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THE CRAIG-SAKAMOTO THEOREM

MYLENE FANNY DUMAIS

Abstract

This thesis reviews the works that most influenced the progress and the development of the Craig-
Sakamoto Theorem. This important theorem characterizes the independence of two quadratic
forms in normal variables. We begin with a detailed and possibly complete outline of the history
of this theorem, as well as several (correct) proofs published over the years. Furthermore, some
misleading (or incorrect) proofs are reviewed and their lacunae explained. We conclude with a

comprehensive bibliography on the Craig-Sakamoto Theorem; some associated references are also

included.

Résumé

Cette thése réunit les résultats qui ont le plus influencé ’avancement et le développement du
théoréme de Craig et Sakamoto. Ce théoréme donne les conditions nécessaires et suffisantes pour
obtenir I'indépendence de formes homogénes quadratiques. Dans le but de clarifier certaines croy-
ances, nous débuterons avec une histoire détaillée et compléte de ce théoréme ainsi que plusieurs
preuves publiées au fil des années. Outre cela, certaines preuves, qui ont été plus ou moins sat-
isfaisantes, sont révisées et les erreurs (s’il y a lieu) qu’elles contiennent y sont expliquées. Fi-
nalement, nous concluons avec une bibliographie contenant plusieurs références sur le théoréme de
Craig et Sakamoto ainsi que d’autres sujets reliés a ce théoreme.
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Chapter 1

Introduction and Preliminaries

Many papers have been written about the independence of two homogeneous quadratic forms in
normal variables; some are misleading (or incorrect), some are correct but not easily understood,
and some duplicate results published previously.

During the Second World War, Allen Thornton Craig (1904-1978)! the “Craig” of the famous
book by Hogg and Craig [72], and Heihachi Sakamoto (b. 1914)> unaware of each other’s work. both
proposed a characterization for the stochastic independence of two homogeneous quadratic forms
in independent normal variables with all means zero. This characterization was much simpler
than the one proposed earlier in [30] by Cochran (1934). Craig’s paper [35] was published in
The Annals of Mathematical Statistics in 1943, while Sakamoto’s paper [196] was presented at a
“Lecture at the Annual Math-Physics Meeting [in Tokyo, Japan] on July 19, 1943” and published
(in Japanese) in 1944. We will refer to this characterization as the Craig-Sakamoto Theorem. After
the Second World War, the Craig-Sakamoto Theorem was extended in various ways and is now
used to characterize the independence of two second-degree polynomials in normal variables not
necessarily mutually independent and with means not necessarily zero.

In this chapter we review the underlying theorems and lemmas required to understand the
Craig-Sakamoto Theorem. We cover basic information on matrices and on random vectors
following a multivariate normal distribution, as well as the theorems needed in the different proofs
of the Craig-Sakamoto Theorem. In Chapter 2, we present the views of various authors on the
facts related to the Craig-Sakamoto Theorem, and in Chapter 3 we examine the facts and the
proofs that have been published; in Chapter 4 we cover recent developments. Our thesis builds
upon Chapters 2 and 4 of the 1973 McGill MSc thesis by Scarowsky [203], as well as the 1984 MA
thesis [62] by Gundberg and the more recent work by Driscoll and Gundberg [42], Ogawa [165],
and Ogawa and Olkin [166].

lAllen Thornton Craig was born in 5 August 1904 and died in 27 November 1978. For more biographical
information and a photograph see [227].

2Heihachi Sakamoto was born on 16 August 1914 and elected to membership in the International Statistical
Institute (ISI) in 1976; a portrait is available in the ISI Portrait Collection, cf. [79].



In preparation for our discussion of the Craig-Sakamoto Theorem, we first introduce the no-
tation to be used and somne preliminary results on matrices. We will denote matrices by capital
letters and column vectors by lower case letters. All our matrices and vectors will be real (unless
stated to the contrary).

The transpose 4’ of the m x n matrix A is the n x m matrix that has its rows equal to the
corresponding columns of A; row vectors will always be primed. If B is an m x p matrix then we
write (A : B) for the m x (n + p) partitioned matrix with A placed next to B. The rank of a
matrix A, denoted by rank(A4), is the dimension of its column space or its row space, while for the
square matrix A we write |[A| or det(A) for its determinant, tr(A) for its trace, and A? for its pth
power. A square matrix 4 is said to be symmetric when 4 = A’ and idempotent when A = A?;
an idempotent matrix need not be symmetric.

If there exists a matrix B such that AB = BA = [, the n x n identity matrix, then A is square
and said to be nonsingular and B is its inverse denoted A~!. If A is an n x n matrix, then A being
nonsingular (or invertible) is equivalent to having rank(A) = n. The square matrix P is said to be
orthogonal when P’ = P~1.

The set of eigenvalues {ch(4)} of a square matrix A is the set of scalars {\} such that Ax = Ar;
the associated nonnull vectors r are called eigenvectors and |Af, — 4| is called the characteristic
polynomial, with its roots equal to the eigenvalues of A. If 4 is an n x n symmetric matrix, then all
its eigenvalues are real, and we write ch;(A) for the ith largest eigenvalue. For any n x n symmetric
matrix A with rank(A) = r < n, there exists an orthogonal matrix P such that P’AP = D, an
n x n diagonal matrix containing the r nonzero eigenvalues on its diagonal and all other elements
zero.

We also have the following fundamental equalities:

n

tr(4) = ) _ch;(4)
i=1

det(d) = |A] = ﬁchj(A).
Jj=1

Let A be an m x n matrix and let B be n x m, so the products AB and B are both defined.
Then:

{nonzero ch(AB)} = {nonzero ch(BA)}
te(AB) = tr(BA)
lUm — AB| = |In — BA|

A symmetric matrix A is positive definite (pd) when z’Ax > 0 for all £ # 0, and nonnegative
definite (nnd) when z’Az > 0 for all z. A symmetric matrix A is positive definite if and only if all
of its eigenvalues are strictly positive, and nonnegative definite if and only if all of its eigenvalues
are nonnegative. If the n x n symmetric matrix A is nonnegative definite with rank r, then there
exists an n x r matrix T of full column rank r, so that A = TT'. Since the trace tr(A) = tr(TT")
equals the sum of squares of the elements in T, we see that tr(4) =tr(T7T') =0 T=0& A=0.



We now introduce in detail our main topic of interest. Let z = (zy, ..., z,)’ be a random vector
that follows a multivariate normal distribution. Then the quadratic expression ¢ = x’Az is a
“quadratic form in normal variables”; here A = {a;;} is an n x n nonrandom matrix. Another way

n n
q=z:'Az=ZZa,-jr,'xj. (1-1)

i=1 j=I

to write ¢ is:

We (may and will) aiways choose the matrix A to be symmetric, since ¢ = 2’ Ar = (£’ Az) =
Az = '{1(A + A’)}z. and the matrix $(A + A’) is symmetric.

The quadratic form is called nonhomogeneous if its quadratic expansion contains quadratic,
linear, and constant terms such as the polynomial z'Az + 6’z + c. A bilinear form is the sum of
crossproducts between two distinct random vectors: ’By; here rism x l. yisnx 1, and B is
m x n.

The n x | random vector r follows a muitivariate normal distribution with mean vector E(z) =
p# = {pi} and nonnegative definite dispersion matrix D(z) = V = {v;;} whenever the scalar
product a’r follows a univariate normal distribution with mean a’z and variance a’Va. for every
n x 1 vector a. We then write £ ~ N(u, V') and have the following results:

r; ~ Npj.vuij): 7=1....m
E {exp(sz;)} = exp{su; —5s°vj;};
E{exp(t’z)} = exp{t’'p— it'Vit}.

When the dispersion matrix V' is positive definite (and thus nonsingular) then we have the

following probability density functions:

pdf(z) = (27?)‘"/2|V|"l/2exp{—%(t-—p)'V’l(r—-,u)}
pdf(z;) = (21rvjj)_1/2exp{—(t];—"j—)-}; J=1....n
2v;;

Our first theorem gives the characteristic function of a homogeneous quadratic form; we believe
this version was first established in 1966 by Makeldinen [130]). To prove this theorem we note that
if the moment generating function M (s) = E{ezp(sy)} of a random variable y exists in the region
[s| < =, with £ > 0, then the characteristic function ¢(s) = M (is) for all real s, cf. e.g., Lukacs
[123], p. 11 and §7.1; here i = /—1.

Theorem 1 (The characteristic function of r'Azx) If A is a real symmetric n x n nonrandom
matriz and £ ~ N(u, V'), with V nonnegative definite, then &' Az has the charecteristic function:

exp{isu' (I — 2isAV)~1 Au}

. 7 p—
E{exp(isz’Az)} = |I —2isAV|L/2

(1.2)

To prove this theorem, we follow the presentation in Chapter 2 of Scarowsky [203] and use the
following lemmas:



Lemma 2 If x ~ N,(u,V), then for any real m x n matricr H, the m x 1 vector Hr ~
Ny (Hu, HVH').

The proof follows immediately from the definition of the multivariate normal distribution.

Lemma 3 Let the random variable = ~ N(0, 1). Then the joint moment generating function of =*

and = is:

n exP{let-::’sS} .
E{EXP(S:. + l..)} = W, s < 3 (13)
Proof. We have
2 1 e -z ”
E{exp(sz~ +tz)} = W /;oc exp {T +sz° + t:} d:

1 oo 1, .
(@m)7 /_m""“’ {“5 (=%(1 ~2s) - '2t:)}d:.

Now let us put w = z(1 — 2s)/2 — (1 — 25)~ /2, with s < 1/2 (and so w is real). Then w> =
22(1 = 25) +£3(1 — 2s)~! — 2zt so that

2 l oe e‘(p 2(1-2s) )
E{exp(ss® +tz)} = (_Zm./_m (1{_2 )1/,,} exp(—w=/2)dw
exp{o{[-ﬂ,)}
1__ )s)ll') H

since the integral here is the integral of the probability density function from —oc to o of the
standard (univariate) normal distribution and so is equal to 1. Our proof is complete. O

Lemma 4 [f B and C are two m x n matrices such that I,, — C'B is nonsingular, then {, — BC’

is nonsingular, and

(Im - BC')"' =1+ B(I, ~-C'B)~'C". (1.4)
Proof. We have, with I denoting either I, or [, that

(I-BC)[I+B(-C'B)”"'C'l] = I-BC'+(I-BC')B(I-C'B)"'C’
= [-BC'+B({-C'B){(I-C'B)~'C’

[ - BC'+ BC' =

i

and our proof is complete. O
Our next iemma can be found in the classic book by Anderson [4) (First Edition: pp. 25-26;
Second Edition: pp. 31-33).

Lemma 5 Let the n x 1 random vector £ ~ N(u, V'), where V' is n x n. Ifrank(V) = r, then there
exists an r x 1 random vector y ~ N(0, I} such that t = Ty+p and TT' = V.



Proof. Since V is symmetric we may write V = V' = PDP’, where P is orthogonal and D

diagonal, and
D. 0 P
V=PDP = (P, :Ps) .
0 o0 P

where P = (P; : P») and D, is an r x r positive definite diagonal matrix. Here P; is n x r and P
isnx(n—r).

We introduce the nonsingular matrix

Dt o
G= P.
0 In_,
I. 0
GVG = .
0 O

We now let w = Gr; then by Lemma 2, w = Gz ~ N(Gu,GVG’). Write w’ = (w] : wh), where w,

is?x 1 and wa is (n — r) x 1 and write v/ = (Gu)' = (v] : v4), with v{ and v5 having the same
dimensions as w} and w}, respectively. Then w; ~ N, (v, I;) and w2 = v» with probability 1. Let

Then

G~ =(T:5),
where Tisn x r and S is n x (n — r). Hence
r = G lw
= Tw); + Sun
= T(w;— 1)+ Tvy + Svs
= T(w~wv)+G v
= Ty+u,

where y = wy; — vy, ~ N.(0, [). It follows that

I. 0 , I. 0 T
v = G} G ' =(T:S) =TT’
C 0 0 0 s’

and the lemma is proved. O

Proof of Theorem 1. Since £ ~ N(u, V), there exists (cf. Lemma 5) an r x | random vector
y~ N(0,7,) such that z = Ty + p and TT' = V. Thus

Az = (Ty+u)'A(Ty+ p) = yYT'ATy + 2y’ ATy + p' Ap. (1.5)

Since T’ AT is symmetric, it may be expressed as QAQ’, where @ is orthogonal and A is diagonal
with the eigenvalues of 7" AT on the diagonal. (We note that the matrices T'AT, ATT’ and AV



all have the same nonzero eigenvalues.) Substituting and using Q@' = [ in the second term of

(1.5), we obtain
Az = Y QAQ y + 2’ ATQQ y + p' Ap. (1.6)

From Lemma 2, we see that Q'y ~ N(0, I;.), since @ is orthogonal. We now let @'y = = and replace
2u’ATQ by v’ and p’Ap by a to obtain
r r
.l’,.4I=ZlA:+V’:+Q=ZJ'Zj?+ZV]‘.’j +a. (L.7)
i=1 =1

We now use (1.7) to find the moment generating of ' Az,

E[lexp(sz’Azr)] = E |exp {s (ZJJ-:; + Zuj:j +a) }}
=1 j=t

= e*2E |exp {s (Z 8;3 +uj:j) }]
L j=1

-

= e°°E Hexp{s(éj:fﬁ-uj:j)}jl
Jj=1

= e-’GHE[GKP{s(‘sj:}Z+Vj:j)}]- (L.8)

ji=1

in view of the independence of the :;’s. Using Lemma 3, we now obtain:

2(1—2s3,)

E[exp{sc’ Ar}] = exp(sa) H (1= 255;)1/7 (1.9)
j=l

SJU:
r | exps st~

provided sd; < 1/2 for all j = 1,...,r; if at least one d; > 0 then this condition is equivalent to
s < 1/(20max), where dmax = max(dj).

Looking at the denominator of (1.9), we see that the product []}_, (1 — 2s§;)!/? involves the
product of eigenvalues and we know that the product of eigenvalues of a matrix equals its deter-

minant, and so:

r r
[T - 2567 = [Jchj(1 —2sT"AT)!/?
Jj=1 Jj=1
. /2
= |J] chitf — 2sATT")
j=1
= | - 2sATT'|*/? (1.10)
= |I-2sAV|Y/32, (L.11)



Now, all that is left is the numerator of the right-hand side of (1.9):

s-u- r s2v?
He"p {2(1 "3 )} = exp {,:zl 2(1 - 2135,-)}

= exp{%u’(!—%A)"u}. (1.12)

Since T'AT = QA@’, we have:
QU — 2sA)7'Q" = [QU — 2sA)Q1™" = [QQ’ — 25QAQT™! = [{ — 2sT'AT|™". (1.13)

Using v’ = 2p' ATQ and Q(1 — 2sA)~'Q' = [I — 2sT'AT]~!, we obtain:

%'u'(l —25A)" Yy = 252§  AT[I — 2sT' AT|™ T’ A'p. (1.14)
And so, with the help of Lemma 4, it follows that:
s VJ- 2,7 4 — Ll 4¢ ]
_— = e £ - A p A
exp(sa) Hetp{Q(l_sz)} exp {2y AT[I — 2sT'AT|™'T" A'pp + sp’ Ap}

= exp {sp'(2s AT — 25T’ AT|"'T' + ) Ap}
= exp{sp'(I —2sATT') ' Ap}
= exp{sp'(I —2sAV)" Ap}.

Hence by replacing the numerator and the denominator and recalling that the characteristic func-
tion f(s) = m(is), where m(s) is the moment-generating function (mgf), Theorem 1 is established.
a

Lemma 6 [f the eigenvalues of a square matrir are all less than 1 in absolute value then
(I-Gy =) c" (1.19)
h=0
Proof. See. e.g., Mirsky [142, p. 332]. O

Lemma 7 If the eigenvalues 4, of @ square matrir are all real and less than 1 in absolute value
then

(=]

log(|[—G|)=—Z3l.-tr(Gj). (1.16)

i=t

Proof. We have

log(if - G|) = lOgLH(l-—“m)]
=1
= ) log(l—)
h=1



= -3 tuw@), (1.17)
=17

and the lemma is established. O

We end this chapter with the cumulant generating function and the cumulants of the guadratic
form =’ Ar. We believe that Dieulefait {1951) and Lancaster (1954) were the first to obtain inde-
pendently this result for £ ~ N(0, I). We present the cumulant generating function as stated by
Khatri (1963), and then by Rohde, Urquhart, and Searle (1966), for r ~ N(u, V'), with V" possibly
singuiar.

Theorem 8 (The cumulant generating function of '’ Az) [fz follows a multivariate normal
distribution with mean p and dispersion matric V', with V possibly singular and if A is a symmetric
matriz; then the cumulant generating function of ' Az is

ad sj{ . . 1 .
o(s) =y = et [ "(AVY ~'Ap + <tr(AV J]} (1.18
'”J;ﬂ’ HW(AVY " Ap + tr(AV) )
Proof. We follow Scarowsky [203, Theorem 2.2]. Using Theorem L, we express o(s) as

o(s) = log[E(exp{sz’Azx})] = sp'(I — 2sAV) "' Ap — Llog |1 — 2sAV|. (1.19)

It is possible to find a positive number £, such that for all |s| < £ we have [ch(sAV)| < 1. Using
Lemma 6 and Lemma 7 gives

o(s) = sy’ {Z '2"s"(AV)"}p + %Z'sti {;l.n(_.uf')i}

h=0 j=1
S . . I (1 .
= YTl AVY T A+ Y Y {;u(.w)l} (1.20)
j=1 i=1

and our proof is complete. O
It follows at once from Theorem 8 that the jth cumulant of 2’ Az is

. 1 .
WAV 1 Au + ;tr(AV)-’; i=12,.. (1.21)



Chapter 2

Historical Points of View

The history of the Craig-Sakamoto Theorem has often been a source of disagreement among statis-
ticians. Since so many papers were published in the 1940s, 1950s, and the 1960s in various places
and in various languages, it was difficult for researchers to consult all the work that had been done
on the topic before publishing their own results. Therefore, there exist many instances of duplica-
tion, variation, misconception, and lacunae, such as inevitably lead scholars to attempt to clarify
the facts. To illustrate this, we present different versions of the development of the Craig-Sakamoto
Theorem in this chapter.

In 1934, W. G. Cochran [30] introduced some corollaries on the chi-squareness and the inde-

pendence of quadratic forms and proved the following result.

Theorem 9 (Cochran 1934 [30]) If a random vector r is distributed as N(0.[) and if A =
A’, B = B’ are nonrandom, then the quadratic forms £’ Ax and z' Bx are stochastically independent
i and only if

[l —sA—tB|=|I—-sA[- |~ tB)| Y real s and t. (2.1)

Based on this result, Craig [34] noticed in 1938 that if £’ Az and z’Bzx are independent, then
rank(A + B) = rank(A) 4 rank(B), (2.2)

with rank identifying the number of associated independent variables. Cochran [30] proved his
finding by showing that if the joint moment generating function of r’Az and z’Bx factorizes as
the product of the moment generating functions of ' Az and of z'Bux, then independence was
obtained and vice versa. Nevertheless, these two conditions were difficult to apply. Consequently,
the challenge was to discover a nice and simple condition for independence that would make
independence easy to verify. In 1943 Craig [35] and in 1944 Sakamoto [196] asserted that (2.1)
holds if and only if AB = 0; their proofs, however, were incomplete.

After the discovery of this result, many researchers then tried to produce a complete proof for
the simple central case with dispersion matrix I and then for the general case N(u, V), first with V



positive definite and then with V" possibly singular. On several occasions, various scholars tried to
distinguish the correct proofs from the misleading ones. The first survey was Scarowsky's 1973 MSc
thesis entitled Quadratic Forms in Normal Variables [203]. His work includes the characteristic
function of a quadratic form, the conditions for chi-squaredness and independence. With respect
to the Craig-Sakamoto Theorem, Scarowsky noted that

o Craig (1943). Sakamoto (1944), Hotelling (1944), and Ogawa (1946} were unable to provide
a complete proof of the Craig-Sakamoto Theorem.

e The first to provide a complete proof was Matusita (1949) followed by Aitken (1950): both
proofs covered the case where the dispersion matrix V" is positive definite.

e Carpenter (1950) and Ogawa (1950) were the first to extend the result to the non-central

case.

Moreover. Scarowsky’s thesis contains Ogasawara and Takahashi’s (1951) proofs for the simplest
case with r ~ N(0,/) and the most general case with £ ~ N(g, V), with V" possibly singular.
Scarowsky also included proofs for the independence of bilinear forms and the nutual independence
of more than two quadratic forms, and he listed more than a hundred references on the subject.

In 1984, William R. Gundberg Jr. completed a Master’s thesis [62] entitled 4 History of Results
on [ndependence of Quadratic Forms in Normal Variates and in 1986 published a paper [42] on
his findings with his thesis adviser Michael F. Driscoll. Apparently not satisfied with the proofs
available to them, they wanted to provide a more complete proof and a further description of the
history of the Craig-Sakamoto Theorem. Driscoll and Gundberg [42] also stated several problems
one may encounter in various treatments of the theorem.

As Driscoll and Gundberg [42, p. 65] noted,

“The history of Craig’s theorem is not a happy one. The authors of the earlier articles
in the literature tended to make errors of a linear-algebraic nature. Authors of more
recently published textbooks have given incorrect or misleadingly incomplete coverage
of Craig's theorem and its proof.”

Driscoll and Gundberg [42] reviewed all possible cases from the simplest case with £ ~ N(0, /)
to the most general case with £ ~ N(g, V), with V' possibly singular, and observed the following:

e for the N(0, [) case:

— Cochran (1934) ([ — 2sA|-|[[ —2tB| = |I — 2sA — 2¢B]|]
Craig (1938) [first to obscrve rank additivity: rank(A4 + B) = rank(-1) + rank(B)]

Craig (1943) [first to state AB = 0, but proof incomplete]

Hotelling (1944) [incomplete proof (subtle gap)]

|

Craig (1947) [proved that two bilinear forms are independent iff AB = (]

Lancaster (1954) [correct linear-algebraic proof]

10



e for the N(0, V') case:

Ogawa (1949) [first correct linear-algebraic proof]

Aitken (1950) [first to transform z — V~1/2z]

— Ogasawara and Takahashi (1951) [first (complete) treatment with V' possibly singular]
Lancaster (1954)

i

o for the N(u, I) and the N(u, V') case

Carpenter (1950) [used z — V~!/2z, but his proof of N(g, I) is incomplete]

Ogasawara and Takahashi (1951) [first (complete) treatment with V possibly singular]
Laha (1956) [“Laha’s Lemma” stated but not proved]
Searle (1984) [partially completes Laha’s proof].

All in all, Driscoll and Gundberg (1986) claimed they found no source that contained a correct,
complete and detailed proof of the general case, and they observed that the information in the ex-
isting textbooks on the proof or on the history of the Craig-Sakamoto Theorem is often inadequate.
Finally, they offered recommendations to future authors on how to treat the subject.

Two years later, Reid and Driscoll (1988) [192] revised the 1986 paper of Driscoll and Gundberg
[42], following some research done by Reid (1986). According to Reid and Driscoll (1988)

e the independence of z’ Ax and z’ Bz does not imply AV B = 0 for all g, only for p = 0. Krafft
(1978) shows that it implies that AV B is only skew-symmetric.

o Krafft's proof can be considerably shortened using Zielinski’s (1985) argument.
e Laha’s proof and Driscoll’s supplement both appear in Ogawa (1950).

e the claim of necessity can be proved using cov(z'Az,z’ Br) = 0 which implies independence
when p = 0 and A and B are nornegative definite, as proposed by Matérn (1949) and Kawada
(1950).

Furthermore, Reid and Driscoll (1988) included an elegant proof of the general case using
cumulants which will be discussed in Chapter 3.

Even if these two last papers give a good historical review on the past events, the absence of
references to the papers by Sakamoto [197, 200], Matusita [138], Ogasawara and Takahashi [157].
and other Japanese statisticians who have produced key papers on this theorem is regrettable. To
resolve this matter, Ogawa (1993) [165] presented

“

a fair description of the development of Craig-Sakamoto’s theorem ... giving due
credits to Japanese authors who have been overlooked by Western authors of papers
and textbooks.”

Ogawa had written three papers in 1946 [159], 1949 [162], and 1950 [164] on this topic; and in
1993, he expressed much disappointment in general about other authors’ misunderstanding. In an
effort to achieve the same aims as Driscoll and Gundberg (1986), Ogawa {1993) gave a complete
listing of the Japanese accomplishments which he compared with those of other statisticians. The
following is Ogawa’s summary:

11



e The N(0, [) case

— was conjectured by Craig (1943) and Sakamoto (1944).

— was proved by Matusita (1949), Ogasawara and Takahashi (1951), Lancaster (1954),
and Mathai and Provost (1992).

— was not completely proved by Craig (1943), Hotelling (1944). and Aitken (1950).
e The N(u, V') case

- was proved by Ogawa (1950), Laha (1956) [incomplete], Driscoll and Gundberg (1986).
and Reid and Driscoll (1988).

— was not completely proved by Carpenter (1950), Ogasawara and Takahashi (1951),
Kendall and Stuart (1969), Johnson and Kotz (1970), Seatle (1971), Mathai and Provost
(1992).

e The proofs given by Ogawa (1949) and Kawada (1950) were different from the ones listed
above, but they are complete. However, the ones proposed by Ogawa (1946) and Zielinski
(1985) are incomplete in reasoning.

Ogawa (1993) also presented four different proofs, all by Japanese statisticians, for the central

case,
e Matusita (1949)!
e Ogasawara and Takahashi (1951)

e Kawada (1950)

e an improvement of Nabeya's 1949 proof=.

Moreover, Ogawa [165] criticized “Western statisticians” for overlooking the Japanese contribu-
tions to the development of the Craig-Sakamoto Theorem. Ogawa confirmed that Matusita (1949)
was the first to give a full and correct proof, and not Lancaster (1954), as implied by Hogg and
Craig [72]. In the description of the theorem by Johnson and Kotz (1970), Ogawa noticed that
there was no mention at all of any Japanese involvement. Then, he reviewed Hotelling’s 1944
proof and maintained that it is incomplete. Finally, he pointed out some lacunae in Mathai and
Provost’s 1992 book Quadratic Forms in Random Variables [135].

In 1997, in a joint paper [166] in English, Ogawa and Olkin critically examined the literature and
revised some of Ogawa's 1993 opinions. Before presenting proofs for N(0, /). they now declared that
(contrary to Ogawa’s belief in 1993) Aitken {1950) gave the third correct proof after Matusita and
Ogawa, and that it is this proof which was given by Lancaster {1954). Concerning the description
of the historical and mathematical facts, Ogawa and Olkin [166] maintained that the historical
accounts provided in the books by Hogg and Craig [72], Searle [209], Guttman [65], and Hocking
[70] were limited. Ogawa and Olkin considered that while the 1992 book by Mathai and Provost
[135] may give many more details on the topic, they still found the proof of the non-central case and

'Ogawa (1993) claimed that Lancaster’s 1954 proof is the same as Matusita’s.
2Published in the paper by Ogawa [162].
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the history to be unsatisfactory. Ogawa referred to Scarowsky (1973) and Driscoll and Gundberg
(1986) as accurate sources for historical details, even if he considered them to be incomplete in
other respects.

Then, Ogawa and Olkin [166] treated the central case with the dispersion matrix V' being
different from [ and gave historical details. To the ones already listed, they added the works of
Good (1963, 1966), Shanbhag (1966), and Nagase and Banerjee (1976). Moreover, they explained
three proofs for the general case: Ogawa (1950) and Laha (1956), Reid and Driscoll (1988) and
Driscoll and Krasnicka (1995), and Olkin (1997). Furthermore, they discussed the general case for
the second degree polynomial, bilinear forms and for multivariate versions.

13



Chapter 3

The Craig-Sakamoto Theorem:

1943-1996

Now, with all the documents we have at hand, we introduce the proofs and present the historical
facts surrounding the Craig-Sakamoto Theoremn. We attempt to discuss the proofs as provided
chronologically, explaining them and pointing out their lacunae (if any) and to clarify the whole

situation.

3.1. From 1943 to 1949

3.1.1. Craig (1943), Hotelling (1944)

In 1943, after studying quadratic and bilinear forms, Craig [35] was the first to state a condition
for their independence other than the one found in 1934 by Cochran [30], cf. (3.1).

Theorem 10 (Craig 1943) Let = be a random vector that follows a multivariate normal distri-
bution with mean zero and dispersion matriz [. If '’ Az and &' Br are two quadratic forms with A
and B symmetric, then these quadratic forms are independent if and only if AB = 0.

Proof of sufficiency.

Assuming from the right-hand side of equation (2.1) that AB = 0, we obtain

|/l —sA—tB|= |l —sA—tB+stAB| = |[ —sA|-|[ —tB]. (3.1)
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Hence, by Theorem 9, '’ Ar and =’ Bx are independent.

The difficulty in proving Theorem 10 is to show that if there is independence then AB = 0.
Cochran had already observed in 1934 that two distributions were independent if and only if their
joint moment generating function (mgf) is equal to the product of the two marginal mgf’s, and
this is a key step in many proofs that followed in the literature. Hence, assuming independence
and that s could be put equal to ¢t without loss of generality, Craig (1943) expressed the mgf’s as
products involving the characteristic roots of A, B, and A + B:

|[I —sA] = (1l —sa1)---(1 — saq) (3.2)
[ —sBl = (l—sB81)---(1—s08s) (3.3)
I —s(A+B)] = (l—s7m1)---(1-s7) (3.4)

where a;, 3;, v« are the nonzero eigenvalues of A, B, and A + B, respectively. Thus a + b = ¢ and
since the matrices are all real and symmetric we must have rank additivity:

c =rank(A + B) = rank(A) + rank(B) = a + b. (3.5)

By Theorem 9, Craig noted that the product of (3.2) and (3.3) was equal to (3.4) and hence, each
term & could be paired with either the term a; or the term 3; fork = 1....,¢c;i=1,....a; j=1,...,b.
Next, he defined an orthogonal matrix L to diagonalize A and B simultaneously!. Craig claimed

that
D4y 0O ¢ 0
L'ALL'BL = =0 (3.6)
0 O 0 Dg

and so AB = 0; that D,, and Dg have no overlapping nonzero eigenvalues follows at once from
the rank additivity (3.5). Hence it follows that the set of all eigenvalues of A + B is the union of
the set of eigenvalues of A and of B.

Hotelling (1944) [73], commenting on Craig’s proof. observed that:

“The proof given that the condition is sufficient is adequate, but Craig’s treatment of
its necessity consists essentially in its assertion”.

Observing that Theorem 10 could have a “wide usefullness™, Hotelling included a proof in his
paper. After sufficiency was shown, he assumed the independence of z’ Ar and 2’ Br. As Craig [35]
did. Hotelling [73] used an orthogonal matrix P to diagonalize 4 and he was careful to mention
that P did not necessarily diagonalize B. He set

Dy 0
P'AP=D= , (3.7)
0 0

where D, is the diagonal matrix containing the nonzero eigenvalues of A, and he set P’BP = M.
Then he showed that

/[ —sA| = |P(I — sD)P'| = |P|- | — sD|-|P'| = |PP'|-|I = sD| = |I - sD|, (3.8)

!Such an orthogonal matrix exists only if A and B commute.
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and similarly

|[ —tB| |f — tM] (3.9)

[[—sA—tB| = |I-sD—-tM| (3.10)
for B and A + B, respectively. Hence, by Theorem 9 he obtained
H—sDy- I —tM|=|I —sD —tM].

Next, he split the matrix M = M| + M, where

E C 0 0
l"[1 = ' 1‘/!2 = ¥ (311)
(O 0 F

and where E has the same rank as 4. Letting =/ = £’P’. he set Q; = ’Azx = 'PAP'z. Q2 =
£'Br = PBP': = /(M 4+ Ma): = Mz + ' Maz = Q3 + QF. Because it was obvious that
DM = 0, all that was left to show was that DM, = 0. He claimed that in this case. the three
quadratic forms Q, @3, Q% are independent by this argument. Since @, and @3 do not have any
variates in common and are independent, then @, and @5 are independent. Moreover, if @; and
Q- are independent by assumption, it then follows that @Q; is independent of Q2. — Q5 = Q3.
Therefore, DM =0 and PDMP' = PDPP'MP' = AB =0.

Unfortunately, this proof did not satisfy many; some would claim that the argument was false.
As Driscoll and Gundberg (1986) explained,

“... Hotelling's proof contains not a falsity, but a subtle gap. ... By relying on a
later correct proof of [the Craig-Sakamoto Theorem], it can be shown that there are no
counterexamples to Hotelling's statement ... , but this leaves open the question of how
this independence might be proved to salvage Hotelling’s proof 2.”

It was shown by Baksalary and Hauke (1984) that a requirement for @, and @2 to be inde-
pendent is that @@ must be independent of the pair (Q2 + Q3,@3). However, Ogawa (1949, 1993)
and Ogawa and Olkin (1997) claimed that this argument does not hold. So DM = 0 could not
be shown. To support this, Ogawa referred to a counterexample by Bernstein>.

Meanwhile, Sakamoto (1944), made the same observation independently of Craig (1943) and
published his result that covered not only the N(0, /) case but also the N(0, V') case where V' is
positive definite.

3.1.2. Sakamoto (1944), Ogawa (1946), Craig (1947)

Theorem 11 (Sakamoto 1944) Let z ~ N(0,V), where V' is a positive definite matriz, and let
A and B be symmetric matrices. The quadratic forms £’ Ax and ' Br are independent if and only
if AVB =0.

2Cf. Driscoll and Gundberg [42], p. 66.
3Cf. Kolmogoroff (1933), Section 5 “Unabhéngigkeit”, pp. 8-11; footnote, p. 10.
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Sakamoto was the first to propose that the N(0, V') case could be reduced to the N(Q, /) case
using a transformation. However, in his attempt to show the N(0, /) case, Sakamoto made the
same mistake as Craig (1943) did by diagonalizing A and B simultaneously. Although, the Craig-
Sakamoto Theorem remained technically unproven at this point, it is interesting to notice that
some statisticians, such as Kac (19435), were using this result.

In 1946, a totally different proof was proposed by Ogawa [159]. He considered A and B to be
linear transformations in a linear vector space £ where the nullspace is the set A4 = {z]|Az = 0}.
Then, he diagonalized A and noted that the dimension of the set M = {z|Az # 0} is equal to the
number of nonzero eigenvalues of A and dim(A4) is the number of the eigenvalues equal to zero
and similarly for B. Then using Theorem 9, he set s =t = 1/ to obtain

Ao — Al - [AM — B| = A"JAl, — A — B. (3.12)
Ogawa (1946) then claimed that
dim(N4) +dim(Ng) = n + p,

where p is the multiplicity of the zero eigenvalue of A+ B. Unfortunately, such a result requires that
the set of nonzero eigenvalues of A + B be equal to the union of the sets of nonzero eigenvalues of
A and B where these sets are disjoint. These conditions on the sets of eigenvalues are the key step
to prove the Craig-Sakamoto Theorem. However, Ogawa (1946) continued his argument without
proving his claim. Furthermore, S. Nabeya pointed out some errors in Ogawa'’s proof, about which
he communicated with Ogawa®*.

While Craig (1947) published a paper on bilinear forms, making a mistake in proving their inde-
pendence, Ogawa and Sakamoto were working on this topic with three other Japanese reseachers:
Nabeya (mentioned earlier), Matusita and Sugawara. In 1949, three acticles by Matusita [138],
Ogawa [162], and Sakamoto [200] were all published in the Annals of the Institute of Statistical
Mathematics Tokyo, “received” respectively on June 2, June 10, and June 30, 19485.

Matusita (1949) gave the first correct proof of the Craig-Sakamoto Theorem for the N(0. V')
case with V' = [ as a special case. In a footnote®, Matusita (1949) wrote:

“I had this result in 1943, independently of A. T. Craig when H. Sakamoto asked me
about the independence of quadratic forms, and informed it to him. He and some other
colleagues of mine have searched for other proofs of this theorem (esp. M. Sugawara
and S. Nabeya) or applied it to various problems. On seeing these recent investigations
and those of some others, it seems to me of some use to publish my proof at this stage.”

3We are unaware of any publication by S. Nabeya about this matter or on any topic related to the Craig-Sakamoto
Theorem.

5The papers by Ogawa and by Sakamoto were published originally in Japanese, respectively in 1948 and 1946,
in the Research Memoirs of the Institute of Statistical Mathematics Tokyo. A history of the Institute of Statistical
Mathematics Tokyo by Kameo Matusita appears in [139].

SOn page 82 of [138]
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3.1.3. Matusita’s 1949 Proof for N(0, V), with V' Positive Definite

Let £ = (z1,..-,&,)’ be a vector of random variables from an n-variate normal population with
dispersion matrix V" positive definite. There exists an orthogonal matrix P such that P’V P = D?,
where D is a real diagonal matrix with nonnegative components and let V" = T'7”. Then, it follows
at once from Theorem 1 that the quadratic form r’ Az has its moment generating function equal
to
£(z) = |1 = 2547|7172,

where [ is the n x n identity matrix and A* = P'T'ATP is symmetric. So the independence of
r’Ar and £’ Br is equivalent to the equation:

[~ (sA” +tB")| =[] —sA”|- | —tB"| Y real s and t. (3.13)

where s and t are independent variables, and A* and B® represent the matrices P'T'ATP and
P'T' BT P, respectively. Obviously the equation (3.13) holds when AV B = 0 and thus it is a
sufficient condition.

Assuming that the two quadratic forms ' Ar and z’ Bz are independent, then equation (3.13)
holds. Now let ay,...,a, and 31, ..., 3~ be the nonzero eigenvalues of A* and B*, respectively.
There exists an orthogonal matrix U such that ’A*U = diag(ay,...,a.,0,...,0) = D4-, say.
Writing the left-hand side of equation (3.13) gives the following:

1 — SQi —tCu s —t(.'l,- —tC]_',-+l s —tCln
—tcry cer 1 —sa, —teg, —ter, T4 1 —tern
(3.14)
—tcri1.1 .- —lCry1,r L—tergrrer oo lCrgin
—teny co —lcnr —tcn,r41 cor l=teny
where {ci;} denotes the matrix [/’"B*U = C. The coefficient of s" is
L —terprrer -0 —lergin
ap---ar : : =(=1)"a1 - -ar|[l —tCaf, (3.15)
l"“cn,r-{—l <=+ 1 —tecnn

say, and it must be equal to (—1)"a; - - -a,|I — tB*| for equation (3.13) to hold. From this we can
infer that the nonzero eigenvalues of

Crelr+l " Cryln
Can = : : (3.16)

Cn,r41 tee Cnn
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are 3, ..., B+, that is, the same nonzero eigenvalues as B*. Diagonalizing C»2 using an (n — r) x
(n — r) orthogonal matrix V}, we then set

I, 0
Va = ) (3.17)
0 W

Putting W = U5 gives

W' A*W = diag(ay, ..., ay) (3.18)
and
{ ;1 . . b;l 0 \
‘e 61 0 ‘e -
W'B*W = . (3.19)
/3r’
\ [ 0 e 0 )

Now looking at the norm of B* which we may choose as the square root of the trace of B~ B*. we

SR+ 3182 =180 (3.20)
i=1

i=1

notice that

where 3’ represents the summation running on (ij) where either i < r or j < r, since the norm
is invariant under the unitary transformation. We must, therefore, have all bjj withi<rorj<r
equal to zero. Thus,

WAWW'B W =WA"B*W = 0. (3.21)

This implies that 4* 8% = 0 and hence
A°B" = P'T"ATPP'T'BTP =0. (3.22)

Therefore, we obtain ATT'B=AVEB=0. O

3.1.4. Ogawa’s 1949 Proof for N(0, /)

Ogawa (1949) explained in depth the algebraic conditions needed for his proof and introduced two
key lemmas due to Nabeya, whom he thanked in his paper for his help®.

"In a footnote (on page 107 of [162]) Ogawa writes: “I am indebted to Mr. M. Sugawara and Mr. S. Nabeya of
the Institute of Statistical Mathematics for advices and criticism while this paper was being prepared.” We are not
aware of any papers by either M. Sugawara or S. Nabeya on the Craig-Sakamoto Theorem.
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Lemma 12 (Nabeya’s First Lemma) Let A and B be two n x n real symmetric matrices and
let their ranks be a and b, respectively, and furthermore, let the rank of C = A+ B be rc. If the
rank-additivity relation a + b = c holds, then the subspace of C generated by its eigenvectors is
the direct sum of the subspaces of A and B which is generated by the eigenvectors of A and B.
Moreover, if C is idempotent, then AB = BA =0 and A and B are idempotent themselves.

The last part of Lemma 12 was already proved by Cochran (1934) and is the special case of

“Cochran’s Theorem” for two matrices3.

Lemma 13 (Nabeya’s Second Lemma) Let the nonzero eigenvalues of real symmetric n x n
matrices A, B, and C = A+ B be ay,...,aq, B1,---.0 and vy, ..., Ye, respectively. If the relations

c=a+b (3.23)

and

a

f[ v =[] f[ B; (3.24)
k=1 i=1  j=I
hold, then AB = B4 = 0.
Ogawa [162] put s = ¢ = 1/ in (2.1), which then becomes, cf. (3.12) above,
[Afn — Al- A, — B] = A"|Al, — A — BJ;

this shows that the set of the nonzero eigenvalues of 4 + B is equal to the union of the sets of
the nonzero eigenvalues of A and B. So this does fulfill the conditions of Lemma 13, and hence
AB = BA =0 is obtained. This proof is the second complete one for the N(0. /) case.

In 1949 Sakamoto [200] did not provide another proof, but gave some applications to ordinary
least-squares; and he considered some y® and F tests. The only inaccuracy in the paper by
Sakamoto [200], regarding the Craig-Sakamoto Theorem, appearts to be the author’s claim that he
had proved it in his 1944 paper [196]. In a footnote, Sakamoto [200] referred the reader to the
1949 paper by Matusita [138] confirming the communication they had in 1943°.

3.2. From 1949 to 1959

3.2.1. Matérn (1949) and Uncorrelatedness

Meanwhile, the Swedish statistician Bertil Matérn [134] proved the following in 1949:

8Cf. e.g., Anderson and Styan (1982) [7].

9Sakamoto [200] wrote on page 122: “The proof of the fundamental lemma concerning the necessary condition
of Theorem [ [The Craig-Sakamoto Theorem] was found to be not rigorous, and I remembered that K. Matushita
(sic) had given an elegant proof of the lemma for me.”
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Theorem 14 (Matérn 1949) [f two nonnegative quadratic forms in normally correlated vari-
‘ ables with zero means are uncorrelated, then the two forms are independent.

The converse of this theorem is obviously true, and hence, we can say that two nonnegative
quadratic forms are independent if and only if they are uncorrelated. Furthermore, it is of interest
that this result due to Matérn still holds when the dispersion matrix V' is singular.

In 1950 Yukiyosi Kawada [87] extended Theorem 14 to the implication of AB = 0 by proving
the following theorem and corollaries in 1950.

3.2.2. Kawada’s 1950 Results for N(0, /) and “Kawada’s Trace Lemma”

Theorem 15 (Kawada 1950) Consider two quadratic forms @Q; = z' Az and Q. = =’ Bx. where
A and B are real symmetric matrices not necessarily nonnegative definite and r is normally dis-
tributed with mean vector zerc and dispersion matriz [. If Q, and Q2 satisfy the following condi-
tions

Fi;=EQiQ) —E@)EW@) =0 (i,j=12). (3.25)
then AB = 0.

Corollary 16 (Kawada’'s First Corollary) IfQ, and Q. satisfy the four conditions in equation
(3.25), then Q, and Q- are independent.

Corollary 17 (Kawada’s Second Corollary) A necessary (and sufficient) condition for the in-
dependence of Q) and Q2 is AB =0.

Kawada (1950) noted that for z; distributed N(0, 1),

E(zf) = 0, i=1,3,57,...
E(z}) = 1

E(z}) = 3

E(zf) = 15

E(zf) = 105,

where & = 1, ..., n. Therefore, with F{; ;) defined as in (3.25), we have

Foiy = 2tr(AB)=0
Fi2y = 8tr(AB?)+ 4tr(AB)tr(B) =0
Fiahy = 8tr(A®B) + 4tr(AB)tr(A) =0
Fi22y = 32tr(A°B?) + 16tr((AB)?) + 16tr(AB%)tr(A)

+ 16tr(A%B)tr(B) + 8tr(AB)tr(A)tr(B) + 8tr((AB)%) = 0.

From the above equations, Kawada (1950) obtained
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te(AB) = tr(AB?) = tr(AB%) =0
and hence,
32tr(A’B?) + 24tr((AB)?) = 0. (3.26)
It then follows at once from the following lemma that AB=0. 0O

Lemma 18 (Kawada’s Trace Lemma) Let A and B be real symmetric matrices and let k be a
nonnegative scalar. Then

(1+ k)tr(A®B?) + tr((AB)?) > 0. (3.27)
Equality holds in (3.27) if and only if
e AB=—BA when k=0

e AB=0 when k> 0.
Proof. We expand
(1 + k)tr(A%B?) + tr((AB)2) = Ltr(AB + BA)'(AB + BA) + ktr(AB)' AB > 0,
and our proof is complete. O

Kawada’s 1950 paper [87] is the first of many important papers published in the first half of
the 1950s. In 1950 alone, these four publications appeared:

e Aitken (1950) [3]
e Carpenter (1950) [27]
e Kawada (1950) [37]

e Ogawa (1950) [164].

Carpenter’s article [27] contains the conditions for a quadratic form to be distributed as chi-
square and conditions for the independence of two quadratic forms in the N(u, I) case. This appears
to be the first treatment of the noncentral case where the mean g is not necessarily 0.

Carpenter’s proof for the Craig-Sakamoto Theorem goes as follows. First, he presented the mo-
ment generating functions G (s, t), G(s,0), and G(0,¢) of £'(A+ B)x, £’ Az, and &’ Bz, respectively:
and he showed that G(s,t) = G(t,0) - G(0, s) holds when AB = 0. Unfortunately, to demonstrate
the necessity part, he referred to Hotelling (1944) and Craig (1943), which as we have already
noted. are both unsatisfactory proofs. Moreover he did not establish the necessary Laha’s Lemma,
cf. Lemma 20 below. However, Aitken [3] and Ogawa [162] both presented correct proofs. Aitken’s
1950 proof in [3] is similar to Ogawa’s 1949 proof in [162] published a year earlier.
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3.2.3. Aitken’s 1950 Proof for N(0, V), with V" Positive Definite
Assuming independence, Aitken in 1950 noticed [3] that
[Aln — A - [AMn — B| = A®|Af, ~ A — B, (3.28)

cf. (3.12), but unlike Ogawa (1946), Aitken (1950) obtained (3.28) not by putting s =¢ =1/A in
(2.1), but because

* ... the latent roots of the matrix pencil sA + tB are the latent roots of s.4 together
with those of tB, with the useful corollary that the rank of sA + ¢B is the sum of the
ranks of sA and ¢B [for all real s and ¢].”

To prove his claim, he diagonalized A into A,; and without lost of generality, he applied an
orthogonal transformation to sA 4 tB and showed that if

sd1L +tB1y tB2 sAL
(3.29)

lB'l-_; t Bos . tBaa

then Bi» = 0, and the submatrices A;; and B.s, which are the upper left and the lower right
submatrix, respectively, of the diagonalized A and B, are disjoint. Therefore AB = 0.

In this same paper, Aitken (1950) introduced the transformation y = V''/2z that produced
uncorrelated variates and referring to the proof he gave for the N(0, /) case, he extended the result
to AV B = 0 for the N(0, V') case with V being positive definite. We observe that though Aitken
was almost certainly not aware of the Japanese work on this topic, his ideas and results are similar
to those proposed by Sakamoto (1944) and the proof of the Craig-Sakamoto Theorem given by
Ogawa (1949) using Nabeya’s lemmas.

3.2.4. Ogawa’s 1950 Proof for N(u, /)

The 1950 paper by Ogawa [164] contains the first correct proof for the noncentral case N(u, /), and
is, therefore. the most important development since the first complete proof of the Craig-Sakamoto
Theorem by Matusita (in 1949 in [138]). Ogawa {164] proved the following:

Theorem 19 (The Craig-Sakamoto Theorem with = ~ N(u,/)) Let A and B be symmetric
matrices and r ~ N(p, [) with mean vector u and dispersion matriz I. Then ' Az and x'Br are
independent if and only if AB = 0.

Unfortunately, as for Matusita (1949), Ogawa’s 1950 paper did not receive the recognition
it should have had at the time. After proving sufficiency, Ogawa converted the assumption of
independence into an equation involving the moment generating functions of the quadratic forms
' Az, 'Br, and z’(A + B)z to obtain a ratio of characteristic equations that is equal to the
exponent of a ratio of polynomials. Then, he stated—and proved—the following lemma, which is
the version for real variables of what is now known as “Laha’s Lemma”, cf. Lemma 22 below.
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Lemma 20 (Laha’s Lemma for Real Variables) If P(t), Q(t), R(t), and S(t) are real poly-
nomials in t and

exp{P(t)/Q(t)} = R(t)/S(t) (3.30)
then both P(t)/Q(t) and R(t)/S(t} are constants.

Hence, Ogawa (1950) proved the necessity of the Craig-Sakamoto Theorem. We notice that if
we reduce the N(0, V') case to N(0, /)—as proposed by Sakamoto (1944) and Aitken (1950)—then
we obtain a proof for the general case of the Craig-Sakamoto Theorem. Ogawa’s proof is inciuded
below as Ogawa and Laha’s proof (subsection 3.2.7) for the general case with V' being positive
definite.

In 1951, Ogasawara and Takahashi published a paper [157] on the independence of quadratic
forms and the conditions they must satisfy to obtain a chi-squared distribution. This 1951 paper
[157] contains a nice and simple proof of the N(0, I) case using determinants, traces, and series
expansions. Moreover, it is the first paper to establish (completely and correctly) necessary and
sufficient conditions for independence of two quadratic forms when the underlying dispersion matrix

is not necessarily nonsingular.

3.2.5. Ogasawara and Takahashi’s 1951 Proof for N(0, /)
Ogasawara and Takahashi [157] showed that:
AB=0 & |[I-sA—tB|=|[-sA|-|I-tB| V real s and ¢. (3.31)

Hence, by Theorem 9, it follows from the above statement that z’Ar and £’ Bzx are independent.
As we have already noted, it is obvious that the first equation implies the second. To show the
converse we use Lemma 7 in Chapter 1. Assuming that

[ —sA—tB|=|1—-sA|-|I —tB]| V real s and ¢ (3.32)

holds, Ogasawara and Takahashi [157] multiplied both sides of the (3.32) by |A’|, where A’ =
(I — sA)~!, and obtained:

| —sA|~Y-|[ = sA| - |[ - ¢B]

[f — sA]™! | —sA — tB]

[l —tBf = |I—tKRB| (3.33)
Taking logarithms and using Lemma 7, gives
oS i oC i
t : tJ .
—tr(B?) = —tc (N BY (3.34)

for all real (s,t) sufficiently near (0,0). We notice that all the crossproducts in s and t on the
right-hand side must be zero. Setting j = 4 and after some algebraic manipulation, we find that
the coefficient of s2t* is

4tr(A’B?) + 2tr((AB)?) = 0, (3.35)
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and so AB = 0 follows at once from Kawada’s Trace Lemma (our Lemma 18 above).

Ogasawara and Takahashi [157] extended the above result to cover the case where V" is non-
negative definite. This appears to be first complete correct treatment for this most general case of
N(u, V'), with V' possibly singular.

3.2.6. Ogasawara and Takahashi’s 1951 Proof with V' Possibly Singular

Theorem 21 (The Craig-Sakamoto Theorem for the N(u, V') case) Let r ~ N(u, V') with
V' possibly singular, and let A, B be symmetric matrices. Then '’ Az and £’ Br are independent if
and only if the following conditions hold

VAVBV = 0 (3.36)
VAV By 0 (3.37)
VBVAy = 0 (3.38)
g AVBp = 0. (3.39)

Ogasawara and Takahashi [157] used the “symmetrized form™ of the moment-generating func-

tion of £’ Ar, cf. Theorem 1% above:

exp{p’(sA + 2t2AU ([ — 2sU AU )~ U A)u) }

3.40
[I —2sU AU |2 ( )

E(exp{sz' Az}) =

where U = /' and U? = V.
Assuming independence, equating the product of the moment generating functions of £’ Az and
z’ Br with the moment generating function of £’(A + B)x yields, using Laha’s Lemma and after

some algebraic manipulations, for all real s and ¢:
|[f —2sA,|-|I —2tBy| = |l — 2sA, — 2t B, | (3.41)
and
W (AU — 25A,)" ' WA+ BU(I = 2B,)"'UB)p
=p' ((sA+tBYU(l ~2sA; —2tB,)"'U(sA + tB))p, (3.42)

where A; = UAU and By = UBU. Ogasawara and Takahashi [157] then showed that (3.41) implies
A1B; =0 and thus VAVBV =0, i.e., (3.36), in a way similar to Kawada (1950}, cf. Kawada's
Trace Lemma (our Lemma 18 above).

We now use Lemma 7 and substitute the geometric series expansions for the inverses in (3.42)
to obtain:

o {52_40 (2(23.41)") UA+ t>BU (‘EN:(‘ZsB[)k) UB} u

h=0 =0

=y {((3.4 +tB)U (2(23.41 + 2:31)‘) U(sA+ tB)} u. (3.43)

(=0

10Theorem 1 gives the characteristic function of £’ Az which is equal to the moment-generating function of iz’ Ax.
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Equating the coefficient of st equal to 0 yields
p'AVBu+ W’ BV Ap = 0.

But g’ AV By is a scalar and so equals (p’AV Bu) = ¢/ BV Au. Thus y’ AV Bu = 0 as in (3.39).
Equating the coefficient of s%t> equal to 0 yields

g AVAVBV By + 4’ AVBV AV Bu + p' AV BV BV Ap + p' BV AV AV By
4+ BVAVBV Ap + @' BVBV AV Au = 0. (3.44)

Substituting VAVBY =0 = VBV AV from (3.13) yields the two middle terms of (3.44)
WAVBVBV Ap + ' BVAVAV Bu =0.
But
WAVBV BV Au+ y’' BVAVAVBu = (AVBu)' V(AV Bu) + (BV Au)'V(BV Au) > 0 (3.43)

with equality if and only if (3.37) and (3.38) hold. Our proof is complete. O

Ogasawara and Takahashi's paper [157] appears to be the last one written by Japanese re-
searchers on the Craig-Sakamoto Theorem until the 1980s. It would take more than thirty years
before the publication in Japan of a generalization of Ogasawara and Takahashi’s resuits to the
Wishart distribution by Hyakutake and Siotani (1985).

Meanwhile, researchers in the United States, who were unaware of the progress made in Japan,
were still trying to find a complete proof of the characterization they called Craig’s Theorem.
In 1951, Nelder [153] and in 1952, Lukacs [122] published papers related to the independence of
quadratic forms, but they did not explicitly cover the Craig-Sakamoto Theorem. However, in 1954,
Lancaster [113] presented a proof for the simple case N(0, [} that is similar to Aitken (1950) and to
Matusita (1949). but Lancaster used traces and cumulants. Furthermore. in his historical account
Lancaster [113] mentioned that Hotelling (1944) had questioned the validity of the theorem and
that Ogawa (1949) had drawn attention to the lacuna in Hotelling’s (1944) proof; Lancaster [113]
also commented on the results by Matérn (1949) and Kawada (1950) on the relation between the
covariance between and the independence of two quadratic forms.

3.2.7. Proof by Laha (1956) for N(u,/) and “Laha’s Lemma”

In 1956 Laha [110] introduced a different proof of the Craig-Sakamoto Theorem for the N(u, /)
case, and he extended the result to second-degree polynomials (or bilinear forms). In his proof, he
stated the following lemma:

Lemma 22 (Laha’s Lemma for Complex Variables) [f the relation
exp[P(it 1 itg)/Q(itI y itg)] = R(itl y ltg)/S(it 1, ftg) (3.46)

holds for all real t| and to, where i = /—1 and P, Q, R. and S are polynomials in t, and t-, then
the rational functions are constants.
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The proof then follows easily. Unfortunately, Laha omitted a proof for this Lemma 22. Later
Searle [208], Gundberg [62], Driscoil and Gundberg [42], among others, became interested in this
result which has been referred to by many as “Laha’s Lemma”. However, a similar proof had
already been published in 1950 by Ogawa [164], which few had noticed at the time. Moreover,
in 1956 Laha [110] omitted the facts that the Craig-Sakamoto Theorem was not correctly proved
by Craig (1943), nor by Sakamoto (1944), nor by Hotelling (1944). Nevertheless, Laha did refer
to the papers of Matusita (1949) and Ogawa (1949) for a correct proof, and Laha’s proof of the
Craig-Sakamoto Theorem, providing that Laha’s Lemma holds, was nice and attracted attention.

Theorem 23 (The Craig-Sakamoto Theorem with z ~ N(u,V)) Let A and B be symmetric
matrices and ¥ ~ N(p, V) with mecan vector p and positive definite dispersion matriz V', then r’Ar
and r'Br are independent if and only if AVB = 0.

Using the transformation * — V''/2y, one reduces this case to the N (u.[) case. We know by
Theorem 1 that the moment generating function of '’ Ar can be expressed in the following way:

exp[sp’ (I — 2sAV) "1 Ay]
7= 2sAV |12

G(s,0) = E(exp{sz'Ar)}) = (3.47)

which reduces to
_ exp{sp’(/ —2s4)~ ' Ag]}
ols) = [T — 25A[1/2

when [ is the dispersion matrix. After some calculations using the moment generation functions
G(s,0), G(0,t) and G(s,t) as given in Theorem 1 with V" = [, we have

1
(|1 —2sA|M?| I - 2B|'Y?\?
[f —2sA — 2t B|1/? -

exp{p'[s(] —25A) ' A 4+¢({ ~2tB)"'B — st(] —2sA —2tB)"'(sA + tB)]u} (3.48)
if and only if G(s,0) - G(0.t) = G(s, ).

Proof of Sufficiency. Assume that AB = 0, then we obtain

[ - 2sA||1 - 2tB] _

[ —2sA||l —2AB| = |[ - 2sA ~ 2t =1 3.4
17 —2sA|| B| = |l - 2sA ~ 2tB| 54 —2iB] =" (3.49)

Now, since the left-hand side of equation (3.48) is equal to 1, it follows that the expression in the
exponent on the right-hand side is zero. So we have

w(sA+tB)u _ #(st(sA+1tB))p

= : 3.50
|I = 2sA]\2|]T —24B|/Z ~ [T —2sA - 2tB['/? (3.50)

And hence, since the numerators and the denominators of equation (3.48) are equal, equality holds
and independence is shown. O

Proof of Necessity. Assuming independence and letting the numerator and the denomina-
tor of the left-hand side of (3.48) equal R(¢) and S(¢), respectively, and the numerator and the
denominator of the right-hand side of (3.48) equal P(t) and Q(t), respectively, we obtain that
exp(P(t)/Q(t)) = R(t)/S(t) is constant.



This result alone became famous, since Laha’s 1956 proof of the Craig-Sakamoto Theorem did
not include a proof of Laha’s Lemma (our Lemma 22). At the time, few were aware of the research
published in Japan and it was thought that Laha’s Lemma, which involved complex analysis, was
the only way to prove the Craig-Sakamoto Theorem. Fortunately, a function-theoretic proof in
the complex plane was already given by Ogawa [164] in 1950. Ogawa [164] assumed that |s| < ¢
and [¢| < ¢, he fixed s so that the polynomials P, R, S, and T are only in ¢, and he proved by
contradiction that P(2)/Q(t) had to be constant.

We now rephrase Laha’s Lemma (our Lemma 22 above) as follows:

Lemma 24 (Laha’s Lemma for Complex Variables: Alternate Version) Suppose that q
and r are rational functions (quotients of polynomials) and that

exp{q(u)} = r(u)
for all values of the real scalar u in some non-empty region in IR. Then q and r are constant.

Proof!!. We use the standard classification of isolated singularities of analytic functions. There
are three kinds of such singularites, cf. e.g., Rudin [195, pp. 210-211]:

(1)} Removable singularities—singularities that are really not there at all
(2) Poles
(3) Essential singularities.

Rational functions have only removable singularities and poles. The other key facts are:

(a) If g{u) has a removable singularity at = then exp{q(u)} also has a removable singularity there.
(b) If q¢(u) has a pole at = then exp{q(u)} has an essential singularity at =.

So, by analytic continuation, we extend ¢ and r to the Riemann sphere minus the finite set of
(necessarily) isolated singularities. The relation e9(*) = r(u) continues to hold on this set. But
r(u) has only removable singularities and poles and e?(*) has only removable singularities and
essential singularities. Therefore, all singularities are removable. But a rational function with only
removable singularities on the Riemann sphere is necessarily constant. Hence ¢ and r are constant.

Our proof is complete. O

Hence. R(t)/S(f) must be constant and equal to 1 by assumption of independence and this
equality implies that [[—2sA||[ —2tB| = |[ —2sA —2tB| in the N(u, I) case, which in turn implies
that AB = 0, and in the N(u, V) case using the transformation V~!/2?y — » with V positive
definite. we obtain AV B = 0.

'] am very grateful to Professor S. W. Drury (McGill University) for giving me this proof.
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3.2.8. Proof by Taussky (1958) using Matrices with Property L

Another important paper on the Craig-Sakamoto Theorem, and well worth attention, is the 1958
paper by Olga Taussky [231] . She explained very clearly the conditions in which the Craig-
Sakamoto Theorem holds, using matrices with the so-called property L, which was introduced
in 1952 by Motzkin and Taussky [148]. The square complex matrices A and B are said to have
property L whenever the eigenvalues of sA +tB are equal to sa; +¢3; for all values of s and t and
for a certain fixed pairing of the eigenvalues a; of A and B; of B. Then Taussky [231] noted (in
paragraph v on page 139) that A pair of hermitian matrices with property L is commutative,”
referring to the 1952 paper by Motzkin and Taussky [148] for a proof. Moreover Taussky goes on to
note that ~This is even true for normal matrices.” Taussky [231] proved that if the real symmetric
matrices .4 and B satisfy

Ao — Al - |AM, — Bl = A*|Al, — A — B],, (3.51)

cf. (3.28). then A and B have property L.
See also the proof discussed above by Aitken [3] and the new proof in Theorem 32 below by Li
and Styan [118] in our Chapter 4.

3.3. From 1960 to 1979

After the publication of the proof by Ogawa (1950) and Laha (1956), efforts were made to find
further results and correct proofs of the Craig-Sakamoto Theorem. In 1960, Laha and Lukacs [111]
extented Kawada's (1950) result to the following:

Theorem 25 (Laha and Lukacs 1960) Let £ ~ N(0./). If Q = r'Ac +b&'r and L = 't are
uncorrelated of order (2. 2). that is E(Q'L7) = E(Q*)E(L) fori=1,2 and j = 1.2, then ¢'A =0
and c’'b = 0.

Fromn this theorem, they then deduced that @Q and L are independent if and only if they are
uncorrelated of order (2, 2).

3.3.1. Pao-Lu Hsu’s 1962 Lecture

According to Fang and Zhang (1990) [52, Lemma 2.8.3, pp. 77-79]!2 Pao-Lu Hsu presented in a
1962 lecture' [74] the following theorem!4:

Theorem 26 (Pao-Lu Hsu 1962) Let A and B be real symmetric matrices with oy, ...,a, and
31, ..., B being the nonzero eigenvalues of A and B respectively, with a = rank(A) and b = rank(B).
If the nonzero eigenvalues of A+ B are a,, ...,a,, 51, ..., O, then AB = BA = 0.

12See also Zhang and Fang {247, Lemma 2.8.3, pp. 123-125].

13 Apparently not published by Pao-Lu Hsu.

[ am very grateful to Chang-Yu Lu and Bao-Xue Zhang for bringing this to my attention, and to Ka Lok Chu
and Professor Kai-Tang Fang (Hong Kong Baptist University) for providing me with a copy of Zhang and Fang
[247).
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Proof. First, assume that @ + b = n so that A + B is of full rank. Since we can diagonalize A,

then without loss of generality, let
Da 0
A= , (3.52)
0 o0

where D, = diag(ai, ..., as). Since B is symmetric, there exists an orthogonal matrix P such that

0 O
P'BP = , (3.33)
0 Dy

where Dy = diag(31, ..., 5). We now partition the matrix P similarly to 4 and P'BP,

C F
P= . (3.54)
E G
with Cisa x a and G is b x b. Then
C F 0 0 C' FE' !l F 0 0 I 0
B= = . (359)
E G 0 D, F G 0 G 0 D F' G
It is easy to see that,
I F D, O I 0
A= i (3.56)
0 G 0 0 F' G
I F D, 0 I 0
A+B= ) (3.57)
0 G 0 D F' G

Since the set of nonzero eigenvalues of XY is the same as the set of nonzero eigenvalues of Y'Y for
any pair of conformable matrices X and Y, it follows that the set of nonzero eigenvalues of 4 + B

equals the set of nonzero eigenvalues of

D 0 I 0 I F Dn O 1 F
H = = . (3.38)
0 Dy F G 0 G 0 D, F' F'F+GG

Since P is orthogonal we have F'F + G'G = I. So,

D, 0 I F
H= : (3.59)
0 Do) \F I

Since these determinants are equal:

Therefore,
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=|I - F'F|, (3.60)
F' I

we obtain

r s Da 0 I F a b
[Me:II3 =14+ B =1H|= = [l I3l FFy
i=1 i=1 0 Db oI i=1 =1

= |[[-F'F|=1
> F'F=0=F=0. (361)

The implication (3.61) follows from the fact that the eigenvalues of F’F are all nonegative and at
most equal to 1, since F'F + G'G = I. Hence G'G = [ and so

r o 0 0 I 0 0 0
B = = {3.62)
0 G 0 Dy 6 ¢ 0 GDWG’

and AB = B4 = 0. Moreover, it can easily be proven that the theorem holds in the case where
r+ s < n by a similar argument. O

[n the same year, Bhat (1962) [21] showed that a quadratic form @ is independent of the sum
of a finite number of nonnegative definite quadratic forms @, + Q2+ - - -+ @, if it is independent of
each of them separately. During the years 1962 and 1963 in India, the late C. G. Khatri in [93] and
[94] established necessary and sufficient conditions for second-degree polynomials in normal vectors
to be independently distributed or to follow Wishart distributions. Moreover, he extended Bhat’s
results and showed that Rao’s result (1962) on quadratic forms, when B is singular, is false if it is
not specified that the degrees of freedom of the chi-square distribution were equal to the rank of
V". As for the conditions he gave for the independence of second-degree matrix polynomials, they
are equivalent to the ones found by Ogasawara and Takahashi (1951) for quadratic forms!3.

In the following year, Good (1963) [56] presented a series of results that immediately follow from
the Craig-Sakamoto Theorem and that cover both quadratic and linear forms. His first Theorems 1
and LC are equivalent to the case where £ ~ N(0, ') with V' being non-singular in Theorem 1 and
V7 being possibly singular in Theorem 1C. The conditions Good found are the same as stated by
Sakamoto [196], Matusita [138], and Ogasawara and Takahashi [157]. [n addition, Good presented
two other theorems (his Theorems 2 and 3) on the independence of £’Az + a’r and x'Bz + bz
and on the independence of more than two quadratic forms. Although Good (1963} contains some
lacunas that were noticed by Shanbhag (1966) [218], these were easily corrected by Good (1966)
[56]. For his part, Shanbhag (1966) showed that for 4 being nonnegative definite, the conditions
for independence are reduced to AVBV =0 and AV By = 0; and if both A and B are nonnegative
definite then AV B = 0 is necessary and sufficient for independence.

The Craig-Sakamoto Theorem was gaining in popularity and appeared in four books:

15See also Styan (1970) [225]
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e The Advanced Theory of Statistics, Vol. I: Distribution Theory, by Kendall and Stuart [89];
e Continuous Univariate Distributions, by Johnson and Kotz [83];
e Introduction to Mathematical Statistics, by Hogg and Craig [72]; and

e Linear Models, by Searle [209].

However, many found that the information available in these books was insufficient.

3.3.2. Searle’s Linear Models Proof for N(u, V)

As noticed by Nagase and Banerjee (1973) [150], Searle (1984) [208], Provost (1994) [175] and
others, the proof given in the well-known Linear Models book by Searle [209, Th. 4, pp. 59-60] is
incomplete. Searle stated that with £ ~ N(u, V), with I possibly singular, then AV B =0 if and
only if £’ Ar and x'Br are independent. To prove this, he proceeded as follows: Independence of
r’Ar and ' Br implies that their covariance is equal to zero. Hence,

var(r’'Azx + £'Bz) — var(z’ Az) — var(z'Bz) = 0

2tr[(A+ B)V]? +4p/ (A + B)V(A+ B)p — 2tr(AV) — 4p' AV Ap — 2tr(BV)? —4u'BV Bpu = 0

and
tr(AVBV) + 2 AV Bu = 0. (3.63)

So far. the argument is correct. Searle, however, then claimed that {3.63) holds for all ¢ and

therefore
tr(AVBV) = 0; (3.64)

but (3.63) holds only for the specified u = E(z), and (3.64) alone does not imply

v
( ) AVB(V :u) =0. (3.65)
M

Searle also claimed that
tr(AVBV)=0= AVB = 0; (3.66)

but this implication does not hold in general for if A =V = and

I o
B= (3.67)
0 —I

then tr(AVBV) =tr(B) =0 but AVB =B # 0.
When A and B are both nonnegative definite, however, the implication does hold—we may now
write 4 =SS’ and B = TT' and
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tr(AVBYV) = te{SS'VTT'V) = tro(S'VTT'VS) = tr[S'VT(S'VT)] > 0 (3.68)

with equality if and only if S'VT =0 AVB = 0.

In the early 1970s, several researchers tried to clarify various aspects of the development of the
Craig-Sakamoto Theorem. Scarowsky’s MSc thesis (1973) [203] gave a good review of the conditions
required for independence for quadratic, linear, and bilinear forms. His thesis is a reliable source
of correct proofs and the history of the theorem. It contains one of the most complete lists of
references available, and the bibliography in the present thesis was built on it.

Two extensions to Laha’s result (1956) [110] (one in 1973 and the other in 1976) and a counter-
example to Searle’s proof were presented by Nagase and Banerjee [150, 152]. A nice historical
account of the Craig-Sakamoto Thecrem was presented in a 1974 lecture by Rayner [189]. Moreaver,
a 1977 paper by Tan [230] filled in more details, and in 1978 Krafft [108] presented a different proof.

3.3.3. Krafft’s 1978 Proof

Following the proof by Searle in his Linear Models book as just discussed, in 1978 Krafft [108]
started by noting that independence implies that the covariance cov(r’ Ax, z'’Bxr) = 0 and so he
obtained

tr{AVBV) + 24" AV Bu = 0. (3.69)

Krafft [108] then claimed that (3.69) implies that g’ AV By = 0 for all u. Setting u 4+ v = p we
obtain

(' + ')AV B(u+7v) =0
u'AVBu + vV AVBv + ' AVBv + ¢/ AV Bu = 0. (3.70)
Thus u’AV Bu = 0 and v’ AV Bv = 0; and knowing that (AV B) = BV A, we obtain
u'(AVB+ BV A)v =0 Y u,v. (3.71)
Letting u and v be. in turn, the columns of an identity matrix, (3.71) yields
AVB+BVA=0= AVB = -BVA. (3.72)
To show that this implies AV B = 0, Krafft [108] now put s = ¢ in the equation
[I—sA|-[I-tB|=|l —sA—1B]|, (3.73)

which must hold under the assumption of independence. Then, letting 77’ = V. T AT = A and
T'BT = B, equation (3.73) becomes

[ = tA|-|[f —tB| = |I — (A + B)|. (3.74)

Since A and B are symmetric and the numbers of their nonzero eigenvalues are equal to their ranks,
the determinants on the left-hand side of (3.74) are polynomialsin ¢, of order rank{A) for the first
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term and rank(B) for the second; and the determinant on the right-hand side is a polynomial of
order rank(A 4+ B). Thus we have rank additivity:

rank(A) + rank(B) = rank(A + B). (3.75)

Diagonalizing A with the orthogonal matrix U yields

) D 0
U'AU = . (3.76)
0 0
where the diagonal matrix D is a x a and nonsingular, with a = rank(./i) = rank({A). We write
) G1: G2
U'BU =G = . (3.77)
ta Gao
where G; is a X a. Multiplying these two matrices yields
. . D o G G2
U'AUU'BU = . (3.78)
0 0 ’l'.Z 622
Since U is orthogonal and TT' = V, T"AT = A, T"BT = B, this becomes
DGy DG
U'T"AVBTU = . (3.79)
0 0

Similarly for —BV A,
) . G, Gi» D 0 GuD 0

—U'BUU'AU = —U'T'BVATU = — - . (3.80) -

'12 GZL’ ’l'.!D 0

Since AV B = —BV A, we have

DGU DGlg GuD 0
== . (3.81)
0 0 "D 0

For this equality to be true, G2 must be the zero matrix. Thus

DG,; 0
UTAVBTU = , (3.82)
0 0
and so
. Gu 0
U'BU = . (3.83)
0 Ga

Adding U’AU and U’BU, we have
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(3.84)

. , D+Gy 0
U'AU +U'BU = .
0 Gaa

Now, one can see that rank(A + B) = rank(D + G11) + rank(Ga22) = rank(A) + rank(B) and that
diagonalizing A implies rank(A) = rank(D), so that rank(B) = rank(G,) + rank(Ga2), giving

rank(D + G1;) = rank(D) + rank(G1;) > rank(D} = a, (3.85)

since the @ x a matrix D has full rank and rank(G,,) > 0. Hence G|, = 0 and thus

_ 0 0
U'BU = : (3.86)
0 Ga

Therefore, U'T"AVBTU =0 and AVB =0.

While this proof by Krafft [108] does correctly show that
AVB=—BVA and |[[—{A|-U—tB|=|[—-tA—tB] = AVB=0. (3.87)
the assertion that independence of £’ Az and z’Bz implies that
tr(AVBV) + 20 AVBu =0 (3.88)

must hold for all y is clearly false, cf. Searle’s proof above'®.

3.4. From 1980 to 1996

During the eighties and early nineties, research on the Craig-Sakamoto Theorem focused on distin-
guishing the correct proofs from the unsatisfactory ones, on completing the incomplete ones, and
bringing to light some proofs that were considered to deserve more recognition.

The 1985 paper written by Zielinski [248] mentions a very short proof and may leave the reader
confused because of its lack of explanations. One should understand that Zielinski's goal was
to shorten Ogawa’s 1949 [162] proof for the N(0, /) case which, in this article [248], he called
“Nabeya’s™ proof. Zielinski claimed that “his proof was shorter than the one presented by Rao
and Mitra (1971) [185] and that there was no need to rely on convergence in Banach spaces™.

3.4.1. Zielinski’s 1985 Proof

Using Lemma 13, in 1985 Zielinski [248] let a,, ..., a.; by, ..., bs; g1, ..., g: be orthonormal systems of
eigenvectors of A, B, and C, respectively, and each of these vectors are related to the eigenvalues
Qpy ey @pl 31y ooy 353 Y1,y ..., Ve Of eigenvectors of A, B, and C. Since C = A + B, then the vectors

16See subsection 3.3.2 of this Chapter.
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ay,...,ar; by, ..., b, form a basis for R(C). Then, Zielinski [248] stated that by comparison of the
matrix representations of the linear operator A + B : R(C) — R(C) at the given bases, the
corresponding Gramian determinants coincide. However, as Ogawa (1993) [163] showed, this is
only true when |L'L| = 1, where L and L’ are the matrices that diagonalize A and B. Therefore,
the vectors ay, ..., ar; by, ..., b5 are orthogonal. In others words, Zielinski claimed that this argument
is necessary and sufficient to show that for each cx there corresponds a unique a; or b; for all ¢, j, &
or that this correspondence is isomorphic. Therefore, a;-...-ar-B1-...-Fs =41--..-eand t = s+r
which implies AB = 0.

The next proof was first published in 1988 by Reid and Driscoll [192] and revised in 1995 by
Driscoll and Krasnicka [43].

3.4.2. Surveys by Reid & Driscoll [192] and Driscoll & Krasnicka [43]

In this proof, the general case of the Craig-Sakamoto Theorem is shown by using cumulants, but
first, let us recall some facts about them. A cumulant generating function is equal to the natural
logarithm of the moment generating function of a variable y and we will denote the hth cumulant
by kn(y). Moreover kp(sy) = s"kn(y) for any constant s and the two random variables y; and
y» are independent if and only if ks(sy1 + ty2) = sr(sy1) + ka(tya) for all integers h and all real
numbers s and ¢t. As shown at the end of Chapter 2, the jth cumulant of the quadratic form £'C'z.

where £ ~ N{u, V), is:
kj(Clp, V) =22~ (h = Yr(CV)" h + np'C(VC)* ' . (3.89)

To prove the necessity part of the Craig-Sakamoto Theorem, Driscoll and his co-authors used
a system of homogeneous linear equations Av = 0 involving the eigenvalues of sAV. {BV'. and
(sA+tB)V, with A the matrix of coefficients and v, the vector of unknowns.

Let s and ¢ be fixed, but arbitrary, and let {Ay, ..., Az} denote the union set of nonzero eigenval-
ues belonging to either sAV, BV, or (sA+tB)V. Let C represent either sAV , tBV, or (sA+tB)V.
then the multiplicity of A; being an eigenvalue of CV is denoted as m; ¢, the projection matrix as
Pi ¢ and we write g; c = p'CP; cpand (CV)A =3, )\“}-P,-,C. So the Ath cumulant of the quadratic
form »/C'z becomes

k
ki (Clu, V) = 2271 h = 1Y Mmic + A ic (3.90)
i=1
By the assumption of independence, &, (sy1 +ty2) = Ku(sy1)+&n(tys), where y, and y» are random
variables; then equation (3.90) becomes

k k

Z APy ga4eB — Misa — My + th\?"lm,,,me — pisa—pieg =0 (3.91)
i=1 i=1

for all A. The first 2k of these equations have the matrix form

Av =0, (3.92)
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where A is a 2k x 2k matrix with elements A;; = /\} and Ajiqpj = iz\} for i = 1,....,2k and
Jj=1,...,k; and where v is a 2k-vector with elements v; = m; s 44:8 — Misa — Mmi p and v =
HisA+tB — Hisa— piqp lori=1, .. k.

To prove that the vector v = 0, we will show that the matrix A is nonsingular and thus the only

solution to this system of equations would be v = 0. First, we multiply columns &+ 1, k+ 2, ..., 2%
of A by A, Aa, ..., Ax respectively and permute rows and columns to obtain

(X;”‘ AT o AR 2k )
Ly, ood) = ' - ' . (3.93)
AT O2kA? oo AR 2kAD
\ AL 2kA, e Mg 2k )

The determinant is found by mathematical induction and proved to be equal to

[Lel = (D[N TIv =20t i=1 0k (3.94)

i<
By direct computation. we find
L] = =A3; [La] = AFA3 (A1 — A2)t. (3.95)

Assume that (3.94) holds for Lix_; with the above equalities for [L,| and |La| establishing the
induction base. Let A < 3 and 1 > m > &k where m is fixed but arbitrary. By permutation of
columns 1 and 2m — 1 and then columns 2 and 2m, the matrix is then pattitioned between the
second and third rows and the second and third columns as

A B
Li(Am: Azs oo Ame 1, A1 Amap 1y 2oy M) = : (3.96)
C D

say. where D is the matrix Lg_j (M2, ..., Am=~1, A1. Ams1, ---, Ak). By hypothesis, D is nonsingular
and we have

=|D|-|A-CD7'Bl=[A~-CcD'BI(-* [T A JI =20t (397
C D igFm  i<j.igm,j#Em

Since m was fixed but arbitrary, it follows that |L| has the factors (—1)*~!. A3 for | < i >k, and
(Ai —Aj) for 1 € i< j < k. The power of the determinant of Li_, is 4(k — 1) by hypothesis, and if
we add the powers of the above factors, we obtain 3 +4(k— 1) = 44 — 1. In addition, we know that
|Lk| has degree 4(k — 1) as a polynomial in any ); because that is the largest exponent attainable
by multiplying elements in the different rows and columns. Hence, the only factor in |Li| missing
must be a constant, let us call it cx. If m =1 we get

k
|4 —CD™'Bl = e AT [J (A — A5)*. (3.98)

j=2
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The coefficient of A{*~! on the right-hand side of (3.98) is —1. Hence cx = —1 and we have proven
(3.94). Because all A; are distinct and nonzero, the matrix Ly is nonsingular and we conclude by
equation (3.90) that m; s a4:B — Misa —mi:p =0 and p;i sa4¢e8 — pisa —pieg =0fori=1, .. k.
Therefore

Misa+tB = Misa— Mi:B (3.99)

Bisa+tB = MPisA — HitB (3.100)

and we obtain the following equalities

tr(sA + tB)V" sPtr(AV)? + thte(BV)P (3.101)
g (SA+tB)V(sA+tB)* 'y = s"pAWVAP 'u+thy B(VB)'u (3.102)

for all A and, because they were arbitrary, for all s and ¢t. Expanding the coefficient of s?¢* in
(3.101), using k = 4, and writing V = TT’, we have'”

tr(AV BV + BV AV)? + 2tr(AVBV)(AVBV) =
tr(AV BTT' + BVATT')? + 2tr(AV BTT')(AVBTT') =
tr(T' AV BT + T'AV BT)? + 2t(T' AV BT)(T'AVBT) = 0. (3.103)

Both terms on the left-hand side of (3.103) are in general nonnegative, and since they are here
required to add up to 0 they must each be equal to 0. Hence T"AV BT =0 and VAVBV =0. It
follows from this and from (3.102) using h = 4 that

(T'AV Bu) (T'AVBu) + (T' BV Au)' (T' BV Ap) = 0, (3.104)
and hence VAV By =0 and VBV Au = 0. Finally, setting h = 2 one has y’ AVBu=0. O

With this proof, Driscoll and Krasnicka (1995) updated their account of the development of the
Craig-Sakamoto Theorem and added a section on the conditions found by Kawada (1950) [87]8
which are weaker than independence.

Then in 1992, Mathai and Provost {135] devoted an entire book to the distribution of quadratic
forms in normal variables and provided valuable details concerning the independence of two
quadratic forms. The proof presented there for the N(0, /) case is similar that by Ogasawara
and Takahashi (1951); the proofs by Kawada (1950), Aitken (1950) and Lancaster (1954) are also
mentioned. To show the case where the dispersion matrix V' # [ but positive definite, they used
the same transformation introduced by Aitken (1950). In the case where V' is only nonnegative
definite, they let ¥V = T7T’ and symmetrized the moment generating function obtaining the form

I = 2sT'AT — 20T’ BT|~'/? = |I — 2sT' AT|~'/* . |I — 2¢T' BT|~/?

to adapt it to their proof for N(0, ). To show that the theorem holds for V' positive definite and
z ~ N(u,V), Mathai and Provost [135] presented a very short version of the proofs by Ogawa

I7CI. Ogasawara and Takahashi's proof for the N(0, /) case, subsection 3.2.5, and Kawada's Trace Lemma (our
Lemma 18 above).
18C(. Kawada's proof in subsection 3.2.2 of this Chapter.
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(1950) and by Laha (1956), but without proving Laha’s Lemma (our Lemma 18 above). As for
the general case with V' nonnegative definite, they used the very same lemma to demonstrate that
the independence of quadratic forms is equivalent to the conditions obtained by Ogasarawa and
Takahashi (1951). These two last proofs are short and again omit a proof of Laha’s Lemma. See

also the proofs by Provost {1994, 1996) which we will discuss below in Section 3.4.4.

Our next proof was published in 1993 by Ogawa [165]'°.

3.4.3. Proof by Ogawa (1993)

We will show that if for real symmetric matrices A and B, cf. (2.1) in Chapter 2,
[ —sA—=tB|=|I-sA|-|[-tB] Vreal s and ¢,

then AB =0.
If we put s =t = X in (3.105), then we obtain

IAlw = Al - ]Afn — (+B)| = A"|AL, — (A + B)],
cf. (3.12) in Chapter 3, while if we put s = —t = A in (3.105), then we have

Aln = Al - |[Mn = (=B)| = A"|AL, — (A — B)).

(3.105)

(3.106)

(3.107)

From (3.106) we see that the set of nonzero eigenvalues of A + B is the union of the sets of nonzero
eigenvalues of A and nonzero eigenvalues of B, while from (3.107) we see that the set of nonzero
eigenvalues of A — B is the union of the sets of nonzero eigenvalues of A and of nonzero eigenvalues

of —B. Hence
tr((A + B)*) = tr(A?) + tr(B*) = tr((A — B)?),
and so
4tr(A®B?) + 4tr(A3B) + 2tr(ABAB) + 4tr(AB%) =
4tr(A2B?) — 4tr(A3B) + 2tr(ABAB) — 4tr(AB%) = 0.
Hence

4tr(A2B?) + 2tr(ABAB) = 0,

(3.108)

(3.109)

and Alé = 0 follows at once from Kawada’s Trace Lemma (Lemma 18 in our Chapter 3} and our

proof is complete. O

Our next proof is by Provost (175, 176] and uses diagonalization and properties of determinants.

91 am very grateful to Professor Junjiro Ogawa for drawing this proof to my attention.
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3.4.4. Proofs by Provost (1994, 1996)

To show that if for real symmetric matrices A and B, c¢f. (3.105) above,
| —sA—tB|=|[—sA|-|[—tB] V real s and ¢, (3.110)

then AB = 0, Provost [175, 176] chose s so that |[ch(sA)| < 1 and hence [ — sA is nonsingular. He
then substituted A" = (/ — sA)~! in (3.110), which then becomes

[ ~tKB|=|I~tB| Vrealt. (3.111)

Let G be an orthonormal matrix such that G'AG = D = diag(a,, ..., 24,0, ....0), where a is the
rank of 4 and ay,...,a, are the nonzero eigenvalues of A. Then, using the geometric series
expansion for A’ = (I — s4)~!, cf. Lemma 7 in our Chapter 1, we obtain

1G] -1 = Y (s A)*IGG'B| - |G| = [G7] - | — tB] - |G (3.112)
k=0
We set
Hyy Hia
G'BG =H = , (3-113)
l2 Hax

where H;; is a @ x a. We now observe that
G'A*G = G'AGG'AGG' - - -GG'AG = (G’ AG)* = diag(a?}, ..., %0, ...,0). k=1,...(3.114)
and so, using Lemma 6 in Chapter 1, we see that
20 (e =]
G'(I-sA)7IC = @'Y (s4)G =) a4
k=0 k=0
o0
= [+ s*diag(a}.....a5,0,....0) = diag(f", ... f*. 1, ... 1), (3.115)
k=1
where fU) = 5777 (saj)¥, j=1,...,a. Writing H = G' BG, we obtain
| — tHdiag(f", ..., f) L., )= |[ - tH). (3.116)

So by partitioning H is terms of Hyy, Hy2, H{,, and H1a, we have

-t

[a—tHudiag(f“),...,f(“)) —tHI‘_) [Ia—tHu] —tng

tH{.diag(f), ..., fa)) lpea —tHan tH{, {Ip—a —~ t Haa]

. (3.117)

or equivalently

[T — tHaa| - [T — tHydiag(f O, ..., ) — tH o] — tHan) "'t H diag(f). ..., £(9)]
= |l —tHa)-|[({ —tHy\ ) ~tH)2(/ —tH'_r'_))_lingl- (3.118)
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Assuming that |t]| is small enough so that f — tH22 > 0, we may cancel |/ — ¢t H22| on both sides of
(3.118). Postmultiplying by the determinant of D, = diag(l — tay, ..., 1 — ta,), and writing

W =tHy +tH Y _(tH») tH],, (3.119)
k=0
we have .
1D — W[ =11 -wW|[](1 -ta;). (3.120)
j=1

Comparing the coefficients of f(2), we obtain

- < = tr(W*)
H(—taj) = |[-W] H(-taj) = —logli-w|=Y_ — =0 (3.121)
i=1 j=1 h=1
The coefficient of ¢* is
te(H{y) + tr(Hi2H1a), (3.122)

found by letting A = 2 in (3.121) and by letting A = 1 in (3.121) and k = 0 in (3.119). This
coefficient must be 0 and so both H;, and H,2 are zero?9. Therefore

0 0
2G'BG = (3.123)
0 Ha

and G'BGG'AG =0, 50 G'BAG =0 and BA = 0 which is equivalent to AB = 0. This completes
Provost’s proof. O

In 1994 Provost [175] also showed that the proofs by Searle [209] and Krafft [108] were not
correct; he showed that u’ AV Bu = 0 holds for a specific 4 and not for all 4. In addition, Provost
[173] gave another proof based on some properties of the trace. In 1996 Provost [176] gave proofs
for the simple case N(0, [), the general case N(u, V'), with V positive definite, and for linear forms
with  ~ N(0, [).

3.5. Overview: 1943-1996

In conclusion we believe that:

e The Craig-Sakamoto Theorem was first stated in 1943 by Craig [35] for N(0, /) and in 1944
by Sakamoto [196] for N(0, V), with V" positive definite

e [n 1944 Hotelling [73], attempting to complete the proof by Craig [35], made a “subtle gap”
as explained by Driscoll and Gundberg (1986); see also Ogawa (1949, 1993) and Ogawa and
Olkin (1997)

20 As seen in many earlier proofs the trace of a nonnegative definite matrix is always nonnegative and zero if and
only if the matrix itself is zero.
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e The 1946 proof by Ogawa [158] for N(0, I) is incomplete as pointed out by S. Nabeya; see
also Ogawa (1949, 1993) and Ogawa and Olkin (1997)

e The 1949 proof by Matusita [138] is the first complete proof of the Craig-Sakamoto Theorem
and is for N(0, V') with V positive definite

e The 1949 proof by Ogawa [162] for N(0, /) is complete

e In 1950 Kawada [87] gives a new complete proof of independence using results by Matérn
(1949) on uncorrelatedness and presents a useful “Trace Lemma”

e The 1950 proof by Carpenter [27] for N(u, I) refers to Craig (1943) and Hotelling (1944) for
N(0, I) and so the necessity part is incomplete; the proof of “Laha’s Lemma” is adequate—see
also Ogawa (1950, 1993) and Ogawa and Olkin (1997)

e The 1950 proof by Aitken [3] for N(0, V), with V' positive definite, is cornplete

e The 1950 proof by Ogawa [164] for N(u, V'), with V positive definite, is complete (and includes
a complete proof of “Laha’s Lemma” for real variables)

e In 1951 Ogasawara and Takahashi [157] gives first complete proof for the most general case
N(u. V), with V possibly singular; in addition, a relatively short proof is given for N(0, /)

e In 1956 Laha [110] introduced a different proof of the Craig-Sakamoto Theorem for N(y, I),
and extended the result to second-degree polynomials and to bilinear forms; presents “Laha’s
Lemma” (for complex variables), but without proof

e In 1958 Taussky [231] used pairs of matrices with property L to prove the necessity part of
the Craig-Sakamoto Theorem for N(0, /) and observed that the resulit still holds when the
matrices are complex normal

e In a 1962 lecture Pao-Lu Hsu [74] presented a theorem on eigenvalues that is useful in proving
the necessity part of the Craig-Sakamoto Theorem for N(0, )

e The 1971 proof for N(u, V), with V' possibly singular, in Searle’s Linear Models book is
incomplete, but is completed in Searle’s 1984 detailed class notes [208].

e The 1978 proof by Krafft [108] for N{u, V), with V" possibly singular, is incomplete

e The 1985 proof by Zielinski [248] for N(u, V'), with V' possibly singular, is short but not
completely clear

e The surveys by Reid and Driscoll (1988) and by Driscoll and Krasnicka (1995) include com-
plete proofs for N(u, V'), with V possibly singular

e New proofs by Ogawa (1993) and by Provost (1994, 1996) for N(u, V'), with V possibly
singular appear to be complete.
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Chapter 4

Recent Developments: 1997-2000

In this last chapter, we introduce new proofs presented in the last few years. Some of these proofs
are unpublished; to complete the current picture on the Craig-Sakamoto Theorem, however, we
believe that they should appear in this thesis.

A very different proof to the ones already in existence was published in 1997 by Harville and
Kempthorne [69] for second-degree polynomials (nonhomogeneous quadratic forms) in the most
general case with nonzero mean vector u and with dispersion matrix V' possibly singular. This
proof requires a lemma similar to Laha’s Lemma but uses only polynomials in one variable instead
of two as in Laha’s Lemma and thus confirms the validity of the Craig-Sakamoto Theorem for
quadratic forms and second-degree polynomials.

4.1. Proof by Harville and Kempthorne (1997)

Theorem 27 (Two second-degree polynomials with V' possibly singular) Let r be an nx
1 random vector whose distribution is N(p, V'), with V being of rank r < n, and let q, = 2a’c+x' Ar
and g2 = 2’z +z' Bz, where a and b are n x 1 nonrandom vectors and A and B are n xn nonrandom
symmetric matrices and a* = a + Ay and b~ = b+ Bu. Then, q, and g2 are independent if and
only if

VAV BV 0 (4.1)
VAV = 0 (4.2)
VBVa" = 0 (4.3)

a* v 0 (4.4)

are satisfied.

43



Proof of Sufficiency. Suppose that the above equalities hold. Since V is nonnegative definite,
we may write V' = L'L, where L is r x n, with r = rank(V') < n. It then follows easily (using e.g.,
Lemma 3 in Chapter 1 of Searle [209]), that (4.1)—(4.3) are equivalent to

LAVBL =0, LAVb =0, and LBVa" =0. (4.5)

Using Lemma 5 in Chapter 1, there exists an r x 1 vector = ~ N(0, /) such that z = u+ L’=. Let
us write g = La®, h=Lb", G=LAL', and H = LBL'. The (r + 1) x 1 vectors

gI: yl hlz hl
5= = z and o= = z (4.6)
G: G H:= H

are uncorrelated if and only if they are independent. The cross-covariance matrix of =) and za is

g '\’ q gdh ¢'H a'Vb~ a”'VBL'
G H G Gh GH LAVb" LAV BL'

and this is equivalent to (4.5) and (4.4) and thus to (4.1)-(4.4). Let

q1 =29’z + G+ and gr =2h'x+'H:. (4.7)

Since
qgr=2dc+z' Az =2a"(p+ L'z2)+ (u+ L'z A(p+ L'z) =2a'p+ p' Ap + q} (4.8)
qa=2"'c+ B =2'(u+ L'z)+(u+ L'z)B(up+ L'z) =2b'p+ ¢’ Bu + ¢, (4.9)

it follows that ¢, and g2 are independent if and only if ¢ and ¢35 are independent.

We may, however, express g7 and ¢3 as (homogeneous) quadratic forms in z; and za:

0 g¢g'G- 0 hH-
:; and g3 =z 2a, (4.10)
G g G- H~h H~

where G~ and H~ denote, respectively, symmetric generalized inverses of G and H, so that
GGG =G and HH~H = H. Hence independence of z; and z2 implies independence of ¢ and
g5, and our proof of sufficiency is complete. O

- __
9 =<

Proof of Necessity. In this part of the proof, we need the following result:

Lemma 28 Let ri(x), s1(x) and s2(z) represent polynomials (with real coefficients) in a real vari-
able r. Let

ra(z) = vz —A)™ (T = A) ™, (4.11)
where k is @ nonnegative integer, my, ..., my are all integers strictly greater than zero, v # 0, and
AL, ..., Ak are real numbers. Assume that

81(1') - 7‘1(1,') (4.12)

s2(r) ~ ra(z)

for all but the roots of s2(x) and ro(z). Then there exists a real number a such that r|(z) = arz(z)
and si(z) = e®*sa(zx) for all z.
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A proof of this lemma is given by Harville and Kempthorne [69] but will be omitted here.

To prove necessity we note that ¢; and g2 are independent if and only if ¢; and ¢35 are indepen-
dent, where ¢7 and ¢35 are as defined in (4.7) above. Let m(-,-) be the joint moment generating
function of ¢} and ¢5. Let ¢ and d be positive scalars such that I — 2tG — 2uH is positive definite
for any ¢ and u where {t| < ¢ and |u| < d, thus implying that [ — 2tG is positive definite for any
t where |t| < ¢, and I — 2uH is positive definite for any u where |u| < d. Hence, with [t] < ¢ and
|u] < d, the moment generating function becomes:

o(t,u) = |I —2G ~ 2uH|~/? exp{2(tg + uh)’ ([ — 2tG — 2uH)~'(tg + uh)}. (4.13)
Now, assuming that ¢; and ¢» are independent, then ¢} and g3 are independent as well implying
that ¢(t, u) = ¢(t,0)¢(0, u) and so,

og |l —2¢tG — 2uH| ___4{(tg+uh)'(¢g+uh)_ t%g'g  uPh'h } (4.14)
[ —2tG|| — 2uH| [ ~2tG - 2uH|| (I —-2tG}) (I-2uH]|)[" )

|

We know that

r

I —2tG| = [J(=A)t = ATY), (4.15)
i=1
where Ay, ..., A, are the nonzero eigenvalues of 2G. Weset (I —2uf)~! = P'P, P being nonsingular
and 7, ..., 7» the nonzero eigenvalues of 2PGP’; we have
|1 = 2tG - 2uH| = [I - 2uH|[[(-m)(t = 77"). (4.16)

i=1

With u fixed, the determinants |/ — 2tG|, |I — 2uH|, and |[[ ~ 2tG — 2uH| are polynomials in ¢
only. Since every element of the inverse of a matrix can be expressed as the ratio of a cofactor and

the determinant, we have

o I =2G—2uH| _ filt,w)

ST — 2G| —2uH| ~ fa(t,u)’
where fi(f, u) is a polynomial in ¢t and fa(t, u) = |/ ~2tG||I —2uH||[ - 2tG —2uH|. Thus applying
Lemma 28 with r = ¢, 5.(¢) = |[ — 2tG — 2uH|, s2(t) = | — 2tG||I — 2uH|, ri(t) = fL(t,u), and
ra(t) = fa(t, u). yields fi(¢, u) = afa(t, u) and that

1 (4.17)

[l —2tG — 2uH| = e*|I — 2tG||I — 2uH|. (4.18)
Now, setting a = 0 in (4.18), we have e* = ] and hence
[ —2tG —2uH| = |I —2tG||I — 2uH| (4.19)
and f(t,u) = 0. So GH =0, which implies that VAV BV = L'GHL = 0.
It can be shown that

o f _
Otdu [t=u=0 -

8g'h (4.20)

and that
otf
&zau:’ |te=u=0

=64(Hg)' Hg + (Gh)'Gh. (4.21)
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Thus, we obtain ¢’h = 0,Gh = 0, Hg = 0, and conclude that

a*Vb* =a"L'Lb" = g'h =0 (4.22)
VAV = L'LAL'LY = L'Gh =0 (4.23)
VBVa® = L'LBL'La" = L'Hg = 0, (4.24)

and our proof is complete. O

4.2. Olkin’s 1997 Proof using Determinants

Also in 1997, a very different proof for the simplest case was provided by Olkin [169] using properties
of determinants and the following result due to Sylvester, cf. e.g., Aitken [2, p. 87]. See also Marcus
[132].

Lemma 29 (Sylvester’s Result) Let C (i1, ..., i) denote the determinant of a principal subma-
triz of Caxn with rows and columns iy, ...,ix and let D = diag(z, ..., zn) be a diagonal matrir.
Then

|ID+C|=|C|+ ZzIC('), e )+ leng(& T ) R Z.rl cezp1C(n) + H-rs
(4.23)

holds.

Proof. Assuming independence and, without loss in generality, that A = D, = diag(a;.....a,) is
diagonal, and replacing all the negative signs by positive signs in |/ — sA —tB| = [ — sA||[ —tB|.
we get

|f +sA+tB|=|I+ sA||l[ +tBJ. (4.26)

Let r£; = 1 + sa; and C = tB; then using Lemma 29, we obtain

|De +Cl=ICl+ 3 _£1C(2,.n)+ Y £122C(3,ccon) -+ 31+ 2o O(n) + [ 24
(4.27)

where 3° ry, ... 2kC(k, ..., n) = 3=, ; z1, ... 2kC(k, ..., n). Putting (4.27) into (4.26) gives
"B+ 2 B(2, . n) LD Ths e Zniban

= ﬁ;c,- (t"|B| + ¢! Z B(2,...,n)+ ...+th,,,,) . (4.28)
1

which holds for all s and ¢t. Rearranging (4.28) yields

t"|B| (IIJ.‘.-— 1) +tn_lZB(2,.-.,ﬂ) (ﬁxi_:l) +"'+tzbnn (ﬁfi _'i:[‘t") -0.
1 1 1
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Examining (4.29), we find that

n n—1
D ban (Hx,. -1I z,-) = 0 (4.30)

and

S B(n—1,n) (ﬁx;—rﬁx‘-) = 0. (4.31)
1 1

We know that

ﬁz,-=1+sz:al +33201a3+---+s"‘ﬁa,—; (4.32)
1 1

and that for each r = 1,2,..n— 1, [[{ i — [I] =i is a polynomial in s of the form sd; + s*d> +
---+ s"d,, where the coefficients are functions of ay, ...,a, and depend on r. For example,

n—-1 n—1

n n—-1
H.t,— -z = (1l +sa,) (sZag+sEZa,~aj + -+ Ha;) . (4.33)
1 1 1 1

So we obtain

n

n-1
[Iz-II= = o (4.34)
1 1

HJ:,- - H r; = 0. {4.35)
1 1
We notice that the left-hand sides of (4.34) and (4.35} are polynomials in s and vanish for all s.
Hence each sum of products of the a; on the right-hand side of (4.33) must be zero. In the case
where each a; = --- = a, = 0, we have ;B = 0 and therefore AB = 0. If this is not the case,
then there must exist a set of a; such that

ar #0,..,a, #0, ary1=---=a, =0, 1<r<n. (4.36)
Hence r,4) =---=r, =1l and welet A= {l,...,7r} and B= {r+1,..., V}. For any subset of B
we get
H;L‘,' H.l:j = H.L‘,'. (4-37)
1 jeB 1

The coefficients of s™ in (4.30) vanish for m € B. For m = r all a; vanish if they are in B, and the
coefficients of b4, ..., b, are respectively a,, ..., a,, which yields

(bri+---+br) [Jai =0 (4.38)
1

hence byy + --- + b, = 0. As for {4.31), the term

(Z B(l,j)+~-+z:B(r,j)+ZZB(i,j)) x Y aia; (4.39)

r41 r+1 i<y i<j
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does not vanish giving
2 B +3 3 Blj) =0 (4.40)
j€EBicA JEA€B

With the following lemma, our proof is complete.

Lemma 30 (Determinantal Result) Ifb;; + ---+ b, =0 and

NN B+ XY BGi.j)=0 (4.41)

jeBicA JEAIEA
then
0 0
B= (4.42)

and, therefore, D,B = AB = 0.

4.3. Proof by Drury, Dumais and Styan (1999)

This proof by Drury, Dumais and Styan (1999) is unpublished!. We believe that this proof is
new; it is shorter than similar proofs given by Ogasawara and Takahashi (1951), Scarowsky (1973).
Scarowsky and Styan (1982), and Ogawa (1993).

Let A’ = (I — sA)~! for those s so that [ — sA is invertible and A = L/¢t. ¢ # 0. Then we may

write

[l —sA—tB|=|I—sA|-|l-tB] (4.43)

[Al —~ KB| = |A\ — B| (4.44)

for all real A. The characteristic polynomials of A’ B and B must, therefore, cotncide and so their
eigenvalues are equal. Hence, using the power series expansion of a matrix geometric series, (cf.
our Lemma 6 in Chapter 1),

R=(-s4)"1= i(s:’l)j (4.45)
=0

! Presented by Dumais at The Eighth International Workshop on Matrices and Statistics, Tampere, Finland, 6-7
August 1999, and by Styan in the “Special Session on the Interaction Between Statistics and Matrix Theory" at the
Annual Meeting of the Statistical Society of Canada, Regina, Saskatchewan, 7-8 June 1999 and at the Conference
on Functional Analysis and Linear Algebra, Indian Statistical Institute-Delhi Centre, 3~7 January 2000.
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it follows that

oQ oQ
te{ B} = tef (A B)?} = tr{(/ —sA)"'B(I —sA)"'B} =tr {Z(sA)" BZ(sA)"B} (4.46)

h=0 k=0
for all real s in an interval around 0. Since trB> does not involve s, it follows that the coefficient
of s* on the right-hand side of (4.46) must be zero. Putting (A, k) = (2,0), (1, 1) and (0, 2) yields

trA’B® + trABAB + trBA®B = 2tr A’ B? + tr(AB)* = 0. (4.47)

From Kawada’'s Trace Lemma (our Lemma L8 in Chapter 3), it follows at once that AB = 0. and

our proof is complete. O

4.4. Proof by Li (2000)

This new proof by Chi-Kwong Li in the paper [117]* depends only on the following well-known
fact:

Lemma 31 Suppose C' = (cij) is an n x n real symmetric matrir with the largest eigenvalue equal
tor;. Thencii <A foralli=1,...,n. Ifcii = Ay, then ¢;j =0 =cj; forall j #i.

For the sake of completeness, we give a short proof.

Proof. Suppose C satisfies the hypothesis of the lemma and the largest eigenvalue of C has
multiplicity m with 1 < m < n. Then there is an orthonormal basis {v;,...,vn} for R" such that
Cuj = Ajuj with Ay = -+ = Am > Amy1 > --- > An. Let {e1, ..., en} be the standard basis for IR".
For any ¢ with | < 7 < n, there exist ¢;,...,¢, € R with 3_7_, (3 = 1 such that ¢; = E}'___, tiv;
and c;; = efCe; = Z?:l t3X,; < A1 The equality holds if and only if tn41 = - =t =0, ie.. € is
an eigenvector of C' corresponding to the largest eigenvalue. Thus, Ce; = Aj¢;, and hence ¢;; = A}
is the only nonzero entry in the ith column. Since C is symmetric, ¢;; is also the only nonzero
entry in the ith row. 0O

We are now ready to present outr proof of

Theorem 32 (The Craig-Sakamoto Theorem) Two n x n real syminetric matrices A and B
satisfy AB =0 if and only if

[l —sA—tB|=|I -sA|-|[I—tB| Vrealsandt. (4.48)

Proof. The (<} part is clear. We prove the converse by induction on n. The result is clear
if n = 1. Suppose n > 1 and the result is true for symmetric matrices of sizes smaller than
n. Let A and B be nonzero n x n real symmetric matrices satisfying (4.48). Denote by p(C)
the spectral radius of a square matrix C. Replacing 4 by +£A/p{A} and B by B/p(B), we may

2To be published in 2060. Reprinted here with the kind permission of Chi-Kwong Li.
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assume that 1 = p(A) = p(B) is the largest eigenvalue of A. Let @ be an orthogonal matrix
such that QAQ' = I, © diag(am41,...,an) With 1 > apmyy > --- > a,. We shall show that
(QAQ)(QBQ’) = 0 and hence AB = 0.

For simplicity, we assume that Q = /. Let t = %1. If r > 1, then both A/r and tB/r have
eigenvalues in the open interval (—1,1). Thus, I/ — A/r and [ — tB/r are invertible, and

[ —Afr—tBfr|=|—-A/r}- [ —tB/r| #0.

Moreover. since
[I—A—tB|=|I—-A|-|[[-tB]|=0,
we see that 1 is the largest eigenvalue of the matrix A +¢B for t = 1.

Next, we show that B is of the form 0, & B2. Note that all the first m diagonal entries of A
are equal to the largest eigenvalue of A+ B. If the first m diagonal entries of B are not all 0. then
the matrix A + B or A — B will have a diagonal entry larger than 1, contradicting Lemma 31. So,
all the first m diagonal entries of the matrix 4 4+ B equal the largest eigenvalue. By Lemma 31
again, A + B must be of the form I, & C-. Hence, B is of the form 0., ¢ B>, as asserted.

Now. let A = I, & Aa. Then for any real numbers s and ¢ with s # 1, we have
(o —sA—tB| _ |In—sA|-|I, —tB|

U —slm| [ Im — sl |

By continuity, we can remove the restriction that s # 1. Using the induction assumption, we see
that 4.B> = 0. Hence, we have AB = 0 as desired. 0O

= |lnem — sda| - |[[n-m — t Ba|.

[In-m — 542 — {Ba] =

4.5. Extension by Li and Styan (2000) for Normal Matrices

Our last proof of the Craig-Sakamoto Theorem, by Li and Styan [118])3, assumes that 4 and B
are complex normal matrices. Taussky [231] pointed out already in 1958 that the Craig-Sakamoto
Theorem could be extended to complex normal matrices; her proof, however, relied on the so-
called property L of a pair of (normal) matrices. Here, we show that such an extension can be
done without using property L. We begin with the following extension to complex normal matrices
of Hsu's Theorem (our Theorem 26 in Chapter 3).

Lemma 33 Let A and B be nxn complexr normal matrices. Suppose A, B and A+ B have nonzero
eigenvalues (counting multiplicities) ay,...,aq. By,...,5, and cy, ..., Qq,B31,. .., 3. respectively.
Then AB = 0.

Proof. Let D, = diag(ai,...,as) and D> = diag(3,...,0). We may assume that A = D) 5
0,,—q. Otherwise, replace A and B by U AU and U* BU for a suitable unitary /. Let

i Vo s
V=]1V: V5 W

= Vs Vo

3Unpublished. Reproduced here with permission of Chi-Kwong Li and George P. H. Styan.
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be unitary so that V) is a x a, V5 is b x b and
VBV® =0, P D2$ 0p_g—sp-

Consider
. 0 0

S=|Vy Vs Vs

0 0 On-a-s
Then A+ B = S°DS with D= D) & D> & 0,_q—5. Note that the eigenvalues of XY and Y X are
the same for two square matrices X and Y. Thus the eigenvalues of A+ B = 5* DS are the same
as those of
I. V¢ 0
DSS* =D | Va I 0

0 0 On—a—b
Let m = a+b. Then the sum of all the rn x m principal submatrices of A + B is equal to the mth
elementary symmetric function of the eigenvalues of A + B, which is I'[;;1 aj HZ:n 3. Using the
same arguments for DSS™ and the fact that the only nonzero m x m principal submatrix of DSS”
is the leading one, we conclude that

a b a b I ‘/4' a b

Lo [T 8 = IT s I1 B det = [T o I 5t - v v,

j=1 k=1 j=l k=1 Vi Iy j=t k=l

Hence V' V4 = 0, and thus
VaDaVs VeDalbg

BZS-(OQ‘E‘DZQ’On—a—b)S:Od% :

Ve Dals V5 DaVs

It follows that AB=0. 0O

Note that if m = n, our proof is basicaily the same as that of Hsu’s Theorem (our Theorem 26
in Chapter 3).

We are now ready to state and prove our main theorem.

Theorem 34 Let the compler n x n normal matrices A and B have non:zero eigenvalues (counting
multiplicities) ay, ..., aq, and 3y, ..., By, respectively. The following conditions are equivalent.

(a) AB =0.

(b) There is a unitary matriz U such that U™ AU = diag(a,,..., aq,0,...,0) and
U™BU = 0, & diag(B1,-..,5.0,...,0).

(c) There are infinite sets S, T C € such that for any (s,t) € S x T, it follows that

I —sA—1tB| = |I —sA|-|[ —tB].
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(d) There exist nonzero s,t € C such that sA + tB has eigenvalues

sall"':saavt.‘611~"1‘}66'01"-,0-

Proof. (a) = (b): Suppose that AB = 0. Let U be unitary so that " AU = diag(a,,...,aq.) &

0n—a- Suppose
By B»
U-Bu-:( |
Bs By

Since AB = 0, we see that B; and B, are zero blocks. Since BB® = B™ B, we see that Bj is also
a zero block. Suppose V/ is unitary such that V* B4V = diag(f:,...,0s) ©0n_a—p. Replace U by
U(la & V). Then U AU and U"BU are of the forms specified in (b).

(b) = (¢): Immediate.
(c) = (d): Note that
M ~sA—tB| = A1 —(s/A)A—(t/A)B|
= AT —(s/A)A|- |- (t/A)B]
= x=e TTr—sap) TLA - t0)
j=1 k=1
for all (s/A,t/A) € R x S. Thus, the polynomial

a b
M —sA —tB] = A" T (A = sa;) [T(A - t8).
Jj=1 k=1

and condition (d) follows.

(d) = (a): Apply Lemma 33 to the matrices s4 and ¢tB to conclude that AB = 0. and our
proof is complete. O

Several remarks are in order. The proof of (¢) = (d) actually reveals that A and B satisfy
property L. One may then conclude that AB = BA and prove that (d) => (a) as in Taussky [231].
If -4 and B are real, then one may assume that U/ is orthogonal in condition (b), and that s,t € IR
in conditions (c¢) and (d).
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