements that produce

57

undesirable behaviors [Klahrl].

This proposed scheme emphasizes the problems of understanding high-
level advice, converting it into effective behavior, and, inevitably, changing
the knowledge and reiterating the cycle. These problems are referred to as
knowledge acquisition, knowledge programming, and knowledge refinement, re-
spectively °

In the remainder of this section, we explain the integration of these prob-
lems into the task of generating semantic trees from the atoms of the Herbrand
base. While generating the semantic trees, we allow for an external human
supervisor and/in an interactive session to control the order of atoms in the
Herbrand base. In other words, we allow the supervisor to alter the Herbrand
base in such a way as to revive the generation process.

Four operations are required in order for a human supervisor to fully control
the construction of semantic trees. These operations are used to manipulate

the order of atoms in the Herbrand base, and are listed below:
1. Add an element to the Herbrand base.
2. Delete an element from the Herbrand base.
3. Exchange the position of two elements in the Herbrand base.
4. Insert an element at a random position in the Herbrand base.

With knowledge of the domain, the supervisor can control the direction(s)
in which the semantic tree grows in such a way that closed semauntic trees are
generated as fast as possible. This feature can be most effective when other
proofs of unsatisfiability from a given one are being sought (refer to Section
2.6).

5Knowledge acquisition, in our paradigm, refers to the transfer of expertise from a hu-
man expert to a machine, The machine acquires a person’s knowledge through interactive
sessions. When a machine extends its initial knowledge by various learning methods, we
refer to this as knowledge refinement. Different researchers might apply the term knowledge
acquisition to varying aspects of these processes,

o8

The AISTG: An Improved

Semantic Tree Generator

In Chapter 3, we suggested theoretical methods for improving the performance
of semantic tree generators as mechanical theorem provers. In this chapter,
we put these methods into practice by implementing a semantic tree generator
embodying these methods and by testing it on the Stickel Test Set. The
AISTG is an improved semantic tree generator, developed specifically for the
purpose of improving the practicality of generating semantic trees for proofs of
unsatisfiability. It also plays the role of a first-order predicate theorem prover.

What we will describe here is essentially a project towards the goal of de-
veloping a flexible yet practical theorem prover. Noting that many powerful
and versatile theorem-proving programs exist, one naturally wonders about
the ease of using such & program and which program is recommended. The
program we recommend is the one which plays a vital role in our research: its
name is AISTG. This program uses binary resolution for its inference mech-
anism and includes factoring as one of its abilities. Factoring is used in the
AISTG only for extracting resolution-refutation proofs from generated closed

semantic trees (refer to the algorithm presented earlier in Section 2.4). The

99

AISTG is written in C, and runs on any computer hosting Uniz® as its oper-
ating system. Restricting the running environment to Unix does not impose a
limit on the usage of the AISTG program. Minor modifications to the configu-
ration file of the program make it portable to other computers hosting different
operating systems.

The AISTG program can prove any theorem expressed in propositional or
first-order predicate calculus, Yet, it may take a long time to prove some of
the first-order predicate theorems. This is due to the vast number of atoms in
the Herbrand base that need to be checked before proofs are found for these
theorems (i.e. before closed semantic trees are generated).

From the standpoint of control strategies, the AISTG is distinguished from
other theorem-proving programs. Fcr the purpose of generating semantic trees
the AISTG uses two simultaneous control strategies. The first one is for select-
ing atoms from the Herbrand base of the given clauses. The second control
strategy is for generating a semantic tree from those atoms. The AISTG
permanently uses depth-first iteratively-deepening [Almulla2, Letzl] for gen-
erating a semantic tree from the atoms of the Herbrand base. On the other
hand, the control strategy for selecting atoms from the Herbrand base has to

be chosen by the user prior tc generating the semantic tree.

4.1 General Description of the AISTG
Program

The AIST'G program attempts to prove the unsatisfiability of some clauses
by generating a semantic tree for them. If the clauses are unsatisfiable, the
program will eventually generate a finite closed semantic tree. Otherwise, the
semantic tree is infinite, which means that the program continues attempting
to generate a closed semantic tree until it runs out of resources. Once a closed
semantic tree has been generated, upon request by the user an algorithm for
extracting a resolution-refutation proof from the closed semantic tree is invoked

*A trademark of ATLT Bell laboratories

60

and a proof is eventually printed. The algorithm for extracting resolution-
refutation proofs from closed semantic trees was presented in Chapter 2.

The AISTG can prove theorems within various mathematical domains,
such as plane geometry, set theory, number theory, and algebraic siruciures
including rings, fields, and groups. The theorem-proving ability of the AISTG
accommodates not only mathematical domains, but also puzzles which are
usually found in artificial intelligence, syllogisms, and cognitive science. For
example, the lion and the unicorn problem, the knights and knaves problem,
and the monkey and the banana problem [Newborn2, Loveland?].

Our improved semantic tree generator is designed to be of interest to math-
ematicians, logicians as well as artificial intelligence researchers (specially those
in automated theorem proving). The structure of the program is divided into

eight modules and can be extended. The following is a description of these

modules.

1_ Stg.c: Among all modules of the AISTG, the Stg.c is the most important
one. It contains the main program which activates the procedures and
functions constituting the engine of this theorem prover. First, the mod-
ule reads (in text format) and converts (into binary format) the base
clauses; asks the user to choose a control straiegy for selecting atoms
from the Herbrand base. Second, the program starts selecting atoms
according to the control strategy chosen by the user. If the base clauses
are unsatisfiable, the AITSG will eventually generate a closed semantic
tree. Otherwise, the program keeps executing until one of the following
thresholdsis reached: the maximum allowed execution time, the memory

avaiiable for the program or the maximun number of iterations allowed.

2_ Compile.c: This module receives as input the binary format of the base
clauses that was generated by Stg.c, and it constructs the internal mem-
ory representation of these clauses according to the data structures of

the AISTG program. Once the base clauses have been represented in

61

memory, the program starts selecting atoms from the Herbrand base

according to the chosen control strategy.

3. Search.c: The order by which the atoms are selected from the Herbrand
base for generating a semantic tree depends on the control strategy. The
program places a menu of five control strategies from which the user is
to choose. This facility of the AISTG allows the users to take advantage
of their personal experience in choosing an appropriate control strategy
based on the theorem in question. Procedures for implementing the five

control strategies of the AISTG can be found in this module.

4_ Infer.c: The AISTG program uses binary resolution as an inference
rule for generating closed semantic trees of unsatisfiable sets of clauses.
Therefore, the completeness of the AISTG theorem-proving method is
guaranteed, since the resolution principle of Robinson is complete. The
completeness of the resolution principle was proved in [Hsiangl, Robinson3,
Robinson5, Slagled]. A proof for the completeness of the AISTG prov-
ing method was outlined in Chapter 3. All procedures and functions

concerning the inference rule of the AISTG can be found in this module.

5. Gen.c: This module contains procedures and functions required for gen-
erating all binary resolvents of a given pair of clauses. Duplicating a
clause is another task performed by the procedures of this module, how-
ever such clauses are needed by the AISTG program to cover cases where

factoring literals of newly generated resolvents is required.

6. Unify.c: Unification is a vital operation in the resolution process. Since
we are ueing binary resolution as the inference rule of the AISTG, the
resolved away literals in the parent clauses must be unified. Procedures

for unifying the resolved away literals can be found in this module.

7- Dump.c: This module is responsible for the “output” of the AISTG pro-

gram. Upon the generation of a closed semauntic tree for an unsatisfiable

62

set of clauses, procedures in this model are activated to print the content
of the failure nodes in the closed semantic tree, as well as to print the
resolution-refutation proof extracted from the tree (if requested by the
user). It is usually necessary for a theorem-proving program to be able
to reconstruct detailed information from any proof it generates. Pro-
cedures in Dump.c are called if the user requests to dump the content
of the clause database during the generation of the semantic tree. This
provides for the possibility of using the AISTG to prove theorems in

non-mathematical domains such as information retrieval,

8_ Hash.c: Searching for duplicate resolvents, and thus for duplicate proofs,
often wastes a great deal of execution time in theorem-proving programs.
Wos [Wos3] wonders what strategy can be employed to deter a reasoning
program from deducing a clause already retained, or from deducing a
clause that is a proper instance of a clause already retained? Spencer
addressed this problem in his paper avoiding duplicate proofs [Spencerl).
Newborn solved the same problem by assigning hash codes to the literals
and the clauses of The Great Theorem Prover [Newbornl]. The latter
approach was adopted to solve this problem in the AISTG program. The
literal and the clause are assigned unique hash codes. These codes make
the search for duplicate resolvents significantly efficient. Procedures for

hashing and checking for duplicate literals and clauses can be found in

this module,

In addition to the eight modules described above, the AISTG program
includes two files. One contains the declaration of the data structures used by
the program. This file is called Clause.h. The other file identifies all constaats
of the program and initializes their values. This file is called Const.h.

4.2 Flow of Control in the AISTG Program

Figure 4.1: Flow of control in the AISTG program.

In this section, we trace the flow of control of the AISTG. The module Stg.c
receives as input a text file containing the base clauses and creates an output
file containing the base clauses in binary format. The binary file becomes input
to the module Compile.c, which creates a representation of the base clauses
in internal memory. The flow of control then goes back to the module Stg.c,
where the user must choose a control strategy for selecting atoms from the
Herbrand hase. These atoms are, in turn, to be used to generate the semantic

tree.

Once a control strategy has been chosen by the user, the flow transfers

64

to Search.c where the procedures for implementing the control strategies are
found. Upon a selection of an atom from the Herbrand base, the inference
rule procedure in Infer.c is called to generate all resolvents of the atom with
the clauses in the clause database. In turn, the inference rule procedure calls
procedures in Gen.c and Dump.c both to generate and to print binary resol-
vents, as well as to update the clause database. After updating the clause
database, the inference rule procedure checks to see if a closed semantic tree
has been generated, in which case a proof is found. Otherwise, another atom
is selected from the Herbrand base by the control strategy. A diagram for the
fundamental flow of control in the AISTG program is shown in Figure 4.1,
along with the general layouts of the program.

4.3 Using the AISTG Program

Important design considerations in the AISTG program are performance, porta-
bility, compactness and simplicity of code. The program runs on computers
hosting Unix as their operating systems. However, small modifications to the
file Stg.c make the program portable to other computers hosting DOS” or Mac-
intosh environments. For running the AISTG on Unix, one needs the ten files
specified in Section 4.1 as well as the file “MAKEFILE" which compiles and
links these ten files. To create an executable version of the AISTG program,

at the computer prompt the user should type:

Unix:> make

An executable version of the AISTG (that is called hprove) is thus created.
The AISTG program is now ready for use, To prove a theorem, the user should

type the word:

Unix:> hprove

TDisk Operating System

65

the AISTG responds with the following question:
Enter the name of the theorem file (type ‘?’ for help):

At this point the user should enter the name of a text file where the theorem
is saved. The AISTG reads the input file, creates the data structures for the
base clauses in memory, and displays the clauses on the screen. After setting
up the memory structures, the program prompts the user with a menu to
choose one of the five control strategies available in the AISTG. The control

strategy selection menu is shown in Figure 4.2.

| 3- Set-of-support strategy (SOS)
2- Fewast-literals strategy (FLS)

1 - Unit Resolution (UR)

Figure 4.2: The control strategy menu.

Once a choice has been made by the user, the program starts generating a
semantic tree from the atoms selectively picked from the Herbrand base by the

control strategy. One useful feature in the AISTG program is the feedbarck it

56

gives to the user about the status of the prover and the state of the proof. The
program shows the semantic tree on the screen as it is being created. Hence,

the user is not kept in suspense until a proof is found.

4.4 Interactiveness of the AISTG Program

Apart from the theoretical and practical limitations of automated the-
orem-proviny systems, what of the more pragmatic issues such as: will
the proofs derived by a machine provide “insight” to a human user,
or are they essentially “plodding” and “tedious”, essentially “trying all
possible combinations” and providing nothing more than an answer of
“true”? These are, of course, subject issues, but even so they are of im-
portance to designers building systems for practical applications. With
regard to elegance, it may be said that there have been proofs performed
by computers of well-known theorems that have both generalized the
known results and been more “elegant” than the human proofs. In gen-
eral, however, the practicability of a system is perhaps more dependent
upon the “naturalness” of its modes of inference and its interactiveness
rather than the subtlety of its reasoning.

[Wos3]

As previously noted, the AISTG program uses depth-first iterative-deepening
as a permanent strategy for generating semantic trees of given sets of clauses.
Each iteration extends the depth of the semantic tree by one level. Upon com-
pletion of each iteration, the program asks the user to press any key on the
keyboard in order to continue building the semantic tree. If the user at that

point responds by pressing the character “+”, the AISTG program asks the

user the following question:
Modify The Herbrand Base? (Y/N):

Pressing the character “y” or “Y” on the keyboard invokes an interactive
menu. Through this menu, the user can manipulate the order of atoms selected
to that point. Then, it asks the user through the menu if s(he) wants to add
a new atom to the end of the list, to delete a particular atom from the list,
to exchange the position of two atoms, or to add a new atom at a specific

position in the list to be chosen by the user. These four options give the

67

4 - insert an atom ata
random position.

3-Exchange positonof §
two atoma. i

Figure 4.3: The Herbrand base manipulation menu.

user total control over the list of atoms to be used in generating a semantic
trec for the base clauses. The AISTG program re-displays the Herbrand base
manipulation menu following the execution of each choice made by the user
with the exception of the fifth and last choice in the menu, which instructs
the program to re-generate a semantic tree for the base clauses according to
the newly made changes in the enumeration of atoms from the Herbrand base.
The Herbrand base manipulation menu is shown in Figure 4.3.

Sample runs of the AISTG program on thecrems arbitrarily chosen from the
Stickel Test Set are exhibited in Appendix C. Similar sample runs for a canoni-
cal semantic tree generator are exhibited in Appendix B. The actual code of the
AISTG, along with the executable version of the program can be obtained by

sending an electronic mail to the author's address: almulla@opus.cs.megill.ca

68

or by contacting him via the School of Computer Science at McGill University.

4.5 Capabilities and Limitations of the AISTG
Program

The AISTG has the potential for proving some tkeorems from the Stickel Test
Set which seemed difficult to prove by :sing canonical semantic tree generators.
This is not always true; in Chapter 5 we show theorems for which the proofs
obtained using the canonical semantic tree generator were faster than those
obtained using the AIST'G. Nonetheless, AISTG has difficulty in proving other
theorems from the Stickel Test Set. This section outlines the capabilities and

limitations of the AISTG program.

4.5.1 Capabilities

Although some parameters appeared in the Const.h file to have maximal val-
ues, these parameters are computer-memory dependent and cen easily be
changed to accommodate larger quantities (if desired). Hence, these parame-
ters can be considered as features of the AISTG program. Examples of these

parameters are:
1. Total number of base clauses in the theorem file.
2. Total number of literals (predicates) in a clause.
3. Total number of variables in a clause.
4. Total number of functions in a predicate.
5. Total number of constants in a predicate.
6. Total number of arguments in a function.
7. Total number of atoms in the Herbrand base.

8. Total number of iterations performed before the AISTG stops the search

for a proof,

69

9. Total number of clauses in the clause database (including the base clauses).

4.5.2 Limitations

The AISTG does not attempt to find a proof for a theorem expressed as a set
of wifs (see Definition 1.3.4). These wifs should, first, be converted to clause
form, then be fed to the AISTG as base clauses. An eight-step algorithm for
converting wifs to base clauses can be found in [Newbornl, Nilsson2). The base
clauses, in turn, must take the form of some axioms and a negated conclusion.
The user must negate the conclusion before adding it to the base clauses. Since
the AISTG is a descendent of The Great theorem prover [Newbornl], one can
use the COMPILE package of The Great Theorem Prover to convert wils into
clause form for the AISTG.

4.6 AISTG vs The Great Theorem Prover

The performance of the AISTG on the Stickel Test Set was analyzed previ-
ously in Chapter 3, and a summary of the result was given in Figure 3.9.
In Table 4.1 the performance the AISTG program using the fewest-literals
strategy® is compared with that of The Great Theorem Prover [Newborn2]
using the IBM RS/6000 machine.

Table 4.1 presents the name of each theorem in the Stickel Test Set (Column
1), Columns 2-4 of the Table show the result of proving the Stickel Test Set
using The Great Theorem Prover. They specify whether a proof was obtained
for each theorem (Column 2), the execution time in seconds for the program to
find a proof (Columa 3), and the length of the proof (Column 4). Columns 5-7
of Table 4.1 show the result of proving the Stickel Test Set using the AISTG.
They specify whether a closed semantic tree was obtained for each theorem
(Column 5), the execution time in seconds for the program to find a proof or

to stop searching (Column 6), and the number of atoms checked before a proof

*Refer to the algorithm given in Section 3.3.1
*The asterisk character in this column signals an overfiow in the number of resolvents
generated. .

70

Theorem The Great Theorem Prover AISTG
Name Proven | Time (in sec.) | Length || Proven | Time (in sec.) | Length ¥
SOlburst || Yes 1 12 Yea e | 45
S02short || Yes 0 6 Yes 0 11
S03prime || Yes 1 15 Yes 217 21
S04haspal || Yes 0 8 No 81 361
S05haspa2 Yes 0 13 No 208 381
SO6ances Yea 0 6 Yea 1 6
SO7TNUM1 Yes 0 6 Yes 2 17
S08groupl Yes 0 4 No 2400 96
S09group2 {| Yes 1 10 Yes 40 26
Sl0ewl Yes 0 6 Yes 0 5
Sllew?2 Yes 0 5 Yes 1 3
S12ewd Yes [t 10 Yes 1 5
S13robl i Yes 0 6 Yes 0 10
Sldrob2 Yes 1 10 Yes 32 25
S15michie Yes 0 4 Yes 19440 182
Sléqw Yes 0 8 Yes 0 3
S17mqw Yes 0) Yes 0 3
S1SDBABHP || Yes 0 11 No 18077 181 |
S19APABHP Yes 69 15 No 567 389
S20fleisigl Yes 3 11 Yes 94 30
S21fleisig2 Yes 2 i1 Yes 32 34
| S22fleisigd Yes 1 20 No 4250 212 ||
$23fleisigd Yes 7 18 N¢ 7960 R
[S24fleisigh Yes 3 18 No 8760 74|
S525Wosl Yes 2 7 No 4513 226
S26Wos2 Yes 1 6 No 7414 132
S27Wos3 Yes 0 5 Yes 0 13
S28Wosd Yes 3 15 Yes 1500 160
S29Wosb Yes 1 7 No 5049 174 "
S3I0Wosh Yes 0 9 No 9500 130
S31Wose7 Yes 1 8 Yes 118 46
S32Wos8 Yes 0 8 No 8265 213
"~ 533Wos9 Yes 0 7 No 7206 149
S34Wosl0 Yes 2 10 Yes 266 KT
S35Wosll Yes 1 9 No 12631 141 |
[S36Woel2 Yes 0 4 Yes 0 11
S37TWosl3 Yes 1 6 Yes 1 16 H
S38Wosld Yes 1 7 Yes 3 23
S39Woslb Yes 16 16 No 4080 212
S40Wosl6 Yes 1 7 Yes 397 100
S41Wosl7 Yes 1 9 Yes 18000 135
S42'Wosl8 Yes 1 5 Yes 0 8

Table 4.1: The Great Theorem Prover vs AISTG.

71

Theorem | The Great Theorem Prover AISTG
Name Proven | Time (in sec.) | Length || Proven [Tim: (in sec.) [Length ¥

S43Woel9 || Yes 1 2 Yes 0 10
S44Wes20 Yes 66 21 No 4728 150
S45Woe2l Yes 247 12 No 2525 140
S46Woa22 || Yes 29642 16 No 21600 47
S47Woe23 Yes 0 6 No 5251 86*
548Wos24 Yes 0 6 No 3560 85*
S49Woa25 Yes 0 6 Yes 3 15
S50Wos26 Yes 466 31 No 588 90
S51Wos27 Yes 1 6 No 3835 86
S52Woe28 Yes 14 10 No 4000 258*
S53Wos20 || Yes 8 8 || Yes 2 15
S54Wos30 Yes 1 11 No 4550 74
S50Wosll Yes 15 69 No 9350 4

"S56Wos32 || Yes 0 4 Yes 9 19
S57TWos33 Yes 61 48 I Yes 43560 115
Starkey5 Yes 0 4 Yes H 2
Starkey17 Yes 0 8 Yes 29340 109
Starkey23 Yes 1 7 No 93 65
Starkey26 Yes 0 7 Yes 0 16

Starkey28 || Yes 1 7 No 3000 27
Starkey29 Yes 2 7 No 1614 323
Starkey35 || Yes 1 7 No 3900 50*

[Starkey36 | Yes 13 12 No 1800 194

Il Starkey37 Yes 1 3 No 1112 21
Starkey41 Yes 0 4 Yes 0 4

_StarkeySS Yes 0 9 No 7271 308
Starkey65 Yes 0 2 Yes 0 17
Starkey68 || Yes 1 8 Yes 0 13
Starkey75 Yes 1 8 No 544 124
Starkey76 Yes 0 K Yes 0 5
Starkey87 Yes 0 9 Yes 67 55
Starkeyl00 || Yes 0 4 [Yes 0 4
Starkey103 || Yes 0 9 || Yes 160 22 <H
Starkey105 Yes 0 5 Yes -0 8
Starkey106 Yes 0 § Yes 3 13
Starkey108 Yes 10 28 No 1200 65
Starkeylll || Yes 0 5 Yes 0 4
Starkey112 Yes 3 40 No 670 104
Starkeyll5 || Yes 0 7 Yes 68 21 |
Starkeyl16 || Yes 1 12 Yes 0 14 |

| Starkey118 || Yes 3 42 No 9440 175
Starkey121 | Yes 1 18 Yes 31317 38 H

Table 4.1: The Great Theorem Prover vs AISTG.

72

was found or before the program stopped searching (Column 7). The program
stopped searching if the number of resolvents on the path to some node in the
semantic tree became greater than the size of the clause database (in our case,
the size of the database is 5000 clauses).

Table 4.1 shows that The Great Theorem Prover proved all the theorems
in the Stickel Test Set, whereas the AISTG proved 47 theorems (i.e. more
than 50% of the theorems). Comparing Tables 4.1 and 2.1, it can be seen that
better results were obtained using the AISTG on the Stickel Test Set than
the canonical semantic tree generator of Chapter 2. Table 4.1 shows that by
using the improved ordering of atoms from the Herbrand base, the semantic
tree generator solved an additional 15 theorems; it solved all theorems that
were solved when using the canonical ordering of atoms from the Herbrand base
plus a number of theorems that seemed impossible to sclve using the canonical
ordering, in particular, SO1burst, S02short, S49wos25, and Starkey65.
This confirms the importance of re-ordering and filtering the Herbrand base
in making semantic tree generators practical th~orem provers. We strongly
believe that semantic tree generators can be driven not only to prove all the
Stickel Set theorems, but also to be as strong and efficient as are resolution-
dependent theorem provers such as The Great Theorem Prover. In fact, there
are theorems which The Great Theorem Prover could not prove in a long time,
but our semantic tree generators solved them in a short time. Examples of

such theorems will be discussed in the next chapter.

73

Semantic Tree Generation
VS
Resolution-Refutation

Research in artificial intelligence has pointed out that proving a theorem can
be intellectually difficult and that a program that can prove some theorems
has “common sense”, meaning that it has the ability to make elementary
deductions from given facts [Slagle3]. In Chapter 1, Herbrand’s fundamental
theorem was referred to as a base for many modern proof procedures including
those based on the resolution principle of Robinson. Procedures using semantic
tree generation for proving theorems are also based on the same theorem. It has
been argued in this thesis that the semantic tree generation method can grow
to become no less than the other practical methods for detecting unsatisfiable
sets of clauses in first-order predicate calculus.

In this chapter, we compare semantic tree generation with resolution-
refutation. We identify cases (i.e. theorems) where the former method gave
far better results than did the latter one. Conversely, in Section 5.2 we name
theorems from the Stickel Test Set for which the proofs obtained by the latter
method are more desirable,

One might now wish some insight into the difficulty of the theorems prov-

able with the assistance of semantic tree generators. The following section is

74

devoted to fulfilling such a wish.

5.1 Generating Semantic Trees as a Proving
Method

An obvious question that comes to one's mind with respect to generating se-
mantic trees is “why should I use this proving method over other existing meth-
ods?'. Generating closed semantic trees for theorems in the Stickel Test Set
seemed to give interesting results when compared with the proofs obtained by
resolution-based procedures such as The Great Theorem Prover. As a matter
of fact, the resolution-refutation method is not always superior to the method
of generating semantic trees for proving theorems. Certain theorems found
in the literature were fabricated by researchers for the purpose of providing a
graduated selection of problems for use in testing automated theorem provers

[Pelletierl, Spencerl, Urquhartl].

The difficulty in constructing problems for studying the complexity of
the proof system of an ATP!® is to describe a set of problems whose
complexity can independently be characterized in terms of some metric
which can be varied and which does not intreduce any side effects into
the resulting proofs. Various attempts to state such a set have usually

focussed on (a) number of clauses, (b) number of symbols, (c) number
of distinct symbols.

Fl Peiletier

The following are examples of such problems:

Example 1: Pigeonhole Theorem - cf. [Pelletierl] (page 212)
Problem: Suppose there are n holes and (n + 1) objects to put in the holes.

Every object is in a hole and no hole contains more than one object.

Let us now state the problem for n = 3: “Each object is in a hole” becomes:
1. P1| P2 |P3
2. P4|P5 | P§

10 Automated Theorem Prover,

75

3. P7|P8| P9

4. P10 | P11 | P12
“No hole has more than one object in it” becomes

~P1 | ~P4
~P1 | ~PT
~P1 | ~P10
~P4 | ~PT

© 0 N @ o

~P4 | ~P10
10. ~P7 | ~P10
11. ~P2 | ~P5
12. ~P2 | ~P8
13. ~P2 | ~P11
14, ~P5 | ~P8
15. ~P5 | ~P11
16. ~P8 | ~P11
17. ~P3 | ~P6
18. ~P3 | ~P9
19. ~P3 | ~P12
20. ~P6 | ~P9
21. ~P6 | ~P12
22, ~P9 | ~P12

The set of clauses (1) - (22) is inconsistent.

Example 2: Arbitrary Graph Theorems
Problem: Consider a graph (a finite set of vertices, together with a finite set
of edges joining pairs of these vertices) with the edges labelled.

Assign a charge of 0 or 1 arbitrarily to each vertex in the graph. For each

vertex of the graph associate a set of clauses as follows:

1. every label of an edge emunating from that node will occur in each clause

of the set of clauses generated from that node.

76

2. if the node is assigned 0, then the number of negated literals in each of

the generated clauses is to be odd. Generate all such clauses for that

node.

3. if the node is assigned 1, then the number of negated literals in each of
the generated clauses in to be even. Generate all such clauses for that

node.

Example 2a: - cf. [Pelletierl] (page 214)

Figure 5.1: Semi-connected 4-vertices Graph Theorem.

The set of clauses generated for this example is:
1. A|B

~A | ~B
A|C|~D
A|~C|D
~A|C|D
~A | ~C|~D
B|C|~E
B|~C|E
~B|C|E
~B | ~C | ~E

© ® NS ¢ s w8

—
i

77

11. D | ~E
12. ~D | E

The set of clauses (1) ~ (12) is inconsistent.

Example 2b: - cf. [Urquhartl] (page 213)

{abc.EB'c} 1 a 0 {e'da,%'g
abc, abc b d eda,eda
C e
{Edf, cdf Toe, fbe
cdT, cdf 0 r 0 fbe, fbe

Figure 5.2: Totally-connected 4-vertices Graph Theorem.

The set of clauses generated for this example is:

[y

alb|e
~a|~b|c
~a|b|~c
a|~b|n~c
~a|d]|e
a|~d|e
a|d|~e

~a|~d|~e

L I A oo B

~c|d]f
c|~d|f
ve|d|~f

-
HP

78

12, ~c | ~d | ~f
13, ~e |b|{
4. e | ~b|f
15. e|b| ~f
16. ~e | ~b | ~f

The set of clauses (1) - (16) is inconsistent.

Example 3: Foothold Theorems - cf. [Spencerl] (page 580)

Problem: Consider the following set of theorems:

e P|~Pl]|...|~Pn

s Pi| ~Ai Vi=1,..,n
s Pi|~Bi Yi=1,...,n
e Ai|Bi Yi=1,...,n
¢ ~P

The base clauses of each theorem in this set are inconsistent.

Example 4: Shoe-Boxes Theorems - ¢f. Unpublished
Probler: The author would like to thank T. Mackling at the Faculty of
Engineering in McGill University for providing him with this set of theorems.

The symbols Al, ..., An, Bl, ..., Bn are constants.
* Equal(x,x)
» ~Equal(x,y) | Equai(y,x)
s ~Equal(x,y) | ~Equal(y,z) | Equal(x,z)
¢ Equal(x,Al) | ...{| Equal(x,An)
o ~Equal(B1,B2)
o ~Equal(B1,B3)

¢ ~Equal(B1,Bn)
s ~Equal(B2,B3)

79

I [[Can, Sem. Tree Gen. || AISTG TGTP
Theorem l‘ Atoms Time Atoms | Time Time
ﬂ Name ||_checked in sec. checked | in sec. || in sec.
Pigeonhole 12 | 1 12 0 >100
Arbitrary Graph {a) 5 0 5 0 >100
Arbitrary Graph (b) 6 0 6 0 4
Footholdn=1 4 1 4 0 1
Footholdn=2 7 1 7 0 3
Foothold n =13 10 0 10 0 5
Footkold n = 4 13 0 13 1 3
Foothold n =35 16 1 16 2 9
Foothold n =6 19 7 19 12 150
Foothold n =17 22 21 22 51 7860
Foothold 1 = 8 25 175 f 25 243 28950
Foothold n=9 28 547 { 28 1062 >144000
Foothold r = 10 31 2250 31 4232 >144000
Shoe Boxes n = 2 23 3 25 2 137
Shoe Boxes n =3 47 20 46 850 19873
Shoe Boxesn=4 78 349 77 18531 || >144000

Table 5.1: Hard Research Theorems Proved Using Semantic Tree
Generators.

] ~Equ&l(B?,B4)

¢ ~Equal(B2,Bn)
¢ ~Equal(B3,B4)

s ~Equal(Bn-1,Bn)

The base clauses of each theorem in this set are inconsistent.

We tried some of these theorems on our semantic tree generators. It turned
out that the semantic tree generators gave a far greater performance than did
The Great Theorem Prover. Table 5.1 displays the result of proving such
theorems. For most theorems of this type, The Great Theorem Prover kept
searching for the proofs for a lorg time (in some cases for more than a day) that
we decided to discontinue the search. The reason for this is either too many
useless resolvents generated or the generated resolvents have to many literals
in them. The table displays the result of proving these theorems using the
canonical semantic tree generator and the AISTG. Column 1 shows the name

of the theorem. Column 2 shows the number of atoms canonically enumerated

80

from the Herbrand base that are sufficient to prove the theorem. Column
3 shows the execution.time in seconds that it took the canonical semantic
tree generator to prove the theorem. Column 4 shows the number of atoms
selectively chosen from the Herbrand base by the AISTG using the fewest-
literals strategy for proving the theorem. Column 5 shows the execution time
in seconds that it took the AISTG to prove the theorem. Column 6 shows the
execution time in seconds that it took TGTP to prove the theorem. For this
experiment, we used the same computer that we had used for the previous
experiments.

Although the above-illustrated examples present considerable difficulties
for resolution-based theorem provers, this fact does not reflect any real inherent
difficulty in the problems, but rather the inefficient way in which the resolution
procedure deals with theorems of this kind. This fact is demonstrated by
the existence of short refutations for these examples in axiomatic systems for

propositional calculus such as semantic tree generators.

5.2 When to Avoid Generating Semantic Trees
for Proving Unsatisfiability

Researchers who have tried to compile lists of problems for automated theorem
provers in the past have discovered that the production of such lists is difficult.
One of the reasons for this difficulty is that what seems to be “easy” for one
system might not be for another. Indeed, this is exactly the case between
semantic tree generators and resolution-refutation theorem provers.

In the previous section, several theorems were presented for which the
proofs obtained by semantic tree generators were vastly more efficient than
were those obtained by resolution-refutation theorem provers. To complete the
picture, in this section we discuss the converse situation. We identify theorems
which are considered trivial jor resolution-refutation theorem provers, but they
seem to be impossible to solve ﬁsing semantic tree generators. Table 2.1 ap-

peared earlier in Chapter 2 includes theorems of this type. Examples of such

81

theorems are: SOlburst, SO5haspart2, SISDBABHP, S19APABHP,
S539Wos15, S46Wos22, S50Wos26, StarkeyZ8, and Starkey75. Yet, in

order to express this fact more clearly, let us consider the following set of base

clauses:

Axioms:

1. P(f(g(a,b,c),d)) | Q(f(a,b))

2. ~P(x)
Negated Theorem:

3. ~Qif(x,y))

A resolution-refutation proof for this theorem was obtained by The Great
Theorem Prover in less than a second. However, proving this theorem by using
the canonical semantic tree generator appeared to be much harder. In fact,

the canonical semantic tree generator could not prove this theorem for the

following obvious reason:

The canonical enumeration of elements from the Herbrand universe is:
HU = { a, b, ¢, d, f(a,a), f(a,b), f(a,c), f(a,d), {(b,a), f(b,b), f(b,c), f(b,d),
f(c,a), f(c,b), f(c,c), f(c,d}, f(d,a), f(d,b), £(d,c), £(d,d), g(a,a,a), ... }.

The canonical enumeration of atoms from the Herbrand base is:
HB = { P(a), Q(a), P(b), Q(b), P(c}, Q(c), P(d), Q(d), P(f(a,a)), Q(f(a,2)),
P(f(a,b)), Q(f(a,b)), P(f(a,c)), Q(f(ac)), P(f(a,d)), Q{f(a,d)), P(f(b,a)), Q(f(b,a)),
P(f(b,b)), Q(f(b,b)), P(f(b,c}), Q(f(b,c)), P(f(bd)), Q(f(b,d)), P(f(c,a}), Q(E(c,a)),
P(f(c,b)), Q(f(c,b)), P(f(c,c)), Qf(c,c)), P(E(e,d)), Q(f(c,d)), P(f{d,a)), Q(f(d,a)},
P(f(d,b)), Q(f(d,b)), P(f(d,c)), Q(f(d,c)), P(f(d,d)), Q(f(d,d)), P(g(a,a,a)),
Q(g(a,a,a)), ... }.

| HUg | = 4, | HU; | = 84, | HU, | = 599764, .. . etc.
| HBg | = 8, | HB, | = 168, | HB; | = 1.19 x 105, ... etc.

In order to prove this theorem using a canonical semantic tree generator,

at least 168 atoms must be checked before a closed semantic tree is generated.
To be exact, the term f(g(a,b,c),d) appears after 2255 terms in the canonical

82

enumeration of the Herbrand umniverse. Consequently, 4511 Herbrand base
atoms must be checked before a closed semantic tree can be generated; this
is beyond the capability of the canonical semantic tree generator. However,
these figures are not meant to discredit the semantic tree generation as a
theorem-proving method. For example, filtering the Herbrand base of the
above theorem, as proposed in Method I for improving the practicality of
generating semantic trees, leaves only two elements in the Herbrand base to be
checked by the generator, namely, P(f(g(a,b,c),d) and Q(f(a,b)). This theorem
can be used as another example for encouraging the use of improved semantic
tree generators as practical theorem provers.

In summary, our experimental study confirms that the semantic trees
method can be as good as (in some cases even better than) other methods for
proving unsatisfiability of sets of clauses, including the resolution-refutation
method. This chapter has shown that this method can sometimes be a better
choice for solving certain hard theorems than what is considered the best and

most powerful of all theorem-proving methods, which is resolution-refutation.

83

Conclusion

This dissertation has investigated the use of semantic trees in automated the-
orem proving. In jit, we studied the effectiveness of Herbrand’s procedure on
theorems such as those in the Stickel Test Set. Additionally, we looked at more
effective ways of ordering the atoms of the Herbrand base that are used for
generating semantic trees, and we showed that a larger set of theorems could
be proved. In what follows, we summarize ihe findings of the previous chap-
ters and suggest various techniques for further advancements in generating

semantic trees for proofs of unsatisfiability.

6.1 Concluding Remarks

Focusing on semantic trees and on their role in automated theorem prov-
ing, this thesis has demonstrated both the equivalence of semantic trees and
resolution-refutation proof trees and thus the equivalence of semantic tree
generators and resolution-refutetion theorem provers. A system for using se-
mantic trees in proving unsatisfiability was illustrated in Chapter 2. The

system included generating a closed semantic tree from a given resolution-

84

refutation proof of an unsatisfiable set of clauses, as well as the extraction of a
resolution-refutation proof from a closed semantic tree of that set. Chapter 2
also described canonical semantic trees and provided examples of constructing
canonical semantic trees of unsatisfiable clauses. We closed Chapter 2 with an
experiment measuring the performance of a canonical semantic tree generator
in proving theorems from the Stickel Test Set.

Theorem-proving on the computer, using procedures based on semantic
trees was examined in Chapter 3 with a view towards improving the effi-
ciency and widening the range of practical applicability of automated theorem
proving. Three methcds for improving the practicality of generating semantic
trees for proofs of unsatisfiability were considered: filtering the Herbrand base;
proposing control strategies for selectively choosing atoms from the Herbrand
base; and interactively manipulating the order by which the atoms appear in
the enumeration of the Herbrand base. These methods we implemented in a
semantic tree generator and tested on theorems from the Stickel Test Set.

Chapter 4 presented AISTG: An Improved Semantic Tree Generator =m-
bodying the three methods suggested in Chapter 3 for improving the practi-
cality of generating semantic trees for proofs of unsatisfiability. The chapter
described modules and layouts of the AISTG program as weil as the flow of
control in the program. In addition, it outlined principal features of the pro-
gram and some of its limitations. We closed Chapter 4 with an experiment
comparing the performance of the AISTG with The Great Theorem Prover on
the Stickel Test Set.

Chapter 5 addressed the consideration of generating semantic trees as an
alternative method for proving unsatisfiability of sets of clauses. On the one
hand, the chapter presented classes of theorems for which the semantic tree
generators are expected to perform at least as good as, if not better than,
resolution-refutation theorem provers. On the other hand, it provided exam-
ples of theorems for which the semaatic tree proofs are less desirable than the

resolution-refutation proofs.

85

6.2 Open Problems

The following are suggestions for further improvements in generating semantic

trees for proofs of unsatisfiability:

e In Chapter 3 we have introduced control strategies for selectively choos-
ing atoms from the Herbrand base of a given set of clauses. Any ad-
ditional study on the effect of control strategies on the practicality of
generating semantic trees would surely contribute to the improvement

of generating semantic trees for proofs of unsatisfiability.

¢ Despite the importance of search strategies, most research in automatic
theorem proving has concentrated on developing new inference systems
which are either more powerful or more restrictive than those already
existing [Kowalski3]. Other control strategies and heuristics for elimi-
nating or re-ordering atoms in the Herbrand base should be considered

[Bledsoel, Kowalskil, Kowalski3, Nortonl, Siklossyl, Slaglel).

o Selectively choosing atoms from the Herbrand base has improved the
practicality of generating semantic trees for proofs of unsatisfiability.
Since domain knowledge has shown its importance in many Al applica-
tions, having a user interactively select atoms from the Herbrand base

for building semantic trees should be further explored.

¢ Two decades ago, efficient general-purpose theorem-proving systems based
on resolution without equality were developed and used for proving the-
orems in first-order predicate logic. Unfortunately, they were not able to
prove anything very complicated, and additions were sought which would
make them more powerful [Changl]. One way to increase their power
was to incorporate equality into these logical systems. For instance,
the explicit use of equality axioms, the application of paramodulation
and E-resolution, and resolution by unification and equality [Plotkinl,

Robinson2, Slaglel]. The AISTG has no identity in its system other than

86

as an ordinary predicate (i.e. the equality axioms). The introduction of
equality into the AISTG would undoubtedly increase its efficiency by al-
lowing it to prove more complicated theorems. How? When the axioms
of reflexivity, symmetry, and transitivity for the equality are “built-in”,
any clause containing a substitution instance of (i.e. subsumed by) one

of these clauses is a tautology which can be ignored [Cainesl].

o There are further search methods of the same general sort as semantic
tree generation, which are less simple than those discussed in this disser-
tation. An extension of our research is planned in which the theoretical
framework developed here will be used as a basis for more extensive
treatments of search methods based on semantic trees and of the design

of semantic tree generators.

e A parallel semantic tree generator should be explored. There seem to
be many design alternatives when parallelizing the generation of these
trees. The second proposed method for improving the perfermance of
semantic tree generators is particularly appropriate for implementation

on multiprocessor computers.

e Lastly, a theorem prover that combines a semantic tree generator with
a resolution-refutation proof searcher seems to offer interesting possibil-

ities.

It is our belief that semantic trees have been unjustly overlooked by re-
searchers in proving unsatisfiability of clauses. With this presentation, we hope
that we have helped to magnify the underestimated role of semantic trees in
automated theorem proving, and thereby have undertaken a first step toward
expleiting the real potential of semantic tree generators as more practical than

theoretical tools for proving first-order logic theorems.

87

Bibliography

[Almullal] M. Almulla and M. Newborn, The practicality of generating se-
mantic trees for proofs of unsatisfiability, submitted to The Tenth Bien-

nial Conference on Al and Cognitive Science, Hybrid Problems, Hybrid
Solutions, Sheffield, England, April 1995.

[Almulla2} M. Almulla, M. Newborn and B. Patrick, An upper bound on the
time complexity of iterative-deepening-A*, Annals of Mathematics and

Artificial Intelligence, Switzerland, V. 5, N. 1-2, pp. 265-78, May 1992,

[Andersonl] R. Anderson and W. Bledsoe, A linear format for resolution with

merging and a new technique for establishing completeness, Journal of
the Association for Computing Machinery, V. 17, N. 3, pp. 525-534, July
1970.

[Andrewsl] P. B. Andrews, Theorem proving via general matings, Journal of

the Association for Computing Machinery, V. 28, pp. 193-214, 1981.

[Bagail] R. Bagai, V. Shanbhogue, J. M. Zytkow and S. C. Chou, Automatic
theorem generation in plane geometry, Methodclogies for Intelligent Sys-
tems, 7th International Symposium, ISMIS ’93, Norway, Proceedings,
pp. 415-424, June 1993.

[Bledsoel] W. W. Bledsoe, Splitting and reduction heuristics in automatic
theorem proving, Artificial Intelligence, V. 2, pp. 57-78, 1971.

[Boyerl] R. S. Boyer, Locking: A Restriction of Resolution, Ph.D. Thesis,

University of Texas at Austin, Texas, 1971.

88

[Boyer2] R. S. Boyer and J. S. Moore, A Computational Logic Handhook, Aca-
demic Press, 1988.

|Broyl] M. Broy, On the Herbrand-kleene universe for nondeterministic com-
putations, Theoretical Computer Science, Netherlands, V. 36, N. 1, pp.
1-19, March 1985,

[Cainesl] P. E. Caines, T. Mackling and Y. J. Wei, Logical control via auto-
matic theorem proving: COCOLOG fragments implemented in Blitzen-
sturm 5.0, Proceedings of the American Control Conference, San Fran-

cisco, pp- 1209-13, 1993.

[Changl] C. L. Chang and R. C. T. Lee, Symbolic Logic and Mechanical The-

orem Proving, Academic Press, 1973.

[Chang2] C. L. Chang, Theorem proving by generation of pseudo-semantic
trees, Div. of Comput. Res. and Technol., Nat. Inst. of Health, Bethesda,
Maryland, 1971.

[Chang3] C.L. Ckang, The unit proof and the input proof in theorem proving,
Journal of the Association for Computing Machinery, V. 17, pp. 698-707,
1970.

[Chul] H. Chu and D. A. Plaisted, Model finding strategies in semantically
guided instance-based theorem proving, Methodologies for Intelligent
Systems, 7th International Symposium, ISMIS ’93, Norway, Proceed-
ings, pp. 19-28, June 1993,

[Emdenl} M. H. V. Emden and R. A. Kowalski, The semantics of predicate
logic as a programming language. Journal of the Association for Com-

puting Machinery, V. 23, N. 4, pp. 733-42, October 1976.

[Fermullerl] C. Fermuller, A. Leitsch, T. Tammet and N. Zamov, Resolution
Methods for the Decision Problem, Lecture Notes in Artificial Intelli-
gence, V. 679, Berlin, Germany, Springer-Verlag, 1993.

89

[Fleisigl] S. Fleisig, D. Loveland, A. Smiley III and D. Yarmush, An imple-
mentation of the model elimination proof procedure, Journal of the As-

sociation for Computing Machinery, V. 28, N. 12, pp. 124-139, 1974.

n

[Gelernter1] H. Gelernter, Realization of 2 geometry theorem proving machine,

Proc. IFIP Congress, pp. 273-282, 1959.

[Gilmorel] P. C. Gilmore, A proof method for quantification theory; its justi-
fication and realization, IBM J. Res. Develop., pp. 28-35, 1960.

[Hayesl] J. P. Hayes, Semantic Trees: New Foundations for Automatic The-
orem Proving, Ph.D. Dissertation, Department of Artificial Intelligence,

University of Edinburgh, Edinburgh, 1973.

[Herbrand1] J. Herbrand, On the Consistency of Arithmetic, “From Frege to
Godel: a Source Book in Mathematical Logic”, Edited by Jean Van Hei-

jenoort, Harvard University Press, Cambridge, Massachusetts, 1931.

[Herbraad?2) J. Herbrand, Logical Writings, A Translation of the “Ecrits
Logiques”, Edited by Jean Van Heijenoort, Harvard University Press,
Cambridge, Massachusetts, 1930.

[Hsiangl] J. Hsiang and M. Rusinowitch, Proving refutational completeness of
theorem-proving strategies: the transfinite semantic tree method, Jour-

nal of the Association for Computing Machinery, V. 3§, N. 3, pp. 559-
587, July 1991.

[Karll] M. Karl, The Markgraf Karl Refutation Procedure. Memo SEKI-
MK-84-01, Fachbereich Informatik, Univeritat Kaiserslautern, Kaiser-
slautern, West Germany, January 1984.

[Klahrl] Ph. Klahr and D. Waterman, Ezpert Systems Technigues, Tools and
Applications, Addison-Wesley Publishing Company, 1986.

90

[Kowalskil] R. A. Kowalski, Logic for Problem Solving, Elsevier North Hol-
land, New York, 1979.

[Kowalski2) R. A. Kowalski, Search strategies for theorem proving, Machine
Intelligence 5, pp. 87-101, 1970.

[Kowalski3] R. A. Kowalski, Linear resolution with selection function, Meta-

mathematics unit, Edinburgh University, Scotland, 1970.

[Kowalski4] R. A. Kowalski and J. P. Hayes, Semantic trees in automatic
theorem proving, Machine Intelligence 4, pp. 87-101, 1969.

[Letzl] R. Letz, S. Bayerl and W. Bibel, SETHEO, a high performance theo-
rem prover, Journal of Automated Reasoning, V. 8, pp. 183-213, 1992,

[LiMinl] F. LiMin, Neural Networks in Computer Intelligence, McGraw-Hill
Series in Computer Science, McGraw-Hill Inc., 1994.

[Lovelandl] D. W. Loveland, Theorem provers combining model elimination

and resolution, Machine Intelligence 4, pp. 73-86, 1984.

[Loveland2] D. W. Loveland, Automated Theorem Proving: A Logical Basis,
North-Holland Publishing Company, 1978.

[Loveland3] D. W. Loveland, A unifying view of some linear Herbrand proce-
dures, Journal of the Association for Computing Machinery, V. 19, N,
2, pp. 366-384, April 1972.

[Loveland4] D. W. Loveland, A linear format for resolution, Proc. IRIA Symp.

Automatic Demonstration, Versailles, France, Springer-Verlag, pp. 147-
162, 1970.

[Loveland5] D. W. Loveland, Some linear Herbrand proof procedures: an
analysis, Department of Computer Science, Carnegie-Mellon University,
1970.

91

[Loveland6] D. W. Loveland, A simplified format for the model elimination

theorem-proving procedure, Journal of the Association for Computing

Machinery, V. 16, N. 3, pp. 349-363, 1969.

[Loveland?] D. W. Loveland, Mechanical theorem proving by model elimina-

tion, Journal of the Association for Computing Machinery, V. 15, pp.
236-251, 1968,

[Lugerl] G. Luger and W. Stubblefield, Artificial Intelligence: Structures
and Strategies for Complex Problem Solving, Second edition, The Ben-
jamin/Cummings Publishing Company, 1993.

[Luckham1] D. Luckham, Refinements in resolution theory, Proc. IRIA Symp.
Automatic Demonstration, Versailles, France, Springer-Verlag, pp. 163-
190, 1970.

[Luckham?] D. Luckham, Some tree-pairing strategies for theorem proving,

Machine Intelligence 3, pp. 95-112, 1968.

[Mannal] Z. Manna, Mathematical Theory of Computation, McGraw-Hill Se-

ries in Computer Science, McGraw-Hill Inc., 1974.

[McCunel] W. McCune, Otter 2.0 Users Guide, ANL-90/9, Argonne National

Laboratory, Mathematics and Computer Science Division, 1990.

[McCharenl] J. D, McCharen, R. A. Overbeek and L. A. Wos, Problems and
experiments for and with automated theorem-proving programs, JEEE

Transactions on Computers, V. C-25, N. 8, pp. 773-782, 1976.

[Michiel] D. Michie, R. Ross and G. Shannan, G-deduction. Machine Intelli-
gence, V. 7, New York, pp. 141-165, 1972,

[Newbornl] M. Newborn, The Great Theorem Prover Version 2, Newborn

Software, 1994,

92

[Newborn2] M. Newborn, Y. Qingxun and H. Zhang, Test Results for the
Great Theorem Prover, Technical Report - SOCS91.9, September 1991.

{Nilssonl] N. J. Nilsson and M. R. Geneserth, Logical Foundation of Artificial
Intelligence, Morgan Kauffman Publishers, Inc., 1987.

[Nilsson2] N.J. Nilsson, Principles of Artificial Intelligence, Morgan Kauffman
Publishers, Inc., 1980.

[Nilsson3] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill Series in Computer Science, McGraw-Hill Ine., 1971.

[Nortonl] L. M. Norton, Experiments with a heuristic theorem proving for the
predicate calculus with equality, Artificial IntelligentV. 2, pp. 261-284,
1971.

[Norton2] L. M. Norton, Adept-A Heuristic Program for Proving Theorems of
Group Theory, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1966.

[Nossum1] R. Nossum, Automated theorem proving methods, Nordisk Tid-
skrift for Informationsbehandling (BIT), V. 25, N. 1, pp. 51-64, 1985.

[Nossum?2] R. Nossum, Decision Algorithms for Program Verification, Univer-
sity of Oslo, 1984.

[Passosl] E. P. Passos, R. L. De Carvalbo and M. M. Pion, Interactive system
to construct minimal model on the Herbrand universe, Proceedings of a
Symposium Organized by the Austrian Society of Cybernetic Studies, pp.
337-342, 1982.

[Passos2] E. P. Passos, R. L. De Carvalho and S. R. Peixoto, Communication
predicates: a complete strategy for resolution-based theorems provers
an Evaluation of an Implementation, Proceedings of the Fourth Inter-

national Congress of Cybernetics & Systems, Netherlands, pp. 60-62,
August 1978,

93

[Pelletierl] F.J. Pelletier, Seventy-five problems for testing automatic theorem

provers, Journal of Automated Reasoning, V. 2, pp. 191-216, 1986.

[Petersonl] G. Peterson, A technique for establishing completeness results in
theorem proving with equality, STAM Journal on Computing, V. 12, N,
1, pp. 82-100, February 1983.

[Plotkinl] G.D. Plotkin, Building-in equational theories, Machine Intelligence,
V. 7, pp. 73-89, 1972,

[Putnaml1] H. Putnam and M. Davis, A computing procedure for quantifica-

tion theory, Journal of the Association for Computing Machinery, V. 7,
pp. 201-215, 1960.

[Qianl} L. R. Qian, Semantic mappings on Herbrand base, Chinese Academy

of Sciences (Science Bulletin). English Edition, V. 27, N. 10, pp. 1042-
1045, 1982.

[Quaifel] A. Quaife, Automated development of Tarski's geometry, Journal of
Automated Reasoning, V. 5, pp. 97-118, 1989.

[Rebohl] R. Reboh, B. Raphael, R. Yates, R. Kling and C. Verlarde, Study
of automatic theorem-proving programs, Technical Note 75, Artificial

Intelligence Center, Stanford Research Institute, Ca. November 1972,

[Reiterl] R. Reiter, Two results on ordering for resolution with merging and

linear format, Journal of the Association for Computing Machinery, V.
18, pp. 630-646, October, 1971.

[Robinsonl} J. A. Robinson, Computational logic: the unification computa-
tion, Machine Intelligence 6, pp. 63-72, 1971,

[Robinson2] J. A. Robinson and L. Wos, Paramodulation and theorem proving
in first order theories with equality, Machine Intelligence, V. 4, pp. 135-
150, 1969.

94

[Robinson3] J. A. Robinson, The generalized resolution principle, Machine
Intelligence 3, pp. 77-94, 1968.

[Robinson4] J. A. Robinson, A review of automatic theorem proving, Proc.

Symp. Appl. Math. Amer. Math. Soc. 19, pp. 1-18, 1967.

[Robinson5] J. A. Robinson, A machine-oriented logic based on the resolution
principle, Journal of the Association for Computing Machinery, V. 12,
N. 1, pp- 23-41, 1963.

[Robinson6] J. A. Robinson, Automatic deduction with hyper-resolution, In-
ternational Journal of Computing Machinery, V. 1, pp. 227-234, 1965.

[Robinson7] J. A. Robinson, Theorem-proving on the computer, Journal of the

Association for Computing Machinery, V. 10, pp. 163-174, April 1963.

[Siklossyl] L. Sikloosy and V. Marinov, Heuristic search and exhaustive
search, Proc. 2nd International Conference on Artificial Intelligence,

London, pp. 601-607, 1971.

[Slaglel] J. R. Slagle, Automatic theorem proving with built-in theories in-
cluding equality, partial ordering and sets, Journal of the Association
Jor Computing Machinery, V. 19, N. 1, pp. 120-135, January 1972.

[Slagle2] J. R. Slagle and C. D. Farrell, Experiments in automatic learning for
a multipurpose heuristic program, Comm. Association for Computing

Machinery, V. 14, pp. 91-99, 1971.

[Slagle3] J. R. Slagle, Automatic theorem proving with renamable and seman-
tic resolution, Journal of the Association for Computing Machinery, V.
14, N. 4, pp. 687-697, October 1867.

[Spencerl] B. E. Spencer, Avoiding duplicate proofs, Logic Programming. Pro-
ceedings of the 1990 North American Conference, Austin, TX, pp. 569-
84, October 1990.

95

[Starkeyl] J. D. Starkey and J. D. Lawrence. Experimental tests of resolution
based theorem-proving strategies. Technical Report, Computer Science

Department, Washington State University, Washington, April 1974.

[Stickell] M. E. Stickel, Automated theorem proving research in the fifth gen-
eration computer systems project: model generation theorem provers,

Future Generation Computer Systems, V. 9, N. 2, pp. 143-52, July 1993.

[Stickel2] M. E. Stickel, A Prolog technology theorem prover: implementation
by an extended Prolog compiler, Journal of Automated Reasoning, V. 4,
pp. 353-380, 1988.

[Stickeld] M. E. Stickel, An analysis of consecutively bounded depth-first
search with applications in automated deduction, Proceedings of the
Ninth International Joint Conference on Artificial Intelligence, Los An-

geles, Cal,, V. 2, pp. 1073-1075, August 1985.

[Stolll] R. Stoll. Set Theory And Logic, W. H, Freeman and Company, A series
of books in mathematics, 1963.

[Tanimotol] S. L. Tanimoto, The Elements of Artificial Intelligence: An In-

troduction Using LISP, Computer Science Press, Rockville, Maryland,
1987,

[Wangl] S. Wang and P. E. Caines, Automated reasoning with function eval-
uation for COCOLOG with examples, The 31st IEEE Conference on
Decision and Control, Tusca, AZ, December 1992. Complete version:

Research Report N. 1713, INRIA-Sophia Antipolis, 1992.

[Wilsonl] G. Wilson and J. Minker, Resolution, refinements, and search strate-
gies: a comparative study, JEEE Transactions on Computers C-25, N.
8, pp. 782-801, August 1976.

[Wosl] L. Wos, Automated reasoning answers open questions, Notices of the

American Math. Society, pp. 15-26, January 1993.

96

[Wos2] L. Wos, R. Overbeek, E. Lusk and J. Boyle, Automated Reasoning:
Introduction and Applications, 2nd Edition, McGraw-Hill Series in Com-
puter Science, McGraw-Hill Inc., New York, 1992.

[Wos3] L. Wos, Automated Reasoning: 33 Basic Research Problems, Engle-
wood Cliffs, New Jersey, Prentice-Hall, 1988.

[Wosd] L. Wos, Efficiency and completeness of the p set-of-support strategy in
theorem proving, Journal of the Association for Computing Machinery,

V. 12, pp. 536-541, 1965.

[Wost] L. Wos, D. Carson and J. A. Robinson, The unit preference strategy
in theorem proving. Proc. AFIPS 1964 Fall Joint Computer Conference,
V. 26, pp. 616-621, 1964.

{Urquhartl] A. Urquhart, Hard examples for resolution, Journal of the Asso-
ciation for Computing Machinery, V. 34, N. 1, pp. 209-219, 1987.

97

Appendix A: Proving the
Stickel Test Set using the
AISTG

98

(PP.97) Qﬁgy 1: Herb. Proc.

Strategy 5: FLS+S0S Strategy 6: FLSQ Best

Strategy 2: FLS Slraleg_y_ 3: 808 Strategy 4: LF
Theotem | Proven | # Element TimejProven | # Elements Time|Proven | # Elementd TimelProven | # Elements TimefProven | # Elements Time] Proven | # Elements Tim
burst No 68 65m] Yes 45 9s]| No 70 65m| Yes 17 1s § No 96 [65m| Yes 45 s | 4
short No 90 |500s] Yes 1 0} Neo 105 No 87 31s]| No 43 | 120s} Yes 14 1512
prime | Yes 187 | 5.5n] Yes a1 [217s] Yes 28 |154s| Yes | 187 I55h| Yes 21 9s | Yes 31 2908 &
haspat | No 252 | 54s] No 91 20s] No 281 | 55s] No 33 15m] No 270 |s55] MNo 64 1as] ©
haspa2 No 93 93s| Np o6 15m] No 120 85s] No 64 3 § No 123 g5¢] No 85 1751 ©
ances | Yes 6 15 1 Yes 6 15 | Yes 6 15 | Yes 6 1s | Yes 8 1s | Yes 6 1s JAny
num1 Yes 177 4h | vyes 17 25 | Yes 219 [4h Yes 22 965 | Yes 209 | 4h Yes 17 as |26
group No 96 40m] No 98 446s] No 56 83s] No 47 40s] No 58 83s } No 56 gasf ©
group2 | Yes 59 150m] Yes 26 40s | Yes 109 [150m Yes 58 344s| Yes 96 |163m] ves 16 as | €
ewl Yes 5 0 [Yes 5 0 Yes 0 Yes 5 0 Yes 5 C | Yes o [AnY
ow2 Yeos 3 1s | Yes a3 15 | Yes 3 1s | Yes 3 18 | Yes 3 18 | vYes ie lany
ow3 Yes [5 1s | Yes 5 1s | Yes 1s [Yes | & ts | Yes 5 |15 | vYes 5 1s_|Any
rob1 Yes 13 10s] Yes 10 0 Yeos 9 o | Yes 8 0 Yes 9 0 | Yes 10 o |4
rob2 Yes | 54 156m{ Yes 25 | 32s] Yes tog |43n] VYes 82 156m{ Yes 00 |186m| ves 18 os | 8
michle Yes 182 |5.4h] Yes 282 |5.4h| Yes 187 |54h]| Yes 196 |5.4h | Yes 187 |5.4h] Yes 187 {54n] 1
qw Yes 3 1s | Yes 3 0 | Yes 3 1s| Yes 3 0 | Yes 3 0 | Yes a 1s |Any
mqw | Yes [3 1s | Yes 3 0 | Yes 3 o Ys | 3 0 | Yes 3 0 | Yes 3 1s JAny
DBABH | No 62 >4h] No 114 |oas] No 102 ah| No 83 17s] No 102 | 4h | No 98 e6s| 0
APABH No o7 60s| No 95 190s| No 73 asg] No 300 63s| No 93 445} No 94 43s5s) 0
fleisig1 | No 100 | 156s] Yes 30 94s | Yes 26 gas| Yes 38 74s| Yes 26 {16s| Yes 30 19s |35
flelsig2 | No 150 |248s] Yes 34 32s | Yes 42 |464s| Yes 26 Bs | Yes 42 |408s| Yes 34 30s] 4
flaisig3 | No 70 62m} No 91 104s] No 64 747s] WNo 112 144s] No 85 [1223] No 83 90s
flsisig 4 No 42 5im} No 42 270sf WNo 42 5im{ No 78 115s] No 42 5im{ No 22 453s
fleisig 5 No 42 s7m{] No 25 25351 No 42 57m| No 76 158s] No 42 57m | No 22 4578 0
h = hours- m = minute; s = second.

(PP, 98) 'Qy 1: Herb. Proc.

Strategy 2: FLS Strategy 3: SOS Strategy 4: LF Strategy 5: FLS+S0S Strategy 6: FL! Best
Theorem | Proven |# Elements Time]Proven | # Elements Time]Proven | # Elementy Time|Proven | # Elementq Time{Proven | # Element Time| Proven | # Elements Time]

wos 1 No a5 2tm] No 64 50s | No 70 525 No 99 1565! No 70 70s | No 77 678 | O
wos2 | No 70 |120mf No 60 |50s| No 63 [30s| Mo 70 |ots] No | 81 [758] No | 47 [sass| 0
wos3 § Yes 8 0 Yes 13 1s | Yes 62 145] Yes 14 |4s Yes 93 64s | Yes 19 4 | 1
wos4 | Yes 72 571s| Yes 160 {25m| Yes 3@ (78s | Yes 119 |675s] Yes | 118 |soom| Yes 121 |733g] 3
wos 5 No 101 1.25 No 74 179s] No €3 40s No 70 56s | No 128 207s] No 128 1745} O
wos 6 No 56 2,10h] No 45 571s] No 57 2h No 64 2h | No 85 2h No 92 2h 10
wos7 | Yes 74 aom] Yes 46 118s] Yes 136 [35m | Yes 116 (32m| Yes 112 30m| Yes n 30m} 2
wos B No 94 15m| No 78 261s] No 80 41s] No 80 798 | No 54 33s{ No 28 75 | 0O
wos9 | No 130 2h No 158 | 2h No 40 93s | No 130 {2h § No 56 3its | No 150 2h [O
wos10| Yes | 70 [119m] ves| 3¢ [266s] Yes | 131 [13an] Yes | 78 |1om} Yes | 117 |119m| Yes | 108 [119m) 2
wos 11 No 105 3.5h No 140 (3.5hf No 149 | 3.5h No 112 [3.5h] No 118 ash] No 133 ashj O
wosi12 | Yes 24 125] Yes 1 0 Yes 10 0 Yes 11 j1s | Yes| 8 0 | vYss 1 18]5
wos13 | No 103 j60m] Yes 16 15] No 82 42m| No 51 69s | Yes 10 0 Yos 2 gs | 5
wos 141 Yes 30 |93s Yes 23 3s | Yes 17 2s | Yes 80 |[186s] Yes 18 3s Yes 93 313g] 5

wos 15| No 108 | 60m] No 92 1884 No 55 2081 No 108 |6om| No 52 84s | No 48 408) 0
wos 16 | Yes 24 36s | Yes 100 [397s] Yes 106 foes | Yes 22 20s| Yes 75 7is| Yes 21 118 | 6
wos 17 | Yes 69 5h Yes 135 | 5h Yes 93 Sh Yes 107 |5h Yes 106 Sh Yes 105 5h | 1
wos 18 | No 108 210h ves| s o | No 65 |8gs] No 116 |2.ih] No 75 |eas| Yes | 8 o |26
wos19 | No g3 42m | ves 10 0 No 96 |aam| No g0 |[42m| No 72 |234s} Yes 13 18] 2
wos20 | No 102 |51m] No o4 s58sf No 117 {5im] No 109 [51m]| No 85 261s| Neo 59 1488 ©
wos21 | No 79 sém| No g5 |539s] No Y 555 | No 31 |[25s]) No 53 198s] No 28 125} 0
wos22 | No 35 50s | No 54 1286s] No 62 s4s] No 54 |166s] No 53 225 | WNo 41 a2 | 0
wos23 | No 43 5m{ No 53 |se7s| No a4 |15mj No 5 o | No 50 1925] No 73 sm f O
wos24 | No 43 sml Mo 53 |24gs] Mo as |15m| No 5 o | Mo 25 |eeas| No 20 158 | ©
wos25 | No 43 | sm| Yes 15 |as | No 83 |113s] No 3 No 116 |42s | Yes | 13 3 |6

h = hours* m = minyte; s = second.

(PP. 99) gogy 1: Herb. Proc.

h =hours

Strategy 2. FLS Strategy 3: SOS Strategy 4: LF Strategy 5: FLS+50S Strategy 6: FLS+LF Bast
Theorem |Proven | # Elementd Time}Proven | # Elements Time|Proven | # Elementd Time|Proven | # Elementq TimejProven | # Element Time| Proven | # Elements Time|
wos28 | No 72 |3em] No 86 | 3404 No 85 |3184 No 106 |54s| No 69 |1o5s] No 82 |109s] o
wos 27 No 48 63m| No 40 20s No 33 26s } No 55 63m| No 57 223s] No 33 19s{| O
wos28 [No 41 [(2625{ No 20 {20s} No 46 gs [No a7 262s] No 44 28s [No 48 12sf o
wos29 | No 73 |591s] Yes 15 l2s | No 55 |46s| No 76 Isg1s] Mo 28 185 | No 86 62 | 2
wos 30 No 90 4h No 41 B3s No 34 295] No 6 1s No 66 162s] No 64 189s] o
wos31 { No 69 |21n] No 60 [290s] No 383 15m| No 20 15m! No 42 |s71s] No a7 15m| 0
wos32 | Yes 31 75685 Yes 19 9s Yes as 200s] Yes 88 903s] Yes 68 23m] Yes 17 16s] ¢
wos33 | vYes 70 12 ves 115 j12.1h] Yes 125 121 Yes 120 12h| Yes 128 14h | Yes 107 11210 1
stk 5 Yes 2 o] Yes 2 0 Yes 2 0] Yes 2 0 Yes 2 0 Yes 2 0 JAny
stk 17 Yes 69 gh | Yes 109 |8.15hf Yes 18 15 | Yes 27 995 | Yes 17 23 Yes 134 |8.1h] 5
stk23 | No 85 | S5M No 65 |93s] No 0 o | no 65 |207s] Mo 64 |317s] No e |349s] 0
sik26 | Yes 21 0] Yes 6 |0 Yes 10 ol Yes 78 182s] Yes 70 128s] Yes 70 128s] a
stk28 | No 225 | 22m] No 27 |1sml Ne | 90 |aas| Mo 11 1s| No | 49 lgas| No a3 | som} o
stk29 | No 250 | M No 60 |28s] WMo 89 [aes] No | 1 1s | No 58 [42s { No s9 |44s] o
stk35 | No 30 [202] pnp 27 257s] No 48 158s] No 32 |405s] No 29 342s] No 25 18s] o
stk38 | No 13t | 2" o 74 j112s| No 59 |382s] No 135 | 20m| No 93 ls2s| nNo o4 |78s] 0
stk37 [No 52 4858} nNo 30 [111s] No 22 2s | No 56 {1925 No 20 [253s] No 29 255 0
strk 41 Yes 8 0 Yes 4 0 Yes 6 0] Yes 57 281]| Yes 28 6s Yes 28 és | 2
stk55 | No 245 | 2h | No 64 (19| No 96 |(64s] No 269 |2h | No 26 |6s No 39 10s| ©
stk 65 No 250 | 25my Yes 17 o No a8z 1951 No 45 16s No 114 |43s Yas 18 1] 6
strk 68 No 257 |20m] Yes - 13 0 Yes 3 ol No 108 [g88s | Yes 3 0 No 85 1188} 3,5
sk75 | No 258 668s] No 94 i61s| No 59 15s] No 120 | 186s] No 89 1258} No 85 [112s] ©
stk76 | Yes 17 20s] Yes 5 0 Yes 10 1s] No 76 52s) Yes 18 215 | VYes 68 114s] 2
stk87 | No 250 |32m] Yes 55 | 67s] No 22 3s | No 45 | 12s] No 102 [57s | Yes| &8 |577s] 2
strk 100 Yes 24 741s] Yes 4 0 Yes 16 7s Yes 8 0 Yes 18 |{40s Yas 6 (1] 2
m = minule; s = second.

(PP. 100) Strategy 1: Herb. Proc. Strategy 2: FLS Strategy 3: SOS Strategy 4: LF Strategy 5: FLS+S0S Strategy 6: FLS+ Best
Theorem |Proven | # Elementq Time]Proven | # Elements Time|Proven | # Elementd Time]Proven | # Elementd Time]Proven | # Elementd Time| Proven | # Elements Time}
strk 103 Yes a7 7.3h] Yes 22 1605 Yes 12 1s Yos 109 [7.3h] Yes 9 18 Yes 25 3139 5
strk 105 Yes 66 12h] Yes 8 0 Yes 19 16s] Yes 22 25m] Yes 18 €s Yes 15 225 | 2
swk106 | No | 6 |22nf Yes | 13 |3s | No | so feess| Mo | 50 s No| 88 |i5m] No | a3 |1sm] 2
sik108 | No 231 [46m | No 65 20m{ No 125 (98s | No [261 | 47mf No 85 (79s| No 92 {1e62s] O
stric 111 Yes 66 7.5h | Yes 4 0 Yes 27 19m}§ Yes 23 72| Yes 19 9s Yes 15 2s | 2
girk 112 No 230 |35m|] No 93 1204 No 252 35m| No 247 3Eml No 82 131s] No 120 31294 0
stk 115 | No 120 [24h| Yes | 21 68s | No 102 |65s| No | 108 [1224 No 74 |1 No 63 | 15m| 2
strk 118 No 130 [2.4h| Yes 14 0 No 78 23s | No 40 15m] No 58 253s|] No 112 80s | o
strk 118 No 240 1377s] No 54 84s| No 262 a7rgs] No 39 33s| No 70 130s] No as 48m| ©
strk 121 No 190 41m} Yes 38 8s5h] No 94 5isf No 78 59s No Bt 103s] No 78 g3s | 2

Yotal <) | 47 3 33 35 a a7
m = minute; s = second.

h = hours;

Appendix B: Two Sample Runs
of a Cancnical Semantic Tree
(Generator

103

Enter anme of theorem (type *?* for help): stark026

Predicates: S P Functioes: AEGF
1: [UM-] PxyFxy
2: [UM~] PxGxE

3: [UM-~] PxEx
4 [-M-] "Pxys “Pyuav "Pxvw Psur
31 [+M-] “"Pxys "Pynv “Pauw Pxvw
6: {UM-] PExx

T: [UM-] PGxxE

8: [-M-] "Sx "8y Ss "PxGy1

4

Depth 17
NodesInTroe m 441
l;-yth 18
NodesIaTree = 583
Depth 19

NodesInTree = 680

9: [UM=] SA []
108 [UM-] “SQA Depth 20
1: SA 2: PAAA 3: SE
4: PAAE 8: PAEA 8: PAEE NodesIaTres = T8T
T: PEAA 8: PEAE %: PEEA 10
10: PEEE 11: SGA 12 PAAGA Depth 21
13: PAEGA 14t PAGAA 18: PAGAE
18: PAGAGA 17: PEAGA 18: PEEGA PROOF FOUNDINI
1%: PEGAA 20;: PEGAE 11: PEGAGA NodeslaTres = 1188
21 PGAAA 2% PGAAE 246: PGAAGA 1B*
28: PGAEA

Given axloms:

Presa emter to contlnne. 1: PxyFxy
Phase 1 2: PeGaE
3: PaEx
Search dump: 4t "Pxys “Pyuv "Pxavw Pauw
B: "Pays "Pyuy "Pinw Pxvw
Depth 1 8: PExx
T PGxxE
NodeaInTres = 3 & “Sx “Sy Sz "PxQys
1 9 SA
Depth 2
Neogated conclusion:
NodeslaTreo = 5 105 "SGA
1
Depth 3 I'l-t;‘r‘ud base stoms helpad proving the thecrem:
1
NodeslnTroe = ¢ 21 "PAAA
1 4 SE
Depth 4 4t "PAAE
8: PAEA
NodesIaTree = 14 é: "PAEE
1 T: PEAA
Depth 5 & "PEAE
% "PEEA
NodesIaTree m 21 10: PEEE
1 11: "SQA
Depth 8 121 PAAGA
13: "PAEGA
NodesIaTree = 29 141 "PAGAA
1 18: PAGAE
Dopth T 16: "PAGAGA
1T: "PEAGA
NodeslnTree = 38 10 "PEEGA
1 19: "PEGAA
Depth 8 20: "PEGAE
211 PEGAGA

NodowslaTree = 80

1 ELM: 0 sec, PHS 1! 15 sec, PHS 2: -NA- Total Search Time: 18 sec
Depth ¢

NOD: 1148 RES: 18154 FACi0 MXC: 7 MXL: 3
HTE: ¢ HTH: ¢ HTF: 0 HSZ: 207144
NodesinTree = 63 LTE: 0 LTH: 0 LTF: 0 LSZ: 65838
1 BAS: 10 LEN: 0 4+ 0 OPT: -303 4+ MERGE
Dapth 10
NodeslaTrea = 77 HBElsms = 21

l;epti 11 NodeslaTrees = 1188
Nodes[aTres = 92
Igepll 12
NodesIaTrec = 108
l;cpli 13
NodesIaTree = 138
lg-pll 14
NodeslaTree = 147
I;wtl 18
NodeslaTres = 233
l;-pih 18
NodesInTree = 342

104

The following exumple shows the canonical semantic
trae gemsrator printing the semaatic tree on screen as being

genarstied for S8wosl3:

Enter sama of theoram (type *?’ for help): S36wosl2.thm

Pradicates: o v p Fuactions: s egf

1t [UM=) pexx

% [UM-] pgaxe

3 [UM-] pxytxy

4: [-M-] “pxys “pyuv “pauw pxvw

51 [-M-~] “pxya "pysv “pxvw pruw

8: {UM-] rxx

T: {-M-] “exy ryx

& [+M-] "rzy “ryw rxs

o1 [-M-] rzm “pxys “pxyu
10t [-M~] “rxy “psux pascy
11: [-M-] “rxy “pexs payn
13: [-M-] “rxy “pzza pysu
13: [-M-] “rxy risxtsy
14t [«-M=] “rxy rfxsfys
18t [\M<-] “rxy rgxgy
16 [UM-] pxex

17: [UM-] pxgxe

18: -M-] “oKk "oy of “pxgys
19t [-M-] “ox oy “rey
20: |[UM-] oa
218 [UM-] "o

1: oa 2: e X pasa

41 oe 8 rae 6; roa

T: rew B: paae 9: paes
10: pase 111 pena 12: pese
13 peea 14t peeo 18¢ oga
18 rags 17t roga 18: rgan
10 rgua 101 rgagn 21t paaga
3% paegn 2 pa 24: pagae
18: pagaga 28: pengs AT: peegs
20t pegaa 29: pegas 30t pegags

Presa antar to continus,
Phasa 1

Search dump:

Depth §

E FAILSI

E1

E

E IFAIL - MAX DEPTH
NodesInTree = 3

0
Daepth 2

FAILSIN
1

E
E
E
E FFAILSHI

Eq

E 2

E 23FAIL - MAX DEPTH
NodesInTree = ¢

[}

Depth 3
FAILSII

E
E
E
E JFAILSIN
E
E
E

2
n
3
1

E 321FAIL - MAX DEPTH
NodesIaTree = 11

0

Dapih 4

FAILSIH
1

B
E
E
E IFAILSI
E

E1l

E 212
E
E 3211FAIL - MAX DEPTH

NodeslnTree = 17
0
Depth &

FAILSHI
FAILSIII
1

3

21FAILSIN

E 9111

E 321

E 1113

E 17121FAIL - MAX DEPTH
NodesInTree = 38

]

Daepth &

2
2
3
q
2

FAILSIN

2FAILSIN
1

2

112
211FAILSIN
E 2111

231

E 3111FAILSIN
Eann

E 11112
Einn

E 221211FAIL - MAX DEPTH
NodeslaTree = 33

E
E
E
E
E
E
E
E
E

0
Depth T
FAILSI

FAILS!
1

1FAILSIN

2
2
3
3
3
Iill

E
E
E
E
E
E
E
E
E2

E 23!3FAILSII1

E 1

E 1212

E 23123FAILS!|
E 2131

E 21122

E 221722FAILSIN
E 2212221

E 321222

E 2212221FAIL - MAX DEPTH
NodesInTree = 48

0
Depth 8

AILSH!

2
1FAILS!M
211

l:‘lFAlLSi]

Ill!

E 22127FAILSH|

E 221221

E 22122

E 3212332FAILS!N)

E 2112221

E i

E 2212222

E 322132221FAIL - MAX DEPTH
NodesInTree = 62

0
Depth #

EF
E1l
E
E 3F
E3N
E3
E1
E2
E2
E 111
E 23
E2
E

105

FAILSiN

FAILSI
1

-

1
2!
2
2
2
221FAILSIN

E 2211

E in

E 2213FAILSH!

E 2nian

E 3112

E 23123FAILSI!

E 221211

E 12122

E 221222FAILSM

E 1212271

E 221232

E 2212222

E 22122211FAILS!

E 121322211

E 22137111

E 2212321211FAIL - MAX DEPTH
NodealaTree = 74

]
Depth 10

AILSI

L]

FAILSI!
1

mmmmEettm
(]

|
F §
2
2
J11FAILSIN

E 1211

E 111

E 2n32FAILSIN

E 22121

E 3212

E 32123FAILSIN

E 221221

E 22122

E 221222FAILSII

E 2212211

E 321222

E 2212223

E 12133221 FAILS!t

E 171227211

E 22121121

E 171332312

E 3212212131 FAIL - MAX DEPTH
NodeslaTree = 98

0
Depth 11

FAILSIN
1

FAILSIN
1

1FAILSIN

E

E 121

E 2213FAILSIN

E 722121

E 2212

E 27173FAILSIN

E 1121

E 12172

E 771222FAILSIN

E 1312121

E 21222

E 2212222

E 22122221FAILSIN
E 221222111

E 12132221

E 221222213FAILSINI
E 1212971111

E 1212223213

E 3212222133 FAILS!!!
E 2211232132 1

E 12172222112

E 11122322132 2FAIL - MAX DEPTH
NodesInTres = 115
¢

Depth 12

FAILSH!
1

FAILSIN
1

-

2
2
2
2
221FAILSI

E 1211

E

E 1313FAILSI

E ani1

E 2312

E 22122FAILSHI

E

E 12112

E 2312132FAlLSH

E 2211211

E 211222

E 2112222

E 32123721FAILSI

E 221222211

E 31131111

E 221222219FAILSIN
E 2212222111

E 122171332212

E 2212222132 FAILS!!
E 2112112133

E 3113211122

E 3113313122 3

E 2212323122 31FAIL - MAX DEPTH

NodewInTree = 138
Q
Depth 13

AILSIN

Lol]

FAILSI
1

2
2
2
2
221FAILSH)

m

En

E 211IFAILSI)

E 33111

E 1212

E 12113FAILSIE

E 131211

Eun

E 121333FAILSIN

E 2212101

E 231332

E 22131322

E 32132221FAILSIM

E 3111211211

E 21122111

E 221222212FALLSHI

E 1n1n

E 111111112

E 32173223122 FAILSI
E 22121231211

E 3212222122

E 2312312122 2FAILSIN
E 2311232122 31

E 22122221323 2

E 1212221122 722

mEmEEETEm

E 2113222122 321FAIL - MAX DEIPTH

NodeInTres = 159
]
Dapth 14

FAILBIN
1

E
E
E
E 2FAILSIN
En

E2

En

E 30IFAILMN
mm

Eaa
E 2712PAILSIM
E 1
E 112
E 32129FAILSIN

106

E 221221

En

E 221123FAIL3SIN

E 212131

E 311112

E 1212222

E 221213221FAILSM

E 221332211

E 22122231

E 221122213FAILSH!

E 2213222131

E 2212222132

E 22123232132 FAILSI!Y

F 27212211133 1

E 2212222122

E 2212212112 AaFAILS!
E 2312222121 21

E 2313222112 2

E 22122211271 22

E 2212223122 221FAILSIH
E 2212222122 2111

E 2212222122 221FAILSINN
E 2213221172 3213

E 2212232122 121

E 1212233122 12

E 3212122122 222FAILSH!
E 3112123133 3221

E 2212122132 112

E 2212233123 3333FAIL - MAX DEPTH
NodwlaTres = 187

1
Depth 18

FAlLgm!

FAILStH!
1

-

2
2
2
2
221 FAILS!!!

E 1111

E 711

E J213FAILSHI

E 22131

E 1112

E 22127FAILSIN

E in1an

E 22122

E 721222FAILSIN

E 21112221

E 111212

E 12122122

E 22121221FAILSIM

E 711221211

E 11122111

E 2212322117FAILS!I

E 2212222121

E 121332212

E 2212232122 FAILS11!

E 2213222122 1

E 121323233112

E 2212222122 2FAILSIN

E 1113722192 N

E 2213132122 3

E 22122321232 22FAILS!!

E 33123322132 32}

E 2213231122 33

E 22122233122 223FAILSIN

E 231271271122 1221

E 2213222122 223

E 2212912122 1222

E 23133212132 22221FAIL - MAX DEPTH
NodeelnTree = 114

|
Depih 18

FAlILS!!

FAILSH
1

2
2
2
3
32IFAILIIN
911

E 1

E 2213FAILS!
Ean

E 1212

E
E
E
E
E
E
E
E
E

E 22122FAILSH!

E 221211

E 31132

E 321223FAILSIL

E 2212211

E 211222

E 3313221

E 22122221 FAlLSI!

E 321221211

E 22130221

E 221222213FAILSI

E 3213322121

E 2212223312

E 3213112113 FAILSIHY
Eanmint

E 2212132122

E 1212232122 2FAILSM
EJnitiniaan

E 3212222123 1

E 22122221322 12

E 22122232123 221FAILS!N
E 3212223122 2211

E 22123323121 221FAILS!!
E 2211222132 2212

E 2312222132 111

E 2212233132 22

E 2212222122 213FAILSI!
E 1313232122 2321

E 32122211321 112

E 23132231322 3133

E 33123211323 27971

E 2213222132 212211FAIL - MAX DEPTH
NodesInTres = 244

1
Depih 17
FAILSH
1
FAILSIY

J1FAILSIN

E
E
E
E
E
E
E
E
E 21!
El

E

2
K1}
)
2
3
2
2

zleAlLSIII

E 12121

E 113

E 22112FAILSIH

E 111221

E 32122

E 22172IFAILSI

E 3212101

E 331222

E 212122

E 23122321FAILSI

E 2213121711

E 22132221

E 241222213FAILSM

E 231331121

E 21133113

E 32177323122 FAILSIM
E 2213332112 1

E 2213321122

E 1312223123 FFAILSI!!
E 212332132 11

E 3212122172 2

E 1313212122 322FAILS!HY
E 2212222122 111

E 23132322122 23

E 3212332122 223FAILSt
E 32132221232 23321

E 2212312122 123

E 2212122122 72912

E 2212132131 22211FAILSII
E 2212122133 173311

E 3212131122 12221

E 22121332137 223213

E 23122313123 3332121FAIL - MAX DEPTH
Nodes]aTree = 274

1
Depth 18
FAILSIY

FAILSI!

E
E1l
E
El
En
E2

107

E 12
E 221FAILS!!!
E 2211
E 21n
E 2213FAILSII
E 22121
E 2112
E 22122FAILSI)
E 22121
E 22122
E 221279FAILSIt
E 2212221
E 1nin
E 2212223
E 22122221 FAILSHY
E 221311211
E 22121221
E 2212222712FAILSt)
E 3212222121
E 221372212
E 2212332132 FAILS!I
E 21213232132 1
E 1111112
E 2212222113 JFAILS!t
E 2112232122 21
E 2212372122 2
E 2212122122 33
E 2213227132 221FAILSHI
E 2213127122 2211
E 2212223132 221FAILSIN
E 1212223172 21112
E 21212222122 231
E 32212223112 32
E 22121322122 222FAILSH!
E 2212122122 2221
E 2212322122 222
E 2212222122 2122
E 2212233122 11221
E 2213227132 221111
E 2313122122 2212111FAILS!
E 32123212122 33311111
E 2213333132 33212111FAILSIN
E 2212222122 22331112
E 1212232122 2221111
E 22122212132 122211
E 2312222122 2222112FAILSIIt
E 2112322122 13221171
E 2112122122 3312112
E 2212312133 23321111FAIL - MAX DEPTH
NodeslaTres = 310
1
Depth 19

FAILSHI
1

FAILS!H
}

A A 8D W

31FAILSII

E 2212FAILS!!

E 1

E 112

E 22122FAILS!Y

E 131

E1ann

E 221223FAILSH!

E 1nzan

Eanaz

E 11919

E 22122221FAILSN)

E 231223311

E inina

E 321723213FAILSHI

E inann

E 3213123212

E 2212312133 FAILSI!
E 3213222133 1

E 1213311172

E 3212223123 2FAILSIN
E 2313232123 21

E 2212291122 2

E 2212322123 22FAILSII
E 2311131173 111

E 2211222122 32

E 3213232173 222FAILSH!
E 3213322123 1111

E 1412212123 12

Eanmaime

E 2211222133 2321

E 2212123123 223711

E 2312222122 2227111

E 2313237122 32321111FAILSI

E 2212222122 322211111

¥ 2213222122 37221111}

E 2212222122 223211113FAIL - MAX DEPTH
NodesaInTree w 342

2

Deptk 20
FAILS1
1

FAILSUI

E
E
E
E32
En
E2
E1

E 221FAILSI
E

E 2212FAILSII

Ean

E 2212

E 32123FAILSI

E 221221

E 22113

E 22123IFAILS!

E 2213321

E 221232

E 2212372

E 2212231271 FAILSM!

E 231321111

E 22122201

E 221222312FAILS!

E 119

E 231222212

E 2213332122 FAILS!M

E 2212202121

E 2112222122

E 2213222122 aFAILSIM
E 23212223132 21

E 22172221332 2

E 22123722122 12

E 2212332122 311 FAILSI
E 2212222122 2211

E 22122232122 221FAILSIN
E 1312211122 3213

E 2213223133 121

E 212321122 23

E 2212329132 222FAILSIY
E 2212292133 2221

E 2213332122 223

E 2212222123 3223

E 2212222122 32101

E 2212222131 233111

E 2312222122 2332111

E 3313222122 22221111

E 2212322133 222211111FAILSIN
E 2312137122 2122111111
E 2212397122 3337211111
E 2213323122 2222111117 FAIL - MAX DEPTH
NodesInTree = 377

2
Dapth 31
FAILSIN

FAILSII
1

E 2113FAILS
Eiann

E 3013

E 22127FAILS!IN
E 2
Eann

E 331223FAILSHI
E 3n

E 231233

E 3212222

E 22122321FAILSII
E 221222211

T amm

108

E 131222212FAILSHE

E 1113322120

E 2121332212

E 32122225322 FAILSM!

E 2212222123 1

E nnn

E 3212323122 2FAILS!HI

E 213221123 11

E 3212222122 2

E 2212322322 1IFAILSIN

E 2212222132 2121

E 2213122122 12

E 2212222122 222FALLSI

E 2212221122 1221

E 22122231322 122

E 2212222121 2223

E 12122211322 21211

E 3213221133 222211

E 3212222122 2112111

E 2212233122 22331111

E 2212122123 221211111FALILSIH
E 2212323123 2219111112

E 2312323123 231311111

E 2213233132 2232111112 FAILS!M
E 2213332132 2332111113 1

E 2217133132 7322111112

E 2212322122 2222111113 3FAIL - MAX DEPTH
NodesInTres = 412

2

Dspth 32

FAILSIM

FAILS!
1

21FALLSI

HHMMEmEmnm
[CY R CRY]

T112FAILIIM

E 11131

E 112

E T1133FAILSHI|

E 111221

E 12133

E 121223FAILSII

E annn

E 311322

E 3211213

E 23132371FAILSIM

E 721222211

E 1man

E 771323212FAILSIM

E mann

E 111223212

E 3217223132 FAILSIN
Enamani

E 2219221132

E 2217322123 2FAILSIN

E 2212921212 11

E 22171123171 2

E 3213712122 22

E 2212432122 221FAILSIM

E 2212332122 2211

E 2217737123 221FAILSI

E 1217333137 1212

E 2212122122 221
E1nmnn 1

E 3212222122 223FAILSIN

E 2212222132 21201

E 2213321122 1322

E 3212223131 2222

E 2312222123 12321

E 3212223122 223311

E 1312222172 2222111

E 22123223122 32221111

E 321223321232 222211111 FALILSHI
E 2212222122 2222111111

E 1212222127 211211111

E 2212223132 2223111112 FAILS1!
£ 1212222173 2212111112 1
F 221222217 1122111113

E 2212223121 33222111112 3FAILSIN
E 2213222132 220111117 21
E 2212223117 2333111112 2
E 2313232133 1222111112 23FAIL - MAX DEPTH
NedelaTree m 481

3
Depth 33

AILSIN

-

FAILSIN
1

HrEEEErIm
[+

2
3
3
3
37FAILSM

m
[y
a
-
-

E 1

E 2213FAILSIY

E 111

E 3212

E 22122FAILS!

E 3111

EInn

E 321223FAILSHI

E 2212231

E 2212722

E 2212233

E 32123321FAILSI

E 3121272211

E 32122321

E 231222213FAILSI!

E 1113233131

E 31113212

E 2212233122 FAILS!!

E 2212122123 1

E 2112231122

E 3212222123 JFAILS!HI

E 3212122123 11

E 2212132121 21

E 2312122123 2TFAILSII

E 2312222122 221

E 2212122122 22

E 33122332132 332FAILSH

E 2312222122 1221

E 3312232122 122

E 22122131322 2323

E 23122231321 22121

E 23212223132 222211

E 23212212122 2222111

E 2213222132 32221111

E 3213237132 323211111FAILSH|
E 2312232122 2222111311

E 2313237133 322211112

E 2212322137 2232111112 FAILSI!
E 2212232137 2322111112 1

E 2212222132 2232111112

E 22122221227 2212111112 1
E 2212322127 2322111112 21FAILSI)
E 93213322122 2321111112 2111
E 3213222122 3221111112 1
E 2213327132 2332111113 212FAIL - MAX DEPTH
NodesInTres = 489

3
Depth 34
FAILBtN

FAILSII
1

3
2
3
2
321FAILSIN
2211

E 221

E 2013FAILSIN
E

E 2112

E 2312IFAILSIII

E 21231121

Einn

E 231222FAILS!HI

E 11311

E ni1in

E 112102

E 23122221FAILSHT

E 211222211

E 131

E 231222219FAILS!H
E $1122211

¥ 121222212

E 32112221232 FAILS!
E 2212212122 1

£ 3212221122

K 3212222122 JFAILS!H
E 312793112 21

109

E 2213211111 1

E 1117332122 22

E 2212223132 221FAILSIN

E 7212222122 2211

E 221332321322 221FAILSM

E 32122321323 3212

E 22132211322 111

E 32131312122 22

E 2713223172 222FAILSIY

E 2211223143 1311

E 2212222137 112

E 7213222123 2312

E 2313232122 12321

E 33132221122 212311

E 1312327122 1222111

E 3212222122 32321111

E 32123222132 22221111 FAILS!HT
E 32123231332 2222111111

E 2312222122 222211111

E 3312233122 22322111112 FAILSI!
E 2313332132 2222111112 1

E 2212233132 2227111112

E 2312333133 2222111112 2

E 22122323133 2322111112 1FAILSH!
E 2312222122 2222111112 211

E 32212332197 2227111119 N1

E 2213232112 2222111113 212FAILSHI
E 33122221327 3322111112 2121

E 22112212122 2223111112 313FAILSI!
E 3211312132 3232111117 2132

E 1313232122 2222111112 212

E 3312222122 32322111112 121

E 3312323132 3322111112 2FAILSI
E 32113232132 2222111112 12

E 33122221322 3232111112 2

E 22123231332 2222111112

E 2212323132 322211111

E 2212332132 2222111 FAILSIN

E 23133221237 132211112

E 3112272123 223211111

E 2212332122 2322111FAILSHI

E 2212222177 33321112

E 3213333122 2112111

E 1212223133 223311

E 3212212113 3222113FAILSI!

E 2213123132 22221101

E 2313331132 2223113FAILSIY

E 1213322132 22221133

E 2312322122 2222112

E 3212222132 332111

E 1212322112 32211

E 2213232121 222212

E 2212222123 3322121FALLSYH|

E 1212333131 37311211

£ 2212222122 3291131

E 23212222132 23201213

E 2213232122 3312111 1FAILSIN
E 2212222132 23111171331

E 111221122 12101210

E 3211322132 3222121212

E 2213322132 2232121212 1FAILS!!
E 2213922123 2722123212 11

E 2213300122 221121012 1

E 1213333122 2272121212 12

E 2212322123 2222121212 121FAILSIN
E 3212232122 3222121212 1311

E 3313222122 2222121212 121FAILSH
E 2212232127 2222121712 1212

E 3217137122 322211712 121

E 3213322322 2222121212 12

E 2212332122 2222121213 131FAILSI
E 2313222122 22221317112 1321

E 2212322123 32221321712 122FAILSI
E 1212322122 2322171213 1122

E 1312232122 23232131112 122

E 2312222122 2237131213 12

E 3213222132 1222131112 1

E 1112222132 3332171312 FAILSIN
E 33133223122 3333131112 2

E 3013320127 131101

E 2212322122 223017121

E 2212222122 23331212FAILSIN

E 2212222122 113212133

E 33132310 122121712

E 22132311217 2222121

E 3312321112 312213

E 32123331231 3322133FAILS|

E 331322210 12221211

E 2212122122 3222113

E 3212332127 22221323FAILSHI

E 3213232121 222212311

E 22122321221 23221323FAILS!L

E 2213312122 133211122

E 2213221122 22321322

E 3313123122 23122122

E 3212223137 121212

E 2212212121 12221

E 3212211133 1322

E 1212337131 22233FAILSIN

E 3212212122 112171

E 2211111122 223712

E 2212122132 313222

E 2213222122 3332221 FAILSIN

E 2112212123 33322311

E 22123132122 2232271

E 2213222132 23222313

E 2212222122 222232121FAILSIN

E 2212223122 3231221311

E 2212122122 212222171

E 21212222132 233231213

E 2212233123 2312231312 1FAILSH
E 32312221132 1212221713 11

E 3213222122 121223112 1

E 2213222133 2322231212 13

E 2212322123 2331221217 121 FAILSII
E 2212312132 3233271213 1311

E 2213322133 2222221312 121FAILSIN
E 1212392122 3222111212 1112

E 12131321323 32222217131 121

E 2213232122 2232321212 12

E 3212323127 2222321312 122FAILSIN
E 3213222123 2232271312 1171

E 1212232122 2232321212 132FAILSH!
E 2217323132 21227271212 1292

E 3213232132 2333121213 132

E 2312222123 1732231712 12

E 3212221121 2272211713)

E 2212132123 2123321312 FAILSI
E 9212232122 2211221312 2

E 9212233122 1221321213

E 2212322122 12222101

E 2312232122 22322212FAILS

E 2212222132 333222122

E 2212232132 92323213

E 3312232122 2332901

E 2212222122 M1222

E 3212222122 2227222FAILSIN

E 3212230122 13122101

E 23213329122 2232223

E 22123222122 32312223FAlILSMI

E 23211372122 122112231

E 22132122132 23221112

E 2213223122 322333323FALLSNI

E 3211232132 13122222101

E 2212222132 221222322

E 3312222132 1222223122

E 2312232122 1112222122 1FAILS!t
E 2212222137 2232222272 11

E 3312231133 3323222231 1

E 2212123121 1222222372 13FAILSIN
E 33211132127 3321111313 131

E 2212232132 3221222322 13

E 3213222137 1223232332 123FAILSII
E 2212222137 1221211222 1331

E 2212122122 2222111223 123FAILSIN
E 2212222122 2123223322 1222

E 3312312137 2322212333 173

E 2313322132 2122222332 12

E 2213223122 22123223232 1

E 2332122211322 2222222222 FAILSIft
E 2212311132 1222222212 3

E 1313312122 1213232712

E 2212322322 321122223

E 2311312122 22233222

E 3212231172 12123223

E 2312292127 222222

E 23212292121 22112

E 3212232121 2322

E 2313232122 123

E 1312292171 13

E 3122311212

E 2213222121

E 121223213

E 23133301

E 3312220FAILSIn

E 33122222

E 2212352

E 1331322

Ean

E i3

EIM

Exn
E 223FAILMN
Enan

110

E 222

E 2373FAILSIN

E 211201

E 2222

E 22273FAILSHI

E 322121

E 12122

E 221322FAILSIN

E 221231t

E 221212

E 2123212

E 237312311FAILSiN

E 221313111

E 21222221

E 1272317313FAILS!

E 322222111

E 222213212

E 2221312112 FAILSuI

E 222202112 1

E 1212222122

E 2322222123 2FAILSHI

E 3213222121 11

E 2222222122 2

E 3222222122 12FAILSN

E 23311212122 111

E 2323322122 22

E 2213331122 333FAILSIM

E 2212331132 1121

E 22222132122 112

E 22231233132 2222

E 3227221132 13111

E 2124313132 222111

E 2213212132 2222111

E 2237332132 22223111

E 2217121122 322111111FAILSHI
E 211113131 3232111111

E 3212322132 221111111

E 22731221322 2221111113

E 2114331111 32233111112 1

E 22212321322 3322111112 11

E 2211221131 3222111112 111FAILSIN
E 2217731123 3111111113 1111

FE 2323223132 7322111112 111FAILSII
E 2322221121 2922111113 11132

FE 32333112122 2122111112 111

E 3323223132 3122111112 11FAILSH
E 2223221133 1213111112 113

E 2222222122 2222111113 11

E 3322222132 1222111112 1FAILSItt
E 2222221122 1123111113 12

E 3377212133 32211111132 1

E 2222222122 2122111112 FAILSIM
E 21212111327 3321111313 2

E 2122223112 2332111113

E 2233332121 233111111

E 2333232121 133211 11FAILSIN

E 2213222121 222211113

E 2231221132 11321111

E 2222232123 1322111 FAILSI

E 33271723133 31231112

E 2222191132 12212111

E 3233133123 213311

E 2233213122 3333113FAILSII

E 1221212132 213111321

E 3723311121 2112113FAILSH

E 13323321111 33221112

E 1123373111 2332112

E 2122232121 22221)

E 2311331112 1220

E 2222332122 13213

E 2333323132 3323121FAILSIM

E 2323232122 31111111

E 2233132122 2130111

E 3121223133 21301113

E 2223322122 231212121FAILSH
E 1322312133 1111121911

E 3221222123 2319101

¥ 333327313 2223111212

E 3332332133 2332131313 1FAILSIN
E Y3333310 2200111313 1)

E 133223111 322211112 t

E 333311121 2222121717 13

E 33373231122 2223121113 131FAILSHt
E 2732231122 22321213212 1311

E 3333231131 33221212132 121FAILSI
E 3132333121 2323111212 1313

£ 3317232132 2322121212 121

E 1313232122 1222111213 12

E 3211322132 1123121212 122FAILSIN
E 3212232132 1211121212 1221

E 22212232133 2122121212 123FAILSII!
§ 3322230122 2332121212 1132

E 2222231132 3222121312 122

E 22333222122 3231121312 12

E 3722332122 3221121312 1

E 2222122122 2212121213

E 2232122123 1222121212 3FAILSI
E 3321232122 2221121212 21

E 2333332122 3232121311 3

E 2223232133 2322121213 22

E 2323133123 1322131212 223FAILSH!
E 3323332123 1122121212 2211

E 3222232122 2322121213 321FAILS!!
E 3323333133 3222121212 2212

E 2223222123 2223121213 321

E 2222222122 2232121213 22

E 2322122132 3332121411 223FAILSIN
E 1332333132 1123121312 1331

E 2323233133 2322121212 3323FAILSI
E 2322233122 2922171213 1322

E 2323233133 2222121212 222

E 13223221322 1132131312 22

E 2113232122 2122131211 2

E 2322222132 31132131212

E 2212223131 372213131

E 2223222122 27131213FAILSIN

E 3323232172 313312122

E 2321223132 2291112

E 1222132122 1132121

E 1133222122 2113

E 1333233132 2212123FAILSHT

E 2333222122 32212n

E 2111322133 2733122

E 2322222122 22221323FAILSHI

E 2333230132 213313371

E 2323322132 22221223FAILStH

E 23223222132 21312113

E 2221222122 32331222

E 1112233132 2211122

E 22122121321 132112

E 3312332132 23121

E 2311222122 2372

E 3333332133 22211FAILSIN

E 2233333122 122271

E 2321111122 21333

E 3973113112 222332

E 2322232123 3223321FAILS!H

E 2223232113 21122311

E 3333323142 31332231

E 3333222122 21m3

E 2232122122 221322171 FAILS!!

E 2333233132 2323221211

E 2232222122 11231111

E 2222323123 1innng

E 2223222122 2222331212 JFAILSI
E 3223202123 2321721212 11

E 2333332133 2211271111 1

E 1333333133 12212731212 13

E 2232122122 2223321312 121FAILSIN
E 2223111122 2222221212 1311

E 2132122122 2223231212 121FAILSIN
E 2232333132 3332111212 1112

E 33232333133 3332211232 111

E 3323312132 1172221212 12

E 2323311132 2332221212 122FAILSIN
E 2222222122 2232231212 1221

E 2323322131 1231221212 123FAILS!!
E 3323322132 1111321112 1223

E 3333332132 12127131112 133

E 2222222122 3232321212 12

E 122330172 1112291312 1

E 3333333123 2222131213

E 3322132122 2223221212 2FAILS!IN
E 3221222121 3323331712 21

E 2322222132 3232221012 2

E 122231313% 3322221212 22

E 2222222122 2232221212 221FAILSII
E 2221333132 1322221212 1311

E 3322322122 1313221213 321FAILS!T
E 2321323132 1223331212 3312

E 112317119 1322111212 13}

¥ 123373123 3112221212 12

K 22323322132 3233221213 223FAILSIN
E 2222223122 3212221212 2111

E 1231332132 3232221212 222FAILSIN
£ 22223331322 3222221312 2232

E 3122222123 2233121113 222

E 2322220122 3322121212 21

§ 2122222122 1231911212 1

E 2222332132 2222121212

K 3331222122 12331010

F 322203117 222337113FAILSIN

E 122123010 121110

E 722233213 119211

111

E 3222222123 312230

E 2222332122 322322

E 2222221132 2223323FAILSII

E 2222221132 22322331

E 213233211112 21332133

E 1223222122 22332222FAILSIN

E 22322121133 321322711

E 1332221133 22223232

E 2223322122 2222323223FAILSH!
F 2222222122 3212332271

E 2122222132 223223213

E 2223222122 2323721222

E 2332222122 2321233232 1FAILSH
E 2332222332 2222233227 11

E 2323222137 2222222222 1

E 2231222133 2331323123 13FAILSH!
E 2322212122 2233233132 131

E 23232712122 2332332133 13

E 2322211132 2222223212 123FAILSIH
E 22232211312 2213332173 1211

E 2223221132 2232222221 123FAILSIN
E 2322222123 22124221222 1213

E 2392222133 2121223232 122

E 23133232121 2223233123 12

E 23222212133 2331223272 1

E 2122222132 2122332322 FAILSM!
E 3222332137 2122322322 2

E 2223122127 1331232131

E 2222222122 222323231

E 2332227112 22122333

E 2223212122 2233333

E 3232322112 221322

E 3222232133 22112

E 2322297132 2222

E 3297221132 112

E 13322312122 12

E 2223322133 2

E 222129172

E 227111112

E 2222231

E 2127972

E 22223222FAILSI

E 133322231

E 21222112

E 3322232222FAILS!H!

E 21332372121

E 322331422

E 22232223222 FAILSIH

E 3322222232 1

E 92122323222

E 32223223223 JFAILSIN

E 2232222222 21

E 1331712371 2

E 2332231313 212FAILSIN

E 2223222127 111

E 2271322372 22

E 2223322232 223FAILSIN

E 1122232112 1231

E 2321331222 222

E 2322223123 2111

E 1223331122 12331

E 2223223122 223313

E 2222223322 2231111

E 2313223222 32321111

E 22212323212 321211111FAILSINt
E 2222322222 3213111111

E 1322211723 232211111

E 2222322222 1211111113

E 1223322222 2313111112 1

E 23222112123 3122111113 11

E 1223331221 2172111113 111FAILSIN
E 2321222113 23222111117 1111

E 2222372332 2232111117 111FAILSY|
£ 2123232222 2222111112 1133

E 2223222222 2232111113 111

E 2233222222 2212111112 11FAILSIN
E 2332243313 2232111112 113

E 3322222123 2213111112 11

E 3233223313 2232111112 JFAILSIN
E 2322311333 22123131112 12

E 2223321322 2213111112 1

E 2232223222 3222111112 FAILSI!
E 2222221212 3332111112 3

E 2222313122 1710111113

E 32222223312 11111111

E 322332223222 22231111FAILSIN

E 2223222222 223311112

E 9223222222 33331111

E 2322232222 1122111PAILSHI

E 1771312233 119311132

E 2323122222 1233111

E 2232212222 219211

E 3222223227 2312112FAILSIN

E 2212232223 32211131

E 23232232223 2223112FAILSY!

E 9322233213 23211122

E 2312323122 2221112

E 2322223222 222311

E 2223322322 12271

E 2322332231 123712

E 3322122122 3322131FAILSIN

E 2332222322 33221311

E 3133332211 3320171

E 3212212232 22111212

E 1223223322 222213121FAILSII

E 2222223232 2222121211

E 1232222121 223213101

E 2322223323 2122121112

E 23322223212 3223121212 1FAILSII
E 2333322222 3231121212 11

E 3222222332 2212121212 1

E 2313222122 7223121213 12

E 2231222122 2222131713 121FAILSIN
E 2222222722 3232121213 1211

E 2021222222 2231131213 121FAILSIN
E 2322223273 2232121212 1313

E 3222212222 22321121212 121

E 312237332921 17211212112 12

E 3223332322 2222121212 123FAILSIN
E 2313293221 2232121312 1221

E 23731333223 2332121313 122FAILS!II
E 3231212232 3322121212 1222

E 2273333343 33322131312 123

E 2323332332 2222121212 13

E 21132213237 2322111212 1

E 2332331223 3322121312 FAILSI
E 9321222222 2133121212 2

E 1321233311 2213121112

E 1223223337 121217121

E 2332322132 33331219FAILSI

E 1222213131 173212122

E 2221222222 33221212

E 2123223322 1330121

E 2222222322 237212

E 2333733223 2332123FAILSIH

E 4313232221 11121321

E 2312222222 3232122

E 2322223331 12231221FAILSIH

E 2323223332 121212121

E 1222171117 32311 123FAILSI

E 31313321321 219213113

E 33123311332 371231323

E 22323211122 1792112

E 3222221222 232312

E 2111311137 33321

E 33217223132 2212

E 2211223332 $32232FAILSII

E 3231122222 23311

E 3321223123 12222

E 1323233332 1221131

E 2332332322 1222331FAILS!I

E 33112232221 133333211

E 3122100111 1321131

E 2322223327 22231113

E 33322232327 222322121FALILS!

E 2222222322 2222221411

E 3232122331 223230131

E 3332213232 23132317132

E 2323213222 2122221212 1FAILS!I
E 2333222221 21301212 11

E 22112321331 31233221212 1

E 1223233377 2212271213 13

E 2122213117 13232213121 121FAILSI
E 22322223101 11222111212 13111

E 9332222221 3223221217 11 FAILSHI
K 2222323237 3122221211 1113

¥ 2332212223 1222331213 11

E 2222323231 111222111 12

E 2223321332 3172221212 137FAILSIN
E 3122222322 244091711 121

E 3222223332 2272221212 123FAILSIN
E 2222233232 21313921312 1122

E 3212222222 9231121212 112

£ 2222222223 2312321112 12

E 2322222233 2232221213 1

E 2233233322 2222211212 FAILS!!
E 3333232213 2223121112 3

E 23227322312 1232311213

K 3323332322 133331121

E 2222332223 23232213FAILSI!

E 2132133322 122223103

K 3323222222 31233312

£ 171222132 3n1n

E 32123210 131303

112

E 2221222222 2222323FAILS!!

E 2222322221 2212121

E 2123223221 21112222

E 2233323232 13222223FAILSIY

E 22332323312 132222111

E 22322232222 22222212

E 2222222222 22222122IFAILSIN

E 23232232232 2322212211

E 231112323112 232222122

E 22122222322 2222223211 FAILSIN

E 2222222222 2322322222 1

E 2222222222 2122221222

E 2332232223 1212227212 2FAILSH!
E 2222232222 1322222222 11

E 2223732222 1312221232 3

E 223227232222 3222232332 JIFAILSIN
E 22222322222 12223123222 311

E 2222122222 3222232322 23

E 2232332122 2222232322 222FAILSH
E 1222222233 2121232122 1111

E 22232212222 2222222222 221FAILSH
E 32332223222 2322231222 3212

E 2233323322 22223221221 312

E 3322222222 31311271213 22

E 2323223233 2223322911 1

E 23322223322 23231231212

E 3323222222 121312121

E 2222322222 12122322

E 2222123222 312237

E 2232322122 222232

E 2222222222 22232

E 2322323122 2312

E 2232222322 322

E 3323322222 12

E 2223222222
E 22322222232
E 222232122
E 22223211
E 2221312

E 212222

E 13102

E 2222

E 3122

E 22

Ea

E

E PRJOF FOUNDUIN
Nodes]nTrse © 803

'.

Given sxloma:

1t paxx

1t pgzxe

3: puyfxy

4: "puys “pyuv “pauw pavw
8; "pxys “pyuv “pxvw pauw
& x

T! “ray eyx

&t “rmy “rys rxs

#1 rew “puys “pxys
10; “sxy “psux psuwy
11t “rxy “psxu psys
13: "rxy “pzsu pyss
13t “ray rfanfay

14: “ray rixafys

18: “rxy rgxgy

16: pxex

17: pxgae

18: “ox "oy os “pagys
1% “ox oy “rxy

20t o

Negated conclusion:
218 “oe

Herbrand bass stoms halped proving the theorem!

1 oa

1T: regn
18 “rgaa
19: rgae
20: rgaga
a1: paags
22: "pacga
23: pagan
24: pagno

ELM: 0 sec, PHS 1: 8 sec, PHS 2: :NA- Totsl Search Time: 8 sec
NOD: 803 RES: 990} FAC: 0 MXC: 8 MXL: 3
HTE: 0 HTH: 0 HTF: 0 HSZ: 282144
LTE: 0 LTH: 0 LTF: 0 LSZ: 865538

BAS: 11 LEN: 0 4+ 0 OPT: -5083 +MERGE

HBElems = 24
NodeslaTress = 803

113

Appendix C: Sample Runs of
An Improved Semantic Tree
Generator

114

Euter same of theorem (type 'T’ for help): stark0ss

Predicstest E L, Fuactloam: SOPMF A
1: [-M-} "E3xSy Exy

2: |[UM-] "ESxz0

3: |-M-~] "Exy “Exz Eys
4: |-M-] "Exy ESxSy

8: [UM-) EPx0x

48; |[UM-) EPxSySPxy

T (UM~} EMx00

8: [UM-] EMaSyPMayx
i [UM-] Exx

10: [-M-] “Exy Eyx

11: [-M=] “Exy “Eys Exa
12: [-M-] EPSFxyxy “Lxy
13: [-M-] "EPSxyx Lys
14: [UM-] LxSx

158 [UM-] “LoSA

Phuse 1

Search dump:

- - mEE
_ Choosing & Strategy —

I =

1 - Unit Resclution (UR).

2 - Fawest Literals Strategy (FLS).
3 - Set Of Support {508).

4 -« Linsar Form (LF),

8 - FLS 4 S08.

6 - FLS + LF.

T - Exit Program.

Enter strategy number ¢ 3
Dapth 1
senrch’ires’305()

E FAILStH
E1l

E

E 2FAIL - MAX DEPTH

NEW BASE ()77 1 (18..) “LOSA
21 (16..) EPSF0SAQSA
NodewlnTree = 2

0
Dapik 3
senrch’iree’S08()

E FAILS!H!

E1l

E

E3

E J1FAIL - MAX DEPTH

NEW BASE ()77 I (15..) ~LOSA
21 {(18.) "EPSFDSAGSA

3: (16.,) EPSA0SA

4: (18..) EPS00SA

NodeslaTres = 5

4]
Depih 3
senrch’irea’508()
E FAILSIN

[}
-

LFAILStH
11
NFAILM
m
i)
SFAILSIN

a1
2

E PROOF FOUND!I
NodesluTree = 11
'.

2

mEEmEEmmIrmm

Glves azlome:

11 "Ef8x8y Exy

2: "Eix0

3: "Eny “Ex» Eys
4: "Exy ESaSy

8: EPxox

&: EPxBySPay

71 EMx00

2t EMxSyPMxyx
% Exx

10t “Exy Eyx

11; "Exy "Eys Exs
12t EPSFxyxy “Lxy
13: "EPBxys Lys
l4: LxSx

Nagated conclusion:
188 “LOSA

Herbraad base stoms helped proving the theorem:

1: "LOBA 2: EPSFOSADSA
4t EPS00SA

ELM: 0 sac, PHS 1: 0 sec, PHS 2: -NA- Total Search Timae: 0 sec
MXC: 13 MXL: a

NOD: 11 RES: 30 FAC: 0

HTE: 0 HTH: 0 HTF: 0
LTE: 0 LTH: 0 LTF: 0
BAS: 15 LEN: 0 4 0 OPT: -505 4+MERGE

Thae following exemple shows the AISTG prove Starkey100 us-

ing the
Sev-Of-Support sirstegy.

Enter nams of theorem (type '7' for help): stark100

Predicates: S M E Functioms: Fbca
M~] “Sxy “Msx Msy
2 [-M-] Sxy MFxyx
«M-] Sxy "MFxyy
41 {-M=] Sxy “Exy
8: (-M-] Suy "Eyx
-M-] “Szy “Syx Exy
be

—_ Chooslag s Strategy —

1 - Unit Resolution (UR).

2 - Fawsst Litersls Strategy (FLS).
3 - Bet Of Support {(SO8).

4 - Liseazr Form (LF).

8- FLS 4 SO8.

4-FLS + LF.

T - Exit Program.

Enter strategy number : 3

Depih 1

E Chocking: 1: (7.. —] "Ebe
FAILS!HH ¢)

E1l

E Chockingt 1:(7.) [U—]Ebc

E JFAIL - MAX DEPTH
NEW BASE ()17

1: (T.) Ebe
i sl.. Mab
(0. “Mue
NodeslaTrea = 3
[

Depth 2

E Checking: 11 (7..) (U—]“Ebc
FAILSIT

E1l

K Checkingr 1:(7.) {U—] Ebe

EAIICL::'H“: () [U—] "M
a1

E %Cheching: 2: (8.} [U—~) Mab

E 33FAIL - MAX DEPTH
NEW BASE (3)?

115

1:(1.) Ebc

2: (8..) Mab e cane
3: (9..) “Mae "esn ..

NodesInTres = 8 senn Suen sssstnses
1]

Depth 3

The following sxample shows the Improved samantic tree generator
pristing a proof axtracisd from the closed samantic tres of S43woel9:
E Checking: 1: (7.} [U—] "Ebe
FAILSIH
E1l Entar same of ihecrem (typs '7* for help): S¢Iwosl9.ihm
E Checking: i:(7..) [U~]Ebe
Predicaten: pro Functioam egfliabed

E 2Checking: 2: {8..) [U—] "Mab 1t [JUM-] pexx
FAILSH! 2: [UM-] pgxxe
E 21 3; [UM~| pxyfxy
E 3Checking: 3: (8..) [U—]}Mab 4 -M-} “pRys “byuv “psuw pxvw
5: [-M-] “pxys “pywvy “pxvw pauw
E 23Checking: 3: (9..) [U=—] Mac 8: [UM-] rxx
FAILSM T [-M-] “rxy ryx
E 221 &t [-M=] “rxy “rys ixs
E 22Checking: 3: (9..) [U—] Mac 9: [-M-] “pxys “pxyw man
10: [-M-] “paux psuy “rxy
E 222FALL - MAX DEPTH 11t [-M-] "psxu psys “rxy
NEW BASE (5)77 12: {-M~] “pxsu pyss “rxy
1: (7..) Ebc 13t [-M=] “exy Hiexisy
2t (8.} Mab 14: [-M-] “exy rixs{ys
3 (9.} "Mac 16; [-M-] “rxy rgugy
4: (10..) Sbe 16: [UM-) pxex
B: (11..) Scb 1T (UM-~] pxgxe
NodeslnTree = 12 18 [-M=] “pxys “ox "oy os
0 191 [-M-] “rxy “ox oy
Depth 4 201 [-M-] “ox agx
21 [UM-] oe
32t [-M=] “rxy rinxisy
E Cheching: 1: (7..) [U——] "Ebe 2% [-M-] “rxy rixsiys
FAILSI! 241 [-M~] ox oy cixy
E1l 2&: (-M-] pxixyy ox oy
E Chocking: 1: (7..) [U—]) Ebe 26: [-M-] “pxys “pxws rys
aT: [-M-] “pays “puys ram
E 2Checking: 2: (8..) [U—] "Mab 28; (UM-) rggxx
FAILSH! 29: [UM-] oa
E 30: [UM-] ob
E 3Checking: 32: (8..) [U—]Msb I [UM-] pbgsc
32; [UM-] pacd
E 23Checking: 3: (8..) [U—]Mac 338 [UM-] “od
FAILSM
E 131 Sessch dump:
E 23Checking: ¥ (9..) [U—] “Mac
Daepth 1
E 233Chocking: &: (10..} [U—] "Sbe
FAILSIN 0
E 2321 Deptk 2
E 222Checking: 4: (10..) [U—]Sbe
FAILSII 1}
E 2222 Depth 3
E 222
E 22 2
Ei Depth 4
E
E PROOF FOUNDI!IN 2
Nt:dull'hn = 20 Depth &
[
3
Given axioms: Depth &
1: "Sxy "Max Msy
2: Sxy MFxyx 3
3: Szy “MFxyy Depth T
41 Sxy "Exy
8: S8xy “Eyx 3
9: “Sxy “Syx Exy Dupth &
7: Ebe
8: Mab 3
Dupth 9
Negutod conclusion:
8 “Mac 4
Depth 10
Herbrand base stomus kelped proviag the theorem:
1: Ebe 21 Mab 3: "M (14
4: Sbe 5: Scb
Qiven axjomst
1t pexx
ELM: 0 sac, PHS 11 0 sec, PHS 2: -NA-Total Search Time: Osec 2; pgane
NOD1 20 RES: 33 FAC: 0 MXC: 8 MXL: 8 3 pryixy
HTE: ¢ HTH: 0 HTF: 0 HSZ: 2602144 41 “pays “pyuv “praw prvw
LTE: ¢ LTH: 0 LTF: 0 LSZ: 55530 B: “puys "pyuv “pavw piiw
BAS: 9 LEN: 0 + 0 OPT: -3508 +MERGE & pax
T “rxy yx
8 "rxy “rya 138
HBElvms = 4 #: “pxys “payu ram
10; “peux pany “riy
NodeluTree = 30 11: “pexu poys “ray

116

12: “pxsa pysa “rxy
13: “rxy risxfay

14: “rxy rixsiys

15: “rxy rgxgy

18: pxex

17: pxgxe

18: “pxys “ox “oy on
19: “rxy “ox oy

20: “ox ogx

a1: oe

42: “rxy rinxiny

23: “rey rixslys

24: ox oy cixy

26: pxlxyy ox oy
28: “pxys “pxus ryn
27: “pays “puys rxu
28: rggax

29: oa

30: ob

J: phgac

32: pacd

Negated concluslon:
335 “od

36: 18¢,18d “pays “puvy "ox o “on “ov

1:131.. oe
21 29.. o
3: 30.. ob
4: 31.. phbgac
8: 32.. pacd
933, Tod
T: 3T.. oge
8: 42.. ogs
% 49,, ogb
10; 88., oc
Depth 9

1: 21.. oe
2:329.. os
3. ab

4: 91.. pbgec
5: 32.. pacd

3T: 341,20b “pxys “pugvy "ox oF "ou "ov

38 384,338 “pxyd “paguy “ox “os “on

6: 3. “od

T: 38,, oge

8: 50.. ogs

9: 74.. ogh
Depth 8

1: 31.. os
2:29. oa
3:30.. ob

4: 31.. pbgac
5: 32, pacd
8: 3. “od

T: 38, oge
8:80.. ogs
Depth T

1:21.. oe
2., os

3 30.. ob

4: 31.. phbgac
8: 32.., pacd
4 3. “od
T 0. oge
38 34a,37a “pxgyc “os “ox “oy
Depth 8

121, oe
1. oa

3 3. ob

4: 31.. pbgac
8: 32.. pacd
LT3 I OO

40: 374,31a “on “ob
Dapth 8

. oe
3. oa

3 3., ob

4: 31,, pbgac
8: 32.. pacd

41: 3b,30s “os
Depth ¢

1: 21.. oe
329, oa
31 30.. ob

4: 31.. pbgac
42: 3va,20s)

1: peax

3: pgxxe

3: pxyfxy

4: “pxys "pyuv “pauw pxvw

§: “pays “pyuv “pxvw pauw

8 rxx

T: “rxy ryx

81 “rxy “rya ras

91 “pxys “pxym rsu

10: “psux pauy “rxy

11: “pexs payw Trxy

12t “pxsu pysw “rxy

13: “rxy risxfsy

14: “rxy rixxiys

15t “rxy rgxgy

18: pxax

17: pxgxe

18 “pxys “ox "oy om

19: “rxy “ox oy

20: “ox ogx

21: oe

32: "rxy dexiay

23t “rxy rixsiys

24: ox oy oixy

315: pxixyy ox oy

28: “pxys “pxus ryn

27: “pxys “puys rxn

38: rggxax

9: on

30: ob

31: pbgac

32: pacd

333 “od

34: 18¢,15d “pxys “puvy “ox o8 “ou "ov
38: 341,20b “pxys “pugvy ~ox o3 "om “ov
36: 354,33 “pxyd “paguy “ox “os Tou
37: 36,338 “pxgyc “om “ox "oy
3: 37s,3a "0a “cb

39: 38L,30s “oa

40: 30s,20a]

ELIM: 0 sec, PHS 1: 4 sec, PHS 2: -NA- Total Search Tima: 4 soc

NOD: 168 RES: 3800 FAC: 0 MXC:8 MX[: 8
HTE: ¢ HTH: 0 HTF: 0 HSZ: 262144
LTE: 0 LTH: 0 LTF: 0 LSZ: 65838
BAS: 33 LEN: 0 4+ 0 OPT: -808 +MERGE

HBElems = ¢

NodeslaTree mr 186

117

